Sample records for cell wall level

  1. Salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA.

    PubMed

    Gao, Qiuqiang; Liou, Liang-Chun; Ren, Qun; Bao, Xiaoming; Zhang, Zhaojie

    2014-03-03

    The yeast cell wall plays an important role in maintaining cell morphology, cell integrity and response to environmental stresses. Here, we report that salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA (ρ 0 ). Upon salt treatment, the cell wall is thickened, broken and becomes more sensitive to the cell wall-perturbing agent sodium dodecyl sulfate (SDS). Also, SCW11 mRNA levels are elevated in ρ 0 cells. Deletion of SCW11 significantly decreases the sensitivity of ρ 0 cells to SDS after salt treatment, while overexpression of SCW11 results in higher sensitivity. In addition, salt stress in ρ 0 cells induces high levels of reactive oxygen species (ROS), which further damages the cell wall, causing cells to become more sensitive towards the cell wall-perturbing agent.

  2. Changes in cell wall polysaccharide composition, gene transcription and alternative splicing in germinating barley embryos.

    PubMed

    Zhang, Qisen; Zhang, Xiaoqi; Pettolino, Filomena; Zhou, Gaofeng; Li, Chengdao

    2016-02-01

    Barley (Hordeum vulgare L.) seed germination initiates many important biological processes such as DNA, membrane and mitochondrial repairs. However, little is known on cell wall modifications in germinating embryos. We have investigated cell wall polysaccharide composition change, gene transcription and alternative splicing events in four barley varieties at 24h and 48 h germination. Cell wall components in germinating barley embryos changed rapidly, with increases in cellulose and (1,3)(1,4)-β-D-glucan (20-100%) within 24h, but decreases in heteroxylan and arabinan (3-50%). There were also significant changes in the levels of type I arabinogalactans and heteromannans. Alternative splicing played very important roles in cell wall modifications. At least 22 cell wall transcripts were detected to undergo either alternative 3' splicing, alternative 5' splicing or intron retention type of alternative splicing. These genes coded enzymes catalyzing synthesis and degradation of cellulose, heteroxylan, (1,3)(1,4)-β-D-glucan and other cell wall polymers. Furthermore, transcriptional regulation also played very important roles in cell wall modifications. Transcript levels of primary wall cellulase synthase, heteroxylan synthesizing and nucleotide sugar inter-conversion genes were very high in germinating embryos. At least 50 cell wall genes changed transcript levels significantly. Expression patterns of many cell wall genes coincided with changes in polysaccharide composition. Our data showed that cell wall polysaccharide metabolism was very active in germinating barley embryos, which was regulated at both transcriptional and post-transcriptional levels. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. The transcription factor Rap1p is required for tolerance to cell-wall perturbing agents and for cell-wall maintenance in Saccharomyces cerevisiae.

    PubMed

    Azad, Gajendra Kumar; Singh, Vikash; Baranwal, Shivani; Thakare, Mayur Jankiram; Tomar, Raghuvir S

    2015-01-02

    Yeast repressor activator protein (Rap1p) is involved in genomic stability and transcriptional regulation. We explored the function of Rap1p in yeast physiology using Rap1p truncation mutants. Our results revealed that the N-terminal truncation of Rap1p (Rap1ΔN) leads to hypersensitivity towards elevated temperature and cell-wall perturbing agents. Cell wall analysis showed an increase in the chitin and glucan content in Rap1ΔN cells as compared with wild type cells. Accordingly, mutant cells had a twofold thicker cell wall, as observed by electron microscopy. Furthermore, Rap1ΔN cells had increased levels of phosphorylated Slt2p, a MAP kinase of the cell wall integrity pathway. Mutant cells also had elevated levels of cell wall integrity response transcripts. Taken together, our findings suggest a connection between Rap1p and cell wall homeostasis. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Cell Wall Structure in Cells Adapted to Growth on the Cellulose-Synthesis Inhibitor 2,6-Dichlorobenzonitrile 1

    PubMed Central

    Shedletzky, Esther; Shmuel, Miri; Trainin, Tali; Kalman, Sara; Delmer, Deborah

    1992-01-01

    Our previous work (E. Shedletzky, M. Shmuel, D.P. Delmer, D.T.A. Lamport [1990] Plant Physiol 94:980-987) showed that suspension-cultured tomato cells adapted to growth on the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile (DCB) have a markedly altered cell wall composition, most notably a markedly reduced level of the cellulose-xyloglucan network. This study compares the adaptation to DCB of two cell lines from dicots (tomato [Lycopersicon esculentum] and tobacco [Nicotiana tabacum]) and a Graminaceous monocot (barley [Hordeum bulbosum] endosperm). The difference in wall structures between the dicots and the monocot is reflected in the very different types of wall modifications induced by growth on DCB. The dicots, having reduced levels of cellulose and xyloglucan, possess walls the major integrity of which is provided by Ca2+-bridged pectates because protoplasts can be prepared from these cells simply by treatment with divalent cation chelator and a purified endopolygalacturonase. The tensile strength of these walls is considerably less than walls from nonadapted cells, but wall porosity is not altered. In contrast, walls from adapted barley cells contain very little pectic material and normal to elevated levels of noncellulosic polysaccharides compared with walls from nonadapted cells. Surprisingly, they have tensile strengths higher than their nonadapted counterpart, although cellulose levels are reduced by 70%. Evidence is presented that these walls obtain their additional strength by an altered pattern of cross-linking of polymers involving phenolic components. Such cross-linking may also explain the observation that the porosity of these walls is also considerably reduced. Cells of adapted lines of both the dicots and barley are resistant to plasmolysis, suggesting that they possess very strong connections between the wall and the plasma membrane. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:16652933

  5. Cell wall composition and penetration resistance against the fungal pathogen Colletotrichum higginsianum are affected by impaired starch turnover in Arabidopsis mutants.

    PubMed

    Engelsdorf, Timo; Will, Cornelia; Hofmann, Jörg; Schmitt, Christine; Merritt, Brian B; Rieger, Leonie; Frenger, Marc S; Marschall, André; Franke, Rochus B; Pattathil, Sivakumar; Voll, Lars M

    2017-01-01

    Penetration resistance represents the first level of plant defense against phytopathogenic fungi. Here, we report that the starch-deficient Arabidopsis thaliana phosphoglucomutase (pgm) mutant has impaired penetration resistance against the hemibiotrophic fungus Colletotrichum higginsianum. We could not determine any changes in leaf cutin and epicuticular wax composition or indolic glucosinolate levels, but detected complex alterations in the cell wall monosaccharide composition of pgm. Notably, other mutants deficient in starch biosynthesis (adg1) or mobilization (sex1) had similarly affected cell wall composition and penetration resistance. Glycome profiling analysis showed that both overall cell wall polysaccharide extractability and relative extractability of specific pectin and xylan epitopes were affected in pgm, suggesting extensive structural changes in pgm cell walls. Screening of mutants with alterations in content or modification of specific cell wall monosaccharides indicated an important function of pectic polymers for penetration resistance and hyphal growth of C. higginsianum during the biotrophic interaction phase. While mutants with affected pectic rhamnogalacturonan-I (mur8) were hypersusceptible, penetration frequency and morphology of fungal hyphae were impaired on pmr5 pmr6 mutants with increased pectin levels. Our results reveal a strong impact of starch metabolism on cell wall composition and suggest a link between carbohydrate availability, cell wall pectin and penetration resistance.

  6. Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level

    PubMed Central

    Derbyshire, Paul; McCann, Maureen C; Roberts, Keith

    2007-01-01

    Background Cell elongation is mainly limited by the extensibility of the cell wall. Dicotyledonous primary (growing) cell walls contain cellulose, xyloglucan, pectin and proteins, but little is known about how each polymer class contributes to the cell wall mechanical properties that control extensibility. Results We present evidence that the degree of pectin methyl-esterification (DE%) limits cell growth, and that a minimum level of about 60% DE is required for normal cell elongation in Arabidopsis hypocotyls. When the average DE% falls below this level, as in two gibberellic acid (GA) mutants ga1-3 and gai, and plants expressing pectin methyl-esterase (PME1) from Aspergillus aculeatus, then hypocotyl elongation is reduced. Conclusion Low average levels of pectin DE% are associated with reduced cell elongation, implicating PMEs, the enzymes that regulate DE%, in the cell elongation process and in responses to GA. At high average DE% other components of the cell wall limit GA-induced growth. PMID:17572910

  7. Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level.

    PubMed

    Derbyshire, Paul; McCann, Maureen C; Roberts, Keith

    2007-06-17

    Cell elongation is mainly limited by the extensibility of the cell wall. Dicotyledonous primary (growing) cell walls contain cellulose, xyloglucan, pectin and proteins, but little is known about how each polymer class contributes to the cell wall mechanical properties that control extensibility. We present evidence that the degree of pectin methyl-esterification (DE%) limits cell growth, and that a minimum level of about 60% DE is required for normal cell elongation in Arabidopsis hypocotyls. When the average DE% falls below this level, as in two gibberellic acid (GA) mutants ga1-3 and gai, and plants expressing pectin methyl-esterase (PME1) from Aspergillus aculeatus, then hypocotyl elongation is reduced. Low average levels of pectin DE% are associated with reduced cell elongation, implicating PMEs, the enzymes that regulate DE%, in the cell elongation process and in responses to GA. At high average DE% other components of the cell wall limit GA-induced growth.

  8. Comparing corn types for differences in cell wall characteristics and p-coumaroylation of lignin.

    PubMed

    Hatfield, Ronald D; Chaptman, Ann K

    2009-05-27

    This study was undertaken to compare cell wall characteristics including levels of p-coumarate (pCA) and lignin in corn (Zea mays L.) types. Five different types of corn, four commercial and Teosinte, were grown in the greenhouse in individual pots. For each corn type replicate stems were harvested at tassel emergence. Tissues for cell wall analysis were harvested from stems (separated into rind and pith tissues) and roots. Stem cell wall characteristics across the different corn types were similar for total neutral sugars, total uronosyls, lignin, and phenolic acids. However, the neutral sugar composition of root cell walls was markedly different, with high levels of galactose and arabinose. Levels of pCA in the different tissues ranged from 13.8 to 33.1 mg g(-1) of CW depending upon the type of tissue. There was no evidence that pCA was incorporated into cell walls attached to arabinoxylans. Lignin levels were similar within a given tissue, with pith ranging from 86.1 to 132.0 mg g(-1) of CW, rind from 178.4 to 236.6 mg g(-1) of CW, and roots from 216.5 to 242.6 mg g(-1) of CW. The higher values for lignins in root tissue may be due to suberin remaining in the acid-insoluble residue, forming Klason lignins. With the exception of root tissues, higher pCA levels accompanied higher lignin levels. This may indicate a potential role of pCA aiding lignin formation in corn cell walls during the lignification process.

  9. Cell wall composition and penetration resistance against the fungal pathogen Colletotrichum higginsianum are affected by impaired starch turnover in Arabidopsis mutants

    PubMed Central

    Engelsdorf, Timo; Will, Cornelia; Hofmann, Jörg; Schmitt, Christine; Merritt, Brian B.; Rieger, Leonie; Frenger, Marc S.; Marschall, André; Franke, Rochus B.; Pattathil, Sivakumar

    2017-01-01

    Abstract Penetration resistance represents the first level of plant defense against phytopathogenic fungi. Here, we report that the starch-deficient Arabidopsis thaliana phosphoglucomutase (pgm) mutant has impaired penetration resistance against the hemibiotrophic fungus Colletotrichum higginsianum. We could not determine any changes in leaf cutin and epicuticular wax composition or indolic glucosinolate levels, but detected complex alterations in the cell wall monosaccharide composition of pgm. Notably, other mutants deficient in starch biosynthesis (adg1) or mobilization (sex1) had similarly affected cell wall composition and penetration resistance. Glycome profiling analysis showed that both overall cell wall polysaccharide extractability and relative extractability of specific pectin and xylan epitopes were affected in pgm, suggesting extensive structural changes in pgm cell walls. Screening of mutants with alterations in content or modification of specific cell wall monosaccharides indicated an important function of pectic polymers for penetration resistance and hyphal growth of C. higginsianum during the biotrophic interaction phase. While mutants with affected pectic rhamnogalacturonan-I (mur8) were hypersusceptible, penetration frequency and morphology of fungal hyphae were impaired on pmr5 pmr6 mutants with increased pectin levels. Our results reveal a strong impact of starch metabolism on cell wall composition and suggest a link between carbohydrate availability, cell wall pectin and penetration resistance. PMID:28204541

  10. Bioinspired metal-cell wall-metal sandwich structure on an individual bacterial cell scaffold.

    PubMed

    Zhang, Xiaoliang; Yu, Mei; Liu, Jianhua; Li, Songmei

    2012-08-25

    Pd nanoparticles were introduced to individual Bacillus cells and dispersedly anchored on both the inside and outside of the cell walls. The anchored nanoparticles served as "seeds" to drive the formation of double metallic layers forming a metal-cell wall-metal sandwich structure at the single-cell level.

  11. Regulation of Neurospora crassa cell wall remodeling via the cot-1 pathway is mediated by gul-1.

    PubMed

    Herold, Inbal; Yarden, Oded

    2017-02-01

    Impairment of the Neurospora crassa Nuclear DBF2-related kinase-encoding gene cot-1 results in pleiotropic effects, including abnormally thick hyphal cell walls and septa. An increase in the transcript abundance of genes encoding chitin and glucan synthases and the chitinase gh18-5, but not the cell wall integrity pathway transcription factor rlm-1, accompany the phenotypic changes observed. Deletion of chs-5 or chs-7 in a cot-1 background results in a reduction of hyperbranching frequency characteristic of the cot-1 parent. gul-1 (a homologue of the yeast SSD1 gene) encodes a translational regulator and has been shown to partially suppress cot-1. We demonstrate that the high expression levels of the cell wall remodeling genes analyzed is curbed, and reaches near wild type levels, when gul-1 is inactivated. This is accompanied by morphological changes that include reduced cell wall thickness and restoration of normal chitin levels. We conclude that gul-1 is a mediator of cell wall remodeling within the cot-1 pathway.

  12. Following the compositional changes of fresh grape skin cell walls during the fermentation process in the presence and absence of maceration enzymes.

    PubMed

    Zietsman, Anscha J J; Moore, John P; Fangel, Jonatan U; Willats, William G T; Trygg, Johan; Vivier, Melané A

    2015-03-18

    Cell wall profiling technologies were used to follow compositional changes that occurred in the skins of grape berries (from two different ripeness levels) during fermentation and enzyme maceration. Multivariate data analysis showed that the fermentation process yielded cell walls enriched in hemicellulose components because pectin was solubilized (and removed) with a reduction as well as exposure of cell wall proteins usually embedded within the cell wall structure. The addition of enzymes caused even more depectination, and the enzymes unravelled the cell walls enabling better access to, and extraction of, all cell wall polymers. Overripe grapes had cell walls that were extensively hydrolyzed and depolymerized, probably by natural grape-tissue-ripening enzymes, and this enhanced the impact that the maceration enzymes had on the cell wall monosaccharide profile. The combination of the techniques that were used is an effective direct measurement of the hydrolysis actions of maceration enzymes on the cell walls of grape berry skin.

  13. Transcriptomic analysis of Arabidopsis developing stems: a close-up on cell wall genes

    PubMed Central

    Minic, Zoran; Jamet, Elisabeth; San-Clemente, Hélène; Pelletier, Sandra; Renou, Jean-Pierre; Rihouey, Christophe; Okinyo, Denis PO; Proux, Caroline; Lerouge, Patrice; Jouanin, Lise

    2009-01-01

    Background Different strategies (genetics, biochemistry, and proteomics) can be used to study proteins involved in cell biogenesis. The availability of the complete sequences of several plant genomes allowed the development of transcriptomic studies. Although the expression patterns of some Arabidopsis thaliana genes involved in cell wall biogenesis were identified at different physiological stages, detailed microarray analysis of plant cell wall genes has not been performed on any plant tissues. Using transcriptomic and bioinformatic tools, we studied the regulation of cell wall genes in Arabidopsis stems, i.e. genes encoding proteins involved in cell wall biogenesis and genes encoding secreted proteins. Results Transcriptomic analyses of stems were performed at three different developmental stages, i.e., young stems, intermediate stage, and mature stems. Many genes involved in the synthesis of cell wall components such as polysaccharides and monolignols were identified. A total of 345 genes encoding predicted secreted proteins with moderate or high level of transcripts were analyzed in details. The encoded proteins were distributed into 8 classes, based on the presence of predicted functional domains. Proteins acting on carbohydrates and proteins of unknown function constituted the two most abundant classes. Other proteins were proteases, oxido-reductases, proteins with interacting domains, proteins involved in signalling, and structural proteins. Particularly high levels of expression were established for genes encoding pectin methylesterases, germin-like proteins, arabinogalactan proteins, fasciclin-like arabinogalactan proteins, and structural proteins. Finally, the results of this transcriptomic analyses were compared with those obtained through a cell wall proteomic analysis from the same material. Only a small proportion of genes identified by previous proteomic analyses were identified by transcriptomics. Conversely, only a few proteins encoded by genes having moderate or high level of transcripts were identified by proteomics. Conclusion Analysis of the genes predicted to encode cell wall proteins revealed that about 345 genes had moderate or high levels of transcripts. Among them, we identified many new genes possibly involved in cell wall biogenesis. The discrepancies observed between results of this transcriptomic study and a previous proteomic study on the same material revealed post-transcriptional mechanisms of regulation of expression of genes encoding cell wall proteins. PMID:19149885

  14. A versatile strategy for grafting polymers to wood cell walls.

    PubMed

    Keplinger, T; Cabane, E; Chanana, M; Hass, P; Merk, V; Gierlinger, N; Burgert, I

    2015-01-01

    The hierarchical structure of wood is composed of a cellulose skeleton of high structural order at various length scales. At the nanoscale and microscale the specific structural features of the cells and cell walls result in a lightweight structure with an anisotropic material profile of excellent mechanical performance. By being able to specifically functionalize wood at the level of cell and cell walls one can insert new properties and inevitably upscale them along the intrinsic hierarchical structure, to a level of large-scale engineering materials applications. For this purpose, however, precise control of the spatial distribution of the modifying substances in the complex wood structure is needed. Here we demonstrate a method to insert methacryl groups into wood cell walls using two different chemistry routes. By using these methacryl groups as the anchor points for grafting, various polymers can be inserted into the wood structure. Strikingly, depending on the methacryl precursor, the spatial distribution of the polymer differs strongly. As a proof of concept we grafted polystyrene as a model compound in the second modification step. In the case of methacryloyl chloride the polymer was located mainly at the interface between the cell lumina and the cell wall covering the inner surface of the cells and being traceable up to 2-3 μm in the cell wall, whereas in the case of methacrylic anhydride the polymer was located inside the whole cell wall. Scanning electron microscopy, Fourier transform infrared spectroscopy and especially Raman spectroscopy were used for an in-depth analysis of the modified wood at the cell wall level. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Quantifying the Labeling and the Levels of Plant Cell Wall Precursors Using Ion Chromatography Tandem Mass Spectrometry1[W][OA

    PubMed Central

    Alonso, Ana P.; Piasecki, Rebecca J.; Wang, Yan; LaClair, Russell W.; Shachar-Hill, Yair

    2010-01-01

    The biosynthesis of cell wall polymers involves enormous fluxes through central metabolism that are not fully delineated and whose regulation is poorly understood. We have established and validated a liquid chromatography tandem mass spectrometry method using multiple reaction monitoring mode to separate and quantify the levels of plant cell wall precursors. Target analytes were identified by their parent/daughter ions and retention times. The method allows the quantification of precursors at low picomole quantities with linear responses up to the nanomole quantity range. When applying the technique to Arabidopsis (Arabidopsis thaliana) T87 cell cultures, 16 hexose-phosphates (hexose-Ps) and nucleotide-sugars (NDP-sugars) involved in cell wall biosynthesis were separately quantified. Using hexose-P and NDP-sugar standards, we have shown that hot water extraction allows good recovery of the target metabolites (over 86%). This method is applicable to quantifying the levels of hexose-Ps and NDP-sugars in different plant tissues, such as Arabidopsis T87 cells in culture and fenugreek (Trigonella foenum-graecum) endosperm tissue, showing higher levels of galacto-mannan precursors in fenugreek endosperm. In Arabidopsis cells incubated with [U-13CFru]sucrose, the method was used to track the labeling pattern in cell wall precursors. As the fragmentation of hexose-Ps and NDP-sugars results in high yields of [PO3]−/or [H2PO4]− ions, mass isotopomers can be quantified directly from the intensity of selected tandem mass spectrometry transitions. The ability to directly measure 13C labeling in cell wall precursors makes possible metabolic flux analysis of cell wall biosynthesis based on dynamic labeling experiments. PMID:20442274

  16. Suppression of Hydroxycinnamate Network Formation in Cell Walls of Rice Shoots Grown under Microgravity Conditions in Space

    PubMed Central

    Wakabayashi, Kazuyuki; Soga, Kouichi; Hoson, Takayuki; Kotake, Toshihisa; Yamazaki, Takashi; Higashibata, Akira; Ishioka, Noriaki; Shimazu, Toru; Fukui, Keiji; Osada, Ikuko; Kasahara, Haruo; Kamada, Motoshi

    2015-01-01

    Network structures created by hydroxycinnamate cross-links within the cell wall architecture of gramineous plants make the cell wall resistant to the gravitational force of the earth. In this study, the effects of microgravity on the formation of cell wall-bound hydroxycinnamates were examined using etiolated rice shoots simultaneously grown under artificial 1 g and microgravity conditions in the Cell Biology Experiment Facility on the International Space Station. Measurement of the mechanical properties of cell walls showed that shoot cell walls became stiff during the growth period and that microgravity suppressed this stiffening. Amounts of cell wall polysaccharides, cell wall-bound phenolic acids, and lignin in rice shoots increased as the shoot grew. Microgravity did not influence changes in the amounts of cell wall polysaccharides or phenolic acid monomers such as ferulic acid (FA) and p-coumaric acid, but it suppressed increases in diferulic acid (DFA) isomers and lignin. Activities of the enzymes phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) in shoots also increased as the shoot grew. PAL activity in microgravity-grown shoots was almost comparable to that in artificial 1 g-grown shoots, while CW-PRX activity increased less in microgravity-grown shoots than in artificial 1 g-grown shoots. Furthermore, the increases in expression levels of some class III peroxidase genes were reduced under microgravity conditions. These results suggest that a microgravity environment modifies the expression levels of certain class III peroxidase genes in rice shoots, that the resultant reduction of CW-PRX activity may be involved in suppressing DFA formation and lignin polymerization, and that this suppression may cause a decrease in cross-linkages within the cell wall architecture. The reduction in intra-network structures may contribute to keeping the cell wall loose under microgravity conditions. PMID:26378793

  17. Cell Wall Metabolism in Response to Abiotic Stress

    PubMed Central

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  18. Changes in cell wall architecture of wheat coleoptiles grown under continuous hypergravity conditions

    NASA Astrophysics Data System (ADS)

    Wakabayashi, K.; Soga, K.; Kamisaka, S.; Hoson, T.

    Modifications of cell wall structure of wheat coleoptiles in response to continuous hypergravity (300 g) treatment were investigated. Length of coleoptiles exposed to hypergravity for 2-4 days from germination stage was 60-70% of that of 1 g control. The net amounts of cell wall polysaccharides, such as hemicellulose and cellulose, of hypergravity-treated coleoptiles increased as much as those of 1 g control coleoptiles during the incubation period. As a result, the levels of cell wall polysaccharides per unit length of coleoptile, which mean the thickness of cell walls, largely increased under hypergravity conditions. Particularly, the amounts of hemicellulosic polymers with middle molecular mass (0.2-1 MDa) largely increased from day 2 to 3 under hypergravity conditions. The major sugar components of the hemicellulose fraction are arabinose, xylose and glucose. The ratios of arabinose and xylose to glucose were higher in hypergravity-treated coleoptiles than in control coleoptiles. The fractionation of hemicellulosic polymers into the neutral and acidic polymers by the anion-exchange column showed that the levels of acidic polymers (mainly composed of arabinoxylans) in cell walls of hypergravity-treated coleoptiles were higher than those of control coleoptiles. In addition to wall polysaccharides, the amounts of cell wall-bound phenolics, such as ferulic acid and diferulic acid, substantially increased during the incubation period both in 1 g control and hypergravity-treated coleoptiles. Especially, the levels of diferulic acid which cross-links hemicellulosic polymers were higher in hypergravity-treated coleoptiles than in control coleoptiles during the incubation period. These results suggest that hypergravity stimuli from the germination stage bias the type of synthesized hemicellulosic polysaccharides, although they do not restrict the net synthesis of cell wall constituents in wheat coleoptiles. The stimulation of the synthesis of arabinoxylans and of the formation of DFA, and also the resultant cell wall thickening may contribute to plant resistance to gravity stimuli.

  19. Comparison of stem morphology and anatomy of two alfalfa clonal lines exhibiting divergent cell wall composition

    USDA-ARS?s Scientific Manuscript database

    In previous research, two alfalfa clonal lines (252, 1283) were identified that exhibited environmentally stable differences in stem cell walls. Compared to stems of 1283, stems of 252 have a higher cell wall concentration and greater amounts of lignin and cellulose but reduced levels of pectic suga...

  20. Profiling the Hydrolysis of Isolated Grape Berry Skin Cell Walls by Purified Enzymes.

    PubMed

    Zietsman, Anscha J J; Moore, John P; Fangel, Jonatan U; Willats, William G T; Vivier, Melané A

    2015-09-23

    The unraveling of crushed grapes by maceration enzymes during winemaking is difficult to study because of the complex and rather undefined nature of both the substrate and the enzyme preparations. In this study we simplified both the substrate, by using isolated grape skin cell walls, and the enzyme preparations, by using purified enzymes in buffered conditions, to carefully follow the impact of the individual and combined enzymes on the grape skin cell walls. By using cell wall profiling techniques we could monitor the compositional changes in the grape cell wall polymers due to enzyme activity. Extensive enzymatic hydrolysis, achieved with a preparation of pectinases or pectinases combined with cellulase or hemicellulase enzymes, completely removed or drastically reduced levels of pectin polymers, whereas less extensive hydrolysis only opened up the cell wall structure and allowed extraction of polymers from within the cell wall layers. Synergistic enzyme activity was detectable as well as indications of specific cell wall polymer associations.

  1. Gibberellin (GA3) enhances cell wall invertase activity and mRNA levels in elongating dwarf pea (Pisum sativum) shoots

    NASA Technical Reports Server (NTRS)

    Wu, L. L.; Mitchell, J. P.; Cohn, N. S.; Kaufman, P. B.

    1993-01-01

    The invertase (EC 3.2.1.26) purified from cell walls of dwarf pea stems to homogeneity has a molecular mass of 64 kilodaltons (kD). Poly(A)+RNA was isolated from shoots of dwarf pea plants, and a cDNA library was constructed using lambda gt11 as an expression vector. The expression cDNA library was screened with polyclonal antibodies against pea cell wall invertase. One invertase cDNA clone was characterized as a full-length cDNA with 1,863 base pairs. Compared with other known invertases, one homologous region in the amino acid sequence was found. The conserved motif, Asn-Asp-Pro-Asn-Gly, is located near the N-terminal end of invertase. Northern blot analysis showed that the amount of invertase mRNA (1.86 kb) was rapidly induced to a maximal level 4 h after GA3 treatment, then gradually decreased to the control level. The mRNA level at 4 h in GA3-treated peas was fivefold higher than that of the control group. The maximal increase in activity of pea cell wall invertase elicited by GA3 occcured at 8 h after GA3 treatment. This invertase isoform was shown immunocytochemically to be localized in the cell walls, where a 10-fold higher accumulation occurred in GA3-treated tissue compared with control tissue. This study indicates that the expression of the pea shoot cell-wall invertase gene could be regulated by GA3 at transcriptional and/or translational levels.

  2. Endoplasmic reticulum-derived reactive oxygen species (ROS) is involved in toxicity of cell wall stress to Candida albicans.

    PubMed

    Yu, Qilin; Zhang, Bing; Li, Jianrong; Zhang, Biao; Wang, Honggang; Li, Mingchun

    2016-10-01

    The cell wall is an important cell structure in both fungi and bacteria, and hence becomes a common antimicrobial target. The cell wall-perturbing agents disrupt synthesis and function of cell wall components, leading to cell wall stress and consequent cell death. However, little is known about the detailed mechanisms by which cell wall stress renders fungal cell death. In this study, we found that ROS scavengers drastically attenuated the antifungal effect of cell wall-perturbing agents to the model fungal pathogen Candida albicans, and these agents caused remarkable ROS accumulation and activation of oxidative stress response (OSR) in this fungus. Interestingly, cell wall stress did not cause mitochondrial dysfunction and elevation of mitochondrial superoxide levels. Furthermore, the iron chelator 2,2'-bipyridyl (BIP) and the hydroxyl radical scavengers could not attenuate cell wall stress-caused growth inhibition and ROS accumulation. However, cell wall stress up-regulated expression of unfold protein response (UPR) genes, enhanced protein secretion and promoted protein folding-related oxidation of Ero1, an important source of ROS production. These results indicated that oxidation of Ero1 in the endoplasmic reticulum (ER), rather than mitochondrial electron transport and Fenton reaction, contributed to cell wall stress-related ROS accumulation and consequent growth inhibition. Our findings uncover a novel link between cell wall integrity (CWI), ER function and ROS production in fungal cells, and shed novel light on development of strategies promoting the antifungal efficacy of cell wall-perturbing agents against fungal infections. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. A gene stacking approach leads to engineered plants with highly increased galactan levels in Arabidopsis

    DOE PAGES

    Gondolf, Vibe M.; Stoppel, Rhea; Ebert, Berit; ...

    2014-12-10

    Background: Engineering of plants with a composition of lignocellulosic biomass that is more suitable for downstream processing is of high interest for next-generation biofuel production. Lignocellulosic biomass contains a high proportion of pentose residues, which are more difficult to convert into fuels than hexoses. Therefore, increasing the hexose/pentose ratio in biomass is one approach for biomass improvement. A genetic engineering approach was used to investigate whether the amount of pectic galactan can be specifically increased in cell walls of Arabidopsis fiber cells, which in turn could provide a potential source of readily fermentable galactose. Results: First it was tested ifmore » overexpression of various plant UDP-glucose 4-epimerases (UGEs) could increase the availability of UDP-galactose and thereby increase the biosynthesis of galactan. Constitutive and tissue-specific expression of a poplar UGE and three Arabidopsis UGEs in Arabidopsis plants could not significantly increase the amount of cell wall bound galactose. We then investigated co-overexpression of AtUGE2 together with the β-1,4-galactan synthase GalS1. Co-overexpression of AtUGE2 and GalS1 led to over 80% increase in cell wall galactose levels in Arabidopsis stems, providing evidence that these proteins work synergistically. Furthermore, AtUGE2 and GalS1 overexpression in combination with overexpression of the NST1 master regulator for secondary cell wall biosynthesis resulted in increased thickness of fiber cell walls in addition to the high cell wall galactose levels. Immunofluorescence microscopy confirmed that the increased galactose was present as β-1,4-galactan in secondary cell walls. Conclusions: This approach clearly indicates that simultaneous overexpression of AtUGE2 and GalS1 increases the cell wall galactose to much higher levels than can be achieved by overexpressing either one of these proteins alone. Moreover, the increased galactan content in fiber cells while improving the biomass composition had no impact on plant growth and development and hence on the overall biomass amount. Thus, we could show that the gene stacking approach described here is a promising method to engineer advanced feedstocks for biofuel production.« less

  4. Chemical modification : a non-toxic approach to wood preservation

    Treesearch

    Roger M. Rowell

    2006-01-01

    Wood can be chemically modified to reduce the moisture content of the cell wall and increases decay resistance. As the level of bonded chemical increases, the cell wall equilibrium moisture content decreases and the resistance to attack by white-and brown-rot fungi increases. There is a direct relationship between the decrease in cell wall moisture Content and...

  5. Reducing cell wall feruloylation by expression of a fungal ferulic acid esterase in Festuca arundinacea modifies plant growth, leaf morphology and the turnover of cell wall arabinoxylans

    PubMed Central

    Iyer, Prashanti R.; Buanafina, M. Fernanda; Shearer, Erica A.

    2017-01-01

    A feature of cell wall arabinoxylan in grasses is the presence of ferulic acid which upon oxidative coupling by the action of peroxidases forms diferuloyl bridges between formerly separated arabinoxylans. Ferulate cross-linking is suspected of playing various roles in different plant processes. Here we investigate the role of cell wall feruloyaltion in two major processes, that of leaf growth and the turnover of cell wall arabinoxylans on leaf senescence in tall fescue using plants in which the level of cell wall ferulates has been reduced by targeted expression of the Aspergillus niger ferulic acid esterase A (FAEA) to the apoplast or Golgi. Analysis of FAE expressing plants showed that all the lines had shorter and narrower leaves compared to control, which may be a consequence of the overall growth rate being lower and occurring earlier in FAE expressing leaves than in controls. Furthermore, the final length of epidermal cells was shorter than controls, indicating that their expansion was curtailed earlier than in control leaves. This may be due to the observations that the deposition of both ether and ester linked monomeric hydroxycinnamic acids and ferulate dimerization stopped earlier in FAE expressing leaves but at a lower level than controls, and hydroxycinnamic acid deposition started to slow down when peroxidase levels increased. It would appear therefore that one of the possible mechanisms for controlling overall leaf morphology such as leaf length and width in grasses, where leaf morphology is highly variable between species, may be the timing of hydroxycinnamic acid deposition in the expanding cell walls as they emerge from cell division into the elongation zone, controlled partially by the onset of peroxidase activity in this region. PMID:28934356

  6. Spatial gradients in cell wall composition and transcriptional profiles along elongating maize internodes

    PubMed Central

    2014-01-01

    Background The elongating maize internode represents a useful system for following development of cell walls in vegetative cells in the Poaceae family. Elongating internodes can be divided into four developmental zones, namely the basal intercalary meristem, above which are found the elongation, transition and maturation zones. Cells in the basal meristem and elongation zones contain mainly primary walls, while secondary cell wall deposition accelerates in the transition zone and predominates in the maturation zone. Results The major wall components cellulose, lignin and glucuronoarabinoxylan (GAX) increased without any abrupt changes across the elongation, transition and maturation zones, although GAX appeared to increase more between the elongation and transition zones. Microarray analyses show that transcript abundance of key glycosyl transferase genes known to be involved in wall synthesis or re-modelling did not match the increases in cellulose, GAX and lignin. Rather, transcript levels of many of these genes were low in the meristematic and elongation zones, quickly increased to maximal levels in the transition zone and lower sections of the maturation zone, and generally decreased in the upper maturation zone sections. Genes with transcript profiles showing this pattern included secondary cell wall CesA genes, GT43 genes, some β-expansins, UDP-Xylose synthase and UDP-Glucose pyrophosphorylase, some xyloglucan endotransglycosylases/hydrolases, genes involved in monolignol biosynthesis, and NAM and MYB transcription factor genes. Conclusions The data indicated that the enzymic products of genes involved in cell wall synthesis and modification remain active right along the maturation zone of elongating maize internodes, despite the fact that corresponding transcript levels peak earlier, near or in the transition zone. PMID:24423166

  7. DEFECTIVE KERNEL1 (DEK1) Regulates Cell Walls in the Leaf Epidermis1

    PubMed Central

    Amanda, Dhika; Ingram, Gwyneth C.

    2016-01-01

    The plant epidermis is crucial to survival, regulating interactions with the environment and controlling plant growth. The phytocalpain DEFECTIVE KERNEL1 (DEK1) is a master regulator of epidermal differentiation and maintenance, acting upstream of epidermis-specific transcription factors, and is required for correct cell adhesion. It is currently unclear how changes in DEK1 lead to cellular defects in the epidermis and the pathways through which DEK1 acts. We have combined growth kinematic studies, cell wall analysis, and transcriptional analysis of genes downstream of DEK1 to determine the cause of phenotypic changes observed in DEK1-modulated lines of Arabidopsis (Arabidopsis thaliana). We reveal a novel role for DEK1 in the regulation of leaf epidermal cell wall structure. Lines with altered DEK1 activity have epidermis-specific changes in the thickness and polysaccharide composition of cell walls that likely underlie the loss of adhesion between epidermal cells in plants with reduced levels of DEK1 and changes in leaf shape and size in plants constitutively overexpressing the active CALPAIN domain of DEK1. Calpain-overexpressing plants also have increased levels of cellulose and pectins in epidermal cell walls, and this is correlated with the expression of several cell wall-related genes, linking transcriptional regulation downstream of DEK1 with cellular effects. These findings significantly advance our understanding of the role of the epidermal cell walls in growth regulation and establish a new role for DEK1 in pathways regulating epidermal cell wall deposition and remodeling. PMID:27756823

  8. Mechanism of cassava tuber cell wall weakening by dilute sodium hydroxide steeping.

    PubMed

    Odoch, Martin; Buys, Elna M; Taylor, John R N

    2017-08-01

    Steeping of cassava root pieces in 0.75% NaOH in combination with wet milling was investigated to determine whether and how dilute NaOH modifies cassava cell walls. Gas chromatography data of cell wall constituent sugar composition and Fourier transform infrared (FTIR) data showed that NaOH steeping reduced the level of pectin in cassava cell walls. FTIR and wide-angle X-ray scattering spectroscopy also indicated that NaOH steeping combined with fine milling slightly reduced cellulose crystallinity. Scanning electron microscopy showed that NaOH steeping produced micropores in the cell walls and light microscopy revealed that NaOH steeping increased disaggregation of parenchyma cells. Steeping of ground cassava in NaOH resulted in a 12% decrease in large residue particles and approx. 4% greater starch yield with wet milling. Therefore dilute NaOH steeping can improve the effectiveness of wet milling in disintegrating cell walls through solubilisation of pectin, thereby reduced cell wall strength. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Short-Term Boron Deprivation Inhibits Endocytosis of Cell Wall Pectins in Meristematic Cells of Maize and Wheat Root Apices1

    PubMed Central

    Yu, Qin; Hlavacka, Andrej; Matoh, Toru; Volkmann, Dieter; Menzel, Diedrik; Goldbach, Heiner E.; Baluška, František

    2002-01-01

    By using immunofluorescence microscopy, we observed rapidly altered distribution patterns of cell wall pectins in meristematic cells of maize (Zea mays) and wheat (Triticum aestivum) root apices. This response was shown for homogalacturonan pectins characterized by a low level (up to 40%) of methylesterification and for rhamnogalacturonan II pectins cross-linked by a borate diol diester. Under boron deprivation, abundance of these pectins rapidly increased in cell walls, whereas their internalization was inhibited, as evidenced by a reduced and even blocked accumulation of these cell wall pectins within brefeldin A-induced compartments. In contrast, root cells of species sensitive to the boron deprivation, like zucchini (Cucurbita pepo) and alfalfa (Medicago sativa), do not internalize cell wall pectins into brefeldin A compartments and do not show accumulation of pectins in their cell walls under boron deprivation. For maize and wheat root apices, we favor an apoplastic target for the primary action of boron deprivation, which signals deeper into the cell via endocytosis-mediated pectin signaling along putative cell wall-plasma membrane-cytoskeleton continuum. PMID:12226520

  10. Comparative Transcriptomic Analysis of Race 1 and Race 4 of Fusarium oxysporum f. sp. cubense Induced with Different Carbon Sources

    PubMed Central

    Qin, Shiwen; Ji, Chunyan; Li, Yunfeng; Wang, Zhenzhong

    2017-01-01

    The fungal pathogen Fusarium oxysporum f. sp. cubense causes Fusarium wilt, one of the most destructive diseases in banana and plantain cultivars. Pathogenic race 1 attacks the “Gros Michel” banana cultivar, and race 4 is pathogenic to the Cavendish banana cultivar and those cultivars that are susceptible to Foc1. To understand the divergence in gene expression modules between the two races during degradation of the host cell wall, we performed RNA sequencing to compare the genome-wide transcriptional profiles of the two races grown in media containing banana cell wall, pectin, or glucose as the sole carbon source. Overall, the gene expression profiles of Foc1 and Foc4 in response to host cell wall or pectin appeared remarkably different. When grown with host cell wall, a much larger number of genes showed altered levels of expression in Foc4 in comparison with Foc1, including genes encoding carbohydrate-active enzymes (CAZymes) and other virulence-related genes. Additionally, the levels of gene expression were higher in Foc4 than in Foc1 when grown with host cell wall or pectin. Furthermore, a great majority of genes were differentially expressed in a variety-specific manner when induced by host cell wall or pectin. More specific CAZymes and other pathogenesis-related genes were expressed in Foc4 than in Foc1 when grown with host cell wall. The first transcriptome profiles obtained for Foc during degradation of the host cell wall may provide new insights into the mechanism of banana cell wall polysaccharide decomposition and the genetic basis of Foc host specificity. PMID:28468818

  11. Comparative Transcriptomic Analysis of Race 1 and Race 4 of Fusarium oxysporum f. sp. cubense Induced with Different Carbon Sources.

    PubMed

    Qin, Shiwen; Ji, Chunyan; Li, Yunfeng; Wang, Zhenzhong

    2017-07-05

    The fungal pathogen Fusarium oxysporum f. sp. cubense causes Fusarium wilt, one of the most destructive diseases in banana and plantain cultivars. Pathogenic race 1 attacks the "Gros Michel" banana cultivar, and race 4 is pathogenic to the Cavendish banana cultivar and those cultivars that are susceptible to Foc1. To understand the divergence in gene expression modules between the two races during degradation of the host cell wall, we performed RNA sequencing to compare the genome-wide transcriptional profiles of the two races grown in media containing banana cell wall, pectin, or glucose as the sole carbon source. Overall, the gene expression profiles of Foc1 and Foc4 in response to host cell wall or pectin appeared remarkably different. When grown with host cell wall, a much larger number of genes showed altered levels of expression in Foc4 in comparison with Foc1, including genes encoding carbohydrate-active enzymes (CAZymes) and other virulence-related genes. Additionally, the levels of gene expression were higher in Foc4 than in Foc1 when grown with host cell wall or pectin. Furthermore, a great majority of genes were differentially expressed in a variety-specific manner when induced by host cell wall or pectin. More specific CAZymes and other pathogenesis-related genes were expressed in Foc4 than in Foc1 when grown with host cell wall. The first transcriptome profiles obtained for Foc during degradation of the host cell wall may provide new insights into the mechanism of banana cell wall polysaccharide decomposition and the genetic basis of Foc host specificity. Copyright © 2017 Qin et al.

  12. Peptidoglycan and Teichoic Acid Levels and Alterations in Staphylococcus aureus by Cell-Wall and Whole-Cell Nuclear Magnetic Resonance.

    PubMed

    Romaniuk, Joseph A H; Cegelski, Lynette

    2018-06-11

    Gram-positive bacteria surround themselves with a multilayered macromolecular cell wall that is essential to cell survival and serves as a major target for antibiotics. The cell wall of Staphylococcus aureus is composed of two major structural components, peptidoglycan (PG) and wall teichoic acid (WTA), together creating a heterogeneous and insoluble matrix that poses a challenge to quantitative compositional analysis. Here, we present 13 C cross polarization magic angle spinning solid-state nuclear magnetic resonance (NMR) spectra of intact cell walls, purified PG, and purified WTA. The spectra reveal the clear molecular differences in the two polymers and enable quantification of PG and WTA in isolated cell walls, an attractive alternative to estimating teichoic acid content from a phosphate analysis of completely pyrolyzed cell walls. Furthermore, we discovered that unique PG and WTA spectral signatures could be identified in whole-cell NMR spectra and used to compare PG and WTA levels among intact bacterial cell samples. The distinguishing whole-cell 13 C NMR contributions associated with PG include the GlcNAc-MurNAc sugar carbons and glycyl α-carbons. WTA contributes carbons from the phosphoribitol backbone. Distinguishing 15 N spectral signatures include glycyl amide nitrogens in PG and the esterified d-alanyl amine nitrogens in WTA. 13 C NMR analysis was performed with samples at natural abundance and included 10 whole-cell sample comparisons. Changes consistent with altered PG and WTA content were detected in whole-cell spectra of bacteria harvested at different growth times and in cells treated with tunicamycin. This use of whole-cell NMR provides quantitative parameters of composition in the context of whole-cell activity.

  13. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance.

    PubMed

    Ene, Iuliana V; Walker, Louise A; Schiavone, Marion; Lee, Keunsook K; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A R; Munro, Carol A; Brown, Alistair J P

    2015-07-28

    The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. The C. albicans cell wall is the first line of defense against external insults, the site of immune recognition by the host, and an attractive target for antifungal therapy. Its tensile strength is conferred by a network of cell wall polysaccharides, which are remodeled in response to growth conditions and environmental stress. However, little is known about how cell wall elasticity is regulated and how it affects adaptation to stresses such as sudden changes in osmolarity. We show that elasticity is critical for survival under conditions of osmotic shock, before stress signaling pathways have time to induce gene expression and drive glycerol accumulation. Critical cell wall remodeling enzymes control cell wall flexibility, and its regulation is strongly dependent on host nutritional inputs. We also demonstrate an entirely new level of cell wall dynamism, where significant architectural changes and structural realignment occur within seconds of an osmotic shock. Copyright © 2015 Ene et al.

  14. The mechanics of surface expansion anisotropy in Medicago truncatula root hairs.

    PubMed

    Dumais, Jacques; Long, Sharon R; Shaw, Sidney L

    2004-10-01

    Wall expansion in tip-growing cells shows variations according to position and direction. In Medicago truncatula root hairs, wall expansion exhibits a strong meridional gradient with a maximum near the pole of the cell. Root hair cells also show a striking expansion anisotropy, i.e. over most of the dome surface the rate of circumferential wall expansion exceeds the rate of meridional expansion. Concomitant measurements of expansion rates and wall stresses reveal that the extensibility of the cell wall must vary abruptly along the meridian of the cell to maintain the gradient of wall expansion. To determine the mechanical basis of expansion anisotropy, we compared measurements of wall expansion with expansion patterns predicted from wall structural models that were either fully isotropic, transversely isotropic, or fully anisotropic. Our results indicate that a model based on a transversely isotropic wall structure can provide a good fit of the data although a fully anisotropic model offers the best fit overall. We discuss how such mechanical properties could be controlled at the microstructural level.

  15. Cell wall composition profiling of parasitic giant dodder (Cuscuta reflexa) and its hosts: a priori differences and induced changes.

    PubMed

    Johnsen, Hanne R; Striberny, Bernd; Olsen, Stian; Vidal-Melgosa, Silvia; Fangel, Jonatan U; Willats, William G T; Rose, Jocelyn K C; Krause, Kirsten

    2015-08-01

    Host plant penetration is the gateway to survival for holoparasitic Cuscuta and requires host cell wall degradation. Compositional differences of cell walls may explain why some hosts are amenable to such degradation while others can resist infection. Antibody-based techniques for comprehensive profiling of cell wall epitopes and cell wall-modifying enzymes were applied to several susceptible hosts and a resistant host of Cuscuta reflexa and to the parasite itself. Infected tissue of Pelargonium zonale contained high concentrations of de-esterified homogalacturonans in the cell walls, particularly adjacent to the parasite's haustoria. High pectinolytic activity in haustorial extracts and high expression levels of pectate lyase genes suggest that the parasite contributes directly to wall remodeling. Mannan and xylan concentrations were low in P. zonale and in five susceptible tomato introgression lines, but high in the resistant Solanum lycopersicum cv M82, and in C. reflexa itself. Knowledge of the composition of resistant host cell walls and the parasite's own cell walls is useful in developing strategies to prevent infection by parasitic plants. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  16. Sporothrix schenckii sensu stricto and Sporothrix brasiliensis Are Differentially Recognized by Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Martínez-Álvarez, José A.; Pérez-García, Luis A.; Mellado-Mojica, Erika; López, Mercedes G.; Martínez-Duncker, Iván; Lópes-Bezerra, Leila M.; Mora-Montes, Héctor M.

    2017-01-01

    Sporothrix schenckii sensu stricto and S. brasiliensis are usually associated to sporotrichosis, a subcutaneous mycosis worldwide distributed. Comparative analyses between these two species indicate they contain genetic and physiological differences that are likely to impact the interaction with host cells. Here, we study the composition of the cell wall from conidia, yeast-like cells and germlings of both species and found they contained the same sugar composition. The carbohydrate proportion in the S. schenckii sensu stricto wall was similar across the three cell morphologies, with exception in the chitin content, which was significantly different in the three morphologies. The cell wall from germlings showed lower rhamnose content and higher glucose levels than other cell morphologies. In S. brasiliensis, the wall sugars were constant in the three morphologies, but glucose was lower in yeast-like cells. In S. schenckii sensu stricto cells most of chitin and β1,3-glucan were underneath wall components, but in S. brasiliensis germlings, chitin was exposed at the cell surface, and β1,3-glucan was found in the outer part of the conidia wall. We also compared the ability of these cells to stimulate cytokine production by human peripheral blood mononuclear cells. The three S. schenckii sensu stricto morphologies stimulated increased levels of pro-inflammatory cytokines, when compared to S. brasiliensis cells; while the latter, with exception of conidia, stimulated higher IL-10 levels. Dectin-1 was a key receptor for cytokine production during stimulation with the three morphologies of S. schenckii sensu stricto, but dispensable for cytokine production stimulated by S. brasiliensis germlings. TLR2 and TLR4 were also involved in the sensing of Sporothrix cells, with a major role for the former during cytokine stimulation. Mannose receptor had a minor contribution during cytokine stimulation by S. schenckii sensu stricto yeast-like cells and germlings, but S. schenckii sensu stricto conidia and S. brasiliensis yeast-like cells stimulated pro-inflammatory cytokines via this receptor. In conclusion, S. brasiliensis and S. schenckii sensu stricto, have similar wall composition, which undergoes changes depending on the cell morphology. These differences in the cell wall composition, are likely to influence the contribution of immune receptors during cytokine stimulation by human monocytes. PMID:28539922

  17. Plant Cell Wall Dynamics in Compatible and Incompatible Potato Response to Infection Caused by Potato Virus Y (PVYNTN)

    PubMed Central

    Lockhart, Benham E. L.

    2018-01-01

    The cell wall provides the structure of the plant, and also acts as a barier against biotic stress. The vein necrosis strain of Potato virus Y (PVYNTN) induces necrotic disease symptoms that affect both plant growth and yield. Virus infection triggers a number of inducible basal defense responses, including defense proteins, especially those involved in cell wall metabolism. This study investigates the comparison of cell wall host dynamics induced in a compatible (potato cv. Irys) and incompatible (potato cv. Sárpo Mira with hypersensitive reaction gene Ny-Smira) PVYNTN–host–plant interaction. Ultrastructural analyses revealed numerous cell wall changes induced by virus infection. Furthermore, the localization of essential defensive wall-associated proteins in susceptible and resistant potato host to PVYNTN infection were investigated. The data revealed a higher level of detection of pathogenesis-related protein 2 (PR-2) in a compatible compared to an incompatible (HR) interaction. Immunofluorescence analyses indicated that hydroxyproline-rich glycoproteins (HRGP) (extensin) synthesis was induced, whereas that of cellulose synthase catalytic subunits (CesA4) decreased as a result of PVYNTN infection. The highest level of extensin localization was found in HR potato plants. Proteins involved in cell wall metabolism play a crucial role in the interaction because they affect the spread of the virus. Analysis of CesA4, PR-2 and HRGP deposition within the apoplast and symplast confirmed the active trafficking of these proteins as a step-in potato cell wall remodeling in response to PVYNTN infection. Therefore, cell wall reorganization may be regarded as an element of “signWALLing”—involving apoplast and symplast activation as a specific response to viruses. PMID:29543714

  18. Cell wall-bound silicon optimizes ammonium uptake and metabolism in rice cells.

    PubMed

    Sheng, Huachun; Ma, Jie; Pu, Junbao; Wang, Lijun

    2018-05-16

    Turgor-driven plant cell growth depends on cell wall structure and mechanics. Strengthening of cell walls on the basis of an association and interaction with silicon (Si) could lead to improved nutrient uptake and optimized growth and metabolism in rice (Oryza sativa). However, the structural basis and physiological mechanisms of nutrient uptake and metabolism optimization under Si assistance remain obscure. Single-cell level biophysical measurements, including in situ non-invasive micro-testing (NMT) of NH4+ ion fluxes, atomic force microscopy (AFM) of cell walls, and electrolyte leakage and membrane potential, as well as whole-cell proteomics using isobaric tags for relative and absolute quantification (iTRAQ), were performed. The altered cell wall structure increases the uptake rate of the main nutrient NH4+ in Si-accumulating cells, whereas the rate is only half in Si-deprived counterparts. Rigid cell walls enhanced by a wall-bound form of Si as the structural basis stabilize cell membranes. This, in turn, optimizes nutrient uptake of the cells in the same growth phase without any requirement for up-regulation of transmembrane ammonium transporters. Optimization of cellular nutrient acquisition strategies can substantially improve performance in terms of growth, metabolism and stress resistance.

  19. Remarkable proanthocyanidin adsorption properties of monastrell pomace cell wall material highlight its potential use as an alternative fining agent in red wine production.

    PubMed

    Bautista-Ortín, Ana Belén; Ruiz-García, Yolanda; Marín, Fátima; Molero, Noelia; Apolinar-Valiente, Rafael; Gómez-Plaza, Encarna

    2015-01-21

    The existence of interactions between the polysaccharides of vegetal cell walls and proanthocyanins makes this cell wall material an interesting option for its use as a fining agent to reduce the level of proanthocyanins in wines. Pomace wastes from the winery are widely available and a source of cell wall material, and the identification of varieties whose pomace cell walls present high proanthocyanin binding capacity and of processing methods that could enhance their adsorption properties could be of great interest. This study compared the proanthocyanin adsorption properties of pomace cell wall material from three different grape varieties (Monastrell, Cabernet Sauvignon, and Syrah), and the results were compared with those obtained using fresh grape cell walls. Also, the effect of the vinification method has been studied. Analysis of the proanthocyanidins in the solution after reaction with the cell wall material, using phloroglucinolysis and size exclusion chromatography, provided quantitative and qualitative information on the adsorbed and nonadsorbed compounds. A highlight of this study was the observation that Monastrell pomace cell wall material showed a strong affinity for proanthocyanidins, with values similar to that obtained for fresh grapes cell walls, and a preferential binding of high molecular mass proanthocyanidins, so these pomace cell walls could be used in wines to reduce astringency. The use of maceration enzymes during vinification had little effect on the retention capacity of the pomace cell walls obtained from this vinification, although an increase in the retention of low molecular mass proanthocyanidins was observed, and this might have implications for wine sensory properties.

  20. Retention of Proanthocyanidin in Wine-like Solution Is Conferred by a Dynamic Interaction between Soluble and Insoluble Grape Cell Wall Components.

    PubMed

    Bindon, Keren A; Li, Sijing; Kassara, Stella; Smith, Paul A

    2016-11-09

    For better understanding of the factors that impact proanthocyanidin (PA) adsorption by insoluble cell walls or interaction with soluble cell wall-derived components, application of a commercial polygalacturonase enzyme preparation was investigated to modify grape cell wall structure. Soluble and insoluble cell wall material was isolated from the skin and mesocarp components of Vitis vinifera Shiraz grapes. It was observed that significant depolymerization of the insoluble grape cell wall occurred following enzyme application to both grape cell wall fractions, with increased solubilization of rhamnogalacturonan-enriched, low molecular weight polysaccharides. However, in the case of grape mesocarp, the solubilization of protein from cell walls (in buffer) was significant and increased only slightly by the enzyme treatment. Enzyme treatment significantly reduced the adsorption of PA by insoluble cell walls, but this effect was observed only when material solubilized from grape cell walls had been removed. The loss of PA through interaction with the soluble cell wall fraction was observed to be greater for mesocarp than skin cell walls. Subsequent experiments on the soluble mesocarp cell wall fraction confirmed a role for protein in the precipitation of PA. This identified a potential mechanism by which extracted grape PA may be lost from wine during vinification, as a precipitate with solubilized grape mesocarp proteins. Although protein was a minor component in terms of total concentration, losses of PA via precipitation with proteins were in the order of 50% of available PA. PA-induced precipitation could proceed until all protein was removed from solution and may account for the very low levels of residual protein observed in red wines. The results point to a dynamic interaction of grape insoluble and soluble components in modulating PA retention in wine.

  1. 30 years of battling the cell wall.

    PubMed

    Latgé, J P

    2017-01-01

    In Aspergillus fumigatus, like in other pathogenic fungi, the cell wall is essential for fungal growth as well as for resisting environmental stresses such as phagocytic killing. Most of the chemical analyses undertaken on the cell wall of A. fumigatus are focused on the mycelial cell wall because it is the vegetative stage of the fungus. However, the cell walls of the mycelium and conidium (which is the infective propagule) are different especially at the level of the surface layer, which plays a significant role in the interaction between A. fumigatus conidia and phagocytic cells of the immune system. In spite of the essential function of the cell wall in fungal life, progresses have been extremely slow in the understanding of biosynthesis as well in the identification of the key host responses against the cell wall components. A major difficulty is the fact that the composition and structural organization of the cell wall is not immutably set and is constantly reshuffled depending on the environmental conditions. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Microanalysis of plant cell wall polysaccharides.

    PubMed

    Obel, Nicolai; Erben, Veronika; Schwarz, Tatjana; Kühnel, Stefan; Fodor, Andrea; Pauly, Markus

    2009-09-01

    Oligosaccharide Mass Profiling (OLIMP) allows a fast and sensitive assessment of cell wall polymer structure when coupled with Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry (MALDI-TOF MS). The short time required for sample preparation and analysis makes possible the study of a wide range of plant organs, revealing a high degree of heterogeneity in the substitution pattern of wall polymers such as the cross-linking glycan xyloglucan and the pectic polysaccharide homogalacturonan. The high sensitivity of MALDI-TOF allows the use of small amounts of samples, thus making it possible to investigate the wall structure of single cell types when material is collected by such methods as laser micro-dissection. As an example, the analysis of the xyloglucan structure in the leaf cell types outer epidermis layer, entire epidermis cell layer, palisade mesophyll cells, and vascular bundles were investigated. OLIMP is amenable to in situ wall analysis, where wall polymers are analyzed on unprepared plant tissue itself without first isolating cell walls. In addition, OLIMP enables analysis of wall polymers in Golgi-enriched fractions, the location of nascent matrix polysaccharide biosynthesis, enabling separation of the processes of wall biosynthesis versus post-deposition apoplastic metabolism. These new tools will make possible a semi-quantitative analysis of the cell wall at an unprecedented level.

  3. Identification of potential cell wall component that allows Taka-amylase A adsorption in submerged cultures of Aspergillus oryzae.

    PubMed

    Sato, Hiroki; Toyoshima, Yoshiyuki; Shintani, Takahiro; Gomi, Katsuya

    2011-12-01

    We observed that α-amylase (Taka-amylase A; TAA) activity in the culture broth disappeared in the later stage of submerged cultivation of Aspergillus oryzae. This disappearance was caused by adsorption of TAA onto the cell wall of A. oryzae and not due to protein degradation by extracellular proteolytic enzymes. To determine the cell wall component(s) that allows TAA adsorption efficiently, the cell wall was fractionated by stepwise alkali treatment and enzymatic digestion. Consequently, alkali-insoluble cell wall fractions exhibited high levels of TAA adsorption. In addition, this adsorption capacity was significantly enhanced by treatment of the alkali-insoluble fraction with β-glucanase, which resulted in the concomitant increase in the amount of chitin in the resulting fraction. In contrast, the adsorption capacity was diminished by treating the cell wall fraction with chitinase. These results suggest that the major component that allows TAA adsorption is chitin. However, both the mycelium and the cell wall demonstrated the inability to allow TAA adsorption in the early stage of cultivation, despite chitin content in the cell wall being identical in both early and late stages of cultivation. These results suggest the existence of unidentified factor(s) that could prevent the adsorption of TAA onto the cell wall. Such factor(s) is most likely removed or diminished from the cell wall following longer cultivation periods.

  4. IONIC EFFECTS ON LIGNIFICATION AND PEROXIDASE IN TISSUE CULTURES

    PubMed Central

    Lipetz, Jacques; Garro, Anthony J.

    1965-01-01

    Crown-gall tumor tissue cultures release peroxidase into the medium in response to the concentration of specific ions in the medium. This release is not due to diffusion from cut surfaces or injured cells. Calcium, magnesium, and ammonium were, in that order, most effective in increasing peroxidase release. The enzyme was demonstrated cytochemically on the cell walls and in the cytoplasm. Cell wall fractions, exhaustively washed in buffer, still contained bound peroxidase. This bound peroxidase could be released by treating the wall fractions with certain divalent cations or ammonium. The order of effectiveness for removing the enzyme from the washed cell walls is: Ca++ ≈ Sr++ > Ba++ > Mg++ > NH4 +. These data support the thesis presented that specific ions can control the deposition of lignin on cell walls by affecting the peroxidase levels on these walls. PMID:19866650

  5. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops.

    PubMed

    Wang, Yanting; Fan, Chunfen; Hu, Huizhen; Li, Ying; Sun, Dan; Wang, Youmei; Peng, Liangcai

    2016-01-01

    Plant cell walls represent an enormous biomass resource for the generation of biofuels and chemicals. As lignocellulose property principally determines biomass recalcitrance, the genetic modification of plant cell walls has been posed as a powerful solution. Here, we review recent progress in understanding the effects of distinct cell wall polymers (cellulose, hemicelluloses, lignin, pectin, wall proteins) on the enzymatic digestibility of biomass under various physical and chemical pretreatments in herbaceous grasses, major agronomic crops and fast-growing trees. We also compare the main factors of wall polymer features, including cellulose crystallinity (CrI), hemicellulosic Xyl/Ara ratio, monolignol proportion and uronic acid level. Furthermore, the review presents the main gene candidates, such as CesA, GH9, GH10, GT61, GT43 etc., for potential genetic cell wall modification towards enhancing both biomass yield and enzymatic saccharification in genetic mutants and transgenic plants. Regarding cell wall modification, it proposes a novel groove-like cell wall model that highlights to increase amorphous regions (density and depth) of the native cellulose microfibrils, providing a general strategy for bioenergy crop breeding and biofuel processing technology. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Transmission electron microscopy, fluorescence microscopy, and confocal raman microscopic analysis of ultrastructural and compositional heterogeneity of Cornus alba L. wood cell wall.

    PubMed

    Ma, Jianfeng; Ji, Zhe; Zhou, Xia; Zhang, Zhiheng; Xu, Feng

    2013-02-01

    Transmission electron microscopy (TEM), fluorescence microscopy, and confocal Raman microscopy can be used to characterize ultrastructural and compositional heterogeneity of plant cell walls. In this study, TEM observations revealed the ultrastructural characterization of Cornus alba L. fiber, vessel, axial parenchyma, ray parenchyma, and pit membrane between cells, notably with the ray parenchyma consisting of two well-defined layers. Fluorescence microscopy evidenced that cell corner middle lamella was more lignified than adjacent compound middle lamella and secondary wall with variation in lignification level from cell to cell. In situ Raman images showed that the inhomogeneity in cell wall components (cellulose and lignin) among different cells and within morphologically distinct cell wall layers. As the significant precursors of lignin biosynthesis, the pattern of coniferyl alcohol and aldehyde (joint abbreviation Lignin-CAA for both structures) distribution in fiber cell wall was also identified by Raman images, with higher concentration occurring in the fiber secondary wall where there was the highest cellulose concentration. Moreover, noteworthy was the observation that higher concentration of lignin and very minor amounts of cellulose were visualized in the pit membrane areas. These complementary microanalytical methods provide more accurate and complete information with regard to ultrastructural and compositional characterization of plant cell walls.

  7. A Structurally Specialized Uniform Wall Layer is Essential for Constructing Wall Ingrowth Papillae in Transfer Cells

    PubMed Central

    Xia, Xue; Zhang, Hui-Ming; Offler, Christina E.; Patrick, John W.

    2017-01-01

    Transfer cells are characterized by wall labyrinths with either a flange or reticulate architecture. A literature survey established that reticulate wall ingrowth papillae ubiquitously arise from a modified component of their wall labyrinth, termed the uniform wall layer; a structure absent from flange transfer cells. This finding sparked an investigation of the deposition characteristics and role of the uniform wall layer using a Vicia faba cotyledon culture system. On transfer of cotyledons to culture, their adaxial epidermal cells spontaneously trans-differentiate to a reticulate architecture comparable to their abaxial epidermal transfer cell counterparts formed in planta. Uniform wall layer construction commenced once adaxial epidermal cell expansion had ceased to overlay the original outer periclinal wall on its inner surface. In contrast to the dense ring-like lattice of cellulose microfibrils in the original primary wall, the uniform wall layer was characterized by a sparsely dispersed array of linear cellulose microfibrils. A re-modeled cortical microtubule array exerted no influence on uniform wall layer formation or on its cellulose microfibril organization. Surprisingly, formation of the uniform wall layer was not dependent upon depositing a cellulose scaffold. In contrast, uniform wall cellulose microfibrils were essential precursors for constructing wall ingrowth papillae. On converging to form wall ingrowth papillae, the cellulose microfibril diameters increased 3-fold. This event correlated with up-regulated differential, and transfer-cell specific, expression of VfCesA3B while transcript levels of other cellulose biosynthetic-related genes linked with primary wall construction were substantially down-regulated. PMID:29259611

  8. A Structurally Specialized Uniform Wall Layer is Essential for Constructing Wall Ingrowth Papillae in Transfer Cells.

    PubMed

    Xia, Xue; Zhang, Hui-Ming; Offler, Christina E; Patrick, John W

    2017-01-01

    Transfer cells are characterized by wall labyrinths with either a flange or reticulate architecture. A literature survey established that reticulate wall ingrowth papillae ubiquitously arise from a modified component of their wall labyrinth, termed the uniform wall layer; a structure absent from flange transfer cells. This finding sparked an investigation of the deposition characteristics and role of the uniform wall layer using a Vicia faba cotyledon culture system. On transfer of cotyledons to culture, their adaxial epidermal cells spontaneously trans -differentiate to a reticulate architecture comparable to their abaxial epidermal transfer cell counterparts formed in planta . Uniform wall layer construction commenced once adaxial epidermal cell expansion had ceased to overlay the original outer periclinal wall on its inner surface. In contrast to the dense ring-like lattice of cellulose microfibrils in the original primary wall, the uniform wall layer was characterized by a sparsely dispersed array of linear cellulose microfibrils. A re-modeled cortical microtubule array exerted no influence on uniform wall layer formation or on its cellulose microfibril organization. Surprisingly, formation of the uniform wall layer was not dependent upon depositing a cellulose scaffold. In contrast, uniform wall cellulose microfibrils were essential precursors for constructing wall ingrowth papillae. On converging to form wall ingrowth papillae, the cellulose microfibril diameters increased 3-fold. This event correlated with up-regulated differential, and transfer-cell specific, expression of VfCesA3B while transcript levels of other cellulose biosynthetic-related genes linked with primary wall construction were substantially down-regulated.

  9. Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins.

    PubMed Central

    Van der Vaart, J M; te Biesebeke, R; Chapman, J W; Toschka, H Y; Klis, F M; Verrips, C T

    1997-01-01

    The carboxyl-terminal regions of five cell wall proteins (Cwp1p, Cwp2p, Ag alpha 1p, Tip1p, and Flo1p) and three potential cell wall proteins (Sed1p, YCR89w, and Tir1p) all proved capable of immobilizing alpha-galactosidase in the cell wall of Saccharomyces cerevisiae. The fraction of the total amount of fusion protein that was localized to the cell wall varied depending on the anchor domain used. The highest proportion of cell wall incorporation was achieved with Cwp2p, Ag alpha 1p, or Sed1p as an anchor. Although 80% of these fusion proteins were incorporated in the cell wall, the total production of alpha-galactosidase-Ag alpha 1p was sixfold lower than that of alpha-galactosidase-Cwp2p and eightfold lower than that of alpha-galactosidase-Sed1p. Differences in mRNA levels were not responsible for this discrepancy, nor was an intracellular accumulation of alpha-galactosidase-Ag alpha 1p detectable. A lower translation efficiency of the alpha-galactosidase-AG alpha 1 fusion construct is most likely to be responsible for the low level of protein production. alpha-Galactosidase immobilized by the carboxyl-terminal 67 amino acids of Cwp2p was most effective in the hydrolysis of the high-molecular-weight substrate guar gum from Cyamopsis tetragonoloba. This indicates that the use of a large anchoring domain does not necessarily result in a better exposure of the immobilized enzyme to the exterior of the yeast cell. PMID:9023939

  10. Chalcone Synthase (CHS) Gene Suppression in Flax Leads to Changes in Wall Synthesis and Sensing Genes, Cell Wall Chemistry and Stem Morphology Parameters

    PubMed Central

    Zuk, Magdalena; Działo, Magdalena; Richter, Dorota; Dymińska, Lucyna; Matuła, Jan; Kotecki, Andrzej; Hanuza, Jerzy; Szopa, Jan

    2016-01-01

    The chalcone synthase (CHS) gene controls the first step in the flavonoid biosynthesis. In flax, CHS down-regulation resulted in tannin accumulation and reduction in lignin synthesis, but plant growth was not affected. This suggests that lignin content and thus cell wall characteristics might be modulated through CHS activity. This study investigated the possibility that CHS affects cell wall sensing as well as polymer content and arrangement. CHS-suppressed and thus lignin-reduced plants showed significant changes in expression of genes involved in both synthesis of components and cell wall sensing. This was accompanied by increased levels of cellulose and hemicellulose. CHS-reduced flax also showed significant changes in morphology and arrangement of the cell wall. The stem tissue layers were enlarged averagely twofold compared to the control, and the number of fiber cells more than doubled. The stem morphology changes were accompanied by reduction of the crystallinity index of the cell wall. CHS silencing induces a signal transduction cascade that leads to modification of plant metabolism in a wide range and thus cell wall structure. PMID:27446124

  11. Development of an efficient Procedure for Resist Wall Space Experiment

    NASA Astrophysics Data System (ADS)

    Matsumoto, Shouhei; Kumasaki, Saori; Higuchi, Sayoko; Kirihata, Kuniaki; Inoue, Yasue; Fujie, Miho; Soga, Kouichi; Wakabayashi, Kazuyuki; Hoson, Takayuki

    The Resist Wall space experiment aims to examine the role of the cortical microtubule-plasma membrane-cell wall continuum in plant resistance to the gravitational force, thereby clarifying the mechanism of gravity resistance. For this purpose, we will cultivate Arabidopsis mutants defective in organization of cortical microtubules (tua6 ) or synthesis of membrane sterols (hmg1 ) as well as the wild type under microgravity and 1 g conditions in the European Modular Cultivation System on the International Space Station up to reproductive stage, and compare phenotypes on growth and development. We will also analyze cell wall properties and gene expression levels using collected materials. However, the amounts of materials collected will be severely limited, and we should develop an efficient procedure for this space experiment. In the present study, we examined the possibility of analyzing various parameters successively using the identical material. On orbit, plant materials will be fixed with RNAlater solution, kept at 4° C for several days and then frozen in a freezer at -20° C. We first examined whether the cell wall extensibility of inflorescence stems can be measured after RNAlater fixation. The gradient of the cell wall extensibility along inflorescence stems was detected in RNAlater-fixed materials as in methanol-killed ones. The sufficient amounts of RNA to analyze the gene expression were also obtained from the materials after measurement of the cell wall extensibility. Furthermore, the levels and composition of cell wall polysaccharides could be measured using the materials after extraction of RNA. These results show that we can analyze the physical and chemical properties of the cell wall as well as gene expression using the identical material obtained in the space experiments.

  12. Changes in levels of cell wall constituents in wheat seedlings grown under continuous hypergravity conditions

    NASA Astrophysics Data System (ADS)

    Wakabayashi, K.; Soga, K.; Kamisaka, S.; Hoson, T.

    Effects of continuous hypergravity stimuli on the amounts and composition of cell wall constituents were investigated in wheat shoots. Hypergravity (300 g) treatment for three days after germination increased the net amount of cell wall polysaccharides such as hemicellulose and cellulose, but reduced the shoot elongation. As a result, the amount of cell wall polysaccharides per unit length of shoot increased under hypergravity. The hemicellulose fraction contained polysaccharides in the middle and low molecular mass range (5 kDa-1 MDa) and increased in response to hypergravity. Also, the amounts of arabinose (Ara) and xylose (Xyl), the major sugar components of the hemicellulose fraction, increased under hypergravity conditions. In addition to wall polysaccharides, hypergravity increased the amounts of cell wall-bound phenolic acids, such as ferulic acid (FA) and diferulic acid (DFA). Furthermore, the activity of phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) was enhanced under hypergravity conditions. These results suggest that continuous hypergravity stimulates the synthesis of cell wall constituents, especially hemicellulosic arabinoxylans and cell wall-bound FA and DFA in wheat shoots. The increased PAL activity may promote the formation of FA and DFA. These changes in cell wall architecture may be involved in making rigid and tough cell walls under hypergravity conditions and thereby contribute to the ability of plant to sustain their structures against gravitational stimuli.

  13. Elevation of NO production increases Fe immobilization in the Fe-deficiency roots apoplast by decreasing pectin methylation of cell wall

    PubMed Central

    Ye, Yi Quan; Jin, Chong Wei; Fan, Shi Kai; Mao, Qian Qian; Sun, Cheng Liang; Yu, Yan; Lin, Xian Yong

    2015-01-01

    Cell wall is the major component of root apoplast which is the main reservoir for iron in roots, while nitric oxide (NO) is involved in regulating the synthesis of cell wall. However, whether such regulation could influence the reutilization of iron stored in root apoplast remains unclear. In this study, we observed that iron deficiency elevated NO level in tomato (Solanum lycopersicum) roots. However, application of S-nitrosoglutathione, a NO donor, significantly enhanced iron retention in root apoplast of iron-deficient plants, accompanied with a decrease of iron level in xylem sap. Consequently, S-nitrosoglutathione treatment increased iron concentration in roots, but decreased it in shoots. The opposite was true for the NO scavenging treatment with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). Interestingly, S-nitrosoglutathione treatment increased pectin methylesterase activity and decreased degree of pectin methylation in root cell wall of both iron-deficient and iron-sufficient plants, which led to an increased iron retention in pectin fraction, thus increasing the binding capacity of iron to the extracted cell wall. Altogether, these results suggested that iron-deficiency-induced elevation of NO increases iron immobilization in root apoplast by decreasing pectin methylation in cell wall. PMID:26073914

  14. A multi-component parallel-plate flow chamber system for studying the effect of exercise-induced wall shear stress on endothelial cells.

    PubMed

    Wang, Yan-Xia; Xiang, Cheng; Liu, Bo; Zhu, Yong; Luan, Yong; Liu, Shu-Tian; Qin, Kai-Rong

    2016-12-28

    In vivo studies have demonstrated that reasonable exercise training can improve endothelial function. To confirm the key role of wall shear stress induced by exercise on endothelial cells, and to understand how wall shear stress affects the structure and the function of endothelial cells, it is crucial to design and fabricate an in vitro multi-component parallel-plate flow chamber system which can closely replicate exercise-induced wall shear stress waveforms in artery. The in vivo wall shear stress waveforms from the common carotid artery of a healthy volunteer in resting and immediately after 30 min acute aerobic cycling exercise were first calculated by measuring the inner diameter and the center-line blood flow velocity with a color Doppler ultrasound. According to the above in vivo wall shear stress waveforms, we designed and fabricated a parallel-plate flow chamber system with appropriate components based on a lumped parameter hemodynamics model. To validate the feasibility of this system, human umbilical vein endothelial cells (HUVECs) line were cultured within the parallel-plate flow chamber under abovementioned two types of wall shear stress waveforms and the intracellular actin microfilaments and nitric oxide (NO) production level were evaluated using fluorescence microscope. Our results show that the trends of resting and exercise-induced wall shear stress waveforms, especially the maximal, minimal and mean wall shear stress as well as oscillatory shear index, generated by the parallel-plate flow chamber system are similar to those acquired from the common carotid artery. In addition, the cellular experiments demonstrate that the actin microfilaments and the production of NO within cells exposed to the two different wall shear stress waveforms exhibit different dynamic behaviors; there are larger numbers of actin microfilaments and higher level NO in cells exposed in exercise-induced wall shear stress condition than resting wall shear stress condition. The parallel-plate flow chamber system can well reproduce wall shear stress waveforms acquired from the common carotid artery in resting and immediately after exercise states. Furthermore, it can be used for studying the endothelial cells responses under resting and exercise-induced wall shear stress environments in vitro.

  15. Roles of the Skn7 response regulator in stress resistance, cell wall integrity and GA biosynthesis in Ganoderma lucidum.

    PubMed

    Wang, Shengli; Shi, Liang; Hu, Yanru; Liu, Rui; Ren, Ang; Zhu, Jing; Zhao, Mingwen

    2018-05-01

    The transcription factor Skn7 is a highly conserved fungal protein that participates in a variety of processes, including oxidative stress adaptation, fungicide sensitivity, cell wall biosynthesis, cell cycle, and sporulation. In this study, a homologous gene of Saccharomyces cerevisiae Skn7 was cloned from Ganoderma lucidum. RNA interference (RNAi) was used to study the functions of Skn7, and the two knockdown strains Skn7i-5 and Skn7i-7 were obtained in G. lucidum. The knockdown of GlSkn7 resulted in hypersensitivity to oxidative and cell wall stresses. The concentrations of chitin and β-1,3-glucan distinctly decreased in the GlSkn7 knockdown strains compared with those of the wild type (WT). In addition, the expression of cell wall biosynthesis related genes was also significantly down-regulated and the thickness of the cell wall also significantly reduced in the GlSkn7 knockdown strains. The intracellular reactive oxygen species (ROS) content and ganoderic acids biosynthesis increased significantly in the GlSkn7 knockdown strains. Interestingly, the level of intracellular ROS and the content of ganoderic acids decreased after N-acetyl-L-cysteine (NAC), an ROS scavenger, was added, indicating that GlSkn7 might regulate ganoderic acids biosynthesis via the intracellular ROS level. The transcript level of GlSkn7 were up-regulated in osmotic stress, heat stress and fungicide condition. At the same time, the content of ganoderic acids in the GlSkn7 knockdown strains also changed distinctly in these conditions. Overall, GlSkn7 is involved in stress resistance, cell wall integrity and ganoderic acid biosynthesis in G. lucidum. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. How cell wall complexity influences saccharification efficiency in Miscanthus sinensis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Souza, Amanda P.; Kamei, Claire L. Alvim; Torres, Andres F.

    The production of bioenergy from grasses has been developing quickly during the last decade, with Miscanthus being among the most important choices for production of bioethanol. However, one of the key barriers to producing bioethanol is the lack of information about cell wall structure. Cell walls are thought to display compositional differences that lead to emergence of a very high level of complexity, resulting in great diversity in cell wall architectures. In this work, a set of different techniques was used to access the complexity of cell walls of different genotypes of Miscanthus sinensis in order to understand how theymore » interfere with saccharification efficiency. Three genotypes of M. sinensis displaying different patterns of correlation between lignin content and saccharification efficiency were subjected to cell wall analysis by quantitative/qualitative analytical techniques such as monosaccharide composition, oligosaccharide profiling, and glycome profiling. When saccharification efficiency was correlated negatively with lignin, the structural features of arabinoxylan and xyloglucan were found to contribute positively to hydrolysis. In the absence of such correlation, different types of pectins, and some mannans contributed to saccharification efficiency. In conclusion, different genotypes of M. sinensis were shown to display distinct interactions among their cell wall components, which seem to influence cell wall hydrolysis.« less

  17. How cell wall complexity influences saccharification efficiency in Miscanthus sinensis

    DOE PAGES

    De Souza, Amanda P.; Kamei, Claire L. Alvim; Torres, Andres F.; ...

    2015-04-23

    The production of bioenergy from grasses has been developing quickly during the last decade, with Miscanthus being among the most important choices for production of bioethanol. However, one of the key barriers to producing bioethanol is the lack of information about cell wall structure. Cell walls are thought to display compositional differences that lead to emergence of a very high level of complexity, resulting in great diversity in cell wall architectures. In this work, a set of different techniques was used to access the complexity of cell walls of different genotypes of Miscanthus sinensis in order to understand how theymore » interfere with saccharification efficiency. Three genotypes of M. sinensis displaying different patterns of correlation between lignin content and saccharification efficiency were subjected to cell wall analysis by quantitative/qualitative analytical techniques such as monosaccharide composition, oligosaccharide profiling, and glycome profiling. When saccharification efficiency was correlated negatively with lignin, the structural features of arabinoxylan and xyloglucan were found to contribute positively to hydrolysis. In the absence of such correlation, different types of pectins, and some mannans contributed to saccharification efficiency. In conclusion, different genotypes of M. sinensis were shown to display distinct interactions among their cell wall components, which seem to influence cell wall hydrolysis.« less

  18. The Complex Cell Wall Composition of Syncytia Induced by Plant Parasitic Cyst Nematodes Reflects Both Function and Host Plant.

    PubMed

    Zhang, Li; Lilley, Catherine J; Imren, Mustafa; Knox, J Paul; Urwin, Peter E

    2017-01-01

    Plant-parasitic cyst nematodes induce the formation of specialized feeding structures, syncytia, within their host roots. These unique plant organs serve as the sole nutrient resource for development and reproduction throughout the biotrophic interaction. The multinucleate syncytium, which arises through local dissolution of cell walls and protoplast fusion of multiple adjacent cells, has dense cytoplasm containing numerous organelles, surrounded by thickened outer cell walls that must withstand high turgor pressure. However, little is known about how the constituents of the syncytial cell wall and their conformation support its role during nematode parasitism. We used a set of monoclonal antibodies, targeted to a range of plant cell wall components, to reveal the microstructures of syncytial cell walls induced by four of the most economically important cyst nematode species, Globodera pallida , Heterodera glycines , Heterodera avenae and Heterodera filipjevi , in their respective potato, soybean, and spring wheat host roots. In situ fluorescence analysis revealed highly similar cell wall composition of syncytia induced by G. pallida and H. glycines . Both consisted of abundant xyloglucan, methyl-esterified homogalacturonan and pectic arabinan. In contrast, the walls of syncytia induced in wheat roots by H. avenae and H. filipjevi contain little xyloglucan but are rich in feruloylated xylan and arabinan residues, with variable levels of mixed-linkage glucan. The overall chemical composition of syncytial cell walls reflected the general features of root cell walls of the different host plants. We relate specific components of syncytial cell walls, such as abundant arabinan, methyl-esterification status of pectic homogalacturonan and feruloylation of xylan, to their potential roles in forming a network to support both the strength and flexibility required for syncytium function.

  19. The Complex Cell Wall Composition of Syncytia Induced by Plant Parasitic Cyst Nematodes Reflects Both Function and Host Plant

    PubMed Central

    Zhang, Li; Lilley, Catherine J.; Imren, Mustafa; Knox, J. Paul; Urwin, Peter E.

    2017-01-01

    Plant–parasitic cyst nematodes induce the formation of specialized feeding structures, syncytia, within their host roots. These unique plant organs serve as the sole nutrient resource for development and reproduction throughout the biotrophic interaction. The multinucleate syncytium, which arises through local dissolution of cell walls and protoplast fusion of multiple adjacent cells, has dense cytoplasm containing numerous organelles, surrounded by thickened outer cell walls that must withstand high turgor pressure. However, little is known about how the constituents of the syncytial cell wall and their conformation support its role during nematode parasitism. We used a set of monoclonal antibodies, targeted to a range of plant cell wall components, to reveal the microstructures of syncytial cell walls induced by four of the most economically important cyst nematode species, Globodera pallida, Heterodera glycines, Heterodera avenae and Heterodera filipjevi, in their respective potato, soybean, and spring wheat host roots. In situ fluorescence analysis revealed highly similar cell wall composition of syncytia induced by G. pallida and H. glycines. Both consisted of abundant xyloglucan, methyl-esterified homogalacturonan and pectic arabinan. In contrast, the walls of syncytia induced in wheat roots by H. avenae and H. filipjevi contain little xyloglucan but are rich in feruloylated xylan and arabinan residues, with variable levels of mixed-linkage glucan. The overall chemical composition of syncytial cell walls reflected the general features of root cell walls of the different host plants. We relate specific components of syncytial cell walls, such as abundant arabinan, methyl-esterification status of pectic homogalacturonan and feruloylation of xylan, to their potential roles in forming a network to support both the strength and flexibility required for syncytium function. PMID:28680436

  20. Subpolar addition of new cell wall is directed by DivIVA in mycobacteria

    PubMed Central

    Meniche, Xavier; Otten, Renee; Siegrist, M. Sloan; Baer, Christina E.; Murphy, Kenan C.; Bertozzi, Carolyn R.; Sassetti, Christopher M.

    2014-01-01

    Mycobacteria are surrounded by a complex multilayered envelope and elongate at the poles. The principles that organize the coordinated addition of chemically diverse cell wall layers during polar extension remain unclear. We show that enzymes mediating the terminal cytosolic steps of peptidoglycan, arabinogalactan, and mycolic acid synthesis colocalize at sites of cell growth or division. The tropomyosin-like protein, DivIVA, is targeted to the negative curvature of the pole, is enriched at the growing end, and determines cell shape from this site. In contrast, cell wall synthetic complexes are concentrated at a distinct subpolar location. When viewed at subdiffraction resolution, new peptidoglycan is deposited at this subpolar site, and inert cell wall covers the DivIVA-marked tip. The differentiation between polar tip and cell wall synthetic complexes is also apparent at the biochemical level. Enzymes that generate mycolate precursors interact with DivIVA, but the final condensation of mycolic acids occurs in a distinct protein complex at the site of nascent cell wall addition. We propose an ultrastructural model of mycobacterial polar growth where new cell wall is added in an annular zone below the cell tip. This model may be broadly applicable to other bacterial and fungal organisms that grow via polar extension. PMID:25049412

  1. Silica distinctively affects cell wall features and lignocellulosic saccharification with large enhancement on biomass production in rice.

    PubMed

    Zhang, Jing; Zou, Weihua; Li, Ying; Feng, Yongqing; Zhang, Hui; Wu, Zhiliang; Tu, Yuanyuan; Wang, Yanting; Cai, Xiwen; Peng, Liangcai

    2015-10-01

    Rice is a typical silicon-accumulating crop with enormous biomass residues for biofuels. Silica is a cell wall component, but its effect on the plant cell wall and biomass production remains largely unknown. In this study, a systems biology approach was performed using 42 distinct rice cell wall mutants. We found that silica levels are significantly positively correlated with three major wall polymers, indicating that silica is associated with the cell wall network. Silicon-supplied hydroculture analysis demonstrated that silica distinctively affects cell wall composition and major wall polymer features, including cellulose crystallinity (CrI), arabinose substitution degree (reverse Xyl/Ara) of xylans, and sinapyl alcohol (S) proportion in three typical rice mutants. Notably, the silicon supplement exhibited dual effects on biomass enzymatic digestibility in the mutant and wild type (NPB) after pre-treatments with 1% NaOH and 1% H2SO4. In addition, silicon supply largely enhanced plant height, mechanical strength and straw biomass production, suggesting that silica rescues mutant growth defects. Hence, this study provides potential approaches for silicon applications in biomass process and bioenergy rice breeding. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Cell wall assembly in fucus zygotes: I. Characterization of the polysaccharide components.

    PubMed

    Quatrano, R S; Stevens, P T

    1976-08-01

    Fertilization triggers the assembly of a cell wall around the egg cell of three brown algae, Fucus vesiculosus, F. distichus, and F. inflatus. New polysaccharide polymers are continually being added to the cell wall during the first 24 hours of synchronous embryo development. This wall assembly involves the extracellular deposition of fibrillar material by cytoplasmic vesicles fusing with the plasma membrane. One hour after fertilization a fragmented wall can be isolated free of cytoplasm and contains equal amounts of cellulose and alginic acid with no fucose-containing polymers (fucans) present. Birefringence of the wall caused by oriented cellulose microfibrils is not detected in all zygotes until 4 hours, at which time intact cell walls can be isolated that retain the shape of the zygote. These walls have a relatively low ratio of fucose to xylose and little sulfate when compared to walls from older embryos. When extracts of walls from 4-hour zygotes are subjected to cellulose acetate electrophoresis at pH 7, a single fucan (F(1)) can be detected. By 12 hours, purified cell walls are composed of fucans containing a relatively high ratio of fucose to xylose and high levels of sulfate, and contain a second fucan (F(2)) which is electrophoretically distinct from F(1). F(2) appears to be deposited in only a localized region of the wall, that which elongates to form the rhizoid cell. Throughout wall assembly, the polyuronide block co-polymer alginic acid did not significantly vary its mannuronic (M) to guluronic (G) acid ratio (0.33-0.55) or its block distribution (MG, 54%; GG, 30%; MM, 16%). From 6 to 24 hours of embryo development, the proportion of the major polysaccharide components found in purified walls is stable. Alginic acid is the major polymer and comprises about 60% of the total wall, while cellulose and the fucans each make-up about 20% of the remainder. During the extracellular assembly of this wall, the intracellular levels of the storage glucan laminaran decreases. A membrane-bound beta-1, 3-exoglucanase is found in young zygotes which degrades laminaran to glucose. It is postulated that hydrolysis of laminaran by this glucanase accounts, at least in part, for glucose availability for wall biosynthesis and the increase in respiration triggered by fertilization. The properties and function of alginic acid, the fucans, and cellulose are discussed in relation to changes in wall structure and function during development.

  3. Altered lignin biosynthesis improves cellulosic bioethanol production in transgenic maize plants down-regulated for cinnamyl alcohol dehydrogenase.

    PubMed

    Fornalé, Silvia; Capellades, Montserrat; Encina, Antonio; Wang, Kan; Irar, Sami; Lapierre, Catherine; Ruel, Katia; Joseleau, Jean-Paul; Berenguer, Jordi; Puigdomènech, Pere; Rigau, Joan; Caparrós-Ruiz, David

    2012-07-01

    Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme involved in the last step of monolignol biosynthesis. The effect of CAD down-regulation on lignin production was investigated through a transgenic approach in maize. Transgenic CAD-RNAi plants show a different degree of enzymatic reduction depending on the analyzed tissue and show alterations in cell wall composition. Cell walls of CAD-RNAi stems contain a lignin polymer with a slight reduction in the S-to-G ratio without affecting the total lignin content. In addition, these cell walls accumulate higher levels of cellulose and arabinoxylans. In contrast, cell walls of CAD-RNAi midribs present a reduction in the total lignin content and of cell wall polysaccharides. In vitro degradability assays showed that, although to a different extent, the changes induced by the repression of CAD activity produced midribs and stems more degradable than wild-type plants. CAD-RNAi plants grown in the field presented a wild-type phenotype and produced higher amounts of dry biomass. Cellulosic bioethanol assays revealed that CAD-RNAi biomass produced higher levels of ethanol compared to wild-type, making CAD a good target to improve both the nutritional and energetic values of maize lignocellulosic biomass.

  4. Influence of the Cell Wall on Intracellular Delivery to Algal Cells by Electroporation and Sonication

    PubMed Central

    Azencott, Harold R.; Peter, Gary F.; Prausnitz, Mark R.

    2007-01-01

    To assess the cell wall’s role as a barrier to intracellular delivery, wild-type Chlamydomonas reinhardtii algal cells and mutant cells lacking a cell wall were exposed to electroporation or sonication. Flow cytometry determined intracellular uptake of calcein and bovine serum albumin (BSA) and loss of cell viability as functions of electroporation transmembrane potential and acoustic energy. Electroporation of wild-type cells increased calcein uptake with increasing transmembrane potential, but delivered much less BSA. Electroporation of wall-deficient cells had similar effects on calcein uptake, but increased BSA uptake as much as 7.5-fold relative to wild-type cells, which indicated that the cell wall was a significant barrier to BSA delivery during electroporation. Sonication of wild-type cells caused calcein and BSA uptake at similar levels. This suggests that the cell wall barrier to BSA delivery can be overcome by sonication. Increased electroporation transmembrane potential or acoustic energy also caused increased loss of cell viability, where wall-deficient cells were especially susceptible to lysis. Overall, we believe this is the first study to compare the effects of electroporation and sonication in a direct fashion in any cell type. Specifically, these findings suggest that electroporation primarily transports molecules across the plasma membrane, because its mechanism is specific to lipid bilayer disruption, whereas sonication transports molecules across both the plasma membrane and cell wall, because it non-specifically disrupts cell-surface barriers. PMID:17602827

  5. [Revealing the chemical changes of tea cell wall induced by anthracnose with confocal Raman microscopy].

    PubMed

    Li, Xiao-li; Luo, Liu-bin; Hu, Xiao-qian; Lou, Bing-gan; He, Yong

    2014-06-01

    Healthy tea and tea infected by anthracnose were first studied by confocal Raman microscopy to illustrate chemical changes of cell wall in the present paper. Firstly, Raman spectra of both healthy and infected sample tissues were collected with spatial resolution at micron-level, and ultrastructure of healthy and infected tea cells was got from scanning electron microscope. These results showed that there were significant changes in Raman shift and Raman intensity between healthy and infected cell walls, indicating that great differences occurred in chemical compositions of cell walls between healthy and infected samples. In details, intensities at many Raman bands which were closely associated with cellulose, pectin, esters were reduced after infection, revealing that the content of chemical compounds such as cellulose, pectin, esters was decreased after infection. Subsequently, chemical imaging of both healthy and infected tea cell walls were realized based on Raman fingerprint spectra of cellulose and microscopic spatial structure. It was found that not only the content of cellulose was reduced greatly after infection, but also the ordered structure of cellulose was destroyed by anthracnose infection. Thus, confocal Raman microscopy was shown to be a powerful tool to detect the chemical changes in cell wall of tea caused by anthracnose without any chemical treatment or staining. This research firstly applied confocal Raman microscopy in phytopathology for the study of interactive relationship between host and pathogen, and it will also open a new way for intensive study of host-pathogen at cellular level.

  6. Brachypodium distachyon as a model plant toward improved biofuel crops: Search for secreted proteins involved in biogenesis and disassembly of cell wall polymers.

    PubMed

    Douché, Thibaut; San Clemente, Hélène; Burlat, Vincent; Roujol, David; Valot, Benoît; Zivy, Michel; Pont-Lezica, Rafael; Jamet, Elisabeth

    2013-08-01

    Polysaccharides make up about 75% of plant cell walls and can be broken down to produce sugar substrates (saccharification) from which a whole range of products can be obtained, including bioethanol. Cell walls also contain 5-10% of proteins, which could be used to tailor them for agroindustrial uses. Here we present cell wall proteomics data of Brachypodium distachyon, a model plant for temperate grasses. Leaves and culms were analyzed during active growth and at mature stage. Altogether, 559 proteins were identified by LC-MS/MS and bioinformatics, among which 314 have predicted signal peptides. Sixty-three proteins were shared by two organs at two developmental stages where they could play housekeeping functions. Differences were observed between organs and stages of development, especially at the level of glycoside hydrolases and oxidoreductases. Differences were also found between the known cell wall proteomes of B. distachyon, Oryza sativa, and the Arabidopsis thaliana dicot. Three glycoside hydrolases could be immunolocalized in cell walls using polyclonal antibodies against proteotypic peptides. Organ-specific expression consistent with proteomics results could be observed as well as cell-specific localization. Moreover, the high number of proteins of unknown function in B. distachyon cell wall proteomes opens new fields of research for monocot cell walls. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effect of water deficit on the cell wall of the date palm (Phoenix dactylifera 'Deglet nour', Arecales) fruit during development.

    PubMed

    Gribaa, Ali; Dardelle, Flavien; Lehner, Arnaud; Rihouey, Christophe; Burel, Carole; Ferchichi, Ali; Driouich, Azeddine; Mollet, Jean-Claude

    2013-05-01

    Date palm (Phoenix dactylifera) is an important crop providing a valuable nutrition source for people in many countries including the Middle East and North Africa. In recent years, the amount of rain in North Africa and especially in the Tunisian palm grove areas has dropped significantly. We investigated the growth and cell wall remodelling of fruits harvested at three key development stages from trees grown with or without water supply. During development, cell wall solubilization and remodelling was characterized by a decrease of the degree of methylesterification of pectin, an important loss of galactose content and a reduction of the branching of xylan by arabinose in irrigated condition. Water deficit had a profound effect on fruit size, pulp content, cell wall composition and remodelling. Loss of galactose content was not as important, arabinose content was significantly higher in the pectin-enriched extracts from non-irrigated condition, and the levels of methylesterification of pectin and O-acetylation of xyloglucan were lower than in irrigated condition. The lower levels of hydrophobic groups (methylester and O-acetyl) and the less intensive degradation of the hydrophilic galactan, arabinan and arabinogalactan in the cell wall may be implicated in maintaining the hydration status of the cells under water deficit. © 2012 Blackwell Publishing Ltd.

  8. Chitin synthesis in Saccharomyces cerevisiae in response to supplementation of growth medium with glucosamine and cell wall stress.

    PubMed

    Bulik, Dorota A; Olczak, Mariusz; Lucero, Hector A; Osmond, Barbara C; Robbins, Phillips W; Specht, Charles A

    2003-10-01

    In Saccharomyces cerevisiae most chitin is synthesized by Chs3p, which deposits chitin in the lateral cell wall and in the bud-neck region during cell division. We have recently found that addition of glucosamine (GlcN) to the growth medium leads to a three- to fourfold increase in cell wall chitin levels. We compared this result to the increases in cellular chitin levels associated with cell wall stress and with treatment of yeast with mating pheromone. Since all three phenomena lead to increases in precursors of chitin, we hypothesized that chitin synthesis is at least in part directly regulated by the size of this pool. This hypothesis was strengthened by our finding that addition of GlcN to the growth medium causes a rapid increase in chitin synthesis without any pronounced change in the expression of more than 6,000 genes monitored with Affymetrix gene expression chips. In other studies we found that the specific activity of Chs3p is higher in the total membrane fractions from cells grown in GlcN and from mutants with weakened cell walls. Sucrose gradient analysis shows that Chs3p is present in an inactive form in what may be Golgi compartments but as an active enzyme in other intracellular membrane-bound vesicles, as well as in the plasma membrane. We conclude that Chs3p-dependent chitin synthesis in S. cerevisiae is regulated both by the levels of intermediates of the UDP-GlcNAc biosynthetic pathway and by an increase in the activity of the enzyme in the plasma membrane.

  9. Microfabricated alkali vapor cell with anti-relaxation wall coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straessle, R.; Pétremand, Y.; Briand, D.

    2014-07-28

    We present a microfabricated alkali vapor cell equipped with an anti-relaxation wall coating. The anti-relaxation coating used is octadecyltrichlorosilane and the cell was sealed by thin-film indium-bonding at a low temperature of 140 °C. The cell body is made of silicon and Pyrex and features a double-chamber design. Depolarizing properties due to liquid Rb droplets are avoided by confining the Rb droplets to one chamber only. Optical and microwave spectroscopy performed on this wall-coated cell are used to evaluate the cell's relaxation properties and a potential gas contamination. Double-resonance signals obtained from the cell show an intrinsic linewidth that is significantlymore » lower than the linewidth that would be expected in case the cell had no wall coating but only contained a buffer-gas contamination on the level measured by optical spectroscopy. Combined with further experimental evidence this proves the presence of a working anti-relaxation wall coating in the cell. Such cells are of interest for applications in miniature atomic clocks, magnetometers, and other quantum sensors.« less

  10. Label-free Chemical Imaging of Fungal Spore Walls by Raman Microscopy and Multivariate Curve Resolution Analysis

    PubMed Central

    Noothalapati, Hemanth; Sasaki, Takahiro; Kaino, Tomohiro; Kawamukai, Makoto; Ando, Masahiro; Hamaguchi, Hiro-o; Yamamoto, Tatsuyuki

    2016-01-01

    Fungal cell walls are medically important since they represent a drug target site for antifungal medication. So far there is no method to directly visualize structurally similar cell wall components such as α-glucan, β-glucan and mannan with high specificity, especially in a label-free manner. In this study, we have developed a Raman spectroscopy based molecular imaging method and combined multivariate curve resolution analysis to enable detection and visualization of multiple polysaccharide components simultaneously at the single cell level. Our results show that vegetative cell and ascus walls are made up of both α- and β-glucans while spore wall is exclusively made of α-glucan. Co-localization studies reveal the absence of mannans in ascus wall but are distributed primarily in spores. Such detailed picture is believed to further enhance our understanding of the dynamic spore wall architecture, eventually leading to advancements in drug discovery and development in the near future. PMID:27278218

  11. Cell wall carbohydrates content of pathogenic Candida albicans strain morphological forms.

    PubMed

    Staniszewska, Monika; Bondaryk, Małgorzata; Rabczenko, Daniel; Smoleńska-Sym, Gabriela; Kurzatkowski, Wiesław

    2013-01-01

    The study evaluated the cell wall carbohydrates fraction in blastoconidia grown in YEPD medium at 30 degrees C and in the conglomerate of true hyphae grown in human serum at 37 degrees C. The clinical isolate obtained from a child with widespread C. albicans infection was used in the study. The cells were broken with glass beads, centrifuged to harvest the cell wall followed by subjection to TFA hydrolysis and in the result of that released monosaccharides were detected by HPAEC-PAD. Both, serum and temperature conditions (37 degrees C) affected germination process influencing the cell wall carbohydrates content when incubation in serum was prolonged from 1 to 18 h. The mannan content of blastoconidia was almost twofold higher compared to filamentous forms (149.25 +/- 299.24 vs 77.26 +/- 122.07). The glucan content was threefold lower in blastoconidia compared to hyphae (251.86 +/- 243.44 vs 755.81 +/- 1299.30). The chitin level was fourfold lower in blastoconidia compared to filaments (23.86 +/- 54.09 vs 106.29 +/- 170.12). The reason for the differences in the carbohydrates content may be related to type of morphology induced in different environmental conditions. Among tested carbohydrates, glucan appeared to be present in appreciably larger amounts in both tested morphological fractions. The ultrastructure of the blastoconidial cell wall revealed striking differences compared to the hyphae indicating the carbohydrates content alterations for wall assembly during hyphal growth at alkaline pH and temp. 37 degrees C. The study provided evidence for the relationship between morphogenesis, cell-cell adhesion induced by serum and changes in the level of carbohydrates content.

  12. Defects in intracellular trafficking of fungal cell wall synthases lead to aberrant host immune recognition.

    PubMed

    Esher, Shannon K; Ost, Kyla S; Kohlbrenner, Maria A; Pianalto, Kaila M; Telzrow, Calla L; Campuzano, Althea; Nichols, Connie B; Munro, Carol; Wormley, Floyd L; Alspaugh, J Andrew

    2018-06-01

    The human fungal pathogen, Cryptococcus neoformans, dramatically alters its cell wall, both in size and composition, upon entering the host. This cell wall remodeling is essential for host immune avoidance by this pathogen. In a genetic screen for mutants with changes in their cell wall, we identified a novel protein, Mar1, that controls cell wall organization and immune evasion. Through phenotypic studies of a loss-of-function strain, we have demonstrated that the mar1Δ mutant has an aberrant cell surface and a defect in polysaccharide capsule attachment, resulting in attenuated virulence. Furthermore, the mar1Δ mutant displays increased staining for exposed cell wall chitin and chitosan when the cells are grown in host-like tissue culture conditions. However, HPLC analysis of whole cell walls and RT-PCR analysis of cell wall synthase genes demonstrated that this increased chitin exposure is likely due to decreased levels of glucans and mannans in the outer cell wall layers. We observed that the Mar1 protein differentially localizes to cellular membranes in a condition dependent manner, and we have further shown that the mar1Δ mutant displays defects in intracellular trafficking, resulting in a mislocalization of the β-glucan synthase catalytic subunit, Fks1. These cell surface changes influence the host-pathogen interaction, resulting in increased macrophage activation to microbial challenge in vitro. We established that several host innate immune signaling proteins are required for the observed macrophage activation, including the Card9 and MyD88 adaptor proteins, as well as the Dectin-1 and TLR2 pattern recognition receptors. These studies explore novel mechanisms by which a microbial pathogen regulates its cell surface in response to the host, as well as how dysregulation of this adaptive response leads to defective immune avoidance.

  13. Regulation of expression, activity and localization of fungal chitin synthases

    PubMed Central

    Rogg, Luise E.; Fortwendel, Jarrod R.; Juvvadi, Praveen R.; Steinbach, William J.

    2013-01-01

    The fungal cell wall represents an attractive target for pharmacologic inhibition, as many of the components are fungal-specific. Though targeted inhibition of β-glucan synthesis is effective treatment for certain fungal infections, the ability of the cell wall to dynamically compensate via the cell wall integrity pathway may limit overall efficacy. To date, chitin synthesis inhibitors have not been successfully deployed in the clinical setting. Fungal chitin synthesis is a complex and highly regulated process. Regulation of chitin synthesis occurs on multiple levels, thus targeting of these regulatory pathways may represent an exciting alternative approach. A variety of signaling pathways have been implicated in chitin synthase regulation, at both transcriptional and post-transcriptional levels. Recent research suggests that localization of chitin synthases likely represents a major regulatory mechanism. However, much of the regulatory machinery is not necessarily shared among different chitin synthases. Thus, an in depth understanding of the precise roles of each protein in cell wall maintenance and repair will be essential to identifying the most likely therapeutic targets. PMID:21526913

  14. Immunological Approaches to Biomass Characterization and Utilization

    PubMed Central

    Pattathil, Sivakumar; Avci, Utku; Zhang, Tiantian; Cardenas, Claudia L.; Hahn, Michael G.

    2015-01-01

    Plant biomass is the major renewable feedstock resource for sustainable generation of alternative transportation fuels to replace fossil carbon-derived fuels. Lignocellulosic cell walls are the principal component of plant biomass. Hence, a detailed understanding of plant cell wall structure and biosynthesis is an important aspect of bioenergy research. Cell walls are dynamic in their composition and structure, varying considerably among different organs, cells, and developmental stages of plants. Hence, tools are needed that are highly efficient and broadly applicable at various levels of plant biomass-based bioenergy research. The use of plant cell wall glycan-directed probes has seen increasing use over the past decade as an excellent approach for the detailed characterization of cell walls. Large collections of such probes directed against most major cell wall glycans are currently available worldwide. The largest and most diverse set of such probes consists of cell wall glycan-directed monoclonal antibodies (McAbs). These McAbs can be used as immunological probes to comprehensively monitor the overall presence, extractability, and distribution patterns among cell types of most major cell wall glycan epitopes using two mutually complementary immunological approaches, glycome profiling (an in vitro platform) and immunolocalization (an in situ platform). Significant progress has been made recently in the overall understanding of plant biomass structure, composition, and modifications with the application of these immunological approaches. This review focuses on such advances made in plant biomass analyses across diverse areas of bioenergy research. PMID:26579515

  15. Pea Border Cell Maturation and Release Involve Complex Cell Wall Structural Dynamics1[OPEN

    PubMed Central

    2017-01-01

    The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we undertook a systematic, detailed analysis of pea (Pisum sativum) root tip cell walls. Our study included immunocarbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy, quantitative reverse transcription-PCR of cell wall biosynthetic genes, analysis of hydrolytic activities, transmission electron microscopy, and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our findings provide a new level of detail about border cell maturation and enable us to develop a model of the separation process. We propose that loss of adhesion by the dissolution of homogalacturonan in the middle lamellae is augmented by an active biophysical process of cell curvature driven by the polarized distribution of xyloglucan and extensin epitopes. PMID:28400496

  16. Biomass digestibility is predominantly affected by three factors of wall polymer features distinctive in wheat accessions and rice mutants

    PubMed Central

    2013-01-01

    Background Wheat and rice are important food crops with enormous biomass residues for biofuels. However, lignocellulosic recalcitrance becomes a crucial factor on biomass process. Plant cell walls greatly determine biomass recalcitrance, thus it is essential to identify their key factors on lignocellulose saccharification. Despite it has been reported about cell wall factors on biomass digestions, little is known in wheat and rice. In this study, we analyzed nine typical pairs of wheat and rice samples that exhibited distinct cell wall compositions, and identified three major factors of wall polymer features that affected biomass digestibility. Results Based on cell wall compositions, ten wheat accessions and three rice mutants were classified into three distinct groups each with three typical pairs. In terms of group I that displayed single wall polymer alternations in wheat, we found that three wall polymer levels (cellulose, hemicelluloses and lignin) each had a negative effect on biomass digestibility at similar rates under pretreatments of NaOH and H2SO4 with three concentrations. However, analysis of six pairs of wheat and rice samples in groups II and III that each exhibited a similar cell wall composition, indicated that three wall polymer levels were not the major factors on biomass saccharification. Furthermore, in-depth detection of the wall polymer features distinctive in rice mutants, demonstrated that biomass digestibility was remarkably affected either negatively by cellulose crystallinity (CrI) of raw biomass materials, or positively by both Ara substitution degree of non-KOH-extractable hemicelluloses (reverse Xyl/Ara) and p-coumaryl alcohol relative proportion of KOH-extractable lignin (H/G). Correlation analysis indicated that Ara substitution degree and H/G ratio negatively affected cellulose crystallinity for high biomass enzymatic digestion. It was also suggested to determine whether Ara and H monomer have an interlinking with cellulose chains in the future. Conclusions Using nine typical pairs of wheat and rice samples having distinct cell wall compositions and wide biomass saccharification, Ara substitution degree and monolignin H proportion have been revealed to be the dominant factors positively determining biomass digestibility upon various chemical pretreatments. The results demonstrated the potential of genetic modification of plant cell walls for high biomass saccharification in bioenergy crops. PMID:24341349

  17. Accumulation and ultrastructural distribution of copper in Elsholtzia splendens *

    PubMed Central

    Peng, Hong-yun; Yang, Xiao-e; Tian, Sheng-ke

    2005-01-01

    Copper accumulation and intracellular distribution in Elsholtzia splendens, a native Chinese Cu-tolerant and accumulating plant species, was investigated by transmission electron microscope (TEM) and gradient centrifugation techniques. Copper concentrations in roots, stems and leaves of E. splendens increased with increasing Cu levels in solution. After exposure to 500 μmol/L Cu for 8 d, about 1000 mg/kg Cu were accumulated in the stem and 250 mg/kg Cu in the leaf of E. splendens. At 50 µmol/L Cu, no significant toxicity was observed in the chloroplast and mitochondrion within its leaf cells, but separation appeared at the cytoplasm and the cell wall within the root cells. At >250 µmol/L Cu, both root and leaf organelles in E. splendens were damaged heavily by excessive Cu in vivo. Copper subcellular localization in the plant leaf after 8 days’ exposure to 500 µmol/L Cu using gradient centrifugation techniques was found to be decreased in the order: chloroplast>cell wall>soluble fraction>other organelles. The plant root cell wall was found to be the site of highest Cu localization. Increase of Cu exposure time from 8 d to 16 d, increased slightly Cu concentration in cell wall fraction in roots and leaves, while that in the chloroplast fraction decreased in leaves of the plants grown in both 0.25 μmol/L and 500 μmol/L Cu. TEM confirmed that much more Cu localized in cell walls of E. splendens roots and leaves, but also more Cu localized in E. splendens’ chloroplast when the plant is exposed to Cu levels>250 μmol/L, as compared to those in the plant grown in 0.25 μmol/L Cu. Copper treatment at levels>250 μmol/L caused pronounced damage in the leaf chloroplast and root organelles. Copper localization in cell walls and chloroplasts could mainly account for the high detoxification of Cu in E. splendens. PMID:15822140

  18. The molecular chaperone HSP70 binds to and stabilizes NOD2, an important protein involved in Crohn disease.

    PubMed

    Mohanan, Vishnu; Grimes, Catherine Leimkuhler

    2014-07-04

    Microbes are detected by the pathogen-associated molecular patterns through specific host pattern recognition receptors. Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is an intracellular pattern recognition receptor that recognizes fragments of the bacterial cell wall. NOD2 is important to human biology; when it is mutated it loses the ability to respond properly to bacterial cell wall fragments. To determine the mechanisms of misactivation in the NOD2 Crohn mutants, we developed a cell-based system to screen for protein-protein interactors of NOD2. We identified heat shock protein 70 (HSP70) as a protein interactor of both wild type and Crohn mutant NOD2. HSP70 has previously been linked to inflammation, especially in the regulation of anti-inflammatory molecules. Induced HSP70 expression in cells increased the response of NOD2 to bacterial cell wall fragments. In addition, an HSP70 inhibitor, KNK437, was capable of decreasing NOD2-mediated NF-κB activation in response to bacterial cell wall stimulation. We found HSP70 to regulate the half-life of NOD2, as increasing the HSP70 level in cells increased the half-life of NOD2, and down-regulating HSP70 decreased the half-life of NOD2. The expression levels of the Crohn-associated NOD2 variants were less compared with wild type. The overexpression of HSP70 significantly increased NOD2 levels as well as the signaling capacity of the mutants. Thus, our study shows that restoring the stability of the NOD2 Crohn mutants is sufficient for rescuing the ability of these mutations to signal the presence of a bacterial cell wall ligand. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. The Molecular Chaperone HSP70 Binds to and Stabilizes NOD2, an Important Protein Involved in Crohn Disease*

    PubMed Central

    Mohanan, Vishnu; Grimes, Catherine Leimkuhler

    2014-01-01

    Microbes are detected by the pathogen-associated molecular patterns through specific host pattern recognition receptors. Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is an intracellular pattern recognition receptor that recognizes fragments of the bacterial cell wall. NOD2 is important to human biology; when it is mutated it loses the ability to respond properly to bacterial cell wall fragments. To determine the mechanisms of misactivation in the NOD2 Crohn mutants, we developed a cell-based system to screen for protein-protein interactors of NOD2. We identified heat shock protein 70 (HSP70) as a protein interactor of both wild type and Crohn mutant NOD2. HSP70 has previously been linked to inflammation, especially in the regulation of anti-inflammatory molecules. Induced HSP70 expression in cells increased the response of NOD2 to bacterial cell wall fragments. In addition, an HSP70 inhibitor, KNK437, was capable of decreasing NOD2-mediated NF-κB activation in response to bacterial cell wall stimulation. We found HSP70 to regulate the half-life of NOD2, as increasing the HSP70 level in cells increased the half-life of NOD2, and down-regulating HSP70 decreased the half-life of NOD2. The expression levels of the Crohn-associated NOD2 variants were less compared with wild type. The overexpression of HSP70 significantly increased NOD2 levels as well as the signaling capacity of the mutants. Thus, our study shows that restoring the stability of the NOD2 Crohn mutants is sufficient for rescuing the ability of these mutations to signal the presence of a bacterial cell wall ligand. PMID:24790089

  20. Loss-of-Function Mutation of REDUCED WALL ACETYLATION2 in Arabidopsis Leads to Reduced Cell Wall Acetylation and Increased Resistance to Botrytis cinerea1[W][OA

    PubMed Central

    Manabe, Yuzuki; Nafisi, Majse; Verhertbruggen, Yves; Orfila, Caroline; Gille, Sascha; Rautengarten, Carsten; Cherk, Candice; Marcus, Susan E.; Somerville, Shauna; Pauly, Markus; Knox, J. Paul; Sakuragi, Yumiko; Scheller, Henrik Vibe

    2011-01-01

    Nearly all polysaccharides in plant cell walls are O-acetylated, including the various pectic polysaccharides and the hemicelluloses xylan, mannan, and xyloglucan. However, the enzymes involved in the polysaccharide acetylation have not been identified. While the role of polysaccharide acetylation in vivo is unclear, it is known to reduce biofuel yield from lignocellulosic biomass by the inhibition of microorganisms used for fermentation. We have analyzed four Arabidopsis (Arabidopsis thaliana) homologs of the protein Cas1p known to be involved in polysaccharide O-acetylation in Cryptococcus neoformans. Loss-of-function mutants in one of the genes, designated REDUCED WALL ACETYLATION2 (RWA2), had decreased levels of acetylated cell wall polymers. Cell wall material isolated from mutant leaves and treated with alkali released about 20% lower amounts of acetic acid when compared with the wild type. The same level of acetate deficiency was found in several pectic polymers and in xyloglucan. Thus, the rwa2 mutations affect different polymers to the same extent. There were no obvious morphological or growth differences observed between the wild type and rwa2 mutants. However, both alleles of rwa2 displayed increased tolerance toward the necrotrophic fungal pathogen Botrytis cinerea. PMID:21212300

  1. Cell wall glycoproteins at interaction sites between parasitic giant dodder (Cuscuta reflexa) and its host Pelargonium zonale

    PubMed Central

    Striberny, Bernd; Krause, Kirsten

    2015-01-01

    The process of host plant penetration by parasitic dodder (genus Cuscuta) is accompanied by molecular and structural changes at the host/parasite interface. Recently, changes in pectin methyl esterification levels in the host cell walls abutting parasitic cells in established infection sites were reported. In addition to that, we show here that the composition of cell wall glycoproteins in Cuscuta-infected Pelargonium zonale undergoes substantial changes. While several arabinogalactan protein epitopes exhibit decreased abundances in the vicinity of the Cuscuta reflexa haustorium, extensins tend to increase in the infected areas. PMID:26367804

  2. Cell wall glycoproteins at interaction sites between parasitic giant dodder (Cuscuta reflexa) and its host Pelargonium zonale.

    PubMed

    Striberny, Bernd; Krause, Kirsten

    2015-01-01

    The process of host plant penetration by parasitic dodder (genus Cuscuta) is accompanied by molecular and structural changes at the host/parasite interface. Recently, changes in pectin methyl esterification levels in the host cell walls abutting parasitic cells in established infection sites were reported. In addition to that, we show here that the composition of cell wall glycoproteins in Cuscuta-infected Pelargonium zonale undergoes substantial changes. While several arabinogalactan protein epitopes exhibit decreased abundances in the vicinity of the Cuscuta reflexa haustorium, extensins tend to increase in the infected areas.

  3. Plant cell wall engineering: applications in biofuel production and improved human health.

    PubMed

    Burton, Rachel A; Fincher, Geoffrey B

    2014-04-01

    Plant cell walls consist largely of cellulose, non-cellulosic polysaccharides and lignin. Concerted attempts are underway to convert wall polysaccharides from crop plant residues into renewable transport fuels and other valuable products, and to exploit the dietary benefits of cereal grain wall polysaccharides in human health. Attempts to improve plant performance for these applications have involved the manipulation of the levels and structures of wall components. Some successes in altering non-cellulosic polysaccharides has been achieved, but it would appear that drastic changes in cellulose are more difficult to engineer. Nevertheless, future prospects for both genetically modified (GM) and non-GM technologies to modify plant cell wall composition and structure remain bright, and will undoubtedly find applications beyond the current focus on human health and biofuel production. Copyright © 2013. Published by Elsevier Ltd.

  4. Heterogeneity and Glycan Masking of Cell Wall Microstructures in the Stems of Miscanthus x giganteus, and Its Parents M. sinensis and M. sacchariflorus

    PubMed Central

    Xue, Jie; Bosch, Maurice; Knox, J. Paul

    2013-01-01

    Plant cell walls, being repositories of fixed carbon, are important sources of biomass and renewable energy. Miscanthus species are fast growing grasses with a high biomass yield and they have been identified as potential bioenergy crops. Miscanthus x giganteus is the sterile hybrid between M. sinensis and M. sacchariflorus, with a faster and taller growth than its parents. In this study, the occurrence of cell wall polysaccharides in stems of Miscanthus species has been determined using fluorescence imaging with sets of cell wall directed monoclonal antibodies. Heteroxylan and mixed linkage-glucan (MLG) epitopes are abundant in stem cell walls of Miscanthus species, but their distributions are different in relation to the interfascicular parenchyma and these epitopes also display different developmental dynamics. Detection of pectic homogalacturonan (HG) epitopes was often restricted to intercellular spaces of parenchyma regions and, notably, the high methyl ester LM20 HG epitope was specifically abundant in the pith parenchyma cell walls of M. x giganteus. Some cell wall probes cannot access their target glycan epitopes because of masking by other polysaccharides. In the case of Miscanthus stems, masking of xyloglucan by heteroxylan and masking of pectic galactan by heteroxylan and MLG was detected in certain cell wall regions. Knowledge of tissue level heterogeneity of polysaccharide distributions and molecular architectures in Miscanthus cell wall structures will be important for both understanding growth mechanisms and also for the development of potential strategies for the efficient deconstruction of Miscanthus biomass. PMID:24312403

  5. The Effects of High Steady State Auxin Levels on Root Cell Elongation in Brachypodium[OPEN

    PubMed Central

    Pacheco-Villalobos, David; Tamaki, Takayuki; Gujas, Bojan; Jaspert, Nina; Oecking, Claudia; Bulone, Vincent; Hardtke, Christian S.

    2016-01-01

    The long-standing Acid Growth Theory of plant cell elongation posits that auxin promotes cell elongation by stimulating cell wall acidification and thus expansin action. To date, the paucity of pertinent genetic materials has precluded thorough analysis of the importance of this concept in roots. The recent isolation of mutants of the model grass species Brachypodium distachyon with dramatically enhanced root cell elongation due to increased cellular auxin levels has allowed us to address this question. We found that the primary transcriptomic effect associated with elevated steady state auxin concentration in elongating root cells is upregulation of cell wall remodeling factors, notably expansins, while plant hormone signaling pathways maintain remarkable homeostasis. These changes are specifically accompanied by reduced cell wall arabinogalactan complexity but not by increased proton excretion. On the contrary, we observed a tendency for decreased rather than increased proton extrusion from root elongation zones with higher cellular auxin levels. Moreover, similar to Brachypodium, root cell elongation is, in general, robustly buffered against external pH fluctuation in Arabidopsis thaliana. However, forced acidification through artificial proton pump activation inhibits root cell elongation. Thus, the interplay between auxin, proton pump activation, and expansin action may be more flexible in roots than in shoots. PMID:27169463

  6. Chitin Synthesis in Saccharomyces cerevisiae in Response to Supplementation of Growth Medium with Glucosamine and Cell Wall Stress

    PubMed Central

    Bulik, Dorota A.; Olczak, Mariusz; Lucero, Hector A.; Osmond, Barbara C.; Robbins, Phillips W.; Specht, Charles A.

    2003-01-01

    In Saccharomyces cerevisiae most chitin is synthesized by Chs3p, which deposits chitin in the lateral cell wall and in the bud-neck region during cell division. We have recently found that addition of glucosamine (GlcN) to the growth medium leads to a three- to fourfold increase in cell wall chitin levels. We compared this result to the increases in cellular chitin levels associated with cell wall stress and with treatment of yeast with mating pheromone. Since all three phenomena lead to increases in precursors of chitin, we hypothesized that chitin synthesis is at least in part directly regulated by the size of this pool. This hypothesis was strengthened by our finding that addition of GlcN to the growth medium causes a rapid increase in chitin synthesis without any pronounced change in the expression of more than 6,000 genes monitored with Affymetrix gene expression chips. In other studies we found that the specific activity of Chs3p is higher in the total membrane fractions from cells grown in GlcN and from mutants with weakened cell walls. Sucrose gradient analysis shows that Chs3p is present in an inactive form in what may be Golgi compartments but as an active enzyme in other intracellular membrane-bound vesicles, as well as in the plasma membrane. We conclude that Chs3p-dependent chitin synthesis in S. cerevisiae is regulated both by the levels of intermediates of the UDP-GlcNAc biosynthetic pathway and by an increase in the activity of the enzyme in the plasma membrane. PMID:14555471

  7. Absence of arabinan in the side chains of the pectic polysaccharides strongly associated with cell walls of Nicotiana plumbaginifolia non-organogenic callus with loosely attached constituent cells.

    PubMed

    Iwai, H; Ishii, T; Satoh, S

    2001-10-01

    When leaf disks from haploid plants of Nicotiana plumbaginifolia Viv. were transformed with T-DNA and cultured on shoot-inducing medium, nonorganogenic callus. designated nolac (for non-organogenic callus with loosely attached cells), appeared on approximately 7% of leaf disks. In contrast, normal callus was generated on T-DNA-transformed leaf disks from diploid plants and on non-transformed leaf disks from haploid and diploid plants. Transmission electron microscopy revealed that the middle lamellae and the cell walls of one line of mutant callus (nolac-H14) were barely stained by ruthenium red. even after demethylesterification with NaOH, whereas the entire cell wall and the middle lamella were strongly stained in normal callus. In cultures of nolac-H14 callus, the level of sugar components of pectic polysaccharides in the hemicellulose fraction was reduced and that in the culture medium was elevated, as compared with cultures of normal callus. These results indicate that pectic polysaccharides are not retained in the cell walls and middle lamellae of nolac-H14 callus. In nolac-H14, the ratio of arabinose to galactose was low in the pectic polysaccharides purified from all cell wall fractions and from the medium, in particular, in the hemicellulose fractions. The low levels of arabinofuranosyl (T-Araf, 5-Araf, 2,5-Araf, and 3,5-Araf) residues in the pectic polysaccharides of the hemicellulosic fraction of nolac-H,14 indicated that no neutral-sugar side chains, composed mainly of linear arabinan. were present in nolac-H14. Arabinose-rich pectins. which are strongly associated with cellulose-hemicellulose complexes, might play an important role in intercellular attachment in the architecture of the cell wall.

  8. Cellular expansion and gene expression in the developing grape (Vitis vinifera L.).

    PubMed

    Schlosser, J; Olsson, N; Weis, M; Reid, K; Peng, F; Lund, S; Bowen, P

    2008-01-01

    Expression profiles of genes involved in cell wall metabolism and water transport were compared with changes in grape (Vitis vinifera L.) berry growth, basic chemical composition, and the shape, size, and wall thickness of cells within tissues of the berry pericarp. Expression of cell wall-modifying and aquaporin genes in berry pericarp tissues generally followed a bimodal expression profile with high levels of expression coinciding with the two periods of rapid berry growth, stages I and III, and low levels of expression corresponding to the slow-growth period, stage II. Cellular expansion was observed throughout all tissues during stage I, and only mesocarp cellular expansion was observed during stage III. Expansion of only exocarp cells was evident during transition between stages II and III. Cell wall-modifying and aquaporin gene expression profiles followed similar trends in exocarp and mesocarp tissues throughout berry development, with the exception of the up-regulation of pectin methylesterase, pectate lyase, two aquaporin genes (AQ1 and AQ2), and two expansin genes (EXP3 and EXPL) during stage II, which was delayed in the exocarp tissue compared with mesocarp tissue. Exocarp endo-(1-->3)-beta-glucanase and expansin-like gene expression was concurrent with increases in epidermal and hypodermal cell wall thickness. These results indicate a potential role of the grape berry skin in modulating grape berry growth.

  9. Tubulin perturbation leads to unexpected cell wall modifications and affects stomatal behaviour in Populus

    DOE PAGES

    Swamy, Prashant S.; Hu, Hao; Pattathil, Sivakumar; ...

    2015-08-05

    Cortical microtubules are integral to plant morphogenesis, cell wall synthesis, and stomatal behaviour, presumably by governing cellulose microfibril orientation. Genetic manipulation of tubulins often leads to abnormal plant development, making it difficult to probe additional roles of cortical microtubules in cell wall biogenesis. Here, it is shown that expressing post-translational C-terminal modification mimics of α-tubulin altered cell wall characteristics and guard cell dynamics in transgenic Populus tremula x alba that otherwise appear normal. 35S promoter-driven transgene expression was high in leaves but unusually low in xylem, suggesting high levels of tubulin transgene expression were not tolerated in wood-forming tissues duringmore » regeneration of transformants. Cellulose, hemicellulose, and lignin contents were unaffected in transgenic wood, but expression of cell wall-modifying enzymes, and extractability of lignin-bound pectin and xylan polysaccharides were increased in developing xylem. The results suggest that pectin and xylan polysaccharides deposited early during cell wall biogenesis are more sensitive to subtle tubulin perturbation than cellulose and matrix polysaccharides deposited later. Tubulin perturbation also affected guard cell behaviour, delaying drought-induced stomatal closure as well as light-induced stomatal opening in leaves. Pectins have been shown to confer cell wall flexibility critical for reversible stomatal movement, and results presented here are consistent with microtubule involvement in this process. In conclusion, taken together, the data show the value of growth-compatible tubulin perturbations for discerning microtubule functions, and add to the growing body of evidence for microtubule involvement in non-cellulosic polysaccharide assembly during cell wall biogenesis.« less

  10. Visualization of sporopollenin-containing pathogenic green micro-alga Prototheca wickerhamii by fluorescent in situ hybridization (FISH).

    PubMed

    Ueno, Ryohei

    2009-04-01

    Fluorescent in situ hybridization (FISH) using taxon-specific, rRNA-targeted oligonucleotide probes is one of the most powerful tools for the rapid identification of harmful microorganisms. However, eukaryotic algal cells do not always allow FISH probes to permeate over their cell walls. Members of the pathogenic micro-algal genus Prototheca are characterized by their distinctive cell-wall component, sporopollenin, an extremely tough biopolymer that resists acid and alkaline hydrolysis, enzyme attack, and acetolysis. To our knowledge, there has been no report of the successful permeation by the oligonucleotide probes over the cell walls of unicellular green micro-algae, which contain sporopollenin. The DNA probes passed through the cell wall of Prototheca wickerhamii after treating the algal cells with cetyltrimethylammonium bromide (CTAB). Most cells in the middle logarithmic growth phase culture fluoresced when hybridized with the rRNA-targeted universal probe for eukaryotes, though individual cells included in this culture differed in the level of cell-wall vulnerability to attack by the polysaccharide-degrading enzyme, thus reflecting the different stages of the life cycle. This is the first report regarding the visualization of sporopollenin-containing, green micro-algal cells by FISH.

  11. Pea Border Cell Maturation and Release Involve Complex Cell Wall Structural Dynamics.

    PubMed

    Mravec, Jozef; Guo, Xiaoyuan; Hansen, Aleksander Riise; Schückel, Julia; Kračun, Stjepan Krešimir; Mikkelsen, Maria Dalgaard; Mouille, Grégory; Johansen, Ida Elisabeth; Ulvskov, Peter; Domozych, David S; Willats, William George Tycho

    2017-06-01

    The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we undertook a systematic, detailed analysis of pea ( Pisum sativum ) root tip cell walls. Our study included immunocarbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy, quantitative reverse transcription-PCR of cell wall biosynthetic genes, analysis of hydrolytic activities, transmission electron microscopy, and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our findings provide a new level of detail about border cell maturation and enable us to develop a model of the separation process. We propose that loss of adhesion by the dissolution of homogalacturonan in the middle lamellae is augmented by an active biophysical process of cell curvature driven by the polarized distribution of xyloglucan and extensin epitopes. © 2017 American Society of Plant Biologists. All Rights Reserved.

  12. Extensin network formation in Vitis vinifera callus cells is an essential and causal event in rapid and H2O2-induced reduction in primary cell wall hydration

    PubMed Central

    2011-01-01

    Background Extensin deposition is considered important for the correct assembly and biophysical properties of primary cell walls, with consequences to plant resistance to pathogens, tissue morphology, cell adhesion and extension growth. However, evidence for a direct and causal role for the extensin network formation in changes to cell wall properties has been lacking. Results Hydrogen peroxide treatment of grapevine (Vitis vinifera cv. Touriga) callus cell walls was seen to induce a marked reduction in their hydration and thickness. An analysis of matrix proteins demonstrated this occurs with the insolubilisation of an abundant protein, GvP1, which displays a primary structure and post-translational modifications typical of dicotyledon extensins. The hydration of callus cell walls free from saline-soluble proteins did not change in response to H2O2, but fully regained this capacity after addition of extensin-rich saline extracts. To assay the specific contribution of GvP1 cross-linking and other wall matrix proteins to the reduction in hydration, GvP1 levels in cell walls were manipulated in vitro by binding selected fractions of extracellular proteins and their effect on wall hydration during H2O2 incubation assayed. Conclusions This approach allowed us to conclude that a peroxidase-mediated formation of a covalently linked network of GvP1 is essential and causal in the reduction of grapevine callus wall hydration in response to H2O2. Importantly, this approach also indicated that extensin network effects on hydration was only partially irreversible and remained sensitive to changes in matrix charge. We discuss this mechanism and the importance of these changes to primary wall properties in the light of extensin distribution in dicotyledons. PMID:21672244

  13. Levels of a terpenoid glycoside (blumenin) and cell wall-bound phenolics in some cereal mycorrhizas.

    PubMed Central

    Maier, W; Peipp, H; Schmidt, J; Wray, V; Strack, D

    1995-01-01

    Four cereals, Hordeum vulgare (barley), Triticum aestivum (wheat), Secale cereal (rye), and Avena sativa (oat), were grown in a defined nutritional medium with and without the arbuscular mycorrhizal fungus Glomus intraradices. Levels of soluble and cell wall-bound secondary metabolites in the roots of mycorrhizal and nonmycorrhizal plants were determined by high-performance liquid chromatography during the first 6 to 8 weeks of plant development. Whereas there was no difference in the levels of the cell wall-bound hydroxycinnamic acids, 4-coumaric and ferulic acids, there was a fungus-induced change of the soluble secondary root metabolites. The most obvious effect observed in all four cereals was the induced accumulation of a terpenoid glycoside. This compound was isolated and identified by spectroscopic methods (nuclear magnetic resonance, mass spectrometry) to be a cyclohexenone derivative, i.e. blumenol C 9-O-(2'-O-beta-glucuronosyl)-beta-glucoside. The level of this compound was found to be directly correlated with the degree of root colonization. PMID:7480342

  14. Polymer mobility in cell walls of cucumber hypocotyls

    NASA Technical Reports Server (NTRS)

    Fenwick, K. M.; Apperley, D. C.; Cosgrove, D. J.; Jarvis, M. C.

    1999-01-01

    Cell walls were prepared from the growing region of cucumber (Cucumis sativus) hypocotyls and examined by solid-state 13C NMR spectroscopy, in both enzymically active and inactivated states. The rigidity of individual polymer segments within the hydrated cell walls was assessed from the proton magnetic relaxation parameter, T2, and from the kinetics of cross-polarisation from 1H to 13C. The microfibrils, including most of the xyloglucan in the cell wall, as well as cellulose, behaved as very rigid solids. A minor xyloglucan fraction, which may correspond to cross-links between microfibrils, shared a lower level of rigidity with some of the pectic galacturonan. Other pectins, including most of the galactan side-chain residues of rhamnogalacturonan I, were much more mobile and behaved in a manner intermediate between the solid and liquid states. The only difference observed between the enzymically active and inactive cell walls, was the loss of a highly mobile, methyl-esterified galacturonan fraction, as the result of pectinesterase activity.

  15. A Novel Isoform of Sucrose Synthase Is Targeted to the Cell Wall during Secondary Cell Wall Synthesis in Cotton Fiber[C][W][OA

    PubMed Central

    Brill, Elizabeth; van Thournout, Michel; White, Rosemary G.; Llewellyn, Danny; Campbell, Peter M.; Engelen, Steven; Ruan, Yong-Ling; Arioli, Tony; Furbank, Robert T.

    2011-01-01

    Sucrose (Suc) synthase (Sus) is the major enzyme of Suc breakdown for cellulose biosynthesis in cotton (Gossypium hirsutum) fiber, an important source of fiber for the textile industry. This study examines the tissue-specific expression, relative abundance, and temporal expression of various Sus transcripts and proteins present in cotton. A novel isoform of Sus (SusC) is identified that is expressed at high levels during secondary cell wall synthesis in fiber and is present in the cell wall fraction. The phylogenetic relationships of the deduced amino acid sequences indicate two ancestral groups of Sus proteins predating the divergence of monocots and dicots and that SusC sequences form a distinct branch in the phylogeny within the dicot-specific clade. The subcellular location of the Sus isoforms is determined, and it is proposed that cell wall-localized SusC may provide UDP-glucose for cellulose and callose synthesis from extracellular sugars. PMID:21757635

  16. Constitutive expression of a grapevine polygalacturonase-inhibiting protein affects gene expression and cell wall properties in uninfected tobacco

    PubMed Central

    2011-01-01

    Background Polygalacturonase-inhibiting proteins (PGIPs) directly limit the effective ingress of fungal pathogens by inhibiting cell wall-degrading endopolygalacturonases (ePGs). Transgenic tobacco plants over-expressing grapevine (Vitis vinifera) Vvpgip1 have previously been shown to be resistant to Botrytis infection. In this study we characterized two of these PGIP over-expressing lines with known resistance phenotypes by gene expression and hormone profiling in the absence of pathogen infection. Results Global gene expression was performed by a cross-species microarray approach using a potato cDNA microarray. The degree of potential cross-hybridization between probes was modeled by a novel computational workflow designed in-house. Probe annotations were updated by predicting probe-to-transcript hybridizations and combining information derived from other plant species. Comparing uninfected Vvpgip1-overexpressing lines to wild-type (WT), 318 probes showed significant change in expression. Functional groups of genes involved in metabolism and associated to the cell wall were identified and consequent cell wall analysis revealed increased lignin-levels in the transgenic lines, but no major differences in cell wall-derived polysaccharides. GO enrichment analysis also identified genes responsive to auxin, which was supported by elevated indole-acetic acid (IAA) levels in the transgenic lines. Finally, a down-regulation of xyloglucan endotransglycosylase/hydrolases (XTHs), which are important in cell wall remodeling, was linked to a decrease in total XTH activity. Conclusions This evaluation of PGIP over-expressing plants performed under pathogen-free conditions to exclude the classical PGIP-ePG inhibition interaction indicates additional roles for PGIPs beyond the inhibition of ePGs. PMID:22078230

  17. High-resolution confocal imaging of wall ingrowth deposition in plant transfer cells: Semi-quantitative analysis of phloem parenchyma transfer cell development in leaf minor veins of Arabidopsis.

    PubMed

    Nguyen, Suong T T; McCurdy, David W

    2015-04-23

    Transfer cells (TCs) are trans-differentiated versions of existing cell types designed to facilitate enhanced membrane transport of nutrients at symplasmic/apoplasmic interfaces. This transport capacity is conferred by intricate wall ingrowths deposited secondarily on the inner face of the primary cell wall, hence promoting the potential trans-membrane flux of solutes and consequently assigning TCs as having key roles in plant growth and productivity. However, TCs are typically positioned deep within tissues and have been studied mostly by electron microscopy. Recent advances in fluorophore labelling of plant cell walls using a modified pseudo-Schiff-propidium iodide (mPS-PI) staining procedure in combination with high-resolution confocal microscopy have allowed visualization of cellular details of individual tissue layers in whole mounts, hence enabling study of tissue and cellular architecture without the need for tissue sectioning. Here we apply a simplified version of the mPS-PI procedure for confocal imaging of cellulose-enriched wall ingrowths in vascular TCs at the whole tissue level. The simplified mPS-PI staining procedure produced high-resolution three-dimensional images of individual cell types in vascular bundles and, importantly, wall ingrowths in phloem parenchyma (PP) TCs in minor veins of Arabidopsis leaves and companion cell TCs in pea. More efficient staining of tissues was obtained by replacing complex clearing procedures with a simple post-fixation bleaching step. We used this modified procedure to survey the presence of PP TCs in other tissues of Arabidopsis including cotyledons, cauline leaves and sepals. This high-resolution imaging enabled us to classify different stages of wall ingrowth development in Arabidopsis leaves, hence enabling semi-quantitative assessment of the extent of wall ingrowth deposition in PP TCs at the whole leaf level. Finally, we conducted a defoliation experiment as an example of using this approach to statistically analyze responses of PP TC development to leaf ablation. Use of a modified mPS-PI staining technique resulted in high-resolution confocal imaging of polarized wall ingrowth deposition in TCs. This technique can be used in place of conventional electron microscopy and opens new possibilities to study mechanisms determining polarized deposition of wall ingrowths and use reverse genetics to identify regulatory genes controlling TC trans-differentiation.

  18. A lower content of de-methylesterified homogalacturonan improves enzymatic cell separation and isolation of mesophyll protoplasts in Arabidopsis.

    PubMed

    Lionetti, Vincenzo; Cervone, Felice; De Lorenzo, Giulia

    2015-04-01

    Cell adhesion occurs primarily at the level of middle lamella which is mainly composed by pectin polysaccharides. These can be degraded by cell wall degrading enzymes (CWDEs) during developmental processes to allow a controlled separation of plant cells. Extensive cell wall degradation by CWDEs with consequent cell separation is performed when protoplasts are isolated from plant tissues by using mixtures of CWDEs. We have evaluated whether modification of pectin affects cell separation and protoplast isolation. Arabidopsis plants overexpressing the pectin methylesterase inhibitors AtPMEI-1 or AtPMEI-2, and Arabidopsis pme3 plants, mutated in the gene encoding pectin methylesterase 3, showed an increased efficiency of isolation of viable mesophyll protoplasts as compared with Wild Type Columbia-0 plants. The release of protoplasts was correlated with the reduced level of long stretches of de-methylesterified homogalacturonan (HGA) present in these plants. Response to elicitation, cell wall regeneration and efficiency of transfection in protoplasts from transgenic plants was comparable to those of wild type protoplasts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Xyloglucan Deficiency Disrupts Microtubule Stability and Cellulose Biosynthesis in Arabidopsis, Altering Cell Growth and Morphogenesis1[OPEN

    PubMed Central

    Xiao, Chaowen; Zhang, Tian; Zheng, Yunzhen

    2016-01-01

    Xyloglucan constitutes most of the hemicellulose in eudicot primary cell walls and functions in cell wall structure and mechanics. Although Arabidopsis (Arabidopsis thaliana) xxt1 xxt2 mutants lacking detectable xyloglucan are viable, they display growth defects that are suggestive of alterations in wall integrity. To probe the mechanisms underlying these defects, we analyzed cellulose arrangement, microtubule patterning and dynamics, microtubule- and wall-integrity-related gene expression, and cellulose biosynthesis in xxt1 xxt2 plants. We found that cellulose is highly aligned in xxt1 xxt2 cell walls, that its three-dimensional distribution is altered, and that microtubule patterning and stability are aberrant in etiolated xxt1 xxt2 hypocotyls. We also found that the expression levels of microtubule-associated genes, such as MAP70-5 and CLASP, and receptor genes, such as HERK1 and WAK1, were changed in xxt1 xxt2 plants and that cellulose synthase motility is reduced in xxt1 xxt2 cells, corresponding with a reduction in cellulose content. Our results indicate that loss of xyloglucan affects both the stability of the microtubule cytoskeleton and the production and patterning of cellulose in primary cell walls. These findings establish, to our knowledge, new links between wall integrity, cytoskeletal dynamics, and wall synthesis in the regulation of plant morphogenesis. PMID:26527657

  20. Xyloglucan Deficiency Disrupts Microtubule Stability and Cellulose Biosynthesis in Arabidopsis, Altering Cell Growth and Morphogenesis

    DOE PAGES

    Xiao, Chaowen; Zhang, Tian; Zheng, Yunzhen; ...

    2015-11-02

    Here, xyloglucan constitutes most of the hemicellulose in eudicot primary cell walls and functions in cell wall structure and mechanics. Although Arabidopsis ( Arabidopsis thaliana) xxt1 xxt2 mutants lacking detectable xyloglucan are viable, they display growth defects that are suggestive of alterations in wall integrity. To probe the mechanisms underlying these defects, we analyzed cellulose arrangement, microtubule patterning and dynamics, microtubule- and wall-integrity-related gene expression, and cellulose biosynthesis in xxt1 xxt2 plants. We found that cellulose is highly aligned in xxt1 xxt2 cell walls, that its three-dimensional distribution is altered, and that microtubule patterning and stability are aberrant in etiolatedmore » xxt1 xxt2 hypocotyls. We also found that the expression levels of microtubule-associated genes, such as MAP70-5 and CLASP, and receptor genes, such as HERK1 and WAK1, were changed in xxt1 xxt2 plants and that cellulose synthase motility is reduced in xxt1 xxt2 cells, corresponding with a reduction in cellulose content. Our results indicate that loss of xyloglucan affects both the stability of the microtubule cytoskeleton and the production and patterning of cellulose in primary cell walls. These findings establish, to our knowledge, new links between wall integrity, cytoskeletal dynamics, and wall synthesis in the regulation of plant morphogenesis.« less

  1. Xyloglucan Deficiency Disrupts Microtubule Stability and Cellulose Biosynthesis in Arabidopsis, Altering Cell Growth and Morphogenesis.

    PubMed

    Xiao, Chaowen; Zhang, Tian; Zheng, Yunzhen; Cosgrove, Daniel J; Anderson, Charles T

    2016-01-01

    Xyloglucan constitutes most of the hemicellulose in eudicot primary cell walls and functions in cell wall structure and mechanics. Although Arabidopsis (Arabidopsis thaliana) xxt1 xxt2 mutants lacking detectable xyloglucan are viable, they display growth defects that are suggestive of alterations in wall integrity. To probe the mechanisms underlying these defects, we analyzed cellulose arrangement, microtubule patterning and dynamics, microtubule- and wall-integrity-related gene expression, and cellulose biosynthesis in xxt1 xxt2 plants. We found that cellulose is highly aligned in xxt1 xxt2 cell walls, that its three-dimensional distribution is altered, and that microtubule patterning and stability are aberrant in etiolated xxt1 xxt2 hypocotyls. We also found that the expression levels of microtubule-associated genes, such as MAP70-5 and CLASP, and receptor genes, such as HERK1 and WAK1, were changed in xxt1 xxt2 plants and that cellulose synthase motility is reduced in xxt1 xxt2 cells, corresponding with a reduction in cellulose content. Our results indicate that loss of xyloglucan affects both the stability of the microtubule cytoskeleton and the production and patterning of cellulose in primary cell walls. These findings establish, to our knowledge, new links between wall integrity, cytoskeletal dynamics, and wall synthesis in the regulation of plant morphogenesis. © 2016 American Society of Plant Biologists. All Rights Reserved.

  2. The Arabidopsis GASA10 gene encodes a cell wall protein strongly expressed in developing anthers and seeds.

    PubMed

    Trapalis, Menelaos; Li, Song Feng; Parish, Roger W

    2017-07-01

    The Arabidopsis GASA10 gene encodes a GAST1-like (Gibberellic Acid-Stimulated) protein. Reporter gene analysis identified consistent expression in anthers and seeds. In anthers expression was developmentally regulated, first appearing at stage 7 of anther development and reaching a maximum at stage 11. Strongest expression was in the tapetum and developing microspores. GASA10 expression also occurred throughout the seed and in root vasculature. GASA10 was shown to be transported to the cell wall. Using GASA1 and GASA6 as positive controls, gibberellic acid was found not to induce GASA10 expression in Arabidopsis suspension cells. Overexpression of GASA10 (35S promoter-driven) resulted in a reduction in silique elongation. GASA10 shares structural similarities to the antimicrobial peptide snakin1, however, purified GASA10 failed to influence the growth of a variety of bacterial and fungal species tested. We propose cell wall associated GASA proteins are involved in regulating the hydroxyl radical levels at specific sites in the cell wall to facilitate wall growth (regulating cell wall elongation). Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Transcript Profiling Identifies Gene Cohorts Controlled by Each Signal Regulating Trans-Differentiation of Epidermal Cells of Vicia faba Cotyledons to a Transfer Cell Phenotype

    PubMed Central

    Zhang, Hui-Ming; Wheeler, Simon L.; Xia, Xue; Colyvas, Kim; Offler, Christina E.; Patrick, John W.

    2017-01-01

    Transfer cells (TCs) support high rates of membrane transport of nutrients conferred by a plasma membrane area amplified by lining a wall labyrinth comprised of an uniform wall layer (UWL) upon which intricate wall ingrowth (WI) papillae are deposited. A signal cascade of auxin, ethylene, extracellular hydrogen peroxide (H2O2) and cytosolic Ca2+ regulates wall labyrinth assembly. To identify gene cohorts regulated by each signal, a RNA- sequencing study was undertaken using Vicia faba cotyledons. When cotyledons are placed in culture, their adaxial epidermal cells spontaneously undergo trans-differentiation to epidermal TCs (ETCs). Expressed genes encoding proteins central to wall labyrinth formation (signaling, intracellular organization, cell wall) and TC function of nutrient transport were assembled. Transcriptional profiles identified 9,742 annotated ETC-specific differentially expressed genes (DEGs; Log2fold change > 1; FDR p ≤ 0.05) of which 1,371 belonged to signaling (50%), intracellular organization (27%), cell wall (15%) and nutrient transporters (9%) functional categories. Expression levels of 941 ETC-specific DEGs were found to be sensitive to the known signals regulating ETC trans-differentiation. Significantly, signals acting alone, or in various combinations, impacted similar numbers of ETC-specific DEGs across the four functional gene categories. Amongst the signals acting alone, H2O2 exerted most influence affecting expression levels of 56% of the ETC-specific DEGs followed by Ca2+ (21%), auxin (18%) and ethylene (5%). The dominance by H2O2 was evident across all functional categories, but became more attenuated once trans-differentiation transitioned into WI papillae formation. Amongst the eleven signal combinations, H2O2/Ca2+ elicited the greatest impact across all functional categories accounting for 20% of the ETC-specific DEG cohort. The relative influence of the other signals acting alone, or in various combinations, varied across the four functional categories and two phases of wall labyrinth construction. These transcriptome data provide a powerful information platform from which to examine signal transduction pathways and how these regulate expression of genes encoding proteins engaged in intracellular organization, cell wall construction and nutrient transport. PMID:29234338

  4. Transcript Profiling Identifies Gene Cohorts Controlled by Each Signal Regulating Trans-Differentiation of Epidermal Cells of Vicia faba Cotyledons to a Transfer Cell Phenotype.

    PubMed

    Zhang, Hui-Ming; Wheeler, Simon L; Xia, Xue; Colyvas, Kim; Offler, Christina E; Patrick, John W

    2017-01-01

    Transfer cells (TCs) support high rates of membrane transport of nutrients conferred by a plasma membrane area amplified by lining a wall labyrinth comprised of an uniform wall layer (UWL) upon which intricate wall ingrowth (WI) papillae are deposited. A signal cascade of auxin, ethylene, extracellular hydrogen peroxide (H 2 O 2 ) and cytosolic Ca 2+ regulates wall labyrinth assembly. To identify gene cohorts regulated by each signal, a RNA- sequencing study was undertaken using Vicia faba cotyledons. When cotyledons are placed in culture, their adaxial epidermal cells spontaneously undergo trans -differentiation to epidermal TCs (ETCs). Expressed genes encoding proteins central to wall labyrinth formation (signaling, intracellular organization, cell wall) and TC function of nutrient transport were assembled. Transcriptional profiles identified 9,742 annotated ETC-specific differentially expressed genes (DEGs; Log 2 fold change > 1; FDR p ≤ 0.05) of which 1,371 belonged to signaling (50%), intracellular organization (27%), cell wall (15%) and nutrient transporters (9%) functional categories. Expression levels of 941 ETC-specific DEGs were found to be sensitive to the known signals regulating ETC trans -differentiation. Significantly, signals acting alone, or in various combinations, impacted similar numbers of ETC-specific DEGs across the four functional gene categories. Amongst the signals acting alone, H 2 O 2 exerted most influence affecting expression levels of 56% of the ETC-specific DEGs followed by Ca 2+ (21%), auxin (18%) and ethylene (5%). The dominance by H 2 O 2 was evident across all functional categories, but became more attenuated once trans -differentiation transitioned into WI papillae formation. Amongst the eleven signal combinations, H 2 O 2 /Ca 2+ elicited the greatest impact across all functional categories accounting for 20% of the ETC-specific DEG cohort. The relative influence of the other signals acting alone, or in various combinations, varied across the four functional categories and two phases of wall labyrinth construction. These transcriptome data provide a powerful information platform from which to examine signal transduction pathways and how these regulate expression of genes encoding proteins engaged in intracellular organization, cell wall construction and nutrient transport.

  5. RAPID 2D NMR METHOD FOR DETERMINING P-COUMARATE AND FERULATE LEVELS IN CORN (AND OTHER GRASS) CELL WALLS

    USDA-ARS?s Scientific Manuscript database

    Grass cell wall components are acylated by the hydroxycinnamates p-coumarate and ferulate. p-Coumarates largely acylate lignin sidechains, exclusively at the gamma-position, whereas ferulates primarily acylate the arabinosyl C5-position of arabinoxylans. Such components can be quantified as the corr...

  6. Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level.

    PubMed

    Jin, Ye; Ni, Di-An; Ruan, Yong-Ling

    2009-07-01

    Invertase plays multiple pivotal roles in plant development. Thus, its activity must be tightly regulated in vivo. Emerging evidence suggests that a group of small proteins that inhibit invertase activity in vitro appears to exist in a wide variety of plants. However, little is known regarding their roles in planta. Here, we examined the function of INVINH1, a putative invertase inhibitor, in tomato (Solanum lycopersicum). Expression of a INVINH1:green fluorescent protein fusion revealed its apoplasmic localization. Ectopic overexpression of INVINH1 in Arabidopsis thaliana specifically reduced cell wall invertase activity. By contrast, silencing its expression in tomato significantly increased the activity of cell wall invertase without altering activities of cytoplasmic and vacuolar invertases. Elevation of cell wall invertase activity in RNA interference transgenic tomato led to (1) a prolonged leaf life span involving in a blockage of abscisic acid-induced senescence and (2) an increase in seed weight and fruit hexose level, which is likely achieved through enhanced sucrose hydrolysis in the apoplasm of the fruit vasculature. This assertion is based on (1) coexpression of INVINH1 and a fruit-specific cell wall invertase Lin5 in phloem parenchyma cells of young fruit, including the placenta regions connecting developing seeds; (2) a physical interaction between INVINH1 and Lin5 in vivo; and (3) a symplasmic discontinuity at the interface between placenta and seeds. Together, the results demonstrate that INVINH1 encodes a protein that specifically inhibits the activity of cell wall invertase and regulates leaf senescence and seed and fruit development in tomato by limiting the invertase activity in planta.

  7. The expression of PTEN in the development of mouse cochlear lateral wall.

    PubMed

    Dong, Y; Sui, L; Yamaguchi, F; Kamitori, K; Hirata, Y; Hossain, A; Noguchi, C; Katagi, A; Nishio, M; Suzuki, A; Lou, X; Tokuda, M

    2014-01-31

    Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor gene that regulates various cell processes including proliferation, growth, synaptogenesis, neural and glioma stem/progenitor cell renewal. In addition, PTEN can regulate sensory cell proliferation and differentiation of hair bundles in the mammalian cochlea. In this study we use immunofluorescence, Western blot and reverse transcriptase-polymerase chain reaction (RT-PCR) to reveal the expression of PTEN in the developing cochlear lateral wall, which is crucial for regulating K(+) homeostasis. Relatively high levels of PTEN are initially expressed in the marginal cells (MCs) of the lateral wall at embryonic day (E) 17.5 when they start to differentiate. Similarly high levels are subsequently expressed in differentiating root cells (RCs) at postnatal day (P) 3 and then in spiral ligament fibrocytes (SLFs) at P 10. In the mature cochlea, PTEN expression is low or undetectable in MCs and SLFs but it remains high in RCs and their processes. The expression pattern for PTEN in the developing lateral wall suggests that it plays a critical role in the differentiation of the cellular pathways that regulate K(+) homeostasis in the cochlea. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Elevated CO2 concentration impacts cell wall polysaccharide composition of green microalgae of the genus Chlorella.

    PubMed

    Cheng, Y-S; Labavitch, J M; VanderGheynst, J S

    2015-01-01

    The effect of CO2 concentration on the relative content of starch, lipid and cell wall carbohydrates in microalgal biomass was investigated for the four following Chlorella strains: C. vulgaris (UTEX 259), C. sorokiniana (UTEX 2805), C. minutissima (UTEX 2341) and C. variabilis (NC64A). Each strain had a different response to CO2 concentration. The starch content was higher in UTEX259 and NC64A cultured with 2% CO2 in the air supply than in cells cultured with ca. 0·04% CO2 (ambient air), while starch content was not affected for UTEX 2805 and UTEX 2341. The lipid content was higher in Chlorella minutissima UTEX 2341 cultured in 2% CO2 than in cells cultured in ambient air, but was unchanged for the other three strains. All four Chlorella strains tended to have a higher percentage of uronic acids and lower percentage of neutral sugars in their cell wall polysaccharide complement when grown with 2% CO2 supply. Although the percentage of neutral sugars in the cell walls varied with CO2 concentration, the relative proportions of different neutral sugar constituents remained constant for both CO2 conditions. The results demonstrate the importance of considering the effects of CO2 on the cell wall carbohydrate composition of microalgae. Microalgae have the potential to produce products that will reduce society's reliance on fossil fuels and address challenges related to food and feed production. An overlooked yet industrially relevant component of microalgae are their cell walls. Cell wall composition affects cell flocculation and the recovery of intracellular products. In this study, we show that increasing CO2 level results in greater cell wall polysaccharide and uronic acid content in the cell walls of three strains of microalgae. The results have implications on the management of systems for the capture of CO2 and production of fuels, chemicals and food from microalgae. © 2014 The Society for Applied Microbiology.

  9. Electric field mediated loading of macromolecules in intact yeast cells is critically controlled at the wall level.

    PubMed

    Ganeva, V; Galutzov, B; Teissié, J

    1995-12-13

    The mechanism of electric field mediated macromolecule transfer inside an intact yeast cell was investigated by observing, under a microscope, the fluorescence associated to cells after pulsation in a buffer containing two different hydrophilic fluorescent dyes. In the case of a small probe such as propidium iodide, a long lived permeabilized state was induced by the field as classically observed on wall free systems. Penetration of a 70 kDa FITC dextran was obtained only by using drastic conditions and only a very limited number of yeast cells which took up macromolecules remained viable. Most dextrans were trapped in the wall. A dramatic improvement in transfer of dextrans was observed when the cells were treated by dithiothreitol before pulsation. A cytoplasmic protein leakage was detected after the electric treatment suggesting that an irreversible damage took place in the walls of many pulsed cells. Electroloading of macromolecules in intact yeast cells appears to be controlled by a field induced short lived alteration of the envelope organization.

  10. Temporal transcriptome analysis of the white-rot fungus Obba rivulosa shows expression of a constitutive set of plant cell wall degradation targeted genes during growth on solid spruce wood.

    PubMed

    Marinović, Mila; Aguilar-Pontes, Maria Victoria; Zhou, Miaomiao; Miettinen, Otto; de Vries, Ronald P; Mäkelä, Miia R; Hildén, Kristiina

    2018-03-01

    The basidiomycete white-rot fungus Obba rivulosa, a close relative of Gelatoporia (Ceriporiopsis) subvermispora, is an efficient degrader of softwood. The dikaryotic O. rivulosa strain T241i (FBCC949) has been shown to selectively remove lignin from spruce wood prior to depolymerization of plant cell wall polysaccharides, thus possessing potential in biotechnological applications such as pretreatment of wood in pulp and paper industry. In this work, we studied the time-course of the conversion of spruce by the genome-sequenced monokaryotic O. rivulosa strain 3A-2, which is derived from the dikaryon T241i, to get insight into transcriptome level changes during prolonged solid state cultivation. During 8-week cultivation, O. rivulosa expressed a constitutive set of genes encoding putative plant cell wall degrading enzymes. High level of expression of the genes targeted towards all plant cell wall polymers was detected at 2-week time point, after which majority of the genes showed reduced expression. This implicated non-selective degradation of lignin by the O. rivulosa monokaryon and suggests high variation between mono- and dikaryotic strains of the white-rot fungi with respect to their abilities to convert plant cell wall polymers. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Determination of Cu Environments in the Cyanobacterium Anabaena flos-aquae by X-Ray Absorption Spectroscopy

    PubMed Central

    Kretschmer, X. C.; Meitzner, G.; Gardea-Torresdey, J. L.; Webb, R.

    2004-01-01

    Whole cells and peptidoglycan isolated from cell walls of the cyanobacterium Anabaena flos-aquae were lyophilized and used at pH 2 and pH 5 in Cu(II) binding studies. X-ray absorption spectra measured at the Cu K-edge were used to determine the oxidation states and chemical environments of Cu species in the whole-cell and peptidoglycan samples. In the whole-cell samples, most of the Cu retained at both pH values was coordinated by phosphate ligands. The whole-cell fractions contained significant concentrations of Cu(I) as well as Cu(II). An X-ray absorption near-edge spectrum analysis suggested that Cu(I) was coordinated by amine and thiol ligands. An analysis of the peptidoglycan fractions found that more Cu was adsorbed by the peptidoglycan fraction prepared at pH 5, due to increased chelation by amine and carboxyl ligands. The peptidoglycan fractions, also referred to as the cell wall fractions, contained little or no Cu(I). The Cu loading level was 30 times higher in the cell wall sample prepared at pH 5 than in the sample prepared at pH 2. Amine and bidentate carboxyl ligands had similar relative levels of importance in cell wall peptidoglycan samples prepared at both pH values, but phosphate coordination was insignificant. PMID:14766554

  12. Interplay between calcineurin and the Slt2 MAP-kinase in mediating cell wall integrity, conidiation and virulence in the insect fungal pathogen Beauveria bassiana.

    PubMed

    Huang, Shuaishuai; He, Zhangjiang; Zhang, Shiwei; Keyhani, Nemat O; Song, Yulin; Yang, Zhi; Jiang, Yahui; Zhang, Wenli; Pei, Yan; Zhang, Yongjun

    2015-10-01

    The entomopathogenic fungus, Beauveria bassiana, is of environmental and economic importance as an insect pathogen, currently used for the biological control of a number of pests. Cell wall integrity and conidiation are critical parameters for the ability of the fungus to infect insects and for production of the infectious propagules. The contribution of calcineurin and the Slt2 MAP kinase to cell wall integrity and development in B. bassiana was investigated. Gene knockouts of either the calcineurin CNA1 subunit or the Slt2 MAP kinase resulted in decreased tolerance to calcofluor white and high temperature. In contrast, the Δcna1 strain was more tolerant to Congo red but more sensitive to osmotic stress (NaCl, sorbitol) than the wild type, whereas the Δslt2 strain had the opposite phenotype. Changes in cell wall structure and composition were seen in the Δslt2 and Δcna1 strains during growth under cell wall stress as compared to the wild type. Both Δslt2 and Δcna1 strains showed significant alterations in growth, conidiation, and viability. Elevation of intracellular ROS levels, and decreased conidial hydrophobicity and adhesion to hydrophobic surfaces, were also seen for both mutants, as well as decreased virulence. Under cell wall stress conditions, inactivation of Slt2 significantly repressed CN-mediated phosphatase activity suggesting some level of cross talk between the two pathways. Comparative transcriptome profiling of the Δslt2 and Δcna1 strains revealed alterations in the expression of distinct gene sets, with overlap in transcripts involved in cell wall integrity, stress response, conidiation and virulence. These data illustrate convergent and divergent phenotypes and targets of the calcineurin and Slt2 pathways in B. bassiana. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Evaluation of the significance of cell wall polymers in flax infected with a pathogenic strain of Fusarium oxysporum.

    PubMed

    Wojtasik, Wioleta; Kulma, Anna; Dymińska, Lucyna; Hanuza, Jerzy; Czemplik, Magdalena; Szopa, Jan

    2016-03-22

    Fusarium oxysporum infection leads to Fusarium-derived wilt, which is responsible for the greatest losses in flax (Linum usitatissimum) crop yield. Plants infected by Fusarium oxysporum show severe symptoms of dehydration due to the growth of the fungus in vascular tissues. As the disease develops, vascular browning and leaf yellowing can be observed. In the case of more virulent strains, plants die. The pathogen's attack starts with secretion of enzymes degrading the host cell wall. The main aim of the study was to evaluate the role of the cell wall polymers in the flax plant response to the infection in order to better understand the process of resistance and develop new ways to protect plants against infection. For this purpose, the expression of genes involved in cell wall polymer metabolism and corresponding polymer levels were investigated in flax seedlings after incubation with Fusarium oxysporum. This analysis was facilitated by selecting two groups of genes responding differently to the infection. The first group comprised genes strongly affected by the infection and activated later (phenylalanine ammonia lyase and glucosyltransferase). The second group comprised genes which are slightly affected (up to five times) and their expression vary as the infection progresses. Fusarium oxysporum infection did not affect the contents of cell wall polymers, but changed their structure. The results suggest that the role of the cell wall polymers in the plant response to Fusarium oxysporum infection is manifested through changes in expression of their genes and rearrangement of the cell wall polymers. Our studies provided new information about the role of cellulose and hemicelluloses in the infection process, the change of their structure and the expression of genes participating in their metabolism during the pathogen infection. We also confirmed the role of pectin and lignin in this process, indicating the major changes at the mRNA level of lignin metabolism genes and the loosening of the pectin structure.

  14. Hypoxia-elicited impairment of cell wall integrity, glycosylation precursor synthesis, and growth in scaled-up high-cell density fed-batch cultures of Saccharomyces cerevisiae.

    PubMed

    Aon, Juan C; Sun, Jianxin; Leighton, Julie M; Appelbaum, Edward R

    2016-08-15

    In this study we examine the integrity of the cell wall during scale up of a yeast fermentation process from laboratory scale (10 L) to industrial scale (10,000 L). In a previous study we observed a clear difference in the volume fraction occupied by yeast cells as revealed by wet cell weight (WCW) measurements between these scales. That study also included metabolite analysis which suggested hypoxia during scale up. Here we hypothesize that hypoxia weakens the yeast cell wall during the scale up, leading to changes in cell permeability, and/or cell mechanical resistance, which in turn may lead to the observed difference in WCW. We tested the cell wall integrity by probing the cell wall sensitivity to Zymolyase. Also exometabolomics data showed changes in supply of precursors for the glycosylation pathway. The results show a more sensitive cell wall later in the production process at industrial scale, while the sensitivity at early time points was similar at both scales. We also report exometabolomics data, in particular a link with the protein glycosylation pathway. Significantly lower levels of Man6P and progressively higher GDP-mannose indicated partially impaired incorporation of this sugar nucleotide during co- or post-translational protein glycosylation pathways at the 10,000 L compared to the 10 L scale. This impairment in glycosylation would be expected to affect cell wall integrity. Although cell viability from samples obtained at both scales were similar, cells harvested from 10 L bioreactors were able to re-initiate growth faster in fresh shake flask media than those harvested from the industrial scale. The results obtained help explain the WCW differences observed at both scales by hypoxia-triggered weakening of the yeast cell wall during the scale up.

  15. Uncovering plant-pathogen crosstalk through apoplastic proteomic studies.

    PubMed

    Delaunois, Bertrand; Jeandet, Philippe; Clément, Christophe; Baillieul, Fabienne; Dorey, Stéphan; Cordelier, Sylvain

    2014-01-01

    Plant pathogens have evolved by developing different strategies to infect their host, which in turn have elaborated immune responses to counter the pathogen invasion. The apoplast, including the cell wall and extracellular space outside the plasma membrane, is one of the first compartments where pathogen-host interaction occurs. The plant cell wall is composed of a complex network of polysaccharides polymers and glycoproteins and serves as a natural physical barrier against pathogen invasion. The apoplastic fluid, circulating through the cell wall and intercellular spaces, provides a means for delivering molecules and facilitating intercellular communications. Some plant-pathogen interactions lead to plant cell wall degradation allowing pathogens to penetrate into the cells. In turn, the plant immune system recognizes microbial- or damage-associated molecular patterns (MAMPs or DAMPs) and initiates a set of basal immune responses, including the strengthening of the plant cell wall. The establishment of defense requires the regulation of a wide variety of proteins that are involved at different levels, from receptor perception of the pathogen via signaling mechanisms to the strengthening of the cell wall or degradation of the pathogen itself. A fine regulation of apoplastic proteins is therefore essential for rapid and effective pathogen perception and for maintaining cell wall integrity. This review aims to provide insight into analyses using proteomic approaches of the apoplast to highlight the modulation of the apoplastic protein patterns during pathogen infection and to unravel the key players involved in plant-pathogen interaction.

  16. Rim Pathway-Mediated Alterations in the Fungal Cell Wall Influence Immune Recognition and Inflammation.

    PubMed

    Ost, Kyla S; Esher, Shannon K; Leopold Wager, Chrissy M; Walker, Louise; Wagener, Jeanette; Munro, Carol; Wormley, Floyd L; Alspaugh, J Andrew

    2017-01-31

    Compared to other fungal pathogens, Cryptococcus neoformans is particularly adept at avoiding detection by innate immune cells. To explore fungal cellular features involved in immune avoidance, we characterized cell surface changes of the C. neoformans rim101Δ mutant, a strain that fails to organize and shield immunogenic epitopes from host detection. These cell surface changes are associated with an exaggerated, detrimental inflammatory response in mouse models of infection. We determined that the disorganized strain rim101Δ cell wall increases macrophage detection in a contact-dependent manner. Using biochemical and microscopy methods, we demonstrated that the rim101Δ strain shows a modest increase in the levels of both cell wall chitin and chitosan but that it shows a more dramatic increase in chito-oligomer exposure, as measured by wheat germ agglutinin staining. We also created a series of mutants with various levels of cell wall wheat germ agglutinin staining, and we demonstrated that the staining intensity correlates with the degree of macrophage activation in response to each strain. To explore the host receptors responsible for recognizing the rim101Δ mutant, we determined that both the MyD88 and CARD9 innate immune signaling proteins are involved. Finally, we characterized the immune response to the rim101Δ mutant in vivo, documenting a dramatic and sustained increase in Th1 and Th17 cytokine responses. These results suggest that the Rim101 transcription factor actively regulates the C. neoformans cell wall to prevent the exposure of immune stimulatory molecules within the host. These studies further explored the ways in which immune cells detect C. neoformans and other fungal pathogens by mechanisms that include sensing N-acetylglucosamine-containing structures, such as chitin and chitosan. Infectious microorganisms have developed many ways to avoid recognition by the host immune system. For example, pathogenic fungi alter their cell surfaces to mask immunogenic epitopes. We have created a fungal strain with a targeted mutation in a pH response pathway that is unable to properly organize its cell wall, resulting in a dramatic immune reaction during infection. This mutant cell wall is defective in hiding important cell wall components, such as the chito-oligomers chitin and chitosan. By creating a series of cell wall mutants, we demonstrated that the degree of chito-oligomer exposure correlates with the intensity of innate immune cell activation. This activation requires a combination of host receptors to recognize and respond to these infecting microorganisms. Therefore, these experiments explored host-pathogen interactions that determine the degree of the subsequent inflammatory response and the likely outcome of infection. Copyright © 2017 Ost et al.

  17. Molecular deformation mechanisms of the wood cell wall material.

    PubMed

    Jin, Kai; Qin, Zhao; Buehler, Markus J

    2015-02-01

    Wood is a biological material with outstanding mechanical properties resulting from its hierarchical structure across different scales. Although earlier work has shown that the cellular structure of wood is a key factor that renders it excellent mechanical properties at light weight, the mechanical properties of the wood cell wall material itself still needs to be understood comprehensively. The wood cell wall material features a fiber reinforced composite structure, where cellulose fibrils act as stiff fibers, and hemicellulose and lignin molecules act as soft matrix. The angle between the fiber direction and the loading direction has been found to be the key factor controlling the mechanical properties. However, how the interactions between theses constitutive molecules contribute to the overall properties is still unclear, although the shearing between fibers has been proposed as a primary deformation mechanism. Here we report a molecular model of the wood cell wall material with atomistic resolution, used to assess the mechanical behavior under shear loading in order to understand the deformation mechanisms at the molecular level. The model includes an explicit description of cellulose crystals, hemicellulose, as well as lignin molecules arranged in a layered nanocomposite. The results obtained using this model show that the wood cell wall material under shear loading deforms in an elastic and then plastic manner. The plastic regime can be divided into two parts according to the different deformation mechanisms: yielding of the matrix and sliding of matrix along the cellulose surface. Our molecular dynamics study provides insights of the mechanical behavior of wood cell wall material at the molecular level, and paves a way for the multi-scale understanding of the mechanical properties of wood. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Elevated Cell Wall Chitin in Candida albicans Confers Echinocandin Resistance In Vivo

    PubMed Central

    Lee, Keunsook K.; MacCallum, Donna M.; Jacobsen, Mette D.; Walker, Louise A.; Odds, Frank C.

    2012-01-01

    Candida albicans cells with increased cell wall chitin have reduced echinocandin susceptibility in vitro. The aim of this study was to investigate whether C. albicans cells with elevated chitin levels have reduced echinocandin susceptibility in vivo. BALB/c mice were infected with C. albicans cells with normal chitin levels and compared to mice infected with high-chitin cells. Caspofungin therapy was initiated at 24 h postinfection. Mice infected with chitin-normal cells were successfully treated with caspofungin, as indicated by reduced kidney fungal burdens, reduced weight loss, and decreased C. albicans density in kidney lesions. In contrast, mice infected with high-chitin C. albicans cells were less susceptible to caspofungin, as they had higher kidney fungal burdens and greater weight loss during early infection. Cells recovered from mouse kidneys at 24 h postinfection with high-chitin cells had 1.6-fold higher chitin levels than cells from mice infected with chitin-normal cells and maintained a significantly reduced susceptibility to caspofungin when tested in vitro. At 48 h postinfection, caspofungin treatment induced a further increase in chitin content of C. albicans cells harvested from kidneys compared to saline treatment. Some of the recovered clones had acquired, at a low frequency, a point mutation in FKS1 resulting in a S645Y amino acid substitution, a mutation known to confer echinocandin resistance. This occurred even in cells that had not been exposed to caspofungin. Our results suggest that the efficacy of caspofungin against C. albicans was reduced in vivo due to either elevation of chitin levels in the cell wall or acquisition of FKS1 point mutations. PMID:21986821

  19. Identification and suppression of the p-coumaroyl CoA:hydroxycinnamyl alcohol transferase in Zea mays L.

    PubMed Central

    Marita, Jane M; Hatfield, Ronald D; Rancour, David M; Frost, Kenneth E

    2014-01-01

    Grasses, such as Zea mays L. (maize), contain relatively high levels of p-coumarates (pCA) within their cell walls. Incorporation of pCA into cell walls is believed to be due to a hydroxycinnamyl transferase that couples pCA to monolignols. To understand the role of pCA in maize development, the p-coumaroyl CoA:hydroxycinnamyl alcohol transferase (pCAT) was isolated and purified from maize stems. Purified pCAT was subjected to partial trypsin digestion, and peptides were sequenced by tandem mass spectrometry. TBLASTN analysis of the acquired peptide sequences identified a single full-length maize cDNA clone encoding all the peptide sequences obtained from the purified enzyme. The cDNA clone was obtained and used to generate an RNAi construct for suppressing pCAT expression in maize. Here we describe the effects of suppression of pCAT in maize. Primary screening of transgenic maize seedling leaves using a new rapid analytical platform was used to identify plants with decreased amounts of pCA. Using this screening method, mature leaves from fully developed plants were analyzed, confirming reduced pCA levels throughout plant development. Complete analysis of isolated cell walls from mature transgenic stems and leaves revealed that lignin levels did not change, but pCA levels decreased and the lignin composition was altered. Transgenic plants with the lowest levels of pCA had decreased levels of syringyl units in the lignin. Thus, altering the levels of pCAT expression in maize leads to altered lignin composition, but does not appear to alter the total amount of lignin present in the cell walls. PMID:24654730

  20. Identification and suppression of the p-coumaroyl CoA:hydroxycinnamyl alcohol transferase in Zea mays L.

    PubMed

    Marita, Jane M; Hatfield, Ronald D; Rancour, David M; Frost, Kenneth E

    2014-06-01

    Grasses, such as Zea mays L. (maize), contain relatively high levels of p-coumarates (pCA) within their cell walls. Incorporation of pCA into cell walls is believed to be due to a hydroxycinnamyl transferase that couples pCA to monolignols. To understand the role of pCA in maize development, the p-coumaroyl CoA:hydroxycinnamyl alcohol transferase (pCAT) was isolated and purified from maize stems. Purified pCAT was subjected to partial trypsin digestion, and peptides were sequenced by tandem mass spectrometry. TBLASTN analysis of the acquired peptide sequences identified a single full-length maize cDNA clone encoding all the peptide sequences obtained from the purified enzyme. The cDNA clone was obtained and used to generate an RNAi construct for suppressing pCAT expression in maize. Here we describe the effects of suppression of pCAT in maize. Primary screening of transgenic maize seedling leaves using a new rapid analytical platform was used to identify plants with decreased amounts of pCA. Using this screening method, mature leaves from fully developed plants were analyzed, confirming reduced pCA levels throughout plant development. Complete analysis of isolated cell walls from mature transgenic stems and leaves revealed that lignin levels did not change, but pCA levels decreased and the lignin composition was altered. Transgenic plants with the lowest levels of pCA had decreased levels of syringyl units in the lignin. Thus, altering the levels of pCAT expression in maize leads to altered lignin composition, but does not appear to alter the total amount of lignin present in the cell walls. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  1. Impact of cell wall encapsulation of almonds on in vitro duodenal lipolysis.

    PubMed

    Grundy, Myriam M L; Wilde, Peter J; Butterworth, Peter J; Gray, Robert; Ellis, Peter R

    2015-10-15

    Although almonds have a high lipid content, their consumption is associated with reduced risk of cardiovascular disease. One explanation for this paradox could be limited bioaccessibility of almond lipids due to the cell wall matrix acting as a physical barrier to digestion in the upper gastrointestinal tract. We aimed to measure the rate and extent of lipolysis in an in vitro duodenum digestion model, using raw and roasted almond materials with potentially different degrees of bioaccessibility. The results revealed that a decrease in particle size led to an increased rate and extent of lipolysis. Particle size had a crucial impact on lipid bioaccessibility, since it is an indicator of the proportion of ruptured cells in the almond tissue. Separated almond cells with intact cell walls showed the lowest levels of digestibility. This study underlines the importance of the cell wall for modulating lipid uptake and hence the positive health benefits underlying almond consumption. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance

    DOE PAGES

    Kalluri, Udaya C.; Yin, Hengfu; Yang, Xiaohan; ...

    2014-11-03

    Fine-tuning plant cell wall properties to render plant biomass more amenable to biofuel conversion is a colossal challenge. A deep knowledge of the biosynthesis and regulation of plant cell wall and a high-precision genome engineering toolset are the two essential pillars of efforts to alter plant cell walls and reduce biomass recalcitrance. The past decade has seen a meteoric rise in use of transcriptomics and high-resolution imaging methods resulting in fresh insights into composition, structure, formation and deconstruction of plant cell walls. Subsequent gene manipulation approaches, however, commonly include ubiquitous mis-expression of a single candidate gene in a host thatmore » carries an intact copy of the native gene. The challenges posed by pleiotropic and unintended changes resulting from such an approach are moving the field towards synthetic biology approaches. Finally, synthetic biology builds on a systems biology knowledge base and leverages high-precision tools for high-throughput assembly of multigene constructs and pathways, precision genome editing and site-specific gene stacking, silencing and/or removal. Here, we summarize the recent breakthroughs in biosynthesis and remodelling of major secondary cell wall components, assess the impediments in obtaining a systems-level understanding and explore the potential opportunities in leveraging synthetic biology approaches to reduce biomass recalcitrance.« less

  3. Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalluri, Udaya C.; Yin, Hengfu; Yang, Xiaohan

    Fine-tuning plant cell wall properties to render plant biomass more amenable to biofuel conversion is a colossal challenge. A deep knowledge of the biosynthesis and regulation of plant cell wall and a high-precision genome engineering toolset are the two essential pillars of efforts to alter plant cell walls and reduce biomass recalcitrance. The past decade has seen a meteoric rise in use of transcriptomics and high-resolution imaging methods resulting in fresh insights into composition, structure, formation and deconstruction of plant cell walls. Subsequent gene manipulation approaches, however, commonly include ubiquitous mis-expression of a single candidate gene in a host thatmore » carries an intact copy of the native gene. The challenges posed by pleiotropic and unintended changes resulting from such an approach are moving the field towards synthetic biology approaches. Finally, synthetic biology builds on a systems biology knowledge base and leverages high-precision tools for high-throughput assembly of multigene constructs and pathways, precision genome editing and site-specific gene stacking, silencing and/or removal. Here, we summarize the recent breakthroughs in biosynthesis and remodelling of major secondary cell wall components, assess the impediments in obtaining a systems-level understanding and explore the potential opportunities in leveraging synthetic biology approaches to reduce biomass recalcitrance.« less

  4. Decreasing methylation of pectin caused by nitric oxide leads to higher aluminium binding in cell walls and greater aluminium sensitivity of wheat roots

    PubMed Central

    Sun, Chengliang; Lu, Lingli; Yu, Yan; Liu, Lijuan; Hu, Yan; Ye, Yiquan; Jin, Chongwei; Lin, Xianyong

    2016-01-01

    Nitric oxide (NO) is an important bioactive molecule involved in cell wall metabolism, which has been recognized as a major target of aluminium (Al) toxicity. We have investigated the effects of Al-induced NO production on cell wall composition and the subsequent Al-binding capacity in roots of an Al-sensitive cultivar of wheat (Triticum aestivum L. cv. Yang-5). We found that Al exposure induced NO accumulation in the root tips. Eliminating NO production with an NO scavenger (cPTIO) significantly alleviated the Al-induced inhibition of root growth and thus reduced Al accumulation. Elimination of NO, however, did not significantly affect malate efflux or rhizosphere pH changes under Al exposure. Levels of cell wall polysaccharides (pectin, hemicelluloses 1, and hemicelluloses 2) and pectin methylesterase activity, as well as pectin demethylation in the root apex, significantly increased under Al treatment. Exogenous cPTIO application significantly decreased pectin methylesterase activity and increased the degree of methylation of pectin in the root cell wall, thus decreasing the Al-binding capacity of pectin. These results suggest that the Al-induced enhanced production of NO decreases cell wall pectin methylation, thus increasing the Al-binding capacity of pectin and negatively regulating Al tolerance in wheat. PMID:26663393

  5. 13C cell wall enrichment and ionic liquid NMR analysis: progress towards a high-throughput detailed chemical analysis of the whole plant cell wall.

    PubMed

    Foston, Marcus; Samuel, Reichel; Ragauskas, Arthur J

    2012-09-07

    The ability to accurately and rapidly measure plant cell wall composition, relative monolignol content and lignin-hemicellulose inter-unit linkage distributions has become essential to efforts centered on reducing the recalcitrance of biomass by genetic engineering. Growing (13)C enriched transgenic plants is a viable route to achieve the high-throughput, detailed chemical analysis of whole plant cell wall before and after pretreatment and microbial or enzymatic utilization by (13)C nuclear magnetic resonance (NMR) in a perdeuterated ionic liquid solvent system not requiring component isolation. 1D (13)C whole cell wall ionic liquid NMR of natural abundant and (13)C enriched corn stover stem samples suggest that a high level of uniform labeling (>97%) can significantly reduce the total NMR experiment times up to ~220 times. Similarly, significant reduction in total NMR experiment time (~39 times) of the (13)C enriched corn stover stem samples for 2D (13)C-(1)H heteronuclear single quantum coherence NMR was found.

  6. Dynamics of biomass partitioning, stem gene expression, cell wall biosynthesis, and sucrose accumulation during development of Sorghum bicolor.

    PubMed

    McKinley, Brian; Rooney, William; Wilkerson, Curtis; Mullet, John

    2016-11-01

    Biomass accumulated preferentially in leaves of the sweet sorghum Della until floral initiation, then stems until anthesis, followed by panicles until grain maturity, and apical tillers. Sorghum stem RNA-seq transcriptome profiles and composition data were collected for approximately 100 days of development beginning at floral initiation. The analysis identified >200 differentially expressed genes involved in stem growth, cell wall biology, and sucrose accumulation. Genes encoding expansins and xyloglucan endotransglucosylase/hydrolases were differentially expressed in growing stem internodes. Genes encoding enzymes involved in the synthesis of cellulose, lignin, and glucuronoarabinoxylan were expressed at elevated levels in stems until approximately 7 days before anthesis and then down-regulated. CESA genes involved in primary and secondary cell wall synthesis showed different temporal patterns of expression. Following floral initiation, the level of sucrose and other non-structural carbohydrates increased to approximately 50% of the stem's dry weight. Stem sucrose accumulation was inversely correlated with >100-fold down-regulation of SbVIN1, a gene encoding a vacuolar invertase. Accumulation of stem sucrose was also correlated with cessation of leaf and stem growth at anthesis, decreased expression of genes involved in stem cell wall synthesis, and approximately 10-fold lower expression of SbSUS4, a gene encoding sucrose synthase that generates UDP-glucose from sucrose for cell wall biosynthesis. Genes for mixed linkage glucan synthesis (CSLF) and turnover were expressed at high levels in stems throughout development. Overall, the stem transcription profile resource and the genes and regulatory dynamics identified in this study will be useful for engineering sorghum stem composition for improved conversion to biofuels and bio-products. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  7. Calcium-dependent depletion zones in the cortical microtubule array coincide with sites of, but do not regulate, wall ingrowth papillae deposition in epidermal transfer cells

    PubMed Central

    Zhang, Hui-ming; Talbot, Mark J.; McCurdy, David W.; Patrick, John W.; Offler, Christina E.

    2015-01-01

    Trans-differentiation to a transfer-cell morphology is characterized by the localized deposition of wall ingrowth papillae that protrude into the cytosol. Whether the cortical microtubule array directs wall ingrowth papillae formation was investigated using a Vicia faba cotyledon culture system in which their adaxial epidermal cells were spontaneously induced to trans-differentiate to transfer cells. During deposition of wall ingrowth papillae, the aligned cortical microtubule arrays in precursor epidermal cells were reorganized into a randomized array characterized by circular depletion zones. Concurrence of the temporal appearance, spatial pattern, and size of depletion zones and wall ingrowth papillae was consistent with each papilla occupying a depletion zone. Surprisingly, microtubules appeared not to regulate construction of wall ingrowth papillae, as neither depolymerization nor stabilization of cortical microtubules changed their deposition pattern or morphology. Moreover, the size and spatial pattern of depletion zones was unaltered when the formation of wall ingrowth papillae was blocked by inhibiting cellulose biosynthesis. In contrast, the depletion zones were absent when the cytosolic calcium plumes, responsible for directing wall ingrowth papillae formation, were blocked or dissipated. Thus, we conclude that the depletion zones within the cortical microtubule array result from localized depolymerization of microtubules initiated by elevated cytosolic Ca2+ levels at loci where wall ingrowth papillae are deposited. The physiological significance of the depletion zones as a mechanism to accommodate the construction of wall ingrowth papillae without compromising maintenance of the plasma membrane–microtubule inter-relationship is discussed. PMID:26136268

  8. Accumulation of N-Acetylglucosamine Oligomers in the Plant Cell Wall Affects Plant Architecture in a Dose-Dependent and Conditional Manner1[W][OPEN

    PubMed Central

    Vanholme, Bartel; Vanholme, Ruben; Turumtay, Halbay; Goeminne, Geert; Cesarino, Igor; Goubet, Florence; Morreel, Kris; Rencoret, Jorge; Bulone, Vincent; Hooijmaijers, Cortwa; De Rycke, Riet; Gheysen, Godelieve; Ralph, John; De Block, Marc; Meulewaeter, Frank; Boerjan, Wout

    2014-01-01

    To study the effect of short N-acetylglucosamine (GlcNAc) oligosaccharides on the physiology of plants, N-ACETYLGLUCOSAMINYLTRANSFERASE (NodC) of Azorhizobium caulinodans was expressed in Arabidopsis (Arabidopsis thaliana). The corresponding enzyme catalyzes the polymerization of GlcNAc and, accordingly, β-1,4-GlcNAc oligomers accumulated in the plant. A phenotype characterized by difficulties in developing an inflorescence stem was visible when plants were grown for several weeks under short-day conditions before transfer to long-day conditions. In addition, a positive correlation between the oligomer concentration and the penetrance of the phenotype was demonstrated. Although NodC overexpression lines produced less cell wall compared with wild-type plants under nonpermissive conditions, no indications were found for changes in the amount of the major cell wall polymers. The effect on the cell wall was reflected at the transcriptome level. In addition to genes encoding cell wall-modifying enzymes, a whole set of genes encoding membrane-coupled receptor-like kinases were differentially expressed upon GlcNAc accumulation, many of which encoded proteins with an extracellular Domain of Unknown Function26. Although stress-related genes were also differentially expressed, the observed response differed from that of a classical chitin response. This is in line with the fact that the produced chitin oligomers were too small to activate the chitin receptor-mediated signal cascade. Based on our observations, we propose a model in which the oligosaccharides modify the architecture of the cell wall by acting as competitors in carbohydrate-carbohydrate or carbohydrate-protein interactions, thereby affecting noncovalent interactions in the cell wall or at the interface between the cell wall and the plasma membrane. PMID:24664205

  9. Inhibition of cadmium ion uptake in rice (Oryza sativa) cells by a wall-bound form of silicon.

    PubMed

    Liu, Jian; Ma, Jie; He, Congwu; Li, Xiuli; Zhang, Wenjun; Xu, Fangsen; Lin, Yongjun; Wang, Lijun

    2013-11-01

    The stresses acting on plants that are alleviated by silicon (Si) range from biotic to abiotic stresses, such as heavy metal toxicity. However, the mechanism of stress alleviation by Si at the single-cell level is poorly understood. We cultivated suspended rice (Oryza sativa) cells and protoplasts and investigated them using a combination of plant nutritional and physical techniques including inductively coupled plasma mass spectrometry (ICP-MS), the scanning ion-selective electrode technique (SIET) and X-ray photoelectron spectroscopy (XPS). We found that most Si accumulated in the cell walls in a wall-bound organosilicon compound. Total cadmium (Cd) concentrations in protoplasts from Si-accumulating (+Si) cells were significantly reduced at moderate concentrations of Cd in the culture medium compared with those from Si-limiting (-Si) cells. In situ measurement of cellular fluxes of the cadmium ion (Cd(2+) ) in suspension cells and root cells of rice exposed to Cd(2+) and/or Si treatments showed that +Si cells significantly inhibited the net Cd(2+) influx, compared with that in -Si cells. Furthermore, a net negative charge (charge density) within the +Si cell walls could be neutralized by an increase in the Cd(2+) concentration in the measuring solution. A mechanism of co-deposition of Si and Cd in the cell walls via a [Si-wall matrix]Cd co-complexation may explain the inhibition of Cd ion uptake, and may offer a plausible explanation for the in vivo detoxification of Cd in rice. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  10. Chemical modification : a non-toxic approach to wood preservation

    Treesearch

    Roger M. Rowell

    2005-01-01

    Reaction of wood with anhydrides, isocyanates, and epoxides reduces the moisture content of the cell wall and increases the resistance of the modified wood to attack by fungi. As the level of bonded chemical increases. the cell wall equilibrium moisture content decreases and the resistance to attack by white-and brown-rot fungi increases. There is a direct relationship...

  11. Cell wall domain and moisture content influence southern pine electrical conductivity

    Treesearch

    Samuel L. Zelinka; Leandro Passarini; José L. Colon Quintana; Samuel V. Glass; Joseph E. Jakes; Alex C. Wiedenhoeft

    2016-01-01

    Recent work has highlighted the importance of movement of chemicals and ions through the wood cell wall. This movement depends strongly on moisture content and is necessary for structural damage mechanisms such as fastener corrosion and wood decay. Here, we present the first measurements of electrical resistance of southern pine at the subcellular level as a function...

  12. Genetic and Quantitative Trait Locus Analysis of Cell Wall Components and Forage Digestibility in the Zheng58 × HD568 Maize RIL Population at Anthesis Stage

    PubMed Central

    Li, Kun; Wang, Hongwu; Hu, Xiaojiao; Ma, Feiqian; Wu, Yujin; Wang, Qi; Liu, Zhifang; Huang, Changling

    2017-01-01

    The plant cell wall plays vital roles in various aspects of the plant life cycle. It provides a basic structure for cells and gives mechanical rigidity to the whole plant. Some complex cell wall components are involved in signal transduction during pathogenic infection and pest infestations. Moreover, the lignification level of cell walls strongly influences the digestibility of forage plants. To determine the genetic bases of cell wall components and digestibility, quantitative trait locus (QTL) analyses for six related traits were performed using a recombinant inbred line (RIL) population from a cross between Zheng58 and HD568. Eight QTL for in vitro neutral detergent fiber (NDF) digestibility were observed, out of which only two increasing alleles came from HD568. Three QTL out of ten with alleles increasing in vitro dry matter digestibility also originated from HD568. Five–ten QTL were detected for lignin, cellulose content, acid detergent fiber, and NDF content. Among these results, 29.8% (14/47) of QTL explained >10% of the phenotypic variation in the RIL population, whereas 70.2% (33/47) explained ≤10%. These results revealed that in maize stalks, a few large-effect QTL and a number of minor-effect QTL contributed to most of the genetic components involved in cell wall biosynthesis and digestibility. PMID:28883827

  13. Genetic and Quantitative Trait Locus Analysis of Cell Wall Components and Forage Digestibility in the Zheng58 × HD568 Maize RIL Population at Anthesis Stage.

    PubMed

    Li, Kun; Wang, Hongwu; Hu, Xiaojiao; Ma, Feiqian; Wu, Yujin; Wang, Qi; Liu, Zhifang; Huang, Changling

    2017-01-01

    The plant cell wall plays vital roles in various aspects of the plant life cycle. It provides a basic structure for cells and gives mechanical rigidity to the whole plant. Some complex cell wall components are involved in signal transduction during pathogenic infection and pest infestations. Moreover, the lignification level of cell walls strongly influences the digestibility of forage plants. To determine the genetic bases of cell wall components and digestibility, quantitative trait locus (QTL) analyses for six related traits were performed using a recombinant inbred line (RIL) population from a cross between Zheng58 and HD568. Eight QTL for in vitro neutral detergent fiber (NDF) digestibility were observed, out of which only two increasing alleles came from HD568. Three QTL out of ten with alleles increasing in vitro dry matter digestibility also originated from HD568. Five-ten QTL were detected for lignin, cellulose content, acid detergent fiber, and NDF content. Among these results, 29.8% (14/47) of QTL explained >10% of the phenotypic variation in the RIL population, whereas 70.2% (33/47) explained ≤10%. These results revealed that in maize stalks, a few large-effect QTL and a number of minor-effect QTL contributed to most of the genetic components involved in cell wall biosynthesis and digestibility.

  14. Cellular growth in plants requires regulation of cell wall biochemistry.

    PubMed

    Chebli, Youssef; Geitmann, Anja

    2017-02-01

    Cell and organ morphogenesis in plants are regulated by the chemical structure and mechanical properties of the extracellular matrix, the cell wall. The two primary load bearing components in the plant cell wall, the pectin matrix and the cellulose/xyloglucan network, are constantly remodelled to generate the morphological changes required during plant development. This remodelling is regulated by a plethora of loosening and stiffening agents such as pectin methyl-esterases, calcium ions, expansins, and glucanases. The tight spatio-temporal regulation of the activities of these agents is a sine qua non condition for proper morphogenesis at cell and tissue levels. The pectin matrix and the cellulose-xyloglucan network operate in concert and their behaviour is mutually dependent on their chemical, structural and mechanical modifications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Expression of fungal pectin methylesterase in transgenic tobacco leads to alteration in cell wall metabolism and a dwarf phenotype.

    PubMed

    Hasunuma, Tomohisa; Fukusaki, Ei-ichiro; Kobayashi, Akio

    2004-08-05

    A transgenic tobacco plant (Nicotiana tabacum L.) expressing a fungal pectin methylesterase (PME; EC 3.1.1.11) gene derived from a black filamentous fungus, Aspergillus niger was created. Fungal PME should have a wider range of adaptability to substrate pectin compared with plant PME. As expected, the proportion of methyl esters in pectin was reduced in the transgenic tobacco. Consequently, the transgenic plant showed short internodes, small leaves and a dwarf phenotype. At a cellular level, the longitudinal lengths of stem epidermal cells were shorter than those of control plants. This is the first report that fungal PME promotes dwarfism in plants. It is worth noting that in the PME-expressing dwarf plant, the expression levels of cell wall metabolism related genes that included endo-1,4-beta-glucanase, cellulose synthase, endo-xyloglucan transferase and expansin gene were decreased. These results suggest that the expression of fungal PME in plants affects the cell wall metabolism.

  16. Influence of essential oil of Hyssopus officinalis on the chemical composition of the walls of Aspergillus fumigatus (Fresenius).

    PubMed

    Ghfir, B; Fonvieille, J L; Dargent, R

    1997-07-01

    The cell walls of the growing hyphae of Aspergillus fumigatus (Fresenius) cultured in the presence or absence of the essential oil of Hyssopus officinalis were isolated and their chemical composition analysed. The presence of the essential oil led to a reduction in levels of neutral sugars, uronic acid and proteins, whereas amino sugars, lipids and phosphorus levels were increased. HPLC analysis of the neutral sugars showed that they consisted mainly of glucose, mannose and galactose, while the amino sugars consisted of glucosamine and galactosamine. The presence of the essential oil in the culture medium induced marked changes in the content of galactose and galactosamine. Cell walls were fractionated by treatment with alkali and acid. The essential oil induced similar alterations in the various fractions with a more marked effect on the major constituents. The alterations were related to changes in the structure of the cells.

  17. Cell wall metabolism and hexose allocation contribute to biomass accumulation in high yielding extreme segregants of a Saccharum interspecific F2 population.

    PubMed

    Wai, Ching Man; Zhang, Jisen; Jones, Tyler C; Nagai, Chifumi; Ming, Ray

    2017-10-11

    Sugarcane is an emerging dual-purpose biofuel crop for energy and sugar production, owing to its rapid growth rate, high sucrose storage in the stems, and high lignocellulosic yield. It has the highest biomass production reaching 1.9 billion tonnes in 2014 worldwide. To improve sugarcane biomass accumulation, we developed an interspecific cross between Saccharum officinarum 'LA Purple' and Saccharum robustum 'MOL5829'. Selected F1 individuals were self-pollinated to generate a transgressive F2 population with a wide range of biomass yield. Leaf and stem internodes of fourteen high biomass and eight low biomass F2 extreme segregants were used for RNA-seq to decipher the molecular mechanism of rapid plant growth and dry weight accumulation. Gene Ontology terms involved in cell wall metabolism and carbohydrate catabolism were enriched among 3274 differentially expressed genes between high and low biomass groups. Up-regulation of cellulose metabolism, pectin degradation and lignin biosynthesis genes were observed in the high biomass group, in conjunction with higher transcript levels of callose metabolic genes and the cell wall loosening enzyme expansin. Furthermore, UDP-glucose biosynthesis and sucrose conversion genes were differentially expressed between the two groups. A positive correlation between stem glucose, but not sucrose, levels and dry weight was detected. We thus postulated that the high biomass sugarcane plants rapidly convert sucrose to UDP-glucose, which is the building block of cell wall polymers and callose, in order to maintain the rapid plant growth. The gene interaction of cell wall metabolism, hexose allocation and cell division contributes to biomass yield.

  18. Heteroblastic Development of Transfer Cells Is Controlled by the microRNA miR156/SPL Module1[OPEN

    PubMed Central

    Greaves, Teighan

    2017-01-01

    We report that wall ingrowth deposition in phloem parenchyma (PP) transfer cells (TCs) in leaf veins of Arabidopsis (Arabidopsis thaliana) represents a novel trait of heteroblasty. Development of PP TCs involves extensive deposition of wall ingrowths adjacent to cells of the sieve element/companion cell complex. These PP TCs potentially facilitate phloem loading by enhancing efflux of symplasmic Suc for subsequent active uptake into cells of the sieve element/companion cell complex. PP TCs with extensive wall ingrowths are ubiquitous in mature cotyledons and juvenile leaves, but dramatically less so in mature adult leaves, an observation consistent with PP TC development reflecting vegetative phase change (VPC) in Arabidopsis. Consistent with this conclusion, the abundance of PP TCs with extensive wall ingrowths varied across rosette development in three ecotypes displaying differing durations of juvenile phase, and extensive deposition of wall ingrowths was observed in rejuvenated leaves following prolonged defoliation. PP TC development across juvenile, transition, and adult leaves correlated positively with levels of miR156, a major regulator of VPC in plants, and corresponding changes in wall ingrowth deposition were observed when miR156 was overexpressed or its activity suppressed by target mimicry. Analysis of plants carrying miR156-resistant forms of SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) genes showed that wall ingrowth deposition was increased in SPL9-group but not SPL3-group genes, indicating that SPL9-group genes may function as negative regulators of wall ingrowth deposition in PP TCs. Collectively, our results point to wall ingrowth deposition in PP TCs being under control of the genetic program regulating VPC. PMID:28082719

  19. Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampathkumar, Arun; Krupinski, Pawel; Wightman, Raymond

    Although it is a central question in biology, how cell shape controls intracellular dynamics largely remains an open question. Here, we show that the shape of Arabidopsis pavement cells creates a stress pattern that controls microtubule orientation, which then guides cell wall reinforcement. Live-imaging, combined with modeling of cell mechanics, shows that microtubules align along the maximal tensile stress direction within the cells, and atomic force microscopy demonstrates that this leads to reinforcement of the cell wall parallel to the microtubules. This feedback loop is regulated: cell-shape derived stresses could be overridden by imposed tissue level stresses, showing how competitionmore » between subcellular and supracellular cues control microtubule behavior. Furthermore, at the microtubule level, we identified an amplification mechanism in which mechanical stress promotes the microtubule response to stress by increasing severing activity. These multiscale feedbacks likely contribute to the robustness of microtubule behavior in plant epidermis.« less

  20. Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells

    DOE PAGES

    Sampathkumar, Arun; Krupinski, Pawel; Wightman, Raymond; ...

    2014-04-16

    Although it is a central question in biology, how cell shape controls intracellular dynamics largely remains an open question. Here, we show that the shape of Arabidopsis pavement cells creates a stress pattern that controls microtubule orientation, which then guides cell wall reinforcement. Live-imaging, combined with modeling of cell mechanics, shows that microtubules align along the maximal tensile stress direction within the cells, and atomic force microscopy demonstrates that this leads to reinforcement of the cell wall parallel to the microtubules. This feedback loop is regulated: cell-shape derived stresses could be overridden by imposed tissue level stresses, showing how competitionmore » between subcellular and supracellular cues control microtubule behavior. Furthermore, at the microtubule level, we identified an amplification mechanism in which mechanical stress promotes the microtubule response to stress by increasing severing activity. These multiscale feedbacks likely contribute to the robustness of microtubule behavior in plant epidermis.« less

  1. Xylem development and cell wall changes of soybean seedlings grown in space.

    PubMed

    de Micco, Veronica; Aronne, Giovanna; Joseleau, Jean-Paul; Ruel, Katia

    2008-04-01

    Plants growing in altered gravity conditions encounter changes in vascular development and cell wall deposition. The aim of this study was to investigate xylem anatomy and arrangement of cellulose microfibrils in vessel walls of different organs of soybean seedlings grown in Space. Seeds germinated and seedlings grew for 5 d in Space during the Foton-M2 mission. The environmental conditions, other than gravity, of the ground control repeated those experienced in orbit. The seedlings developed in space were compared with those of the control test on the basis of numerous anatomical and ultrastructural parameters such as number of veins, size and shape of vessel lumens, thickness of cell walls and deposition of cellulose microfibrils. Observations made with light, fluorescence and transmission electron microscopy, together with the quantification of the structural features through digital image analysis, showed that the alterations due to microgravity do not occur at the same level in the various organs of soybean seedlings. The modifications induced by microgravity or by the indirect effect of space-flight conditions, became conspicuous only in developing vessels at the ultrastructural level. The results suggested that the orientation of microfibrils and their assembly in developing vessels are perturbed by microgravity at the beginning of wall deposition, while they are still able to orient and arrange in thicker and ordered structures at later stages of secondary wall deposition. The process of proper cell-wall building, although not prevented, is perturbed in Space at the early stage of development. This would explain the almost unaltered anatomy of mature structures, accompanied by a slower growth observed in seedlings grown in Space than on Earth.

  2. Xylem Development and Cell Wall Changes of Soybean Seedlings Grown in Space

    PubMed Central

    de Micco, Veronica; Aronne, Giovanna; Joseleau, Jean-Paul; Ruel, Katia

    2008-01-01

    Background and Aims Plants growing in altered gravity conditions encounter changes in vascular development and cell wall deposition. The aim of this study was to investigate xylem anatomy and arrangement of cellulose microfibrils in vessel walls of different organs of soybean seedlings grown in Space. Methods Seeds germinated and seedlings grew for 5 d in Space during the Foton-M2 mission. The environmental conditions, other than gravity, of the ground control repeated those experienced in orbit. The seedlings developed in space were compared with those of the control test on the basis of numerous anatomical and ultrastructural parameters such as number of veins, size and shape of vessel lumens, thickness of cell walls and deposition of cellulose microfibrils. Key Results Observations made with light, fluorescence and transmission electron microscopy, together with the quantification of the structural features through digital image analysis, showed that the alterations due to microgravity do not occur at the same level in the various organs of soybean seedlings. The modifications induced by microgravity or by the indirect effect of space-flight conditions, became conspicuous only in developing vessels at the ultrastructural level. The results suggested that the orientation of microfibrils and their assembly in developing vessels are perturbed by microgravity at the beginning of wall deposition, while they are still able to orient and arrange in thicker and ordered structures at later stages of secondary wall deposition. Conclusions The process of proper cell-wall building, although not prevented, is perturbed in Space at the early stage of development. This would explain the almost unaltered anatomy of mature structures, accompanied by a slower growth observed in seedlings grown in Space than on Earth. PMID:18252765

  3. Insights into the effects of polygalacturonase FaPG1 gene silencing on pectin matrix disassembly, enhanced tissue integrity, and firmness in ripe strawberry fruits

    PubMed Central

    Posé, Sara; Paniagua, Candelas; Cifuentes, Manuel; Blanco-Portales, Rosario; Quesada, Miguel A.; Mercado, José A.

    2013-01-01

    Antisense-mediated down-regulation of the fruit-specific polygalacturonase (PG) gene FaPG1 in strawberries (Fragaria×ananassa Duch.) has been previously demonstrated to reduce fruit softening and to extend post-harvest shelf life, despite the low PG activity detected in this fruit. The improved fruit traits were suggested to be attributable to a reduced cell wall disassembly due to FaPG1 silencing. This research provides empirical evidence that supports this assumption at the biochemical, cellular, and tissue levels. Cell wall modifications of two independent transgenic antisense lines that demonstrated a >90% reduction in FaPG1 transcript levels were analysed. Sequential extraction of cell wall fractions from control and ripe fruits exhibited a 42% decrease in pectin solubilization in transgenic fruits. A detailed chromatographic analysis of the gel filtration pectin profiles of the different cell wall fractions revealed a diminished depolymerization of the more tightly bound pectins in transgenic fruits, which were solubilized with both a chelating agent and sodium carbonate. The cell wall extracts from antisense FaPG1 fruits also displayed less severe in vitro swelling. A histological analysis revealed more extended cell–cell adhesion areas and an enhanced tissue integrity in transgenic ripe fruits. An immunohistological analysis of fruit sections using the JIM5 antibody against low methyl-esterified pectins demonstrated a higher labelling in transgenic fruit sections, whereas minor differences were observed with JIM7, an antibody that recognizes highly methyl-esterified pectins. These results support that the increased firmness of transgenic antisense FaPG1 strawberry fruits is predominantly due to a decrease in pectin solubilization and depolymerization that correlates with more tightly attached cell wall-bound pectins. This limited disassembly in the transgenic lines indicates that these pectin fractions could play a key role in tissue integrity maintenance that results in firmer ripe fruit. PMID:23873994

  4. Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells

    NASA Astrophysics Data System (ADS)

    Fan, Rong; Emery, Travis; Zhang, Yongguo; Xia, Yuxuan; Sun, Jun; Wan, Jiandi

    2016-06-01

    During cancer metastasis, circulating tumor cells constantly experience hemodynamic shear stress in the circulation. Cellular responses to shear stress including cell viability and proliferation thus play critical roles in cancer metastasis. Here, we developed a microfluidic approach to establish a circulatory microenvironment and studied circulating human colon cancer HCT116 cells in response to a variety of magnitude of shear stress and circulating time. Our results showed that cell viability decreased with the increase of circulating time, but increased with the magnitude of wall shear stress. Proliferation of cells survived from circulation could be maintained when physiologically relevant wall shear stresses were applied. High wall shear stress (60.5 dyne/cm2), however, led to decreased cell proliferation at long circulating time (1 h). We further showed that the expression levels of β-catenin and c-myc, proliferation regulators, were significantly enhanced by increasing wall shear stress. The presented study provides a new insight to the roles of circulatory shear stress in cellular responses of circulating tumor cells in a physiologically relevant model, and thus will be of interest for the study of cancer cell mechanosensing and cancer metastasis.

  5. Cellular metabolic responses of the marine diatom Pseudo-nitzschia multiseries associated with cell wall formation.

    PubMed

    Xu, Bin; Luo, Chun-Shan; Liang, Jun-Rong; Chen, Dan-Dan; Zhuo, Wen-Hao; Gao, Ya-Hui; Chen, Chang-Ping; Song, Si-Si

    2014-08-01

    In this study a comparative proteomics approach involving a mass spectrometric analysis of synchronized cells was employed to investigate the cellular-level metabolic mechanisms associated with siliceous cell wall formation in the pennate diatom Pseudo-nitzschia multiseries. Cultures of P. multiseries were synchronized using the silicate limitation method. Approximately 75% of cells were arrested at the G2+M phase of the cell cycle after 48 h of silicate starvation. The majority of cells progressed to new valve synthesis within 5h of silicon replenishment. We compared the proteome of P. multiseries at 0, 4, 5, and 6h of synchronization progress upon silicon replenishment using two-dimensional gel electrophoresis. Forty-eight differentially expressed protein spots were identified in abundance (greater than two-fold change; P<0.005), some of which are predicted to be involved in intracellular trafficking, cytoskeleton, photosynthesis, lipid metabolism, and protein biosynthesis. Cytoskeleton proteins and clathrin coat components were also hypothesized to play potential roles in cell wall formation. The proteomic profile analysis suggests that P. multiseries most likely employs multiple synergistic biochemical mechanisms for cell wall formation. These results improve our understanding of the molecular mechanisms underlying silicon cell wall formation and enhance our understanding of the important role played by diatoms in silicon biogeochemical cycling. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. LEUNIG_HOMOLOG transcriptional co-repressor mediates aluminium sensitivity through PECTIN METHYLESTERASE46-modulated root cell wall pectin methylesterification in Arabidopsis.

    PubMed

    Geng, Xiaoyu; Horst, Walter J; Golz, John F; Lee, Joanne E; Ding, Zhaojun; Yang, Zhong-Bao

    2017-05-01

    A major factor determining aluminium (Al) sensitivity in higher plants is the binding of Al to root cell walls. The Al binding capacity of cell walls is closely linked to the extent of pectin methylesterification, as the presence of methyl groups attached to the pectin backbone reduces the net negative charge of this polymer and hence limits Al binding. Despite recent progress in understanding the molecular basis of Al resistance in a wide range of plants, it is not well understood how the methylation status of pectin is mediated in response to Al stress. Here we show in Arabidopsis that mutants lacking the gene LEUNIG_HOMOLOG (LUH), a member of the Groucho-like family of transcriptional co-repressor, are less sensitive to Al-mediated repression of root growth. This phenotype is correlated with increased levels of methylated pectin in the cell walls of luh roots as well as altered expression of cell wall-related genes. Among the LUH-repressed genes, PECTIN METHYLESTERASE46 (PME46) was identified as reducing Al binding to cell walls and hence alleviating Al-induced root growth inhibition by decreasing PME enzyme activity. seuss-like2 (slk2) mutants responded to Al in a similar way as luh mutants suggesting that a LUH-SLK2 complex represses the expression of PME46. The data are integrated into a model in which it is proposed that PME46 is a major inhibitor of pectin methylesterase activity within root cell walls. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  7. Calcium-dependent depletion zones in the cortical microtubule array coincide with sites of, but do not regulate, wall ingrowth papillae deposition in epidermal transfer cells.

    PubMed

    Zhang, Hui-ming; Talbot, Mark J; McCurdy, David W; Patrick, John W; Offler, Christina E

    2015-09-01

    Trans-differentiation to a transfer-cell morphology is characterized by the localized deposition of wall ingrowth papillae that protrude into the cytosol. Whether the cortical microtubule array directs wall ingrowth papillae formation was investigated using a Vicia faba cotyledon culture system in which their adaxial epidermal cells were spontaneously induced to trans-differentiate to transfer cells. During deposition of wall ingrowth papillae, the aligned cortical microtubule arrays in precursor epidermal cells were reorganized into a randomized array characterized by circular depletion zones. Concurrence of the temporal appearance, spatial pattern, and size of depletion zones and wall ingrowth papillae was consistent with each papilla occupying a depletion zone. Surprisingly, microtubules appeared not to regulate construction of wall ingrowth papillae, as neither depolymerization nor stabilization of cortical microtubules changed their deposition pattern or morphology. Moreover, the size and spatial pattern of depletion zones was unaltered when the formation of wall ingrowth papillae was blocked by inhibiting cellulose biosynthesis. In contrast, the depletion zones were absent when the cytosolic calcium plumes, responsible for directing wall ingrowth papillae formation, were blocked or dissipated. Thus, we conclude that the depletion zones within the cortical microtubule array result from localized depolymerization of microtubules initiated by elevated cytosolic Ca(2+) levels at loci where wall ingrowth papillae are deposited. The physiological significance of the depletion zones as a mechanism to accommodate the construction of wall ingrowth papillae without compromising maintenance of the plasma membrane-microtubule inter-relationship is discussed. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. SND2, a NAC transcription factor gene, regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in Eucalyptus

    PubMed Central

    2011-01-01

    Background NAC domain transcription factors initiate secondary cell wall biosynthesis in Arabidopsis fibres and vessels by activating numerous transcriptional regulators and biosynthetic genes. NAC family member SND2 is an indirect target of a principal regulator of fibre secondary cell wall formation, SND1. A previous study showed that overexpression of SND2 produced a fibre cell-specific increase in secondary cell wall thickness in Arabidopsis stems, and that the protein was able to transactivate the cellulose synthase8 (CesA8) promoter. However, the full repertoire of genes regulated by SND2 is unknown, and the effect of its overexpression on cell wall chemistry remains unexplored. Results We overexpressed SND2 in Arabidopsis and analyzed homozygous lines with regards to stem chemistry, biomass and fibre secondary cell wall thickness. A line showing upregulation of CesA8 was selected for transcriptome-wide gene expression profiling. We found evidence for upregulation of biosynthetic genes associated with cellulose, xylan, mannan and lignin polymerization in this line, in agreement with significant co-expression of these genes with native SND2 transcripts according to public microarray repositories. Only minor alterations in cell wall chemistry were detected. Transcription factor MYB103, in addition to SND1, was upregulated in SND2-overexpressing plants, and we detected upregulation of genes encoding components of a signal transduction machinery recently proposed to initiate secondary cell wall formation. Several homozygous T4 and hemizygous T1 transgenic lines with pronounced SND2 overexpression levels revealed a negative impact on fibre wall deposition, which may be indirectly attributable to excessive overexpression rather than co-suppression. Conversely, overexpression of SND2 in Eucalyptus stems led to increased fibre cross-sectional cell area. Conclusions This study supports a function for SND2 in the regulation of cellulose and hemicellulose biosynthetic genes in addition of those involved in lignin polymerization and signalling. SND2 seems to occupy a subordinate but central tier in the secondary cell wall transcriptional network. Our results reveal phenotypic differences in the effect of SND2 overexpression between woody and herbaceous stems and emphasize the importance of expression thresholds in transcription factor studies. PMID:22133261

  9. Gradients in Wall Mechanics and Polysaccharides along Growing Inflorescence Stems.

    PubMed

    Phyo, Pyae; Wang, Tuo; Kiemle, Sarah N; O'Neill, Hugh; Pingali, Sai Venkatesh; Hong, Mei; Cosgrove, Daniel J

    2017-12-01

    At early stages of Arabidopsis ( Arabidopsis thaliana ) flowering, the inflorescence stem undergoes rapid growth, with elongation occurring predominantly in the apical ∼4 cm of the stem. We measured the spatial gradients for elongation rate, osmotic pressure, cell wall thickness, and wall mechanical compliances and coupled these macroscopic measurements with molecular-level characterization of the polysaccharide composition, mobility, hydration, and intermolecular interactions of the inflorescence cell wall using solid-state nuclear magnetic resonance spectroscopy and small-angle neutron scattering. Force-extension curves revealed a gradient, from high to low, in the plastic and elastic compliances of cell walls along the elongation zone, but plots of growth rate versus wall compliances were strikingly nonlinear. Neutron-scattering curves showed only subtle changes in wall structure, including a slight increase in cellulose microfibril alignment along the growing stem. In contrast, solid-state nuclear magnetic resonance spectra showed substantial decreases in pectin amount, esterification, branching, hydration, and mobility in an apical-to-basal pattern, while the cellulose content increased modestly. These results suggest that pectin structural changes are connected with increases in pectin-cellulose interaction and reductions in wall compliances along the apical-to-basal gradient in growth rate. These pectin structural changes may lessen the ability of the cell wall to undergo stress relaxation and irreversible expansion (e.g. induced by expansins), thus contributing to the growth kinematics of the growing stem. © 2017 American Society of Plant Biologists. All Rights Reserved.

  10. Investigating lignin key features in maize lignocelluloses using infrared spectroscopy.

    PubMed

    Chazal, Richard; Robert, Paul; Durand, Sylvie; Devaux, Marie-Françoise; Saulnier, Luc; Lapierre, Catherine; Guillon, Fabienne

    2014-01-01

    Lignins and their cross-linking to hemicelluloses detrimentally affect the cellulose-to-ethanol conversion of grass lignocelluloses. Screening appropriate grass cell walls and their compositional changes during the various steps of the process calls for a high-throughput analytical technique. Such a performance can be fulfilled by Fourier transform mid-infrared (FT-MIR) spectroscopy. In the present paper, a set of maize cell walls from mature stems were selected, including brown midrib samples. Lignin fractions were isolated by mild acidolysis to obtain a set of purified maize lignin standards. The lignin content and the percentage of lignin-derived p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) thioacidolysis monomers were determined. In addition, the composition of cell wall polysaccharides, as well as the amount of ester-linked p-coumaric (CA) and ferulic (FA) acids, was measured by wet chemistry. Partial least square (PLS) analyses were applied to infrared and chemical data of cell walls. The resulting models showed a good predictive ability with regard to the lignin content, to the frequency of S (or G) thioacidolysis monomers, and to the level of ester-linked CA of maize cell walls. The loading plots and regression coefficients revealed relevant infrared absorption bands.

  11. Structural and mechanical design of tissue interfaces in the giant reed Arundo donax.

    PubMed

    Rüggeberg, Markus; Burgert, Ingo; Speck, Thomas

    2010-03-06

    The culms of the giant reed Arundo donax represent slender tube-like structures. Several nodes along the culm, a ring of sclerenchymatous fibres in the periphery of the culm wall and numerous isolated vascular bundles enclosed by fibre rings in the culm wall function as stiffening elements. The bundles are embedded in lignified parenchyma. Micromechanical analysis indicated differences in stiffness between the individual tissues of more than one order of magnitude. In case of abrupt transitions in stiffness at the interfaces, stress discontinuities arise under dynamic loads. This eventually leads to critical shear stresses at cell ends, and culm failure may be initiated at these points. Pronounced mechanical differences between individual tissues can be compromised by gradual transitions at their interfaces. Ultrastructural and spectroscopic investigations with high spatial resolution revealed a gradual transition of cell parameters (cell wall area fraction and cell length). However, cell wall parameters (cellulose microfibril angle and lignin content) showed abrupt transitions or remained almost constant across the interfaces between various tissues. The design principles found at the interfaces between tissues in the culm walls of A. donax are discussed as an adaptation strategy to mechanical loads at different levels of hierarchy.

  12. Structural and mechanical design of tissue interfaces in the giant reed Arundo donax

    PubMed Central

    Rüggeberg, Markus; Burgert, Ingo; Speck, Thomas

    2010-01-01

    The culms of the giant reed Arundo donax represent slender tube-like structures. Several nodes along the culm, a ring of sclerenchymatous fibres in the periphery of the culm wall and numerous isolated vascular bundles enclosed by fibre rings in the culm wall function as stiffening elements. The bundles are embedded in lignified parenchyma. Micromechanical analysis indicated differences in stiffness between the individual tissues of more than one order of magnitude. In case of abrupt transitions in stiffness at the interfaces, stress discontinuities arise under dynamic loads. This eventually leads to critical shear stresses at cell ends, and culm failure may be initiated at these points. Pronounced mechanical differences between individual tissues can be compromised by gradual transitions at their interfaces. Ultrastructural and spectroscopic investigations with high spatial resolution revealed a gradual transition of cell parameters (cell wall area fraction and cell length). However, cell wall parameters (cellulose microfibril angle and lignin content) showed abrupt transitions or remained almost constant across the interfaces between various tissues. The design principles found at the interfaces between tissues in the culm walls of A. donax are discussed as an adaptation strategy to mechanical loads at different levels of hierarchy. PMID:19726440

  13. Cell wall pectic arabinans influence the mechanical properties of Arabidopsis thaliana inflorescence stems and their response to mechanical stress.

    PubMed

    Verhertbruggen, Yves; Marcus, Susan E; Chen, Jianshe; Knox, J Paul

    2013-08-01

    Little is known of the dynamics of plant cell wall matrix polysaccharides in response to the impact of mechanical stress on plant organs. The capacity of the imposition of a mechanical stress (periodic brushing) to reduce the height of the inflorescence stem of Arabidopsis thaliana seedlings has been used to study the role of pectic arabinans in the mechanical properties and stress responsiveness of a plant organ. The arabinan-deficient-1 (arad1) mutation that affects arabinan structures in epidermal cell walls of inflorescence stems is demonstrated to reduce the impact on inflorescence stem heights caused by mechanical stress. The arabinan-deficient-2 (arad2) mutation, that does not have detectable impact on arabinan structures, is also shown to reduce the impact on stem heights caused by mechanical stress. The LM13 linear arabinan epitope is specifically detected in epidermal cell walls of the younger, flexible regions of inflorescence stems and increases in abundance at the base of inflorescence stems in response to an imposed mechanical stress. The strain (percentage deformation) of stem epidermal cells in the double mutant arad1 × arad2 is lower in unbrushed plants than in wild-type plants, but rises to wild-type levels in response to brushing. The study demonstrates the complexity of arabinan structures within plant cell walls and also that their contribution to cell wall mechanical properties is a factor influencing responsiveness to mechanical stress.

  14. Identification of Cell Wall Synthesis Regulatory Genes Controlling Biomass Characteristics and Yield in Rice (Oryza Sativa)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Zhaohua PEng; Ronald, Palmela; Wang, Guo-Liang

    This project aims to identify the regulatory genes of rice cell wall synthesis pathways using a cell wall removal and regeneration system. We completed the gene expression profiling studies following the time course from cell wall removal to cell wall regeneration in rice suspension cells. We also completed, total proteome, nuclear subproteome and histone modification studies following the course from cell wall removal and cell wall regeneration process. A large number of differentially expressed regulatory genes and proteins were identified. Meanwhile, we generated RNAi and over-expression transgenic rice for 45 genes with at least 10 independent transgenic lines for eachmore » gene. In addition, we ordered T-DNA and transposon insertion mutants for 60 genes from Korea, Japan, and France and characterized the mutants. Overall, we have mutants and transgenic lines for over 90 genes, exceeded our proposed goal of generating mutants for 50 genes. Interesting Discoveries a) Cell wall re-synthesis in protoplasts may involve a novel cell wall synthesis mechanism. The synthesis of the primary cell wall is initiated in late cytokinesis with further modification during cell expansion. Phragmoplast plays an essential role in cell wall synthesis. It services as a scaffold for building the cell plate and formation of a new cell wall. Only one phragmoplast and one new cell wall is produced for each dividing cell. When the cell wall was removed enzymatically, we found that cell wall re-synthesis started from multiple locations simultaneously, suggesting that a novel mechanism is involved in cell wall re-synthesis. This observation raised many interesting questions, such as how the starting sites of cell wall synthesis are determined, whether phragmoplast and cell plate like structures are involved in cell wall re-synthesis, and more importantly whether the same set of enzymes and apparatus are used in cell wall re-synthesis as during cytokinesis. Given that many known cell wall synthesis pathway genes are induced by removal of cell wall, some cell wall synthesis apparatus must be shared in both cases. The cell wall re-synthesis mechanism may have broad application because our preliminary assay indicates that the cell wall characteristics are highly different from those produced during cytokinesis. A thorough understanding on the regulation of cell wall re-synthesis may lead to improvement of cell wall characteristics. b) Removal of cell wall results in chromatin decondensation Another interesting observation was that removal of cell wall was associated with substantial chromatin change. Our DNA DAPI stain, chromatin MNase digestion, histone modification proteomics, protein differential expression analysis, and DNA oligo array studies all supported that substantial chromatin change was associated with removal of cell wall treatment. It is still under investigation if the chromatin change is associated with activation of cell wall synthesis genes, in which chromatin remodeling is required. Another possibility is that the cell wall is required for stabilizing the chromatin structure in plant cells. Given that spindle fiber is directly connected with both chromatin structure and cell wall synthesis, it is possible that there is an intrinsic connection between cell wall and chromatin.« less

  15. Inflammation response at the transcriptional level of HepG2 cells induced by multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Piret, Jean-Pascal; Vankoningsloo, Sébastien; Noël, Florence; Mejia Mendoza, Jorge; Lucas, Stéphane; Saout, Christelle; Toussaint, Olivier

    2011-07-01

    Poor information are currently available about the biological effects of multi-walled carbon nanotubes (MWCNT) on the liver. In this study, we evaluated the effects of MWCNT at the transcriptional level on the classical in vitro model of HepG2 hepatocarcinoma cells. The expression levels of 96 transcript species implicated in the inflammatory and immune responses was studied after a 24h incubation of HepG2 cells in presence of raw MWCNT dispersed in water by stirring. Among the 46 transcript species detected, only a few transcripts including mRNA coding for interleukine-7, chemokines receptor of the C-C families CCR7, as well as Endothelin-1, were statistically more abundant after treatment with MWCNT. Altogether, these data indicate that MWCNT can only induce a weak inflammatory response in HepG2 cells.

  16. Downregulation of Cinnamoyl-Coenzyme A Reductase in Poplar: Multiple-Level Phenotyping Reveals Effects on Cell Wall Polymer Metabolism and Structure[W

    PubMed Central

    Leplé, Jean-Charles; Dauwe, Rebecca; Morreel, Kris; Storme, Véronique; Lapierre, Catherine; Pollet, Brigitte; Naumann, Annette; Kang, Kyu-Young; Kim, Hoon; Ruel, Katia; Lefèbvre, Andrée; Joseleau, Jean-Paul; Grima-Pettenati, Jacqueline; De Rycke, Riet; Andersson-Gunnerås, Sara; Erban, Alexander; Fehrle, Ines; Petit-Conil, Michel; Kopka, Joachim; Polle, Andrea; Messens, Eric; Sundberg, Björn; Mansfield, Shawn D.; Ralph, John; Pilate, Gilles; Boerjan, Wout

    2007-01-01

    Cinnamoyl-CoA reductase (CCR) catalyzes the penultimate step in monolignol biosynthesis. We show that downregulation of CCR in transgenic poplar (Populus tremula × Populus alba) was associated with up to 50% reduced lignin content and an orange-brown, often patchy, coloration of the outer xylem. Thioacidolysis, nuclear magnetic resonance (NMR), immunocytochemistry of lignin epitopes, and oligolignol profiling indicated that lignin was relatively more reduced in syringyl than in guaiacyl units. The cohesion of the walls was affected, particularly at sites that are generally richer in syringyl units in wild-type poplar. Ferulic acid was incorporated into the lignin via ether bonds, as evidenced independently by thioacidolysis and by NMR. A synthetic lignin incorporating ferulic acid had a red-brown coloration, suggesting that the xylem coloration was due to the presence of ferulic acid during lignification. Elevated ferulic acid levels were also observed in the form of esters. Transcript and metabolite profiling were used as comprehensive phenotyping tools to investigate how CCR downregulation impacted metabolism and the biosynthesis of other cell wall polymers. Both methods suggested reduced biosynthesis and increased breakdown or remodeling of noncellulosic cell wall polymers, which was further supported by Fourier transform infrared spectroscopy and wet chemistry analysis. The reduced levels of lignin and hemicellulose were associated with an increased proportion of cellulose. Furthermore, the transcript and metabolite profiling data pointed toward a stress response induced by the altered cell wall structure. Finally, chemical pulping of wood derived from 5-year-old, field-grown transgenic lines revealed improved pulping characteristics, but growth was affected in all transgenic lines tested. PMID:18024569

  17. Antibacterial Compounds of Canadian Honeys Target Bacterial Cell Wall Inducing Phenotype Changes, Growth Inhibition and Cell Lysis That Resemble Action of β-Lactam Antibiotics

    PubMed Central

    Brudzynski, Katrina; Sjaarda, Calvin

    2014-01-01

    Honeys show a desirable broad spectrum activity against Gram-positive and negative bacteria making antibacterial activity an intrinsic property of honey and a desirable source for new drug development. The cellular targets and underlying mechanism of action of honey antibacterial compounds remain largely unknown. To facilitate the target discovery, we employed a method of phenotypic profiling by directly comparing morphological changes in Escherichia coli induced by honeys to that of ampicillin, the cell wall-active β-lactam of known mechanism of action. Firstly, we demonstrated the purity of tested honeys from potential β-lactam contaminations using quantitative LC-ESI-MS. Exposure of log-phase E. coli to honey or ampicillin resulted in time- and concentration-dependent changes in bacterial cell shape with the appearance of filamentous phenotypes at sub-inhibitory concentrations and spheroplasts at the MBC. Cell wall destruction by both agents, clearly visible on microscopic micrographs, was accompanied by increased permeability of the lipopolysaccharide outer membrane as indicated by fluorescence-activated cell sorting (FACS). More than 90% E. coli exposed to honey or ampicillin became permeable to propidium iodide. Consistently with the FACS results, both honey-treated and ampicillin-treated E. coli cells released lipopolysaccharide endotoxins at comparable levels, which were significantly higher than controls (p<0.0001). E. coli cells transformed with the ampicillin-resistance gene (β–lactamase) remained sensitive to honey, displayed the same level of cytotoxicity, cell shape changes and endotoxin release as ampicillin-sensitive cells. As expected, β–lactamase protected the host cell from antibacterial action of ampicillin. Thus, both honey and ampicillin induced similar structural changes to the cell wall and LPS and that this ability underlies antibacterial activities of both agents. Since the cell wall is critical for cell growth and survival, honey active compounds would be highly applicable for therapeutic purposes while differences in the mode of action between honey and ampicillin may provide clinical advantage in eradicating β-lactam-resistant pathogens. PMID:25191847

  18. Gravity resistance, another graviresponse in plants - role of microtubule-membrane-cell wall continuum

    NASA Astrophysics Data System (ADS)

    Hoson, T.; Saito, Y.; Usui, S.; Soga, K.; Wakabayashi, K.

    Resistance to the gravitational force has been a serious problem for plants to survive on land, after they first went ashore more than 400 million years ago. Thus, gravity resistance is the principal graviresponse in plants comparable to gravitropism. Nevertheless, only limited information has been obtained for this second gravity response. We have examined the mechanism of gravity resistance using hypergravity conditions produced by centrifugation. The results led a hypothesis on the mechanism of plant resistance to the gravitational force that the plant constructs a tough body by increasing the cell wall rigidity, which are brought about by modification of the cell wall metabolism and cell wall environment, especially pH. The hypothesis was further supported by space experiments during the Space Shuttle STS-95 mission. On the other hand, we have shown that gravity signal may be perceived by mechanoreceptors (mechanosensitive ion channels) on the plasma membrane and amyloplast sedimentation in statocytes is not involved in gravity resistance. Moreover, hypergravity treatment increased the expression levels of genes encoding alpha-tubulin, a component of microtubules and 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGR), which catalyzes a reaction producing mevalonic acid, a key precursor of terpenoids such as membrane sterols. The expression of HMGR and alpha- and beta-tubulin genes increased within several hours after hypergravity treatment, depending on the magnitude of gravity. The determination of levels of gene products as well as the analysis with knockout mutants of these genes by T-DNA insertions in Arabidopsis supports the involvement of both membrane sterols and microtubules in gravity resistance. These results suggest that structural or physiological continuum of microtubule-cell membrane-cell wall is responsible for plant resistance to the gravitational force.

  19. Nano-indentation creep properties of the S2 cell wall lamina and compound corner middle lamella [abstract

    Treesearch

    Joseph E. Jakes; Charles R. Frihart; James F. Beecher; Donald S. Stone

    2010-01-01

    Bulk wood properties are derived from an ensemble of processes taking place at the micron-scale, and at this level the properties differ dramatically in going from cell wall layers to the middle lamella. To better understand the properties of these micron-scaled regions of wood, we have developed a unique set of nano-indentation tools that allow us to measure local...

  20. Effects of Plant Growth Hormones on Mucor indicus Growth and Chitosan and Ethanol Production.

    PubMed

    Safaei, Zahra; Karimi, Keikhosro; Golkar, Poorandokht; Zamani, Akram

    2015-07-22

    The objective of this study was to investigate the effects of indole-3-acetic acid (IAA) and kinetin (KIN) on Mucor indicus growth, cell wall composition, and ethanol production. A semi-synthetic medium, supplemented with 0-5 mg/L hormones, was used for the cultivations (at 32 °C for 48 h). By addition of 1 mg/L of each hormone, the biomass and ethanol yields were increased and decreased, respectively. At higher levels, however, an inverse trend was observed. The glucosamine fraction of the cell wall, as a representative for chitosan, followed similar but sharper changes, compared to the biomass. The highest level was 221% higher than that obtained without hormones. The sum of glucosamine and N-acetyl glucosamine (chitin and chitosan) was noticeably enhanced in the presence of the hormones. Increase of chitosan was accompanied by a decrease in the phosphate content, with the lowest phosphate (0.01 g/g cell wall) being obtained when the chitosan was at the maximum (0.45 g/g cell wall). In conclusion, IAA and KIN significantly enhanced the M. indicus growth and chitosan production, while at the same time decreasing the ethanol yield to some extent. This study shows that plant growth hormones have a high potential for the improvement of fungal chitosan production by M. indicus.

  1. Sugar homeostasis mediated by cell wall invertase GRAIN INCOMPLETE FILLING 1 (GIF1) plays a role in pre-existing and induced defence in rice.

    PubMed

    Sun, Li; Yang, Dong-lei; Kong, Yu; Chen, Ying; Li, Xiao-Zun; Zeng, Long-Jun; Li, Qun; Wang, Er-Tao; He, Zu-Hua

    2014-02-01

    Sugar metabolism and sugar signalling are not only critical for plant growth and development, but are also important for stress responses. However, how sugar homeostasis is involved in plant defence against pathogen attack in the model crop rice remains largely unknown. In this study, we observed that the grains of gif1, a loss-of-function mutant of the cell wall invertase gene GRAIN INCOMPLETE FILLING 1 (GIF1), were hypersusceptible to postharvest fungal pathogens, with decreased levels of sugars and a thinner glume cell wall in comparison with the wild-type. Interestingly, constitutive expression of GIF1 enhanced resistance to both the rice bacterial pathogen Xanthomonas oryzae pv. oryzae and the fungal pathogen Magnaporthe oryzae. The GIF1-overexpressing (GIF1-OE) plants accumulated higher levels of glucose, fructose and sucrose compared with the wild-type plants. More importantly, higher levels of callose were deposited in GIF1-OE plants during pathogen infection. Moreover, the cell wall was much thicker in the infection sites of the GIF1-OE plants when compared with the wild-type plants. We also found that defence-related genes were constitutively activated in the GIF1-OE plants. Taken together, our study reveals that sugar homeostasis mediated by GIF1 plays an important role in constitutive and induced physical and chemical defence. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  2. Architecture of dermatophyte cell Walls: Electron microscopic and biochemical analysis

    NASA Technical Reports Server (NTRS)

    Nozawa, Y.; Kitajima, Y.

    1984-01-01

    A review with 83 references on the cell wall structure of dermatophytes is presented. Topics discussed include separation and preparation of cell walls; microstructure of cell walls by electron microscopy; chemical composition of cell walls; structural model of cell walls; and morphological structure of cell walls.

  3. The roles of call wall invertase inhibitor in regulating chilling tolerance in tomato.

    PubMed

    Xu, Xiao-Xia; Hu, Qin; Yang, Wan-Nian; Jin, Ye

    2017-11-09

    Hexoses are important metabolic signals that respond to abiotic and biotic stresses. Cold stress adversely affects plant growth and development, limiting productivity. The mechanism by which sugars regulate plant cold tolerance remains elusive. We examined the function of INVINH1, a cell wall invertase inhibitor, in tomato chilling tolerance. Cold stress suppressed the transcription of INVINH1 and increased that of cell wall invertase genes, Lin6 and Lin8 in tomato seedlings. Silencing INVINH1 expression in tomato increased cell wall invertase activity and enhanced chilling tolerance. Conversely, transgenic tomatoes over-expressing INVINH1 showed reduced cell wall invertase activity and were more sensitive to cold stress. Chilling stress increased glucose and fructose levels, and the hexoses content increased or decreased by silencing or overexpression INVINH1. Glucose applied in vitro masked the differences in chilling tolerance of tomato caused by the different expressions of INVINH1. The repression of INVINH1 or glucose applied in vitro regulated the expression of C-repeat binding factors (CBFs) genes. Transcript levels of NCED1, which encodes 9-cisepoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of abscisic acid, were suppressed by INVINH1 after exposure to chilling stress. Meanwhile, application of ABA protected plant from chilling damage caused by the different expression of INVINH1. In tomato, INVINH1 plays an important role in chilling tolerance by adjusting the content of glucose and expression of CBFs.

  4. Sensitivity of Aspergillus nidulans to the Cellulose Synthase Inhibitor Dichlobenil: Insights from Wall-Related Genes’ Expression and Ultrastructural Hyphal Morphologies

    PubMed Central

    Obersriebnig, Michael; Salerno, Marco; Pum, Dietmar; Strauss, Joseph

    2013-01-01

    The fungal cell wall constitutes an important target for the development of antifungal drugs, because of its central role in morphogenesis, development and determination of fungal-specific molecular features. Fungal walls are characterized by a network of interconnected glycoproteins and polysaccharides, namely α-, β-glucans and chitin. Cell walls promptly and dynamically respond to environmental stimuli by a signaling mechanism, which triggers, among other responses, modulations in wall biosynthetic genes’ expression. Despite the absence of cellulose in the wall of the model filamentous fungus Aspergillus nidulans, we found in this study that fungal growth, spore germination and morphology are affected by the addition of the cellulose synthase inhibitor dichlobenil. Expression analysis of selected genes putatively involved in cell wall biosynthesis, carried out at different time points of drug exposure (i.e. 0, 1, 3, 6 and 24 h), revealed increased expression for the putative mixed linkage β-1,3;1,4 glucan synthase celA together with the β-1,3-glucan synthase fksA and the Rho-related GTPase rhoA. We also compared these data with the response to Congo Red, a known plant/fungal drug affecting both chitin and cellulose biosynthesis. The two drugs exerted different effects at the cell wall level, as shown by gene expression analysis and the ultrastructural features observed through atomic force microscopy and scanning electron microscopy. Although the concentration of dichlobenil required to affect growth of A. nidulans is approximately 10-fold higher than that required to inhibit plant cellulose biosynthesis, our work for the first time demonstrates that a cellulose biosynthesis inhibitor affects fungal growth, changes fungal morphology and expression of genes connected to fungal cell wall biosynthesis. PMID:24312197

  5. [Stem and progenitor cells in biostructure of blood vessel walls].

    PubMed

    Korta, Krzysztof; Kupczyk, Piotr; Skóra, Jan; Pupka, Artur; Zejler, Paweł; Hołysz, Marcin; Gajda, Mariusz; Nowakowska, Beata; Barć, Piotr; Dorobisz, Andrzej T; Dawiskiba, Tomasz; Szyber, Piotr; Bar, Julia

    2013-09-18

    Development of vascular and hematopoietic systems during organogenesis occurs at the same time. During vasculogenesis, a small part of cells does not undergo complete differentiation but stays on this level, "anchored" in tissue structures described as stem cell niches. The presence of blood vessels within tissue stem cell niches is typical and led to identification of niches and ensures that they are functioning. The three-layer biostructure of vessel walls for artery and vein, tunica: intima, media and adventitia, for a long time was defined as a mechanical barrier between vessel light and the local tissue environment. Recent findings from vascular biology studies indicate that vessel walls are dynamic biostructures, which are equipped with stem and progenitor cells, described as vascular wall-resident stem cells/progenitor cells (VW-SC/PC). Distinct zones for vessel wall harbor heterogeneous subpopulations of VW-SC/PC, which are described as "subendothelial or vasculogenic zones". Recent evidence from in vitro and in vivo studies show that prenatal activity of stem and progenitor cells is not only limited to organogenesis but also exists in postnatal life, where it is responsible for vessel wall homeostasis, remodeling and regeneration. It is believed that VW-SC/PC could be engaged in progression of vascular disorders and development of neointima. We would like to summarize current knowledge about mesenchymal and progenitor stem cell phenotype with special attention to distribution and biological properties of VW-SC/PC in biostructures of intima, media and adventitia niches. It is postulated that in the near future, niches for VW-SC/PC could be a good source of stem and progenitor cells, especially in the context of vessel tissue bioengineering as a new alternative to traditional revascularization therapies.

  6. Arabidopsis Regenerating Protoplast: A Powerful Model System for Combining the Proteomics of Cell Wall Proteins and the Visualization of Cell Wall Dynamics

    PubMed Central

    Yokoyama, Ryusuke; Kuki, Hiroaki; Kuroha, Takeshi; Nishitani, Kazuhiko

    2016-01-01

    The development of a range of sub-proteomic approaches to the plant cell wall has identified many of the cell wall proteins. However, it remains difficult to elucidate the precise biological role of each protein and the cell wall dynamics driven by their actions. The plant protoplast provides an excellent means not only for characterizing cell wall proteins, but also for visualizing the dynamics of cell wall regeneration, during which cell wall proteins are secreted. It therefore offers a unique opportunity to investigate the de novo construction process of the cell wall. This review deals with sub-proteomic approaches to the plant cell wall through the use of protoplasts, a methodology that will provide the basis for further exploration of cell wall proteins and cell wall dynamics. PMID:28248244

  7. Cell wall composition and biomass recalcitrance differences within a genotypically diverse set of Brachypodium distachyon inbred lines

    DOE PAGES

    Cass, Cynthia L.; Lavell, Anastasiya A.; Santoro, Nicholas; ...

    2016-05-26

    Brachypodium distachyon ( Brachypodium) has emerged as a useful model system for studying traits unique to graminaceous species including bioenergy crop grasses owing to its amenability to laboratory experimentation and the availability of extensive genetic and germplasm resources. Considerable natural variation has been uncovered for a variety of traits including flowering time, vernalization responsiveness, and above-ground growth characteristics. However, cell wall composition differences remain underexplored. Therefore, we assessed cell wall-related traits relevant to biomass conversion to biofuels in seven Brachypodium inbred lines that were chosen based on their high level of genotypic diversity as well as available genome sequences andmore » recombinant inbred line (RIL) populations. Senesced stems plus leaf sheaths from these lines exhibited significant differences in acetyl bromide soluble lignin (ABSL), cell wall polysaccharide-derived sugars, hydroxycinnamates content, and syringyl:guaiacyl:p-hydroxyphenyl (S:G:H) lignin ratios. Free glucose, sucrose, and starch content also differed significantly in senesced stems, as did the amounts of sugars released from cell wall polysaccharides (digestibility) upon exposure to a panel of thermochemical pretreatments followed by hydrolytic enzymatic digestion. Correlations were identified between inbred line lignin compositions and plant growth characteristics such as biomass accumulation and heading date (HD), and between amounts of cell wall polysaccharides and biomass digestibility. Finally, stem cell wall p-coumarate and ferulate contents and free-sugars content changed significantly with increased duration of vernalization for some inbred lines. Taken together, these results show that Brachypodium displays substantial phenotypic variation with respect to cell wall composition and biomass digestibility, with some compositional differences correlating with growth characteristics. Moreover, besides influencing HD and biomass accumulation, vernalization was found to affect cell wall composition and free sugars accumulation in some Brachypodium inbred lines, suggesting genetic differences in how vernalization affects carbon flux to polysaccharides. Lastly, the availability of related RIL populations will allow for the genetic and molecular dissection of this natural variation, the knowledge of which may inform ways to genetically improve bioenergy crop grasses.« less

  8. Cell wall composition and biomass recalcitrance differences within a genotypically diverse set of Brachypodium distachyon inbred lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cass, Cynthia L.; Lavell, Anastasiya A.; Santoro, Nicholas

    Brachypodium distachyon ( Brachypodium) has emerged as a useful model system for studying traits unique to graminaceous species including bioenergy crop grasses owing to its amenability to laboratory experimentation and the availability of extensive genetic and germplasm resources. Considerable natural variation has been uncovered for a variety of traits including flowering time, vernalization responsiveness, and above-ground growth characteristics. However, cell wall composition differences remain underexplored. Therefore, we assessed cell wall-related traits relevant to biomass conversion to biofuels in seven Brachypodium inbred lines that were chosen based on their high level of genotypic diversity as well as available genome sequences andmore » recombinant inbred line (RIL) populations. Senesced stems plus leaf sheaths from these lines exhibited significant differences in acetyl bromide soluble lignin (ABSL), cell wall polysaccharide-derived sugars, hydroxycinnamates content, and syringyl:guaiacyl:p-hydroxyphenyl (S:G:H) lignin ratios. Free glucose, sucrose, and starch content also differed significantly in senesced stems, as did the amounts of sugars released from cell wall polysaccharides (digestibility) upon exposure to a panel of thermochemical pretreatments followed by hydrolytic enzymatic digestion. Correlations were identified between inbred line lignin compositions and plant growth characteristics such as biomass accumulation and heading date (HD), and between amounts of cell wall polysaccharides and biomass digestibility. Finally, stem cell wall p-coumarate and ferulate contents and free-sugars content changed significantly with increased duration of vernalization for some inbred lines. Taken together, these results show that Brachypodium displays substantial phenotypic variation with respect to cell wall composition and biomass digestibility, with some compositional differences correlating with growth characteristics. Moreover, besides influencing HD and biomass accumulation, vernalization was found to affect cell wall composition and free sugars accumulation in some Brachypodium inbred lines, suggesting genetic differences in how vernalization affects carbon flux to polysaccharides. Lastly, the availability of related RIL populations will allow for the genetic and molecular dissection of this natural variation, the knowledge of which may inform ways to genetically improve bioenergy crop grasses.« less

  9. Measuring the elasticity of plant cells with atomic force microscopy.

    PubMed

    Braybrook, Siobhan A

    2015-01-01

    The physical properties of biological materials impact their functions. This is most evident in plants where the cell wall contains each cell's contents and connects each cell to its neighbors irreversibly. Examining the physical properties of the plant cell wall is key to understanding how plant cells, tissues, and organs grow and gain the shapes important for their respective functions. Here, we present an atomic force microscopy-based nanoindentation method for examining the elasticity of plant cells at the subcellular, cellular, and tissue level. We describe the important areas of experimental design to be considered when planning and executing these types of experiments and provide example data as illustration. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Pectin Metabolism and Assembly in the Cell Wall of the Charophyte Green Alga Penium margaritaceum1[W][OPEN

    PubMed Central

    Domozych, David S.; Sørensen, Iben; Popper, Zoë A.; Ochs, Julie; Andreas, Amanda; Fangel, Jonatan U.; Pielach, Anna; Sacks, Carly; Brechka, Hannah; Ruisi-Besares, Pia; Willats, William G.T.; Rose, Jocelyn K.C.

    2014-01-01

    The pectin polymer homogalacturonan (HG) is a major component of land plant cell walls and is especially abundant in the middle lamella. Current models suggest that HG is deposited into the wall as a highly methylesterified polymer, demethylesterified by pectin methylesterase enzymes and cross-linked by calcium ions to form a gel. However, this idea is based largely on indirect evidence and in vitro studies. We took advantage of the wall architecture of the unicellular alga Penium margaritaceum, which forms an elaborate calcium cross-linked HG-rich lattice on its cell surface, to test this model and other aspects of pectin dynamics. Studies of live cells and microscopic imaging of wall domains confirmed that the degree of methylesterification and sufficient levels of calcium are critical for lattice formation in vivo. Pectinase treatments of live cells and immunological studies suggested the presence of another class of pectin polymer, rhamnogalacturonan I, and indicated its colocalization and structural association with HG. Carbohydrate microarray analysis of the walls of P. margaritaceum, Physcomitrella patens, and Arabidopsis (Arabidopsis thaliana) further suggested the conservation of pectin organization and interpolymer associations in the walls of green plants. The individual constituent HG polymers also have a similar size and branched structure to those of embryophytes. The HG-rich lattice of P. margaritaceum, a member of the charophyte green algae, the immediate ancestors of land plants, was shown to be important for cell adhesion. Therefore, the calcium-HG gel at the cell surface may represent an early evolutionary innovation that paved the way for an adhesive middle lamella in multicellular land plants. PMID:24652345

  11. Probing the effect of polymer molecular weight on penetration into the wood cell wall using polyethylenimine (PEI) as a model compound.

    PubMed

    Dorvel, Brian; Boopalachandran, Praveenkumar; Chen, Ida; Bowling, Andrew; Williams, Kerry; King, Steve

    2018-05-01

    Decking is one of the largest applications for the treated wood market. The most challenging property to obtain for treated wood is dimensional stability, which can be achieved, in part, by cell wall bulking, cell wall polymer crosslinking and removal of hygroscopic components in the cell wall. A commonly accepted key requirement is for the actives to infuse through the cell wall, which has a microporosity of ∼5-13 nm. Equally as challenging is being able to measure and quantify the cell wall penetration. Branched polyethylenimine (PEI) was studied as a model polymer for penetration due to its water solubility, polarity, variable molecular weight ranges, and ability to form a chelation complex with preservative metals to treat lumbers. Two different molecular weight polyethylenimines (PEI), one with a weight average molecular weight (Mw) equal to 800 Da and the other 750 000 Da, were investigated for penetration by microscopy and spectroscopy techniques. Analytical methods were developed to both create smooth interfaces and for relative quantitation and visualisation of PEI penetration into the wood. The results showed both PEI with Mw of 800 Da and PEI with Mw of 750 000 Da coated the lumens in high density. However, only the PEI with Mw of 800 appeared to penetrate the cell walls in sufficient levels. Literature has shown the hydrodynamic radii of PEI 750 000 is near 29 nm, whereas a smaller PEI at 25 K showed 4.5 nm. Most importantly the results, based on methods developed, show how molecular weight and tertiary structure of the polymer can affect its penetration, with the microporosity of the wood being the main barrier. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  12. Evaluation of cell sheet application on one wall bone defect in Macaca nemestrina through periostin expression

    NASA Astrophysics Data System (ADS)

    Tamin, R. Y.; Soeroso, Y.; Amir, L.; Idrus, E.

    2017-08-01

    Chronic periodontitis is an oral disease in which the destruction of periodontal tissue leads to tooth loss. Regenerative therapy for attachment cannot be applied to one wall bone defects owing to the minimal existing healthy bone. Tissue engineering in the form of cell sheets has been developed to overcome this limitation. In a previous study, cell sheet application to a one wall bone defect in Macaca nemestrina showed good clinical results. To evaluate the effectiveness of cell sheet application histologically, the level of periostin expression in the gingival crevicular fluid (GCF) of M. nemestrina was determined. Periostin is a 90-kDa protein that regulates coordination and interaction for regeneration and tissue repair. A laboratory observation study was performed to see the differences in periostin levels in samples collected from M. nemestrina’s GCF, where a cell sheet was applied to the bone defect. Gel electrophoresis with SDS-PAGE was performed to detect periostin expression based on its molecular weight and to compare the expression band between the cell sheet and the control at 1, 2, and 3 weeks after treatment. The gel electrophoresis result shows different thicknesses of the protein band around the molecular weight of periostin between the cell sheet groups.

  13. Particle Trajectories in Rotating Wall Cell Culture Devices

    NASA Technical Reports Server (NTRS)

    Ramachandran N.; Downey, J. P.

    1999-01-01

    Cell cultures are extremely important to the medical community since such cultures provide an opportunity to perform research on human tissue without the concerns inherent in experiments on individual humans. Development of cells in cultures has been found to be greatly influenced by the conditions of the culture. Much work has focused on the effect of the motions of cells in the culture relative to the solution. Recently rotating wall vessels have been used with success in achieving improved cellular cultures. Speculation and limited research have focused on the low shear environment and the ability of rotating vessels to keep cells suspended in solution rather than floating or sedimenting as the primary reasons for the improved cellular cultures using these devices. It is widely believed that the cultures obtained using a rotating wall vessel simulates to some degree the effect of microgravity on cultures. It has also been speculated that the microgravity environment may provide the ideal acceleration environment for culturing of cellular tissues due to the nearly negligible levels of sedimentation and shear possible. This work predicts particle trajectories of cells in rotating wall vessels of cylindrical and annular design consistent with the estimated properties of typical cellular cultures. Estimates of the shear encountered by cells in solution and the interactions with walls are studied. Comparisons of potential experiments in ground and microgravity environments are performed.

  14. Functional characterization of a tomato COBRA-like gene functioning in fruit development and ripening

    PubMed Central

    2012-01-01

    Background Extensive studies have demonstrated that the COBRA gene is critical for biosynthesis of cell wall constituents comprising structural tissues of roots, stalks, leaves and other vegetative organs, however, its role in fruit development and ripening remains largely unknown. Results We identified a tomato gene (SlCOBRA-like) homologous to Arabidopsis COBRA, and determined its role in fleshy fruit biology. The SlCOBRA-like gene is highly expressed in vegetative organs and in early fruit development, but its expression in fruit declines dramatically during ripening stages, implying a primary role in early fruit development. Fruit-specific suppression of SlCOBRA-like resulted in impaired cell wall integrity and up-regulation of genes encoding proteins involved in cell wall degradation during early fruit development. In contrast, fruit-specific overexpression of SlCOBRA-like resulted in increased wall thickness of fruit epidermal cells, more collenchymatous cells beneath the epidermis, elevated levels of cellulose and reduced pectin solubilization in the pericarp cells of red ripe fruits. Moreover, transgenic tomato fruits overexpressing SlCOBRA-like exhibited desirable early development phenotypes including enhanced firmness and a prolonged shelf life. Conclusions Our results suggest that SlCOBRA-like plays an important role in fruit cell wall architecture and provides a potential genetic tool for extending the shelf life of tomato and potentially additional fruits. PMID:23140186

  15. Characterization of the Sclerotinia sclerotiorum cell wall proteome.

    PubMed

    Liu, Longzhou; Free, Stephen J

    2016-08-01

    We used a proteomic analysis to identify cell wall proteins released from Sclerotinia sclerotiorum hyphal and sclerotial cell walls via a trifluoromethanesulfonic acid (TFMS) digestion. Cell walls from hyphae grown in Vogel's glucose medium (a synthetic medium lacking plant materials), from hyphae grown in potato dextrose broth and from sclerotia produced on potato dextrose agar were used in the analysis. Under the conditions used, TFMS digests the glycosidic linkages in the cell walls to release intact cell wall proteins. The analysis identified 24 glycosylphosphatidylinositol (GPI)-anchored cell wall proteins and 30 non-GPI-anchored cell wall proteins. We found that the cell walls contained an array of cell wall biosynthetic enzymes similar to those found in the cell walls of other fungi. When comparing the proteins in hyphal cell walls grown in potato dextrose broth with those in hyphal cell walls grown in the absence of plant material, it was found that a core group of cell wall biosynthetic proteins and some proteins associated with pathogenicity (secreted cellulases, pectin lyases, glucosidases and proteases) were expressed in both types of hyphae. The hyphae grown in potato dextrose broth contained a number of additional proteins (laccases, oxalate decarboxylase, peroxidase, polysaccharide deacetylase and several proteins unique to Sclerotinia and Botrytis) that might facilitate growth on a plant host. A comparison of the proteins in the sclerotial cell wall with the proteins in the hyphal cell wall demonstrated that sclerotia formation is not marked by a major shift in the composition of cell wall protein. We found that the S. sclerotiorum cell walls contained 11 cell wall proteins that were encoded only in Sclerotinia and Botrytis genomes. © 2015 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  16. Deletion of admB gene encoding a fungal ADAM affects cell wall construction in Aspergillus oryzae.

    PubMed

    Kobayashi, Takuji; Maeda, Hiroshi; Takeuchi, Michio; Yamagata, Youhei

    2017-05-01

    Mammals possess a unique signaling system based on the proteolytic mechanism of a disintegrin and metalloproteinases (ADAMs) on the cell surface. We found two genes encoding ADAMs in Aspergillus oryzae and named them admA and admB. We produced admA and admB deletion strains to elucidate their biological function and clarify whether fungal ADAMs play a similar role as in mammals. The ∆admA∆admB and ∆admB strains were sensitive to cell wall-perturbing agents, congo red, and calcofluor white. Moreover, the two strains showed significantly increased weights of total alkali-soluble fractions from the mycelial cell wall compared to the control strain. Furthermore, ∆admB showed MpkA phosphorylation at lower concentration of congo red stimulation than the control strain. However, the MpkA phosphorylation level was not different between ∆admB and the control strain without the stimulation. The results indicated that A. oryzae AdmB involved in the cell wall integrity without going through the MpkA pathway.

  17. Cell-wall recovery after irreversible deformation of wood

    NASA Astrophysics Data System (ADS)

    Keckes, Jozef; Burgert, Ingo; Frühmann, Klaus; Müller, Martin; Kölln, Klaas; Hamilton, Myles; Burghammer, Manfred; Roth, Stephan V.; Stanzl-Tschegg, Stefanie; Fratzl, Peter

    2003-12-01

    The remarkable mechanical properties of biological materials reside in their complex hierarchical architecture and in specific molecular mechanistic phenomena. The fundamental importance of molecular interactions and bond recovery has been suggested by studies on deformation and fracture of bone and nacre. Like these mineral-based materials, wood also represents a complex nanocomposite with excellent mechanical performance, despite the fact that it is mainly based on polymers. In wood, however, the mechanistic contribution of processes in the cell wall is not fully understood. Here we have combined tensile tests on individual wood cells and on wood foils with simultaneous synchrotron X-ray diffraction analysis in order to separate deformation mechanisms inside the cell wall from those mediated by cell-cell interactions. We show that tensile deformation beyond the yield point does not deteriorate the stiffness of either individual cells or foils. This indicates that there is a dominant recovery mechanism that re-forms the amorphous matrix between the cellulose microfibrils within the cell wall, maintaining its mechanical properties. This stick-slip mechanism, rather like Velcro operating at the nanometre level, provides a 'plastic response' similar to that effected by moving dislocations in metals. We suggest that the molecular recovery mechanism in the cell matrix is a universal phenomenon dominating the tensile deformation of different wood tissue types.

  18. The Craterostigma plantagineum glycine-rich protein CpGRP1 interacts with a cell wall-associated protein kinase 1 (CpWAK1) and accumulates in leaf cell walls during dehydration.

    PubMed

    Giarola, Valentino; Krey, Stephanie; von den Driesch, Barbara; Bartels, Dorothea

    2016-04-01

    Craterostigma plantagineum tolerates extreme desiccation. Leaves of this plant shrink and extensively fold during dehydration and expand again during rehydration, preserving their structural integrity. Genes were analysed that may participate in the reversible folding mechanism. Analysis of transcripts abundantly expressed in desiccated leaves identified a gene putatively coding for an apoplastic glycine-rich protein (CpGRP1). We studied the expression, regulation and subcellular localization of CpGRP1 and its ability to interact with a cell wall-associated protein kinase (CpWAK1) to understand the role of CpGRP1 in the cell wall during dehydration. The CpGRP1 protein accumulates in the apoplast of desiccated leaves. Analysis of the promoter revealed that the gene expression is mainly regulated at the transcriptional level, is independent of abscisic acid (ABA) and involves a drought-responsive cis-element (DRE). CpGRP1 interacts with CpWAK1 which is down-regulated in response to dehydration. Our data suggest a role of the CpGRP1-CpWAK1 complex in dehydration-induced morphological changes in the cell wall during dehydration in C. plantagineum. Cell wall pectins and dehydration-induced pectin modifications are predicted to be involved in the activity of the CpGRP1-CpWAK1 complex. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  19. Pilot-scale cultivation of wall-deficient transgenic Chlamydomonas reinhardtii strains expressing recombinant proteins in the chloroplast.

    PubMed

    Zedler, Julie A Z; Gangl, Doris; Guerra, Tiago; Santos, Edgar; Verdelho, Vitor V; Robinson, Colin

    2016-08-01

    Microalgae have emerged as potentially powerful platforms for the production of recombinant proteins and high-value products. Chlamydomonas reinhardtii is a potentially important host species due to the range of genetic tools that have been developed for this unicellular green alga. Transformation of the chloroplast genome offers important advantages over nuclear transformation, and a wide range of recombinant proteins have now been expressed in the chloroplasts of C. reinhardtii strains. This is often done in cell wall-deficient mutants that are easier to transform. However, only a single study has reported growth data for C. reinhardtii grown at pilot scale, and the growth of cell wall-deficient strains has not been reported at all. Here, we report the first pilot-scale growth study for transgenic, cell wall-deficient C. reinhardtii strains. Strains expressing a cytochrome P450 (CYP79A1) or bifunctional diterpene synthase (cis-abienol synthase, TPS4) were grown for 7 days under mixotrophic conditions in a Tris-acetate-phosphate medium. The strains reached dry cell weights of 0.3 g/L within 3-4 days with stable expression levels of the recombinant proteins during the whole upscaling process. The strains proved to be generally robust, despite the cell wall-deficient phenotype, but grew poorly under phototrophic conditions. The data indicate that cell wall-deficient strains may be highly amenable for transformation and suitable for commercial-scale operations under mixotrophic growth regimes.

  20. Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance.

    PubMed

    Kalluri, Udaya C; Yin, Hengfu; Yang, Xiaohan; Davison, Brian H

    2014-12-01

    Fine-tuning plant cell wall properties to render plant biomass more amenable to biofuel conversion is a colossal challenge. A deep knowledge of the biosynthesis and regulation of plant cell wall and a high-precision genome engineering toolset are the two essential pillars of efforts to alter plant cell walls and reduce biomass recalcitrance. The past decade has seen a meteoric rise in use of transcriptomics and high-resolution imaging methods resulting in fresh insights into composition, structure, formation and deconstruction of plant cell walls. Subsequent gene manipulation approaches, however, commonly include ubiquitous mis-expression of a single candidate gene in a host that carries an intact copy of the native gene. The challenges posed by pleiotropic and unintended changes resulting from such an approach are moving the field towards synthetic biology approaches. Synthetic biology builds on a systems biology knowledge base and leverages high-precision tools for high-throughput assembly of multigene constructs and pathways, precision genome editing and site-specific gene stacking, silencing and/or removal. Here, we summarize the recent breakthroughs in biosynthesis and remodelling of major secondary cell wall components, assess the impediments in obtaining a systems-level understanding and explore the potential opportunities in leveraging synthetic biology approaches to reduce biomass recalcitrance. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Responses of plant seedlings to hypergravity: cellular and molecular aspects

    NASA Astrophysics Data System (ADS)

    Hoson, T.; Yoshioka, R.; Soga, K.; Wakabayashi, K.; Takeba, G.

    Hypergravity produced by centrifugation has been used to analyze the responses of plant seedlings to gravity stimulus. Elongation growth of stem organs is suppressed by hypergravity, which can be recognized as a way for plants to resist gravitational force. The mechanisms inducing growth suppression under hypergravity conditions were analyzed at cellular and molecular levels. When growth was suppressed by hypergravity, a decrease in the cell wall extensibility was brought about in various plants. Hypergravity also induced a cell wall thickening and an increase in the molecular mass of the certain hemicellulosic polysaccharides. Both a decrease in the activities hydrolyzing such polysaccharides and an increase in the apoplast pH were involved in such changes in the cell wall constituents. Thus, the cell wall metabolism is greatly modified under hypergravity conditions, which causes a decrease in the cell wall extensibility, thereby inhibiting elongation growth in stem organs. On the other hand, to identify genes involved in hypergravity-induced growth suppression, changes in gene expression by hypergravity treatment were analyzed in Arabidopsis hypocotyls by differential display method. Sixty-two genes were expressed differentially: expression levels of 39 genes increased, whereas those of 23 genes decreased under hypergravity conditions. The expression of these genes was further analyzed using RT-PCR. One of genes upregulated by hypergravity encoded hydroxymethylglutaryl-CoA reductase (HMGR), which catalyzes a reaction producing mevalonic acid, a key precursor of hormones such as gibberellic acid and abscisic acid. The expression of HMGR gene increased within several hours after hypergravity treatment. Also, compactin, an inhibitor of HMGR activity, prevented hypergravity-induced growth suppression, suggesting that HMGR is involved in suppression of Arabidopsis hypocotyl growth by hypergravity. In addition, hypergravity increased the expression levels of CCR1 and ERD15, which were shown to take part in the signaling pathway of environmental stimuli such as temperature and water. These cellular and molecular changes appear to be involved in a series of events leading to growth suppression of stem organs under hypergravity conditions.

  2. Effects of O 2 and N 2/H 2 plasma treatments on the neuronal cell growth on single-walled carbon nanotube paper scaffolds

    NASA Astrophysics Data System (ADS)

    Yoon, Ok Ja; Lee, Hyun Jung; Jang, Yeong Mi; Kim, Hyun Woo; Lee, Won Bok; Kim, Sung Su; Lee, Nae-Eung

    2011-08-01

    The O 2 and N 2/H 2 plasma treatments of single-walled carbon nanotube (SWCNT) papers as scaffolds for enhanced neuronal cell growth were conducted to functionalize their surfaces with different functional groups and to roughen their surfaces. To evaluate the effects of the surface roughness and functionalization modifications of the SWCNT papers, we investigated the neuronal morphology, mitochondrial membrane potential, and acetylcholine/acetylcholinesterase levels of human neuroblastoma during SH-SY5Y cell growth on the treated SWCNT papers. Our results demonstrated that the plasma-chemical functionalization caused changes in the surface charge states with functional groups with negative and positive charges and then the increased surface roughness enhanced neuronal cell adhesion, mitochondrial membrane potential, and the level of neurotransmitter in vitro. The cell adhesion and mitochondrial membrane potential on the negatively charged SWCNT papers were improved more than on the positively charged SWCNT papers. Also, measurements of the neurotransmitter level showed an enhanced acetylcholine level on the negatively charged SWCNT papers compared to the positively charged SWCNT papers.

  3. Effect of Gravity on the Mammalian Cell Deformation

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Tsao, Y.; Gonda, Steven

    1995-01-01

    The effect of human cell immersed in culture liquid under a micro-gravity environment has been investigated. The study is based on the numerical simulation of the configuration of human cell affected by the time dependent variation of gravity acceleration ranging from 10(exp -3) to 2 g(sub o) (g(sub o) = 9.81 m/s(exp 2)) in 15 seconds. Both the free floating cell and the cell contacted to the upper and lower inclined walls imposed by the time-dependent reduced gravity acceleration are considered in this study. The results show that the cell configuration changes from spherical to horizontally elongated ellipsoid for both the free floating cell and the cell sitting on the lower inclined wall while the cell configuration varies from spherical to vertically elongated ellipsoid for the cell hanging to the upper inclined wall when the gravity acceleration increases. Experimental observations, carried out of human cells exposed to the variation of gravity levels, show that the results of experimental observations agree exactly with the theoretical model computation described in this paper. These results sre significant for humans exposed to the micro-gravity environment.

  4. A temperature-sensitive dcw1 mutant of Saccharomyces cerevisiae is cell cycle arrested with small buds which have aberrant cell walls.

    PubMed

    Kitagaki, Hiroshi; Ito, Kiyoshi; Shimoi, Hitoshi

    2004-10-01

    Dcw1p and Dfg5p in Saccharomyces cerevisiae are homologous proteins that were previously shown to be involved in cell wall biogenesis and to be essential for growth. Dcw1p was found to be a glycosylphosphatidylinositol-anchored membrane protein. To investigate the roles of these proteins in cell wall biogenesis and cell growth, we constructed mutant alleles of DCW1 by random mutagenesis, introduced them into a Deltadcw1 Deltadfg5 background, and isolated a temperature-sensitive mutant, DC61 (dcw1-3 Deltadfg5). When DC61 cells were incubated at 37 degrees C, most cells had small buds, with areas less than 20% of those of the mother cells. This result indicates that DC61 cells arrest growth with small buds at 37 degrees C. At 37 degrees C, fewer DC61 cells had 1N DNA content and most of them still had a single nucleus located apart from the bud neck. In addition, in DC61 cells incubated at 37 degrees C, bipolar spindles were not formed. These results indicate that DC61 cells, when incubated at 37 degrees C, are cell cycle arrested after DNA replication and prior to the separation of spindle pole bodies. The small buds of DC61 accumulated chitin in the bud cortex, and some of them were lysed, which indicates that they had aberrant cell walls. A temperature-sensitive dfg5 mutant, DF66 (Deltadcw1 dfg5-29), showed similar phenotypes. DCW1 and DFG5 mRNA levels peaked in the G1 and S phases, respectively. These results indicate that Dcw1p and Dfg5p are involved in bud formation through their involvement in biogenesis of the bud cell wall.

  5. Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells

    PubMed Central

    Sampathkumar, Arun; Krupinski, Pawel; Wightman, Raymond; Milani, Pascale; Berquand, Alexandre; Boudaoud, Arezki; Hamant, Olivier; Jönsson, Henrik; Meyerowitz, Elliot M

    2014-01-01

    Although it is a central question in biology, how cell shape controls intracellular dynamics largely remains an open question. Here, we show that the shape of Arabidopsis pavement cells creates a stress pattern that controls microtubule orientation, which then guides cell wall reinforcement. Live-imaging, combined with modeling of cell mechanics, shows that microtubules align along the maximal tensile stress direction within the cells, and atomic force microscopy demonstrates that this leads to reinforcement of the cell wall parallel to the microtubules. This feedback loop is regulated: cell-shape derived stresses could be overridden by imposed tissue level stresses, showing how competition between subcellular and supracellular cues control microtubule behavior. Furthermore, at the microtubule level, we identified an amplification mechanism in which mechanical stress promotes the microtubule response to stress by increasing severing activity. These multiscale feedbacks likely contribute to the robustness of microtubule behavior in plant epidermis. DOI: http://dx.doi.org/10.7554/eLife.01967.001 PMID:24740969

  6. The Role of Auxin in Cell Wall Expansion

    PubMed Central

    2018-01-01

    Plant cells are surrounded by cell walls, which are dynamic structures displaying a strictly regulated balance between rigidity and flexibility. Walls are fairly rigid to provide support and protection, but also extensible, to allow cell growth, which is triggered by a high intracellular turgor pressure. Wall properties regulate the differential growth of the cell, resulting in a diversity of cell sizes and shapes. The plant hormone auxin is well known to stimulate cell elongation via increasing wall extensibility. Auxin participates in the regulation of cell wall properties by inducing wall loosening. Here, we review what is known on cell wall property regulation by auxin. We focus particularly on the auxin role during cell expansion linked directly to cell wall modifications. We also analyze downstream targets of transcriptional auxin signaling, which are related to the cell wall and could be linked to acid growth and the action of wall-loosening proteins. All together, this update elucidates the connection between hormonal signaling and cell wall synthesis and deposition. PMID:29565829

  7. The Role of Auxin in Cell Wall Expansion.

    PubMed

    Majda, Mateusz; Robert, Stéphanie

    2018-03-22

    Plant cells are surrounded by cell walls, which are dynamic structures displaying a strictly regulated balance between rigidity and flexibility. Walls are fairly rigid to provide support and protection, but also extensible, to allow cell growth, which is triggered by a high intracellular turgor pressure. Wall properties regulate the differential growth of the cell, resulting in a diversity of cell sizes and shapes. The plant hormone auxin is well known to stimulate cell elongation via increasing wall extensibility. Auxin participates in the regulation of cell wall properties by inducing wall loosening. Here, we review what is known on cell wall property regulation by auxin. We focus particularly on the auxin role during cell expansion linked directly to cell wall modifications. We also analyze downstream targets of transcriptional auxin signaling, which are related to the cell wall and could be linked to acid growth and the action of wall-loosening proteins. All together, this update elucidates the connection between hormonal signaling and cell wall synthesis and deposition.

  8. The pore of the leaf cavity of Azolla species: teat cell differentiation and cell wall projections.

    PubMed

    Veys, P; Lejeune, A; Van Hove, C

    2002-02-01

    The differentiation of the specialized secretory teat cells of the leaf cavity pore of Azolla species was investigated at the ultrastructural level with emphasis on their peculiar cell wall projections. The results indicated that the projections are formed as soon as the teat cells complete their differentiation and that their production is principally associated with changes in endoplasmic reticulum profiles. The number of projections increases with the teat cell age and is stimulated under salt and P deficiency stresses. Salt stress also promotes their emergence on Azolla species that under normal conditions do not produce projections. Cytochemical tests on different Azolla species showed that the projection composition is almost identical: proteins, acidic polysaccharides, and pectin are always detected. This study revealed that Azolla teat cell projections differ fundamentally from other types of hitherto described cell wall projections that are considered as remnant structures from cell separation. In contrast, in Azolla teat cells projections are actively produced and compounds are excreted by an exocytotic mechanism. The possible role of the projections in the symbiosis of Azolla spp. with Anabaena azollae is discussed.

  9. Cotton fiber cell walls of Gossypium hirsutum and Gossypium barbadense have differences related to loosely-bound xyloglucan.

    PubMed

    Avci, Utku; Pattathil, Sivakumar; Singh, Bir; Brown, Virginia L; Hahn, Michael G; Haigler, Candace H

    2013-01-01

    Cotton fiber is an important natural textile fiber due to its exceptional length and thickness. These properties arise largely through primary and secondary cell wall synthesis. The cotton fiber of commerce is a cellulosic secondary wall surrounded by a thin cuticulated primary wall, but there were only sparse details available about the polysaccharides in the fiber cell wall of any cotton species. In addition, Gossypium hirsutum (Gh) fiber was known to have an adhesive cotton fiber middle lamella (CFML) that joins adjacent fibers into tissue-like bundles, but it was unknown whether a CFML existed in other commercially important cotton fibers. We compared the cell wall chemistry over the time course of fiber development in Gh and Gossypium barbadense (Gb), the two most important commercial cotton species, when plants were grown in parallel in a highly controlled greenhouse. Under these growing conditions, the rate of early fiber elongation and the time of onset of secondary wall deposition were similar in fibers of the two species, but as expected the Gb fiber had a prolonged elongation period and developed higher quality compared to Gh fiber. The Gb fibers had a CFML, but it was not directly required for fiber elongation because Gb fiber continued to elongate rapidly after CFML hydrolysis. For both species, fiber at seven ages was extracted with four increasingly strong solvents, followed by analysis of cell wall matrix polysaccharide epitopes using antibody-based Glycome Profiling. Together with immunohistochemistry of fiber cross-sections, the data show that the CFML of Gb fiber contained lower levels of xyloglucan compared to Gh fiber. Xyloglucan endo-hydrolase activity was also higher in Gb fiber. In general, the data provide a rich picture of the similarities and differences in the cell wall structure of the two most important commercial cotton species.

  10. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance

    PubMed Central

    Ene, Iuliana V.; Walker, Louise A.; Schiavone, Marion; Lee, Keunsook K.; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A. R.; Munro, Carol A.

    2015-01-01

    ABSTRACT The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. PMID:26220968

  11. Rice pectin methylesterase inhibitor28 (OsPMEI28) encodes a functional PMEI and its overexpression results in a dwarf phenotype through increased pectin methylesterification levels.

    PubMed

    Nguyen, Hong Phuong; Jeong, Ho Young; Jeon, Seung Ho; Kim, Donghyuk; Lee, Chanhui

    2017-01-01

    Pectin methylesterases (PMEs, EC 3.1.1.11) belonging to carbohydrate esterase family 8 cleave the ester bond between a galacturonic acid and an methyl group and the resulting change in methylesterification level plays an important role during the growth and development of plants. Optimal pectin methylesterification status in each cell type is determined by the balance between PME activity and post-translational PME inhibition by PME inhibitors (PMEIs). Rice contains 49 PMEIs and none of them are functionally characterized. Genomic sequence analysis led to the identification of rice PMEI28 (OsPMEI28). Recombinant OsPMEI28 exhibited inhibitory activity against commercial PME protein with the highest activities detected at pH 8.5. Overexpression of OsPMEI28 in rice resulted in an increased level of cell wall bound methylester groups and differential changes in the composition of cell wall neutral monosaccharides and lignin content in culm tissues. Consequently, transgenic plants overexpressing OsPMEI28 exhibited dwarf phenotypes and reduced culm diameter. Our data indicate that OsPMEI28 functions as a critical structural modulator by regulating the degree of pectin methylesterification and that an impaired status of pectin methylesterification affects physiochemical properties of the cell wall components and causes abnormal cell extensibility in rice culm tissues. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. The bglA Gene of Aspergillus kawachii Encodes Both Extracellular and Cell Wall-Bound β-Glucosidases

    PubMed Central

    Iwashita, Kazuhiro; Nagahara, Tatsuya; Kimura, Hitoshi; Takano, Makoto; Shimoi, Hitoshi; Ito, Kiyoshi

    1999-01-01

    We cloned the genomic DNA and cDNA of bglA, which encodes β-glucosidase in Aspergillus kawachii, based on a partial amino acid sequence of purified cell wall-bound β-glucosidase CB-1. The nucleotide sequence of the cloned bglA gene revealed a 2,933-bp open reading frame with six introns that encodes an 860-amino-acid protein. Based on the deduced amino acid sequence, we concluded that the bglA gene encodes cell wall-bound β-glucosidase CB-1. The amino acid sequence exhibited high levels of homology with the amino acid sequences of fungal β-glucosidases classified in subfamily B. We expressed the bglA cDNA in Saccharomyces cerevisiae and detected the recombinant β-glucosidase in the periplasm fraction of the recombinant yeast. A. kawachii can produce two extracellular β-glucosidases (EX-1 and EX-2) in addition to the cell wall-bound β-glucosidase. A. kawachii in which the bglA gene was disrupted produced none of the three β-glucosidases, as determined by enzyme assays and a Western blot analysis. Thus, we concluded that the bglA gene encodes both extracellular and cell wall-bound β-glucosidases in A. kawachii. PMID:10584016

  13. High Resolution Quantification of Crystalline Cellulose Accumulation in Arabidopsis Roots to Monitor Tissue-specific Cell Wall Modifications.

    PubMed

    Fridman, Yulia; Holland, Neta; Elbaum, Rivka; Savaldi-Goldstein, Sigal

    2016-05-10

    Plant cells are surrounded by a cell wall, the composition of which determines their final size and shape. The cell wall is composed of a complex matrix containing polysaccharides that include cellulose microfibrils that form both crystalline structures and cellulose chains of amorphous organization. The orientation of the cellulose fibers and their concentrations dictate the mechanical properties of the cell. Several methods are used to determine the levels of crystalline cellulose, each bringing both advantages and limitations. Some can distinguish the proportion of crystalline regions within the total cellulose. However, they are limited to whole-organ analyses that are deficient in spatiotemporal information. Others relying on live imaging, are limited by the use of imprecise dyes. Here, we report a sensitive polarized light-based system for specific quantification of relative light retardance, representing crystalline cellulose accumulation in cross sections of Arabidopsis thaliana roots. In this method, the cellular resolution and anatomical data are maintained, enabling direct comparisons between the different tissues composing the growing root. This approach opens a new analytical dimension, shedding light on the link between cell wall composition, cellular behavior and whole-organ growth.

  14. High Resolution Quantification of Crystalline Cellulose Accumulation in Arabidopsis Roots to Monitor Tissue-specific Cell Wall Modifications

    PubMed Central

    Fridman, Yulia; Holland, Neta; Elbaum, Rivka; Savaldi-Goldstein, Sigal

    2016-01-01

    Plant cells are surrounded by a cell wall, the composition of which determines their final size and shape. The cell wall is composed of a complex matrix containing polysaccharides that include cellulose microfibrils that form both crystalline structures and cellulose chains of amorphous organization. The orientation of the cellulose fibers and their concentrations dictate the mechanical properties of the cell. Several methods are used to determine the levels of crystalline cellulose, each bringing both advantages and limitations. Some can distinguish the proportion of crystalline regions within the total cellulose. However, they are limited to whole-organ analyses that are deficient in spatiotemporal information. Others relying on live imaging, are limited by the use of imprecise dyes. Here, we report a sensitive polarized light-based system for specific quantification of relative light retardance, representing crystalline cellulose accumulation in cross sections of Arabidopsis thaliana roots. In this method, the cellular resolution and anatomical data are maintained, enabling direct comparisons between the different tissues composing the growing root. This approach opens a new analytical dimension, shedding light on the link between cell wall composition, cellular behavior and whole-organ growth. PMID:27214583

  15. A mechanical design principle for tissue structure and function in the airway tree.

    PubMed

    LaPrad, Adam S; Lutchen, Kenneth R; Suki, Béla

    2013-01-01

    With every breath, the dynamically changing mechanical pressures must work in unison with the cells and soft tissue structures of the lung to permit air to efficiently traverse the airway tree and undergo gas exchange in the alveoli. The influence of mechanics on cell and tissue function is becoming apparent, raising the question: how does the airway tree co-exist within its mechanical environment to maintain normal cell function throughout its branching structure of diminishing dimensions? We introduce a new mechanical design principle for the conducting airway tree in which mechanotransduction at the level of cells is driven to orchestrate airway wall structural changes that can best maintain a preferred mechanical microenvironment. To support this principle, we report in vitro radius-transmural pressure relations for a range of airway radii obtained from healthy bovine lungs and model the data using a strain energy function together with a thick-walled cylinder description. From this framework, we estimate circumferential stresses and incremental Young's moduli throughout the airway tree. Our results indicate that the conducting airways consistently operate within a preferred mechanical homeostatic state, termed mechanical homeostasis, that is characterized by a narrow range of circumferential stresses and Young's moduli. This mechanical homeostatic state is maintained for all airways throughout the tree via airway wall dimensional and mechanical relationships. As a consequence, cells within the airway walls throughout the airway tree experience similar oscillatory strains during breathing that are much smaller than previously thought. Finally, we discuss the potential implications of how the maintenance of mechanical homeostasis, while facilitating healthy tissue-level alterations necessary for maturation, may lead to airway wall structural changes capable of chronic asthma.

  16. A Mechanical Design Principle for Tissue Structure and Function in the Airway Tree

    PubMed Central

    LaPrad, Adam S.; Lutchen, Kenneth R.; Suki, Béla

    2013-01-01

    With every breath, the dynamically changing mechanical pressures must work in unison with the cells and soft tissue structures of the lung to permit air to efficiently traverse the airway tree and undergo gas exchange in the alveoli. The influence of mechanics on cell and tissue function is becoming apparent, raising the question: how does the airway tree co-exist within its mechanical environment to maintain normal cell function throughout its branching structure of diminishing dimensions? We introduce a new mechanical design principle for the conducting airway tree in which mechanotransduction at the level of cells is driven to orchestrate airway wall structural changes that can best maintain a preferred mechanical microenvironment. To support this principle, we report in vitro radius-transmural pressure relations for a range of airway radii obtained from healthy bovine lungs and model the data using a strain energy function together with a thick-walled cylinder description. From this framework, we estimate circumferential stresses and incremental Young's moduli throughout the airway tree. Our results indicate that the conducting airways consistently operate within a preferred mechanical homeostatic state, termed mechanical homeostasis, that is characterized by a narrow range of circumferential stresses and Young's moduli. This mechanical homeostatic state is maintained for all airways throughout the tree via airway wall dimensional and mechanical relationships. As a consequence, cells within the airway walls throughout the airway tree experience similar oscillatory strains during breathing that are much smaller than previously thought. Finally, we discuss the potential implications of how the maintenance of mechanical homeostasis, while facilitating healthy tissue-level alterations necessary for maturation, may lead to airway wall structural changes capable of chronic asthma. PMID:23737742

  17. Isolation and Proteomic Characterization of the Arabidopsis Golgi Defines Functional and Novel Components Involved in Plant Cell Wall Biosynthesis1[W][OA

    PubMed Central

    Parsons, Harriet T.; Christiansen, Katy; Knierim, Bernhard; Carroll, Andrew; Ito, Jun; Batth, Tanveer S.; Smith-Moritz, Andreia M.; Morrison, Stephanie; McInerney, Peter; Hadi, Masood Z.; Auer, Manfred; Mukhopadhyay, Aindrila; Petzold, Christopher J.; Scheller, Henrik V.; Loqué, Dominique; Heazlewood, Joshua L.

    2012-01-01

    The plant Golgi plays a pivotal role in the biosynthesis of cell wall matrix polysaccharides, protein glycosylation, and vesicle trafficking. Golgi-localized proteins have become prospective targets for reengineering cell wall biosynthetic pathways for the efficient production of biofuels from plant cell walls. However, proteomic characterization of the Golgi has so far been limited, owing to the technical challenges inherent in Golgi purification. In this study, a combination of density centrifugation and surface charge separation techniques have allowed the reproducible isolation of Golgi membranes from Arabidopsis (Arabidopsis thaliana) at sufficiently high purity levels for in-depth proteomic analysis. Quantitative proteomic analysis, immunoblotting, enzyme activity assays, and electron microscopy all confirm high purity levels. A composition analysis indicated that approximately 19% of proteins were likely derived from contaminating compartments and ribosomes. The localization of 13 newly assigned proteins to the Golgi using transient fluorescent markers further validated the proteome. A collection of 371 proteins consistently identified in all replicates has been proposed to represent the Golgi proteome, marking an appreciable advancement in numbers of Golgi-localized proteins. A significant proportion of proteins likely involved in matrix polysaccharide biosynthesis were identified. The potential within this proteome for advances in understanding Golgi processes has been demonstrated by the identification and functional characterization of the first plant Golgi-resident nucleoside diphosphatase, using a yeast complementation assay. Overall, these data show key proteins involved in primary cell wall synthesis and include a mixture of well-characterized and unknown proteins whose biological roles and importance as targets for future research can now be realized. PMID:22430844

  18. The contribution of cell wall composition in the expansion of Camellia sinensis seedlings roots in response to aluminum.

    PubMed

    Safari, Masoumeh; Ghanati, Faezeh; Safarnejad, Mohammad Reza; Chashmi, Najmeh Ahmadian

    2018-02-01

    Treatment with aluminum triggers a unique response in tea seedlings resulting in biochemical modification of the cell wall, regulation of the activity of the loosening agents, and elongation of root. Unlike most terrestrial plants, tea (Camellia sinensis L.) responds to aluminum (Al) through the promotion of its root elongation; but the real mechanism(s) behind this phenomenon is not well understood. A plausible relationship between the modifications of the cell wall and the promotion of root elongation was examined in tea seedlings treated for 8 days with 400 µM Al. The mechanical properties of the cell wall, the composition of its polysaccharides and their capacity to absorb Al, the expression of genes, and the activities of the wall-modifying proteins were studied. With 6 h of the treatment, about 40% of the absorbed Al was bound to the cell wall; however, the amount did not increase thereafter. Meanwhile, the activity of pectin methylesterase, the level of pectin demethylation, the amounts and the average molecular mass of xyloglucan in the root apices significantly decreased upon exposure to Al, resulting in the reduction of Al binding sites. On the other hand, the activity and the gene expression of peroxidase decreased, whereas the activity and gene expression of xyloglucan-degrading enzymes, the expression of expansin A and the H + -ATPase4 genes increased in the Al-treated plants. Interestingly, it was accompanied by the increase of elastic and viscous extensibility of the root apices. From the results, it can be suggested that the biochemical modification of the cell walls reduces sites of Al binding to roots and triggers the activity of the loosening agents, thereby increasing the length of tea roots.

  19. UDP-arabinopyranose mutase 3 is required for pollen wall morphogenesis in rice (Oryza sativa).

    PubMed

    Sumiyoshi, Minako; Inamura, Takuya; Nakamura, Atsuko; Aohara, Tsutomu; Ishii, Tadashi; Satoh, Shinobu; Iwai, Hiroaki

    2015-02-01

    l-Arabinose is one of the main constituents of cell wall polysaccharides such as pectic rhamnogalacturonan I (RG-I), glucuronoarabinoxylans and other glycoproteins. It is found predominantly in the furanose form rather than in the thermodynamically more stable pyranose form. UDP-L-arabinofuranose (UDP-Araf), rather than UDP-L-arabinopyranose (UDP-Arap), is a sugar donor for the biosynthesis of arabinofuranosyl (Araf) residues. UDP-arabinopyranose mutases (UAMs) have been shown to interconvert UDP-Araf and UDP-Arap and are involved in the biosynthesis of polysaccharides including Araf. The UAM gene family has three members in Oryza sativa. Co-expression network in silico analysis showed that OsUAM3 expression was independent from OsUAM1 and OsUAM2 co-expression networks. OsUAM1 and OsUAM2 were expressed ubiquitously throughout plant development, but OsUAM3 was expressed primarily in reproductive tissue, particularly at the pollen cell wall formation developmental stage. OsUAM3 co-expression networks include pectin catabolic enzymes. To determine the function of OsUAMs in reproductive tissues, we analyzed RNA interference (RNAi)-knockdown transformants (OsUAM3-KD) specific for OsUAM3. OsUAM3-KD plants grew normally and showed abnormal phenotypes in reproductive tissues, especially in terms of the pollen cell wall and exine. In addition, we examined modifications of cell wall polysaccharides at the cellular level using antibodies against polysaccharides including Araf. Immunolocalization of arabinan using the LM6 antibody showed low levels of arabinan in OsUAM3-KD pollen grains. Our results suggest that the function of OsUAM3 is important for synthesis of arabinan side chains of RG-I and is required for reproductive developmental processes, especially the formation of the cell wall in pollen. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Ultrastructure of potato tubers formed in microgravity under controlled environmental conditions

    NASA Technical Reports Server (NTRS)

    Cook, Martha E.; Croxdale, Judith G.; Tibbitts, T. W. (Principal Investigator)

    2003-01-01

    Previous spaceflight reports attribute changes in plant ultrastructure to microgravity, but it was thought that the changes might result from growth in uncontrolled environments during spaceflight. To test this possibility, potato explants were examined (a leaf, axillary bud, and small stem segment) grown in the ASTROCULTURETM plant growth unit, which provided a controlled environment. During the 16 d flight of space shuttle Columbia (STS-73), the axillary bud of each explant developed into a mature tuber. Upon return to Earth, tuber slices were examined by transmission electron microscopy. Results showed that the cell ultrastructure of flight-grown tubers could not be distinguished from that of tuber cells grown in the same growth unit on the ground. No differences were observed in cellular features such as protein crystals, plastids with starch grains, mitochondria, rough ER, or plasmodesmata. Cell wall structure, including underlying microtubules, was typical of ground-grown plants. Because cell walls of tubers formed in space were not required to provide support against the force due to gravity, it was hypothesized that these walls might exhibit differences in wall components as compared with walls formed in Earth-grown tubers. Wall components were immunolocalized at the TEM level using monoclonal antibodies JIM 5 and JIM 7, which recognize epitopes of pectins, molecules thought to contribute to wall rigidity and cell adhesion. No difference in presence, abundance or distribution of these pectin epitopes was seen between space- and Earth-grown tubers. This evidence indicates that for the parameters studied, microgravity does not affect the cellular structure of plants grown under controlled environmental conditions.

  1. A Transcriptomic Analysis of Xylan Mutants Does Not Support the Existence of a Secondary Cell Wall Integrity System in Arabidopsis

    PubMed Central

    Faria-Blanc, Nuno; Mortimer, Jenny C.; Dupree, Paul

    2018-01-01

    Yeast have long been known to possess a cell wall integrity (CWI) system, and recently an analogous system has been described for the primary walls of plants (PCWI) that leads to changes in plant growth and cell wall composition. A similar system has been proposed to exist for secondary cell walls (SCWI). However, there is little data to support this. Here, we analyzed the stem transcriptome of a set of cell wall biosynthetic mutants in order to investigate whether cell wall damage, in this case caused by aberrant xylan synthesis, activates a signaling cascade or changes in cell wall synthesis gene expression. Our data revealed remarkably few changes to the transcriptome. We hypothesize that this is because cells undergoing secondary cell wall thickening have entered a committed programme leading to cell death, and therefore a SCWI system would have limited impact. The absence of transcriptomic responses to secondary cell wall alterations may facilitate engineering of the secondary cell wall of plants. PMID:29636762

  2. A Transcriptomic Analysis of Xylan Mutants Does Not Support the Existence of a Secondary Cell Wall Integrity System in Arabidopsis.

    PubMed

    Faria-Blanc, Nuno; Mortimer, Jenny C; Dupree, Paul

    2018-01-01

    Yeast have long been known to possess a cell wall integrity (CWI) system, and recently an analogous system has been described for the primary walls of plants (PCWI) that leads to changes in plant growth and cell wall composition. A similar system has been proposed to exist for secondary cell walls (SCWI). However, there is little data to support this. Here, we analyzed the stem transcriptome of a set of cell wall biosynthetic mutants in order to investigate whether cell wall damage, in this case caused by aberrant xylan synthesis, activates a signaling cascade or changes in cell wall synthesis gene expression. Our data revealed remarkably few changes to the transcriptome. We hypothesize that this is because cells undergoing secondary cell wall thickening have entered a committed programme leading to cell death, and therefore a SCWI system would have limited impact. The absence of transcriptomic responses to secondary cell wall alterations may facilitate engineering of the secondary cell wall of plants.

  3. Differential histone modification and protein expression associated with cell wall removal and regeneration in rice (Oryza sativa).

    PubMed

    Tan, Feng; Zhang, Kangling; Mujahid, Hana; Verma, Desh Pal S; Peng, Zhaohua

    2011-02-04

    The cell wall is a critical extracellular structure that provides protection and structural support in plant cells. To study the biological function of the cell wall and the regulation of cell wall resynthesis, we examined cellular responses to enzymatic removal of the cell wall in rice (Oryza sativa) suspension cells using proteomic approaches. We find that removal of cell wall stimulates cell wall synthesis from multiple sites in protoplasts instead of from a single site as in cytokinesis. Nucleus DAPI stain and MNase digestion further show that removal of the cell wall is concomitant with substantial chromatin reorganization. Histone post-translational modification studies using both Western blots and isotope labeling assisted quantitative mass spectrometry analyses reveal that substantial histone modification changes, particularly H3K18(AC) and H3K23(AC), are associated with the removal and regeneration of the cell wall. Label-free quantitative proteome analyses further reveal that chromatin associated proteins undergo dramatic changes upon removal of the cell wall, along with cytoskeleton, cell wall metabolism, and stress-response proteins. This study demonstrates that cell wall removal is associated with substantial chromatin change and may lead to stimulation of cell wall synthesis using a novel mechanism.

  4. Plant cell wall proteomics: the leadership of Arabidopsis thaliana

    PubMed Central

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions. PMID:23641247

  5. Cell Wall Structure of Coccoid Green Algae as an Important Trade-Off Between Biotic Interference Mechanisms and Multidimensional Cell Growth.

    PubMed

    Dunker, Susanne; Wilhelm, Christian

    2018-01-01

    Coccoid green algae can be divided in two groups based on their cell wall structure. One group has a highly chemical resistant cell wall (HR-cell wall) containing algaenan. The other group is more susceptible to chemicals (LR-cell wall - Low resistant cell wall). Algaenan is considered as important molecule to explain cell wall resistance. Interestingly, cell wall types (LR- and HR-cell wall) are not in accordance with the taxonomic classes Chlorophyceae and Trebouxiophyceae, which makes it even more interesting to consider the ecological function. It was already shown that algaenan helps to protect against virus, bacterial and fungal attack, but in this study we show for the first time that green algae with different cell wall properties show different sensitivity against interference competition with the cyanobacterium Microcystis aeruginosa . Based on previous work with co-cultures of M. aeruginosa and two green algae ( Acutodesmus obliquus and Oocystis marssonii ) differing in their cell wall structure, it was shown that M. aeruginosa could impair only the growth of the green algae if they belong to the LR-cell wall type. In this study it was shown that the sensitivity to biotic interference mechanism shows a more general pattern within coccoid green algae species depending on cell wall structure.

  6. Cell wall-associated ROOT HAIR SPECIFIC 10, a proline-rich receptor-like kinase, is a negative modulator of Arabidopsis root hair growth

    PubMed Central

    Hwang, Youra; Lee, Hyodong; Lee, Young-Sook; Cho, Hyung-Taeg

    2016-01-01

    Plant cell growth is restricted by the cell wall, and cell wall dynamics act as signals for the cytoplasmic and nuclear events of cell growth. Among various receptor kinases, ROOT HAIR SPECIFIC 10 (RHS10) belongs to a poorly known receptor kinase subfamily with a proline-rich extracellular domain. Here, we report that RHS10 defines the root hair length of Arabidopsis thaliana by negatively regulating hair growth. RHS10 modulates the duration of root hair growth rather than the growth rate. As poplar and rice RHS10 orthologs also showed a root hair-inhibitory function, this receptor kinase-mediated function appears to be conserved in angiosperms. RHS10 showed a strong association with the cell wall, most probably through its extracellular proline-rich domain (ECD). Deletion analysis of the ECD demonstrated that a minimal extracellular part, which includes a few proline residues, is required for RHS10-mediated root hair inhibition. RHS10 suppressed the accumulation of reactive oxygen species (ROS) in the root, which are necessary for root hair growth. A yeast two-hybrid screening identified an RNase (RNS2) as a putative downstream target of RHS10. Accordingly, RHS10 overexpression decreased and RHS10 loss increased RNA levels in the hair-growing root region. Our results suggest that RHS10 mediates cell wall-associated signals to maintain proper root hair length, at least in part by regulating RNA catabolism and ROS accumulation. PMID:26884603

  7. Osmolality-dependent relocation of penicillin-binding protein PBP2 to the division site in Caulobacter crescentus.

    PubMed

    Hocking, Jason; Priyadarshini, Richa; Takacs, Constantin N; Costa, Teresa; Dye, Natalie A; Shapiro, Lucy; Vollmer, Waldemar; Jacobs-Wagner, Christine

    2012-06-01

    The synthesis of the peptidoglycan cell wall is carefully regulated in time and space. In nature, this essential process occurs in cells that live in fluctuating environments. Here we show that the spatial distributions of specific cell wall proteins in Caulobacter crescentus are sensitive to small external osmotic upshifts. The penicillin-binding protein PBP2, which is commonly branded as an essential cell elongation-specific transpeptidase, switches its localization from a dispersed, patchy pattern to an accumulation at the FtsZ ring location in response to osmotic upshifts as low as 40 mosmol/kg. This osmolality-dependent relocation to the division apparatus is initiated within less than a minute, while restoration to the patchy localization pattern is dependent on cell growth and takes 1 to 2 generations. Cell wall morphogenetic protein RodA and penicillin-binding protein PBP1a also change their spatial distribution by accumulating at the division site in response to external osmotic upshifts. Consistent with its ecological distribution, C. crescentus displays a narrow range of osmotolerance, with an upper limit of 225 mosmol/kg in minimal medium. Collectively, our findings reveal an unsuspected level of environmental regulation of cell wall protein behavior that is likely linked to an ecological adaptation.

  8. The N-Linked Outer Chain Mannans and the Dfg5p and Dcw1p Endo-α-1,6-Mannanases Are Needed for Incorporation of Candida albicans Glycoproteins into the Cell Wall

    PubMed Central

    Ao, Jie; Chinnici, Jennifer L.; Maddi, Abhiram

    2015-01-01

    A biochemical pathway for the incorporation of cell wall protein into the cell wall of Neurospora crassa was recently proposed. In this pathway, the DFG-5 and DCW-1 endo-α-1,6-mannanases function to covalently cross-link cell wall protein-associated N-linked galactomannans, which are structurally related to the yeast outer chain mannans, into the cell wall glucan-chitin matrix. In this report, we demonstrate that the mannosyltransferase enzyme Och1p, which is needed for the synthesis of the N-linked outer chain mannan, is essential for the incorporation of cell wall glycoproteins into the Candida albicans cell wall. Using endoglycosidases, we show that C. albicans cell wall proteins are cross-linked into the cell wall via their N-linked outer chain mannans. We further demonstrate that the Dfg5p and Dcw1p α-1,6-mannanases are needed for the incorporation of cell wall glycoproteins into the C. albicans cell wall. Our results support the hypothesis that the Dfg5p and Dcw1p α-1,6-mannanases incorporate cell wall glycoproteins into the C. albicans cell wall by cross-linking outer chain mannans into the cell wall glucan-chitin matrix. PMID:26048011

  9. Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The Cell Wall Integrity Signaling Pathway

    PubMed Central

    Levin, David E.

    2011-01-01

    The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to the Rho1 GTPase, which mobilizes a physiologic response through a variety of effectors. Activation of CWI signaling regulates the production of various carbohydrate polymers of the cell wall, as well as their polarized delivery to the site of cell wall remodeling. This review article centers on CWI signaling in Saccharomyces cerevisiae through the cell cycle and in response to cell wall stress. The interface of this signaling pathway with other pathways that contribute to the maintenance of cell wall integrity is also discussed. PMID:22174182

  10. Evidence for a Role for the Plasma Membrane in the Nanomechanical Properties of the Cell Wall as Revealed by an Atomic Force Microscopy Study of the Response of Saccharomyces cerevisiae to Ethanol Stress

    PubMed Central

    Schiavone, Marion; Formosa-Dague, Cécile; Elsztein, Carolina; Teste, Marie-Ange; Martin-Yken, Helene; De Morais, Marcos A.; Dague, Etienne

    2016-01-01

    ABSTRACT A wealth of biochemical and molecular data have been reported regarding ethanol toxicity in the yeast Saccharomyces cerevisiae. However, direct physical data on the effects of ethanol stress on yeast cells are almost nonexistent. This lack of information can now be addressed by using atomic force microscopy (AFM) technology. In this report, we show that the stiffness of glucose-grown yeast cells challenged with 9% (vol/vol) ethanol for 5 h was dramatically reduced, as shown by a 5-fold drop of Young's modulus. Quite unexpectedly, a mutant deficient in the Msn2/Msn4 transcription factor, which is known to mediate the ethanol stress response, exhibited a low level of stiffness similar to that of ethanol-treated wild-type cells. Reciprocally, the stiffness of yeast cells overexpressing MSN2 was about 35% higher than that of the wild type but was nevertheless reduced 3- to 4-fold upon exposure to ethanol. Based on these and other data presented herein, we postulated that the effect of ethanol on cell stiffness may not be mediated through Msn2/Msn4, even though this transcription factor appears to be a determinant in the nanomechanical properties of the cell wall. On the other hand, we found that as with ethanol, the treatment of yeast with the antifungal amphotericin B caused a significant reduction of cell wall stiffness. Since both this drug and ethanol are known to alter, albeit by different means, the fluidity and structure of the plasma membrane, these data led to the proposition that the cell membrane contributes to the biophysical properties of yeast cells. IMPORTANCE Ethanol is the main product of yeast fermentation but is also a toxic compound for this process. Understanding the mechanism of this toxicity is of great importance for industrial applications. While most research has focused on genomic studies of ethanol tolerance, we investigated the effects of ethanol at the biophysical level and found that ethanol causes a strong reduction of the cell wall rigidity (or stiffness). We ascribed this effect to the action of ethanol perturbing the cell membrane integrity and hence proposed that the cell membrane contributes to the cell wall nanomechanical properties. PMID:27235439

  11. Evidence for a Role for the Plasma Membrane in the Nanomechanical Properties of the Cell Wall as Revealed by an Atomic Force Microscopy Study of the Response of Saccharomyces cerevisiae to Ethanol Stress.

    PubMed

    Schiavone, Marion; Formosa-Dague, Cécile; Elsztein, Carolina; Teste, Marie-Ange; Martin-Yken, Helene; De Morais, Marcos A; Dague, Etienne; François, Jean M

    2016-08-01

    A wealth of biochemical and molecular data have been reported regarding ethanol toxicity in the yeast Saccharomyces cerevisiae However, direct physical data on the effects of ethanol stress on yeast cells are almost nonexistent. This lack of information can now be addressed by using atomic force microscopy (AFM) technology. In this report, we show that the stiffness of glucose-grown yeast cells challenged with 9% (vol/vol) ethanol for 5 h was dramatically reduced, as shown by a 5-fold drop of Young's modulus. Quite unexpectedly, a mutant deficient in the Msn2/Msn4 transcription factor, which is known to mediate the ethanol stress response, exhibited a low level of stiffness similar to that of ethanol-treated wild-type cells. Reciprocally, the stiffness of yeast cells overexpressing MSN2 was about 35% higher than that of the wild type but was nevertheless reduced 3- to 4-fold upon exposure to ethanol. Based on these and other data presented herein, we postulated that the effect of ethanol on cell stiffness may not be mediated through Msn2/Msn4, even though this transcription factor appears to be a determinant in the nanomechanical properties of the cell wall. On the other hand, we found that as with ethanol, the treatment of yeast with the antifungal amphotericin B caused a significant reduction of cell wall stiffness. Since both this drug and ethanol are known to alter, albeit by different means, the fluidity and structure of the plasma membrane, these data led to the proposition that the cell membrane contributes to the biophysical properties of yeast cells. Ethanol is the main product of yeast fermentation but is also a toxic compound for this process. Understanding the mechanism of this toxicity is of great importance for industrial applications. While most research has focused on genomic studies of ethanol tolerance, we investigated the effects of ethanol at the biophysical level and found that ethanol causes a strong reduction of the cell wall rigidity (or stiffness). We ascribed this effect to the action of ethanol perturbing the cell membrane integrity and hence proposed that the cell membrane contributes to the cell wall nanomechanical properties. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Biophysical mechanism of differential growth during gravitropism

    NASA Technical Reports Server (NTRS)

    Cosgrove, D.

    1984-01-01

    A research project is described the goal of which is to determine the mechanism of gravitropic curvature in plant stems at the biophysical and the cellular level. The reorientation of plant organs under the influence of gravity is due to differential growth of the upper and lower sides of the organ. The rate of plant cell enlargement is governed by four biophysical parameters: (1) the extensibility of the cell wall; (2) the minimum stress in the cell wall required for wall expansion (the "yield threshold'); (3) the osmotic pressure difference between the cell contents and the water source; and (4) the hydraulic conductivity of the pathway for water uptake. Gravitropic response must involve differential alteration of one or more of these four parameters on the two sides of the growing organ. Each of these factors will be examined to assess the role it plays in gravitropism.

  13. Structural and biochemical changes induced by pulsed electric field treatments on Cabernet Sauvignon grape berry skins: impact on cell wall total tannins and polysaccharides.

    PubMed

    Cholet, Céline; Delsart, Cristèle; Petrel, Mélina; Gontier, Etienne; Grimi, Nabil; L'hyvernay, Annie; Ghidossi, Remy; Vorobiev, Eugène; Mietton-Peuchot, Martine; Gény, Laurence

    2014-04-02

    Pulsed electric field (PEF) treatment is an emerging technology that is arousing increasing interest in vinification processes for its ability to enhance polyphenol extraction performance. The aim of this study was to investigate the effects of PEF treatment on grape skin histocytological structures and on the organization of skin cell wall polysaccharides and tannins, which, until now, have been little investigated. This study relates to the effects of two PEF treatments on harvested Cabernet Sauvignon berries: PEF1 (medium strength (4 kV/cm); short duration (1 ms)) and PEF2 (low intensity (0.7 kV/cm); longer duration (200 ms)). Histocytological observations and the study of levels of polysaccharidic fractions and total amounts of tannins allowed differentiation between the two treatments. Whereas PEF1 had little effect on the polyphenol structure and pectic fraction, PEF2 profoundly modified the organization of skin cell walls. Depending on the PEF parameters, cell wall structure was differently affected, providing variable performance in terms of polyphenol extraction and wine quality.

  14. Anti-arthritic activity of cell wall content of Lactobacillus plantarum in freund's adjuvant-induced arthritic rats: involvement of cellular inflammatory mediators and other biomarkers.

    PubMed

    Gohil, Priyanshee; Patel, Vimal; Deshpande, Shrikalp; Chorawala, Mehul; Shah, Gaurang

    2018-02-01

    Alteration of microbiota is related with rheumatoid arthritis (RA) and administration of certain probiotics showed an improvement in RA. The present study was designed to find out the anti-arthritic activity of cell wall content of Lactobacillus plantarum in complete Freund's adjuvant (CFA)-induced arthritis in rats. Freund's adjuvant was injected into the left footpad in female rats on day 0 and dexamethasone (1 mg kg -1 , s.c.) & cell wall content of L. plantarum (10 5 , 10 7 , and 10 9  cfu/animal, s.c.) treatment were given from day 7 to 21. The change in body weight, paw volume and arthritic index, joint stiffness, gait test, mobility test, erythrocyte sedimentation rate (ESR), serum C-reactive protein (CRP) level, serum rheumatoid factor (RF), and serum TNF-α was measured on day 21. Cell wall content of L. plantarum treated animals showed improvement in all the parameters as compared to that in CFA-treated animals and exert anti-arthritic activity.

  15. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    PubMed

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  16. A Model for Cell Wall Dissolution in Mating Yeast Cells: Polarized Secretion and Restricted Diffusion of Cell Wall Remodeling Enzymes Induces Local Dissolution

    PubMed Central

    Huberman, Lori B.; Murray, Andrew W.

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells. PMID:25329559

  17. A study of the native cell wall structures of the marine alga Ventricaria ventricosa (Siphonocladales, Chlorophyceae) using atomic force microscopy.

    PubMed

    Eslick, Enid M; Beilby, Mary J; Moon, Anthony R

    2014-04-01

    A substantial proportion of the architecture of the plant cell wall remains unknown with a few cell wall models being proposed. Moreover, even less is known about the green algal cell wall. Techniques that allow direct visualization of the cell wall in as near to its native state are of importance in unravelling the spatial arrangement of cell wall structures and hence in the development of cell wall models. Atomic force microscopy (AFM) was used to image the native cell wall of living cells of Ventricaria ventricosa (V. ventricosa) at high resolution under physiological conditions. The cell wall polymers were identified mainly qualitatively via their structural appearance. The cellulose microfibrils (CMFs) were easily recognizable and the imaging results indicate that the V. ventricosa cell wall has a cross-fibrillar structure throughout. We found the native wall to be abundant in matrix polysaccharides existing in different curing states. The soft phase matrix polysaccharides susceptible by the AFM scanning tip existed as a glutinous fibrillar meshwork, possibly incorporating both the pectic- and hemicellulosic-type substances. The hard phase matrix producing clearer images, revealed coiled fibrillar structures associated with CMFs, sometimes being resolved as globular structures by the AFM tip. The coiling fibrillar structures were also seen in the images of isolated cell wall fragments. The mucilaginous component of the wall was discernible from the gelatinous cell wall matrix as it formed microstructural domains over the surface. AFM has been successful in imaging the native cell wall and revealing novel findings such as the 'coiling fibrillar structures' and cell wall components which have previously not been seen, that is, the gelatinous matrix phase.

  18. Identification of the UDP-glucose-4-epimerase required for galactofuranose biosynthesis and galactose metabolism in A. niger.

    PubMed

    Park, Joohae; Tefsen, Boris; Arentshorst, Mark; Lagendijk, Ellen; van den Hondel, Cees Amjj; van Die, Irma; Ram, Arthur Fj

    2014-01-01

    Galactofuranose (Gal f )-containing glycoconjugates are important to secure the integrity of the cell wall of filamentous fungi. Mutations that prevent the biosynthesis of Gal f -containing molecules compromise cell wall integrity. In response to cell wall weakening, the cell wall integrity (CWI)-pathway is activated to reinforce the strength of the cell wall. Activation of CWI-pathway in Aspergillus niger is characterized by the specific induction of the agsA gene, which encodes a cell wall α-glucan synthase. In this study, we screened a collection of cell wall mutants with an induced expression of agsA for defects in Gal f biosynthesis using a with anti-Gal f antibody (L10). From this collection of mutants, we previously identified mutants in the UDP-galactopyranose mutase encoding gene ( ugmA ). Here, we have identified six additional UDP-galactopyranose mutase ( ugmA ) mutants and one mutant (named mutant #41) in an additional complementation group that displayed strongly reduced Gal f -levels in the cell wall. By using a whole genome sequencing approach, 21 SNPs in coding regions were identified between mutant #41 and its parental strain which changed the amino acid sequence of the encoded proteins. One of these mutations was in gene An14g03820, which codes for a putative UDP-glucose-4-epimerase (UgeA). The A to G mutation in this gene causes an amino acid change of Asn to Asp at position 191 in the UgeA protein. Targeted deletion of ugeA resulted in an even more severe reduction of Gal f in N-linked glucans, indicating that the UgeA protein in mutant #41 is partially active. The ugeA gene is also required for growth on galactose despite the presence of two UgeA homologs in the A. niger genome. By using a classical mutant screen and whole genome sequencing of a new Gal f -deficient mutant, the UDP-glucose-4-epimerase gene ( ugeA ) has been identified. UgeA is required for the biosynthesis of Gal f as well as for galactose metabolism in Aspergillus niger .

  19. Altered Cell Wall Plasticity Can Restrict Plant Growth under Ammonium Nutrition.

    PubMed

    Podgórska, Anna; Burian, Maria; Gieczewska, Katarzyna; Ostaszewska-Bugajska, Monika; Zebrowski, Jacek; Solecka, Danuta; Szal, Bożena

    2017-01-01

    Plants mainly utilize inorganic forms of nitrogen (N), such as nitrate (NO 3 - ) and ammonium (NH 4 + ). However, the composition of the N source is important, because excess of NH 4 + promotes morphological disorders. Plants cultured on NH 4 + as the sole N source exhibit serious growth inhibition, commonly referred to as "ammonium toxicity syndrome." NH 4 + -mediated suppression of growth may be attributable to both repression of cell elongation and reduction of cell division. The precondition for cell enlargement is the expansion of the cell wall, which requires the loosening of the cell wall polymers. Therefore, to understand how NH 4 + nutrition may trigger growth retardation in plants, properties of their cell walls were analyzed. We found that Arabidopsis thaliana using NH 4 + as the sole N source has smaller cells with relatively thicker cell walls. Moreover, cellulose, which is the main load-bearing polysaccharide revealed a denser assembly of microfibrils. Consequently, the leaf blade tissue showed elevated tensile strength and indicated higher cell wall stiffness. These changes might be related to changes in polysaccharide and ion content of cell walls. Further, NH 4 + toxicity was associated with altered activities of cell wall modifying proteins. The lower activity and/or expression of pectin hydrolyzing enzymes and expansins might limit cell wall expansion. Additionally, the higher activity of cell wall peroxidases can lead to higher cross-linking of cell wall polymers. Overall, the NH 4 + -mediated inhibition of growth is related to a more rigid cell wall structure, which limits expansion of cells. The changes in cell wall composition were also indicated by decreased expression of Feronia , a receptor-like kinase involved in the control of cell wall extension.

  20. Altered Cell Wall Plasticity Can Restrict Plant Growth under Ammonium Nutrition

    PubMed Central

    Podgórska, Anna; Burian, Maria; Gieczewska, Katarzyna; Ostaszewska-Bugajska, Monika; Zebrowski, Jacek; Solecka, Danuta; Szal, Bożena

    2017-01-01

    Plants mainly utilize inorganic forms of nitrogen (N), such as nitrate (NO3–) and ammonium (NH4+). However, the composition of the N source is important, because excess of NH4+ promotes morphological disorders. Plants cultured on NH4+ as the sole N source exhibit serious growth inhibition, commonly referred to as “ammonium toxicity syndrome.” NH4+-mediated suppression of growth may be attributable to both repression of cell elongation and reduction of cell division. The precondition for cell enlargement is the expansion of the cell wall, which requires the loosening of the cell wall polymers. Therefore, to understand how NH4+ nutrition may trigger growth retardation in plants, properties of their cell walls were analyzed. We found that Arabidopsis thaliana using NH4+ as the sole N source has smaller cells with relatively thicker cell walls. Moreover, cellulose, which is the main load-bearing polysaccharide revealed a denser assembly of microfibrils. Consequently, the leaf blade tissue showed elevated tensile strength and indicated higher cell wall stiffness. These changes might be related to changes in polysaccharide and ion content of cell walls. Further, NH4+ toxicity was associated with altered activities of cell wall modifying proteins. The lower activity and/or expression of pectin hydrolyzing enzymes and expansins might limit cell wall expansion. Additionally, the higher activity of cell wall peroxidases can lead to higher cross-linking of cell wall polymers. Overall, the NH4+-mediated inhibition of growth is related to a more rigid cell wall structure, which limits expansion of cells. The changes in cell wall composition were also indicated by decreased expression of Feronia, a receptor-like kinase involved in the control of cell wall extension. PMID:28848567

  1. Transcriptome profiling of a Saccharomyces cerevisiae mutant with a constitutively activated Ras/cAMP pathway.

    PubMed

    Jones, D L; Petty, J; Hoyle, D C; Hayes, A; Ragni, E; Popolo, L; Oliver, S G; Stateva, L I

    2003-12-16

    Often changes in gene expression levels have been considered significant only when above/below some arbitrarily chosen threshold. We investigated the effect of applying a purely statistical approach to microarray analysis and demonstrated that small changes in gene expression have biological significance. Whole genome microarray analysis of a pde2Delta mutant, constructed in the Saccharomyces cerevisiae reference strain FY23, revealed altered expression of approximately 11% of protein encoding genes. The mutant, characterized by constitutive activation of the Ras/cAMP pathway, has increased sensitivity to stress, reduced ability to assimilate nonfermentable carbon sources, and some cell wall integrity defects. Applying the Munich Information Centre for Protein Sequences (MIPS) functional categories revealed increased expression of genes related to ribosome biogenesis and downregulation of genes in the cell rescue, defense, cell death and aging category, suggesting a decreased response to stress conditions. A reduced level of gene expression in the unfolded protein response pathway (UPR) was observed. Cell wall genes whose expression was affected by this mutation were also identified. Several of the cAMP-responsive orphan genes, upon further investigation, revealed cell wall functions; others had previously unidentified phenotypes assigned to them. This investigation provides a statistical global transcriptome analysis of the cellular response to constitutive activation of the Ras/cAMP pathway.

  2. Molecular coordination of Staphylococcus aureus cell division

    PubMed Central

    Cotterell, Bryony E; Walther, Christa G; Fenn, Samuel J; Grein, Fabian; Wollman, Adam JM; Leake, Mark C; Olivier, Nicolas; Cadby, Ashley; Mesnage, Stéphane; Jones, Simon

    2018-01-01

    The bacterial cell wall is essential for viability, but despite its ability to withstand internal turgor must remain dynamic to permit growth and division. Peptidoglycan is the major cell wall structural polymer, whose synthesis requires multiple interacting components. The human pathogen Staphylococcus aureus is a prolate spheroid that divides in three orthogonal planes. Here, we have integrated cellular morphology during division with molecular level resolution imaging of peptidoglycan synthesis and the components responsible. Synthesis occurs across the developing septal surface in a diffuse pattern, a necessity of the observed septal geometry, that is matched by variegated division component distribution. Synthesis continues after septal annulus completion, where the core division component FtsZ remains. The novel molecular level information requires re-evaluation of the growth and division processes leading to a new conceptual model, whereby the cell cycle is expedited by a set of functionally connected but not regularly distributed components. PMID:29465397

  3. The Cell Wall of the Human Fungal Pathogen Aspergillus fumigatus: Biosynthesis, Organization, Immune Response, and Virulence.

    PubMed

    Latgé, Jean-Paul; Beauvais, Anne; Chamilos, Georgios

    2017-09-08

    More than 90% of the cell wall of the filamentous fungus Aspergillus fumigatus comprises polysaccharides. Biosynthesis of the cell wall polysaccharides is under the control of three types of enzymes: transmembrane synthases, which are anchored to the plasma membrane and use nucleotide sugars as substrates, and cell wall-associated transglycosidases and glycosyl hydrolases, which are responsible for remodeling the de novo synthesized polysaccharides and establishing the three-dimensional structure of the cell wall. For years, the cell wall was considered an inert exoskeleton of the fungal cell. The cell wall is now recognized as a living organelle, since the composition and cellular localization of the different constitutive cell wall components (especially of the outer layers) vary when the fungus senses changes in the external environment. The cell wall plays a major role during infection. The recognition of the fungal cell wall by the host is essential in the initiation of the immune response. The interactions between the different pattern-recognition receptors (PRRs) and cell wall pathogen-associated molecular patterns (PAMPs) orientate the host response toward either fungal death or growth, which would then lead to disease development. Understanding the molecular determinants of the interplay between the cell wall and host immunity is fundamental to combatting Aspergillus diseases.

  4. Difference in the distribution and speciation of cellular nickel between nickel-tolerant and non-tolerant Nicotiana tabacum L. cv. BY-2 cells.

    PubMed

    Saito, Akihiro; Saito, Misa; Ichikawa, Yusuke; Yoshiba, Masaaki; Tadano, Toshiaki; Miwa, Eitaro; Higuchi, Kyoko

    2010-02-01

    To evaluate Ni dynamics at the subcellular level, the distribution and speciation of Ni were determined in wild-type (WT) and Ni-tolerant (NIT) tobacco BY-2 cell lines. When exposed to low but toxic levels of Ni, NIT cells were found to contain 2.5-fold more Ni (14% of whole-cell Ni values) in their cell walls than WT cells (6% of whole-cell Ni values). In addition to higher levels of Ni in the apoplast, a higher proportion (94%) of symplastic Ni was localized in the vacuoles of NIT cells than in the vacuoles of WT cells (81%). The concentration of cytosolic Ni in the NIT cells was significantly lower (18 nmol g(-1) FW) than that in the WT cells (85 nmol g(-1) FW). In silico simulation showed that 95% of vacuolar Ni was in the form of Ni-citrate complexes, and that free Ni(2+) was virtually absent in the NIT cells. On the other hand, the amount of free metal ions was markedly increased in WT cells because free citrate was depleted by chelation of Ni. A protoplast viability assay using BCECF-AM further demonstrated that the main mechanism that confers strong Ni tolerance was present in the symplast as opposed to the cell wall.

  5. Cell Wall Composition and Candidate Biosynthesis Gene Expression During Rice Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Fan; Manisseri, Chithra; Fagerström, Alexandra

    Cell walls of grasses, including cereal crops and biofuel grasses, comprise the majority of plant biomass and intimately influence plant growth, development and physiology. However, the functions of many cell wall synthesis genes, and the relationships among and the functions of cell wall components remain obscure. To better understand the patterns of cell wall accumulation and identify genes that act in grass cell wall biosynthesis, we characterized 30 samples from aerial organs of rice (Oryza sativa cv. Kitaake) at 10 developmental time points, 3-100 d post-germination. Within these samples, we measured 15 cell wall chemical components, enzymatic digestibility and 18more » cell wall polysaccharide epitopes/ligands. We also used quantitative reverse transcription-PCR to measure expression of 50 glycosyltransferases, 15 acyltransferases and eight phenylpropanoid genes, many of which had previously been identified as being highly expressed in rice. Most cell wall components vary significantly during development, and correlations among them support current understanding of cell walls. We identified 92 significant correlations between cell wall components and gene expression and establish nine strong hypotheses for genes that synthesize xylans, mixed linkage glucan and pectin components. This work provides an extensive analysis of cell wall composition throughout rice development, identifies genes likely to synthesize grass cell walls, and provides a framework for development of genetically improved grasses for use in lignocellulosic biofuel production and agriculture.« less

  6. The Impact of Microfibril Orientations on the Biomechanics of Plant Cell Walls and Tissues.

    PubMed

    Ptashnyk, Mariya; Seguin, Brian

    2016-11-01

    The microscopic structure and anisotropy of plant cell walls greatly influence the mechanical properties, morphogenesis, and growth of plant cells and tissues. The microscopic structure and properties of cell walls are determined by the orientation and mechanical properties of the cellulose microfibrils and the mechanical properties of the cell wall matrix. Viewing the shape of a plant cell as a square prism with the axis aligning with the primary direction of expansion and growth, the orientation of the microfibrils within the side walls, i.e. the parts of the cell walls on the sides of the cells, is known. However, not much is known about their orientation at the upper and lower ends of the cell. Here we investigate the impact of the orientation of cellulose microfibrils within the upper and lower parts of the plant cell walls by solving the equations of linear elasticity numerically. Three different scenarios for the orientation of the microfibrils are considered. We also distinguish between the microstructure in the side walls given by microfibrils perpendicular to the main direction of the expansion and the situation where the microfibrils are rotated through the wall thickness. The macroscopic elastic properties of the cell wall are obtained using homogenization theory from the microscopic description of the elastic properties of the cell wall microfibrils and wall matrix. It is found that the orientation of the microfibrils in the upper and lower parts of the cell walls affects the expansion of the cell in the lateral directions and is particularly important in the case of forces acting on plant cell walls and tissues.

  7. High temperature induced disruption of the cell wall integrity and structure in Pleurotus ostreatus mycelia.

    PubMed

    Qiu, Zhiheng; Wu, Xiangli; Gao, Wei; Zhang, Jinxia; Huang, Chenyang

    2018-05-30

    Fungal cells are surrounded by a tight cell wall to protect them from harmful environmental conditions and to resist lysis. The synthesis and assembly determine the shape, structure, and integrity of the cell wall during the process of mycelial growth and development. High temperature is an important abiotic stress, which affects the synthesis and assembly of cell walls. In the present study, the chitin and β-1,3-glucan concentrations in the cell wall of Pleurotus ostreatus mycelia were changed after high-temperature treatment. Significantly higher chitin and β-1,3-glucan concentrations were detected at 36 °C than those incubated at 28 °C. With the increased temperature, many aberrant chitin deposition patches occurred, and the distribution of chitin in the cell wall was uneven. Moreover, high temperature disrupts the cell wall integrity, and P. ostreatus mycelia became hypersensitive to cell wall-perturbing agents at 36 °C. The cell wall structure tended to shrink or distorted after high temperature. The cell walls were observed to be thicker and looser by using transmission electron microscopy. High temperature can decrease the mannose content in the cell wall and increase the relative cell wall porosity. According to infrared absorption spectrum, high temperature broke or decreased the glycosidic linkages. Finally, P. ostreatus mycelial cell wall was easily degraded by lysing enzymes after high-temperature treatment. In other words, the cell wall destruction caused by high temperature may be a breakthrough for P. ostreatus to be easily infected by Trichoderma.

  8. Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana

    PubMed Central

    2013-01-01

    Background Second-generation biofuels are generally produced from the polysaccharides in the lignocellulosic plant biomass, mainly cellulose. However, because cellulose is embedded in a matrix of other polysaccharides and lignin, its hydrolysis into the fermentable glucose is hampered. The senesced inflorescence stems of a set of 20 Arabidopsis thaliana mutants in 10 different genes of the lignin biosynthetic pathway were analyzed for cell wall composition and saccharification yield. Saccharification models were built to elucidate which cell wall parameters played a role in cell wall recalcitrance. Results Although lignin is a key polymer providing the strength necessary for the plant’s ability to grow upward, a reduction in lignin content down to 64% of the wild-type level in Arabidopsis was tolerated without any obvious growth penalty. In contrast to common perception, we found that a reduction in lignin was not compensated for by an increase in cellulose, but rather by an increase in matrix polysaccharides. In most lignin mutants, the saccharification yield was improved by up to 88% cellulose conversion for the cinnamoyl-coenzyme A reductase1 mutants under pretreatment conditions, whereas the wild-type cellulose conversion only reached 18%. The saccharification models and Pearson correlation matrix revealed that the lignin content was the main factor determining the saccharification yield. However, also lignin composition, matrix polysaccharide content and composition, and, especially, the xylose, galactose, and arabinose contents influenced the saccharification yield. Strikingly, cellulose content did not significantly affect saccharification yield. Conclusions Although the lignin content had the main effect on saccharification, also other cell wall factors could be engineered to potentially increase the cell wall processability, such as the galactose content. Our results contribute to a better understanding of the effect of lignin perturbations on plant cell wall composition and its influence on saccharification yield, and provide new potential targets for genetic improvement. PMID:23622268

  9. Could the Extended Phenotype Extend to the Cellular and Subcellular Levels in Insect-Induced Galls?

    PubMed Central

    Carneiro, Renê Gonçalves da Silva; Pacheco, Priscilla; Isaias, Rosy Mary dos Santos

    2015-01-01

    Neo-ontogenesis of plant galls involves redifferentiation of host plant tissues to express new phenotypes, when new cell properties are established via structural-functional remodeling. Herein, Psidium cattleianum leaves and Nothotrioza cattleiani galls are analyzed by developmental anatomy, cytometry and immunocytochemistry of cell walls. We address hypothesis-driven questions concerning the organogenesis of globoid galls in the association of P. cattleianum - N. cattleianum, and P. myrtoides - N. myrtoidis. These double co-generic systems represent good models for comparing final gall shapes and cell lineages functionalities under the perspective of convergent plant-dependent or divergent insect-induced characteristics. Gall induction, and growth and development are similar in both galls, but homologous cell lineages exhibit divergent degrees of cell hypertrophy and directions of elongation. Median cortical cells in P. cattleianum galls hypertrophy the most, while in P. myrtoides galls there is a centrifugal gradient of cell hypertrophy. Cortical cells in P. cattleianum galls tend to anisotropy, while P. myrtoidis galls have isotropically hypertrophied cells. Immunocytochemistry evidences the chemical identity and functional traits of cell lineages: epidermal cells walls have homogalacturonans (HGAs) and galactans, which confer rigidity to sites of enhanced cell division; oil gland cell walls have arabinogalactan proteins (AGPs) that help avoiding cell death; and parenchyma cell walls have HGAs, galactans and arabinans, which confer porosity. Variations in such chemical identities are related to specific sites of hypertrophy. Even though the double co-generic models have the same macroscopic phenotype, the globoid morphotype, current analyses indicate that the extended phenotype of N. cattleiani is substantiated by cellular and subcellular specificities. PMID:26053863

  10. Anatomy of ovary and ovule in dandelions (Taraxacum, Asteraceae).

    PubMed

    Musiał, K; Płachno, B J; Świątek, P; Marciniuk, J

    2013-06-01

    The genus Taraxacum Wigg. (Asteraceae) forms a polyploid complex within which there are strong links between the ploidy level and the mode of reproduction. Diploids are obligate sexual, whereas polyploids are usually apomictic. The paper reports on a comparative study of the ovary and especially the ovule anatomy in the diploid dandelion T. linearisquameum and the triploid T. gentile. Observations with light and electron microscopy revealed no essential differences in the anatomy of both the ovary and ovule in the examined species. Dandelion ovules are anatropous, unitegmic and tenuinucellate. In both sexual and apomictic species, a zonal differentiation of the integument is characteristic of the ovule. In the integumentary layers situated next to the endothelium, the cell walls are extremely thick and PAS positive. Data obtained from TEM indicate that these special walls have an open spongy structure and their cytoplasm shows evidence of gradual degeneration. Increased deposition of wall material in the integumentary cells surrounding the endothelium takes place especially around the chalazal pole of the embryo sac as well as around the central cell. In contrast, the integumentary cells surrounding the micropylar region have thin walls and exhibit a high metabolic activity. The role of the thick-walled integumentary layers in the dandelion ovule is discussed. We also consider whether this may be a feature of taxonomic importance.

  11. Regulation of cell wall biosynthesis.

    PubMed

    Zhong, Ruiqin; Ye, Zheng-Hua

    2007-12-01

    Plant cell walls differ in their amount and composition among various cell types and even in different microdomains of the wall of a given cell. Plants must have evolved regulatory mechanisms controlling biosynthesis, targeted secretion, and assembly of wall components to achieve the heterogeneity in cell walls. A number of factors, including hormones, the cytoskeleton, glycosylphosphatidylinositol-anchored proteins, phosphoinositides, and sugar nucleotide supply, have been implicated in the regulation of cell wall biosynthesis or deposition. In the past two years, there have been important discoveries in transcriptional regulation of secondary wall biosynthesis. Several transcription factors in the NAC and MYB families have been shown to be the key switches for activation of secondary wall biosynthesis. These studies suggest a transcriptional network comprised of a hierarchy of transcription factors is involved in regulating secondary wall biosynthesis. Further investigation and integration of the regulatory players participating in the making of cell walls will certainly lead to our understanding of how wall amounts and composition are controlled in a given cell type. This may eventually allow custom design of plant cell walls on the basis of our needs.

  12. Relating Nanoscale Accessibility within Plant Cell Walls to Improved Enzyme Hydrolysis Yields in Corn Stover Subjected to Diverse Pretreatments.

    PubMed

    Crowe, Jacob D; Zarger, Rachael A; Hodge, David B

    2017-10-04

    Simultaneous chemical modification and physical reorganization of plant cell walls via alkaline hydrogen peroxide or liquid hot water pretreatment can alter cell wall structural properties impacting nanoscale porosity. Nanoscale porosity was characterized using solute exclusion to assess accessible pore volumes, water retention value as a proxy for accessible water-cell walls surface area, and solute-induced cell wall swelling to measure cell wall rigidity. Key findings concluded that delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity and that the subsequent cell wall swelling resulted increased nanoscale porosity and improved enzyme binding and hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 Å dextran probe within the cell wall was found to be correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields.

  13. Laccase Down-Regulation Causes Alterations in Phenolic Metabolism and Cell Wall Structure in Poplar1

    PubMed Central

    Ranocha, Philippe; Chabannes, Matthieu; Chamayou, Simon; Danoun, Saïda; Jauneau, Alain; Boudet, Alain-M.; Goffner, Deborah

    2002-01-01

    Laccases are encoded by multigene families in plants. Previously, we reported the cloning and characterization of five divergent laccase genes from poplar (Populus trichocarpa) xylem. To investigate the role of individual laccase genes in plant development, and more particularly in lignification, three independent populations of antisense poplar plants, lac3AS, lac90AS, and lac110AS with significantly reduced levels of laccase expression were generated. A repression of laccase gene expression had no effect on overall growth and development. Moreover, neither lignin content nor composition was significantly altered as a result of laccase suppression. However, one of the transgenic populations, lac3AS, exhibited a 2- to 3-fold increase in total soluble phenolic content. As indicated by toluidine blue staining, these phenolics preferentially accumulate in xylem ray parenchyma cells. In addition, light and electron microscopic observations of lac3AS stems indicated that lac3 gene suppression led to a dramatic alteration of xylem fiber cell walls. Individual fiber cells were severely deformed, exhibiting modifications in fluorescence emission at the primary wall/middle lamella region and frequent sites of cell wall detachment. Although a direct correlation between laccase gene expression and lignification could not be assigned, we show that the gene product of lac3 is essential for normal cell wall structure and integrity in xylem fibers. lac3AS plants provide a unique opportunity to explore laccase function in plants. PMID:12011346

  14. From microgravity to osmotic conditions: mechanical integration of plant cells in response to stress

    NASA Astrophysics Data System (ADS)

    Wojtaszek, Przemyslaw; Kasprowicz, Anna; Michalak, Michal; Janczara, Renata; Volkmann, Dieter; Baluska, Frantisek

    Chemical reactions and interactions between molecules are commonly thought of as being at the basis of Life. Research of recent years, however, is more and more evidently indicating that physical forces are profoundly affecting the functioning of life at all levels of its organiza-tion. To detect and to respond to such forces, plant cells need to be integrated mechanically. Cell walls are the outermost functional zone of plant cells. They surround the individual cells, and also form a part of the apoplast. In cell suspensions, cell walls are embedded in the cul-ture medium which can be considered as a superapoplast. Through physical and chemical interactions they provide a basis for the structural and functional cell wall-plasma membrane-cytoskeleton (WMC) continuum spanning the whole cell. Here, the working of WMC contin-uum, and the participation of signalling molecules, like NO, would be presented in the context of plant responses to stress. In addition, the effects of the changing composition of WMC continuum will be considered, with particular attention paid to the modifications of the WMC components. Plant cells are normally adapted to changing osmotic conditions, resulting from variable wa-ter availability. The appearance of the osmotic stress activates adaptory mechanisms. If the strength of osmotic stress grows relatively slowly over longer period of time, the cells are able to adapt to conditions that are lethal to non-adapted cells. During stepwise adaptation of tobacco BY-2 suspension cells to the presence of various osmotically active agents, cells diverged into independent, osmoticum type-specific lines. In response to ionic agents (NaCl, KCl), the adhe-sive properties were increased and randomly dividing cells formed clumps, while cells adapted to nonionic osmotica (mannitol, sorbitol, PEG) revealed ordered pattern of precisely positioned cell divisions, resulting in the formation of long cell files. Changes in the growth patterns were accompanied by the alterations in the composition of wall proteins and polysaccharides. With respect to the cytoskeleton, in cells exposed to short-term osmotic stress significant rearrange-ments were observed. Surprisingly, the analyses of microfilaments and microtubules in adapted and in non-adapted, normal BY-2 cells, revealed no significant changes. It seems that upon prolonged exposure to osmotic stress conditions selective and adaptive alterations in wall com-position were occurring. Walls of cells grown in the presence of ionic agents were homogenous, while longitudinal walls and cross-walls in cells adapted to nonionic agents were significantly different. This might affect the anchorage of the cytoskeleton in the walls and modify the func-tioning of the whole WMC continuum. In this way, cell's mechanical balance restoration will be ensured and, in consequence, cells will be able to resist osmotic pressure and divide under severe stress conditions. In plants, cross-walls within cell files of axial organs exhibit specific properties that allow them to act as domains of contact and intense intercellular communica-tion, and the sites of the anchorage of cytoskeleton. As a further consequence, also cell-to-cell interactions would be affected. MM and RJ are students of biotechnology at Adam Mickiewicz University. The data coming from the authors' lab come from research supported by the DAAD scholarship to AK, and Alexander von Humboldt Research Fellowship and Polish Ministry of Science and Higher Edu-cation grants PBZ-KBN-110/P04/2004, N N303 294434, N N301 164435, and N N303 360735 to PW.

  15. Employing proteomic analysis to compare Paracoccidioides lutzii yeast and mycelium cell wall proteins.

    PubMed

    Araújo, Danielle Silva; de Sousa Lima, Patrícia; Baeza, Lilian Cristiane; Parente, Ana Flávia Alves; Melo Bailão, Alexandre; Borges, Clayton Luiz; de Almeida Soares, Célia Maria

    2017-11-01

    Paracoccidioidomycosis is an important systemic mycosis caused by thermodimorphic fungi of the Paracoccidioides genus. During the infective process, the cell wall acts at the interface between the fungus and the host. In this way, the cell wall has a key role in growth, environment sensing and interaction, as well as morphogenesis of the fungus. Since the cell wall is absent in mammals, it may present molecules that are described as target sites for new antifungal drugs. Despite its importance, up to now few studies have been conducted employing proteomics in for the identification of cell wall proteins in Paracoccidioides spp. Here, a detailed proteomic approach, including cell wall-fractionation coupled to NanoUPLC-MS E , was used to study and compare the cell wall fractions from Paracoccidioides lutzii mycelia and yeast cells. The analyzed samples consisted of cell wall proteins extracted by hot SDS followed by extraction by mild alkali. In summary, 512 proteins constituting different cell wall fractions were identified, including 7 predicted GPI-dependent cell wall proteins that are potentially involved in cell wall metabolism. Adhesins previously described in Paracoccidioides spp. such as enolase, glyceraldehyde-3-phosphate dehydrogenase were identified. Comparing the proteins in mycelium and yeast cells, we detected some that are common to both fungal phases, such as Ecm33, and some specific proteins, as glucanase Crf1. All of those proteins were described in the metabolism of cell wall. Our study provides an important elucidation of cell wall composition of fractions in Paracoccidioides, opening a way to understand the fungus cell wall architecture. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Engineering cell wall synthesis mechanism for enhanced PHB accumulation in E. coli.

    PubMed

    Zhang, Xing-Chen; Guo, Yingying; Liu, Xu; Chen, Xin-Guang; Wu, Qiong; Chen, Guo-Qiang

    2018-01-01

    The rigidity of bacterial cell walls synthesized by a complicated pathway limit the cell shapes as coccus, bar or ellipse or even fibers. A less rigid bacterium could be beneficial for intracellular accumulation of poly-3-hydroxybutyrate (PHB) as granular inclusion bodies. To understand how cell rigidity affects PHB accumulation, E. coli cell wall synthesis pathway was reinforced and weakened, respectively. Cell rigidity was achieved by thickening the cell walls via insertion of a constitutive gltA (encoding citrate synthase) promoter in front of a series of cell wall synthesis genes on the chromosome of several E. coli derivatives, resulting in 1.32-1.60 folds increase of Young's modulus in mechanical strength for longer E. coli cells over-expressing fission ring FtsZ protein inhibiting gene sulA. Cell rigidity was weakened by down regulating expressions of ten genes in the cell wall synthesis pathway using CRISPRi, leading to elastic cells with more spaces for PHB accumulation. The regulation on cell wall synthesis changes the cell rigidity: E. coli with thickened cell walls accumulated only 25% PHB while cell wall weakened E. coli produced 93% PHB. Manipulation on cell wall synthesis mechanism adds another possibility to morphology engineering of microorganisms. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  17. Overexpression of poplar xylem sucrose synthase in tobacco leads to a thickened cell wall and increased height.

    PubMed

    Wei, Zhigang; Qu, Zanshuang; Zhang, Lijie; Zhao, Shuanjing; Bi, Zhihong; Ji, Xiaohui; Wang, Xiaowen; Wei, Hairong

    2015-01-01

    Sucrose synthase (SuSy) is considered the first key enzyme for secondary growth because it is a highly regulated cytosolic enzyme that catalyzes the reversible conversion of sucrose and UDP into UDP-glucose and fructose. Although SuSy enzymes preferentially functions in the direction of sucrose cleavage at most cellular condition, they also catalyze the synthetic reaction. We isolated a gene that encodes a SuSy from Populus simonii×Populus nigra and named it PsnSuSy2 because it shares high similarity to SuSy2 in Populus trichocarpa. RT-PCR revealed that PsnSuSy2 was highly expressed in xylem, but lowly expressed in young leaves. To characterize its functions in secondary growth, multiple tobacco overexpression transgenic lines of PnsSuSy2 were generated via Agrobacterium-mediated transformation. The PsnSuSy2 expression levels and altered wood properties in stem segments from the different transgenic lines were carefully characterized. The results demonstrated that the levels of PsnSuSy2 enzyme activity, chlorophyll content, total soluble sugars, fructose and glucose increased significantly, while the sucrose level decreased significantly. Consequently, the cellulose content and fiber length increased, whereas the lignin content decreased, suggesting that PsnSuSy2 plays a significant role in cleaving sucrose into UDP-glucose and fructose to facilitate cellulose biosynthesis and that promotion of cellulose biosynthesis suppresses lignin biosynthesis. Additionally, the noticeable increase in the lodging resistance in transgenic tobacco stem suggested that the cell wall characteristics were altered by PsnSuSy2 overexpression. Scanning electron microscopy was performed to study the cell wall morphology of stem, and surprisingly, we found that the secondary cell wall was significantly thicker in transgenic tobacco. However, the thickened secondary cell wall did not negatively affect the height of the plants because the PsnSuSy2- overexpressing lines grew taller than the wildtype plants. This systematic analysis demonstrated that PsnSuSy2 plays an important role in cleaving sucrose coupled with cellulose biosynthesis in wood tissue.

  18. Overexpression of Poplar Xylem Sucrose Synthase in Tobacco Leads to a Thickened Cell Wall and Increased Height

    PubMed Central

    Wei, Zhigang; Qu, Zanshuang; Zhang, Lijie; Zhao, Shuanjing; Bi, Zhihong; Ji, Xiaohui; Wang, Xiaowen; Wei, Hairong

    2015-01-01

    Sucrose synthase (SuSy) is considered the first key enzyme for secondary growth because it is a highly regulated cytosolic enzyme that catalyzes the reversible conversion of sucrose and UDP into UDP-glucose and fructose. Although SuSy enzymes preferentially functions in the direction of sucrose cleavage at most cellular condition, they also catalyze the synthetic reaction. We isolated a gene that encodes a SuSy from Populus simonii×Populus nigra and named it PsnSuSy2 because it shares high similarity to SuSy2 in Populus trichocarpa. RT-PCR revealed that PsnSuSy2 was highly expressed in xylem, but lowly expressed in young leaves. To characterize its functions in secondary growth, multiple tobacco overexpression transgenic lines of PnsSuSy2 were generated via Agrobacterium-mediated transformation. The PsnSuSy2 expression levels and altered wood properties in stem segments from the different transgenic lines were carefully characterized. The results demonstrated that the levels of PsnSuSy2 enzyme activity, chlorophyll content, total soluble sugars, fructose and glucose increased significantly, while the sucrose level decreased significantly. Consequently, the cellulose content and fiber length increased, whereas the lignin content decreased, suggesting that PsnSuSy2 plays a significant role in cleaving sucrose into UDP-glucose and fructose to facilitate cellulose biosynthesis and that promotion of cellulose biosynthesis suppresses lignin biosynthesis. Additionally, the noticeable increase in the lodging resistance in transgenic tobacco stem suggested that the cell wall characteristics were altered by PsnSuSy2 overexpression. Scanning electron microscopy was performed to study the cell wall morphology of stem, and surprisingly, we found that the secondary cell wall was significantly thicker in transgenic tobacco. However, the thickened secondary cell wall did not negatively affect the height of the plants because the PsnSuSy2- overexpressing lines grew taller than the wildtype plants. This systematic analysis demonstrated that PsnSuSy2 plays an important role in cleaving sucrose coupled with cellulose biosynthesis in wood tissue. PMID:25807295

  19. Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls.

    PubMed

    Marcus, Susan E; Verhertbruggen, Yves; Hervé, Cécile; Ordaz-Ortiz, José J; Farkas, Vladimir; Pedersen, Henriette L; Willats, William G T; Knox, J Paul

    2008-05-22

    Molecular probes are required to detect cell wall polymers in-situ to aid understanding of their cell biology and several studies have shown that cell wall epitopes have restricted occurrences across sections of plant organs indicating that cell wall structure is highly developmentally regulated. Xyloglucan is the major hemicellulose or cross-linking glycan of the primary cell walls of dicotyledons although little is known of its occurrence or functions in relation to cell development and cell wall microstructure. Using a neoglycoprotein approach, in which a XXXG heptasaccharide of tamarind seed xyloglucan was coupled to BSA to produce an immunogen, we have generated a rat monoclonal antibody (designated LM15) to the XXXG structural motif of xyloglucans. The specificity of LM15 has been confirmed by the analysis of LM15 binding using glycan microarrays and oligosaccharide hapten inhibition of binding studies. The use of LM15 for the analysis of xyloglucan in the cell walls of tamarind and nasturtium seeds, in which xyloglucan occurs as a storage polysaccharide, indicated that the LM15 xyloglucan epitope occurs throughout the thickened cell walls of the tamarind seed and in the outer regions, adjacent to middle lamellae, of the thickened cell walls of the nasturtium seed. Immunofluorescence analysis of LM15 binding to sections of tobacco and pea stem internodes indicated that the xyloglucan epitope was restricted to a few cell types in these organs. Enzymatic removal of pectic homogalacturonan from equivalent sections resulted in the abundant detection of distinct patterns of the LM15 xyloglucan epitope across these organs and a diversity of occurrences in relation to the cell wall microstructure of a range of cell types. These observations support ideas that xyloglucan is associated with pectin in plant cell walls. They also indicate that documented patterns of cell wall epitopes in relation to cell development and cell differentiation may need to be re-considered in relation to the potential masking of cell wall epitopes by other cell wall components.

  20. The Interplay between Cell Wall Mechanical Properties and the Cell Cycle in Staphylococcus aureus

    PubMed Central

    Bailey, Richard G.; Turner, Robert D.; Mullin, Nic; Clarke, Nigel; Foster, Simon J.; Hobbs, Jamie K.

    2014-01-01

    The nanoscale mechanical properties of live Staphylococcus aureus cells during different phases of growth were studied by atomic force microscopy. Indentation to different depths provided access to both local cell wall mechanical properties and whole-cell properties, including a component related to cell turgor pressure. Local cell wall properties were found to change in a characteristic manner throughout the division cycle. Splitting of the cell into two daughter cells followed a local softening of the cell wall along the division circumference, with the cell wall on either side of the division circumference becoming stiffer. Once exposed, the newly formed septum was found to be stiffer than the surrounding, older cell wall. Deeper indentations, which were affected by cell turgor pressure, did not show a change in stiffness throughout the division cycle, implying that enzymatic cell wall remodeling and local variations in wall properties are responsible for the evolution of cell shape through division. PMID:25468333

  1. Vascular defense responses in rice: peroxidase accumulation in xylem parenchyma cells and xylem wall thickening

    NASA Technical Reports Server (NTRS)

    Hilaire, E.; Young, S. A.; Willard, L. H.; McGee, J. D.; Sweat, T.; Chittoor, J. M.; Guikema, J. A.; Leach, J. E.

    2001-01-01

    The rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae is a vascular pathogen that elicits a defensive response through interaction with metabolically active rice cells. In leaves of 12-day-old rice seedlings, the exposed pit membrane separating the xylem lumen from the associated parenchyma cells allows contact with bacterial cells. During resistant responses, the xylem secondary walls thicken within 48 h and the pit diameter decreases, effectively reducing the area of pit membrane exposed for access by bacteria. In susceptible interactions and mock-inoculated controls, the xylem walls do not thicken within 48 h. Xylem secondary wall thickening is developmental and, in untreated 65-day-old rice plants, the size of the pit also is reduced. Activity and accumulation of a secreted cationic peroxidase, PO-C1, were previously shown to increase in xylem vessel walls and lumen. Peptide-specific antibodies and immunogold-labeling were used to demonstrate that PO-C1 is produced in the xylem parenchyma and secreted to the xylem lumen and walls. The timing of the accumulation is consistent with vessel secondary wall thickening. The PO-C1 gene is distinct but shares a high level of similarity with previously cloned pathogen-induced peroxidases in rice. PO-C1 gene expression was induced as early as 12 h during resistant interactions and peaked between 18 and 24 h after inoculation. Expression during susceptible interactions was lower than that observed in resistant interactions and was undetectable after infiltration with water, after mechanical wounding, or in mature leaves. These data are consistent with a role for vessel secondary wall thickening and peroxidase PO-C1 accumulation in the defense response in rice to X. oryzae pv. oryzae.

  2. An Accessory Protein Required for Anchoring and Assembly of Amyloid Fibers in B. subtilis Biofilms

    PubMed Central

    Romero, Diego; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2011-01-01

    Cells within Bacillus subtilis biofilms are held in place by an extracellular matrix that contains cell-anchored amyloid fibers, composed of the amyloidogenic protein TasA. As biofilms age they disassemble because the cells release the amyloid fibers. This release appears to be the consequence of incorporation of D-tyrosine, D-leucine, D-tryptophan and D-methionine into the cell wall. Here, we characterize the in vivo roles of an accessory protein TapA (TasA anchoring/assembly protein; previously YqxM) that serves both to anchor the fibers to the cell wall and to assemble TasA into fibers. TapA is found in discrete foci in the cell envelope and these foci disappear when cells are treated with a mixture of D-amino acids. Purified cell wall sacculi retain a functional form of this anchoring protein such that purified fibers can be anchored to the sacculi in vitro. In addition, we show that TapA is essential for the proper assembly of the fibers. Its absence results in a dramatic reduction in TasA levels and what little TasA is left produces only thin fibers that are not anchored to the cell. PMID:21477127

  3. An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms.

    PubMed

    Romero, Diego; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2011-06-01

    Cells within Bacillus subtilis biofilms are held in place by an extracellular matrix that contains cell-anchored amyloid fibres, composed of the amyloidogenic protein TasA. As biofilms age they disassemble because the cells release the amyloid fibres. This release appears to be the consequence of incorporation of D-tyrosine, D-leucine, D-tryptophan and D-methionine into the cell wall. Here, we characterize the in vivo roles of an accessory protein TapA (TasA anchoring/assembly protein; previously YqxM) that serves both to anchor the fibres to the cell wall and to assemble TasA into fibres. TapA is found in discrete foci in the cell envelope and these foci disappear when cells are treated with a mixture of D-amino acids. Purified cell wall sacculi retain a functional form of this anchoring protein such that purified fibres can be anchored to the sacculi in vitro. In addition, we show that TapA is essential for the proper assembly of the fibres. Its absence results in a dramatic reduction in TasA levels and what little TasA is left produces only thin fibres that are not anchored to the cell. © 2011 Blackwell Publishing Ltd.

  4. KRE5 Suppression Induces Cell Wall Stress and Alternative ER Stress Response Required for Maintaining Cell Wall Integrity in Candida glabrata

    PubMed Central

    Sasaki, Masato; Ito, Fumie; Aoyama, Toshio; Sato-Okamoto, Michiyo; Takahashi-Nakaguchi, Azusa; Chibana, Hiroji; Shibata, Nobuyuki

    2016-01-01

    The maintenance of cell wall integrity in fungi is required for normal cell growth, division, hyphae formation, and antifungal tolerance. We observed that endoplasmic reticulum stress regulated cell wall integrity in Candida glabrata, which possesses uniquely evolved mechanisms for unfolded protein response mechanisms. Tetracycline-mediated suppression of KRE5, which encodes a predicted UDP-glucose:glycoprotein glucosyltransferase localized in the endoplasmic reticulum, significantly increased cell wall chitin content and decreased cell wall β-1,6-glucan content. KRE5 repression induced endoplasmic reticulum stress-related gene expression and MAP kinase pathway activation, including Slt2p and Hog1p phosphorylation, through the cell wall integrity signaling pathway. Moreover, the calcineurin pathway negatively regulated cell wall integrity, but not the reduction of β-1,6-glucan content. These results indicate that KRE5 is required for maintaining both endoplasmic reticulum homeostasis and cell wall integrity, and that the calcineurin pathway acts as a regulator of chitin-glucan balance in the cell wall and as an alternative mediator of endoplasmic reticulum stress in C. glabrata. PMID:27548283

  5. Imaging the Dynamics of Cell Wall Polymer Deposition in the Unicellular Model Plant, Penium margaritaceum.

    PubMed

    Domozych, David; Lietz, Anna; Patten, Molly; Singer, Emily; Tinaz, Berke; Raimundo, Sandra C

    2017-01-01

    The unicellular green alga, Penium margaritaceum, represents a novel and valuable model organism for elucidating cell wall dynamics in plants. This organism's cell wall contains several polymers that are highly similar to those found in the primary cell walls of land plants. Penium is easily grown in laboratory culture and is effectively manipulated in various experimental protocols including microplate assays and correlative microscopy. Most importantly, Penium can be live labeled with cell wall-specific antibodies or other probes and returned to culture where specific cell wall developmental events can be monitored. Additionally, live cells can be rapidly cryo-fixed and cell wall surface microarchitecture can be observed with variable pressure scanning electron microscopy. Here, we describe the methodology for maintaining Penium for experimental cell wall enzyme studies.

  6. Cell walls of the dimorphic fungal pathogens Sporothrix schenckii and Sporothrix brasiliensis exhibit bilaminate structures and sloughing of extensive and intact layers

    PubMed Central

    Walker, Louise A.; Niño-Vega, Gustavo; Mora-Montes, Héctor M.; Neves, Gabriela W. P.; Villalobos-Duno, Hector; Barreto, Laura; Garcia, Karina; Franco, Bernardo; Martínez-Álvarez, José A.; Munro, Carol A.; Gow, Neil A. R.

    2018-01-01

    Sporotrichosis is a subcutaneous mycosis caused by pathogenic species of the Sporothrix genus. A new emerging species, Sporothrix brasiliensis, is related to cat-transmitted sporotrichosis and has severe clinical manifestations. The cell wall of pathogenic fungi is a unique structure and impacts directly on the host immune response. We reveal and compare the cell wall structures of Sporothrix schenckii and S. brasiliensis using high-pressure freezing electron microscopy to study the cell wall organization of both species. To analyze the components of the cell wall, we also used infrared and 13C and 1H NMR spectroscopy and the sugar composition was determined by quantitative high-performance anion-exchange chromatography. Our ultrastructural data revealed a bi-layered cell wall structure for both species, including an external microfibrillar layer and an inner electron-dense layer. The inner and outer layers of the S. brasiliensis cell wall were thicker than those of S. schenckii, correlating with an increase in the chitin and rhamnose contents. Moreover, the outer microfibrillar layer of the S. brasiliensis cell wall had longer microfibrils interconnecting yeast cells. Distinct from those of other dimorphic fungi, the cell wall of Sporothrix spp. lacked α-glucan component. Interestingly, glycogen α-particles were identified in the cytoplasm close to the cell wall and the plasma membrane. The cell wall structure as well as the presence of glycogen α-particles varied over time during cell culture. The structural differences observed in the cell wall of these Sporothrix species seemed to impact its uptake by monocyte-derived human macrophages. The data presented here show a unique cell wall structure of S. brasiliensis and S. schenckii during the yeast parasitic phase. A new cell wall model for Sporothrix spp. is therefore proposed that suggests that these fungi molt sheets of intact cell wall layers. This observation may have significant effects on localized and disseminated immunopathology. PMID:29522522

  7. Gene-specific changes in alpha-tubulin transcript accumulation in developing cotton fibers.

    PubMed

    Whittaker, D J; Triplett, B A

    1999-09-01

    The fibers of cotton (Gossypium hirsutum) are single-cell trichomes that undergo rapid and synchronous elongation. Cortical microtubules provide spatial information necessary for the alignment of cellulose microfibrils that confine and regulate cell elongation. We used gene-specific probes to investigate alpha-tubulin transcript levels in elongating cotton fibers. Two discrete patterns of transcript accumulation were observed. Whereas transcripts of alpha-tubulin genes GhTua2/3 and GhTua4 increased in abundance from 10 to 20 d post anthesis (DPA), GhTua1 and GhTua5 transcripts were abundant only through to 14 DPA, and dropped significantly at 16 DPA with the onset of secondary wall synthesis. This is the first report, to our knowledge, of gene-specific changes in tubulin transcript levels during the development of a terminally differentiated plant cell. The decrease in abundance of GhTua1 and GhTua5 transcripts was correlated with pronounced changes in cell wall structure, suggesting that alpha-tubulin isoforms may be functionally distinct in elongating fiber cells. Although total alpha-tubulin transcript levels were much higher in fiber than several other tissues, including the hypocotyl and pollen, none of the alpha-tubulins was specific to fiber cells.

  8. Microarray Analyses of Gene Expression during Adventitious Root Development in Pinus contorta1[w

    PubMed Central

    Brinker, Monika; van Zyl, Leonel; Liu, Wenbin; Craig, Deborah; Sederoff, Ronald R.; Clapham, David H.; von Arnold, Sara

    2004-01-01

    In order to investigate the gene expression pattern during adventitious root development, RNA of Pinus contorta hypocotyls, pulse-treated with the auxin indole-3-butyric acid and harvested at distinct developmental time points of root development, was hybridized to microarrays containing 2,178 cDNAs from Pinus taeda. Over the period of observation of root development, the transcript levels of 220 genes changed significantly. During the root initiation phase, genes involved in cell replication and cell wall weakening and a transcript encoding a PINHEAD/ZWILLE-like protein were up-regulated, while genes related to auxin transport, photosynthesis, and cell wall synthesis were down-regulated. In addition, there were changes in transcript abundance of genes related to water stress. During the root meristem formation phase the transcript abundances of genes involved in auxin transport, auxin responsive transcription, and cell wall synthesis, and of a gene encoding a B-box zinc finger-like protein, increased, while those encoding proteins involved in cell wall weakening decreased. Changes of transcript abundance of genes related to water stress during the root meristem formation and root formation phase indicate that the plant roots had become functional in water transport. Simultaneously, genes involved in auxin transport were up-regulated, while genes related to cell wall modification were down-regulated. Finally, during the root elongation phase down-regulation of transcripts encoding proteins involved in cell replication and stress occurred. Based on the observed changes in transcript abundances, we suggest hypotheses about the relative importance of various physiological processes during the auxin-induced development of roots in P. contorta. PMID:15247392

  9. Multi-walled carbon nanotubes suppress potassium channel activities in PC12 cells

    NASA Astrophysics Data System (ADS)

    Xu, Haifei; Bai, Juan; Meng, Jie; Hao, Wei; Xu, Haiyan; Cao, Ji-Min

    2009-07-01

    The advancement in nanotechnology has produced technological and conceptual breakthroughs but the effects nanomaterials have on organisms at the cellular level are poorly understood. Here we report that carboxyl-terminated multi-walled carbon nanotubes (MWCNTs) act as antagonists of three types of potassium channels as assessed by whole-cell patch clamp electrophysiology on undifferentiated pheochromocytoma (PC12) cells. Our results showed that carboxyl-terminated MWCNTs suppress the current densities of Ito, IK and IK1 in a time-dependent and irreversible manner. The suppressions were most distinct 24 h after incubation with MWCNTs. However, MWCNTs did not significantly change the expression levels of reactive oxygen species (ROS) or intracellular free calcium and also did not alter the mitochondrial membrane potential (ΔΨm) in PC12 cells. These results suggest that oxidative stress was not involved in the MWCNTs suppression of Ito, IK and IK1 current densities. Nonetheless, the suppression of potassium currents by MWCNTs will impact on electrical signaling of excitable cells such as neurons and muscles.

  10. The receptor-like kinase AtVRLK1 regulates secondary cell wall thickening.

    PubMed

    Huang, Cheng; Zhang, Rui; Gui, Jinshan; Zhong, Yu; Li, Laigeng

    2018-04-20

    During the growth and development of land plants, some specialized cells, such as tracheary elements, undergo secondary cell wall thickening. Secondary cell walls contain additional lignin, compared with primary cell walls, thus providing mechanical strength and potentially improving defenses against pathogens. However, the molecular mechanisms that initiate wall thickening are unknown. In this study, we identified an Arabidopsis thaliana leucine-rich repeat receptor-like kinase, encoded by AtVRLK1 (Vascular-Related RLK 1), that is specifically expressed in cells undergoing secondary cell wall thickening. Suppression of AtVRLK1expression resulted in a range of phenotypes that included retarded early elongation of the inflorescence stem, shorter fibers, slower root growth, and shorter flower filaments. In contrast, upregulation of AtVRLK1 led to longer fiber cells, reduced secondary cell wall thickening in fiber and vessel cells, and defects in anther dehiscence. Molecular and cellular analyses showed that downregulation of AtVRLK1 promoted secondary cell wall thickening and upregulation of AtVRLK1 enhanced cell elongation and inhibited secondary cell wall thickening. We propose that AtVRLK1 functions as a signaling component in coordinating cell elongation and cell wall thickening during growth and development. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  11. Pinoresinol reductase 1 impacts lignin distribution during secondary cell wall biosynthesis in Arabidopsis

    DOE PAGES

    Zhao, Qiao; Zeng, Yining; Yin, Yanbin; ...

    2014-08-05

    In this paper, pinoresinol reductase (PrR) catalyzes the conversion of the lignan (-)-pinoresinol to (-)-lariciresinol in Arabidopsis thaliana, where it is encoded by two genes, PrR1 and PrR2, that appear to act redundantly. PrR1 is highly expressed in lignified inflorescence stem tissue, whereas PrR2 expression is barely detectable in stems. Co-expression analysis has indicated that PrR1 is co-expressed with many characterized genes involved in secondary cell wall biosynthesis, whereas PrR2 expression clusters with a different set of genes. The promoter of the PrR1 gene is regulated by the secondary cell wall related transcription factors SND1 and MYB46. The loss-of-function mutantmore » of PrR1 shows, in addition to elevated levels of pinoresinol, significantly decreased lignin content and a slightly altered lignin structure with lower abundance of cinnamyl alcohol end groups. Stimulated Raman scattering (SRS) microscopy analysis indicated that the lignin content of the prr1-1 loss-of-function mutant is similar to that of wild-type plants in xylem cells, which exhibit a normal phenotype, but is reduced in the fiber cells. Finally, together, these data suggest an association of the lignan biosynthetic enzyme encoded by PrR1 with secondary cell wall biosynthesis in fiber cells.« less

  12. Rac Regulates Giardia lamblia Encystation by Coordinating Cyst Wall Protein Trafficking and Secretion.

    PubMed

    Krtková, Jana; Thomas, Elizabeth B; Alas, Germain C M; Schraner, Elisabeth M; Behjatnia, Habib R; Hehl, Adrian B; Paredez, Alexander R

    2016-08-23

    Encystation of the common intestinal parasite Giardia lamblia involves the production, trafficking, and secretion of cyst wall material (CWM). However, the molecular mechanism responsible for the regulation of these sequential processes remains elusive. Here, we examined the role of GlRac, Giardia's sole Rho family GTPase, in the regulation of endomembrane organization and cyst wall protein (CWP) trafficking. Localization studies indicated that GlRac is associated with the endoplasmic reticulum (ER) and the Golgi apparatus-like encystation-specific vesicles (ESVs). Constitutive GlRac signaling increased levels of the ER marker PDI2, induced ER swelling, reduced overall CWP1 production, and promoted the early maturation of ESVs. Quantitative analysis of cells expressing constitutively active hemagglutinin (HA)-tagged GlRac (HA-Rac(CA)) revealed fewer but larger ESVs than control cells. Consistent with the phenotype of premature maturation of ESVs in HA-Rac(CA)-expressing cells, constitutive GlRac signaling resulted in increased CWP1 secretion and, conversely, morpholino depletion of GlRac blocked CWP1 secretion. Wild-type cells unexpectedly secreted large quantities of CWP1 into the medium, and free CWP1 was used cooperatively during cyst formation. These results, in part, could account for the previously reported observation that G. lamblia encysts more efficiently at high cell densities. These studies of GlRac show that it regulates encystation at several levels, and our findings support its coordinating role as a regulator of CWP trafficking and secretion. The central role of GlRac in regulating membrane trafficking and the cytoskeleton, both of which are essential to Giardia parasitism, further suggests its potential as a novel target for drug development to treat giardiasis. The encystation process is crucial for the transmission of giardiasis and the life cycle of many protists. Encystation for Giardia lamblia involves the assembly of a protective cyst wall via sequential production, trafficking, and secretion of cyst wall material. However, the regulatory pathways that coordinate cargo maturation and secretion remain unknown. Here, we asked whether the signaling activities of G. lamblia's single Rho family GTPase, GlRac, might have a regulatory role in the encystation process. We show that GlRac localizes to endomembranes and its signaling activities regulate the production of cyst wall protein 1 (CWP1), the maturation of encystation-specific vesicles (ESVs), and secretion of CWP1. We also show that secreted CWP1 is available for the development of cysts at the population level, a finding that in part could explain why Giardia encystation proceeds more efficiently at high cell densities. Copyright © 2016 Krtková et al.

  13. Spatio-temporal diversification of the cell wall matrix materials in the developing stomatal complexes of Zea mays.

    PubMed

    Giannoutsou, E; Apostolakos, P; Galatis, B

    2016-11-01

    The matrix cell wall materials, in developing Zea mays stomatal complexes are asymmetrically distributed, a phenomenon appearing related to the local cell wall expansion and deformation, the establishment of cell polarity, and determination of the cell division plane. In cells of developing Zea mays stomatal complexes, definite cell wall regions expand determinately and become locally deformed. This differential cell wall behavior is obvious in the guard cell mother cells (GMCs) and the subsidiary cell mother cells (SMCs) that locally protrude towards the adjacent GMCs. The latter, emitting a morphogenetic stimulus, induce polarization/asymmetrical division in SMCs. Examination of immunolabeled specimens revealed that homogalacturonans (HGAs) with a high degree of de-esterification (2F4- and JIM5-HGA epitopes) and arabinogalactan proteins are selectively distributed in the extending and deformed cell wall regions, while their margins are enriched with rhamnogalacturonans (RGAs) containing highly branched arabinans (LM6-RGA epitope). In SMCs, the local cell wall matrix differentiation constitutes the first structural event, indicating the establishment of cell polarity. Moreover, in the premitotic GMCs and SMCs, non-esterified HGAs (2F4-HGA epitope) are preferentially localized in the cell wall areas outlining the cytoplasm where the preprophase band is formed. In these areas, the forthcoming cell plate fuses with the parent cell walls. These data suggest that the described heterogeneity in matrix cell wall materials is probably involved in: (a) local cell wall expansion and deformation, (b) the transduction of the inductive GMC stimulus, and (c) the determination of the division plane in GMCs and SMCs.

  14. Immunogold scanning electron microscopy can reveal the polysaccharide architecture of xylem cell walls

    PubMed Central

    Sun, Yuliang; Juzenas, Kevin

    2017-01-01

    Abstract Immunofluorescence microscopy (IFM) and immunogold transmission electron microscopy (TEM) are the two main techniques commonly used to detect polysaccharides in plant cell walls. Both are important in localizing cell wall polysaccharides, but both have major limitations, such as low resolution in IFM and restricted sample size for immunogold TEM. In this study, we have developed a robust technique that combines immunocytochemistry with scanning electron microscopy (SEM) to study cell wall polysaccharide architecture in xylem cells at high resolution over large areas of sample. Using multiple cell wall monoclonal antibodies (mAbs), this immunogold SEM technique reliably localized groups of hemicellulosic and pectic polysaccharides in the cell walls of five different xylem structures (vessel elements, fibers, axial and ray parenchyma cells, and tyloses). This demonstrates its important advantages over the other two methods for studying cell wall polysaccharide composition and distribution in these structures. In addition, it can show the three-dimensional distribution of a polysaccharide group in the vessel lateral wall and the polysaccharide components in the cell wall of developing tyloses. This technique, therefore, should be valuable for understanding the cell wall polysaccharide composition, architecture and functions of diverse cell types. PMID:28398585

  15. Building a plant cell wall at a glance.

    PubMed

    Lampugnani, Edwin R; Khan, Ghazanfar Abbas; Somssich, Marc; Persson, Staffan

    2018-01-29

    Plant cells are surrounded by a strong polysaccharide-rich cell wall that aids in determining the overall form, growth and development of the plant body. Indeed, the unique shapes of the 40-odd cell types in plants are determined by their walls, as removal of the cell wall results in spherical protoplasts that are amorphic. Hence, assembly and remodeling of the wall is essential in plant development. Most plant cell walls are composed of a framework of cellulose microfibrils that are cross-linked to each other by heteropolysaccharides. The cell walls are highly dynamic and adapt to the changing requirements of the plant during growth. However, despite the importance of plant cell walls for plant growth and for applications that we use in our daily life such as food, feed and fuel, comparatively little is known about how they are synthesized and modified. In this Cell Science at a Glance article and accompanying poster, we aim to illustrate the underpinning cell biology of the synthesis of wall carbohydrates, and their incorporation into the wall, in the model plant Arabidopsis . © 2018. Published by The Company of Biologists Ltd.

  16. Cell wall evolution and diversity

    PubMed Central

    Fangel, Jonatan U.; Ulvskov, Peter; Knox, J. P.; Mikkelsen, Maria D.; Harholt, Jesper; Popper, Zoë A.; Willats, William G.T.

    2012-01-01

    Plant cell walls display a considerable degree of diversity in their compositions and molecular architectures. In some cases the functional significance of a particular cell wall type appears to be easy to discern: secondary cells walls are often reinforced with lignin that provides durability; the thin cell walls of pollen tubes have particular compositions that enable their tip growth; lupin seed cell walls are characteristically thickened with galactan used as a storage polysaccharide. However, more frequently the evolutionary mechanisms and selection pressures that underpin cell wall diversity and evolution are unclear. For diverse green plants (chlorophytes and streptophytes) the rapidly increasing availability of transcriptome and genome data sets, the development of methods for cell wall analyses which require less material for analysis, and expansion of molecular probe sets, are providing new insights into the diversity and occurrence of cell wall polysaccharides and associated biosynthetic genes. Such research is important for refining our understanding of some of the fundamental processes that enabled plants to colonize land and to subsequently radiate so comprehensively. The study of cell wall structural diversity is also an important aspect of the industrial utilization of global polysaccharide bio-resources. PMID:22783271

  17. Cell wall-related bionumbers and bioestimates of Saccharomyces cerevisiae and Candida albicans.

    PubMed

    Klis, Frans M; de Koster, Chris G; Brul, Stanley

    2014-01-01

    Bionumbers and bioestimates are valuable tools in biological research. Here we focus on cell wall-related bionumbers and bioestimates of the budding yeast Saccharomyces cerevisiae and the polymorphic, pathogenic fungus Candida albicans. We discuss the linear relationship between cell size and cell ploidy, the correlation between cell size and specific growth rate, the effect of turgor pressure on cell size, and the reason why using fixed cells for measuring cellular dimensions can result in serious underestimation of in vivo values. We further consider the evidence that individual buds and hyphae grow linearly and that exponential growth of the population results from regular formation of new daughter cells and regular hyphal branching. Our calculations show that hyphal growth allows C. albicans to cover much larger distances per unit of time than the yeast mode of growth and that this is accompanied by strongly increased surface expansion rates. We therefore predict that the transcript levels of genes involved in wall formation increase during hyphal growth. Interestingly, wall proteins and polysaccharides seem barely, if at all, subject to turnover and replacement. A general lesson is how strongly most bionumbers and bioestimates depend on environmental conditions and genetic background, thus reemphasizing the importance of well-defined and carefully chosen culture conditions and experimental approaches. Finally, we propose that the numbers and estimates described here offer a solid starting point for similar studies of other cell compartments and other yeast species.

  18. Cell Wall-Related Bionumbers and Bioestimates of Saccharomyces cerevisiae and Candida albicans

    PubMed Central

    de Koster, Chris G.; Brul, Stanley

    2014-01-01

    Bionumbers and bioestimates are valuable tools in biological research. Here we focus on cell wall-related bionumbers and bioestimates of the budding yeast Saccharomyces cerevisiae and the polymorphic, pathogenic fungus Candida albicans. We discuss the linear relationship between cell size and cell ploidy, the correlation between cell size and specific growth rate, the effect of turgor pressure on cell size, and the reason why using fixed cells for measuring cellular dimensions can result in serious underestimation of in vivo values. We further consider the evidence that individual buds and hyphae grow linearly and that exponential growth of the population results from regular formation of new daughter cells and regular hyphal branching. Our calculations show that hyphal growth allows C. albicans to cover much larger distances per unit of time than the yeast mode of growth and that this is accompanied by strongly increased surface expansion rates. We therefore predict that the transcript levels of genes involved in wall formation increase during hyphal growth. Interestingly, wall proteins and polysaccharides seem barely, if at all, subject to turnover and replacement. A general lesson is how strongly most bionumbers and bioestimates depend on environmental conditions and genetic background, thus reemphasizing the importance of well-defined and carefully chosen culture conditions and experimental approaches. Finally, we propose that the numbers and estimates described here offer a solid starting point for similar studies of other cell compartments and other yeast species. PMID:24243791

  19. New insights into pioneer root xylem development: evidence obtained from Populus trichocarpa plants grown under field conditions

    PubMed Central

    Bagniewska-Zadworna, Agnieszka; Arasimowicz-Jelonek, Magdalena; Smoliński, Dariusz J.; Stelmasik, Agnieszka

    2014-01-01

    Background and Aims Effective programmed xylogenesis is critical to the structural framework of the plant root system and its central role in the acquisition and long-distance transport of water and nutrients. The process of xylem differentiation in pioneer roots under field conditions is poorly understood. In this study it is hypothesized that xylogenesis, an example of developmental programmed cell death (PCD), in the roots of woody plants demonstrates a clearly defined sequence of events resulting in cell death. A comprehensive analysis was therefore undertaken to identify the stages of xylogenesis in pioneer roots from procambial cells to fully functional vessels with lignified cell walls and secondary cell wall thickenings. Methods Xylem differentiation was monitored in the pioneer roots of Populus trichocarpa at the cytological level using rhizotrons under field conditions. Detection and localization of the signalling molecule nitric oxide (NO) and hydrogen peroxide (H2O2) was undertaken and a detailed examination of nuclear changes during xylogenesis was conducted. In addition, analyses of the expression of genes involved in secondary cell wall synthesis were performed in situ. Key Results The primary event in initially differentiating tracheary elements (TEs) was a burst of NO in thin-walled cells, followed by H2O2 synthesis and the appearance of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling)-positive nuclei. The first changes in nuclear structure were observed in the early stages of xylogenesis of pioneer roots, prior to lignification; however, the nucleus was detectable under transmission electron microscopy in differentiating cells until the stage at which vacuole integrity was maintained, indicating that their degradation was slow and prolonged. The subsequent sequence of events involved secondary cell wall formation and autophagy. Potential gene markers from the cinnamyl alcohol dehydrogenase (CAD) gene family that were related to secondary wall synthesis were associated with primary xylogenesis, showing clear expression in cells that undergo differentiation into TEs and in the thin-walled cells adjacent to the xylem pole. Conclusions The early events of TE formation during pioneer root development are described, together with the timing of xylogenesis from signalling via NO, through secondary cell wall synthesis and autophagy events that are initiated long before lignification. This is the first work describing experiments conducted in planta on roots under field conditions demonstrating that the process of xylogenesis in vivo might be gradual and complex. PMID:24812251

  20. Distribution of alginate and cellulose and regulatory role of calcium in the cell wall of the brown alga Ectocarpus siliculosus (Ectocarpales, Phaeophyceae).

    PubMed

    Terauchi, Makoto; Nagasato, Chikako; Inoue, Akira; Ito, Toshiaki; Motomura, Taizo

    2016-08-01

    This work investigated a correlation between the three-dimensional architecture and compound-components of the brown algal cell wall. Calcium greatly contributes to the cell wall integrity. Brown algae have a unique cell wall consisting of alginate, cellulose, and sulfated polysaccharides. However, the relationship between the architecture and the composition of the cell wall is poorly understood. Here, we investigated the architecture of the cell wall and the effect of extracellular calcium in the sporophyte and gametophyte of the model brown alga, Ectocarpus siliculosus (Dillwyn) Lyngbye, using transmission electron microscopy, histochemical, and immunohistochemical studies. The lateral cell wall of vegetative cells of the sporophyte thalli had multilayered architecture containing electron-dense and negatively stained fibrils. Electron tomographic analysis showed that the amount of the electron-dense fibrils and the junctions was different between inner and outer layers, and between the perpendicular and tangential directions of the cell wall. By immersing the gametophyte thalli in the low-calcium (one-eighth of the normal concentration) artificial seawater medium, the fibrous layers of the lateral cell wall of vegetative cells became swollen. Destruction of cell wall integrity was also induced by the addition of sorbitol. The results demonstrated that electron-dense fibrils were composed of alginate-calcium fibrous gels, and electron negatively stained fibrils were crystalline cellulose microfibrils. It was concluded that the spatial arrangement of electron-dense fibrils was different between the layers and between the directions of the cell wall, and calcium was necessary for maintaining the fibrous layers in the cell wall. This study provides insights into the design principle of the brown algal cell wall.

  1. Cell Wall Composition and Candidate Biosynthesis Gene Expression During Rice Development.

    PubMed

    Lin, Fan; Manisseri, Chithra; Fagerström, Alexandra; Peck, Matthew L; Vega-Sánchez, Miguel E; Williams, Brian; Chiniquy, Dawn M; Saha, Prasenjit; Pattathil, Sivakumar; Conlin, Brian; Zhu, Lan; Hahn, Michael G; Willats, William G T; Scheller, Henrik V; Ronald, Pamela C; Bartley, Laura E

    2016-10-01

    Cell walls of grasses, including cereal crops and biofuel grasses, comprise the majority of plant biomass and intimately influence plant growth, development and physiology. However, the functions of many cell wall synthesis genes, and the relationships among and the functions of cell wall components remain obscure. To better understand the patterns of cell wall accumulation and identify genes that act in grass cell wall biosynthesis, we characterized 30 samples from aerial organs of rice (Oryza sativa cv. Kitaake) at 10 developmental time points, 3-100 d post-germination. Within these samples, we measured 15 cell wall chemical components, enzymatic digestibility and 18 cell wall polysaccharide epitopes/ligands. We also used quantitative reverse transcription-PCR to measure expression of 50 glycosyltransferases, 15 acyltransferases and eight phenylpropanoid genes, many of which had previously been identified as being highly expressed in rice. Most cell wall components vary significantly during development, and correlations among them support current understanding of cell walls. We identified 92 significant correlations between cell wall components and gene expression and establish nine strong hypotheses for genes that synthesize xylans, mixed linkage glucan and pectin components. This work provides an extensive analysis of cell wall composition throughout rice development, identifies genes likely to synthesize grass cell walls, and provides a framework for development of genetically improved grasses for use in lignocellulosic biofuel production and agriculture. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa).

    PubMed

    Zhang, Wujun; Wu, Longmei; Ding, Yanfeng; Yao, Xiong; Wu, Xiaoran; Weng, Fei; Li, Ganghua; Liu, Zhenghui; Tang, She; Ding, Chengqiang; Wang, Shaohua

    2017-09-01

    Stem mechanical strength is an important agricultural quantitative trait that is closely related to lodging resistance in rice, which is known to be reduced by fertilizer with higher levels of nitrogen. To understand the mechanism that regulates stem mechanical strength in response to nitrogen, we analysed stem morphology, anatomy, mechanical properties, cell wall components, and expression of cell wall-related genes, in two varieties of japonica rice, namely, Wuyunjing23 (lodging-resistant variety) and W3668 (lodging-susceptible variety). The results showed that higher nitrogen fertilizer increased the lodging index in both varieties due to a reduction in breaking strength and bending stress, and these changes were larger in W3668. Cellulose content decreased slightly under higher nitrogen fertilizer, whereas lignin content reduced remarkably. Histochemical staining revealed that high nitrogen application decreased lignin deposition in the secondary cell wall of the sclerenchyma cells and vascular bundle cells compared with the low nitrogen treatments, while it did not alter the pattern of cellulose deposition in these cells in both Wuyunjing23 and W3668. In addition, the expression of the genes involved in lignin biosynthesis, OsPAL, OsCoMT, Os4CL3, OsCCR, OsCAD2, OsCAD7, OsCesA4, and OsCesA7, were also down-regulated under higher nitrogen conditions at the early stage of culm growth. These results suggest that the genes involved in lignin biosynthesis are down-regulated by higher nitrogen fertilizer, which causes lignin deficiency in the secondary cell walls and the weakening of mechanical tissue structure. Subsequently, this results in these internodes with reduced mechanical strength and poor lodging resistance.

  3. Screening and characterization of plant cell walls using carbohydrate microarrays.

    PubMed

    Sørensen, Iben; Willats, William G T

    2011-01-01

    Plant cells are surrounded by cell walls built largely from complex carbohydrates. The primary walls of growing plant cells consist of interdependent networks of three polysaccharide classes: cellulose, cross-linking glycans (also known as hemicelluloses), and pectins. Cellulose microfibrils are tethered together by cross-linking glycans, and this assembly forms the major load-bearing component of primary walls, which is infiltrated with pectic polymers. In the secondary walls of woody tissues, pectins are much reduced and walls are reinforced with the phenolic polymer lignin. Plant cell walls are essential for plant life and also have numerous industrial applications, ranging from wood to nutraceuticals. Enhancing our knowledge of cell wall biology and the effective use of cell wall materials is dependent to a large extent on being able to analyse their fine structures. We have developed a suite of techniques based on microarrays probed with monoclonal antibodies with specificity for cell wall components, and here we present practical protocols for this type of analysis.

  4. Characteristic thickened cell walls of the bracts of the 'eternal flower' Helichrysum bracteatum.

    PubMed

    Nishikawa, Kuniko; Ito, Hiroaki; Awano, Tatsuya; Hosokawa, Munetaka; Yazawa, Susumu

    2008-07-01

    Helichrysum bracteatum is called an 'eternal flower' and has large, coloured, scarious bracts. These maintain their aesthetic value without wilting or discoloration for many years. There have been no research studies of cell death or cell morphology of the scarious bract, and hence the aim of this work was to elucidate these characteristics for the bract of H. bracteatum. DAPI (4'6-diamidino-2-phenylindol dihydrochloride) staining and fluorescence microscopy were used for observation of cell nuclei. Light microscopy (LM), transmission electron microscopy (TEM) and polarized light microscopy were used for observation of cells, including cell wall morphology. Cell death occurred at the bract tip during the early stage of flower development. The cell wall was the most prominent characteristic of H. bracteatum bract cells. Characteristic thickened secondary cell walls on the inside of the primary cell walls were observed in both epidermal and inner cells. In addition, the walls of all cells exhibited birefringence. Characteristic thickened secondary cell walls have orientated cellulose microfibrils as well as general secondary cell walls of the tracheary elements. For comparison, these characters were not observed in the petal and bract tissues of Chrysanthemum morifolium. Bracts at anthesis are composed of dead cells. Helichrysum bracteatum bracts have characteristic thickened secondary cell walls that have not been observed in the parenchyma of any other flowers or leaves. The cells of the H. bracteatum bract differ from other tissues with secondary cell walls, suggesting that they may be a new cell type.

  5. Peptidoglycan turnover and recycling in Gram-positive bacteria.

    PubMed

    Reith, Jan; Mayer, Christoph

    2011-10-01

    Bacterial cells are protected by an exoskeleton, the stabilizing and shape-maintaining cell wall, consisting of the complex macromolecule peptidoglycan. In view of its function, it could be assumed that the cell wall is a static structure. In truth, however, it is steadily broken down by peptidoglycan-cleaving enzymes during cell growth. In this process, named cell wall turnover, in one generation up to half of the preexisting peptidoglycan of a bacterial cell is released from the wall. This would result in a massive loss of cell material, if turnover products were not be taken up and recovered. Indeed, in the Gram-negative model organism Escherichia coli, peptidoglycan recovery has been recognized as a complex pathway, named cell wall recycling. It involves about a dozen dedicated recycling enzymes that convey cell wall turnover products to peptidoglycan synthesis or energy pathways. Whether Gram-positive bacteria also recover their cell wall is currently questioned. Given the much larger portion of peptidoglycan in the cell wall of Gram-positive bacteria, however, recovery of the wall material would provide an even greater benefit in these organisms compared to Gram-negatives. Consistently, in many Gram-positives, orthologs of recycling enzymes were identified, indicating that the cell wall may also be recycled in these organisms. This mini-review provides a compilation of information about cell wall turnover and recycling in Gram-positive bacteria during cell growth and division, including recent findings relating to muropeptide recovery in Bacillus subtilis and Clostridium acetobutylicum from our group. Furthermore, the impact of cell wall turnover and recycling on biotechnological processes is discussed.

  6. RADIOAUTOGRAPHIC STUDY OF CELL WALL DEPOSITION IN GROWING PLANT CELLS

    PubMed Central

    Ray, Peter M.

    1967-01-01

    Segments cut from growing oat coleoptiles and pea stems were fed glucose-3H in presence and absence of the growth hormone indoleacetic acid (IAA). By means of electron microscope radioautography it was demonstrated that new cell wall material is deposited both at the wall surface (apposition) and within the preexisting wall structure (internally). Quantitative profiles for the distribution of incorporation with position through the thickness of the wall were obtained for the thick outer wall of epidermal cells. With both oat coleoptile and pea stem epidermal outer walls, it was found that a larger proportion of the newly synthesized wall material appeared to become incorporated within the wall in the presence of IAA. Extraction experiments on coleoptile tissue showed that activity that had been incorporated into the cell wall interior represented noncellulosic constituents, mainly hemicelluloses, whereas cellulose was deposited largely or entirely by apposition. It seems possible that internal incorporation of hemicelluloses plays a role in the cell wall expansion process that is involved in cell growth. PMID:6064369

  7. How does climate influence xylem morphogenesis over the growing season? Insights from long-term intra-ring anatomy in Picea abies

    PubMed Central

    Fonti, Patrick; von Arx, Georg; Carrer, Marco

    2017-01-01

    Background and Aims During the growing season, the cambium of conifer trees produces successive rows of xylem cells, the tracheids, that sequentially pass through the phases of enlargement and secondary wall thickening before dying and becoming functional. Climate variability can strongly influence the kinetics of morphogenetic processes, eventually affecting tracheid shape and size. This study investigates xylem anatomical structure in the stem of Picea abies to retrospectively infer how, in the long term, climate affects the processes of cell enlargement and wall thickening. Methods Tracheid anatomical traits related to the phases of enlargement (diameter) and wall thickening (wall thickness) were innovatively inspected at the intra-ring level on 87-year-long tree-ring series in Picea abies trees along a 900 m elevation gradient in the Italian Alps. Anatomical traits in ten successive tree-ring sectors were related to daily temperature and precipitation data using running correlations. Key Results Close to the altitudinal tree limit, low early-summer temperature negatively affected cell enlargement. At lower elevation, water availability in early summer was positively related to cell diameter. The timing of these relationships shifted forward by about 20 (high elevation) to 40 (low elevation) d from the first to the last tracheids in the ring. Cell wall thickening was affected by climate in a different period in the season. In particular, wall thickness of late-formed tracheids was strongly positively related to August–September temperature at high elevation. Conclusions Morphogenesis of tracheids sequentially formed in the growing season is influenced by climate conditions in successive periods. The distinct climate impacts on cell enlargement and wall thickening indicate that different morphogenetic mechanisms are responsible for different tracheid traits. Our approach of long-term and high-resolution analysis of xylem anatomy can support and extend short-term xylogenesis observations, and increase our understanding of climate control of tree growth and functioning under different environmental conditions. PMID:28130220

  8. Interactions of Condensed Tannins with Saccharomyces cerevisiae Yeast Cells and Cell Walls: Tannin Location by Microscopy.

    PubMed

    Mekoue Nguela, Julie; Vernhet, Aude; Sieczkowski, Nathalie; Brillouet, Jean-Marc

    2015-09-02

    Interactions between grape tannins/red wine polyphenols and yeast cells/cell walls was previously studied within the framework of red wine aging and the use of yeast-derived products as an alternative to aging on lees. Results evidenced a quite different behavior between whole cells (biomass grown to elaborate yeast-derived products, inactivated yeast, and yeast inactivated after autolysis) and yeast cell walls (obtained from mechanical disruption of the biomass). Briefly, whole cells exhibited a high capacity to irreversibly adsorb grape and wine tannins, whereas only weak interactions were observed for cell walls. This last point was quite unexpected considering the literature and called into question the real role of cell walls in yeasts' ability to fix tannins. In the present work, tannin location after interactions between grape and wine tannins and yeast cells and cell walls was studied by means of transmission electron microscopy, light epifluorescence, and confocal microscopy. Microscopy observations evidenced that if tannins interact with cell walls, and especially cell wall mannoproteins, they also diffuse freely through the walls of dead cells to interact with their plasma membrane and cytoplasmic components.

  9. A ReaxFF-based molecular dynamics study of the mechanisms of interactions between reactive oxygen plasma species and the Candida albicans cell wall

    NASA Astrophysics Data System (ADS)

    Zhao, T.; Shi, L.; Zhang, Y. T.; Zou, L.; Zhang, L.

    2017-10-01

    Atmospheric pressure non-equilibrium plasmas have attracted significant attention and have been widely used to inactivate pathogens, yet the mechanisms underlying the interactions between plasma-generated species and bio-organisms have not been elucidated clearly. In this paper, reactive molecular dynamics simulations are employed to investigate the mechanisms of interactions between reactive oxygen plasma species (O, OH, and O2) and β-1,6-glucan (a model for the C. albicans cell wall) from a microscopic point of view. Our simulations show that O and OH species can break structurally important C-C and C-O bonds, while O2 molecules exhibit only weak, non-bonded interactions with β-1,6-glucan. Hydrogen abstraction from hydroxyl or CH groups occurs first in all bond cleavage mechanisms. This is followed by a cascade of bond cleavage and double bond formation events. These lead to the destruction of the fungal cell wall. O and OH have similar effects related to their bond cleavage mechanisms. Our simulation results provide fundamental insights into the mechanisms underlying the interactions between reactive oxygen plasma species and the fungal cell wall of C. albicans at the atomic level.

  10. At the border: the plasma membrane-cell wall continuum.

    PubMed

    Liu, Zengyu; Persson, Staffan; Sánchez-Rodríguez, Clara

    2015-03-01

    Plant cells rely on their cell walls for directed growth and environmental adaptation. Synthesis and remodelling of the cell walls are membrane-related processes. During cell growth and exposure to external stimuli, there is a constant exchange of lipids, proteins, and other cell wall components between the cytosol and the plasma membrane/apoplast. This exchange of material and the localization of cell wall proteins at certain spots in the plasma membrane seem to rely on a particular membrane composition. In addition, sensors at the plasma membrane detect changes in the cell wall architecture, and activate cytoplasmic signalling schemes and ultimately cell wall remodelling. The apoplastic polysaccharide matrix is, on the other hand, crucial for preventing proteins diffusing uncontrollably in the membrane. Therefore, the cell wall-plasma membrane link is essential for plant development and responses to external stimuli. This review focuses on the relationship between the cell wall and plasma membrane, and its importance for plant tissue organization. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Plant and algal cell walls: diversity and functionality

    PubMed Central

    Popper, Zoë A.; Ralet, Marie-Christine; Domozych, David S.

    2014-01-01

    Background Although plants and many algae (e.g. the Phaeophyceae, brown, and Rhodophyceae, red) are only very distantly related they are united in their possession of carbohydrate-rich cell walls, which are of integral importance being involved in many physiological processes. Furthermore, wall components have applications within food, fuel, pharmaceuticals, fibres (e.g. for textiles and paper) and building materials and have long been an active topic of research. As shown in the 27 papers in this Special Issue, as the major deposit of photosynthetically fixed carbon, and therefore energy investment, cell walls are of undisputed importance to the organisms that possess them, the photosynthetic eukaryotes (plants and algae). The complexities of cell wall components along with their interactions with the biotic and abiotic environment are becoming increasingly revealed. Scope The importance of plant and algal cell walls and their individual components to the function and survival of the organism, and for a number of industrial applications, are illustrated by the breadth of topics covered in this issue, which includes papers concentrating on various plants and algae, developmental stages, organs, cell wall components, and techniques. Although we acknowledge that there are many alternative ways in which the papers could be categorized (and many would fit within several topics), we have organized them as follows: (1) cell wall biosynthesis and remodelling, (2) cell wall diversity, and (3) application of new technologies to cell walls. Finally, we will consider future directions within plant cell wall research. Expansion of the industrial uses of cell walls and potentially novel uses of cell wall components are both avenues likely to direct future research activities. Fundamentally, it is the continued progression from characterization (structure, metabolism, properties and localization) of individual cell wall components through to defining their roles in almost every aspect of plant and algal physiology that will present many of the major challenges in future cell wall research. PMID:25453142

  12. Plant and algal cell walls: diversity and functionality.

    PubMed

    Popper, Zoë A; Ralet, Marie-Christine; Domozych, David S

    2014-10-01

    Although plants and many algae (e.g. the Phaeophyceae, brown, and Rhodophyceae, red) are only very distantly related they are united in their possession of carbohydrate-rich cell walls, which are of integral importance being involved in many physiological processes. Furthermore,wall components have applications within food, fuel, pharmaceuticals, fibres (e.g. for textiles and paper) and building materials and have long been an active topic of research. As shown in the 27 papers in this Special Issue, as the major deposit of photosynthetically fixed carbon, and therefore energy investment, cell walls are of undisputed importance to the organisms that possess them, the photosynthetic eukaryotes ( plants and algae). The complexities of cell wall components along with their interactions with the biotic and abiotic environment are becoming increasingly revealed. The importance of plant and algal cell walls and their individual components to the function and survival of the organism, and for a number of industrial applications, are illustrated by the breadth of topics covered in this issue, which includes papers concentrating on various plants and algae, developmental stages, organs, cell wall components, and techniques. Although we acknowledge that there are many alternative ways in which the papers could be categorized (and many would fit within several topics), we have organized them as follows: (1) cell wall biosynthesis and remodelling, (2) cell wall diversity, and (3) application of new technologies to cell walls. Finally, we will consider future directions within plant cell wall research. Expansion of the industrial uses of cell walls and potentially novel uses of cell wall components are both avenues likely to direct future research activities. Fundamentally, it is the continued progression from characterization (structure, metabolism, properties and localization) of individual cell wall components through to defining their roles in almost every aspect of plant and algal physiology that will present many of the major challenges in future cell wall research.

  13. Gravity: one of the driving forces for evolution.

    PubMed

    Volkmann, D; Baluska, F

    2006-12-01

    Mechanical load is 10(3) larger for land-living than for water-living organisms. As a consequence, antigravitational material in form of compound materials like lignified cell walls in plants and mineralised bones in animals occurs in land-living organisms preferentially. Besides cellulose, pectic substances of plant cell walls seem to function as antigravitational material in early phases of plant evolution and development. A testable hypothesis including vesicular recycling processes into the tensegrity concept is proposed for both sensing of gravitational force and responding by production of antigravitational material at the cellular level.

  14. A clade in the QUASIMODO2 family evolved with vascular plants and supports a role for cell wall composition in adaptation to environmental changes.

    PubMed

    Fuentes, Sara; Pires, Nuno; Østergaard, Lars

    2010-08-01

    The evolution of plant vascular tissue is tightly linked to the evolution of specialised cell walls. Mutations in the QUASIMODO2 (QUA2) gene from Arabidopsis thaliana were previously shown to result in cell adhesion defects due to reduced levels of the cell wall component homogalacturonic acid. In this study, we provide additional information about the role of QUA2 and its closest paralogues, QUASIMODO2 LIKE1 (QUL1) and QUL2. Within the extensive QUA2 family, our phylogenetic analysis shows that these three genes form a clade that evolved with vascular plants. Consistent with a possible role of this clade in vasculature development, QUA2 is highly expressed in the vascular tissue of embryos and inflorescence stems and overexpression of QUA2 resulted in temperature-sensitive xylem collapse. Moreover, in-depth characterisation of qua2 qul1 qul2 triple mutant and 35S::QUA2 overexpression plants revealed contrasting temperature-dependent stem development with dramatic effects on stem width. Taken together, our results suggest that the QUA2-specific clade contributed to the evolution of vasculature and illustrate the important role that modification of cell wall composition plays in the adaptation to changing environmental conditions, including changes in temperature.

  15. Reconciling species-level vs plastic responses of evergreen leaf structure to light gradients: shade leaves punch above their weight.

    PubMed

    Lusk, Christopher H; Onoda, Yusuke; Kooyman, Robert; Gutiérrez-Girón, Alba

    2010-04-01

    *When grown in a common light environment, the leaves of shade-tolerant evergreen trees have a larger leaf mass per unit area (LMA) than their light-demanding counterparts, associated with differences in lifespan. Yet plastic responses of LMA run counter to this pattern: shade leaves have smaller LMA than sun leaves, despite often living longer. *We measured LMA and cell wall content, and conducted punch and shear tests, on sun and shade leaves of 13 rainforest evergreens of differing shade tolerance, in order to understand adaptation vs plastic responses of leaf structure and biomechanics to shade. *Species shade tolerance and leaf mechanical properties correlated better with cell wall mass per unit area than with LMA. Growth light environment had less effect on leaf mechanics than on LMA: shade leaves had, on average, 40% lower LMA than sun leaves, but differences in work-to-shear, and especially force-to-punch, were smaller. This was associated with a slightly larger cell wall fraction in shade leaves. *The persistence of shade leaves might reflect unattractiveness to herbivores because they yield smaller benefits (cell contents per area) per unit fracture force than sun leaves. In forest trees, cell wall fraction and force-to-punch are more robust correlates of species light requirements than LMA.

  16. DBIO Best Thesis Award: Mechanics, Dynamics, and Organization of the Bacterial Cytoskeleton and Cell Wall

    NASA Astrophysics Data System (ADS)

    Wang, Siyuan

    2012-02-01

    Bacteria come in a variety of shapes. While the peptidoglycan (PG) cell wall serves as an exoskeleton that defines the static cell shape, the internal bacterial cytoskeleton mediates cell shape by recruiting PG synthesis machinery and thus defining the pattern of cell-wall synthesis. While much is known about the chemistry and biology of the cytoskeleton and cell wall, much of their biophysics, including essential aspects of the functionality, dynamics, and organization, remain unknown. This dissertation aims to elucidate the detailed biophysical mechanisms of cytoskeleton guided wall synthesis. First, I find that the bacterial cytoskeleton MreB contributes nearly as much to the rigidity of an Escherichia coli cell as the cell wall. This conclusion implies that the cytoskeletal polymer MreB applies meaningful force to the cell wall, an idea favored by theoretical modeling of wall growth, and suggests an evolutionary origin of cytoskeleton-governed cell rigidity. Second, I observe that MreB rotates around the long axis of E. coli, and the motion depends on wall synthesis. This is the first discovery of a cell-wall assembly driven molecular motor in bacteria. Third, I prove that both cell-wall synthesis and the PG network have chiral ordering, which is established by the spatial pattern of MreB. This work links the molecular structure of the cytoskeleton and of the cell wall with organismal-scale behavior. Finally, I develop a mathematical model of cytoskeleton-cell membrane interactions, which explains the preferential orientation of different cytoskeleton components in bacteria.

  17. Wall effects in continuous microfluidic magneto-affinity cell separation.

    PubMed

    Wu, Liqun; Zhang, Yong; Palaniapan, Moorthi; Roy, Partha

    2010-05-01

    Continuous microfluidic magneto-affinity cell separator combines unique microscale flow phenomenon with advantageous nanobead properties, to isolate cells with high specificity. Owing to the comparable size of the cell-bead complexes and the microchannels, the walls of the microchannel exert a strong influence on the separation of cells by this method. We present a theoretical and experimental study that provides a quantitative description of hydrodynamic wall interactions and wall rolling velocity of cells. A transient convection model describes the transport of cells in two-phase microfluidic flow under the influence of an external magnetic field. Transport of cells along the microchannel walls is also considered via an additional equation. Results show the variation of cell flux in the fluid phases and the wall as a function of a dimensionless parameter arising in the equations. Our results suggest that conditions may be optimized to maximize cell separation while minimizing contact with the wall surfaces. Experimentally measured cell rolling velocities on the wall indicate the presence of other near-wall forces in addition to fluid shear forces. Separation of a human colon carcinoma cell line from a mixture of red blood cells, with folic acid conjugated 1 microm and 200 nm beads, is reported.

  18. Induced Autolysis of Aspergillus oryzae (A. niger group)

    PubMed Central

    Emiliani, Ezio; de Davie, I. Ucha

    1962-01-01

    The examination of substances formed during induced autolysis by Aspergillus niger was continued in this work, which dealt in particular with carbohydrates. The autolysate contained a large amount of d-glucose (14 to 20% dry wt) and traces of glycolic aldehyde, dihydroxyacetone, ribose, xylose, and fructose. It also contained glycopeptides (about 10% dry wt), which were split from the cell wall during autolysis and which differed from one another in their level of polymerization and their composition. They were constituted by glucose and mannose, glucose and galactose, or mannose, glucose, and galactose (mannose being the most abundant in this case), and amino acids (chiefly alanine, serine, glutamic acid, and aspartic acid). During autolysis, only a part of the cell wall was dissolved, since it retained its shape. Upon further chemical hydrolysis, it produced mostly glucose and glucosamine, and smaller amounts of mannose, galactose, and amino acids. Presumably, glucomannoproteins and glucogalactoproteins were present in the intact cell as a macromolecular complex, constituting, together with chitin, the major part of the cell wall of Aspergillus. PMID:16349623

  19. Changes of wood cell walls in response to hygro-mechanical steam treatment.

    PubMed

    Guo, Juan; Song, Kunlin; Salmén, Lennart; Yin, Yafang

    2015-01-22

    The effects of compression combined with steam treatment (CS-treatment), i.e. a hygro-mechanical steam treatment on Spruce wood were studied on a cell-structure level to understand the chemical and physical changes of the secondary cell wall occurring under such conditions. Specially, imaging FT-IR microscopy, nanoindentation and dynamic vapour absorption were used to track changes in the chemical structure, in micromechanical and hygroscopic properties. It was shown that CS-treatment resulted in different changes in morphological, chemical and physical properties of the cell wall, in comparison with those under pure steam treatment. After CS-treatment, the cellular structure displayed significant deformations, and the biopolymer components, e.g. hemicellulose and lignin, were degraded, resulting in decreased hygroscopicity and increased mechanical properties of the wood compared to both untreated and steam treated wood. Moreover, CS-treatment resulted in a higher degree of degradation especially in earlywood compared to a more uniform behaviour of wood treated only by steam. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Effect of Agave tequilana juice on cell wall polysaccharides of three Saccharomyces cerevisiae strains from different origins.

    PubMed

    Aguilar-Uscanga, Blanca; Arrizon, Javier; Ramirez, Jesús; Solis-Pacheco, Josué

    2007-02-01

    In this study, a characterization of cell wall polysaccharide composition of three yeasts involved in the production of agave distilled beverages was performed. The three yeast strains were isolated from different media (tequila, mezcal and bakery) and were evaluated for the beta(1,3)-glucanase lytic activity and the beta-glucan/ mannan ratio during the fermentation of Agave tequilana juice and in YPD media (control). Fermentations were performed in shake flasks with 30 g l(-1) sugar concentration of A. tequilana juice and with the control YPD using 30 g l(-1) of glucose. The three yeasts strains showed different levels of beta-glucan and mannan when they were grown in A. tequilana juice in comparison to the YPD media. The maximum rate of cell wall lyses was 50% lower in fermentations with A. tequilana juice for yeasts isolated from tequila and mezcal than compared to the bakery yeast.

  1. The Mycobacterium tuberculosis MmpL11 Cell Wall Lipid Transporter Is Important for Biofilm Formation, Intracellular Growth, and Nonreplicating Persistence

    PubMed Central

    Wright, Catherine C.; Hsu, Fong Fu; Arnett, Eusondia; Dunaj, Jennifer L.; Davidson, Patrick M.; Pacheco, Sophia A.; Harriff, Melanie J.; Lewinsohn, David M.; Schlesinger, Larry S.

    2017-01-01

    ABSTRACT The mycobacterial cell wall is crucial to the host-pathogen interface, because it provides a barrier against antibiotics and the host immune response. In addition, cell wall lipids are mycobacterial virulence factors. The mycobacterial membrane protein large (MmpL) proteins are cell wall lipid transporters that are important for basic mycobacterial physiology and Mycobacterium tuberculosis pathogenesis. MmpL3 and MmpL11 are conserved across pathogenic and nonpathogenic mycobacteria, a feature consistent with an important role in the basic physiology of the bacterium. MmpL3 is essential and transports trehalose monomycolate to the mycobacterial surface. In this report, we characterize the role of MmpL11 in M. tuberculosis. M. tuberculosis mmpL11 mutants have altered biofilms associated with lower levels of mycolic acid wax ester and long-chain triacylglycerols than those for wild-type bacteria. While the growth rate of the mmpL11 mutant is similar to that of wild-type M. tuberculosis in macrophages, the mutant exhibits impaired survival in an in vitro granuloma model. Finally, we show that the survival or recovery of the mmpL11 mutant is impaired when it is incubated under conditions of nutrient and oxygen starvation. Our results suggest that MmpL11 and its cell wall lipid substrates are important for survival in the context of adaptive immune pressure and for nonreplicating persistence, both of which are critically important aspects of M. tuberculosis pathogenicity. PMID:28507063

  2. A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells.

    PubMed

    Ma, Jie; Cai, Hongmei; He, Congwu; Zhang, Wenjun; Wang, Lijun

    2015-05-01

    Silicon (Si) alleviates cadmium (Cd) toxicity in rice (Oryza sativa). However, the chemical mechanisms at the single-cell level are poorly understood. Here, a suspension of rice cells exposed to Cd and/or Si treatments was investigated using a combination of plant cell nutritional, molecular biological, and physical techniques including in situ noninvasive microtest technology (NMT), polymerase chain reaction (PCR), inductively coupled plasma mass spectroscopy (ICP-MS), and atomic force microscopy (AFM) in Kelvin probe mode (KPFM). We found that Si-accumulating cells had a significantly reduced net Cd(2+) influx, compared with that in Si-limited cells. PCR analyses of the expression levels of Cd and Si transporters in rice cells showed that, when the Si concentration in the medium was increased, expression of the Si transporter gene Low silicon rice 1 (Lsi1) was up-regulated, whereas expression of the gene encoding the transporter involved in the transport of Cd, Natural resistance-associated macrophage protein 5 (Nramp5), was down-regulated. ICP-MS results revealed that 64% of the total Si in the cell walls was bound to hemicellulose constituents following the fractionation of the cell walls, and consequently inhibited Cd uptake. Furthermore, AFM in KPFM demonstrated that the heterogeneity of the wall surface potential was higher in cells cultured in the presence of Si than in those cultured in its absence, and was homogenized after the addition of Cd. These results suggest that a hemicellulose-bound form of Si with net negative charges is responsible for inhibition of Cd uptake in rice cells by a mechanism of [Si-hemicellulose matrix]Cd complexation and subsequent co-deposition. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  3. HIGHLY METHYL ESTERIFIED SEEDS is a pectin methyl esterase involved in embryo development.

    PubMed

    Levesque-Tremblay, Gabriel; Müller, Kerstin; Mansfield, Shawn D; Haughn, George W

    2015-03-01

    Homogalacturonan pectin domains are synthesized in a highly methyl-esterified form that later can be differentially demethyl esterified by pectin methyl esterase (PME) to strengthen or loosen plant cell walls that contain pectin, including seed coat mucilage, a specialized secondary cell wall of seed coat epidermal cells. As a means to identify the active PMEs in seed coat mucilage, we identified seven PMEs expressed during seed coat development. One of these, HIGHLY METHYL ESTERIFIED SEEDS (HMS), is abundant during mucilage secretion, peaking at 7 d postanthesis in both the seed coat and the embryo. We have determined that this gene is required for normal levels of PME activity and homogalacturonan methyl esterification in the seed. The hms-1 mutant displays altered embryo morphology and mucilage extrusion, both of which are a consequence of defects in embryo development. A significant decrease in the size of cells in the embryo suggests that the changes in embryo morphology are a consequence of lack of cell expansion. Progeny from a cross between hms-1 and the previously characterized PME inhibitor5 overexpression line suggest that HMS acts independently from other cell wall-modifying enzymes in the embryo. We propose that HMS is required for cell wall loosening in the embryo to facilitate cell expansion during the accumulation of storage reserves and that its role in the seed coat is masked by redundancy. © 2015 American Society of Plant Biologists. All Rights Reserved.

  4. Structure, function, and biosynthesis of plant cell walls: proceedings of the seventh annual symposium in botany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dugger, W.M.; Bartnicki-Garcia, S.

    Papers in the following areas were included in these symposium proceedings: (1) cell wall chemistry and biosynthesis; (2) cell wall hydrolysis and associated physiology; (3) cellular events associated with cell wall biosynthesis; and (4) interactions of plant cell walls with pathogens and related responses. Papers have been individually abstracted for the data base. (ACR)

  5. Architecture and Biosynthesis of the Saccharomyces cerevisiae Cell Wall

    PubMed Central

    Orlean, Peter

    2012-01-01

    The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins. PMID:23135325

  6. Grafted c-kit+/SSEA1- eye-wall progenitor cells delay retinal degeneration in mice by regulating neural plasticity and forming new graft-to-host synapses.

    PubMed

    Chen, Xi; Chen, Zehua; Li, Zhengya; Zhao, Chen; Zeng, Yuxiao; Zou, Ting; Fu, Caiyun; Liu, Xiaoli; Xu, Haiwei; Yin, Zheng Qin

    2016-12-30

    Despite diverse pathogenesis, the common pathological change observed in age-related macular degeneration and in most hereditary retinal degeneration (RD) diseases is photoreceptor loss. Photoreceptor replacement by cell transplantation may be a feasible treatment for RD. The major obstacles to clinical translation of stem cell-based cell therapy in RD remain the difficulty of obtaining sufficient quantities of appropriate and safe donor cells and the poor integration of grafted stem cell-derived photoreceptors into the remaining retinal circuitry. Eye-wall c-kit + /stage-specific embryonic antigen 1 (SSEA1) - cells were isolated via fluorescence-activated cell sorting, and their self-renewal and differentiation potential were detected by immunochemistry and flow cytometry in vitro. After labeling with quantum nanocrystal dots and transplantation into the subretinal space of rd1 RD mice, differentiation and synapse formation by daughter cells of the eye-wall c-kit + /SSEA1 - cells were evaluated by immunochemistry and western blotting. Morphological changes of the inner retina of rd1 mice after cell transplantation were demonstrated by immunochemistry. Retinal function of rd1 mice that received cell grafts was tested via flash electroretinograms and the light/dark transition test. Eye-wall c-kit + /SSEA1 - cells were self-renewing and clonogenic, and they retained their proliferative potential through more than 20 passages. Additionally, eye-wall c-kit + /SSEA1 - cells were capable of differentiating into multiple retinal cell types including photoreceptors, bipolar cells, horizontal cells, amacrine cells, Müller cells, and retinal pigment epithelium cells and of transdifferentiating into smooth muscle cells and endothelial cells in vitro. The levels of synaptophysin and postsynaptic density-95 in the retinas of eye-wall c-kit + /SSEA1 - cell-transplanted rd1 mice were significantly increased at 4 weeks post transplantation. The c-kit + /SSEA1 - cells were capable of differentiating into functional photoreceptors that formed new synaptic connections with recipient retinas in rd1 mice. Transplantation also partially corrected the abnormalities of inner retina of rd1 mice. At 4 and 8 weeks post transplantation, the rd1 mice that received c-kit + /SSEA1 - cells showed significant increases in a-wave and b-wave amplitude and the percentage of time spent in the dark area. Grafted c-kit + /SSEA1 - cells restored the retinal function of rd1 mice via regulating neural plasticity and forming new graft-to-host synapses.

  7. Bacterial cell-wall recycling

    PubMed Central

    Johnson, Jarrod W.; Fisher, Jed F.; Mobashery, Shahriar

    2012-01-01

    Many Gram-negative and Gram-positive bacteria recycle a significant proportion of the peptidoglycan components of their cell walls during their growth and septation. In many—and quite possibly all—bacteria, the peptidoglycan fragments are recovered and recycled. While cell-wall recycling is beneficial for the recovery of resources, it also serves as a mechanism to detect cell-wall–targeting antibiotics and to regulate resistance mechanisms. In several Gram-negative pathogens, anhydro-MurNAc-peptide cell-wall fragments regulate AmpC β-lactamase induction. In some Gram-positive organisms, short peptides derived from the cell wall regulate the induction of both β-lactamase and β-lactam-resistant penicillin-binding proteins. The involvement of peptidoglycan recycling with resistance regulation suggests that inhibitors of the enzymes involved in the recycling might synergize with cell-wall-targeted antibiotics. Indeed, such inhibitors improve the potency of β-lactams in vitro against inducible AmpC β-lactamase-producing bacteria. We describe the key steps of cell-wall remodeling and recycling, the regulation of resistance mechanisms by cell-wall recycling, and recent advances toward the discovery of cell-wall recycling inhibitors. PMID:23163477

  8. Characteristic Thickened Cell Walls of the Bracts of the ‘Eternal Flower’ Helichrysum bracteatum

    PubMed Central

    Nishikawa, Kuniko; Ito, Hiroaki; Awano, Tatsuya; Hosokawa, Munetaka; Yazawa, Susumu

    2008-01-01

    Background and Aims Helichrysum bracteatum is called an ‘eternal flower’ and has large, coloured, scarious bracts. These maintain their aesthetic value without wilting or discoloration for many years. There have been no research studies of cell death or cell morphology of the scarious bract, and hence the aim of this work was to elucidate these characteristics for the bract of H. bracteatum. Methods DAPI (4'6-diamidino-2-phenylindol dihydrochloride) staining and fluorescence microscopy were used for observation of cell nuclei. Light microscopy (LM), transmission electron microscopy (TEM) and polarized light microscopy were used for observation of cells, including cell wall morphology. Key Results Cell death occurred at the bract tip during the early stage of flower development. The cell wall was the most prominent characteristic of H. bracteatum bract cells. Characteristic thickened secondary cell walls on the inside of the primary cell walls were observed in both epidermal and inner cells. In addition, the walls of all cells exhibited birefringence. Characteristic thickened secondary cell walls have orientated cellulose microfibrils as well as general secondary cell walls of the tracheary elements. For comparison, these characters were not observed in the petal and bract tissues of Chrysanthemum morifolium. Conclusions Bracts at anthesis are composed of dead cells. Helichrysum bracteatum bracts have characteristic thickened secondary cell walls that have not been observed in the parenchyma of any other flowers or leaves. The cells of the H. bracteatum bract differ from other tissues with secondary cell walls, suggesting that they may be a new cell type. PMID:18436550

  9. Mechanical feedback coordinates cell wall expansion and assembly in yeast mating morphogenesis

    PubMed Central

    2018-01-01

    The shaping of individual cells requires a tight coordination of cell mechanics and growth. However, it is unclear how information about the mechanical state of the wall is relayed to the molecular processes building it, thereby enabling the coordination of cell wall expansion and assembly during morphogenesis. Combining theoretical and experimental approaches, we show that a mechanical feedback coordinating cell wall assembly and expansion is essential to sustain mating projection growth in budding yeast (Saccharomyces cerevisiae). Our theoretical results indicate that the mechanical feedback provided by the Cell Wall Integrity pathway, with cell wall stress sensors Wsc1 and Mid2 increasingly activating membrane-localized cell wall synthases Fks1/2 upon faster cell wall expansion, stabilizes mating projection growth without affecting cell shape. Experimental perturbation of the osmotic pressure and cell wall mechanics, as well as compromising the mechanical feedback through genetic deletion of the stress sensors, leads to cellular phenotypes that support the theoretical predictions. Our results indicate that while the existence of mechanical feedback is essential to stabilize mating projection growth, the shape and size of the cell are insensitive to the feedback. PMID:29346368

  10. Wall relaxation and the driving forces for cell expansive growth

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1987-01-01

    When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.

  11. Two endogenous proteins that induce cell wall extension in plants

    NASA Technical Reports Server (NTRS)

    McQueen-Mason, S.; Durachko, D. M.; Cosgrove, D. J.

    1992-01-01

    Plant cell enlargement is regulated by wall relaxation and yielding, which is thought to be catalyzed by elusive "wall-loosening" enzymes. By employing a reconstitution approach, we found that a crude protein extract from the cell walls of growing cucumber seedlings possessed the ability to induce the extension of isolated cell walls. This activity was restricted to the growing region of the stem and could induce the extension of isolated cell walls from various dicot stems and the leaves of amaryllidaceous monocots, but was less effective on grass coleoptile walls. Endogenous and reconstituted wall extension activities showed similar sensitivities to pH, metal ions, thiol reducing agents, proteases, and boiling in methanol or water. Sequential HPLC fractionation of the active wall extract revealed two proteins with molecular masses of 29 and 30 kD associated with the activity. Each protein, by itself, could induce wall extension without detectable hydrolytic breakdown of the wall. These proteins appear to mediate "acid growth" responses of isolated walls and may catalyze plant cell wall extension by a novel biochemical mechanism.

  12. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    PubMed

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Genetic and biochemical characterization of the GH72 family of cell wall transglycosylases in Neurospora crassa.

    PubMed

    Ao, Jie; Free, Stephen J

    2017-04-01

    The Neurospora crassa genome encodes five GH72 family transglycosylases, and four of these enzymes (GEL-1, GEL-2, GEL-3 and GEL-5) have been found to be present in the cell wall proteome. We carried out an extensive genetic analysis on the role of these four transglycosylases in cell wall biogenesis and demonstrated that the transglycosylases are required for the formation of a normal cell wall. As suggested by the proteomic analysis, we found that multiple transglycosylases were being expressed in N. crassa cells and that different combinations of the enzymes are required in different cell types. The combination of GEL-1, GEL-2 and GEL-5 is required for the growth of vegetative hyphae, while the GEL-1, GEL-2, GEL-3 combination is needed for the production of aerial hyphae and conidia. Our data demonstrates that the enzymes are redundant with partially overlapping enzymatic activities, which provides the fungus with a robust cell wall biosynthetic system. Characterization of the transglycosylase-deficient mutants demonstrated that the incorporation of cell wall proteins was severely compromised. Interestingly, we found that the transglycosylase-deficient mutant cell walls contained more β-1,3-glucan than the wild type cell wall. Our results demonstrate that the GH72 transglycosylases are not needed for the incorporation of β-1,3-glucan into the cell wall, but they are required for the incorporation of cell wall glycoprotein into the cell wall. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A Cell Wall Proteome and Targeted Cell Wall Analyses Provide Novel Information on Hemicellulose Metabolism in Flax.

    PubMed

    Chabi, Malika; Goulas, Estelle; Leclercq, Celine C; de Waele, Isabelle; Rihouey, Christophe; Cenci, Ugo; Day, Arnaud; Blervacq, Anne-Sophie; Neutelings, Godfrey; Duponchel, Ludovic; Lerouge, Patrice; Hausman, Jean-François; Renaut, Jenny; Hawkins, Simon

    2017-09-01

    Experimentally-generated (nanoLC-MS/MS) proteomic analyses of four different flax organs/tissues (inner-stem, outer-stem, leaves and roots) enriched in proteins from 3 different sub-compartments (soluble-, membrane-, and cell wall-proteins) was combined with publically available data on flax seed and whole-stem proteins to generate a flax protein database containing 2996 nonredundant total proteins. Subsequent multiple analyses (MapMan, CAZy, WallProtDB and expert curation) of this database were then used to identify a flax cell wall proteome consisting of 456 nonredundant proteins localized in the cell wall and/or associated with cell wall biosynthesis, remodeling and other cell wall related processes. Examination of the proteins present in different flax organs/tissues provided a detailed overview of cell wall metabolism and highlighted the importance of hemicellulose and pectin remodeling in stem tissues. Phylogenetic analyses of proteins in the cell wall proteome revealed an important paralogy in the class IIIA xyloglucan endo-transglycosylase/hydrolase (XTH) family associated with xyloglucan endo-hydrolase activity.Immunolocalisation, FT-IR microspectroscopy, and enzymatic fingerprinting indicated that flax fiber primary/S1 cell walls contained xyloglucans with typical substituted side chains as well as glucuronoxylans in much lower quantities. These results suggest a likely central role of xyloglucans and endotransglucosylase/hydrolase activity in flax fiber formation and cell wall remodeling processes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Developmental and Tissue-Specific Structural Alterations of the Cell-Wall Polysaccharides of Arabidopsis thaliana Roots.

    PubMed Central

    Freshour, G.; Clay, R. P.; Fuller, M. S.; Albersheim, P.; Darvill, A. G.; Hahn, M. G.

    1996-01-01

    The plant cell wall is a dynamic structure that plays important roles in growth and development and in the interactions of plants with their environment and other organisms. We have used monoclonal antibodies that recognize different carbohydrate epitopes present in plant cell-wall polysaccharides to locate these epitopes in roots of developing Arabidopsis thaliana seedlings. An epitope in the pectic polysaccharide rhamnogalacturonan I is observed in the walls of epidermal and cortical cells in mature parts of the root. This epitope is inserted into the walls in a developmentally regulated manner. Initially, the epitope is observed in atrichoblasts and later appears in trichoblasts and simultaneously in cortical cells. A terminal [alpha]-fucosyl-containing epitope is present in almost all of the cell walls in the root. An arabinosylated (1->6)-[beta]-galactan epitope is also found in all of the cell walls of the root with the exception of lateral root-cap cell walls. It is striking that these three polysaccharide epitopes are not uniformly distributed (or accessible) within the walls of a given cell, nor are these epitopes distributed equally across the two walls laid down by adjacent cells. Our results further suggest that the biosynthesis and differentiation of primary cell walls in plants are precisely regulated in a temporal, spatial, and developmental manner. PMID:12226270

  16. Atomic force microscopy stiffness tomography on living Arabidopsis thaliana cells reveals the mechanical properties of surface and deep cell-wall layers during growth.

    PubMed

    Radotić, Ksenija; Roduit, Charles; Simonović, Jasna; Hornitschek, Patricia; Fankhauser, Christian; Mutavdžić, Dragosav; Steinbach, Gabor; Dietler, Giovanni; Kasas, Sandor

    2012-08-08

    Cell-wall mechanical properties play a key role in the growth and the protection of plants. However, little is known about genuine wall mechanical properties and their growth-related dynamics at subcellular resolution and in living cells. Here, we used atomic force microscopy (AFM) stiffness tomography to explore stiffness distribution in the cell wall of suspension-cultured Arabidopsis thaliana as a model of primary, growing cell wall. For the first time that we know of, this new imaging technique was performed on living single cells of a higher plant, permitting monitoring of the stiffness distribution in cell-wall layers as a function of the depth and its evolution during the different growth phases. The mechanical measurements were correlated with changes in the composition of the cell wall, which were revealed by Fourier-transform infrared (FTIR) spectroscopy. In the beginning and end of cell growth, the average stiffness of the cell wall was low and the wall was mechanically homogenous, whereas in the exponential growth phase, the average wall stiffness increased, with increasing heterogeneity. In this phase, the difference between the superficial and deep wall stiffness was highest. FTIR spectra revealed a relative increase in the polysaccharide/lignin content. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. A computational approach for inferring the cell wall properties that govern guard cell dynamics.

    PubMed

    Woolfenden, Hugh C; Bourdais, Gildas; Kopischke, Michaela; Miedes, Eva; Molina, Antonio; Robatzek, Silke; Morris, Richard J

    2017-10-01

    Guard cells dynamically adjust their shape in order to regulate photosynthetic gas exchange, respiration rates and defend against pathogen entry. Cell shape changes are determined by the interplay of cell wall material properties and turgor pressure. To investigate this relationship between turgor pressure, cell wall properties and cell shape, we focused on kidney-shaped stomata and developed a biomechanical model of a guard cell pair. Treating the cell wall as a composite of the pectin-rich cell wall matrix embedded with cellulose microfibrils, we show that strong, circumferentially oriented fibres are critical for opening. We find that the opening dynamics are dictated by the mechanical stress response of the cell wall matrix, and as the turgor rises, the pectinaceous matrix stiffens. We validate these predictions with stomatal opening experiments in selected Arabidopsis cell wall mutants. Thus, using a computational framework that combines a 3D biomechanical model with parameter optimization, we demonstrate how to exploit subtle shape changes to infer cell wall material properties. Our findings reveal that proper stomatal dynamics are built on two key properties of the cell wall, namely anisotropy in the form of hoop reinforcement and strain stiffening. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd and Society for Experimental Biology.

  18. Virus-induced gene silencing offers a functional genomics platform for studying plant cell wall formation.

    PubMed

    Zhu, Xiaohong; Pattathil, Sivakumar; Mazumder, Koushik; Brehm, Amanda; Hahn, Michael G; Dinesh-Kumar, S P; Joshi, Chandrashekhar P

    2010-09-01

    Virus-induced gene silencing (VIGS) is a powerful genetic tool for rapid assessment of plant gene functions in the post-genomic era. Here, we successfully implemented a Tobacco Rattle Virus (TRV)-based VIGS system to study functions of genes involved in either primary or secondary cell wall formation in Nicotiana benthamiana plants. A 3-week post-VIGS time frame is sufficient to observe phenotypic alterations in the anatomical structure of stems and chemical composition of the primary and secondary cell walls. We used cell wall glycan-directed monoclonal antibodies to demonstrate that alteration of cell wall polymer synthesis during the secondary growth phase of VIGS plants has profound effects on the extractability of components from woody stem cell walls. Therefore, TRV-based VIGS together with cell wall component profiling methods provide a high-throughput gene discovery platform for studying plant cell wall formation from a bioenergy perspective.

  19. Plant cell wall signalling and receptor-like kinases.

    PubMed

    Wolf, Sebastian

    2017-02-15

    Communication between the extracellular matrix and the cell interior is essential for all organisms as intrinsic and extrinsic cues have to be integrated to co-ordinate development, growth, and behaviour. This applies in particular to plants, the growth and shape of which is governed by deposition and remodelling of the cell wall, a rigid, yet dynamic, extracellular network. It is thus generally assumed that cell wall surveillance pathways exist to monitor the state of the wall and, if needed, elicit compensatory responses such as altered expression of cell wall remodelling and biosynthesis genes. Here, I highlight recent advances in the field of cell wall signalling in plants, with emphasis on the role of plasma membrane receptor-like kinase complexes. In addition, possible roles for cell wall-mediated signalling beyond the maintenance of cell wall integrity are discussed. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  20. The Specific Nature of Plant Cell Wall Polysaccharides 1

    PubMed Central

    Nevins, Donald J.; English, Patricia D.; Albersheim, Peter

    1967-01-01

    Polysaccharide compositions of cell walls were assessed by quantitative analyses of the component sugars. Cell walls were hydrolyzed in 2 n trifluoroacetic acid and the liberated sugars reduced to their respective alditols. The alditols were acetylated and the resulting alditol acetates separated by gas chromatography. Quantitative assay of the alditol acetates was accomplished by electronically integrating the detector output of the gas chromatograph. Myo-inositol, introduced into the sample prior to hydrolysis, served as an internal standard. The cell wall polysaccharide compositions of plant varieties within a given species are essentially identical. However, differences in the sugar composition were observed in cell walls prepared from different species of the same as well as of different genera. The fact that the wall compositions of different varieties of the same species are the same indicates that the biosynthesis of cell wall polysaccharides is genetically regulated. The cell walls of various morphological parts (roots, hypocotyls, first internodes and primary leaves) of bean plants were each found to have a characteristic sugar composition. It was found that the cell wall sugar composition of suspension-cultured sycamore cells could be altered by growing the cells on different carbon sources. This demonstrates that the biosynthesis of cell wall polysaccharides can be manipulated without fatal consequences. PMID:16656594

  1. Dynamic changes in transcriptome and cell wall composition underlying brassinosteroid-mediated lignification of switchgrass suspension cells.

    PubMed

    Rao, Xiaolan; Shen, Hui; Pattathil, Sivakumar; Hahn, Michael G; Gelineo-Albersheim, Ivana; Mohnen, Debra; Pu, Yunqiao; Ragauskas, Arthur J; Chen, Xin; Chen, Fang; Dixon, Richard A

    2017-01-01

    Plant cell walls contribute the majority of plant biomass that can be used to produce transportation fuels. However, the complexity and variability in composition and structure of cell walls, particularly the presence of lignin, negatively impacts their deconstruction for bioenergy. Metabolic and genetic changes associated with secondary wall development in the biofuel crop switchgrass ( Panicum virgatum ) have yet to be reported. Our previous studies have established a cell suspension system for switchgrass, in which cell wall lignification can be induced by application of brassinolide (BL). We have now collected cell wall composition and microarray-based transcriptome profiles for BL-induced and non-induced suspension cultures to provide an overview of the dynamic changes in transcriptional reprogramming during BL-induced cell wall modification. From this analysis, we have identified changes in candidate genes involved in cell wall precursor synthesis, cellulose, hemicellulose, and pectin formation and ester-linkage generation. We have also identified a large number of transcription factors with expression correlated with lignin biosynthesis genes, among which are candidates for control of syringyl (S) lignin accumulation. Together, this work provides an overview of the dynamic compositional changes during brassinosteroid-induced cell wall remodeling, and identifies candidate genes for future plant genetic engineering to overcome cell wall recalcitrance.

  2. The Role of Exo-(1→4)-β-galactanase in the Mobilization of Polysaccharides from the Cotyledon Cell Walls of Lupinus angustifolius Following Germination

    PubMed Central

    BUCKERIDGE, MARCOS S.; HUTCHEON, IAN S.; REID, J. S. GRANT

    2005-01-01

    • Background and Aims The cotyledons of Lupinus angustifolius contain large amounts of cell wall storage polysaccharide (CWSP) composed mainly of (1→4)-β-linked d-galactose residues in the form of branches attached to a rhamnogalacturonan core molecule. An exo-(1→4)-β-galactanase with a very high specificity towards (1→4)-β-linked d-galactan has been isolated from L. angustifolius cotyledons, and shown to vary (activity and specific protein) in step with CWSP mobilization. This work aimed to confirm the hypothesis that galactan is the main polymer retrieved from the wall during mobilization at the ultrastructural level, using the purified exo-galactanase as a probe. • Methods Storage mesophyll cell walls (‘ghosts’) were isolated from the cotyledons of imbibed but ungerminated lupin seeds, and also from cotyledons of seedlings after the mobilization of the CWSP. The pure exo-(1→4)-β-galactanase was coupled to colloidal gold particles and shown to be a specific probe for (1→4)-β-d-galactan. They were used to localize galactan in ultrathin sections of L. angustifolius cotyledonary mesophyll tissue during CWSP mobilization. • Key Results On comparing the morphologies of isolated cell walls, the post-mobilization ‘ghosts’ did not have the massive wall-thickenings of pre-mobilization walls. Compositional analysis showed that the post-mobilization walls were depleted in galactose and, to a lesser extent, in arabinose. When pre-mobilization ghosts were treated with the pure exo-galactanase, they became morphologically similar to the post-mobilization ghosts. They were depleted of approximately 70% of the galactose residues that would have been mobilized in vivo, and retained all the other sugar residues originally present. Sharply defined electron-transparent wall zones or pockets are associated with CWSP mobilization, being totally free of galactan, whereas wall areas immediately adjacent to them were apparently undepleted. • Conclusions The exo-(1→4)-β-galactanase is the principal enzyme involved in CWSP mobilization in lupin cotyledons in vivo. The storage walls dramatically change their texture during mobilization as most of the galactan is hydrolysed during seedling development. PMID:15994843

  3. The role of exo-(1-->4)-beta-galactanase in the mobilization of polysaccharides from the cotyledon cell walls of Lupinus angustifolius following germination.

    PubMed

    Buckeridge, Marcos S; Hutcheon, Ian S; Reid, J S Grant

    2005-09-01

    The cotyledons of Lupinus angustifolius contain large amounts of cell wall storage polysaccharide (CWSP) composed mainly of (1-->4)-beta-linked D-galactose residues in the form of branches attached to a rhamnogalacturonan core molecule. An exo-(1-->4)-beta-galactanase with a very high specificity towards (1-->4)-beta-linked D-galactan has been isolated from L. angustifolius cotyledons, and shown to vary (activity and specific protein) in step with CWSP mobilization. This work aimed to confirm the hypothesis that galactan is the main polymer retrieved from the wall during mobilization at the ultrastructural level, using the purified exo-galactanase as a probe. Storage mesophyll cell walls ('ghosts') were isolated from the cotyledons of imbibed but ungerminated lupin seeds, and also from cotyledons of seedlings after the mobilization of the CWSP. The pure exo-(1-->4)-beta-galactanase was coupled to colloidal gold particles and shown to be a specific probe for (1-->4)-beta-D-galactan. They were used to localize galactan in ultrathin sections of L. angustifolius cotyledonary mesophyll tissue during CWSP mobilization. On comparing the morphologies of isolated cell walls, the post-mobilization 'ghosts' did not have the massive wall-thickenings of pre-mobilization walls. Compositional analysis showed that the post-mobilization walls were depleted in galactose and, to a lesser extent, in arabinose. When pre-mobilization ghosts were treated with the pure exo-galactanase, they became morphologically similar to the post-mobilization ghosts. They were depleted of approximately 70% of the galactose residues that would have been mobilized in vivo, and retained all the other sugar residues originally present. Sharply defined electron-transparent wall zones or pockets are associated with CWSP mobilization, being totally free of galactan, whereas wall areas immediately adjacent to them were apparently undepleted. The exo-(1-->4)-beta-galactanase is the principal enzyme involved in CWSP mobilization in lupin cotyledons in vivo. The storage walls dramatically change their texture during mobilization as most of the galactan is hydrolysed during seedling development.

  4. New insight into the disinfection mechanism of Fusarium monoliforme and Aspergillus niger by TiO2 photocatalyst under low intensity UVA light.

    PubMed

    Pokhum, Chonlada; Viboonratanasri, Duangamon; Chawengkijwanich, Chamorn

    2017-11-01

    Titanium dioxide (TiO 2) photocatalytic reaction has great potential for the disinfection of harmful pathogens. However, the disinfection mechanisms of TiO 2 photocatalysis are not yet well-known for fungi and protozoa. In this work, the photocatalytic disinfection mechanism of Fusarium monoliforme and Aspergillus niger under low intensity UVA light (365nm, <10W/m 2 ) was studied at the ultrastructural level. Photocatalytic treatments showed that the photocatalytic oxidation of 10% TiO 2 based paint was efficacious in the complete disinfection of F. monoliforme under low intensity UVA light. No growth of F. monoliforme was observed on agar plate in the subsequent dark. Transmission electron microscopy (TEM) of F. monoliforme exposed to TiO 2 photocatalysis treatment showed a distinct damage to electron-dense outer cell wall, but not to an underlying electron-transparent layer cell wall. The TEM image revealed that the UVA-light only did not damage cell wall, cell membrane and cellular organelles. Unlike, A. niger was more sensitive to UVA-light. Serious destructions of cell membrane and cellular organelles were shown in A. niger exposed to UVA-light only and photocatalytic treatments. However, morphological change in A. niger cell wall was only observed in photocatalytic treatment. Changes to the outermost melanin like layer and cell wall of A. niger spore due to photocatalytic treatment were greatly apparent while the intracellular organelles of A. niger spore were not affected. Therefore, regrowth of A. niger on agar plate was expected from the germination of A. niger spore in the subsequent dark. These observations give a better understanding of the photocatalytic disinfection mechanism toward fungi. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Identification of a Xylogalacturonan Xylosyltransferase Involved in Pectin Biosynthesis in Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pauly, Markus; Sorensen, Susanne Oxenboll; Harholt, Jesper

    2009-08-19

    Xylogalacturonan (XGA) is a class of pectic polysaccharide found in plant cell walls. The Arabidopsis thaliana locus At5g33290 encodes a predicted Type II membrane protein, and insertion mutants of the At5g33290 locus had decreased cell wall xylose. Immunological studies, enzymatic extraction of polysaccharides, monosaccharide linkage analysis, and oligosaccharide mass profiling were employed to identify the affected cell wall polymer. Pectic XGA was reduced to much lower levels in mutant than in wild-type leaves, indicating a role of At5g33290 in XGA biosynthesis. The mutated gene was designated xylogalacturonan deficient1 (xgd1). Transformation of the xgd1-1 mutant with the wild-type gene restored XGAmore » to wild-type levels. XGD1 protein heterologously expressed in Nicotiana benthamiana catalyzed the transfer of xylose from UDP-xylose onto oligogalacturonides and endogenous acceptors. The products formed could be hydrolyzed with an XGA-specific hydrolase. These results confirm that the XGD1 protein is a XGA xylosyltransferase. The protein was shown by expression of a fluorescent fusion protein in N. benthamiana to be localized in the Golgi vesicles as expected for a glycosyltransferase involved in pectin biosynthesis.« less

  6. Ethylene regulates Apple (Malus x domestica) fruit softening through a dose x time-dependent mechanism and through differential sensitivities and dependencies of cell wall-modifying genes.

    PubMed

    Ireland, Hilary S; Gunaseelan, Kularajathevan; Muddumage, Ratnasiri; Tacken, Emma J; Putterill, Jo; Johnston, Jason W; Schaffer, Robert J

    2014-05-01

    In fleshy fruit species that have a strong requirement for ethylene to ripen, ethylene is synthesized autocatalytically, producing increasing concentrations as the fruits ripen. Apple fruit with the ACC OXIDASE 1 (ACO1) gene suppressed cannot produce ethylene autocatalytically at ripening. Using these apple lines, an ethylene sensitivity dependency model was previously proposed, with traits such as softening showing a high dependency for ethylene as well as low sensitivity. In this study, it is shown that the molecular control of fruit softening is a complex process, with different cell wall-related genes being independently regulated and exhibiting differential sensitivities to and dependencies on ethylene at the transcriptional level. This regulation is controlled through a dose × time mechanism, which results in a temporal transcriptional response that would allow for progressive cell wall disassembly and thus softening. This research builds on the sensitivity dependency model and shows that ethylene-dependent traits can progress over time to the same degree with lower levels of ethylene. This suggests that a developmental clock measuring cumulative ethylene controls the fruit ripening process.

  7. The impact of alterations in lignin deposition on cellulose organization of the plant cell wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiliang; Kim, Jeong Im; Cusumano, Joanne C.

    Background: Coordination of synthesis and assembly of the polymeric components of cell walls is essential for plant growth and development. Given the degree of co-mingling and cross-linking among cell wall components, cellulose organization must be dependent on the organization of other polymers such as lignin. Here we seek to identify aspects of that codependency by studying the structural organization of cellulose fibrils in stems from Arabidopsis plants harboring mutations in genes encoding enzymes involved in lignin biosynthesis. Plants containing high levels of G-lignin, S-lignin, H-lignin, aldehyde-rich lignin, and ferulic acid-containing lignin, along with plants with very low lignin content weremore » grown and harvested and longitudinal sections of stem were prepared and dried. Scanning X-ray microdiffraction was carried out using a 5-micron beam that moved across the sections in 5-micron steps and complete diffraction patterns were collected at each raster point. Approximately, 16,000 diffraction patterns were analyzed to determine cellulose fibril orientation and order within the tissues making up the stems. Results: Several mutations-most notably those exhibiting (1) down-regulation of cinnamoyl CoA reductase which leads to cell walls deficient in lignin and (2) defect of cinnamic acid 4-hydroxylase which greatly reduces lignin content-exhibited significant decrease in the proportion of oriented cellulose fibrils in the cell wall. Distinctions between tissues were maintained in all variants and even in plants exhibiting dramatic changes in cellulosic order the trends between tissues (where apparent) were generally maintained. The resilience of cellulose to degradative processes was investigated by carrying out the same analysis on samples stored in water for 30 days prior to data collection. This treatment led to significant loss of cellulosic order in plants rich in aldehyde or H-lignin, less change in wild type, and essentially no change in samples with high levels of G-or S-lignin. Conclusions: These studies demonstrate that changes in lignin biosynthesis lead to significant disruption in the orientation and order of cellulose fibrils in all tissues of the stem. These dramatic phenotypic changes, in mutants with lignin rich in aldehyde or H-units, correlate with the impact the mutations have on the enzymatic degradation of the plant cell wall.« less

  8. Visualizing chemical functionality in plant cell walls

    DOE PAGES

    Zeng, Yining; Himmel, Michael E.; Ding, Shi-You

    2017-11-30

    Understanding plant cell wall cross-linking chemistry and polymeric architecture is key to the efficient utilization of biomass in all prospects from rational genetic modification to downstream chemical and biological conversion to produce fuels and value chemicals. In fact, the bulk properties of cell wall recalcitrance are collectively determined by its chemical features over a wide range of length scales from tissue, cellular to polymeric architectures. Microscopic visualization of cell walls from the nanometer to the micrometer scale offers an in situ approach to study their chemical functionality considering its spatial and chemical complexity, particularly the capabilities of characterizing biomass non-destructivelymore » and in real-time during conversion processes. Microscopic characterization has revealed heterogeneity in the distribution of chemical features, which would otherwise be hidden in bulk analysis. Key microscopic features include cell wall type, wall layering, and wall composition - especially cellulose and lignin distributions. Microscopic tools, such as atomic force microscopy, stimulated Raman scattering microscopy, and fluorescence microscopy, have been applied to investigations of cell wall structure and chemistry from the native wall to wall treated by thermal chemical pretreatment and enzymatic hydrolysis. While advancing our current understanding of plant cell wall recalcitrance and deconstruction, microscopic tools with improved spatial resolution will steadily enhance our fundamental understanding of cell wall function.« less

  9. Visualizing chemical functionality in plant cell walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Yining; Himmel, Michael E.; Ding, Shi-You

    Understanding plant cell wall cross-linking chemistry and polymeric architecture is key to the efficient utilization of biomass in all prospects from rational genetic modification to downstream chemical and biological conversion to produce fuels and value chemicals. In fact, the bulk properties of cell wall recalcitrance are collectively determined by its chemical features over a wide range of length scales from tissue, cellular to polymeric architectures. Microscopic visualization of cell walls from the nanometer to the micrometer scale offers an in situ approach to study their chemical functionality considering its spatial and chemical complexity, particularly the capabilities of characterizing biomass non-destructivelymore » and in real-time during conversion processes. Microscopic characterization has revealed heterogeneity in the distribution of chemical features, which would otherwise be hidden in bulk analysis. Key microscopic features include cell wall type, wall layering, and wall composition - especially cellulose and lignin distributions. Microscopic tools, such as atomic force microscopy, stimulated Raman scattering microscopy, and fluorescence microscopy, have been applied to investigations of cell wall structure and chemistry from the native wall to wall treated by thermal chemical pretreatment and enzymatic hydrolysis. While advancing our current understanding of plant cell wall recalcitrance and deconstruction, microscopic tools with improved spatial resolution will steadily enhance our fundamental understanding of cell wall function.« less

  10. Visualizing chemical functionality in plant cell walls.

    PubMed

    Zeng, Yining; Himmel, Michael E; Ding, Shi-You

    2017-01-01

    Understanding plant cell wall cross-linking chemistry and polymeric architecture is key to the efficient utilization of biomass in all prospects from rational genetic modification to downstream chemical and biological conversion to produce fuels and value chemicals. In fact, the bulk properties of cell wall recalcitrance are collectively determined by its chemical features over a wide range of length scales from tissue, cellular to polymeric architectures. Microscopic visualization of cell walls from the nanometer to the micrometer scale offers an in situ approach to study their chemical functionality considering its spatial and chemical complexity, particularly the capabilities of characterizing biomass non-destructively and in real-time during conversion processes. Microscopic characterization has revealed heterogeneity in the distribution of chemical features, which would otherwise be hidden in bulk analysis. Key microscopic features include cell wall type, wall layering, and wall composition-especially cellulose and lignin distributions. Microscopic tools, such as atomic force microscopy, stimulated Raman scattering microscopy, and fluorescence microscopy, have been applied to investigations of cell wall structure and chemistry from the native wall to wall treated by thermal chemical pretreatment and enzymatic hydrolysis. While advancing our current understanding of plant cell wall recalcitrance and deconstruction, microscopic tools with improved spatial resolution will steadily enhance our fundamental understanding of cell wall function.

  11. Formation of wood secondary cell wall may involve two type cellulose synthase complexes in Populus.

    PubMed

    Xi, Wang; Song, Dongliang; Sun, Jiayan; Shen, Junhui; Li, Laigeng

    2017-03-01

    Cellulose biosynthesis is mediated by cellulose synthases (CesAs), which constitute into rosette-like cellulose synthase complexe (CSC) on the plasma membrane. Two types of CSCs in Arabidopsis are believed to be involved in cellulose synthesis in the primary cell wall and secondary cell walls, respectively. In this work, we found that the two type CSCs participated cellulose biosynthesis in differentiating xylem cells undergoing secondary cell wall thickening in Populus. During the cell wall thickening process, expression of one type CSC genes increased while expression of the other type CSC genes decreased. Suppression of different type CSC genes both affected the wall-thickening and disrupted the multilaminar structure of the secondary cell walls. When CesA7A was suppressed, crystalline cellulose content was reduced, which, however, showed an increase when CesA3D was suppressed. The CesA suppression also affected cellulose digestibility of the wood cell walls. The results suggest that two type CSCs are involved in coordinating the cellulose biosynthesis in formation of the multilaminar structure in Populus wood secondary cell walls.

  12. Absence of fks1p in lager brewing yeast results in aberrant cell wall composition and improved beer flavor stability.

    PubMed

    Wang, Jin-jing; Xu, Wei-na; Li, Xin'er; Li, Jia; Li, Qi

    2014-06-01

    The flavor stability during storage is very important to the freshness and shelf life of beer. However, beer fermented with a yeast strain which is prone to autolyze will significantly affect the flavor of product. In this study, the gene encoding β-1,3-glucan synthetase catalytic subunit (fks1) of the lager yeast was destroyed via self-clone strategy. β-1,3-glucan is the principle cell wall component, so fks1 disruption caused a decrease in β-1,3-glucan level and increase in chitin level in cell wall, resulting in the increased cell wall thickness. Comparing with wild-type strain, the mutant strain had 39.9 and 63.41 % less leakage of octanoic acid and decanoic acid which would significantly affect the flavor of beer during storage. Moreover, the results of European Brewery Convention tube fermentation test showed that the genetic manipulation to the industrial brewing yeast helped with the anti-staling ability, rather than affecting the fermentation ability. The thiobarbituric acid value reduced by 65.59 %, and the resistant staling value increased by 26.56 %. Moreover, the anti-staling index of the beer fermented with mutant strain increased by 2.64-fold than that from wild-type strain respectively. China has the most production and consumption of beer around the world, so the quality of beer has a significant impact on Chinese beer industry. The result of this study could help with the improvement of the quality of beer in China as well as around the world.

  13. Mechanosensation Dynamically Coordinates Polar Growth and Cell Wall Assembly to Promote Cell Survival.

    PubMed

    Davì, Valeria; Tanimoto, Hirokazu; Ershov, Dmitry; Haupt, Armin; De Belly, Henry; Le Borgne, Rémi; Couturier, Etienne; Boudaoud, Arezki; Minc, Nicolas

    2018-04-23

    How growing cells cope with size expansion while ensuring mechanical integrity is not known. In walled cells, such as those of microbes and plants, growth and viability are both supported by a thin and rigid encasing cell wall (CW). We deciphered the dynamic mechanisms controlling wall surface assembly during cell growth, using a sub-resolution microscopy approach to monitor CW thickness in live rod-shaped fission yeast cells. We found that polar cell growth yielded wall thinning and that thickness negatively influenced growth. Thickness at growing tips exhibited a fluctuating behavior with thickening phases followed by thinning phases, indicative of a delayed feedback promoting thickness homeostasis. This feedback was mediated by mechanosensing through the CW integrity pathway, which probes strain in the wall to adjust synthase localization and activity to surface growth. Mutants defective in thickness homeostasis lysed by rupturing the wall, demonstrating its pivotal role for walled cell survival. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. The Cell Wall-Associated Proteins in the Dimorphic Pathogenic Species of Paracoccidioides.

    PubMed

    Puccia, Rosana; Vallejo, Milene C; Longo, Larissa V G

    2017-01-01

    Paracoccidioides brasiliensis and P. lutzii cause human paracoccidioidomycosis (PCM). They are dimorphic ascomycetes that grow as filaments at mild temperatures up to 28oC and as multibudding pathogenic yeast cells at 37oC. Components of the fungal cell wall have an important role in the interaction with the host because they compose the cell outermost layer. The Paracoccidioides cell wall is composed mainly of polysaccharides, but it also contains proportionally smaller rates of proteins, lipids, and melanin. The polysaccharide cell wall composition and structure of Paracoccidioides yeast cells, filamentous and transition phases were studied in detail in the past. Other cell wall components have been better analyzed in the last decades. The present work gives to the readers a detailed updated view of cell wall-associated proteins. Proteins that have been localized at the cell wall compartment using antibodies are individually addressed. We also make an overview about PCM, the Paracoccidioides cell wall structure, secretion mechanisms, and fungal extracellular vesicles. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Unexpected features of exponentially growing Tobacco Bright Yellow-2 cell suspension culture in relation to excreted extracellular polysaccharides and cell wall composition.

    PubMed

    Issawi, Mohammad; Muhieddine, Mohammad; Girard, Celine; Sol, Vincent; Riou, Catherine

    2017-10-01

    This article presents a new insight about TBY-2 cells; from extracellular polysaccharides secretion to cell wall composition during cell suspension culture. In the medium of cells taken 2 days after dilution (end of lag phase), a two unit pH decrease from 5.38 to 3.45 was observed and linked to a high uronic acid (UA) amount secretion (47.8%) while, in 4 and 7 day-old spent media, pH increased and UA amounts decreased 35.6 and 42.3% UA, respectively. To attain deeper knowledge of the putative link between extracellular polysaccharide excretion and cell wall composition, we determined cell wall UA and neutral sugar composition of cells from D2 to D12 cultures. While cell walls from D2 and D3 cells contained a large amount of uronic acid (twice as much as the other analysed cell walls), similar amounts of neutral sugar were detected in cells from lag to end of exponential phase cells suggesting an enriched pectin network in young cultures. Indeed, monosaccharide composition analysis leads to an estimated percentage of pectins of 56% for D3 cell wall against 45% D7 cell walls indicating that the cells at the mid-exponential growth phase re-organized their cell wall linked to a decrease in secreted UA that finally led to a stabilization of the spent medium pH to 5.4. In conclusion, TBY-2 cell suspension from lag to stationary phase showed cell wall remodeling that could be of interest in drug interaction and internalization study.

  16. Recognition of Histo-Blood Group Antigen-Like Carbohydrates in Lettuce by Human GII.4 Norovirus

    PubMed Central

    Gao, Xiang; Esseili, Malak A.; Lu, Zhongyan; Saif, Linda J.

    2016-01-01

    ABSTRACT Human norovirus (HuNoV) genogroup II genotype 4 (GII.4) strains account for about 80% of the gastroenteritis outbreaks in the United States. Contaminated food is a major transmission vehicle for this virus. In humans, pigs, and oysters, histo-blood group antigens (HBGAs) act as attachment factors for HuNoVs. In lettuce, although the virus-like particles (VLPs) of a GII.4 HuNoV were found to bind to cell wall carbohydrates, the exact binding site has not been investigated. Here, we show the presence of HBGA-like carbohydrates in the cell wall of lettuce. The digestion of lettuce leaves with cell wall-degrading enzymes exposed more binding sites and significantly increased the level of binding of GII.4 HuNoV VLPs. Competition assays showed that both the HBGA monoclonal antibody, recognizing the H type, and plant lectins, recognizing α-l-fucose in the H type, effectively inhibited VLP binding to lettuce tissues. Lettuce cell wall components were isolated and their NoV VLP binding characteristics were tested by enzyme-linked immunosorbent assays. The binding was inhibited by pretreatment of the lettuce cell wall materials with α-1,2-fucosidase. Collectively, our results indicate that H-type HBGA-like carbohydrates exist in lettuce tissues and that GII.4 HuNoV VLPs can bind the exposed fucose moiety, possibly in the hemicellulose component of the cell wall. IMPORTANCE Salad crops and fruits are increasingly recognized as vehicles for human norovirus (HuNoV) transmission. A recent study showed that HuNoVs specifically bind to the carbohydrates of the lettuce cell wall. Histo-blood group antigens (HBGAs) are carbohydrates and are known as the attachment factors for HuNoV infection in humans. In this study, we show the presence of HBGA-like carbohydrates in lettuce, to which HuNoVs specifically bind. These results suggest that specifically bound HuNoVs cannot be removed by simple washing, which may allow viral transmission to consumers. Our findings provide new information needed for developing potential inhibitors to block binding and prevent contamination. PMID:26969699

  17. Recognition of Histo-Blood Group Antigen-Like Carbohydrates in Lettuce by Human GII.4 Norovirus.

    PubMed

    Gao, Xiang; Esseili, Malak A; Lu, Zhongyan; Saif, Linda J; Wang, Qiuhong

    2016-05-15

    Human norovirus (HuNoV) genogroup II genotype 4 (GII.4) strains account for about 80% of the gastroenteritis outbreaks in the United States. Contaminated food is a major transmission vehicle for this virus. In humans, pigs, and oysters, histo-blood group antigens (HBGAs) act as attachment factors for HuNoVs. In lettuce, although the virus-like particles (VLPs) of a GII.4 HuNoV were found to bind to cell wall carbohydrates, the exact binding site has not been investigated. Here, we show the presence of HBGA-like carbohydrates in the cell wall of lettuce. The digestion of lettuce leaves with cell wall-degrading enzymes exposed more binding sites and significantly increased the level of binding of GII.4 HuNoV VLPs. Competition assays showed that both the HBGA monoclonal antibody, recognizing the H type, and plant lectins, recognizing α-l-fucose in the H type, effectively inhibited VLP binding to lettuce tissues. Lettuce cell wall components were isolated and their NoV VLP binding characteristics were tested by enzyme-linked immunosorbent assays. The binding was inhibited by pretreatment of the lettuce cell wall materials with α-1,2-fucosidase. Collectively, our results indicate that H-type HBGA-like carbohydrates exist in lettuce tissues and that GII.4 HuNoV VLPs can bind the exposed fucose moiety, possibly in the hemicellulose component of the cell wall. Salad crops and fruits are increasingly recognized as vehicles for human norovirus (HuNoV) transmission. A recent study showed that HuNoVs specifically bind to the carbohydrates of the lettuce cell wall. Histo-blood group antigens (HBGAs) are carbohydrates and are known as the attachment factors for HuNoV infection in humans. In this study, we show the presence of HBGA-like carbohydrates in lettuce, to which HuNoVs specifically bind. These results suggest that specifically bound HuNoVs cannot be removed by simple washing, which may allow viral transmission to consumers. Our findings provide new information needed for developing potential inhibitors to block binding and prevent contamination. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Investigation of Plant Cell Wall Properties: A Study of Contributions from the Nanoscale to the Macroscale Impacting Cell Wall Recalcitrance

    NASA Astrophysics Data System (ADS)

    Crowe, Jacob Dillon

    Biochemical conversion of lignocellulosic biomass to fuel ethanol is one of a few challenging, yet opportune technologies that can reduce the consumption of petroleum-derived transportation fuels, while providing parallel reductions in greenhouse gas emissions. Biomass recalcitrance, or resistance to deconstruction, is a major technical challenge that limits effective conversion of biomass to fermentable sugars, often requiring a costly thermochemical pretreatment step to improve biomass deconstruction. Biomass recalcitrance is imparted largely by the secondary cell wall, a complex polymeric matrix of cell wall polysaccharides and aromatic heteropolymers, that provides structural stability to cells and enables plant upright growth. Polymers within the cell wall can vary both compositionally and structurally depending upon plant species and anatomical fraction, and have varied responses to thermochemical pretreatments. Cell wall properties impacting recalcitrance are still not well understood, and as a result, the goal of this dissertation is to investigate structural features of the cell wall contributing to recalcitrance (1) in diverse anatomical fractions of a single species, (2) in response to diverse pretreatments, and (3) resulting from genetic modification. In the first study, feedstock cell wall heterogeneity was investigated in anatomical (stem, leaf sheaths, and leaf blades) and internode fractions of switchgrass at varying tissue maturities. Lignin content was observed as the key contributor to recalcitrance in maturing stem tissues only, with non-cellulosic substituted glucuronoarabinoxylans and pectic polysaccharides contributing to cell wall recalcitrance in leaf sheath and leaf blades. Hydroxycinnamate (i.e., saponifiable p-coumarate and ferulate) content along with xylan and pectin extractability decreased with tissue maturity, suggesting lignification is only one component imparting maturity specific cell wall recalcitrance. In the second study, alkaline hydrogen peroxide and liquid hot water pretreatments were shown to alter structural properties impacting nanoscale porosity in corn stover. Delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity, with subsequent cell wall swelling resulting in increased nanoscale porosity and improved enzymatic hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 A dextran probe within the cell wall was found to be positively correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields. In the third study, the effect of altered xylan content and structure was investigated in irregular xylem (irx) Arabidopsis thaliana mutants to understand the role xylan plays in secondary cell wall development and organization. Higher xylan extractability and lower cellulose crystallinity observed in irx9 and irx15 irx15-L mutants compared to wild type indicated altered xylan integration into the secondary cell wall. Nanoscale cell wall organization observed using multiple microscopy techniques was impacted to some extent in all irx mutants, with disorganized cellulose microfibril layers in sclerenchyma secondary cell walls likely resulting from irregular xylan structure and content. Irregular secondary cell wall microfibril layers showed heterogeneous nanomechanical properties compared to wild type, which translated to mechanical deficiencies observed in stem tensile tests. These results suggest nanoscale defects in cell wall strength can correspond to macroscale phenotypes.

  19. The Acid Growth Theory of auxin-induced cell elongation is alive and well

    NASA Technical Reports Server (NTRS)

    Rayle, D. L.; Cleland, R. E.

    1992-01-01

    Plant cells elongate irreversibly only when load-bearing bonds in the walls are cleaved. Auxin causes the elongation of stem and coleoptile cells by promoting wall loosening via cleavage of these bonds. This process may be coupled with the intercalation of new cell wall polymers. Because the primary site of auxin action appears to be the plasma membrane or some intracellular site, and wall loosening is extracellular, there must be communication between the protoplast and the wall. Some "wall-loosening factor" must be exported from auxin-impacted cells, which sets into motion the wall loosening events. About 20 years ago, it was suggested that the wall-loosening factor is hydrogen ions. This idea and subsequent supporting data gave rise to the Acid Growth Theory, which states that when exposed to auxin, susceptible cells excrete protons into the wall (apoplast) at an enhanced rate, resulting in a decrease in apoplastic pH. The lowered wall pH then activates wall-loosening processes, the precise nature of which is unknown. Because exogenous acid causes a transient (1-4 h) increase in growth rate, auxin must also mediate events in addition to wall acidification for growth to continue for an extended period of time. These events may include osmoregulation, cell wall synthesis, and maintenance of the capacity of walls to undergo acid-induced wall loosening. At present, we do not know if these phenomena are tightly coupled to wall acidification or if they are the products of multiple independent signal transduction pathways.

  20. The Eng1 β-Glucanase Enhances Histoplasma Virulence by Reducing β-Glucan Exposure

    PubMed Central

    Garfoot, Andrew L.; Shen, Qian; Wüthrich, Marcel; Klein, Bruce S.

    2016-01-01

    ABSTRACT The fungal pathogen Histoplasma capsulatum parasitizes host phagocytes. To avoid antimicrobial immune responses, Histoplasma yeasts must minimize their detection by host receptors while simultaneously interacting with the phagocyte. Pathogenic Histoplasma yeast cells, but not avirulent mycelial cells, secrete the Eng1 protein, which is a member of the glycosylhydrolase 81 (GH81) family. We show that Histoplasma Eng1 is a glucanase that hydrolyzes β-(1,3)-glycosyl linkages but is not required for Histoplasma growth in vitro or for cell separation. However, Histoplasma yeasts lacking Eng1 function have attenuated virulence in vivo, particularly during the cell-mediated immunity stage. Histoplasma yeasts deficient for Eng1 show increased exposure of cell wall β-glucans, which results in enhanced binding to the Dectin-1 β-glucan receptor. Consistent with this, Eng1-deficient yeasts trigger increased tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) cytokine production from macrophages and dendritic cells. While not responsible for large-scale cell wall structure and function, the secreted Eng1 reduces levels of exposed β-glucans at the yeast cell wall, thereby diminishing potential recognition by Dectin-1 and proinflammatory cytokine production by phagocytes. In α-glucan-producing Histoplasma strains, Eng1 acts in concert with α-glucan to minimize β-glucan exposure: α-glucan provides a masking function by covering the β-glucan-rich cell wall, while Eng1 removes any remaining exposed β-glucans. Thus, Histoplasma Eng1 has evolved a specialized pathogenesis function to remove exposed β-glucans, thereby enhancing the ability of yeasts to escape detection by host phagocytes. PMID:27094334

  1. Cell Wall Ultrastructure of Stem Wood, Roots, and Needles of a Conifer Varies in Response to Moisture Availability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pattathil, Sivakumar; Ingwers, Miles W.; Victoriano, Olivia L.

    The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and themore » overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. In conclusion, to our knowledge, this is the first direct evidence, delineated by glycomic analyses, that abiotic stress affects cell wall ultrastructure. This study is also unique in that glycome profiling of pine needles has never before been reported.« less

  2. Cell Wall Ultrastructure of Stem Wood, Roots, and Needles of a Conifer Varies in Response to Moisture Availability.

    PubMed

    Pattathil, Sivakumar; Ingwers, Miles W; Victoriano, Olivia L; Kandemkavil, Sindhu; McGuire, Mary Anne; Teskey, Robert O; Aubrey, Doug P

    2016-01-01

    The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and the overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin-associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. To our knowledge, this is the first direct evidence, delineated by glycomic analyses, that abiotic stress affects cell wall ultrastructure. This study is also unique in that glycome profiling of pine needles has never before been reported.

  3. Cell Wall Ultrastructure of Stem Wood, Roots, and Needles of a Conifer Varies in Response to Moisture Availability

    DOE PAGES

    Pattathil, Sivakumar; Ingwers, Miles W.; Victoriano, Olivia L.; ...

    2016-06-24

    The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and themore » overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. In conclusion, to our knowledge, this is the first direct evidence, delineated by glycomic analyses, that abiotic stress affects cell wall ultrastructure. This study is also unique in that glycome profiling of pine needles has never before been reported.« less

  4. Vesicles between plasma membrane and cell wall prior to visible senescence of Iris and Dendrobium flowers.

    PubMed

    Kamdee, Channatika; Kirasak, Kanjana; Ketsa, Saichol; van Doorn, Wouter G

    2015-09-01

    Cut Iris flowers (Iris x hollandica, cv. Blue Magic) show visible senescence about two days after full opening. Epidermal cells of the outer tepals collapse due to programmed cell death (PCD). Transmission electron microscopy (TEM) showed irregular swelling of the cell walls, starting prior to cell collapse. Compared to cells in flowers that had just opened, wall thickness increased up to tenfold prior to cell death. Fibrils were visible in the swollen walls. After cell death very little of the cell wall remained. Prior to and during visible wall swelling, vesicles (paramural bodies) were observed between the plasma membrane and the cell walls. The vesicles were also found in groups and were accompanied by amorphous substance. They usually showed a single membrane, and had a variety of diameters and electron densities. Cut Dendrobium hybrid cv. Lucky Duan flowers exhibited visible senescence about 14 days after full flower opening. Paramural bodies were also found in Dendrobium tepal epidermis and mesophyll cells, related to wall swelling and degradation. Although alternative explanations are well possible, it is hypothesized that paramural bodies carry enzymes involved in cell wall breakdown. The literature has not yet reported such bodies in association with senescence/PCD. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Uronic Acid Products Release from Enzymically Active Cell Wall from Tomato Fruit and Its Dependency on Enzyme Quantity and Distribution 1

    PubMed Central

    Huber, Donald J.; Lee, James H.

    1988-01-01

    Isolated cell wall from tomato (Lycopersicon esculentum Mill. cv Rutgers) fruit released polymeric (degree of polymerization [DP] > 8), oligomeric, and monomeric uronic acids in a reaction mediated by bound polygalacturonase (PG) (EC 3.2.1.15). Wall autolytic capacity increased with ripening, reflecting increased levels of bound PG; however, characteristic oligomeric and monomeric products were recovered from all wall isolates exhibiting net pectin release. The capacity of wall from fruit at early ripening (breaker, turning) to generate oligomeric and monomeric uronic acids was attributed to the nonuniform ripening pattern of the tomato fruit and, consequently, a locally dense distribution of enzyme in wall originating from those fruit portions at more temporally advanced stages of ripening. Artificial autolytically active wall, prepared by permitting solubilized PG to bind to enzymically inactive wall from maturegreen fruit, released products which were similar in size characteristics to those recovered from active wall isolates. Extraction of wall-bound PG using high concentrations of NaCl (1.2 molar) did not attenuate subsequent autolytic activity but greatly suppressed the production of oligomeric and monomeric products. An examination of water-soluble uronic acids recovered from ripe pericarp tissue disclosed the presence of polymeric and monomeric uronic acids but only trace quantities of oligomers. The significance in autolytic reactions of enzyme quantity and distribution and their possible relevance to in vivo pectin degradation will be discussed. PMID:16666191

  6. Modelling cell wall growth using a fibre-reinforced hyperelastic-viscoplastic constitutive law

    NASA Astrophysics Data System (ADS)

    Huang, R.; Becker, A. A.; Jones, I. A.

    2012-04-01

    A fibre-reinforced hyperelastic-viscoplastic model using a finite strain Finite Element (FE) analysis is presented to study the expansive growth of cell walls. Based on the connections between biological concepts and plasticity theory, e.g. wall-loosening and plastic yield, wall-stiffening and plastic hardening, the modelling of cell wall growth is established within a framework of anisotropic viscoplasticity aiming to represent the corresponding biology-controlled behaviour of a cell wall. In order to model in vivo growth, special attention is paid to the differences between a living cell and an isolated wall. The proposed hyperelastic-viscoplastic theory provides a unique framework to clarify the interplay between cellulose microfibrils and cell wall matrix and how this interplay regulates sustainable growth in a particular direction while maintaining the mechanical strength of the cell walls by new material deposition. Moreover, the effect of temperature is taken into account. A numerical scheme is suggested and FE case studies are presented and compared with experimental data.

  7. (Hydroxyproline-rich glycoproteins of the plant cell wall)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varner, J.E.

    1990-01-01

    We are studying the chemistry and architecture of plant cells walls, the extracellular matrices that taken together shape the plant and provide mechanical support for the plant. Cell walls are dynamic structures that regulate, or are the site of, many physiological processes, in addition to being the cells' first line of defense against invading pathogens. In the past year we have examined the role of the cell wall enzyme ascorbic acid oxidase as related to the structure of the wall and its possible interactions with hydroxyproline-rich glycoproteins of the wall.

  8. Biomass enzymatic saccharification is determined by the non-KOH-extractable wall polymer features that predominately affect cellulose crystallinity in corn.

    PubMed

    Jia, Jun; Yu, Bin; Wu, Leiming; Wang, Hongwu; Wu, Zhiliang; Li, Ming; Huang, Pengyan; Feng, Shengqiu; Chen, Peng; Zheng, Yonglian; Peng, Liangcai

    2014-01-01

    Corn is a major food crop with enormous biomass residues for biofuel production. Due to cell wall recalcitrance, it becomes essential to identify the key factors of lignocellulose on biomass saccharification. In this study, we examined total 40 corn accessions that displayed a diverse cell wall composition. Correlation analysis showed that cellulose and lignin levels negatively affected biomass digestibility after NaOH pretreatments at p<0.05 & 0.01, but hemicelluloses did not show any significant impact on hexoses yields. Comparative analysis of five standard pairs of corn samples indicated that cellulose and lignin should not be the major factors on biomass saccharification after pretreatments with NaOH and H2SO4 at three concentrations. Notably, despite that the non-KOH-extractable residues covered 12%-23% hemicelluloses and lignin of total biomass, their wall polymer features exhibited the predominant effects on biomass enzymatic hydrolysis including Ara substitution degree of xylan (reverse Xyl/Ara) and S/G ratio of lignin. Furthermore, the non-KOH-extractable polymer features could significantly affect lignocellulose crystallinity at p<0.05, leading to a high biomass digestibility. Hence, this study could suggest an optimal approach for genetic modification of plant cell walls in bioenergy corn.

  9. Biomass Enzymatic Saccharification Is Determined by the Non-KOH-Extractable Wall Polymer Features That Predominately Affect Cellulose Crystallinity in Corn

    PubMed Central

    Wu, Leiming; Wang, Hongwu; Wu, Zhiliang; Li, Ming; Huang, Pengyan; Feng, Shengqiu; Chen, Peng; Zheng, Yonglian; Peng, Liangcai

    2014-01-01

    Corn is a major food crop with enormous biomass residues for biofuel production. Due to cell wall recalcitrance, it becomes essential to identify the key factors of lignocellulose on biomass saccharification. In this study, we examined total 40 corn accessions that displayed a diverse cell wall composition. Correlation analysis showed that cellulose and lignin levels negatively affected biomass digestibility after NaOH pretreatments at p<0.05 & 0.01, but hemicelluloses did not show any significant impact on hexoses yields. Comparative analysis of five standard pairs of corn samples indicated that cellulose and lignin should not be the major factors on biomass saccharification after pretreatments with NaOH and H2SO4 at three concentrations. Notably, despite that the non-KOH-extractable residues covered 12%–23% hemicelluloses and lignin of total biomass, their wall polymer features exhibited the predominant effects on biomass enzymatic hydrolysis including Ara substitution degree of xylan (reverse Xyl/Ara) and S/G ratio of lignin. Furthermore, the non-KOH-extractable polymer features could significantly affect lignocellulose crystallinity at p<0.05, leading to a high biomass digestibility. Hence, this study could suggest an optimal approach for genetic modification of plant cell walls in bioenergy corn. PMID:25251456

  10. Transcript Profiling Identifies NAC-Domain Genes Involved in Regulating Wall Ingrowth Deposition in Phloem Parenchyma Transfer Cells of Arabidopsis thaliana

    PubMed Central

    Wu, Yuzhou; Hou, Jiexi; Yu, Fen; Nguyen, Suong T. T.; McCurdy, David W.

    2018-01-01

    Transfer cells (TCs) play important roles in facilitating enhanced rates of nutrient transport at key apoplasmic/symplasmic junctions along the nutrient acquisition and transport pathways in plants. TCs achieve this capacity by developing elaborate wall ingrowth networks which serve to increase plasma membrane surface area thus increasing the cell's surface area-to-volume ratio to achieve increased flux of nutrients across the plasma membrane. Phloem parenchyma (PP) cells of Arabidopsis leaf veins trans-differentiate to become PP TCs which likely function in a two-step phloem loading mechanism by facilitating unloading of photoassimilates into the apoplasm for subsequent energy-dependent uptake into the sieve element/companion cell (SE/CC) complex. We are using PP TCs in Arabidopsis as a genetic model to identify transcription factors involved in coordinating deposition of the wall ingrowth network. Confocal imaging of pseudo-Schiff propidium iodide-stained tissue revealed different profiles of temporal development of wall ingrowth deposition across maturing cotyledons and juvenile leaves, and a basipetal gradient of deposition across mature adult leaves. RNA-Seq analysis was undertaken to identify differentially expressed genes common to these three different profiles of wall ingrowth deposition. This analysis identified 68 transcription factors up-regulated two-fold or more in at least two of the three experimental comparisons, with six of these transcription factors belonging to Clade III of the NAC-domain family. Phenotypic analysis of these NAC genes using insertional mutants revealed significant reductions in levels of wall ingrowth deposition, particularly in a double mutant of NAC056 and NAC018, as well as compromised sucrose-dependent root growth, indicating impaired capacity for phloem loading. Collectively, these results support the proposition that Clade III members of the NAC-domain family in Arabidopsis play important roles in regulating wall ingrowth deposition in PP TCs. PMID:29599795

  11. Transcript Profiling Identifies NAC-Domain Genes Involved in Regulating Wall Ingrowth Deposition in Phloem Parenchyma Transfer Cells of Arabidopsis thaliana.

    PubMed

    Wu, Yuzhou; Hou, Jiexi; Yu, Fen; Nguyen, Suong T T; McCurdy, David W

    2018-01-01

    Transfer cells (TCs) play important roles in facilitating enhanced rates of nutrient transport at key apoplasmic/symplasmic junctions along the nutrient acquisition and transport pathways in plants. TCs achieve this capacity by developing elaborate wall ingrowth networks which serve to increase plasma membrane surface area thus increasing the cell's surface area-to-volume ratio to achieve increased flux of nutrients across the plasma membrane. Phloem parenchyma (PP) cells of Arabidopsis leaf veins trans -differentiate to become PP TCs which likely function in a two-step phloem loading mechanism by facilitating unloading of photoassimilates into the apoplasm for subsequent energy-dependent uptake into the sieve element/companion cell (SE/CC) complex. We are using PP TCs in Arabidopsis as a genetic model to identify transcription factors involved in coordinating deposition of the wall ingrowth network. Confocal imaging of pseudo-Schiff propidium iodide-stained tissue revealed different profiles of temporal development of wall ingrowth deposition across maturing cotyledons and juvenile leaves, and a basipetal gradient of deposition across mature adult leaves. RNA-Seq analysis was undertaken to identify differentially expressed genes common to these three different profiles of wall ingrowth deposition. This analysis identified 68 transcription factors up-regulated two-fold or more in at least two of the three experimental comparisons, with six of these transcription factors belonging to Clade III of the NAC-domain family. Phenotypic analysis of these NAC genes using insertional mutants revealed significant reductions in levels of wall ingrowth deposition, particularly in a double mutant of NAC056 and NAC018 , as well as compromised sucrose-dependent root growth, indicating impaired capacity for phloem loading. Collectively, these results support the proposition that Clade III members of the NAC-domain family in Arabidopsis play important roles in regulating wall ingrowth deposition in PP TCs.

  12. Isolation of a novel cell wall architecture mutant of rice with defective Arabidopsis COBL4 ortholog BC1 required for regulated deposition of secondary cell wall components.

    PubMed

    Sato, Kanna; Suzuki, Ryu; Nishikubo, Nobuyuki; Takenouchi, Sachi; Ito, Sachiko; Nakano, Yoshimi; Nakaba, Satoshi; Sano, Yuzou; Funada, Ryo; Kajita, Shinya; Kitano, Hidemi; Katayama, Yoshihiro

    2010-06-01

    The plant secondary cell wall is a highly ordered structure composed of various polysaccharides, phenolic components and proteins. Its coordinated regulation of a number of complex metabolic pathways and assembly has not been resolved. To understand the molecular mechanisms that regulate secondary cell wall synthesis, we isolated a novel rice mutant, cell wall architecture1 (cwa1), that exhibits an irregular thickening pattern in the secondary cell wall of sclerenchyma, as well as culm brittleness and reduced cellulose content in mature internodes. Light and transmission electron microscopy revealed that the cwa1 mutant plant has regions of local aggregation in the secondary cell walls of the cortical fibers in its internodes, showing uneven thickness. Ultraviolet microscopic observation indicated that localization of cell wall phenolic components was perturbed and that these components abundantly deposited at the aggregated cell wall regions in sclerenchyma. Therefore, regulation of deposition and assembly of secondary cell wall materials, i.e. phenolic components, appear to be disturbed by mutation of the cwa1 gene. Genetic analysis showed that cwa1 is allelic to brittle culm1 (bc1), which encodes the glycosylphosphatidylinositol-anchored COBRA-like protein specifically in plants. BC1 is known as a regulator that controls the culm mechanical strength and cellulose content in the secondary cell walls of sclerenchyma, but the precise function of BC1 has not been resolved. Our results suggest that CWA1/BC1 has an essential role in assembling cell wall constituents at their appropriate sites, thereby enabling synthesis of solid and flexible internodes in rice.

  13. Cell Wall Remodeling by a Synthetic Analog Reveals Metabolic Adaptation in Vancomycin Resistant Enterococci.

    PubMed

    Pidgeon, Sean E; Pires, Marcos M

    2017-07-21

    Drug-resistant bacterial infections threaten to overburden our healthcare system and disrupt modern medicine. A large class of potent antibiotics, including vancomycin, operate by interfering with bacterial cell wall biosynthesis. Vancomycin-resistant enterococci (VRE) evade the blockage of cell wall biosynthesis by altering cell wall precursors, rendering them drug insensitive. Herein, we reveal the phenotypic plasticity and cell wall remodeling of VRE in response to vancomycin in live bacterial cells via a metabolic probe. A synthetic cell wall analog was designed and constructed to monitor cell wall structural alterations. Our results demonstrate that the biosynthetic pathway for vancomycin-resistant precursors can be hijacked by synthetic analogs to track the kinetics of phenotype induction. In addition, we leveraged this probe to interrogate the response of VRE cells to vancomycin analogs and a series of cell wall-targeted antibiotics. Finally, we describe a proof-of-principle strategy to visually inspect drug resistance induction. Based on our findings, we anticipate that our metabolic probe will play an important role in further elucidating the interplay among the enzymes involved in the VRE biosynthetic rewiring.

  14. Differential wall growth in gravistimulated corn roots: Its timing and regulation

    NASA Technical Reports Server (NTRS)

    Serlin, B. S.

    1985-01-01

    The experiments designed to document cell-wall level changes which occur as a result of their gravistimulation are described. The goal of this research is to elucidate the mechanism and time frame of differential growth following a controlled gravistimulation. To achieve this, rates of wall deposition will be determined by following the incorporation of radioactive monosaccharides into the wall. Complementing this experiment will be a freeze-etch study directed at revealing the spatial arrangment of both newly-deposited microfibrils and microfibrils that were present in the growing root prior to stimulation. The second phase of the proposed research will examine the roles ethylene and Ca(2+) have in the modulation of differential wall changes during gravitropism. Ethylene and Ca(2+) have both been implicated as regulators of the gravitropic response in roots and they have also been implicated as regulators of the gravitropic response in roots and they have also been reported to exert some control on the orientation of microfibrils. Both of these agents will be manipulated in such a way as to reveal whether they have a direct influence on cell wall deposition and microfibrillar alignment during the geotropic response.

  15. Do plant cell walls have a code?

    PubMed

    Tavares, Eveline Q P; Buckeridge, Marcos S

    2015-12-01

    A code is a set of rules that establish correspondence between two worlds, signs (consisting of encrypted information) and meaning (of the decrypted message). A third element, the adaptor, connects both worlds, assigning meaning to a code. We propose that a Glycomic Code exists in plant cell walls where signs are represented by monosaccharides and phenylpropanoids and meaning is cell wall architecture with its highly complex association of polymers. Cell wall biosynthetic mechanisms, structure, architecture and properties are addressed according to Code Biology perspective, focusing on how they oppose to cell wall deconstruction. Cell wall hydrolysis is mainly focused as a mechanism of decryption of the Glycomic Code. Evidence for encoded information in cell wall polymers fine structure is highlighted and the implications of the existence of the Glycomic Code are discussed. Aspects related to fine structure are responsible for polysaccharide packing and polymer-polymer interactions, affecting the final cell wall architecture. The question whether polymers assembly within a wall display similar properties as other biological macromolecules (i.e. proteins, DNA, histones) is addressed, i.e. do they display a code? Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria

    PubMed Central

    Mistou, Michel-Yves; Sutcliffe, Iain C.; van Sorge, Nina M.

    2016-01-01

    The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall teichoic acids (WTA). The presence and chemical structure of many rhamnose-containing cell wall polysaccharides (RhaCWP) has sometimes been known for decades. In contrast to WTA, insight into the biosynthesis and functional role of RhaCWP has been lacking. Recent studies in human streptococcal and enterococcal pathogens have highlighted critical roles for these complex polysaccharides in bacterial cell wall architecture and pathogenesis. In this review, we provide an overview of the RhaCWP with regards to their biosynthesis, genetics and biological function in species most relevant to human health. We also briefly discuss how increased knowledge in this field can provide interesting leads for new therapeutic compounds and improve biotechnological applications. PMID:26975195

  17. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria.

    PubMed

    Mistou, Michel-Yves; Sutcliffe, Iain C; van Sorge, Nina M

    2016-07-01

    The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall teichoic acids (WTA). The presence and chemical structure of many rhamnose-containing cell wall polysaccharides (RhaCWP) has sometimes been known for decades. In contrast to WTA, insight into the biosynthesis and functional role of RhaCWP has been lacking. Recent studies in human streptococcal and enterococcal pathogens have highlighted critical roles for these complex polysaccharides in bacterial cell wall architecture and pathogenesis. In this review, we provide an overview of the RhaCWP with regards to their biosynthesis, genetics and biological function in species most relevant to human health. We also briefly discuss how increased knowledge in this field can provide interesting leads for new therapeutic compounds and improve biotechnological applications. © FEMS 2016.

  18. Synchrotron Time-Lapse Imaging of Lignocellulosic Biomass Hydrolysis: Tracking Enzyme Localization by Protein Autofluorescence and Biochemical Modification of Cell Walls by Microfluidic Infrared Microspectroscopy

    PubMed Central

    Devaux, Marie-Françoise; Jamme, Frédéric; André, William; Bouchet, Brigitte; Alvarado, Camille; Durand, Sylvie; Robert, Paul; Saulnier, Luc; Bonnin, Estelle; Guillon, Fabienne

    2018-01-01

    Tracking enzyme localization and following the local biochemical modification of the substrate should help explain the recalcitrance of lignocellulosic plant cell walls to enzymatic degradation. Time-lapse studies using conventional imaging require enzyme labeling and following the biochemical modifications of biopolymers found in plant cell walls, which cannot be easily achieved. In the present work, synchrotron facilities have been used to image the enzymatic degradation of lignocellulosic biomass without labeling the enzyme or the cell walls. Multichannel autofluorescence imaging of the protein and phenolic compounds after excitation at 275 nm highlighted the presence or absence of enzymes on cell walls and made it possible to track them during the reaction. Image analysis was used to quantify the fluorescence intensity variations. Consistent variations in the enzyme concentration were found locally for cell cavities and their surrounding cell walls. Microfluidic FT-IR microspectroscopy allowed for time-lapse tracking of local changes in the polysaccharides in cell walls during degradation. Hemicellulose degradation was found to occur prior to cellulose degradation using a Celluclast® preparation. Combining the fluorescence and FT-IR information yielded the conclusion that enzymes did not bind to lignified cell walls, which were consequently not degraded. Fluorescence multiscale imaging and FT-IR microspectroscopy showed an unexpected variability both in the initial biochemical composition and the degradation pattern, highlighting micro-domains in the cell wall of a given cell. Fluorescence intensity quantification showed that the enzymes were not evenly distributed, and their amount increased progressively on degradable cell walls. During degradation, adjacent cells were separated and the cell wall fragmented until complete degradation. PMID:29515611

  19. Silencing CHALCONE SYNTHASE in Maize Impedes the Incorporation of Tricin into Lignin and Increases Lignin Content.

    PubMed

    Eloy, Nubia B; Voorend, Wannes; Lan, Wu; Saleme, Marina de Lyra Soriano; Cesarino, Igor; Vanholme, Ruben; Smith, Rebecca A; Goeminne, Geert; Pallidis, Andreas; Morreel, Kris; Nicomedes, José; Ralph, John; Boerjan, Wout

    2017-02-01

    Lignin is a phenolic heteropolymer that is deposited in secondary-thickened cell walls, where it provides mechanical strength. A recent structural characterization of cell walls from monocot species showed that the flavone tricin is part of the native lignin polymer, where it is hypothesized to initiate lignin chains. In this study, we investigated the consequences of altered tricin levels on lignin structure and cell wall recalcitrance by phenolic profiling, nuclear magnetic resonance, and saccharification assays of the naturally silenced maize (Zea mays) C2-Idf (inhibitor diffuse) mutant, defective in the CHALCONE SYNTHASE Colorless2 (C2) gene. We show that the C2-Idf mutant produces highly reduced levels of apigenin- and tricin-related flavonoids, resulting in a strongly reduced incorporation of tricin into the lignin polymer. Moreover, the lignin was enriched in β-β and β-5 units, lending support to the contention that tricin acts to initiate lignin chains and that, in the absence of tricin, more monolignol dimerization reactions occur. In addition, the C2-Idf mutation resulted in strikingly higher Klason lignin levels in the leaves. As a consequence, the leaves of C2-Idf mutants had significantly reduced saccharification efficiencies compared with those of control plants. These findings are instructive for lignin engineering strategies to improve biomass processing and biochemical production. © 2017 American Society of Plant Biologists. All Rights Reserved.

  20. Silencing CHALCONE SYNTHASE in Maize Impedes the Incorporation of Tricin into Lignin and Increases Lignin Content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eloy, Nubia B.; Voorend, Wannes; Lan, Wu

    Lignin is a phenolic heteropolymer that is deposited in secondary-thickened cell walls, where it provides mechanical strength. A recent structural characterization of cell walls from monocot species showed that the flavone tricin is part of the native lignin polymer, where it is hypothesized to initiate lignin chains. In this study, we investigated the consequences of altered tricin levels on lignin structure and cell wall recalcitrance by phenolic profiling, nuclear magnetic resonance, and saccharification assays of the naturally silenced maize (Zea mays) C2-Idf (inhibitor diffuse) mutant, defective in the CHALCONE SYNTHASE Colorless2 (C2) gene. We show that the C2-Idf mutant producesmore » highly reduced levels of apigenin- and tricin-related flavonoids, resulting in a strongly reduced incorporation of tricin into the lignin polymer. Moreover, the lignin was enriched in β-β and β-5 units, lending support to the contention that tricin acts to initiate lignin chains and that, in the absence of tricin, more monolignol dimerization reactions occur. In addition, the C2-Idf mutation resulted in strikingly higher Klason lignin levels in the leaves. As a consequence, the leaves of C2-Idf mutants had significantly reduced saccharification efficiencies compared with those of control plants. These findings are instructive for lignin engineering strategies to improve biomass processing and biochemical production.« less

  1. Silencing CHALCONE SYNTHASE in Maize Impedes the Incorporation of Tricin into Lignin and Increases Lignin Content1[OPEN

    PubMed Central

    2017-01-01

    Lignin is a phenolic heteropolymer that is deposited in secondary-thickened cell walls, where it provides mechanical strength. A recent structural characterization of cell walls from monocot species showed that the flavone tricin is part of the native lignin polymer, where it is hypothesized to initiate lignin chains. In this study, we investigated the consequences of altered tricin levels on lignin structure and cell wall recalcitrance by phenolic profiling, nuclear magnetic resonance, and saccharification assays of the naturally silenced maize (Zea mays) C2-Idf (inhibitor diffuse) mutant, defective in the CHALCONE SYNTHASE Colorless2 (C2) gene. We show that the C2-Idf mutant produces highly reduced levels of apigenin- and tricin-related flavonoids, resulting in a strongly reduced incorporation of tricin into the lignin polymer. Moreover, the lignin was enriched in β-β and β-5 units, lending support to the contention that tricin acts to initiate lignin chains and that, in the absence of tricin, more monolignol dimerization reactions occur. In addition, the C2-Idf mutation resulted in strikingly higher Klason lignin levels in the leaves. As a consequence, the leaves of C2-Idf mutants had significantly reduced saccharification efficiencies compared with those of control plants. These findings are instructive for lignin engineering strategies to improve biomass processing and biochemical production. PMID:27940492

  2. Silencing CHALCONE SYNTHASE in Maize Impedes the Incorporation of Tricin into Lignin and Increases Lignin Content

    DOE PAGES

    Eloy, Nubia B.; Voorend, Wannes; Lan, Wu; ...

    2016-12-09

    Lignin is a phenolic heteropolymer that is deposited in secondary-thickened cell walls, where it provides mechanical strength. A recent structural characterization of cell walls from monocot species showed that the flavone tricin is part of the native lignin polymer, where it is hypothesized to initiate lignin chains. In this study, we investigated the consequences of altered tricin levels on lignin structure and cell wall recalcitrance by phenolic profiling, nuclear magnetic resonance, and saccharification assays of the naturally silenced maize (Zea mays) C2-Idf (inhibitor diffuse) mutant, defective in the CHALCONE SYNTHASE Colorless2 (C2) gene. We show that the C2-Idf mutant producesmore » highly reduced levels of apigenin- and tricin-related flavonoids, resulting in a strongly reduced incorporation of tricin into the lignin polymer. Moreover, the lignin was enriched in β-β and β-5 units, lending support to the contention that tricin acts to initiate lignin chains and that, in the absence of tricin, more monolignol dimerization reactions occur. In addition, the C2-Idf mutation resulted in strikingly higher Klason lignin levels in the leaves. As a consequence, the leaves of C2-Idf mutants had significantly reduced saccharification efficiencies compared with those of control plants. These findings are instructive for lignin engineering strategies to improve biomass processing and biochemical production.« less

  3. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells.

    PubMed

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals, demonstrating the potential of this approach for morphological investigations or screening assays.

  4. A unified wall function for compressible turbulence modelling

    NASA Astrophysics Data System (ADS)

    Ong, K. C.; Chan, A.

    2018-05-01

    Turbulence modelling near the wall often requires a high mesh density clustered around the wall and the first cells adjacent to the wall to be placed in the viscous sublayer. As a result, the numerical stability is constrained by the smallest cell size and hence requires high computational overhead. In the present study, a unified wall function is developed which is valid for viscous sublayer, buffer sublayer and inertial sublayer, as well as including effects of compressibility, heat transfer and pressure gradient. The resulting wall function applies to compressible turbulence modelling for both isothermal and adiabatic wall boundary conditions with the non-zero pressure gradient. Two simple wall function algorithms are implemented for practical computation of isothermal and adiabatic wall boundary conditions. The numerical results show that the wall function evaluates the wall shear stress and turbulent quantities of wall adjacent cells at wide range of non-dimensional wall distance and alleviate the number and size of cells required.

  5. Growth and cell wall changes in stem organs under microgravity and hypergravity conditions

    NASA Astrophysics Data System (ADS)

    Hoson, Takayuki; Soga, Kouichi; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro

    Gravity strongly influences plant growth and development, which is fundamentally brought about by modifications to the properties of the cell wall. We have examined the changes in growth and cell wall properties in seedling organs under hypergravity conditions produced by centrifugation and under microgravity conditions in space. Hypergravity stimuli have been shown to decrease the growth rate of various seedling organs. When hypergravity suppressed elongation growth, a decrease in cell wall extensibility (an increase in cell wall rigidity) was induced. Hypergravity has also been shown to increase cell wall thickness in various mate-rials. In addition, a polymerization of certain matrix polysaccharides was brought about by hypergravity: in dicotyledons hypergravity increased the molecular size of xyloglucans, whereas hypergravity increased that of 1,3,1,4-β-glucans in monocotyledonous Gramineae. These mod-ifications to cell wall metabolism may be responsible for a decrease in cell wall extensibility, leading to growth suppression under hypergravity conditions. How then does microgravity in-fluence growth and cell wall properties? Here, there was a possibility that microgravity might induce changes similar to those by hypergravity, because plants have evolved and adapted to 1 g condition for more than 400 million years. However, the changes observed under microgravity conditions in space were just opposite to those induced by hypergravity: stimulation of elonga-tion growth, an increase in cell wall extensibility, and a decrease in cell wall thickness as well as depolymerization of cell wall polysaccharides were brought about in space. Furthermore, growth and cell wall properties varied in proportion to the logarithm of the magnitude of grav-ity in the range from microgravity to hypergravity, as shown in the dose-response relation in light and hormonal responses. Thus, microgravity may be a `stress-less' environment for plant seedlings to grow and develop. Preliminary results obtained by recent Space Seed experiment in the Kibo Module on the International Space Station (PI: S. Kamisaka) suggest that this hypothesis is also applicable to mature Arabidopsis plants.

  6. The Fluid Mechanics of a Wavy-Wall Bioreactor

    NASA Astrophysics Data System (ADS)

    Sucosky, Philippe; Bilgen, Bahar; Aleem, Alexander; Neitzel, Paul; Barabino, Gilda

    2004-11-01

    Bioreactors are devices used for the production of mammalian tissue in vitro. Although mixing has been shown to stimulate the growth of cartilage constructs, high shear-stress levels can damage the cells. In order to enhance mixing while minimizing shear, a wavy-wall bioreactor (WWB) featuring a sinusoidal internal profile has been designed. The turbulent hydrodynamic environment produced in this device is investigated experimentally using particle-image velocimetry. A model bioreactor made of acrylic and filled with an index-matching solution of zinc iodide is used to compensate for the refraction of light at the walls. The flow observed in different planes is shown to be periodic, spatially dependent, and dominated by mean-shear rather than Reynolds stresses in the vicinity of constructs. Finally, a comparison between the mean-shear stresses obtained in the WWB and in a standard spinner flask reveals similar stress levels near the construct walls.

  7. Outside-in control -Does plant cell wall integrity regulate cell cycle progression?

    PubMed

    Gigli-Bisceglia, Nora; Hamann, Thorsten

    2018-04-13

    During recent years it has become accepted that plant cell walls are not inert objects surrounding all plant cells but are instead highly dynamic, plastic structures. They are involved in a large number of cell biological processes and contribute actively to plant growth, development and interaction with environment. Therefore, it is not surprising that cellular processes can control plant cell wall integrity while, simultaneously, cell wall integrity can influence cellular processes. In yeast and animal cells such a bi-directional relationship also exists between the yeast/animal extra-cellular matrices and the cell cycle. In yeast, the cell wall integrity maintenance mechanism and a dedicated plasmamembrane integrity checkpoint are mediating this relationship. Recent research has yielded insights into the mechanism controlling plant cell wall metabolism during cytokinesis. However, knowledge regarding putative regulatory pathways controlling adaptive modifications in plant cell cycle activity in response to changes in the state of the plant cell wall are not yet identified. In this review, we summarize similarities and differences in regulatory mechanisms coordinating extra cellular matrices and cell cycle activity in animal and yeast cells, discuss the available evidence supporting the existence of such a mechanism in plants and suggest that the plant cell wall integrity maintenance mechanism might also control cell cycle activity in plant cells. This article is protected by copyright. All rights reserved.

  8. Osteocytes Mechanosensing in NASA Rotating Wall Bioreactor

    NASA Technical Reports Server (NTRS)

    Spatz, Jordan; Sibonga, Jean; Wu, Honglu; Barry, Kevin; Bouxsein, Mary; Pajevic, Paola Divieti

    2010-01-01

    Osteocyte cells are the most abundant (90%) yet least understood bone cell type in the human body. Osteocytes are theorized to be the mechanosensors and transducers of mechanical load for bones, yet the biological mechanism of this action remains elusive. However, recent discoveries in osteocyte cell biology have shed light on their importance as key mechanosensing cells regulating bone remodeling and phosphate homeostasis. The aim of this project was to characterize gene expression patterns and protein levels following exposure of MLO-Y4, a very well characterized murine osteocyte-like cell line, to simulated microgravity using the NASA Rotating Wall Vessel (RWV) Bioreactor. To determine mechanistic pathways of the osteocyte's gravity sensing ability, we evaluated in vitro gene and protein expression of osteocytes exposed to simulated microgravity. Improved understanding of the fundamental mechanisms of mechano transduction at the osteocyte cellular level may lead to revolutionary treatment otions to mitigate the effects of bone loss encountered by astronauts on long duration space missions and provide tailored treatment options for maintaining bone strength of immobilized/partially paralyzed patients here on Earth.

  9. Phenotype-Based Screening of Small Molecules to Modify Plant Cell Walls Using BY-2 Cells.

    PubMed

    Okubo-Kurihara, Emiko; Matsui, Minami

    2018-01-01

    The plant cell wall is an important and abundant biomass with great potential for use as a modern recyclable resource. For effective utilization of this cellulosic biomass, its ability to degrade efficiently is key point. With the aim of modifying the cell wall to allow easy decomposition, we used chemical biological technology to alter its structure. As a first step toward evaluating the chemicals in the cell wall we employed a phenotype-based approach using high-throughput screening. As the plant cell wall is essential in determining cell morphology, phenotype-based screening is particularly effective in identifying compounds that bring about alterations in the cell wall. For rapid and reproducible screening, tobacco BY-2 cell is an excellent system in which to observe cell morphology. In this chapter, we provide a detailed chemical biological methodology for studying cell morphology using tobacco BY-2 cells.

  10. Pectin methylesterase31 positively regulates salt stress tolerance in Arabidopsis.

    PubMed

    Yan, Jingwei; He, Huan; Fang, Lin; Zhang, Aying

    2018-02-05

    The alteration of cell wall component and structure is an important adaption to saline environment. Pectins, a major cell wall component, are often present in a highly methylesterified form. The level of methyl esterification determined by pectin methylesterases (PMEs) influences many important wall properties that are believed to relate to the adaption to saline stress. However, little is known about the function of PMEs in response to salt stress. Here, we established a link between pectin methylesterase31 (PME31) and salt stress tolerance. Salt stress significantly increases PME31 expression. PME31 is located in the plasma membrane and the expression level of PME31 was high in dry seeds. Knock-down mutants in PME31 conferred hypersensitive phenotypes to salt stress in seed germination and post-germination growth. Real-time PCR analysis revealed that the transcript levels of several stress genes (DREB2A, RD29A and RD29B) are lower in pme31-2 mutant than that in the wild type in response to salt stress. These results suggested that PME31 could positively modulate salt stress tolerance. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. The plant cell wall in the feeding sites of cyst nematodes.

    PubMed

    Bohlmann, Holger; Sobczak, Miroslaw

    2014-01-01

    Plant parasitic cyst nematodes (genera Heterodera and Globodera) are serious pests for many crops. They enter the host roots as migratory second stage juveniles (J2) and migrate intracellularly toward the vascular cylinder using their stylet and a set of cell wall degrading enzymes produced in the pharyngeal glands. They select an initial syncytial cell (ISC) within the vascular cylinder or inner cortex layers to induce the formation of a multicellular feeding site called a syncytium, which is the only source of nutrients for the parasite during its entire life. A syncytium can consist of more than hundred cells whose protoplasts are fused together through local cell wall dissolutions. While the nematode produces a cocktail of cell wall degrading and modifying enzymes during migration through the root, the cell wall degradations occurring during syncytium development are due to the plants own cell wall modifying and degrading proteins. The outer syncytial cell wall thickens to withstand the increasing osmotic pressure inside the syncytium. Furthermore, pronounced cell wall ingrowths can be formed on the outer syncytial wall at the interface with xylem vessels. They increase the surface of the symplast-apoplast interface, thus enhancing nutrient uptake into the syncytium. Processes of cell wall degradation, synthesis and modification in the syncytium are facilitated by a variety of plant proteins and enzymes including expansins, glucanases, pectate lyases and cellulose synthases, which are produced inside the syncytium or in cells surrounding the syncytium.

  12. Cell wall of pathogenic yeasts and implications for antimycotic therapy.

    PubMed

    Cassone, A

    1986-01-01

    Yeast cell wall is a complex, multilayered structure where amorphous, granular and fibrillar components interact with each other to confer both the specific cell shape and osmotic protection against lysis. Thus it is widely recognized that as is the case with bacteria, yeast cell wall is a major potential target for selective chemotherapeutic drugs. Despite intensive research, very few such drugs have been discovered and none has found substantial application in human diseases to date. Among the different cell wall components, beta-glucan and chitin are the fibrillar materials playing a fundamental role in the overall rigidity and resistance of the wall. Inhibition of the metabolism of these polymers, therefore, should promptly lead to lysis. This indeed occurs and aculeacin, echinocandin and polyoxins are examples of agents producing such an action. Particular attention should be focused on chitin synthesis. Although quantitatively a minor cell wall component, chitin is important in the mechanism of dimorphic transition, especially in Candida albicans, a major human opportunistic pathogen. This transition is associated with increased invasiveness and general virulence of the fungus. Yeast cell wall may also limit the effect of antifungals which owe their action to disturbance of the cytoplasmic membrane or of cell metabolism. Indeed, the cell wall may hinder access to the cell interior both under growing conditions and, particularly, during cell ageing in the stationary phase, when important structural changes occur in the cell wall due to unbalanced wall growth (phenotypic drug resistance).

  13. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cosgrove, Daniel J.

    The advent of user-friendly instruments for measuring force/deflection curves of plant surfaces at high spatial resolution has resulted in a recent outpouring of reports of the ‘Young's modulus’ of plant cell walls. The stimulus for these mechanical measurements comes from biomechanical models of morphogenesis of meristems and other tissues, as well as single cells, in which cell wall stress feeds back to regulate microtubule organization, auxin transport, cellulose deposition, and future growth directionality. In this article I review the differences between elastic modulus and wall extensibility in the context of cell growth. Some of the inherent complexities, assumptions, and potentialmore » pitfalls in the interpretation of indentation force/deflection curves are discussed. Reported values of elastic moduli from surface indentation measurements appear to be 10- to >1000-fold smaller than realistic tensile elastic moduli in the plane of plant cell walls. Potential reasons for this disparity are discussed, but further work is needed to make sense of the huge range in reported values. The significance of wall stress relaxation for growth is reviewed and connected to recent advances and remaining enigmas in our concepts of how cellulose, hemicellulose, and pectins are assembled to make an extensible cell wall. A comparison of the loosening action of α-expansin and Cel12A endoglucanase is used to illustrate two different ways in which cell walls may be made more extensible and the divergent effects on wall mechanics.« less

  14. My body is a cage: mechanisms and modulation of plant cell growth.

    PubMed

    Braidwood, Luke; Breuer, Christian; Sugimoto, Keiko

    2014-01-01

    388 I. 388 II. 389 III. 389 IV. 390 V. 391 VI. 393 VII. 394 VIII. 398 399 References 399 SUMMARY: The wall surrounding plant cells provides protection from abiotic and biotic stresses, and support through the action of turgor pressure. However, the presence of this strong elastic wall also prevents cell movement and resists cell growth. This growth can be likened to extending a house from the inside, using extremely high pressures to push out the walls. Plants must increase cell volume in order to explore their environment, acquire nutrients and reproduce. Cell wall material must stretch and flow in a controlled manner and, concomitantly, new cell wall material must be deposited at the correct rate and site to prevent wall and cell rupture. In this review, we examine biomechanics, cell wall structure and growth regulatory networks to provide a 'big picture' of plant cell growth. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  15. The connection of cytoskeletal network with plasma membrane and the cell wall

    PubMed Central

    Liu, Zengyu; Persson, Staffan; Zhang, Yi

    2015-01-01

    The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosynthesis and modifications, and aim to provide a platform for further studies in this field. PMID:25693826

  16. Hydrodynamic shear stress and mass transport modulation of endothelial cell metabolism.

    PubMed

    Nollert, M U; Diamond, S L; McIntire, L V

    1991-09-01

    Mammalian cells responds to physical forces by altering their growth rate, morphology, metabolism, and genetic expression. We have studied the mechanism by which these cells detect the presence of mechanical stress and convert this force into intracellular signals. As our model systems, we have studied cultured human endothelial cells, which line the blood vessels and forms the interface between the blood and the vessel wall. These cell responds within minutes to the initiation of flow by increasing their arachidonic acid metabolism and increasing the level of the intracellular second messengers inositol trisphosphate and calcium ion concentration. With continued exposure to arterial levels of wall shear stress for up to 24 h, endothelial cells increase the expression of tissue plasminogen activator (tPA) and tPA messenger RNA (mRNA) and decrease the expression of endothelin peptide and endothelin mRNA. Since the initiation of flow also causes enhanced convective mass transfer to the endothelial cell monolayer, we have investigated the role of enhanced convection of adenosine trisphosphate (ATP) to the cell surface in eliciting a cellular response by monitoring cytosolic calcium concentrations on the single cell level and by computing the concentration profile of ATP in a parallel-plate flow geometry. Our result demonstrate that endothelial cells respond in very specific ways to the initiation of flow and that mass transfer and fluid shear stress can both play a role in the modulation of intracellular signal transduction and metabolism.

  17. Compositional changes in 'Bartlett' pear ( Pyrus communis L.) cell wall polysaccharides as affected by sunlight conditions.

    PubMed

    Raffo, María D; Ponce, Nora M A; Sozzi, Gabriel O; Vicente, Ariel R; Stortz, Carlos A

    2011-11-23

    Preharvest conditions can have a great impact on fruit quality attributes and postharvest responses. Firmness is an important quality attribute in pear, and excessive softening increases susceptibility to bruising and decay, thus limiting fruit postharvest life. Textural characteristics of fruits are determined at least in part by cell wall structure and disassembly. Few studies have analyzed the influence of fruit preharvest environment in softening, cell wall composition, and degradation. In the current work 'Bartlett' pears grown either facing the sun (S) or in the shade (H) were harvested and stored for 13 days at 20 °C. An evaluation of fruit soluble solids, acidity, color, starch degradation, firmness, cell wall yield, pectin and matrix glycan solubilization, depolymerization, and monosaccharide composition was carried out. Sun-exposed pears showed more advanced color development and similar levels of starch degradation, sugars, and acids than shaded fruit. Sunlight-grown pears were at harvest firmer than shade-grown pears. Both fruit groups softened during storage at 20 °C, but even after ripening, sun-exposed pears remained firmer. Sunlight exposure did not have a great impact on pectin molecular weight. Instead, at harvest a higher proportion of water-solubilized uronic acids and alkali-solubilized neutral sugars and a larger mean molecular size of tightly bound glycans was found in sun-exposed pears. During ripening cell wall catabolism took place in both sun- and shade-grown pears, but pectin solubilization was clearly delayed in sun-exposed fruit. This was associated with decreased removal of RG I-arabinan side chains rather than with reduced depolymerization.

  18. Mechanistic understanding of cellular level of water in plant-based food material

    NASA Astrophysics Data System (ADS)

    Khan, Md. Imran H.; Kumar, C.; Karim, M. A.

    2017-06-01

    Understanding of water distribution in plant-based food material is crucial for developing an accurate heat and mass transfer drying model. Generally, in plant-based food tissue, water is distributed in three different spaces namely, intercellular water, intracellular water, and cell wall water. For hygroscopic material, these three types of water transport should be considered for actual understanding of heat and mass transfer during drying. However, there is limited study dedicated to the investigation of the moisture distribution in a different cellular environment in the plant-based food material. Therefore, the aim of the present study was to investigate the proportion of intercellular water, intracellular water, and cell wall water inside the plant-based food material. During this study, experiments were performed for two different plant-based food tissues namely, eggplant and potato tissue using 1H-NMR-T2 relaxometry. Various types of water component were calculated by using multicomponent fits of the T2 relaxation curves. The experimental result showed that in potato tissue 80-82% water exist in intracellular space; 10-13% water in intercellular space and only 4-6% water exist in the cell wall space. In eggplant tissue, 90-93% water in intracellular space, 4-6% water exists in intercellular space and the remaining percentage of water is recognized as cell wall water. The investigated results quantify different types of water in plant-based food tissue. The highest proportion of water exists in intracellular spaces. Therefore, it is necessary to include different transport mechanism for intracellular, intercellular and cell wall water during modelling of heat and mass transfer during drying.

  19. Correlation of laser-Doppler-velocity measurements and endothelial cell shape in a stenosed dog aorta.

    PubMed

    Liepsch, D W; Levesque, M; Nerem, R M; Moravec, S T

    1988-01-01

    Laser-Doppler-velocity measurements were carried out in an elastic 1:1 true-to-scale silicone rubber model of a dog aorta with stenosis. The model was constructed from a cast of a severely stenosed dog aorta (71% of its area). The stenosis in the dog aorta was prepared by wrapping a cotton band around the aorta. This band was tightened until the presence of a thrill or a bruit was felt distal to the band. Twelve weeks later the animal was sacrificed and a cast was prepared from the aorta. From this vascular cast, the cross-sectional area was calculated. Endothelial cell geometry and orientation was studied using computerized analysis to determine the cell area and shape index. An elastic silicone rubber model was prepared from the cast to measure the velocity profiles and to estimate the local wall shear stress. Velocity measurements were done at steady and pulsatile flow using a Newtonian aqueous-glycerol solution and a non-Newtonian blood-like fluid. From those velocity measurements the velocity gradients near the wall were determined and the shear stress calculated. The flow distal to the stenosis separates from the wall at physiological conditions. The endothelial cells are smaller and more elongated in the throat; distal to the stenosis they are larger and rounder. The shape index distribution along the stenosed aorta is correlated with the level of wall shear stress. It is shown that even low changes in the wall shear stress have an influence on the orientation of the endothelial cells.

  20. Cellulose synthase complexes display distinct dynamic behaviors during xylem transdifferentiation.

    PubMed

    Watanabe, Yoichiro; Schneider, Rene; Barkwill, Sarah; Gonzales-Vigil, Eliana; Hill, Joseph L; Samuels, A Lacey; Persson, Staffan; Mansfield, Shawn D

    2018-06-05

    In plants, plasma membrane-embedded CELLULOSE SYNTHASE (CESA) enzyme complexes deposit cellulose polymers into the developing cell wall. Cellulose synthesis requires two different sets of CESA complexes that are active during cell expansion and secondary cell wall thickening, respectively. Hence, developing xylem cells, which first undergo cell expansion and subsequently deposit thick secondary walls, need to completely reorganize their CESA complexes from primary wall- to secondary wall-specific CESAs. Using live-cell imaging, we analyzed the principles underlying this remodeling. At the onset of secondary wall synthesis, the primary wall CESAs ceased to be delivered to the plasma membrane and were gradually removed from both the plasma membrane and the Golgi. For a brief transition period, both primary wall- and secondary wall-specific CESAs coexisted in banded domains of the plasma membrane where secondary wall synthesis is concentrated. During this transition, primary and secondary wall CESAs displayed discrete dynamic behaviors and sensitivities to the inhibitor isoxaben. As secondary wall-specific CESAs were delivered and inserted into the plasma membrane, the primary wall CESAs became concentrated in prevacuolar compartments and lytic vacuoles. This adjustment in localization between the two CESAs was accompanied by concurrent decreased primary wall CESA and increased secondary wall CESA protein abundance. Our data reveal distinct and dynamic subcellular trafficking patterns that underpin the remodeling of the cellulose biosynthetic machinery, resulting in the removal and degradation of the primary wall CESA complex with concurrent production and recycling of the secondary wall CESAs. Copyright © 2018 the Author(s). Published by PNAS.

  1. Functional Dissection of the CroRS Two-Component System Required for Resistance to Cell Wall Stressors in Enterococcus faecalis.

    PubMed

    Kellogg, Stephanie L; Kristich, Christopher J

    2016-04-01

    Bacteria use two-component signal transduction systems (TCSs) to sense and respond to environmental changes via a conserved phosphorelay between a sensor histidine kinase and its cognate response regulator. The opportunistic pathogen Enterococcus faecalis utilizes a TCS comprised of the histidine kinase CroS and the response regulator CroR to mediate resistance to cell wall stresses such as cephalosporin antibiotics, but the molecular details by which CroRS promotes cephalosporin resistance have not been elucidated. Here, we analyzed mutants of E. faecalis carrying substitutions in CroR and CroS to demonstrate that phosphorylated CroR drives resistance to cephalosporins, and that CroS exhibits kinase and phosphatase activities to control the level of CroR phosphorylation in vivo. Deletion of croS in various lineages of E. faecalis revealed a CroS-independent mechanism for CroR phosphorylation and led to the identification of a noncognate histidine kinase capable of influencing CroR (encoded by OG1RF_12162; here called cisS). Further analysis of this TCS network revealed that both systems respond to cell wall stress. TCSs allow bacteria to sense and respond to many different environmental conditions. The opportunistic pathogen Enterococcus faecalis utilizes the CroRS TCS to mediate resistance to cell wall stresses, including clinically relevant antibiotics such as cephalosporins and glycopeptides. In this study, we use genetic and biochemical means to investigate the relationship between CroRS signaling and cephalosporin resistance in E. faecalis cells. Through this, we uncovered a signaling network formed between the CroRS TCS and a previously uncharacterized TCS that also responds to cell wall stress. This study provides mechanistic insights into CroRS signaling and cephalosporin resistance in E. faecalis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. A model of cell wall expansion based on thermodynamics of polymer networks

    NASA Technical Reports Server (NTRS)

    Veytsman, B. A.; Cosgrove, D. J.

    1998-01-01

    A theory of cell wall extension is proposed. It is shown that macroscopic properties of cell walls can be explained through the microscopic properties of interpenetrating networks of cellulose and hemicellulose. The qualitative conclusions of the theory agree with the existing experimental data. The dependence of the cell wall yield threshold on the secretion of the wall components is discussed.

  3. The fine structure of sheep myocardial cells; sarcolemmal invaginations and the transverse tubular system.

    PubMed

    SIMPSON, F O; OERTELIS, S J

    1962-01-01

    An electron microscope study of sheep myocardial cells has demonstrated the presence of a transverse tubular system, apparently forming a network across the cell at each Z band level. The walls of these tubules resemble the sarcolemma in consisting of two dense layers-plasma membrane and basement menbrane; continuity of the tubule walls with the sarcolemma can be seen when longitudinal sections of a cell are obtained between two subsarcolemmal myofibrils and at the same time perpendicular to the cell surface. The demonstration of communication between the lumen of the transverse tubular system and the extracellular space appears to be more definite in this study than in any work hitherto published. It provides anatomical evidence of a possible direct pathway for transmission of the activating impulse from the sarcolemma to the myofibril Z bands.

  4. THE FINE STRUCTURE OF SHEEP MYOCARDIAL CELLS; SARCOLEMMAL INVAGINATIONS AND THE TRANSVERSE TUBULAR SYSTEM

    PubMed Central

    Simpson, F. O.; Oertelis, S. J.

    1962-01-01

    An electron microscope study of sheep myocardial cells has demonstrated the presence of a transverse tubular system, apparently forming a network across the cell at each Z band level. The walls of these tubules resemble the sarcolemma in consisting of two dense layers—plasma membrane and basement menbrane; continuity of the tubule walls with the sarcolemma can be seen when longitudinal sections of a cell are obtained between two subsarcolemmal myofibrils and at the same time perpendicular to the cell surface. The demonstration of communication between the lumen of the transverse tubular system and the extracellular space appears to be more definite in this study than in any work hitherto published. It provides anatomical evidence of a possible direct pathway for transmission of the activating impulse from the sarcolemma to the myofibril Z bands. PMID:13913207

  5. Resistance and Resistant Reaction of Gossypium arboreum to the Reniform, Nematode, Rotylenchulus reniformis

    PubMed Central

    Carter, William W.

    1981-01-01

    Gossypium arboreum 'Nanking CB 1402' possessed a high level of resistance to Rotylenchulus reniformis. Within 16 h, the nematode penetrated roots of resistant and susceptible cottons equally. After 36 h, significantly fewer nematodes were found in resistant roots. Larvae fed in either an endodermal or pericyclic cell and had no specificity for root tissue of a particular age. In roots of resistant G. arboreum '1402,' wall breakdown of pericyclic cells was evident after 3 d, endodermal and cortical cells collapsed, and the hypertrophied pericyclic cells disintegrated within 12 d. Cell walls immediately adjacent to the nematode's head were thickened and more safranin positive in resistant than in susceptible cotton cultivars. Several other cultivars of G. arboreum were also resistant to R. reniformis, based on nematode fecundity and percent egg reduction. PMID:19300777

  6. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR

    PubMed Central

    Romaniuk, Joseph A. H.; Cegelski, Lynette

    2015-01-01

    The ability to characterize bacterial cell-wall composition and structure is crucial to understanding the function of the bacterial cell wall, determining drug modes of action and developing new-generation therapeutics. Solid-state NMR has emerged as a powerful tool to quantify chemical composition and to map cell-wall architecture in bacteria and plants, even in the context of unperturbed intact whole cells. In this review, we discuss solid-state NMR approaches to define peptidoglycan composition and to characterize the modes of action of old and new antibiotics, focusing on examples in Staphylococcus aureus. We provide perspectives regarding the selected NMR strategies as we describe the exciting and still-developing cell-wall and whole-cell NMR toolkit. We also discuss specific discoveries regarding the modes of action of vancomycin analogues, including oritavancin, and briefly address the reconsideration of the killing action of β-lactam antibiotics. In such chemical genetics approaches, there is still much to be learned from perturbations enacted by cell-wall assembly inhibitors, and solid-state NMR approaches are poised to address questions of cell-wall composition and assembly in S. aureus and other organisms. PMID:26370936

  7. γ-Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots.

    PubMed

    Renault, Hugues; El Amrani, Abdelhak; Berger, Adeline; Mouille, Grégory; Soubigou-Taconnat, Ludivine; Bouchereau, Alain; Deleu, Carole

    2013-05-01

    Environmental constraints challenge cell homeostasis and thus require a tight regulation of metabolic activity. We have previously reported that the γ-aminobutyric acid (GABA) metabolism is crucial for Arabidopsis salt tolerance as revealed by the NaCl hypersensitivity of the GABA transaminase (GABA-T, At3g22200) gaba-t/pop2-1 mutant. In this study, we demonstrate that GABA-T deficiency during salt stress causes root and hypocotyl developmental defects and alterations of cell wall composition. A comparative genome-wide transcriptional analysis revealed that expression levels of genes involved in carbon metabolism, particularly sucrose and starch catabolism, were found to increase upon the loss of GABA-T function under salt stress conditions. Consistent with the altered mutant cell wall composition, a number of cell wall-related genes were also found differentially expressed. A targeted quantitative analysis of primary metabolites revealed that glutamate (GABA precursor) accumulated while succinate (the final product of GABA metabolism) significantly decreased in mutant roots after 1 d of NaCl treatment. Furthermore, sugar concentration was twofold reduced in gaba-t/pop2-1 mutant roots compared with wild type. Together, our results provide strong evidence that GABA metabolism is a major route for succinate production in roots and identify GABA as a major player of central carbon adjustment during salt stress. © 2012 Blackwell Publishing Ltd.

  8. A Comparative Study of Sample Preparation for Staining and Immunodetection of Plant Cell Walls by Light Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verhertbruggen, Yves; Walker, Jesse L.; Guillon, Fabienne

    Staining and immunodetection by light microscopy are methods widely used to investigate plant cell walls. The two techniques have been crucial to study the cell wall architecture in planta, its deconstruction by chemicals or cell wall-degrading enzymes. They have been instrumental in detecting the presence of cell types, in deciphering plant cell wall evolution and in characterizing plant mutants and transformants. The success of immunolabeling relies on how plant materials are embedded and sectioned. Agarose coating, wax and resin embedding are, respectively, associated with vibratome, microtome and ultramicrotome sectioning. Here, we have systematically carried out a comparative analysis of thesemore » three methods of sample preparation when they are applied for cell wall staining and cell wall immunomicroscopy. In order to help the plant community in understanding and selecting adequate methods of embedding and sectioning for cell wall immunodetection, we review in this article the advantages and limitations of these three methods. Moreover, we offer detailed protocols of embedding for studying plant materials through microscopy.« less

  9. A Comparative Study of Sample Preparation for Staining and Immunodetection of Plant Cell Walls by Light Microscopy

    DOE PAGES

    Verhertbruggen, Yves; Walker, Jesse L.; Guillon, Fabienne; ...

    2017-08-29

    Staining and immunodetection by light microscopy are methods widely used to investigate plant cell walls. The two techniques have been crucial to study the cell wall architecture in planta, its deconstruction by chemicals or cell wall-degrading enzymes. They have been instrumental in detecting the presence of cell types, in deciphering plant cell wall evolution and in characterizing plant mutants and transformants. The success of immunolabeling relies on how plant materials are embedded and sectioned. Agarose coating, wax and resin embedding are, respectively, associated with vibratome, microtome and ultramicrotome sectioning. Here, we have systematically carried out a comparative analysis of thesemore » three methods of sample preparation when they are applied for cell wall staining and cell wall immunomicroscopy. In order to help the plant community in understanding and selecting adequate methods of embedding and sectioning for cell wall immunodetection, we review in this article the advantages and limitations of these three methods. Moreover, we offer detailed protocols of embedding for studying plant materials through microscopy.« less

  10. A Comparative Study of Sample Preparation for Staining and Immunodetection of Plant Cell Walls by Light Microscopy

    PubMed Central

    Verhertbruggen, Yves; Walker, Jesse L.; Guillon, Fabienne; Scheller, Henrik V.

    2017-01-01

    Staining and immunodetection by light microscopy are methods widely used to investigate plant cell walls. The two techniques have been crucial to study the cell wall architecture in planta, its deconstruction by chemicals or cell wall-degrading enzymes. They have been instrumental in detecting the presence of cell types, in deciphering plant cell wall evolution and in characterizing plant mutants and transformants. The success of immunolabeling relies on how plant materials are embedded and sectioned. Agarose coating, wax and resin embedding are, respectively, associated with vibratome, microtome and ultramicrotome sectioning. Here, we have systematically carried out a comparative analysis of these three methods of sample preparation when they are applied for cell wall staining and cell wall immunomicroscopy. In order to help the plant community in understanding and selecting adequate methods of embedding and sectioning for cell wall immunodetection, we review in this article the advantages and limitations of these three methods. Moreover, we offer detailed protocols of embedding for studying plant materials through microscopy. PMID:28900439

  11. Analysis of plant nucleotide sugars by hydrophilic interaction liquid chromatography and tandem mass spectrometry.

    PubMed

    Ito, Jun; Herter, Thomas; Baidoo, Edward E K; Lao, Jeemeng; Vega-Sánchez, Miguel E; Michelle Smith-Moritz, A; Adams, Paul D; Keasling, Jay D; Usadel, Björn; Petzold, Christopher J; Heazlewood, Joshua L

    2014-03-01

    Understanding the intricate metabolic processes involved in plant cell wall biosynthesis is limited by difficulties in performing sensitive quantification of many involved compounds. Hydrophilic interaction liquid chromatography is a useful technique for the analysis of hydrophilic metabolites from complex biological extracts and forms the basis of this method to quantify plant cell wall precursors. A zwitterionic silica-based stationary phase has been used to separate hydrophilic nucleotide sugars involved in cell wall biosynthesis from milligram amounts of leaf tissue. A tandem mass spectrometry operating in selected reaction monitoring mode was used to quantify nucleotide sugars. This method was highly repeatable and quantified 12 nucleotide sugars at low femtomole quantities, with linear responses up to four orders of magnitude to several 100pmol. The method was also successfully applied to the analysis of purified leaf extracts from two model plant species with variations in their cell wall sugar compositions and indicated significant differences in the levels of 6 out of 12 nucleotide sugars. The plant nucleotide sugar extraction procedure was demonstrated to have good recovery rates with minimal matrix effects. The approach results in a significant improvement in sensitivity when applied to plant samples over currently employed techniques. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Wide-range antifungal antagonism of Paenibacillus ehimensis IB-X-b and its dependence on chitinase and beta-1,3-glucanase production.

    PubMed

    Aktuganov, G; Melentjev, A; Galimzianova, N; Khalikova, E; Korpela, T; Susi, P

    2008-07-01

    Previously, we isolated a strain of Bacillus that had antifungal activity and produced lytic enzymes with fungicidal potential. In the present study, we identified the bacterium as Paenibacillus ehimensis and further explored its antifungal properties. In liquid co-cultivation assays, P. ehimensis IB-X-b decreased biomass production of several pathogenic fungi by 45%-75%. The inhibition was accompanied by degradation of fungal cell walls and alterations in hyphal morphology. Residual medium from cultures of P. ehimensis IB-X-b inhibited fungal growth, indicating the inhibitors were secreted into the medium. Of the 2 major lytic enzymes, chitinases were only induced by chitin-containing substrates, whereas beta-1,3-glucanase showed steady levels in all carbon sources. Both purified chitinase and beta-1,3-glucanase degraded cell walls of macerated fungal mycelia, whereas only the latter also degraded cell walls of intact mycelia. The results indicate synergism between the antifungal action mechanisms of these enzymes in which beta-1,3-glucanase is the initiator of the cell wall hydrolysis, whereas the degradation process is reinforced by chitinases. Paenibacillus ehimensis IB-X-b has pronounced antifungal activity with a wide range of fungi and has potential as a biological control agent against plant pathogenic fungi.

  13. Comparison of stem morphology and anatomy of two alfalfa clonal lines exhibiting divergent cell wall composition.

    PubMed

    Gronwald, John W; Bucciarelli, Bruna

    2013-08-30

    In previous research, two alfalfa clonal lines (252 and 1283) were identified that exhibited environmentally stable differences in stem cell walls. Compared with stems of 1283, stems of 252 have a higher cell wall concentration and greater amounts of lignin and cellulose but reduced levels of pectic sugar residues. These results suggest greater deposition of secondary xylem and a reduction in pith in stems of 252 compared with 1283. The stem morphology and anatomy of first-cut and second-cut harvests of field-grown 1283 and 252 were examined. For both harvests, stems of 1283 were thicker and had a higher leaf/stem ratio compared with stems of 252. Stem cross-sections of both genotypes were stained for lignin, and the proportions of stem area that were pith and secondary xylem were measured using ImageJ. Stems of 252 exhibited greater deposition of secondary xylem and a reduction in pith proportion compared with stems of 1283 for the first-cut harvest, but this difference was not statistically significant for the second-cut harvest. The results indicate that the proportions of secondary xylem and pith are not environmentally stable in these two genotypes and hence cannot be the sole basis for the differences in cell wall concentration/composition. © 2012 Society of Chemical Industry.

  14. Comparative chemical characterization of pigmented and less pigmented cell walls of Alternaria tenuissima.

    PubMed

    Kishore, Kankipati Hara; Kanjilal, Sanjit; Misra, Sunil; Reddy, Chinnathimma Rajagopal; Murty, Upadyayula Suryanarayana

    2005-12-01

    Alternaria tenuissima, the parasitic fungus, was obtained from the pruned upper-cut surfaces of mulberry stems. This fungus contains dark pigment because of the presence of melanin in the cell wall. To obtain less-pigmented cell walls, this fungus was grown under dark condition. When the pigmented and less-pigmented cell walls were chemically analyzed, no differences were observed in amino-acid composition, hexoses, or pentoses. However, in pigmented cell walls, higher contents of melanin (2.6%) were found than in less-pigmented cell walls (0.3%). Interestingly, a significant difference was observed in the relative fatty-acid compositions between these two types of cell walls. Among the major fatty acids, there were increased concentrations of tetradecanoic acid (C14:0), hexadecanoic acid (C16:0), 9-hexadecenoic acid (C16: 1,Delta 9), and 9-octadecanoic acid (C18:1,Delta 9) and a concomitant decrease in 9,12-octadecadienoic acid (C18:2,Delta 9,12) in less-pigmented compared with pigmented cell walls. This difference in fatty-acid composition may be related to the higher percentage of melanin in the pigmented than the less-pigmented cell walls. Lesser amounts of 9,12-octadecadienoic acid in less-pigmented cell walls may have been caused by the growth of the fungus under environmental stress conditions. An interesting observation was the presence in pigmented cell walls only of methyl-substituted fatty acids with carbon numbers C14 to C17, but their occurrence could not be ascertained in the present study.

  15. Nanoscale Structure of Organic Matter Could Explain Litter Decomposition

    NASA Astrophysics Data System (ADS)

    Papa, G.; Adani, F.

    2014-12-01

    According to the literature biochemical catalyses are limited in their actions because of the complex macroscopic and, above all, microscopic structures of cell wall that limit mass transportation (i.e. 3D structure). Our study on energy crop showed that plant digestibility increased by modifying the 3D cell wall microstructure. Results obtained were ascribed to the enlargement, such as effectively measured, of the pore spaces between cellulose fibrils. Therefore we postulated that 3 D structure of plant residues drives degradability in soil determining its recalcitrance in short time. Here we focused on the drivers of short-term decomposition of organic matter (plant residues) in soils evaluating the architecture of plant tissues, captured via measurements of the microporosiy of the cell walls. Decomposition rates of a wide variety of biomass types were studied conducting experiments in both aerobic and anaerobic environments. Different analytical approaches were applied in order to characterize biomass at both chemical and physical level. Combined statistical approaches were used to examine the relationships between carbon mineralization and chemical/physical characteristics. The results revealed that degradation was significantly and negatively correlated with the micro-porosity surface (MiS) (surface of pores of 0.3-1.5 nm of diameter). The multiple regressions performed by using partial least square model enabled describing biomass biodegradability under either aerobic and anaerobic condition by using micro-porosity and aromatic-C content (assumed to be representative of lignin) as independent variables (R2 =0.97, R2cv =0.95 for aerobic condition; R2 =0.99, R2cv =0.98 for anaerobic condition, respectively). These results corroborate the hypothesis that plant tissues are physically protected from enzymatic attack by a microporous "sheath" that limit penetration into cell wall, and demonstrate the key role played by aromatic carbon, because of its chemical protection of the other cell wall polymers and its contribution to the three-dimensional (3D) cell wall structure.

  16. New research perspectives from a novel approach to quantify tracheid wall thickness.

    PubMed

    Prendin, Angela Luisa; Petit, Giai; Carrer, Marco; Fonti, Patrick; Björklund, Jesper; von Arx, Georg

    2017-07-01

    The analysis of xylem cell anatomical features in dated tree rings provides insights into xylem functional responses and past growth conditions at intra-annual resolution. So far, special focus has been given to the lumen of the water-conducting cells, whereas the equally relevant cell wall thickness (CWT) has been less investigated due to methodological limitations. Here we present a novel approach to measure tracheid CWT in high-resolution images of wood cross-sections that is implemented within the specialized image-analysis tool 'ROXAS'. Compared with the traditional manual line measurements along a selection of few radial files, this novel image-analysis tool can: (i) measure CWT of all tracheids in a tree-ring cross-section, thus increasing the number of individual tracheid measurements by a factor of ~10-20; (ii) measure the tangential and radial walls separately; and (iii) laterally integrate the measurements in a customizable way from only the thinnest central part of the cell walls up to the thickest part of the tracheids at the corners. Cell wall thickness measurements performed with our novel approach and the traditional manual approach showed comparable accuracy for several image resolutions, with an optimal accuracy-efficiency balance at 100× magnification. The configurable settings intended to underscore different cell wall properties indeed changed the absolute levels and intra- and inter-annual patterns of CWT. This versatility, together with the high data production capacity, allows to tailor the measurements of CWT to the specific goal of each study, which opens new research perspectives, e.g., for investigating structure-function relationships, tree stress responses and carbon allocation patterns, and for reconstructing climate based on intra- and inter-annual variability of anatomical wood density. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption

    PubMed Central

    Luo, Ying; Wang, Jianguo; Liu, Bin; Wang, Zhouli; Yuan, Yahong; Yue, Tianli

    2015-01-01

    The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry. PMID:26295574

  18. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption.

    PubMed

    Luo, Ying; Wang, Jianguo; Liu, Bin; Wang, Zhouli; Yuan, Yahong; Yue, Tianli

    2015-01-01

    The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry.

  19. Changes in cell wall properties coincide with overexpression of extensin fusion proteins in suspension cultured tobacco cells.

    PubMed

    Tan, Li; Pu, Yunqiao; Pattathil, Sivakumar; Avci, Utku; Qian, Jin; Arter, Allison; Chen, Liwei; Hahn, Michael G; Ragauskas, Arthur J; Kieliszewski, Marcia J

    2014-01-01

    Extensins are one subfamily of the cell wall hydroxyproline-rich glycoproteins, containing characteristic SerHyp4 glycosylation motifs and intermolecular cross-linking motifs such as the TyrXaaTyr sequence. Extensins are believed to form a cross-linked network in the plant cell wall through the tyrosine-derivatives isodityrosine, pulcherosine, and di-isodityrosine. Overexpression of three synthetic genes encoding different elastin-arabinogalactan protein-extensin hybrids in tobacco suspension cultured cells yielded novel cross-linking glycoproteins that shared features of the extensins, arabinogalactan proteins and elastin. The cell wall properties of the three transgenic cell lines were all changed, but in different ways. One transgenic cell line showed decreased cellulose crystallinity and increased wall xyloglucan content; the second transgenic cell line contained dramatically increased hydration capacity and notably increased cell wall biomass, increased di-isodityrosine, and increased protein content; the third transgenic cell line displayed wall phenotypes similar to wild type cells, except changed xyloglucan epitope extractability. These data indicate that overexpression of modified extensins may be a route to engineer plants for bioenergy and biomaterial production.

  20. A novel beta-glucosidase from the cell wall of maize (Zea mays L.): rapid purification and partial characterization

    NASA Technical Reports Server (NTRS)

    Nematollahi, W. P.; Roux, S. J.

    1999-01-01

    Plants have a variety of glycosidic conjugates of hormones, defense compounds, and other molecules that are hydrolyzed by beta-glucosidases (beta-D-glucoside glucohydrolases, E.C. 3.2.1.21). Workers have reported several beta-glucosidases from maize (Zea mays L.; Poaceae), but have localized them mostly by indirect means. We have purified and partly characterized a 58-Ku beta-glucosidase from maize, which we conclude from a partial sequence analysis, from kinetic data, and from its localization is not identical to any of those already reported. A monoclonal antibody, mWP 19, binds this enzyme, and localizes it in the cell walls of maize coleoptiles. An earlier report showed that mWP19 inhibits peroxidase activity in crude cell wall extracts and can immunoprecipitate peroxidase activity from these extracts, yet purified preparations of the 58 Ku protein had little or no peroxidase activity. The level of sequence similarity between beta-glucosidases and peroxidases makes it unlikely that these enzymes share epitopes in common. Contrary to a previous conclusion, these results suggest that the enzyme recognized by mWP19 is not a peroxidase, but there is a wall peroxidase closely associated with the 58 Ku beta-glucosidase in crude preparations. Other workers also have co-purified distinct proteins with beta-glucosidases. We found no significant charge in the level of immunodetectable beta-glucosidase in mesocotyls or coleoptiles that precedes the red light-induced changes in the growth rate of these tissues.

  1. Mating-Induced Shedding of Cell Walls, Removal of Walls from Vegetative Cells, and Osmotic Stress Induce Presumed Cell Wall Genes in Chlamydomonas1

    PubMed Central

    Hoffmann, Xenia-Katharina; Beck, Christoph F.

    2005-01-01

    The first step in sexual differentiation of the unicellular green alga Chlamydomonas reinhardtii is the formation of gametes. Three genes, GAS28, GAS30, and GAS31, encoding Hyp-rich glycoproteins that presumably are cell wall constituents, are expressed in the late phase of gametogenesis. These genes, in addition, are activated by zygote formation and cell wall removal and by the application of osmotic stress. The induction by zygote formation could be traced to cell wall shedding prior to gamete fusion since it was seen in mutants defective in cell fusion. However, it was absent in mutants defective in the initial steps of mating, i.e. in flagellar agglutination and in accumulation of adenosine 3′,5′-cyclic monophosphate in response to this agglutination. Induction of the three GAS genes was also observed when cultures were exposed to hypoosmotic or hyperosmotic stress. To address the question whether the induction seen upon cell wall removal from both gametes and vegetative cells was elicited by osmotic stress, cell wall removal was performed under isosmotic conditions. Also under such conditions an activation of the genes was observed, suggesting that the signaling pathway(s) is (are) activated by wall removal itself. PMID:16183845

  2. Discovery of Novel Cell Wall-Active Compounds Using PywaC, a Sensitive Reporter of Cell Wall Stress, in the Model Gram-Positive Bacterium Bacillus subtilis

    PubMed Central

    Czarny, T. L.; Perri, A. L.; French, S.

    2014-01-01

    The emergence of antibiotic resistance in recent years has radically reduced the clinical efficacy of many antibacterial treatments and now poses a significant threat to public health. One of the earliest studied well-validated targets for antimicrobial discovery is the bacterial cell wall. The essential nature of this pathway, its conservation among bacterial pathogens, and its absence in human biology have made cell wall synthesis an attractive pathway for new antibiotic drug discovery. Herein, we describe a highly sensitive screening methodology for identifying chemical agents that perturb cell wall synthesis, using the model of the Gram-positive bacterium Bacillus subtilis. We report on a cell-based pilot screen of 26,000 small molecules to look for cell wall-active chemicals in real time using an autonomous luminescence gene cluster driven by the promoter of ywaC, which encodes a guanosine tetra(penta)phosphate synthetase that is expressed under cell wall stress. The promoter-reporter system was generally much more sensitive than growth inhibition testing and responded almost exclusively to cell wall-active antibiotics. Follow-up testing of the compounds from the pilot screen with secondary assays to verify the mechanism of action led to the discovery of 9 novel cell wall-active compounds. PMID:24687489

  3. Modifying lignin to improve bioenergy feedstocks: strengthening the barrier against pathogens?

    USDA-ARS?s Scientific Manuscript database

    Lignin is a ubiquitous polymer present in cell walls of all vascular plants, where it rigidifies and strengthens the cell wall structure through covalent cross-linkages to cell wall polysaccharides. The presence of lignin makes the cell wall recalcitrant to conversion into fermentable sugars for bi...

  4. Alteration of cell wall xylan acetylation triggers defense responses that counterbalance the immune deficiencies of plants impaired in the β-subunit of the heterotrimeric G-protein.

    PubMed

    Escudero, Viviana; Jordá, Lucía; Sopeña-Torres, Sara; Mélida, Hugo; Miedes, Eva; Muñoz-Barrios, Antonio; Swami, Sanjay; Alexander, Danny; McKee, Lauren S; Sánchez-Vallet, Andrea; Bulone, Vincent; Jones, Alan M; Molina, Antonio

    2017-11-01

    Arabidopsis heterotrimeric G-protein complex modulates pathogen-associated molecular pattern-triggered immunity (PTI) and disease resistance responses to different types of pathogens. It also plays a role in plant cell wall integrity as mutants impaired in the Gβ- (agb1-2) or Gγ-subunits have an altered wall composition compared with wild-type plants. Here we performed a mutant screen to identify suppressors of agb1-2 (sgb) that restore susceptibility to pathogens to wild-type levels. Out of the four sgb mutants (sgb10-sgb13) identified, sgb11 is a new mutant allele of ESKIMO1 (ESK1), which encodes a plant-specific polysaccharide O-acetyltransferase involved in xylan acetylation. Null alleles (sgb11/esk1-7) of ESK1 restore to wild-type levels the enhanced susceptibility of agb1-2 to the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM), but not to the bacterium Pseudomonas syringae pv. tomato DC3000 or to the oomycete Hyaloperonospora arabidopsidis. The enhanced resistance to PcBMM of the agb1-2 esk1-7 double mutant was not the result of the re-activation of deficient PTI responses in agb1-2. Alteration of cell wall xylan acetylation caused by ESK1 impairment was accompanied by an enhanced accumulation of abscisic acid, the constitutive expression of genes encoding antibiotic peptides and enzymes involved in the biosynthesis of tryptophan-derived metabolites, and the accumulation of disease resistance-related secondary metabolites and different osmolites. These esk1-mediated responses counterbalance the defective PTI and PcBMM susceptibility of agb1-2 plants, and explain the enhanced drought resistance of esk1 plants. These results suggest that a deficient PTI-mediated resistance is partially compensated by the activation of specific cell-wall-triggered immune responses. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  5. BdCESA7, BdCESA8, and BdPMT utility promoter constructs for targeted expression to secondary cell-wall-forming cells of grasses

    DOE PAGES

    Petrik, Deborah L.; Cass, Cynthia L.; Padmakshan, Dharshana; ...

    2016-02-04

    Utility vectors with promoters that confer desired spatial and temporal expression patterns are useful tools for studying gene and cellular function and for industrial applications. To target the expression of DNA sequences of interest to cells forming plant secondary cell walls, which generate most of the vegetative biomass, upstream regulatory sequences of the Brachypodium distachyon lignin biosynthetic gene BdPMT and the cellulose synthase genes BdCESA7 and BdCESA8 were isolated and cloned into binary vectors designed for Agrobacterium-mediated transformation of monocots. Expression patterns were assessed using the β-glucuronidase gene GUSPlus and X-glucuronide staining. All three promoters showed strong expression levels inmore » stem tissue at the base of internodes where cell wall deposition is most active, in both vascular bundle xylem vessels and tracheids, and in interfascicular tissues, with expression less pronounced in developmentally older tissues. In leaves, BdCESA7 and BdCESA8 promoter-driven expression was strongest in leaf veins, leaf margins, and trichomes; relatively weaker and patchy expression was observed in the epidermis. BdPMT promoter-driven expression was similar to the BdCESA promoters expression patterns, including strong expression in trichomes. The intensity and extent of GUS staining varied considerably between transgenic lines, suggesting that positional effects influenced promoter activity. Introducing the BdPMT and BdCESA8 Open Reading Frames into BdPMT and BdCESA8 utility promoter binary vectors, respectively, and transforming those constructs into Brachypodium pmt and cesa8 loss-of-function mutants resulted in rescue of the corresponding mutant phenotypes. This work therefore validates the functionality of these utility promoter binary vectors for use in Brachypodium and likely other grass species. Lastly, the identification, in Bdcesa8-1 T-DNA mutant stems, of an 80% reduction in crystalline cellulose levels confirms that the BdCESA8 gene is a secondary-cell-wall-forming cellulose synthase.« less

  6. BdCESA7, BdCESA8, and BdPMT utility promoter constructs for targeted expression to secondary cell-wall-forming cells of grasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrik, Deborah L.; Cass, Cynthia L.; Padmakshan, Dharshana

    Utility vectors with promoters that confer desired spatial and temporal expression patterns are useful tools for studying gene and cellular function and for industrial applications. To target the expression of DNA sequences of interest to cells forming plant secondary cell walls, which generate most of the vegetative biomass, upstream regulatory sequences of the Brachypodium distachyon lignin biosynthetic gene BdPMT and the cellulose synthase genes BdCESA7 and BdCESA8 were isolated and cloned into binary vectors designed for Agrobacterium-mediated transformation of monocots. Expression patterns were assessed using the β-glucuronidase gene GUSPlus and X-glucuronide staining. All three promoters showed strong expression levels inmore » stem tissue at the base of internodes where cell wall deposition is most active, in both vascular bundle xylem vessels and tracheids, and in interfascicular tissues, with expression less pronounced in developmentally older tissues. In leaves, BdCESA7 and BdCESA8 promoter-driven expression was strongest in leaf veins, leaf margins, and trichomes; relatively weaker and patchy expression was observed in the epidermis. BdPMT promoter-driven expression was similar to the BdCESA promoters expression patterns, including strong expression in trichomes. The intensity and extent of GUS staining varied considerably between transgenic lines, suggesting that positional effects influenced promoter activity. Introducing the BdPMT and BdCESA8 Open Reading Frames into BdPMT and BdCESA8 utility promoter binary vectors, respectively, and transforming those constructs into Brachypodium pmt and cesa8 loss-of-function mutants resulted in rescue of the corresponding mutant phenotypes. This work therefore validates the functionality of these utility promoter binary vectors for use in Brachypodium and likely other grass species. Lastly, the identification, in Bdcesa8-1 T-DNA mutant stems, of an 80% reduction in crystalline cellulose levels confirms that the BdCESA8 gene is a secondary-cell-wall-forming cellulose synthase.« less

  7. Complete Reconstitution of the Vancomycin-Intermediate Staphylococcus aureus Phenotype of Strain Mu50 in Vancomycin-Susceptible S. aureus

    PubMed Central

    Sekine, Miwa; Hishinuma, Tomomi; Aiba, Yoshifumi; Hiramatsu, Keiichi

    2016-01-01

    Complete reconstitution of the vancomycin-intermediate Staphylococcus aureus (VISA) phenotype of strain Mu50 was achieved by sequentially introducing mutations into six genes of vancomycin-susceptible S. aureus (VSSA) strain N315ΔIP. The six mutated genes were detected in VISA strain Mu50 but not in N315ΔIP. Introduction of the mutation Ser329Leu into vraS, encoding the sensor histidine kinase of the vraSR two-component regulatory (TCR) system, and another mutation, Glu146Lys, into msrR, belonging to the LytR-CpsA-Psr (LCP) family, increased the level of vancomycin resistance to that detected in heterogeneous vancomycin-intermediate S. aureus (hVISA) strain Mu3. Introduction of two more mutations, Asn197Ser into graR of the graSR TCR system and His481Tyr into rpoB, encoding the β subunit of RNA polymerase, converted the hVISA strain into a VISA strain with the same level of vancomycin resistance as Mu50. Surprisingly, however, the constructed quadruple mutant strain ΔIP4 did not have a thickened cell wall, a cardinal feature of the VISA phenotype. Subsequent study showed that cell wall thickening was an inducible phenotype in the mutant strain, whereas it was a constitutive one in Mu50. Finally, introduction of the Ala297Val mutation into fdh2, which encodes a putative formate dehydrogenase, or a 67-amino-acid sequence deletion into sle1 [sle1(Δ67aa)], encoding the hydrolase of N-acetylmuramyl-l-alanine amidase in the peptidoglycan, converted inducible cell wall thickening into constitutive cell wall thickening. sle1(Δ67aa) was found to cause a drastic decrease in autolysis activity. Thus, all six mutated genes required for acquisition of the VISA phenotype were directly or indirectly involved in the regulation of cell physiology. The VISA phenotype seemed to be achieved through multiple genetic events accompanying drastic changes in cell physiology. PMID:27067329

  8. Lower cell wall pectin solubilisation and galactose loss during early fruit development in apple (Malus x domestica) cultivar 'Scifresh' are associated with slower softening rate.

    PubMed

    Ng, Jovyn K T; Schröder, Roswitha; Brummell, David A; Sutherland, Paul W; Hallett, Ian C; Smith, Bronwen G; Melton, Laurence D; Johnston, Jason W

    2015-03-15

    Substantial differences in softening behaviour can exist between fruit even within the same species. Apple cultivars 'Royal Gala' and 'Scifresh' soften at different rates despite having a similar genetic background and producing similar amounts of ethylene during ripening. An examination of cell wall metabolism from the fruitlet to the ripe stages showed that in both cultivars pectin solubilisation increased during cell expansion, declined at the mature stage and then increased again during ripening. This process was much less pronounced in the slower softening 'Scifresh' than in 'Royal Gala' at every developmental stage examined, consistent with less cell separation and softening in this cultivar. Both cultivars also exhibited a progressive loss of pectic galactan and arabinan side chains during development. The cell wall content of arabinose residues was similar in both cultivars, but the galactose residue content in 'Scifresh' remained higher than that of 'Royal Gala' at every developmental stage. The higher content of cell wall galactose residue in 'Scifresh' cell walls correlated with a lower β-galactosidase activity and more intense immunolabelling of RG-I galactan side chains in both microscopy sections and glycan microarrays. A high cell wall galactan content has been associated with reduced cell wall porosity, which may restrict access of cell wall-modifying enzymes and thus maintain better structural integrity later in development. The data suggest that the composition and structure of the cell wall at very early development stages may influence subsequent cell wall loosening, and may even predispose the wall's ensuing properties. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Cell wall integrity modulates RHO1 activity via the exchange factor ROM2.

    PubMed Central

    Bickle, M; Delley, P A; Schmidt, A; Hall, M N

    1998-01-01

    The essential phosphatidylinositol kinase homologue TOR2 of Saccharomyces cerevisiae controls the actin cytoskeleton by activating a GTPase switch consisting of RHO1 (GTPase), ROM2 (GEF) and SAC7 (GAP). We have identified two mutations, rot1-1 and rot2-1, that suppress the loss of TOR2 and are synthetic-lethal. The wild-type ROT1 and ROT2 genes and a multicopy suppressor, BIG1, were isolated by their ability to rescue the rot1-1 rot2-1 double mutant. ROT2 encodes glucosidase II, and ROT1 and BIG1 encode novel proteins. We present evidence that cell wall defects activate RHO1. First, rot1, rot2, big1, cwh41, gas1 and fks1 mutations all confer cell wall defects and suppress tor2(ts). Second, destabilizing the cell wall by supplementing the growth medium with 0.005% SDS also suppresses a tor2(ts) mutation. Third, disturbing the cell wall with SDS or a rot1, rot2, big1, cwh41, gas1 or fks1 mutation increases GDP/GTP exchange activity toward RHO1. These results suggest that cell wall defects suppress a tor2 mutation by activating RHO1 independently of TOR2, thereby inducing TOR2-independent polarization of the actin cytoskeleton and cell wall synthesis. Activation of RHO1, a subunit of the cell wall synthesis enzyme glucan synthase, by a cell wall alteration would ensure that cell wall synthesis occurs only when and where needed. The mechanism of RHO1 activation by a cell wall alteration is via the exchange factor ROM2 and could be analogous to signalling by integrin receptors in mammalian cells. PMID:9545237

  10. Characterization of a cinnamoyl-CoA reductase 1 (CCR1) mutant in maize: effects on lignification, fibre development, and global gene expression

    PubMed Central

    Tamasloukht, Barek; Wong Quai Lam, Mary Sarah-Jane; Martinez, Yves; Tozo, Koffi; Barbier, Odile; Jourda, Cyril; Jauneau, Alain; Borderies, Gisèle; Balzergue, Sandrine; Renou, Jean-Pierre; Huguet, Stéphanie; Martinant, Jean Pierre; Tatout, Christophe; Lapierre, Catherine; Barrière, Yves; Goffner, Deborah; Pichon, Magalie

    2011-01-01

    Cinnamoyl-CoA reductase (CCR), which catalyses the first committed step of the lignin-specific branch of monolignol biosynthesis, has been extensively characterized in dicot species, but few data are available in monocots. By screening a Mu insertional mutant collection in maize, a mutant in the CCR1 gene was isolated named Zmccr1–. In this mutant, CCR1 gene expression is reduced to 31% of the residual wild-type level. Zmccr1– exhibited enhanced digestibility without compromising plant growth and development. Lignin analysis revealed a slight decrease in lignin content and significant changes in lignin structure. p-Hydroxyphenyl units were strongly decreased and the syringyl/guaiacyl ratio was slightly increased. At the cellular level, alterations in lignin deposition were mainly observed in the walls of the sclerenchymatic fibre cells surrounding the vascular bundles. These cell walls showed little to no staining with phloroglucinol. These histochemical changes were accompanied by an increase in sclerenchyma surface area and an alteration in cell shape. In keeping with this cell type-specific phenotype, transcriptomics performed at an early stage of plant development revealed the down-regulation of genes specifically associated with fibre wall formation. To the present authors’ knowledge, this is the first functional characterization of CCR1 in a grass species. PMID:21493812

  11. DISTRIBUTION OF RADIOACTIVITY IN AUTOLYZED CELL WALL OF BACILLUS CEREUS DURING SPHEROPLAST FORMATION1

    PubMed Central

    Kronish, Donald P.; Mohan, Raam R.; Schwartz, Benjamin S.

    1964-01-01

    Kronish, Donald P. (Warner-Lambert Research Institute, Morris Plains, N.J.), Raam R. Mohan, and Benjamin S. Schwartz. Distribution of radioactivity in autolyzed cell wall of Bacillus cereus during spheroplast formation. J. Bacteriol. 87:581–587. 1964.—Spheroplasts of Bacillus cereus strain T were produced from cells grown in the presence of uniformly labeled C14-glucose. At regular intervals during spheroplast formation, enzymatically degraded cell wall was isolated by a new procedure. Radioactivity of solubilized cell wall in cell-free material increased from 2.5 to 42% of the total incorporated label during spheroplast formation. The rate of cell-wall degradation as measured by increase in radioactivity was biphasic with relative slopes of 2.0 and 5.0. During autolytic depolymerization of B. cereus cell wall, two major components were solubilized at different rates. Chemical fractionation revealed these to be a peptide and a mucopeptide. The possibility of two enzymes being involved in spheroplast formation and cell-wall degradation is discussed. Images PMID:14127573

  12. Genotoxicity of short single-wall and multi-wall carbon nanotubes in human bronchial epithelial and mesothelial cells in vitro.

    PubMed

    Lindberg, Hanna K; Falck, Ghita C-M; Singh, Rajinder; Suhonen, Satu; Järventaus, Hilkka; Vanhala, Esa; Catalán, Julia; Farmer, Peter B; Savolainen, Kai M; Norppa, Hannu

    2013-11-08

    Although some types of carbon nanotubes (CNTs) have been described to induce mesothelioma in rodents and genotoxic effects in various cell systems, there are few previous studies on the genotoxicity of CNTs in mesothelial cells. Here, we examined in vitro DNA damage induction by short multi-wall CNTs (MWCNTs; 10-30 nm × 1-2 μm) and single-wall CNTs (SWCNTs; >50% SWCNTs, ~40% other CNTs; <2 nm × 1-5 μm) in human mesothelial (MeT-5A) cells and bronchial epithelial (BEAS 2B) cells, using the single cell gel electrophoresis (comet) assay and the immunoslot blot assay for the detection of malondialdehyde (M1dG) DNA adducts. In BEAS 2B cells, we also studied the induction of micronuclei (MN) by the CNTs using the cytokinesis-block method. The cells were exposed to the CNTs (5-200 μg/cm(2), corresponding to 19-760 μg/ml) for 24 and 48h in the comet assay and for 48 and 72 h in the MN and M1dG assays. Transmission electron microscopy (TEM) showed more MWCNT fibres and SWCNT clusters in BEAS 2B than MeT-5A cells, but no significant differences were seen in intracellular dose expressed as area of SWCNT clusters between TEM sections of the cell lines. In MeT-5A cells, both CNTs caused a dose-dependent induction of DNA damage (% DNA in comet tail) in the 48-h treatment and SWCNTs additionally in the 24-h treatment, with a statistically significant increase at 40 μg/cm(2) of SWCNTs and (after 48 h) 80 μg/cm(2) of both CNTs. SWCNTs also elevated the level of M1dG DNA adducts at 1, 5, 10 and 40 μg/cm(2) after the 48-h treatment, but both CNTs decreased M1dG adduct level at several doses after the 72-h treatment. In BEAS 2B cells, SWCNTs induced a statistically significant increase in DNA damage at 80 and 120 μg/cm(2) after the 24-h treatment and in M1dG adduct level at 5 μg/cm(2) after 48 h and 10 and 40 μg/cm(2) after 72 h; MWCNTs did not affect the level of DNA damage but produced a decrease in M1dG adducts in the 72-h treatment. The CNTs did not affect the level of MN. In conclusion, MWCNTs and SWCNTs induced DNA damage in MeT-5A cells but showed a lower (SWCNTs) or no (MWCNTs) effect in BEAS 2B cells, suggesting that MeT-5A cells were more sensitive to the DNA-damaging effect of CNTs than BEAS 2B cells, despite the fact that more CNT fibres or clusters were seen in BEAS 2B than MeT-5A cells. M1dG DNA adducts were induced by SWCNTs but decreased after a 3-day exposure to MWCNTs and (in MeT-5A cells) SWCNTs, indicating that CNTs may lead to alterations in oxidative effects within the cells. Neither of the CNTs was able to produce chromosomal damage (MN). Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis.

    PubMed

    Schindelman, G; Morikami, A; Jung, J; Baskin, T I; Carpita, N C; Derbyshire, P; McCann, M C; Benfey, P N

    2001-05-01

    To control organ shape, plant cells expand differentially. The organization of the cellulose microfibrils in the cell wall is a key determinant of differential expansion. Mutations in the COBRA (COB) gene of Arabidopsis, known to affect the orientation of cell expansion in the root, are reported here to reduce the amount of crystalline cellulose in cell walls in the root growth zone. The COB gene, identified by map-based cloning, contains a sequence motif found in proteins that are anchored to the extracellular surface of the plasma membrane through a glycosylphosphatidylinositol (GPI) linkage. In animal cells, this lipid linkage is known to confer polar localization to proteins. The COB protein was detected predominately on the longitudinal sides of root cells in the zone of rapid elongation. Moreover, COB RNA levels are dramatically upregulated in cells entering the zone of rapid elongation. Based on these results, models are proposed for the role of COB as a regulator of oriented cell expansion.

  14. COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis

    PubMed Central

    Schindelman, Gary; Morikami, Atsushi; Jung, Jee; Baskin, Tobias I.; Carpita, Nicholas C.; Derbyshire, Paul; McCann, Maureen C.; Benfey, Philip N.

    2001-01-01

    To control organ shape, plant cells expand differentially. The organization of the cellulose microfibrils in the cell wall is a key determinant of differential expansion. Mutations in the COBRA (COB) gene of Arabidopsis, known to affect the orientation of cell expansion in the root, are reported here to reduce the amount of crystalline cellulose in cell walls in the root growth zone. The COB gene, identified by map-based cloning, contains a sequence motif found in proteins that are anchored to the extracellular surface of the plasma membrane through a glycosylphosphatidylinositol (GPI) linkage. In animal cells, this lipid linkage is known to confer polar localization to proteins. The COB protein was detected predominately on the longitudinal sides of root cells in the zone of rapid elongation. Moreover, COB RNA levels are dramatically upregulated in cells entering the zone of rapid elongation. Based on these results, models are proposed for the role of COB as a regulator of oriented cell expansion. PMID:11331607

  15. How does climate influence xylem morphogenesis over the growing season? Insights from long-term intra-ring anatomy in Picea abies.

    PubMed

    Castagneri, Daniele; Fonti, Patrick; von Arx, Georg; Carrer, Marco

    2017-04-01

    During the growing season, the cambium of conifer trees produces successive rows of xylem cells, the tracheids, that sequentially pass through the phases of enlargement and secondary wall thickening before dying and becoming functional. Climate variability can strongly influence the kinetics of morphogenetic processes, eventually affecting tracheid shape and size. This study investigates xylem anatomical structure in the stem of Picea abies to retrospectively infer how, in the long term, climate affects the processes of cell enlargement and wall thickening. Tracheid anatomical traits related to the phases of enlargement (diameter) and wall thickening (wall thickness) were innovatively inspected at the intra-ring level on 87-year-long tree-ring series in Picea abies trees along a 900 m elevation gradient in the Italian Alps. Anatomical traits in ten successive tree-ring sectors were related to daily temperature and precipitation data using running correlations. Close to the altitudinal tree limit, low early-summer temperature negatively affected cell enlargement. At lower elevation, water availability in early summer was positively related to cell diameter. The timing of these relationships shifted forward by about 20 (high elevation) to 40 (low elevation) d from the first to the last tracheids in the ring. Cell wall thickening was affected by climate in a different period in the season. In particular, wall thickness of late-formed tracheids was strongly positively related to August-September temperature at high elevation. Morphogenesis of tracheids sequentially formed in the growing season is influenced by climate conditions in successive periods. The distinct climate impacts on cell enlargement and wall thickening indicate that different morphogenetic mechanisms are responsible for different tracheid traits. Our approach of long-term and high-resolution analysis of xylem anatomy can support and extend short-term xylogenesis observations, and increase our understanding of climate control of tree growth and functioning under different environmental conditions. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. The chaotrope-soluble glycoprotein GP1 is a constituent of the insoluble glycoprotein framework of the Chlamydomonas cell wall.

    PubMed

    Voigt, Jürgen; Frank, Ronald; Wöstemeyer, Johannes

    2009-02-01

    Chlamydomonas reinhardtii wild-type cells are surrounded by the insoluble cell wall component, a sac-like framework of cross-linked glycoproteins containing 22% hydroxyproline. The chaotrope-soluble cell wall glycoprotein GP1 is the only polypeptide with an even higher proportion of hydroxyproline (35%) occurring in vegetative C. reinhardtii cells. Mass spectrometric analyses of peptides released from the purified insoluble cell wall fraction by trypsin treatment and epitope analyses of polyclonal antibodies raised against different deglycosylation products of this particular wall fraction using 181 chemically synthesized GP1-derived pentadecapeptides revealed evidence that GP1 is indeed a constituent of the insoluble wall component.

  17. Isolation and characterization of beta-glucan synthase: A potential biochemical regulator of gravistimulated differential cell wall loosening

    NASA Technical Reports Server (NTRS)

    Kuzmanoff, K. M.

    1984-01-01

    In plants, gravity stimulates differential growth in the upper and lower halves of horizontally oriented organs. Auxin regulation of cell wall loosening and elongation is the basis for most models of this phenomenon. Auxin treatment of pea stem tissue rapidly increases the activity of Golgi-localized Beta-1,4-glucan synthase, an enzyme involved in biosynthesis of wall xyloglucan which apparently constitutes the substrate for the wall loosening process. The primary objective is to determine if auxin induces de novo formation of Golgi glucan synthase and increases the level of this glucan synthase mRNA. This shall be accomplished by (a) preparation of a monoclonal antibody to the synthase, (b) isolation, and characterization of the glucan synthase, and (c) examination for cross reactivity between the antibody and translation products of auxin induced mRNAs in pea tissue. The antibody will also be used to localize the glucan synthase in upper and lower halves of pea stem tissue before, during and after the response to gravity.

  18. Calcium deprivation disrupts enlargement of Chara corallina cells: further evidence for the calcium pectate cycle.

    PubMed

    Proseus, Timothy E; Boyer, John S

    2012-06-01

    Pectin is a normal constituent of cell walls of green plants. When supplied externally to live cells or walls isolated from the large-celled green alga Chara corallina, pectin removes calcium from load-bearing cross-links in the wall, loosening the structure and allowing it to deform more rapidly under the action of turgor pressure. New Ca(2+) enters the vacated positions in the wall and the externally supplied pectin binds to the wall, depositing new wall material that strengthens the wall. A calcium pectate cycle has been proposed for these sub-reactions. In the present work, the cycle was tested in C. corallina by depriving the wall of external Ca(2+) while allowing the cycle to run. The prediction is that growth would eventually be disrupted by a lack of adequate deposition of new wall. The test involved adding pectate or the calcium chelator EGTA to the Ca(2+)-containing culture medium to bind the calcium while the cycle ran in live cells. After growth accelerated, turgor and growth eventually decreased, followed by an abrupt turgor loss and growth cessation. The same experiment with isolated walls suggested the walls of live cells became unable to support the plasma membrane. If instead the pectate or EGTA was replaced with fresh Ca(2+)-containing culture medium during the initial acceleration in live cells, growth was not disrupted and returned to the original rates. The operation of the cycle was thus confirmed, providing further evidence that growth rates and wall biosynthesis are controlled by these sub-reactions in plant cell walls.

  19. Branched Pectic Galactan in Phloem-Sieve-Element Cell Walls: Implications for Cell Mechanics.

    PubMed

    Torode, Thomas A; O'Neill, Rachel; Marcus, Susan E; Cornuault, Valérie; Pose, Sara; Lauder, Rebecca P; Kračun, Stjepan K; Rydahl, Maja Gro; Andersen, Mathias C F; Willats, William G T; Braybrook, Siobhan A; Townsend, Belinda J; Clausen, Mads H; Knox, J Paul

    2018-02-01

    A major question in plant biology concerns the specification and functional differentiation of cell types. This is in the context of constraints imposed by networks of cell walls that both adhere cells and contribute to the form and function of developing organs. Here, we report the identification of a glycan epitope that is specific to phloem sieve element cell walls in several systems. A monoclonal antibody, designated LM26, binds to the cell wall of phloem sieve elements in stems of Arabidopsis ( Arabidopsis thaliana ), Miscanthus x giganteus , and notably sugar beet ( Beta vulgaris ) roots where phloem identification is an important factor for the study of phloem unloading of Suc. Using microarrays of synthetic oligosaccharides, the LM26 epitope has been identified as a β-1,6-galactosyl substitution of β-1,4-galactan requiring more than three backbone residues for optimized recognition. This branched galactan structure has previously been identified in garlic ( Allium sativum ) bulbs in which the LM26 epitope is widespread throughout most cell walls including those of phloem cells. Garlic bulb cell wall material has been used to confirm the association of the LM26 epitope with cell wall pectic rhamnogalacturonan-I polysaccharides. In the phloem tissues of grass stems, the LM26 epitope has a complementary pattern to that of the LM5 linear β-1,4-galactan epitope, which is detected only in companion cell walls. Mechanical probing of transverse sections of M x giganteus stems and leaves by atomic force microscopy indicates that phloem sieve element cell walls have a lower indentation modulus (indicative of higher elasticity) than companion cell walls. © 2018 The author(s). All Rights Reserved.

  20. Viscoelastic properties of cell walls of single living plant cells determined by dynamic nanoindentation

    PubMed Central

    Hayot, Céline M.; Forouzesh, Elham; Goel, Ashwani; Avramova, Zoya; Turner, Joseph A.

    2012-01-01

    Plant development results from controlled cell divisions, structural modifications, and reorganizations of the cell wall. Thereby, regulation of cell wall behaviour takes place at multiple length scales involving compositional and architectural aspects in addition to various developmental and/or environmental factors. The physical properties of the primary wall are largely determined by the nature of the complex polymer network, which exhibits time-dependent behaviour representative of viscoelastic materials. Here, a dynamic nanoindentation technique is used to measure the time-dependent response and the viscoelastic behaviour of the cell wall in single living cells at a micron or sub-micron scale. With this approach, significant changes in storage (stiffness) and loss (loss of energy) moduli are captured among the tested cells. The results reveal hitherto unknown differences in the viscoelastic parameters of the walls of same-age similarly positioned cells of the Arabidopsis ecotypes (Col 0 and Ws 2). The technique is also shown to be sensitive enough to detect changes in cell wall properties in cells deficient in the activity of the chromatin modifier ATX1. Extensive computational modelling of the experimental measurements (i.e. modelling the cell as a viscoelastic pressure vessel) is used to analyse the influence of the wall thickness, as well as the turgor pressure, at the positions of our measurements. By combining the nanoDMA technique with finite element simulations quantifiable measurements of the viscoelastic properties of plant cell walls are achieved. Such techniques are expected to find broader applications in quantifying the influence of genetic, biological, and environmental factors on the nanoscale mechanical properties of the cell wall. PMID:22291130

  1. Reconstitution of a secondary cell wall in a secondary cell wall-deficient Arabidopsis mutant.

    PubMed

    Sakamoto, Shingo; Mitsuda, Nobutaka

    2015-02-01

    The secondary cell wall constitutes a rigid frame of cells in plant tissues where rigidity is required. Deposition of the secondary cell wall in fiber cells contributes to the production of wood in woody plants. The secondary cell wall is assembled through co-operative activities of many enzymes, and their gene expression is precisely regulated by a pyramidal cascade of transcription factors. Deposition of a transmuted secondary cell wall in empty fiber cells by expressing selected gene(s) in this cascade has not been attempted previously. In this proof-of-concept study, we expressed chimeric activators of 24 transcription factors that are preferentially expressed in the stem, in empty fiber cells of the Arabidopsis nst1-1 nst3-1 double mutant, which lacks a secondary cell wall in fiber cells, under the control of the NST3 promoter. The chimeric activators of MYB46, SND2 and ANAC075, as well as NST3, reconstituted a secondary cell wall with different characteristics from those of the wild type in terms of its composition. The transgenic lines expressing the SND2 or ANAC075 chimeric activator showed increased glucose and xylose, and lower lignin content, whereas the transgenic line expressing the MYB46 chimeric activator showed increased mannose content. The expression profile of downstream genes in each transgenic line was also different from that of the wild type. This study proposed a new screening strategy to identify factors of secondary wall formation and also suggested the potential of the artificially reconstituted secondary cell walls as a novel raw material for production of bioethanol and other chemicals. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  2. The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells

    PubMed Central

    2011-01-01

    Background The leaf epidermis is an important architectural control element that influences the growth properties of underlying tissues and the overall form of the organ. In dicots, interdigitated pavement cells are the building blocks of the tissue, and their morphogenesis includes the assembly of specialized cell walls that surround the apical, basal, and lateral (anticlinal) cell surfaces. The microtubule and actin cytoskeletons are highly polarized along the cortex of the anticlinal wall; however, the relationships between these arrays and cell morphogenesis are unclear. Results We developed new quantitative tools to compare population-level growth statistics with time-lapse imaging of cotyledon pavement cells in an intact tissue. The analysis revealed alternating waves of lobe initiation and a phase of lateral isotropic expansion that persisted for days. During lateral isotropic diffuse growth, microtubule organization varied greatly between cell surfaces. Parallel microtubule bundles were distributed unevenly along the anticlinal surface, with subsets marking stable cortical domains at cell indentations and others clearly populating the cortex within convex cell protrusions. Conclusions Pavement cell morphogenesis is discontinuous, and includes punctuated phases of lobe initiation and lateral isotropic expansion. In the epidermis, lateral isotropic growth is independent of pavement cell size and shape. Cortical microtubules along the upper cell surface and stable cortical patches of anticlinal microtubules may coordinate the growth behaviors of orthogonal cell walls. This work illustrates the importance of directly linking protein localization data to the growth behavior of leaf epidermal cells. PMID:21284861

  3. The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells.

    PubMed

    Zhang, Chunhua; Halsey, Leah E; Szymanski, Daniel B

    2011-02-01

    The leaf epidermis is an important architectural control element that influences the growth properties of underlying tissues and the overall form of the organ. In dicots, interdigitated pavement cells are the building blocks of the tissue, and their morphogenesis includes the assembly of specialized cell walls that surround the apical, basal, and lateral (anticlinal) cell surfaces. The microtubule and actin cytoskeletons are highly polarized along the cortex of the anticlinal wall; however, the relationships between these arrays and cell morphogenesis are unclear. We developed new quantitative tools to compare population-level growth statistics with time-lapse imaging of cotyledon pavement cells in an intact tissue. The analysis revealed alternating waves of lobe initiation and a phase of lateral isotropic expansion that persisted for days. During lateral isotropic diffuse growth, microtubule organization varied greatly between cell surfaces. Parallel microtubule bundles were distributed unevenly along the anticlinal surface, with subsets marking stable cortical domains at cell indentations and others clearly populating the cortex within convex cell protrusions. Pavement cell morphogenesis is discontinuous, and includes punctuated phases of lobe initiation and lateral isotropic expansion. In the epidermis, lateral isotropic growth is independent of pavement cell size and shape. Cortical microtubules along the upper cell surface and stable cortical patches of anticlinal microtubules may coordinate the growth behaviors of orthogonal cell walls. This work illustrates the importance of directly linking protein localization data to the growth behavior of leaf epidermal cells.

  4. Electron Tomography of Cryo-Immobilized Plant Tissue: A Novel Approach to Studying 3D Macromolecular Architecture of Mature Plant Cell Walls In Situ

    PubMed Central

    Sarkar, Purbasha; Bosneaga, Elena; Yap, Edgar G.; Das, Jyotirmoy; Tsai, Wen-Ting; Cabal, Angelo; Neuhaus, Erica; Maji, Dolonchampa; Kumar, Shailabh; Joo, Michael; Yakovlev, Sergey; Csencsits, Roseann; Yu, Zeyun; Bajaj, Chandrajit; Downing, Kenneth H.; Auer, Manfred

    2014-01-01

    Cost-effective production of lignocellulosic biofuel requires efficient breakdown of cell walls present in plant biomass to retrieve the wall polysaccharides for fermentation. In-depth knowledge of plant cell wall composition is therefore essential for improving the fuel production process. The precise spatial three-dimensional (3D) organization of cellulose, hemicellulose, pectin and lignin within plant cell walls remains unclear to date since the microscopy techniques used so far have been limited to two-dimensional, topographic or low-resolution imaging, or required isolation or chemical extraction of the cell walls. In this paper we demonstrate that by cryo-immobilizing fresh tissue, then either cryo-sectioning or freeze-substituting and resin embedding, followed by cryo- or room temperature (RT) electron tomography, respectively, we can visualize previously unseen details of plant cell wall architecture in 3D, at macromolecular resolution (∼2 nm), and in near-native state. Qualitative and quantitative analyses showed that wall organization of cryo-immobilized samples were preserved remarkably better than conventionally prepared samples that suffer substantial extraction. Lignin-less primary cell walls were well preserved in both self-pressurized rapidly frozen (SPRF), cryo-sectioned samples as well as high-pressure frozen, freeze-substituted and resin embedded (HPF-FS-resin) samples. Lignin-rich secondary cell walls appeared featureless in HPF-FS-resin sections presumably due to poor stain penetration, but their macromolecular features could be visualized in unprecedented details in our cryo-sections. While cryo-tomography of vitreous tissue sections is currently proving to be instrumental in developing 3D models of lignin-rich secondary cell walls, here we confirm that the technically easier method of RT-tomography of HPF-FS-resin sections could be used immediately for routine study of low-lignin cell walls. As a proof of principle, we characterized the primary cell walls of a mutant (cob-6) and wild type Arabidopsis hypocotyl parenchyma cells by RT-tomography of HPF-FS-resin sections, and detected a small but significant difference in spatial organization of cellulose microfibrils in the mutant walls. PMID:25207917

  5. Sox10 Expressing Cells in the Lateral Wall of the Aged Mouse and Human Cochlea

    PubMed Central

    Hao, Xinping; Xing, Yazhi; Moore, Michael W.; Zhang, Jianning; Han, Demin; Schulte, Bradley A.; Dubno, Judy R.; Lang, Hainan

    2014-01-01

    Age-related hearing loss (presbycusis) is a common human disorder, affecting one in three Americans aged 60 and over. Previous studies have shown that presbyacusis is associated with a loss of non-sensory cells in the cochlear lateral wall. Sox10 is a transcription factor crucial to the development and maintenance of neural crest-derived cells including some non-sensory cell types in the cochlea. Mutations of the Sox10 gene are known to cause various combinations of hearing loss and pigmentation defects in humans. This study investigated the potential relationship between Sox10 gene expression and pathological changes in the cochlear lateral wall of aged CBA/CaJ mice and human temporal bones from older donors. Cochlear tissues prepared from young adult (1–3 month-old) and aged (2–2.5 year-old) mice, and human temporal bone donors were examined using quantitative immunohistochemical analysis and transmission electron microscopy. Cells expressing Sox10 were present in the stria vascularis, outer sulcus and spiral prominence in mouse and human cochleas. The Sox10+ cell types included marginal and intermediate cells and outer sulcus cells, including those that border the scala media and those extending into root processes (root cells) in the spiral ligament. Quantitative analysis of immunostaining revealed a significant decrease in the number of Sox10+ marginal cells and outer sulcus cells in aged mice. Electron microscopic evaluation revealed degenerative alterations in the surviving Sox10+ cells in aged mice. Strial marginal cells in human cochleas from donors aged 87 and older showed only weak immunostaining for Sox10. Decreases in Sox10 expression levels and a loss of Sox10+ cells in both mouse and human aged ears suggests an important role of Sox10 in the maintenance of structural and functional integrity of the lateral wall. A loss of Sox10+ cells may also be associated with a decline in the repair capabilities of non-sensory cells in the aged ear. PMID:24887110

  6. Tools to Understand Structural Property Relationships for Wood Cell Walls

    Treesearch

    Joseph E. Jakes; Daniel J. Yelle; Charles R. Frihart

    2011-01-01

    Understanding structure-property relationships for wood cell walls has been hindered by the complex polymeric structures comprising these cell walls and the difficulty in assessing meaningful mechanical property measurements of individual cell walls. To help overcome these hindrances, we have developed two experimental methods: 1) two-dimensional solution state nuclear...

  7. The plant cell wall integrity maintenance mechanism--a case study of a cell wall plasma membrane signaling network.

    PubMed

    Hamann, Thorsten

    2015-04-01

    Some of the most important functions of plant cell walls are protection against biotic/abiotic stress and structural support during growth and development. A prerequisite for plant cell walls to perform these functions is the ability to perceive different types of stimuli in both qualitative and quantitative manners and initiate appropriate responses. The responses in turn involve adaptive changes in cellular and cell wall metabolism leading to modifications in the structures originally required for perception. While our knowledge about the underlying plant mechanisms is limited, results from Saccharomyces cerevisiae suggest the cell wall integrity maintenance mechanism represents an excellent example to illustrate how the molecular mechanisms responsible for stimulus perception, signal transduction and integration can function. Here I will review the available knowledge about the yeast cell wall integrity maintenance system for illustration purposes, summarize the limited knowledge available about the corresponding plant mechanism and discuss the relevance of the plant cell wall integrity maintenance mechanism in biotic stress responses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Building and degradation of secondary cell walls: are there common patterns of lamellar assembly of cellulose microfibrils and cell wall delamination?

    PubMed

    De Micco, Veronica; Ruel, Katia; Joseleau, Jean-Paul; Aronne, Giovanna

    2010-08-01

    During cell wall formation and degradation, it is possible to detect cellulose microfibrils assembled into thicker and thinner lamellar structures, respectively, following inverse parallel patterns. The aim of this study was to analyse such patterns of microfibril aggregation and cell wall delamination. The thickness of microfibrils and lamellae was measured on digital images of both growing and degrading cell walls viewed by means of transmission electron microscopy. To objectively detect, measure and classify microfibrils and lamellae into thickness classes, a method based on the application of computerized image analysis combined with graphical and statistical methods was developed. The method allowed common classes of microfibrils and lamellae in cell walls to be identified from different origins. During both the formation and degradation of cell walls, a preferential formation of structures with specific thickness was evidenced. The results obtained with the developed method allowed objective analysis of patterns of microfibril aggregation and evidenced a trend of doubling/halving lamellar structures, during cell wall formation/degradation in materials from different origin and which have undergone different treatments.

  9. Effect of Trimethylamine N-Oxide on Interfacial Electrostatics at Phospholipid Monolayer-Water Interfaces and Its Relevance to Cardiovascular Disease.

    PubMed

    Mondal, Jahur A

    2016-05-05

    Trimethylamine N-oxide (TMAO), a metabolite of choline containing dietary nutrients which are abundant in red meat, egg, and other animal foods, increases the risk of cardiovascular disease (e.g., atherosclerosis) by boosted accumulation of fatty deposits on artery wall. Hence, for the molecular level elucidation of the pathogenesis of atherosclerosis, it is important to understand the effect of TMAO at the endothelial cell membrane-blood interface (artery wall). Heterodyne-detected vibrational sum frequency generation (HD-VSFG) study of a zwitterionic phosphatidylcholine (PC) lipid monolayer-water interface (mimic of endothelial membrane-blood interface) shows that the interfacial water becomes increasingly H-up oriented in the presence of TMAO in the aqueous phase, revealing a dramatic change in the interfacial electrostatics. Examinations of charged lipid interfaces show that TMAO screens anionic phosphate less effectively than cationic choline, which confirms that TMAO increases the relative influence of the anionic phosphate by preferential screening of the cationic choline at the zwitterionic PC lipid interface where the phosphate and choline groups are simultaneously present. Together, it is conceivable that at an elevated TMAO level in serum would modify the electrostatics at the endothelial cell membrane-blood interface (artery wall), which may affect the influx/efflux of fatty deposits on artery wall, setting the stage for atherosclerosis.

  10. Fe biomineralization mirrors individual metabolic activity in a nitrate-dependent Fe(II)-oxidizer

    PubMed Central

    Miot, Jennyfer; Remusat, Laurent; Duprat, Elodie; Gonzalez, Adriana; Pont, Sylvain; Poinsot, Mélanie

    2015-01-01

    Microbial biomineralization sometimes leads to periplasmic encrustation, which is predicted to enhance microorganism preservation in the fossil record. Mineral precipitation within the periplasm is, however, thought to induce death, as a result of permeability loss preventing nutrient and waste transit across the cell wall. This hypothesis had, however, never been investigated down to the single cell level. Here, we cultured the nitrate reducing Fe(II) oxidizing bacteria Acidovorax sp. strain BoFeN1 that have been previously shown to promote the precipitation of a diversity of Fe minerals (lepidocrocite, goethite, Fe phosphate) encrusting the periplasm. We investigated the connection of Fe biomineralization with carbon assimilation at the single cell level, using a combination of electron microscopy and Nano-Secondary Ion Mass Spectrometry. Our analyses revealed strong individual heterogeneities of Fe biomineralization. Noteworthy, a small proportion of cells remaining free of any precipitate persisted even at advanced stages of biomineralization. Using pulse chase experiments with 13C-acetate, we provide evidence of individual phenotypic heterogeneities of carbon assimilation, correlated with the level of Fe biomineralization. Whereas non- and moderately encrusted cells were able to assimilate acetate, higher levels of periplasmic encrustation prevented any carbon incorporation. Carbon assimilation only depended on the level of Fe encrustation and not on the nature of Fe minerals precipitated in the cell wall. Carbon assimilation decreased exponentially with increasing cell-associated Fe content. Persistence of a small proportion of non-mineralized and metabolically active cells might constitute a survival strategy in highly ferruginous environments. Eventually, our results suggest that periplasmic Fe biomineralization may provide a signature of individual metabolic status, which could be looked for in the fossil record and in modern environmental samples. PMID:26441847

  11. Differential expression of α-L-arabinofuranosidases during maize (Zea mays L.) root elongation.

    PubMed

    Kozlova, Liudmila V; Gorshkov, Oleg V; Mokshina, Natalia E; Gorshkova, Tatyana A

    2015-05-01

    Specific α- l -arabinofuranosidases are involved in the realisation of elongation growth process in cells with type II cell walls. Elongation growth in a plant cell is largely based on modification of the cell wall. In type II cell walls, the Ara/Xyl ratio is known to decrease during elongation due to the partial removal of Ara residues from glucuronoarabinoxylan. We searched within the maize genome for the genes of all predicted α-L-arabinofuranosidases that may be responsible for such a process and related their expression to the activity of the enzyme and the amount of free arabinose measured in six zones of a growing maize root. Eight genes of the GH51 family (ZmaABFs) and one gene of the GH3 family (ZmaARA-I) were identified. The abundance of ZmaABF1 and 3-6 transcripts was highly correlated with the measured enzymatic activity and free arabinose content that significantly increased during elongation. The transcript abundances also coincided with the pattern of changes in the Ara/Xyl ratio of the xylanase-extractable glucuronoarabinoxylan described in previous studies. The expression of ZmaABF3, 5 and 6 was especially up-regulated during elongation although corresponding proteins are devoid of the catalytic glutamate at the proper position. ZmaABF2 transcripts were specifically enriched in the root cap and meristem. A single ZmaARA-I gene was not expressed as a whole gene but instead as splice variants that encode the C-terminal end of the protein. Changes in the ZmaARA-I transcript level were rather moderate and had no significant correlation with free arabinose content. Thus, elongation growth of cells with type II cell walls is accompanied by the up-regulation of specific and predicted α-L-arabinofuranosidase genes, and the corresponding activity is indeed pronounced and is important for the modification of glucuronoarabinoxylan, which plays a key role in the modification of the cell wall supramolecular organisation.

  12. The role of heat shock proteins in protection and pathophysiology of the arterial wall.

    PubMed

    Xu, Q; Wick, G

    1996-09-01

    The arterial wall is an integrated functional component of the circulatory system that is continually remodelling in response to various stressors, including localized injury, toxins, smoking and hypercholesterolaemia. These stimuli directly or indirectly cause changes in blood pressure and damage to the vessel wall, and eventually induce arterial stiffness and obstruction. To maintain the homeostasis of the vessel wall, the vascular cells produce a high level of stress proteins, also known as heat shock proteins, which protect against damage during haemodynamic stress. However, an immune reaction to heat shock proteins might contribute to the development of atherosclerosis. We hypothesize that the induction of heat shock proteins is beneficial in the arterial wall's response to stress but is harmful in certain other circumstances.

  13. The Draft Genome of the Invasive Walking Stick, Medauroidea extradendata, Reveals Extensive Lineage-Specific Gene Family Expansions of Cell Wall Degrading Enzymes in Phasmatodea

    PubMed Central

    Brand, Philipp; Lin, Wei; Johnson, Brian R.

    2018-01-01

    Plant cell wall components are the most abundant macromolecules on Earth. The study of the breakdown of these molecules is thus a central question in biology. Surprisingly, plant cell wall breakdown by herbivores is relatively poorly understood, as nearly all early work focused on the mechanisms used by symbiotic microbes to breakdown plant cell walls in insects such as termites. Recently, however, it has been shown that many organisms make endogenous cellulases. Insects, and other arthropods, in particular have been shown to express a variety of plant cell wall degrading enzymes in many gene families with the ability to break down all the major components of the plant cell wall. Here we report the genome of a walking stick, Medauroidea extradentata, an obligate herbivore that makes uses of endogenously produced plant cell wall degrading enzymes. We present a draft of the 3.3Gbp genome along with an official gene set that contains a diversity of plant cell wall degrading enzymes. We show that at least one of the major families of plant cell wall degrading enzymes, the pectinases, have undergone a striking lineage-specific gene family expansion in the Phasmatodea. This genome will be a useful resource for comparative evolutionary studies with herbivores in many other clades and will help elucidate the mechanisms by which metazoans breakdown plant cell wall components. PMID:29588379

  14. Plant cell walls throughout evolution: towards a molecular understanding of their design principles.

    PubMed

    Sarkar, Purbasha; Bosneaga, Elena; Auer, Manfred

    2009-01-01

    Throughout their life, plants typically remain in one location utilizing sunlight for the synthesis of carbohydrates, which serve as their sole source of energy as well as building blocks of a protective extracellular matrix, called the cell wall. During the course of evolution, plants have repeatedly adapted to their respective niche, which is reflected in the changes of their body plan and the specific design of cell walls. Cell walls not only changed throughout evolution but also are constantly remodelled and reconstructed during the development of an individual plant, and in response to environmental stress or pathogen attacks. Carbohydrate-rich cell walls display complex designs, which together with the presence of phenolic polymers constitutes a barrier for microbes, fungi, and animals. Throughout evolution microbes have co-evolved strategies for efficient breakdown of cell walls. Our current understanding of cell walls and their evolutionary changes are limited as our knowledge is mainly derived from biochemical and genetic studies, complemented by a few targeted yet very informative imaging studies. Comprehensive plant cell wall models will aid in the re-design of plant cell walls for the purpose of commercially viable lignocellulosic biofuel production as well as for the timber, textile, and paper industries. Such knowledge will also be of great interest in the context of agriculture and to plant biologists in general. It is expected that detailed plant cell wall models will require integrated correlative multimodal, multiscale imaging and modelling approaches, which are currently underway.

  15. Differential growth of pavement cells of Arabidopsis thaliana leaf epidermis as revealed by microbead labeling.

    PubMed

    Elsner, Joanna; Lipowczan, Marcin; Kwiatkowska, Dorota

    2018-02-01

    In numerous vascular plants, pavement cells of the leaf epidermis are shaped like a jigsaw-puzzle piece. Knowledge about the subcellular pattern of growth that accompanies morphogenesis of such a complex shape is crucial for studies of the role of the cytoskeleton, cell wall and phytohormones in plant cell development. Because the detailed growth pattern of the anticlinal and periclinal cell walls remains unknown, our aim was to measure pavement cell growth at a subcellular resolution. Using fluorescent microbeads applied to the surface of the adaxial leaf epidermis of Arabidopsis thaliana as landmarks for growth computation, we directly assessed the growth rates for the outer periclinal and anticlinal cell walls at a subcellular scale. We observed complementary tendencies in the growth pattern of the outer periclinal and anticlinal cell walls. Central portions of periclinal walls were characterized by relatively slow growth, while growth of the other wall portions was heterogeneous. Local growth of the periclinal walls accompanying lobe development after initiation was relatively fast and anisotropic, with maximal extension usually in the direction along the lobe axis. This growth pattern of the periclinal walls was complemented by the extension of the anticlinal walls, which was faster on the lobe sides than at the tips. Growth of the anticlinal and outer periclinal walls of leaf pavement cells is heterogeneous. The growth of the lobes resembles cell elongation via diffuse growth rather than tip growth. © 2018 Botanical Society of America.

  16. Antisense down-regulation of the strawberry β-galactosidase gene FaβGal4 increases cell wall galactose levels and reduces fruit softening

    PubMed Central

    Paniagua, Candelas; Blanco-Portales, Rosario; Barceló-Muñoz, Marta; García-Gago, Juan A.; Waldron, Keith W.; Quesada, Miguel A.; Muñoz-Blanco, Juan; Mercado, José A.

    2016-01-01

    Strawberry softening is characterized by an increase in the solubilization and depolymerization of pectins from cell walls. Galactose release from pectin side chains by β-galactosidase enzymes has been proposed as one reason for the increase in soluble pectins. A putative β-galactosidase gene, FaβGal4, has been identified using a custom-made oligonucleotide-based strawberry microarray platform. FaβGal4 was expressed mainly in the receptacle during fruit ripening, and was positively regulated by abscisic acid and negatively regulated by auxins. To ascertain the role of FaβGal4 in strawberry softening, transgenic plants containing an antisense sequence of this gene under the control of the CaMV35S promoter were generated. Phenotypic analyses were carried out in transgenic plants during three consecutive growing seasons, using non-transformed plants as control. Two out of nine independent transgenic lines yielded fruits that were 30% firmer than control at the ripe stage. FaβGal4 mRNA levels were reduced by 70% in ripe fruits from these selected transgenic lines, but they also showed significant silencing of FaβGal1, although the genes did not share significant similarity. These two transgenic lines also showed an increase in pectin covalently bound to the cell wall, extracted using Na2CO3. The amount of galactose in cell walls from transgenic fruits was 30% higher than in control; notably, the galactose increase was larger in the 1 M KOH fraction, which is enriched in hemicellulose. These results suggest that FaβGal4 participates in the solubilization of covalently bound pectins during ripening, reducing strawberry fruit firmness. PMID:26585222

  17. Antisense down-regulation of the strawberry β-galactosidase gene FaβGal4 increases cell wall galactose levels and reduces fruit softening.

    PubMed

    Paniagua, Candelas; Blanco-Portales, Rosario; Barceló-Muñoz, Marta; García-Gago, Juan A; Waldron, Keith W; Quesada, Miguel A; Muñoz-Blanco, Juan; Mercado, José A

    2016-02-01

    Strawberry softening is characterized by an increase in the solubilization and depolymerization of pectins from cell walls. Galactose release from pectin side chains by β-galactosidase enzymes has been proposed as one reason for the increase in soluble pectins. A putative β-galactosidase gene, FaβGal4, has been identified using a custom-made oligonucleotide-based strawberry microarray platform. FaβGal4 was expressed mainly in the receptacle during fruit ripening, and was positively regulated by abscisic acid and negatively regulated by auxins. To ascertain the role of FaβGal4 in strawberry softening, transgenic plants containing an antisense sequence of this gene under the control of the CaMV35S promoter were generated. Phenotypic analyses were carried out in transgenic plants during three consecutive growing seasons, using non-transformed plants as control. Two out of nine independent transgenic lines yielded fruits that were 30% firmer than control at the ripe stage. FaβGal4 mRNA levels were reduced by 70% in ripe fruits from these selected transgenic lines, but they also showed significant silencing of FaβGal1, although the genes did not share significant similarity. These two transgenic lines also showed an increase in pectin covalently bound to the cell wall, extracted using Na2CO3. The amount of galactose in cell walls from transgenic fruits was 30% higher than in control; notably, the galactose increase was larger in the 1 M KOH fraction, which is enriched in hemicellulose. These results suggest that FaβGal4 participates in the solubilization of covalently bound pectins during ripening, reducing strawberry fruit firmness. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Structural characterization of a mixed-linkage glucan deficient mutant reveals alteration in cellulose microfibril orientation in rice coleoptile mesophyll cell walls

    PubMed Central

    Smith-Moritz, Andreia M.; Hao, Zhao; Fernández-Niño, Susana G.; Fangel, Jonatan U.; Verhertbruggen, Yves; Holman, Hoi-Ying N.; Willats, William G. T.; Ronald, Pamela C.; Scheller, Henrik V.; Heazlewood, Joshua L.; Vega-Sánchez, Miguel E.

    2015-01-01

    The CELLULOSE SYNTHASE-LIKE F6 (CslF6) gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG), a cell wall polysaccharide that is hypothesized to be tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to test the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of 3 day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared (FTM-IR) Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell walls of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion. PMID:26347754

  19. Temperature modulates the cell wall mechanical properties of rice coleoptiles by altering the molecular mass of hemicellulosic polysaccharides

    NASA Technical Reports Server (NTRS)

    Nakamura, Yukiko; Wakabayashi, Kazuyuki; Hoson, Takayuki

    2003-01-01

    The present study was conducted to investigate the mechanism inducing the difference in the cell wall extensibility of rice (Oryza sativa L. cv. Koshihikari) coleoptiles grown under various temperature (10-50 degrees C) conditions. The growth rate and the cell wall extensibility of rice coleoptiles exhibited the maximum value at 30-40 degrees C, and became smaller as the growth temperature rose or dropped from this temperature range. The amounts of cell wall polysaccharides per unit length of coleoptile increased in coleoptiles grown at 40 degrees C, but not at other temperature conditions. On the other hand, the molecular size of hemicellulosic polysaccharides was small at temperatures where the cell wall extensibility was high (30-40 degrees C). The autolytic activities of cell walls obtained from coleoptiles grown at 30 and 40 degrees C were substantially higher than those grown at 10, 20 and 50 degrees C. Furthermore, the activities of (1-->3),(1-->4)-beta-glucanases extracted from coleoptile cell walls showed a similar tendency. When oat (1-->3),(1-->4)-beta-glucans with high molecular mass were incubated with the cell wall enzyme preparations from coleoptiles grown at various temperature conditions, the extensive molecular mass downshifts were brought about only by the cell wall enzymes obtained from coleoptiles grown at 30-40 degrees C. There were close correlations between the cell wall extensibility and the molecular mass of hemicellulosic polysaccharides or the activity of beta -glucanases. These results suggest that the environmental temperature regulates the cell wall extensibility of rice coleoptiles by modifying mainly the molecular mass of hemicellulosic polysaccharides. Modulation of the activity of beta-glucanases under various temperature conditions may be involved in the alteration of the molecular size of hemicellulosic polysaccharides.

  20. Structural characterization of a mixed-linkage glucan deficient mutant reveals alteration in cellulose microfibril orientation in rice coleoptile mesophyll cell walls

    DOE PAGES

    Smith-Moritz, Andreia M.; Hao, Zhao; Fernández-Nino, Susana G.; ...

    2015-08-18

    The CELLULOSE SYNTHASE-LIKE F6 (CslF6) gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG), a cell wall polysaccharide that is hypothesized to be tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to testmore » the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of 3 day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared (FTM-IR) Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell walls of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Finally, taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion.« less

  1. Characterization of structural cell wall polysaccharides in cattail (Typha latifolia): Evaluation as potential biofuel feedstock.

    PubMed

    Rebaque, Diego; Martínez-Rubio, Romina; Fornalé, Silvia; García-Angulo, Penélope; Alonso-Simón, Ana; Álvarez, Jesús M; Caparros-Ruiz, David; Acebes, José L; Encina, Antonio

    2017-11-01

    Second generation bioethanol produced from lignocellulosic biomass is attracting attention as an alternative energy source. In this study, a detailed knowledge of the composition and structure of common cattail (Typha latifolia L.) cell wall polysaccharides, obtained from stem or leaves, has been conducted using a wide set of techniques to evaluate this species as a potential bioethanol feedstock. Our results showed that common cattail cellulose content was high for plants in the order Poales and was accompanied by a small amount of cross-linked polysaccharides. A high degree of arabinose-substitution in xylans, a high syringyl/guaiacyl ratio in lignin and a low level of cell wall crystallinity could yield a good performance for lignocellulose saccharification. These results identify common cattail as a promising plant for use as potential bioethanol feedstock. To the best of our knowledge, this is the first in-depth analysis to be conducted of lignocellulosic material from common cattail. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Multiple cell radiation detector system, and method, and submersible sonde

    DOEpatents

    Johnson, Larry O.; McIsaac, Charles V.; Lawrence, Robert S.; Grafwallner, Ervin G.

    2002-01-01

    A multiple cell radiation detector includes a central cell having a first cylindrical wall providing a stopping power less than an upper threshold; an anode wire suspended along a cylindrical axis of the central cell; a second cell having a second cylindrical wall providing a stopping power greater than a lower threshold, the second cylindrical wall being mounted coaxially outside of the first cylindrical wall; a first end cap forming a gas-tight seal at first ends of the first and second cylindrical walls; a second end cap forming a gas-tight seal at second ends of the first and second cylindrical walls; and a first group of anode wires suspended between the first and second cylindrical walls.

  3. Overexpression of PhEXPA1 increases cell size, modifies cell wall polymer composition and affects the timing of axillary meristem development in Petunia hybrida.

    PubMed

    Zenoni, Sara; Fasoli, Marianna; Tornielli, Giovanni Battista; Dal Santo, Silvia; Sanson, Andrea; de Groot, Peter; Sordo, Sara; Citterio, Sandra; Monti, Francesca; Pezzotti, Mario

    2011-08-01

    • Expansins are cell wall proteins required for cell enlargement and cell wall loosening during many developmental processes. The involvement of the Petunia hybrida expansin A1 (PhEXPA1) gene in cell expansion, the control of organ size and cell wall polysaccharide composition was investigated by overexpressing PhEXPA1 in petunia plants. • PhEXPA1 promoter activity was evaluated using a promoter-GUS assay and the protein's subcellular localization was established by expressing a PhEXPA1-GFP fusion protein. PhEXPA1 was overexpressed in transgenic plants using the cauliflower mosaic virus (CaMV) 35S promoter. Fourier transform infrared (FTIR) and chemical analysis were used for the quantitative analysis of cell wall polymers. • The GUS and GFP assays demonstrated that PhEXPA1 is present in the cell walls of expanding tissues. The constitutive overexpression of PhEXPA1 significantly affected expansin activity and organ size, leading to changes in the architecture of petunia plants by initiating premature axillary meristem outgrowth. Moreover, a significant change in cell wall polymer composition in the petal limbs of transgenic plants was observed. • These results support a role for expansins in the determination of organ shape, in lateral branching, and in the variation of cell wall polymer composition, probably reflecting a complex role in cell wall metabolism. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  4. Tissue and cell-type co-expression networks of transcription factors and wood component genes in Populus trichocarpa.

    PubMed

    Shi, Rui; Wang, Jack P; Lin, Ying-Chung; Li, Quanzi; Sun, Ying-Hsuan; Chen, Hao; Sederoff, Ronald R; Chiang, Vincent L

    2017-05-01

    Co-expression networks based on transcriptomes of Populus trichocarpa major tissues and specific cell types suggest redundant control of cell wall component biosynthetic genes by transcription factors in wood formation. We analyzed the transcriptomes of five tissues (xylem, phloem, shoot, leaf, and root) and two wood forming cell types (fiber and vessel) of Populus trichocarpa to assemble gene co-expression subnetworks associated with wood formation. We identified 165 transcription factors (TFs) that showed xylem-, fiber-, and vessel-specific expression. Of these 165 TFs, 101 co-expressed (correlation coefficient, r > 0.7) with the 45 secondary cell wall cellulose, hemicellulose, and lignin biosynthetic genes. Each cell wall component gene co-expressed on average with 34 TFs, suggesting redundant control of the cell wall component gene expression. Co-expression analysis showed that the 101 TFs and the 45 cell wall component genes each has two distinct groups (groups 1 and 2), based on their co-expression patterns. The group 1 TFs (44 members) are predominantly xylem and fiber specific, and are all highly positively co-expressed with the group 1 cell wall component genes (30 members), suggesting their roles as major wood formation regulators. Group 1 TFs include a lateral organ boundary domain gene (LBD) that has the highest number of positively correlated cell wall component genes (36) and TFs (47). The group 2 TFs have 57 members, including 14 vessel-specific TFs, and are generally less correlated with the cell wall component genes. An exception is a vessel-specific basic helix-loop-helix (bHLH) gene that negatively correlates with 20 cell wall component genes, and may function as a key transcriptional suppressor. The co-expression networks revealed here suggest a well-structured transcriptional homeostasis for cell wall component biosynthesis during wood formation.

  5. THESEUS 1, FERONIA and relatives: a family of cell wall-sensing receptor kinases?

    PubMed

    Cheung, Alice Y; Wu, Hen-Ming

    2011-12-01

    The plant cell wall provides form and integrity to the cell as well as a dynamic interface between a cell and its environment. Therefore mechanisms capable of policing changes in the cell wall, signaling cellular responses including those that would feedback regulate cell wall properties are expected to play important roles in facilitating growth and ensuring survival. Discoveries in the last few years that the Arabidopsis THESEUS 1 receptor-like kinase (RLK) may function as a sensor for cell wall defects to regulate growth and that its relatives FERONIA and ANXURs regulate pollen tube integrity imply strongly that they play key roles in cell wall-related processes. Furthermore, FERONIA acts as a cell surface regulator for RAC/ROP GTPases and activates production of reactive oxygen species which are, respectively, important molecular switches and mediators for diverse processes. These findings position the THESEUS 1/FERONIA family RLKs as surface regulators and potential cell wall sensors capable of broadly and profoundly impacting cellular pathways in response to diverse signals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Characterization of xylan in the early stages of secondary cell wall formation in tobacco bright yellow-2 cells.

    PubMed

    Ishii, Tadashi; Matsuoka, Keita; Ono, Hiroshi; Ohnishi-Kameyama, Mayumi; Yaoi, Katsuro; Nakano, Yoshimi; Ohtani, Misato; Demura, Taku; Iwai, Hiroaki; Satoh, Shinobu

    2017-11-15

    The major polysaccharides present in the primary and secondary walls surrounding plant cells have been well characterized. However, our knowledge of the early stages of secondary wall formation is limited. To address this, cell walls were isolated from differentiating xylem vessel elements of tobacco bright yellow-2 (BY-2) cells induced by VASCULAR-RELATED NAC-DOMAIN7 (VND7). The walls of induced VND7-VP16-GR BY-2 cells consisted of cellulose, pectic polysaccharides, hemicelluloses, and lignin, and contained more xylan and cellulose compared with non-transformed BY-2 and uninduced VND7-VP16-GR BY-2 cells. A reducing end sequence of xylan containing rhamnose and galaturonic acid- residues is present in the walls of induced, uninduced, and non-transformed BY-2 cells. Glucuronic acid residues in xylan from walls of induced cells are O-methylated, while those of xylan in non-transformed BY-2 and uninduced cells are not. Our results show that xylan changes in chemical structure and amounts during the early stages of xylem differentiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The Modification of Cell Wall Properties by Expression of Recombinant Resilin in Transgenic Plants.

    PubMed

    Preis, Itan; Abramson, Miron; Shoseyov, Oded

    2018-04-01

    Plant tissue is composed of many different types of cells. Plant cells required to withstand mechanical pressure, such as vessel elements and fibers, have a secondary cell wall consisting of polysaccharides and lignin, which strengthen the cell wall structure and stabilize the cell shape. Previous attempts to alter the properties of the cell wall have mainly focused on reducing the amount of lignin or altering its structure in order to ease its extraction from raw woody materials for the pulp and paper and biorefinery industries. In this work, we propose the in vivo modification of the cell wall structure and mechanical properties by the introduction of resilin, an elastic protein that is able to crosslink with lignin monomers during cell wall synthesis. The effects of resilin were studied in transgenic eucalyptus plants. The protein was detected within the cell wall and its expression led to an increase in the elastic modulus of transgenic stems. In addition, transgenic stems displayed a higher yield point and toughness, indicating that they were able to absorb more energy before breaking.

  8. Deformation and failure mechanism of secondary cell wall in Spruce late wood

    NASA Astrophysics Data System (ADS)

    Adusumalli, Ramesh-Babu; Raghavan, Rejin; Ghisleni, Rudy; Zimmermann, Tanja; Michler, Johann

    2010-08-01

    The deformation and failure of the secondary cell wall of Spruce wood was studied by in-situ SEM compression of micropillars machined by the focused ion beam technique. The cell wall exhibited yield strength values of approximately 160 MPa and large scale plasticity. High resolution SEM imaging post compression revealed bulging of the pillars followed by shear failure. With additional aid of cross-sectional analysis of the micropillars post compression, a model for deformation and failure mechanism of the cell wall has been proposed. The cell wall consists of oriented cellulose microfibrils with high aspect ratio embedded in a hemicellulose-lignin matrix. The deformation of the secondary wall occurs by asymmetric out of plane bulging because of buckling of the microfibrils. Failure of the cell wall following the deformation occurs by the formation of a shear or kink band.

  9. Abscisic acid ameliorates atherosclerosis by suppressing macrophage and CD4+ T cell recruitment into the aortic wall

    PubMed Central

    Guri, Amir J.; Misyak, Sarah A.; Hontecillas, Raquel; Hasty, Alyssa; Liu, Dongmin; Si, Hongwei; Bassaganya-Riera, Josep

    2009-01-01

    Abscisic acid (ABA) is a natural phytohormone which improves insulin sensitivity and reduces adipose tissue inflammation when supplemented into diets of obese mice. The objective of this study was to investigate the mechanisms by which abscisic acid (ABA) prevents or ameliorates atherosclerosis. Apolipoprotein E-deficient (ApoE −/−) mice were fed high-fat diets with or without ABA for 84 days. Systolic blood pressure was assessed on days 0, 28, 56, and 72. Gene expression, immune cell infiltration, and histological lesions were evaluated in the aortic root wall. Human aortic endothelial cells were used to examine the effect of ABA on 3’, 5’-cyclic adenosine monophosphate (cAMP) and nitric oxide (NO) production in vitro. We report that ABA-treated mice had significantly improved systolic blood pressure and decreased accumulation of F4/80+CD11b+ macrophages and CD4+ T cells in aortic root walls. At the molecular level, ABA significantly enhanced aortic endothelial nitric oxide synthase (eNOS) and tended to suppress aortic vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1) expression and plasma MCP-1 concentrations. ABA also caused a dose-dependent increase in intracellular concentrations of cAMP and NO and upregulated eNOS mRNA expression in human aortic endothelial cells. This is the first report showing that ABA prevents or ameliorates atherosclerosis-induced hypertension, immune cell recruitment into the aortic root wall, and upregulates aortic eNOS expression in ApoE−/− mice. PMID:20092994

  10. Abscisic acid ameliorates atherosclerosis by suppressing macrophage and CD4+ T cell recruitment into the aortic wall.

    PubMed

    Guri, Amir J; Misyak, Sarah A; Hontecillas, Raquel; Hasty, Alyssa; Liu, Dongmin; Si, Hongwei; Bassaganya-Riera, Josep

    2010-12-01

    Abscisic acid (ABA) is a natural phytohormone which improves insulin sensitivity and reduces adipose tissue inflammation when supplemented into diets of obese mice. The objective of this study was to investigate the mechanisms by which ABA prevents or ameliorates atherosclerosis. apolipoprotein E-deficient (ApoE(-/-)) mice were fed high-fat diets with or without ABA for 84 days. Systolic blood pressure was assessed on Days 0, 28, 56 and 72. Gene expression, immune cell infiltration and histological lesions were evaluated in the aortic root wall. Human aortic endothelial cells were used to examine the effect of ABA on 3',5'-cyclic adenosine monophosphate (cAMP) and nitric oxide (NO) production in vitro. We report that ABA-treated mice had significantly improved systolic blood pressure and decreased accumulation of F4/80(+)CD11b(+) macrophages and CD4(+) T cells in aortic root walls. At the molecular level, ABA significantly enhanced aortic endothelial nitric oxide synthase (eNOS) and tended to suppress aortic vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1) expression and plasma MCP-1 concentrations. ABA also caused a dose-dependent increase in intracellular concentrations of cAMP and NO and up-regulated eNOS mRNA expression in human aortic endothelial cells. This is the first report showing that ABA prevents or ameliorates atherosclerosis-induced hypertension, immune cell recruitment into the aortic root wall and up-regulates aortic eNOS expression in ApoE(-/-) mice. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Cell Wall Localization of Two DUF642 Proteins, BIIDXI and TEEBE, during Meloidogyne incognita Early Inoculation

    PubMed Central

    Salazar-Iribe, Alexis; Zúñiga-Sánchez, Esther; Mejía, Emma Zavaleta; Gamboa-deBuen, Alicia

    2017-01-01

    The root-knot nematode Meloidogyne incognita infects a variety of plants, including Arabidopsis thaliana. During migration, root-knot nematodes secrete different proteins to modify cell walls, which include pectolytic enzymes. However, the contribution of host cell wall proteins has not been described during this process. The function of two DUF642 cell wall proteins, BIIDXI (BDX, At4g32460) and TEEBE (TEB, At2g41800), in plant development could be related to the regulation of pectin methyl esterification status in the cell walls of different tissues. Accordingly, the expression of these two genes is up-regulated by auxin. BDX and TEB were highly induced during early M. incognita inoculation. Moreover, cell wall localization of the proteins was also induced. The cell wall localization of BDX and TEB DUF642 proteins during M. incognita early inoculation suggested that these two proteins could be involved in the regulation of the degree of pectin methylation during cell separation. PMID:29238286

  12. Phenolic components of the primary cell wall. Feruloylated disaccharides of D-galactose and L-arabinose from spinach polysaccharide.

    PubMed Central

    Fry, S C

    1982-01-01

    1. Cell walls from rapidly growing cell suspension cultures of Spinacia oleracea L. contained ferulic acid and p-coumaric acid esterified with a water-insoluble polymer. 2. Prolonged treatment with trypsin did not release may feruloyl esters from dearabinofuranosylated cell walls, and the polymer was also insoluble in phenol/acetic acid/water (2:1:1, w/v/v). 3. Treatment of the cell walls with the fungal hydrolase preparation "Driselase' did liberate low-Mr feruloyl esters. The major esters were 4-O-(6-O-feruloyl-beta-D-galactopyranosyl)-D-galactose and 3?-O-feruloyl-alpha-L-arabinopyranosyl)-L-arabinose. These two esters accounted for about 60% of the cell-wall ferulate. 4. It is concluded that the feruloylation of cell-wall polymers is not a random process, but occurs at very specific sites, probably on the arabinogalactan component of pectin. 5. The possible role of such phenolic substituents in cell-wall architecture and growth is discussed. PMID:7115300

  13. Shifting foundations: the mechanical cell wall and development.

    PubMed

    Braybrook, Siobhan A; Jönsson, Henrik

    2016-02-01

    The cell wall has long been acknowledged as an important physical mediator of growth in plants. Recent experimental and modelling work has brought the importance of cell wall mechanics into the forefront again. These data have challenged existing dogmas that relate cell wall structure to cell/organ growth, that uncouple elasticity from extensibility, and those which treat the cell wall as a passive and non-stressed material. Within this review we describe experiments and models which have changed the ways in which we view the mechanical cell wall, leading to new hypotheses and research avenues. It has become increasingly apparent that while we often wish to simplify our systems, we now require more complex multi-scale experiments and models in order to gain further insight into growth mechanics. We are currently experiencing an exciting and challenging shift in the foundations of our understanding of cell wall mechanics in growth and development. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Cell Adhesion Modification of Streptococcus viridians in the Presence of Xylitol

    NASA Astrophysics Data System (ADS)

    Esmacher, Jason; Vidakovich, Blair; Giangrande, Michael; Hoffmann, Peter

    2012-10-01

    There is scientific documentation that those who chew gum sweetened by the sugar alcohol xylitol report a dramatically lower incident of both dental caries and otitis media compared to those who chew conventional gum sweetened by sucrose. An explanation contends that xylitol interferes with the ability of Streptococcus viridian (SV) to form biofilms which is a necessary precursor to the bacteria's ability to damage human tissues. We have used atomic force microscopy to study the cell wall/fimbria properties at the nanonewton level in both the presence and absence of xylitol. The first set of measurements used varying concentrations of xylitol incorporated within the incubation medium. The second used non-xylitol grown bacteria, the xylitol was added externally at various concentrations. Our study suggests that growing SV with xylitol reduces their ability to adhere together. Additionally, externally added xylitol showed grouping of cell adhesion to a relatively narrow nanonewton spread that is concentration dependent. Measurement of the adhesion properties of the bacterial cell wall have found that there is a dramatic increase in the cell wall's firmness which simultaneously accompanied a decrease in its ability to support adhesion, even at very low concentrations of xylitol.

  15. Transcriptomic insights into citrus segment membrane's cell wall components relating to fruit sensory texture.

    PubMed

    Wang, Xun; Lin, Lijin; Tang, Yi; Xia, Hui; Zhang, Xiancong; Yue, Maolan; Qiu, Xia; Xu, Ke; Wang, Zhihui

    2018-04-23

    During fresh fruit consumption, sensory texture is one factor that affects the organoleptic qualities. Chemical components of plant cell walls, including pectin, cellulose, hemicellulose and lignin, play central roles in determining the textural qualities. To explore the genes and regulatory pathways involved in fresh citrus' perceived sensory texture, we performed mRNA-seq analyses of the segment membranes of two citrus cultivars, Shiranui and Kiyomi, with different organoleptic textures. Segment membranes were sampled at two developmental stages of citrus fruit, the beginning and end of the expansion period. More than 3000 differentially expressed genes were identified. The gene ontology analysis revealed that more categories were significantly enriched in 'Shiranui' than in 'Kiyomi' at both developmental stages. In total, 108 significantly enriched pathways were obtained, with most belonging to metabolism. A detailed transcriptomic analysis revealed potential critical genes involved in the metabolism of cell wall structures, for example, GAUT4 in pectin synthesis, CESA1, 3 and 6, and SUS4 in cellulose synthesis, CSLC5, XXT1 and XXT2 in hemicellulose synthesis, and CSE in lignin synthesis. Low levels, or no expression, of genes involved in cellulose and hemicellulose, such as CESA4, CESA7, CESA8, IRX9 and IRX14, confirmed that secondary cell walls were negligible or absent in citrus segment membranes. A chemical component analysis of the segment membranes from mature fruit revealed that the pectin, cellulose and lignin contents, and the segment membrane's weight (% of segment) were greater in 'Kiyomi'. Organoleptic quality of citrus is easily overlooked. It is mainly determined by sensory texture perceived in citrus segment membrane properties. We performed mRNA-seq analyses of citrus segment membranes to explore the genes and regulatory pathways involved in fresh citrus' perceived sensory texture. Transcriptomic data showed high repeatability between two independent biological replicates. The expression levels of genes involved in cell wall structure metabolism, including pectin, cellulose, hemicellulose and lignin, were investigated. Meanwhile, chemical component contents of the segment membranes from mature fruit were analyzed. This study provided detailed transcriptional regulatory profiles of different organoleptic citrus qualities and integrated insights into the mechanisms affecting citrus' sensory texture.

  16. Mapping the lignin distribution in pretreated sugarcane bagasse by confocal and fluorescence lifetime imaging microscopy

    PubMed Central

    2013-01-01

    Background Delignification pretreatments of biomass and methods to assess their efficacy are crucial for biomass-to-biofuels research and technology. Here, we applied confocal and fluorescence lifetime imaging microscopy (FLIM) using one- and two-photon excitation to map the lignin distribution within bagasse fibers pretreated with acid and alkali. The evaluated spectra and decay times are correlated with previously calculated lignin fractions. We have also investigated the influence of the pretreatment on the lignin distribution in the cell wall by analyzing the changes in the fluorescence characteristics using two-photon excitation. Eucalyptus fibers were also analyzed for comparison. Results Fluorescence spectra and variations of the decay time correlate well with the delignification yield and the lignin distribution. The decay dependences are considered two-exponential, one with a rapid (τ1) and the other with a slow (τ2) decay time. The fastest decay is associated to concentrated lignin in the bagasse and has a low sensitivity to the treatment. The fluorescence decay time became longer with the increase of the alkali concentration used in the treatment, which corresponds to lignin emission in a less concentrated environment. In addition, the two-photon fluorescence spectrum is very sensitive to lignin content and accumulation in the cell wall, broadening with the acid pretreatment and narrowing with the alkali one. Heterogeneity of the pretreated cell wall was observed. Conclusions Our results reveal lignin domains with different concentration levels. The acid pretreatment caused a disorder in the arrangement of lignin and its accumulation in the external border of the cell wall. The alkali pretreatment efficiently removed lignin from the middle of the bagasse fibers, but was less effective in its removal from their surfaces. Our results evidenced a strong correlation between the decay times of the lignin fluorescence and its distribution within the cell wall. A new variety of lignin fluorescence states were accessed by two-photon excitation, which allowed an even broader, but complementary, optical characterization of lignocellulosic materials. These results suggest that the lignin arrangement in untreated bagasse fiber is based on a well-organized nanoenvironment that favors a very low level of interaction between the molecules. PMID:23548159

  17. Discovery of novel cell wall-active compounds using P ywaC, a sensitive reporter of cell wall stress, in the model gram-positive bacterium Bacillus subtilis.

    PubMed

    Czarny, T L; Perri, A L; French, S; Brown, E D

    2014-06-01

    The emergence of antibiotic resistance in recent years has radically reduced the clinical efficacy of many antibacterial treatments and now poses a significant threat to public health. One of the earliest studied well-validated targets for antimicrobial discovery is the bacterial cell wall. The essential nature of this pathway, its conservation among bacterial pathogens, and its absence in human biology have made cell wall synthesis an attractive pathway for new antibiotic drug discovery. Herein, we describe a highly sensitive screening methodology for identifying chemical agents that perturb cell wall synthesis, using the model of the Gram-positive bacterium Bacillus subtilis. We report on a cell-based pilot screen of 26,000 small molecules to look for cell wall-active chemicals in real time using an autonomous luminescence gene cluster driven by the promoter of ywaC, which encodes a guanosine tetra(penta)phosphate synthetase that is expressed under cell wall stress. The promoter-reporter system was generally much more sensitive than growth inhibition testing and responded almost exclusively to cell wall-active antibiotics. Follow-up testing of the compounds from the pilot screen with secondary assays to verify the mechanism of action led to the discovery of 9 novel cell wall-active compounds. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. Changes in Cell Wall Properties Coincide with Overexpression of Extensin Fusion Proteins in Suspension Cultured Tobacco Cells

    DOE PAGES

    Tan, Li; Pu, Yunqiao; Pattathil, Sivakumar; ...

    2014-12-23

    Extensins are one subfamily of the cell wall hydroxyproline-rich glycoproteins, containing characteristic SerHyp4 glycosylation motifs and intermolecular cross-linking motifs such as the TyrXaaTyr sequence. Extensins are believed to form a cross-linked network in the plant cell wall through the tyrosine-derivatives isodityrosine, pulcherosine, and di-isodityrosine. Overexpression of three synthetic genes encoding different elastin-arabinogalactan protein-extensin hybrids in tobacco suspension cultured cells yielded novel cross-linking glycoproteins that shared features of the extensins, arabinogalactan proteins and elastin. The cell wall properties of the three transgenic cell lines were all changed, but in different ways. One transgenic cell line showed decreased cellulose crystallinity and increasedmore » wall xyloglucan content; the second transgenic cell line contained dramatically increased hydration capacity and notably increased cell wall biomass, increased di-isodityrosine, and increased protein content; the third transgenic cell line displayed wall phenotypes similar to wild type cells, except changed xyloglucan epitope extractability. In conclusion, these data indicate that overexpression of modified extensins may be a route to engineer plants for bioenergy and biomaterial production.« less

  19. Investigation of the functional role of CSLD proteins in plant cell wall deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Erik Etlar

    The overall goal of this research proposal was to characterize the molecular machinery responsible for polarized secretion of cell wall components in Arabidopsis thaliana. We have used the polarized expansion that occurs during root hair cell growth to identify membrane trafficking pathways involved in polarized secretion of cell wall components to the expanding tips of these cells, and we have recently shown that CSLD3 is preferentially targeted to the apical plasma membranes in root hair cells, where it plays essential roles during cell wall deposition in these cells. The specific aims of the project are designed to answer the followingmore » objective: Identification of the cell wall polysaccharide class that CSLD proteins synthesize.« less

  20. A Novel Cell Wall Lipopeptide Is Important for Biofilm Formation and Pathogenicity of Mycobacterium avium subspecies paratuberculosis

    PubMed Central

    Wu, Chia-wei; Schmoller, Shelly K.; Bannantine, John P.; Eckstein, Torsten M.; Inamine, Julie M.; Livesey, Michael; Albrecht, Ralph; Talaat, Adel M.

    2009-01-01

    Biofilm formation by pathogenic bacteria plays a key role in their pathogenesis. Previously, the pstA gene was shown to be involved in the virulence of Mycobacterium avium subspecies paratuberculosis (M. ap), the causative agent of Johne's disease in cattle and a potential risk factor for Crohn's disease. Scanning electron microscopy and colonization levels of the M. ap mutant indicated that the pstA gene significantly contributes to the ability of M. ap to form biofilms. Digital measurements taken during electron microscopy identified a unique morphology for the ΔpstA mutant, which consisted of significantly shorter bacilli than the wild type. Analysis of the lipid profiles of the mycobacterial strains identified a novel lipopeptide that was present in the cell wall extracts of wild-type M. ap, but missing from the ΔpstA mutant. Interestingly, the calf infection model suggested that pstA contributes to intestinal invasion of M. ap. Furthermore, immunoblot analysis of peptides encoded by pstA identified a specific and significant level of immunogenicity. Taken together, our analysis revealed a novel cell wall component that could contribute to biofilm formation and to the virulence and immunogenicity of M. ap. Molecular tools to better control M. ap infections could be developed utilizing the presented findings. PMID:19490829

  1. Effect of low shear modeled microgravity on phenotypic and central chitin metabolism in the filamentous fungi Aspergillus niger and Penicillium chrysogenum.

    PubMed

    Sathishkumar, Yesupatham; Velmurugan, Natarajan; Lee, Hyun Mi; Rajagopal, Kalyanaraman; Im, Chan Ki; Lee, Yang Soo

    2014-08-01

    Phenotypic and genotypic changes in Aspergillus niger and Penicillium chrysogenum, spore forming filamentous fungi, with respect to central chitin metabolism were studied under low shear modeled microgravity, normal gravity and static conditions. Low shear modeled microgravity (LSMMG) response showed a similar spore germination rate with normal gravity and static conditions. Interestingly, high ratio of multiple germ tube formation of A. niger in LSMMG condition was observed. Confocal laser scanning microscopy images of calcofluor flurophore stained A. niger and P. chrysogenum showed no significant variations between different conditions tested. Transmission electron microscopy images revealed number of mitochondria increased in P. chrysogenum in low shear modeled microgravity condition but no stress related-woronin bodies in fungal hyphae were observed. To gain additional insight into the cell wall integrity under different conditions, transcription level of a key gene involved in cell wall integrity gfaA, encoding the glutamine: fructose-6-phosphate amidotransferase enzyme, was evaluated using qRT-PCR. The transcription level showed no variation among different conditions. Overall, the results collectively indicate that the LSMMG has shown no significant stress on spore germination, mycelial growth, cell wall integrity of potentially pathogenic fungi, A. niger and P. chrysogenum.

  2. Cellulose microfibril orientation of Picea abies and its variability at the micron-level determined by Raman imaging.

    PubMed

    Gierlinger, Notburga; Luss, Saskia; König, Christian; Konnerth, Johannes; Eder, Michaela; Fratzl, Peter

    2010-01-01

    The functional characteristics of plant cell walls depend on the composition of the cell wall polymers, as well as on their highly ordered architecture at scales from a few nanometres to several microns. Raman spectra of wood acquired with linear polarized laser light include information about polymer composition as well as the alignment of cellulose microfibrils with respect to the fibre axis (microfibril angle). By changing the laser polarization direction in 3 degrees steps, the dependency between cellulose and laser orientation direction was investigated. Orientation-dependent changes of band height ratios and spectra were described by quadratic linear regression and partial least square regressions, respectively. Using the models and regressions with high coefficients of determination (R(2) > 0.99) microfibril orientation was predicted in the S1 and S2 layers distinguished by the Raman imaging approach in cross-sections of spruce normal, opposite, and compression wood. The determined microfibril angle (MFA) in the different S2 layers ranged from 0 degrees to 49.9 degrees and was in coincidence with X-ray diffraction determination. With the prerequisite of geometric sample and laser alignment, exact MFA prediction can complete the picture of the chemical cell wall design gained by the Raman imaging approach at the micron level in all plant tissues.

  3. Redox Control of Aphid Resistance through Altered Cell Wall Composition and Nutritional Quality1[OPEN

    PubMed Central

    Rasool, Brwa; Marcus, Sue E.

    2017-01-01

    The mechanisms underpinning plant perception of phloem-feeding insects, particularly aphids, remain poorly characterized. Therefore, the role of apoplastic redox state in controlling aphid infestation was explored using transgenic tobacco (Nicotiana tabacum) plants that have either high (PAO) or low (TAO) ascorbate oxidase (AO) activities relative to the wild type. Only a small number of leaf transcripts and metabolites were changed in response to genotype, and cell wall composition was largely unaffected. Aphid fecundity was decreased significantly in TAO plants compared with other lines. Leaf sugar levels were increased and maximum extractable AO activities were decreased in response to aphids in all genotypes. Transcripts encoding the Respiratory Burst Oxidase Homolog F, signaling components involved in ethylene and other hormone-mediated pathways, photosynthetic electron transport components, sugar, amino acid, and cell wall metabolism, were increased significantly in the TAO plants in response to aphid perception relative to other lines. The levels of galactosylated xyloglucan were decreased significantly in response to aphid feeding in all the lines, the effect being the least in the TAO plants. Similarly, all lines exhibited increases in tightly bound (1→4)-β-galactan. Taken together, these findings identify AO-dependent mechanisms that limit aphid infestation. PMID:28743764

  4. Characterization and elimination of undesirable protein residues in plant cell walls for enhancing lignin analysis by solution-state 2D gel-NMR methods

    USDA-ARS?s Scientific Manuscript database

    Proteins exist in every plant cell wall. Certain protein residues interfere with lignin characterization and quantification. The current solution-state 2D-NMR technique (gel-NMR) for whole plant cell wall structural profiling provides detailed information regarding cell walls and proteins. However, ...

  5. Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions.

    PubMed

    Tan, Michelle Sze-Fan; Moore, Sean C; Tabor, Rico F; Fegan, Narelle; Rahman, Sadequr; Dykes, Gary A

    2016-09-15

    Processing of fresh produce exposes cut surfaces of plant cell walls that then become vulnerable to human foodborne pathogen attachment and contamination, particularly by Salmonella enterica. Plant cell walls are mainly composed of the polysaccharides cellulose, pectin and hemicelluloses (predominantly xyloglucan). Our previous work used bacterial cellulose-based plant cell wall models to study the interaction between Salmonella and the various plant cell wall components. We demonstrated that Salmonella attachment was favoured in the presence of pectin while xyloglucan had no effect on its attachment. Xyloglucan significantly increased the attachment of Salmonella cells to the plant cell wall model only when it was in association with pectin. In this study, we investigate whether the plant cell wall polysaccharides mediate Salmonella attachment to the bacterial cellulose-based plant cell wall models through specific carbohydrate interactions or through the effects of carbohydrates on the physical characteristics of the attachment surface. We found that none of the monosaccharides that make up the plant cell wall polysaccharides specifically inhibit Salmonella attachment to the bacterial cellulose-based plant cell wall models. Confocal laser scanning microscopy showed that Salmonella cells can penetrate and attach within the tightly arranged bacterial cellulose network. Analysis of images obtained from atomic force microscopy revealed that the bacterial cellulose-pectin-xyloglucan composite with 0.3 % (w/v) xyloglucan, previously shown to have the highest number of Salmonella cells attached to it, had significantly thicker cellulose fibrils compared to other composites. Scanning electron microscopy images also showed that the bacterial cellulose and bacterial cellulose-xyloglucan composites were more porous when compared to the other composites containing pectin. Our study found that the attachment of Salmonella cells to cut plant cell walls was not mediated by specific carbohydrate interactions. This suggests that the attachment of Salmonella strains to the plant cell wall models were more dependent on the structural characteristics of the attachment surface. Pectin reduces the porosity and space between cellulose fibrils, which then forms a matrix that is able to retain Salmonella cells within the bacterial cellulose network. When present with pectin, xyloglucan provides a greater surface for Salmonella cells to attach through the thickening of cellulose fibrils.

  6. Pb-induced cellular defense system in the root meristematic cells of Allium sativum L.

    PubMed

    Jiang, Wusheng; Liu, Donghua

    2010-03-02

    Electron microscopy (EM) techniques enable identification of the main accumulations of lead (Pb) in cells and cellular organelles and observations of changes in cell ultrastructure. Although there is extensive literature relating to studies on the influence of heavy metals on plants, Pb tolerance strategies of plants have not yet been fully explained. Allium sativum L. is a potential plant for absorption and accumulation of heavy metals. In previous investigations the effects of different concentrations (10(-5) to 10(-3) M) of Pb were investigated in A. sativum, indicating a significant inhibitory effect on shoot and root growth at 10(-3) to 10(-4) M Pb. In the present study, we used EM and cytochemistry to investigate ultrastructural alterations, identify the synthesis and distribution of cysteine-rich proteins induced by Pb and explain the possible mechanisms of the Pb-induced cellular defense system in A. sativum. After 1 h of Pb treatment, dictyosomes were accompanied by numerous vesicles within cytoplasm. The endoplasm reticulum (ER) with swollen cisternae was arranged along the cell wall after 2 h. Some flattened cisternae were broken up into small closed vesicles and the nuclear envelope was generally more dilated after 4 h. During 24-36 h, phenomena appeared such as high vacuolization of cytoplasm and electron-dense granules in cell walls, vacuoles, cytoplasm and mitochondrial membranes. Other changes included mitochondrial swelling and loss of cristae, and vacuolization of ER and dictyosomes during 48-72 h. In the Pb-treatment groups, silver grains were observed in cell walls and in cytoplasm, suggesting the Gomori-Swift reaction can indirectly evaluate the Pb effects on plant cells. Cell walls can immobilize some Pb ions. Cysteine-rich proteins in cell walls were confirmed by the Gomori-Swift reaction. The morphological alterations in plasma membrane, dictyosomes and ER reflect the features of detoxification and tolerance under Pb stress. Vacuoles are ultimately one of main storage sites of Pb. Root meristematic cells of A. sativum exposed to lower Pb have a rapid and effective defense system, but with the increased level of Pb in the cytosol, cells were seriously injured.

  7. Pb-induced cellular defense system in the root meristematic cells of Allium sativum L

    PubMed Central

    2010-01-01

    Background Electron microscopy (EM) techniques enable identification of the main accumulations of lead (Pb) in cells and cellular organelles and observations of changes in cell ultrastructure. Although there is extensive literature relating to studies on the influence of heavy metals on plants, Pb tolerance strategies of plants have not yet been fully explained. Allium sativum L. is a potential plant for absorption and accumulation of heavy metals. In previous investigations the effects of different concentrations (10-5 to 10-3 M) of Pb were investigated in A. sativum, indicating a significant inhibitory effect on shoot and root growth at 10-3 to 10-4 M Pb. In the present study, we used EM and cytochemistry to investigate ultrastructural alterations, identify the synthesis and distribution of cysteine-rich proteins induced by Pb and explain the possible mechanisms of the Pb-induced cellular defense system in A. sativum. Results After 1 h of Pb treatment, dictyosomes were accompanied by numerous vesicles within cytoplasm. The endoplasm reticulum (ER) with swollen cisternae was arranged along the cell wall after 2 h. Some flattened cisternae were broken up into small closed vesicles and the nuclear envelope was generally more dilated after 4 h. During 24-36 h, phenomena appeared such as high vacuolization of cytoplasm and electron-dense granules in cell walls, vacuoles, cytoplasm and mitochondrial membranes. Other changes included mitochondrial swelling and loss of cristae, and vacuolization of ER and dictyosomes during 48-72 h. In the Pb-treatment groups, silver grains were observed in cell walls and in cytoplasm, suggesting the Gomori-Swift reaction can indirectly evaluate the Pb effects on plant cells. Conclusions Cell walls can immobilize some Pb ions. Cysteine-rich proteins in cell walls were confirmed by the Gomori-Swift reaction. The morphological alterations in plasma membrane, dictyosomes and ER reflect the features of detoxification and tolerance under Pb stress. Vacuoles are ultimately one of main storage sites of Pb. Root meristematic cells of A. sativum exposed to lower Pb have a rapid and effective defense system, but with the increased level of Pb in the cytosol, cells were seriously injured. PMID:20196842

  8. Changes in Cell Wall Polysaccharides Associated With Growth 1

    PubMed Central

    Nevins, Donald J.; English, Patricia D.; Albersheim, Peter

    1968-01-01

    Changes in the polysaccharide composition of Phaseolus vulgaris, P. aureus, and Zea mays cell walls were studied during the first 28 days of seedling development using a gas chromatographic method for the analysis of neutral sugars. Acid hydrolysis of cell wall material from young tissues liberates rhamnose, fucose, arabinose, xylose, mannose, galactose, and glucose which collectively can account for as much as 70% of the dry weight of the wall. Mature walls in fully expanded tissues of these same plants contain less of these constituents (10%-20% of dry wt). Gross differences are observed between developmental patterns of the cell wall in the various parts of a seedling, such as root, stem, and leaf. The general patterns of wall polysaccharide composition change, however, are similar for analogous organs among the varieties of a species. Small but significant differences in the rates of change in sugar composition were detected between varieties of the same species which exhibited different growth patterns. The cell walls of species which are further removed phylogenetically exhibit even more dissimilar developmental patterns. The results demonstrate the dynamic nature of the cell wall during growth as well as the quantitative and qualitative exactness with which the biosynthesis of plant cell walls is regulated. PMID:16656862

  9. A plant cell division algorithm based on cell biomechanics and ellipse-fitting.

    PubMed

    Abera, Metadel K; Verboven, Pieter; Defraeye, Thijs; Fanta, Solomon Workneh; Hertog, Maarten L A T M; Carmeliet, Jan; Nicolai, Bart M

    2014-09-01

    The importance of cell division models in cellular pattern studies has been acknowledged since the 19th century. Most of the available models developed to date are limited to symmetric cell division with isotropic growth. Often, the actual growth of the cell wall is either not considered or is updated intermittently on a separate time scale to the mechanics. This study presents a generic algorithm that accounts for both symmetrically and asymmetrically dividing cells with isotropic and anisotropic growth. Actual growth of the cell wall is simulated simultaneously with the mechanics. The cell is considered as a closed, thin-walled structure, maintained in tension by turgor pressure. The cell walls are represented as linear elastic elements that obey Hooke's law. Cell expansion is induced by turgor pressure acting on the yielding cell-wall material. A system of differential equations for the positions and velocities of the cell vertices as well as for the actual growth of the cell wall is established. Readiness to divide is determined based on cell size. An ellipse-fitting algorithm is used to determine the position and orientation of the dividing wall. The cell vertices, walls and cell connectivity are then updated and cell expansion resumes. Comparisons are made with experimental data from the literature. The generic plant cell division algorithm has been implemented successfully. It can handle both symmetrically and asymmetrically dividing cells coupled with isotropic and anisotropic growth modes. Development of the algorithm highlighted the importance of ellipse-fitting to produce randomness (biological variability) even in symmetrically dividing cells. Unlike previous models, a differential equation is formulated for the resting length of the cell wall to simulate actual biological growth and is solved simultaneously with the position and velocity of the vertices. The algorithm presented can produce different tissues varying in topological and geometrical properties. This flexibility to produce different tissue types gives the model great potential for use in investigations of plant cell division and growth in silico.

  10. A glycosylphosphatidylinositol anchor is required for membrane localization but dispensable for cell wall association of chitin deacetylase 2 in Cryptococcus neoformans.

    PubMed

    Gilbert, Nicole M; Baker, Lorina G; Specht, Charles A; Lodge, Jennifer K

    2012-01-01

    Cell wall proteins (CWPs) mediate important cellular processes in fungi, including adhesion, invasion, biofilm formation, and flocculation. The current model of fungal cell wall organization includes a major class of CWPs covalently bound to β-1,6-glucan via a remnant of a glycosylphosphatidylinositol (GPI) anchor. This model was established by studies of ascomycetes more than a decade ago, and relatively little work has been done with other fungi, although the presumption has been that proteins identified in the cell wall which contain a predicted GPI anchor are covalently linked to cell wall glucans. The pathogenic basidiomycete Cryptococcus neoformans encodes >50 putatively GPI-anchored proteins, some of which have been identified in the cell wall. One of these proteins is chitin deacetylase 2 (Cda2), an enzyme responsible for converting chitin to chitosan, a cell wall polymer recently established as a virulence factor for C. neoformans infection of mammalian hosts. Using a combination of biochemistry, molecular biology, and genetics, we show that Cda2 is GPI anchored to membranes but noncovalently associated with the cell wall by means independent of both its GPI anchor and β-1,6-glucan. We also show that Cda2 produces chitosan when localized to the plasma membrane, but association with the cell wall is not essential for this process, thereby providing insight into the mechanism of chitosan biosynthesis. These results increase our understanding of the surface of C. neoformans and provide models of cell walls likely applicable to other undercharacterized basidiomycete pathogenic fungi. The surface of a pathogenic microbe is a major interface with its host. In fungi, the outer surface consists of a complex matrix known as the cell wall, which includes polysaccharides, proteins, and other molecules. The mammalian host recognizes many of these surface molecules and mounts appropriate responses to combat the microbial infection. Cryptococcus neoformans is a serious fungal pathogen that kills over 600,000 people annually. It converts most of its chitin, a cell wall polysaccharide, to chitosan, which is necessary for virulence. Chitin deacetylase enzymes have been identified in the cell wall, and our studies were undertaken to understand how the deacetylase is linked to the wall and where it has activity. Our results have implications for the current model of chitosan biosynthesis and further challenge the paradigm of covalent linkages between cell wall proteins and polysaccharides through a lipid modification of the protein.

  11. Reciprocal Interactions between Cadmium-Induced Cell Wall Responses and Oxidative Stress in Plants

    PubMed Central

    Loix, Christophe; Huybrechts, Michiel; Vangronsveld, Jaco; Gielen, Marijke; Keunen, Els; Cuypers, Ann

    2017-01-01

    Cadmium (Cd) pollution renders many soils across the world unsuited or unsafe for food- or feed-orientated agriculture. The main mechanism of Cd phytotoxicity is the induction of oxidative stress, amongst others through the depletion of glutathione. Oxidative stress can damage lipids, proteins, and nucleic acids, leading to growth inhibition or even cell death. The plant cell has a variety of tools to defend itself against Cd stress. First and foremost, cell walls might prevent Cd from entering and damaging the protoplast. Both the primary and secondary cell wall have an array of defensive mechanisms that can be adapted to cope with Cd. Pectin, which contains most of the negative charges within the primary cell wall, can sequester Cd very effectively. In the secondary cell wall, lignification can serve to immobilize Cd and create a tougher barrier for entry. Changes in cell wall composition are, however, dependent on nutrients and conversely might affect their uptake. Additionally, the role of ascorbate (AsA) as most important apoplastic antioxidant is of considerable interest, due to the fact that oxidative stress is a major mechanism underlying Cd toxicity, and that AsA biosynthesis shares several links with cell wall construction. In this review, modifications of the plant cell wall in response to Cd exposure are discussed. Focus lies on pectin in the primary cell wall, lignification in the secondary cell wall and the importance of AsA in the apoplast. Regarding lignification, we attempt to answer the question whether increased lignification is merely a consequence of Cd toxicity, or rather an elicited defense response. We propose a model for lignification as defense response, with a central role for hydrogen peroxide as substrate and signaling molecule. PMID:29163592

  12. Arabidopsis thaliana plants lacking the ARP2/3 complex show defects in cell wall assembly and auxin distribution.

    PubMed

    Pratap Sahi, Vaidurya; Cifrová, Petra; García-González, Judith; Kotannal Baby, Innu; Mouillé, Gregory; Gineau, Emilie; Müller, Karel; Baluška, František; Soukup, Aleš; Petrášek, Jan; Schwarzerová, Katerina

    2017-12-25

    The cytoskeleton plays an important role in the synthesis of plant cell walls. Both microtubules and actin cytoskeleton are known to be involved in the morphogenesis of plant cells through their role in cell wall building. The role of ARP2/3-nucleated actin cytoskeleton in the morphogenesis of cotyledon pavement cells has been described before. Seedlings of Arabidopsis mutants lacking a functional ARP2/3 complex display specific cell wall-associated defects. In three independent Arabidopsis mutant lines lacking subunits of the ARP2/3 complex, phenotypes associated with the loss of the complex were analysed throughout plant development. Organ size and anatomy, cell wall composition, and auxin distribution were investigated. ARP2/3-related phenotype is associated with changes in cell wall composition, and the phenotype is manifested especially in mature tissues. Cell walls of mature plants contain less cellulose and a higher amount of homogalacturonan, and display changes in cell wall lignification. Vascular bundles of mutant inflorescence stems show a changed pattern of AUX1-YFP expression. Plants lacking a functional ARP2/3 complex have decreased basipetal auxin transport. The results suggest that the ARP2/3 complex has a morphogenetic function related to cell wall synthesis and auxin transport. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Local differentiation of cell wall matrix polysaccharides in sinuous pavement cells: its possible involvement in the flexibility of cell shape.

    PubMed

    Sotiriou, P; Giannoutsou, E; Panteris, E; Galatis, B; Apostolakos, P

    2018-03-01

    The distribution of homogalacturonans (HGAs) displaying different degrees of esterification as well as of callose was examined in cell walls of mature pavement cells in two angiosperm and two fern species. We investigated whether local cell wall matrix differentiation may enable pavement cells to respond to mechanical tension forces by transiently altering their shape. HGA epitopes, identified with 2F4, JIM5 and JIM7 antibodies, and callose were immunolocalised in hand-made or semithin leaf sections. Callose was also stained with aniline blue. The structure of pavement cells was studied with light and transmission electron microscopy (TEM). In all species examined, pavement cells displayed wavy anticlinal cell walls, but the waviness pattern differed between angiosperms and ferns. The angiosperm pavement cells were tightly interconnected throughout their whole depth, while in ferns they were interconnected only close to the external periclinal cell wall and intercellular spaces were developed between them close to the mesophyll. Although the HGA epitopes examined were located along the whole cell wall surface, the 2F4- and JIM5- epitopes were especially localised at cell lobe tips. In fern pavement cells, the contact sites were impregnated with callose and JIM5-HGA epitopes. When tension forces were applied on leaf regions, the pavement cells elongated along the stretching axis, due to a decrease in waviness of anticlinal cell walls. After removal of tension forces, the original cell shape was resumed. The presented data support that HGA epitopes make the anticlinal pavement cell walls flexible, in order to reversibly alter their shape. Furthermore, callose seems to offer stability to cell contacts between pavement cells, as already suggested in photosynthetic mesophyll cells. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  14. Exploring the Role of Cell Wall-Related Genes and Polysaccharides during Plant Development.

    PubMed

    Tucker, Matthew R; Lou, Haoyu; Aubert, Matthew K; Wilkinson, Laura G; Little, Alan; Houston, Kelly; Pinto, Sara C; Shirley, Neil J

    2018-05-31

    The majority of organs in plants are not established until after germination, when pluripotent stem cells in the growing apices give rise to daughter cells that proliferate and subsequently differentiate into new tissues and organ primordia. This remarkable capacity is not only restricted to the meristem, since maturing cells in many organs can also rapidly alter their identity depending on the cues they receive. One general feature of plant cell differentiation is a change in cell wall composition at the cell surface. Historically, this has been viewed as a downstream response to primary cues controlling differentiation, but a closer inspection of the wall suggests that it may play a much more active role. Specific polymers within the wall can act as substrates for modifications that impact receptor binding, signal mobility, and cell flexibility. Therefore, far from being a static barrier, the cell wall and its constituent polysaccharides can dictate signal transmission and perception, and directly contribute to a cell's capacity to differentiate. In this review, we re-visit the role of plant cell wall-related genes and polysaccharides during various stages of development, with a particular focus on how changes in cell wall machinery accompany the exit of cells from the stem cell niche.

  15. A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: Confirmed actors and newcomers

    PubMed Central

    Irshad, Muhammad; Canut, Hervé; Borderies, Gisèle; Pont-Lezica, Rafael; Jamet, Elisabeth

    2008-01-01

    Background Cell elongation in plants requires addition and re-arrangements of cell wall components. Even if some protein families have been shown to play roles in these events, a global picture of proteins present in cell walls of elongating cells is still missing. A proteomic study was performed on etiolated hypocotyls of Arabidopsis used as model of cells undergoing elongation followed by growth arrest within a short time. Results Two developmental stages (active growth and after growth arrest) were compared. A new strategy consisting of high performance cation exchange chromatography and mono-dimensional electrophoresis was established for separation of cell wall proteins. This work allowed identification of 137 predicted secreted proteins, among which 51 had not been identified previously. Apart from expected proteins known to be involved in cell wall extension such as xyloglucan endotransglucosylase-hydrolases, expansins, polygalacturonases, pectin methylesterases and peroxidases, new proteins were identified such as proteases, proteins related to lipid metabolism and proteins of unknown function. Conclusion This work highlights the CWP dynamics that takes place between the two developmental stages. The presence of proteins known to be related to cell wall extension after growth arrest showed that these proteins may play other roles in cell walls. Finally, putative regulatory mechanisms of protein biological activity are discussed from this global view of cell wall proteins. PMID:18796151

  16. Grass cell walls: A story of cross-linking

    USDA-ARS?s Scientific Manuscript database

    Cell wall matrices are complex composites mainly of polysaccharides, phenolics (monomers and polymers), and protein. We are beginning to understand the synthesis of these major wall components individually, but still have a poor understanding of how the cell wall components are assembled into comple...

  17. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes.

    PubMed

    Cosgrove, Daniel J

    2016-01-01

    The advent of user-friendly instruments for measuring force/deflection curves of plant surfaces at high spatial resolution has resulted in a recent outpouring of reports of the 'Young's modulus' of plant cell walls. The stimulus for these mechanical measurements comes from biomechanical models of morphogenesis of meristems and other tissues, as well as single cells, in which cell wall stress feeds back to regulate microtubule organization, auxin transport, cellulose deposition, and future growth directionality. In this article I review the differences between elastic modulus and wall extensibility in the context of cell growth. Some of the inherent complexities, assumptions, and potential pitfalls in the interpretation of indentation force/deflection curves are discussed. Reported values of elastic moduli from surface indentation measurements appear to be 10- to >1000-fold smaller than realistic tensile elastic moduli in the plane of plant cell walls. Potential reasons for this disparity are discussed, but further work is needed to make sense of the huge range in reported values. The significance of wall stress relaxation for growth is reviewed and connected to recent advances and remaining enigmas in our concepts of how cellulose, hemicellulose, and pectins are assembled to make an extensible cell wall. A comparison of the loosening action of α-expansin and Cel12A endoglucanase is used to illustrate two different ways in which cell walls may be made more extensible and the divergent effects on wall mechanics. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Spatial colonization of microbial cells on the rhizoplane.

    NASA Astrophysics Data System (ADS)

    Raynaud, Xavier; Eickhorst, Thilo; Nunan, Naoise; Kaiser, Christina; Woebken, Dagmar; Schmidt, Hannes

    2017-04-01

    The rhizoplane is the region where the root surface is in contact with soil and corresponds to the inner limit of the rhizosphere. At the rhizoplane level, plants exchange elements with the surrounding soil and the rhizoplane can therefore be considered as the region that drives nutrient movement and transformation in the rhizosphere. The rhizoplane differs in many respects from the bulk soil due to the far larger supply of substrates derived from the roots, with far greater microbial cell densities and reduced levels of diversity (Philippot et al., 2013). This is likely to result in completely different interaction profiles among microorganisms which may affect rhizosphere biogeochemistry. While the diversity of microorganisms associated with the rhizosphere and on the rhizoplane is getting increasing attention, knowledge on the spatial organisation of this diversity is still scarce. We therefore aimed at investigating the spatial arrangement of microbial rhizoplane colonization to increase our understanding of potential interaction dynamics within soil-microbe-plant interfaces. To study the spatial distribution of microbial cells on roots we cultivated rice plants in water-logged paddy soil. Root samples were taken three months after germination. After removing adhering rhizosphere soil the root samples were chemically fixed and prepared for CARD-FISH (Schmidt & Eickhorst, 2014). For hybridization, the oligonucleotide probes EUB I-III (Daims et al., 1999) were applied to cover the majority of bacteria colonizing the rhizoplane. Root segments were then subjected to confocal laser scanning microscopy where triplicate image stacks of 10 µm thickness (0.5 µm layer distance) were acquired per region of interest (ROI). ROIs were defined as distances from the root tip (0, 5, 10, 15 mm) and corresponded to the root tip, elongation zone, and zone of maturation. Image stacks were processed using ImageJ software to extract microbial cells spatial coordinates, as well as other features of the root (e.g. root cell walls). For all the images analysed, we found that microbial cell distributions were not distributed randomly and strongly associated to root cell walls. The spatial organization of root cell walls could be used to simulate microbial cell distribution that have similar spatial properties compared to the microscopic data. Root cell walls thus appear as a strong determinant for microbial cell colonization of the rhizoplane.

  19. Critical cell wall hole size for lysis in Gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Mitchell, Gabriel; Wiesenfeld, Kurt; Nelson, Daniel; Weitz, Joshua

    2013-03-01

    Gram-positive bacteria transport molecules necessary for their survival through holes in their cell wall. The holes in cell walls need to be large enough to let critical nutrients pass through. However, the cell wall must also function to prevent the bacteria's membrane from protruding through a large hole into the environment and lysing the cell. As such, we hypothesize that there exists a range of cell wall hole sizes that allow for molecule transport but prevent membrane protrusion. Here we develop and analyze a biophysical theory of the response of a Gram-positive cell's membrane to the formation of a hole in the cell wall. We predict a critical hole size in the range 15-24nm beyond which lysis occurs. To test our theory, we measured hole sizes in Streptococcus pyogenes cells undergoing enzymatic lysis via transmission electron microscopy. The measured hole sizes are in strong agreement with our theoretical prediction. Together, the theory and experiments provide a means to quantify the mechanisms of death of Gram-positive cells via enzymatically mediated lysis and provides insight into the range of cell wall hole sizes compatible with bacterial homeostasis.

  20. Elevated Cell Wall Serine in Pleiotropic Staphylococcal Mutants

    PubMed Central

    Korman, Ruth Z.

    1966-01-01

    Korman, Ruth Z. (Cornell University, Ithaca, N.Y.). Elevated cell wall serine in pleiotropic staphylococcal mutants. J. Bacteriol. 92:762–768. 1966.—Physically purified cell walls were prepared from two staphylococcal strains and from pleiotropic variants derived from them. The quantitative amino acid and amino sugar content of these walls is reported. The pleiotypes, which are identified culturally by their failure to elaborate coagulase, their resistance to bacteriophage, and their sensitivity to mannitol, have altered molar ratios of amino acids and amino sugars in their cell walls. In comparison with lysine content, the serine content of the mutant wall is elevated and the glycine content is reduced. The glucosamine content is reduced also. It is postulated that the pleiotropic mutants possess an altered cell wall biosynthetic pathway. Images PMID:5922547

  1. Cell wall integrity signaling in plants: "To grow or not to grow that's the question".

    PubMed

    Voxeur, Aline; Höfte, Herman

    2016-09-01

    Plants, like yeast, have the ability to monitor alterations in the cell wall architecture that occur during normal growth or in changing environments and to trigger compensatory changes in the cell wall. We discuss how recent advances in our understanding of the cell wall architecture provide new insights into the role of cell wall integrity sensing in growth control. Next we review the properties of membrane receptor-like kinases that have roles in pH control, mechano-sensing and reactive oxygen species accumulation in growing cells and which may be the plant equivalents of the yeast cell wall integrity (CWI) sensors. Finally, we discuss recent findings showing an increasing role for CWI signaling in plant immunity and the adaptation to changes in the ionic environment of plant cells. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Mechanochemical Polarization of Contiguous Cell Walls Shapes Plant Pavement Cells.

    PubMed

    Majda, Mateusz; Grones, Peter; Sintorn, Ida-Maria; Vain, Thomas; Milani, Pascale; Krupinski, Pawel; Zagórska-Marek, Beata; Viotti, Corrado; Jönsson, Henrik; Mellerowicz, Ewa J; Hamant, Olivier; Robert, Stéphanie

    2017-11-06

    The epidermis of aerial plant organs is thought to be limiting for growth, because it acts as a continuous load-bearing layer, resisting tension. Leaf epidermis contains jigsaw puzzle piece-shaped pavement cells whose shape has been proposed to be a result of subcellular variations in expansion rate that induce local buckling events. Paradoxically, such local compressive buckling should not occur given the tensile stresses across the epidermis. Using computational modeling, we show that the simplest scenario to explain pavement cell shapes within an epidermis under tension must involve mechanical wall heterogeneities across and along the anticlinal pavement cell walls between adjacent cells. Combining genetics, atomic force microscopy, and immunolabeling, we demonstrate that contiguous cell walls indeed exhibit hybrid mechanochemical properties. Such biochemical wall heterogeneities precede wall bending. Altogether, this provides a possible mechanism for the generation of complex plant cell shapes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Wall extensibility: its nature, measurement and relationship to plant cell growth

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1993-01-01

    Expansive growth of plant cells is controlled principally by processes that loosen the wall and enable it to expand irreversibly. The central role of wall relaxation for cell expansion is reviewed. The most common methods for assessing the extension properties of plant cell walls ( wall extensibility') are described, categorized and assessed critically. What emerges are three fundamentally different approaches which test growing cells for their ability (a) to enlarge at different values of turgor, (b) to induce wall relaxation, and (c) to deform elastically or plastically in response to an applied tensile force. Analogous methods with isolated walls are similarly reviewed. The results of these different assays are related to the nature of plant cell growth and pertinent biophysical theory. I argue that the extensibilities' measured by these assays are fundamentally different from one another and that some are more pertinent to growth than others.

  4. Molecular analysis of the Candida albicans homolog of Saccharomyces cerevisiae MNN9, required for glycosylation of cell wall mannoproteins.

    PubMed

    Southard, S B; Specht, C A; Mishra, C; Chen-Weiner, J; Robbins, P W

    1999-12-01

    The fungal cell wall has generated interest as a potential target for developing antifungal drugs, and the genes encoding glucan and chitin in fungal pathogens have been studied to this end. Mannoproteins, the third major component of the cell wall, contain mannose in either O- or N-glycosidic linkages. Here we describe the molecular analysis of the Candida albicans homolog of Saccharomyces cerevisiae MNN9, a gene required for the synthesis of N-linked outer-chain mannan in yeast, and the phenotypes associated with its disruption. CaMNN9 has significant homology with S. cerevisiae MNN9, including a putative N-terminal transmembrane domain, and represents a member of a similar gene family in Candida. CaMNN9 resides on chromosome 3 and is expressed at similar levels in both yeast and hyphal cells. Disruption of both copies of CaMNN9 leads to phenotypic effects characteristic of cell wall defects including poor growth in liquid media and on solid media, formation of aggregates in liquid culture, osmotic sensitivity, aberrant hyphal formation, and increased sensitivity to lysis after treatment with beta-1,3-glucanase. Like all members of the S. cerevisiae MNN9 gene family the Camnn9Delta strain is resistant to sodium orthovanadate and sensitive to hygromycin B. Analysis of cell wall-associated carbohydrates showed the Camnn9Delta strain to contain half the amount of mannan present in cell walls derived from the wild-type parent strain. Reverse transcription-PCR and Northern analysis of the expression of MNN9 gene family members CaVAN1 and CaANP1 in the Camnn9Delta strain showed that transcription of those genes is not affected in the absence of CaMNN9 transcription. Our results suggest that, while the role MNN9 plays in glycosylation in both Candida and Saccharomyces is conserved, loss of MNN9 function in C. albicans leads to phenotypes that are inconsistent with the pathogenicity of the organism and thus identify CaMnn9p as a potential drug target.

  5. Generation of hydroxyl radical in isolated pea root cell wall, and the role of cell wall-bound peroxidase, Mn-SOD and phenolics in their production.

    PubMed

    Kukavica, Biljana; Mojovic, Milos; Vuccinic, Zeljko; Maksimovic, Vuk; Takahama, Umeo; Jovanovic, Sonja Veljovic

    2009-02-01

    The hydroxyl radical produced in the apoplast has been demonstrated to facilitate cell wall loosening during cell elongation. Cell wall-bound peroxidases (PODs) have been implicated in hydroxyl radical formation. For this mechanism, the apoplast or cell walls should contain the electron donors for (i) H(2)O(2) formation from dioxygen; and (ii) the POD-catalyzed reduction of H(2)O(2) to the hydroxyl radical. The aim of the work was to identify the electron donors in these reactions. In this report, hydroxyl radical (.OH) generation in the cell wall isolated from pea roots was detected in the absence of any exogenous reductants, suggesting that the plant cell wall possesses the capacity to generate .OH in situ. Distinct POD and Mn-superoxide dismutase (Mn-SOD) isoforms different from other cellular isoforms were shown by native gel electropho-resis to be preferably bound to the cell walls. Electron paramagnetic resonance (EPR) spectroscopy of cell wall isolates containing the spin-trapping reagent, 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO), was used for detection of and differentiation between .OH and the superoxide radical (O(2)(-).). The data obtained using POD inhibitors confirmed that tightly bound cell wall PODs are involved in DEPMPO/OH adduct formation. A decrease in DEPMPO/OH adduct formation in the presence of H(2)O(2) scavengers demonstrated that this hydroxyl radical was derived from H(2)O(2). During the generation of .OH, the concentration of quinhydrone structures (as detected by EPR spectroscopy) increased, suggesting that the H(2)O(2) required for the formation of .OH in isolated cell walls is produced during the reduction of O(2) by hydroxycinnamic acids. Cell wall isolates in which the proteins have been denaturated (including the endogenous POD and SOD) did not produce .OH. Addition of exogenous H(2)O(2) again induced the production of .OH, and these were shown to originate from the Fenton reaction with tightly bound metal ions. However, the appearance of the DEPMPO/OOH adduct could also be observed, due to the production of O(2)(-). when endogenous SOD has been inactivated. Also, O(2)(-). was converted to .OH in an in vitro horseradish peroxidase (HRP)/H(2)O(2) system to which exogenous SOD has been added. Taken together with the discovery of the cell wall-bound Mn-SOD isoform, these results support the role of such a cell wall-bound SOD in the formation of .OH jointly with the cell wall-bound POD. According to the above findings, it seems that the hydroxycinnamic acids from the cell wall, acting as reductants, contribute to the formation of H(2)O(2) in the presence of O(2) in an autocatalytic manner, and that POD and Mn-SOD coupled together generate .OH from such H(2)O(2).

  6. A Glycosylphosphatidylinositol Anchor Is Required for Membrane Localization but Dispensable for Cell Wall Association of Chitin Deacetylase 2 in Cryptococcus neoformans

    PubMed Central

    Gilbert, Nicole M.; Baker, Lorina G.; Specht, Charles A.; Lodge, Jennifer K.

    2012-01-01

    ABSTRACT Cell wall proteins (CWPs) mediate important cellular processes in fungi, including adhesion, invasion, biofilm formation, and flocculation. The current model of fungal cell wall organization includes a major class of CWPs covalently bound to β-1,6-glucan via a remnant of a glycosylphosphatidylinositol (GPI) anchor. This model was established by studies of ascomycetes more than a decade ago, and relatively little work has been done with other fungi, although the presumption has been that proteins identified in the cell wall which contain a predicted GPI anchor are covalently linked to cell wall glucans. The pathogenic basidiomycete Cryptococcus neoformans encodes >50 putatively GPI-anchored proteins, some of which have been identified in the cell wall. One of these proteins is chitin deacetylase 2 (Cda2), an enzyme responsible for converting chitin to chitosan, a cell wall polymer recently established as a virulence factor for C. neoformans infection of mammalian hosts. Using a combination of biochemistry, molecular biology, and genetics, we show that Cda2 is GPI anchored to membranes but noncovalently associated with the cell wall by means independent of both its GPI anchor and β-1,6-glucan. We also show that Cda2 produces chitosan when localized to the plasma membrane, but association with the cell wall is not essential for this process, thereby providing insight into the mechanism of chitosan biosynthesis. These results increase our understanding of the surface of C. neoformans and provide models of cell walls likely applicable to other undercharacterized basidiomycete pathogenic fungi. PMID:22354955

  7. Lignin Down-regulation of Zea mays via dsRNAi and Klason Lignin Analysis

    PubMed Central

    Park, Sang-Hyuck; Ong, Rebecca Garlock; Mei, Chuansheng; Sticklen, Mariam

    2014-01-01

    To facilitate the use of lignocellulosic biomass as an alternative bioenergy resource, during biological conversion processes, a pretreatment step is needed to open up the structure of the plant cell wall, increasing the accessibility of the cell wall carbohydrates. Lignin, a polyphenolic material present in many cell wall types, is known to be a significant hindrance to enzyme access. Reduction in lignin content to a level that does not interfere with the structural integrity and defense system of the plant might be a valuable step to reduce the costs of bioethanol production. In this study, we have genetically down-regulated one of the lignin biosynthesis-related genes, cinnamoyl-CoA reductase (ZmCCR1) via a double stranded RNA interference technique. The ZmCCR1_RNAi construct was integrated into the maize genome using the particle bombardment method. Transgenic maize plants grew normally as compared to the wild-type control plants without interfering with biomass growth or defense mechanisms, with the exception of displaying of brown-coloration in transgenic plants leaf mid-ribs, husks, and stems. The microscopic analyses, in conjunction with the histological assay, revealed that the leaf sclerenchyma fibers were thinned but the structure and size of other major vascular system components was not altered. The lignin content in the transgenic maize was reduced by 7-8.7%, the crystalline cellulose content was increased in response to lignin reduction, and hemicelluloses remained unchanged. The analyses may indicate that carbon flow might have been shifted from lignin biosynthesis to cellulose biosynthesis. This article delineates the procedures used to down-regulate the lignin content in maize via RNAi technology, and the cell wall compositional analyses used to verify the effect of the modifications on the cell wall structure. PMID:25080235

  8. Lignin down-regulation of Zea mays via dsRNAi and klason lignin analysis.

    PubMed

    Park, Sang-Hyuck; Ong, Rebecca Garlock; Mei, Chuansheng; Sticklen, Mariam

    2014-07-23

    To facilitate the use of lignocellulosic biomass as an alternative bioenergy resource, during biological conversion processes, a pretreatment step is needed to open up the structure of the plant cell wall, increasing the accessibility of the cell wall carbohydrates. Lignin, a polyphenolic material present in many cell wall types, is known to be a significant hindrance to enzyme access. Reduction in lignin content to a level that does not interfere with the structural integrity and defense system of the plant might be a valuable step to reduce the costs of bioethanol production. In this study, we have genetically down-regulated one of the lignin biosynthesis-related genes, cinnamoyl-CoA reductase (ZmCCR1) via a double stranded RNA interference technique. The ZmCCR1_RNAi construct was integrated into the maize genome using the particle bombardment method. Transgenic maize plants grew normally as compared to the wild-type control plants without interfering with biomass growth or defense mechanisms, with the exception of displaying of brown-coloration in transgenic plants leaf mid-ribs, husks, and stems. The microscopic analyses, in conjunction with the histological assay, revealed that the leaf sclerenchyma fibers were thinned but the structure and size of other major vascular system components was not altered. The lignin content in the transgenic maize was reduced by 7-8.7%, the crystalline cellulose content was increased in response to lignin reduction, and hemicelluloses remained unchanged. The analyses may indicate that carbon flow might have been shifted from lignin biosynthesis to cellulose biosynthesis. This article delineates the procedures used to down-regulate the lignin content in maize via RNAi technology, and the cell wall compositional analyses used to verify the effect of the modifications on the cell wall structure.

  9. Biomineralization of calcium carbonate in the cell wall of Lithothamnion crispatum (Hapalidiales, Rhodophyta): correlation between the organic matrix and the mineral phase.

    PubMed

    de Carvalho, Rodrigo Tomazetto; Salgado, Leonardo Tavares; Amado Filho, Gilberto Menezes; Leal, Rachel Nunes; Werckmann, Jacques; Rossi, André Linhares; Campos, Andrea Porto Carreiro; Karez, Cláudia Santiago; Farina, Marcos

    2017-06-01

    Over the past few decades, progress has been made toward understanding the mechanisms of coralline algae mineralization. However, the relationship between the mineral phase and the organic matrix in coralline algae has not yet been thoroughly examined. The aim of this study was to describe the cell wall ultrastructure of Lithothamnion crispatum, a cosmopolitan rhodolith-forming coralline algal species collected near Salvador (Brazil), and examine the relationship between the organic matrix and the nucleation and growth/shape modulation of calcium carbonate crystals. A nanostructured pattern was observed in L. crispatum along the cell walls. At the nanoscale, the crystals from L. crispatum consisted of several single crystallites assembled and associated with organic material. The crystallites in the bulk of the cell wall had a high level of spatial organization. However, the crystals displayed cleavages in the (104) faces after ultrathin sectioning with a microtome. This organism is an important model for biomineralization studies as the crystallographic data do not fit in any of the general biomineralization processes described for other organisms. Biomineralization in L. crispatum is dependent on both the soluble and the insoluble organic matrix, which are involved in the control of mineral formation and organizational patterns through an organic matrix-mediated process. This knowledge concerning the mineral composition and organizational patterns of crystals within the cell walls should be taken into account in future studies of changing ocean conditions as they represent important factors influencing the physico-chemical interactions between rhodoliths and the environment in coralline reefs. © 2017 Phycological Society of America.

  10. Four Novel Cellulose Synthase (CESA) Genes from Birch (Betula platyphylla Suk.) Involved in Primary and Secondary Cell Wall Biosynthesis

    PubMed Central

    Liu, Xuemei; Wang, Qiuyu; Chen, Pengfei; Song, Funan; Guan, Minxiao; Jin, Lihua; Wang, Yucheng; Yang, Chuanping

    2012-01-01

    Cellulose synthase (CESA), which is an essential catalyst for the generation of plant cell wall biomass, is mainly encoded by the CesA gene family that contains ten or more members. In this study; four full-length cDNAs encoding CESA were isolated from Betula platyphylla Suk., which is an important timber species, using RT-PCR combined with the RACE method and were named as BplCesA3, −4, −7 and −8. These deduced CESAs contained the same typical domains and regions as their Arabidopsis homologs. The cDNA lengths differed among these four genes, as did the locations of the various protein domains inferred from the deduced amino acid sequences, which shared amino acid sequence identities ranging from only 63.8% to 70.5%. Real-time RT-PCR showed that all four BplCesAs were expressed at different levels in diverse tissues. Results indicated that BplCESA8 might be involved in secondary cell wall biosynthesis and floral development. BplCESA3 appeared in a unique expression pattern and was possibly involved in primary cell wall biosynthesis and seed development; it might also be related to the homogalacturonan synthesis. BplCESA7 and BplCESA4 may be related to the formation of a cellulose synthase complex and participate mainly in secondary cell wall biosynthesis. The extremely low expression abundance of the four BplCESAs in mature pollen suggested very little involvement of them in mature pollen formation in Betula. The distinct expression pattern of the four BplCesAs suggested they might participate in developments of various tissues and that they are possibly controlled by distinct mechanisms in Betula. PMID:23202892

  11. Expression of a fungal ferulic acid esterase in alfalfa modifies cell wall digestibility

    PubMed Central

    2014-01-01

    Background Alfalfa (Medicago sativa) is an important forage crop in North America owing to its high biomass production, perennial nature and ability to fix nitrogen. Feruloyl esterase (EC 3.1.1.73) hydrolyzes ester linkages in plant cell walls and has the potential to further improve alfalfa as biomass for biofuel production. Results In this study, faeB [GenBank:AJ309807] was synthesized at GenScript and sub-cloned into a novel pEACH vector containing different signaling peptides to target type B ferulic acid esterase (FAEB) proteins to the apoplast, chloroplast, endoplasmic reticulum and vacuole. Four constructs harboring faeB were transiently expressed in Nicotiana leaves, with FAEB accumulating at high levels in all target sites, except chloroplast. Stable transformed lines of alfalfa were subsequently obtained using Agrobacterium tumefaciens (LBA4404). Out of 136 transgenic plants regenerated, 18 independent lines exhibited FAEB activity. Subsequent in vitro digestibility and Fourier transformed infrared spectroscopy (FTIR) analysis of FAEB-expressing lines showed that they possessed modified cell wall morphology and composition with a reduction in ester linkages and elevated lignin content. Consequently, they were more recalcitrant to digestion by mixed ruminal microorganisms. Interestingly, delignification by alkaline peroxide treatment followed by exposure to a commercial cellulase mixture resulted in higher glucose release from transgenic lines as compared to the control line. Conclusion Modifying cell wall crosslinking has the potential to lower recalcitrance of holocellulose, but also exhibited unintended consequences on alfalfa cell wall digestibility due to elevated lignin content. The combination of efficient delignification treatment (alkaline peroxide) and transgenic esterase activity complement each other towards efficient and effective digestion of transgenic lines. PMID:24650274

  12. Deglycosylation systematically improves N-glycoprotein identification in liquid chromatography-tandem mass spectrometry proteomics for analysis of cell wall stress responses in Saccharomyces cerevisiae lacking Alg3p.

    PubMed

    Bailey, Ulla-Maja; Schulz, Benjamin L

    2013-04-01

    Post-translational modification of proteins with glycosylation is of key importance in many biological systems in eukaryotes, influencing fundamental biological processes and regulating protein function. Changes in glycosylation are therefore of interest in understanding these processes and are also useful as clinical biomarkers of disease. The presence of glycosylation can also inhibit protease digestion and lower the quality and confidence of protein identification by mass spectrometry. While deglycosylation can improve the efficiency of subsequent protease digest and increase protein coverage, this step is often excluded from proteomic workflows. Here, we performed a systematic analysis that showed that deglycosylation with peptide-N-glycosidase F (PNGase F) prior to protease digestion with AspN or trypsin improved the quality of identification of the yeast cell wall proteome. The improvement in the confidence of identification of glycoproteins following PNGase F deglycosylation correlated with a higher density of glycosylation sites. Optimal identification across the proteome was achieved with PNGase F deglycosylation and complementary proteolysis with either AspN or trypsin. We used this combination of deglycosylation and complementary protease digest to identify changes in the yeast cell wall proteome caused by lack of the Alg3p protein, a key component of the biosynthetic pathway of protein N-glycosylation. The cell wall of yeast lacking Alg3p showed specifically increased levels of Cis3p, a protein important for cell wall integrity. Our results showed that deglycosylation prior to protease digestion improved the quality of proteomic analyses even if protein glycosylation is not of direct relevance to the study at hand. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Functional duality of the cell wall.

    PubMed

    Latgé, Jean-Paul; Beauvais, Anne

    2014-08-01

    The polysaccharide cell wall is the extracellular armour of the fungal cell. Although essential in the protection of the fungal cell against aggressive external stresses, the biosynthesis of the polysaccharide core is poorly understood. For a long time it was considered that this cell wall skeleton was a fixed structure whose role was only to be sensed as non-self by the host and consequently trigger the defence response. It is now known that the cell wall polysaccharide composition and localization continuously change to adapt to their environment and that these modifications help the fungus to escape from the immune system. Moreover, cell wall polysaccharides could function as true virulence factors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Distinct Cell Wall Architectures in Seed Endosperms in Representatives of the Brassicaceae and Solanaceae1[C][W][OA

    PubMed Central

    Lee, Kieran J.D.; Dekkers, Bas J.W.; Steinbrecher, Tina; Walsh, Cherie T.; Bacic, Antony; Bentsink, Leónie; Leubner-Metzger, Gerhard; Knox, J. Paul

    2012-01-01

    In some species, a crucial role has been demonstrated for the seed endosperm during germination. The endosperm has been shown to integrate environmental cues with hormonal networks that underpin dormancy and seed germination, a process that involves the action of cell wall remodeling enzymes (CWREs). Here, we examine the cell wall architectures of the endosperms of two related Brassicaceae, Arabidopsis (Arabidopsis thaliana) and the close relative Lepidium (Lepidium sativum), and that of the Solanaceous species, tobacco (Nicotiana tabacum). The Brassicaceae species have a similar cell wall architecture that is rich in pectic homogalacturonan, arabinan, and xyloglucan. Distinctive features of the tobacco endosperm that are absent in the Brassicaceae representatives are major tissue asymmetries in cell wall structural components that reflect the future site of radicle emergence and abundant heteromannan. Cell wall architecture of the micropylar endosperm of tobacco seeds has structural components similar to those seen in Arabidopsis and Lepidium endosperms. In situ and biomechanical analyses were used to study changes in endosperms during seed germination and suggest a role for mannan degradation in tobacco. In the case of the Brassicaceae representatives, the structurally homogeneous cell walls of the endosperm can be acted on by spatially regulated CWRE expression. Genetic manipulations of cell wall components present in the Arabidopsis seed endosperm demonstrate the impact of cell wall architectural changes on germination kinetics. PMID:22961130

  15. An unusual xylan in Arabidopsis primary cell walls is synthesised by GUX3, IRX9L, IRX10L and IRX14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mortimer, Jenny C.; Faria-Blanc, Nuno; Yu, Xiaolan

    Xylan is a crucial component of many plant primary and secondary cell walls. However, the structure and function of xylan in the dicotyledon primary cell wall is not well understood. Here, we characterized a xylan that is specific to tissues enriched in Arabidopsis primary cell walls. Unlike previously described xylans, this xylan carries a pentose linked 1–2 to the α-1,2-d-glucuronic acid (GlcA) side chains on the β-1,4-Xyl backbone. The frequent and precisely regular spacing of GlcA substitutions every six xylosyl residues along the backbone is also unlike that previously observed in secondary cell wall xylan. Molecular genetics, in vitro assays,more » and expression data suggest that IRX9L, IRX10L and IRX14 are required for xylan backbone synthesis in primary cell wall synthesising tissues. IRX9 and IRX10 are not involved in the primary cell wall xylan synthesis but are functionally exchangeable with IRX9L and IRX10L. GUX3 is the only glucuronyltransferase required for the addition of the GlcA decorations on the xylan. Lastly, the differences in xylan structure in primary versus secondary cell walls might reflect the different roles in cross-linking and interaction with other cell wall components.« less

  16. An unusual xylan in Arabidopsis primary cell walls is synthesised by GUX3, IRX9L, IRX10L and IRX14

    DOE PAGES

    Mortimer, Jenny C.; Faria-Blanc, Nuno; Yu, Xiaolan; ...

    2015-06-04

    Xylan is a crucial component of many plant primary and secondary cell walls. However, the structure and function of xylan in the dicotyledon primary cell wall is not well understood. Here, we characterized a xylan that is specific to tissues enriched in Arabidopsis primary cell walls. Unlike previously described xylans, this xylan carries a pentose linked 1–2 to the α-1,2-d-glucuronic acid (GlcA) side chains on the β-1,4-Xyl backbone. The frequent and precisely regular spacing of GlcA substitutions every six xylosyl residues along the backbone is also unlike that previously observed in secondary cell wall xylan. Molecular genetics, in vitro assays,more » and expression data suggest that IRX9L, IRX10L and IRX14 are required for xylan backbone synthesis in primary cell wall synthesising tissues. IRX9 and IRX10 are not involved in the primary cell wall xylan synthesis but are functionally exchangeable with IRX9L and IRX10L. GUX3 is the only glucuronyltransferase required for the addition of the GlcA decorations on the xylan. Lastly, the differences in xylan structure in primary versus secondary cell walls might reflect the different roles in cross-linking and interaction with other cell wall components.« less

  17. Spatially and temporally restricted expression of PtrMYB021 regulates secondary cell wall formation in Arabidopsis

    DOE PAGES

    Wang, Wei; Li, Eryang; Porth, Ilga; ...

    2016-02-02

    Among the R2R3 MYB transcription factors that involve in the regulation of secondary cell wall formation in Arabidopsis, MYB46 alone is sufficient to induce the entire secondary cell wall biosynthesis program. PtrMYB021, the poplar homolog of MYB46, has been reported to regulate secondary cell wall formation when expressed in Arabidopsis. We report here that spatially and temporally restricted expression of PtrMYB021 is critical for its function in regulating secondary cell wall formation. By using quantitative RT-PCR, we found that PtrMYB021 was expressed primarily in xylem tissues. When expressed in Arabidopsis under the control of PtrCesA8, but not the 35S promoter,more » PtrMYB021 increased secondary cell wall thickness, which is likely caused by increased lignification as well as changes in cell wall carbohydrate composition. Consistent with this, elevated expression of lignin and cellulose biosynthetic genes were observed in the transgenic plants. Finally, when expressed in Arabidopsis protoplasts as fusion proteins to the Gal4 DNA binding domain, PtrMYB021 activated the reporter gene Gal4-GUS. In summary, our results suggest that PtrMYB021 is a transcriptional activator, and spatially and temporally restricted expression of PtrMYB021 in Arabidopsis regulates secondary cell wall formation by activating a subset of secondary cell wall biosynthesis genes.« less

  18. Spatially and temporally restricted expression of PtrMYB021 regulates secondary cell wall formation in Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Li, Eryang; Porth, Ilga

    Among the R2R3 MYB transcription factors that involve in the regulation of secondary cell wall formation in Arabidopsis, MYB46 alone is sufficient to induce the entire secondary cell wall biosynthesis program. PtrMYB021, the poplar homolog of MYB46, has been reported to regulate secondary cell wall formation when expressed in Arabidopsis. We report here that spatially and temporally restricted expression of PtrMYB021 is critical for its function in regulating secondary cell wall formation. By using quantitative RT-PCR, we found that PtrMYB021 was expressed primarily in xylem tissues. When expressed in Arabidopsis under the control of PtrCesA8, but not the 35S promoter,more » PtrMYB021 increased secondary cell wall thickness, which is likely caused by increased lignification as well as changes in cell wall carbohydrate composition. Consistent with this, elevated expression of lignin and cellulose biosynthetic genes were observed in the transgenic plants. Finally, when expressed in Arabidopsis protoplasts as fusion proteins to the Gal4 DNA binding domain, PtrMYB021 activated the reporter gene Gal4-GUS. In summary, our results suggest that PtrMYB021 is a transcriptional activator, and spatially and temporally restricted expression of PtrMYB021 in Arabidopsis regulates secondary cell wall formation by activating a subset of secondary cell wall biosynthesis genes.« less

  19. Tissue-dependent differences in the asynchronous appearance of mast cells in normal mice and in congenic mast cell-deficient mice after infusion of normal bone marrow cells

    PubMed Central

    DU, T; FRIEND, D S; AUSTEN, K F; KATZ, H R

    1996-01-01

    The time courses of the appearance of tissue mast cells in six sites were compared in normal WBB6F1-+/+ mice (+/+) and in congenic mast cell-deficient WBB6F1-W/Wv mice (W/Wv) that received an intravenous infusion of bone marrow cells from +/+mice (BM→W/Wv). As assessed by morphometric analysis of Carnoy's solution-fixed, methylene blue-stained tissue sections, the density of mast cells in the stomach mucosa, stomach submucosa, and spleen of +/+ mice reached maximal levels by 8 weeks of age, whereas the density of mast cells in the skin, extraparenchymal airway walls, and lung parenchyma did not reach maximal levels until 18 weeks of age. When 8-week-old W/Wv mice were infused with 2×107 bone marrow cells from +/+ mice, mast cells appeared in the stomach mucosa and submucosa after 2.5 weeks, in the spleen and extraparenchymal airway walls after 5 weeks, and in the lung parenchyma after 10 weeks. Twenty weeks after bone marrow infusion, the mast cell densities in the spleen, stomach mucosa, and stomach submucosa were seven-, 13-, and five-fold greater, respectively, than those in age-matched +/+ mice, but were eight-, two-, and five-fold lower in the skin, extraparenchymal airway walls, and lung parenchyma, respectively. Thus, those tissues that in +/+ mice reached maximal mast cell densities earlier exhibited abnormally high mast cell densities in BM→W/Wv mice, and those that reached maximal mast cell densities later in +/+ mice had abnormally low mast cell densities in BM→W/Wv mice. Immunological and inflammatory responses are often compared in W/Wv and BM→W/Wv mice to assess mast cell dependency. Our results indicate that the capacity to restore a mast cell-dependent response in a particular tissue of the latter mice may relate to the local mast cell density and whether the immunological challenge activates mast cells only in that tissue or systematically with attendant widespread release of proinflammatory mediators. PMID:8565318

  20. Forage digestibility: the intersection of cell wall lignification and plant tissue anatomy

    USDA-ARS?s Scientific Manuscript database

    Cellulose and the other polysaccharides present in forage cell walls can be completely degraded by the rumen microflora but only when these polysaccharides have been isolated from the wall and all matrix structures eliminated. Understanding how cell wall component interactions limit microbial degrad...

  1. If walls could talk

    NASA Technical Reports Server (NTRS)

    Braam, J.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    The plant cell wall is very complex, both in structure and function. The wall components and the mechanical properties of the wall have been implicated in conveying information that is important for morphogenesis. Proteoglycans, fragments of polysaccharides and the structural integrity of the wall may relay signals that influence cellular differentiation and growth control. Furthering our knowledge of cell wall structure and function is likely to have a profound impact on our understanding of how plant cells communicate with the extracellular environment.

  2. Arrangement of Cellulose Microfibrils in Walls of Elongating Parenchyma Cells

    PubMed Central

    Setterfield, G.; Bayley, S. T.

    1958-01-01

    The arrangement of cellulose microfibrils in walls of elongating parenchyma cells of Avena coleoptiles, onion roots, and celery petioles was studied in polarizing and electron microscopes by examining whole cell walls and sections. Walls of these cells consist firstly of regions containing the primary pit fields and composed of microfibrils oriented predominantly transversely. The transverse microfibrils show a progressive disorientation from the inside to the outside of the wall which is consistent with the multinet model of wall growth. Between the pit-field regions and running the length of the cells are ribs composed of longitudinally oriented microfibrils. Two types of rib have been found at all stages of cell elongation. In some regions, the wall appears to consist entirely of longitudinal microfibrils so that the rib forms an integral part of the wall. At the edges of such ribs the microfibrils can be seen to change direction from longitudinal in the rib to transverse in the pit-field region. Often, however, the rib appears to consist of an extra separate layer of longitudinal microfibrils outside a continuous wall of transverse microfibrils. These ribs are quite distinct from secondary wall, which consists of longitudinal microfibrils deposited within the primary wall after elongation has ceased. It is evident that the arrangement of cellulose microfibrils in a primary wall can be complex and is probably an expression of specific cellular differentiation. PMID:13563544

  3. Effect of Inhibition of Deoxyribonucleic Acid and Protein Synthesis on the Direction of Cell Wall Growth in Streptococcus faecalis

    PubMed Central

    Higgins, M. L.; Daneo-Moore, L.; Boothby, D.; Shockman, G. D.

    1974-01-01

    Selective inhibition of protein synthesis in Streptococcus faecalis (ATCC 9790) was accompanied by a rapid and severe inhibition of cell division and a reduction of enlargement of cellular surface area. Continued synthesis of cell wall polymers resulted in rapid thickening of the wall to an extent not seen in exponential-phase populations. Thus, the normal direction of wall growth was changed from a preferential feeding out of new wall surface to that of thickening existing cell surfaces. However, the overall manner in which the wall thickened, from nascent septa toward polar regions, was the same in both exponential-phase and inhibited populations. In contrast, selective inhibition of deoxyribonucleic acid (DNA) synthesis using mitomycin C was accompanied by an increase in cellular surface area and by division of about 80% of the cells in random populations. Little or no wall thickening was observed until the synthesis of macromolecules other than DNA was impaired and further cell division ceased. Concomitant inhibition of both DNA and protein synthesis inhibited cell division but permitted an increase in average cell volume. In such doubly inhibited cells, walls thickened less than in cells inhibited for protein synthesis only. On the basis of the results obtained, a model for cell surface enlargement and cell division is presented. The model proposes that: (i) each wall enlargement site is influenced by an individual chromosome replication cycle; (ii) during chromosome replication peripheral surface enlargement would be favored over thickening (or septation); (iii) a signal associated with chromosome termination would favor thickening (and septation) at the expense of surface enlargement; and (iv) a factor or signal related to protein synthesis would be required for one or more of the near terminal stages of cell division or cell separation, or both. Images PMID:4133352

  4. Deficiency in L-serine deaminase interferes with one-carbon metabolism and cell wall synthesis in Escherichia coli K-12.

    PubMed

    Zhang, Xiao; El-Hajj, Ziad W; Newman, Elaine

    2010-10-01

    Escherichia coli K-12 provided with glucose and a mixture of amino acids depletes L-serine more quickly than any other amino acid even in the presence of ammonium sulfate. A mutant without three 4Fe4S L-serine deaminases (SdaA, SdaB, and TdcG) of E. coli K-12 is unable to do this. The high level of L-serine that accumulates when such a mutant is exposed to amino acid mixtures starves the cells for C(1) units and interferes with cell wall synthesis. We suggest that at high concentrations, L-serine decreases synthesis of UDP-N-acetylmuramate-L-alanine by the murC-encoded ligase, weakening the cell wall and producing misshapen cells and lysis. The inhibition by high L-serine is overcome in several ways: by a large concentration of L-alanine, by overproducing MurC together with a low concentration of L-alanine, and by overproducing FtsW, thus promoting septal assembly and also by overexpression of the glycine cleavage operon. S-Adenosylmethionine reduces lysis and allows an extensive increase in biomass without improving cell division. This suggests that E. coli has a metabolic trigger for cell division. Without that reaction, if no other inhibition occurs, other metabolic functions can continue and cells can elongate and replicate their DNA, reaching at least 180 times their usual length, but cannot divide.

  5. Insights into cell wall structure of Sida hermaphrodita and its influence on recalcitrance.

    PubMed

    Damm, Tatjana; Pattathil, Sivakumar; Günl, Markus; Jablonowski, Nicolai David; O'Neill, Malcolm; Grün, Katharina Susanne; Grande, Philipp Michael; Leitner, Walter; Schurr, Ulrich; Usadel, Björn; Klose, Holger

    2017-07-15

    The perennial plant Sida hermaphrodita (Sida) is attracting attention as potential energy crop. Here, the first detailed view on non-cellulosic Sida cell wall polysaccharide composition, structure and architecture is given. Cell walls were prepared from Sida stems and sequentially extracted with aqueous buffers and alkali. The structures of the quantitatively predominant polysaccharides present in each fraction were determined by biochemical characterization, glycome profiling and mass spectrometry. The amounts of glucose released by Accellerase-1500 ® treatment of the cell wall and the cell wall residue remaining after each extraction were used to assess the roles of pectin and hemicellulose in the recalcitrance of Sida biomass. 4-O-Methyl glucuronoxylan with a low proportion of side substitutions was identified as the major non-cellulosic glycan component of Sida stem cell walls. Pectic polysaccharides and xylans were found to be associated with lignin, suggesting that these polysaccharides have roles in Sida cell wall recalcitrance to enzymatic hydrolysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Application of X-ray and neutron small angle scattering techniques to study the hierarchical structure of plant cell walls: a review.

    PubMed

    Martínez-Sanz, Marta; Gidley, Michael J; Gilbert, Elliot P

    2015-07-10

    Plant cell walls present an extremely complex structure of hierarchically assembled cellulose microfibrils embedded in a multi-component matrix. The biosynthesis process determines the mechanism of cellulose crystallisation and assembly, as well as the interaction of cellulose with other cell wall components. Thus, a knowledge of cellulose microfibril and bundle architecture, and the structural role of matrix components, is crucial for understanding cell wall functional and technological roles. Small angle scattering techniques, combined with complementary methods, provide an efficient approach to characterise plant cell walls, covering a broad and relevant size range while minimising experimental artefacts derived from sample treatment. Given the system complexity, approaches such as component extraction and the use of plant cell wall analogues are typically employed to enable the interpretation of experimental results. This review summarises the current research status on the characterisation of the hierarchical structure of plant cell walls using small angle scattering techniques. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  7. Analyzing Cell Wall Elasticity After Hormone Treatment: An Example Using Tobacco BY-2 Cells and Auxin.

    PubMed

    Braybrook, Siobhan A

    2017-01-01

    Atomic force microscopy, and related nano-indentation techniques, is a valuable tool for analyzing the elastic properties of plant cell walls as they relate to changes in cell wall chemistry, changes in development, and response to hormones. Within this chapter I will describe a method for analyzing the effect of the phytohormone auxin on the cell wall elasticity of tobacco BY-2 cells. This general method may be easily altered for different experimental systems and hormones of interest.

  8. Ectopic lignification in primary cellulose-deficient cell walls of maize cell suspension cultures.

    PubMed

    Mélida, Hugo; Largo-Gosens, Asier; Novo-Uzal, Esther; Santiago, Rogelio; Pomar, Federico; García, Pedro; García-Angulo, Penélope; Acebes, José Luis; Álvarez, Jesús; Encina, Antonio

    2015-04-01

    Maize (Zea mays L.) suspension-cultured cells with up to 70% less cellulose were obtained by stepwise habituation to dichlobenil (DCB), a cellulose biosynthesis inhibitor. Cellulose deficiency was accompanied by marked changes in cell wall matrix polysaccharides and phenolics as revealed by Fourier transform infrared (FTIR) spectroscopy. Cell wall compositional analysis indicated that the cellulose-deficient cell walls showed an enhancement of highly branched and cross-linked arabinoxylans, as well as an increased content in ferulic acid, diferulates and p-coumaric acid, and the presence of a polymer that stained positive for phloroglucinol. In accordance with this, cellulose-deficient cell walls showed a fivefold increase in Klason-type lignin. Thioacidolysis/GC-MS analysis of cellulose-deficient cell walls indicated the presence of a lignin-like polymer with a Syringyl/Guaiacyl ratio of 1.45, which differed from the sensu stricto stress-related lignin that arose in response to short-term DCB-treatments. Gene expression analysis of these cells indicated an overexpression of genes specific for the biosynthesis of monolignol units of lignin. A study of stress signaling pathways revealed an overexpression of some of the jasmonate signaling pathway genes, which might trigger ectopic lignification in response to cell wall integrity disruptions. In summary, the structural plasticity of primary cell walls is proven, since a lignification process is possible in response to cellulose impoverishment. © 2015 Institute of Botany, Chinese Academy of Sciences.

  9. Non-lignified helical cell wall thickenings in root cortical cells of Aspleniaceae (Polypodiales): histology and taxonomical significance

    PubMed Central

    Leroux, O.; Bagniewska-Zadworna, A.; Rambe, S. K.; Knox, J. P.; Marcus, S. E.; Bellefroid, E.; Stubbe, D.; Chabbert, B.; Habrant, A.; Claeys, M.; Viane, R. L. L.

    2011-01-01

    Background and Aims Extraxylary helical cell wall thickenings in vascular plants are not well documented, except for those in orchid velamen tissues which have been studied extensively. Reports on their occurrence in ferns exist, but detailed information is missing. The aim of this study is to focus on the broad patterns of structure and composition and to study the taxonomic occurrence of helical cell wall thickenings in the fern family Aspleniaceae. Methods Structural and compositional aspects of roots have been examined by means of light, electron, epifluorescence and laser scanning confocal microscopy. To assess the taxonomical distribution of helical cell wall thickenings a molecular phylogenetic analysis based on rbcL sequences of 64 taxa was performed. Key Results The helical cell wall thickenings of all examined species showed considerable uniformity of design. The pattern consists of helical, regularly bifurcating and anastomosing strands. Compositionally, the cell wall thickenings were found to be rich in homogalacturonan, cellulose, mannan and xyloglucan. Thioacidolysis confirmed our negative phloroglucinol staining tests, demonstrating the absence of lignins in the root cortex. All taxa with helical cell wall thickenings formed a monophyletic group supported by a 100 % bootstrap value and composed of mainly epiphytic species. Conclusions This is the first report of non-lignified pectin-rich secondary cell walls in ferns. Based on our molecular analysis, we reject the hypothesis of parallel evolution of helical cell wall thickenings in Aspleniaceae. Helical cell wall thickenings can mechanically stabilize the cortex tissue, allowing maximal uptake of water and nutrients during rainfall events. In addition, it can also act as a boundary layer increasing the diffusive pathway towards the atmosphere, preventing desiccation of the stele of epiphytic growing species. PMID:21118842

  10. Anatomical structure overrides temperature controls on magnesium uptake - calcification in the Arctic/subarctic coralline algae Leptophytum laeve and Kvaleya epilaeve (Rhodophyta; Corallinales)

    NASA Astrophysics Data System (ADS)

    Nash, Merinda C.; Adey, Walter

    2018-02-01

    Calcified coralline red algae are ecologically key organisms in photic benthic environments. In recent decades they have become important climate proxies, especially in the Arctic and subarctic. It has been widely accepted that magnesium content in coralline tissues is directly a function of ambient temperature, and this is a primary basis for their value as a climate archive. In this paper we show for two genera of Arctic/subarctic corallines, Leptophytum laeve and Kvaleya epilaeve, that previously unrecognised complex tissue and cell wall anatomy bears a variety of basal signatures for Mg content, with the accepted temperature relationship being secondary. The interfilament carbonate has lower Mg than adjacent cell walls and the hypothallial cell walls have the highest Mg content. The internal structure of the hypothallial cell walls can differ substantially from the perithallial radial cell wall structure. Using high-magnification scanning electron microscopy and etching we expose the nanometre-scale structures within the cell walls and interfilament. Fibrils concentrate at the internal and external edges of the cell walls. Fibrils ˜ 10 nm thick appear to thread through the radial Mg-calcite grains and form concentric bands within the cell wall. This banding may control Mg distribution within the cell. Similar fibril banding is present in the hypothallial cell walls but not the interfilament. Climate archiving with corallines can achieve greater precision with recognition of these parameters.

  11. Plant cell walls throughout evolution: towards a molecular understanding of their design principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Purbasha; Bosneaga, Elena; Auer, Manfred

    Throughout their life, plants typically remain in one location utilizing sunlight for the synthesis of carbohydrates, which serve as their sole source of energy as well as building blocks of a protective extracellular matrix, called the cell wall. During the course of evolution, plants have repeatedly adapted to their respective niche,which is reflected in the changes of their body plan and the specific design of cell walls. Cell walls not only changed throughout evolution but also are constantly remodelled and reconstructed during the development of an individual plant, and in response to environmental stress or pathogen attacks. Carbohydrate-rich cell wallsmore » display complex designs, which together with the presence of phenolic polymers constitutes a barrier for microbes, fungi, and animals. Throughout evolution microbes have co-evolved strategies for efficient breakdown of cell walls. Our current understanding of cell walls and their evolutionary changes are limited as our knowledge is mainly derived from biochemical and genetic studies, complemented by a few targeted yet very informative imaging studies. Comprehensive plant cell wall models will aid in the re-design of plant cell walls for the purpose of commercially viable lignocellulosic biofuel production as well as for the timber, textile, and paper industries. Such knowledge will also be of great interest in the context of agriculture and to plant biologists in general. It is expected that detailed plant cell wall models will require integrated correlative multimodal, multiscale imaging and modelling approaches, which are currently underway.« less

  12. Endomembrane proteomics reveals putative enzymes involved in cell wall metabolism in wheat grain outer layers

    PubMed Central

    Chateigner-Boutin, Anne-Laure; Suliman, Muhtadi; Bouchet, Brigitte; Alvarado, Camille; Lollier, Virginie; Rogniaux, Hélène; Guillon, Fabienne; Larré, Colette

    2015-01-01

    Cereal grain outer layers fulfil essential functions for the developing seed such as supplying energy and providing protection. In the food industry, the grain outer layers called ‘the bran’ is valuable since it is rich in dietary fibre and other beneficial nutriments. The outer layers comprise several tissues with a high content in cell wall material. The cell wall composition of the grain peripheral tissues was investigated with specific probes at a stage of active cell wall synthesis. Considerable wall diversity between cell types was revealed. To identify the cellular machinery involved in cell wall synthesis, a subcellular proteomic approach was used targeting the Golgi apparatus where most cell wall polysaccharides are synthesized. The tissues were dissected into outer pericarp and intermediate layers where 822 and 1304 proteins were identified respectively. Many carbohydrate-active enzymes were revealed: some in the two peripheral grain fractions, others only in one tissue. Several protein families specific to one fraction and with characterized homologs in other species might be related to the specific detection of a polysaccharide in a particular cell layer. This report provides new information on grain cell walls and its biosynthesis in the valuable outer tissues, which are poorly studied so far. A better understanding of the mechanisms controlling cell wall composition could help to improve several quality traits of cereal products (e.g. dietary fibre content, biomass conversion to biofuel). PMID:25769308

  13. Resistance to Botrytis cinerea in sitiens, an Abscisic Acid-Deficient Tomato Mutant, Involves Timely Production of Hydrogen Peroxide and Cell Wall Modifications in the Epidermis1[C][W][OA

    PubMed Central

    Asselbergh, Bob; Curvers, Katrien; França, Soraya C.; Audenaert, Kris; Vuylsteke, Marnik; Van Breusegem, Frank; Höfte, Monica

    2007-01-01

    Plant defense mechanisms against necrotrophic pathogens, such as Botrytis cinerea, are considered to be complex and to differ from those that are effective against biotrophs. In the abscisic acid-deficient sitiens tomato (Solanum lycopersicum) mutant, which is highly resistant to B. cinerea, accumulation of hydrogen peroxide (H2O2) was earlier and stronger than in the susceptible wild type at the site of infection. In sitiens, H2O2 accumulation was observed from 4 h postinoculation (hpi), specifically in the leaf epidermal cell walls, where it caused modification by protein cross-linking and incorporation of phenolic compounds. In wild-type tomato plants, H2O2 started to accumulate 24 hpi in the mesophyll layer and was associated with spreading cell death. Transcript-profiling analysis using TOM1 microarrays revealed that defense-related transcript accumulation prior to infection was higher in sitiens than in wild type. Moreover, further elevation of sitiens defense gene expression was stronger than in wild type 8 hpi both in number of genes and in their expression levels and confirmed a role for cell wall modification in the resistant reaction. Although, in general, plant defense-related reactive oxygen species formation facilitates necrotrophic colonization, these data indicate that timely hyperinduction of H2O2-dependent defenses in the epidermal cell wall can effectively block early development of B. cinerea. PMID:17573540

  14. A Cotton Annexin Affects Fiber Elongation and Secondary Cell Wall Biosynthesis Associated with Ca2+ Influx, ROS Homeostasis, and Actin Filament Reorganization1

    PubMed Central

    Zhang, Feng; Jin, Xuanxiang; Wang, Like; Li, Shufen; Wu, Shuang; Cheng, Chaoze; Zhang, Tianzhen

    2016-01-01

    Annexins play pivotal roles in a variety of cellular processes as well as in fiber development; however, the functional mechanisms of their activities are unclear. Here, an annexin gene that is preferentially expressed in fibers, GhFAnnxA, was found to be significantly associated with various cotton (Gossypium hirsutum) fiber traits. Transgenic analysis demonstrated that GhFAnnxA affected cotton fiber elongation and was involved in secondary cell wall (SCW) biosynthesis. Functional studies demonstrated that GhFAnnxA may act as a Ca2+ conductance regulator and that reactive oxygen species (ROS) produced by Rbohs in a Ca2+-dependent manner may determine fiber elongation caused by elevated intracellular turgor and cell wall loosening. However, excessive hydrogen peroxide (H2O2) inhibited cotton fiber elongation in vitro. We speculate that a positive feedback loop involving ROS and Ca2+ is regulated by GhCDPK1 and regulates fiber cell elongation. Furthermore, the convergence of actin filaments is altered by their interaction with GhFAnnxA, and this also may contribute to fiber elongation. Moreover, GhFAnnxA may affect SCW biosynthesis through changes in cell wall components caused by an increase in H2O2 levels. These results not only provide new insights into the signaling pathways of GhFAnnxA in fiber development but also clarify the role of ROS in fiber development. PMID:27255486

  15. Post-Synthetic Defucosylation of AGP by Aspergillus nidulans α-1,2-Fucosidase Expressed in Arabidopsis Apoplast Induces Compensatory Upregulation of α-1,2-Fucosyltransferases.

    PubMed

    Pogorelko, Gennady V; Reem, Nathan T; Young, Zachary T; Chambers, Lauran; Zabotina, Olga A

    2016-01-01

    Cell walls are essential components of plant cells which perform a variety of important functions for the different cell types, tissues and organs of a plant. Besides mechanical function providing cell shape, cell walls participate in intercellular communication, defense during plant-microbe interactions, and plant growth. The plant cell wall consists predominantly of polysaccharides with the addition of structural glycoproteins, phenolic esters, minerals, lignin, and associated enzymes. Alterations in the cell wall composition created through either changes in biosynthesis of specific constituents or their post-synthetic modifications in the apoplast compromise cell wall integrity and frequently induce plant compensatory responses as a result of these alterations. Here we report that post-synthetic removal of fucose residues specifically from arabinogalactan proteins in the Arabidopsis plant cell wall induces differential expression of fucosyltransferases and leads to the root and hypocotyl elongation changes. These results demonstrate that the post-synthetic modification of cell wall components presents a valuable approach to investigate the potential signaling pathways induced during plant responses to such modifications that usually occur during plant development and stress responses.

  16. Preparation of Purified Gram-positive Bacterial Cell Wall and Detection in Placenta and Fetal Tissues

    PubMed Central

    Mann, Beth; Loh, Lip Nam; Gao, Geli; Tuomanen, Elaine

    2017-01-01

    Cell wall is a complex biopolymer on the surface of all Gram-positive bacteria. During infection, cell wall is recognized by the innate immune receptor Toll-like receptor 2 causing intense inflammation and tissue damage. In animal models, cell wall traffics from the blood stream to many organs in the body, including brain, heart, placenta and fetus. This protocol describes how to prepare purified cell wall from Streptococcus pneumoniae, detect its distribution in animal tissues, and study the tissue response using the placenta and fetal brain as examples. PMID:28573167

  17. Early local differentiation of the cell wall matrix defines the contact sites in lobed mesophyll cells of Zea mays.

    PubMed

    Giannoutsou, E; Sotiriou, P; Apostolakos, P; Galatis, B

    2013-10-01

    The morphogenesis of lobed mesophyll cells (MCs) is highly controlled and coupled with intercellular space formation. Cortical microtubule rings define the number and the position of MC isthmi. This work investigated early events of MC morphogenesis, especially the mechanism defining the position of contacts between MCs. The distributions of plasmodesmata, the hemicelluloses callose and (1 → 3,1 → 4)-β-d-glucans (MLGs) and the pectin epitopes recognized by the 2F4, JIM5, JIM7 and LM6 antibodies were studied in the cell walls of Zea mays MCs. Matrix cell wall polysaccharides were immunolocalized in hand-made sections and in sections of material embedded in LR White resin. Callose was also localized using aniline blue in hand-made sections. Plasmodesmata distribution was examined by transmission electron microscopy. Before reorganization of the dispersed cortical microtubules into microtubule rings, particular bands of the longitudinal MC walls, where the MC contacts will form, locally differentiate by selective (1) deposition of callose and the pectin epitopes recognized by the 2F4, LM6, JIM5 and JIM7 antibodies, (2) degradation of MLGs and (3) formation of secondary plasmodesmata clusterings. This cell wall matrix differentiation persists in cell contacts of mature MCs. Simultaneously, the wall bands between those of future cell contacts differentiate with (1) deposition of local cell wall thickenings including cellulose microfibrils, (2) preferential presence of MLGs, (3) absence of callose and (4) transient presence of the pectins identified by the JIM5 and JIM7 antibodies. The wall areas between cell contacts expand determinately to form the cell isthmi and the cell lobes. The morphogenesis of lobed MCs is characterized by the early patterned differentiation of two distinct cell wall subdomains, defining the sites of the future MC contacts and of the future MC isthmi respectively. This patterned cell wall differentiation precedes cortical microtubule reorganization and may define microtubule ring disposition.

  18. Method for immobilizing particulate materials in a packed bed

    DOEpatents

    Even, W.R. Jr.; Guthrie, S.E.; Raber, T.N.; Wally, K.; Whinnery, L.L.; Zifer, T.

    1999-02-02

    The present invention pertains generally to immobilizing particulate matter contained in a packed bed reactor so as to prevent powder migration, compaction, coalescence, or the like. More specifically, this invention relates to a technique for immobilizing particulate materials using a microporous foam-like polymer such that (a) the particulate retains its essential chemical nature, (b) the local movement of the particulate particles is not unduly restricted, (c) bulk powder migration and is prevented, (d) physical and chemical access to the particulate is unchanged over time, and (e) very high particulate densities are achieved. The immobilized bed of the present invention comprises a vessel for holding particulate matter, inlet and an outlet ports or fittings, a loosely packed bed of particulate material contained within the vessel, and a three dimensional porous matrix for surrounding and confining the particles thereby fixing the movement of an individual particle to a limited local position. The established matrix is composed of a series of cells or chambers comprising walls surrounding void space, each wall forming the wall of an adjacent cell; each wall containing many holes penetrating through the wall yielding an overall porous structure and allowing useful levels of gas transport. 4 figs.

  19. Integrated -Omics: A Powerful Approach to Understanding the Heterogeneous Lignification of Fibre Crops

    PubMed Central

    Gea, Guerriero; Kjell, Sergeant; Jean-François, Hausman

    2013-01-01

    Lignin and cellulose represent the two main components of plant secondary walls and the most abundant polymers on Earth. Quantitatively one of the principal products of the phenylpropanoid pathway, lignin confers high mechanical strength and hydrophobicity to plant walls, thus enabling erect growth and high-pressure water transport in the vessels. Lignin is characterized by a high natural heterogeneity in its composition and abundance in plant secondary cell walls, even in the different tissues of the same plant. A typical example is the stem of fibre crops, which shows a lignified core enveloped by a cellulosic, lignin-poor cortex. Despite the great value of fibre crops for humanity, however, still little is known on the mechanisms controlling their cell wall biogenesis, and particularly, what regulates their spatially-defined lignification pattern. Given the chemical complexity and the heterogeneous composition of fibre crops’ secondary walls, only the use of multidisciplinary approaches can convey an integrated picture and provide exhaustive information covering different levels of biological complexity. The present review highlights the importance of combining high throughput -omics approaches to get a complete understanding of the factors regulating the lignification heterogeneity typical of fibre crops. PMID:23708098

  20. Salinity stress inhibits bean leaf expansion by reducing turgor, not wall extensibility

    NASA Technical Reports Server (NTRS)

    Neumann, P. M.; Van Volkenburgh, E.; Cleland, R. E.

    1988-01-01

    Treatment of bean (Phaseolus vulgaris L.) seedlings with low levels of salinity (50 or 100 millimolar NaCl) decreased the rate of light-induced leaf cell expansion in the primary leaves over a 3 day period. This decrease could be due to a reduction in one or both of the primary cellular growth parameters: wall extensibility and cell turgor. Wall extensibility was assessed by the Instron technique. Salinity did not decrease extensibility and caused small increases relative to the controls after 72 hours. On the other hand, 50 millimolar NaCl caused a significant reduction in leaf bulk turgor at 24 hours; adaptive decreases in leaf osmotic potential (osmotic adjustment) were more than compensated by parallel decreases in xylem tension potential and the leaf apoplastic solute potential, resulting in a decreased leaf water potential. It is concluded that in bean seedlings, mild salinity initially affects leaf growth rate by a decrease in turgor rather than by a reduction in wall extensibility. Moreover, long-term salinization (10 days) resulted in an apparent mechanical adjustment, i.e. an increase in wall extensibility, which may help counteract reductions in turgor and maintain leaf growth rates.

Top