Science.gov

Sample records for cell wall glycoproteins

  1. (Hydroxyproline-rich glycoproteins of the plant cell wall)

    SciTech Connect

    Varner, J.E.

    1990-01-01

    We are studying the chemistry and architecture of plant cells walls, the extracellular matrices that taken together shape the plant and provide mechanical support for the plant. Cell walls are dynamic structures that regulate, or are the site of, many physiological processes, in addition to being the cells' first line of defense against invading pathogens. In the past year we have examined the role of the cell wall enzyme ascorbic acid oxidase as related to the structure of the wall and its possible interactions with hydroxyproline-rich glycoproteins of the wall.

  2. Glycoproteins from the cell wall of Phaseolus coccineus.

    PubMed Central

    O'Neill, M A; Selvendran, R R

    1980-01-01

    1. The use of a modified sodium chlorite/acetic acid delignification procedure for the solubilization of a hydroxyproline-rich glycoprotein fraction from the depectinated cell walls of Phaseolus coccineus is described. 2. The crude glycoprotein was associated with some pectic material; hydroxyproline and serine were the most abundant amino acids, and arabinose, galactose and galacturonic acid the predominant monosaccharides. 3. The bulk of the hydroxyproline is O-glycosidically substituted with tetra- and tri-arabinofuranosides. From methylation analysis the linkages in these arabinosides could be inferred. 4. Ion-exchange chromatography of the crude glycoprotein gave one major and two minor hydroxyproline-rich fractions, with similar amino acid but different monosaccharide composition. 5. In the major fraction, serine appears to be O-glycosidically substituted with a single galactopyranoside residue that can be removed by the action of alpha-galactosidase but not beta-galactosidase. Removal of arabinofuranoside residues by partial acid hydrolysis greatly enhanced the action of alpha-galactosidase. 6. Methylation followed by carboxy reduction with LiAl2H4 has shown the presence of (1 leads to 4)-linked galacturonic acid in the crude glycoprotein fraction but not in the major fraction from the ion-exchange column. Hence the bulk of the pectic material is not associated with the major glycoprotein component. It is suggested that the glycoprotein is held in the wall by phenolic cross-links. 7. Similarities with the glycopeptide moiety of potato lectin provides further evidence for a class of hydroxyproline-rich glycoproteins with common features. PMID:7406871

  3. The chaotrope-soluble glycoprotein GP1 is a constituent of the insoluble glycoprotein framework of the Chlamydomonas cell wall.

    PubMed

    Voigt, Jürgen; Frank, Ronald; Wöstemeyer, Johannes

    2009-02-01

    Chlamydomonas reinhardtii wild-type cells are surrounded by the insoluble cell wall component, a sac-like framework of cross-linked glycoproteins containing 22% hydroxyproline. The chaotrope-soluble cell wall glycoprotein GP1 is the only polypeptide with an even higher proportion of hydroxyproline (35%) occurring in vegetative C. reinhardtii cells. Mass spectrometric analyses of peptides released from the purified insoluble cell wall fraction by trypsin treatment and epitope analyses of polyclonal antibodies raised against different deglycosylation products of this particular wall fraction using 181 chemically synthesized GP1-derived pentadecapeptides revealed evidence that GP1 is indeed a constituent of the insoluble wall component.

  4. Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function

    PubMed Central

    Nguema-Ona, Eric; Vicré-Gibouin, Maïté; Gotté, Maxime; Plancot, Barbara; Lerouge, Patrice; Bardor, Muriel; Driouich, Azeddine

    2014-01-01

    Cell wall O-glycoproteins and N-glycoproteins are two types of glycomolecules whose glycans are structurally complex. They are both assembled and modified within the endomembrane system, i.e., the endoplasmic reticulum (ER) and the Golgi apparatus, before their transport to their final locations within or outside the cell. In contrast to extensins (EXTs), the O-glycan chains of arabinogalactan proteins (AGPs) are highly heterogeneous consisting mostly of (i) a short oligo-arabinoside chain of three to four residues, and (ii) a larger β-1,3-linked galactan backbone with β-1,6-linked side chains containing galactose, arabinose and, often, fucose, rhamnose, or glucuronic acid. The fine structure of arabinogalactan chains varies between, and within plant species, and is important for the functional activities of the glycoproteins. With regards to N-glycans, ER-synthesizing events are highly conserved in all eukaryotes studied so far since they are essential for efficient protein folding. In contrast, evolutionary adaptation of N-glycan processing in the Golgi apparatus has given rise to a variety of organism-specific complex structures. Therefore, plant complex-type N-glycans contain specific glyco-epitopes such as core β,2-xylose, core α1,3-fucose residues, and Lewisa substitutions on the terminal position of the antenna. Like O-glycans, N-glycans of proteins are essential for their stability and function. Mutants affected in the glycan metabolic pathways have provided valuable information on the role of N-/O-glycoproteins in the control of growth, morphogenesis and adaptation to biotic and abiotic stresses. With regards to O-glycoproteins, only EXTs and AGPs are considered herein. The biosynthesis of these glycoproteins and functional aspects are presented and discussed in this review. PMID:25324850

  5. Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function.

    PubMed

    Nguema-Ona, Eric; Vicré-Gibouin, Maïté; Gotté, Maxime; Plancot, Barbara; Lerouge, Patrice; Bardor, Muriel; Driouich, Azeddine

    2014-01-01

    Cell wall O-glycoproteins and N-glycoproteins are two types of glycomolecules whose glycans are structurally complex. They are both assembled and modified within the endomembrane system, i.e., the endoplasmic reticulum (ER) and the Golgi apparatus, before their transport to their final locations within or outside the cell. In contrast to extensins (EXTs), the O-glycan chains of arabinogalactan proteins (AGPs) are highly heterogeneous consisting mostly of (i) a short oligo-arabinoside chain of three to four residues, and (ii) a larger β-1,3-linked galactan backbone with β-1,6-linked side chains containing galactose, arabinose and, often, fucose, rhamnose, or glucuronic acid. The fine structure of arabinogalactan chains varies between, and within plant species, and is important for the functional activities of the glycoproteins. With regards to N-glycans, ER-synthesizing events are highly conserved in all eukaryotes studied so far since they are essential for efficient protein folding. In contrast, evolutionary adaptation of N-glycan processing in the Golgi apparatus has given rise to a variety of organism-specific complex structures. Therefore, plant complex-type N-glycans contain specific glyco-epitopes such as core β,2-xylose, core α1,3-fucose residues, and Lewis(a) substitutions on the terminal position of the antenna. Like O-glycans, N-glycans of proteins are essential for their stability and function. Mutants affected in the glycan metabolic pathways have provided valuable information on the role of N-/O-glycoproteins in the control of growth, morphogenesis and adaptation to biotic and abiotic stresses. With regards to O-glycoproteins, only EXTs and AGPs are considered herein. The biosynthesis of these glycoproteins and functional aspects are presented and discussed in this review.

  6. Insolubilization of hydroxyproline-rich cell wall glycoprotein in aerated carrot root slices.

    PubMed

    Cooper, J B; Varner, J E

    1983-04-15

    The hydroxyproline-rich glycoprotein of plant cell walls is secreted from the cytoplasm as a soluble monomer which slowly becomes insolubilized. A tyrosine derivative, isodityrosine, is formed in the cell wall during this insolubilization and could serve as a protein-protein crosslink. Glycoprotein insolubilization is inhibited by peroxidase inhibitors and free radical scavengers, the most effective of which is L-ascorbate. These data support a hypothesis that the hydroxyproline-rich cell wall glycoprotein forms a covalently crosslinked wall network under the control of an extracellular peroxidase/ascorbate oxidase system.

  7. [Hydroxyproline: Rich glycoproteins of the plant and cell wall

    SciTech Connect

    Varner, J.E.

    1993-01-01

    Since xylem tissue includes the main cell types which are lignified, we are interested in gene expression of glycine-rich proteins and proline-rich proteins, and other proteins which are involved in secondary cell wall thickening during xylogenesis. Since the main feature of xylogenesis is the deposition of additional wall components, study of the mechanism of xylogenesis will greatly advance our knowledge of the synthesis and assembly of wall macromolecules. We are using the in vitro xylogenesis system from isolated Zinnia mesophyll cells to isolate genes which are specifically expressed during xylogenesis. We have used subtractive hybridization methods to isolate a number of cDNA clones for differentially regulated genes from the cells after hormonal induction. So far, we have partially characterized 18 different cDNA clones from 239 positive clones. These differentially regulated genes can be divided into three sets according to the characteristics of gene expression in the induction medium and the control medium. The first set is induced in both the induction medium and the control medium without hormones. The second set is induced mainly in the induction medium and in the control medium with the addition of NAA alone. Two of thesegenes are exclusively induced by auxin. The third set of genes is induced mainly in the induction medium. Since these genes are not induced by either auxin or cytokinin alone, they may be directly involved in the process of xylogenesis. Our experiments on the localization of H[sub 2]O[sub 2] production reinforce the earlier ideas of others that H[sub 2]O[sub 2] is involved in normal lignification.

  8. A structural glycoprotein, containing hydroxyproline, isolated from the cell wall of Chlamydomonas reinhardii.

    PubMed

    Catt, J W; Hills, G J; Roberts, K

    1976-01-01

    A soluble extract from purified cell walls of C. reinhardii has been separated by gel filtration into three fractions which together account for 94% of the cell wall. The major fraction (accounting for 70% of the extract) is a glycoprotein, with a molecular wt. in sodium perchlorate of 298,000, which can be split into 4 electrophoretically distinct species. It contains 35% protein with high levels of hydroxyproline, arabinose and galactose, and is capable of self assembly into crystalline structures identical to those found within the cell wall. The second fraction (25% of the extract) is a similar glycoprotein, but contains 24% protein, a higher proportion of mannose, and is incapable of self assembly. The third fraction (3-6% of the extract) is shown to be an adsorbed impurity from the growth medium used.

  9. Isolation from Gluconacetobacter diazotrophicus cell walls of specific receptors for sugarcane glycoproteins, which act as recognition factors.

    PubMed

    Blanco, Y; Arroyo, M; Legaz, M E; Vicente, C

    2005-11-04

    Glycoproteins from sugarcane stalks have been isolated from plants field-grown by size-exclusion chromatography. Some of these glycoproteins, previously labelled with fluorescein isothiocyanate, are able to bind to the cell wall of the sugarcane endophyte, N2-fixing Gluconacetobacter diazotrophicus, and largely removed after washing the bacterial cells with sucrose. This implies that sugarcane glycoproteins use beta-(1-->2)-fructofuranosyl fructose domains in their glycosidic moiety to bind to specific receptors in the bacterial cell walls. These receptors have been isolated by affinity chromatography on a sugarcane glycoprotein-agarose matrix, desorbed with sucrose and characterized by sodium dodecyl sulfate polyacrylamide gel electrophresisand capillary electrophoresis (CE).

  10. Cell-wall polysaccharides and glycoproteins of parenchymatous tissues of runner bean (Phaseolus coccineus).

    PubMed

    Ryden, P; Selvendran, R R

    1990-07-15

    1. Polymers were solubilized from the cell walls of parenchyma from mature runner-bean pods with minimum degradation by successive extractions with cyclohexane-trans-1,2-diamine-NNN'N'-tetra-acetate (CDTA), Na2CO3 and KOH to leave the alpha-cellulose residue, which contained cross-linked pectic polysaccharides and Hyp-rich glycoproteins. These were solubilized with chlorite/acetic acid and cellulase. The polymers were fractionated by anion-exchange chromatography, and fractions were subjected to methylation analysis. 2. The pectic polysaccharides differed in their ease of extraction, and a small proportion were highly cross-linked. The bulk of the pectic polysaccharides solubilized by CDTA and Na2CO3 were less branched than those solubilized by KOH. There was good evidence that most of the pectic polysaccharides were not degraded during extraction. 3. The protein-containing fractions included Hyp-rich and Hyp-poor glycoproteins associated with easily extractable pectic polysaccharides, Hyp-rich glycoproteins solubilized with 4M-KOH+borate, the bulk of which were not associated with pectic polysaccharides, and highly cross-linked Hyp-rich glycoproteins. 4. Isodityrosine was not detected, suggesting that it does not have a (major) cross-linking role in these walls. Instead, it is suggested that phenolics, presumably linked to C-5 of 3,5-linked Araf residues of Hyp-rich glycoproteins, serve to cross-link some of the polymers. 5. There were two main types of xyloglucan, with different degrees of branching. The bulk of the less branched xyloglucans were solubilized by more-concentrated alkali. The anomeric configurations of the sugars in one of the highly branched xyloglucans were determined by 13C-n.m.r. spectroscopy. 6. The structural features of the cell-wall polymers and complexes are discussed in relation to the structure of the cell walls of parenchyma tissues.

  11. Cell-wall polysaccharides and glycoproteins of parenchymatous tissues of runner bean (Phaseolus coccineus).

    PubMed Central

    Ryden, P; Selvendran, R R

    1990-01-01

    1. Polymers were solubilized from the cell walls of parenchyma from mature runner-bean pods with minimum degradation by successive extractions with cyclohexane-trans-1,2-diamine-NNN'N'-tetra-acetate (CDTA), Na2CO3 and KOH to leave the alpha-cellulose residue, which contained cross-linked pectic polysaccharides and Hyp-rich glycoproteins. These were solubilized with chlorite/acetic acid and cellulase. The polymers were fractionated by anion-exchange chromatography, and fractions were subjected to methylation analysis. 2. The pectic polysaccharides differed in their ease of extraction, and a small proportion were highly cross-linked. The bulk of the pectic polysaccharides solubilized by CDTA and Na2CO3 were less branched than those solubilized by KOH. There was good evidence that most of the pectic polysaccharides were not degraded during extraction. 3. The protein-containing fractions included Hyp-rich and Hyp-poor glycoproteins associated with easily extractable pectic polysaccharides, Hyp-rich glycoproteins solubilized with 4M-KOH+borate, the bulk of which were not associated with pectic polysaccharides, and highly cross-linked Hyp-rich glycoproteins. 4. Isodityrosine was not detected, suggesting that it does not have a (major) cross-linking role in these walls. Instead, it is suggested that phenolics, presumably linked to C-5 of 3,5-linked Araf residues of Hyp-rich glycoproteins, serve to cross-link some of the polymers. 5. There were two main types of xyloglucan, with different degrees of branching. The bulk of the less branched xyloglucans were solubilized by more-concentrated alkali. The anomeric configurations of the sugars in one of the highly branched xyloglucans were determined by 13C-n.m.r. spectroscopy. 6. The structural features of the cell-wall polymers and complexes are discussed in relation to the structure of the cell walls of parenchyma tissues. PMID:2167068

  12. The cell-wall glycoproteins of the green alga Scenedesmus obliquus. The predominant cell-wall polypeptide of Scenedesmus obliquus is related to the cell-wall glycoprotein gp3 of Chlamydomonas reinhardtii.

    PubMed

    Voigt, Jürgen; Stolarczyk, Adam; Zych, Maria; Malec, Przemysław; Burczyk, Jan

    2014-02-01

    The green alga Scenedesmus obliquus contains a multilayered cell wall, ultrastructurally similar to that of Chlamydomonas reinhardtii, although its proportion of hydroxyproline is considerably lower. Therefore, we have investigated the polypeptide composition of the insoluble and the chaotrope-soluble wall fractions of S. obliquus. The polypeptide pattern of the chaotrope-soluble wall fraction was strongly modified by chemical deglycosylation with anhydrous hydrogen fluoride (HF) in pyridine indicating that most of these polypeptides are glycosylated. Polypeptide constituents of the chaotrope-soluble cell-wall fraction with apparent molecular masses of 240, 270, 265, and 135 kDa cross-reacted with a polyclonal antibody raised against the 100 kDa deglycosylation product of the C. reinhardtii cell-wall glycoprotein GP3B. Chemical deglycosylation of the chaotrope-soluble wall fraction resulted in a 135 kDa major polypeptide and a 106 kDa minor component reacting with the same antibody. This antibody recognized specific peptide epitopes of GP3B. When the insoluble wall fraction of S. obliquus was treated with anhydrous HF/pyridine, three polypeptides with apparent molecular masses of 144, 135, and 65 kDa were solubilized, which also occured in the deglycosylated chaotrope-soluble wall fraction. These findings indicate that theses glycoproteins are cross-linked to the insoluble wall fraction via HF-sensitive bonds.

  13. [Interaction of the glycoprotein from the Bacillus pumilis cell wall with liposomes].

    PubMed

    Karamushka, V I; Gruzina, T G; Podol'skaia, V I; Ul'berg, Z R

    1987-01-01

    The methods of centrifugation and gel-filtration on Sephadexes G-50 and G-150 were used to study the interaction of Bacillus pumilis cell wall glycoprotein component having the molecular weight of 50 kDa (GP-50) with lyposomes from bacterial lipids. GP-50 is shown to sorb on such liposomes and disturb their barrier properties inducing yield of low-molecular label. GP-50 exerts no effect on properties of liposomes from egg lecithin. Electrostatic forces are supposed to play a decisive role in initial acts of GP-50 interactions with lipid phase of microbial envelopes.

  14. A Developmentally Regulated Hydroxyproline-Rich Glycoprotein in Maize Pericarp Cell Walls 1

    PubMed Central

    Hood, Elizabeth E.; Shen, Qing Xi; Varner, Joseph E.

    1988-01-01

    We have studied the accumulation of peptidyl hydroxyproline in the pericarp of developing maize (Zea mays L., Golden cross Bantam sweet corn) kernels. Although this hydroxyproline accumulates throughout development, it is most soluble and its content per milligram dry weight greatest at midmaturation stages of development. Salt-soluble proteins containing this hydroxyproline from isolated cell walls of developing kernels were fractionated on a CsCl density gradient and on a Chromatofocusing column, resulting in the purification of an hydroxyproline-rich glycoprotein, PC-1. PC-1 is a basic protein of approximately 65 to 70 kilodaltons in molecular weight with an isoelectric point of at least 10.2 and a density of 1.38 to 1.39 in CsCl. Amino acid composition data indicate that it is rich in hydroxyproline, threonine, proline, lysine, and glycine. Its relation to dicot extensin is discussed. Images Fig. 2 PMID:16666089

  15. A developmentally regulated hydroxyproline-rich glycoprotein in maize pericarp cell walls. [Zea mays L

    SciTech Connect

    Hood, E.E.; Shen, Q.X.; Varner, J.E. )

    1988-05-01

    We have studied the accumulation of peptidyl hydroxyproline in the pericarp of developing maize (Zea mays L., Golden cross Bantam sweet corn) kernels. Although this hydroxyproline accumulates throughout development, it is most soluble and its content per milligram dry weight greatest at midmaturation stages of development. Salt-soluble proteins containing this hydroxyproline from isolated cell walls of developing kernels were fractionated on a CsCl density gradient and on a Chromatofocusing column, resulting in the purification of an hydroxyproline-rich glycoprotein, PC-1. PC-1 is a basic protein of approximately 65 to 70 kilodaltons in molecular weight with an isoelectric point of at least 10.2 and a density of 1.38 to 1.39 in CsCl. Amino acid composition data indicate that it is rich in hydroxyproline, threonine, proline, lysine, and glycine. Its relation to dicot extension is discussed.

  16. Identification and evolution of a plant cell wall specific glycoprotein glycosyl transferase, ExAD

    PubMed Central

    Møller, Svenning Rune; Yi, Xueying; Velásquez, Silvia Melina; Gille, Sascha; Hansen, Pernille Louise Munke; Poulsen, Christian P.; Olsen, Carl Erik; Rejzek, Martin; Parsons, Harriet; Zhang, Yang; Wandall, Hans H.; Clausen, Henrik; Field, Robert A.; Pauly, Markus; Estevez, Jose M.; Harholt, Jesper; Ulvskov, Peter; Petersen, Bent Larsen

    2017-01-01

    Extensins are plant cell wall glycoproteins that act as scaffolds for the deposition of the main wall carbohydrate polymers, which are interlocked into the supramolecular wall structure through intra- and inter-molecular iso-di-tyrosine crosslinks within the extensin backbone. In the conserved canonical extensin repeat, Ser-Hyp4, serine and the consecutive C4-hydroxyprolines (Hyps) are substituted with an α-galactose and 1–5 β- or α-linked arabinofuranoses (Arafs), respectively. These modifications are required for correct extended structure and function of the extensin network. Here, we identified a single Arabidopsis thaliana gene, At3g57630, in clade E of the inverting Glycosyltransferase family GT47 as a candidate for the transfer of Araf to Hyp-arabinofuranotriose (Hyp-β1,4Araf-β1,2Araf-β1,2Araf) side chains in an α-linkage, to yield Hyp-Araf4 which is exclusively found in extensins. T-DNA knock-out mutants of At3g57630 showed a truncated root hair phenotype, as seen for mutants of all hitherto characterized extensin glycosylation enzymes; both root hair and glycan phenotypes were restored upon reintroduction of At3g57630. At3g57630 was named Extensin Arabinose Deficient transferase, ExAD, accordingly. The occurrence of ExAD orthologs within the Viridiplantae along with its’ product, Hyp-Araf4, point to ExAD being an evolutionary hallmark of terrestrial plants and charophyte green algae. PMID:28358137

  17. Identification and evolution of a plant cell wall specific glycoprotein glycosyl transferase, ExAD.

    PubMed

    Møller, Svenning Rune; Yi, Xueying; Velásquez, Silvia Melina; Gille, Sascha; Hansen, Pernille Louise Munke; Poulsen, Christian P; Olsen, Carl Erik; Rejzek, Martin; Parsons, Harriet; Zhang, Yang; Wandall, Hans H; Clausen, Henrik; Field, Robert A; Pauly, Markus; Estevez, Jose M; Harholt, Jesper; Ulvskov, Peter; Petersen, Bent Larsen

    2017-03-30

    Extensins are plant cell wall glycoproteins that act as scaffolds for the deposition of the main wall carbohydrate polymers, which are interlocked into the supramolecular wall structure through intra- and inter-molecular iso-di-tyrosine crosslinks within the extensin backbone. In the conserved canonical extensin repeat, Ser-Hyp4, serine and the consecutive C4-hydroxyprolines (Hyps) are substituted with an α-galactose and 1-5 β- or α-linked arabinofuranoses (Arafs), respectively. These modifications are required for correct extended structure and function of the extensin network. Here, we identified a single Arabidopsis thaliana gene, At3g57630, in clade E of the inverting Glycosyltransferase family GT47 as a candidate for the transfer of Araf to Hyp-arabinofuranotriose (Hyp-β1,4Araf-β1,2Araf-β1,2Araf) side chains in an α-linkage, to yield Hyp-Araf4 which is exclusively found in extensins. T-DNA knock-out mutants of At3g57630 showed a truncated root hair phenotype, as seen for mutants of all hitherto characterized extensin glycosylation enzymes; both root hair and glycan phenotypes were restored upon reintroduction of At3g57630. At3g57630 was named Extensin Arabinose Deficient transferase, ExAD, accordingly. The occurrence of ExAD orthologs within the Viridiplantae along with its' product, Hyp-Araf4, point to ExAD being an evolutionary hallmark of terrestrial plants and charophyte green algae.

  18. (Hydroxyproline-rich glycoprotein of the plant cell wall): Report on work from June 1987 to June 1988

    SciTech Connect

    Not Available

    1988-01-01

    In soybean seed costs the accumulation of the hydroxproline-rich glycoprotein extensin is regulated in a developmental and tissue-specific manner. The time course of appearance of extensin during seed development was studied by Western blot analysis and by immunogold-silver localization. Using these techniques extensin was first detected at 16 to 18 d after anthesis, increasing during development to high levels at 24 d after anthesis. Immunogold-silver localization of extensin in the seed coat showed marked depostion of the glycoprotein in the walls of palisade epidermal cells and hourglass cells. The immunolocalization of extensin in developing soybean seeds was also made by a new technique - tissue printing on nitrocellulose paper. This technique shows that extensin is primarily localized in the seed coal, hilum, and vascular elements of the seed.

  19. The first biantennary bacterial secondary cell wall polymer and its influence on S-layer glycoprotein assembly.

    PubMed Central

    Steindl, Christian; Schäffer, Christina; Wugeditsch, Thomas; Graninger, Michael; Matecko, Irena; Müller, Norbert; Messner, Paul

    2002-01-01

    The cell surface of Aneurinibacillus thermoaerophilus DSM 10155 is covered with a square surface (S)-layer glycoprotein lattice. This S-layer glycoprotein, which was extracted with aqueous buffers after a freeze-thaw cycle of the bacterial cells, is the only completely water-soluble S-layer glycoprotein to be reported to date. The purified S-layer glycoprotein preparation had an overall carbohydrate content of 19%. Detailed chemical investigations indicated that the S-layer O-glycans of previously established structure accounted for 13% of total glycosylation. The remainder could be attributed to a peptidoglycan-associated secondary cell wall polymer. Structure analysis was performed using purified secondary cell wall polymer-peptidoglycan complexes. NMR spectroscopy revealed the first biantennary secondary cell wall polymer from the domain Bacteria, with the structure alpha-L-Glc p NAc-(1-->3)-beta-L-Man p NAc-(1-->4)-beta-L-Gal p NAc-(1-->3)-alpha-L-Glc p NAc-(1-->3)-beta-L-Man p NAc-(1-->4)-beta-L-Gal p NAc-(1-->3)-alpha-L-Glc p NAc-(1-->4)-[alpha-L-Glc p NAc-(1-->3)-beta-L-Man p NAc-(1-->4)-beta-L-Gal p NAc-(1-->3)-alpha-L-Glc p NAc-(1-->3)-beta-L-Man p NAc-(1-->4)-beta-L-Gal p NAc-(1-->3)-alpha-L-Glc p NAc-(1-->3)]-beta-L-Man p NAc-(1-->3)-alpha-L-Glc p NAc-(1-->3)-beta-L-Man p NAc-(1-->3)-alpha-L-Glc p NAc-(1-->3)-alpha-L-Glc p NAc-(1-->O)-PO(2)(-)-O-PO(2)(-)-(O-->6)-MurNAc- (where MurNAc is N -acetylmuramic acid). The neutral polysaccharide is linked via a pyrophosphate bond to the C-6 atom of every fourth N -acetylmuramic acid residue, in average, of the A1gamma-type peptidoglycan. In vivo, the biantennary polymer anchored the S-layer glycoprotein very effectively to the cell wall, probably due to the doubling of motifs for a proposed lectin-like binding between the polymer and the N-terminus of the S-layer protein. When the cellular support was removed during S-layer glycoprotein isolation, the co-purified polymer mediated the solubility of the S

  20. The Neurospora crassa dfg5 and dcw1 Genes Encode α-1,6-Mannanases That Function in the Incorporation of Glycoproteins into the Cell Wall

    PubMed Central

    Maddi, Abhiram; Fu, Ci; Free, Stephen J.

    2012-01-01

    The covalent cross-linking of cell wall proteins into the cell wall glucan/chitin matrix is an important step in the biogenesis of the fungal cell wall. We demonstrate that the Neurospora crassa DFG5 (NCU03770) and DCW1 (NCU08127) enzymes function in vivo to cross-link glycoproteins into the cell wall. Mutants lacking DFG5 or DCW1 release slightly elevated levels of cell wall proteins into their growth medium. Mutants lacking both DFG5 and DCW1 have substantially reduced levels of cell wall proteins in their cell walls and release large amounts of known cell wall proteins into the medium. DFG5 and DCW1 are members of the GH76 family of glycosyl hydrolases, which have specificity to recognize and cleave α-1,6-mannans. A model for incorporation of glycoproteins into the cell wall through the α-1,6-mannan core of the N-linked galactomannan is presented. In this model, DFG5 and DCW1 recognize the N-linked galactomannan present on glycoproteins and cross-link it into the cell wall glucan/chitin matrix. PMID:22701726

  1. Carbohydrate-dependent binding of langerin to SodC, a cell wall glycoprotein of Mycobacterium leprae.

    PubMed

    Kim, Hee Jin; Brennan, Patrick J; Heaslip, Darragh; Udey, Mark C; Modlin, Robert L; Belisle, John T

    2015-02-01

    Langerhans cells participate in the immune response in leprosy by their ability to activate T cells that recognize the pathogen, Mycobacterium leprae, in a langerin-dependent manner. We hypothesized that langerin, the distinguishing C-type lectin of Langerhans cells, would recognize the highly mannosylated structures in pathogenic Mycobacterium spp. The coding region for the extracellular and neck domain of human langerin was cloned and expressed to produce a recombinant active trimeric form of human langerin (r-langerin). Binding assays performed in microtiter plates, by two-dimensional (2D) Western blotting, and by surface plasmon resonance demonstrated that r-langerin possessed carbohydrate-dependent affinity to glycoproteins in the cell wall of M. leprae. This lectin, however, yielded less binding to mannose-capped lipoarabinomannan (ManLAM) and even lower levels of binding to phosphatidylinositol mannosides. However, the superoxide dismutase C (SodC) protein of the M. leprae cell wall was identified as a langerin-reactive ligand. Tandem mass spectrometry verified the glycosylation of a recombinant form of M. leprae SodC (rSodC) produced in Mycobacterium smegmatis. Analysis of r-langerin affinity by surface plasmon resonance revealed a carbohydrate-dependent affinity of rSodC (equilibrium dissociation constant [KD] = 0.862 μM) that was 20-fold greater than for M. leprae ManLAM (KD = 18.69 μM). These data strongly suggest that a subset of the presumptively mannosylated M. leprae glycoproteins act as ligands for langerin and may facilitate the interaction of M. leprae with Langerhans cells.

  2. [Hydroxyproline: Rich glycoproteins of the plant and cell wall]. Annual technical progress report, 1993

    SciTech Connect

    Varner, J.E.

    1993-06-01

    Since xylem tissue includes the main cell types which are lignified, we are interested in gene expression of glycine-rich proteins and proline-rich proteins, and other proteins which are involved in secondary cell wall thickening during xylogenesis. Since the main feature of xylogenesis is the deposition of additional wall components, study of the mechanism of xylogenesis will greatly advance our knowledge of the synthesis and assembly of wall macromolecules. We are using the in vitro xylogenesis system from isolated Zinnia mesophyll cells to isolate genes which are specifically expressed during xylogenesis. We have used subtractive hybridization methods to isolate a number of cDNA clones for differentially regulated genes from the cells after hormonal induction. So far, we have partially characterized 18 different cDNA clones from 239 positive clones. These differentially regulated genes can be divided into three sets according to the characteristics of gene expression in the induction medium and the control medium. The first set is induced in both the induction medium and the control medium without hormones. The second set is induced mainly in the induction medium and in the control medium with the addition of NAA alone. Two of thesegenes are exclusively induced by auxin. The third set of genes is induced mainly in the induction medium. Since these genes are not induced by either auxin or cytokinin alone, they may be directly involved in the process of xylogenesis. Our experiments on the localization of H{sub 2}O{sub 2} production reinforce the earlier ideas of others that H{sub 2}O{sub 2} is involved in normal lignification.

  3. Cell wall protein and glycoprotein constituents of Aspergillus fumigatus that bind to polystyrene may be responsible for the cell surface hydrophobicity of the mycelium.

    PubMed

    Peñalver, M C; Casanova, M; Martínez, J P; Gil, M L

    1996-07-01

    Cell surface hydrophobicity (CSH) of Aspergillus fumigatus grown both in complex medium (yeast extract/peptone/dextrose; YPD) and minimal (Vogel's N) medium was monitored by assessing attachment of polystyrene microspheres to the cell surface. It was found that mature mycelium was hydrophobic. Treatment of intact mycelium with beta-mercaptoethanol (beta ME) abolished binding of the microspheres to hyphal elements, and coating of the microspheres with beta ME extracts from mycelium inhibited their attachment to intact mycelial cells. A. fumigatus mycelium was tagged in vivo with biotin and treated with beta ME. The beta ME extracts were analysed by SDS-PAGE and Western blotting with both peroxidase-conjugated-ExtrAvidin and concanavalin A (ConA). This procedure allowed identification of cell wall surface proteins and glycoproteins. Rabbit polyclonal antisera were raised against beta ME extracts obtained from cells grown in YPD and Vogel's N media. These antisera defined some major cell-wall-bound antigens. SDS-PAGE and Western blotting analysis of the cell wall material released by beta ME and adsorbed on polystyrene microspheres revealed about 19 protein species with apparent molecular masses ranging from 20 to 70 kDa, and two high-molecular-mass glycoproteins of 115 and 210 kDa. Treatment of cells grown in YPD, but not those grown in Vogel's N medium, with beta ME released a 55 kDa polypeptide able to adsorb to polystyrene microspheres that was detectable with the antisera. The ability to bind to polystyrene particles exhibited by several protein and glycoprotein species released by beta ME treatment suggested that these cell wall moieties possess exposed hydrophobic domains that could be responsible for the CSH of mycelium.

  4. Tunicamycins: translocase-I inhibitors that target bacterial cell wall and mammalian N-glycoproteins

    USDA-ARS?s Scientific Manuscript database

    Tunicamycins, streptovirudins, and corynetoxins are natural products that target the biosynthesis of bacterial peptidoglycan and eukaryotic N-glycoproteins. The mechanism of action is known, with the tunicamycin-Mg**2+ complex established as a transition state analog for hexosamine-1-phosphate:pren...

  5. Unique N-Glycan Moieties of the 66-kDa Cell Wall Glycoprotein from the Red Microalga Porphyridium sp.

    PubMed Central

    Levy-Ontman, Oshrat; Arad, Shoshana (Malis); Harvey, David J.; Parsons, Thomas B.; Fairbanks, Antony; Tekoah, Yoram

    2011-01-01

    We report here the structural determination of the N-linked glycans in the 66-kDa glycoprotein, part of the unique sulfated complex cell wall polysaccharide of the red microalga Porphyridium sp. Structures were elucidated by a combination of normal phase/reverse phase HPLC, positive ion MALDI-TOF MS, negative ion electrospray ionization, and MS/MS. The sugar moieties of the glycoprotein consisted of at least four fractions of N-linked glycans, each composed of the same four monosaccharides, GlcNAc, Man, 6-O-MeMan, and Xyl, with compositions Man8–9Xyl1–2Me3GlcNAc2. The present study is the first report of N-glycans with the terminal Xyl attached to the 6-mannose branch of the 6-antenna and to the 3-oxygen of the penultimate (core) GlcNAc. Another novel finding was that all four glycans contain three O-methylmannose residues in positions that have never been reported before. Although it is known that some lower organisms are able to methylate terminal monosaccharides in glycans, the present study on Porphyridium sp. is the first describing an organism that is able to methylate non-terminal mannose residues. This study will thus contribute to understanding of N-glycosylation in algae and might shed light on the evolutionary development from prokaryotes to multicellular organisms. It also may contribute to our understanding of the red algae polysaccharide formation. The additional importance of this research lies in its potential for biotechnological applications, especially in evaluating the use of microalgae as cell factories for the production of therapeutic proteins. PMID:21515680

  6. The N-Linked Outer Chain Mannans and the Dfg5p and Dcw1p Endo-α-1,6-Mannanases Are Needed for Incorporation of Candida albicans Glycoproteins into the Cell Wall

    PubMed Central

    Ao, Jie; Chinnici, Jennifer L.; Maddi, Abhiram

    2015-01-01

    A biochemical pathway for the incorporation of cell wall protein into the cell wall of Neurospora crassa was recently proposed. In this pathway, the DFG-5 and DCW-1 endo-α-1,6-mannanases function to covalently cross-link cell wall protein-associated N-linked galactomannans, which are structurally related to the yeast outer chain mannans, into the cell wall glucan-chitin matrix. In this report, we demonstrate that the mannosyltransferase enzyme Och1p, which is needed for the synthesis of the N-linked outer chain mannan, is essential for the incorporation of cell wall glycoproteins into the Candida albicans cell wall. Using endoglycosidases, we show that C. albicans cell wall proteins are cross-linked into the cell wall via their N-linked outer chain mannans. We further demonstrate that the Dfg5p and Dcw1p α-1,6-mannanases are needed for the incorporation of cell wall glycoproteins into the C. albicans cell wall. Our results support the hypothesis that the Dfg5p and Dcw1p α-1,6-mannanases incorporate cell wall glycoproteins into the C. albicans cell wall by cross-linking outer chain mannans into the cell wall glucan-chitin matrix. PMID:26048011

  7. An update on post-translational modifications of hydroxyproline-rich glycoproteins: toward a model highlighting their contribution to plant cell wall architecture.

    PubMed

    Hijazi, May; Velasquez, Silvia M; Jamet, Elisabeth; Estevez, José M; Albenne, Cécile

    2014-01-01

    Plant cell walls are composite structures mainly composed of polysaccharides, also containing a large set of proteins involved in diverse functions such as growth, environmental sensing, signaling, and defense. Research on cell wall proteins (CWPs) is a challenging field since present knowledge of their role into the structure and function of cell walls is very incomplete. Among CWPs, hydroxyproline (Hyp)-rich O-glycoproteins (HRGPs) were classified into three categories: (i) moderately glycosylated extensins (EXTs) able to form covalent scaffolds; (ii) hyperglycosylated arabinogalactan proteins (AGPs); and (iii) Hyp/proline (Pro)-Rich proteins (H/PRPs) that may be non-, weakly- or highly-glycosylated. In this review, we provide a description of the main features of their post-translational modifications (PTMs), biosynthesis, structure, and function. We propose a new model integrating HRGPs and their partners in cell walls. Altogether, they could form a continuous glyco-network with non-cellulosic polysaccharides via covalent bonds or non-covalent interactions, thus strongly contributing to cell wall architecture.

  8. An update on post-translational modifications of hydroxyproline-rich glycoproteins: toward a model highlighting their contribution to plant cell wall architecture

    PubMed Central

    Hijazi, May; Velasquez, Silvia M.; Jamet, Elisabeth; Estevez, José M.; Albenne, Cécile

    2014-01-01

    Plant cell walls are composite structures mainly composed of polysaccharides, also containing a large set of proteins involved in diverse functions such as growth, environmental sensing, signaling, and defense. Research on cell wall proteins (CWPs) is a challenging field since present knowledge of their role into the structure and function of cell walls is very incomplete. Among CWPs, hydroxyproline (Hyp)-rich O-glycoproteins (HRGPs) were classified into three categories: (i) moderately glycosylated extensins (EXTs) able to form covalent scaffolds; (ii) hyperglycosylated arabinogalactan proteins (AGPs); and (iii) Hyp/proline (Pro)-Rich proteins (H/PRPs) that may be non-, weakly- or highly-glycosylated. In this review, we provide a description of the main features of their post-translational modifications (PTMs), biosynthesis, structure, and function. We propose a new model integrating HRGPs and their partners in cell walls. Altogether, they could form a continuous glyco-network with non-cellulosic polysaccharides via covalent bonds or non-covalent interactions, thus strongly contributing to cell wall architecture. PMID:25177325

  9. Honey Glycoproteins Containing Antimicrobial Peptides, Jelleins of the Major Royal Jelly Protein 1, Are Responsible for the Cell Wall Lytic and Bactericidal Activities of Honey

    PubMed Central

    Brudzynski, Katrina; Sjaarda, Calvin

    2015-01-01

    We have recently identified the bacterial cell wall as the cellular target for honey antibacterial compounds; however, the chemical nature of these compounds remained to be elucidated. Using Concavalin A- affinity chromatography, we found that isolated glycoprotein fractions (glps), but not flow-through fractions, exhibited strong growth inhibitory and bactericidal properties. The glps possessed two distinct functionalities: (a) specific binding and agglutination of bacterial cells, but not rat erythrocytes and (b) non-specific membrane permeabilization of both bacterial cells and erythrocytes. The isolated glps induced concentration- and time-dependent changes in the cell shape of both E. coli and B. subtilis as visualized by light and SEM microscopy. The appearance of filaments and spheroplasts correlated with growth inhibition and bactericidal effects, respectively. The time-kill kinetics showed a rapid, >5-log10 reduction of viable cells within 15 min incubation at 1xMBC, indicating that the glps-induced damage of the cell wall was lethal. Unexpectedly, MALDI-TOF and electrospray quadrupole time of flight mass spectrometry, (ESI-Q-TOF-MS/MS) analysis of glps showed sequence identity with the Major Royal Jelly Protein 1 (MRJP1) precursor that harbors three antimicrobial peptides: Jelleins 1, 2, and 4. The presence of high-mannose structures explained the lectin-like activity of MRJP1, while the presence of Jelleins in MRJP1 may explain cell wall disruptions. Thus, the observed damages induced by the MRJP1 to the bacterial cell wall constitute the mechanism by which the antibacterial effects were produced. Antibacterial activity of MRJP1 glps directly correlated with the overall antibacterial activity of honey, suggesting that it is honey’s active principle responsible for this activity. PMID:25830314

  10. Honey glycoproteins containing antimicrobial peptides, Jelleins of the Major Royal Jelly Protein 1, are responsible for the cell wall lytic and bactericidal activities of honey.

    PubMed

    Brudzynski, Katrina; Sjaarda, Calvin

    2015-01-01

    We have recently identified the bacterial cell wall as the cellular target for honey antibacterial compounds; however, the chemical nature of these compounds remained to be elucidated. Using Concavalin A-affinity chromatography, we found that isolated glycoprotein fractions (glps), but not flow-through fractions, exhibited strong growth inhibitory and bactericidal properties. The glps possessed two distinct functionalities: (a) specific binding and agglutination of bacterial cells, but not rat erythrocytes and (b) non-specific membrane permeabilization of both bacterial cells and erythrocytes. The isolated glps induced concentration- and time-dependent changes in the cell shape of both E. coli and B. subtilis as visualized by light and SEM microscopy. The appearance of filaments and spheroplasts correlated with growth inhibition and bactericidal effects, respectively. The time-kill kinetics showed a rapid, >5-log10 reduction of viable cells within 15 min incubation at 1xMBC, indicating that the glps-induced damage of the cell wall was lethal. Unexpectedly, MALDI-TOF and electrospray quadrupole time of flight mass spectrometry, (ESI-Q-TOF-MS/MS) analysis of glps showed sequence identity with the Major Royal Jelly Protein 1 (MRJP1) precursor that harbors three antimicrobial peptides: Jelleins 1, 2, and 4. The presence of high-mannose structures explained the lectin-like activity of MRJP1, while the presence of Jelleins in MRJP1 may explain cell wall disruptions. Thus, the observed damages induced by the MRJP1 to the bacterial cell wall constitute the mechanism by which the antibacterial effects were produced. Antibacterial activity of MRJP1 glps directly correlated with the overall antibacterial activity of honey, suggesting that it is honey's active principle responsible for this activity.

  11. Tunicamycins: translocase-I inhibitors that target bacterial cell wall and mammalian N-glycoproteins. The potential for selective inhibitors

    USDA-ARS?s Scientific Manuscript database

    Tunicamycins are a heterologous family of nucleoside antibiotics that target the biosynthesis of bacterial peptidoglycan and eukaryotic N-glycoproteins. The mechanism of action is known, with the tunicamycin-Mg2+ complex established as a transition state analog for hexosamine-1-phosphate: prenol pho...

  12. Between-species analysis of short-repeat modules in cell wall and sex-related hydroxyproline-rich glycoproteins of Chlamydomonas.

    PubMed

    Lee, Jae-Hyeok; Waffenschmidt, Sabine; Small, Linda; Goodenough, Ursula

    2007-08-01

    Protein diversification is commonly driven by single amino acid changes at random positions followed by selection, but, in some cases, the structure of the gene itself favors the occurrence of particular kinds of mutations. Genes encoding hydroxyproline-rich glycoproteins (HRGPs) in green organisms, key protein constituents of the cell wall, carry short-repeat modules that are posited to specify proline hydroxylation and/or glycosylation events. We show here, in a comparison of two closely related Chlamydomonas species-Chlamydomonas reinhardtii (CC-621) and Chlamydomonas incerta (CC-1870/3871)-that these modules are prone to misalignment and hence to both insertion/deletion and endoduplication events, and that the dynamics of the rearrangements are constrained by purifying selection on the repeat patterns themselves, considered either as helical or as longitudinal face modules. We suggest that such dynamics may contribute to evolutionary diversification in cell wall architecture and physiology. Two of the HRGP genes analyzed (SAG1 and SAD1) encode the mating-type plus and minus sexual agglutinins, displayed only by gametes, and we document that these have undergone far more extensive divergence than two HRGP genes (GP1 and VSP3) that encode cell wall components-an example of the rapid evolution that characterizes sex-related proteins in numerous lineages. Strikingly, the central regions of the agglutinins of both mating types have diverged completely, by selective endoduplication of repeated motifs, since the two species last shared a common ancestor, suggesting that these events may have participated in the speciation process.

  13. Immune Response Induced by an Immunodominant 60 kDa Glycoprotein of the Cell Wall of Sporothrix schenckii in Two Mice Strains with Experimental Sporotrichosis

    PubMed Central

    Alba-Fierro, Carlos A.; Pérez-Torres, Armando; Toriello, Conchita; Pulido-Camarillo, Evelyn; Romo-Lozano, Yolanda; Gutiérrez-Sánchez, Gerardo

    2016-01-01

    Cell wall (CW) components of fungus Sporothrix schenckii are the major inductors antigens of immune responses. The immunodominant 60 kDa glycoprotein (gp60) has been shown to be associated with the virulence of this fungus but its role in experimental sporotrichosis is unknown. In this work, the immunological effects of CW-purified gp60 were investigated in a model of experimental subcutaneous sporotrichosis in normal and gp60-preimmunized C57BL/6 and BALB/c mice strains which were then infected with S. schenckii conidia. Results showed that both mice strains use different cytokine profiles in order to fight S. schenckii infection; C57BL/6 mice seem to use a Th17 response while BALB/c mice tend to depend on a Th1 profile. Preimmunization with gp60 showed a downregulatory effect on the immune response since cytokines levels were diminished in both strains. There were no significant differences in the magnitude of dorsoplantar inflammation between gp60-preimmunized and nonimmunized mice of both strains. However, skin lesions due to the infection in gp60-preimmunized mice were more severe in BALB/c than in C57BL/6 mice, suggesting that the antigen exerts a higher downregulatory effect on the Th1 response. PMID:27051673

  14. Immune Response Induced by an Immunodominant 60 kDa Glycoprotein of the Cell Wall of Sporothrix schenckii in Two Mice Strains with Experimental Sporotrichosis.

    PubMed

    Alba-Fierro, Carlos A; Pérez-Torres, Armando; Toriello, Conchita; Pulido-Camarillo, Evelyn; López-Romero, Everardo; Romo-Lozano, Yolanda; Gutiérrez-Sánchez, Gerardo; Ruiz-Baca, Estela

    2016-01-01

    Cell wall (CW) components of fungus Sporothrix schenckii are the major inductors antigens of immune responses. The immunodominant 60 kDa glycoprotein (gp60) has been shown to be associated with the virulence of this fungus but its role in experimental sporotrichosis is unknown. In this work, the immunological effects of CW-purified gp60 were investigated in a model of experimental subcutaneous sporotrichosis in normal and gp60-preimmunized C57BL/6 and BALB/c mice strains which were then infected with S. schenckii conidia. Results showed that both mice strains use different cytokine profiles in order to fight S. schenckii infection; C57BL/6 mice seem to use a Th17 response while BALB/c mice tend to depend on a Th1 profile. Preimmunization with gp60 showed a downregulatory effect on the immune response since cytokines levels were diminished in both strains. There were no significant differences in the magnitude of dorsoplantar inflammation between gp60-preimmunized and nonimmunized mice of both strains. However, skin lesions due to the infection in gp60-preimmunized mice were more severe in BALB/c than in C57BL/6 mice, suggesting that the antigen exerts a higher downregulatory effect on the Th1 response.

  15. Fungal cell wall organization and biosynthesis.

    PubMed

    Free, Stephen J

    2013-01-01

    The composition and organization of the cell walls from Saccharomyces cerevisiae, Candida albicans, Aspergillus fumigatus, Schizosaccharomyces pombe, Neurospora crassa, and Cryptococcus neoformans are compared and contrasted. These cell walls contain chitin, chitosan, β-1,3-glucan, β-1,6-glucan, mixed β-1,3-/β-1,4-glucan, α-1,3-glucan, melanin, and glycoproteins as major constituents. A comparison of these cell walls shows that there is a great deal of variability in fungal cell wall composition and organization. However, in all cases, the cell wall components are cross-linked together to generate a cell wall matrix. The biosynthesis and properties of each of the major cell wall components are discussed. The chitin and glucans are synthesized and extruded into the cell wall space by plasma membrane-associated chitin synthases and glucan synthases. The glycoproteins are synthesized by ER-associated ribosomes and pass through the canonical secretory pathway. Over half of the major cell wall proteins are modified by the addition of a glycosylphosphatidylinositol anchor. The cell wall glycoproteins are also modified by the addition of O-linked oligosaccharides, and their N-linked oligosaccharides are extensively modified during their passage through the secretory pathway. These cell wall glycoprotein posttranslational modifications are essential for cross-linking the proteins into the cell wall matrix. Cross-linking the cell wall components together is essential for cell wall integrity. The activities of four groups of cross-linking enzymes are discussed. Cell wall proteins function as cross-linking enzymes, structural elements, adhesins, and environmental stress sensors and protect the cell from environmental changes. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. A major stress-inducible Mr-42000 wall glycoprotein of French bean (Phaseolus vulgaris L.).

    PubMed

    Millar, D J; Slabas, A R; Sidebottom, C; Smith, C G; Allen, A K; Bolwell, G P

    1992-05-01

    A major wall protein of suspension-cultured cells of French bean has been isolated and characterised. It can be prepared from walls or the culture filtrate and in composition it is particularly rich in proline, valine and glutamic acid/glutamine and contains appreciable amounts of hydroxyproline. The N-terminus shows some glycosylation, while following chemical deglycosylation the first 38 residues were found to be identical to those of proline-rich proteins from soybean. However, the composition of the highly purified Mr-42000 bean protein differs considerably from the soybean proteins and must contain its own specific domains. An antibody was raised and used to demonstrate the inducibility of the Mr-42000 bean protein in response to elicitor action. The protein was found to be mainly localised in the intercellular spaces of the cortical cells of bean hypocotyls and at the wall-plasmalemma interface of xylem vessels, another potentially accessible compartment for pathogens. Following wounding, the protein was found to be generally distributed in the wall of epidermal and cortical cells of the hypocotyls. The Mr-42000 protein is cross reactive with antibodies raised to glycoproteins of the Rhizobium infection thread and the chitin-binding hydroxyproline-rich glycoprotein, potato lectin. These common epitopes together with the previously demonstrated chitin-binding properties of the bean protein indicate a role in host-microbial interactions. Furthermore, the Mr-42000 protein itself bound to the growing hyphal tips of the bean pathogen, Colletotrichum lindemuthianum.

  17. A workflow for large-scale empirical identification of cell wall N-linked glycoproteins of tomato (Solanum lycopersicum) fruit by tandem mass spectrometry.

    PubMed

    Thannhauser, Theodore W; Shen, Miaoqing; Sherwood, Robert; Howe, Kevin; Fish, Tara; Yang, Yong; Chen, Wei; Zhang, Sheng

    2013-08-01

    Glycosylation is a common PTM of plant proteins that impacts a large number of important biological processes. Nevertheless, the impacts of differential site occupancy and the nature of specific glycoforms are obscure. Historically, characterization of glycoproteins has been difficult due to the distinct physicochemical properties of the peptidyl and glycan moieties, the variable and dynamic nature of the glycosylation process, their heterogeneous nature, and the low relative abundance of each glycoform. In this study, we explore a new pipeline developed for large-scale empirical identification of N-linked glycoproteins of tomato fruit as part of our ongoing efforts to characterize the tomato secretome. The workflow presented involves a combination of lectin affinity, tryptic digestion, ion-pairing HILIC, and precursor ion-driven data-dependent MS/MS analysis with a script to facilitate the identification and characterization of occupied N-linked glycosylation sites. A total of 212 glycoproteins were identified in this study, in which 26 glycopeptides from 24 glycoproteins were successfully characterized in just one HILIC fraction. Further precursor ion discovery-based MS/MS and deglycosylation followed by high accuracy and resolution MS analysis were used to confirm the glycosylation sites and determine site occupancy rates. The workflow reported is robust and capable of producing large amounts of empirical data involving N-linked glycosylation sites and their associated glycoforms. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A workflow for large-scale empirical identification of cell wall N-linked glycoproteins of tomato (Solanum lycopersicum) fruit by tandem mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Glycosylation is a common post-translational modification of plant proteins that impacts a large number of important biological processes. Nevertheless, the impacts of differential site occupancy and the nature of specific glycoforms are obscure. Historically, characterization of glycoproteins has b...

  19. A workflow for large-scale empirical identification of cell wall N-linked glycoproteins of tomato (Solanum lycopersicum) fruit by tandem mass spectrometry

    PubMed Central

    Thannhauser, Theodore W.; Shen, Miaoqing; Sherwood, Robert; Howe, Kevin; Fish, Tara; Yang, Yong; Chen, Wei; Zhang, Sheng

    2013-01-01

    Glycosylation is a common post-translational modification of plant proteins that impacts a large number of important biological processes. Nevertheless, the impacts of differential site occupancy and the nature of specific glycoforms are obscure. Historically, characterization of glycoproteins has been difficult due to the distinct physicochemical properties of the peptidyl and glycan moieties, the variable and dynamic nature of the glycosylation process, their heterogeneous nature, and the low relative abundance of each glycoform. In this study, we explore a new pipeline developed for large-scale empirical identification of N-linked glycoproteins of tomato fruit as part of our ongoing efforts to characterize the tomato secretome. The workflow presented involves a combination of lectin affinity, tryptic digestion, ion-pairing HILIC and precursor ion-driven data dependent MS/MS analysis with a script to facilitate the identification and characterization of occupied N-linked glycosylation sites. A total of 212 glycoproteins were identified in this study, in which 26 glycopeptides from 24 glycoproteins were successfully characterized in just one HILIC fraction. Further precursor ion discovery (PID)-based MS/MS and deglycosylation followed by high accuracy and resolution MS analysis were used to confirm the glycosylation sites and determine site occupancy rates. The workflow reported is robust and capable of producing large amounts of empirical data involving N-linked glycosylation sites and their associated glycoforms. PMID:23580464

  20. Glycoproteins from sugarcane plants regulate cell polarity of Ustilago scitaminea teliospores.

    PubMed

    Millanes, Ana-María; Fontaniella, Blanca; Legaz, María-Estrella; Vicente, Carlos

    2005-03-01

    Saccharum officinarum, cv. Mayarí, is a variety of sugarcane resistant to smut disease caused by Ustilago scitaminea. Sugarcane naturally produces glycoproteins that accumulate in the parenchymatous cells of stalks. These glycoproteins contain a heterofructan as polysaccharide moiety. The concentration of these glycoproteins clearly increases after inoculation of sugarcane plants with smut teliospores, although major symptoms of disease are not observed. These glycoproteins induce homotypic adhesion and inhibit teliospore germination. When glycoproteins from healthy, non-inoculated plants are fractionated, they inhibit actin capping, which occurs before teliospore germination. However, inoculation of smut teliospores induce glycoprotein fractions that promote teliospore polarity and are different from those obtained from healthy plants. These fractions exhibit arginase activity, which is strongly enhanced in inoculated plants. Arginase from healthy plants binds to cell wall teliospores and it is completely desorpted by sucrose, but only 50% of arginase activity from inoculated plants is desorpted by the disaccharide. The data presented herein are consistent with a model of excess arginase entry into teliospores. Arginase synthesized by sugarcane plants as a response to the experimental infection would increase the synthesis of putrescine, which impedes polarization at concentration values higher than 0.05 mM. However, smut teliospores seem to be able to change the pattern of glycoprotein production by sugarcane, thereby promoting the synthesis of different glycoproteins that activate polarization after binding to their cell wall ligand.

  1. The Lamportian cell wall

    SciTech Connect

    Keiliszewski, M.; Lamport, D. )

    1991-05-01

    The Lamportian Warp-Weft hypothesis suggests a cellulose-extensin interpenetrating network where extensin mechanically couples the load-bearing cellulose microfibrils in a wall matrix that is best described as a microcomposite. This model is based on data gathered from the extensin-rich walls of tomato and sycamore cell suspension culture, wherein extensin precursors are insolubilized into the wall by undefined crosslinks. The authors recent work with cell walls isolated from intact tissue as well as walls from suspension cultured cells of the graminaceous monocots maize and rice, the non-graminaceous monocot asparagus, the primitive herbaceous dicot sugar beet, and the gymnosperm Douglas Fir indicate that although extensins are ubiquitous to all plant species examined, they are not the major structural protein component of most walls examined. Amino acid analyses of intact and HF-treated walls shows a major component neither an HRGP, nor directly comparable to the glycine-rich wall proteins such as those associated with seed coat walls or the 67 mole% glycine-rich proteins cloned from petunia and soybean. Clearly, structural wall protein alternatives to extensin exist and any cell wall model must take that into account. If we assume that extracellular matrices are a priori network structures, then new Hypless' structural proteins in the maize cell wall raise questions about the sort of network these proteins create: the kinds of crosslinks involved; how they are formed; and the roles played by the small amounts of HRGPs.

  2. Monoclonal antibodies against plant cell wall polysaccharides

    SciTech Connect

    Hahn, M.G.; Bucheli, E.; Darvill, A.; Albersheim, P. )

    1989-04-01

    Monoclonal antibodies (McAbs) are useful tools to probe the structure of plant cell wall polysaccharides and to localize these polysaccharides in plant cells and tissues. Murine McAbs were generated against the pectic polysaccharide, rhamnogalacturonan I (RG-I), isolated from suspension-cultured sycamore cells. The McAbs that were obtained were grouped into three classes based upon their reactivities with a variety of plant polysaccharides and membrane glycoproteins. Eleven McAbs (Class I) recognize epitope(s) that appear to be immunodominant and are found in RG-I from sycamore and maize, citrus pectin, polygalacturonic acid, and membrane glycoproteins from suspension-cultured cells of sycamore, maize, tobacco, parsley, and soybean. A second group of five McAbs (Class II) recognize epitope(s) present in sycamore RG-I, but do not bind to any of the other polysaccharides or glycoproteins recognized by Class I. Lastly, one McAb (Class III) reacts with sycamore RG-I, sycamore and tamarind xyloglucan, and sycamore and rice glucuronoarabinoxylan, but does not bind to maize RG-I, polygalacturonic acid or the plant membrane glycoproteins recognized by Class I. McAbs in Classes II and III are likely to be useful in studies of the structure, biosynthesis and localization of plant cell wall polysaccharides.

  3. Cell wall remodeling under abiotic stress

    PubMed Central

    Tenhaken, Raimund

    2015-01-01

    Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted all the peroxidase substrates in the cell wall. If ROS-levels remain high during prolonged stress, OH°-radicals are formed which lead to polymer cleavage. In concert with xyloglucan modifying enzymes and expansins, the resulting cell wall loosening allows further growth of stressed organs. PMID:25709610

  4. Immunohistochemical analysis of cell wall hydroxyproline-rich glycoproteins in the roots of resistant and susceptible wax gourd cultivars in response to Fusarium oxysporum f. sp. Benincasae infection and fusaric acid treatment.

    PubMed

    Xie, Dasen; Ma, Li; Samaj, Jozef; Xu, Chunxiang

    2011-08-01

    Hydroxyproline-rich glycoproteins (HRGPs) play a defensive role in host-pathogen interactions. However, specific roles of individual HRGPs in plant defense against pathogen are poorly understood. Changes in extracellular distribution and abundance of individual cell wall HRGPs were investigated on root sections of two wax gourd (Benincasa hispida Cogn.) cultivars (Fusarium wilt resistant and susceptible, respectively), which were analyzed by immunolabelling with 20 monoclonal antibodies recognizing different epitopes of extensins and arabinogalactan proteins (AGPs) after being inoculated with Fusarium oxysporum f. sp. Benincasae or treated with fusaric acid (FA). These analyses revealed the following: (1) The levels of JIM11 and JIM20 interacting extensins were higher in the resistant cultivar. Either treatment caused a dramatic decrease in signal in both cultivars, but some new signal appeared in the rhizodermis. (2) The AGPs or rhamnogalacturonan containing CCRCM7-epitope were enhanced in the resistant cultivar, but not in the susceptible one by either treatment. (3) Either treatment caused a slight increase in the levels of the AGPs recognized by LM2 and JIM16, but there were no differences between two cultivars. (4) The MAC204 signal nearly disappeared after FA treatment, but this was not the case with pathogen attack. (5) The LM14 signal slightly decreased after both treatments in both cultivars, but a less decrease was observed with the resistant cultivar. These results indicate that the CCRCM7 epitope likely contributed to the resistance of wax gourd to this pathogen, and JIM11 and JIM20 interacting extensins as well as LM2, LM14, MAC204 and JIM16 interacting AGPs were involved in the host-pathogen interaction.

  5. Identification of the Abundant Hydroxyproline-Rich Glycoproteins in the Root Walls of Wild-Type Arabidopsis, an ext3 Mutant Line, and Its Phenotypic Revertant

    PubMed Central

    Chen, Yuning; Ye, Dening; Held, Michael A.; Cannon, Maura C.; Ray, Tui; Saha, Prasenjit; Frye, Alexandra N.; Mort, Andrew J.; Kieliszewski, Marcia J.

    2015-01-01

    Extensins are members of the cell wall hydroxyproline-rich glycoprotein (HRGP) superfamily that form covalently cross-linked networks in primary cell walls. A knockout mutation in EXT3 (AT1G21310), the gene coding EXTENSIN 3 (EXT3) in Arabidopsis Landsberg erecta resulted in a lethal phenotype, although about 20% of the knockout plants have an apparently normal phenotype (ANP). In this study the root cell wall HRGP components of wild-type, ANP and the ext3 mutant seedlings were characterized by peptide fractionation of trypsin digested anhydrous hydrogen fluoride deglycosylated wall residues and by sequencing using LC-MS/MS. Several HRGPs, including EXT3, were identified in the wild-type root walls but not in walls of the ANP and lethal mutant. Indeed the ANP walls and walls of mutants displaying the lethal phenotype possessed HRGPs, but the profiles suggest that changes in the amount and perhaps type may account for the corresponding phenotypes. PMID:27135319

  6. Plant cell walls.

    PubMed

    Höfte, Herman; Voxeur, Aline

    2017-09-11

    Plants are able to generate large leaf surfaces that act as two-dimensional solar panels with a minimum investment in building material, thanks to a hydrostatic skeleton. This requires high intracellular pressures (up to 1 MPa), which depend on the presence of strong cell walls. The walls of growing cells (also called primary walls), are remarkably able to reconcile extreme tensile strength (up to 100 MPa) with the extensibility necessary for growth. All walled organisms are confronted with this dilemma - the need to balance strength and extensibility - and bacteria, fungi and plants have evolved independent solutions to cope. In this Primer, we discuss how plant cells have solved this problem, allowing them to support often very large increases in volume and to develop a broad variety of shapes (Figure 1A,B,D). This shape variation reflects the targeted deposition of wall material combined with local variations in cell-wall extensibility, processes that remain incompletely understood. Once the cell has reached its final size, it can lay down secondary wall layers, the composition and architecture of which are optimized to exert specific functions in different cell types (Figure 1E-G). Such functions include: providing mechanical support, for instance, for fibre cells in tree trunks or grass internodes; impermeabilising and strengthening vascular tissue to resist the negative pressure of the transpiration stream; increasing the surface area of the plasma membrane to facilitate solute exchange between cells (Figure 1C); or allowing important elastic deformation, for instance, to support the opening and closing of stomates. Specialized secondary walls, such as those constituting seed mucilage, are stored in a dehydrated form in seedcoat epidermis cells and show rapid swelling upon hydration of the seed. Other walls, in particular in reserve tissues, can accommodate large amounts of storage polysaccharides, which can be easily mobilized as a carbon source. Here we

  7. An emerging role of pectic rhamnogalacturonanII for cell wall integrity.

    PubMed

    Reboul, Rebecca; Tenhaken, Raimund

    2012-02-01

    The plant cell wall is a complex network of different polysaccharides and glycoproteins, showing high diversity in nature. The essential components, tethering cell wall are under debate, as novel mutants challenge established models. The mutant ugd2,3 with a reduced supply of the important wall precursor UDP-glucuronic acid reveals the critical role of the pectic compound rhamnogalacturonanII for cell wall stability. This polymer seems to be more important for cell wall integrity than the previously favored xyloglucan.

  8. Cell wall chemistry

    Treesearch

    Roger M. Rowell; Roger Pettersen; James S. Han; Jeffrey S. Rowell; Mandla A. Tshabalala

    2005-01-01

    In chemical terms, wood is best defined as a three-dimensional biopolymer composite composed of an interconnected network of cellulose, hemicelluloses, and lignin with minor amounts of extractives and inorganics. The major chemical component of a living tree is water, but on a dryweight basis, all wood cell walls consist mainly of sugar-based polymers (carbohydrates,...

  9. Bacterial Cell Wall Components

    NASA Astrophysics Data System (ADS)

    Ginsberg, Cynthia; Brown, Stephanie; Walker, Suzanne

    Bacterial cell-surface polysaccharides cells are surrounded by a variety of cell-surface structures that allow them to thrive in extreme environments. Components of the cell envelope and extracellular matrix are responsible for providing the cells with structural support, mediating intercellular communication, allowing the cells to move or to adhere to surfaces, protecting the cells from attack by antibiotics or the immune system, and facilitating the uptake of nutrients. Some of the most important cell wall components are polysaccharide structures. This review discusses the occurrence, structure, function, and biosynthesis of the most prevalent bacterial cell surface polysaccharides: peptidoglycan, lipopolysaccharide, arabinogalactan, and lipoarabinomannan, and capsular and extracellular polysaccharides. The roles of these polysaccharides in medicine, both as drug targets and as therapeutic agents, are also described.

  10. Boron bridging of rhamnogalacturonan-II is promoted in vitro by cationic chaperones, including polyhistidine and wall glycoproteins.

    PubMed

    Chormova, Dimitra; Fry, Stephen C

    2016-01-01

    Dimerization of rhamnogalacturonan-II (RG-II) via boron cross-links contributes to the assembly and biophysical properties of the cell wall. Pure RG-II is efficiently dimerized by boric acid (B(OH)3 ) in vitro only if nonbiological agents for example Pb(2+) are added. By contrast, newly synthesized RG-II domains dimerize very rapidly in vivo. We investigated biological agents that might enable this. We tested for three such agents: novel enzymes, borate-transferring ligands and cationic 'chaperones' that facilitate the close approach of two polyanionic RG-II molecules. Dimerization was monitored electrophoretically. Parsley shoot cell-wall enzymes did not affect RG-II dimerization in vitro. Borate-binding ligands (apiose, dehydroascorbic acid, alditols) and small organic cations (including polyamines) also lacked consistent effects. Polylysine bound permanently to RG-II, precluding electrophoretic analysis. However, another polycation, polyhistidine, strongly promoted RG-II dimerization by B(OH)3 without irreversible polyhistidine-RG-II complexation. Likewise, partially purified spinach extensins (histidine/lysine-rich cationic glycoproteins), strongly promoted RG-II dimerization by B(OH)3 in vitro. Thus certain polycations, including polyhistidine and wall glycoproteins, can chaperone RG-II, manoeuvring this polyanionic polysaccharide domain such that boron-bridging is favoured. These chaperones dissociate from RG-II after facilitating its dimerization, indicating that they act catalytically rather than stoichiometrically. We propose a natural role for extensin-RG-II interaction in steering cell-wall assembly. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. Radioiodination of cell-surface glycoproteins by carbohydrate modification

    SciTech Connect

    Wall, K.A.

    1986-05-01

    Mild oxidation of cell-surface sialic acid residues followed by reduction with sodium /sup 3/H-borohydride is a common method of radiolabeling glycoproteins. In many cases it is desirable to incorporate into glycoproteins a label of higher specific activity such as /sup 125/I. Incorporation of modified amino compounds into oxidized, isolated glycoproteins by reductive amination has been demonstrated by several investigators. They have determined the conditions for the application of this approach to radioiodination of intact cells. Cells are oxidized by exposure to 1 mM sodium periodate. Tyrosine or a tyrosine derivative, radiolabeled to high specific activity with Iodogen and carrier-free Na/sup 125/I, is added, followed by 1 mM sodium cyanoborohydride. Labeled cell-surface proteins are analyzed by SDS-gel electrophoresis of cell lysates. The addition of excess carrier glycoprotein, such as fetuin, is necessary to prevent degradation of the labeled product in the cell lysate. The incorporation of radiolabel can approach that of direct iodination of cell-surface tyrosyl residues, about 100 dpm/cell. The labeling procedure has been applied to the analysis of murine lymphocyte glycoproteins.

  12. How the deposition of cellulose microfibrils builds cell wall architecture.

    PubMed

    Emons, A M; Mulder, B M

    2000-01-01

    Cell walls, the extracytoplasmic matrices of plant cells, consist of an ordered array of cellulose microfibrils embedded in a matrix of polysaccharides and glycoproteins. This construction is reminiscent of steel rods in reinforced concrete. How a cell organizes these ordered textures around itself, creating its own desirable environment, is a fascinating question. We believe that nature adopted an economical solution to this design problem: it exploits the geometrical constraints imposed by the shape of the cell and the limited space in which microfibrils are deposited, enabling the wall textures essentially to 'build themselves'. This does not imply that the cell cannot control its wall texture. On the contrary, the cell has ample regulatory mechanisms to control wall texture formation by controlling the insertion of synthases and the distance between individual microfibrils within a wall lamella.

  13. Array-based analysis of secreted glycoproteins for rapid selection of a single cell producing a glycoprotein with desired glycosylation.

    PubMed

    Park, Sunyoung; Kim, Wanjung; Kim, Yongtae; Son, Young Dok; Lee, Sang-Chul; Kim, Eunkyung; Kim, Sung Ho; Kim, Jung Hoe; Kim, Hak-Sung

    2010-07-01

    The therapeutic efficacy and in vivo biological function of a glycoprotein is significantly affected by its glycosylation profile. For the development of glycoproteins with therapeutic applications, selection of cell lines producing a glycoprotein with adequate glycoform is crucial. Here, we demonstrate an array-based analysis of secreted glycoproteins for rapid and efficient selection of a single cell producing a glycoprotein with desirable glycosylation. Our approach relies on microengraving and interrogation of glycoproteins produced by individual cells in a microwell array in terms of glycosylation profile as well as the produced amount. On the basis of statistical analysis of the interrogation, single cells which are predicted to produce a desired glycoprotein are selected, retrieved, and expanded. We applied the approach to human recombinant erythropoietin (rhEPO)-producing CHO cells and verified the selection of a single CHO cell that produces rhEPO with a high sialylation degree. Human erythropoietin (hEPO) bearing highly sialylated oligosaccharide was shown to display a much longer plasma half-life, resulting in high therapeutic efficacy. This method may find widespread use in the clonal selection for the production of other glycoproteins with specific glycosylation as well as analysis of the heterogeneity in cell populations in a high-throughput manner.

  14. [Glycoproteins of mucus of gastric and duodenal wall surface during ulcerogenesis and the impact of fenugreek].

    PubMed

    Khil'ko, T D; Iakubtsova, I V; Preobrazhens'ka, T D; Ostapchenko, L I

    2013-01-01

    The comparative evaluation of qualitative and quantitative composition of glycoproteins of gastric and duodenal wall surface layer of protective mucus in the normal, at the modeling of ulcers in rats and at the introduction to animals with ulcerative lesions of fenugreek extract carried out. It was shown in control (normally) the general level of glycosylation of glycoproteins gastric mucus is 1.7 times more than the duodenum. Under acute stress model ulceration in the stomach mucus decrease in hexosamine (1.4 times), galactose (2.2 times), fucose (1.3-fold) and an increase in NANA (3.6 times) observed. Under cysteamine model ulceration in duodenal mucus increase galactose (2.7 times), NANA (2.4 times), fucose (1.8-fold) but significant decrease in the amount of hexosamines 3 times compared to the control occurred. It was proved the protective effect of fenugreek extract to the wall surface mucus of the stomach and duodenum mucosa under conditions modeling ulceration in rats.

  15. Bacterial cell-wall recycling

    PubMed Central

    Johnson, Jarrod W.; Fisher, Jed F.; Mobashery, Shahriar

    2012-01-01

    Many Gram-negative and Gram-positive bacteria recycle a significant proportion of the peptidoglycan components of their cell walls during their growth and septation. In many—and quite possibly all—bacteria, the peptidoglycan fragments are recovered and recycled. While cell-wall recycling is beneficial for the recovery of resources, it also serves as a mechanism to detect cell-wall–targeting antibiotics and to regulate resistance mechanisms. In several Gram-negative pathogens, anhydro-MurNAc-peptide cell-wall fragments regulate AmpC β-lactamase induction. In some Gram-positive organisms, short peptides derived from the cell wall regulate the induction of both β-lactamase and β-lactam-resistant penicillin-binding proteins. The involvement of peptidoglycan recycling with resistance regulation suggests that inhibitors of the enzymes involved in the recycling might synergize with cell-wall-targeted antibiotics. Indeed, such inhibitors improve the potency of β-lactams in vitro against inducible AmpC β-lactamase-producing bacteria. We describe the key steps of cell-wall remodeling and recycling, the regulation of resistance mechanisms by cell-wall recycling, and recent advances toward the discovery of cell-wall recycling inhibitors. PMID:23163477

  16. High efficiency labeling of glycoproteins on living cells

    PubMed Central

    Zeng, Ying; Ramya, T. N. C.; Dirksen, Anouk; Dawson, Philip E.; Paulson, James C.

    2010-01-01

    We describe a simple method for efficiently labeling cell surface glycans on virtually any living animal cell. The method employs mild Periodate oxidation to generate an aldehyde on sialic acids, followed by Aniline-catalyzed oxime Ligation with a suitable tag (PAL). Aniline catalysis dramatically accelerates oxime ligation, allowing use of low concentrations of aminooxy-biotin at neutral pH to label the majority of cell surface glycoproteins while maintaining high cell viability. PMID:19234450

  17. The primary structure of a procaryotic glycoprotein. Cloning and sequencing of the cell surface glycoprotein gene of halobacteria.

    PubMed

    Lechner, J; Sumper, M

    1987-07-15

    The hexagonally patterned surface layer of halobacteria consists of a true glycoprotein. This procaryotic glycoprotein has recently been shown to exhibit novel features with respect to saccharide structure and saccharide biosynthesis. The primary structure and the location of glycosylation sites were determined by cloning and sequencing of the glycoprotein gene of Halobacterium halobium. According to the predicted amino acid sequence, the glycoprotein is synthesized with a N-terminal leader sequence of 34 amino acid residues reminiscent of eucaryotic and procaryotic signal peptides. A hydrophobic stretch of 21 amino acid residues at the C terminus probably serves as a transmembrane domain. 14 threonine residues are clustered adjacent to this membrane anchor and linked to these threonines are all the disaccharides of the cell surface glycoprotein. 12 N-glycosylation sites are distributed over the polypeptide chain.

  18. Synthesis of cell envelope glycoproteins of Cryptococcus laurentii

    PubMed Central

    Schutzbach, John; Ankel, Helmut; Brockhausen, Inka

    2007-01-01

    Fungi of the genus Cryptococcus are encapsulated basidiomycetes that are ubiquitously found in the environment. These organisms infect both lower and higher animals. Human infections that are common in immune-compromised individuals have proven difficult to cure or even control with currently available antimycotics that are quite often toxic to the host. The virulence of Cryptococcus has been linked primarily to its polysaccharide capsule, but also to cell-bound glycoproteins. In this review we show that C. laurentii is an excellent model for studies of polysaccharide and glycoprotein synthesis in the pathogenic relative C. neoformans. In particular we will discuss the structure and biosynthesis of O-linked carbohydrates on cell envelope glycoproteins of C. laurentii. These O-linked structures are synthesized by at least four mannosyltransferases, two galactosyltransferases and at least one xylosyltransferase that have been characterized. These glycosyltransferases have no known homologues in human tissues. Therefore enzymes involved in the synthesis of cryptococcal glycoproteins, as well as related enzymes involved in capsule synthesis, are potential targets for the development of specific inhibitors for treatment of cryptococcal disease. PMID:17316583

  19. An emerging role of pectic rhamnogalacturonanII for cell wall integrity

    PubMed Central

    Reboul, Rebecca; Tenhaken, Raimund

    2012-01-01

    The plant cell wall is a complex network of different polysaccharides and glycoproteins, showing high diversity in nature. The essential components, tethering cell wall are under debate, as novel mutants challenge established models. The mutant ugd2,3 with a reduced supply of the important wall precursor UDP-glucuronic acid reveals the critical role of the pectic compound rhamnogalacturonanII for cell wall stability. This polymer seems to be more important for cell wall integrity than the previously favored xyloglucan. PMID:22353862

  20. Architecture and Biosynthesis of the Saccharomyces cerevisiae Cell Wall

    PubMed Central

    Orlean, Peter

    2012-01-01

    The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins. PMID:23135325

  1. Plant cell walls to ethanol.

    USDA-ARS?s Scientific Manuscript database

    Conversion of plant cell walls to ethanol constitutes generation 2 bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation, and separation. Ultimately, it is desired to combine as man...

  2. Glycoproteins: Occurrence and Significance

    NASA Astrophysics Data System (ADS)

    Wittmann, Valentin

    Protein glycosylation is regarded as the most complex form of post-translational modification leading to a heterogeneous expression of glycoproteins as mixtures of glycoforms. This chapter describes the structure and occurrence of glycoproteins with respect to their glycan chains. Discussed are different carbohydrate-peptide linkages including GPI anchors, common structures of N- and O-glycans, and the structure of glycosaminoglycans contained in proteoglycans. Also covered are the bacterial cell wall polymer peptidoglycan and the glycopeptide antibiotics of the vancomycin group. Properties and functions of the glycans contained in glycoproteins are dealt with in the next chapter of this book.

  3. Expression of the multidrug transporter, P-glycoprotein, in renal and transitional cell carcinomas.

    PubMed

    Nishiyama, K; Shirahama, T; Yoshimura, A; Sumizawa, T; Furukawa, T; Ichikawa-Haraguchi, M; Akiyama, S; Ohi, Y

    1993-06-01

    Renal cell carcinomas (RCC) respond poorly to anthracyclines, Vinca alkaloids, and other agents. P-glycoprotein is overproduced in multidrug-resistant cells and thought to function as an energy-dependent drug efflux pump. The authors thus examined the expression level of P-glycoprotein in RCC and transitional cell carcinomas (TCC). P-glycoprotein was detected using immunoblotting with a monoclonal antibody against it, C219. Thirty-three of 38 patients with RCC and 3 of 17 patients with TCC had P-glycoprotein positive tumors. The expression level of P-glycoprotein in most of RCC was lower than that in the normal kidney tissues and that of P-glycoprotein in the TCC was very low. The size of P-glycoprotein in 14 RCC and 3 TCC was 5-10 kilodaltons smaller than in the normal renal tissues. The variation of P-glycoprotein size in the RCC was attributed to differential N-linked glycosylation. P-glycoprotein in a RCC was photolabeled by tritiated azidopine, and the labeling was inhibited by some organic agents. P-glycoprotein distributed on the apical or marginal cell surface of the RCC. These data show that P-glycoprotein was expressed in many RCC, and its expression level, glycosylation, and distribution were altered. These data also suggest that the P-glycoprotein in RCC had similar drug binding site(s) to that in multidrug-resistant cells.

  4. Isolation of the Cell Wall.

    PubMed

    Canut, Hervé; Albenne, Cécile; Jamet, Elisabeth

    2017-01-01

    This chapter describes a method allowing the purification of the cell wall for studying both polysaccharides and proteins. The plant primary cell wall is mainly composed of polysaccharides (90-95 % in mass) and of proteins (5-10 %). At the end of growth, specialized cells may synthesize a lignified secondary wall composed of polysaccharides (about 65 %) and lignin (about 35 %). Due to its composition, the cell wall is the cellular compartment having the highest density and this property is used for its purification. It plays critical roles during plant development and in response to environmental constraints. It is largely used in the food and textile industries as well as for the production of bioenergy. All these characteristics and uses explain why its study as a true cell compartment is of high interest. The proposed method of purification can be used for large amount of material but can also be downscaled to 500 mg of fresh material. Tools for checking the quality of the cell wall preparation, such as protein analysis and microscopy observation, are also provided.

  5. Self-assembly of the plant cell wall requires an extensin scaffold

    PubMed Central

    Cannon, Maura C.; Terneus, Kimberly; Hall, Qi; Tan, Li; Wang, Yumei; Wegenhart, Benjamin L.; Chen, Liwei; Lamport, Derek T. A.; Chen, Yuning; Kieliszewski, Marcia J.

    2008-01-01

    Cytokinesis partitions the cell by a cleavage furrow in animals but by a new cross wall in plants. How this new wall assembles at the molecular level and connects with the mother cell wall remains unclear. A lethal Arabidopsis embryogenesis mutant designated root-, shoot-, hypocotyl-defective (rsh) provides some clues: RSH encodes extensin AtEXT3, a structural glycoprotein located in the nascent cross wall or “cell plate” and also in mature cell walls. Here we report that electron micrographs of rsh mutant cells lacking RSH extensin correspond to a wall phenotype typified by incomplete cross wall assembly. Biochemical characterization of the purified RSH glycoprotein isolated from wild-type Arabidopsis cell cultures confirmed its identity as AtEXT3: a (hydroxy)proline-rich glyco protein comprising 11 identical amphiphilic peptide repeats with a 28-residue periodicity: SOOOOKKHYVYKSOOOOVKHYSOOOVYH (O = Hyp), each repeat containing a hydrophobic isodityrosine cross-link motif (YVY, underlined). Atomic force microscopy of RSH glycoprotein imaged its propensity for self-assembly into a dendritic scaffold. Extensin peroxidase catalyzed in vitro formation of insoluble RSH gels with concomitant tyrosine cross-linking, hence this likelihood in muro. We conclude that self-assembling amphiphiles of lysine-rich RSH extensin form positively charged scaffolds in the cell plate. These react with negatively charged pectin to create an extensin pectate coacervate that may template further orderly deposition of the new cross wall at cytokinesis. PMID:18256186

  6. Sporothrix schenckii Cell Wall Peptidorhamnomannans

    PubMed Central

    Lopes-Bezerra, Leila M.

    2011-01-01

    This mini-review article is dedicated to clarifying certain important biochemical aspects of Sporothrix schenckii cell wall peptidorhamnomannans. Cell wall components involved in the host interaction such as antigens as well as a gp70 adhesin are important molecules present on the surface of the yeast parasitic phase. Other structural glycoconjugates present on the fungus cell surface are also described here. Knowledge of the fine structure of carbohydrate epitopes expressed on the surface in both morphological phases of S. schenckii permitted the development of non-invasive immunochemical methods to diagnose human and feline sporotrichosis. PMID:22203817

  7. Serologic response to cell wall mannoproteins and proteins of Candida albicans.

    PubMed

    Martínez, J P; Gil, M L; López-Ribot, J L; Chaffin, W L

    1998-01-01

    The cell wall of Candida albicans not only is the structure in which many biological functions essential for the fungal cells reside but also is a significant source of candidal antigens. The major cell wall components that elicit a response from the host immune system are proteins and glycoproteins, the latter being predominantly mannoproteins. Both the carbohydrate and protein moieties are able to trigger immune responses. Although cell-mediated immunity is often considered to be the most important line of defense against candidiasis, cell wall protein and glycoprotein components also elicit a potent humoral response from the host that may include some protective antibodies. Proteins and glycoproteins exposed at the most external layers of the wall structure are involved in several types of interactions of fungal cells with the exocellular environment. Thus, coating of fungal cells with host antibodies has the potential to influence profoundly the host-parasite interaction by affecting antibody-mediated functions such as opsonin-enhanced phagocytosis and blocking the binding activity of fungal adhesins for host ligands. In this review, the various members of the protein and glycoprotein fraction of the C. albicans cell wall that elicit an antibody response in vivo are examined. Although a number of proteins have been shown to stimulate an antibody response, for some of these species the response is not universal. On the other hand, some of the studies demonstrate that certain cell wall antigens and anti-cell wall antibodies may be the basis for developing specific and sensitive serologic tests for the diagnosis of candidasis, particularly the disseminated form. In addition, recent studies have focused on the potential for antibodies to cell wall protein determinants to protect the host against infection. Hence, a better understanding of the humoral response to cell wall antigens of C. albicans may provide the basis for the development of (i) effective procedures

  8. The Structure of Plant Cell Walls

    PubMed Central

    Talmadge, Kenneth W.; Keegstra, Kenneth; Bauer, Wolfgang D.; Albersheim, Peter

    1973-01-01

    This is the first in a series of papers dealing with the structure of cell walls isolated from suspension-cultured sycamore cells (Acer pseudoplatanus). These studies have been made possible by the availability of purified hydrolytic enzymes and by recent improvements in the techniques of methylation analysis. These techniques have permitted us to identify and quantitate the macromolecular components of sycamore cell walls. These walls are composed of 10% arabinan, 2% 3,6-linked arabinogalactan, 23% cellulose, 9% oligo-arabinosides (attached to hydroxyproline), 8% 4-linked galactan, 10% hydroxyproline-rich protein, 16% rhamnogalacturonan, and 21% xyloglucan. The structures of the pectic polymers (the neutral arabinan, the neutral galactan, and the acidic rhamnogalacturonan) were obtained, in part, by methylation analysis of fragments of these polymers which were released from the sycamore walls by the action of a highly purified endopolygalacturonase. The data suggest a branched arabinan and a linear 4-linked galactan occurring as side chains on the rhamnogalacturonan. Small amounts or pieces of a xyloglucan, the wall hemicellulose, appear to be covalently linked to some of the galactan chains. Thus, the galactan appears to serve as a bridge between the xyloglucan and rhamnogalacturonan components of the wall. The rhamnogalacturonan consists of an α-(1 → 4)-linked galacturonan chain which is interspersed with 2-linked rhamnosyl residues. The rhamnosyl residues are not randomly distributed in the chain but probably occur in units of rhamnosyl- (1 → 4)-galacturonosyl- (1 → 2)-rhamnosyl. This sequence appears to alternate with a homogalacturonan sequence containing approximately 8 residues of 4-linked galacturonic acid. About half of the rhamnosyl residues are branched, having a substituent attached to carbon 4. This is likely to be the site of attachment of the 4-linked galactan. The hydroxyprolyl oligo-arabinosides of the hydroxyproline-rich glycoprotein

  9. Recent Advances on the Posttranslational Modifications of EXTs and Their Roles in Plant Cell Walls

    PubMed Central

    Velasquez, Melina; Salter, Juan Salgado; Dorosz, Javier Gloazzo; Petersen, Bent L.; Estevez, José M.

    2012-01-01

    The genetic set up and the enzymes that define the O-glycosylation sites and transfer the activated sugars to cell wall glycoprotein Extensins (EXTs) have remained unknown for a long time. We are now beginning to see the emerging components of the molecular machinery that assembles these complex O-glycoproteins on the plant cell wall. Genes conferring the posttranslational modifications, i.e., proline hydroxylation and subsequent O-glycosylation, of the EXTs have been recently identified. In this review we summarize the enzymes that define the O-glycosylation sites on the O-glycoproteins, i.e., the prolyl 4-hydroxylases (P4Hs), the glycosyltransferases that transfer arabinose units (named arabinosyltransferases, AraTs), and the one responsible for transferring a single galactose (galactosyltransferase, GalT) on the protein EXT backbones. We discuss the effects of posttranslational modifications on the structure and function of extensins in plant cell walls. PMID:22639676

  10. Systemic alteration of cell-surface and secreted glycoprotein expression in malignant breast cancer cell lines.

    PubMed

    Timpe, Leslie C; Yen, Roger; Haste, Nicole V; Litsakos-Cheung, Christina; Yen, Ten-Yang; Macher, Bruce A

    2013-11-01

    Breast cancer cell lines express fewer transmembrane and secreted glycoproteins than nonmalignant ones. The objective of these experiments was to characterize the changes in the expression of several hundred glycoproteins quantitatively. Secreted and cell-surface glycoproteins were isolated using a glycoprotein capture protocol and then identified by tandem mass spectrometry. Glycoproteins expressed by a group of cell lines originating from malignant tumors of the breast were compared with those expressed by a nonmalignant set. The average number of spectral counts (proportional to relative protein abundance) and the total number of glycopeptides in the malignant samples were reduced to about two-thirds of the level in the nonmalignant samples. Most glycoproteins were expressed at a different level in the malignant samples, with nearly as many increasing as decreasing. The glycoproteins with reduced expression accounted for a larger change in spectral counts, and hence for the net loss of spectral counts in the malignant lines. Similar results were found when the glycoproteins were studied via identified glycosylation sites only, or through identified sites together with non-glycopeptides. The overall reduction is largely due to the loss of integrins, laminins and other proteins that form or interact with the basement membrane.

  11. Glycoprotein extraction from Laminaria japonica promotes IEC-6 cell proliferation.

    PubMed

    Go, Hiroe; Hwang, Hye-Jung; Nam, Taek-Jeong

    2009-12-01

    The brown alga Laminaria japonica is frequently consumed in Korea, Japan and China, and has been used for more than a thousand years as a drug in traditional Chinese medicine. In this study, we isolated a novel glycoprotein from L. japonica that stimulates the growth of the IEC-6 normal murine intestinal epithelial cells. We also identified the mechanism by which this glycoprotein, referred to as LJGP, stimulates cell growth. After 24 h of exposure to LJGP, cell proliferation increased in a dose-dependent manner. To further explore the mechanism associated with LJGP-induced cell proliferation, we treated cells for various times with LJGP. We focused on the epidermal growth factor receptor (EGFR) signaling pathway, which is involved in the regulation of cellular proliferation and differentiation, during LJGP-induced cell growth. The results showed that LJGP induced EGFR and Akt activation. Furthermore, LJGP stimulated Shc/Grb2 binding and ERK activation, but inhibited JNK phosphorylation. These results indicate that LJGP stimulates gastrointestinal cell growth by activating the EGFR signaling pathway.

  12. Cell wall construction in Saccharomyces cerevisiae.

    PubMed

    Klis, Frans M; Boorsma, Andre; De Groot, Piet W J

    2006-02-01

    In this review, we discuss new insights in cell wall architecture and cell wall construction in the ascomycetous yeast Saccharomyces cerevisiae. Transcriptional profiling studies combined with biochemical work have provided ample evidence that the cell wall is a highly adaptable organelle. In particular, the protein population that is anchored to the stress-bearing polysaccharides of the cell wall, and forms the interface with the outside world, is highly diverse. This diversity is believed to play an important role in adaptation of the cell to environmental conditions, in growth mode and in survival. Cell wall construction is tightly controlled and strictly coordinated with progression of the cell cycle. This is reflected in the usage of specific cell wall proteins during consecutive phases of the cell cycle and in the recent discovery of a cell wall integrity checkpoint. When the cell is challenged with stress conditions that affect the cell wall, a specific transcriptional response is observed that includes the general stress response, the cell wall integrity pathway and the calcineurin pathway. This salvage mechanism includes increased expression of putative cell wall assemblases and some potential cross-linking cell wall proteins, and crucial changes in cell wall architecture. We discuss some more enzymes involved in cell wall construction and also potential inhibitors of these enzymes. Finally, we use both biochemical and genomic data to infer that the architectural principles used by S. cerevisiae to build its cell wall are also used by many other ascomycetous yeasts and also by some mycelial ascomycetous fungi.

  13. Chapter 3 Cell Wall Chemistry

    Treesearch

    Roger M. Rowell; Roger Pettersen; Mandla A. Tshabalala

    2012-01-01

    Wood is best defined as a three-dimensional biopolymer composite composed of an interconnected network of cellulose, hemicelluloses and lignin with minor amounts of extractives, and inorganics. The major chemical component of a living tree is water, but on a dry weight basis, all wood cell walls consist mainly of sugar-based polymers (carbohydrates, 65-75%) that are...

  14. TNF activates P-glycoprotein in cerebral microvascular endothelial cells.

    PubMed

    Yu, Chuanhui; Kastin, Abba J; Tu, Hong; Waters, Sarah; Pan, Weihong

    2007-01-01

    Multidrug resistance proteins (MDRs, including P-glycoproteins) are efflux pumps that serve important biological functions but hinder successful drug delivery to the CNS. Many chemotherapeutic agents, anti-epileptics, anti-HIV drugs, and opiates are substrates for MDRs. Therefore, understanding the regulation of MDRs in the endothelial cells composing the blood-brain barrier has therapeutic implications. We used microarray, real time RT-PCR, Western blotting, and uptake of vinblastine by RBE4 cerebral endothelial cells to test the effects of tumor necrosis factor alpha (TNF) on the expression and functions of P-glycoprotein (MDR1). The proinflammatory cytokine TNF specifically induced the expression and enhanced the function of MDR1 in RBE4 cells. The persistent upregulation of MDR1 mRNA was shown by cDNA microarray at 6, 12, and 24 h after TNF treatment. This was confirmed by real-time RT-PCR between 2 and 24 h. MDR1 protein expression was increased 6 to 24 h after TNF treatment and resulted in a significant reduction in the cellular uptake of (3)H-vinblastine. The drug efflux transporter in cerebral endothelial cells can be upregulated by TNF. This suggests that adjunctive anti-TNF treatment has novel therapeutic potential in conditions such as brain cancer, epilepsy, neuroAIDS, and chronic pain.

  15. Cell surface glycoproteins from Thermoplasma acidophilum are modified with an N-linked glycan containing 6-C-sulfofucose.

    PubMed

    Vinogradov, Evgeny; Deschatelets, Lise; Lamoureux, Marc; Patel, Girishchandra B; Tremblay, Tammy-Lynn; Robotham, Anna; Goneau, Marie-France; Cummings-Lorbetskie, Cathy; Watson, David C; Brisson, Jean-Robert; Kelly, John F; Gilbert, Michel

    2012-09-01

    Thermoplasma acidophilum is a thermoacidophilic archaeon that grows optimally at pH 2 and 59°C. This extremophile is remarkable by the absence of a cell wall or an S-layer. Treating the cells with Triton X-100 at pH 3 allowed the extraction of all of the cell surface glycoproteins while keeping cells intact. The extracted glycoproteins were partially purified by cation-exchange chromatography, and we identified five glycoproteins by N-terminal sequencing and mass spectrometry of in-gel tryptic digests. These glycoproteins are positive for periodic acid-Schiff staining, have a high content of Asn including a large number in the Asn-X-Ser/Thr sequon and have apparent masses that are 34-48% larger than the masses deduced from their amino acid sequences. The pooled glycoproteins were digested with proteinase K and the purified glycopeptides were analyzed by NMR. Structural determination showed that the carbohydrate part was represented by two structures in nearly equal amounts, differing by the presence of one terminal mannose residue. The larger glycan chain consists of eight residues: six hexoses, one heptose and one sugar with an unusual residue mass of 226 Da which was identified as 6-deoxy-6-C-sulfo-D-galactose (6-C-sulfo-D-fucose). Mass spectrometry analyses of the peptides obtained by trypsin and chymotrypsin digestion confirmed the principal structures to be those determined by NMR and identified 14 glycopeptides derived from the main glycoprotein, Ta0280, all containing the Asn-X-Ser/Thr sequons. Thermoplasma acidophilum appears to have a "general" protein N-glycosylation system that targets a number of cell surface proteins.

  16. Back wall solar cell

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr. (Inventor)

    1978-01-01

    A solar cell is disclosed which comprises a first semiconductor material of one conductivity type with one face having the same conductivity type but more heavily doped to form a field region arranged to receive the radiant energy to be converted to electrical energy, and a layer of a second semiconductor material, preferably highly doped, of opposite conductivity type on the first semiconductor material adjacent the first semiconductor material at an interface remote from the heavily doped field region. Instead of the opposite conductivity layer, a metallic Schottky diode layer may be used, in which case no additional back contact is needed. A contact such as a gridded contact, previous to the radiant energy may be applied to the heavily doped field region of the more heavily doped, same conductivity material for its contact.

  17. IMMUNOLOGICAL ROLE OF BRUCELLA ABORTUS CELL WALLS

    PubMed Central

    Foster, John W.; Ribi, Edgar

    1962-01-01

    Foster, John W. (University of Georgia, Athens) and Edgar Ribi. Immunological role of Brucella abortus cell walls. J. Bacteriol. 84:258–268. 1962—Cell walls and protoplasm were prepared from organisms disrupted in a refrigerated pressure cell. Cell walls were purified by sedimentation in a linear glycerol gradient. Antigens capable of protecting mice against infection with Brucella abortus and of reacting with antiserum prepared against whole cells were present chiefly in the cell wall; substances lethal to mice and responsible for primary inflammation of rabbit skin were also associated with the cell wall. Limited activity of protoplasm in these biological tests may or may not be due to contamination with cell-wall material. A substance extracted from whole cells with aqueous ether possessed an immunizing potency superior to that of killed whole cells or cell walls. Images PMID:13894243

  18. [Molecular Mechanism of Glycoprotein-induced Cell-Cell Fusion of Herpesviruses].

    PubMed

    Feng, Daishen; Jia, Renyong

    2016-01-01

    Herpesviridae is a large family comprising linear, double-stranded DNA viruses. Herpesviridae contains three subfamilies: α-, β- and γ-herpesviruses. The glycoproteins gB, gH and gL of each subfamily form the "core fusion function" in cell-cell fusion. Other herpesviruses also need additional glycoproteins to promote fusion, such as gD of the Herpes simplex virus, gp42 of the Epstein-Barr virus, and gO or UL128-131 of the Human cytomegalovirus. In contrast, glycoproteins gM or gM/gN of herpesvirus inhibit fusion. We describe the molecular mechanisms of glycoprotein-induced fusion and entry of herpesviruses. It will be helpful to further study the pathogenic mechanism of herpesvirus.

  19. CELL WALL CARBOHYDRATE EPITOPES IN THE GREEN ALGA OEDOGONIUM BHARUCHAE F. MINOR (OEDOGONIALES, CHLOROPHYTA)(1).

    PubMed

    Estevez, José M; Leonardi, Patricia I; Alberghina, Josefina S

    2008-10-01

    Cell wall changes in vegetative and suffultory cells (SCs) and in oogonial structures from Oedogonium bharuchae N. D. Kamat f. minor Vélez were characterized using monoclonal antibodies against several carbohydrate epitopes. Vegetative cells and SCs develop only a primary cell wall (PCW), whereas mature oogonial cells secrete a second wall, the oogonium cell wall (OCW). Based on histochemical and immunolabeling results, (1→4)-β-glucans in the form of crystalline cellulose together with a variable degree of Me-esterified homogalacturonans (HGs) and hydroxyproline-rich glycoprotein (HRGP) epitopes were detected in the PCW. The OCW showed arabinosides of the extensin type and low levels of arabinogalactan-protein (AGP) glycans but lacked cellulose, at least in its crystalline form. Surprisingly, strong colabeling in the cytoplasm of mature oogonia cells with three different antibodies (LM-5, LM-6, and CCRC-M2) was found, suggesting the presence of rhamnogalacturonan I (RG-I)-like structures. Our results are discussed relating the possible functions of these cell wall epitopes with polysaccharides and O-glycoproteins during oogonium differentiation. This study represents the first attempt to characterize these two types of cell walls in O. bharuchae, comparing their similarities and differences with those from other green algae and land plants. This work represents a contribution to the understanding of how cell walls have evolved from simple few-celled to complex multicelled organisms.

  20. Catalysts of plant cell wall loosening

    PubMed Central

    Cosgrove, Daniel J.

    2016-01-01

    The growing cell wall in plants has conflicting requirements to be strong enough to withstand the high tensile forces generated by cell turgor pressure while selectively yielding to those forces to induce wall stress relaxation, leading to water uptake and polymer movements underlying cell wall expansion. In this article, I review emerging concepts of plant primary cell wall structure, the nature of wall extensibility and the action of expansins, family-9 and -12 endoglucanases, family-16 xyloglucan endotransglycosylase/hydrolase (XTH), and pectin methylesterases, and offer a critical assessment of their wall-loosening activity PMID:26918182

  1. Expression of membrane glycoproteins in normal keratinocytes and squamous carcinoma cell lines

    SciTech Connect

    Rayter, Z. ); McIlhinney, R. ); Gusterson, B. )

    1989-08-01

    Con A acceptor glycoproteins were analyzed by 2D-PAGE and {sup 125}I-Con A overlay in three squamous carcinoma cell lines and compared with those in the simian virus (SV40)-transformed keratinocyte cell line SVK-14 and in normal keratinocytes. The majority of the glycoproteins identified by this technique were expressed at similar levels in all of the cells examined, independent of the culture conditions used. A cell surface glycoprotein gp34 was increased in the tumor cells compared with normal keratinocytes and expression varied with the culture density. Another glycoprotein, gp21, was found to be increased in expression in normal keratinocytes and stratified hyperconfluent cultures of squamous carcinoma cell lines. This paper describes the potential of this technique to identify membrane glycoproteins which may be expressed as a function of proliferation or differentiation.

  2. Identification of peanut agglutinin binding glycoproteins restricted to Hodgkin's disease-derived cell lines.

    PubMed

    Flavell, D J; Jones, D B; Wright, D H

    1989-01-01

    Peanut agglutinin (PNA) binding glycoproteins from four Hodgkin's disease (HD)-derived cell lines and a variety of cell lines/peripheral blood cells representative of the lymphoid and myeloid lineages were identified by probing nitrocellulose membranes of SDS-PAGE separated NP40 solubilized cellular glycoproteins with [125I]-labelled PNA. The two Hodgkin's cell lines Ho and L428 demonstrated the most heterogeneous glycoprotein profiles each expressing 15 PNA binding glycoproteins, respectively. The two remaining Hodgkin's lines Co and L591 expressed only four glycoproteins each and these were all also commonly expressed by Ho and L428. Comparative analysis with all other cell types studied revealed the expression of five glycoproteins restricted to Ho (gp42, gp40, gp38, gp24 and gp22) and six restricted to L428 (gp180, gp75, gp40, gp38, gp24 and gp22). Four of these, gp40, gp38, gp24 and gp22 were commonly expressed by both Ho and L428. Of cell lines of myeloid lineage studied only the erythroleukemia cell line K562 expressed detectable glycoproteins also expressed by some of the Hodgkin's cell lines (gp110, gp96, gp50 and gp45). Only one glycoprotein, gp20 expressed by Ho was also commonly expressed by normal peripheral blood granulocytes. This limited study has thus succeeded in demonstrating for the range of cell types studied, that some glycoproteins with terminal D-galactose beta (1----3) N-acetyl galactosamine oligosaccharide sequences are apparently restricted to two of the HD cell lines. Moreover, the heterogeneous glycoprotein profiles obtained for the HD cell lines Ho and L428 suggests that galactosylation processes in these two cell lines is aberrant.

  3. Genetic and biochemical characterization of the GH72 family of cell wall transglycosylases in Neurospora crassa.

    PubMed

    Ao, Jie; Free, Stephen J

    2017-04-01

    The Neurospora crassa genome encodes five GH72 family transglycosylases, and four of these enzymes (GEL-1, GEL-2, GEL-3 and GEL-5) have been found to be present in the cell wall proteome. We carried out an extensive genetic analysis on the role of these four transglycosylases in cell wall biogenesis and demonstrated that the transglycosylases are required for the formation of a normal cell wall. As suggested by the proteomic analysis, we found that multiple transglycosylases were being expressed in N. crassa cells and that different combinations of the enzymes are required in different cell types. The combination of GEL-1, GEL-2 and GEL-5 is required for the growth of vegetative hyphae, while the GEL-1, GEL-2, GEL-3 combination is needed for the production of aerial hyphae and conidia. Our data demonstrates that the enzymes are redundant with partially overlapping enzymatic activities, which provides the fungus with a robust cell wall biosynthetic system. Characterization of the transglycosylase-deficient mutants demonstrated that the incorporation of cell wall proteins was severely compromised. Interestingly, we found that the transglycosylase-deficient mutant cell walls contained more β-1,3-glucan than the wild type cell wall. Our results demonstrate that the GH72 transglycosylases are not needed for the incorporation of β-1,3-glucan into the cell wall, but they are required for the incorporation of cell wall glycoprotein into the cell wall. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. P-selectin glycoprotein ligand-1 in T cells.

    PubMed

    Abadier, Michael; Ley, Klaus

    2017-05-01

    We review P-selectin glycoprotein ligand-1 (PSGL-1) as a selectin and chemokine-binding adhesion molecule. PSGL-1 is widely studied in neutrophils. Here, we focus on T cells, because PSGL-1 was recently described as a major immunomodulatory molecule during viral infection. PSGL-1 also plays a crucial role in T-cell homeostasis by binding to lymphoid chemokines, and can induce tolerance by enhancing the functions of regulatory T cells. PSGL-1 was originally described as a leukocyte ligand for P-selectin, but it is actually a ligand for all selectins (P-, L- and E-selectin), binds chemokines, activates integrins and profoundly affects T-cell biology. It has been shown recently that PSGL-1 can modulate T cells during viral infection by acting as a negative regulator for T-cell functions. Absence of PSGL-1 promotes effector CD4 and CD8 T-cell differentiation and prevents T-cell exhaustion. Consistent with this, tumor growth was significantly reduced in PSGL-1-deficient mice because of an enhanced number of effector T cells together with reduced levels of inhibitory receptors that induce T-cell exhaustion. PSGL-1 is the best-studied selectin ligand and has become a posterchild of versatility in leukocyte adhesion, inflammation and immunology. The direct involvement of PSGL-1 in T-cell biology suggests that it might be a drug target. Indeed, PSGL-1 has been tested in some clinical trials and recently, PSGL-1 blockers were proposed as a potential cotherapy in cancer immunotherapy.

  5. An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein.

    PubMed

    Tan, Li; Eberhard, Stefan; Pattathil, Sivakumar; Warder, Clayton; Glushka, John; Yuan, Chunhua; Hao, Zhangying; Zhu, Xiang; Avci, Utku; Miller, Jeffrey S; Baldwin, David; Pham, Charles; Orlando, Ronald; Darvill, Alan; Hahn, Michael G; Kieliszewski, Marcia J; Mohnen, Debra

    2013-01-01

    Plant cell walls are comprised largely of the polysaccharides cellulose, hemicellulose, and pectin, along with ∼10% protein and up to 40% lignin. These wall polymers interact covalently and noncovalently to form the functional cell wall. Characterized cross-links in the wall include covalent linkages between wall glycoprotein extensins between rhamnogalacturonan II monomer domains and between polysaccharides and lignin phenolic residues. Here, we show that two isoforms of a purified Arabidopsis thaliana arabinogalactan protein (AGP) encoded by hydroxyproline-rich glycoprotein family protein gene At3g45230 are covalently attached to wall matrix hemicellulosic and pectic polysaccharides, with rhamnogalacturonan I (RG I)/homogalacturonan linked to the rhamnosyl residue in the arabinogalactan (AG) of the AGP and with arabinoxylan attached to either a rhamnosyl residue in the RG I domain or directly to an arabinosyl residue in the AG glycan domain. The existence of this wall structure, named ARABINOXYLAN PECTIN ARABINOGALACTAN PROTEIN1 (APAP1), is contrary to prevailing cell wall models that depict separate protein, pectin, and hemicellulose polysaccharide networks. The modified sugar composition and increased extractability of pectin and xylan immunoreactive epitopes in apap1 mutant aerial biomass support a role for the APAP1 proteoglycan in plant wall architecture and function.

  6. Selective binding of human cumulus cell-secreted glycoproteins to human spermatozoa during capacitation in vitro

    SciTech Connect

    Tesarik, J.; Kopecny, V.; Dvorak, M.

    1984-06-01

    The results of this study demonstrate that glycoproteins manufactured by human cumulus cells can be detected bound to human spermatozoa incubated in capacitational medium containing the labeled cumulus-cell secretions. Cumulus-cell-secreted glycoproteins were labeled with a mixture of /sup 3/H-methionine and /sup 3/H-tryptophan or with 3H-fucose, and the binding of the labeled compounds to spermatozoa was evaluated by autoradiography. The binding was highly selective, involving only approximately 1% of the samples of spermatozoa used. The results suggest that the binding of cumulus-cell-secreted glycoproteins to spermatozoa may represent a final and highly selective step in human sperm capacitation.

  7. KRE5 Suppression Induces Cell Wall Stress and Alternative ER Stress Response Required for Maintaining Cell Wall Integrity in Candida glabrata

    PubMed Central

    Sasaki, Masato; Ito, Fumie; Aoyama, Toshio; Sato-Okamoto, Michiyo; Takahashi-Nakaguchi, Azusa; Chibana, Hiroji; Shibata, Nobuyuki

    2016-01-01

    The maintenance of cell wall integrity in fungi is required for normal cell growth, division, hyphae formation, and antifungal tolerance. We observed that endoplasmic reticulum stress regulated cell wall integrity in Candida glabrata, which possesses uniquely evolved mechanisms for unfolded protein response mechanisms. Tetracycline-mediated suppression of KRE5, which encodes a predicted UDP-glucose:glycoprotein glucosyltransferase localized in the endoplasmic reticulum, significantly increased cell wall chitin content and decreased cell wall β-1,6-glucan content. KRE5 repression induced endoplasmic reticulum stress-related gene expression and MAP kinase pathway activation, including Slt2p and Hog1p phosphorylation, through the cell wall integrity signaling pathway. Moreover, the calcineurin pathway negatively regulated cell wall integrity, but not the reduction of β-1,6-glucan content. These results indicate that KRE5 is required for maintaining both endoplasmic reticulum homeostasis and cell wall integrity, and that the calcineurin pathway acts as a regulator of chitin-glucan balance in the cell wall and as an alternative mediator of endoplasmic reticulum stress in C. glabrata. PMID:27548283

  8. The Structure of Plant Cell Walls

    PubMed Central

    Burke, David; Kaufman, Peter; McNeil, Michael; Albersheim, Peter

    1974-01-01

    The primary cell walls of six suspension-cultured monocots and of a single suspension-cultured gymnosperm have been investigated with the following results: (a) the compositions of all six monocot cell walls are remarkably similar, despite the fact that the cell cultures were derived from diverse tissues; (b) the cell walls of suspension-cultured monocots differ substantially from those of suspension-cultured dicots and from the suspension-cultured gymnosperm; (c) an arabinoxylan is a major component (40% or more by weight) of monocot primary cell walls; (d) mixed β-1,3; β-1,4-glucans were found only in the cell wall preparations of rye grass endosperm cells, and not in the cell walls of any of the other five monocot cell cultures nor in the walls of suspension-cultured Douglas fir cells; (e) the monocot primary cell walls studied contain from 9 to 14% cellulose, 7 to 18% uronic acids, and 7 to 17% protein; (f) hydroxyproline accounts for less than 0.2% of the cell walls of monocots. Similar data on the soluble extracellular polysaccharides secreted by these cells are included. PMID:16658824

  9. Combining various strategies to increase the coverage of the plant cell wall glycoproteome.

    PubMed

    Zhang, Yu; Giboulot, Aurélie; Zivy, Michel; Valot, Benoît; Jamet, Elisabeth; Albenne, Cécile

    2011-07-01

    Glycoproteomics recently became a very active field, mostly in mammals. The first part of this paper consists of a mini-review on the strategies used in glycoproteomics, namely methods for enrichment in glycoproteins and mass spectrometry (MS) techniques currently used. In a second part, these strategies are applied to the cell wall glycoproteome of etiolated hypocotyls of Arabidopsis thaliana, showing their complementarity. Several sub-glycoproteomes were obtained by: (i) affinity chromatography on concanavaline A (ConA) and analysis of glycoproteins by MALDI-TOF MS; (ii) multidimensional lectin chromatography (using AIL, PNA, ConA and WGA lectins) and subsequent identification of glycoproteins by MALDI-TOF MS and LC-MS/MS; (iii) boronic acid chromatography followed by identification of glycoproteins by MALDI-TOF MS. Altogether, 127 glycoproteins were identified. Most glycoproteins were found to be putative N-glycoproteins and N-glycopeptides were predicted from MS data using the ProTerNyc bioinformatics software. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Moss cell walls: structure and biosynthesis

    PubMed Central

    Roberts, Alison W.; Roberts, Eric M.; Haigler, Candace H.

    2012-01-01

    The genome sequence of the moss Physcomitrella patens has stimulated new research examining the cell wall polysaccharides of mosses and the glycosyl transferases that synthesize them as a means to understand fundamental processes of cell wall biosynthesis and plant cell wall evolution. The cell walls of mosses and vascular plants are composed of the same classes of polysaccharides, but with differences in side chain composition and structure. Similarly, the genomes of P. patens and angiosperms encode the same families of cell wall glycosyl transferases, yet, in many cases these families have diversified independently in each lineage. Our understanding of land plant evolution could be enhanced by more complete knowledge of the relationships among glycosyl transferase functional diversification, cell wall structural and biochemical specialization, and the roles of cell walls in plant adaptation. As a foundation for these studies, we review the features of P. patens as an experimental system, analyses of cell wall composition in various moss species, recent studies that elucidate the structure and biosynthesis of cell wall polysaccharides in P. patens, and phylogenetic analysis of P. patens genes potentially involved in cell wall biosynthesis. PMID:22833752

  11. Ovine Herpesvirus 2 Glycoproteins B, H, and L Are Sufficient for, and Viral Glycoprotein Ov8 Can Enhance, Cell-Cell Membrane Fusion.

    PubMed

    AlHajri, Salim M; Cunha, Cristina W; Nicola, Anthony V; Aguilar, Hector C; Li, Hong; Taus, Naomi S

    2017-03-15

    Ovine herpesvirus 2 (OvHV-2) is a gammaherpesvirus in the genus Macavirus that is carried asymptomatically by sheep. Infection of poorly adapted animals with OvHV-2 results in sheep-associated malignant catarrhal fever, a fatal disease characterized by lymphoproliferation and vasculitis. There is no treatment or vaccine for the disease and no cell culture system to propagate the virus. The lack of cell culture has hindered studies of OvHV-2 biology, including its entry mechanism. As an alternative method to study OvHV-2 glycoproteins responsible for membrane fusion as a part of the entry mechanism, we developed a virus-free cell-to-cell membrane fusion assay to identify the minimum required OvHV-2 glycoproteins to induce membrane fusion. OvHV-2 glycoproteins B, H, and L (gB, gH, and gL) were able to induce membrane fusion together but not when expressed individually. Additionally, open reading frame Ov8, unique to OvHV-2, was found to encode a transmembrane glycoprotein that can significantly enhance membrane fusion. Thus, OvHV-2 gB, gH, and gL are sufficient to induce membrane fusion, while glycoprotein Ov8 plays an enhancing role by an unknown mechanism.IMPORTANCE Herpesviruses enter cells via attachment of the virion to the cellular surface and fusion of the viral envelope with cellular membranes. Virus-cell membrane fusion is an important step for a successful viral infection. Elucidating the roles of viral glycoproteins responsible for membrane fusion is critical toward understanding viral entry. Entry of ovine herpesvirus 2 (OvHV-2), the causative agent of sheep associated-malignant catarrhal fever, which is one of the leading causes of death in bison and other ungulates, has not been well studied due to the lack of a cell culture system to propagate the virus. The identification of OvHV-2 glycoproteins that mediate membrane fusion may help identify viral and/or cellular factors involved in OvHV-2 cell tropism and will advance investigation of cellular

  12. Architecture of dermatophyte cell Walls: Electron microscopic and biochemical analysis

    NASA Technical Reports Server (NTRS)

    Nozawa, Y.; Kitajima, Y.

    1984-01-01

    A review with 83 references on the cell wall structure of dermatophytes is presented. Topics discussed include separation and preparation of cell walls; microstructure of cell walls by electron microscopy; chemical composition of cell walls; structural model of cell walls; and morphological structure of cell walls.

  13. Secondary cell walls: biosynthesis and manipulation.

    PubMed

    Kumar, Manoj; Campbell, Liam; Turner, Simon

    2016-01-01

    Secondary cell walls (SCWs) are produced by specialized plant cell types, and are particularly important in those cells providing mechanical support or involved in water transport. As the main constituent of plant biomass, secondary cell walls are central to attempts to generate second-generation biofuels. Partly as a consequence of this renewed economic importance, excellent progress has been made in understanding how cell wall components are synthesized. SCWs are largely composed of three main polymers: cellulose, hemicellulose, and lignin. In this review, we will attempt to highlight the most recent progress in understanding the biosynthetic pathways for secondary cell wall components, how these pathways are regulated, and how this knowledge may be exploited to improve cell wall properties that facilitate breakdown without compromising plant growth and productivity. While knowledge of individual components in the pathway has improved dramatically, how they function together to make the final polymers and how these individual polymers are incorporated into the wall remain less well understood.

  14. Surface Glycoproteins of Exosomes Shed by Myeloid-Derived Suppressor Cells Contribute to Function.

    PubMed

    Chauhan, Sitara; Danielson, Steven; Clements, Virginia; Edwards, Nathan; Ostrand-Rosenberg, Suzanne; Fenselau, Catherine

    2017-01-06

    In this report, we use a proteomic strategy to identify glycoproteins on the surface of exosomes derived from myeloid-derived suppressor cells (MDSCs), and then test if selected glycoproteins contribute to exosome-mediated chemotaxis and migration of MDSCs. We report successful modification of a surface chemistry method for use with exosomes and identify 21 surface N-glycoproteins on exosomes released by mouse mammary carcinoma-induced MDSCs. These glycoprotein identities and functionalities are compared with 93 N-linked glycoproteins identified on the surface of the parental cells. As with the lysate proteomes examined previously, the exosome surface N-glycoproteins are primarily a subset of the glycoproteins on the surface of the suppressor cells that released them, with related functions and related potential as therapeutic targets. The "don't eat me" molecule CD47 and its binding partners thrombospondin-1 (TSP1) and signal regulatory protein α (SIRPα) were among the surface N-glycoproteins detected. Functional bioassays using antibodies to these three molecules demonstrated that CD47, TSP1, and to a lesser extent SIRPα facilitate exosome-mediated MDSC chemotaxis and migration.

  15. Glycoprotein VI oligomerization in cell lines and platelets.

    PubMed

    Berlanga, Oscar; Bori-Sanz, Teresa; James, John R; Frampton, Jon; Davis, Simon J; Tomlinson, Michael G; Watson, Steve P

    2007-05-01

    Glycoprotein VI (GPVI) is a physiologic receptor for collagen expressed at the surface of platelets and megakaryocytes. Constitutive dimerization of GPVI has been proposed as being necessary for the interaction with collagen, although direct evidence of dimerization has not been reported in cell lines or platelets. To investigate oligomerization of GPVI in transfected cell lines and in platelets under non-stimulated conditions. By using a combination of molecular and biochemical techniques, we demonstrate that GPVI association occurs at the surface of transfected 293T cells under basal conditions, through an interaction at the extracellular domain of the receptor. Bioluminescence resonance energy transfer was used to confirm oligomerization of GPVI under these conditions. A chemical crosslinker was used to detect constitutive oligomeric forms of GPVI at the surface of platelets, which contain the Fc receptor (FcR) gamma-chain. The present results directly demonstrate GPVI-FcR gamma-chain oligomerization at the surface of the platelet, and thereby add to the growing evidence that oligomerization of GPVI may be a prerequisite for binding of the receptor to collagen, and therefore for proper functioning of platelets upon vascular damage.

  16. Binding of soluble glycoproteins from sugarcane juice to cells of Acetobacter diazotrophicus.

    PubMed

    Legaz, M E; de Armas, R; Barriguete, E; Vicente, C

    2000-09-01

    Sugarcane produces two different pools of glycoproteins containing a heterofructan as glycidic moiety, tentatively defined as high-molecular mass (HMMG) and mid-molecular mass (MMMG) glycoproteins. Both kinds of glycoproteins can be recovered in sugarcane juice. Fluorescein-labelled glycoproteins are able to bind to Acetobacter diazotrophicus cells, a natural endophyte of sugarcane. This property implies the aggregation of bacterial cells in liquid culture after addition of HMMG or MMMG. Anionic glycoproteins seem to be responsible for the binding activity whereas cationic fraction is not retained on the surface ofA. diazotrophicus. Bound HMMG is competitively desorbed by sucrose whereas MMMG is desorbed by glucosamine or fructose. On this basis, a hypothesis about the discriminatory ability of sugarcane to choose the compatible endophyte from several possible ones is proposed.

  17. Changes in Cell Wall Properties Coincide with Overexpression of Extensin Fusion Proteins in Suspension Cultured Tobacco Cells

    PubMed Central

    Tan, Li; Avci, Utku; Qian, Jin; Arter, Allison; Chen, Liwei; Hahn, Michael G.; Ragauskas, Arthur J.; Kieliszewski, Marcia J.

    2014-01-01

    Extensins are one subfamily of the cell wall hydroxyproline-rich glycoproteins, containing characteristic SerHyp4 glycosylation motifs and intermolecular cross-linking motifs such as the TyrXaaTyr sequence. Extensins are believed to form a cross-linked network in the plant cell wall through the tyrosine-derivatives isodityrosine, pulcherosine, and di-isodityrosine. Overexpression of three synthetic genes encoding different elastin-arabinogalactan protein-extensin hybrids in tobacco suspension cultured cells yielded novel cross-linking glycoproteins that shared features of the extensins, arabinogalactan proteins and elastin. The cell wall properties of the three transgenic cell lines were all changed, but in different ways. One transgenic cell line showed decreased cellulose crystallinity and increased wall xyloglucan content; the second transgenic cell line contained dramatically increased hydration capacity and notably increased cell wall biomass, increased di-isodityrosine, and increased protein content; the third transgenic cell line displayed wall phenotypes similar to wild type cells, except changed xyloglucan epitope extractability. These data indicate that overexpression of modified extensins may be a route to engineer plants for bioenergy and biomaterial production. PMID:25536327

  18. Changes in cell wall properties coincide with overexpression of extensin fusion proteins in suspension cultured tobacco cells.

    PubMed

    Tan, Li; Pu, Yunqiao; Pattathil, Sivakumar; Avci, Utku; Qian, Jin; Arter, Allison; Chen, Liwei; Hahn, Michael G; Ragauskas, Arthur J; Kieliszewski, Marcia J

    2014-01-01

    Extensins are one subfamily of the cell wall hydroxyproline-rich glycoproteins, containing characteristic SerHyp4 glycosylation motifs and intermolecular cross-linking motifs such as the TyrXaaTyr sequence. Extensins are believed to form a cross-linked network in the plant cell wall through the tyrosine-derivatives isodityrosine, pulcherosine, and di-isodityrosine. Overexpression of three synthetic genes encoding different elastin-arabinogalactan protein-extensin hybrids in tobacco suspension cultured cells yielded novel cross-linking glycoproteins that shared features of the extensins, arabinogalactan proteins and elastin. The cell wall properties of the three transgenic cell lines were all changed, but in different ways. One transgenic cell line showed decreased cellulose crystallinity and increased wall xyloglucan content; the second transgenic cell line contained dramatically increased hydration capacity and notably increased cell wall biomass, increased di-isodityrosine, and increased protein content; the third transgenic cell line displayed wall phenotypes similar to wild type cells, except changed xyloglucan epitope extractability. These data indicate that overexpression of modified extensins may be a route to engineer plants for bioenergy and biomaterial production.

  19. Changes in Cell Wall Properties Coincide with Overexpression of Extensin Fusion Proteins in Suspension Cultured Tobacco Cells

    SciTech Connect

    Tan, Li; Pu, Yunqiao; Pattathil, Sivakumar; Avci, Utku; Qian, Jin; Arter, Allison; Chen, Liwei; Hahn, Michael G.; Ragauskas, Arthur J.; Kieliszewski, Marcia J.

    2014-12-23

    Extensins are one subfamily of the cell wall hydroxyproline-rich glycoproteins, containing characteristic SerHyp4 glycosylation motifs and intermolecular cross-linking motifs such as the TyrXaaTyr sequence. Extensins are believed to form a cross-linked network in the plant cell wall through the tyrosine-derivatives isodityrosine, pulcherosine, and di-isodityrosine. Overexpression of three synthetic genes encoding different elastin-arabinogalactan protein-extensin hybrids in tobacco suspension cultured cells yielded novel cross-linking glycoproteins that shared features of the extensins, arabinogalactan proteins and elastin. The cell wall properties of the three transgenic cell lines were all changed, but in different ways. One transgenic cell line showed decreased cellulose crystallinity and increased wall xyloglucan content; the second transgenic cell line contained dramatically increased hydration capacity and notably increased cell wall biomass, increased di-isodityrosine, and increased protein content; the third transgenic cell line displayed wall phenotypes similar to wild type cells, except changed xyloglucan epitope extractability. In conclusion, these data indicate that overexpression of modified extensins may be a route to engineer plants for bioenergy and biomaterial production.

  20. Changes in Cell Wall Properties Coincide with Overexpression of Extensin Fusion Proteins in Suspension Cultured Tobacco Cells

    DOE PAGES

    Tan, Li; Pu, Yunqiao; Pattathil, Sivakumar; ...

    2014-12-23

    Extensins are one subfamily of the cell wall hydroxyproline-rich glycoproteins, containing characteristic SerHyp4 glycosylation motifs and intermolecular cross-linking motifs such as the TyrXaaTyr sequence. Extensins are believed to form a cross-linked network in the plant cell wall through the tyrosine-derivatives isodityrosine, pulcherosine, and di-isodityrosine. Overexpression of three synthetic genes encoding different elastin-arabinogalactan protein-extensin hybrids in tobacco suspension cultured cells yielded novel cross-linking glycoproteins that shared features of the extensins, arabinogalactan proteins and elastin. The cell wall properties of the three transgenic cell lines were all changed, but in different ways. One transgenic cell line showed decreased cellulose crystallinity and increasedmore » wall xyloglucan content; the second transgenic cell line contained dramatically increased hydration capacity and notably increased cell wall biomass, increased di-isodityrosine, and increased protein content; the third transgenic cell line displayed wall phenotypes similar to wild type cells, except changed xyloglucan epitope extractability. In conclusion, these data indicate that overexpression of modified extensins may be a route to engineer plants for bioenergy and biomaterial production.« less

  1. Affinity of bronchial secretion glycoproteins and cells of human bronchial mucosa for Ricinus communis lectins.

    PubMed

    Lhermitte, M; Lamblin, G; Degand, P; Roussel, P; Mazzuca, M

    1977-01-01

    The coupling of Ricinus communis lectins to Sephadex G 25 was used in order to study mucins and other glycoproteins from human bronchial secretion. The major part of human bronchial mucins and other glycoproteins such as immunoglobulins A, bronchotransferrin and alpha1-antichymotrypsin were isolated by this procedure. A parallel study of human bronchial mucosa was achieved with peroxidase labeled Ricinus communis lectins; this study characterized goblet cells and mucous cells which contain mucins, and serous cells which are involved in the synthesis or the secretion of the other glycoproteins.

  2. Targeted glycoprotein enrichment and identification in stromal cell secretomes using azido sugar metabolic labeling.

    PubMed

    Roper, Stephen M; Zemskova, Marina; Neely, Benjamin A; Martin, Arch; Gao, Peng; Jones, E Ellen; Kraft, Andrew S; Drake, Richard R

    2013-06-01

    Effectively identifying the proteins present in the cellular secretome is complicated due to the presence of cellular protein leakage and serum protein supplements in culture media. A metabolic labeling and click chemistry capture method is described that facilitates the detection of lower abundance glycoproteins in the secretome, even in the presence of serum. Two stromal cell lines were incubated with tetraacetylated sugar-azide analogs for 48 h in serum-free and low-serum conditions. Sugar-azide labeled glycoproteins were covalently linked to alkyne-beads, followed by on-bead trypsin digestion and MS/MS. The resulting glycoproteins were compared between media conditions, cell lines, and azide-sugar labels. Alkyne-bead capture of sugar-azide modified glycoproteins in stromal cell culture media significantly improved the detection of lower abundance secreted glycoproteins compared to standard serum-free secretome preparations. Over 100 secreted glycoproteins were detected in each stromal cell line and significantly enriched relative to a standard secretome preparation. Sugar-azide metabolic labeling is an effective way to enrich for secreted glycoproteins present in cell line secretomes, even in culture media supplemented with serum. The method has utility for identifying secreted stromal proteins associated with cancer progression and the epithelial-to-mesenchymal transition. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Plant cell walls to ethanol.

    PubMed

    Jordan, Douglas B; Bowman, Michael J; Braker, Jay D; Dien, Bruce S; Hector, Ronald E; Lee, Charles C; Mertens, Jeffrey A; Wagschal, Kurt

    2012-03-01

    Conversion of plant cell walls to ethanol constitutes second generation bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation and separation. Ultimately, it is desirable to combine as many of the biochemical steps as possible in a single organism to achieve CBP (consolidated bioprocessing). A commercially ready CBP organism is currently unreported. Production of second generation bioethanol is hindered by economics, particularly in the cost of pretreatment (including waste management and solvent recovery), the cost of saccharification enzymes (particularly exocellulases and endocellulases displaying kcat ~1 s-1 on crystalline cellulose), and the inefficiency of co-fermentation of 5- and 6-carbon monosaccharides (owing in part to redox cofactor imbalances in Saccharomyces cerevisiae).

  4. Biosynthesis: Imaging cell-wall biosynthesis live

    NASA Astrophysics Data System (ADS)

    Bugg, Timothy D. H.

    2013-01-01

    The biosynthesis of peptidoglycan is an important step in bacterial cell division and cell-wall maturation. Now it has been shown that fluorescent D-amino acids can be used to label the peptidoglycan cell wall of living bacteria, providing a new tool to study this important process.

  5. Regulation of HSV glycoprotein induced cascade of events governing cell-cell fusion.

    PubMed

    Atanasiu, Doina; Saw, Wan Ting; Eisenberg, Roselyn J; Cohen, Gary H

    2016-09-14

    Receptor dependent HSV-induced fusion requires glycoproteins gD, gH/gL, and gB. Our current model posits that during fusion receptor-activated conformational changes in gD activate gH/gL, which subsequently triggers transformation of the pre-fusion form of gB into a fusogenic state. To examine the role of each glycoprotein in receptor dependent cell-cell fusion we took advantage of our discovery that fusion by wild type HSV-2 glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we established that fusion speed was governed by gH/gL, with gH being the main contributor. While the mutant forms of gB fuse at distinct rates that are dictated by their molecular structure, these restrictions can be overcome by gH2/gL2, thereby enhancing their activity. We also found that deregulated forms of gD1 and gH2/gL2 can alter the fusogenic potential of gB, promoting cell fusion in the absence of a cellular receptor and that deregulated forms of gB can drive the fusion machinery to even higher levels. Low pH enhanced fusion by affecting the structure of both gB and gH/gL mutants. Together, our data highlight the complexity of the fusion machinery, the impact of the activation state of each glycoprotein on the fusion process and the critical role of gH/gL in regulating HSV induced fusion.

  6. How do plant cell walls extend?

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1993-01-01

    This article briefly summarizes recent work that identifies the biophysical and biochemical processes that give rise to the extension of plant cell walls. I begin with the biophysical notion of stress relaxation of the wall and follow with recent studies of wall enzymes thought to catalyze wall extension and relaxation. Readers should refer to detailed reviews for more comprehensive discussion of earlier literature (Taiz, 1984; Carpita and Gibeaut, 1993; Cosgrove, 1993).

  7. Localization of P-glycoprotein at the nuclear envelope of rat brain cells

    SciTech Connect

    Babakhanian, Karlo; Bendayan, Moise; Bendayan, Reina . E-mail: r.bendayan@utoronto.ca

    2007-09-21

    P-Glycoprotein is a plasma membrane drug efflux protein implicated in extrusion of cytotoxic compounds out of a cell. There is now evidence that suggests expression of this transporter at several subcellular sites, including the nucleus, mitochondria, and Golgi apparatus. This study investigated the localization and expression of P-glycoprotein at the nuclear membrane of rat brain microvessel endothelial (RBE4) and microglial (MLS-9) cell lines. Immunocytochemistry at the light and electron microscope levels using P-glycoprotein monoclonals antibodies demonstrated the localization of the protein at the nuclear envelope of RBE4 and MLS-9 cells. Western blot analysis revealed a single band of 170-kDa in purified nuclear membranes prepared from isolated nuclei of RBE4 and MLS-9 cells. These findings indicate that P-glycoprotein is expressed at the nuclear envelope of rat brain cells and suggest a role in multidrug resistance at this subcellular site.

  8. Impact of cell wall composition on maize resistance to pests and diseases.

    PubMed

    Santiago, Rogelio; Barros-Rios, Jaime; Malvar, Rosa A

    2013-03-27

    In cereals, the primary cell wall is built of a skeleton of cellulosic microfibrils embedded in a matrix of hemicelluloses and smaller amounts of pectins, glycoproteins and hydroxycinnamates. Later, during secondary wall development, p-coumaryl, coniferyl and sinapyl alcohols are copolymerized to form mixed lignins. Several of these cell wall components show a determinative role in maize resistance to pest and diseases. However, defense mechanisms are very complex and vary among the same plant species, different tissues or even the same tissue at different developmental stages. Thus, it is important to highlight that the role of the cell wall components needs to be tested in diverse genotypes and specific tissues where the feeding or attacking by the pathogen takes place. Understanding the role of cell wall constituents as defense mechanisms may allow modifications of crops to withstand pests and diseases.

  9. Impact of Cell Wall Composition on Maize Resistance to Pests and Diseases

    PubMed Central

    Santiago, Rogelio; Barros-Rios, Jaime; Malvar, Rosa A.

    2013-01-01

    In cereals, the primary cell wall is built of a skeleton of cellulosic microfibrils embedded in a matrix of hemicelluloses and smaller amounts of pectins, glycoproteins and hydroxycinnamates. Later, during secondary wall development, p-coumaryl, coniferyl and sinapyl alcohols are copolymerized to form mixed lignins. Several of these cell wall components show a determinative role in maize resistance to pest and diseases. However, defense mechanisms are very complex and vary among the same plant species, different tissues or even the same tissue at different developmental stages. Thus, it is important to highlight that the role of the cell wall components needs to be tested in diverse genotypes and specific tissues where the feeding or attacking by the pathogen takes place. Understanding the role of cell wall constituents as defense mechanisms may allow modifications of crops to withstand pests and diseases. PMID:23535334

  10. Regulation of Herpes Simplex Virus Glycoprotein-Induced Cascade of Events Governing Cell-Cell Fusion

    PubMed Central

    Saw, Wan Ting; Eisenberg, Roselyn J.; Cohen, Gary H.

    2016-01-01

    ABSTRACT Receptor-dependent herpes simplex virus (HSV)-induced cell-cell fusion requires glycoproteins gD, gH/gL, and gB. Our current model posits that during fusion, receptor-activated conformational changes in gD activate gH/gL, which subsequently triggers the transformation of the prefusion form of gB into a fusogenic state. To examine the role of each glycoprotein in receptor-dependent cell-cell fusion, we took advantage of our discovery that fusion by wild-type herpes simplex virus 2 (HSV-2) glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we established that fusion speed was governed by gH/gL, with gH being the main contributor. While the mutant forms of gB fuse at distinct rates that are dictated by their molecular structure, these restrictions can be overcome by gH/gL of HSV-2 (gH2/gL2), thereby enhancing their activity. We also found that deregulated forms of gD of HSV-1 (gD1) and gH2/gL2 can alter the fusogenic potential of gB, promoting cell fusion in the absence of a cellular receptor, and that deregulated forms of gB can drive the fusion machinery to even higher levels. Low pH enhanced fusion by affecting the structure of both gB and gH/gL mutants. Together, our data highlight the complexity of the fusion machinery, the impact of the activation state of each glycoprotein on the fusion process, and the critical role of gH/gL in regulating HSV-induced fusion. IMPORTANCE Cell-cell fusion mediated by HSV glycoproteins requires gD, gH/gL, gB, and a gD receptor. Here, we show that fusion by wild-type HSV-2 glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we found that the fusion process was controlled by gH/gL. Restrictions imposed on the gB structure by mutations could be overcome by gH2/gL2, enhancing the activity of the mutants. Under low-pH conditions or when

  11. Serologic Response to Cell Wall Mannoproteins and Proteins of Candida albicans

    PubMed Central

    Martínez, José P.; Gil, M. Luisa; López-Ribot, José L.; Chaffin, W. LaJean

    1998-01-01

    The cell wall of Candida albicans not only is the structure in which many biological functions essential for the fungal cells reside but also is a significant source of candidal antigens. The major cell wall components that elicit a response from the host immune system are proteins and glycoproteins, the latter being predominantly mannoproteins. Both the carbohydrate and protein moieties are able to trigger immune responses. Although cell-mediated immunity is often considered to be the most important line of defense against candidiasis, cell wall protein and glycoprotein components also elicit a potent humoral response from the host that may include some protective antibodies. Proteins and glycoproteins exposed at the most external layers of the wall structure are involved in several types of interactions of fungal cells with the exocellular environment. Thus, coating of fungal cells with host antibodies has the potential to influence profoundly the host-parasite interaction by affecting antibody-mediated functions such as opsonin-enhanced phagocytosis and blocking the binding activity of fungal adhesins for host ligands. In this review, the various members of the protein and glycoprotein fraction of the C. albicans cell wall that elicit an antibody response in vivo are examined. Although a number of proteins have been shown to stimulate an antibody response, for some of these species the response is not universal. On the other hand, some of the studies demonstrate that certain cell wall antigens and anti-cell wall antibodies may be the basis for developing specific and sensitive serologic tests for the diagnosis of candidasis, particularly the disseminated form. In addition, recent studies have focused on the potential for antibodies to cell wall protein determinants to protect the host against infection. Hence, a better understanding of the humoral response to cell wall antigens of C. albicans may provide the basis for the development of (i) effective procedures

  12. Cell Wall Assembly in Saccharomyces cerevisiae

    PubMed Central

    Lesage, Guillaume; Bussey, Howard

    2006-01-01

    An extracellular matrix composed of a layered meshwork of β-glucans, chitin, and mannoproteins encapsulates cells of the yeast Saccharomyces cerevisiae. This organelle determines cellular morphology and plays a critical role in maintaining cell integrity during cell growth and division, under stress conditions, upon cell fusion in mating, and in the durable ascospore cell wall. Here we assess recent progress in understanding the molecular biology and biochemistry of cell wall synthesis and its remodeling in S. cerevisiae. We then review the regulatory dynamics of cell wall assembly, an area where functional genomics offers new insights into the integration of cell wall growth and morphogenesis with a polarized secretory system that is under cell cycle and cell type program controls. PMID:16760306

  13. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance.

    PubMed

    Ene, Iuliana V; Walker, Louise A; Schiavone, Marion; Lee, Keunsook K; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A R; Munro, Carol A; Brown, Alistair J P

    2015-07-28

    The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. The C. albicans cell wall is the first line of defense against external insults, the site of immune recognition by the host, and an attractive target for antifungal therapy. Its tensile strength is conferred by

  14. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance

    PubMed Central

    Ene, Iuliana V.; Walker, Louise A.; Schiavone, Marion; Lee, Keunsook K.; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A. R.; Munro, Carol A.

    2015-01-01

    ABSTRACT The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. PMID:26220968

  15. Pathobiology of Pneumocystis pneumonia: life cycle, cell wall and cell signal transduction.

    PubMed

    Skalski, Joseph H; Kottom, Theodore J; Limper, Andrew H

    2015-09-01

    Pneumocystis is a genus of ascomycetous fungi that are highly morbid pathogens in immunosuppressed humans and other mammals. Pneumocystis cannot easily be propagated in culture, which has greatly hindered understanding of its pathobiology. The Pneumocystis life cycle is intimately associated with its mammalian host lung environment, and life cycle progression is dependent on complex interactions with host alveolar epithelial cells and the extracellular matrix. The Pneumocystis cell wall is a varied and dynamic structure containing a dominant major surface glycoprotein, β-glucans and chitins that are important for evasion of host defenses and stimulation of the host immune system. Understanding of Pneumocystis cell signaling pathways is incomplete, but much has been deduced by comparison of the Pneumocystis genome with homologous genes and proteins in related fungi. In this mini-review, the pathobiology of Pneumocystis is reviewed, with particular focus on the life cycle, cell wall components and cell signal transduction.

  16. [The cell wall of Coelastrum (Chlorophycees)].

    PubMed

    Reymond, O

    1975-01-01

    The cell wall of Coelastrum is usually composed of three layers. The outermost layer was studied most extensively. It consists of erect tubules which often bear long bristles whose function may be to stabilize the algae in its enviroment. The cell wall can modify its morphology according to the enviroment.

  17. Modifying crops to increase cell wall digestibility.

    PubMed

    Jung, Hans-Joachim G; Samac, Deborah A; Sarath, Gautam

    2012-04-01

    Improving digestibility of roughage cell walls will improve ruminant animal performance and reduce loss of nutrients to the environment. The main digestibility impediment for dicotyledonous plants is highly lignified secondary cell walls, notably in stem secondary xylem, which become almost non-digestible. Digestibility of grasses is slowed severely by lignification of most tissues, but these cell walls remain largely digestible. Cell wall lignification creates an access barrier to potentially digestible wall material by rumen bacteria if cells have not been physically ruptured. Traditional breeding has focused on increasing total dry matter digestibility rather than cell wall digestibility, which has resulted in minimal reductions in cell wall lignification. Brown midrib mutants in some annual grasses exhibit small reductions in lignin concentration and improved cell wall digestibility. Similarly, transgenic approaches down-regulating genes in monolignol synthesis have produced plants with reduced lignin content and improved cell wall digestibility. While major reductions in lignin concentration have been associated with poor plant fitness, smaller reductions in lignin provided measurable improvements in digestibility without significantly impacting agronomic fitness. Additional targets for genetic modification to enhance digestibility and improve roughages for use as biofuel feedstocks are discussed; including manipulating cell wall polysaccharide composition, novel lignin structures, reduced lignin/polysaccharide cross-linking, smaller lignin polymers, enhanced development of non-lignified tissues, and targeting specific cell types. Greater tissue specificity of transgene expression will be needed to maximize benefits while avoiding negative impacts on plant fitness.cauliflower mosiac virus (CaMV) 35S promoter. Published by Elsevier Ireland Ltd.

  18. Accelerating forward genetics for cell wall deconstruction

    PubMed Central

    Vidaurre, Danielle; Bonetta, Dario

    2012-01-01

    The elucidation of the genes involved in cell wall synthesis and assembly remains one of the biggest challenges of cell wall biology. Although traditional genetic approaches, using simple yet elegant screens, have identified components of the cell wall, many unknowns remain. Exhausting the genetic toolbox by performing sensitized screens, adopting chemical genetics or combining these with improved cell wall imaging, hold the promise of new gene discovery and function. With the recent introduction of next-generation sequencing technologies, it is now possible to quickly and efficiently map and clone genes of interest in record time. The combination of a classical genetics approach and cutting edge technology will propel cell wall biology in plants forward into the future. PMID:22685448

  19. Safranine fluorescent staining of wood cell walls.

    PubMed

    Bond, J; Donaldson, L; Hill, S; Hitchcock, K

    2008-06-01

    Safranine is an azo dye commonly used for plant microscopy, especially as a stain for lignified tissues such as xylem. Safranine fluorescently labels the wood cell wall, producing green/yellow fluorescence in the secondary cell wall and red/orange fluorescence in the middle lamella (ML) region. We examined the fluorescence behavior of safranine under blue light excitation using a variety of wood- and fiber-based samples of known composition to interpret the observed color differentiation of different cell wall types. We also examined the basis for the differences in fluorescence emission using spectral confocal microscopy to examine lignin-rich and cellulose-rich cell walls including reaction wood and decayed wood compared to normal wood. Our results indicate that lignin-rich cell walls, such as the ML of tracheids, the secondary wall of compression wood tracheids, and wood decayed by brown rot, tend to fluoresce red or orange, while cellulose-rich cell walls such as resin canals, wood decayed by white rot, cotton fibers and the G-layer of tension wood fibers, tend to fluoresce green/yellow. This variation in fluorescence emission seems to be due to factors including an emission shift toward red wavelengths combined with dye quenching at shorter wavelengths in regions with high lignin content. Safranine fluorescence provides a useful way to differentiate lignin-rich and cellulose-rich cell walls without counterstaining as required for bright field microscopy.

  20. Do plant cell walls have a code?

    PubMed

    Tavares, Eveline Q P; Buckeridge, Marcos S

    2015-12-01

    A code is a set of rules that establish correspondence between two worlds, signs (consisting of encrypted information) and meaning (of the decrypted message). A third element, the adaptor, connects both worlds, assigning meaning to a code. We propose that a Glycomic Code exists in plant cell walls where signs are represented by monosaccharides and phenylpropanoids and meaning is cell wall architecture with its highly complex association of polymers. Cell wall biosynthetic mechanisms, structure, architecture and properties are addressed according to Code Biology perspective, focusing on how they oppose to cell wall deconstruction. Cell wall hydrolysis is mainly focused as a mechanism of decryption of the Glycomic Code. Evidence for encoded information in cell wall polymers fine structure is highlighted and the implications of the existence of the Glycomic Code are discussed. Aspects related to fine structure are responsible for polysaccharide packing and polymer-polymer interactions, affecting the final cell wall architecture. The question whether polymers assembly within a wall display similar properties as other biological macromolecules (i.e. proteins, DNA, histones) is addressed, i.e. do they display a code?

  1. Isolation of plant cell wall proteins.

    PubMed

    Jamet, Elisabeth; Boudart, Georges; Borderies, Giséle; Charmont, Stephane; Lafitte, Claude; Rossignol, Michel; Canut, Herve; Pont-Lezica, Rafael

    2008-01-01

    The quality of a proteomic analysis of a cell compartment strongly depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific drawbacks: (1) the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP) during the isolation procedure; (2) polysaccharide networks of cellulose, hemicelluloses, and pectins form potential traps for contaminants such as intracellular proteins; (3) the presence of proteins interacting in many different ways with the polysaccharide matrix require different procedures to elute them from the cell wall. Three categories of CWP are distinguished: labile proteins that have little or no interactions with cell wall components, weakly bound proteins extractable with salts, and strongly bound proteins. Two alternative protocols are decribed for cell wall proteomics: (1) nondestructive techniques allowing the extraction of labile or weakly bound CWP without damaging the plasma membrane; (2) destructive techniques to isolate cell walls from which weakly or strongly bound CWP can be extracted. These protocols give very low levels of contamination by intracellular proteins. Their application should lead to a realistic view of the cell wall proteome at least for labile and weakly bound CWP extractable by salts.

  2. Cell Wall Assembly in Fucus Zygotes

    PubMed Central

    Quatrano, Ralph S.; Stevens, Patricia T.

    1976-01-01

    Fertilization triggers the assembly of a cell wall around the egg cell of three brown algae, Fucus vesiculosus, F. distichus, and F. inflatus. New polysaccharide polymers are continually being added to the cell wall during the first 24 hours of synchronous embryo development. This wall assembly involves the extracellular deposition of fibrillar material by cytoplasmic vesicles fusing with the plasma membrane. One hour after fertilization a fragmented wall can be isolated free of cytoplasm and contains equal amounts of cellulose and alginic acid with no fucose-containing polymers (fucans) present. Birefringence of the wall caused by oriented cellulose microfibrils is not detected in all zygotes until 4 hours, at which time intact cell walls can be isolated that retain the shape of the zygote. These walls have a relatively low ratio of fucose to xylose and little sulfate when compared to walls from older embryos. When extracts of walls from 4-hour zygotes are subjected to cellulose acetate electrophoresis at pH 7, a single fucan (F1) can be detected. By 12 hours, purified cell walls are composed of fucans containing a relatively high ratio of fucose to xylose and high levels of sulfate, and contain a second fucan (F2) which is electrophoretically distinct from F1. F2 appears to be deposited in only a localized region of the wall, that which elongates to form the rhizoid cell. Throughout wall assembly, the polyuronide block co-polymer alginic acid did not significantly vary its mannuronic (M) to guluronic (G) acid ratio (0.33-0.55) or its block distribution (MG, 54%; GG, 30%; MM, 16%). From 6 to 24 hours of embryo development, the proportion of the major polysaccharide components found in purified walls is stable. Alginic acid is the major polymer and comprises about 60% of the total wall, while cellulose and the fucans each make-up about 20% of the remainder. During the extracellular assembly of this wall, the intracellular levels of the storage glucan laminaran

  3. Producing recombinant therapeutic glycoproteins with enhanced sialylation using CHO-gmt4 glycosylation mutant cells

    PubMed Central

    Goh, John SY; Liu, Yingwei; Chan, Kah Fai; Wan, Corrine; Teo, Gavin; Zhang, Peiqing; Zhang, Yuanxing; Song, Zhiwei

    2014-01-01

    Recombinant glycoprotein drugs require proper glycosylation for optimal therapeutic efficacy. Glycoprotein therapeutics are rapidly removed from circulation and have reduced efficacy if they are poorly sialylated. Ricinus communis agglutinin-I (RCA-I) was found highly toxic to wild-type CHO-K1 cells and all the mutants that survived RCA-I treatment contained a dysfunctional N-acetylglucosaminyltransferase I (GnT I) gene. These mutants are named CHO-gmt4 cells. Interestingly, upon restoration of GnT I, the sialylation of a model glycoprotein, erythropoietin, produced in CHO-gmt4 cells was shown to be superior to that produced in wild-type CHO-K1 cells. This addendum summarizes the applicability of this cell line, from transient to stable expression of the recombinant protein, and from a lab scale to an industrial scale perfusion bioreactor. In addition, CHO-gmt4 cells can be used to produce glycoproteins with mannose-terminated N-glycans. Recombinant glucocerebrosidase produced by CHO-gmt4 cells will not require glycan remodeling and may be directly used to treat patients with Gaucher disease. CHO-gmt4 cells can also be used to produce other glycoprotein therapeutics which target cells expressing mannose receptors. PMID:24911584

  4. Producing recombinant therapeutic glycoproteins with enhanced sialylation using CHO-gmt4 glycosylation mutant cells.

    PubMed

    Goh, John S Y; Liu, Yingwei; Chan, Kah Fai; Wan, Corrine; Teo, Gavin; Zhang, Peiqing; Zhang, Yuanxing; Song, Zhiwei

    2014-01-01

    Recombinant glycoprotein drugs require proper glycosylation for optimal therapeutic efficacy. Glycoprotein therapeutics are rapidly removed from circulation and have reduced efficacy if they are poorly sialylated. Ricinus communis agglutinin-I (RCA-I) was found highly toxic to wild-type CHO-K1 cells and all the mutants that survived RCA-I treatment contained a dysfunctional N-acetylglucosaminyltransferase I (GnT I) gene. These mutants are named CHO-gmt4 cells. Interestingly, upon restoration of GnT I, the sialylation of a model glycoprotein, erythropoietin, produced in CHO-gmt4 cells was shown to be superior to that produced in wild-type CHO-K1 cells. This addendum summarizes the applicability of this cell line, from transient to stable expression of the recombinant protein, and from a lab scale to an industrial scale perfusion bioreactor. In addition, CHO-gmt4 cells can be used to produce glycoproteins with mannose-terminated N-glycans. Recombinant glucocerebrosidase produced by CHO-gmt4 cells will not require glycan remodeling and may be directly used to treat patients with Gaucher disease. CHO-gmt4 cells can also be used to produce other glycoprotein therapeutics which target cells expressing mannose receptors.

  5. Method of using alpha-1 acid glycoprotein on T-cells as a marker for alzheimer's disease

    SciTech Connect

    Fudenberg, H.H.

    1989-01-31

    A method is described of diagnosing a dementia of the Alzheimer's type characterized by a change in the percentage of T-cells bearing surface membrane alpha-1 acid glycoprotein which comprises providing T-cells from a subject, determining the percentage of those T cells which bear surface membrane alpha-1 acid glycoprotein, and comparing that percentage of the percentage of T cells which bear the glycoprotein in a control, whereby the dementia is diagnosed.

  6. 30 years of battling the cell wall.

    PubMed

    Latgé, J P

    2017-01-01

    In Aspergillus fumigatus, like in other pathogenic fungi, the cell wall is essential for fungal growth as well as for resisting environmental stresses such as phagocytic killing. Most of the chemical analyses undertaken on the cell wall of A. fumigatus are focused on the mycelial cell wall because it is the vegetative stage of the fungus. However, the cell walls of the mycelium and conidium (which is the infective propagule) are different especially at the level of the surface layer, which plays a significant role in the interaction between A. fumigatus conidia and phagocytic cells of the immune system. In spite of the essential function of the cell wall in fungal life, progresses have been extremely slow in the understanding of biosynthesis as well in the identification of the key host responses against the cell wall components. A major difficulty is the fact that the composition and structural organization of the cell wall is not immutably set and is constantly reshuffled depending on the environmental conditions. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Nonaqueous titration of amino groups in polymeric matrix of plant cell walls.

    PubMed

    Meychik, N R; Nikolaeva, Yu I; Ermakov, I P

    2009-08-01

    Nonaqueous titration was used for detection of free amino groups in the polymeric matrix of plant cell walls. The content of amino groups varied in the range 0.54-0.91 and total nitrogen in the range 1.0-4.2 mmol per gram dry mass of cell walls depending on the plant species. However, these data on the high content of free amino groups do not correlate with the present day concept that the nitrogen fraction in charged amino groups in plant cell wall proteins, which are assumed to be mainly amino groups of lysine and arginine residues, is about 10%. It is supposed that most detected free amino groups belong to the hydroxy-amino acids hydroxyproline and tyrosine that can be bound at the hydroxyl group with the carbohydrate part of glycoprotein or another structural cell wall polymer.

  8. The cell walls of Chara aspera Willd. (Charophyta) vegetative cells.

    PubMed

    Nyberg, H; Saranpää, P

    1989-01-01

    The ultrastructure of the vegetative cell walls of the charophyte Chara aspera Willd was studied with TEM. Thallus cells, rhizoid bulbil and rhizoidal node cells were investigated. The internodal cells transverse walls contained plasmodesmata. The longitudinal walls of the internodal cells were uniform, fibrillar, with two thin structurally distinct layers with different structure facing the cytoplasm. The outermost layers of internodal, cortical and rhizoid bulbil cells were composed of randomly orientated fibrils. The longitudinal walls of the cortical cells were helicoidal in structure. In the rhizoid bulbil cell walls, six different layers could be distinguished, but their occurrence seemed to depend on the fixation, staining and cutting procedures. A middle lamella and osmophilic deposits were found in the wall between rhizoidal node cells. The cytoplasmic structure of the internodal and cortical cells was not found to differ from other species of Chara. Charasomes were observed only in cortical cells.

  9. Functional duality of the cell wall.

    PubMed

    Latgé, Jean-Paul; Beauvais, Anne

    2014-08-01

    The polysaccharide cell wall is the extracellular armour of the fungal cell. Although essential in the protection of the fungal cell against aggressive external stresses, the biosynthesis of the polysaccharide core is poorly understood. For a long time it was considered that this cell wall skeleton was a fixed structure whose role was only to be sensed as non-self by the host and consequently trigger the defence response. It is now known that the cell wall polysaccharide composition and localization continuously change to adapt to their environment and that these modifications help the fungus to escape from the immune system. Moreover, cell wall polysaccharides could function as true virulence factors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Recent advances in plant cell wall proteomics.

    PubMed

    Jamet, Elisabeth; Albenne, Cécile; Boudart, Georges; Irshad, Muhammad; Canut, Hervé; Pont-Lezica, Rafael

    2008-02-01

    The plant extracellular matrix contains typical polysaccharides such as cellulose, hemicelluloses, and pectins that interact to form dense interwoven networks. Plant cell walls play crucial roles during development and constitute the first barrier of defense against invading pathogens. Cell wall proteomics has greatly contributed to the description of the protein content of a compartment specific to plants. Around 400 cell wall proteins (CWPs) of Arabidopsis, representing about one fourth of its estimated cell wall proteome, have been described. The main points to note are that: (i) the diversity of enzymes acting on polysaccharides suggests a great plasticity of cell walls; (ii) CWPs such as proteases, polysaccharide hydrolytic enzymes, and lipases may contribute to the generation of signals; (iii) proteins of unknown functions were identified, suggesting new roles for cell walls. Recently, the characterization of PTMs such as N- and O-glycosylations improved our knowledge of CWP structure. The presence of many glycoside hydrolases and proteases suggests a complex regulation of CWPs involving various types of post-translational events. The first 3-D structures to be resolved gave clues about the interactions between CWPs, or between CWPs and polysaccharides. Future work should include: extracting and identifying CWPs still recalcitrant to proteomics, describing the cell wall interactome, improving quantification, and unraveling the roles of each of the CWPs.

  11. Polyphosphorylated fungal cell wall glycopeptides

    SciTech Connect

    Bonetti, S.J.; Black, B.; Gander, J.E.

    1987-05-01

    Penicillium charlesii secretes a 65 kDa peptidophosphogalactomannan (pPGM) containing 10 phosphodiester residues and 10 galactofuranosyl-containing galactin chains attached to a linear mannan; the polysaccharides is attached to a 3 kDa seryl- and threonyl-rich peptide. The authors have now isolated and partially characterized a form of pPGM released from mycelia of P. charlesii treated at 50/sup 0/C for 15, 30, 60 or 120 min. Two- to 3-fold more pPGM was released by heat treatment than is secreted. Crude pPGM, released by heat, was fractionated on DE-52 and was fractionated into two major fractions on the basis of its difference in negative charge. /sup 1/H-decoupled /sup 13/C NMR spectroscopy of these two fractions provided spectra very similar to that of secreted pPGM previously reported from this laboratory. /sup 1/H-decoupled /sup 31/P NMR showed major signals at 1.47, and 0.22 ppm and minor signals at 1.32, 1.15, 1.00, 0.91 and 0.76 ppm. These signals are upfield from phosphomonoesters and are in the region observed for (6-O-phosphorylcholine)- and (6-O-phosphorylethanolamine)-..cap alpha..-D-mannopyranosyl residues which are 0.22 and 0.90 ppm, respectively. These polymers contain 30 phosphodiester residues per molecule of 70 kDa mass compared with 10 phosphodiesters in secreted pPGM. Acid phosphatase and alkaline protease were the only lytic enzymes released by heat treatment. The evidence suggests that much of the pPGM is derived from cell walls; and that the polysaccharide is highly phosphorylated.

  12. Molecular regulation of plant cell wall extensibility

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1998-01-01

    Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.

  13. Cell wall, cytoskeleton, and cell expansion in higher plants.

    PubMed

    Bashline, Logan; Lei, Lei; Li, Shundai; Gu, Ying

    2014-04-01

    To accommodate two seemingly contradictory biological roles in plant physiology, providing both the rigid structural support of plant cells and the adjustable elasticity needed for cell expansion, the composition of the plant cell wall has evolved to become an intricate network of cellulosic, hemicellulosic, and pectic polysaccharides and protein. Due to its complexity, many aspects of the cell wall influence plant cell expansion, and many new and insightful observations and technologies are forthcoming. The biosynthesis of cell wall polymers and the roles of the variety of proteins involved in polysaccharide synthesis continue to be characterized. The interactions within the cell wall polymer network and the modification of these interactions provide insight into how the plant cell wall provides its dual function. The complex cell wall architecture is controlled and organized in part by the dynamic intracellular cytoskeleton and by diverse trafficking pathways of the cell wall polymers and cell wall-related machinery. Meanwhile, the cell wall is continually influenced by hormonal and integrity sensing stimuli that are perceived by the cell. These many processes cooperate to construct, maintain, and manipulate the intricate plant cell wall--an essential structure for the sustaining of the plant stature, growth, and life.

  14. Cell Wall Composition of Hyphomicrobium Species1

    PubMed Central

    Jones, H. E.; Hirsch, Peter

    1968-01-01

    Chemical analysis of cell walls obtained from Hyphomicrobium B-522 and from a morphologically and nutritionally distinct organism, Hyphomicrobium neptunium (ATCC 15444), showed that the organisms have a similar cell wall composition, which is typical of gram-negative bacteria. The walls of both strains contained many amino acids, including the characteristic mucopeptide components diaminopimelic acid and muramic acid. Isolation of the mucopeptide by use of sodium dodecyl sulfate was successful only with cell walls of H. neptunium, thus revealing a difference between the walls of the two strains. The mucopeptide preparation contained glucosamine, muramic acid, alanine, glutamic acid, diaminopimelic acid, and glycine in molar ratios of 1.05:1.21:1.84:1.0:1.04:0.31, respectively. The concentration of glycine was sufficiently high to suggest that it is a mucopeptide component rather than an impurity. PMID:5685989

  15. 2003 Plant Cell Walls Gordon Conference

    SciTech Connect

    Daniel J. Cosgrove

    2004-09-21

    This conference will address recent progress in many aspects of cell wall biology. Molecular, genetic, and genomic approaches are yielding major advances in our understanding of the composition, synthesis, and architecture of plant cell walls and their dynamics during growth, and are identifying the genes that encode the machinery needed to make their biogenesis possible. This meeting will bring together international scientists from academia, industry and government labs to share the latest breakthroughs and perspectives on polysaccharide biosynthesis, wood formation, wall modification, expansion and interaction with other organisms, and genomic & evolutionary analyses of wall-related genes, as well as to discuss recent ''nanotechnological'' advances that take wall analysis to the level of a single cell.

  16. SYNTHESIS OF GLYCOPROTEIN, GLYCOLIPID, PROTEIN, AND LIPID IN SYNCHRONIZED L5178Y CELLS

    PubMed Central

    Bosmann, H. Bruce; Winston, R. Alan

    1970-01-01

    Synthesis of four macromolecular classes found in membranes—glycoprotein, glycolipid, protein, and lipid—was measured as a function of time of the cell cycle in synchronized L5178Y cells. Incorporation of leucine, choline, fucose, glucosamine, or thymidine into the cells, protein, nucleic acid, or lipid was measured by pulse-labeling for ½ hr at ½ hr intervals after release from the mitotic block. The amount of protein, lipid, glycoprotein, or glycolipid released or secreted into the medium by the L5178Y cells was also measured as a function of time of the cell cycle. Cellular protein was found to be synthesized throughout the cell cycle, with the highest synthesis occurring in the S period; synthesis was depressed in the M period. Cellular glycoprotein was synthesized at approximately the same times as protein, except that the rates of glycoprotein synthesis in the S period relative to other periods were much greater than for protein. Secreted protein was synthesized throughout the cell cycle without any general pattern, except that secretion was elevated in the late S and G2 periods. Secreted glycoprotein was similar to secreted protein. Cellular lipid and cellular glycolipid were synthesized almost exclusively in the G2 and M periods; there was no synthesis in the G1 and S periods. Release or secretion of glycolipid and lipid also occurred in the G2 and M periods. PMID:5458998

  17. Refractive index of plant cell walls

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Allen, W. A.; Escobar, D. E.

    1974-01-01

    Air was replaced with media of higher refractive indices by vacuum infiltration in leaves of cucumber, blackeye pea, tomato, and string bean plants, and reflectance of noninfiltrated and infiltrated leaves was spectrophotometrically measured. Infiltrated leaves reflected less light than noninfiltrated leaves over the 500-2500-nm wavelength interval because cell wall-air interfaces were partly eliminated. Minimal reflectance should occur when the average refractive index of plant cell walls was matched by the infiltrating fluid. Although refractive indices that resulted in minimal reflectance differed among the four plant genera, an average value of 1.425 approximates the refractive index of plant cell walls for the four plant genera.

  18. Refractive index of plant cell walls

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Allen, W. A.; Escobar, D. E.

    1974-01-01

    Air was replaced with media of higher refractive indices by vacuum infiltration in leaves of cucumber, blackeye pea, tomato, and string bean plants, and reflectance of noninfiltrated and infiltrated leaves was spectrophotometrically measured. Infiltrated leaves reflected less light than noninfiltrated leaves over the 500-2500-nm wavelength interval because cell wall-air interfaces were partly eliminated. Minimal reflectance should occur when the average refractive index of plant cell walls was matched by the infiltrating fluid. Although refractive indices that resulted in minimal reflectance differed among the four plant genera, an average value of 1.425 approximates the refractive index of plant cell walls for the four plant genera.

  19. Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry

    SciTech Connect

    Follis, Kathryn E.; York, Joanne; Nunberg, Jack H. . E-mail: jack.nunberg@umontana.edu

    2006-07-05

    The fusogenic potential of Class I viral envelope glycoproteins is activated by proteloytic cleavage of the precursor glycoprotein to generate the mature receptor-binding and transmembrane fusion subunits. Although the coronavirus (CoV) S glycoproteins share membership in this class of envelope glycoproteins, cleavage to generate the respective S1 and S2 subunits appears absent in a subset of CoV species, including that responsible for the severe acute respiratory syndrome (SARS). To determine whether proteolytic cleavage of the S glycoprotein might be important for the newly emerged SARS-CoV, we introduced a furin recognition site at single basic residues within the putative S1-S2 junctional region. We show that furin cleavage at the modified R667 position generates discrete S1 and S2 subunits and potentiates membrane fusion activity. This effect on the cell-cell fusion activity by the S glycoprotein is not, however, reflected in the infectivity of pseudotyped lentiviruses bearing the cleaved glycoprotein. The lack of effect of furin cleavage on virion infectivity mirrors that observed in the normally cleaved S glycoprotein of the murine coronavirus and highlights an additional level of complexity in coronavirus entry.

  20. An unusual dependence of human herpesvirus-8 glycoproteins-induced cell-to-cell fusion on heparan sulfate

    SciTech Connect

    Tiwari, Vaibhav; Darmani, Nissar A.; Thrush, Gerald R.; Shukla, Deepak

    2009-12-18

    Human herpesvirus-8 (HHV-8) is known to interact with cell surface heparan sulfate (HS) for entry into a target cell. Here we investigated the role of HS during HHV-8 glycoproteins-induced cell fusion. Interestingly, the observed fusion demonstrated an unusual dependence on HS as evident from following lines of evidence: (1) a significant reduction in cell-to-cell fusion occurred when target cells were treated with heparinase; (2) in a competition assay, when the effector cells expressing HHV-8 glycoproteins were challenged with soluble HS, cell-to-cell fusion was reduced; and, (3) co-expression of HHV-8 glycoproteins gH-gL on target cells resulted in inhibition of cell surface HS expression. Taken together, our results indicate that cell surface HS can play an additional role during HHV-8 pathogenesis.

  1. Altered intracellular pH regulation in cells with high levels of P-glycoprotein expression.

    PubMed

    Young, Gregory; Reuss, Luis; Altenberg, Guillermo A

    2011-01-01

    P-glycoprotein is an ATP-binding-cassette transporter that pumps many structurally unrelated drugs out of cells through an ATP-dependent mechanism. As a result, multidrug-resistant cells that overexpress P-glycoprotein have reduced intracellular steady-state levels of a variety of chemotherapeutic agents. In addition, increased cytosolic pH has been a frequent finding in multidrug-resistant cells that express P-glycoprotein, and it has been proposed that this consequence of P-glycoprotein expression may contribute to the lower intracellular levels of chemotherapeutic agents. In these studies, we measured intracellular pH and the rate of acid extrusion in response to an acid load in two cells with very different levels of P-glycoprotein expression: V79 parental cells and LZ-8 multidrug resistant cells. Compared to the wild-type V79 cells, LZ-8 cells have a lower intracellular pH and a slower recovery of intracellular pH after an acid load. The data also show that LZ-8 cells have reduced ability to extrude acid, probably due to a decrease in Na(+)/H(+) exchanger activity. The alterations in intracellular pH and acid extrusion in LZ-8 cells are reversed by 24-h exposure to the multidrug-resistance modulator verapamil. The lower intracellular pH in LZ-8 indicates that intracellular alkalinization is not necessary for multidrug resistance. The reversal by verapamil of the decreased acid-extrusion suggests that P-glycoprotein can affect other membrane transport mechanism.

  2. Differential scanning calorimetry of plant cell walls

    SciTech Connect

    Lin, Liangshiou; Varner, J.E. ); Yuen, H.K. )

    1991-03-15

    High-sensitivity differential scanning calorimetry has been used to study the phase transition of cell wall preparations of the elongating and mature regions of soybean hypocotyls and of celery epidermis and collenchyma strands. A step-like transition believed to be glass transition was observed in walls isolated from the elongating region of soybean hypocotyls at 52.9C. Addition of 1 mM CaCl{sub 2} to the cell wall preparation increased the transition temperature to 60.8C and greatly reduced the transition magnitude. In walls from the mature region, the transition was small and occurred at a higher temperature (60.1C). Addition of calcium to the mature region cell wall had little effect on the transition. Based on the known interactions between calcium and pectin, the authors propose that calcium affects the glass transition by binding to the polygalacturonate backbone of wall pectin, resulting in a more rigid wall with a smaller transition at a higher temperature. The mature region either has more calcium in the wall or has more methyl-esterified pectin, making it less responsive to added calcium.

  3. Differential scanning calorimetry of plant cell walls.

    PubMed Central

    Lin, L S; Yuen, H K; Varner, J E

    1991-01-01

    High-sensitivity differential scanning calorimetry has been used to study the phase transition of cell wall preparations of the elongating and mature regions of soybean hypocotyls and of celery epidermis and collenchyma strands. A step-like transition believed to be glass transition was observed in walls isolated from the elongating region of soybean hypocotyls at 52.9 degrees C. Addition of 1 mM CaCl2 to the cell wall preparation increased the transition temperature to 60.8 degrees C and greatly reduced the transition magnitude. In walls from the mature region, the transition was small and occurred at a higher temperature (60.1 degrees C). Addition of calcium to the mature region cell wall had little effect on the transition. Based on the known interactions between calcium and pectin, we propose that calcium affects the glass transition by binding to the polygalacturonate backbone of wall pectin, resulting in a more rigid wall with a smaller transition at a higher temperature. The mature region either has more calcium in the wall or has more methyl-esterified pectin, making it less responsive to added calcium. PMID:11607163

  4. Requirements for cell rounding and surface protein down-regulation by Ebola virus glycoprotein.

    PubMed

    Francica, Joseph R; Matukonis, Meghan K; Bates, Paul

    2009-01-20

    Ebola virus causes an acute hemorrhagic fever that is associated with high morbidity and mortality. The viral glycoprotein is thought to contribute to pathogenesis, though precise mechanisms are unknown. Cellular pathogenesis can be modeled in vitro by expression of the Ebola viral glycoprotein (GP) in cells, which causes dramatic morphological changes, including cell rounding and surface protein down-regulation. These effects are known to be dependent on the presence of a highly glycosylated region of the glycoprotein, the mucin domain. Here we show that the mucin domain from the highly pathogenic Zaire subtype of Ebola virus is sufficient to cause characteristic cytopathology when expressed in the context of a foreign glycoprotein. Similarly to full length Ebola GP, expression of the mucin domain causes rounding, detachment from the extracellular matrix, and the down-regulation of cell surface levels of beta1 integrin and major histocompatibility complex class 1. These effects were not seen when the mucin domain was expressed in the context of a glycophosphatidylinositol-anchored isoform of the foreign glycoprotein. In contrast to earlier analysis of full length Ebola glycoproteins, chimeras carrying the mucin domains from the Zaire and Reston strains appear to cause similar levels of down-modulation and cell detachment. Cytopathology associated with Ebola glycoprotein expression does not occur when GP expression is restricted to the endoplasmic reticulum. In contrast to a previously published report, our results demonstrate that GP-induced surface protein down-regulation is not mediated through a dynamin-dependent pathway. Overall, these results support a model in which the mucin domain of Ebola GP acts at the cell surface to induce protein down modulation and cytopathic effects.

  5. Phosphatidylinositol-anchored glycoproteins of PC12 pheochromocytoma cells and brain

    SciTech Connect

    Margolis, R.K.; Goossen, B.; Margolis, R.U.

    1988-05-03

    PC12 pheochromocytoma cells and cultures of early postnatal rat cerebellium were labeled with (/sup 3/H)glucosamine, (/sup 3/H)fucose, (/sup 3/H)leucine, (/sup 3/H)ethanolamine, or sodium (/sup 35/S)sulfate and treated with a phosphatidylinositol-specific phospholipase C. Enzyme treatment of (/sup 3/H) glucosamine- or (/sup 3/H)fucose-labeled PC12 cells led to a 15-fold increase in released glycoproteins. On sodium dodecyl sulfate-polyacrylamide gel ectrophoresis, most of the released material migrated as a broad band with an apparent molecular size of 32,000 daltons (Da), which was specifically immunoprecipitated by a monoclonal antibody to the Thy-l glycoprotein. A second glycoprotein, with an apparent molecular size of 158,000 Da, was also released. After treatment with endo-..beta..-galactosidase, 40-45% of the (/sup 3/H)glucosamine of (/sup 3/H)fucose radioactivity in the phospholipase-released glycoproteins was converted to products of disaccharide size, and the molecular size of the 158-kDa glycoprotein decreased to 145 kDa, demonstrating that it contains fucosylated poly-(N-acetyllactosaminyl) oligosaccharides. The phospholipase also released labeled Thy-1 and the 158-kDa glycoprotein from PC12 cells cultured in the presence of (/sup 3/H)ethanolamine, which specifically labels this component of the phosphatidylinositol membrane-anchoring sequence,while in the lipid-free protein residue of cells not treated with phospholipase, Thy-1 and a doublet at 46/48 kDa were the only labeled proteins. Sulfated glycoproteins of 155, 132/134, 61, and 21 kDa are the predominant species released by phospholipase, which does not affect a major 44-kDa protein seen in (/sup 3/H)ethanolamine-labeled brain cultures. The 44-48- and 155/158-kDa proteins may be common to both PC12 cells and brain.

  6. Immersion Refractometry of Isolated Bacterial Cell Walls

    PubMed Central

    Marquis, Robert E.

    1973-01-01

    Immersion-refractometric and light-scattering measurements were adapted to determinations of average refractive indices and physical compactness of isolated bacterial cell walls. The structures were immersed in solutions containing various concentrations of polymer molecules that cannot penetrate into wall pores, and then an estimate was made of the polymer concentration or the refractive index of the polymer solution in which light scattering was reduced to zero. Because each wall preparation was heterogeneous, the refractive index of the medium for zero light scattering had to be estimated by extrapolation. Refractive indices for walls suspended in bovine serum albumin solutions ranged from 1.348 for walls of the rod form of Arthrobacter crystallopoietes to 1.382 for walls of the teichoic acid deficient, 52A5 strain of Staphylococcus aureus. These indices were used to calculate approximate values for solids content per milliliter, and the calculated values agreed closely with those estimated from a knowledge of dextran-impermeable volumes per gram, dry weight, of the walls. When large molecules such as dextrans or serum albumin were used for immersion refractometry, the refractive indices obtained were for entire walls, including both wall polymers and wall water. When smaller molecules that can penetrate wall pores to various extents were used with Micrococcus lysodeikticus walls, the average, apparent refractive index of the structures increased as the molecular size of probing molecules was decreased. It was possible to obtain an estimate of 1.45 to 1.46 for the refractive index of wall polymers, predominantly peptidoglycans in this case, by extrapolating the curve for refractive index versus molecular radius to a value of 0.2 nm, the approximate radius of a water molecule. This relatively low value for polymer refractive index was interpreted as evidence in favor of the amorphous, elastic model of peptidoglycan structure and against the crystalline, rigid

  7. Porins in the Cell Wall of Mycobacteria

    NASA Astrophysics Data System (ADS)

    Trias, Joaquim; Jarlier, Vincent; Benz, Roland

    1992-11-01

    The cell wall of mycobacteria is an efficient permeability barrier that makes mycobacteria naturally resistant to most antibiotics. Liposome swelling assays and planar bilayer experiments were used to investigate the diffusion process of hydrophilic molecules through the cell wall of Mycobacterium chelonae and identify the main hydrophilic pathway. A 59-kilodalton cell wall protein formed a water-filled channel with a diameter of 2.2 nanometers and an average single-channel conductance equal to 2.7 nanosiemens in 1 M potassium chloride. These results suggest that porins can be found in the cell wall of a Gram-positive bacterium. A better knowledge of the hydrophilic pathways should help in the design of more effective antimycobacterial agents.

  8. Crystallinity of lyophilised carrot cell wall components.

    PubMed

    Georget, D M; Cairns, P; Smith, A C; Waldron, K W

    1999-12-15

    The aim of this work was to investigate the effect of removal of cell wall components on the crystallinity of cell walls using X-ray diffraction. Various insoluble cell wall residues were prepared following a sequential extraction of carrot cell wall material. X-ray diffraction patterns were typical of cellulose although there was a possible contribution of pectic polysaccharides to the crystallinity. As more amorphous material was removed to produce a cellulose rich residue, the crystallinity index increased from 12 to 16%, larger than that estimated from cellulose alone. For the last residue treated with 4M KOH, a lower value of crystallinity was found (14%) which resulted from the change of some crystalline domains of cellulose into amorphous regions. Pressing conditions (temperature, water content) have been investigated and did not alter the crystallinity index significantly.

  9. Cells under siege: Viral glycoprotein interactions at the cell surface

    PubMed Central

    Bowden, Thomas A.; Jones, E. Yvonne; Stuart, David I.

    2011-01-01

    As obligate parasites, viruses are required to enter and replicate within their host, a process which employs many of their proteins to hijack natural cellular processes. High resolution X-ray crystallographic analysis has proven to be an ideal method to visualize the mechanisms by which such virus-host interactions occur and has revealed the innovative capacity of viruses to adapt efficiently to their hosts. In this review, we draw upon recently elucidated paramyxovirus-, arenavirus-, and poxvirus-host protein complex crystal structures to reveal both the capacity of viruses to appropriate one component of a physiological protein–protein binding event (often modifying it to out-compete the host-protein), and the ability to utilize novel binding sites on host cell surface receptors. The structures discussed shed light on a number of biological processes ranging from viral entry to virulence and host antagonism. Drawn together they reveal the common strategies which viruses have evolved to interact with their natural host. The structures also support molecular level rationales for how viruses can be transmitted to unrelated organisms and thus pose severe health risks. PMID:21440638

  10. Role of cell wall deconstructing enzymes in the proanthocyanidin-cell wall adsorption-desorption phenomena.

    PubMed

    Castro-López, Liliana del Rocío; Gómez-Plaza, Encarna; Ortega-Regules, Ana; Lozada, Daniel; Bautista-Ortín, Ana Belén

    2016-04-01

    The transference of proanthocyanidins from grapes to wine is quite low. This could be due, among other causes, to proanthocyanidins being bound to grape cell wall polysaccharides, which are present in high concentrations in the must. Therefore, the effective extraction of proanthocyanidins from grapes will depend on the ability to disrupt these associations, and, in this respect, enzymes that degrade these polysaccharides could play an important role. The main objective of this work was to test the behavior of proanthocyanidin-cell wall interactions when commercial maceration enzymes are present in the solution. The results showed that cell wall polysaccharides adsorbed a high amount of proanthocyanidins and only a limited quantity of proanthocyanidins could be desorbed from the cell walls after washing with a model solution. The presence of enzymes in the solution reduced the proanthocyanidin-cell wall interaction, probably through the elimination of pectins from the cell wall network.

  11. Insulin receptor: Interaction with nonreceptor glycoprotein from liver cell membranes

    PubMed Central

    Maturo, Joseph M.; Hollenberg, Morley D.

    1978-01-01

    In crude receptor preparations (either particulate or soluble) of rat liver membranes, the insulin receptor exhibits complicated binding kinetics (two binding plateaus, half-saturated at approximately 60 pM and 700 pM insulin) and an apparent chromatographic heterogeneity, suggested by the presence of two detectable, soluble insulin-binding components with apparent Stokes radii of 72 Å and 38 Å. In contrast, the insulin receptor isolated by affinity chromatography exhibits a simple binding isotherm (half-maximal saturation of binding at 700 pM insulin) without evidence for negative cooperativity and behaves as a single component (apparent Stokes radius of 38 Å) upon chromatography on Sepharose 6B. The apparent discrepancies between the properties of the unpurified insulin receptor and the affinity-purified receptor can be attributed to the presence in crude preparations of a nonreceptor constituent(s) having properties consistent with those of a membrane glycoprotein. A glycoprotein fraction from such crude soluble membrane preparations, freed from insulin receptor and subsequently partially purified using concanavalin-A-agarose, when combined with affinity-purified insulin receptor, causes both a reappearance of the complicated binding kinetics and an increase in the receptor's apparent Stokes radius from 38 Å to 72 Å. Similar results are observed for a glycoprotein fraction obtained from rat adipocyte membranes but are not observed for an identical fraction isolated from human erythrocyte membranes. We conclude that the insulin receptor in rat liver membranes can interact with another nonreceptor membrane glycoprotein that may represent either a nonrecognition moiety of the receptor oligomer or an effector molecule to the biological action of insulin. PMID:277909

  12. Cell surface expression of v-fms-coded glycoproteins is required for transformation.

    PubMed Central

    Roussel, M F; Rettenmier, C W; Look, A T; Sherr, C J

    1984-01-01

    The viral oncogene v-fms encodes a transforming glycoprotein with in vitro tyrosine-specific protein kinase activity. Although most v-fms-coded molecules remain internally sequestered in transformed cells, a minor population of molecules is transported to the cell surface. An engineered deletion mutant lacking 348 base pairs of the 3.0-kilobase-pair v-fms gene encoded a polypeptide that was 15 kilodaltons smaller than the wild-type v-fms gene product. The in-frame deletion of 116 amino acids was adjacent to the transmembrane anchor peptide located near the middle of the predicted protein sequence and 432 amino acids from the carboxyl terminus. The mutant polypeptide acquired N-linked oligosaccharide chains, was proteolytically processed in a manner similar to the wild-type glycoprotein, and exhibited an associated tyrosine-specific protein kinase activity in vitro. However, the N-linked oligosaccharides of the mutant glycoprotein were not processed to complex carbohydrate chains, and the glycoprotein was not detected at the cell surface. Cells expressing high levels of the mutant glycoprotein did not undergo morphological transformation and did not form colonies in semisolid medium. The transforming activity of the v-fms gene product therefore appears to be mediated through target molecules on the plasma membrane. Images PMID:6390182

  13. Cell-wall dynamics in growing bacteria

    NASA Astrophysics Data System (ADS)

    Furchtgott, Leon; Wingreen, Ned; Huang, Kerwyn Casey

    2010-03-01

    Bacterial cells come in a large variety of shapes, and cell shape plays an important role in the regulation of many biological functions. Cell shape in bacterial cells is dictated by a cell wall composed of peptidoglycan, a polymer made up of long, stiff glycan strands and flexible peptide crosslinks. Although much is understood about the structural properties of peptidoglycan, little is known about the dynamics of cell wall organization in bacterial cells. In particular, during cell growth, how does the bacterial cell wall continuously expand and reorganize while maintaining cell shape? In order to investigate this question quantitatively, we model the cell wall of the Gram-negative bacterium Escherichia coli using a simple elastic model, in which glycan and peptide subunits are treated as springs with different spring constants and relaxed lengths. We consider the peptidoglycan network as a single-layered network of these springs under tension due to an internal osmotic pressure. Within this model, we simulate possible hypotheses for cell growth as different combinations of addition of new springs and breakage of old springs.

  14. Cell wall proteins: a new insight through proteomics.

    PubMed

    Jamet, Elisabeth; Canut, Hervé; Boudart, Georges; Pont-Lezica, Rafael F

    2006-01-01

    Cell wall proteins are essential constituents of plant cell walls; they are involved in modifications of cell wall components, wall structure, signaling and interactions with plasma membrane proteins at the cell surface. The application of proteomic approaches to the cell wall compartment raises important questions: are there technical problems specific to cell wall proteomics? What kinds of proteins can be found in Arabidopsis walls? Are some of them unexpected? What sort of post-translational modifications have been characterized in cell wall proteins to date? The purpose of this review is to discuss the experimental results obtained to date using proteomics, as well as some of the new questions challenging future research.

  15. Morphogenesis of the Fission Yeast Cell through Cell Wall Expansion.

    PubMed

    Atilgan, Erdinc; Magidson, Valentin; Khodjakov, Alexey; Chang, Fred

    2015-08-17

    The shape of walled cells such as fungi, bacteria, and plants are determined by the cell wall. Models for cell morphogenesis postulate that the effects of turgor pressure and mechanical properties of the cell wall can explain the shapes of these diverse cell types. However, in general, these models await validation through quantitative experiments. Fission yeast Schizosaccharomyces pombe are rod-shaped cells that grow by tip extension and then divide medially through formation of a cell wall septum. Upon cell separation after cytokinesis, the new cell ends adopt a rounded morphology. Here, we show that this shape is generated by a very simple mechanical-based mechanism in which turgor pressure inflates the elastic cell wall in the absence of cell growth. This process is independent of actin and new cell wall synthesis. To model this morphological change, we first estimate the mechanical properties of the cell wall using several approaches. The lateral cell wall behaves as an isotropic elastic material with a Young's modulus of 50 ± 10 MPa inflated by a turgor pressure estimated to be 1.5 ± 0.2 MPa. Based upon these parameters, we develop a quantitative mechanical-based model for new end formation that reveals that the cell wall at the new end expands into its characteristic rounded shape in part because it is softer than the mature lateral wall. These studies provide a simple example of how turgor pressure expands the elastic cell wall to generate a particular cell shape. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Sinomenine reverses multidrug resistance in bladder cancer cells via P-glycoprotein-dependent and independent manners.

    PubMed

    Chen, Yule; Zhang, Linlin; Lu, Xinlan; Wu, Kaijie; Zeng, Jin; Gao, Yang; Shi, Qi; Wang, Xinyang; Chang, Luke S; He, Dalin

    2014-01-01

    P-Glycoprotein-mediated multidrug resistance is a frequent event during chemotherapy and a key obstacle for bladder cancer therapy. Search for strategies to reverse multidrug resistance is a promising approach to improve the management of bladder cancer. In the present study, we reported a novel P-glycoprotein-mediated multidrug resistant cell model 253J/DOX, which was generated from human bladder cancer 253J cell line. Furthermore, we found that the multidrug resistant phenotype of 253J/DOX cells could be overcome by sinomenine, an alkaloid derived from the stem of Sinomenium acutum. Mechanistically, the chemosensitive effect by sinomenine was mediated by down-regulating P-glycoprotein expression, as well as triggering apoptotic pathways. The chemosensitive effect of sinomenine may make it a prime candidate agent to target bladder cancer.

  17. Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The Cell Wall Integrity Signaling Pathway

    PubMed Central

    Levin, David E.

    2011-01-01

    The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to the Rho1 GTPase, which mobilizes a physiologic response through a variety of effectors. Activation of CWI signaling regulates the production of various carbohydrate polymers of the cell wall, as well as their polarized delivery to the site of cell wall remodeling. This review article centers on CWI signaling in Saccharomyces cerevisiae through the cell cycle and in response to cell wall stress. The interface of this signaling pathway with other pathways that contribute to the maintenance of cell wall integrity is also discussed. PMID:22174182

  18. Identification of Novel Cell Wall Components

    SciTech Connect

    Michelle Momany

    2009-10-26

    Our DOE Biosciences-funded work focused on the fungal cell wall and morphogenesis. We are especially interested in how new cell wall material is targeted to appropriate areas for polar (asymmetric) growth. Polar growth is the only way that filamentous fungi explore the environment to find suitable substrates to degrade. Work funded by this grant has resulted in a total of twenty peer-reviewed publications. In work funded by this grant, we identified nine Aspergillus nidulans temperature-sensitive (ts) mutants that fail to send out a germ tube and show a swollen cell phenotype at restrictive temperature, the swo mutants. In other organisms, a swollen cell phenotype is often associated with misdirected growth or weakened cell walls. Our work shows that several of the A. nidulans swo mutants have defects in the establishment and maintenance of polarity. Cloning of several swo genes by complementation also showed that secondary modification of proteins seems is important in polarity. We also investigated cell wall biosynthesis and branching based on leads in literature from other organisms and found that branching and nuclear division are tied and that the cell wall reorganizes during development. In our most recent work we have focused on gene expression during the shift from isotropic to polar growth. Surprisingly we found that genes previously thought to be involved only in spore formation are important in early vegetative growth as well.

  19. Modes of deformation of walled cells.

    PubMed

    Dumais, Jacques

    2013-11-01

    The bewildering morphological diversity found in cells is one of the starkest illustrations of life's ability to self-organize. Yet the morphogenetic mechanisms that produce the multifarious shapes of cells are still poorly understood. The shared similarities between the walled cells of prokaryotes, many protists, fungi, and plants make these groups particularly appealing to begin investigating how morphological diversity is generated at the cell level. In this review, I attempt a first classification of the different modes of surface deformation used by walled cells. Five modes of deformation were identified: inextensional bending, equi-area shear, elastic stretching, processive intussusception, and chemorheological growth. The two most restrictive modes-inextensional and equi-area deformations-are embodied in the exine of pollen grains and the wall-like pellicle of euglenoids, respectively. For these modes, it is possible to express the deformed geometry of the cell explicitly in terms of the undeformed geometry and other easily observable geometrical parameters. The greatest morphogenetic power is reached with the processive intussusception and chemorheological growth mechanisms that underlie the expansive growth of walled cells. A comparison of these two growth mechanisms suggests a possible way to tackle the complexity behind wall growth.

  20. Leukoreduced red blood cell transfusions do not induce platelet glycoprotein antibodies in patients with sickle cell disease.

    PubMed

    Nickel, Robert Sheppard; Winkler, Anne M; Horan, John T; Hendrickson, Jeanne E

    2016-09-01

    Alloimmunization to red blood cell (RBC) antigens after transfusion is well described in patients with sickle cell disease (SCD). We recently demonstrated that leukocyte-reduced RBC transfusions appeared to induce human leukocyte antigen (HLA) antibodies in some children with SCD; now, we hypothesize that residual platelets contained in transfused RBC products may lead to platelet glycoprotein antibody formation. A cross-sectional study was conducted among never pregnant pediatric patients with SCD who either had received many RBC transfusions or had never received any transfusions. Serum was tested for antibodies to platelet-specific glycoproteins using a commercial enzyme immunoassay. Platelet-specific glycoprotein antibodies were found in 12 of 90 patients (13%) in the transfused group versus 5 of 24 patients (21%) in the never transfused group (p = 0.35). The prevalence of antibodies as well as the median standardized optical density for these two groups was not significantly different for any of the studied platelet glycoprotein antigens. There was no association with the presence of platelet-specific glycoprotein antibodies with either RBC or HLA antibodies. Leukocyte-reduced RBC transfusions do not appear to induce platelet-specific glycoprotein antibodies. The positive platelet-specific glycoprotein antibody results from this study may represent platelet autoantibodies, platelet alloantibodies, or false-positive reactions. A better understanding of the immunobiology of patients with SCD at baseline and after blood product exposure may help improve future transfusion and transplantation. © 2016 AABB.

  1. A cytochemical and immunocytochemical analysis of the wall labyrinth apparatus in leaf transfer cells in Elodea canadensis

    PubMed Central

    Ligrone, Roberto; Vaughn, Kevin C.; Rascio, Nicoletta

    2011-01-01

    Background and Aims Transfer cells are plant cells specialized in apoplast/symplast transport and characterized by a distinctive wall labyrinth apparatus. The molecular architecture and biochemistry of the labyrinth apparatus are poorly known. The leaf lamina in the aquatic angiosperm Elodea canadensis consists of only two cell layers, with the abaxial cells developing as transfer cells. The present study investigated biochemical properties of wall ingrowths and associated plasmalemma in these cells. Methods Leaves of Elodea were examined by light and electron microscopy and ATPase activity was localized cytochemically. Immunogold electron microscopy was employed to localize carbohydrate epitopes associated with major cell wall polysaccharides and glycoproteins. Key Results The plasmalemma associated with the wall labyrinth is strongly enriched in light-dependent ATPase activity. The wall ingrowths and an underlying wall layer share an LM11 epitope probably associated with glucuronoarabinoxylan and a CCRC-M7 epitope typically associated with rhamnogalacturonan I. No labelling was observed with LM10, an antibody that recognizes low-substituted and unsubstituted xylan, a polysaccharide consistently associated with secondary cell walls. The JIM5 and JIM7 epitopes, associated with homogalacturonan with different degrees of methylation, appear to be absent in the wall labyrinth but present in the rest of cell walls. Conclusions The wall labyrinth apparatus of leaf transfer cells in Elodea is a specialized structure with distinctive biochemical properties. The high level of light-dependent ATPase activity in the plasmalemma lining the wall labyrinth is consistent with a formerly suggested role of leaf transfer cells in enhancing inorganic carbon inflow. The wall labyrinth is a part of the primary cell wall. The discovery that the wall ingrowths in Elodea have an antibody-binding pattern divergent, in part, from that of the rest of cell wall suggests that their

  2. A cytochemical and immunocytochemical analysis of the wall labyrinth apparatus in leaf transfer cells in Elodea canadensis.

    PubMed

    Ligrone, Roberto; Vaughn, Kevin C; Rascio, Nicoletta

    2011-04-01

    Transfer cells are plant cells specialized in apoplast/symplast transport and characterized by a distinctive wall labyrinth apparatus. The molecular architecture and biochemistry of the labyrinth apparatus are poorly known. The leaf lamina in the aquatic angiosperm Elodea canadensis consists of only two cell layers, with the abaxial cells developing as transfer cells. The present study investigated biochemical properties of wall ingrowths and associated plasmalemma in these cells. Leaves of Elodea were examined by light and electron microscopy and ATPase activity was localized cytochemically. Immunogold electron microscopy was employed to localize carbohydrate epitopes associated with major cell wall polysaccharides and glycoproteins. The plasmalemma associated with the wall labyrinth is strongly enriched in light-dependent ATPase activity. The wall ingrowths and an underlying wall layer share an LM11 epitope probably associated with glucuronoarabinoxylan and a CCRC-M7 epitope typically associated with rhamnogalacturonan I. No labelling was observed with LM10, an antibody that recognizes low-substituted and unsubstituted xylan, a polysaccharide consistently associated with secondary cell walls. The JIM5 and JIM7 epitopes, associated with homogalacturonan with different degrees of methylation, appear to be absent in the wall labyrinth but present in the rest of cell walls. The wall labyrinth apparatus of leaf transfer cells in Elodea is a specialized structure with distinctive biochemical properties. The high level of light-dependent ATPase activity in the plasmalemma lining the wall labyrinth is consistent with a formerly suggested role of leaf transfer cells in enhancing inorganic carbon inflow. The wall labyrinth is a part of the primary cell wall. The discovery that the wall ingrowths in Elodea have an antibody-binding pattern divergent, in part, from that of the rest of cell wall suggests that their carbohydrate composition is modulated in relation to transfer

  3. An Arabidopsis Cell Wall Proteoglycan Consists of Pectin and Arabinoxylan Covalently Linked to an Arabinogalactan Protein[W

    PubMed Central

    Tan, Li; Eberhard, Stefan; Pattathil, Sivakumar; Warder, Clayton; Glushka, John; Yuan, Chunhua; Hao, Zhangying; Zhu, Xiang; Avci, Utku; Miller, Jeffrey S.; Baldwin, David; Pham, Charles; Orlando, Ronald; Darvill, Alan; Hahn, Michael G.; Kieliszewski, Marcia J.; Mohnen, Debra

    2013-01-01

    Plant cell walls are comprised largely of the polysaccharides cellulose, hemicellulose, and pectin, along with ∼10% protein and up to 40% lignin. These wall polymers interact covalently and noncovalently to form the functional cell wall. Characterized cross-links in the wall include covalent linkages between wall glycoprotein extensins between rhamnogalacturonan II monomer domains and between polysaccharides and lignin phenolic residues. Here, we show that two isoforms of a purified Arabidopsis thaliana arabinogalactan protein (AGP) encoded by hydroxyproline-rich glycoprotein family protein gene At3g45230 are covalently attached to wall matrix hemicellulosic and pectic polysaccharides, with rhamnogalacturonan I (RG I)/homogalacturonan linked to the rhamnosyl residue in the arabinogalactan (AG) of the AGP and with arabinoxylan attached to either a rhamnosyl residue in the RG I domain or directly to an arabinosyl residue in the AG glycan domain. The existence of this wall structure, named ARABINOXYLAN PECTIN ARABINOGALACTAN PROTEIN1 (APAP1), is contrary to prevailing cell wall models that depict separate protein, pectin, and hemicellulose polysaccharide networks. The modified sugar composition and increased extractability of pectin and xylan immunoreactive epitopes in apap1 mutant aerial biomass support a role for the APAP1 proteoglycan in plant wall architecture and function. PMID:23371948

  4. Cell surface glycoproteins of CHO cells. I. Internalization and rapid recycling

    SciTech Connect

    Raub, T.J.; Denny, J.B.; Roberts, R.M.

    1986-01-01

    The major cell surface proteins of Chinese hamster ovary (CHO) cells have been investigated after reacting cells at 4/sup 0/C with the membrane-impermeant reagent, trinitrobenzenesulfonate (TNBS). Immunoprecipitation and subsequent two-dimensional, sodiumdodecyl sulfate, polyacrylamide gel electrophoresis (SDS-PAGE) of proteins from derivatized cells that had been labelled previously with (/sup 3/H)D-glucosamine or (/sup 3/H)L-leucine showed that TNBS reacted with most of the high molecular weight (HMW) acidic glycoproteins that became labelled with iodine by the lactoperoxidase technique and that bind the lectin, wheat germ agglutinin (WGA). After warming the cells to allow endocytosis to proceed, molecule haptenized with trinitrophenol (TNP) groups were followed radio-chemically by means of (/sup 125/I)anti-DNP antibodies. Within 15 min at 37/sup 0/C, a steady-state between surface and cytoplasmic label was reached, with about 65% of the hapten located internally. Recycling of internalized TNP groups back to the cell surface also occurred rapidly (t/sub 1/2/ approx. 5 min). Our results are consistent with the view that the majority of plasma membrane glycoproteins are continuously being internalized and recycled at a high rate.

  5. N-glycoprotein surfaceome of human induced pluripotent stem cell derived hepatic endoderm.

    PubMed

    Mallanna, Sunil K; Waas, Matthew; Duncan, Stephen A; Gundry, Rebekah L

    2017-03-01

    Using cell surface capture technology, the cell surface N-glycoproteome of human-induced pluripotent stem cell derived hepatic endoderm cells was assessed. Altogether, 395 cell surface N-glycoproteins were identified, represented by 1273 N-glycopeptides. This study identified N-glycoproteins that are not predicted to be localized to the cell surface and provides experimental data that assist in resolving ambiguous or incorrectly annotated transmembrane topology annotations. In a proof-of-concept analysis, combining these data with other cell surface proteome datasets is useful for identifying potentially cell type and lineage restricted markers and drug targets to advance the use of stem cell technologies for mechanistic developmental studies, disease modeling, drug discovery, and regenerative medicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The inside and outside: topological issues in plant cell wall biosynthesis and the roles of nucleotide sugar transporters.

    PubMed

    Temple, Henry; Saez-Aguayo, Susana; Reyes, Francisca C; Orellana, Ariel

    2016-09-01

    The cell wall is a complex extracellular matrix composed primarily of polysaccharides. Noncellulosic polysaccharides, glycoproteins and proteoglycans are synthesized in the Golgi apparatus by glycosyltransferases (GTs), which use nucleotide sugars as donors to glycosylate nascent glycan and glycoprotein acceptors that are subsequently exported to the extracellular space. Many nucleotide sugars are synthesized in the cytosol, leading to a topological issue because the active sites of most GTs are located in the Golgi lumen. Nucleotide sugar transporters (NSTs) overcome this problem by translocating nucleoside diphosphate sugars from the cytosol into the lumen of the organelle. The structures of the cell wall components synthesized in the Golgi are diverse and complex; therefore, transporter activities are necessary so that the nucleotide sugars can provide substrates for the GTs. In this review, we describe the topology of reactions involved in polysaccharide biosynthesis in the Golgi and focus on the roles of NSTs as well as their impacts on cell wall structure when they are altered.

  7. The Structure of Plant Cell Walls

    PubMed Central

    Wilder, Barry M.; Albersheim, Peter

    1973-01-01

    The molecular structure and chemical properties of the hemicellulose present in the isolated cell walls of suspension cultures of sycamore (Acer pseudoplatanus) cells has recently been described by Bauer et al. (Plant Physiol. 51: 174-187). The hemicellulose of the sycamore primary cell wall is a xyloglucan. This polymer functions as an important cross-link in the structure of the cell wall; the xyloglucan is hydrogen-bonded to cellulose and covalently attached to the pectic polymers. The present paper describes the structure of a xyloglucan present in the walls and in the extracellular medium of suspension-cultured Red Kidney bean (Phaseolus vulgaris) cells and compares the structure of the bean xyloglucan with the structure of the sycamore xyloglucan. Although some minor differences were found, the basic structure of the xyloglucans in the cell walls of these distantly related species is the same. The structure is based on a repeating heptasaccharide unit which consists of four residues of β-1, 4-linked glucose and three residues of terminal xylose linked to the 6 position of three of the glucosyl residues. PMID:16658434

  8. Proteomic dataset for altered glycoprotein expression upon GALNT3 knockdown in ovarian cancer cells.

    PubMed

    Sheta, Razan; Roux-Dalvai, Florence; Woo, Christina M; Fournier, Frédéric; Bourassa, Sylvie; Bertozzi, Carolyn R; Droit, Arnaud; Bachvarov, Dimcho

    2016-09-01

    This article contains raw and processed data related to research published in "Role of the polypeptide N-acetylgalactosaminyltransferase 3 in ovarian cancer progression: possible implications in abnormal mucin O-glycosylation" [1]. The data presented here was obtained with the application of a bioorthogonal chemical reporter strategy analyzing differential glycoprotein expression following the knock-down (KD) of the GALNT3 gene in the epithelial ovarian cancer (EOC) cell line A2780s. LC-MS/MS mass spectrometry analysis was then performed and the processed data related to the identified glycoproteins show that several hundred proteins are differentially expressed between control and GALNT3 KD A2780s cells. The obtained data also uncover numerous novel glycoproteins; some of which could represent new potential EOC biomarkers and/or therapeutic targets.

  9. An efficient platform for screening expression and crystallization of glycoproteins produced in human cells

    PubMed Central

    Lee, Jeffrey E.; Fusco, Marnie L.; Saphire, Erica Ollmann

    2010-01-01

    Glycoproteins mediate multiple, diverse and critical cellular functions, that are desirable to explore by structural analysis. However, structure determination of these molecules has been hindered by difficulties expressing milligram quantities of stable, homogeneous protein and in determining, which modifications will yield samples amenable to structural studies. We describe a platform proven effective for rapidly screening expression and crystallization of challenging glycoprotein targets produced in mammalian cells. Here, multiple glycoprotein constructs are produced in parallel by transient expression of adherent human embryonic kidney (HEK) 293T cells and subsequently screened in small quantities for crystallization by microfluidic free interface diffusion. As a result, recombinant proteins are produced and processed in a native, mammalian environment and crystallization screening can be accomplished with as little as 65 μg of protein. Moreover, large numbers of constructs can be screened for expression and crystallization and scaled up for structural studies in a matter of five weeks. PMID:19373230

  10. P-glycoprotein-mediated transport of moxifloxacin in a Calu-3 lung epithelial cell model.

    PubMed

    Brillault, Julien; De Castro, Whocely Victor; Harnois, Thomas; Kitzis, Alain; Olivier, Jean-Christophe; Couet, William

    2009-04-01

    Moxifloxacin (MXF) is a fluoroquinolone antibiotic that is effective against respiratory infections. However, the mechanisms of MXF lung diffusion are unknown. Active transport in other tissues has been suggested for several members of the fluoroquinolone family. In this study, transport of MXF was systematically investigated across a Calu-3 lung epithelial cell model. MXF showed polarized transport, with the secretory permeability being twice as high as the absorptive permeability. The secretory permeability was concentration dependent (apparent P(max) = 13.6 x 10(-6) cm x s(-1); apparent K(m) = 147 microM), suggesting saturated transport at concentrations higher than 350 microg/ml. The P-glycoprotein inhibitor PSC-833 inhibited MXF transport in both directions, whereas probenecid, a multidrug resistance-related protein inhibitor, appeared to have no effect in the Calu-3 model. Moreover, rifampin, a known inducer of efflux transport proteins, upregulated the expression of P-glycoprotein in Calu-3 cells and enhanced MXF active transport. In conclusion, this study clearly indicates that MXF is subject to P-glycoprotein-mediated active transport in the Calu-3 model. This P-glycoprotein-dependent secretion may lead to higher MXF epithelial lining fluid concentrations than those in plasma. Furthermore, drug-drug interactions may be expected when MXF is combined with other P-glycoprotein substrates or modulators.

  11. Isodityrosine cross-linking mediates insolubilization of cell walls in Chlamydomonas.

    PubMed Central

    Waffenschmidt, S; Woessner, J P; Beer, K; Goodenough, U W

    1993-01-01

    Enzymatic removal of the cell wall induces vegetative Chlamydomonas reinhardtii cells to transcribe wall genes and synthesize new hydroxyproline-rich glycoproteins (HRGPs) related to the extensins found in higher plant cell walls. A cDNA expression library made from such induced cells was screened with antibodies to an oligopeptide containing the (SP)x repetitive domains found in Chlamydomonas wall proteins. One of the selected cDNAs encodes an (SP)x-rich polypeptide that also displays a repeated YGG motif. Ascorbate, a peroxidase inhibitor, and tyrosine derivatives were shown to inhibit insolubilization of both the vegetative and zygotic cell walls of Chlamydomonas, suggesting that oxidative cross-linking of tyrosines is occurring. Moreover, insolubilization of both walls was concomitant with a burst in H2O2 production and in extracellular peroxidase activity. Finally, both isodityrosine and dityrosine were found in hydrolysates of the insolubilized vegetative wall layer. We propose that the formation of tyrosine cross-links is essential to Chlamydomonas HRGP insolubilization. PMID:7689882

  12. Isodityrosine cross-linking mediates insolubilization of cell walls in Chlamydomonas.

    PubMed

    Waffenschmidt, S; Woessner, J P; Beer, K; Goodenough, U W

    1993-07-01

    Enzymatic removal of the cell wall induces vegetative Chlamydomonas reinhardtii cells to transcribe wall genes and synthesize new hydroxyproline-rich glycoproteins (HRGPs) related to the extensins found in higher plant cell walls. A cDNA expression library made from such induced cells was screened with antibodies to an oligopeptide containing the (SP)x repetitive domains found in Chlamydomonas wall proteins. One of the selected cDNAs encodes an (SP)x-rich polypeptide that also displays a repeated YGG motif. Ascorbate, a peroxidase inhibitor, and tyrosine derivatives were shown to inhibit insolubilization of both the vegetative and zygotic cell walls of Chlamydomonas, suggesting that oxidative cross-linking of tyrosines is occurring. Moreover, insolubilization of both walls was concomitant with a burst in H2O2 production and in extracellular peroxidase activity. Finally, both isodityrosine and dityrosine were found in hydrolysates of the insolubilized vegetative wall layer. We propose that the formation of tyrosine cross-links is essential to Chlamydomonas HRGP insolubilization.

  13. Disruption of Protein Mannosylation Affects Candida guilliermondii Cell Wall, Immune Sensing, and Virulence.

    PubMed

    Navarro-Arias, María J; Defosse, Tatiana A; Dementhon, Karine; Csonka, Katalin; Mellado-Mojica, Erika; Dias Valério, Aline; González-Hernández, Roberto J; Courdavault, Vincent; Clastre, Marc; Hernández, Nahúm V; Pérez-García, Luis A; Singh, Dhirendra K; Vizler, Csaba; Gácser, Attila; Almeida, Ricardo S; Noël, Thierry; López, Mercedes G; Papon, Nicolas; Mora-Montes, Héctor M

    2016-01-01

    The fungal cell wall contains glycoproteins that interact with the host immune system. In the prominent pathogenic yeast Candida albicans, Pmr1 acts as a Golgi-resident ion pump that provides cofactors to mannosyltransferases, regulating the synthesis of mannans attached to glycoproteins. To gain insight into a putative conservation of such a crucial process within opportunistic yeasts, we were particularly interested in studying the role of the PMR1 homolog in a low-virulent species that rarely causes candidiasis, Candida guilliermondii. We disrupted C. guilliermondii PMR1 and found that loss of Pmr1 affected cell growth and morphology, biofilm formation, susceptibility to cell wall perturbing agents, mannan levels, and the wall composition and organization. Despite the significant increment in the amount of β1,3-glucan exposed at the wall surface, this positively influenced only the ability of the mutant to stimulate IL-10 production by human monocytes, suggesting that recognition of both mannan and β1,3-glucan, is required to stimulate strong levels of pro-inflammatory cytokines. Accordingly, our results indicate C. guilliermondii sensing by monocytes was critically dependent on the recognition of N-linked mannans and β1,3-glucan, as reported in other Candida species. In addition, chemical remotion of cell wall O-linked mannans was found to positively influence the recognition of C. guilliermondii by human monocytes, suggesting that O-linked mannans mask other cell wall components from immune cells. This observation contrasts with that reported in C. albicans. Finally, mice infected with C. guilliermondii pmr1Δ null mutant cells had significantly lower fungal burdens compared to animals challenged with the parental strain. Accordingly, the null mutant showed inability to kill larvae in the Galleria mellonella infection model. This study thus demonstrates that mannans are relevant for the C. guilliermondii-host interaction, with an atypical role for O

  14. Disruption of Protein Mannosylation Affects Candida guilliermondii Cell Wall, Immune Sensing, and Virulence

    PubMed Central

    Navarro-Arias, María J.; Defosse, Tatiana A.; Dementhon, Karine; Csonka, Katalin; Mellado-Mojica, Erika; Dias Valério, Aline; González-Hernández, Roberto J.; Courdavault, Vincent; Clastre, Marc; Hernández, Nahúm V.; Pérez-García, Luis A.; Singh, Dhirendra K.; Vizler, Csaba; Gácser, Attila; Almeida, Ricardo S.; Noël, Thierry; López, Mercedes G.; Papon, Nicolas; Mora-Montes, Héctor M.

    2016-01-01

    The fungal cell wall contains glycoproteins that interact with the host immune system. In the prominent pathogenic yeast Candida albicans, Pmr1 acts as a Golgi-resident ion pump that provides cofactors to mannosyltransferases, regulating the synthesis of mannans attached to glycoproteins. To gain insight into a putative conservation of such a crucial process within opportunistic yeasts, we were particularly interested in studying the role of the PMR1 homolog in a low-virulent species that rarely causes candidiasis, Candida guilliermondii. We disrupted C. guilliermondii PMR1 and found that loss of Pmr1 affected cell growth and morphology, biofilm formation, susceptibility to cell wall perturbing agents, mannan levels, and the wall composition and organization. Despite the significant increment in the amount of β1,3-glucan exposed at the wall surface, this positively influenced only the ability of the mutant to stimulate IL-10 production by human monocytes, suggesting that recognition of both mannan and β1,3-glucan, is required to stimulate strong levels of pro-inflammatory cytokines. Accordingly, our results indicate C. guilliermondii sensing by monocytes was critically dependent on the recognition of N-linked mannans and β1,3-glucan, as reported in other Candida species. In addition, chemical remotion of cell wall O-linked mannans was found to positively influence the recognition of C. guilliermondii by human monocytes, suggesting that O-linked mannans mask other cell wall components from immune cells. This observation contrasts with that reported in C. albicans. Finally, mice infected with C. guilliermondii pmr1Δ null mutant cells had significantly lower fungal burdens compared to animals challenged with the parental strain. Accordingly, the null mutant showed inability to kill larvae in the Galleria mellonella infection model. This study thus demonstrates that mannans are relevant for the C. guilliermondii-host interaction, with an atypical role for O

  15. The plant secretory pathway seen through the lens of the cell wall.

    PubMed

    van de Meene, A M L; Doblin, M S; Bacic, Antony

    2017-01-01

    Secretion in plant cells is often studied by looking at well-characterised, evolutionarily conserved membrane proteins associated with particular endomembrane compartments. Studies using live cell microscopy and fluorescent proteins have illuminated the highly dynamic nature of trafficking, and electron microscopy studies have resolved the ultrastructure of many compartments. Biochemical and molecular analyses have further informed about the function of particular proteins and endomembrane compartments. In plants, there are over 40 cell types, each with highly specialised functions, and hence potential variations in cell biological processes and cell wall structure. As the primary function of secretion in plant cells is for the biosynthesis of cell wall polysaccharides and apoplastic transport complexes, it follows that utilising our knowledge of cell wall glycosyltransferases (GTs) and their polysaccharide products will inform us about secretion. Indeed, this knowledge has led to novel insights into the secretory pathway, including previously unseen post-TGN secretory compartments. Conversely, our knowledge of trafficking routes of secretion will inform us about polarised and localised deposition of cell walls and their constituent polysaccharides/glycoproteins. In this review, we look at what is known about cell wall biosynthesis and the secretory pathway and how the different approaches can be used in a complementary manner to study secretion and provide novel insights into these processes.

  16. β-(1,3)-Glucan Unmasking in Some Candida albicans Mutants Correlates with Increases in Cell Wall Surface Roughness and Decreases in Cell Wall Elasticity.

    PubMed

    Hasim, Sahar; Allison, David P; Retterer, Scott T; Hopke, Alex; Wheeler, Robert T; Doktycz, Mitchel J; Reynolds, Todd B

    2017-01-01

    Candida albicans is among the most common human fungal pathogens, causing a broad range of infections, including life-threatening systemic infections. The cell wall of C. albicans is the interface between the fungus and the innate immune system. The cell wall is composed of an outer layer enriched in mannosylated glycoproteins (mannan) and an inner layer enriched in β-(1,3)-glucan and chitin. Detection of C. albicans by Dectin-1, a C-type signaling lectin specific for β-(1,3)-glucan, is important for the innate immune system to recognize systemic fungal infections. Increased exposure of β-(1,3)-glucan to the immune system occurs when the mannan layer is altered or removed in a process called unmasking. Nanoscale changes to the cell wall during unmasking were explored in live cells with atomic force microscopy (AFM). Two mutants, the cho1Δ/Δ and kre5Δ/Δ mutants, were selected as representatives that exhibit modest and strong unmasking, respectively. Comparisons of the cho1Δ/Δ and kre5Δ/Δ mutants to the wild type reveal morphological changes in their cell walls that correlate with decreases in cell wall elasticity. In addition, AFM tips functionalized with Dectin-1 revealed that the forces of binding of Dectin-1 to all of the strains were similar, but the frequency of binding was highest for the kre5Δ/Δ mutant, decreased for the cho1Δ/Δ mutant, and rare for the wild type. These data show that nanoscale changes in surface topology are correlated with increased Dectin-1 adhesion and decreased cell wall elasticity. AFM, using tips functionalized with immunologically relevant molecules, can map epitopes of the cell wall and increase our understanding of pathogen recognition by the immune system. Copyright © 2016 American Society for Microbiology.

  17. β-(1,3)-Glucan Unmasking in Some Candida albicans Mutants Correlates with Increases in Cell Wall Surface Roughness and Decreases in Cell Wall Elasticity

    SciTech Connect

    Hasim, Sahar; Allison, David P.; Retterer, Scott T.; Hopke, Alex; Wheeler, Robert T.; Doktycz, Mitchel J.; Reynolds, Todd B.

    2016-11-14

    Candida albicans is among the most common human fungal pathogens, causing a broad range of infections, including life-threatening systemic infections. The cell wall of C. albicans is the interface between the fungus and the innate immune system. The cell wall is composed of an outer layer enriched in mannosylated glycoproteins (mannan) and an inner layer enriched in β-(1,3)-glucan and chitin. Detection of C. albicans by Dectin-1, a C-type signaling lectin specific for β-(1,3)-glucan, is important for the innate immune system to recognize systemic fungal infections. Increased exposure of β-(1,3)-glucan to the immune system occurs when the mannan layer is altered or removed in a process called unmasking. Nanoscale changes to the cell wall during unmasking were explored in this paper in live cells with atomic force microscopy (AFM). Two mutants, the cho1Δ/Δ and kre5Δ/Δ mutants, were selected as representatives that exhibit modest and strong unmasking, respectively. Comparisons of the cho1Δ/Δ and kre5Δ/Δ mutants to the wild type reveal morphological changes in their cell walls that correlate with decreases in cell wall elasticity. In addition, AFM tips functionalized with Dectin-1 revealed that the forces of binding of Dectin-1 to all of the strains were similar, but the frequency of binding was highest for the kre5Δ/Δ mutant, decreased for the cho1Δ/Δ mutant, and rare for the wild type. These data show that nanoscale changes in surface topology are correlated with increased Dectin-1 adhesion and decreased cell wall elasticity. Finally, AFM, using tips functionalized with immunologically relevant molecules, can map epitopes of the cell wall and increase our understanding of pathogen recognition by the immune system.

  18. β-(1,3)-Glucan Unmasking in Some Candida albicans Mutants Correlates with Increases in Cell Wall Surface Roughness and Decreases in Cell Wall Elasticity

    DOE PAGES

    Hasim, Sahar; Allison, David P.; Retterer, Scott T.; ...

    2016-11-14

    Candida albicans is among the most common human fungal pathogens, causing a broad range of infections, including life-threatening systemic infections. The cell wall of C. albicans is the interface between the fungus and the innate immune system. The cell wall is composed of an outer layer enriched in mannosylated glycoproteins (mannan) and an inner layer enriched in β-(1,3)-glucan and chitin. Detection of C. albicans by Dectin-1, a C-type signaling lectin specific for β-(1,3)-glucan, is important for the innate immune system to recognize systemic fungal infections. Increased exposure of β-(1,3)-glucan to the immune system occurs when the mannan layer is alteredmore » or removed in a process called unmasking. Nanoscale changes to the cell wall during unmasking were explored in this paper in live cells with atomic force microscopy (AFM). Two mutants, the cho1Δ/Δ and kre5Δ/Δ mutants, were selected as representatives that exhibit modest and strong unmasking, respectively. Comparisons of the cho1Δ/Δ and kre5Δ/Δ mutants to the wild type reveal morphological changes in their cell walls that correlate with decreases in cell wall elasticity. In addition, AFM tips functionalized with Dectin-1 revealed that the forces of binding of Dectin-1 to all of the strains were similar, but the frequency of binding was highest for the kre5Δ/Δ mutant, decreased for the cho1Δ/Δ mutant, and rare for the wild type. These data show that nanoscale changes in surface topology are correlated with increased Dectin-1 adhesion and decreased cell wall elasticity. Finally, AFM, using tips functionalized with immunologically relevant molecules, can map epitopes of the cell wall and increase our understanding of pathogen recognition by the immune system.« less

  19. Generation of the heterodimeric precursor GP3 of the Chlamydomonas cell wall.

    PubMed

    Voigt, Jürgen; Kiess, Michael; Getzlaff, Rita; Wöstemeyer, Johannes; Frank, Ronald

    2010-09-01

    The cell wall of the unicellular green alga Chlamydomonas reinhardtii exclusively consists of hydroxyproline-containing glycoproteins. Protein chemical analysis of its polypeptide constituents was hindered by their cross-linking via peroxidase-catalysed intermolecular isodityrosine formation and transaminase-dependent processes. To overcome this problem, we have identified putative soluble precursors using polyclonal antibodies raised against deglycosylation products of the highly purified insoluble wall fraction and analysed their amino acid sequence. The occurrence of the corresponding polypeptide in the insoluble glycoprotein framework was finally probed by epitope mapping of the polyclonal antibodies using overlapping scan peptides which, together, cover the whole amino acid sequence of the putative precursor. As a control, peptide fragments released from the insoluble wall fraction by trypsin treatment were analysed by mass spectroscopy. By this approach, the heterodimeric, chaotrope-soluble glycoprotein GP3 proved to be a constituent of the insoluble extracellular matrix of Chlamydomonas reinhardtii. Furthermore, we have shown that the polypeptide backbones of both GP3 subunits are encoded by the same gene and differ by a C-terminal truncation in the case of GP3A.

  20. Increased paracellular absorption by bile salts and P-glycoprotein stimulated efflux of otilonium bromide in Caco-2 cells monolayers as a model of intestinal barrier.

    PubMed

    Catalioto, Rose-Marie; Triolo, Antonio; Giuliani, Sandro; Altamura, Maria; Evangelista, Stefano; Maggi, Carlo Alberto

    2008-09-01

    The present study investigates the intestinal permeability of otilonium bromide, a spasmolytic drug used to treat irritable bowel syndrome, across Caco-2 cell monolayers. The amount of otilonium bromide transported was determined by high-performance liquid chromatography-mass spectrometry. Epithelial barrier integrity was estimated by measuring transepithelial electrical resistance and the transport of reference compounds, P-glycoprotein activity by measuring rhodamine 123 efflux. Results showed that the apparent permeability of otilonium bromide was comparable to that of our zero permeability marker, inulin, in the apical-to-basal direction and similar to that of rhodamine 123 in the basal-to-apical direction. The P-glycoprotein substrate, verapamil, prevented otilonium bromide efflux and, conversely, otilonium bromide inhibited P-glycoprotein activity. Bile salts induced a transient opening of tight junctions, as measured by selective increase of paracellular transport, and significantly enhanced the absorption of otilonium bromide. In turn otilonium bromide potentiates the effect of bile salts on tight junctions without modifying their critical micellar concentration or altering cell viability. In conclusion, otilonium bromide is a paracellularly transported drug whose absorption, in amounts sufficient to exert a spasmolytic effect, is favoured by bile salts. P-glycoprotein, by stimulating efflux, contributes to remove excess compound, restraining its distribution and site of action to the intestinal wall.

  1. Natural cell-mediated cytotoxicity: possible role of N-linked glycoproteins

    SciTech Connect

    Oeltmann, T.N.; Chambers, W.H.

    1986-05-01

    The authors have examined the role of N-linked glycoproteins in natural cell-mediated cytotoxicity (NCMC) by treating effector cells or target cells with swainsonine, a specific inhibitor of golgi mannosidase II which is critical for N-linked glycoprotein processing. They have also examined the effects of alpha-mannosidase, an exoglycosidase specific for alpha-linked mannose residues, on both target and effector cells. Pretreatment of nonadherent mononuclear cells with swainsonine (18 hr) resulted in an inhibition of lysis of K-562 target cells as measured by LDH release. Protein synthesis was not inhibited as measured by incorporation of /sup 14/C-amino acids. However, oligosaccharide processing was altered as measured by incorporation of 2(/sup 3/H)-mannose. Similar treatment did not inhibit target cell-effector cell conjugation. Pretreatment of nonadherent mononuclear cells with alpha-mannosidase (1 hr) did not result in a reduction in NK cell function. However, alpha-mannosidase did cause a release of mannose from treated cells. These results suggest that N-linked glycoproteins may play a role in NCMC, but not at the level of recognition and binding.

  2. Natural cell-mediated cytotoxicity: possible role of N-linked glycoproteins

    SciTech Connect

    Chambers, W.H.; Oeltmann, T.N.

    1986-03-01

    The authors have examined the role of N-linked glycoproteins in natural cell-mediated cytotoxicity (NCMC) by treating effector cells or target cells with swainsonine, a specific inhibitor of golgi mannosidase II which is critical for N-linked glycoprotein processing. They have also examined the effects of alpha-mannosidase, an exoglycosidase specific for alpha-linked mannose residues, on both target and effector cells. Pretreatment of nonadherent mononuclear cells with swainsonine (18 hr) resulted in an inhibition of lysis of K-562 target cells as measured by LDH release. Protein synthesis was not inhibited as measured by incorporation of /sup 14/C-amino acids. However, oligosaccharide processing was altered as measured by incorporation of 2(/sup 3/H)-mannose. Similar treatment did not inhibit target cell-effector cell conjugation. Pretreatment of nonadherent mononuclear cells with alpha-mannosidase (1 hr) did not result in a reduction in NK cell function. However, alpha-mannosidase did cause a release of mannose from treated cells. These results suggest that N-linked glycoproteins may play a role in NCMC, but not at the level of recognition and binding.

  3. Early Activation of Primary Brain Microvascular Endothelial Cells by Nipah Virus Glycoprotein-Containing Particles

    PubMed Central

    Freitag, Tanja C.

    2015-01-01

    Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes pronounced infection of brain endothelia and central nervous system (CNS) inflammation. Using primary porcine brain microvascular endothelial cells, we showed that upregulation of E-selectin precedes cytokine induction and is induced not only by infectious NiV but also by NiV-glycoprotein-containing virus-like particles. This demonstrates that very early events in NiV brain endothelial infection do not depend on NiV replication but can be triggered by the NiV glycoproteins alone. PMID:26676791

  4. The Cell Walls of Green Algae: A Journey through Evolution and Diversity.

    PubMed

    Domozych, David S; Ciancia, Marina; Fangel, Jonatan U; Mikkelsen, Maria Dalgaard; Ulvskov, Peter; Willats, William G T

    2012-01-01

    The green algae represent a large group of morphologically diverse photosynthetic eukaryotes that occupy virtually every photic habitat on the planet. The extracellular coverings of green algae including cell walls are also diverse. A recent surge of research in green algal cell walls fueled by new emerging technologies has revealed new and critical insight concerning these coverings. For example, the late divergent taxa of the Charophycean green algae possess cell walls containing assemblages of polymers with notable similarity to the cellulose, pectins, hemicelluloses, arabinogalactan proteins (AGPs), extensin, and lignin present in embryophyte walls. Ulvophycean seaweeds have cell wall components whose most abundant fibrillar constituents may change from cellulose to β-mannans to β-xylans and during different life cycle phases. Likewise, these algae produce complex sulfated polysaccharides, AGPs, and extensin. Chlorophycean green algae produce a wide array of walls ranging from cellulose-pectin complexes to ones made of hydroxyproline-rich glycoproteins. Larger and more detailed surveys of the green algal taxa including incorporation of emerging genomic and transcriptomic data are required in order to more fully resolve evolutionary trends within the green algae and in relationship with higher plants as well as potential applications of wall components in the food and pharmaceutical industries.

  5. The Cell Walls of Green Algae: A Journey through Evolution and Diversity

    PubMed Central

    Domozych, David S.; Ciancia, Marina; Fangel, Jonatan U.; Mikkelsen, Maria Dalgaard; Ulvskov, Peter; Willats, William G. T.

    2012-01-01

    The green algae represent a large group of morphologically diverse photosynthetic eukaryotes that occupy virtually every photic habitat on the planet. The extracellular coverings of green algae including cell walls are also diverse. A recent surge of research in green algal cell walls fueled by new emerging technologies has revealed new and critical insight concerning these coverings. For example, the late divergent taxa of the Charophycean green algae possess cell walls containing assemblages of polymers with notable similarity to the cellulose, pectins, hemicelluloses, arabinogalactan proteins (AGPs), extensin, and lignin present in embryophyte walls. Ulvophycean seaweeds have cell wall components whose most abundant fibrillar constituents may change from cellulose to β-mannans to β-xylans and during different life cycle phases. Likewise, these algae produce complex sulfated polysaccharides, AGPs, and extensin. Chlorophycean green algae produce a wide array of walls ranging from cellulose–pectin complexes to ones made of hydroxyproline-rich glycoproteins. Larger and more detailed surveys of the green algal taxa including incorporation of emerging genomic and transcriptomic data are required in order to more fully resolve evolutionary trends within the green algae and in relationship with higher plants as well as potential applications of wall components in the food and pharmaceutical industries. PMID:22639667

  6. The charophycean green algae provide insights into the early origins of plant cell walls.

    PubMed

    Sørensen, Iben; Pettolino, Filomena A; Bacic, Antony; Ralph, John; Lu, Fachuang; O'Neill, Malcolm A; Fei, Zhangzhun; Rose, Jocelyn K C; Domozych, David S; Willats, William G T

    2011-10-01

    Numerous evolutionary innovations were required to enable freshwater green algae to colonize terrestrial habitats and thereby initiate the evolution of land plants (embryophytes). These adaptations probably included changes in cell-wall composition and architecture that were to become essential for embryophyte development and radiation. However, it is not known to what extent the polymers that are characteristic of embryophyte cell walls, including pectins, hemicelluloses, glycoproteins and lignin, evolved in response to the demands of the terrestrial environment or whether they pre-existed in their algal ancestors. Here we show that members of the advanced charophycean green algae (CGA), including the Charales, Coleochaetales and Zygnematales, but not basal CGA (Klebsormidiales and Chlorokybales), have cell walls that are comparable in several respects to the primary walls of embryophytes. Moreover, we provide both chemical and immunocytochemical evidence that selected Coleochaete species have cell walls that contain small amounts of lignin or lignin-like polymers derived from radical coupling of hydroxycinnamyl alcohols. Thus, the ability to synthesize many of the components that characterize extant embryophyte walls evolved during divergence within CGA. Our study provides new insight into the evolutionary window during which the structurally complex walls of embryophytes originated, and the significance of the advanced CGA during these events.

  7. Assembly of the Yeast Cell Wall

    PubMed Central

    Cabib, Enrico; Farkas, Vladimir; Kosík, Ondrej; Blanco, Noelia; Arroyo, Javier; McPhie, Peter

    2008-01-01

    The cross-linking of polysaccharides to assemble new cell wall in fungi requires mechanisms by which a preexisting linkage is broken for each new one made, to allow for the absence of free energy sources outside the plasma membrane. Previous work showed that Crh1p and Crh2p, putative transglycosylases, are required for the linkage of chitin to β(1–3)glucose branches of β(1–6)glucan in the cell wall of budding yeast. To explore the linking reaction in vivo and in vitro, we used fluorescent sulforhodamine-linked laminari-oligosaccharides as artificial chitin acceptors. In vivo, fluorescence was detected in bud scars and at a lower level in the cell contour, both being dependent on the CRH genes. The linking reaction was also shown in digitonin-permeabilized cells, with UDP-N-acetylglucosamine as the substrate for nascent chitin production. Both the nucleotide and the Crh proteins were required here. A gas1 mutant that overexpresses Crh1p showed very high fluorescence both in intact and permeabilized cells. In the latter, fluorescence was still incorporated in patches in the absence of UDP-GlcNAc. Isolated cell walls of this strain, when incubated with sulforhodamine-oligosaccharide, also showed Crhp-dependent fluorescence in patches, which were identified as bud scars. In all three systems, binding of the fluorescent material to chitin was verified by chitinase digestion. Moreover, the cell wall reaction was inhibited by chitooligosaccharides. These results demonstrate that the Crh proteins act by transferring chitin chains to β(1–6)glucan, with a newly observed high activity in the bud scar. The importance of transglycosylation for cell wall assembly is thus firmly established. PMID:18694928

  8. Influence of N-glycans on Expression of Cell Wall Remodeling Related Genes in Paracoccidioides brasiliensis Yeast Cells

    PubMed Central

    Almeida, Fausto; Antoniêto, Amanda Cristina Campos; Pessoni, André Moreira; Monteiro, Valdirene Neves; Alegre-Maller, Ana Claudia Paiva; Pigosso, Laurine Lacerda; Pereira, Maristela; Soares, Célia Maria de Almeida; Roque-Barreira, Maria Cristina

    2016-01-01

    Paracoccidioidomycosis is the most prevalent systemic mycosis in Latin America. It is caused by the temperature-dependent dimorphic fungus Paracoccidioides brasiliensis. The P. brasiliensis cell wall is a dynamic outer structure, composed of a network of glycoproteins and polysaccharides, such as chitin, glucan and N-glycosylated proteins. These glycoproteins can interact with the host to affect infection rates, and are known to perform other functions. We inhibited N-linked glycosylation using tunicamycin (TM), and then evaluated the expression of P. brasiliensis genes related to cell wall remodeling. Our results suggest that cell wall synthesis related genes, such as β-1,3-glucanosyltransferase (PbGEL3), 1,3-β-D-glucan synthase (PbFKS1), and α-1,4-amylase (PbAMY), as well as cell wall degrading related genes, such as N-acetyl-β-D-glucosaminidase (PbNAG1), α-1,3-glucanase (PbAGN), and β-1,3-glucanase (PbBGN1 and PbBGN2), have their expression increased by the N-glycosylation inhibition, as detected by qRT-PCR. The observed increases in gene expression levels reveal possible compensatory mechanisms for diminished enzyme activity due to the lack of glycosylation caused by TM. PMID:27226767

  9. Influence of N-glycans on Expression of Cell Wall Remodeling Related Genes in Paracoccidioides brasiliensis Yeast Cells.

    PubMed

    Almeida, Fausto; Antoniêto, Amanda Cristina Campos; Pessoni, André Moreira; Monteiro, Valdirene Neves; Alegre-Maller, Ana Claudia Paiva; Pigosso, Laurine Lacerda; Pereira, Maristela; Soares, Célia Maria de Almeida; Roque-Barreira, Maria Cristina

    2016-04-01

    Paracoccidioidomycosis is the most prevalent systemic mycosis in Latin America. It is caused by the temperature-dependent dimorphic fungus Paracoccidioides brasiliensis. The P. brasiliensis cell wall is a dynamic outer structure, composed of a network of glycoproteins and polysaccharides, such as chitin, glucan and N-glycosylated proteins. These glycoproteins can interact with the host to affect infection rates, and are known to perform other functions. We inhibited N-linked glycosylation using tunicamycin (TM), and then evaluated the expression of P. brasiliensis genes related to cell wall remodeling. Our results suggest that cell wall synthesis related genes, such as β-1,3-glucanosyltransferase (PbGEL3), 1,3-β-D-glucan synthase (PbFKS1), and α-1,4-amylase (PbAMY), as well as cell wall degrading related genes, such as N-acetyl-β-D-glucosaminidase (PbNAG1), α-1,3-glucanase (PbAGN), and β-1,3-glucanase (PbBGN1 and PbBGN2), have their expression increased by the N-glycosylation inhibition, as detected by qRT-PCR. The observed increases in gene expression levels reveal possible compensatory mechanisms for diminished enzyme activity due to the lack of glycosylation caused by TM.

  10. Sialic Acids on Varicella-Zoster Virus Glycoprotein B Are Required for Cell-Cell Fusion.

    PubMed

    Suenaga, Tadahiro; Matsumoto, Maki; Arisawa, Fuminori; Kohyama, Masako; Hirayasu, Kouyuki; Mori, Yasuko; Arase, Hisashi

    2015-08-07

    Varicella-zoster virus (VZV) is a member of the human Herpesvirus family that causes varicella (chicken pox) and zoster (shingles). VZV latently infects sensory ganglia and is also responsible for encephalomyelitis. Myelin-associated glycoprotein (MAG), a member of the sialic acid (SA)-binding immunoglobulin-like lectin family, is mainly expressed in neural tissues. VZV glycoprotein B (gB) associates with MAG and mediates membrane fusion during VZV entry into host cells. The SA requirements of MAG when associating with its ligands vary depending on the specific ligand, but it is unclear whether the SAs on gB are involved in the association with MAG. In this study, we found that SAs on gB are essential for the association with MAG as well as for membrane fusion during VZV infection. MAG with a point mutation in the SA-binding site did not bind to gB and did not mediate cell-cell fusion or VZV entry. Cell-cell fusion and VZV entry mediated by the gB-MAG interaction were blocked by sialidase treatment. N-glycosylation or O-glycosylation inhibitors also inhibited the fusion and entry mediated by gB-MAG interaction. Furthermore, gB with mutations in N-glycosylation sites, i.e. asparagine residues 557 and 686, did not associate with MAG, and the cell-cell fusion efficiency was low. Fusion between the viral envelope and cellular membrane is essential for host cell entry by herpesviruses. Therefore, these results suggest that SAs on gB play important roles in MAG-mediated VZV infection.

  11. Cell wall proteomic of Brachypodium distachyon grains: A focus on cell wall remodeling proteins.

    PubMed

    Francin-Allami, Mathilde; Merah, Kahina; Albenne, Cécile; Rogniaux, Hélène; Pavlovic, Marija; Lollier, Virginie; Sibout, Richard; Guillon, Fabienne; Jamet, Elisabeth; Larré, Colette

    2015-07-01

    Cell walls play key roles during plant development. Following their deposition into the cell wall, polysaccharides are continually remodeled according to the growth stage and stress environment to accommodate cell growth and differentiation. To date, little is known concerning the enzymes involved in cell wall remodeling, especially in gramineous and particularly in the grain during development. Here, we investigated the cell wall proteome of the grain of Brachypodium distachyon. This plant is a suitable model for temperate cereal crops. Among the 601 proteins identified, 299 were predicted to be secreted. These proteins were distributed into eight functional classes; the class of proteins that act on carbohydrates was the most highly represented. Among these proteins, numerous glycoside hydrolases were found. Expansins and peroxidases, which are assumed to be involved in cell wall polysaccharide remodeling, were also identified. Approximately half of the proteins identified in this study were newly discovered in grain and were not identified in the previous proteome analysis conducted using the culms and leaves of B. distachyon. Therefore, the data obtained from all organs of B. distachyon infer a global cell wall proteome consisting of 460 proteins. At present, this is the most extensive cell wall proteome of a monocot species.

  12. Cellular Immune Responses in Guinea Pigs Immunized with Cell Walls of Histoplasma capsulatum Prepared by Several Different Procedures

    PubMed Central

    Domer, Judith E.; Ichinose, H.

    1977-01-01

    Since guinea pigs immunized with water-washed cell walls of Histoplasma capsulatum developed cellular immune responses detectable with cytoplasmic substances, attempts were made to determine whether cytoplasmic contamination of the walls was responsible for the induction of the immune response. Cell walls were treated by several procedures designed to remove possible contamination, namely, extraction with lipid solvents, incubation with proteolytic enzymes, and washing with sodium dodecyl sulfate, and each of the treated preparations was compared with water-washed walls for its ability to induce cellular responses demonstrable with cytoplasmic substances. For comparison, wall glycoprotein was also used as a test antigen. Immune responses were assessed by gross and histological examinations of skin test sites and by assays for the production of migration inhibition factor. A portion of the material inducing the response detectable with cytoplasmic substances was apparently removed or altered by each of the purifying procedures. The cellular immune responses to wall glycoprotein were also altered, however, indicating that more than the mere removal of cytoplasmic substances had occurred. On the basis of the data collected from each of the cellular assays involving wall glycoprotein as the test antigen, the hypothesis is proposed that sodium dodecyl sulfate altered or removed protein from the wall and thus augmented its ability to induce a more intense immediate-type hypersensitivity, whereas incubation with Pronase altered the walls in such a way as to shift the balance toward a more intense delayed-type hypersensitivity. The latter effect was probably due to the removal of carbohydrate from the wall by glucanase or to mannosidase contaminating the Pronase preparation. Images PMID:326673

  13. Roles of membrane trafficking in plant cell wall dynamics

    PubMed Central

    Ebine, Kazuo; Ueda, Takashi

    2015-01-01

    The cell wall is one of the characteristic components of plant cells. The cell wall composition differs among cell types and is modified in response to various environmental conditions. To properly generate and modify the cell wall, many proteins are transported to the plasma membrane or extracellular space through membrane trafficking, which is one of the key protein transport mechanisms in eukaryotic cells. Given the diverse composition and functions of the cell wall in plants, the transport of the cell wall components and proteins that are involved in cell wall-related events could be specialized for each cell type, i.e., the machinery for cell wall biogenesis, modification, and maintenance could be transported via different trafficking pathways. In this review, we summarize the recent progress in the current understanding of the roles and mechanisms of membrane trafficking in plant cells and focus on the biogenesis and regulation of the cell wall. PMID:26539200

  14. Reconstitution of a secondary cell wall in a secondary cell wall-deficient Arabidopsis mutant.

    PubMed

    Sakamoto, Shingo; Mitsuda, Nobutaka

    2015-02-01

    The secondary cell wall constitutes a rigid frame of cells in plant tissues where rigidity is required. Deposition of the secondary cell wall in fiber cells contributes to the production of wood in woody plants. The secondary cell wall is assembled through co-operative activities of many enzymes, and their gene expression is precisely regulated by a pyramidal cascade of transcription factors. Deposition of a transmuted secondary cell wall in empty fiber cells by expressing selected gene(s) in this cascade has not been attempted previously. In this proof-of-concept study, we expressed chimeric activators of 24 transcription factors that are preferentially expressed in the stem, in empty fiber cells of the Arabidopsis nst1-1 nst3-1 double mutant, which lacks a secondary cell wall in fiber cells, under the control of the NST3 promoter. The chimeric activators of MYB46, SND2 and ANAC075, as well as NST3, reconstituted a secondary cell wall with different characteristics from those of the wild type in terms of its composition. The transgenic lines expressing the SND2 or ANAC075 chimeric activator showed increased glucose and xylose, and lower lignin content, whereas the transgenic line expressing the MYB46 chimeric activator showed increased mannose content. The expression profile of downstream genes in each transgenic line was also different from that of the wild type. This study proposed a new screening strategy to identify factors of secondary wall formation and also suggested the potential of the artificially reconstituted secondary cell walls as a novel raw material for production of bioethanol and other chemicals. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  15. Reconstitution of a Secondary Cell Wall in a Secondary Cell Wall-Deficient Arabidopsis Mutant

    PubMed Central

    Sakamoto, Shingo; Mitsuda, Nobutaka

    2015-01-01

    The secondary cell wall constitutes a rigid frame of cells in plant tissues where rigidity is required. Deposition of the secondary cell wall in fiber cells contributes to the production of wood in woody plants. The secondary cell wall is assembled through co-operative activities of many enzymes, and their gene expression is precisely regulated by a pyramidal cascade of transcription factors. Deposition of a transmuted secondary cell wall in empty fiber cells by expressing selected gene(s) in this cascade has not been attempted previously. In this proof-of-concept study, we expressed chimeric activators of 24 transcription factors that are preferentially expressed in the stem, in empty fiber cells of the Arabidopsis nst1-1 nst3-1 double mutant, which lacks a secondary cell wall in fiber cells, under the control of the NST3 promoter. The chimeric activators of MYB46, SND2 and ANAC075, as well as NST3, reconstituted a secondary cell wall with different characteristics from those of the wild type in terms of its composition. The transgenic lines expressing the SND2 or ANAC075 chimeric activator showed increased glucose and xylose, and lower lignin content, whereas the transgenic line expressing the MYB46 chimeric activator showed increased mannose content. The expression profile of downstream genes in each transgenic line was also different from that of the wild type. This study proposed a new screening strategy to identify factors of secondary wall formation and also suggested the potential of the artificially reconstituted secondary cell walls as a novel raw material for production of bioethanol and other chemicals. PMID:25535195

  16. Glycosylation Engineering of Glycoproteins

    NASA Astrophysics Data System (ADS)

    Sadamoto, Reiko; Nishimura, Shin-Ichiro

    Naturally occurring glycosylation of glycoproteins varies in glycosylation site and in the number and structure of glycans. The engineering of well-defined glycoproteins is an important technology for the preparation of pharmaceutically relevant glycoproteins and in the study of the relationship between glycans and proteins on a structure-function level. In pharmaceutical applications of glycoproteins, the presence of terminal sialic acids on glycans is particularly important for the in vivo circulatory half life, since sialic acid-terminated glycans are not recognized by asialoglycoprotein receptors. Therefore, there have been a number of attempts to control or modify cellular metabolism toward the expression of glycoproteins with glycosylation profiles similar to that of human glycoproteins. In this chapter, recent methods for glycoprotein engineering in various cell culture systems (mammalian cells, plant, yeast, and E. coli) and advances in the chemical approach to glycoprotein formation are described.

  17. The most abundant glycoprotein of amebic cyst walls (Jacob) is a lectin with five Cys-rich, chitin-binding domains.

    PubMed

    Frisardi, M; Ghosh, S K; Field, J; Van Dellen, K; Rogers, R; Robbins, P; Samuelson, J

    2000-07-01

    The infectious stage of amebae is the chitin-walled cyst, which is resistant to stomach acids. In this study an extraordinarily abundant, encystation-specific glycoprotein (Jacob) was identified on two-dimensional protein gels of cyst walls purified from Entamoeba invadens. Jacob, which was acidic and had an apparent molecular mass of approximately 100 kDa, contained sugars that bound to concanavalin A and ricin. The jacob gene encoded a 45-kDa protein with a ladder-like series of five Cys-rich domains. These Cys-rich domains were reminiscent of but not homologous to the Cys-rich chitin-binding domains of insect chitinases and peritrophic matrix proteins that surround the food bolus in the insect gut. Jacob bound purified chitin and chitin remaining in sodium dodecyl sulfate-treated cyst walls. Conversely, the E. histolytica plasma membrane Gal/GalNAc lectin bound sugars of intact cyst walls and purified Jacob. In the presence of galactose, E. invadens formed wall-less cysts, which were quadranucleate and contained Jacob and chitinase (another encystation-specific protein) in secretory vesicles. A galactose lectin was found to be present on the surface of wall-less cysts, which phagocytosed bacteria and mucin-coated beads. These results suggest that the E. invadens cyst wall forms when the plasma membrane galactose lectin binds sugars on Jacob, which in turn binds chitin via its five chitin-binding domains.

  18. Extracellular Vesicle-Associated Transitory Cell Wall Components and Their Impact on the Interaction of Fungi with Host Cells.

    PubMed

    Nimrichter, Leonardo; de Souza, Marcio M; Del Poeta, Maurizio; Nosanchuk, Joshua D; Joffe, Luna; Tavares, Patricia de M; Rodrigues, Marcio L

    2016-01-01

    Classic cell wall components of fungi comprise the polysaccharides glucans and chitin, in association with glycoproteins and pigments. During the last decade, however, system biology approaches clearly demonstrated that the composition of fungal cell walls include atypical molecules historically associated with intracellular or membrane locations. Elucidation of mechanisms by which many fungal molecules are exported to the extracellular space suggested that these atypical components are transitorily located to the cell wall. The presence of extracellular vesicles (EVs) at the fungal cell wall and in culture supernatants of distinct pathogenic species suggested a highly functional mechanism of molecular export in these organisms. Thus, the passage of EVs through fungal cell walls suggests remarkable molecular diversity and, consequently, a potentially variable influence on the host antifungal response. On the basis of information derived from the proteomic characterization of fungal EVs from the yeasts Cryptoccocus neoformans and Candida albicans and the dimorphic fungi Histoplasma capsulatum and Paracoccidioides brasiliensis, our manuscript is focused on the clear view that the fungal cell wall is much more complex than previously thought.

  19. Extracellular Vesicle-Associated Transitory Cell Wall Components and Their Impact on the Interaction of Fungi with Host Cells

    PubMed Central

    Nimrichter, Leonardo; de Souza, Marcio M.; Del Poeta, Maurizio; Nosanchuk, Joshua D.; Joffe, Luna; Tavares, Patricia de M.; Rodrigues, Marcio L.

    2016-01-01

    Classic cell wall components of fungi comprise the polysaccharides glucans and chitin, in association with glycoproteins and pigments. During the last decade, however, system biology approaches clearly demonstrated that the composition of fungal cell walls include atypical molecules historically associated with intracellular or membrane locations. Elucidation of mechanisms by which many fungal molecules are exported to the extracellular space suggested that these atypical components are transitorily located to the cell wall. The presence of extracellular vesicles (EVs) at the fungal cell wall and in culture supernatants of distinct pathogenic species suggested a highly functional mechanism of molecular export in these organisms. Thus, the passage of EVs through fungal cell walls suggests remarkable molecular diversity and, consequently, a potentially variable influence on the host antifungal response. On the basis of information derived from the proteomic characterization of fungal EVs from the yeasts Cryptoccocus neoformans and Candida albicans and the dimorphic fungi Histoplasma capsulatum and Paracoccidioides brasiliensis, our manuscript is focused on the clear view that the fungal cell wall is much more complex than previously thought. PMID:27458437

  20. A novel baculovirus vector for the production of nonfucosylated recombinant glycoproteins in insect cells.

    PubMed

    Mabashi-Asazuma, Hideaki; Kuo, Chu-Wei; Khoo, Kay-Hooi; Jarvis, Donald L

    2014-03-01

    Glycosylation is an important attribute of baculovirus-insect cell expression systems, but some insect cell lines produce core α1,3-fucosylated N-glycans, which are highly immunogenic and render recombinant glycoproteins unsuitable for human use. To address this problem, we exploited a bacterial enzyme, guanosine-5'-diphospho (GDP)-4-dehydro-6-deoxy-d-mannose reductase (Rmd), which consumes the GDP-l-fucose precursor. We expected this enzyme to block glycoprotein fucosylation by blocking the production of GDP-l-fucose, the donor substrate required for this process. Initially, we engineered two different insect cell lines to constitutively express Rmd and isolated subclones with fucosylation-negative phenotypes. However, we found the fucosylation-negative phenotypes induced by Rmd expression were unstable, indicating that this host cell engineering approach is ineffective in insect systems. Thus, we constructed a baculovirus vector designed to express Rmd immediately after infection and facilitate the insertion of genes encoding any glycoprotein of interest for expression later after infection. We used this vector to produce a daughter encoding rituximab and found, in contrast to an Rmd-negative control, that insect cells infected with this virus produced a nonfucosylated form of this therapeutic antibody. These results indicate that our Rmd(+) baculoviral vector can be used to solve the immunogenic core α1,3-fucosylation problem associated with the baculovirus-insect cell system. In conjunction with existing glycoengineered insect cell lines, this vector extends the utility of the baculovirus-insect cell system to include therapeutic glycoprotein production. This new vector also extends the utility of the baculovirus-insect cell system to include the production of recombinant antibodies with enhanced effector functions, due to its ability to block core α1,6-fucosylation.

  1. Characterization of the Sclerotinia sclerotiorum cell wall proteome.

    PubMed

    Liu, Longzhou; Free, Stephen J

    2016-08-01

    We used a proteomic analysis to identify cell wall proteins released from Sclerotinia sclerotiorum hyphal and sclerotial cell walls via a trifluoromethanesulfonic acid (TFMS) digestion. Cell walls from hyphae grown in Vogel's glucose medium (a synthetic medium lacking plant materials), from hyphae grown in potato dextrose broth and from sclerotia produced on potato dextrose agar were used in the analysis. Under the conditions used, TFMS digests the glycosidic linkages in the cell walls to release intact cell wall proteins. The analysis identified 24 glycosylphosphatidylinositol (GPI)-anchored cell wall proteins and 30 non-GPI-anchored cell wall proteins. We found that the cell walls contained an array of cell wall biosynthetic enzymes similar to those found in the cell walls of other fungi. When comparing the proteins in hyphal cell walls grown in potato dextrose broth with those in hyphal cell walls grown in the absence of plant material, it was found that a core group of cell wall biosynthetic proteins and some proteins associated with pathogenicity (secreted cellulases, pectin lyases, glucosidases and proteases) were expressed in both types of hyphae. The hyphae grown in potato dextrose broth contained a number of additional proteins (laccases, oxalate decarboxylase, peroxidase, polysaccharide deacetylase and several proteins unique to Sclerotinia and Botrytis) that might facilitate growth on a plant host. A comparison of the proteins in the sclerotial cell wall with the proteins in the hyphal cell wall demonstrated that sclerotia formation is not marked by a major shift in the composition of cell wall protein. We found that the S. sclerotiorum cell walls contained 11 cell wall proteins that were encoded only in Sclerotinia and Botrytis genomes. © 2015 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  2. Glycoconjugates and polysaccharides of fungal cell wall and activation of immune system

    PubMed Central

    Pinto, M.R.; Barreto-Bergter, E.; Taborda, C.P.

    2008-01-01

    Glycoproteins, glycosphingolipids and polysaccharides exposed at the most external layers of the wall are involved in several types of interactions of fungal cells with the exocellular environment. These molecules are fundamental building blocks of organisms, contributing to the structure, integrity, cell growth, differentiation and signaling. Several of them are immunologically active compounds with potential as regulators of pathogenesis and the immune response of the host. Some of these structures can be specifically recognized by antibodies from patients’ sera, suggesting that they can be also useful in the diagnosis of fungal infections. PMID:24031202

  3. The B-cell lymphoma 2 (BCL2)-inhibitors, ABT-737 and ABT-263, are substrates for P-glycoprotein

    SciTech Connect

    Vogler, Meike; Dickens, David; Dyer, Martin J.S.; Owen, Andrew; Pirmohamed, Munir; Cohen, Gerald M.

    2011-05-06

    Highlights: {yields} The BCL2-inhibitor ABT-263 is a substrate for P-glycoprotein. {yields} Apoptosis is inhibited by P-glycoprotein expression. {yields} Overexpression of P-glycoprotein may contribute to resistance to ABT-263 or ABT-737. -- Abstract: Inhibition of BCL2 proteins is one of the most promising new approaches to targeted cancer therapy resulting in the induction of apoptosis. Amongst the most specific BCL2-inhibitors identified are ABT-737 and ABT-263. However, targeted therapy is often only effective for a limited amount of time because of the occurrence of drug resistance. In this study, the interaction of BCL2-inhibitors with the drug efflux transporter P-glycoprotein was investigated. Using {sup 3}H labelled ABT-263, we found that cells with high P-glycoprotein activity accumulated less drug. In addition, cells with increased P-glycoprotein expression were more resistant to apoptosis induced by either ABT-737 or ABT-263. Addition of tariquidar or verapamil sensitized the cells to BCL2-inhibitor treatment, resulting in higher apoptosis. Our data suggest that the BCL2-inhibitors ABT-737 and ABT-263 are substrates for P-glycoprotein. Over-expression of P-glycoprotein may be, at least partly, responsible for resistance to these BCL2-inhibitors.

  4. Cell Wall Heterogeneity in Root Development of Arabidopsis

    PubMed Central

    Somssich, Marc; Khan, Ghazanfar Abbas; Persson, Staffan

    2016-01-01

    Plant cell walls provide stability and protection to plant cells. During growth and development the composition of cell walls changes, but provides enough strength to withstand the turgor of the cells. Hence, cell walls are highly flexible and diverse in nature. These characteristics are important during root growth, as plant roots consist of radial patterns of cells that have diverse functions and that are at different developmental stages along the growth axis. Young stem cell daughters undergo a series of rapid cell divisions, during which new cell walls are formed that are highly dynamic, and that support rapid anisotropic cell expansion. Once the cells have differentiated, the walls of specific cell types need to comply with and support different cell functions. For example, a newly formed root hair needs to be able to break through the surrounding soil, while endodermal cells modify their walls at distinct positions to form Casparian strips between them. Hence, the cell walls are modified and rebuilt while cells transit through different developmental stages. In addition, the cell walls of roots readjust to their environment to support growth and to maximize nutrient uptake. Many of these modifications are likely driven by different developmental and stress signaling pathways. However, our understanding of how such pathways affect cell wall modifications and what enzymes are involved remain largely unknown. In this review we aim to compile data linking cell wall content and re-modeling to developmental stages of root cells, and dissect how root cell walls respond to certain environmental changes. PMID:27582757

  5. In vivo and in virto cellular responses to cytoplasmic and cell wall antigens of Histoplasma capsulatum in artificially immunized or infected guinea pigs.

    PubMed Central

    Domer, J E

    1976-01-01

    Guinea pigs were infected with different doses of yeasts of Histoplasma capsulatum or artifically immunized with several concentrations of unextracted yeast cell walls, and then tested in vivo and in vitro for cell-mediated responses to various subcellular fractions of the fungus. Three types of cell-mediated responses were measured, viz., skin test activity, production of migration inhibition factor, and lymphocyte transformation. Positive cutaneous reactions were elicited in animals immunized with 100 or 1,000 mug of cell walls when such animals were skin-tested with cell wall glycoprotein of soluble cytoplasmic substances, whereas animals immunized with 2,000 mug of cell walls did not react significantly greater than unsensitized animals when skin-tested with the same antigens. Histoplasmin did not elicit cutaneous sensitivity in guinea pigs infected with the smallest inoculum, 6 X 10(5) yeast cells, or in animals immunized with cell walls, regardless of the concentration of cell walls used as immunogen. However, hypersensitivity to H. capsulatum could be detected with cytoplasmic substances in animals infected with 6X 10(5). In guinea pigs infected with larger doses, i.e., 10 X 10(7), 15 X10(7), or 20 X 10(7), hypersensitivity could be detected with histoplasmin, cell wall glycoprotein, a ribosome-rich fraction, and soluble cytoplasmic substances. Both cell wall glycoprotein and soluble cytoplasmic substances were functional in migration inhibition factor assays with peritoneal exudate cells from animals immunized with 100 or 1,000 mug of cell walls. The transformation of lymphocytes from infected and artificially immunized guinea pigs in the presence of cell wall glycoprotein and soluble cytoplasmic substances was variable and unpredictable, the lymphocytes from some animls within a given group transforming and those from other animals showing no evidence of stimulation. Moreover, the level of stimulation could not be correlated with the degree of dermal

  6. Pachytene spermatocyte protein(s) stimulate Sertoli cells grown in bicameral chambers: dose-dependent secretion of ceruloplasmin, sulfated glycoprotein-1, sulfated glycoprotein-2, and transferrin.

    PubMed

    Onoda, M; Djakiew, D

    1991-03-01

    Interactions between pachytene spermatocytes and Sertoli cells were investigated using the bicameral culture chamber system. Pachytene spermatocytes were isolated from adult rats with a purity in excess of 90% by centrifugal elutriation. The pachytene spermatocytes were cultured in a defined media and pachytene spermatocyte protein prepared from the conditioned media by dialysis and lyophilization. This pachytene spermatocyte protein was reconstituted at various concentrations and incubated with confluent epithelial sheets of immature Sertoli cells cultured in bicameral chambers. Pachytene spermatocyte protein stimulated secretion of total [35S]methionine-labeled protein from Sertoli cells in a dose-dependent manner predominantly in an apical direction. This stimulatory effect of pachytene spermatocyte protein was domain specific from the apical surface of Sertoli cells, and seemed specific for secretion because total intracellular protein did not increase under the influence of pachytene spermatocyte protein. Pachytene spermatocyte protein and follicle-stimulating hormone additively stimulated Sertoli cell secretion. The physicochemical characteristics of the stimulatory pachytene spermatocyte protein are indicative of heat stability, whereas the stimulatory pachytene spermatocyte protein exhibit acid, dithiothreitol and trypsin sensitivity, and partial urea sensitivity. Furthermore, Sertoli cell secretion of ceruloplasmin, sulfated glycoprotein-1, sulfated glycoprotein-2, and transferrin in response to various concentrations of pachytene spermatocyte protein were determined by immunoprecipitate of these [35S]methionine-labeled proteins with polyclonal antibodies. Maximal stimulation of ceruloplasmin and sulfated glycoprotein-1 secretion from Sertoli cells was observed at a dose of 50 micrograms/ml pachytene spermatocyte protein, whereas maximal stimulation of sulfated glycoprotein-2 and transferrin secretion from Sertoli cells was observed at a dose of 100

  7. CELL WALL VARIABILITY IN THE GREEN SEAWEED CODIUM VERMILARA (BRYOPSIDALES CHLOROPHYTA) FROM THE ARGENTINE COAST(1).

    PubMed

    Fernández, Paula V; Ciancia, Marina; Estevez, José Manuel

    2011-08-01

    Cell wall chemistry in the coencocytic green seaweed Codium vermilara (Olivi) Delle Chiaje (Bryopsidales, Chlorophyta) is well understood. These cell walls are composed of major amounts of neutral β-(1→4)-D-mannans (Mn), sulfated polysaccharides (SPs), which include pyranosic arabinan sulfates (ArpS), pyruvylated galactan sulfates (pGaS), and mannan sulfates (MnS); also minor amounts of O-glycoproteins are present. In this study, cell wall samples of C. vermilara were investigated with regard to their monosaccharide composition and infrared spectra (using Fourier transform infrared spectroscopy coupled to principal component [FTIR-PC] analysis). Samples from three different populations of C. vermilara from the Argentine coast showed: (i) an important variation in the relative arabinan content, which increases from north to south, and (ii) a measurable degree of cell wall variability in the sulfate distribution between the different sulfated polysaccharides, independent of the amount of each polysaccharide present and of total sulfate content. When cell wall composition was analyzed over three consecutive years in a single geographic location, the quantity of Mn and overall sulfate content on SPs remained constant, whereas the pGaS:ArpS molar ratio changed over the time. Besides, similar cell wall composition was found between actively growing and resting zones of the thallus, suggesting that cell wall composition is independent of growth stage and development. Overall, these results suggest that C. vermilara has developed a mechanism to adjust the total level of cell wall sulfation by modulating the ArpS:pGaS:MnS molar ratio and also by adjusting the sulfation level in each type of polymer, whereas nonsulfated Mn, as the main structural polysaccharide, did not change over the time or growing stage.

  8. Glucocorticoid-regulated localization of cell surface glycoproteins in rat hepatoma cells is mediated within the Golgi complex

    PubMed Central

    1988-01-01

    Glucocorticoid hormones regulate the post-translational maturation and sorting of cell surface and extracellular mouse mammary tumor virus (MMTV) glycoproteins in M1.54 cells, a stably infected rat hepatoma cell line. Exposure to monensin significantly reduced the proteolytic maturation and externalization of viral glycoproteins resulting in a stable cellular accumulation of a single 70,000-Mr glycosylated polyprotein (designated gp70). Cell surface- and intracellular-specific immunoprecipitations of monensin-treated cells revealed that gp70 can be localized to the cell surface only in the presence of 1 microM dexamethasone, while in uninduced cells gp70 is irreversibly sequestered in an intracellular compartment. Analysis of oligosaccharide processing kinetics demonstrated that gp70 acquired resistance to endoglycosidase H with a half-time of 65 min in the presence or absence of hormone. In contrast, gp70 was inefficiently galactosylated after a 60-min lag in uninduced cells while rapidly acquiring this carbohydrate modification in the presence of dexamethasone. Furthermore, in the absence or presence of monensin, MMTV glycoproteins failed to be galactosylated in hormone-induced CR4 cells, a complement-selected sorting variant defective in the glucocorticoid-regulated compartmentalization of viral glycoproteins to the cell surface. Since dexamethasone had no apparent global effects on organelle morphology or production of total cell surface-galactosylated species, we conclude that glucocorticoids induce the localization of cell surface MMTV glycoproteins by regulating a highly selective step within the Golgi apparatus after the acquisition of endoglycosidase H- resistant oligosaccharide side chains but before or at the site of galactose attachment. PMID:2836430

  9. Cell wall-related proteins of unknown function: missing links in plant cell wall development.

    PubMed

    Mewalal, Ritesh; Mizrachi, Eshchar; Mansfield, Shawn D; Myburg, Alexander A

    2014-06-01

    Lignocellulosic biomass is an important feedstock for the pulp and paper industry as well as emerging biofuel and biomaterial industries. However, the recalcitrance of the secondary cell wall to chemical or enzymatic degradation remains a major hurdle for efficient extraction of economically important biopolymers such as cellulose. It has been estimated that approximately 10-15% of about 27,000 protein-coding genes in the Arabidopsis genome are dedicated to cell wall development; however, only about 130 Arabidopsis genes thus far have experimental evidence validating cell wall function. While many genes have been implicated through co-expression analysis with known genes, a large number are broadly classified as proteins of unknown function (PUFs). Recently the functionality of some of these unknown proteins in cell wall development has been revealed using reverse genetic approaches. Given the large number of cell wall-related PUFs, how do we approach and subsequently prioritize the investigation of such unknown genes that may be essential to or influence plant cell wall development and structure? Here, we address the aforementioned question in two parts; we first identify the different kinds of PUFs based on known and predicted features such as protein domains. Knowledge of inherent features of PUFs may allow for functional inference and a concomitant link to biological context. Secondly, we discuss omics-based technologies and approaches that are helping identify and prioritize cell wall-related PUFs by functional association. In this way, hypothesis-driven experiments can be designed for functional elucidation of many proteins that remain missing links in our understanding of plant cell wall biosynthesis. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Measuring in-vitro extensibility of growth plant cell walls

    SciTech Connect

    Cosgrove, Daniel

    2011-01-01

    This article summarizes the theory and practical aspects of measuring cell wall properties by four different extensometer techniques and how the results of these methods relate to the concept and ideal measurement of cell wall extensibility in the context of cell growth. These in vivo techniques are particularly useful for studies of the molecular basis of cell wall extension. Measurements of breaking strength, elastic compliance, and plastic compliance may be informative about changes in cell wall structure, whereas measurements of wall stress relaxation and creep are sensitive to both changes in wall structure and wall-loosening processes, such as those mediated by expansins and some lytic enzymes. A combination of methods is needed to obtain a broader view of cell wall behavior and properties connected with the concept of cell wall extensibility.

  11. Measuring in vitro extensibility of growing plant cell walls.

    PubMed

    Cosgrove, Daniel J

    2011-01-01

    This article summarizes the theory and practical aspects of measuring cell wall properties by four different extensometer techniques and how the results of these methods relate to the concept and ideal measurement of cell wall extensibility in the context of cell growth. These in vivo techniques are particularly useful for studies of the molecular basis of cell wall extension. Measurements of breaking strength, elastic compliance, and plastic compliance may be informative about changes in cell wall structure, whereas measurements of wall stress relaxation and creep are sensitive to both changes in wall structure and wall-loosening processes, such as those mediated by expansins and some lytic enzymes. A combination of methods is needed to obtain a broader view of cell wall behavior and properties connected with the concept of cell wall extensibility.

  12. Infection with Listeria monocytogenes impairs sialic acid addition to host cell glycoproteins

    PubMed Central

    1994-01-01

    Listeria monocytogenes is a facultative intracellular bacterium that causes severe disease in neonates and immunocompromised adults. Although entry, multiplication, and locomotion of Listeria in the cytosol of infected cells are well described, the impact of such infection on the host cell is unknown. In this report, we investigate the effect of L. monocytogenes infection on MHC class I synthesis, processing, and intracellular trafficking. We show that L. monocytogenes infection interferes with normal processing of N-linked oligosaccharides on the major histocompatibility complex (MHC) class I heavy chain molecule, H-2Kd, resulting in a reduced sialic acid content. The glycosylation defect is more pronounced as the infection progresses and results from interference with the addition of sialic acid rather than its removal by a neuraminidase. The effect is found in two different cell lines and is not limited to MHC class I molecules since CD45, a surface glycoprotein, and LGP120, a lysosomal glycoprotein, are similarly affected by L. monocytogenes infection. The glycosylation defect is specific for infection by L. monocytogenes since neither Trypanosoma cruzi nor Yersinia enterocolitica, two other intracellular pathogens, reproduces the effect. The resultant hyposialylation of H-2Kd does not impair its surface expression in infected cells. Diminished sialic acid content of surface glycoproteins may enhance host-defense by increasing susceptibility to lysis and promoting clearance of Listeria-infected cells. PMID:7964488

  13. Cell wall proteome of pathogenic fungi.

    PubMed

    Karkowska-Kuleta, Justyna; Kozik, Andrzej

    2015-01-01

    A fast development of a wide variety of proteomic techniques supported by mass spectrometry coupled with high performance liquid chromatography has been observed in recent years. It significantly contributes to the progress in research on the cell wall, very important part of the cells of pathogenic fungi. This complicated structure composed of different polysaccharides, proteins, lipids and melanin, plays a key role in interactions with the host during infection. Changes in the set of the surface-exposed proteins under different environmental conditions provide an effective way for pathogens to respond, adapt and survive in the new niches of infection. This work summarizes the current state of knowledge on proteins, studied both qualitatively and quantitatively, and found within the cell wall of fungal pathogens for humans, including Candida albicans, Candida glabrata, Aspergillus fumigatus, Cryptococcus neoformans and other medically important fungi. The described proteomic studies involved the isolation and fractionation of particular sets of proteins of interest with various techniques, often based on differences in their linkages to the polysaccharide scaffold. Furthermore, the proteinaceous contents of extracellular vesicles ("virulence bags") of C. albicans, C. neoformans, Histoplasma capsulatum and Paracoccidioides brasiliensis are compared, because their production can partially explain the problem of non-classical protein secretion by fungi. The role assigned to surface-exposed proteins in pathogenesis of fungal infections is enormously high, thus justifying the need for further investigation of cell wall proteomes.

  14. Celery (Apium graveolens) parenchyma cell walls: cell walls with minimal xyloglucan.

    PubMed

    Thimm, Julian C.; Burritt, David J.; Sims, Ian M.; Newman, Roger H.; Ducker, William A.; Melton, Laurence D.

    2002-10-01

    The primary walls of celery (Apium graveolens L.) parenchyma cells were isolated and their polysaccharide components characterized by glycosyl linkage analysis, cross-polarization magic-angle spinning solid-state 13C nuclear magnetic resonance (CP/MAS 13C NMR) and X-ray diffraction. Glycosyl linkage analysis showed that the cell walls consisted of mainly cellulose (43 mol%) and pectic polysaccharides (51 mol%), comprising rhamnogalacturonan (28 mol%), arabinan (12 mol%) and galactan (11 mol%). The amounts of xyloglucan (2 mol%) and xylan (2 mol%) detected in the cell walls were strikingly low. The small amount of xyloglucan present means that it cannot coat the cellulose microfibrils. Solid-state 13C NMR signals were consistent with the constituents identified by glycosyl linkage analysis and allowed the walls to be divided into three domains, based on the rigidity of the polymers. Cellulose (rigid) and rhamnogalacturonan (semi-mobile) polymers responded to the CP/MAS 13C NMR pulse sequence and were distinguished by differences in proton spin relaxation time constants. The arabinans, the most mobile polymers, responded to single-pulse excitation (SPE), but not CP/MAS 13C NMR. From solid-state 13C NMR of the cell walls the diameter of the crystalline cellulose microfibrils was determined to be approximately 3 nm while X-ray diffraction of the cell walls gave a value for the diameter of approximately 2 nm.

  15. Suppression of Arabidopsis peroxidase 72 alters cell wall and phenylpropanoid metabolism.

    PubMed

    Fernández-Pérez, Francisco; Pomar, Federico; Pedreño, María A; Novo-Uzal, Esther

    2015-10-01

    Class III peroxidases are glycoproteins with a major role in cell wall maturation such as lignin formation. Peroxidases are usually present in a high number of isoenzymes, which complicates to assign specific functions to individual peroxidase isoenzymes. Arabidopsis genome encodes for 73 peroxidases, among which AtPrx72 has been shown to participate in lignification. Here, we report by using knock out peroxidase mutants how the disruption of AtPrx72 causes thinner secondary walls in interfascicular fibres but not in the xylem of the stem. This effect is also age-dependent, and AtPrx72 function seems to be particularly important when lignification prevails over elongation processes. Finally, the suppression AtPrx72 leads to the down-regulation of lignin biosynthesis pathway, as well as genes and transcription factors involved in secondary wall thickening.

  16. Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry.

    PubMed

    Pasquier, Jennifer; Rioult, Damien; Abu-Kaoud, Nadine; Hoarau-Véchot, Jessica; Marin, Matthieu; Le Foll, Frank

    2015-06-24

    The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD) where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp). The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading), we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation.

  17. Cell Surface Proteomics of N-Linked Glycoproteins for Typing of Human Lymphocytes.

    PubMed

    Haverland, Nicole A; Waas, Matthew; Ntai, Ioanna; Keppel, Theodore; Gundry, Rebekah L; Kelleher, Neil L

    2017-08-18

    Lymphocytes are immune cells that are critical for the maintenance of adaptive immunity. Differentiation of lymphoid progenitors yields B-, T-, and NK-cell subtypes that individually correlate with specific forms of leukemia or lymphoma. Therefore, it is imperative a precise method of cell categorization is utilized to detect differences in distinct disease states present in patients. One viable means of classification involves evaluation of the cell surface proteome of lymphoid malignancies. Specifically, this manuscript details the use of an antibody independent approach known as Cell Surface Capture Technology, to assess N-glycoproteome of four human lymphocyte cell lines. Altogether, 404 cell surface N-glycoproteins as markers for specific cell types involved in lymphocytic malignancies, including 82 N-glycoproteins that had not been previously been described for B- or T-cells within the Cell Surface Protein Atlas. Comparative analysis, hierarchical clustering techniques, and label free quantitation was used to reveal proteins most informative for each cell type. Undoubtedly, the characterization of the cell surface proteome of lymphoid malignancies is a first step towards improving personalized diagnosis and treatment of leukemia and lymphoma. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry

    PubMed Central

    Pasquier, Jennifer; Rioult, Damien; Abu-Kaoud, Nadine; Hoarau-Véchot, Jessica; Marin, Matthieu; Le Foll, Frank

    2015-01-01

    The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD) where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp). The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading), we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation. PMID:26114386

  19. In vitro enhancement of human natural cell-mediated cytotoxicity by purified influenza virus glycoproteins.

    PubMed Central

    Arora, D J; Houde, M; Justewicz, D M; Mandeville, R

    1984-01-01

    The role of the glycoproteins of influenza virus, hemagglutinin (HA), and neuraminidase (NA) in the in vitro stimulation of natural cell-mediated cytotoxicity (NCMC) or natural killer activity of human peripheral blood lymphocytes was evaluated with radiolabeled K562 cells as target cells in an overnight chromium release assay. Three different approaches were used. (i) Purified viral proteins were obtained by extraction with Nonidet P-40, separation on a sucrose gradient, and further purification by affinity chromatography. Ficoll-Hypaque-purified peripheral blood lymphocytes exposed to HA or NA individually or to a mixture of both significantly increased NCMC (32 to 50%). (ii) Treatment of HA and NA with their respective homologous antisera or F(ab')2 antibody abrogated the stimulation of NCMC by these glycoproteins. (iii) Virions treated with proteolytic enzymes resulted in viral cores lacking either HA or NA or both activities. Compared to whole virions, viral cores devoid of HA activity only induced a 50% increase in NCMC, whereas viral cores lacking HA activity and with traces of NA activity stimulated only 10% of the NCMC. These results suggest that influenza virus-induced cell-mediated cytotoxicity is largely due to its glycoproteins. PMID:6387178

  20. Migration of vesicular stomatitis virus glycoprotein to the nucleus of infected cells.

    PubMed Central

    Da Poian, A T; Gomes, A M; Oliveira, R J; Silva, J L

    1996-01-01

    A new means of direct visualization of the early events of viral infection by selective fluorescence labeling of viral proteins coupled with digital imaging microscopy is reported. The early phases of viral infection have great importance for understanding viral replication and pathogenesis. Vesicular stomatitis virus, the best-studied rhabdovirus, is composed of an RNA genome of negative sense, five viral proteins, and membrane lipids derived from the host cell. The glycoprotein of vesicular stomatitis virus was labeled with fluorescein isothiocyanate, and the labeled virus was incubated with baby hamster kidney cells. After initiation of infection, the fluorescence of the labeled glycoprotein was first seen inside the cells in endocytic vesicles. The fluorescence progressively migrated to the nucleus of infected cells. After 1 h of infection, the virus glycoprotein was concentrated in the nucleus and could be recovered intact in a preparation of purified nuclei. These results suggest that uncoating of the viral RNA occurs close to the nuclear membrane, which would precede transcription of the leader RNA that enters the nucleus to shut off cellular RNA synthesis and DNA replication. Images Fig. 2 Fig. 3 Fig. 4 Fig. 6 PMID:8710859

  1. Unique glycoprotein-proteoglycan complex defined by monoclonal antibody on human melanoma cells.

    PubMed Central

    Bumol, T F; Reisfeld, R A

    1982-01-01

    A monoclonal antibody, 9.2.27, with a high specificity for human melanoma cell surfaces has been utilized for biosynthetic studies in M21 human melanoma cells to define a unique antigenic complex consisting of a 250-kilodalton N-linked glycoprotein and a high molecular weight proteoglycan component larger than 400 kilodaltons. The 250-kilodalton glycoprotein has endoglycosidase H-sensitive precursors and shows a lower apparent molecular weight after treatment with neuraminidase. The biosynthesis of the proteoglycan component is inhibited by exposure of M21 cells to the monovalent ionophore monensin, this component can be labeled biosynthetically with 35SO4, is sensitive to beta-elimination in dilute base, and is degraded by both chondroitinase AC and ABC lyases, suggesting that it is a chondroitin sulfate proteoglycan. These data demonstrate that the antigenic determinant recognized by monoclonal antibody 9.2.27 is located on a glycoprotein-proteoglycan complex which may have unique implications for the interaction of glycoconjugates at the human melanoma tumor cell surface. Images PMID:6175965

  2. Dynamics of cell wall structure in Saccharomyces cerevisiae.

    PubMed

    Klis, Frans M; Mol, Pieternella; Hellingwerf, Klaas; Brul, Stanley

    2002-08-01

    The cell wall of Saccharomyces cerevisiae is an elastic structure that provides osmotic and physical protection and determines the shape of the cell. The inner layer of the wall is largely responsible for the mechanical strength of the wall and also provides the attachment sites for the proteins that form the outer layer of the wall. Here we find among others the sexual agglutinins and the flocculins. The outer protein layer also limits the permeability of the cell wall, thus shielding the plasma membrane from attack by foreign enzymes and membrane-perturbing compounds. The main features of the molecular organization of the yeast cell wall are now known. Importantly, the molecular composition and organization of the cell wall may vary considerably. For example, the incorporation of many cell wall proteins is temporally and spatially controlled and depends strongly on environmental conditions. Similarly, the formation of specific cell wall protein-polysaccharide complexes is strongly affected by external conditions. This points to a tight regulation of cell wall construction. Indeed, all five mitogen-activated protein kinase pathways in bakers' yeast affect the cell wall, and additional cell wall-related signaling routes have been identified. Finally, some potential targets for new antifungal compounds related to cell wall construction are discussed.

  3. Migration of cochlear lateral wall cells.

    PubMed

    Dunaway, George; Mhaskar, Yashanad; Armour, Gary; Whitworth, Craig; Rybak, Leonard

    2003-03-01

    The role of apoptosis and proliferation in maintenance of cochlear lateral wall cells was examined. The methods employed for detection of apoptosis were the Hoechst fluorescence stain and TUNEL (TdT-mediated dUTP-biotin nick-end-labeling) assay, and proliferations were 5-bromo-2'-deoxyuridine (BrdU) incorporation and presence of the proliferating cell nuclear antigen. The incidence of apoptosis in the strial marginal cell was 50% greater (32.9+/-3.7%) than strial intermediate and basal cells but similar to spiral ligament cells. Although division of marginal strial cells was rarely detected, a significant number of proliferating cells in the remaining stria vascularis and spiral ligament were observed. These data implied that replacement of marginal cells arose elsewhere and could be followed by a BrdU-deoxythymidine pulse-chase study. At 2 h post injection, nuclear BrdU in marginal cells was not detected; however, by 24 h post injection, 20-25% of marginal cell nuclei were BrdU-positive. These observations are consistent with the hypothesis that marginal cells were replaced by underlying cells. Cell migration appears to be an important mechanism for preserving the function and structure of the stria vascularis.

  4. Humoral immune response to the entire human immunodeficiency virus envelope glycoprotein made in insect cells

    SciTech Connect

    Rusche, J.R.; Lynn, D.L.; Robert-Guroff, M.; Langlois, A.J.; Lyerly, H.K.; Carson, H.; Krohn, K.; Ranki, A.; Gallo, R.C.; Bolognesi, D.P.; Putney, S.D.

    1987-10-01

    The human immunodeficiency virus envelope gene was expressed in insect cells by using a Baculovirus expression vector. The protein has an apparent molecular mass of 160 kDa, appears on the surface of infected insect cells, and does not appear to be cleaved to glycoproteins gp120 and gp41. Goats immunized with the 160-kDa protein have high titers of antibody that neutralizes virus infection as measured by viral gene expression or cell cytolysis. In addition, immune sera can block fusion of human immunodeficiency virus-infected cells in culture. Both neutralization and fusion-blocking activities are bound to and eluted from immobilized gp120.

  5. Pregnancy-specific beta-1-glycoprotein (SP1) in cultured amniotic fluid cells.

    PubMed

    Heikinheimo, M; Wahlström, T; Aula, P; Virtanen, I; Seppälä, M

    1980-12-01

    The synthesis of pregnancy-specific beta-1-glycoprotein (SP1) was studied in amniotic fluid cell cultures using RIA, immunoperoxidase, and immunofluorescence techniques. SP1 was found by RIA in all 11 sonicates and in 21 of 26 culture media. The SP1-immunoreactive material was immunologically similar to maternal serum SP1. Immunoperoxidase and indirect immunofluorescence staining were positive in large cells identified as epithelial amniotic cells by labeling with antikeratin antibodies. Fibroblast-like cells were occasionally found in cultures, but they did not contain demonstrable amounts of SP1. The physiological significance of the findings presented remains unclear.

  6. Expression and Purification of E2 Glycoprotein from Insect Cells (Sf9) for Use in Serology.

    PubMed

    Chua, Chong Long; Sam, I-Ching; Chan, Yoke Fun

    2016-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne arbovirus which poses a major threat to global public health. Definitive CHIKV diagnosis is crucial, especially in distinguishing the disease from dengue virus, which co-circulates in endemic areas and shares the same mosquito vectors. Laboratory diagnosis is mainly based on serological or molecular approaches. The E2 glycoprotein is a good candidate for serological diagnosis since it is the immunodominant antigen during the course of infection, and reacts with seropositive CHIKV sera. In this chapter, we describe the generation of stable clone Sf9 (Spodoptera frugiperda) cells expressing secreted, soluble, and native recombinant CHIKV E2 glycoprotein. We use direct plasmid expression in insect cells, rather than the traditional technique of generating recombinant baculovirus. This recombinant protein is useful for serological diagnosis of CHIKV infection.

  7. Revealing the structural and functional diversity of plant cell walls.

    PubMed

    Knox, J Paul

    2008-06-01

    The extensive knowledge of the chemistry of isolated cell wall polymers, and that relating to the identification and partial annotation of gene families involved in their synthesis and modification, is not yet matched by a sophisticated understanding of the occurrence of the polymers within cell walls of the diverse cell types within a growing organ. Currently, the main sets of tools that are used to determine cell-type-specific configurations of cell wall polymers and aspects of cell wall microstructures are antibodies, carbohydrate-binding modules (CBMs) and microspectroscopies. As these tools are applied we see that cell wall polymers are extensively developmentally regulated and that there is a range of structurally distinct primary and secondary cell walls within organs and across species. The challenge now is to document cell wall structures in relation to diverse cell biological events and to integrate this knowledge with the emerging understanding of polymer functions.

  8. Wall relaxation and the driving forces for cell expansive growth

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1987-01-01

    When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.

  9. Wall relaxation and the driving forces for cell expansive growth

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1987-01-01

    When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.

  10. Wall relaxation and the driving forces for cell expansive growth.

    PubMed

    Cosgrove, D J

    1987-01-01

    When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.

  11. Association Mapping of Cell Wall Synthesis Regulatory Genes and Cell Wall Quality in Switchgrass

    SciTech Connect

    Bartley, Laura; Wu, Y.; Zhu, L.; Brummer, E. C.; Saha, M.

    2016-05-31

    Inefficient conversion of biomass to biofuels is one of the main barriers for biofuel production from such materials. Approximately half of polysaccharides in biomass remain unused by typical biochemical conversion methods. Conversion efficiency is influenced by the composition and structure of cell walls of biomass. Grasses such as wheat, maize, and rice, as well as dedicated perennial bioenergy crops, like switchgrass, make up ~55% of biomass that can be produced in the United States. Grass cell walls have a different composition and patterning compared with dicotyledonous plants, including the well-studied model plant, Arabidopsis. This project identified genetic determinants of cell wall composition in grasses using both naturally occurring genetic variation of switchgrass and gene network reconstruction and functional assays in rice. In addition, the project linked functional data in rice and other species to switchgrass improvement efforts through curation of the most abundant class of regulators in the switchgrass genome. Characterizing natural diversity of switchgrass for variation in cell wall composition and properties, also known as quality, provides an unbiased avenue for identifying biologically viable diversity in switchgrass cell walls. To characterizing natural diversity, this project generated cell wall composition and enzymatic deconstruction data for ~450 genotypes of the Switchgrass Southern Association Collection (SSAC), a diverse collection composed of 36 switchgrass accessions from the southern U.S. distribution of switchgrass. Comparing these data with other measures of cell wall quality for the same samples demonstrated the complementary nature of the diverse characterization platforms now being used for biomass characterization. Association of the composition data with ~3.2K single nucleotide variant markers identified six significant single nucleotide variant markers co-associated with digestibility and another compositional trait. These

  12. STREAMLINED METHOD FOR BIOMASS WHOLE-CELL-WALL STRUCTURAL PROFILING

    USDA-ARS?s Scientific Manuscript database

    In wide-ranging research aimed at altering plant cell wall characteristics by conventional breeding or modern genetic methods, one of the biggest problems is in delineating the effects on the cell wall. Plant cell walls are a complex conglomerate of a variety of polysaccharides and lignin. Each comp...

  13. STREAMLINED METHOD FOR BIOMASS WHOLE-CELL-WALL STRUCTURAL PROFILING

    USDA-ARS?s Scientific Manuscript database

    In wide-ranging research aimed at altering plant cell wall characteristics by conventional breeding or modern genetic methods, one of the biggest problems is in delineating the effects on the cell wall. Plant cell walls are a complex conglomerate of a variety of polysaccharides and lignin. Although ...

  14. Tools to Understand Structural Property Relationships for Wood Cell Walls

    Treesearch

    Joseph E. Jakes; Daniel J. Yelle; Charles R. Frihart

    2011-01-01

    Understanding structure-property relationships for wood cell walls has been hindered by the complex polymeric structures comprising these cell walls and the difficulty in assessing meaningful mechanical property measurements of individual cell walls. To help overcome these hindrances, we have developed two experimental methods: 1) two-dimensional solution state nuclear...

  15. Release of chromaffin granule glycoproteins and proteoglycans from potassium-stimulated PC12 pheochromocytoma cells.

    PubMed

    Salton, S R; Margolis, R U; Margolis, R K

    1983-10-01

    Cultured PC12 pheochromocytoma cells were labeled with [3H]glucosamine, and the glycoproteins and proteoglycans released following potassium-induced depolarization were fractionated and characterized. Exposure of PC12 cells for 20 min to a high concentration of potassium (51.5 mM in Krebs-Ringers-HEPES buffer) results in an approximately sixfold increase in the release of labeled glycoproteins and proteoglycans, compared to incubation in physiological levels of potassium (6 mM). The released complex carbohydrates include chromogranins, dopamine beta-hydroxylase, and two chondroitin sulfate/heparan sulfate proteoglycan fractions, which together account for 7.4% of the soluble cell radioactivity. The chromogranins contained galactosyl(beta 1 leads to 3)N-acetylgalactosamine, as well as several mono- and disialyl O-glycosidically-linked oligosaccharides, and the tetrasaccharide AcNeu(alpha 2 leads to 3)Gal(beta 1 leads to 3)[AcNeu(alpha 2 leads to 6)] GalNAcol, obtained by alkaline borohydride treatment of the chromogranin glycopeptides, accounted for almost half of the total chromogranin labeling. The proteoglycan fractions varied in their relative proportions of chondroitin sulfate (23-68%), heparan sulfate (16-23%), and glycoprotein oligosaccharides (16-54%), which are of the tri- and tetraantennary and O-glycosidic types. As previously found in the case of proteoglycans from bovine chromaffin granules, the more acidic species has a considerably higher proportion of carbohydrate in the form of sulfated glycosaminoglycans.

  16. The effect of the state of differentiation on labeling of epidermal cell surface glycoproteins

    SciTech Connect

    Brysk, M.M.; Snider, J.M.

    1982-05-01

    Epidermal cells were grown in a medium in which the Ca++ concentration controlled the stage of differentiation. Cell surface molecules of differentiated and undifferentiated cells were compared by lactoperoxidase-catalyzed iodination, by the interaction with /sup 125/I-lectins, and by the metabolic incorporation of L-(/sup 3/H)-fucose. Molecular weights of the labeled components were determined by SDS-PAGE and autoradiography. After lactoperoxidase iodination, most of the radioactivity was found in polypeptide bands of 79,000, 65,000 and 56,000 daltons. The 79,000 band is the most intense for undifferentiated cells but disappears as differentiation proceeds. The 56,000 band is present in normal cells at all stages of differentiation but is absent from neoplastic cells. Glycoproteins reacted with /sup 125/I-lectins were found at 180,000, 130,000 and 85,000 daltons. The 130,000 band was the most prominent for differentiated cells labeled with wheat germ agglutinin but was essentially absent from the undifferentiated cells. With Ricinus communis agglutinin, this band was weaker for undifferentiated than for differentiated cells but was the most intense for both. After metabolic incorporation of tritiated fucose, radioactive glycoproteins were found at 130,000 and 85,000 daltons, with comparable intensities for differentiated and undifferentiated cells.

  17. Glucocorticoid-regulated and constitutive trafficking of proteolytically processed cell surface-associated glycoproteins in wild type and variant rat hepatoma cells

    SciTech Connect

    Amacher, S.L.; Goodman, L.J.; Bravo, D.A.; Wong, K.Y.; Goldfine, I.D.; Hawley, D.M.; Firestone, G.L. )

    1989-10-01

    Glucocorticoids regulate the trafficking of mouse mammary tumor virus (MMTV) glycoproteins to the cell surface in the rat hepatoma cell line M1.54, but not in the immunoselected sorting variant CR4. To compare the localization of MMTV glycoproteins to another proteolytically processed glycoprotein, both wild type M1.54 cells and variant CR4 cells were transfected with a human insulin receptor (hIR) expression vector, pRSVhIR. The production of cell surface hIR was monitored in dexamethasone-treated and -untreated wild type M1.54 and variant CR4 cells by indirect immunofluorescence, direct plasma membrane immunoprecipitation, and by (125I) insulin binding. In both wild type and variant rat hepatoma cells, hIR were localized at the cell surface in the presence or in the absence of 1 microM dexamethasone. In contrast, the glucocorticoid-regulated trafficking of cell surface MMTV glycoproteins occurred only in wild type M1.54 cells. We conclude that the hIR, which undergoes posttranslational processing reactions similar to MMTV glycoproteins, does not require glucocorticoids to be transported to the plasma membrane and is representative of a subset of cell surface glycoproteins whose trafficking is constitutive in rat hepatoma cells. Thus, MMTV glycoproteins and hIR provide specific cell surface markers to characterize the glucocorticoid-regulated and constitutive sorting pathways.

  18. The cell surface expressed nucleolin is a glycoprotein that triggers calcium entry into mammalian cells

    SciTech Connect

    Losfeld, Marie-Estelle; Khoury, Diala El; Mariot, Pascal; Carpentier, Mathieu; Krust, Bernard; Briand, Jean-Paul; Mazurier, Joel; Hovanessian, Ara G.; Legrand, Dominique

    2009-01-15

    Nucleolin is an ubiquitous nucleolar phosphoprotein involved in fundamental aspects of transcription regulation, cell proliferation and growth. It has also been described as a shuttling molecule between nucleus, cytosol and the cell surface. Several studies have demonstrated that surface nucleolin serves as a receptor for various extracellular ligands implicated in cell proliferation, differentiation, adhesion, mitogenesis and angiogenesis. Previously, we reported that nucleolin in the extranuclear cell compartment is a glycoprotein containing N- and O-glycans. In the present study, we show that glycosylation is an essential requirement for surface nucleolin expression, since it is prevented when cells are cultured in the presence of tunicamycin, an inhibitor of N-glycosylation. Accordingly, surface but not nuclear nucleolin is radioactively labeled upon metabolic labeling of cells with [{sup 3}H]glucosamine. Besides its well-demonstrated role in the internalization of specific ligands, here we show that ligand binding to surface nucleolin could also induce Ca{sup 2+} entry into cells. Indeed, by flow cytometry, microscopy and patch-clamp experiments, we show that the HB-19 pseudopeptide, which binds specifically surface nucleolin, triggers rapid and intense membrane Ca{sup 2+} fluxes in various types of cells. The use of several drugs then indicated that Store-Operated Ca{sup 2+} Entry (SOCE)-like channels are involved in the generation of these fluxes. Taken together, our findings suggest that binding of an extracellular ligand to surface nucleolin could be involved in the activation of signaling pathways by promoting Ca{sup 2+} entry into cells.

  19. Engineering secondary cell wall deposition in plants

    PubMed Central

    Yang, Fan; Mitra, Prajakta; Zhang, Ling; Prak, Lina; Verhertbruggen, Yves; Kim, Jin-Sun; Sun, Lan; Zheng, Kejian; Tang, Kexuan; Auer, Manfred; Scheller, Henrik V; Loqué, Dominique

    2013-01-01

    Lignocellulosic biomass was used for thousands of years as animal feed and is now considered a great sugar source for biofuels production. It is composed mostly of secondary cell walls built with polysaccharide polymers that are embedded in lignin to reinforce the cell wall structure and maintain its integrity. Lignin is the primary material responsible for biomass recalcitrance to enzymatic hydrolysis. During plant development, deep reductions of lignin cause growth defects and often correlate with the loss of vessel integrity that adversely affects water and nutrient transport in plants. The work presented here describes a new approach to decrease lignin content while preventing vessel collapse and introduces a new strategy to boost transcription factor expression in native tissues. We used synthetic biology tools in Arabidopsis to rewire the secondary cell network by changing promoter-coding sequence associations. The result was a reduction in lignin and an increase in polysaccharide depositions in fibre cells. The promoter of a key lignin gene, C4H, was replaced by the vessel-specific promoter of transcription factor VND6. This rewired lignin biosynthesis specifically for vessel formation while disconnecting C4H expression from the fibre regulatory network. Secondly, the promoter of the IRX8 gene, secondary cell wall glycosyltransferase, was used to express a new copy of the fibre transcription factor NST1, and as the IRX8 promoter is induced by NST1, this also created an artificial positive feedback loop (APFL). The combination of strategies—lignin rewiring with APFL insertion—enhances polysaccharide deposition in stems without over-lignifying them, resulting in higher sugar yields after enzymatic hydrolysis. PMID:23140549

  20. Plant cell wall proteomics: the leadership of Arabidopsis thaliana

    PubMed Central

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions. PMID:23641247

  1. Plant cell wall proteomics: the leadership of Arabidopsis thaliana.

    PubMed

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions.

  2. Glycolysis in P-glycoprotein-overexpressing human tumor cell lines. Effects of resistance-modifying agents.

    PubMed

    Broxterman, H J; Pinedo, H M; Kuiper, C M; Schuurhuis, G J; Lankelma, J

    1989-04-24

    We show that drugs, such as verapamil, which reverse multidrug resistance (MDR), in P-glycoprotein-overexpressing tumor cells, increased the rate of lactate production in four human MDR cell lines, but not in the parent, sensitive cell lines. The effect on glycolytic rate was maximal at a medium concentration of 2 microM verapamil. The glycolytic rate in sensitive (A2780) and MDR 2780AD) cells showed the same pH dependence, but the effect of verapamil was seen only in 2780AD cells at all pH values investigated (6.6, 7.4 and 8.2). A series of drugs such as nigericin, oligomycin, amiloride and monensin had similar effects in the two cells. Phorbol myristate acetate increased lactate formation in neither cell line. Verapamil induced an extra amount of ATP consumption in P-glycoprotein-expressing 2780AD cells of approx. 25 pmol/s per 10(6) cells, which was estimated to be about 10% of cellular energy turnover.

  3. An effect of glycoprotein IIb/IIIa inhibitors on the kinetics of red blood cells aggregation.

    PubMed

    Sokolova, Irina A; Muravyov, Alexei V; Khokhlova, Maria D; Rikova, Sofya Yu; Lyubin, Evgeny V; Gafarova, Marina A; Skryabina, Maria N; Fedyanin, Angrey A; Kryukova, Darya V; Shahnazarov, Alexander A

    2014-01-01

    The reversible aggregation of red blood cells (RBCs) continues to be of the basic science and clinical interest. Recently it has been reported about a specific binding between fibrinogen and unknown erythrocyte glycoprotein receptors. The aim of this study was to investigate whether the red blood cell aggregation (RBCA) include the cell-cell interaction using the membrane receptors that bind such ligands as fibrinogen or fibronectin. To test this hypothesis the RBCs were incubated with monafram - the drug of the monoclonal antibodies against glycoprotein (GP) IIb/IIIa, with the GPIIb-IIIa receptor antagonist tirofiban, epifibatide and with the fibrinogen inhibiting peptide. It has been found that the RBC incubation with monafram resulted in a marked RBCA decrease mainly in persons with high level of aggregation. Another research session has shown that RBC incubation with fibronectin was accompanied by a significant RBCA rise. The monafram addition to red cell incubation medium resulted in a significant RBCA lowering. The cell incubation with tirofiban and epifibatide issued in RBCA decrease. The similar results were obtained when RBCs were incubated with the fibrinogen inhibiting peptide. Although monafram, tirofiban, eptifibatide and the fibrinogen inhibiting peptide were related to fibrinogen function they didn't inhibit RBCA completely. Therefore, under moderate and low red blood cell aggregation the cell binding is probably related to nonspecific mode. It seems evident that the specific and nonspecific modes of red blood cell aggregate formation could co-exist. Additional theoretical and experimental investigations in this area are needed.

  4. Phase Separation of Plant Cell Wall Polysaccharides and Its Implications for Cell Wall Assembly.

    PubMed Central

    MacDougall, A. J.; Rigby, N. M.; Ring, S. G.

    1997-01-01

    Concentrated binary mixtures of polymers in solution commonly exhibit immiscibility, resolving into two separate phases each of which is enriched in one polymer. The plant cell wall is a concentrated polymer assembly, and phase separation of the constituent polymers could make an important contribution to its structural organization and functional properties. However, to our knowledge, there have been no published reports of the phase behavior of cell wall polymers, and this phenomenon is not included in current cell wall models. We fractionated cell walls purified from the pericarp of unripe tomatoes (Lycopersicon esculentum) by extraction with cyclohexane diamine tetraacetic acid (CDTA), Na2CO3, and KOH and examined the behavior of concentrated mixtures. Several different combinations of fractions exhibited phase separation. Analysis of coexisting phases demonstrated the immiscibility of the esterified, relatively unbranched pectic polysaccharide extracted by CDTA and a highly branched, de-esterified pectic polysaccharide present in the 0.5 N KOH extract. Some evidence for phase separation of the CDTA extract and hemicellulosic polymers was also found. We believe that phase separation is likely to be a factor in the assembly of pectic polysaccharides in the cell wall and could, for example, provide the basis for explaining the formation of the middle lamella. PMID:12223708

  5. Common glycoproteins expressing polylactosamine-type glycans on matched patient primary and metastatic melanoma cells show different glycan profiles.

    PubMed

    Kinoshita, Mitsuhiro; Mitsui, Yosuke; Kakoi, Naotaka; Yamada, Keita; Hayakawa, Takao; Kakehi, Kazuaki

    2014-02-07

    Recently, we reported comparative analysis of glycoproteins which express cancer-specific N-glycans on various cancer cells and identified 24 glycoproteins having polylactosamine (polyLacNAc)-type N-glycans that are abundantly present in malignant cells [ Mitsui et al., J. Pharm. Biomed. Anal. 2012 , 70 , 718 - 726 ]. In the present study, we applied the technique to comparative studies on common glycoproteins present in the matched patient primary and metastatic melanoma cell lines. Metastatic melanoma cells (WM266-4) contained a large amount of polyLacNAc-type N-glycans in comparison with primary melanoma cells (WM115). To identify the glycoproteins expressing these N-glycans, glycopeptides having polyLacNAc-type N-glycans were captured by a Datura stramonium agglutinin (DSA)-immobilized agarose column. The captured glycopeptides were analyzed by LC/MS after removing N-glycans, and some glycoproteins such as basigin, lysosome-associated membrane protein-1 (LAMP-1), and chondroitin sulfate proteoglycan 4 (CSPG4) were identified in both WM115 and WM266-4 cells. The expression level of polyLacNAc of CSPG4 in WM266-4 cells was significantly higher than that in WM115 cells. In addition, sulfation patterns of chondroitin sulfate (CS) chains in CSPG4 showed dramatic changes between these cell lines. These data show that characteristic glycans attached to common proteins observed in different stages of cancer cells will be useful markers for determining degree of malignancies of tumor cells.

  6. Double-walled carbon nanotube solar cells.

    PubMed

    Wei, Jinquan; Jia, Yi; Shu, Qinke; Gu, Zhiyi; Wang, Kunlin; Zhuang, Daming; Zhang, Gong; Wang, Zhicheng; Luo, Jianbin; Cao, Anyuan; Wu, Dehai

    2007-08-01

    We directly configured double-walled carbon nanotubes as energy conversion materials to fabricate thin-film solar cells, with nanotubes serving as both photogeneration sites and a charge carriers collecting/transport layer. The solar cells consist of a semitransparent thin film of nanotubes conformally coated on a n-type crystalline silicon substrate to create high-density p-n heterojunctions between nanotubes and n-Si to favor charge separation and extract electrons (through n-Si) and holes (through nanotubes). Initial tests have shown a power conversion efficiency of >1%, proving that DWNTs-on-Si is a potentially suitable configuration for making solar cells. Our devices are distinct from previously reported organic solar cells based on blends of polymers and nanomaterials, where conjugate polymers generate excitons and nanotubes only serve as a transport path.

  7. Roles and regulation of plant cell walls surrounding plasmodesmata.

    PubMed

    Knox, J Paul; Benitez-Alfonso, Yoselin

    2014-12-01

    In plants, the intercellular transport of simple and complex molecules can occur symplastically through plasmodesmata. These are membranous channels embedded in cell walls that connect neighbouring cells. The properties of the cell walls surrounding plasmodesmata determine their transport capacity and permeability. These cell wall micro-domains are enriched in callose and have a characteristic pectin distribution. Cell wall modifications, leading to changes in plasmodesmata structure, have been reported to occur during development and in response to environmental signals. Cell wall remodelling enzymes target plasmodesmata to rapidly control intercellular communication in situ. Here we describe current knowledge on the composition of cell walls at plasmodesmata sites and on the proteins and signals that modify cell walls to regulate plasmodesmata aperture.

  8. P-glycoprotein expression in canine mammary gland tumours related with myoepithelial cells.

    PubMed

    Kim, N-H; Hwang, Y-H; Im, K-S; Kim, J-H; Chon, S-K; Kim, H-Y; Sur, J-H

    2012-12-01

    P-glycoprotein is influential in chemotherapy-resistance in numerous cancers and has been widely studied in human breast cancer research, but is less studied in canine mammary gland tumour (MGT). The study was to evaluate P-glycoprotein expression and its localisations related with prognostic factors with monoclonal antibody C219, by immunohistochemistry (IHC) of 68 cases of canine malignant (n=54) and benign (n=14) MGT. Additional immunofluorescence (IF) and reverse transcriptase-polymerase chain reaction (RT-PCR) were also performed. There was a novel finding that P-glycoprotein expression with C219 localised at two different cell types: epithelial and myoepithelial cells. Myoepithelial localised tumours were 5 benign (35.5%) and 21 malignant (63.6%), while epithelial localised tumours were 12 cases, all malignant (36.5%). Unlike conventional belief, semi-quantitative evaluation of IHC intensity scores of C219 expression in malignant MGT was related with favourable histopathological parameters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Wheat germ agglutinin binds to the contact site A glycoprotein of Dictyostelium discoideum and inhibits EDTA-stable cell adhesion

    PubMed Central

    Yoshida, M.; Stadler, J.; Bertholdt, G.; Gerisch, G.

    1984-01-01

    Wheat germ agglutinin (WGA), a lectin that primarily reacts with N-acetylglucosamine residues, specifically inhibits the EDTA-stable type of intercellular adhesion of aggregation competent Dictyostelium discoideum cells. The major WGA-binding protein of these cells is a developmentally-regulated glycolipoprotein of 80 kd apparent mol. wt., designated as contact site A. This glycoprotein is a target site of antibody fragments that block the EDTA-stable cell adhesion, and is characterized by sulfated carbohydrate residues. WGA does not significantly bind to glycoproteins of a mutant, HL220, which produces a 68-kd component in place of the 80-kd glycoprotein. Inhibition of N-glycosylation by tunicamycin causes wild-type cells to produce a WGA-binding but unsulfated 66-kd component and a non-binding 53-kd component. These results indicate that the 80-kd glycoprotein contains two classes of carbohydrate residues, a WGA-binding one that is defective in HL220, and another, sulfated, one that is absent from the 66-kd wild-type product; both are missing in the 53-kd protein. WGA and a monoclonal antibody that is blocked by N-acetylglucosamine were further used to probe for glycoproteins in the multicellular slug stage that share carbohydrate structures – and possibly functions – with the contact site A glycoprotein. Glycoproteins in the 95-kd range have previously been implicated in cell-to-cell adhesion during the slug stage. We distinguished a 95-kd glycoprotein that binds WGA from another one that binds antibody. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Fig. 5.Fig. 7.Fig. 8.Fig. 9. PMID:16453571

  10. Cell surface expression of biologically active influenza C virus HEF glycoprotein expressed from cDNA.

    PubMed

    Pekosz, A; Lamb, R A

    1999-10-01

    The hemagglutinin, esterase, and fusion (HEF) glycoprotein of influenza C virus possesses receptor binding, receptor destroying, and membrane fusion activities. The HEF cDNAs from influenza C/Ann Arbor/1/50 (HEF-AA) and influenza C/Taylor/1223/47 (HEF-Tay) viruses were cloned and expressed, and transport of HEF to the cell surface was monitored by susceptibility to cleavage by exogenous trypsin, indirect immunofluorescence microscopy, and flow cytometry. Previously it has been found in studies with the C/Johannesburg/1/66 strain of influenza C virus (HEF-JHB) that transport of HEF to the cell surface is severely inhibited, and it is thought that the short cytoplasmic tail, Arg-Thr-Lys, is involved in blocking HEF cell surface expression (F. Oeffner, H.-D. Klenk, and G. Herrler, J. Gen. Virol. 80:363-369, 1999). As the cytoplasmic tail amino acid sequences of HEF-AA and HEF-Tay are identical to that of HEF-JHB, the data indicate that cell surface expression of HEF-AA and HEF-Tay is not inhibited by this amino acid sequence. Furthermore, the abundant cell surface transport of HEF-AA and HEF-Tay indicates that their cell surface expression does not require coexpression of another viral protein. The HEF-AA and HEF-Tay HEF glycoproteins bound human erythrocytes, promoted membrane fusion in a low-pH and trypsin-dependent manner, and displayed esterase activity, indicating that the HEF glycoprotein alone mediates all three known functions at the cell surface.

  11. Solubilization and fractionation of glycoproteins and glycolipids of KB cell membranes

    PubMed Central

    Butters, Terry D.; Hughes, R. Colin

    1974-01-01

    1. A fraction enriched in plasma membranes of human tumour KB cell line, a permissive cell for adenovirus type 5, was obtained. 2. Electrophoresis of the membranes in polyacrylamide gels with buffers containing sodium dodecyl sulphate showed that the membranes after reduction with 2-mercaptoethanol contained over 20 polypeptide species. Three polypeptides were glycosylated and had apparent mol.wts. of 92000, 72000 and 62000. 3. The glycoproteins and the specific receptors responsible for adenovirus adsorption to the membranes were readily extracted into solutions containing low concentrations of Triton X-100. Glycolipids and proteins were also made soluble. A membranous residue obtained after Triton X-100 extraction was enriched in several proteins that appeared to consist of polypeptides of lower molecular weight than the average of KB membrane polypeptides. 4. Sphingomyelin, cholesterol and triglycerides were similarly concentrated in the insoluble residue remaining after successive extractions of KB membranes with Triton X-100. Further, ceramide trihexoside was significantly less easily extracted from KB membranes than lactosyl ceramide. 5. The differences noted in the ease of extraction of membrane components are discussed. 6. The components of membranes made soluble by detergent extraction and containing the large part of the KB membrane glycoproteins were subjected to chromatography on Sepharose 6B and DEAE-cellulose and to isoelectric focusing in the presence of buffers containing Triton X-100. In general, the degree of separation into fractions enriched in individual glycoproteins was disappointing. Possible reasons for the poor fractionation of membrane components by chromatographic systems conveniently used for purification of proteins and glycoproteins of non-membranous origin are briefly discussed. ImagesPLATE 3PLATE 4PLATE 1PLATE 2 PMID:4447626

  12. Cell Wall Loosening in the Fungus, Phycomyces blakesleeanus

    PubMed Central

    Ortega, Joseph K. E.; Truong, Jason T.; Munoz, Cindy M.; Ramirez, David G.

    2015-01-01

    A considerable amount of research has been conducted to determine how cell walls are loosened to produce irreversible wall deformation and expansive growth in plant and algal cells. The same cannot be said about fungal cells. Almost nothing is known about how fungal cells loosen their walls to produce irreversible wall deformation and expansive growth. In this study, anoxia is used to chemically isolate the wall from the protoplasm of the sporangiophores of Phycomyces blakesleeanus. The experimental results provide direct evidence of the existence of chemistry within the fungal wall that is responsible for wall loosening, irreversible wall deformation and elongation growth. In addition, constant-tension extension experiments are conducted on frozen-thawed sporangiophore walls to obtain insight into the wall chemistry and wall loosening mechanism. It is found that a decrease in pH to 4.6 produces creep extension in the frozen-thawed sporangiophore wall that is similar, but not identical, to that found in frozen-thawed higher plant cell walls. Experimental results from frozen-thawed and boiled sporangiophore walls suggest that protein activity may be involved in the creep extension. PMID:27135318

  13. Plant cell wall signalling and receptor-like kinases.

    PubMed

    Wolf, Sebastian

    2017-02-15

    Communication between the extracellular matrix and the cell interior is essential for all organisms as intrinsic and extrinsic cues have to be integrated to co-ordinate development, growth, and behaviour. This applies in particular to plants, the growth and shape of which is governed by deposition and remodelling of the cell wall, a rigid, yet dynamic, extracellular network. It is thus generally assumed that cell wall surveillance pathways exist to monitor the state of the wall and, if needed, elicit compensatory responses such as altered expression of cell wall remodelling and biosynthesis genes. Here, I highlight recent advances in the field of cell wall signalling in plants, with emphasis on the role of plasma membrane receptor-like kinase complexes. In addition, possible roles for cell wall-mediated signalling beyond the maintenance of cell wall integrity are discussed. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  14. Rebamipide increases the mucin-like glycoprotein production in corneal epithelial cells.

    PubMed

    Takeji, Yasuhiro; Urashima, Hiroki; Aoki, Akihiro; Shinohara, Hisashi

    2012-06-01

    Dry eye is a multifactorial disease of tears and the ocular surface due to tear deficiency or excessive tear evaporation. Tear film instability is due to a disturbance in ocular surface mucin leading to a dysfunction of mucin, resulting in dry eye. In this study, we examined the effect of rebamipide, an anti-ulcer agent, on glycoconjugate production, as an indicator of mucin-like glycoprotein in cultured corneal epithelial cells. Further, we investigated the effect of rebamipide on the gene expression of membrane-associated mucins. Confluent cultured human corneal epithelial cells were incubated with rebamipide for 24 h. The glycoconjugate content in the supernatant and the cell extracts was measured by wheat germ agglutinin-enzyme-linked lectin assay combined gel-filtration method. In the experiment on mucin gene expression, cultured human corneal epithelial cells were collected at 0, 3, 6, and 12 h after administration of rebamipide. Real-time quantitative polymerase chain reaction was used to analyze the quantity of MUC1, MUC 4, and MUC16 gene expression. Rebamipide significantly increased the glycoconjugate contents in the supernatant and cell extract. In the mucin gene expression in the cells, rebamipide increased MUC1 and MUC4 gene expression, but did not increase MUC16 gene expression. Rebamipide promoted glycoconjugate, which has a property as a mucin-like glycoprotein, in human corneal epithelial cells. The increased production was mediated by MUC1 and MUC4 gene expression.

  15. An economic approach to isotopic enrichment of glycoproteins expressed from Sf9 insect cells.

    PubMed

    Walton, Wendy J; Kasprzak, Agnieszka J; Hare, Joan T; Logan, Timothy M

    2006-12-01

    It is estimated that over half of all proteins are glycosylated, yet only a small number of the structures in the protein data bank are of intact glycoproteins. One of the reasons for the lack of structural information on glycoproteins is the high cost of isotopically labeling proteins expressed from eukaryotic cells such as in insect and mammalian cells. In this paper we describe modifications to commercial insect cell growth medium that reduce the cost for isotopically labeling recombinant proteins expressed from Sf9 cells. A key aspect of this work was to reduce the amount of glutamine in the cell culture medium while maintaining sufficient energy yielding metabolites for vigorous growth by supplementing with glucose and algae-derived amino acids. We present an analysis of cell growth and protein production in Sf9 insect cells expressing secreted Thy1-GFP fusion construct. We also demonstrate isotopic enrichment of the Thy-1 protein backbone with 15N and carbohydrates with 13C by NMR spectroscopy.

  16. A viral regulator of glycoprotein complexes contributes to human cytomegalovirus cell tropism.

    PubMed

    Li, Gang; Nguyen, Christopher C; Ryckman, Brent J; Britt, William J; Kamil, Jeremy P

    2015-04-07

    Viral glycoproteins mediate entry of enveloped viruses into cells and thus play crucial roles in infection. In herpesviruses, a complex of two viral glycoproteins, gH and gL (gH/gL), regulates membrane fusion events and influences virion cell tropism. Human cytomegalovirus (HCMV) gH/gL can be incorporated into two different protein complexes: a glycoprotein O (gO)-containing complex known as gH/gL/gO, and a complex containing UL128, UL130, and UL131 known as gH/gL/UL128-131. Variability in the relative abundance of the complexes in the virion envelope correlates with differences in cell tropism exhibited between strains of HCMV. Nonetheless, the mechanisms underlying such variability have remained unclear. We have identified a viral protein encoded by the UL148 ORF (UL148) that influences the ratio of gH/gL/gO to gH/gL/UL128-131 and the cell tropism of HCMV virions. A mutant disrupted for UL148 showed defects in gH/gL/gO maturation and enhanced infectivity for epithelial cells. Accordingly, reintroduction of UL148 into an HCMV strain that lacked the gene resulted in decreased levels of gH/gL/UL128-131 on virions and, correspondingly, decreased infectivity for epithelial cells. UL148 localized to the endoplasmic reticulum, but not to the cytoplasmic sites of virion envelopment. Coimmunoprecipitation results indicated that gH, gL, UL130, and UL131 associate with UL148, but that gO and UL128 do not. Taken together, the findings suggest that UL148 modulates HCMV tropism by regulating the composition of alternative gH/gL complexes.

  17. Grass cell walls: A story of cross-linking

    USDA-ARS?s Scientific Manuscript database

    Cell wall matrices are complex composites mainly of polysaccharides, phenolics (monomers and polymers), and protein. We are beginning to understand the synthesis of these major wall components individually, but still have a poor understanding of how the cell wall components are assembled into comple...

  18. Cortical microtubule rearrangements and cell wall patterning

    PubMed Central

    Oda, Yoshihisa

    2015-01-01

    Plant cortical microtubules, which form a highly ordered array beneath the plasma membrane, play essential roles in determining cell shape and function by directing the arrangement of cellulosic and non-cellulosic compounds on the cell surface. Interphase transverse arrays of cortical microtubules self-organize through their dynamic instability and inter-microtubule interactions, and by branch-form microtubule nucleation and severing. Recent studies revealed that distinct spatial signals including ROP GTPase, cellular geometry, and mechanical stress regulate the behavior of cortical microtubules at the subcellular and supercellular levels, giving rise to dramatic rearrangements in the cortical microtubule array in response to internal and external cues. Increasing evidence indicates that negative regulators of microtubules also contribute to the rearrangement of the cortical microtubule array. In this review, I summarize recent insights into how the rearrangement of the cortical microtubule array leads to proper, flexible cell wall patterning. PMID:25904930

  19. The expression of P-glycoprotein is causally related to a less aggressive phenotype in human osteosarcoma cells.

    PubMed

    Scotlandi, K; Manara, M C; Serra, M; Benini, S; Maurici, D; Caputo, A; De Giovanni, C; Lollini, P L; Nanni, P; Picci, P; Campanacci, M; Baldini, N

    1999-01-21

    The relationship between P-glycoprotein expression and malignancy is controversial. We have recently found that, in osteosarcoma, multidrug resistance (MDR) is associated with a less aggressive behavior, both in vitro and in clinical settings. In this study, we evaluated whether P-glycoprotein overexpression has a cause-effect relationship with the reduced metastatic potential of MDR cells, or rather reflects a more complex phenotype. MDR1 gene-transfected osteosarcoma cell clones, showing different levels of P-glycoprotein expression, were analysed for their in vitro characteristics and their tumorigenic and metastatic ability in athymic mice. Apart from the different levels of P-glycoprotein, no significant change in the expression of surface antigens or in the differentiative features were observed in the MDR1 gene transfectants compared to the parental cell lines or control clones, obtained by transfection with neo gene alone. In contrast to controls, however, MDR1 transfectants showed a significantly lower ability to grow in semi-solid medium and were completely unable to grow and give lung metastases in athymic mice. These findings indicate that P-glycoprotein overexpression is causally associated with a low malignant potential of osteosarcoma cells, and open new insights on the role and functions of P-glycoprotein activity.

  20. Roles of hydroxyproline-rich glycoproteins in the pollen tube and style cell growth of tobacco (Nicotiana tabacum L.).

    PubMed

    Zhang, Xuelian; Ma, Haoli; Qi, Huandong; Zhao, Jie

    2014-07-15

    Hydroxyproline-rich glycoproteins (HRGPs) are plant cell wall proteins related to plant growth and development, and extensins (EXTs) are a subfamily of HRGPs. In this study, the function of HRGPs, especially EXTs, was investigated in the pollen tube and style cell growth of Nicotiana tabacum L. By using the techniques of protein blot and immunohistochemistry, the JIM20-recognized epitopes of EXTs were abundantly expressed in vivo for pollen tubes and transmitting tissue. A hydroxyproline synthesis inhibitor, 3,4-dehydro-l-proline (3,4-DHP), was used to investigate the functions of HRGPs. The addition of 3,4-DHP decreased the speed of pollen tube growth and shortened the length of style. Moreover, the hydroxyproline assay and JIM20 immunolocalization confirmed that 3,4-DHP treatment reduced the level of hydroxyproline and EXTs in the treated styles, respectively. These results indicate that HRGPs, most likely EXTs, may play important roles in the pollen tube and style cell growth. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Exploiting fungal cell wall components in vaccines

    PubMed Central

    Levitz, Stuart M.; Huang, Haibin; Ostroff, Gary R.; Specht, Charles A.

    2014-01-01

    Innate recognition of fungi leads to strong adaptive immunity. Investigators are trying to exploit this observation in vaccine development by combining antigens with evolutionarily conserved fungal cell wall carbohydrates to induce protective responses. Best studied is β-1,3-glucan, a glycan that activates complement and is recognized by Dectin-1. Administration of antigens in association with β-1,3-glucan, either by direct conjugation or complexed in glucan particles, results in robust humoral and cellular immune responses. While the host has a host of mannose receptors, responses to fungal mannoproteins generally are amplified if cells are cooperatively stimulated with an additional danger signal such as a toll-like receptor agonist. Chitosan, a polycationic homopolymer of glucosamine manufactured by the deacetylation of chitin, is being studied as an adjuvant in DNA and protein-based vaccines. It appears particularly promising in mucosal vaccines. Finally, universal and organism-specific fungal vaccines have been formulated by conjugating fungal cell wall glycans to carrier proteins. A major challenge will be to advance these experimental findings so that at risk patients can be protected. PMID:25404118

  2. Grass Cell Walls: A Story of Cross-Linking

    PubMed Central

    Hatfield, Ronald D.; Rancour, David M.; Marita, Jane M.

    2017-01-01

    Cell wall matrices are complex composites mainly of polysaccharides, phenolics (monomers and polymers), and protein. We are beginning to understand the synthesis of these major wall components individually, but still have a poor understanding of how cell walls are assembled into complex matrices. Valuable insight has been gained by examining intact components to understand the individual elements that make up plant cell walls. Grasses are a prominent group within the plant kingdom, not only for their important roles in global agriculture, but also for the complexity of their cell walls. Ferulate incorporation into grass cell wall matrices (C3 and C4 types) leads to a cross-linked matrix that plays a prominent role in the structure and utilization of grass biomass compared to dicot species. Incorporation of p-coumarates as part of the lignin structure also adds to the complexity of grass cell walls. Feruoylation results in a wall with individual hemicellulosic polysaccharides (arabinoxylans) covalently linked to each other and to lignin. Evidence strongly suggests that ferulates not only cross-link arabinoxylans, but may be important factors in lignification of the cell wall. Therefore, the distribution of ferulates on arabinoxylans could provide a means of structuring regions of the matrix with the incorporation of lignin and have a significant impact upon localized cell wall organization. The role of other phenolics in cell wall formation such as p-coumarates (which can have concentrations higher than ferulates) remains unknown. It is possible that p-coumarates assist in the formation of lignin, especially syringyl rich lignin. The uniqueness of the grass cell wall compared to dicot sepcies may not be so much in the gross composition of the wall, but how the distinctive individual components are organized into a functional wall matrix. These features are discussed and working models are provided to illustrate how changing the organization of feruoylation and p

  3. Lactobacillus plantarum L67 glycoprotein protects against cadmium chloride toxicity in RAW 264.7 cells.

    PubMed

    Song, Sooyeon; Oh, Sejong; Lim, Kye-Taek

    2016-03-01

    The food and water we consume may be contaminated with a range of chemicals and heavy metals, such as lead, cadmium, arsenic, chromium, and mercury by accumulation through the food chain. Cadmium is known to be one of the major components in cigarette smoke and can cause lesions in many organs. Some lactobacilli can bind and remove heavy metals such as cadmium, lead, and copper. However, the mechanisms of cadmium toxicity and inhibition by probiotics are not clear. In this study, we demonstrated that glycoprotein (18 kDa) isolated from Lactobacillus plantarum L67 protected RAW 264.7 cells from expression of inflammation-related factors stimulated by cadmium chloride (100 µM). Furthermore, we evaluated the cytotoxicity of cadmium using the MTT assay and intracellular Ca(2+) using fluorescence, and assessed activities of activator protein kinase C (PKC-α), inducible nitric oxide synthase, activator protein (AP)-1, and mitogen-activated protein kinases using immunoblot. Our results indicated that glycoprotein isolated from L. plantarum L67 inhibited intracellular Ca(2+) mobilization. It also significantly suppressed inflammatory factors such as AP-1 (c-Jun and c-Fos), mitogen-activated protein kinases (ERK, JNK, and p38), and inducible nitric oxide synthase. Our findings suggest that the 24-kDa glycoprotein isolated from L. plantarum L67 might be used as a food component for protection of inflammation caused by cadmium ion.

  4. Structural differentiation of the Bacillus subtilis 168 cell wall.

    PubMed Central

    Graham, L L; Beveridge, T J

    1994-01-01

    Exponential-growth-phase cultures of Bacillus subtilis 168 were probed with polycationized ferritin (PCF) or concanavalin A (localized by the addition of horseradish peroxidase conjugated to colloidal gold) to distinguish surface anionic sites and teichoic acid polymers, respectively. Isolated cell walls, lysozyme-digested cell walls, and cell walls treated with mild alkali to remove teichoic acid were also treated with PCF. After labelling, whole cells and walls were processed for electron microscopy by freeze-substitution. Thin sections of untreated cells showed a triphasic, fibrous wall extending more than 30 nm beyond the cytoplasmic membrane. Measurements of wall thickness indicated that the wall was thicker at locations adjacent to septa and at pole-cylinder junctions (P < 0.001). Labelling studies showed that at saturating concentrations the PCF probe labelled the outermost limit of the cell wall, completely surrounding individual cells. However, at limiting PCF concentrations, labelling was observed at only discrete cell surface locations adjacent to or overlying septa and at the junction between pole and cylinder. Labelling was rarely observed along the cell cylinder or directly over the poles. Cells did not label along the cylindrical wall until there was visible evidence of a developing septum. Identical labelling patterns were observed by using concanavalin A-horseradish peroxidase-colloidal gold. Neither probe appeared to penetrate between the fibers of the wall. We suggest that the fibrous appearance of the wall seen in freeze-substituted cells reflects turnover of the wall matrix, that the specificity of labelling to discrete sites on the cell surface is indicative of regions of extreme hydrolytic activity in which alpha-glucose residues of the wall teichoic acids and electronegative sites (contributed by phosphate and carboxyl groups of the teichoic acids and carboxyl groups of the peptidoglycan polymers) are more readily accessible to our probes

  5. Plant and algal cell walls: diversity and functionality.

    PubMed

    Popper, Zoë A; Ralet, Marie-Christine; Domozych, David S

    2014-10-01

    Although plants and many algae (e.g. the Phaeophyceae, brown, and Rhodophyceae, red) are only very distantly related they are united in their possession of carbohydrate-rich cell walls, which are of integral importance being involved in many physiological processes. Furthermore,wall components have applications within food, fuel, pharmaceuticals, fibres (e.g. for textiles and paper) and building materials and have long been an active topic of research. As shown in the 27 papers in this Special Issue, as the major deposit of photosynthetically fixed carbon, and therefore energy investment, cell walls are of undisputed importance to the organisms that possess them, the photosynthetic eukaryotes ( plants and algae). The complexities of cell wall components along with their interactions with the biotic and abiotic environment are becoming increasingly revealed. The importance of plant and algal cell walls and their individual components to the function and survival of the organism, and for a number of industrial applications, are illustrated by the breadth of topics covered in this issue, which includes papers concentrating on various plants and algae, developmental stages, organs, cell wall components, and techniques. Although we acknowledge that there are many alternative ways in which the papers could be categorized (and many would fit within several topics), we have organized them as follows: (1) cell wall biosynthesis and remodelling, (2) cell wall diversity, and (3) application of new technologies to cell walls. Finally, we will consider future directions within plant cell wall research. Expansion of the industrial uses of cell walls and potentially novel uses of cell wall components are both avenues likely to direct future research activities. Fundamentally, it is the continued progression from characterization (structure, metabolism, properties and localization) of individual cell wall components through to defining their roles in almost every aspect of plant

  6. Plant and algal cell walls: diversity and functionality

    PubMed Central

    Popper, Zoë A.; Ralet, Marie-Christine; Domozych, David S.

    2014-01-01

    Background Although plants and many algae (e.g. the Phaeophyceae, brown, and Rhodophyceae, red) are only very distantly related they are united in their possession of carbohydrate-rich cell walls, which are of integral importance being involved in many physiological processes. Furthermore, wall components have applications within food, fuel, pharmaceuticals, fibres (e.g. for textiles and paper) and building materials and have long been an active topic of research. As shown in the 27 papers in this Special Issue, as the major deposit of photosynthetically fixed carbon, and therefore energy investment, cell walls are of undisputed importance to the organisms that possess them, the photosynthetic eukaryotes (plants and algae). The complexities of cell wall components along with their interactions with the biotic and abiotic environment are becoming increasingly revealed. Scope The importance of plant and algal cell walls and their individual components to the function and survival of the organism, and for a number of industrial applications, are illustrated by the breadth of topics covered in this issue, which includes papers concentrating on various plants and algae, developmental stages, organs, cell wall components, and techniques. Although we acknowledge that there are many alternative ways in which the papers could be categorized (and many would fit within several topics), we have organized them as follows: (1) cell wall biosynthesis and remodelling, (2) cell wall diversity, and (3) application of new technologies to cell walls. Finally, we will consider future directions within plant cell wall research. Expansion of the industrial uses of cell walls and potentially novel uses of cell wall components are both avenues likely to direct future research activities. Fundamentally, it is the continued progression from characterization (structure, metabolism, properties and localization) of individual cell wall components through to defining their roles in almost every

  7. Arrangement of peptidoglycan in the cell wall of Staphylococcus spp.

    PubMed Central

    Amako, K; Umeda, A; Murata, K

    1982-01-01

    The arrangement of peptidoglycan in the cell wall of Staphylococcus was observed with the newly developed freeze-fracture technique, using n-octanol instead of water as the freezing medium. The replica of the trichloroacetic acid-extracted cell wall (TCA-wall) showed two areas. One of them has a concentric circular structure, a characteristic surface structure of the staphylococcal cell wall, and the other showed an irregular and rough surface. The chemical analysis of the wall revealed that the TCA-wall consisted of mostly peptidoglycan. By digesting the TCA-wall with lysozyme, the circular structures were greatly disturbed, and they disappeared after 60 min of treatment. From these observations it can be expected that the peptidoglycan is arranged in a concentric circular manner in the newly generated cell wall of Staphylococcus. Images PMID:7068534

  8. Nearest-neighbor interactions of the major RNA tumor virus glycoprotein on murine cell surfaces.

    PubMed Central

    Takemoto, L J; Fox, C F; Jensen, F C; Elder, J H; Lerner, R A

    1978-01-01

    Formaldehyde-fixed Staphylococcus aureus and monospecific antiserum to gp70, the major envelope glycoprotein of murine leukemia virus, were used to immunoadsorb gp70 from Nonidet P40 extracts prepared from surface-radioiodinated murine cells. The labeled gp70 molecules in these cells were linked to a protein of approximately 15,000 daltons via native disulfide bonding. Prior treatment of cells with the reversible, bifunctional, crosslinking reagent dimethyl-3,3'-dithiobispropionimidate, followed by immunoadsorption and two-dimensional diagonal electrophoresis, revealed apparent homodimers and homotrimers of the 85,000-dalton complex. Identical treatment of purified type C RNA tumor virus from murine cells also revealed homodimeric and homotrimeric species, demonstrating similar self-associating tendencies of this glycoprotein in both intact virus and the plasma membrane of nonproducing murine cells. One cross-linked product consistently detected on the surfaces of murine cells was not present after crosslinking of a representative strain of murine leukemia virus. Images PMID:211503

  9. Enzymes and other agents that enhance cell wall extensibility

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1999-01-01

    Polysaccharides and proteins are secreted to the inner surface of the growing cell wall, where they assemble into a network that is mechanically strong, yet remains extensible until the cells cease growth. This review focuses on the agents that directly or indirectly enhance the extensibility properties of growing walls. The properties of expansins, endoglucanases, and xyloglucan transglycosylases are reviewed and their postulated roles in modulating wall extensibility are evaluated. A summary model for wall extension is presented, in which expansin is a primary agent of wall extension, whereas endoglucanases, xyloglucan endotransglycosylase, and other enzymes that alter wall structure act secondarily to modulate expansin action.

  10. Enzymes and other agents that enhance cell wall extensibility

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1999-01-01

    Polysaccharides and proteins are secreted to the inner surface of the growing cell wall, where they assemble into a network that is mechanically strong, yet remains extensible until the cells cease growth. This review focuses on the agents that directly or indirectly enhance the extensibility properties of growing walls. The properties of expansins, endoglucanases, and xyloglucan transglycosylases are reviewed and their postulated roles in modulating wall extensibility are evaluated. A summary model for wall extension is presented, in which expansin is a primary agent of wall extension, whereas endoglucanases, xyloglucan endotransglycosylase, and other enzymes that alter wall structure act secondarily to modulate expansin action.

  11. Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension.

    PubMed Central

    McQueen-Mason, S; Cosgrove, D J

    1994-01-01

    Plant cell enlargement is controlled by the ability of the constraining cell wall to expand. This ability has been postulated to be under the control of polysaccharide hydrolases or transferases that weaken or rearrange the loadbearing polymeric networks in the wall. We recently identified a family of wall proteins, called expansins, that catalyze the extension of isolated plant cell walls. Here we report that these proteins mechanically weaken pure cellulose paper in extension assays and stress relaxation assays, without detectable cellulase activity (exo- or endo- type). Because paper derives its mechanical strength from hydrogen bonding between cellulose microfibrils, we conclude that expansins can disrupt hydrogen bonding between cellulose fibers. This conclusion is further supported by experiments in which expansin-mediated wall extension (i) was increased by 2 M urea (which should weaken hydrogen bonding between wall polymers) and (ii) was decreased by replacement of water with deuterated water, which has a stronger hydrogen bond. The temperature sensitivity of expansin-mediated wall extension suggests that units of 3 or 4 hydrogen bonds are broken by the action of expansins. In the growing cell wall, expansin action is likely to catalyze slippage between cellulose microfibrils and the polysaccharide matrix, and thereby catalyze wall stress relaxation, followed by wall surface expansion and plant cell enlargement. Images PMID:11607483

  12. Anthocyanins influence tannin-cell wall interactions.

    PubMed

    Bautista-Ortín, Ana Belén; Martínez-Hernández, Alejandro; Ruiz-García, Yolanda; Gil-Muñoz, Rocío; Gómez-Plaza, Encarna

    2016-09-01

    The rate of tannin extraction was studied in a vinification of red grapes and the results compared with another vinification made with white grapes fermented as for typical red wine, in the presence of skins and seeds. Even though the grapes presented a quite similar skin and seed tannin content, the differences in tannin concentration between both vinifications was very large, despite the fact that the only apparent difference between the phenolic composition of both wines was the anthocyanin content. This suggests that anthocyanins play an important role in tannin extractability, perhaps because they affect the extent of the tannin-cell wall interaction, a factor that largely controls the resulting quantity of tannins in wines. To confirm this observation, the effect of anthocyanins on the tannin extractability from grape seeds and skin and on the interaction between tannins and grape cell walls suspended in model solutions were studied. The results indicated that anthocyanins favored skin and seed tannin extraction and that there is a competition for the adsorption sites between anthocyanins and tannins that increases the tannin content when anthocyanins are present.

  13. Selection of mutant Chinese hamster ovary cells altered glycoproteins by means of tritiated fucose suicide.

    PubMed Central

    Hirschberg, C B; Baker, R M; Perez, M; Spencer, L A; Watson, D

    1981-01-01

    Mutant Chinese hamster ovary cells altered in glycoproteins have been isolated by selecting for ability to survive exposure to [6-3H]fucose. Mutagenized wild-type cells were permitted to incorporate [3H]fucose to approximately 1 cpm of trichloroacetic acid-insoluble radioactivity per cell and then frozen for several days to accumulate radiation damage. The overall viability of the population was reduced by 5- to 50-fold. Four consecutive selection cycles were carried out. The surviving cells were screened by replica plating-fluorography for clones showing decreased incorporation of fucose into trichloroacetic acid-insoluble macromolecules. Considerable enrichment for cells deficient in fucose uptake or incorporation into proteins (or both) was found in populations surviving the later selection cycles. Two mutant clones isolated after the fourth selection cycle had the same doubling time as the wild type, but contained only 30 to 40% as much fucose bound to proteins as the wild type. Sialic acid contents of the mutants and the wild type were similar. The mutants differed quantitatively and qualitatively from the wild type and from each other with respect to total glycoprotein profiles as visualized by sodium dodecyl sulfate gel electrophoresis. Differences were also found in resistances to cytotoxicity of lectins such as concanavalin A and wheat germ agglutinin. Images PMID:7202113

  14. Disruption of cell walls for enhanced lipid recovery

    DOEpatents

    Knoshaug, Eric P; Donohoe, Bryon S; Gerken, Henri; Laurens, Lieve; Van Wychen, Stefanie Rose

    2015-03-24

    Presented herein are methods of using cell wall degrading enzymes for recovery of internal lipid bodies from biomass sources such as algae. Also provided are algal cells that express at least one exogenous gene encoding a cell wall degrading enzyme and methods for recovering lipids from the cells.

  15. Tracing Cell Wall Biogenesis in Intact Cells and Plants 1

    PubMed Central

    Gibeaut, David M.; Carpita, Nicholas C.

    1991-01-01

    Cells of proso millet (Panicum miliaceum L. cv Abarr) in liquid culture and leaves of maize seedlings (Zea mays L. cv LH51 × LH1131) readily incorporated d-[U-14C]glucose and l-[U-14C]arabinose into soluble and cell wall polymers. Radioactivity from arabinose accumulated selectively in polymers containing arabinose or xylose because a salvage pathway and C-4 epimerase yield both nucleotide-pentoses. On the other hand, radioactivity from glucose was found in all sugars and polymers. Pulse-chase experiments with proso millet cells in liquid culture demonstrated turnover of buffer soluble polymers within minutes and accumulation of radioactive polymers in the cell wall. In leaves of maize seedlings, radioactive polymers accumulated quickly and peaked 30 hours after the pulse then decreased slowly for the remaining time course. During further growth of the seedlings, radioactive polymers became more tenaciously bound in the cell wall. Sugars were constantly recycled from turnover of polysaccharides of the cell wall. Arabinose, hydrolyzed from glucuronoarabinoxylans, and glucose, hydrolyzed from mixed-linkage (1→3, 1→4)β-d-glucans, constituted most of the sugar participating in turnover. Arabinogalactans were a large portion of the buffer soluble (cytoplasmic) polymers of both proso millet cells and maize seedlings, and these polymers also exhibited turnover. Our results indicate that the primary cell wall is not simply a sink for various polysaccharide components, but rather a dynamic compartment exhibiting long-term reorganization by turnover and alteration of specific polymers during development. PMID:16668434

  16. Analysis of COPII vesicles indicates a role for the Emp47-Ssp120 complex in transport of cell surface glycoproteins

    PubMed Central

    Margulis, Neil G.; Wilson, Joshua D.; Bentivoglio, Christine M.; Dhungel, Nripesh; Gitler, Aaron D.; Barlowe, Charles

    2015-01-01

    Coat protein complex II (COPII) vesicle formation at the endoplasmic reticulum (ER) transports nascent secretory proteins forward to the Golgi complex. To further define the machinery that packages secretory cargo and targets vesicles to Golgi membranes, we performed a comprehensive proteomic analysis of purified COPII vesicles. In addition to previously known proteins, we identified new vesicle proteins including Coy1, Sly41 and Ssp120, which were efficiently packaged into COPII vesicles for trafficking between the ER and Golgi compartments. Further characterization of the putative calcium-binding Ssp120 protein revealed a tight association with Emp47 and in emp47Δ cells Ssp120 was mislocalized and secreted. Genetic analyses demonstrated that EMP47 and SSP120 display identical synthetic positive interactions with IRE1 and synthetic negative interactions with genes involved in cell wall assembly. Our findings support a model in which the Emp47-Ssp120 complex functions in transport of plasma membrane glycoproteins through the early secretory pathway. PMID:26650540

  17. Shifting foundations: the mechanical cell wall and development.

    PubMed

    Braybrook, Siobhan A; Jönsson, Henrik

    2016-02-01

    The cell wall has long been acknowledged as an important physical mediator of growth in plants. Recent experimental and modelling work has brought the importance of cell wall mechanics into the forefront again. These data have challenged existing dogmas that relate cell wall structure to cell/organ growth, that uncouple elasticity from extensibility, and those which treat the cell wall as a passive and non-stressed material. Within this review we describe experiments and models which have changed the ways in which we view the mechanical cell wall, leading to new hypotheses and research avenues. It has become increasingly apparent that while we often wish to simplify our systems, we now require more complex multi-scale experiments and models in order to gain further insight into growth mechanics. We are currently experiencing an exciting and challenging shift in the foundations of our understanding of cell wall mechanics in growth and development.

  18. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes

    SciTech Connect

    Cosgrove, Daniel J.

    2015-11-25

    The advent of user-friendly instruments for measuring force/deflection curves of plant surfaces at high spatial resolution has resulted in a recent outpouring of reports of the ‘Young's modulus’ of plant cell walls. The stimulus for these mechanical measurements comes from biomechanical models of morphogenesis of meristems and other tissues, as well as single cells, in which cell wall stress feeds back to regulate microtubule organization, auxin transport, cellulose deposition, and future growth directionality. In this article I review the differences between elastic modulus and wall extensibility in the context of cell growth. Some of the inherent complexities, assumptions, and potential pitfalls in the interpretation of indentation force/deflection curves are discussed. Reported values of elastic moduli from surface indentation measurements appear to be 10- to >1000-fold smaller than realistic tensile elastic moduli in the plane of plant cell walls. Potential reasons for this disparity are discussed, but further work is needed to make sense of the huge range in reported values. The significance of wall stress relaxation for growth is reviewed and connected to recent advances and remaining enigmas in our concepts of how cellulose, hemicellulose, and pectins are assembled to make an extensible cell wall. A comparison of the loosening action of α-expansin and Cel12A endoglucanase is used to illustrate two different ways in which cell walls may be made more extensible and the divergent effects on wall mechanics.

  19. Two endogenous proteins that induce cell wall extension in plants

    NASA Technical Reports Server (NTRS)

    McQueen-Mason, S.; Durachko, D. M.; Cosgrove, D. J.

    1992-01-01

    Plant cell enlargement is regulated by wall relaxation and yielding, which is thought to be catalyzed by elusive "wall-loosening" enzymes. By employing a reconstitution approach, we found that a crude protein extract from the cell walls of growing cucumber seedlings possessed the ability to induce the extension of isolated cell walls. This activity was restricted to the growing region of the stem and could induce the extension of isolated cell walls from various dicot stems and the leaves of amaryllidaceous monocots, but was less effective on grass coleoptile walls. Endogenous and reconstituted wall extension activities showed similar sensitivities to pH, metal ions, thiol reducing agents, proteases, and boiling in methanol or water. Sequential HPLC fractionation of the active wall extract revealed two proteins with molecular masses of 29 and 30 kD associated with the activity. Each protein, by itself, could induce wall extension without detectable hydrolytic breakdown of the wall. These proteins appear to mediate "acid growth" responses of isolated walls and may catalyze plant cell wall extension by a novel biochemical mechanism.

  20. Two endogenous proteins that induce cell wall extension in plants

    NASA Technical Reports Server (NTRS)

    McQueen-Mason, S.; Durachko, D. M.; Cosgrove, D. J.

    1992-01-01

    Plant cell enlargement is regulated by wall relaxation and yielding, which is thought to be catalyzed by elusive "wall-loosening" enzymes. By employing a reconstitution approach, we found that a crude protein extract from the cell walls of growing cucumber seedlings possessed the ability to induce the extension of isolated cell walls. This activity was restricted to the growing region of the stem and could induce the extension of isolated cell walls from various dicot stems and the leaves of amaryllidaceous monocots, but was less effective on grass coleoptile walls. Endogenous and reconstituted wall extension activities showed similar sensitivities to pH, metal ions, thiol reducing agents, proteases, and boiling in methanol or water. Sequential HPLC fractionation of the active wall extract revealed two proteins with molecular masses of 29 and 30 kD associated with the activity. Each protein, by itself, could induce wall extension without detectable hydrolytic breakdown of the wall. These proteins appear to mediate "acid growth" responses of isolated walls and may catalyze plant cell wall extension by a novel biochemical mechanism.

  1. N-Glycoprotein Surfaceomes of Four Developmentally Distinct Mouse Cell Types

    PubMed Central

    Kropp, Erin M.; Bhattacharya, Subarna; Waas, Matthew; Chuppa, Sandra L.; Hadjantonakis, Anna-Katerina; Boheler, Kenneth R.; Gundry, Rebekah L.

    2014-01-01

    Purpose Detailed knowledge of cell surface proteins present during early embryonic development remains limited for most cell lineages. Due to the relevance of cell surface proteins in their functional roles controlling cell signaling and their utility as accessible, non-genetic markers for cell identification and sorting, the goal of this study was to provide new information regarding the cell surface proteins present during early mouse embryonic development. Experimental Design Using the Cell Surface Capture Technology, the cell surface N-glycoproteomes of three cell lines and one in vitro differentiated cell type representing distinct cell fates and stages in mouse embryogenesis were assessed. Results Altogether, more than 600 cell surface N-glycoproteins were identified represented by >5500 N-glycopeptides. Conclusions and Clinical Relevance The development of new, informative cell surface markers for the reliable identification and isolation of functionally defined subsets of cells from early developmental stages will advance the use of stem cell technologies for mechanistic developmental studies, including disease modeling and drug discovery. PMID:24920426

  2. N-glycoprotein surfaceomes of four developmentally distinct mouse cell types.

    PubMed

    Kropp, Erin M; Bhattacharya, Subarna; Waas, Matthew; Chuppa, Sandra L; Hadjantonakis, Anna-Katerina; Boheler, Kenneth R; Gundry, Rebekah L

    2014-08-01

    Detailed knowledge of cell surface proteins present during early embryonic development remains limited for most cell lineages. Due to the relevance of cell surface proteins in their functional roles controlling cell signaling and their utility as accessible, nongenetic markers for cell identification and sorting, the goal of this study was to provide new information regarding the cell surface proteins present during early mouse embryonic development. Using the cell surface capture technology, the cell surface N-glycoproteomes of three cell lines and one in vitro differentiated cell type representing distinct cell fates and stages in mouse embryogenesis were assessed. Altogether, more than 600 cell surface N-glycoproteins were identified represented by >5500 N-glycopeptides. The development of new, informative cell surface markers for the reliable identification and isolation of functionally defined subsets of cells from early developmental stages will advance the use of stem cell technologies for mechanistic developmental studies, including disease modeling and drug discovery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Evolution and diversity of green plant cell walls.

    PubMed

    Popper, Zoë A

    2008-06-01

    Plant cells are surrounded by a dynamic cell wall that performs many essential biological roles, including regulation of cell expansion, the control of tissue cohesion, ion-exchange and defence against microbes. Recent evidence shows that the suite of polysaccharides and wall proteins from which the plant cell wall is composed shows variation between monophyletic plant taxa. This is likely to have been generated during the evolution of plant groups in response to environmental stress. Understanding the natural variation and diversity that exists between cell walls from different taxa is key to facilitating their future exploitation and manipulation, for example by increasing lignocellulosic content or reducing its recalcitrance for use in biofuel generation.

  4. CD47: A Cell Surface Glycoprotein Which Regulates Multiple Functions of Hematopoietic Cells in Health and Disease

    PubMed Central

    2013-01-01

    Interactions between cells and their surroundings are important for proper function and homeostasis in a multicellular organism. These interactions can either be established between the cells and molecules in their extracellular milieu, but also involve interactions between cells. In all these situations, proteins in the plasma membranes are critically involved to relay information obtained from the exterior of the cell. The cell surface glycoprotein CD47 (integrin-associated protein (IAP)) was first identified as an important regulator of integrin function, but later also was shown to function in ways that do not necessarily involve integrins. Ligation of CD47 can induce intracellular signaling resulting in cell activation or cell death depending on the exact context. By binding to another cell surface glycoprotein, signal regulatory protein alpha (SIRPα), CD47 can regulate the function of cells in the monocyte/macrophage lineage. In this spotlight paper, several functions of CD47 will be reviewed, although some functions may be more briefly mentioned. Focus will be on the ways CD47 regulates hematopoietic cells and functions such as CD47 signaling, induction of apoptosis, and regulation of phagocytosis or cell-cell fusion. PMID:23401787

  5. Multidimensional solid-state NMR spectroscopy of plant cell walls.

    PubMed

    Wang, Tuo; Phyo, Pyae; Hong, Mei

    2016-09-01

    Plant biomass has become an important source of bio-renewable energy in modern society. The molecular structure of plant cell walls is difficult to characterize by most atomic-resolution techniques due to the insoluble and disordered nature of the cell wall. Solid-state NMR (SSNMR) spectroscopy is uniquely suited for studying native hydrated plant cell walls at the molecular level with chemical resolution. Significant progress has been made in the last five years to elucidate the molecular structures and interactions of cellulose and matrix polysaccharides in plant cell walls. These studies have focused on primary cell walls of growing plants in both the dicotyledonous and grass families, as represented by the model plants Arabidopsis thaliana, Brachypodium distachyon, and Zea mays. To date, these SSNMR results have shown that 1) cellulose, hemicellulose, and pectins form a single network in the primary cell wall; 2) in dicot cell walls, the protein expansin targets the hemicellulose-enriched region of the cellulose microfibril for its wall-loosening function; and 3) primary wall cellulose has polymorphic structures that are distinct from the microbial cellulose structures. This article summarizes these key findings, and points out future directions of investigation to advance our fundamental understanding of plant cell wall structure and function.

  6. A cytotoxic ribonuclease reduces the expression level of P-glycoprotein in multidrug-resistant cell lines.

    PubMed

    Castro, Jessica; Ribó, Marc; Puig, Teresa; Colomer, Ramon; Vilanova, Maria; Benito, Antoni

    2012-06-01

    We have previously described a cytotoxic human pancreatic-ribonuclease variant, named PE5, which is able to cleave nuclear RNA, inducing the apoptosis of cancer cells. We have investigated whether PE5 could specifically inhibit the accumulation of P-glycoprotein in multidrug-resistant cells, since P-glycoprotein overexpression is one of the most important mechanisms contributing to the multiple drug resistance phenotype. We show that PE5 is able to reduce the amount of P-glycoprotein in two different multidrug-resistant cell lines, NCI/H460-R and NCI/ADR-RES, while glutathione S-transferase-л is not affected. We also show that onconase, an amphibian ribonuclease that is undergoing phase II/III clinical trials as an antitumor drug, does not affect the expression of these proteins. The reduction of P-glycoprotein accumulation, which has been functionally confirmed by flow cytometry analysis, may be caused by the previously reported underphosphorylation of JNK induced by PE5. We also show that PE5 has synergistic cytotoxicity with doxorubicin on the NCI/ADR-RES multidrug-resistant cell line. In conclusion, PE5 is a cytotoxic ribonuclease that cleaves nuclear RNA and decreases the expression of P-glycoprotein, showing anticancer activity in multidrug-resistant cell lines.

  7. Wall teichoic acids prevent antibody binding to epitopes within the cell wall of Staphylococcus aureus.

    PubMed

    Gautam, Samir; Kim, Taehan; Lester, Evan; Deep, Deeksha; Spiegel, David A

    2016-01-15

    Staphylococcus aureus is a Gram-positive bacterial pathogen that produces a range of infections including cellulitis, pneumonia, and septicemia. The principle mechanism in antistaphylococcal host defense is opsonization with antibodies and complement proteins, followed by phagocytic clearance. Here we use a previously developed technique for installing chemical epitopes in the peptidoglycan cell wall to show that surface glycopolymers known as wall teichoic acids conceal cell wall epitopes, preventing their recognition and opsonization by antibodies. Thus, our results reveal a previously unrecognized immunoevasive role for wall teichoic acids in S. aureus: repulsion of peptidoglycan-targeted antibodies.

  8. IRES-Mediated Translation of Membrane Proteins and Glycoproteins in Eukaryotic Cell-Free Systems

    PubMed Central

    Brödel, Andreas K.; Sonnabend, Andrei; Roberts, Lisa O.; Stech, Marlitt; Wüstenhagen, Doreen A.; Kubick, Stefan

    2013-01-01

    Internal ribosome entry site (IRES) elements found in the 5′ untranslated region of mRNAs enable translation initiation in a cap-independent manner, thereby representing an alternative to cap-dependent translation in cell-free protein expression systems. However, IRES function is largely species-dependent so their utility in cell-free systems from different species is rather limited. A promising approach to overcome these limitations would be the use of IRESs that are able to recruit components of the translation initiation apparatus from diverse origins. Here, we present a solution to this technical problem and describe the ability of a number of viral IRESs to direct efficient protein expression in different eukaryotic cell-free expression systems. The IRES from the intergenic region (IGR) of the Cricket paralysis virus (CrPV) genome was shown to function efficiently in four different cell-free systems based on lysates derived from cultured Sf21, CHO and K562 cells as well as wheat germ. Our results suggest that the CrPV IGR IRES-based expression vector is universally applicable for a broad range of eukaryotic cell lysates. Sf21, CHO and K562 cell-free expression systems are particularly promising platforms for the production of glycoproteins and membrane proteins since they contain endogenous microsomes that facilitate the incorporation of membrane-spanning proteins and the formation of post-translational modifications. We demonstrate the use of the CrPV IGR IRES-based expression vector for the enhanced synthesis of various target proteins including the glycoprotein erythropoietin and the membrane proteins heparin-binding EGF-like growth factor receptor as well as epidermal growth factor receptor in the above mentioned eukaryotic cell-free systems. CrPV IGR IRES-mediated translation will facilitate the development of novel eukaryotic cell-free expression platforms as well as the high-yield synthesis of desired proteins in already established systems. PMID

  9. A sub-proteome of Arabidopsis thaliana mature stems trapped on Concanavalin A is enriched in cell wall glycoside hydrolases

    PubMed Central

    Minic, Zoran; Jamet, Elisabeth; Négroni, Luc; Arsene Der Garabedian, P.; Zivy, Michel; Jouanin, Lise

    2007-01-01

    N-glycosylated proteins were isolated from Arabidopsis thaliana mature stems using affinity chromatography on Concanavalin A Sepharose, separated by 2D-electrophoresis and identified using nanoHPLC-MS/MS and MALDI-TOF MS. 102 glycoproteins were identified. 94% of these proteins were predicted by bioinformatics to be targeted to the secretory pathway and 87% of them were predicted to be localized in the cell wall or at the plasma membrane. 30% of these proteins belong to glycoside hydrolases (GHs) families with some of them possibly involved in the hydrolysis of cell wall polysaccharides. The second major class of identified proteins comprises aspartyl and serine proteases. Other proteins are predicted to be oxido-reductases, contain interacting domains, are potentially involved in signalling or have an unknown function. This is to our knowledge the first survey of plant cell wall N-glycosylated proteins. PMID:17526915

  10. Cell wall perturbation sensitizes fungi to the antimalarial drug chloroquine.

    PubMed

    Islahudin, Farida; Khozoie, Combiz; Bates, Steven; Ting, Kang-Nee; Pleass, Richard J; Avery, Simon V

    2013-08-01

    Chloroquine (CQ) has been a mainstay of antimalarial drug treatment for several decades. Additional therapeutic actions of CQ have been described, including some reports of fungal inhibition. Here we investigated the action of CQ in fungi, including the yeast model Saccharomyces cerevisiae. A genomewide yeast deletion strain collection was screened against CQ, revealing that bck1Δ and slt2Δ mutants of the cell wall integrity pathway are CQ hypersensitive. This phenotype was rescued with sorbitol, consistent with cell wall involvement. The cell wall-targeting agent caffeine caused hypersensitivity to CQ, as did cell wall perturbation by sonication. The phenotypes were not caused by CQ-induced changes to cell wall components. Instead, CQ accumulated to higher levels in cells with perturbed cell walls: CQ uptake was 2- to 3-fold greater in bck1Δ and slt2Δ mutants than in wild-type yeast. CQ toxicity was synergistic with that of the major cell wall-targeting antifungal drug, caspofungin. The MIC of caspofungin against the yeast pathogen Candida albicans was decreased 2-fold by 250 μM CQ and up to 8-fold at higher CQ concentrations. Similar effects were seen in Candida glabrata and Aspergillus fumigatus. The results show that the cell wall is critical for CQ resistance in fungi and suggest that combination treatments with cell wall-targeting drugs could have potential for antifungal treatment.

  11. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR

    PubMed Central

    Romaniuk, Joseph A. H.; Cegelski, Lynette

    2015-01-01

    The ability to characterize bacterial cell-wall composition and structure is crucial to understanding the function of the bacterial cell wall, determining drug modes of action and developing new-generation therapeutics. Solid-state NMR has emerged as a powerful tool to quantify chemical composition and to map cell-wall architecture in bacteria and plants, even in the context of unperturbed intact whole cells. In this review, we discuss solid-state NMR approaches to define peptidoglycan composition and to characterize the modes of action of old and new antibiotics, focusing on examples in Staphylococcus aureus. We provide perspectives regarding the selected NMR strategies as we describe the exciting and still-developing cell-wall and whole-cell NMR toolkit. We also discuss specific discoveries regarding the modes of action of vancomycin analogues, including oritavancin, and briefly address the reconsideration of the killing action of β-lactam antibiotics. In such chemical genetics approaches, there is still much to be learned from perturbations enacted by cell-wall assembly inhibitors, and solid-state NMR approaches are poised to address questions of cell-wall composition and assembly in S. aureus and other organisms. PMID:26370936

  12. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR.

    PubMed

    Romaniuk, Joseph A H; Cegelski, Lynette

    2015-10-05

    The ability to characterize bacterial cell-wall composition and structure is crucial to understanding the function of the bacterial cell wall, determining drug modes of action and developing new-generation therapeutics. Solid-state NMR has emerged as a powerful tool to quantify chemical composition and to map cell-wall architecture in bacteria and plants, even in the context of unperturbed intact whole cells. In this review, we discuss solid-state NMR approaches to define peptidoglycan composition and to characterize the modes of action of old and new antibiotics, focusing on examples in Staphylococcus aureus. We provide perspectives regarding the selected NMR strategies as we describe the exciting and still-developing cell-wall and whole-cell NMR toolkit. We also discuss specific discoveries regarding the modes of action of vancomycin analogues, including oritavancin, and briefly address the reconsideration of the killing action of β-lactam antibiotics. In such chemical genetics approaches, there is still much to be learned from perturbations enacted by cell-wall assembly inhibitors, and solid-state NMR approaches are poised to address questions of cell-wall composition and assembly in S. aureus and other organisms. © 2015 The Author(s).

  13. Epiglycanin as a membrane glycoprotein. Isolation of plasma membrane from the TA3-Ha tumor cell.

    PubMed

    Schmit, A; Condington, J F; Slayter, H S

    1986-08-15

    A plasma membrane fraction (M) was isolated from ascites cells of mouse TA3-Ha mammary carcinoma by the procedure of Brunette and Till [J. Membr. Biol., 5 (1971) 215], involving homogenization, slow-speed centrifugation, and finally, differential centrifugation in a two-phase system. Marker enzyme activities indicated only minimal contamination of M by the endoplasmic reticulum, a result confirmed by transmission electron microscopy. To monitor the presence of epiglycanin (a large cell-surface glycoprotein), each fraction was tested in a radioimmunoassay for epiglycanin content, by gas chromatography for carbohydrate and amino acid compositions, and by scintillation spectrometry for radioactivity. Cells had been treated with galactose oxidase, followed by reduction with sodium borotritide, prior to homogenization. Of the total recovered epiglycanin, 15% was present in M, but, as indicated by g.l.c., M also contained other glycoproteins in high concentration. A direct correlation was found between epiglycanin concentration, GalNAc content, and radioactivity. Electron microscopy of fraction M by shadow casting showed multiple filaments emanating from some of the particles. The dimensions of these filaments corresponded to those of isolated epiglycanin molecules.

  14. Hantavirus Gn and Gc Envelope Glycoproteins: Key Structural Units for Virus Cell Entry and Virus Assembly

    PubMed Central

    Cifuentes-Muñoz, Nicolás; Salazar-Quiroz, Natalia; Tischler, Nicole D.

    2014-01-01

    In recent years, ultrastructural studies of viral surface spikes from three different genera within the Bunyaviridae family have revealed a remarkable diversity in their spike organization. Despite this structural heterogeneity, in every case the spikes seem to be composed of heterodimers formed by Gn and Gc envelope glycoproteins. In this review, current knowledge of the Gn and Gc structures and their functions in virus cell entry and exit is summarized. During virus cell entry, the role of Gn and Gc in receptor binding has not yet been determined. Nevertheless, biochemical studies suggest that the subsequent virus-membrane fusion activity is accomplished by Gc. Further, a class II fusion protein conformation has been predicted for Gc of hantaviruses, and novel crystallographic data confirmed such a fold for the Rift Valley fever virus (RVFV) Gc protein. During virus cell exit, the assembly of different viral components seems to be established by interaction of Gn and Gc cytoplasmic tails (CT) with internal viral ribonucleocapsids. Moreover, recent findings show that hantavirus glycoproteins accomplish important roles during virus budding since they self-assemble into virus-like particles. Collectively, these novel insights provide essential information for gaining a more detailed understanding of Gn and Gc functions in the early and late steps of the hantavirus infection cycle. PMID:24755564

  15. (The structure of pectins from cotton suspension culture cell walls)

    SciTech Connect

    Mort, A.

    1990-01-01

    We have made progress on several projects to do with determining the structure of pectins. These include: (1) Devising a new sensitive method to determine the degree of methyl esterification (DOM) of pectins; (2) solubilization of all of RGI from cotton cell walls; (3) solubilization of RGII from cotton cell walls; (4) characterization of xyloglucan from cotton cell walls; and (5) investigation giving an indication of a cross-link between extension and pectin.

  16. Knocking on the heaven's wall: pathogenesis of and resistance to biotrophic fungi at the cell wall.

    PubMed

    Schulze-Lefert, Paul

    2004-08-01

    New findings challenge the traditional view of the plant cell wall as passive structural barrier to invasion by fungal microorganisms. A surveillance system for cell wall integrity appears to sense perturbation of the cell wall structure upon fungal attack and is interconnected with known plant defence signalling pathways. Biotrophic fungi might manipulate this surveillance system for the establishment of biotrophy. The attempts of fungi to invade also induce a sub-cellular polarisation in attacked cells, which activates an ancient vesicle-associated resistance response that possibly enables the focal transport of regulatory cargo and the secretion of toxic cargo. The underlying resistance machinery might have been subverted by biotrophic fungi for pathogenesis.

  17. A Cell Wall Proteome and Targeted Cell Wall Analyses Provide Novel Information on Hemicellulose Metabolism in Flax.

    PubMed

    Chabi, Malika; Goulas, Estelle; Leclercq, Celine C; de Waele, Isabelle; Rihouey, Christophe; Cenci, Ugo; Day, Arnaud; Blervacq, Anne-Sophie; Neutelings, Godfrey; Duponchel, Ludovic; Lerouge, Patrice; Hausman, Jean-François; Renaut, Jenny; Hawkins, Simon

    2017-09-01

    Experimentally-generated (nanoLC-MS/MS) proteomic analyses of four different flax organs/tissues (inner-stem, outer-stem, leaves and roots) enriched in proteins from 3 different sub-compartments (soluble-, membrane-, and cell wall-proteins) was combined with publically available data on flax seed and whole-stem proteins to generate a flax protein database containing 2996 nonredundant total proteins. Subsequent multiple analyses (MapMan, CAZy, WallProtDB and expert curation) of this database were then used to identify a flax cell wall proteome consisting of 456 nonredundant proteins localized in the cell wall and/or associated with cell wall biosynthesis, remodeling and other cell wall related processes. Examination of the proteins present in different flax organs/tissues provided a detailed overview of cell wall metabolism and highlighted the importance of hemicellulose and pectin remodeling in stem tissues. Phylogenetic analyses of proteins in the cell wall proteome revealed an important paralogy in the class IIIA xyloglucan endo-transglycosylase/hydrolase (XTH) family associated with xyloglucan endo-hydrolase activity.Immunolocalisation, FT-IR microspectroscopy, and enzymatic fingerprinting indicated that flax fiber primary/S1 cell walls contained xyloglucans with typical substituted side chains as well as glucuronoxylans in much lower quantities. These results suggest a likely central role of xyloglucans and endotransglucosylase/hydrolase activity in flax fiber formation and cell wall remodeling processes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Plant cell wall deconstruction by ascomycete fungi.

    PubMed

    Glass, N Louise; Schmoll, Monika; Cate, Jamie H D; Coradetti, Samuel

    2013-01-01

    Plant biomass degradation by fungi requires a diverse set of secreted enzymes and significantly contributes to the global carbon cycle. Recent advances in genomic and systems-level studies have begun to reveal how filamentous ascomycete species exploit carbon sources in different habitats. These studies have laid the groundwork for unraveling new enzymatic strategies for deconstructing the plant cell wall, including the discovery of polysaccharide monooxygenases that enhance the activity of cellulases. The identification of genes encoding proteins lacking functional annotation, but that are coregulated with cellulolytic genes, suggests functions associated with plant biomass degradation remain to be elucidated. Recent research shows that signaling cascades mediating cellulolytic responses often act in a light-dependent manner and show crosstalk with other metabolic pathways. In this review, we cover plant biomass degradation, from sensing, to transmission and modulation of signals, to activation of transcription factors and gene induction, to enzyme complement and function.

  19. An arabidopsis gene regulatory network for secondary cell wall synthesis

    USDA-ARS?s Scientific Manuscript database

    The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptiona...

  20. Purification of, and generation of antibodies against an actin-binding cell surface glycoprotein from ascites tumor cell microvilli

    SciTech Connect

    Metcalf, T.N. III; Carraway, C.A.C.; Carraway, K.L.

    1987-05-01

    Isolated microvilli from 13762 ascites tumor cells contain a transmembrane, cell surface glycoprotein (CAG - cytoskeleton associated glycoprotein) which binds to microfilaments. The authors have purified this protein from Triton X-100 extracts of microvilli by two consecutive sucrose density gradient centrifugation steps in the presence of sodium dodecyl sulfate (SDS). Under non-reducing conditions, CAG behaves as a 20 S species, and has a molecular weight of 1-2 x 10/sup 6/. The molecular weight of the reduced, SDS subunit is 80,000. The authors have demonstrated that the purified, non-reduced CAG molecule can bind /sup 125/I actin. Antibodies against CAG were raised in rabbits by injecting CAG which was eluted from preparative SDS gels run under reducing conditions. Interestingly, this antibody also reacts with the heavy chain of soluble rat IgM, another mulitmeric glycoprotein of similar molecular weight. This antibody will be useful for the localization of cross-reactive molecules in other cells and tissues.

  1. Recombinant pestivirus E2 glycoproteins prevent viral attachment to permissive and non permissive cells with different efficiency.

    PubMed

    Asfor, A S; Wakeley, P R; Drew, T W; Paton, D J

    2014-08-30

    Bovine viral diarrhoea virus (BVDV) is an economically important animal pathogen, which like other pestiviruses has similar molecular biological features to hepaciviruses, including human Hepatitis C virus. The pestivirus E2 glycoproteins are the major target for virus-neutralising antibodies, as well as playing a role in receptor binding and host range restriction. In this study, recombinant E2 glycoproteins (rE2) derived from three different pestivirus species were examined for their inhibitory effects on pestivirus infectivity in cell culture. Histidine-tagged rE2 glycoproteins of BVDV type 2 strain 178003, BVDV type 1 strain Oregon C24V and CSFV strain Alfort 187 were produced in Spodoptera frugiperda insect cells and purified under native conditions. The ability of rE2 glycoprotein to inhibit the infection of permissive cells by both homologous and heterologous virus was compared, revealing that the inhibitory effects of rE2 glycoproteins correlated with the predicted similarity of the E2 structures in the recombinant protein and the test virus. This result suggests that the sequence and structure of E2 are likely to be involved in the host specificity of pestiviruses at their point of uptake into cells.

  2. Surface glycoproteins of an African henipavirus induce syncytium formation in a cell line derived from an African fruit bat, Hypsignathus monstrosus.

    PubMed

    Krüger, Nadine; Hoffmann, Markus; Weis, Michael; Drexler, Jan Felix; Müller, Marcel Alexander; Winter, Christine; Corman, Victor Max; Gützkow, Tim; Drosten, Christian; Maisner, Andrea; Herrler, Georg

    2013-12-01

    Serological screening and detection of genomic RNA indicates that members of the genus Henipavirus are present not only in Southeast Asia but also in African fruit bats. We demonstrate that the surface glycoproteins F and G of an African henipavirus (M74) induce syncytium formation in a kidney cell line derived from an African fruit bat, Hypsignathus monstrosus. Despite a less broad cell tropism, the M74 glycoproteins show functional similarities to glycoproteins of Nipah virus.

  3. Studies on glycoproteins produced by wild type and wheat germ agglutinin-resistant B16 mouse melanoma cells

    SciTech Connect

    Pinnaduwage, P.D.

    1985-01-01

    Two variants of B16 mouse melanoma cells have been selected in serum-free medium for their resistance to toxic levels of wheat germ agglutinin isolation 1 (WGA). Chromosome analysis and characteristic melanin production showed that the variants are derived from the parent mouse melanoma cell lines. However, the two variants were less tumorigenic in mice compared to the parent B16 mouse melanoma cells. The variants showed a marked decrease in cell agglutination with WGA. Cell agglutination with recin and peanut lectin was not different between the three cell lines, but the two variants showed a slight increase in agglutination with concanavalin A. The binding of /sup 125/I-labeled wheat germ agglutinin to the two variant cells was reduced compared to that of the parent cell. Glycoproteins secreted or shed by the three lines were isolated after growth in serum-free medium in the presence of (/sup 3/He)glucosamine and bovine serum albumin (1%). These metabolically labeled products were fractionated on the basis of their interaction with WGA-Sepharose (2 mg/ml). The WGA-Sepharose affinity chromatographic data suggested a decrease in WGA-binding glycoprotein(s) secreted to the medium by the two variants. The WGA-bound glycoproteins from the two variants upon SDS-PAGE revealed three bands of approximate molecular weights, 92,000, 56,000, and 42,000, none of which were present in the parent cell line (50,000 molecular weight).

  4. Opposite polarity of virus budding and of viral envelope glycoprotein distribution in epithelial cells derived from different tissues

    PubMed Central

    1992-01-01

    We compared the surface envelope glycoprotein distribution and the budding polarity of four RNA viruses in Fischer rat thyroid (FRT) cells and in CaCo-2 cells derived from a human colon carcinoma. Whereas both FRT and CaCo-2 cells sort similarly influenza hemagglutinin and vesicular stomatitis virus (VSV) G protein, respectively, to apical and basolateral membrane domains, they differ in their handling of two togaviruses, Sindbis and Semliki Forest virus (SFV). By conventional EM Sindbis virus and SFV were shown to bud apically in FRT cells and basolaterally in CaCo-2 cells. Consistent with this finding, the distribution of the p62/E2 envelope glycoprotein of SFV, assayed by immunoelectronmicroscopy and by domain-selective surface biotinylation was predominantly apical on FRT cells and basolateral on CaCo-2 cells. We conclude that a given virus and its envelope glycoprotein can be delivered to opposite membrane domains in epithelial cells derived from different tissues. The tissue specificity in the polarity of virus budding and viral envelope glycoprotein distribution indicate that the sorting machinery varies considerably between different epithelial cell types. PMID:1572895

  5. Xyloglucan Endotransglucosylase Activity Loosens a Plant Cell Wall

    PubMed Central

    Van Sandt, Vicky S. T.; Suslov, Dmitry; Verbelen, Jean-Pierre; Vissenberg, Kris

    2007-01-01

    Background and Aims Plant cells undergo cell expansion when a temporary imbalance between the hydraulic pressure of the vacuole and the extensibility of the cell wall makes the cell volume increase dramatically. The primary cell walls of most seed plants consist of cellulose microfibrils tethered mainly by xyloglucans and embedded in a highly hydrated pectin matrix. During cell expansion the wall stress is decreased by the highly controlled rearrangement of the load-bearing tethers in the wall so that the microfibrils can move relative to each other. Here the effect was studied of a purified recombinant xyloglucan endotransglucosylase/hydrolase (XTH) on the extension of isolated cell walls. Method The epidermis of growing onion (Allium cepa) bulb scales is a one-cell-thick model tissue that is structurally and mechanically highly anisotropic. In constant load experiments, the effect of purified recombinant XTH proteins of Selaginella kraussiana on the extension of isolated onion epidermis was recorded. Key Results Fluorescent xyloglucan endotransglucosylase (XET) assays demonstrate that exogeneous XTH can act on isolated onion epidermis cell walls. Furthermore, cell wall extension was significantly increased upon addition of XTH to the isolated epidermis, but only transverse to the net orientation of cellulose microfibrils. Conclusions The results provide evidence that XTHs can act as cell wall-loosening enzymes. PMID:17916584

  6. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation.

    PubMed

    Zhong, Ruiqin; Ye, Zheng-Hua

    2015-02-01

    Secondary walls are mainly composed of cellulose, hemicelluloses (xylan and glucomannan) and lignin, and are deposited in some specialized cells, such as tracheary elements, fibers and other sclerenchymatous cells. Secondary walls provide strength to these cells, which lend mechanical support and protection to the plant body and, in the case of tracheary elements, enable them to function as conduits for transporting water. Formation of secondary walls is a complex process that requires the co-ordinated expression of secondary wall biosynthetic genes, biosynthesis and targeted secretion of secondary wall components, and patterned deposition and assembly of secondary walls. Here, we provide a comprehensive review of genes involved in secondary wall biosynthesis and deposition. Most of the genes involved in the biosynthesis of secondary wall components, including cellulose, xylan, glucomannan and lignin, have been identified and their co-ordinated activation has been shown to be mediated by a transcriptional network encompassing the secondary wall NAC and MYB master switches and their downstream transcription factors. It has been demonstrated that cortical microtubules and microtubule-associated proteins play important roles in the targeted secretion of cellulose synthase complexes, the oriented deposition of cellulose microfibrils and the patterned deposition of secondary walls. Further investigation of many secondary wall-associated genes with unknown functions will provide new insights into the mechanisms controlling the formation of secondary walls that constitute the bulk of plant biomass.

  7. Catabolism of N-glycoproteins in mammalian cells: Molecular mechanisms and genetic disorders related to the processes.

    PubMed

    Suzuki, Tadashi

    2016-10-01

    N-glycans on glycoproteins serve as one of the most important co- and post-translational modifications of proteins, and it has been well established that they play pivotal roles in controlling the physicochemical and/or physiological properties of the carrier proteins. The biosynthetic/processing pathways for N-glycans have been well characterized in mammalian cells. There are, however, issues that remain to be clarified concerning aspects of their degradation. While the molecular mechanism of the lysosomal degradation for N-glycoproteins has been well studied in relation to genetic disorders, which are collectively referred to as lysosomal storage disorders, evidence exists to suggest that there are also "non-lysosomal" degradation processes, which are now known to occur widely in eukaryotic cells. In this review, our current knowledge of the lysosomal/non-lysosomal degradation of N-glycoproteins in mammalian cells, as well as in human genetic disorders caused by the defects of these processes, is reviewed.

  8. Constituents of Carpobrotus edulis inhibit P-glycoprotein of MDR1-transfected mouse lymphoma cells.

    PubMed

    Martins, A; Vasas, A; Schelz, Zs; Viveiros, M; Molnár, J; Hohmann, J; Amaral, L

    2010-03-01

    A bioassay-guided separation protocol, including the testing of the extracts, fractions and pure compounds for their ability to inhibit P-glycoprotein (the efflux pump responsible for the multidrug resistance of the used cell line) of mouse lymphoma cells containing the human efflux pump gene MDR1, led to the isolation of seven compounds from the chloroform and ethyl acetate soluble fractions of the methanolic extract of Carpobrotus edulis. The compounds were identified by 1D, 2D NMR and MS investigations as triterpens (beta-amyrin, uvaol and oleanolic acid), monogalactosyldiacylglycerol, catechin, epicatechin and procyanidin B5. Uvaol was the most effective and promising compound in the reversal of multidrug resistance in MDR mouse lymphoma cell line.

  9. Small Molecule Probes for Plant Cell Wall Polysaccharide Imaging

    PubMed Central

    Wallace, Ian S.; Anderson, Charles T.

    2012-01-01

    Plant cell walls are composed of interlinked polymer networks consisting of cellulose, hemicelluloses, pectins, proteins, and lignin. The ordered deposition of these components is a dynamic process that critically affects the development and differentiation of plant cells. However, our understanding of cell wall synthesis and remodeling, as well as the diverse cell wall architectures that result from these processes, has been limited by a lack of suitable chemical probes that are compatible with live-cell imaging. In this review, we summarize the currently available molecular toolbox of probes for cell wall polysaccharide imaging in plants, with particular emphasis on recent advances in small molecule-based fluorescent probes. We also discuss the potential for further development of small molecule probes for the analysis of cell wall architecture and dynamics. PMID:22639673

  10. Cell wall structure and biogenesis in Aspergillus species.

    PubMed

    Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu

    2016-09-01

    Aspergillus species are among the most important filamentous fungi from the viewpoints of industry, pathogenesis, and mycotoxin production. Fungal cells are exposed to a variety of environmental stimuli, including changes in osmolality, temperature, and pH, which create stresses that primarily act on fungal cell walls. In addition, fungal cell walls are the first interactions with host cells in either human or plants. Thus, understanding cell wall structure and the mechanism of their biogenesis is important for the industrial, medical, and agricultural fields. Here, we provide a systematic review of fungal cell wall structure and recent findings regarding the cell wall integrity signaling pathways in aspergilli. This accumulated knowledge will be useful for understanding and improving the use of industrial aspergilli fermentation processes as well as treatments for some fungal infections.

  11. Calcium at the cell wall-cytoplast interface.

    PubMed

    Hepler, Peter K; Winship, Lawrence J

    2010-02-01

    Attention is given to the role of Ca(2+) at the interface between the cell wall and the cytoplast, especially as seen in pollen tubes. While the cytoplasm directs the synthesis and deposition of the wall, it is less well appreciated that the wall exerts considerable self control and influences activities of the cytoplasm. Ca(2+) participates as a crucial factor in this two way communication. In the cytoplasm, a [Ca(2+)] above 0.1 microM, regulates myriad processes, including secretion of cell wall components. In the cell wall Ca(2+), at 10 microM to 10 mM, binds negative charges on pectins and imparts structural rigidity to the wall. The plasma membrane occupies a pivotal position between these two compartments, where selective channels regulate influx of Ca(2+), and specific carriers pump the ion back into the wall. In addition we draw attention to different factors, which either respond to the wall or are present in the wall, and usually generate elevated [Ca(2+)] in the cytoplasm. These factors include: (i) stretch activated channels; (ii) calmodulin; (iii) annexins; (iv) wall associated kinases; (v) oligogalacturonides; and (vi) extracellular adenosine 5'-triphosphate. Together they provide evidence for a rich and multifaceted system of communication between the cytoplast and cell wall, with Ca(2+) as a carrier of information.

  12. Cell wall ultrastructure of flocculent and non-flocculent Schizosaccharomyces pombe strains. Effect of cell wall hydrolysing enzymes on flocculation and cell wall ultastructure.

    PubMed

    Geleta, Anna; Kristóf, Z; Maráz, Anna

    2007-03-01

    Scanning and transmission electron microscopic studies revealed the presence of slime-like, amorphous material on the surface of Schizosaccahromyces pombe RIVE 4-2-1 cells, independently, whether they were in flocculated or in non-flocculated state. Close contact of the adjacent cells via the merging outermost cell wall layers was found, however, only in the case of floc formation, which was induced by cultivating the cells in the presence of 6% (v/v) ethanol. Irreversible loss of the flocculation ability of the cells by treatment with proteinases suggests that proteinaceous cell surface molecules as lectins contribute to the cell-to-cell interaction during flocculation. Both proteinase K and pronase treatments removed a distinct outer layer of the cell wall, which indicated that the protein moieties of the phosphogalactomannan outer surface layer has a crucial role in the maintenance of cell wall integrity. In the case of lysing enzyme treatment the removal of the outermost layer was also observed as the first step of the cell wall digestion, while driselase treatment resulted in almost complete digestion of the cell wall.

  13. At the border: the plasma membrane-cell wall continuum.

    PubMed

    Liu, Zengyu; Persson, Staffan; Sánchez-Rodríguez, Clara

    2015-03-01

    Plant cells rely on their cell walls for directed growth and environmental adaptation. Synthesis and remodelling of the cell walls are membrane-related processes. During cell growth and exposure to external stimuli, there is a constant exchange of lipids, proteins, and other cell wall components between the cytosol and the plasma membrane/apoplast. This exchange of material and the localization of cell wall proteins at certain spots in the plasma membrane seem to rely on a particular membrane composition. In addition, sensors at the plasma membrane detect changes in the cell wall architecture, and activate cytoplasmic signalling schemes and ultimately cell wall remodelling. The apoplastic polysaccharide matrix is, on the other hand, crucial for preventing proteins diffusing uncontrollably in the membrane. Therefore, the cell wall-plasma membrane link is essential for plant development and responses to external stimuli. This review focuses on the relationship between the cell wall and plasma membrane, and its importance for plant tissue organization. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. An enlarged cell wall proteome of Arabidopsis thaliana rosettes.

    PubMed

    Hervé, Vincent; Duruflé, Harold; San Clemente, Hélène; Albenne, Cécile; Balliau, Thierry; Zivy, Michel; Dunand, Christophe; Jamet, Elisabeth

    2016-12-01

    Plant cells are surrounded by cell walls playing many roles during development and in response to environmental constraints. Cell walls are mainly composed of polysaccharides (cellulose, hemicelluloses and pectins), but they also contain proteins which are critical players in cell wall remodeling processes. Today, the cell wall proteome of Arabidopsis thaliana, a major dicot model plant, comprises more than 700 proteins predicted to be secreted (cell wall proteins-CWPs) identified in different organs or in cell suspension cultures. However, the cell wall proteome of rosettes is poorly represented with only 148 CWPs identified after extraction by vacuum infiltration. This new study allows enlarging its coverage. A destructive method starting with the purification of cell walls has been performed and two experiments have been compared. They differ by the presence/absence of protein separation by a short 1D-electrophoresis run prior to tryptic digestion and different gradient programs for peptide separation before mass spectrometry analysis. Altogether, the rosette cell wall proteome has been significantly enlarged to 361 CWPs, among which 213 newly identified in rosettes and 57 newly described. The identified CWPs fall in four major functional classes: 26.1% proteins acting on polysaccharides, 11.1% oxido-reductases, 14.7% proteases and 11.7% proteins possibly related to lipid metabolism. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Preparation of Cell Wall Antigens of Staphylococcus aureus

    PubMed Central

    Kowalski, J. J.; Tipper, Donald J.; Berman, David T.

    1970-01-01

    Cell walls were prepared from Staphylococcus aureus strains Copenhagen and 263 by high-speed mixing in the presence of glass beads followed by differential centrifugation. Insoluble peptidoglycan complexes were derived from cell walls by extraction of teichoic acid with 10% trichloroacetic acid. Intact teichoic acid was prepared from each strain by digestion of cell walls with lysostaphin and isolated by column chromatography. Soluble glycopeptide (peptidoglycan in which only the glycan has been fragmented) and the stable complex of teichoic acid with glycopeptide were prepared by digestion of cell walls with Chalaropsis B endo-N-acetylmuramidase and were separated by column chromatography. Amino acid and amino sugar contents of walls and subunits of walls were comparable to those reported by others. Images PMID:16557799

  16. Screening and characterization of plant cell walls using carbohydrate microarrays.

    PubMed

    Sørensen, Iben; Willats, William G T

    2011-01-01

    Plant cells are surrounded by cell walls built largely from complex carbohydrates. The primary walls of growing plant cells consist of interdependent networks of three polysaccharide classes: cellulose, cross-linking glycans (also known as hemicelluloses), and pectins. Cellulose microfibrils are tethered together by cross-linking glycans, and this assembly forms the major load-bearing component of primary walls, which is infiltrated with pectic polymers. In the secondary walls of woody tissues, pectins are much reduced and walls are reinforced with the phenolic polymer lignin. Plant cell walls are essential for plant life and also have numerous industrial applications, ranging from wood to nutraceuticals. Enhancing our knowledge of cell wall biology and the effective use of cell wall materials is dependent to a large extent on being able to analyse their fine structures. We have developed a suite of techniques based on microarrays probed with monoclonal antibodies with specificity for cell wall components, and here we present practical protocols for this type of analysis.

  17. Ebola Virus Glycoproteins Induce Global Surface Protein Down-Modulation and Loss of Cell Adherence

    PubMed Central

    Simmons, Graham; Wool-Lewis, Rouven J.; Baribaud, Frédéric; Netter, Robert C.; Bates, Paul

    2002-01-01

    The Ebola virus envelope glycoprotein (GP) derived from the pathogenic Zaire subtype mediates cell rounding and detachment from the extracellular matrix in 293T cells. In this study we provide evidence that GPs from the other pathogenic subtypes, Sudan and Côte d'Ivoire, as well as from Reston, a strain thought to be nonpathogenic in humans, also induced cell rounding, albeit at lower levels than Zaire GP. Sequential removal of regions of potential O-linked glycosylation at the C terminus of GP1 led to a step-wise reduction in cell detachment without obviously affecting GP function, suggesting that such modifications are involved in inducing the detachment phenotype. While causing cell rounding and detachment in 293T cells, Ebola virus GP did not cause an increase in cell death. Indeed, following transient expression of GP, cells were able to readhere and continue to divide. Also, the rounding effect was not limited to 293T cells. Replication-deficient adenovirus vectors expressing Ebola virus GP induced the loss of cell adhesion in a range of cell lines and primary cell types, including those with proposed relevance to Ebola virus infection in vivo, such as endothelial cells and macrophages. In both transfected 293T and adenovirus-infected Vero cells, a reduction in cell surface expression of adhesion molecules such as integrin β1 concurrent with the loss of cell adhesion was observed. A number of other cell surface molecules, however, including major histocompatibility complex class I and the epidermal growth factor receptor, were also down-modulated, suggesting a global mechanism for surface molecule down-regulation. PMID:11836430

  18. Ebola virus glycoproteins induce global surface protein down-modulation and loss of cell adherence.

    PubMed

    Simmons, Graham; Wool-Lewis, Rouven J; Baribaud, Frédéric; Netter, Robert C; Bates, Paul

    2002-03-01

    The Ebola virus envelope glycoprotein (GP) derived from the pathogenic Zaire subtype mediates cell rounding and detachment from the extracellular matrix in 293T cells. In this study we provide evidence that GPs from the other pathogenic subtypes, Sudan and Côte d'Ivoire, as well as from Reston, a strain thought to be nonpathogenic in humans, also induced cell rounding, albeit at lower levels than Zaire GP. Sequential removal of regions of potential O-linked glycosylation at the C terminus of GP1 led to a step-wise reduction in cell detachment without obviously affecting GP function, suggesting that such modifications are involved in inducing the detachment phenotype. While causing cell rounding and detachment in 293T cells, Ebola virus GP did not cause an increase in cell death. Indeed, following transient expression of GP, cells were able to readhere and continue to divide. Also, the rounding effect was not limited to 293T cells. Replication-deficient adenovirus vectors expressing Ebola virus GP induced the loss of cell adhesion in a range of cell lines and primary cell types, including those with proposed relevance to Ebola virus infection in vivo, such as endothelial cells and macrophages. In both transfected 293T and adenovirus-infected Vero cells, a reduction in cell surface expression of adhesion molecules such as integrin beta1 concurrent with the loss of cell adhesion was observed. A number of other cell surface molecules, however, including major histocompatibility complex class I and the epidermal growth factor receptor, were also down-modulated, suggesting a global mechanism for surface molecule down-regulation.

  19. Alteration of N-glycoproteins/N-glycosites in human hepatic stellate cells activated with transforming growth factor-β1.

    PubMed

    Qin, Y; Wang, Q; Zhong, Y; Zhao, F; Wu, F; Wang, Y; Ma, T; Liu, C; Bian, H; Li, Z

    2016-03-20

    Proteins N-glycosylation is significantly increased in the activated human hepatic stellate cells (HSCs) stimulated by transforming growth factor-β1 (TGF-β1) compared to the quiescent HSCs according to our previous study. However, little is known about the alteration of N-glycoprotein profiles in the activated HSCs. Profiles of N-glycopeptides / N-glycoproteins / N-glycosites in LX-2 cells, with and without activation by TGF-β1, were identified and compared using hydrazide chemistry enrichment coupled with liquid chromatography - mass spectrometry analysis. Western blot and immunohistochemistry were further used for validation. A total of 103 non-redundant N-glycopeptides, with 107 glycosylation sites from 86 N-glycoproteins, were identified in activated and quiescent LX-2 cells respectively. Among these, 23 proteins were known N-glycoproteins, and 58 were newly identified N-glycoproteins. In addition, 43 proteins (e.g., pigment epithelium-derived factor and clathrin heavy chain 1) were solely identified or up-regulated in the activated LX-2 cells, which participated in focal adhesion and glycosaminoglycan degradation pathways and were involved in interaction clusters of cytoskeletal proteins (e.g., myosin light chains and keratins). The increased expression of glucosamine (N-acetyl)-6-sulfatase and phospholipase C beta 2 and the decreased expression of zinc finger and BTB domain-containing protein 1 were validated in the activated compared to the quiescent LX-2 cells. In conclusion, increased expression of N-glycoproteins and N-glycosites play important roles in cellular contractility, signal transduction, and responses to stimuli in the activated HSCs, which might provide useful information for discovering novel molecular mechanism of HSC activation and therapeutic targets in liver fibrosis.

  20. Assembly and enlargement of the primary cell wall in plants

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1997-01-01

    Growing plant cells are shaped by an extensible wall that is a complex amalgam of cellulose microfibrils bonded noncovalently to a matrix of hemicelluloses, pectins, and structural proteins. Cellulose is synthesized by complexes in the plasma membrane and is extruded as a self-assembling microfibril, whereas the matrix polymers are secreted by the Golgi apparatus and become integrated into the wall network by poorly understood mechanisms. The growing wall is under high tensile stress from cell turgor and is able to enlarge by a combination of stress relaxation and polymer creep. A pH-dependent mechanism of wall loosening, known as acid growth, is characteristic of growing walls and is mediated by a group of unusual wall proteins called expansins. Expansins appear to disrupt the noncovalent bonding of matrix hemicelluloses to the microfibril, thereby allowing the wall to yield to the mechanical forces generated by cell turgor. Other wall enzymes, such as (1-->4) beta-glucanases and pectinases, may make the wall more responsive to expansin-mediated wall creep whereas pectin methylesterases and peroxidases may alter the wall so as to make it resistant to expansin-mediated creep.

  1. Variant surface glycoprotein RNA interference triggers a precytokinesis cell cycle arrest in African trypanosomes.

    PubMed

    Sheader, Karen; Vaughan, Sue; Minchin, James; Hughes, Katie; Gull, Keith; Rudenko, Gloria

    2005-06-14

    Trypanosoma brucei is a protozoan parasite that causes African sleeping sickness. T. brucei multiplies extracellularly in the bloodstream, relying on antigenic variation of a dense variant surface glycoprotein (VSG) coat to escape antibody-mediated lysis. We investigated the role of VSG in proliferation and pathogenicity by using inducible RNA interference to ablate VSG transcript down to 1-2% normal levels. Inhibiting VSG synthesis in vitro triggers a rapid and specific cell cycle checkpoint blocking cell division. Parasites arrest at a discrete precytokinesis stage with two full-length flagella and opposing flagellar pockets, without undergoing additional rounds of S phase and mitosis. A subset (<10%) of the stalled cells have internal flagella, indicating that the progenitors of these cells were already committed to cytokinesis when VSG restriction was sensed. Although there was no obvious VSG depletion in vitro after 24-h induction of VSG RNA interference, there was rapid clearance of these cells in vivo. We propose that a stringent block in VSG synthesis produces stalled trypanosomes with a minimally compromised VSG coat, which can be targeted by the immune system. Our data indicate that VSG protein or transcript is monitored during cell cycle progression in bloodstream-form T. brucei and describes precise precytokinesis cell cycle arrest. This checkpoint before cell division provides a link between the protective VSG coat and cell cycle progression and could function as a novel parasite safety mechanism, preventing extensive dilution of the protective VSG coat in the absence of VSG synthesis.

  2. DUSP1 induces paclitaxel resistance through the regulation of p-glycoprotein expression in human ovarian cancer cells.

    PubMed

    Kang, Yu-Seon; Seok, Hyun-Jeong; Jeong, Eun-Jeong; Kim, Yuna; Yun, Seok-Joong; Min, Jeong-Ki; Kim, Sun Jin; Kim, Jang-Seong

    2016-09-09

    The heterogeneity and genetic instability of ovarian cancer cells often lead to the development of drug resistance, closely related with the increased cancer-related mortality. In this study, we investigated the role of dual-specificity phosphatase 1 (DUSP1) in the development of the resistance in human ovarian cancer cells against paclitaxel. Overexpression of DUSP1 in HeyA8 human ovarian cancer cells (HeyA8-DUSP1) up-regulated the expression of the drug efflux pump, p-glycoprotein. Consequently, HeyA8-DUSP1 cells are highly resistant to paclitaxel, with the resistance comparable to that of a multi-drug resistance cell line (HeyA8-MDR). Moreover, over expression of DUSP1 significantly increased the activation of p38 MAPK, leaving the activation of ERK1/2 and JNK1/2 unaffected. Pharmacological suppression of p38 MAPK activity prevents the up-regulation of p-glycoprotein expression and the consequent resistance against paclitaxel in HeyA8-DUSP1 cells. By contrast, HeyA8-MDR cells expressed a significantly higher level of DUSP1, but treatment with small interference RNA against DUSP1 significantly suppressed the expression of p-glycoprotein and the resistance against paclitaxel in HeyA8-MDR cells. Ectopic expression of MKK3, an upstream activator of p38 MAPK, significantly up-regulated the expression of p-glycoprotein and increased the consequent resistance against paclitaxel in HeyA8 cells. Collectively, these data indicated that DUSP1 may induce the resistance against paclitaxel through the p38 MAPK-mediated overexpression of p-glycoprotein in human ovarian cancer cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Structural Studies of Complex Carbohydrates of Plant Cell Walls

    SciTech Connect

    Darvill, Alan; Hahn, Michael G.; O'Neill, Malcolm A.; York, William S.

    2015-02-17

    Most of the solar energy captured by land plants is converted into the polysaccharides (cellulose, hemicellulose, and pectin) that are the predominant components of the cell wall. These walls, which account for the bulk of plant biomass, have numerous roles in the growth and development of plants. Moreover, these walls have a major impact on human life as they are a renewable source of biomass, a source of diverse commercially useful polymers, a major component of wood, and a source of nutrition for humans and livestock. Thus, understanding the molecular mechanisms that lead to wall assembly and how cell walls and their component polysaccharides contribute to plant growth and development is essential to improve and extend the productivity and value of plant materials. The proposed research will develop and apply advanced analytical and immunological techniques to study specific changes in the structures and interactions of the hemicellulosic and pectic polysaccharides that occur during differentiation and in response to genetic modification and chemical treatments that affect wall biosynthesis. These new techniques will make it possible to accurately characterize minute amounts of cell wall polysaccharides so that subtle changes in structure that occur in individual cell types can be identified and correlated to the physiological or developmental state of the plant. Successful implementation of this research will reveal fundamental relationships between polysaccharide structure, cell wall architecture, and cell wall functions.

  4. The insulin degrading enzyme binding domain of varicella-zoster virus (VZV) glycoprotein E is important for cell-to-cell spread and VZV infectivity, while a glycoprotein I binding domain is essential for infection.

    PubMed

    Ali, Mir A; Li, Qingxue; Fischer, Elizabeth R; Cohen, Jeffrey I

    2009-04-10

    Varicella-zoster virus (VZV) glycoprotein E (gE) interacts with glycoprotein I and with insulin degrading enzyme (IDE), which is a receptor for the virus. We found that a VZV gE deletion mutant could only be grown in cells expressing gE. Expression of VZV gE on the surface of cells did not interfere with VZV infection. HSV deleted for gE is impaired for cell-to-cell spread; VZV gE could not complement this activity in an HSV gE null mutant. VZV lacking the IDE binding domain of gE grew to peak titers nearly equivalent to parental virus; however, it was impaired for cell-to-cell spread and for infectivity with cell-free virus. VZV deleted for a region of gE that binds glycoprotein I could not replicate in cell culture unless grown in cells expressing gE. We conclude that the IDE binding domain is important for efficient cell-to-cell spread and infectivity of cell-free virus.

  5. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites

    SciTech Connect

    Cordon-Cardo, C.; O'Brien, J.P.; Casals, D.; Biedler, J.L.; Melamed, M.R.; Bertino, J.R. ); Rittman-Grauer, L. )

    1989-01-01

    Endothelial cells of human capillary blood vessels at the blood-brain and other blood-tissue barrier sites express P-glycoprotein as detected by mouse monoclonal antibodies against the human multidrug-resistance gene product. This pattern of endothelial cell expression may indicate a physiological role for P-glycoprotein in regulating the entry of certain molecules into the central nervous system and other anatomic compartments, such as the testes. These tissues, which limit the access of systemic drugs, are known pharmacologic sanctuaries for metastatic cancer. P-glycoprotein expression in capillary endothelium of brain and testes and not other tissues (i.e., kidney and placenta) may in part explain this phenomenon and could have important implications in cancer chemotherapy.

  6. A low-toxic artificial fluorescent glycoprotein can serve as an efficient cytoplasmic labeling in living cell.

    PubMed

    Si, Jiangju; Liang, Dawei; Kong, Dan; Wu, Sufang; Yuan, Lan; Xiang, Yan; Jiang, Lei

    2015-03-06

    To maintain the virtue of good optical property and discard the dross of conventional fluorescent staining dyes, we provide a strategy for designing new fluorescent scaffolds. In this study, a novel fluorescent labeling glycoprotein (chitosan-poly-L-cysteine, CPC) was synthesized through graft copolymerization. CPC gives emission peak at 465-470 nm when excited at 386 nm. The submicro-scale CPC microspheres could be localized and persisted specifically in the cytoplasm of living cells, with strong blue fluorescence. Moreover, CPC was highly resistant to photo bleaching, the fluorescence was remained stable for up to 72 h as the cells grew and developed. The glycoprotein CPC was bio-compatible and in zero grade cytotoxicity as quantified by MTT assay. The fluorescent labeling process with our newly designed glycoprotein CPC is exceptionally efficient.

  7. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation

    PubMed Central

    Yoshida, Kouki; Sakamoto, Shingo; Kawai, Tetsushi; Kobayashi, Yoshinori; Sato, Kazuhito; Ichinose, Yasunori; Yaoi, Katsuro; Akiyoshi-Endo, Miho; Sato, Hiroko; Takamizo, Tadashi; Ohme-Takagi, Masaru; Mitsuda, Nobutaka

    2013-01-01

    Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs) can regulate secondary wall formation in rice (Oryza sativa) and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S) has very low transcriptional activation ability, but the longer protein (OsSWN2L) and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions) due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications. PMID:24098302

  8. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation.

    PubMed

    Yoshida, Kouki; Sakamoto, Shingo; Kawai, Tetsushi; Kobayashi, Yoshinori; Sato, Kazuhito; Ichinose, Yasunori; Yaoi, Katsuro; Akiyoshi-Endo, Miho; Sato, Hiroko; Takamizo, Tadashi; Ohme-Takagi, Masaru; Mitsuda, Nobutaka

    2013-01-01

    Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs) can regulate secondary wall formation in rice (Oryza sativa) and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S) has very low transcriptional activation ability, but the longer protein (OsSWN2L) and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions) due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications.

  9. The role of wall calcium in the extension of cell walls of soybean hypocotyls

    NASA Technical Reports Server (NTRS)

    Virk, S. S.; Cleland, R. E.

    1990-01-01

    Calcium crosslinks are load-bearing bonds in soybean (Glycine max (L.) Merr.) hypocotyl cell walls, but they are not the same load-bearing bonds that are broken during acid-mediated cell elongation. This conclusion is reached by studying the relationship between wall calcium, pH and the facilitated creep of frozen-thawed soybean hypocotyl sections. Supporting data include the following observations: 1) 2-[(2-bis-[carboxymethyl]amino-5-methylphenoxy)methyl]-6-methoxy-8-bis[car boxymethyl]aminoquinoline (Quin 2) and ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) caused only limited facilitated creep as compared with acid, despite removal of comparable or larger amounts of wall calcium; 2) the pH-response curves for calcium removal and acid-facilitated creep were different; 3) reversible acid-extension occurred even after removal of almost all wall calcium with Quin 2; and 4) growth of abraded sections did not involve a proportional loss of wall calcium. Removal of wall calcium, however, increased the capacity of the walls to undergo acid-facilitated creep. These data indicate that breakage of calcium crosslinks is not a major mechanism of cell-wall loosening in soybean hypocotyl tissues.

  10. The role of wall calcium in the extension of cell walls of soybean hypocotyls

    NASA Technical Reports Server (NTRS)

    Virk, S. S.; Cleland, R. E.

    1990-01-01

    Calcium crosslinks are load-bearing bonds in soybean (Glycine max (L.) Merr.) hypocotyl cell walls, but they are not the same load-bearing bonds that are broken during acid-mediated cell elongation. This conclusion is reached by studying the relationship between wall calcium, pH and the facilitated creep of frozen-thawed soybean hypocotyl sections. Supporting data include the following observations: 1) 2-[(2-bis-[carboxymethyl]amino-5-methylphenoxy)methyl]-6-methoxy-8-bis[car boxymethyl]aminoquinoline (Quin 2) and ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) caused only limited facilitated creep as compared with acid, despite removal of comparable or larger amounts of wall calcium; 2) the pH-response curves for calcium removal and acid-facilitated creep were different; 3) reversible acid-extension occurred even after removal of almost all wall calcium with Quin 2; and 4) growth of abraded sections did not involve a proportional loss of wall calcium. Removal of wall calcium, however, increased the capacity of the walls to undergo acid-facilitated creep. These data indicate that breakage of calcium crosslinks is not a major mechanism of cell-wall loosening in soybean hypocotyl tissues.

  11. Characterizing phenolformaldehyde adhesive cure chemistry within the wood cell wall

    Treesearch

    Daniel J. Yelle; John Ralph

    2016-01-01

    Adhesive bonding of wood using phenol-formaldehyde remains the industrial standard in wood product bond durability. Not only does this adhesive infiltrate the cell wall, it also is believed to form primary bonds with wood cell wall polymers, particularly guaiacyl lignin. However, the mechanism by which phenol-formaldehyde adhesive intergrally interacts and bonds to...

  12. Broad target cell selectivity of Kaposi's sarcoma-associated herpesvirus glycoprotein-mediated cell fusion and virion entry

    SciTech Connect

    Kaleeba, Johnan A.R.; Berger, Edward A. . E-mail: edward_berger@nih.gov

    2006-10-10

    The molecular mechanism of Kaposi's sarcoma-associated herpesvirus (KSHV, human herpesvirus 8) entry is poorly understood. We tested a broad variety of cell types of diverse species and tissue origin for their ability to function as targets in a quantitative reporter gene assay for KSHV-glycoprotein-mediated cell fusion. Several human, non-human primate, and rabbit cell lines were efficient targets, whereas rodent and all human lymphoblastoid cell lines were weak targets. Parallel findings were obtained with a virion entry assay using a recombinant KSHV encoding a reporter gene. No correlation was observed between target cell activity and surface expression of {alpha}3{beta}1 integrin, a proposed KSHV receptor. We hypothesize that target cell permissiveness in both the cell fusion and virion entry assays reflects the presence of a putative KSHV fusion-entry receptor.

  13. Blue eye disease porcine rubulavirus (PoRv) infects pig neurons and glial cells using sialo-glycoprotein as receptor.

    PubMed

    Mendoza-Magaña, Maria L; Godoy-Martinez, Diana V; Guerrero-Cazares, Hugo; Rodriguez-Peredo, Alejandra; Dueñas-Jimenez, Judith M; Dueñas-Jiménez, Sergio H; Ramírez-Herrera, Mario A

    2007-03-01

    Pig neural cells express glycoproteins with sialylated N-linked oligosaccharide chains (SNOC) which are used by the porcine rubulavirus (PoRv) as receptors. Pig neuronal or glial cell cultures were employed to investigate (a) whether PoRv infects such cells using a molecule expressing SNOC, and (b) the role of viral envelope glycoproteins in establishing the infection. Enriched neuronal or glial cell cultures were exposed to PoRv and infection was detected immunocytochemically. Neuronal cultures prepared from neonatal pigs were treated enzymatically to eliminate sialic acid or N-linked oligosaccharide chains. Primary neural cultures were exposed to anti-HN or anti-F preincubated with PoRv to study the role of the viral glycoproteins. In enriched cultures, PoRv infected neurons and glial cells, and sialic acid expressed in N-linked oligosaccharide chains appeared to play a central role in infection. It was concluded that HN and F viral glycoproteins are required to infect neurons and glial cells.

  14. Laurus nobilis L. Seed Extract Reveals Collateral Sensitivity in Multidrug-Resistant P-Glycoprotein-Expressing Tumor Cells.

    PubMed

    Saab, Antoine M; Guerrini, Alessandra; Zeino, Maen; Wiench, Benjamin; Rossi, Damiano; Gambari, Roberto; Sacchetti, Gianni; Greten, Henry Johannes; Efferth, Thomas

    2015-01-01

    The frequent failure of standard cancer chemotherapy requires the development of novel drugs capable of killing otherwise drug-resistant tumors. Here, we have investigated a chloroform extract of Laurus nobilis seeds. Fatty acids and 23 constituents of the volatile fraction were identified by gas chromotography/flame ionization detection (GC/FID) and gas chromatography/mass spectrometry (GC/MS), in good agreement with (1)H NMR (nuclear magnetic resonance) spectrum. Multidrug-resistant P-glycoprotein-expressing CEM/ADR5000 leukemia cells were hypersensitive (collaterally sensitive) toward this extract compared to drug-sensitive CCRF-CEM cells, whereas CEM/ADR5000 cells were 2586-fold resistant to doxorubicin as control drug. Collateral sensitivity was verified by measurement of apoptotic cells by flow cytometry. The log10IC50 values of 3 compounds in the extract (limonene, eucalyptol, oleic acid) did not correlate with mRNA expression of the P-glycoprotein-coding ABCB1/MDR1 gene and accumulation of the P-glycoprotein substrate rhodamine in the NCI panel of tumor cell lines. A microarray-based profile of 20 genes predicted resistance to doxorubicin and 7 other anticancer drugs involved in the multidrug resistance phenotype but not to limonene, eucalyptol and oleic acid. In conclusion, our results show that Laurus nobilis seed extract is suitable to kill multidrug-resistant P-glycoprotein expressing tumor cells.

  15. Tissue-specific cell wall hydration in sugarcane stalks.

    PubMed

    Maziero, Priscila; Jong, Jennifer; Mendes, Fernanda M; Gonçalves, Adilson R; Eder, Michaela; Driemeier, Carlos

    2013-06-19

    Plant cell walls contain water, especially under biological and wet processing conditions. The present work characterizes this water in tissues of sugarcane stalks. Environmental scanning electron microscopy shows tissue deformation upon drying. Dynamic vapor sorption determines the equilibrium and kinetics of moisture uptake. Thermoporometry by differential scanning calorimetry quantifies water in nanoscale pores. Results show that cell walls from top internodes of stalks are more deformable, slightly more sorptive to moisture, and substantially more porous. These differences of top internode are attributed to less lignified walls, which is confirmed by lower infrared spectral signal from aromatics. Furthermore, cell wall nanoscale porosity, an architectural and not directly compositional characteristic, is shown to be tissue-specific. Nanoscale porosities are ranked as follows: pith parenchyma > pith vascular bundles > rind. This ranking coincides with wall reactivity and digestibility in grasses, suggesting that nanoscale porosity is a major determinant of wall recalcitrance.

  16. Signal transduction in endothelial cells by the angiogenesis inhibitor histidine-rich glycoprotein targets focal adhesions

    SciTech Connect

    Lee, Chunsik; Dixelius, Johan; Thulin, Asa; Kawamura, Harukiyo; Claesson-Welsh, Lena; Olsson, Anna-Karin . E-mail: Anna-Karin.Olsson@genpat.uu.se

    2006-08-01

    Histidine-rich glycoprotein (HRGP) is an abundant heparin-binding plasma protein. We have shown that a fragment released from the central histidine/proline-rich (His/Pro-rich) domain of HRGP blocks endothelial cell migration in vitro and vascularization and growth of murine fibrosarcoma in vivo. The minimal active HRGP domain exerting the anti-angiogenic effect was recently narrowed down to a 35 amino acid peptide, HRGP330, derived from the His/Pro-rich domain of HRGP. By use of a signal transduction antibody array representing 400 different signal transduction molecules, we now show that HRGP and the synthetic peptide HRGP330 specifically induce tyrosine phosphorylation of focal adhesion kinase and its downstream substrate paxillin in endothelial cells. HRGP/HRGP330 treatment of endothelial cells induced disruption of actin stress fibers, a process reversed by treatment of cells with the FAK inhibitor geldanamycin. In addition, VEGF-mediated endothelial cell tubular morphogenesis in a three-dimensional collagen matrix was inhibited by HRGP and HRGP330. In contrast, VEGF-induced proliferation was not affected by HRGP or HRGP330, demonstrating the central role of cell migration during tube formation. In conclusion, our data show that HRGP targets focal adhesions in endothelial cells, thereby disrupting the cytoskeletal organization and the ability of endothelial cells to assemble into vessel structures.

  17. Inhibition of P-glycoprotein activity in human leukemic cells by mifepristone.

    PubMed

    Fardel, O; Courtois, A; Drenou, B; Lamy, T; Lecureur, V; le Prisé, P Y; Fauchet, R

    1996-08-01

    The antiprogestatin drug mifepristone has previously been shown to potentiate anti-cancer drug activity in rodent multidrug-resistant cell lines through inhibition of P-glycoprotein (P-gp) function. In order to characterize P-gp-mifepristone interactions in human tumoral cells, we have studied the effect of the antiprogestatin agent on P-gp activity in human CD34+ leukemic cells known to display high levels of P-gp-related drug efflux. P-gp-mediated transport of the fluorescent dye rhodamine 123 occurring in the CD34+ KG1a myeloid leukemia cell line was found to be strongly inhibited by mifepristone in a dose-dependent manner. Similarly to verapamil, a well-known chemosensitizer agent, the antiprogestatin drug increased doxorubicin cytotoxicity in KG1a cells. Mifepristone, when used at a 10 microM concentration thought to be achievable in vivo without major toxicity, was also able to markedly decrease cellular rhodamine 123 efflux occurring in CD34+ blast cells isolated from six patients suffering from myeloid acute leukemias. These results thus indicate that mifepristone can strongly inhibit P-gp activity in human cells, including tumoral cells freshly isolated from patients, therefore suggesting that the clinical use of this compound may contribute to down-modulate P-gp-mediated drug resistance.

  18. 7. ENGINE TEST CELL BUILDING INTERIOR. WALL MAP IN CENTRAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. ENGINE TEST CELL BUILDING INTERIOR. WALL MAP IN CENTRAL BASEMENT OFFICE AREA. LOOKING SOUTHWEST. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA

  19. Mast cells in the human alveolar wall: an electronmicroscopic study.

    PubMed Central

    Fox, B; Bull, T B; Guz, A

    1981-01-01

    Mast cells were identified by electronmicroscopy in the alveolar wall of the lung in 20 subjects (10 normal, 10 abnormal). A quantitative and qualitative study was made of the mast cells. In the normal lung there was an average concentration of 350 mast cells/mm2 of alveolar wall and in the abnormal 523/mm2. Mast cells occupied approximately 1.6-2.1% of the area of the alveolar wall. There was marked variation in the structure of the mast cell granules but no differences between those in the normal and abnormal lungs. There was evidence that constant degranulation of mast cells may be occurring in the lung. The role that alveolar mast cells may play in the vasoconstrictor response to alveolar hypoxia is discussed. It is suggested that the tachypnoea present in asthma may partly be due to release of mediators from sensitised mast cells within the alveolar wall. Images PMID:7328180

  20. Methods for degrading or converting plant cell wall polysaccharides

    DOEpatents

    Berka, Randy; Cherry, Joel

    2008-08-19

    The present invention relates to methods for converting plant cell wall polysaccharides into one or more products, comprising: treating the plant cell wall polysaccharides with an effective amount of a spent whole fermentation broth of a recombinant microorganism, wherein the recombinant microorganism expresses one or more heterologous genes encoding enzymes which degrade or convert the plant cell wall polysaccharides into the one or more products. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying plant cell wall polysaccharides with an effective amount of a spent whole fermentation broth of a recombinant microorganism, wherein the recombinant microorganism expresses one or more heterologous genes encoding enzymes which degrade or convert the plant cell wall polysaccharides into saccharified material; (b) fermenting the saccharified material of step (a) with one or more fermenting microoganisms; and (c) recovering the organic substance from the fermentation.

  1. Signaling role of oligogalacturonides derived during cell wall degradation

    PubMed Central

    Vallarino, José G.; Osorio, Sonia

    2012-01-01

    In addition to the role of the cell wall as a physical barrier against pathogens, some of its constituents, such as pectin-derived oligogalacturonides (OGAs) are essential components to trigger signaling pathways that induce rapid defense responses. Many pathogens directly penetrate the cell wall to access water and nutrients of the plant protoplast, and a rigid cell wall can fend off pathogen attack by forming an impenetrable physical barrier. Thus, cell wall integrity sensing is one mechanism by which plants may detect pathogen attack. Moreover, when the plant-pathogen interaction occurred, OGAs released during cell wall modification can trigger plant defense (e.g., production of reactive oxygen species, production of anti-microbial metabolites and synthesis of pathogenesis-related proteins). This review documents and discusses studies suggesting that OGAs play a dual signaling role during pathogen attack by inducing defense responses and plant architecture adjustment. PMID:22918501

  2. Collenchyma: a versatile mechanical tissue with dynamic cell walls

    PubMed Central

    Leroux, Olivier

    2012-01-01

    Background Collenchyma has remained in the shadow of commercially exploited mechanical tissues such as wood and fibres, and therefore has received little attention since it was first described. However, collenchyma is highly dynamic, especially compared with sclerenchyma. It is the main supporting tissue of growing organs with walls thickening during and after elongation. In older organs, collenchyma may become more rigid due to changes in cell wall composition or may undergo sclerification through lignification of newly deposited cell wall material. While much is known about the systematic and organographic distribution of collenchyma, there is rather less information regarding the molecular architecture and properties of its cell walls. Scope and conclusions This review summarizes several aspects that have not previously been extensively discussed including the origin of the term ‘collenchyma’ and the history of its typology. As the cell walls of collenchyma largely determine the dynamic characteristics of this tissue, I summarize the current state of knowledge regarding their structure and molecular composition. Unfortunately, to date, detailed studies specifically focusing on collenchyma cell walls have not been undertaken. However, generating a more detailed understanding of the structural and compositional modifications associated with the transition from plastic to elastic collenchyma cell wall properties is likely to provide significant insights into how specific configurations of cell wall polymers result in specific functional properties. This approach, focusing on architecture and functional properties, is likely to provide improved clarity on the controversial definition of collenchyma. PMID:22933416

  3. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes.

    PubMed

    Cosgrove, Daniel J

    2016-01-01

    The advent of user-friendly instruments for measuring force/deflection curves of plant surfaces at high spatial resolution has resulted in a recent outpouring of reports of the 'Young's modulus' of plant cell walls. The stimulus for these mechanical measurements comes from biomechanical models of morphogenesis of meristems and other tissues, as well as single cells, in which cell wall stress feeds back to regulate microtubule organization, auxin transport, cellulose deposition, and future growth directionality. In this article I review the differences between elastic modulus and wall extensibility in the context of cell growth. Some of the inherent complexities, assumptions, and potential pitfalls in the interpretation of indentation force/deflection curves are discussed. Reported values of elastic moduli from surface indentation measurements appear to be 10- to >1000-fold smaller than realistic tensile elastic moduli in the plane of plant cell walls. Potential reasons for this disparity are discussed, but further work is needed to make sense of the huge range in reported values. The significance of wall stress relaxation for growth is reviewed and connected to recent advances and remaining enigmas in our concepts of how cellulose, hemicellulose, and pectins are assembled to make an extensible cell wall. A comparison of the loosening action of α-expansin and Cel12A endoglucanase is used to illustrate two different ways in which cell walls may be made more extensible and the divergent effects on wall mechanics. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Reduced yield of infectious pseudorabies virus and herpes simplex virus from cell lines producing viral glycoprotein gp50.

    PubMed Central

    Petrovskis, E A; Meyer, A L; Post, L E

    1988-01-01

    Pseudorabies virus (PRV) glycoprotein gp50 is the homolog of herpes simplex virus (HSV) glycoprotein D. Several cell lines that constitutively synthesize gp50 were constructed. Vero cells, HeLa cells, and pig kidney (MVPK) cells that produce gp50 all gave reduced yields of PRV and HSV progeny viruses when compared with the parent cell line or the same cell line transfected to produce a different protein. The reduction in virus yield was greatest at low multiplicities of infection. The Vero and HeLa cells that produce gp50 showed an even greater reduction in HSV yield than in PRV yield. This phenomenon may be an example in a herpesvirus of the interference observed in retroviruses or cross-protection in plant virus systems. PMID:2835521

  5. Selenorhodamine Photosensitizers for Photodynamic Therapy of P-Glycoprotein-Expressing Cancer Cells

    PubMed Central

    2015-01-01

    We examined a series of selenorhodamines with amide and thioamide functionality at the 5-position of a 9-(2-thienyl) substituent on the selenorhodamine core for their potential as photosensitizers for photodynamic therapy (PDT) in P-glycoprotein (P-gp) expressing cells. These compounds were examined for their photophysical properties (absorption, fluorescence, and ability to generate singlet oxygen), for their uptake into Colo-26 cells in the absence or presence of verapamil, for their dark and phototoxicity toward Colo-26 cells, for their rates of transport in monolayers of multidrug-resistant, P-gp-overexpressing MDCKII-MDR1 cells, and for their colocalization with mitochondrial specific agents in Colo-26 cells. Thioamide derivatives 16b and 18b were more effective photosensitizers than amide derivatives 15b and 17b. Selenorhodamine thioamides 16b and 18b were useful in a combination therapy to treat Colo-26 cells in vitro: a synergistic therapeutic effect was observed when Colo-26 cells were exposed to PDT and treatment with the cancer drug doxorubicin. PMID:25250825

  6. Dynamic metabolic flux analysis of plant cell wall synthesis.

    PubMed

    Chen, Xuewen; Alonso, Ana P; Shachar-Hill, Yair

    2013-07-01

    The regulation of plant cell wall synthesis pathways remains poorly understood. This has become a bottleneck in designing bioenergy crops. The goal of this study was to analyze the regulation of plant cell wall precursor metabolism using metabolic flux analysis based on dynamic labeling experiments. Arabidopsis T87 cells were cultured heterotrophically with (13)C labeled sucrose. The time course of ¹³C labeling patterns in cell wall precursors and related sugar phosphates was monitored using liquid chromatography tandem mass spectrometry until steady state labeling was reached. A kinetic model based on mass action reaction mechanisms was developed to simulate the carbon flow in the cell wall synthesis network. The kinetic parameters of the model were determined by fitting the model to the labeling time course data, cell wall composition, and synthesis rates. A metabolic control analysis was performed to predict metabolic regulations that may improve plant biomass composition for biofuel production. Our results describe the routes and rates of carbon flow from sucrose to cell wall precursors. We found that sucrose invertase is responsible for the entry of sucrose into metabolism and UDP-glucose-4-epimerase plays a dominant role in UDP-Gal synthesis in heterotrophic Aradidopsis cells under aerobic conditions. We also predicted reactions that exert strong regulatory influence over carbon flow to cell wall synthesis and its composition.

  7. Mechanical properties of spruce wood cell walls by nanoindentation

    NASA Astrophysics Data System (ADS)

    Gindl, W.; Gupta, H. S.; Schöberl, T.; Lichtenegger, H. C.; Fratzl, P.

    2004-12-01

    In order to study the effects of structural variability, nanoindentation experiments were performed in Norway spruce cell walls with highly variable cellulose microfibril angle and lignin content. Contrary to hardness, which showed no statistically significant relationship with changing microfibril angle and lignin content, the elastic modulus of the secondary cell wall decreased significantly with increasing microfibril angle. While the elastic moduli of cell walls with large microfibril angle agreed well with published values, the elastic moduli of cell walls with small microfibril angle were clearly underestimated in nanoindentation measurements. Hardness measurements in the cell corner middle lamella allowed us to estimate the yield stress of the cell-wall matrix to be 0.34±0.16 GPa. Since the hardness of the secondary cell wall was statistically not different from the hardness of the cell corner middle lamella, irrespective of high variability in cellulose microfibril angle, it is proposed that compressive yielding of wood-cell walls is a matrix-dominated process.

  8. [Glycoprotein D (5-23) specific Th2-T-cell line induces HSV-1 keratitis].

    PubMed

    Heiligenhaus, A; Jayaraman, S; Soukiasian, S; Dorf, M; Foster, C S

    1995-08-01

    BALB/c inbred Igh-1-disparate mice exhibit different susceptibility to the development of HSV-1 stromal keratitis (HSK), which may be due to the differential immune regulation. CD4+ T lymphocytes may be critical for the disease induction. A T-cell line (CD4+, T-cell receptor V beta 8+, interleukin-4+) specific for the N-terminal amino acids 5-23 of glycoprotein D from HSV-1 [gD(5-23)] was established from HSK susceptible C.AL-20 mice. HSK-resistant C.B-17 mice, and HSK-susceptible BALB/c mice were injected intraperitoneally with cells (5 x 10(5)/mouse) alone or combined with HSV-1 corneal inoculation (10(5) PFU, KOS strain). Control groups were injected with HSV-antigen-unrelated cells (PPD specific), or were only HSV-1 infected. Migration of the adoptively transferred gD(5-23) Th2 cells was analyzed by histology, by immunohistochemistry and by cell membrane labelling (PKH26). The transfer of gD(5-23) cells accelerated the disease onset (day 2, compared to day 7 without cells). The transfer of gD(5-23) cells increased the incidence of HSK (BALB/c 100%, C.B-17 20%) compared to mice that were only infected with HSV-1 (BALB/c 75%, C.B-17 0%). Keratitis was more severe in mice injected with gD(5-23) cells. In contrast, the transfer of PPD-specific cells did not influence the disease patterns. Mice injected with gD(5-23) cells and not inoculated with HSV-1 did not develop keratitis. The results suggest that CD4+ MHC class II, V beta 8+, IL-4 expressing T-cells (T helper 2) may be important for the induction of HSK.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Mechanical properties of plant cell walls probed by relaxation spectra.

    PubMed

    Hansen, Steen Laugesen; Ray, Peter Martin; Karlsson, Anders Ola; Jørgensen, Bodil; Borkhardt, Bernhard; Petersen, Bent Larsen; Ulvskov, Peter

    2011-01-01

    Transformants and mutants with altered cell wall composition are expected to display a biomechanical phenotype due to the structural role of the cell wall. It is often quite difficult, however, to distinguish the mechanical behavior of a mutant's or transformant's cell walls from that of the wild type. This may be due to the plant's ability to compensate for the wall modification or because the biophysical method that is often employed, determination of simple elastic modulus and breakstrength, lacks the resolving power necessary for detecting subtle mechanical phenotypes. Here, we apply a method, determination of relaxation spectra, which probes, and can separate, the viscoelastic properties of different cell wall components (i.e. those properties that depend on the elastic behavior of load-bearing wall polymers combined with viscous interactions between them). A computer program, BayesRelax, that deduces relaxation spectra from appropriate rheological measurements is presented and made accessible through a Web interface. BayesRelax models the cell wall as a continuum of relaxing elements, and the ability of the method to resolve small differences in cell wall mechanical properties is demonstrated using tuber tissue from wild-type and transgenic potatoes (Solanum tuberosum) that differ in rhamnogalacturonan I side chain structure.

  10. Oral Cyclosporin A Inhibits CD4 T cell P-glycoprotein Activity in HIV-Infected Adults Initiating Treatment with Nucleoside Reverse Transcriptase Inhibitors

    PubMed Central

    Hulgan, Todd; Donahue, John P.; Smeaton, Laura; Pu, Minya; Wang, Hongying; Lederman, Michael M.; Smith, Kimberly; Valdez, Hernan; Pilcher, Christopher; Haas, David W.

    2010-01-01

    Purpose P-glycoprotein limits tissue penetration of many antiretroviral drugs. We characterized effects of the P-glycoprotein substrate cyclosporin A on T cell P-glycoprotein activity in HIV-infected AIDS Clinical Trials Group study A5138 participants. Methods We studied P-glycoprotein activity on CD4 and CD8 T cells in 16 participants randomized to receive oral cyclosporin A (n=9) or not (n=7) during initiation antiretroviral therapy (ART) that did not include protease or non-nucleoside reverse transcriptase inhibitors. Results CD4 T cell P-glycoprotein activity decreased by a median of 8 percentage points with cyclosporin A/ART (difference between cyclosporin A/ART versus ART only P=0.001). Plasma trough cyclosporin A concentrations correlated with change in P-glycoprotein activity in several T cell subsets. Conclusions Oral cyclosporin A can inhibit peripheral blood CD4 T cell P-glycoprotein activity. Targeted P-glycoprotein inhibition might enhance delivery of ART to T cells. PMID:19779705

  11. Maize development: cell wall changes in leaves and sheaths

    USDA-ARS?s Scientific Manuscript database

    Developmental changes occur in maize (Zea mays L.) as it transitions from juvenile stages to the mature plant. Changes also occur as newly formed cells mature into adult cells. Maize leaf blades, including the midribs and sheaths, undergo cell wall changes as cells transition to fully mature cell ty...

  12. Expression of bovine viral diarrhea virus glycoprotein E2 as a soluble secreted form in a Mammalian cell line.

    PubMed

    Donofrio, Gaetano; Bottarelli, Ezio; Sandro, Cavirani; Flammini, Cesidio Filippo

    2006-06-01

    Bovine viral diarrhea virus (BVDV) membrane-anchored type I glycoprotein E2 is an approximately 53-kDa immunodominant glycoprotein inducing the production of neutralizing antibodies in the animal host after natural infection or following immunization with live or killed vaccines. The E2 coding region lacking the transmembrane domain was constructed in a soluble secreted form (secE2) and expressed in the medium of a transiently transfected human cell line. The crude conditioned medium containing secE2 can be potentially employed to develop an enzyme-linked immunosorbent assay antigen for the diagnosis of BVDV infection or for vaccine purposes.

  13. T-cell responses to the trypanosome variant surface glycoprotein are not limited to hypervariable subregions.

    PubMed

    Dagenais, Taylor R; Demick, Karen P; Bangs, James D; Forest, Katrina T; Paulnock, Donna M; Mansfield, John M

    2009-01-01

    Variable subregions within the variant surface glycoprotein (VSG) coat displayed by African trypanosomes are predicted sites for T- and B-cell recognition. Hypervariable subregion 1 (HV-1) is localized to an internal amphipathic alpha helix in VSG monomers and may have evolved due to selective pressure by host T-cell responses to epitopes within this subregion. The prediction of T-cell receptor-reactive sites and major histocompatibility complex class II binding motifs within the HV-1 subregion, coupled with the conservation of amino acid residues in other regions of the molecule sufficient to maintain secondary and tertiary VSG structure, prompted us to test the hypothesis that Th cells may preferentially recognize HV-1 subregion peptides. Thus, we examined the fine specificity of VSG-specific T-cell lines, T-cell hybridomas, and Th cells activated during infection. Our results demonstrate that T-cell epitopes are distributed throughout the N-terminal domain of VSG but are not clustered exclusively within HV-1 or other hypervariable subregions. In contrast, T-cell-reactive sites were not detected within the relatively conserved C-terminal domain of VSG. Overall, this study is the first to dissect the fine specificity of T-cell responses to the trypanosome VSG and suggests that evolution of a conserved HV-1 region may be unrelated to selective pressures exerted by host T-cell responses. This study also demonstrates that T cells do not recognize the relatively invariant C-terminal region of the VSG molecule during infection, suggesting that it could serve as a potential subunit vaccine to provide variant cross-specific immunity for African trypanosomiasis.

  14. The Plant Cell Wall: A Dynamic Barrier Against Pathogen Invasion

    PubMed Central

    Underwood, William

    2012-01-01

    Prospective plant pathogens must overcome the physical barrier presented by the plant cell wall. In addition to being a preformed, passive barrier limiting access of pathogens to plant cells, the cell wall is actively remodeled and reinforced specifically at discrete sites of interaction with potentially pathogenic microbes. Active reinforcement of the cell wall through the deposition of cell wall appositions, referred to as papillae, is an early response to perception of numerous categories of pathogens including fungi and bacteria. Rapid deposition of papillae is generally correlated with resistance to fungal pathogens that attempt to penetrate plant cell walls for the establishment of feeding structures. Despite the ubiquity and apparent importance of this early defense response, relatively little is known about the underlying molecular mechanisms and cellular processes involved in the targeting and assembly of papillae. This review summarizes recent advances in our understanding of cell wall-associated defenses induced by pathogen perception as well as the impact of changes in cell wall polymers on interactions with pathogens and highlights significant unanswered questions driving future research in the area. PMID:22639669

  15. A Fungal Endoglucanase with Plant Cell Wall Extension Activity1

    PubMed Central

    Yuan, Sheng; Wu, Yajun; Cosgrove, Daniel J.

    2001-01-01

    We have identified a wall hydrolytic enzyme from Trichoderma reesei with potent ability to induce extension of heat-inactivated type I cell walls. It is a small (23-kD) endo-1,4-β-glucanase (Cel12A) belonging to glycoside hydrolase family 12. Extension of heat-inactivated walls from cucumber (Cucumis sativus cv Burpee Pickler) hypocotyls was induced by Cel12A after a distinct lag time and was accompanied by a large increase in wall plasticity and elasticity. Cel12A also increased the rate of stress relaxation of isolated walls at very short times (<200 ms; equivalent to reducing t0, a parameter that estimates the minimum relaxation time). Similar changes in wall plasticity and elasticity were observed in wheat (Triticum aestivum cv Pennmore Winter) coleoptile (type II) walls, which showed only a negligible extension in response to Cel12A treatment. Thus, Cel12A modifies both type I and II walls, but substantial extension is found only in type I walls. Cel12A has strong endo-glucanase activity against xyloglucan and (1→3,1→4)-β-glucan, but did not exhibit endo-xylanase, endo-mannase, or endo-galactanase activities. In terms of kinetics of action and effects on wall rheology, wall loosening by Cel12A differs qualitatively from the action by expansins, which induce wall extension by a non-hydrolytic polymer creep mechanism. The action by Cel12A mimics some of the changes in wall rheology found after auxin-induced growth. The strategy used here to identify Cel12A could be used to identify analogous plant enzymes that cause auxin-induced changes in cell wall rheology. PMID:11553760

  16. Sulphation of proteins secreted by a human hepatoma-derived cell line. Sulphation of N-linked oligosaccharides on alpha 2HS-glycoprotein.

    PubMed Central

    Hortin, G; Green, E D; Baenziger, J U; Strauss, A W

    1986-01-01

    Several human glycoproteins, including alpha 1-antitrypsin, alpha 1-acid glycoprotein, transferrin, caeruloplasmin and alpha 2HS-glycoprotein, synthesized by the hepatoma-derived cell line HepG2 were observed to contain covalently linked sulphate. These proteins were estimated to contain about 0.1 mol of sulphate/mol of protein. The most abundant of the sulphated glycoproteins, alpha 2HS-glycoprotein, was analysed in detail. All of the sulphate on this protein was attached to N-linked oligosaccharides which contained sialic acid and resisted release by endoglycosidase H. Several independent analytical approaches established that approx. 10% of the molecules of alpha 2HS-glycoprotein contained sulphate. Our results suggest that a number of human plasma proteins contain small amounts of sulphate linked to oligosaccharides. Images Fig. 1. Fig. 2. Fig. 3. PMID:3017304

  17. High-throughput microarray mapping of cell wall polymers in roots and tubers during the viscosity-reducing process.

    PubMed

    Huang, Yuhong; Willats, William G; Lange, Lene; Jin, Yanling; Fang, Yang; Salmeán, Armando A; Pedersen, Henriette L; Busk, Peter Kamp; Zhao, Hai

    2016-01-01

    Viscosity reduction has a great impact on the efficiency of ethanol production when using roots and tubers as feedstock. Plant cell wall-degrading enzymes have been successfully applied to overcome the challenges posed by high viscosity. However, the changes in cell wall polymers during the viscosity-reducing process are poorly characterized. Comprehensive microarray polymer profiling, which is a high-throughput microarray, was used for the first time to map changes in the cell wall polymers of sweet potato (Ipomoea batatas), cassava (Manihot esculenta), and Canna edulis Ker. over the entire viscosity-reducing process. The results indicated that the composition of cell wall polymers among these three roots and tubers was markedly different. The gel-like matrix and glycoprotein network in the C. edulis Ker. cell wall caused difficulty in viscosity reduction. The obvious viscosity reduction of the sweet potato and the cassava was attributed to the degradation of homogalacturonan and the released 1,4-β-d-galactan and 1,5-α-l-arabinan.

  18. How cell wall complexity influences saccharification efficiency in Miscanthus sinensis

    DOE PAGES

    De Souza, Amanda P.; Kamei, Claire L. Alvim; Torres, Andres F.; ...

    2015-04-23

    The production of bioenergy from grasses has been developing quickly during the last decade, with Miscanthus being among the most important choices for production of bioethanol. However, one of the key barriers to producing bioethanol is the lack of information about cell wall structure. Cell walls are thought to display compositional differences that lead to emergence of a very high level of complexity, resulting in great diversity in cell wall architectures. In this work, a set of different techniques was used to access the complexity of cell walls of different genotypes of Miscanthus sinensis in order to understand how theymore » interfere with saccharification efficiency. Three genotypes of M. sinensis displaying different patterns of correlation between lignin content and saccharification efficiency were subjected to cell wall analysis by quantitative/qualitative analytical techniques such as monosaccharide composition, oligosaccharide profiling, and glycome profiling. When saccharification efficiency was correlated negatively with lignin, the structural features of arabinoxylan and xyloglucan were found to contribute positively to hydrolysis. In the absence of such correlation, different types of pectins, and some mannans contributed to saccharification efficiency. In conclusion, different genotypes of M. sinensis were shown to display distinct interactions among their cell wall components, which seem to influence cell wall hydrolysis.« less

  19. How cell wall complexity influences saccharification efficiency in Miscanthus sinensis

    PubMed Central

    De Souza, Amanda P.; Kamei, Claire L. Alvim; Torres, Andres F.; Pattathil, Sivakumar; Hahn, Michael G.; Trindade, Luisa M.; Buckeridge, Marcos S.

    2015-01-01

    The production of bioenergy from grasses has been developing quickly during the last decade, with Miscanthus being among the most important choices for production of bioethanol. However, one of the key barriers to producing bioethanol is the lack of information about cell wall structure. Cell walls are thought to display compositional differences that lead to emergence of a very high level of complexity, resulting in great diversity in cell wall architectures. In this work, a set of different techniques was used to access the complexity of cell walls of different genotypes of Miscanthus sinensis in order to understand how they interfere with saccharification efficiency. Three genotypes of M. sinensis displaying different patterns of correlation between lignin content and saccharification efficiency were subjected to cell wall analysis by quantitative/qualitative analytical techniques such as monosaccharide composition, oligosaccharide profiling, and glycome profiling. When saccharification efficiency was correlated negatively with lignin, the structural features of arabinoxylan and xyloglucan were found to contribute positively to hydrolysis. In the absence of such correlation, different types of pectins, and some mannans contributed to saccharification efficiency. Different genotypes of M. sinensis were shown to display distinct interactions among their cell wall components, which seem to influence cell wall hydrolysis. PMID:25908240

  20. Aluminium effects on mechanical properties of cell wall analogues.

    PubMed

    McKenna, Brigid A; Wehr, J Bernhard; Mikkelsen, Deirdre; Blamey, F Pax C; Menzies, Neal W

    2016-12-01

    Aluminium (Al) toxicity adversely impacts plant productivity in acid soils by restricting root growth and although several mechanisms are involved the physiological basis of decreased root elongation remains unclear. Understanding the primary mechanisms of Al rhizotoxicity is hindered due to the rapid effects of soluble Al on root growth and the close proximity of many cellular components within the cell wall, plasma membrane, cytosol and nucleus with which Al may react. To overcome some of these difficulties, we report on a novel method for investigating Al interactions with Komagataeibacter xylinus bacterial cellulose (BC)-pectin composites as cell wall analogues. The growth of K. xylinus in the presence of various plant cell wall polysaccharides, such as pectin, has provided a unique in vitro model system with which to investigate the interactions of Al with plant cell wall polysaccharides. The BC-pectin composites reacted in a similar way with Al as do plant cell walls, providing insights into the effects of Al on the mechanical properties of the BC-pectin composites as cell wall analogues. Our findings indicated that there were no significant effects of Al (4-160 μM) on the tensile stress, tensile strain or Young's modulus of the composites. This finding was consistent with cellulose, not pectin, being the major load bearing component in BC-pectin composites, as is also the case in plant cell walls. © 2016 Scandinavian Plant Physiology Society.

  1. STUDIES ON THE CHEMICAL STRUCTURE OF THE STREPTOCOCCAL CELL WALL

    PubMed Central

    Krause, Richard M.; McCarty, Maclyn

    1961-01-01

    Lysis of trypsinized Group A streptococcal cell walls with phage-associated lysin releases into solution dialyzable and non-dialyzable mucopeptide fractions composed of N-acetylglucosamine, N-acetylmuramic acid and alanine, glutamic acid, lysine, and glycine in addition to the characteristic group-specific carbohydrate. The latter substance contains appreciable amounts of N-acetylmuramic acid and the amino acids as well as N-acetylglucosamine and rhamnose. Hot formamide extraction of the cell walls results in a soluble fraction of group-specific carbohydrate and an insoluble residue. The Group A carbohydrate in this instance is composed of rhamnose and N-acetylglucosamine. The composition of the insoluble residue is similar to that of the mucopeptide fractions released from the cell wall by phage-associated lysin. This residue was shown by electron microscopy to be composed of discrete discs which appear similar in structure to the intact cell wall. The specific carbohydrate obtained by hot formamide extraction of Group A-variant cell walls was composed almost exclusively of rhamnose. The residue fraction was similar to that of Group A. The residue of cell walls extracted with hot formamide is extensively solubilized not only by phage-associated lysin and S. albus enzyme, but also by lysozyme, which has no measurable effect on the intact streptococcal cell wall. PMID:13754097

  2. In vitro generation of human cytotoxic lymphocytes by virus. Viral glycoproteins induce nonspecific cell-mediated cytotoxicity without release of interferon

    PubMed Central

    1981-01-01

    Purified hemagglutinin and fusion glycoproteins of measles virus either in soluble form or inserted in artifical membranes bind to human peripheral blood lymphocytes and induce cell-mediated cytotoxicity (CMC) in a dose-response fashion. Both autologous and heterologous noninfected target cells are lysed in vitro. The expression of CMC is not inhibited by anti-measles virus antibody added to lymphocytes previously exposed to viral glycoproteins. THe killer lymphocytes are Fc receptor positive, both erythrocyte-rosetting and non-erythrocyte- rosetting, as assessed by both positive and negative selection experiments. The induction of nonspecific CMC by viral glycoproteins either in the soluble state or inserted into artificial membranes could be segregated from the CMC associated with whole virions. First, on kinetics studies, purified viral glycoproteins induced CMC more rapidly than did whole virus. Second, viral glycoprotein-produced response occurred in the absence of detectable release of interferon into the culture medium, whereas CMC activity due to whole virions was associated with interferon release. The fact that purified measles virus glycoproteins integrated into artificial membrane bilayers were as efficient as their soluble counterparts in inducing CMC suggests that the hydrophobic portion of the glycoproteins was not involved in the induction and expression of the lytic activity. Purified glycoproteins from lymphocytic choriomeningitis virus behave similarly, although this virus is unrelated to measles virus. It is inferred that interferon-independent CMC induced by viral glycoproteins might account for some of the biological reactions occurring early in the control of a viral infection. PMID:7276828

  3. In vitro generation of human cytotoxic lymphocytes by virus. Viral glycoproteins induce nonspecific cell-mediated cytotoxicity without release of interferon.

    PubMed

    Casali, P; Sissons, J G; Buchmeier, M J; Oldstone, M B

    1981-09-01

    Purified hemagglutinin and fusion glycoproteins of measles virus either in soluble form or inserted in artifical membranes bind to human peripheral blood lymphocytes and induce cell-mediated cytotoxicity (CMC) in a dose-response fashion. Both autologous and heterologous noninfected target cells are lysed in vitro. The expression of CMC is not inhibited by anti-measles virus antibody added to lymphocytes previously exposed to viral glycoproteins. THe killer lymphocytes are Fc receptor positive, both erythrocyte-rosetting and non-erythrocyte-rosetting, as assessed by both positive and negative selection experiments. The induction of nonspecific CMC by viral glycoproteins either in the soluble state or inserted into artificial membranes could be segregated from the CMC associated with whole virions. First, on kinetics studies, purified viral glycoproteins induced CMC more rapidly than did whole virus. Second, viral glycoprotein-produced response occurred in the absence of detectable release of interferon into the culture medium, whereas CMC activity due to whole virions was associated with interferon release. The fact that purified measles virus glycoproteins integrated into artificial membrane bilayers were as efficient as their soluble counterparts in inducing CMC suggests that the hydrophobic portion of the glycoproteins was not involved in the induction and expression of the lytic activity. Purified glycoproteins from lymphocytic choriomeningitis virus behave similarly, although this virus is unrelated to measles virus. It is inferred that interferon-independent CMC induced by viral glycoproteins might account for some of the biological reactions occurring early in the control of a viral infection.

  4. A Multifaceted Study of Scedosporium boydii Cell Wall Changes during Germination and Identification of GPI-Anchored Proteins

    PubMed Central

    Ghamrawi, Sarah; Gastebois, Amandine; Zykwinska, Agata; Vandeputte, Patrick; Marot, Agnès; Mabilleau, Guillaume; Cuenot, Stéphane; Bouchara, Jean-Philippe

    2015-01-01

    Scedosporium boydii is a pathogenic filamentous fungus that causes a wide range of human infections, notably respiratory infections in patients with cystic fibrosis. The development of new therapeutic strategies targeting S. boydii necessitates a better understanding of the physiology of this fungus and the identification of new molecular targets. In this work, we studied the conidium-to-germ tube transition using a variety of techniques including scanning and transmission electron microscopy, atomic force microscopy, two-phase partitioning, microelectrophoresis and cationized ferritin labeling, chemical force spectroscopy, lectin labeling, and nanoLC-MS/MS for cell wall GPI-anchored protein analysis. We demonstrated that the cell wall undergoes structural changes with germination accompanied with a lower hydrophobicity, electrostatic charge and binding capacity to cationized ferritin. Changes during germination also included a higher accessibility of some cell wall polysaccharides to lectins and less CH3/CH3 interactions (hydrophobic adhesion forces mainly due to glycoproteins). We also extracted and identified 20 GPI-anchored proteins from the cell wall of S. boydii, among which one was detected only in the conidial wall extract and 12 only in the mycelial wall extract. The identified sequences belonged to protein families involved in virulence in other fungi like Gelp/Gasp, Crhp, Bglp/Bgtp families and a superoxide dismutase. These results highlighted the cell wall remodeling during germination in S. boydii with the identification of a substantial number of cell wall GPI-anchored conidial or hyphal specific proteins, which provides a basis to investigate the role of these molecules in the host-pathogen interaction and fungal virulence. PMID:26038837

  5. Processing and assembly of the integrin, glycoprotein IIb-IIIa, in HEL cells

    SciTech Connect

    Rosa, J.P.; McEver, R.P.

    1989-07-25

    We examined the biosynthetic processing and assembly of the platelet glycoprotein (GP) IIb-IIIa complex in (/sup 35/S)methionine-labeled HEL cells, a human cell line with features of megakaryocytes. Both GPIIb and GPIIIa were synthesized as single-chain precursors to which high mannose N-linked oligosaccharides were added in the endoplasmic reticulum (ER). A 5-fold excess of the major IIb precursor, preIIb, was synthesized relative to GPIIIa. Two smaller proteins immunologically related to GPIIb were synthesized in smaller amounts. Assembly of the GPIIb and GPIIIa precursors required 4-6 h for completion. All GPIIIa molecules were eventually assembled; the excess GPIIb precursors were degraded without reaching the cell surface. Following assembly, preIIb-IIIa complexes were rapidly transported to the Golgi apparatus where preIIb underwent modification of high mannose chains into complex oligosaccharides and proteolytic cleavage to yield disulfide-linked heavy and light chains. Pretreating cells with the ionophore monensin blocked cleavage of preIIb but not its carbohydrate modification or its assembly with GPIIIa. These studies suggest that (1) assembly of the precursors of GPIIb and GPIIIa in the ER is a slow process requiring conformational maturation of one or both subunits, and (2) only heterodimers assembled in the ER are transported to the Golgi apparatus for additional processing and, ultimately, expression on the cell surface.

  6. Intercalated cell-specific Rh B glycoprotein deletion diminishes renal ammonia excretion response to hypokalemia

    PubMed Central

    Bishop, Jesse M.; Lee, Hyun-Wook; Handlogten, Mary E.; Han, Ki-Hwan; Verlander, Jill W.

    2013-01-01

    The ammonia transporter family member, Rh B Glycoprotein (Rhbg), is an ammonia-specific transporter heavily expressed in the kidney and is necessary for the normal increase in ammonia excretion in response to metabolic acidosis. Hypokalemia is a common clinical condition in which there is increased renal ammonia excretion despite the absence of metabolic acidosis. The purpose of this study was to examine Rhbg's role in this response through the use of mice with intercalated cell-specific Rhbg deletion (IC-Rhbg-KO). Hypokalemia induced by feeding a K+-free diet increased urinary ammonia excretion significantly. In mice with intact Rhbg expression, hypokalemia increased Rhbg protein expression in intercalated cells in the cortical collecting duct (CCD) and in the outer medullary collecting duct (OMCD). Deletion of Rhbg from intercalated cells inhibited hypokalemia-induced changes in urinary total ammonia excretion significantly and completely prevented hypokalemia-induced increases in urinary ammonia concentration, but did not alter urinary pH. We conclude that hypokalemia increases Rhbg expression in intercalated cells in the cortex and outer medulla and that intercalated cell Rhbg expression is necessary for the normal increase in renal ammonia excretion in response to hypokalemia. PMID:23220726

  7. Secretion of N- and O-linked Glycoproteins from 4T1 Murine Mammary Carcinoma Cells

    PubMed Central

    Phang, Wai-Mei; Tan, Aik-Aun; Gopinath, Subash C.B.; Hashim, Onn H.; Kiew, Lik Voon; Chen, Yeng

    2016-01-01

    Breast cancer is one of the most common cancers that affect women globally and accounts for ~23% of all cancers diagnosed in women. Breast cancer is also one of the leading causes of death primarily due to late stage diagnoses and a lack of effective treatments. Therefore, discovering protein expression biomarkers is mandatory for early detection and thus, critical for successful therapy. Two-dimensional electrophoresis (2D-E) coupled with lectin-based analysis followed by mass spectrometry were applied to identify potential biomarkers in the secretions of a murine mammary carcinoma cell line. Comparisons of the protein profiles of the murine 4T1 mammary carcinoma cell line and a normal murine MM3MG mammary cell line indicated that cadherin-1 (CDH), collagenase 3 (MMP-13), Viral envelope protein G7e (VEP), Gag protein (GAG) and Hypothetical protein LOC433182 (LOC) were uniquely expressed by the 4T1 cells, and pigment epithelium-derived factor (PEDF) was exclusively secreted by the MM3MG cells. Further analysis by a lectin-based study revealed that aberrant O-glycosylated CDH, N-glycosylated MMP-13 and LOC were present in the 4T1 medium. These differentially expressed N- and O-linked glycoprotein candidates, which were identified by combining lectin-based analysis with 2D-E, could serve as potential diagnostic and prognostic markers for breast cancer. PMID:27226773

  8. Functional antagonism between hormone receptor systems: modulation of glycoprotein secretion in secretory epithelial cells.

    PubMed

    Amin, D N; Goswami, S; Klein, T; Maayani, S; Marom, Z

    1991-02-01

    A physiologic response such as mucin secretion from epithelial cells in vivo may be under the control of several endogenous substances such as acetylcholine, norepinephrine, and vasoactive intestinal peptide (VIP). These substances may simultaneously activate distinct membrane receptors that exist on the same epithelial cells, and this activation may result in reciprocal physiologic responses or functional antagonism. To test whether simultaneous activation of the VIP and muscarinic receptors or of beta-adrenoreceptors and muscarinic receptors affect mucin secretion in a reciprocal manner, we studied some characteristics of the resultant physiologic response in human epithelial cells secreting radiolabeled mucin-like glycoprotein (MLGP). Both basal and methacholine (M.chol)-induced MLGP secretion could be blocked by VIP (1 pM to 1 microM) and by isoproterenol (ISO) (0.1 nM to 10 nM) in a concentration-dependent and reversible manner. In a membrane preparation from the same cells, VIP (1 to 1,000 nM) and ISO (0.1 to 10 microM) stimulated adenylyl cyclase activity in a concentration-dependent and nonadditive manner. In the same membrane preparation, no effect of M.chol was observed on this response to VIP or to ISO. It is proposed that functional antagonism at the cellular level between basal or cholinergic-stimulated mucin secretion and either activated beta-adrenergic or VIP receptors may play a crucial role in modulation of mucin secretion from epithelial cells.

  9. Experimental models for the study of drug resistance in osteosarcoma: P-glycoprotein-positive, murine osteosarcoma cell lines.

    PubMed

    Takeshita, H; Gebhardt, M C; Springfield, D S; Kusuzaki, K; Mankin, H J

    1996-03-01

    P-glycoprotein is an adenosine triphosphate-dependent drug-efflux pump that extrudes drugs from cells and causes drug-resistance. P-glycoprotein is believed to mediate drug-resistance in a wide variety of tumors. In this study, we developed two P-glycoprotein-positive, murine osteosarcoma cell lines that were resistant to Adriamycin (doxorubicin) (MOS/ADR1 and MOS/ADR2). We created the cell lines by short-term pulse exposures of the parent cell line to Adriamycin followed by single-cell cloning. The MOS/ADR1 and MOS/ADR2 cells were sevenfold and eighteenfold more resistant to Adriamycin than the cells from the parent line. Expression of P-glycoprotein, as examined with an immunofluorescence method, was detected in most of the MOS/ADR1 and MOS/ADR2 cells but not in the parent cells. After the cells had been incubated with Adriamycin for one hour, there was less accumulation of the drug in the resistant cell lines than in the parent cell line. The reduced accumulation was due to the increased efflux of Adriamycin. The Adriamycin-resistant cell lines demonstrated greater alkaline phosphatase activity than the parent cell line and produced more differentiated osteoblastic sarcomas in mice. Dose survival studies with use of a tetrazolium colorimetric assay showed that the MOS/ADR1 cells were cross-resistant to vincristine, vinblastine, etoposide, bleomycin, mitomycin C, and actinomycin D but not to dacarbazine, cisplatin, carboplatin, cytosine arabinoside, carmustine, cyclophosphamide, ifosfamide, methotrexate, and 5-fluorouracil. Although the MOS/ADR2 cells exhibited a similar spectrum of cross-resistance, they were more resistant than the MOS/ADR1 cells. We also tested the effect of three different resistance-modifying agents on the reversal of resistance to Adriamycin. We found that verapamil and trifluoperazine substantially reversed resistance to Adriamycin in the P-glycoprotein positive cell lines, whereas cyclosporin A was relatively ineffective. Because these

  10. Inhibition of P-glycoprotein by wogonin is involved with the potentiation of etoposide-induced apoptosis in cancer cells.

    PubMed

    Lee, Eibai; Enomoto, Riyo; Koshiba, Chika; Hirano, Hiroyuki

    2009-08-01

    Etoposide induces apoptotic cell death in normal and cancer cells. This apoptosis plays a role not only in anticancer effects but also in adverse reactions, such as myelosuppression. Because we had previously found that wogonin, a flavone found in a plant, suppresses thymocyte apoptosis induced by etoposide, we examined the effect of this flavone in cancer cells. Wogonin significantly potentiated etoposide-induced apoptosis in HL-60 cells. This flavone impaired the function of P-glycoprotein and then increased cellular content of etoposide in the cells. Thus, this flavone is likely to act as an inhibitor of P-glycoprotein and potentiate the apoptotic action of etoposide. On the other hand, wogonin inhibited etoposide-induced apoptosis in thymocytes, one of the normal cells. The potentiation by wogonin is likely to be a specific action for cancer cells but not normal cells. Therefore, this flavone may be used to reduce the excretion of the anticancer agents via P-glycoprotein and increase the pharmacological action of it in cancer cells. These results suggest that wogonin may play a role in overcoming multidrug resistance.

  11. Expression of platelet membrane glycoproteins and alpha-granule proteins by a human erythroleukemia cell line (HEL).

    PubMed Central

    Tabilio, A; Rosa, J P; Testa, U; Kieffer, N; Nurden, A T; Del Canizo, M C; Breton-Gorius, J; Vainchenker, W

    1984-01-01

    We demonstrate that HEL, a human erythroleukemic cell line, has numerous megakaryocytic markers which were markedly enhanced following the addition of the inducers dimethyl sulfoxide or 12-O-tetradecanoylphorbol-13-acetate to the culture medium. Ultrastructural and cytochemical studies showed: (i) the presence of organelles morphologically resembling the platelet alpha-granules; and (ii) a peroxidase activity with the same characteristics as that specifically found in platelets. The platelet alpha-granule proteins (von Willebrand factor, platelet factor-4 and beta-thromboglobulin) were immunologically detected in the HEL cell cytoplasm and their amounts increased after induction. Of particular interest was the presence of platelet membrane proteins. A monoclonal antibody specific for glycoprotein Ib bound to HEL cells. Platelet membrane glycoproteins IIb and IIIa were identified on intact cells using specific antibodies in a binding assay or in cell lysates using either crossed immunoelectrophoresis or an immunoblotting procedure following SDS-polyacrylamide gel electrophoresis. Most HEL cells also expressed the platelet alloantigen PIA1. All of the platelet membrane proteins were present in higher amounts after induction. Glycophorin A, specific for the erythroid lineage, was also detected on HEL cells. Thus, while confirming the presence of erythroid markers, our studies provide evidence that the HEL cell line also expresses platelet antigens. As such, HEL cells represent a unique system with which to study the biosynthesis of platelet-specific proteins and glycoproteins. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:6201359

  12. A proteomic and genetic analysis of the Neurospora crassa conidia cell wall proteins identifies two glycosyl hydrolases involved in cell wall remodeling

    PubMed Central

    Ao, Jie; Aldabbous, Mash’el; Notaro, Marysa J.; Lojacono, Mark; Free, Stephen J.

    2016-01-01

    A proteomic analysis of the conidial cell wall identified 35 cell wall proteins. A comparison with the proteome of the vegetative hyphae showed that 16 cell wall proteins were shared, and that these shared cell wall proteins were cell wall biosynthetic proteins or cell wall structural proteins. Deletion mutants for 34 of the genes were analyzed for phenotypes indicative of conidial cell wall defects. Mutants for two cell wall glycosyl hydrolases, the CGL-1 β-1,3-glucanase (NCU07523) and the NAG-1 exochitinase (NCU10852), were found to have a conidial separation phenotype. These two enzymes function in remodeling the cell wall between adjacent conidia to facilitate conidia formation and dissemination. Using promoter::RFP and promoter::GFP constructs, we demonstrated that the promoters for 15 of the conidia-specific cell wall genes, including cgl-1 and nag-1, provided for conidia-specific gene expression or for a significant increase in their expression during conidiation. PMID:27381444

  13. Arabidopsis Regenerating Protoplast: A Powerful Model System for Combining the Proteomics of Cell Wall Proteins and the Visualization of Cell Wall Dynamics

    PubMed Central

    Yokoyama, Ryusuke; Kuki, Hiroaki; Kuroha, Takeshi; Nishitani, Kazuhiko

    2016-01-01

    The development of a range of sub-proteomic approaches to the plant cell wall has identified many of the cell wall proteins. However, it remains difficult to elucidate the precise biological role of each protein and the cell wall dynamics driven by their actions. The plant protoplast provides an excellent means not only for characterizing cell wall proteins, but also for visualizing the dynamics of cell wall regeneration, during which cell wall proteins are secreted. It therefore offers a unique opportunity to investigate the de novo construction process of the cell wall. This review deals with sub-proteomic approaches to the plant cell wall through the use of protoplasts, a methodology that will provide the basis for further exploration of cell wall proteins and cell wall dynamics. PMID:28248244

  14. Plant expansins: diversity and interactions with plant cell walls.

    PubMed

    Cosgrove, Daniel J

    2015-06-01

    Expansins were discovered two decades ago as cell wall proteins that mediate acid-induced growth by catalyzing loosening of plant cell walls without lysis of wall polymers. In the interim our understanding of expansins has gotten more complex through bioinformatic analysis of expansin distribution and evolution, as well as through expression analysis, dissection of the upstream transcription factors regulating expression, and identification of additional classes of expansin by sequence and structural similarities. Molecular analyses of expansins from bacteria have identified residues essential for wall loosening activity and clarified the bifunctional nature of expansin binding to complex cell walls. Transgenic modulation of expansin expression modifies growth and stress physiology of plants, but not always in predictable or even understandable ways.

  15. Dynamic microtubules and the texture of plant cell walls.

    PubMed

    Lloyd, Clive

    2011-01-01

    The relationship between microtubules and cell-wall texture has had a fitful history in which progress in one area has not been matched by progress in the other. For example, the idea that wall texture arises entirely from self-assembly, independently of microtubules, originated with electron microscopic analyses of fixed cells that gave no clue to the ability of microtubules to reorganize. Since then, live-cell studies have established the surprising dynamicity of plant microtubules involving collisions, changes in angle, parallelization, and rotation of microtubule tracks. Combined with proof that cellulose synthases do track along shifting microtubules, this offers more realistic models for the dynamic influence of microtubules on wall texture than could have been imagined in the electron microscopic era-the era from which most ideas on wall texture originate. This review revisits the classical literature on wall organization from the vantage point of current knowledge of microtubule dynamics.

  16. Plant expansins: diversity and interactions with plant cell walls

    PubMed Central

    Cosgrove, Daniel J.

    2015-01-01

    Expansins were discovered two decades ago as cell wall proteins that mediate acid-induced growth by catalyzing loosening of plant cell walls without lysis of wall polymers. In the interim our understanding of expansins has gotten more complex through bioinformatic analysis of expansin distribution and evolution, as well as through expression analysis, dissection of the upstream transcription factors regulating expression, and identification of additional classes of expansin by sequence and structural similarities. Molecular analyses of expansins from bacteria have identified residues essential for wall loosening activity and clarified the bifunctional nature of expansin binding to complex cell walls. Transgenic modulation of expansin expression modifies growth and stress physiology of plants, but not always in predictable and even understandable ways. PMID:26057089

  17. Changes of glycoprotein and collagen immunolocalization in the uterine artery wall of postmenopausal women with and without pelvic organ prolapse.

    PubMed

    Goepel, Christian; Johanna Kantelhardt, Eva; Karbe, Ina; Stoerer, Sandra; Dittmer, Juergen

    2011-05-01

    Pelvic organ prolapse (POP) is accompanied by an altered composition of the extracellular matrix (ECM). However, it is unclear whether the changed ECM is the cause or the consequence of POP, as stretching of the tissue may have an effect on the composition of the ECM. To address this question, we analyzed the connective tissues of the uterine artery wall of postmenopausal women with and without POP. The uterine artery wall is stretched in patients with POP, but this stretching is unlikely to cause the POP. Twenty-one women (13 with POP and 8 without POP) hospitalized for hysterectomy were included in this study. Tissue samples from the uterine artery were analyzed for collagen (types I, III, IV, V and VI) and other ECM proteins (fibronectin, laminin, tenascin, vitronectin and elastin) using immunofluorescence microscopy. Results revealed that uterine artery samples of women with prolapse showed a significantly weaker immunoreactivity to type VI collagen, vitronectin and elastin and a stronger immunostaining for type III collagen and tenascin as compared to control samples. Our results suggest that the ECM may be altered in response to mechanical stretch. Changes in the ECM composition as observed in POP may not necessarily be the reason for the development of pelvic floor relaxation in postmenopausal women. Copyright © 2010 Elsevier GmbH. All rights reserved.

  18. Probing (macro)molecular transport through cell walls.

    PubMed

    Kilcher, Giona; Delneri, Daniela; Duckham, Craig; Tirelli, Nicola

    2008-01-01

    We here report a study on the passive permeability of hydrophobic probes through the cell wall of Saccharomyces cerevisiae. In this study we have prepared a series of fluorescent probes with similar chemical composition and molecular weight ranging from a few hundreds to a few thousands of g mol(-1). Their permeation into the cell body exhibits a clear MW cut-off and the underlying mechanism is governed by the permeation of individual molecules rather than aggregates. We also show that it is possible to reversibly alter the cell wall permeation properties without compromising the essence of its structure, by modifying the polarity/dielectric constant of the wall through solvent exchange.

  19. Senarmont compensation for determining fibril angles of cell wall layers

    Treesearch

    Floyd G. Manwiller

    1966-01-01

    A technique originated by Preston, is explained for determining fibril angles of the secondary wall layers of fibers. A polarizing microscope equipped with Senarmont compensator is used to measure birefringence of the wall layers in series of sections cut at various angles to the long axis of the cells. Enough measurements are taken on each section to give a...

  20. Cell Wall Metabolism in Response to Abiotic Stress

    PubMed Central

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  1. Regulation of Meristem Morphogenesis by Cell Wall Synthases in Arabidopsis.

    PubMed

    Yang, Weibing; Schuster, Christoph; Beahan, Cherie T; Charoensawan, Varodom; Peaucelle, Alexis; Bacic, Antony; Doblin, Monika S; Wightman, Raymond; Meyerowitz, Elliot M

    2016-06-06

    The cell walls of the shoot apical meristem (SAM), containing the stem cell niche that gives rise to the above-ground tissues, are crucially involved in regulating differentiation. It is currently unknown how these walls are built and refined or their role, if any, in influencing meristem developmental dynamics. We have combined polysaccharide linkage analysis, immuno-labeling, and transcriptome profiling of the SAM to provide a spatiotemporal plan of the walls of this dynamic structure. We find that meristematic cells express only a core subset of 152 genes encoding cell wall glycosyltransferases (GTs). Systemic localization of all these GT mRNAs by in situ hybridization reveals members with either enrichment in or specificity to apical subdomains such as emerging flower primordia, and a large class with high expression in dividing cells. The highly localized and coordinated expression of GTs in the SAM suggests distinct wall properties of meristematic cells and specific differences between newly forming walls and their mature descendants. Functional analysis demonstrates that a subset of CSLD genes is essential for proper meristem maintenance, confirming the key role of walls in developmental pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Cell Wall Metabolism in Response to Abiotic Stress.

    PubMed

    Le Gall, Hyacinthe; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-02-16

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.

  3. An Arabidopsis gene regulatory network for secondary cell wall synthesis

    SciTech Connect

    Taylor-Teeples, M.; Lin, L.; de Lucas, M.; Turco, G.; Toal, T. W.; Gaudinier, A.; Young, N. F.; Trabucco, G. M.; Veling, M. T.; Lamothe, R.; Handakumbura, P. P.; Xiong, G.; Wang, C.; Corwin, J.; Tsoukalas, A.; Zhang, L.; Ware, D.; Pauly, M.; Kliebenstein, D. J.; Dehesh, K.; Tagkopoulos, I.; Breton, G.; Pruneda-Paz, J. L.; Ahnert, S. E.; Kay, S. A.; Hazen, S. P.; Brady, S. M.

    2014-12-24

    The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. In this paper, we present a protein–DNA network between Arabidopsis thaliana transcription factors and secondary cell wall metabolic genes with gene expression regulated by a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. Finally, these interactions will serve as a foundation for understanding the regulation of a complex, integral plant component.

  4. Magnetic domain wall conduits for single cell applications.

    PubMed

    Donolato, M; Torti, A; Kostesha, N; Deryabina, M; Sogne, E; Vavassori, P; Hansen, M F; Bertacco, R

    2011-09-07

    The ability to trap, manipulate and release single cells on a surface is important both for fundamental studies of cellular processes and for the development of novel lab-on-chip miniaturized tools for biological and medical applications. In this paper we demonstrate how magnetic domain walls generated in micro- and nano-structures fabricated on a chip surface can be used to handle single yeast cells labeled with magnetic beads. In detail, first we show that the proposed approach maintains the microorganism viable, as proven by monitoring the division of labeled yeast cells trapped by domain walls over 16 hours. Moreover, we demonstrate the controlled transport and release of individual yeast cells via displacement and annihilation of individual domain walls in micro- and nano-sized magnetic structures. These results pave the way to the implementation of magnetic devices based on domain walls technology in lab-on-chip systems devoted to accurate individual cell trapping and manipulation.

  5. Revealing the fate of cell surface human P-glycoprotein (ABCB1): The Lysosomal Degradation Pathway

    PubMed Central

    Katayama, Kazuhiro; Kapoor, Khyati; Ohnuma, Shinobu; Patel, Atish; Swaim, William; Ambudkar, Indu S.; Ambudkar, Suresh V.

    2015-01-01

    P-glycoprotein (P-gp) transports a variety of chemically dissimilar amphipathic compounds including anticancer drugs. Although mechanisms of P-gp drug transport are widely studied, the pathways involving its internalization are poorly understood. The present study is aimed at elucidating the pathways involved in degradation of cell surface P-gp. The fate of P-gp at the cell surface was determined by biotinylating cell surface proteins followed by flow cytometry and Western blotting. Our data shows that the half-life of endogenously expressed P-gp is 26.7 ± 1.1 h in human colorectal cancer HCT-15 cells. Treatment of cells with Bafilomycin A1 (BafA1) a vacuolar H+ ATPase inhibitor increased the half-life of P-gp at the cell surface to 36.1± 0.5 h. Interestingly, treatment with the proteasomal inhibitors MG132, MG115 or lactacystin alone did not alter the half-life of the protein. When cells were treated with both lysosomal and proteasomal inhibitors (BafA1 and MG132), the half-life was further prolonged to 39-50 h. Functional assays done with rhodamine 123 or calcein-AM, fluorescent substrates of P-gp, indicated that the transport function of P-gp was not affected by either biotinylation or treatment with BafA1 or proteasomal inhibitors. Immunofluorescence studies done with the antibody against lysosomal marker LAMP1 and the P-gp-specific antibody UIC2 in permeabilized cells indicated that intracellular P-gp is primarily localized in the lysosomal compartment. Our results suggest that the lysosomal degradation system could be targeted to increase the sensitivity of P-gp expressing cancer cells towards chemotherapeutic drugs. PMID:26057472

  6. Inflammatory response of endothelial cells to hepatitis C virus recombinant envelope glycoprotein 2 protein exposure

    PubMed Central

    Urbaczek, Ana Carolina; Ribeiro, Lívia Carolina de Abreu; Ximenes, Valdecir Farias; Afonso, Ana; Nogueira, Camila Tita; Generoso, Wesley Cardoso; Alberice, Juliana Vieira; Rudnicki, Martina; Ferrer, Renila; da Fonseca, Luiz Marcos; da Costa, Paulo Inácio

    2014-01-01

    The hepatitis C virus (HCV) encodes approximately 10 different structural and non-structural proteins, including the envelope glycoprotein 2 (E2). HCV proteins, especially the envelope proteins, bind to cell receptors and can damage tissues. Endothelial inflammation is the most important determinant of fibrosis progression and, consequently, cirrhosis. The aim of this study was to evaluate and compare the inflammatory response of endothelial cells to two recombinant forms of the HCV E2 protein produced in different expression systems (Escherichia coli and Pichia pastoris). We observed the induction of cell death and the production of nitric oxide, hydrogen peroxide, interleukin-8 and vascular endothelial growth factor A in human umbilical vein endothelial cells (HUVECs) stimulated by the two recombinant E2 proteins. The E2-induced apoptosis of HUVECs was confirmed using the molecular marker PARP. The apoptosis rescue observed when the antioxidant N-acetylcysteine was used suggests that reactive oxygen species are involved in E2-induced apoptosis. We propose that these proteins are involved in the chronic inflammation caused by HCV. PMID:25317702

  7. Inflammatory response of endothelial cells to hepatitis C virus recombinant envelope glycoprotein 2 protein exposure.

    PubMed

    Urbaczek, Ana Carolina; Ribeiro, Lívia Carolina de Abreu; Ximenes, Valdecir Farias; Afonso, Ana; Nogueira, Camila Tita; Generoso, Wesley Cardoso; Alberice, Juliana Vieira; Rudnicki, Martina; Ferrer, Renila; Fonseca, Luiz Marcos da; Costa, Paulo Inácio da

    2014-09-01

    The hepatitis C virus (HCV) encodes approximately 10 different structural and non-structural proteins, including the envelope glycoprotein 2 (E2). HCV proteins, especially the envelope proteins, bind to cell receptors and can damage tissues. Endothelial inflammation is the most important determinant of fibrosis progression and, consequently, cirrhosis. The aim of this study was to evaluate and compare the inflammatory response of endothelial cells to two recombinant forms of the HCV E2 protein produced in different expression systems (Escherichia coli and Pichia pastoris). We observed the induction of cell death and the production of nitric oxide, hydrogen peroxide, interleukin-8 and vascular endothelial growth factor A in human umbilical vein endothelial cells (HUVECs) stimulated by the two recombinant E2 proteins. The E2-induced apoptosis of HUVECs was confirmed using the molecular marker PARP. The apoptosis rescue observed when the antioxidant N-acetylcysteine was used suggests that reactive oxygen species are involved in E2-induced apoptosis. We propose that these proteins are involved in the chronic inflammation caused by HCV.

  8. Analysis of B cell epitopes of a glycoprotein porcine zona pellucida (pZP1).

    PubMed

    Shigeta, M; Hasegawa, A; Hamada, Y; Koyama, K

    2000-07-01

    The zona pellucida (ZP) of mammalian oocytes forms an extracellular matrix composed of three major glycoproteins and plays an important role in sperm-zona interactions. As ZP had a strong organ-specific but species-cross-reactive antigenicity and passive or active immunization with ZP antigens could impair fertilization, the possibility of developing a immunocontraceptive vaccine has been extensively studied. Studies on active immunization with porcine ZP (pZP) that contain B cell epitopes and T cell epitopes demonstrated that a temporary infertility could be induced along with the elevation of antibody titers, but it was always associated with ovarian failure. This could be due to the oophoritis by activation of pathogenic T cell immunity. It is the general consideration that any adverse effects by vaccination should be avoided for an immunocontraception. From this point of view, the analysis of B cell epitopes of pZP protein would be helpful for construction of a safe immunocontraceptive vaccine with zona antigens. We determined the amino acid sequence of the B epitope in the pZP1 protein by using a monoclonal antibody (MAb-5H4) that possesses a fertilization blocking ability. In addition, antiserum raised to the epitope sequence was revealed to block in vitro fertilization of homologous animal species.

  9. Host Cell P-glycoprotein Is Essential for Cholesterol Uptake and Replication of Toxoplasma gondii*

    PubMed Central

    Bottova, Iveta; Hehl, Adrian B.; Štefanić, Saša; Fabriàs, Gemma; Casas, Josefina; Schraner, Elisabeth; Pieters, Jean; Sonda, Sabrina

    2009-01-01

    P-glycoprotein (P-gp) is a membrane-bound efflux pump that actively exports a wide range of compounds from the cell and is associated with the phenomenon of multidrug resistance. However, the role of P-gp in normal physiological processes remains elusive. Using P-gp-deficient fibroblasts, we showed that P-gp was critical for the replication of the intracellular parasite Toxoplasma gondii but was not involved in invasion of host cells by the parasite. Importantly, we found that the protein participated in the transport of host-derived cholesterol to the intracellular parasite. T. gondii replication in P-gp-deficient host cells not only resulted in reduced cholesterol content in the parasite but also altered its sphingolipid metabolism. In addition, we found that different levels of P-gp expression modified the cholesterol metabolism in uninfected fibroblasts. Collectively our findings reveal a key and previously undocumented role of P-gp in host-parasite interaction and suggest a physiological role for P-gp in cholesterol trafficking in mammalian cells. PMID:19389707

  10. Temozolomide reverses doxorubicin resistance by inhibiting P-glycoprotein in malignant glioma cells.

    PubMed

    Zhang, Rong; Saito, Ryuta; Shibahara, Ichiyo; Sugiyama, Shinichiro; Kanamori, Masayuki; Sonoda, Yukihiko; Tominaga, Teiji

    2016-01-01

    Temozolomide is a standard chemotherapy agent for malignant gliomas, but the efficacy is still not satisfactory. Therefore, combination chemotherapy using temozolomide with other anti-tumor compounds is now under investigation. Here we studied the mechanism of the synergistic anti-tumor effect achieved by temozolomide and doxorubicin, and elucidated the inhibitory effect of temozolomide on P-glycoprotein (P-gp). Temozolomide significantly enhanced sensitivity to P-gp substrate in glioma cells, particularly in P-gp-overexpressed cells. Synergetic effects, as determined by isobologram analysis, were observed by combining temozolomide and doxorubicin. Subsequently, flow cytometry was utilized to assess the intracellular retention of doxorubicin in cells treated with doxorubicin with or without temozolomide. Temozolomide significantly increased the accumulation of doxorubicin in these cells. The P-gp adenosine triphosphatase (ATPase) assay showed that temozolomide inhibited the ATPase activity of P-gp. In addition, temozolomide combined with doxorubicin significantly prolonged the survival of 9L intracranial allografted glioma-bearing rats compared to single agent treatment. Collectively, our findings suggest that temozolomide can reverse doxorubicin resistance by directly affecting P-gp transport activity. Combination chemotherapy using temozolomide with other agents may be effective against gliomas in clinical applications.

  11. Unique glycoprotein antigen defined by monoclonal antibody on human neurobiastoma cells

    SciTech Connect

    Mujoo, K.; Spiro, R.C.; Reisfeld, R.A.

    1986-05-01

    The authors have characterized a new target antigen on the surface of human neuroblastoma cells and defined it with a monoclonal antibody (Mab) 5G3. This antibody is of IgG2a type and has an association constant of 8 x 10/sup 9/ M/sup -1/. In ELISA assays, Mab 5G3 reacted with human neuroblastoma as well as melanoma, squamous lung, skin carcinoma, and osteogenic sarcoma. Immunocytochemical analysis of frozen tissue sections revealed strong reactivity with all neuroblastoma tissues and marginal reactivity with melanoma and glioma tissues. There was no reactivity with fetal or normal tissues with the exception of cerebellum. The antigen recognized by Mab 5G3 is a glycoprotein of 200 and 215 kDa expressed on the SK-N-AS neuroblastoma cells. The antigen appears to contain N-linked carbohydrates based on treatment of human neuroblastoma cells with tunicamycin before and after intrinsic radiolabeling followed by indirect immunoprecipitation. The pulse-chase biosynthetic studies followed by indirect immunoprecipitation and SDS-PAGE indicated the precursor/product relationship between 200 and 215 kDa molecules. The 200 kDa component is endoglycosidase H-sensitive, whereas 215 kDa molecule is Endo-H resistant. The 215 kDa component is also sulfated, sialylated, and phosphorylated at serine residues. Preliminary data suggests that Mab, aside from identifying a unique target antigen on human neuroblastoma cells, may be suited as a targeting device for chemotherapeutic drugs.

  12. Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells.

    PubMed

    Gougos, A; Letarte, M

    1990-05-25

    Endoglin is a major glycoprotein of human vascular endothelium. As observed with monoclonal antibody 44G4, the distribution of endoglin is restricted to endothelial cells in all tissues except bone marrow. cDNA clones were isolated from an endothelial cell lambda gt11 cDNA library using a rabbit antibody prepared against endoglin purified from placenta. Eleven antibody-positive and cross-hybridizing clones were obtained; reactivity with endothelial cell 3.4-kilobase mRNA transcript was observed. The N-terminal sequence of placental endoglin was determined and found within the deduced protein sequence, thus confirming the identity of the cDNA and revealing a partial signal peptide. Endoglin is a type I integral membrane protein of Mr = 68,051 with an extracellular region of 561 amino acids, a hydrophobic transmembrane domain, and a 47-residue cytoplasmic tail. There are four potential N-linked glycosylation sites in the N-terminal domain and a probable O-glycan domain rich in Ser and Thr residues proximal to the membrane-spanning domain. Data base searches revealed that endoglin is a novel protein. The sequence contains an RGD tripeptide (374-376), the first identified on a surface protein of endothelium. The presence of RGD, a key recognition structure in cellular adhesion, suggests a critical role for endoglin in the binding of endothelial cells to integrins and/or other RGD receptors.

  13. Structural analysis of cell wall polysaccharides using PACE

    SciTech Connect

    Mortimer, Jennifer C.

    2017-01-01

    The plant cell wall is composed of many complex polysaccharides. The composition and structure of the polysaccharides affect various cell properties including cell shape, cell function and cell adhesion. Many techniques to characterize polysaccharide structure are complicated, requiring expensive equipment and specialized operators e.g. NMR, MALDI-MS. PACE (Polysaccharide Analysis using Carbohydrate gel Electrophoresis) uses a simple, rapid technique to analyze polysaccharide quantity and structure (Goubet et al. 2002). Whilst the method here describes xylan analysis, it can be applied (by use of the appropriate glycosyl hydrolase) to any cell wall polysaccharide.

  14. On the growth of walled cells: From shells to vesicles.

    NASA Astrophysics Data System (ADS)

    Boudaoud, Arezki

    2003-03-01

    The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi and yeast cells. They are modeled as elastic shells inflated by a liquid. Cell growth is driven by fluid pressure and is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.

  15. Growth of Walled Cells: From Shells to Vesicles

    NASA Astrophysics Data System (ADS)

    Boudaoud, Arezki

    2003-07-01

    The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi, and yeast cells. They are modeled as elastic shells containing a liquid. Cell growth is driven by fluid pressure and is is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.

  16. Immuno-stimulation by a ribosomal vaccine associated with a bacterial cell wall adjuvant in humans.

    PubMed Central

    Michel, F B; Dussourd D'Hinterland, L; Bousquet, J; Pinel, A M; Normier, G

    1978-01-01

    We have studied a new vaccine of ribosomal nature associated with glycoprotein cell walls from Klebsiella pneumoniae which served as an immunoadjuvant. Thus vaccine was administered by the aerosol route to working men free of any important disease, especially of respiratory disease. A total of 104 men working for the Commissariat à l'Energie Atomique, all volunteers, were randomly placed into two groups. During the first period, 51 patients (group I) were vaccinated three times a week during 5 weeks, and the second group was used as control. During the second period, which started on day 225, the control group received the vaccine, and the first group was revaccinated. Results of this experience show a significant difference in the immunity of the two groups. The specific antibodies increased with vaccination as illustrated by chi-square test (Yates correction), which corresponds to an independent probability equal to 0 (P = 0.5 X 10-4). Images PMID:27461

  17. Cell Wall Composition, Biosynthesis and Remodeling during Pollen Tube Growth

    PubMed Central

    Mollet, Jean-Claude; Leroux, Christelle; Dardelle, Flavien; Lehner, Arnaud

    2013-01-01

    The pollen tube is a fast tip-growing cell carrying the two sperm cells to the ovule allowing the double fertilization process and seed setting. To succeed in this process, the spatial and temporal controls of pollen tube growth within the female organ are critical. It requires a massive cell wall deposition to promote fast pollen tube elongation and a tight control of the cell wall remodeling to modify the mechanical properties. In addition, during its journey, the pollen tube interacts with the pistil, which plays key roles in pollen tube nutrition, guidance and in the rejection of the self-incompatible pollen. This review focuses on our current knowledge in the biochemistry and localization of the main cell wall polymers including pectin, hemicellulose, cellulose and callose from several pollen tube species. Moreover, based on transcriptomic data and functional genomic studies, the possible enzymes involved in the cell wall remodeling during pollen tube growth and their impact on the cell wall mechanics are also described. Finally, mutant analyses have permitted to gain insight in the function of several genes involved in the pollen tube cell wall biosynthesis and their roles in pollen tube growth are further discussed. PMID:27137369

  18. Histochemical staining of Arabidopsis thaliana secondary cell wall elements.

    PubMed

    Pradhan Mitra, Prajakta; Loqué, Dominique

    2014-05-13

    Arabidopsis thaliana is a model organism commonly used to understand and manipulate various cellular processes in plants, and it has been used extensively in the study of secondary cell wall formation. Secondary cell wall deposition occurs after the primary cell wall is laid down, a process carried out exclusively by specialized cells such as those forming vessel and fiber tissues. Most secondary cell walls are composed of cellulose (40-50%), hemicellulose (25-30%), and lignin (20-30%). Several mutations affecting secondary cell wall biosynthesis have been isolated, and the corresponding mutants may or may not exhibit obvious biochemical composition changes or visual phenotypes since these mutations could be masked by compensatory responses. Staining procedures have historically been used to show differences on a cellular basis. These methods are exclusively visual means of analysis; nevertheless their role in rapid and critical analysis is of great importance. Congo red and calcofluor white are stains used to detect polysaccharides, whereas Mäule and phloroglucinol are commonly used to determine differences in lignin, and toluidine blue O is used to differentially stain polysaccharides and lignin. The seemingly simple techniques of sectioning, staining, and imaging can be a challenge for beginners. Starting with sample preparation using the A. thaliana model, this study details the protocols of a variety of staining methodologies that can be easily implemented for observation of cell and tissue organization in secondary cell walls of plants.

  19. Salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA.

    PubMed

    Gao, Qiuqiang; Liou, Liang-Chun; Ren, Qun; Bao, Xiaoming; Zhang, Zhaojie

    2014-03-03

    The yeast cell wall plays an important role in maintaining cell morphology, cell integrity and response to environmental stresses. Here, we report that salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA (ρ(0)). Upon salt treatment, the cell wall is thickened, broken and becomes more sensitive to the cell wall-perturbing agent sodium dodecyl sulfate (SDS). Also, SCW11 mRNA levels are elevated in ρ(0) cells. Deletion of SCW11 significantly decreases the sensitivity of ρ(0) cells to SDS after salt treatment, while overexpression of SCW11 results in higher sensitivity. In addition, salt stress in ρ(0) cells induces high levels of reactive oxygen species (ROS), which further damages the cell wall, causing cells to become more sensitive towards the cell wall-perturbing agent.

  20. Salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA

    PubMed Central

    Gao, Qiuqiang; Liou, Liang-Chun; Ren, Qun; Bao, Xiaoming; Zhang, Zhaojie

    2014-01-01

    The yeast cell wall plays an important role in maintaining cell morphology, cell integrity and response to environmental stresses. Here, we report that salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA (ρ0). Upon salt treatment, the cell wall is thickened, broken and becomes more sensitive to the cell wall-perturbing agent sodium dodecyl sulfate (SDS). Also, SCW11 mRNA levels are elevated in ρ0 cells. Deletion of SCW11 significantly decreases the sensitivity of ρ0 cells to SDS after salt treatment, while overexpression of SCW11 results in higher sensitivity. In addition, salt stress in ρ0 cells induces high levels of reactive oxygen species (ROS), which further damages the cell wall, causing cells to become more sensitive towards the cell wall-perturbing agent. PMID:28357227

  1. Arabinogalactan protein-rich cell walls, paramural deposits and ergastic globules define the hyaline bodies of rhinanthoid Orobanchaceae haustoria

    PubMed Central

    Pielach, Anna; Leroux, Olivier; Domozych, David S.; Knox, J. Paul; Popper, Zoë A.

    2014-01-01

    Background and Aims Parasitic plants obtain nutrients from their hosts through organs called haustoria. The hyaline body is a specialized parenchymatous tissue occupying the central parts of haustoria in many Orobanchaceae species. The structure and functions of hyaline bodies are poorly understood despite their apparent necessity for the proper functioning of haustoria. Reported here is a cell wall-focused immunohistochemical study of the hyaline bodies of three species from the ecologically important clade of rhinanthoid Orobanchaceae. Methods Haustoria collected from laboratory-grown and field-collected plants of Rhinanthus minor, Odontites vernus and Melampyrum pratense attached to various hosts were immunolabelled for cell wall matrix glycans and glycoproteins using specific monoclonal antibodies (mAbs). Key Results Hyaline body cell wall architecture differed from that of the surrounding parenchyma in all species investigated. Enrichment in arabinogalactan protein (AGP) epitopes labelled with mAbs LM2, JIM8, JIM13, JIM14 and CCRC-M7 was prominent and coincided with reduced labelling of de-esterified homogalacturonan with mAbs JIM5, LM18 and LM19. Furthermore, paramural bodies, intercellular deposits and globular ergastic bodies composed of pectins, xyloglucans, extensins and AGPs were common. In Rhinanthus they were particularly abundant in pairings with legume hosts. Hyaline body cells were not in direct contact with haustorial xylem, which was surrounded by a single layer of paratracheal parenchyma with thickened cell walls abutting the xylem. Conclusions The distinctive anatomy and cell wall architecture indicate hyaline body specialization. Altered proportions of AGPs and pectins may affect the mechanical properties of hyaline body cell walls. This and the association with a transfer-like type of paratracheal parenchyma suggest a role in nutrient translocation. Organelle-rich protoplasts and the presence of exceptionally profuse intra- and intercellular

  2. Expression of human endogenous retrovirus type K envelope glycoprotein in insect and mammalian cells.

    PubMed Central

    Tönjes, R R; Limbach, C; Löwer, R; Kurth, R

    1997-01-01

    The human endogenous retrovirus type K (HERV-K) family codes for the human teratocarcinoma-derived retrovirus (HTDV) particles. The existence of the envelope protein (ENV) of HERV-K encoded by the subgenomic env mRNA has not yet been demonstrated. To study the genetic requirements for successful expression of ENV, we have constructed a series of recombinant HERV-K env expression vectors for infection and transfection experiments in insect cells and mammalian cells, respectively. Six baculovirus constructs bearing full-length or truncated HERV-K env with or without homologous or heterologous signal peptides were used for infections of insect cells. All recombinant baculoviruses yielded ENV proteins with the expected molecular masses. The full-length 80- to 90-kDa HERV-K ENV protein including the cORF leader sequence was glycosylated in insect cells. In addition, the 14-kDa cORF protein was expressed due to splicing of the full-length env mRNA. The ENV precursor protein is not cleaved to the surface (SU) and transmembrane (TM) glycoproteins; it does not appear on the surface of infected insect cells and is not secreted into the medium. For ENV expression in COS cells, plasmid vectors harboring the cytomegalovirus immediate-early promoter/intron A element and the tissue plasminogen activator (t-PA) signal peptide or the homologous HERV-K signal peptide upstream of the env gene were employed. Glycosylated and uncleaved ENV was expressed as in GH teratocarcinoma cells but at higher levels. The heterologous t-PA signal sequence was instrumental for expression of HERV-K ENV on the cell surface. Hence, we have shown for the first time that the HERV-K env gene has the potential to be expressed as a full-length envelope protein with appropriate glycosylation. In addition, our data provide explanations for the lack of infectivity of HERV-K/HTDV particles. PMID:9060628

  3. The targeting of starch binding domains from starch synthase III to the cell wall alters cell wall composition and properties.

    PubMed

    Grisolia, Mauricio J; Peralta, Diego A; Valdez, Hugo A; Barchiesi, Julieta; Gomez-Casati, Diego F; Busi, María V

    2017-01-01

    Starch binding domains of starch synthase III from Arabidopsis thaliana (SBD123) binds preferentially to cell wall polysaccharides rather than to starch in vitro. Transgenic plants overexpressing SBD123 in the cell wall are larger than wild type. Cell wall components are altered in transgenic plants. Transgenic plants are more susceptible to digestion than wild type and present higher released glucose content. Our results suggest that the transgenic plants have an advantage for the production of bioethanol in terms of saccharification of essential substrates. The plant cell wall, which represents a major source of biomass for biofuel production, is composed of cellulose, hemicelluloses, pectins and lignin. A potential biotechnological target for improving the production of biofuels is the modification of plant cell walls. This modification is achieved via several strategies, including, among others, altering biosynthetic pathways and modifying the associations and structures of various cell wall components. In this study, we modified the cell wall of A. thaliana by targeting the starch-binding domains of A. thaliana starch synthase III to this structure. The resulting transgenic plants (E8-SDB123) showed an increased biomass, higher levels of both fermentable sugars and hydrolyzed cellulose and altered cell wall properties such as higher laxity and degradability, which are valuable characteristics for the second-generation biofuels industry. The increased biomass and degradability phenotype of E8-SBD123 plants could be explained by the putative cell-wall loosening effect of the in tandem starch binding domains. Based on these results, our approach represents a promising biotechnological tool for reducing of biomass recalcitrance and therefore, the need for pretreatments.

  4. Studies on the skeletal cell wall of the cystocarpic stage of the red seaweed Iridaea undulosa B. Part II. Fractionation of the cell wall and methylation analysis of the inner core-fibrillar polysaccharides.

    PubMed

    Flores, M L; Stortz1, C A; Cerezo, A S

    2000-03-16

    In order to determine the structure of the fibrillar cell wall, the material isolated from cystocarpic thalli of the red seaweed Iridaea undulosa was fractionated using different media. While classical methods produced a scarce solubilization of material, the use of lithium salts in polar aprotic solvents (dimethylsulfoxide or N, N-dimethylacetamide), had successfully extracted higher amounts of material. The final residue from the Li(+)/DMSO extraction contains cellulose and a mannan, while that from the Li(+)/DMAc extraction contains only cellulose and traces of a galactan. Methylation analyses of both residues confirm the presence of those polysaccharides, and shows that the mannan is (1-->4)-linked. Treatment with proteases suggests that the protein is efficiently shielded from digestion. All the extracts and residues contain major amounts of (glyco)proteins and/or proteins, in agreement with a previous suggestion that they are of major importance in the structure of the cell wall.

  5. NaCl effect on the distribution of wall ingrowth polymers and arabinogalactan proteins in type A transfer cells of Medicago sativa Gabès leaves.

    PubMed

    Boughanmi, Néziha; Thibault, Florence; Decou, Raphael; Fleurat-Lessard, Pierrette; Béré, Emile; Costa, Guy; Lhernould, Sabine

    2010-06-01

    We studied the distribution of wall ingrowth (WI) polymers by probing thin sections of companion cells specialized as transfer cells in minor veins of Medicago sativa cv Gabès blade with affinity probes and antibodies specific to polysaccharides and glycoproteins. The wall polymers in the controls were similar in WIs and in the primary wall but differently distributed. The extent of labeling in these papillate WIs differed for JIM5 and JIM7 homogalacturonans but was in the same range for LM5 and LM6 rhamnogalacturonans and xyloglucans. These data show that WI enhancement probably requires arabinogalactan proteins (JIM8) mainly localized on the outer part of the primary wall and WIs. By comparison, NaCl-treated plants exhibited cell wall polysaccharide modifications indicating (1) an increase in unesterified homogalacturonans (JIM5), probably implicated in Na(+) binding and/or polysaccharide network interaction for limiting turgor variations in mesophyll cells; (2) enhancement of the xyloglucan network with an accumulation of fucosylated xyloglucans (CCRC-M1) known to increase the capacity of cellulose binding; and (3) specific recognition of JIM8 arabinogalactan proteins that could participate in both wall enlargement and cohesion by increasing the number of molecular interactions with the other polymers. In conclusion, the cell wall polysaccharide distribution in enlarged WIs might (1) participate in wall resistance to sequestration of Na(+), allowing a better control of hydric homeostasis in mesophyll cells to maintain metabolic activity in source leaves, and (2) maintain tolerance of M. sativa to NaCl.

  6. A formin-nucleated actin aster concentrates cell wall hydrolases for cell fusion in fission yeast

    PubMed Central

    Dudin, Omaya; Bendezú, Felipe O.; Groux, Raphael; Laroche, Thierry; Seitz, Arne

    2015-01-01

    Cell–cell fusion is essential for fertilization. For fusion of walled cells, the cell wall must be degraded at a precise location but maintained in surrounding regions to protect against lysis. In fission yeast cells, the formin Fus1, which nucleates linear actin filaments, is essential for this process. In this paper, we show that this formin organizes a specific actin structure—the actin fusion focus. Structured illumination microscopy and live-cell imaging of Fus1, actin, and type V myosins revealed an aster of actin filaments whose barbed ends are focalized near the plasma membrane. Focalization requires Fus1 and type V myosins and happens asynchronously always in the M cell first. Type V myosins are essential for fusion and concentrate cell wall hydrolases, but not cell wall synthases, at the fusion focus. Thus, the fusion focus focalizes cell wall dissolution within a broader cell wall synthesis zone to shift from cell growth to cell fusion. PMID:25825517

  7. Plant cell wall characterization using scanning probe microscopy techniques

    PubMed Central

    Yarbrough, John M; Himmel, Michael E; Ding, Shi-You

    2009-01-01

    Lignocellulosic biomass is today considered a promising renewable resource for bioenergy production. A combined chemical and biological process is currently under consideration for the conversion of polysaccharides from plant cell wall materials, mainly cellulose and hemicelluloses, to simple sugars that can be fermented to biofuels. Native plant cellulose forms nanometer-scale microfibrils that are embedded in a polymeric network of hemicelluloses, pectins, and lignins; this explains, in part, the recalcitrance of biomass to deconstruction. The chemical and structural characteristics of these plant cell wall constituents remain largely unknown today. Scanning probe microscopy techniques, particularly atomic force microscopy and its application in characterizing plant cell wall structure, are reviewed here. We also further discuss future developments based on scanning probe microscopy techniques that combine linear and nonlinear optical techniques to characterize plant cell wall nanometer-scale structures, specifically apertureless near-field scanning optical microscopy and coherent anti-Stokes Raman scattering microscopy. PMID:19703302

  8. New chemical tools to probe cell wall biosynthesis in bacteria.

    PubMed

    Gale, Robert T; Brown, Eric D

    2015-10-01

    Some of the most successful drugs in the antibiotic pharmacopeia are those that inhibit bacterial cell wall biosynthesis. However, the worldwide spread of bacterial antibiotic resistance has eroded the clinical efficacy of these drugs and the antibiotic pipeline continues to be lean as drug discovery programs struggle to bring new agents to the clinic. Nevertheless, cell wall biogenesis remains a high interest and celebrated target. Recent advances in the preparation of chemical probes and biosynthetic intermediates provide the tools necessary to better understand cell wall assembly. Likewise, these tools offer new opportunities to identify and evaluate novel biosynthetic inhibitors. This review aims to highlight these advancements and to provide context for their utility as innovative new tools to study cell wall biogenesis and for antibacterial drug discovery.

  9. Relationships between rhodamine 123 transport, cell volume, and ion-channel function of P-glycoprotein.

    PubMed

    Altenberg, G A; Vanoye, C G; Han, E S; Deitmer, J W; Reuss, L

    1994-03-11

    The P-glycoprotein (Pgp), a plasma membrane protein overexpressed in multidrug-resistant tumor cells, is thought to be both an ATPase that actively exports cytotoxic drugs and a Cl- channel activated by cell swelling. The partial reversal of multidrug resistance by Cl- transport blockers suggests a possible role for Cl- in Pgp-mediated drug transport. We used multidrug-resistant Chinese hamster fibroblasts and human breast cancer cells expressing Pgp to study the roles of Cl- (and also Na+ and HCO3-/CO2) on Pgp-mediated efflux of the fluorescent dye rhodamine 123 (R123). In Pgp-expressing Chinese hamster fibroblasts, exposed to isosmotic solutions, the unidirectional efflux of R123 was not measurably changed by a approximately 60-min removal of Cl- (or by exposure to Na(+)-free, or nominally HCO3-/CO2-free medium); short term (2-3 min) ion substitutions were also ineffective. In human breast cancer cells transfected with human mdr1 cDNA, hyposmotic solutions activated a Cl- current but had no effect on the Pgp-mediated unidirectional efflux of R123. Additionally, in human breast cancer cells, the intracellular presence of R123 did not prevent activation of the Cl- current by hyposmotic solution. The lack of detectable effect of removal of Cl-, Na+, or HCO3- on Pgp-mediated R123 transport rules out direct coupling between substrate transport and transport of either of these ions by Pgp. The persistence of Pgp-mediated R123 efflux in osmotically swollen cells indicates that activation of the Pgp-associated Cl- current does not hinder the Pgp pump function. The lack of effect of R123 on swelling-activated Cl- current denotes that Pgp-mediated transport of organic substrates and Pgp-associated Cl- currents can occur at the same time in a single cell. These results underscore the dissociation between Pgp-mediated active drug transport and electrodiffusive Cl- transport.

  10. Detection of oligomeric and monomeric forms of P-glycoprotein in multidrug resistant cells.

    PubMed

    Poruchynsky, M S; Ling, V

    1994-04-12

    P-glycoprotein (P-gp) is thought to function as a drug efflux pump in multidrug resistant (MDR) cells. The functional form of P-gp in its native state is not known. Previous results from radiation target size analysis have suggested that P-gp occurs as dimers in MDR cell plasma membranes [Boscoboinik et al. (1990) Biochim. Biophys. Acta 1027, 225-228]. In this study, we used sucrose gradient velocity sedimentation to determine if P-gp oligomers could be retrieved from detergent extracts of hamster and human MDR cell lines. The proportion of P-gp recovered as higher order oligomers was dependent on the detergents used for solubilization of the cells. When a detergent such as CHAPS was used, 50% or more of the P-gp sedimented as higher order oligomers. In contrast, in the presence of SDS, only monomers were retrieved, but naturally occurring oligomers could be preserved if the cells were treated with a cross-linker prior to detergent solubilization. The oligomers and monomers were both able to bind the photoactive analog of ATP (8-azido[alpha-32P]ATP) or the drug [3H]azidopine in membrane preparations. P-gp is a phosphoprotein, and its phosphorylated state is thought to be important for function. When MDR cells were labeled with [32P]orthophosphate in vivo, we observed that the monomer and dimer were more highly phosphorylated than the larger oligomers, suggesting that these different forms of P-gp may be functionally distinct. The assembly of oligomers appears to occur in an early bisynthetic compartment, and asparagine-linked glycosylation is not required for their formation. Our findings indicate that oligomers of P-gp exist in MDR cells and raise the possibility that the dynamics of oligomer formation and dissociation may be important in the mechanism of action of P-gp.

  11. Follicle stimulating hormone receptor in mesenchymal stem cells integrates effects of glycoprotein reproductive hormones

    PubMed Central

    Tourkova, Irina L.; Witt, Michelle R.; Li, La; Larrouture, Quitterie; Liu, Li; Luo, Jianhua; Robinson, Lisa J.; Blair, Harry C.

    2014-01-01

    Previously we reported that follicle stimulating hormone (FSH) affects bone degradation in human cells and in FSH-R null mice. Here we describe a FSH-R knockout bone formation phenotype. We used mesenchymal stem cells (MSCs), osteoblast precursors that express follicle stimulating hormone receptor (FSH-R), to determine whether FSH regulates bone formation. FSH stimulates MSC cell adhesion 1–3 h and proliferation at 24 h after addition. On the basis of phylogenetic and clinical precedents, we also examined effects of pregnant levels of human chorionic gonadotropin (hCG) on MSCs. We found effects similar to those of FSH, and RNAi knockdown of FSH-R abrogated both FSH and hCG effects on MSCs. In contrast to effects on MSCs, neither FSH nor hCG had significant effects on osteoblast maturation. Also in MSCs, short term treatment by FSH and hCG altered signaling pathways for proliferation, including Erk1/2 phosphorylation. Our results show augmentation of MSC proliferation by either FSH at menopausal levels or hCG at normal pregnant levels. We conclude that FSH-R participates in regulation of MSC precursor pools in response to either FSH or hCG, integrating the effects of these two glycoprotein hormones. PMID:25118101

  12. Follicle stimulating hormone receptor in mesenchymal stem cells integrates effects of glycoprotein reproductive hormones.

    PubMed

    Tourkova, Irina L; Witt, Michelle R; Li, La; Larrouture, Quitterie; Liu, Li; Luo, Jianhua; Robinson, Lisa J; Blair, Harry C

    2015-01-01

    Previously we reported that follicle stimulating hormone (FSH) affects bone degradation in human cells and in follicle stimulating hormone receptor (FSH-R) null mice. Here we describe a FSH-R knockout bone-formation phenotype. We used mesenchymal stem cells (MSCs), osteoblast precursors that express FSH-R, to determine whether FSH regulates bone formation. FSH stimulates MSC cell adhesion 1-3 h and proliferation at 24 h after addition. On the basis of phylogenetic and clinical precedents, we also examined effects of pregnant levels of human chorionic gonadotropin (hCG) on MSCs. We found effects similar to those of FSH, and RNAi knockdown of FSH-R abrogated both FSH and hCG effects on MSCs. In contrast to effects on MSCs, neither FSH nor hCG had significant effects on osteoblast maturation. Also in MSCs, short-term treatment by FSH and hCG altered signaling pathways for proliferation, including Erk1/2 phosphorylation. Our results show augmentation of MSC proliferation by either FSH at menopausal levels or hCG at normal pregnant levels. We conclude that FSH-R participates in regulation of MSC precursor pools in response to either FSH or hCG, integrating the effects of these two glycoprotein hormones.

  13. Gastrointestinal Hormone Cholecystokinin Increases P-Glycoprotein Membrane Localization and Transport Activity in Caco-2 Cells.

    PubMed

    Yano, Kentaro; Shimizu, Saori; Tomono, Takumi; Ogihara, Takuo

    2017-09-01

    It was reported that stimulation of taste receptor type 2 member 38 by a bitter substance, phenylthiocarbamide (PTC), increased P-glycoprotein (P-gp) mRNA level and transport activity via release of the gastrointestinal hormone cholecystokinin-8 (CCK-8) at 9 h. Therefore, we hypothesized that CCK-8 and PTC might also regulate P-gp activity more rapidly via a different mechanism. As a result, we found that the pretreatment of human colon adenocarcinoma (Caco-2) cells with 10-mM PTC significantly decreased the intracellular accumulation of P-gp substrate rhodamine 123 (Rho123) compared with the control after 90-min incubation. Moreover, CCK-8 treatments significantly reduced the accumulation of Rho123 within 30 min, compared with the control. On the other hand, when Caco-2 cells were pretreated with PTC, the efflux ratio of Rho123 was significantly increased compared with control. The efflux ratio of Rho123 in CCK-8 treatment cells was also significantly increased compared with control. Furthermore, CCK-8 increased the phosphorylation of the scaffold proteins ezrin, radixin, and moesin, which regulate translocation of P-gp to the plasma membrane. Therefore, our results indicate that PTC induced release of CCK-8, which in turn induced the phosphorylation of ezrin, radixin, and moesin proteins, leading to upregulation of P-gp transport activity via increased membrane localization of P-gp. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Cell wall polysaccharides from fern leaves: evidence for a mannan-rich Type III cell wall in Adiantum raddianum.

    PubMed

    Silva, Giovanna B; Ionashiro, Mari; Carrara, Thalita B; Crivellari, Augusto C; Tiné, Marco A S; Prado, Jefferson; Carpita, Nicholas C; Buckeridge, Marcos S

    2011-12-01

    Primary cell walls from plants are composites of cellulose tethered by cross-linking glycans and embedded in a matrix of pectins. Cell wall composition varies between plant species, reflecting in some instances the evolutionary distance between them. In this work the monosaccharide compositions of isolated primary cell walls of nine fern species and one lycophyte were characterized and compared with those from Equisetum and an angiosperm dicot. The relatively high abundance of mannose in these plants suggests that mannans may constitute the major cross-linking glycan in the primary walls of pteridophytes and lycophytes. Pectin-related polysaccharides contained mostly rhamnose and uronic acids, indicating the presence of rhamnogalacturonan I highly substituted with galactose and arabinose. Structural and fine-structural analyses of the hemicellulose fraction of leaves of Adiantum raddianum confirmed this hypothesis. Linkage analysis showed that the mannan contains mostly 4-Man with very little 4,6-Man, indicating a low percentage of branching with galactose. Treatment of the mannan-rich fractions with endo-β-mannanase produced characteristic mannan oligosaccharides. Minor amounts of xyloglucan and xylans were also detected. These data and those of others suggest that all vascular plants contain xyloglucans, arabinoxylans, and (gluco)mannans, but in different proportions that define cell wall types. Whereas xyloglucan and pectin-rich walls define Type I walls of dicots and many monocots, arabinoxylans and lower proportion of pectin define the Type II walls of commelinoid monocots. The mannan-rich primary walls with low pectins of many ferns and a lycopod indicate a fundamentally different wall type among land plants, the Type III wall.

  15. A versatile strategy for grafting polymers to wood cell walls.

    PubMed

    Keplinger, T; Cabane, E; Chanana, M; Hass, P; Merk, V; Gierlinger, N; Burgert, I

    2015-01-01

    The hierarchical structure of wood is composed of a cellulose skeleton of high structural order at various length scales. At the nanoscale and microscale the specific structural features of the cells and cell walls result in a lightweight structure with an anisotropic material profile of excellent mechanical performance. By being able to specifically functionalize wood at the level of cell and cell walls one can insert new properties and inevitably upscale them along the intrinsic hierarchical structure, to a level of large-scale engineering materials applications. For this purpose, however, precise control of the spatial distribution of the modifying substances in the complex wood structure is needed. Here we demonstrate a method to insert methacryl groups into wood cell walls using two different chemistry routes. By using these methacryl groups as the anchor points for grafting, various polymers can be inserted into the wood structure. Strikingly, depending on the methacryl precursor, the spatial distribution of the polymer differs strongly. As a proof of concept we grafted polystyrene as a model compound in the second modification step. In the case of methacryloyl chloride the polymer was located mainly at the interface between the cell lumina and the cell wall covering the inner surface of the cells and being traceable up to 2-3 μm in the cell wall, whereas in the case of methacrylic anhydride the polymer was located inside the whole cell wall. Scanning electron microscopy, Fourier transform infrared spectroscopy and especially Raman spectroscopy were used for an in-depth analysis of the modified wood at the cell wall level. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Polysaccharide-degrading Enzymes are Unable to Attack Plant Cell Walls without Prior Action by a "Wall-modifying Enzyme".

    PubMed

    Karr, A L; Albersheim, P

    1970-07-01

    A study of the degradation of plant cell walls by the mixture of enzymes present in Pectinol R-10 is described. A "wall-modifying enzyme" has been purified from this mixture by a combination of diethylaminoethyl cellulose, Bio Gel P-100, and carboxymethyl cellulose chromatography. Treatment of cell walls with the "wall-modifying enzyme" is shown to be a necessary prerequisite to wall degradation catalyzed by a mixture of polysaccharide-degrading enzymes prepared from Pectinol R-10 or by an alpha-galactosidase secreted by the pathogenic fungus Colletotrichum lindemuthianum. The action of the "wall-modifying enzyme" on cell walls is shown to result in both a release of water-soluble, 70% ethanol-insoluble polymers and an alteration of the residual cell wall. A purified preparation of the "wall-modifying enzyme" is unable to degrade a wide variety of polysaccharide, glycoside, and peptide substrates. However, the purified preparation of wall-modifying enzyme has a limited ability to degrade polygalacturonic acid. The fact that polygalacturonic acid inhibits the ability of the "wall-modifying enzyme" to affect cell walls suggests that the "wall-modifying enzyme" may be responsible for the limited polygalacturonic acid-degrading activity present in the purified preparation. The importance of a wall-modifying enzyme in developmental processes and in pathogenesis is discussed.

  17. An improved protocol to study the plant cell wall proteome

    PubMed Central

    Printz, Bruno; Dos Santos Morais, Raphaël; Wienkoop, Stefanie; Sergeant, Kjell; Lutts, Stanley; Hausman, Jean-Francois; Renaut, Jenny

    2015-01-01

    Cell wall proteins were extracted from alfalfa stems according to a three-steps extraction procedure using sequentially CaCl2, EGTA, and LiCl-complemented buffers. The efficiency of this protocol for extracting cell wall proteins was compared with the two previously published methods optimized for alfalfa stem cell wall protein analysis. Following LC-MS/MS analysis the three-steps extraction procedure resulted in the identification of the highest number of cell wall proteins (242 NCBInr identifiers) and gave the lowest percentage of non-cell wall proteins (about 30%). However, the three protocols are rather complementary than substitutive since 43% of the identified proteins were specific to one protocol. This three-step protocol was therefore selected for a more detailed proteomic characterization using 2D-gel electrophoresis. With this technique, 75% of the identified proteins were shown to be fraction-specific and 72.7% were predicted as belonging to the cell wall compartment. Although, being less sensitive than LC-MS/MS approaches in detecting and identifying low-abundant proteins, gel-based approaches are valuable tools for the differentiation and relative quantification of protein isoforms and/or modified proteins. In particular isoforms, having variations in their amino-acid sequence and/or carrying different N-linked glycan chains were detected and characterized. This study highlights how the extracting protocols as well as the analytical techniques devoted to the study of the plant cell wall proteome are complementary and how they may be combined to elucidate the dynamism of the plant cell wall proteome in biological studies. Data are available via ProteomeXchange with identifier PXD001927. PMID:25914713

  18. Chemical and in situ characterization of macromolecular components of the cell walls from the green seaweed Codium fragile.

    PubMed

    Estevez, José Manuel; Fernández, Paula Virginia; Kasulin, Luciana; Dupree, Paul; Ciancia, Marina

    2009-03-01

    A comprehensive analysis of the carbohydrate-containing macromolecules from the coencocytic green seaweed Codium fragile and their arrangement in the cell wall was carried out. Cell walls in this seaweed are highly complex structures composed of 31% (w/w) of linear (1-->4)-beta-D-mannans, 9% (w/w) of pyruvylated arabinogalactan sulfates (pAGS), and low amounts of hydroxyproline rich-glycoprotein epitopes (HRGP). In situ chemical imaging by synchrotron radiation Fourier transform infrared (SR-FTIR) microspectroscopy and by immunolabeling using antibodies against specific cell wall carbohydrate epitopes revealed that beta-d-mannans and pAGS are placed in the middle part of the cell wall, whereas HRGP epitopes (arabinogalactan proteins (AGPs) and extensins) are located on the wall boundaries, especially in the utricle apical zone. pAGS are sulfated at C-2 and/or C-4 of the 3-linked beta-L-arabinopyranose units and at C-4 and/or C-6 of the 3-linked beta-D-galactopyranose residues. In addition, high levels of ketals of pyruvic acid were found mainly at 3,4- of some terminal beta-D-Galp units forming a five-membered ring. Ramification was found at some C-6 of the 3-linked beta-D-Galp units. In agreement with the immunolabeled AGP epitopes, a nonsulfated branched furanosidic arabinan with 5-linked alpha-L-Araf, 3,5-linked alpha-L-Araf, and terminal alpha-L-Araf units and a nonsulfated galactan structure composed of 3-(3,6)-linked beta-D-Galp residues, both typical of type-II AG glycans were found, suggesting that AGP structures are present at low levels in the cell walls of this seaweed. Based on this study, it is starting to emerge that Codium has developed unique cell wall architecture, when compared, not only with that of vascular plants, but also with other related green seaweeds and algae.

  19. P-glycoprotein--implications of metabolism of neoplastic cells and cancer therapy.

    PubMed

    Breier, Albert; Barancík, Miroslav; Sulová, Zdenka; Uhrík, Branislav

    2005-09-01

    Multidrug resistance (MDR) of neoplastic tissues is a major obstacle in cancer chemotherapy. The predominant cause of MDR is the overexpression and drug transport activity of P-glycoprotein (P-gp, a product of the MDR gene). P-gp is a member of the ATP binding cassette (ABC) transporters family, with broad substrate specificity for several substances including anticancer drugs, linear and cyclic peptides, inhibitors of HIV protease, and several other substances. The development of P-gp-mediated MDR is often associated with several changes in cell structure and metabolism of resistant cells. In the present review are discussed the relations between glucosylceramide synthase activity, Pregnane X receptor and development of P-gp mediated MDR phenotype. Attention is also focused on the changes in protein kinase systems (mitogen-activated protein kinases, protein kinase C, Akt kinase) that are associated with the development of MDR phenotype and to the possible role of these kinase cascades in modulation of P-gp expression and function. The overexpression of P-gp may be associated with changes in metabolism of sugars as well as energy production. Structural and ultrastructural characteristics of multidrug resistant cells expressing P-gp are typical for cells engaged in a metabolically demanding process of protein synthesis and transport. P-gp mediated MDR phenotype is often also associated with alterations in cytoskeletal elements, microtubule and mitochondria distribution, Golgi apparatus, chromatin texture, vacuoles and caveolae formation. The current review also aims at bringing some state-of-the-art information on interactions of P-glycoprotein with various substances. To capture and transport the numerous unrelated substances, P-gp should contain site(s) able to bind compounds with a molecular weight of several hundreds and comprising hydrophobic and/or base regions that are protonated under physiological conditions. Drug binding sites that are able to recognize

  20. Vascular wall progenitor cells in health and disease.

    PubMed

    Psaltis, Peter J; Simari, Robert D

    2015-04-10

    The vasculature plays an indispensible role in organ development and maintenance of tissue homeostasis, such that disturbances to it impact greatly on developmental and postnatal health. Although cell turnover in healthy blood vessels is low, it increases considerably under pathological conditions. The principle sources for this phenomenon have long been considered to be the recruitment of cells from the peripheral circulation and the re-entry of mature cells in the vessel wall back into cell cycle. However, recent discoveries have also uncovered the presence of a range of multipotent and lineage-restricted progenitor cells in the mural layers of postnatal blood vessels, possessing high proliferative capacity and potential to generate endothelial, smooth muscle, hematopoietic or mesenchymal cell progeny. In particular, the tunica adventitia has emerged as a progenitor-rich compartment with niche-like characteristics that support and regulate vascular wall progenitor cells. Preliminary data indicate the involvement of some of these vascular wall progenitor cells in vascular disease states, adding weight to the notion that the adventitia is integral to vascular wall pathogenesis, and raising potential implications for clinical therapies. This review discusses the current body of evidence for the existence of vascular wall progenitor cell subpopulations from development to adulthood and addresses the gains made and significant challenges that lie ahead in trying to accurately delineate their identities, origins, regulatory pathways, and relevance to normal vascular structure and function, as well as disease. © 2015 American Heart Association, Inc.

  1. Flavonoid insertion into cell walls improves wood properties.

    PubMed

    Ermeydan, Mahmut A; Cabane, Etienne; Masic, Admir; Koetz, Joachim; Burgert, Ingo

    2012-11-01

    Wood has an excellent mechanical performance, but wider utilization of this renewable resource as an engineering material is limited by unfavorable properties such as low dimensional stability upon moisture changes and a low durability. However, some wood species are known to produce a wood of higher quality by inserting mainly phenolic substances in the already formed cell walls--a process so-called heartwood formation. In the present study, we used the heartwood formation in black locust (Robinia pseudoacacia) as a source of bioinspiration and transferred principles of the modification in order to improve spruce wood properties (Picea abies) by a chemical treatment with commercially available flavonoids. We were able to effectively insert hydrophobic flavonoids in the cell wall after a tosylation treatment for activation. The chemical treatment reduced the water uptake of the wood cell walls and increased the dimensional stability of the bulk spruce wood. Further analysis of the chemical interaction of the flavonoid with the structural cell wall components revealed the basic principle of this bioinspired modification. Contrary to established modification treatments, which mainly address the hydroxyl groups of the carbohydrates with hydrophilic substances, the hydrophobic flavonoids are effective by a physical bulking in the cell wall most probably stabilized by π-π interactions. A biomimetic transfer of the underlying principle may lead to alternative cell wall modification procedures and improve the performance of wood as an engineering material.

  2. Biliary glycoprotein (BGP) expression on T cells and on a natural-killer-cell sub-population.

    PubMed

    Moller, M J; Kammerer, R; Grunert, F; von Kleist, S

    1996-03-15

    Human T and natural-killer (NK) cells, that are thought to be the major cytotoxic effector-cell populations in the defence against neoplastic cells, were isolated from blood and decidua in order to analyze their expression of carcinoembronic-antigen-(CEA)-family-member proteins. Biliary glycoprotein (BGP,CD66a) was the only member of the carcinoembryonic antigen family detected. While freshly isolated T-cells expressed low amounts of BGP, freshly isolated NK cells were negative. After in vitro stimulation for 3 days, T cells up-regulated their BGP expression and a sub-group of NK cells (CD16- CD56+), known to predominate in decidua revealed de novo expression of BGP. In contrast, stimulated CD16+ CD56+ NK cells, which occur exclusively in the blood, remained negative. The expression of BGP could be shown on the protein level by using a panel of 12 well-defined MAbs and on the transcription level in rt-PCR and subsequent oligonucleotide hybridization. Interestingly, rIL-2-stimulated T cells expressed 3-fold higher levels of BGP compared with those seen after stimulation with phytohemagglutinin (PHA). PHA, on the other hand, induced a higher expression of HLA-DR, an activation marker of T cells. The differential regulation implies a distinct function of BGP and HLA-DR.

  3. Limited Effector Memory B-Cell Response to Envelope Glycoprotein B During Primary Human Cytomegalovirus Infection.

    PubMed

    Dauby, Nicolas; Sartori, Delphine; Kummert, Caroline; Lecomte, Sandra; Haelterman, Edwige; Delforge, Marie-Luce; Donner, Catherine; Mach, Michael; Marchant, Arnaud

    2016-05-15

    Following primary human cytomegalovirus (HCMV) infection, the production of antibodies against envelope glycoprotein B (gB) is delayed, compared with production of antibodies against tegument proteins, and this likely reduces the control of HCMV dissemination. The frequency and the phenotype of gB-specific and tegument protein-specific B cells were studied in a cohort of pregnant women with primary HCMV infection. Healthy adults who had chronic HCMV infection or were recently immunized with tetanus toxoid (TT) were included as controls. Primary HCMV infection was associated with high and similar frequencies of gB-specific and tegument protein-specific B cells following primary HCMV infection. During primary infection, tegument protein-specific B cells expressed an activated (CD21(low)) memory B-cell (MBC) phenotype. Activated MBCs were also induced by TT booster immunization, indicating that the expansion of this subset is part of the physiological B-cell response to protein antigens. In contrast, gB-specific B cells had a predominant classical (CD21(+)) MBC phenotype during both primary and chronic infections. The delayed production of gB-specific immunoglobulin G (IgG) during primary HCMV infection is associated with a limited induction of MBCs with effector potential. This novel mechanism by which HCMV may interfere with the production of neutralizing antibodies could represent a target for therapeutic immunization. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  4. Lefty Glycoproteins in Human Embryonic Stem Cells: Extracellular Delivery Route and Posttranslational Modification in Differentiation.

    PubMed

    Khalkhali-Ellis, Zhila; Galat, Vasiliy; Galat, Yekaterina; Gilgur, Alina; Seftor, Elisabeth A; Hendrix, Mary J C

    2016-09-19

    Lefty is a member of transforming growth factor-beta (TGF-β) superfamily and a potent antagonist of the TGF-β/Nodal/Activin signaling pathway. Lefty is critical in sustaining self-renewal/pluripotency status, and implicated in the differentiation of embryonic stem cells (ESCs). However, emerging studies depict Lefty as a multifaceted protein involved in myriad cellular events. Lefty proteins (human Lefty A and B) are secreted glycoproteins, but their mode of secretion and the significance of their "glycan" moiety remain mostly unexplored. By employing an in vitro system of human ESCs (hESCs), we observed that Lefty protein(s) are encased in exosomes for extracellular release. The exosomal- and cell-associated Lefty diverge in their proteolytic processing, and possess N-glycan structures of high mannose and complex nature. Differentiation of hESCs to mesenchymal cells (MSCs) or neuronal progenitor cells (NPCs) entails distinct changes in the Lefty A/Lefty B gene(s), and protein expression. Specifically, the proteolytic cleavage and N-glycan composition of the cell-associated and exosomal Lefty differ in the differentiated progenies. These modifications affected Lefty's inhibitory effect on Nodal signaling in aggressive melanoma cells. The microheterogeneity in the processing and glycosylation of Lefty protein(s) between hESCs, MSCs, and NPCs could present efficient means of diversifying the endogenous functions of Lefty. Whether Lefty's diverse functions in embryonic patterning, as well as its diffusion range in the extracellular environment, are similarly affected remains to be determined. Our studies underscore the potential relevance of Lefty-packaged exosomes for combating debilitating diseases such as cancer.

  5. The Permeability of Plant Cell Walls as Measured by Gel Filtration Chromatography

    NASA Astrophysics Data System (ADS)

    Tepeer, Mark; Taylor, Iain E. P.

    1981-08-01

    The permeability of plant cell walls to macromolecules may limit the ability of enzymes to alter the biochemical and physical properties of the wall. Proteins of molecular weight up to 60,000 can permeate a substantial portion of the cell wall. Measurements of wall permeability in which cells are exposed to hypertonic solutions of macromolecules may seriously underestimate wall permeability.

  6. Characterization and Localization of Insoluble Organic Matrices Associated with Diatom Cell Walls: Insight into Their Roles during Cell Wall Formation

    PubMed Central

    Tesson, Benoit; Hildebrand, Mark

    2013-01-01

    Organic components associated with diatom cell wall silica are important for the formation, integrity, and function of the cell wall. Polysaccharides are associated with the silica, however their localization, structure, and function remain poorly understood. We used imaging and biochemical approaches to describe in detail characteristics of insoluble organic components associated with the cell wall in 5 different diatom species. Results show that an insoluble organic matrix enriched in mannose, likely the diatotepum, is localized on the proximal surface of the silica cell wall. We did not identify any organic matrix embedded within the silica. We also identified a distinct material consisting of glucose polymer with variable localization depending on the species. In some species this component was directly involved in the morphogenesis of silica structure while in others it appeared to be only a structural component of the cell wall. A novel glucose-rich structure located between daughter cells during division was also identified. This work for the first time correlates the structure, composition, and localization of insoluble organic matrices associated with diatom cell walls. Additionally we identified a novel glucose polymer and characterized its role during silica structure formation. PMID:23626714

  7. The inhibitory and combinative mechanism of HZ08 with P-glycoprotein expressed on the membrane of Caco-2 cell line

    SciTech Connect

    Zhang, Yanyan; Hu, Yahui; Feng, Yidong; Kodithuwakku, Nandani Darshika; Fang, Weirong; Li, Yunman; Huang, Wenlong

    2014-01-15

    Recently, the research and development of agents to reverse the phenomenon of multidrug resistance has been an attractive goal as well as a key approach to elevating the clinical survival of cancer patients. Although three generations of P-glycoprotein modulators have been identified, poor clearance and metabolism render these agents too toxic to be used in clinical application. HZ08, which has been under investigation for several years, shows a dramatic reversal effect with low cytotoxicity. For the first time, we aimed to describe the interaction between HZ08 and P-glycoprotein in Caco-2 cell line in which P-glycoprotein is overexpressed naturally. Cytotoxicity and multidrug resistance reversal assays, together with flow cytometry, fluorescence microscopy and siRNA interference as well as Caco-2 monolayer transport model were employed in this study to evaluate the interaction between HZ08 and P-glycoprotein. This study revealed that HZ08 was capable of reversing adriamycin resistance mediated by P-glycoprotein as a result of intracellular enhancement of adriamycin accumulation, which was found to be superior to verapamil. In addition, we confirmed that HZ08 suppressed the transport of Rhodamine123 in the Caco-2 monolayer model but had little effect on P-glycoprotein expression. The transport of HZ08 was diminished by P-glycoprotein inhibitors (verapamil and LY335979) and its accumulation was increased via siRNA targeting MDR1 in Caco-2 cells. Furthermore, considering the binding site of P-glycoprotein, verapamil performed as a competitive inhibitor with HZ08. In conclusion, as a P-glycoprotein substrate, HZ08 inhibited P-glycoprotein activity and may share the same binding site of verapamil to P-glycoprotein. - Highlights: • The cytotoxicity and reversing effect of HZ08 was measured in Caco-2 cell line. • HZ08 inhibited the transport of Rhodamine123 across Caco-2 cell monolayer. • The efflux ratio of HZ08 was dropped when combined with P-glycoprotein

  8. Motion of red blood cells near microvessel walls: effects of a porous wall layer

    PubMed Central

    HARIPRASAD, DANIEL S.; SECOMB, TIMOTHY W.

    2013-01-01

    A two-dimensional model is used to simulate the motion and deformation of a single mammalian red blood cell (RBC) flowing close to the wall of a microvessel, taking into account the effects of a porous endothelial surface layer (ESL) lining the vessel wall. Migration of RBCs away from the wall leads to the formation of a cell-depleted layer near the wall, which has a large effect on the resistance to blood flow in microvessels. The objective is to examine the mechanical factors causing this migration, including the effects of the ESL. The vessel is represented as a straight parallel-sided channel. The RBC is represented as a set of interconnected viscoelastic elements, suspended in plasma, a Newtonian fluid. The ESL is represented as a porous medium, and plasma flow in the layer is computed using the Brinkman approximation. It is shown that an initially circular cell positioned close to the ESL in a shear flow is deformed into an asymmetric shape. This breaking of symmetry leads to migration away from the wall. With increasing hydraulic resistivity of the layer, the rate of lateral migration increases. It is concluded that mechanical interactions of RBCs flowing in microvessels with a porous wall layer may reduce the rate of lateral migration and hence reduce the width of the cell-depleted zone external to the ESL, relative to the cell-depleted zone that would be formed if the interface between the ESL and free-flowing plasma were replaced by an impermeable boundary. PMID:23493820

  9. Role of the plant cell wall in gravity resistance.

    PubMed

    Hoson, Takayuki; Wakabayashi, Kazuyuki

    2015-04-01

    Gravity resistance, mechanical resistance to the gravitational force, is a principal graviresponse in plants, comparable to gravitropism. The cell wall is responsible for the final step of gravity resistance. The gravity signal increases the rigidity of the cell wall via the accumulation of its constituents, polymerization of certain matrix polysaccharides due to the suppression of breakdown, stimulation of cross-link formation, and modifications to the wall environment, in a wide range of situations from microgravity in space to hypergravity. Plants thus develop a tough body to resist the gravitational force via an increase in cell wall rigidity and the modification of growth anisotropy. The development of gravity resistance mechanisms has played an important role in the acquisition of responses to various mechanical stresses and the evolution of land plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Ferulic acid is esterified to glucuronoarabinoxylans in pineapple cell walls.

    PubMed

    Smith, B G; Harris, P J

    2001-03-01

    The ester-linkage of ferulic acid (mainly E) to polysaccharides in primary cell walls of pineapple fruit (Ananas comosus) (Bromeliaceae) was investigated by treating a cell-wall preparation with 'Driselase' which contains a mixture of endo- and exo-glycanases, but no hydroxycinnamoyl esterase activity. The most abundant feruloyl oligosaccharide released was O-[5-O-(E-feruloyl)-alpha-L-arabinofuranosyl](1-->3)-O-beta-D-xylopyranosyl-(1-->4)-D-xylopyranose (FAXX). This indicated that the ferulic acid is ester-linked to glucuronoarabinoxylans in the same way as in the primary walls of grasses and cereals (Poaceae). Glucuronoarabinoxylans are the major non-cellulosic polysaccharides in the pineapple cell walls.

  11. Cytoskeleton and cell wall function in penetration resistance.

    PubMed

    Hardham, Adrienne R; Jones, David A; Takemoto, Daigo

    2007-08-01

    Plants successfully repel the vast majority of potential pathogens that arrive on their surface, with most microorganisms failing to breach the outer epidermal wall. Resistance to penetration at the epidermis is a key component of basal defence against disease and critically depends on fortification of the cell wall at the site of attempted penetration through the development of specialised cell wall appositions rich in antimicrobial compounds. Formation of cell wall appositions is achieved by rapid reorganisation of actin microfilaments, actin-dependent transport of secretory products to the infection site and local activation of callose synthesis. Plants are finely tuned to detect the presence of pathogens on their surface, perceiving both chemical and physical signals of pathogen origin. In the on-going evolution of interaction strategies, plants must continually monitor and out manoeuvre pathogen avoidance or suppression of plant defences in order to preserve the effectiveness of penetration resistance.

  12. Characterizing visible and invisible cell wall mutant phenotypes.

    PubMed

    Carpita, Nicholas C; McCann, Maureen C

    2015-07-01

    About 10% of a plant's genome is devoted to generating the protein machinery to synthesize, remodel, and deconstruct the cell wall. High-throughput genome sequencing technologies have enabled a reasonably complete inventory of wall-related genes that can be assembled into families of common evolutionary origin. Assigning function to each gene family member has been aided immensely by identification of mutants with visible phenotypes or by chemical and spectroscopic analysis of mutants with 'invisible' phenotypes of modified cell wall composition and architecture that do not otherwise affect plant growth or development. This review connects the inference of gene function on the basis of deviation from the wild type in genetic functional analyses to insights provided by modern analytical techniques that have brought us ever closer to elucidating the sequence structures of the major polysaccharide components of the plant cell wall.

  13. Ultrastructure and Composition of the Nannochloropsis gaditana Cell Wall

    PubMed Central

    Scholz, Matthew J.; Weiss, Taylor L.; Jinkerson, Robert E.; Jing, Jia; Roth, Robyn; Goodenough, Ursula; Posewitz, Matthew C.

    2014-01-01

    Marine algae of the genus Nannochloropsis are promising producers of biofuel precursors and nutraceuticals and are also harvested commercially for aquaculture feed. We have used quick-freeze, deep-etch electron microscopy, Fourier transform infrared spectroscopy, and carbohydrate analyses to characterize the architecture of the Nannochloropsis gaditana (strain CCMP 526) cell wall, whose recalcitrance presents a significant barrier to biocommodity extraction. The data indicate a bilayer structure consisting of a cellulosic inner wall (∼75% of the mass balance) protected by an outer hydrophobic algaenan layer. Cellulase treatment of walls purified after cell lysis generates highly enriched algaenan preparations without using the harsh chemical treatments typically used in algaenan isolation and characterization. Nannochloropsis algaenan was determined to comprise long, straight-chain, saturated aliphatics with ether cross-links, which closely resembles the cutan of vascular plants. Chemical identification of >85% of the isolated cell wall mass is detailed, and genome analysis is used to identify candidate biosynthetic enzymes. PMID:25239976

  14. Contribution of mdr1b-type P-glycoprotein to okadaic acid resistance in rat pituitary GH3 cells.

    PubMed

    Ritz, V; Marwitz, J; Sieder, S; Ziemann, C; Hirsch-Ernst, K I; Quentin, I; Steinfelder, H J

    1999-08-01

    Okadaic acid as well as other, structurally different, inhibitors of serine/threonine phosphatases 1 and 2A induce apoptosis in pituitary GH3 cells. Incubation with stepwise raised concentrations of okadaic acid resulted in the isolation of cells that were increasingly less sensitive to the cytotoxic effect of this agent. After about 18 months cells were selected that survived at 300 nM okadaic acid, which is about 30 times the initially lethal concentration. This study revealed that a major pharmacokinetic mechanism underlying cell survival was the development of a P-glycoprotein-mediated multidrug resistance (MDR) phenotype. The increase in mRNA levels of the mdr1b P-glycoprotein isoform correlated with the extent of drug resistance. Functional assays revealed that increasing drug resistance was paralleled by a decreased accumulation of rhodamine 123, a fluorescent dye which is a substrate of mdr1-mediated efflux activity. Resistance could be abolished by structurally different chemosensitizers of P-glycoprotein function like verapamil and reserpine but not by the leukotriene receptor antagonist MK571 which is a modulator of the multidrug resistance-associated protein (MRP). Okadaic acid resistance included cross-resistance to other cytotoxic agents that are substrates of mdr1-type P-glycoproteins, like doxorubicin and actinomycin D, but not to non-substrates of mdr1, e.g. cytosine arabinoside. Thus, functional as well as biochemical features support the conclusion that okadaic acid is a substrate of the mdr1-mediated efflux activity in rat pituitary GH3 cells. Maintenance of resistance after withdrawal of okadaic acid as well as metaphase spreads of 100 nM okadaic acid-resistant cells suggested a stable MDR genotype without indications for the occurrence of extrachromosomal amplifications, e.g. double minute chromosomes.

  15. Changes in cell surface proteins and glycoproteins during the encystation of Entamoeba invadens.

    PubMed

    Chayen, A; Avron, B; Mirelman, D

    1985-04-01

    Changes in cell surface components of axenically grown trophozoites of Entamoeba invadens which occur during encystation were followed. Protein patterns of trophozoites, immature and mature cyst forms, were analyzed by sodium dodecyl sulphate gel electrophoresis. Total protein profiles of trophozoites and cyst forms stained by Coomassie blue gave similar patterns. In contrast, a number of different bands were observed in gels stained with the carbohydrate-specific Schiff's reagent as well as when nitrocellulose blottings were treated with 125I-radiolabelled wheat germ or soybean agglutinins. The most notable differences were bands at 250 and 95-105 kDa present in the cyst forms and absent in the trophozoites, and two bands at 70 and 75 kDa present in the latter and missing in the cysts. Labelling of trophozoites and cyst cell surfaces by iodination with lactoperoxidase revealed a number of protein bands which were exposed on the trophozoite surface and missing in the cysts. Moreover, gel electrophoresis patterns of non-reduced or reduced samples also differed considerably, indicating that a number of proteins are linked by disulphide bonds. This study shows that specific glycoproteins are produced during cyst formation.

  16. Potential P-glycoprotein-mediated drug-drug interactions of antimalarial agents in Caco-2 cells.

    PubMed

    Oga, Enoche F; Sekine, Shuichi; Shitara, Yoshihisa; Horie, Toshiharu

    2012-07-01

    Antimalarials are widely used in African and Southeast Asian countries, where they are combined with other drugs for the treatment of concurrent ailments. The potential for P-glycoprotein (P-gp)-mediated drug-drug interactions (DDIs) between antimalarials and P-gp substrates was examined using a Caco-2 cell-based model. Selected antimalarials were initially screened for their interaction with P-gp based on the inhibition of rhodamine-123 (Rho-123) transport in Caco-2 cells. Verapamil (100 μM) and quinidine (1 μM) were used as positive inhibition controls. Lumefantrine, amodiaquin, and artesunate all showed blockade of Rho-123 transport. Subsequently, the inhibitory effect of these antimalarials on the bi-directional passage of digoxin (DIG) was examined. All of the drugs decreased basal-to-apical (B-A) P-gp-mediated DIG transport at concentrations of 100 μM and 1 mM. These concentrations may reflect therapeutic doses for amodiaquin and artesunate. Therefore, clinically relevant DDIs may occur between certain antimalarials and P-gp substrates in general.

  17. Comparison of cell-surface glycoproteins of rat hepatomas and embryonic rat liver.

    PubMed Central

    van Beek, W. P.; Emmelot, P.; Homburg, C.

    1977-01-01

    Cell-surface glycoprotein of 3 rat hepatoma strains and late-embryonic liver was metabolically labelled in vivo with [3H]- or [14C]-fucose. Trypsinization of the cells and exhaustive pronase digestion of combined hepatoma-liver trypsinates followed by gel filtration over Sephadex-Biogel mixtures, yielded elution profiles that contained more early-eluting (high-mol.-wt.) glycopeptides for hepatomas than for liver. At least 3 factors were identified which acted to augment the fraction of early-eluting tumour glycopeptides: (a) increase of neuraminidase-sensitive sialic acid, (b) increase of neuraminidase-insensitive sialic acid that was sensitive to mild HCl hydrolysis, and (c) presence of sugar sulphate groups contributing to a restricted extent, relative to possible unknown factor(s). Whether (a), (b) or (c) operated depended on the hepatoma strain or its mode of growth. Notwithstanding these differences in the nature of the increase in early-eluting glycopeptides, the increase itself appears not to be due to growth per se, nor to an embryonic expression, but rather may serve as a marker of tumourigenicity. PMID:199223

  18. Cell Surface Glycoprotein of Reactive Stromal Fibroblasts as a Potential Antibody Target in Human Epithelial Cancers

    NASA Astrophysics Data System (ADS)

    Garin-Chesa, Pilar; Old, Lloyd J.; Rettig, Wolfgang J.

    1990-09-01

    The F19 antigen is a cell surface glycoprotein (M_r, 95,000) of human sarcomas and proliferating, cultured fibroblasts that is absent from resting fibroblasts in normal adult tissues. Normal and malignant epithelial cells are also F19^-. The present immunohistochemical study describes induction of F19 in the reactive mesenchyme of epithelial tumors. F19^+ fibroblasts were found in primary and metastatic carcinomas, including colorectal (18 of 18 cases studied), breast (14/14), ovarian (21/21), bladder (9/10), and lung carcinomas (13/13). In contrast, the stroma of benign colorectal adenomas, fibrocystic disease and fibroadenomas of breast, benign prostate hyperplasia, in situ bladder carcinomas, and benign ovarian tumors showed no or only moderate numbers of F19^+ fibroblasts. Analysis of dermal incision wounds revealed that F19 is strongly induced during scar formation. Comparison of F19 with the extracellular matrix protein tenascin, a putative marker of tumor mesenchyme, showed a cellular staining pattern for F19 vs. the extracellular matrix pattern for tenascin and widespread expression of tenascin in F19^- normal tissues and benign tumors. Our results suggest that the F19^+ phenotype correlates with specialized fibroblast functions in wound healing and malignant tumor growth. Because of its abundance in tumor mesenchyme, F19 may serve as a target for antibodies labeled with radioisotopes or toxic agents, or inflammatogenic antibodies, in carcinoma patients.

  19. P-glycoprotein-dependent resistance of cancer cells toward the extrinsic TRAIL apoptosis signaling pathway.

    PubMed

    Galski, Hanan; Oved-Gelber, Tamar; Simanovsky, Masha; Lazarovici, Philip; Gottesman, Michael M; Nagler, Arnon

    2013-09-01

    The TNF-related apoptosis-inducing ligand (TRAIL or Apo2L) preferentially cause apoptosis of malignant cells in vitro and in vivo without severe toxicity. Therefore, TRAIL or agonist antibodies to the TRAIL DR4 and DR5 receptors are used in cancer therapy. However, many malignant cells are intrinsically resistant or acquire resistance to TRAIL. It has been previously proposed that the multidrug transporter P-glycoprotein (Pgp) might play a role in resistance of cells to intrinsic apoptotic pathways by interfering with components of ceramide metabolism or by modulating the electrochemical gradient across the plasma membrane. In this study we investigated whether Pgp also confers resistance toward extrinsic death ligands of the TNF family. To this end we focused our study on HeLa cells carrying a tetracycline-repressible plasmid system which shuts down Pgp expression in the presence of tetracycline. Our findings demonstrate that expression of Pgp is a significant factor conferring resistance to TRAIL administration, but not to other death ligands such as TNF-α and Fas ligand. Moreover, blocking Pgp transport activity sensitizes the malignant cells toward TRAIL. Therefore, Pgp transport function is required to confer resistance to TRAIL. Although the resistance to TRAIL-induced apoptosis is Pgp specific, TRAIL itself is not a direct substrate of Pgp. Pgp expression has no effect on the level of the TRAIL receptors DR4 and DR5. These findings might have clinical implications since the combination of TRAIL therapy with administration of Pgp modulators might sensitize TRAIL resistant tumors.

  20. Determining the polysaccharide composition of plant cell walls.

    PubMed

    Pettolino, Filomena A; Walsh, Cherie; Fincher, Geoffrey B; Bacic, Antony

    2012-09-01

    The plant cell wall is a chemically complex structure composed mostly of polysaccharides. Detailed analyses of these cell wall polysaccharides are essential for our understanding of plant development and for our use of plant biomass (largely wall material) in the food, agriculture, fabric, timber, biofuel and biocomposite industries. We present analytical techniques not only to define the fine chemical structures of individual cell wall polysaccharides but also to estimate the overall polysaccharide composition of cell wall preparations. The procedure covers the preparation of cell walls, together with gas chromatography-mass spectrometry (GC-MS)-based methods, for both the analysis of monosaccharides as their volatile alditol acetate derivatives and for methylation analysis to determine linkage positions between monosaccharide residues as their volatile partially methylated alditol acetate derivatives. Analysis time will vary depending on both the method used and the tissue type, and ranges from 2 d for a simple neutral sugar composition to 2 weeks for a carboxyl reduction/methylation linkage analysis.

  1. Electron Microscopy of Staphylococcus aureus Cell Wall Lysis

    PubMed Central

    Virgilio, R.; González, C.; Muñoz, Nubia; Mendoza, Silvia

    1966-01-01

    Virgilio, Rafael (Escuela de Química y Farmacia, Universidad de Chile, Santiago, Chile), C. González, Nubia Muñoz, and Silvia Mendoza. Electron microscopy of Staphylococcus aureus cell wall lysis. J. Bacteriol. 91:2018–2024. 1966.—A crude suspension of Staphylococcus aureus cell walls (strain Cowan III) in buffer solution was shown by electron microscopy to lyse slightly after 16 hr, probably owing to the action of autolysin. The lysis was considerably faster and more intense after the addition of lysozyme. A remarkable reduction in thickness and rigidity of the cell walls, together with the appearance of many irregular protrusions in their outlines, was observed after 2 hr; after 16 hr, there remained only a few recognizable cell wall fragments but many residual particulate remnants. When autolysin was previously inactivated by trypsin, there was a complete inhibition of the lytic action of lysozyme; on the other hand, when autolysin was inactivated by heat and lysozyme was added, a distinct decrease in the thickness of the cell walls was observed, but there was no destruction of the walls. The lytic action of lysozyme, after treatment with hot 5% trichloroacetic acid, gave rise to a marked dissolution of the structure of the cell walls, which became lost against the background, without, however, showing ostensible alteration of wall outlines. From a morphological point of view, the lytic action of autolysin plus lysozyme was quite different from that of trichloroacetic acid plus lysozyme, as shown by electron micrographs, but in both cases it was very intense. This would suggest different mechanisms of action for these agents. Images PMID:5939482

  2. Electron microscopy of Staphylococcus aureus cell wall lysis.

    PubMed

    Virgilio, R; González, C; Muñoz, N; Mendoza, S

    1966-05-01

    Virgilio, Rafael (Escuela de Química y Farmacia, Universidad de Chile, Santiago, Chile), C. González, Nubia Muñoz, and Silvia Mendoza. Electron microscopy of Staphylococcus aureus cell wall lysis. J. Bacteriol. 91:2018-2024. 1966.-A crude suspension of Staphylococcus aureus cell walls (strain Cowan III) in buffer solution was shown by electron microscopy to lyse slightly after 16 hr, probably owing to the action of autolysin. The lysis was considerably faster and more intense after the addition of lysozyme. A remarkable reduction in thickness and rigidity of the cell walls, together with the appearance of many irregular protrusions in their outlines, was observed after 2 hr; after 16 hr, there remained only a few recognizable cell wall fragments but many residual particulate remnants. When autolysin was previously inactivated by trypsin, there was a complete inhibition of the lytic action of lysozyme; on the other hand, when autolysin was inactivated by heat and lysozyme was added, a distinct decrease in the thickness of the cell walls was observed, but there was no destruction of the walls. The lytic action of lysozyme, after treatment with hot 5% trichloroacetic acid, gave rise to a marked dissolution of the structure of the cell walls, which became lost against the background, without, however, showing ostensible alteration of wall outlines. From a morphological point of view, the lytic action of autolysin plus lysozyme was quite different from that of trichloroacetic acid plus lysozyme, as shown by electron micrographs, but in both cases it was very intense. This would suggest different mechanisms of action for these agents.

  3. Evaluation of cell wall preparations for proteomics: a new p