Sample records for cell wall morphogenesis

  1. Mechanics and morphogenesis of fission yeast cells.

    PubMed

    Davì, Valeria; Minc, Nicolas

    2015-12-01

    The integration of biochemical and biomechanical elements is at the heart of morphogenesis. While animal cells are relatively soft objects which shape and mechanics is mostly regulated by cytoskeletal networks, walled cells including those of plants, fungi and bacteria are encased in a rigid cell wall which resist high internal turgor pressure. How these particular mechanical properties may influence basic cellular processes, such as growth, shape and division remains poorly understood. Recent work using the model fungal cell fission yeast, Schizosaccharomyces pombe, highlights important contribution of cell mechanics to various morphogenesis processes. We envision this genetically tractable system to serve as a novel standard for the mechanobiology of walled cell. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Differentiated roles for MreB-actin isologues and autolytic enzymes in Bacillus subtilis morphogenesis.

    PubMed

    Domínguez-Cuevas, Patricia; Porcelli, Ida; Daniel, Richard A; Errington, Jeff

    2013-09-01

    Cell morphogenesis in most bacteria is governed by spatiotemporal growth regulation of the peptidoglycan cell wall layer. Much is known about peptidoglycan synthesis but regulation of its turnover by hydrolytic enzymes is much less well understood. Bacillus subtilis has a multitude of such enzymes. Two of the best characterized are CwlO and LytE: cells lacking both enzymes have a lethal block in cell elongation. Here we show that activity of CwlO is regulated by an ABC transporter, FtsEX, which is required for cell elongation, unlike cell division as in Escherichia coli. Actin-like MreB proteins are thought to play a key role in orchestrating cell wall morphogenesis. B. subtilis has three MreB isologues with partially differentiated functions. We now show that the three MreB isologues have differential roles in regulation of the CwlO and LytE systems and that autolysins control different aspects of cell morphogenesis. The results add major autolytic activities to the growing list of functions controlled by MreB isologues in bacteria and provide new insights into the different specialized functions of essential cell wall autolysins. © 2013 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  3. Dynamics of cell wall elasticity pattern shapes the cell during yeast mating morphogenesis

    PubMed Central

    Goldenbogen, Björn; Giese, Wolfgang; Hemmen, Marie; Uhlendorf, Jannis; Herrmann, Andreas

    2016-01-01

    The cell wall defines cell shape and maintains integrity of fungi and plants. When exposed to mating pheromone, Saccharomyces cerevisiae grows a mating projection and alters in morphology from spherical to shmoo form. Although structural and compositional alterations of the cell wall accompany shape transitions, their impact on cell wall elasticity is unknown. In a combined theoretical and experimental approach using finite-element modelling and atomic force microscopy (AFM), we investigated the influence of spatially and temporally varying material properties on mating morphogenesis. Time-resolved elasticity maps of shmooing yeast acquired with AFM in vivo revealed distinct patterns, with soft material at the emerging mating projection and stiff material at the tip. The observed cell wall softening in the protrusion region is necessary for the formation of the characteristic shmoo shape, and results in wider and longer mating projections. The approach is generally applicable to tip-growing fungi and plants cells. PMID:27605377

  4. Mechanical feedback coordinates cell wall expansion and assembly in yeast mating morphogenesis

    PubMed Central

    2018-01-01

    The shaping of individual cells requires a tight coordination of cell mechanics and growth. However, it is unclear how information about the mechanical state of the wall is relayed to the molecular processes building it, thereby enabling the coordination of cell wall expansion and assembly during morphogenesis. Combining theoretical and experimental approaches, we show that a mechanical feedback coordinating cell wall assembly and expansion is essential to sustain mating projection growth in budding yeast (Saccharomyces cerevisiae). Our theoretical results indicate that the mechanical feedback provided by the Cell Wall Integrity pathway, with cell wall stress sensors Wsc1 and Mid2 increasingly activating membrane-localized cell wall synthases Fks1/2 upon faster cell wall expansion, stabilizes mating projection growth without affecting cell shape. Experimental perturbation of the osmotic pressure and cell wall mechanics, as well as compromising the mechanical feedback through genetic deletion of the stress sensors, leads to cellular phenotypes that support the theoretical predictions. Our results indicate that while the existence of mechanical feedback is essential to stabilize mating projection growth, the shape and size of the cell are insensitive to the feedback. PMID:29346368

  5. Mechanical influences in bacterial morphogenesis and cell division

    NASA Astrophysics Data System (ADS)

    Sun, Sean

    2010-03-01

    Bacterial cells utilize a ring-like organelle (the Z-ring) to accomplish cell division. The Z-ring actively generates a contractile force and influences cell wall growth. We will discuss a general model of bacterial morphogenesis where mechanical forces are coupled to the growth dynamics of the cell wall. The model suggests a physical mechanism that determines the shapes of bacteria cells. The roles of several bacterial cytoskeletal proteins and the Z-ring are discussed. We will also explore molecular mechanisms of force generation by the Z-ring and how cells can generate mechanical forces without molecular motors.

  6. Reassessing the roles of PIN proteins and anticlinal microtubules during pavement cell morphogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belteton, Samuel; Sawchuk, Megan G.; Donohoe, Bryon S.

    The leaf epidermis is a biomechanical shell that influences the size and shape of the organ. Its morphogenesis is a multiscale process in which nanometer-scale cytoskeletal protein complexes, individual cells, and groups of cells pattern growth and define macroscopic leaf traits. Interdigitated growth of neighboring cells is an evolutionarily conserved developmental strategy. Understanding how signaling pathways and cytoskeletal proteins pattern cell walls during this form of tissue morphogenesis is an important research challenge. The cellular and molecular control of a lobed cell morphology is currently thought to involve PIN-FORMED (PIN)-type plasma membrane efflux carriers that generate subcellular auxin gradients. Auxinmore » gradients were proposed to function across cell boundaries to encode stable offset patterns of cortical microtubules and actin filaments between adjacent cells. Many models suggest that long-lived microtubules along the anticlinal cell wall generate local cell wall heterogeneities that restrict local growth and specify the timing and location of lobe formation. Here we used Arabidopsis reverse genetics and multivariate long-term time-lapse imaging to test current cell shape control models. We found that neither PIN proteins nor microtubules along the anticlinal wall predict the patterns of lobe formation. In fields of lobing cells, anticlinal microtubules are not correlated with cell shape and are unstable at the time scales of cell expansion. Our analyses indicate that anticlinal microtubules have multiple functions in pavement cells, and that lobe initiation is likely controlled by complex interactions among cell geometry, cell wall stress patterns, and transient microtubule networks that span the anticlinal and periclinal walls.« less

  7. Reassessing the Roles of PIN Proteins and Anticlinal Microtubules during Pavement Cell Morphogenesis1[OPEN

    PubMed Central

    Sawchuk, Megan G.; Scarpella, Enrico

    2018-01-01

    The leaf epidermis is a biomechanical shell that influences the size and shape of the organ. Its morphogenesis is a multiscale process in which nanometer-scale cytoskeletal protein complexes, individual cells, and groups of cells pattern growth and define macroscopic leaf traits. Interdigitated growth of neighboring cells is an evolutionarily conserved developmental strategy. Understanding how signaling pathways and cytoskeletal proteins pattern cell walls during this form of tissue morphogenesis is an important research challenge. The cellular and molecular control of a lobed cell morphology is currently thought to involve PIN-FORMED (PIN)-type plasma membrane efflux carriers that generate subcellular auxin gradients. Auxin gradients were proposed to function across cell boundaries to encode stable offset patterns of cortical microtubules and actin filaments between adjacent cells. Many models suggest that long-lived microtubules along the anticlinal cell wall generate local cell wall heterogeneities that restrict local growth and specify the timing and location of lobe formation. Here, we used Arabidopsis (Arabidopsis thaliana) reverse genetics and multivariate long-term time-lapse imaging to test current cell shape control models. We found that neither PIN proteins nor long-lived microtubules along the anticlinal wall predict the patterns of lobe formation. In fields of lobing cells, anticlinal microtubules are not correlated with cell shape and are unstable at the time scales of cell expansion. Our analyses indicate that anticlinal microtubules have multiple functions in pavement cells and that lobe initiation is likely controlled by complex interactions among cell geometry, cell wall stress patterns, and transient microtubule networks that span the anticlinal and periclinal walls. PMID:29192026

  8. RodZ links MreB to cell wall synthesis to mediate MreB rotation and robust morphogenesis

    PubMed Central

    Morgenstein, Randy M.; Bratton, Benjamin P.; Nguyen, Jeffrey P.; Ouzounov, Nikolay; Shaevitz, Joshua W.; Gitai, Zemer

    2015-01-01

    The rod shape of most bacteria requires the actin homolog, MreB. Whereas MreB was initially thought to statically define rod shape, recent studies found that MreB dynamically rotates around the cell circumference dependent on cell wall synthesis. However, the mechanism by which cytoplasmic MreB is linked to extracytoplasmic cell wall synthesis and the function of this linkage for morphogenesis has remained unclear. Here we demonstrate that the transmembrane protein RodZ mediates MreB rotation by directly or indirectly coupling MreB to cell wall synthesis enzymes. Furthermore, we map the RodZ domains that link MreB to cell wall synthesis and identify mreB mutants that suppress the shape defect of ΔrodZ without restoring rotation, uncoupling rotation from rod-like growth. Surprisingly, MreB rotation is dispensable for rod-like shape determination under standard laboratory conditions but is required for the robustness of rod shape and growth under conditions of cell wall stress. PMID:26396257

  9. RodZ links MreB to cell wall synthesis to mediate MreB rotation and robust morphogenesis.

    PubMed

    Morgenstein, Randy M; Bratton, Benjamin P; Nguyen, Jeffrey P; Ouzounov, Nikolay; Shaevitz, Joshua W; Gitai, Zemer

    2015-10-06

    The rod shape of most bacteria requires the actin homolog, MreB. Whereas MreB was initially thought to statically define rod shape, recent studies found that MreB dynamically rotates around the cell circumference dependent on cell wall synthesis. However, the mechanism by which cytoplasmic MreB is linked to extracytoplasmic cell wall synthesis and the function of this linkage for morphogenesis has remained unclear. Here we demonstrate that the transmembrane protein RodZ mediates MreB rotation by directly or indirectly coupling MreB to cell wall synthesis enzymes. Furthermore, we map the RodZ domains that link MreB to cell wall synthesis and identify mreB mutants that suppress the shape defect of ΔrodZ without restoring rotation, uncoupling rotation from rod-like growth. Surprisingly, MreB rotation is dispensable for rod-like shape determination under standard laboratory conditions but is required for the robustness of rod shape and growth under conditions of cell wall stress.

  10. Alteration in the ultrastructural morphology of mycelial hyphae and the dynamics of transcriptional activity of lytic enzyme genes during basidiomycete morphogenesis.

    PubMed

    Vetchinkina, Elena; Kupryashina, Maria; Gorshkov, Vladimir; Ageeva, Marina; Gogolev, Yuri; Nikitina, Valentina

    2017-04-01

    The morphogenesis of macromycetes is a complex multilevel process resulting in a set of molecular-genetic, physiological-biochemical, and morphological-ultrastructural changes in the cells. When the xylotrophic basidiomycetes Lentinus edodes, Grifola frondosa, and Ganoderma lucidum were grown on wood waste as the substrate, the ultrastructural morphology of the mycelial hyphal cell walls differed considerably between mycelium and morphostructures. As the macromycetes passed from vegetative to generative development, the expression of the tyr1, tyr2, chi1, chi2, exg1, exg2, and exg3 genes was activated. These genes encode enzymes such as tyrosinase, chitinase, and glucanase, which play essential roles in cell wall growth and morphogenesis.

  11. Early local differentiation of the cell wall matrix defines the contact sites in lobed mesophyll cells of Zea mays.

    PubMed

    Giannoutsou, E; Sotiriou, P; Apostolakos, P; Galatis, B

    2013-10-01

    The morphogenesis of lobed mesophyll cells (MCs) is highly controlled and coupled with intercellular space formation. Cortical microtubule rings define the number and the position of MC isthmi. This work investigated early events of MC morphogenesis, especially the mechanism defining the position of contacts between MCs. The distributions of plasmodesmata, the hemicelluloses callose and (1 → 3,1 → 4)-β-d-glucans (MLGs) and the pectin epitopes recognized by the 2F4, JIM5, JIM7 and LM6 antibodies were studied in the cell walls of Zea mays MCs. Matrix cell wall polysaccharides were immunolocalized in hand-made sections and in sections of material embedded in LR White resin. Callose was also localized using aniline blue in hand-made sections. Plasmodesmata distribution was examined by transmission electron microscopy. Before reorganization of the dispersed cortical microtubules into microtubule rings, particular bands of the longitudinal MC walls, where the MC contacts will form, locally differentiate by selective (1) deposition of callose and the pectin epitopes recognized by the 2F4, LM6, JIM5 and JIM7 antibodies, (2) degradation of MLGs and (3) formation of secondary plasmodesmata clusterings. This cell wall matrix differentiation persists in cell contacts of mature MCs. Simultaneously, the wall bands between those of future cell contacts differentiate with (1) deposition of local cell wall thickenings including cellulose microfibrils, (2) preferential presence of MLGs, (3) absence of callose and (4) transient presence of the pectins identified by the JIM5 and JIM7 antibodies. The wall areas between cell contacts expand determinately to form the cell isthmi and the cell lobes. The morphogenesis of lobed MCs is characterized by the early patterned differentiation of two distinct cell wall subdomains, defining the sites of the future MC contacts and of the future MC isthmi respectively. This patterned cell wall differentiation precedes cortical microtubule reorganization and may define microtubule ring disposition.

  12. Dynamics of cell wall elasticity pattern shapes the cell during yeast mating morphogenesis.

    PubMed

    Goldenbogen, Björn; Giese, Wolfgang; Hemmen, Marie; Uhlendorf, Jannis; Herrmann, Andreas; Klipp, Edda

    2016-09-01

    The cell wall defines cell shape and maintains integrity of fungi and plants. When exposed to mating pheromone, Saccharomyces cerevisiae grows a mating projection and alters in morphology from spherical to shmoo form. Although structural and compositional alterations of the cell wall accompany shape transitions, their impact on cell wall elasticity is unknown. In a combined theoretical and experimental approach using finite-element modelling and atomic force microscopy (AFM), we investigated the influence of spatially and temporally varying material properties on mating morphogenesis. Time-resolved elasticity maps of shmooing yeast acquired with AFM in vivo revealed distinct patterns, with soft material at the emerging mating projection and stiff material at the tip. The observed cell wall softening in the protrusion region is necessary for the formation of the characteristic shmoo shape, and results in wider and longer mating projections. The approach is generally applicable to tip-growing fungi and plants cells. © 2016 The Authors.

  13. Reassessing the Roles of PIN Proteins and Anticlinal Microtubules during Pavement Cell Morphogenesis.

    PubMed

    Belteton, Samuel A; Sawchuk, Megan G; Donohoe, Bryon S; Scarpella, Enrico; Szymanski, Daniel B

    2018-01-01

    The leaf epidermis is a biomechanical shell that influences the size and shape of the organ. Its morphogenesis is a multiscale process in which nanometer-scale cytoskeletal protein complexes, individual cells, and groups of cells pattern growth and define macroscopic leaf traits. Interdigitated growth of neighboring cells is an evolutionarily conserved developmental strategy. Understanding how signaling pathways and cytoskeletal proteins pattern cell walls during this form of tissue morphogenesis is an important research challenge. The cellular and molecular control of a lobed cell morphology is currently thought to involve PIN-FORMED (PIN)-type plasma membrane efflux carriers that generate subcellular auxin gradients. Auxin gradients were proposed to function across cell boundaries to encode stable offset patterns of cortical microtubules and actin filaments between adjacent cells. Many models suggest that long-lived microtubules along the anticlinal cell wall generate local cell wall heterogeneities that restrict local growth and specify the timing and location of lobe formation. Here, we used Arabidopsis ( Arabidopsis thaliana ) reverse genetics and multivariate long-term time-lapse imaging to test current cell shape control models. We found that neither PIN proteins nor long-lived microtubules along the anticlinal wall predict the patterns of lobe formation. In fields of lobing cells, anticlinal microtubules are not correlated with cell shape and are unstable at the time scales of cell expansion. Our analyses indicate that anticlinal microtubules have multiple functions in pavement cells and that lobe initiation is likely controlled by complex interactions among cell geometry, cell wall stress patterns, and transient microtubule networks that span the anticlinal and periclinal walls. © 2018 American Society of Plant Biologists. All Rights Reserved.

  14. A System for Modelling Cell–Cell Interactions during Plant Morphogenesis

    PubMed Central

    Dupuy, Lionel; Mackenzie, Jonathan; Rudge, Tim; Haseloff, Jim

    2008-01-01

    Background and aims During the development of multicellular organisms, cells are capable of interacting with each other through a range of biological and physical mechanisms. A description of these networks of cell–cell interactions is essential for an understanding of how cellular activity is co-ordinated in regionalized functional entities such as tissues or organs. The difficulty of experimenting on living tissues has been a major limitation to describing such systems, and computer modelling appears particularly helpful to characterize the behaviour of multicellular systems. The experimental difficulties inherent to the multitude of parallel interactions that underlie cellular morphogenesis have led to the need for computer models. Methods A new generic model of plant cellular morphogenesis is described that expresses interactions amongst cellular entities explicitly: the plant is described as a multi-scale structure, and interactions between distinct entities is established through a topological neighbourhood. Tissues are represented as 2D biphasic systems where the cell wall responds to turgor pressure through a viscous yielding of the cell wall. Key Results This principle was used in the development of the CellModeller software, a generic tool dedicated to the analysis and modelling of plant morphogenesis. The system was applied to three contrasting study cases illustrating genetic, hormonal and mechanical factors involved in plant morphogenesis. Conclusions Plant morphogenesis is fundamentally a cellular process and the CellModeller software, through its underlying generic model, provides an advanced research tool to analyse coupled physical and biological morphogenetic mechanisms. PMID:17921524

  15. Cell wall accumulation of fluorescent proteins derived from a trans-Golgi cisternal membrane marker and paramural bodies in interdigitated Arabidopsis leaf epidermal cells.

    PubMed

    Akita, Kae; Kobayashi, Megumi; Sato, Mayuko; Kutsuna, Natsumaro; Ueda, Takashi; Toyooka, Kiminori; Nagata, Noriko; Hasezawa, Seiichiro; Higaki, Takumi

    2017-01-01

    In most dicotyledonous plants, leaf epidermal pavement cells develop jigsaw puzzle-like shapes during cell expansion. The rapid growth and complicated cell shape of pavement cells is suggested to be achieved by targeted exocytosis that is coordinated with cytoskeletal rearrangement to provide plasma membrane and/or cell wall materials for lobe development during their morphogenesis. Therefore, visualization of membrane trafficking in leaf pavement cells should contribute an understanding of the mechanism of plant cell morphogenesis. To reveal membrane trafficking in pavement cells, we observed monomeric red fluorescent protein-tagged rat sialyl transferases, which are markers of trans-Golgi cisternal membranes, in the leaf epidermis of Arabidopsis thaliana. Quantitative fluorescence imaging techniques and immunoelectron microscopic observations revealed that accumulation of the red fluorescent protein occurred mostly in the curved regions of pavement cell borders and guard cell ends during leaf expansion. Transmission electron microscopy observations revealed that apoplastic vesicular membrane structures called paramural bodies were more frequent beneath the curved cell wall regions of interdigitated pavement cells and guard cell ends in young leaf epidermis. In addition, pharmacological studies showed that perturbations in membrane trafficking resulted in simple cell shapes. These results suggested possible heterogeneity of the curved regions of plasma membranes, implying a relationship with pavement cell morphogenesis.

  16. Cell wall matrix polysaccharide distribution and cortical microtubule organization: two factors controlling mesophyll cell morphogenesis in land plants

    PubMed Central

    Sotiriou, P.; Giannoutsou, E.; Panteris, E.; Apostolakos, P.; Galatis, B.

    2016-01-01

    Background and aims This work investigates the involvement of local differentiation of cell wall matrix polysaccharides and the role of microtubules in the morphogenesis of mesophyll cells (MCs) of three types (lobed, branched and palisade) in the dicotyledon Vigna sinensis and the fern Asplenium nidus. Methods Homogalacturonan (HGA) epitopes recognized by the 2F4, JIM5 and JIM7 antibodies and callose were immunolocalized in hand-made leaf sections. Callose was also stained with aniline blue. We studied microtubule organization by tubulin immunofluorescence and transmission electron microscopy. Results In both plants, the matrix cell wall polysaccharide distribution underwent definite changes during MC differentiation. Callose constantly defined the sites of MC contacts. The 2F4 HGA epitope in V. sinensis first appeared in MC contacts but gradually moved towards the cell wall regions facing the intercellular spaces, while in A. nidus it was initially localized at the cell walls delimiting the intercellular spaces, but finally shifted to MC contacts. In V. sinensis, the JIM5 and JIM7 HGA epitopes initially marked the cell walls delimiting the intercellular spaces and gradually shifted in MC contacts, while in A. nidus they constantly enriched MC contacts. In all MC types examined, the cortical microtubules played a crucial role in their morphogenesis. In particular, in palisade MCs, cortical microtubule helices, by controlling cellulose microfibril orientation, forced these MCs to acquire a truncated cone-like shape. Unexpectedly in V. sinensis, the differentiation of colchicine-affected MCs deviated completely, since they developed a cell wall ingrowth labyrinth, becoming transfer-like cells. Conclusions The results of this work and previous studies on Zea mays (Giannoutsou et al., Annals of Botany 2013; 112: 1067–1081) revealed highly controlled local cell wall matrix differentiation in MCs of species belonging to different plant groups. This, in coordination with microtubule-dependent cellulose microfibril alignment, spatially controlled cell wall expansion, allowing MCs to acquire their particular shape. PMID:26802013

  17. Cellular growth in plants requires regulation of cell wall biochemistry.

    PubMed

    Chebli, Youssef; Geitmann, Anja

    2017-02-01

    Cell and organ morphogenesis in plants are regulated by the chemical structure and mechanical properties of the extracellular matrix, the cell wall. The two primary load bearing components in the plant cell wall, the pectin matrix and the cellulose/xyloglucan network, are constantly remodelled to generate the morphological changes required during plant development. This remodelling is regulated by a plethora of loosening and stiffening agents such as pectin methyl-esterases, calcium ions, expansins, and glucanases. The tight spatio-temporal regulation of the activities of these agents is a sine qua non condition for proper morphogenesis at cell and tissue levels. The pectin matrix and the cellulose-xyloglucan network operate in concert and their behaviour is mutually dependent on their chemical, structural and mechanical modifications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Yeast casein kinase 2 governs morphology, biofilm formation, cell wall integrity, and host cell damage of Candida albicans.

    PubMed

    Jung, Sook-In; Rodriguez, Natalie; Irrizary, Jihyun; Liboro, Karl; Bogarin, Thania; Macias, Marlene; Eivers, Edward; Porter, Edith; Filler, Scott G; Park, Hyunsook

    2017-01-01

    The regulatory networks governing morphogenesis of a pleomorphic fungus, Candida albicans are extremely complex and remain to be completely elucidated. This study investigated the function of C. albicans yeast casein kinase 2 (CaYck2p). The yck2Δ/yck2Δ strain displayed constitutive pseudohyphae in both yeast and hyphal growth conditions, and formed enhanced biofilm under non-biofilm inducing condition. This finding was further supported by gene expression analysis of the yck2Δ/yck2Δ strain which showed significant upregulation of UME6, a key transcriptional regulator of hyphal transition and biofilm formation, and cell wall protein genes ALS3, HWP1, and SUN41, all of which are associated with morphogenesis and biofilm architecture. The yck2Δ/yck2Δ strain was hypersensitive to cell wall damaging agents and had increased compensatory chitin deposition in the cell wall accompanied by an upregulation of the expression of the chitin synthase genes, CHS2, CHS3, and CHS8. Absence of CaYck2p also affected fungal-host interaction; the yck2Δ/yck2Δ strain had significantly reduced ability to damage host cells. However, the yck2Δ/yck2Δ strain had wild-type susceptibility to cyclosporine and FK506, suggesting that CaYck2p functions independently from the Ca+/calcineurin pathway. Thus, in C. albicans, Yck2p is a multifunctional kinase that governs morphogenesis, biofilm formation, cell wall integrity, and host cell interactions.

  19. Stomatal Complex Development and F-Actin Organization in Maize Leaf Epidermis Depend on Cellulose Synthesis.

    PubMed

    Panteris, Emmanuel; Achlati, Theonymphi; Daras, Gerasimos; Rigas, Stamatis

    2018-06-06

    Cellulose microfibrils reinforce the cell wall for morphogenesis in plants. Herein, we provide evidence on a series of defects regarding stomatal complex development and F-actin organization in Zea mays leaf epidermis, due to inhibition of cellulose synthesis. Formative cell divisions of stomatal complex ontogenesis were delayed or inhibited, resulting in lack of subsidiary cells and frequently in unicellular stomata, with an atypical stomatal pore. Guard cells failed to acquire a dumbbell shape, becoming rounded, while subsidiary cells, whenever present, exhibited aberrant morphogenesis. F-actin organization was also affected, since the stomatal complex-specific arrays were scarcely observed. At late developmental stages, the overall F-actin network was diminished in all epidermal cells, although thick actin bundles persisted. Taken together, stomatal complex development strongly depends on cell wall mechanical properties. Moreover, F-actin organization exhibits a tight relationship with the cell wall.

  20. Yeast casein kinase 2 governs morphology, biofilm formation, cell wall integrity, and host cell damage of Candida albicans

    PubMed Central

    Irrizary, Jihyun; Liboro, Karl; Bogarin, Thania; Macias, Marlene; Eivers, Edward; Porter, Edith; Filler, Scott G.

    2017-01-01

    The regulatory networks governing morphogenesis of a pleomorphic fungus, Candida albicans are extremely complex and remain to be completely elucidated. This study investigated the function of C. albicans yeast casein kinase 2 (CaYck2p). The yck2Δ/yck2Δ strain displayed constitutive pseudohyphae in both yeast and hyphal growth conditions, and formed enhanced biofilm under non-biofilm inducing condition. This finding was further supported by gene expression analysis of the yck2Δ/yck2Δ strain which showed significant upregulation of UME6, a key transcriptional regulator of hyphal transition and biofilm formation, and cell wall protein genes ALS3, HWP1, and SUN41, all of which are associated with morphogenesis and biofilm architecture. The yck2Δ/yck2Δ strain was hypersensitive to cell wall damaging agents and had increased compensatory chitin deposition in the cell wall accompanied by an upregulation of the expression of the chitin synthase genes, CHS2, CHS3, and CHS8. Absence of CaYck2p also affected fungal-host interaction; the yck2Δ/yck2Δ strain had significantly reduced ability to damage host cells. However, the yck2Δ/yck2Δ strain had wild-type susceptibility to cyclosporine and FK506, suggesting that CaYck2p functions independently from the Ca+/calcineurin pathway. Thus, in C. albicans, Yck2p is a multifunctional kinase that governs morphogenesis, biofilm formation, cell wall integrity, and host cell interactions. PMID:29107946

  1. If walls could talk

    NASA Technical Reports Server (NTRS)

    Braam, J.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    The plant cell wall is very complex, both in structure and function. The wall components and the mechanical properties of the wall have been implicated in conveying information that is important for morphogenesis. Proteoglycans, fragments of polysaccharides and the structural integrity of the wall may relay signals that influence cellular differentiation and growth control. Furthering our knowledge of cell wall structure and function is likely to have a profound impact on our understanding of how plant cells communicate with the extracellular environment.

  2. Microtubules and epithem-cell morphogenesis in hydathodes of Pilea cadierei.

    PubMed

    Galatis, B

    1988-12-01

    When cell divisions have ceased, the epithem of the hydathodes of Pilea cadierei Gagnep. et Guill. consists of small polyhedral cells exhibiting a meristematic appearance, and completely lacks intercellular spaces. The cortical microtubules in epithem cells exhibit a unique organization: they are not scattered along the whole wall surface but form groups lying at some distance from each other. In sections, from two to eight groups of microtubules can be observed, each lining a wall region averaging between 0.5 and 1.5 μm in length. These groups represent sections of microtubule bundles girdling a major part or the whole of the cell periphery. They are connected to one another by anastomoses, forming a microtubular reticulum. The assembly of microtubule bundles is followed by the appearance of distinct local thickenings in the adjacent wall areas. The cellulose microfibrils in the thickenings are deposited in parallel to the underlying microtubules. Gradually, the vacuolating epithem cells undergo swelling, except for the areas bounded by the wall thickenings. Since the latter, and actually their constituent bundles of cellulose microfibrils, cannot extend in length the differential cell growth results in schizogenous formation of intercellular spaces between contiguous cell walls at their thickened regions. The spaces then broaden and merge to become an extensive intercellular space system. As a result of the above processes, the epithem cells become constricted and finally deeply lobed. The observations show that (i) the cortical microtubules are intimately involved in the morphogenesis of the epithem cells and (ii) the initiation and development of the epithem intercellular spaces is a phenomenon directly related to cell morphogenesis and therefore to the cortical microtubule cytoskeleton. The sites of initiation of these spaces are highly predictable.

  3. Cell wall matrix polysaccharide distribution and cortical microtubule organization: two factors controlling mesophyll cell morphogenesis in land plants.

    PubMed

    Sotiriou, P; Giannoutsou, E; Panteris, E; Apostolakos, P; Galatis, B

    2016-03-01

    This work investigates the involvement of local differentiation of cell wall matrix polysaccharides and the role of microtubules in the morphogenesis of mesophyll cells (MCs) of three types (lobed, branched and palisade) in the dicotyledon Vigna sinensis and the fern Asplenium nidus. Homogalacturonan (HGA) epitopes recognized by the 2F4, JIM5 and JIM7 antibodies and callose were immunolocalized in hand-made leaf sections. Callose was also stained with aniline blue. We studied microtubule organization by tubulin immunofluorescence and transmission electron microscopy. In both plants, the matrix cell wall polysaccharide distribution underwent definite changes during MC differentiation. Callose constantly defined the sites of MC contacts. The 2F4 HGA epitope in V. sinensis first appeared in MC contacts but gradually moved towards the cell wall regions facing the intercellular spaces, while in A. nidus it was initially localized at the cell walls delimiting the intercellular spaces, but finally shifted to MC contacts. In V. sinensis, the JIM5 and JIM7 HGA epitopes initially marked the cell walls delimiting the intercellular spaces and gradually shifted in MC contacts, while in A. nidus they constantly enriched MC contacts. In all MC types examined, the cortical microtubules played a crucial role in their morphogenesis. In particular, in palisade MCs, cortical microtubule helices, by controlling cellulose microfibril orientation, forced these MCs to acquire a truncated cone-like shape. Unexpectedly in V. sinensis, the differentiation of colchicine-affected MCs deviated completely, since they developed a cell wall ingrowth labyrinth, becoming transfer-like cells. The results of this work and previous studies on Zea mays (Giannoutsou et al., Annals of Botany 2013; 112: : 1067-1081) revealed highly controlled local cell wall matrix differentiation in MCs of species belonging to different plant groups. This, in coordination with microtubule-dependent cellulose microfibril alignment, spatially controlled cell wall expansion, allowing MCs to acquire their particular shape. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Arabidopsis thaliana plants lacking the ARP2/3 complex show defects in cell wall assembly and auxin distribution.

    PubMed

    Pratap Sahi, Vaidurya; Cifrová, Petra; García-González, Judith; Kotannal Baby, Innu; Mouillé, Gregory; Gineau, Emilie; Müller, Karel; Baluška, František; Soukup, Aleš; Petrášek, Jan; Schwarzerová, Katerina

    2017-12-25

    The cytoskeleton plays an important role in the synthesis of plant cell walls. Both microtubules and actin cytoskeleton are known to be involved in the morphogenesis of plant cells through their role in cell wall building. The role of ARP2/3-nucleated actin cytoskeleton in the morphogenesis of cotyledon pavement cells has been described before. Seedlings of Arabidopsis mutants lacking a functional ARP2/3 complex display specific cell wall-associated defects. In three independent Arabidopsis mutant lines lacking subunits of the ARP2/3 complex, phenotypes associated with the loss of the complex were analysed throughout plant development. Organ size and anatomy, cell wall composition, and auxin distribution were investigated. ARP2/3-related phenotype is associated with changes in cell wall composition, and the phenotype is manifested especially in mature tissues. Cell walls of mature plants contain less cellulose and a higher amount of homogalacturonan, and display changes in cell wall lignification. Vascular bundles of mutant inflorescence stems show a changed pattern of AUX1-YFP expression. Plants lacking a functional ARP2/3 complex have decreased basipetal auxin transport. The results suggest that the ARP2/3 complex has a morphogenetic function related to cell wall synthesis and auxin transport. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. The cell shape proteins MreB and MreC control cell morphogenesis by positioning cell wall synthetic complexes.

    PubMed

    Divakaruni, Arun V; Baida, Cyril; White, Courtney L; Gober, James W

    2007-10-01

    MreB, the bacterial actin homologue, is thought to function in spatially co-ordinating cell morphogenesis in conjunction with MreC, a protein that wraps around the outside of the cell within the periplasmic space. In Caulobacter crescentus, MreC physically associates with penicillin-binding proteins (PBPs) which catalyse the insertion of intracellularly synthesized precursors into the peptidoglycan cell wall. Here we show that MreC is required for the spatial organization of components of the peptidoglycan-synthesizing holoenzyme in the periplasm and MreB directs the localization of a peptidoglycan precursor synthesis protein in the cytosol. Additionally, fluorescent vancomycin (Van-FL) labelling revealed that the bacterial cytoskeletal proteins MreB and FtsZ, as well as MreC and RodA, were required for peptidoglycan synthetic activity. MreB and FtsZ were found to be required for morphogenesis of the polar stalk. FtsZ was required for a cell cycle-regulated burst of peptidoglycan synthesis early in the cell cycle resulting in the synthesis of cross-band structures, whereas MreB was required for lengthening of the stalk. Thus, the bacterial cytoskeleton and cell shape-determining proteins such as MreC, function in concert to orchestrate the localization of cell wall synthetic complexes resulting in spatially co-ordinated and efficient peptidoglycan synthetic activity.

  6. The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells

    PubMed Central

    2011-01-01

    Background The leaf epidermis is an important architectural control element that influences the growth properties of underlying tissues and the overall form of the organ. In dicots, interdigitated pavement cells are the building blocks of the tissue, and their morphogenesis includes the assembly of specialized cell walls that surround the apical, basal, and lateral (anticlinal) cell surfaces. The microtubule and actin cytoskeletons are highly polarized along the cortex of the anticlinal wall; however, the relationships between these arrays and cell morphogenesis are unclear. Results We developed new quantitative tools to compare population-level growth statistics with time-lapse imaging of cotyledon pavement cells in an intact tissue. The analysis revealed alternating waves of lobe initiation and a phase of lateral isotropic expansion that persisted for days. During lateral isotropic diffuse growth, microtubule organization varied greatly between cell surfaces. Parallel microtubule bundles were distributed unevenly along the anticlinal surface, with subsets marking stable cortical domains at cell indentations and others clearly populating the cortex within convex cell protrusions. Conclusions Pavement cell morphogenesis is discontinuous, and includes punctuated phases of lobe initiation and lateral isotropic expansion. In the epidermis, lateral isotropic growth is independent of pavement cell size and shape. Cortical microtubules along the upper cell surface and stable cortical patches of anticlinal microtubules may coordinate the growth behaviors of orthogonal cell walls. This work illustrates the importance of directly linking protein localization data to the growth behavior of leaf epidermal cells. PMID:21284861

  7. The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells.

    PubMed

    Zhang, Chunhua; Halsey, Leah E; Szymanski, Daniel B

    2011-02-01

    The leaf epidermis is an important architectural control element that influences the growth properties of underlying tissues and the overall form of the organ. In dicots, interdigitated pavement cells are the building blocks of the tissue, and their morphogenesis includes the assembly of specialized cell walls that surround the apical, basal, and lateral (anticlinal) cell surfaces. The microtubule and actin cytoskeletons are highly polarized along the cortex of the anticlinal wall; however, the relationships between these arrays and cell morphogenesis are unclear. We developed new quantitative tools to compare population-level growth statistics with time-lapse imaging of cotyledon pavement cells in an intact tissue. The analysis revealed alternating waves of lobe initiation and a phase of lateral isotropic expansion that persisted for days. During lateral isotropic diffuse growth, microtubule organization varied greatly between cell surfaces. Parallel microtubule bundles were distributed unevenly along the anticlinal surface, with subsets marking stable cortical domains at cell indentations and others clearly populating the cortex within convex cell protrusions. Pavement cell morphogenesis is discontinuous, and includes punctuated phases of lobe initiation and lateral isotropic expansion. In the epidermis, lateral isotropic growth is independent of pavement cell size and shape. Cortical microtubules along the upper cell surface and stable cortical patches of anticlinal microtubules may coordinate the growth behaviors of orthogonal cell walls. This work illustrates the importance of directly linking protein localization data to the growth behavior of leaf epidermal cells.

  8. Perithecium morphogenesis in Sordaria macrospora.

    PubMed

    Lord, Kathryn M; Read, Nick D

    2011-04-01

    The perithecium of the self-fertile ascomycete Sordaria macrospora provides an excellent model in which to analyse fungal multicellular development. This study provides a detailed analysis of perithecium morphogenesis in the wild type and eight developmental mutants of S. macrospora, using a range of correlative microscopical techniques. Fundamentally, perithecia and other complex multicellular structures produced by fungi arise by hyphal aggregation and adhesion, and these processes are followed by specialization and septation of hyphal compartments within the aggregates. Perithecial morphogenesis can be divided into the ascogonial, protoperithecial, and perithecial stages of development. At least 13 specialized, morphologically distinct cell-types are involved in perithecium morphogenesis, and these fall into three basic classes: hyphae, conglutinate cells and spores. Conglutinate cells arise from hyphal adhesion and certain perithecial hyphae develop from conglutinate cells. Various hypha-conglutinate cell transitions play important roles during the development of the perithecial wall and neck. Copyright © 2010. Published by Elsevier Inc.

  9. Xyloglucan Deficiency Disrupts Microtubule Stability and Cellulose Biosynthesis in Arabidopsis, Altering Cell Growth and Morphogenesis1[OPEN

    PubMed Central

    Xiao, Chaowen; Zhang, Tian; Zheng, Yunzhen

    2016-01-01

    Xyloglucan constitutes most of the hemicellulose in eudicot primary cell walls and functions in cell wall structure and mechanics. Although Arabidopsis (Arabidopsis thaliana) xxt1 xxt2 mutants lacking detectable xyloglucan are viable, they display growth defects that are suggestive of alterations in wall integrity. To probe the mechanisms underlying these defects, we analyzed cellulose arrangement, microtubule patterning and dynamics, microtubule- and wall-integrity-related gene expression, and cellulose biosynthesis in xxt1 xxt2 plants. We found that cellulose is highly aligned in xxt1 xxt2 cell walls, that its three-dimensional distribution is altered, and that microtubule patterning and stability are aberrant in etiolated xxt1 xxt2 hypocotyls. We also found that the expression levels of microtubule-associated genes, such as MAP70-5 and CLASP, and receptor genes, such as HERK1 and WAK1, were changed in xxt1 xxt2 plants and that cellulose synthase motility is reduced in xxt1 xxt2 cells, corresponding with a reduction in cellulose content. Our results indicate that loss of xyloglucan affects both the stability of the microtubule cytoskeleton and the production and patterning of cellulose in primary cell walls. These findings establish, to our knowledge, new links between wall integrity, cytoskeletal dynamics, and wall synthesis in the regulation of plant morphogenesis. PMID:26527657

  10. Xyloglucan Deficiency Disrupts Microtubule Stability and Cellulose Biosynthesis in Arabidopsis, Altering Cell Growth and Morphogenesis

    DOE PAGES

    Xiao, Chaowen; Zhang, Tian; Zheng, Yunzhen; ...

    2015-11-02

    Here, xyloglucan constitutes most of the hemicellulose in eudicot primary cell walls and functions in cell wall structure and mechanics. Although Arabidopsis ( Arabidopsis thaliana) xxt1 xxt2 mutants lacking detectable xyloglucan are viable, they display growth defects that are suggestive of alterations in wall integrity. To probe the mechanisms underlying these defects, we analyzed cellulose arrangement, microtubule patterning and dynamics, microtubule- and wall-integrity-related gene expression, and cellulose biosynthesis in xxt1 xxt2 plants. We found that cellulose is highly aligned in xxt1 xxt2 cell walls, that its three-dimensional distribution is altered, and that microtubule patterning and stability are aberrant in etiolatedmore » xxt1 xxt2 hypocotyls. We also found that the expression levels of microtubule-associated genes, such as MAP70-5 and CLASP, and receptor genes, such as HERK1 and WAK1, were changed in xxt1 xxt2 plants and that cellulose synthase motility is reduced in xxt1 xxt2 cells, corresponding with a reduction in cellulose content. Our results indicate that loss of xyloglucan affects both the stability of the microtubule cytoskeleton and the production and patterning of cellulose in primary cell walls. These findings establish, to our knowledge, new links between wall integrity, cytoskeletal dynamics, and wall synthesis in the regulation of plant morphogenesis.« less

  11. Xyloglucan Deficiency Disrupts Microtubule Stability and Cellulose Biosynthesis in Arabidopsis, Altering Cell Growth and Morphogenesis.

    PubMed

    Xiao, Chaowen; Zhang, Tian; Zheng, Yunzhen; Cosgrove, Daniel J; Anderson, Charles T

    2016-01-01

    Xyloglucan constitutes most of the hemicellulose in eudicot primary cell walls and functions in cell wall structure and mechanics. Although Arabidopsis (Arabidopsis thaliana) xxt1 xxt2 mutants lacking detectable xyloglucan are viable, they display growth defects that are suggestive of alterations in wall integrity. To probe the mechanisms underlying these defects, we analyzed cellulose arrangement, microtubule patterning and dynamics, microtubule- and wall-integrity-related gene expression, and cellulose biosynthesis in xxt1 xxt2 plants. We found that cellulose is highly aligned in xxt1 xxt2 cell walls, that its three-dimensional distribution is altered, and that microtubule patterning and stability are aberrant in etiolated xxt1 xxt2 hypocotyls. We also found that the expression levels of microtubule-associated genes, such as MAP70-5 and CLASP, and receptor genes, such as HERK1 and WAK1, were changed in xxt1 xxt2 plants and that cellulose synthase motility is reduced in xxt1 xxt2 cells, corresponding with a reduction in cellulose content. Our results indicate that loss of xyloglucan affects both the stability of the microtubule cytoskeleton and the production and patterning of cellulose in primary cell walls. These findings establish, to our knowledge, new links between wall integrity, cytoskeletal dynamics, and wall synthesis in the regulation of plant morphogenesis. © 2016 American Society of Plant Biologists. All Rights Reserved.

  12. Glycosylphosphatidylinositol-anchored proteins are required for cell wall synthesis and morphogenesis in Arabidopsis.

    PubMed

    Gillmor, C Stewart; Lukowitz, Wolfgang; Brininstool, Ginger; Sedbrook, John C; Hamann, Thorsten; Poindexter, Patricia; Somerville, Chris

    2005-04-01

    Mutations at five loci named PEANUT1-5 (PNT) were identified in a genetic screen for radially swollen embryo mutants. pnt1 cell walls showed decreased crystalline cellulose, increased pectins, and irregular and ectopic deposition of pectins, xyloglucans, and callose. Furthermore, pnt1 pollen is less viable than the wild type, and pnt1 embryos were delayed in morphogenesis and showed defects in shoot and root meristems. The PNT1 gene encodes the Arabidopsis thaliana homolog of mammalian PIG-M, an endoplasmic reticulum-localized mannosyltransferase that is required for synthesis of the glycosylphosphatidylinositol (GPI) anchor. All five pnt mutants showed strongly reduced accumulation of GPI-anchored proteins, suggesting that they all have defects in GPI anchor synthesis. Although the mutants are seedling lethal, pnt1 cells are able to proliferate for a limited time as undifferentiated callus and do not show the massive deposition of ectopic cell wall material seen in pnt1 embryos. The different phenotype of pnt1 cells in embryos and callus suggest a differential requirement for GPI-anchored proteins in cell wall synthesis in these two tissues and points to the importance of GPI anchoring in coordinated multicellular growth.

  13. Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae.

    PubMed Central

    Cid, V J; Durán, A; del Rey, F; Snyder, M P; Nombela, C; Sánchez, M

    1995-01-01

    In fungi and many other organisms, a thick outer cell wall is responsible for determining the shape of the cell and for maintaining its integrity. The budding yeast Saccharomyces cerevisiae has been a useful model organism for the study of cell wall synthesis, and over the past few decades, many aspects of the composition, structure, and enzymology of the cell wall have been elucidated. The cell wall of budding yeasts is a complex and dynamic structure; its arrangement alters as the cell grows, and its composition changes in response to different environmental conditions and at different times during the yeast life cycle. In the past few years, we have witnessed a profilic genetic and molecular characterization of some key aspects of cell wall polymer synthesis and hydrolysis in the budding yeast. Furthermore, this organism has been the target of numerous recent studies on the topic of morphogenesis, which have had an enormous impact on our understanding of the intracellular events that participate in directed cell wall synthesis. A number of components that direct polarized secretion, including those involved in assembly and organization of the actin cytoskeleton, secretory pathways, and a series of novel signal transduction systems and regulatory components have been identified. Analysis of these different components has suggested pathways by which polarized secretion is directed and controlled. Our aim is to offer an overall view of the current understanding of cell wall dynamics and of the complex network that controls polarized growth at particular stages of the budding yeast cell cycle and life cycle. PMID:7565410

  14. Looking into the sea urchin embryo you can see local cell interactions regulate morphogenesis.

    PubMed

    Wilt, F H

    1997-08-01

    The transparent sea urchin embryo provides a laboratory for study of morphogenesis. The calcareous endoskeleton is formed by a syncytium of mesenchyme cells in the blastocoel. The locations of mesenchyme in the blastocoel, the size of the skeleton, and even the branching pattern of the skeletal rods, are governed by interactions with the blastula wall. Now Guss and Ettensohn show that the rate of deposition of CaCO3 in the skeleton is locally controlled in the mesenchymal syncytium, as is the pattern of expression of three genes involved in skeleton formation. They propose that short range signals emanating from the blastula wall regulate many aspects of the biomineralization process.

  15. Distinct roles of cell wall biogenesis in yeast morphogenesis as revealed by multivariate analysis of high-dimensional morphometric data

    PubMed Central

    Okada, Hiroki; Ohnuki, Shinsuke; Roncero, Cesar; Konopka, James B.; Ohya, Yoshikazu

    2014-01-01

    The cell wall of budding yeast is a rigid structure composed of multiple components. To thoroughly understand its involvement in morphogenesis, we used the image analysis software CalMorph to quantitatively analyze cell morphology after treatment with drugs that inhibit different processes during cell wall synthesis. Cells treated with cell wall–affecting drugs exhibited broader necks and increased morphological variation. Tunicamycin, which inhibits the initial step of N-glycosylation of cell wall mannoproteins, induced morphologies similar to those of strains defective in α-mannosylation. The chitin synthase inhibitor nikkomycin Z induced morphological changes similar to those of mutants defective in chitin transglycosylase, possibly due to the critical role of chitin in anchoring the β-glucan network. To define the mode of action of echinocandin B, a 1,3-β-glucan synthase inhibitor, we compared the morphology it induced with mutants of Fks1 that contains the catalytic domain for 1,3-β-glucan synthesis. Echinocandin B exerted morphological effects similar to those observed in some fks1 mutants, with defects in cell polarity and reduced glucan synthesis activity, suggesting that echinocandin B affects not only 1,3-β-glucan synthesis, but also another functional domain. Thus our multivariate analyses reveal discrete functions of cell wall components and increase our understanding of the pharmacology of antifungal drugs. PMID:24258022

  16. Computer simulation analysis of normal and abnormal development of the mammalian diaphragm

    PubMed Central

    Fisher, Jason C; Bodenstein, Lawrence

    2006-01-01

    Background Congenital diaphragmatic hernia (CDH) is a birth defect with significant morbidity and mortality. Knowledge of diaphragm morphogenesis and the aberrations leading to CDH is limited. Although classical embryologists described the diaphragm as arising from the septum transversum, pleuroperitoneal folds (PPF), esophageal mesentery and body wall, animal studies suggest that the PPF is the major, if not sole, contributor to the muscular diaphragm. Recently, a posterior defect in the PPF has been identified when the teratogen nitrofen is used to induce CDH in fetal rodents. We describe use of a cell-based computer modeling system (Nudge++™) to study diaphragm morphogenesis. Methods and results Key diaphragmatic structures were digitized from transverse serial sections of paraffin-embedded mouse embryos at embryonic days 11.5 and 13. Structure boundaries and simulated cells were combined in the Nudge++™ software. Model cells were assigned putative behavioral programs, and these programs were progressively modified to produce a diaphragm consistent with the observed anatomy in rodents. Homology between our model and recent anatomical observations occurred under the following simulation conditions: (1) cell mitoses are restricted to the edge of growing tissue; (2) cells near the chest wall remain mitotically active; (3) mitotically active non-edge cells migrate toward the chest wall; and (4) movement direction depends on clonal differentiation between anterior and posterior PPF cells. Conclusion With the PPF as the sole source of mitotic cells, an early defect in the PPF evolves into a posteromedial diaphragm defect, similar to that of the rodent nitrofen CDH model. A posterolateral defect, as occurs in human CDH, would be more readily recreated by invoking other cellular contributions. Our results suggest that recent reports of PPF-dominated diaphragm morphogenesis in the rodent may not be strictly applicable to man. The ability to recreate a CDH defect using a combination of experimental data and testable hypotheses gives impetus to simulation modeling as an adjunct to experimental analysis of diaphragm morphogenesis. PMID:16483386

  17. Computer simulation analysis of normal and abnormal development of the mammalian diaphragm.

    PubMed

    Fisher, Jason C; Bodenstein, Lawrence

    2006-02-17

    Congenital diaphragmatic hernia (CDH) is a birth defect with significant morbidity and mortality. Knowledge of diaphragm morphogenesis and the aberrations leading to CDH is limited. Although classical embryologists described the diaphragm as arising from the septum transversum, pleuroperitoneal folds (PPF), esophageal mesentery and body wall, animal studies suggest that the PPF is the major, if not sole, contributor to the muscular diaphragm. Recently, a posterior defect in the PPF has been identified when the teratogen nitrofen is used to induce CDH in fetal rodents. We describe use of a cell-based computer modeling system (Nudge++) to study diaphragm morphogenesis. Key diaphragmatic structures were digitized from transverse serial sections of paraffin-embedded mouse embryos at embryonic days 11.5 and 13. Structure boundaries and simulated cells were combined in the Nudge++ software. Model cells were assigned putative behavioral programs, and these programs were progressively modified to produce a diaphragm consistent with the observed anatomy in rodents. Homology between our model and recent anatomical observations occurred under the following simulation conditions: (1) cell mitoses are restricted to the edge of growing tissue; (2) cells near the chest wall remain mitotically active; (3) mitotically active non-edge cells migrate toward the chest wall; and (4) movement direction depends on clonal differentiation between anterior and posterior PPF cells. With the PPF as the sole source of mitotic cells, an early defect in the PPF evolves into a posteromedial diaphragm defect, similar to that of the rodent nitrofen CDH model. A posterolateral defect, as occurs in human CDH, would be more readily recreated by invoking other cellular contributions. Our results suggest that recent reports of PPF-dominated diaphragm morphogenesis in the rodent may not be strictly applicable to man. The ability to recreate a CDH defect using a combination of experimental data and testable hypotheses gives impetus to simulation modeling as an adjunct to experimental analysis of diaphragm morphogenesis.

  18. Physics of Bacterial Morphogenesis

    PubMed Central

    Sun, Sean X.; Jiang, Hongyuan

    2011-01-01

    Summary: Bacterial cells utilize three-dimensional (3D) protein assemblies to perform important cellular functions such as growth, division, chemoreception, and motility. These assemblies are composed of mechanoproteins that can mechanically deform and exert force. Sometimes, small-nucleotide hydrolysis is coupled to mechanical deformations. In this review, we describe the general principle for an understanding of the coupling of mechanics with chemistry in mechanochemical systems. We apply this principle to understand bacterial cell shape and morphogenesis and how mechanical forces can influence peptidoglycan cell wall growth. We review a model that can potentially reconcile the growth dynamics of the cell wall with the role of cytoskeletal proteins such as MreB and crescentin. We also review the application of mechanochemical principles to understand the assembly and constriction of the FtsZ ring. A number of potential mechanisms are proposed, and important questions are discussed. PMID:22126993

  19. A Computational Framework for 3D Mechanical Modeling of Plant Morphogenesis with Cellular Resolution

    PubMed Central

    Gilles, Benjamin; Hamant, Olivier; Boudaoud, Arezki; Traas, Jan; Godin, Christophe

    2015-01-01

    The link between genetic regulation and the definition of form and size during morphogenesis remains largely an open question in both plant and animal biology. This is partially due to the complexity of the process, involving extensive molecular networks, multiple feedbacks between different scales of organization and physical forces operating at multiple levels. Here we present a conceptual and modeling framework aimed at generating an integrated understanding of morphogenesis in plants. This framework is based on the biophysical properties of plant cells, which are under high internal turgor pressure, and are prevented from bursting because of the presence of a rigid cell wall. To control cell growth, the underlying molecular networks must interfere locally with the elastic and/or plastic extensibility of this cell wall. We present a model in the form of a three dimensional (3D) virtual tissue, where growth depends on the local modulation of wall mechanical properties and turgor pressure. The model shows how forces generated by turgor-pressure can act both cell autonomously and non-cell autonomously to drive growth in different directions. We use simulations to explore lateral organ formation at the shoot apical meristem. Although different scenarios lead to similar shape changes, they are not equivalent and lead to different, testable predictions regarding the mechanical and geometrical properties of the growing lateral organs. Using flower development as an example, we further show how a limited number of gene activities can explain the complex shape changes that accompany organ outgrowth. PMID:25569615

  20. Exogenous Cellulase Switches Cell Interdigitation to Cell Elongation in an RIC1-dependent Manner in Arabidopsis thaliana Cotyledon Pavement Cells.

    PubMed

    Higaki, Takumi; Takigawa-Imamura, Hisako; Akita, Kae; Kutsuna, Natsumaro; Kobayashi, Ryo; Hasezawa, Seiichiro; Miura, Takashi

    2017-01-01

    Pavement cells in cotyledons and true leaves exhibit a jigsaw puzzle-like morphology in most dicotyledonous plants. Among the molecular mechanisms mediating cell morphogenesis, two antagonistic Rho-like GTPases regulate local cell outgrowth via cytoskeletal rearrangements. Analyses of several cell wall-related mutants suggest the importance of cell wall mechanics in the formation of interdigitated patterns. However, how these factors are integrated is unknown. In this study, we observed that the application of exogenous cellulase to hydroponically grown Arabidopsis thaliana cotyledons switched the interdigitation of pavement cells to the production of smoothly elongated cells. The cellulase-induced inhibition of cell interdigitation was not observed in a RIC1 knockout mutant. This gene encodes a Rho-like GTPase-interacting protein important for localized cell growth suppression via microtubule bundling on concave cell interfaces. Additionally, to characterize pavement cell morphologies, we developed a mathematical model that considers the balance between cell and cell wall growth, restricted global cell growth orientation, and regulation of local cell outgrowth mediated by a Rho-like GTPase-cytoskeleton system. Our computational simulations fully support our experimental observations, and suggest that interdigitated patterns form because of mechanical buckling in the absence of Rho-like GTPase-dependent regulation of local cell outgrowth. Our model clarifies the cell wall mechanics influencing pavement cell morphogenesis. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The Cell Wall Integrity Signaling Pathway

    PubMed Central

    Levin, David E.

    2011-01-01

    The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to the Rho1 GTPase, which mobilizes a physiologic response through a variety of effectors. Activation of CWI signaling regulates the production of various carbohydrate polymers of the cell wall, as well as their polarized delivery to the site of cell wall remodeling. This review article centers on CWI signaling in Saccharomyces cerevisiae through the cell cycle and in response to cell wall stress. The interface of this signaling pathway with other pathways that contribute to the maintenance of cell wall integrity is also discussed. PMID:22174182

  2. Spm1, a stress-activated MAP kinase that regulates morphogenesis in S.pombe.

    PubMed Central

    Zaitsevskaya-Carter, T; Cooper, J A

    1997-01-01

    A gene encoding a novel MAP kinase family member, Spm1, was isolated from the fission yeast Schizosaccharomyces pombe. Overproduction of Spm1 inhibits proliferation. Disruption of the spm1+ gene interferes with cell separation and morphogenesis. Under conditions of nutrient limitation, hypertonic stress or elevated temperature, spm1 delta cells grow as short branched filaments in which the cell walls and septa are thickened, suggesting defects in polarized growth and cell wall remodeling. At high osmolarity, spm1 delta cells fail to form colonies. The Spm1 protein is tyrosine phosphorylated and activated in response to osmotic and heat stress, consistent with a role for Spm1 in adaptation to these conditions. Two other S.pombe MAP kinases are known, Spk1, required for sexual differentiation and sporulation, and Spc1/Sty1/Phh1, which is activated in hypertonic conditions. However, the distinctive features of the spm1 delta mutant phenotype and direct biochemical assays suggest that Spm1 does not lie on other known MAP kinase pathways. Our results demonstrate the existence of a new MAP kinase pathway that regulates cell wall remodeling and cytokinesis in response to environmental stresses. PMID:9135147

  3. Role of the nuclear migration protein Lis1 in cell morphogenesis in Ustilago maydis

    PubMed Central

    Valinluck, Michael; Ahlgren, Sara; Sawada, Mizuho; Locken, Kristopher; Banuett, Flora

    2010-01-01

    Ustilago maydis is a basidiomycete fungus that exhibits a yeast-like and a filamentous form. Growth of the fungus in the host leads to additional morphological transitions. The different morphologies are characterized by distinct nuclear movements. Dynein and α-tubulin are required for nuclear movements and for cell morphogenesis of the yeast-like form. Lis1 is a microtubule plus-end tracking protein (+TIPs) conserved in eukaryotes and required for nuclear migration and spindle positioning. Defects in nuclear migration result in altered cell fate and aberrant development in metazoans, slow growth in fungi and disease in humans (e.g. lissencephaly). Here we investigate the role of the human LIS1 homolog in U. maydis and demonstrate that it is essential for cell viability, not previously seen in other fungi. With a conditional null mutation we show that lis1 is necessary for nuclear migration in the yeast-like cell and during the dimorphic transition. Studies of asynchronous exponentially growing cells and time-lapse microscopy uncovered novel functions of lis1: It is necessary for cell morphogenesis, positioning of the septum and cell wall integrity. lis1-depleted cells exhibit altered axes of growth and loss of cell polarity leading to grossly aberrant cells with clusters of nuclei and morphologically altered buds devoid of nuclei. Altered septum positioning and cell wall deposition contribute to the aberrant morphology. lis1-depleted cells lyse, indicative of altered cell wall properties or composition. We also demonstrate, with indirect immunofluorescence to visualize tubulin, that lis1 is necessary for the normal organization of the microtubule cytoskeleton: lis1-depleted cells contain more and longer microtubules that can form coils perpendicular to the long axis of the cell. We propose that lis1 controls microtubule dynamics and thus the regulated delivery of vesicles to growth sites and other cell domains that govern nuclear movements. PMID:20524583

  4. Sucrose Synthase Is Associated with the Cell Wall of Tobacco Pollen Tubes1[W

    PubMed Central

    Persia, Diana; Cai, Giampiero; Del Casino, Cecilia; Faleri, Claudia; Willemse, Michiel T.M.; Cresti, Mauro

    2008-01-01

    Sucrose synthase (Sus; EC 2.4.1.13) is a key enzyme of sucrose metabolism in plant cells, providing carbon for respiration and for the synthesis of cell wall polymers and starch. Since Sus is important for plant cell growth, insights into its structure, localization, and features are useful for defining the relationships between nutrients, growth, and cell morphogenesis. We used the pollen tube of tobacco (Nicotiana tabacum) as a cell model to characterize the main features of Sus with regard to cell growth and cell wall synthesis. Apart from its role during sexual reproduction, the pollen tube is a typical tip-growing cell, and the proper construction of its cell wall is essential for correct shaping and direction of growth. The outer cell wall layer of pollen tubes consists of pectins, but the inner layer is composed of cellulose and callose; both polymers require metabolic precursors in the form of UDP-glucose, which is synthesized by Sus. We identified an 88-kD polypeptide in the soluble, plasma membrane and Golgi fraction of pollen tubes. The protein was also found in association with the cell wall. After purification, the protein showed an enzyme activity similar to that of maize (Zea mays) Sus. Distribution of Sus was affected by brefeldin A and depended on the nutrition status of the pollen tube, because an absence of metabolic sugars in the growth medium caused Sus to distribute differently during tube elongation. Analysis by bidimensional electrophoresis indicated that Sus exists as two isoforms, one of which is phosphorylated and more abundant in the cytoplasm and cell wall and the other of which is not phosphorylated and is specific to the plasma membrane. Results indicate that the protein has a role in the construction of the extracellular matrix and thus in the morphogenesis of pollen tubes. PMID:18344420

  5. The Developmental Regulator SEEDSTICK Controls Structural and Mechanical Properties of the Arabidopsis Seed Coat

    PubMed Central

    Beauzamy, Léna; Caporali, Elisabetta; Koroney, Abdoul-Salam

    2016-01-01

    Although many transcription factors involved in cell wall morphogenesis have been identified and studied, it is still unknown how genetic and molecular regulation of cell wall biosynthesis is integrated into developmental programs. We demonstrate by molecular genetic studies that SEEDSTICK (STK), a transcription factor controlling ovule and seed integument identity, directly regulates PMEI6 and other genes involved in the biogenesis of the cellulose-pectin matrix of the cell wall. Based on atomic force microscopy, immunocytochemistry, and chemical analyses, we propose that structural modifications of the cell wall matrix in the stk mutant contribute to defects in mucilage release and seed germination under water-stress conditions. Our studies reveal a molecular network controlled by STK that regulates cell wall properties of the seed coat, demonstrating that developmental regulators controlling organ identity also coordinate specific aspects of cell wall characteristics. PMID:27624758

  6. Plant Growth and Morphogenesis under Different Gravity Conditions: Relevance to Plant Life in Space.

    PubMed

    Hoson, Takayuki

    2014-05-16

    The growth and morphogenesis of plants are entirely dependent on the gravitational acceleration of earth. Under microgravity conditions in space, these processes are greatly modified. Recent space experiments, in combination with ground-based studies, have shown that elongation growth is stimulated and lateral expansion suppressed in various shoot organs and roots under microgravity conditions. Plant organs also show automorphogenesis in space, which consists of altered growth direction and spontaneous curvature in the dorsiventral (back and front) directions. Changes in cell wall properties are responsible for these modifications of growth and morphogenesis under microgravity conditions. Plants live in space with interesting new sizes and forms.

  7. Cell Cycle Dynamics and Quorum Sensing in Candida albicans Chlamydospores Are Distinct from Budding and Hyphal Growth

    PubMed Central

    Martin, Stephen W.; Douglas, Lois M.; Konopka, James B.

    2005-01-01

    The regulation of morphogenesis in the human fungal pathogen Candida albicans is under investigation to better understand how the switch between budding and hyphal growth is linked to virulence. Therefore, in this study we examined the ability of C. albicans to undergo a distinct type of morphogenesis to form large thick-walled chlamydospores whose role in infection is unclear, but they act as a resting form in other species. During chlamydospore morphogenesis, cells switch to filamentous growth and then develop elongated suspensor cells that give rise to chlamydospores. These filamentous cells were distinct from true hyphae in that they were wider and were not inhibited by the quorum-sensing factor farnesol. Instead, farnesol increased chlamydospore production, indicating that quorum sensing can also have a positive role. Nuclear division did not occur across the necks of chlamydospores, as it does in budding. Interestingly, nuclei divided within the suspensor cells, and then one daughter nucleus subsequently migrated into the chlamydospore. Septins were not detected near mitotic nuclei but were localized at chlamydospore necks. At later stages, septins localized throughout the chlamydospore plasma membrane and appeared to form long filamentous structures. Deletion of the CDC10 or CDC11 septins caused greater curvature of cells growing in a filamentous manner and morphological defects in suspensor cells and chlamydospores. These studies identify aspects of chlamydospore morphogenesis that are distinct from bud and hyphal morphogenesis. PMID:16002645

  8. The MARVEL domain protein Nce102 regulates actin organization and invasive growth of Candida albicans.

    PubMed

    Douglas, Lois M; Wang, Hong X; Konopka, James B

    2013-11-26

    Invasive growth of the fungal pathogen Candida albicans into tissues promotes disseminated infections in humans. The plasma membrane is essential for pathogenesis because this important barrier mediates morphogenesis and invasive growth, as well as secretion of virulence factors, cell wall synthesis, nutrient import, and other processes. Previous studies showed that the Sur7 tetraspan protein that localizes to MCC (membrane compartment occupied by Can1)/eisosome subdomains of the plasma membrane regulates a broad range of key functions, including cell wall synthesis, morphogenesis, and resistance to copper. Therefore, a distinct tetraspan protein found in MCC/eisosomes, Nce102, was investigated. Nce102 belongs to the MARVEL domain protein family, which is implicated in regulating membrane structure and function. Deletion of NCE102 did not cause the broad defects seen in sur7Δ cells. Instead, the nce102Δ mutant displayed a unique phenotype in that it was defective in forming hyphae and invading low concentrations of agar but could invade well in higher agar concentrations. This phenotype was likely due to a defect in actin organization that was observed by phalloidin staining. In support of this, the invasive growth defect of a bni1Δ mutant that mislocalizes actin due to lack of the Bni1 formin was also reversed at high agar concentrations. This suggests that a denser matrix provides a signal that compensates for the actin defects. The nce102Δ mutant displayed decreased virulence and formed abnormal hyphae in mice. These studies identify novel ways that Nce102 and the physical environment surrounding C. albicans regulate morphogenesis and pathogenesis. The plasma membrane promotes virulence of the human fungal pathogen Candida albicans by acting as a protective barrier around the cell and mediating dynamic activities, such as morphogenesis, cell wall synthesis, secretion of virulence factors, and nutrient uptake. To better understand how the plasma membrane contributes to virulence, we analyzed a set of eight genes encoding MARVEL family proteins that are predicted to function in membrane organization. Interestingly, deletion of one gene, NCE102, caused a strong defect in formation of invasive hyphal growth in vitro and decreased virulence in mice. The nce102Δ mutant cells showed defects in actin organization that underlie the morphogenesis defect, since mutation of a known regulator of actin organization caused a similar defect. These studies identify a novel way in which the plasma membrane regulates the actin cytoskeleton and contributes to pathogenesis.

  9. How does climate influence xylem morphogenesis over the growing season? Insights from long-term intra-ring anatomy in Picea abies

    PubMed Central

    Fonti, Patrick; von Arx, Georg; Carrer, Marco

    2017-01-01

    Background and Aims During the growing season, the cambium of conifer trees produces successive rows of xylem cells, the tracheids, that sequentially pass through the phases of enlargement and secondary wall thickening before dying and becoming functional. Climate variability can strongly influence the kinetics of morphogenetic processes, eventually affecting tracheid shape and size. This study investigates xylem anatomical structure in the stem of Picea abies to retrospectively infer how, in the long term, climate affects the processes of cell enlargement and wall thickening. Methods Tracheid anatomical traits related to the phases of enlargement (diameter) and wall thickening (wall thickness) were innovatively inspected at the intra-ring level on 87-year-long tree-ring series in Picea abies trees along a 900 m elevation gradient in the Italian Alps. Anatomical traits in ten successive tree-ring sectors were related to daily temperature and precipitation data using running correlations. Key Results Close to the altitudinal tree limit, low early-summer temperature negatively affected cell enlargement. At lower elevation, water availability in early summer was positively related to cell diameter. The timing of these relationships shifted forward by about 20 (high elevation) to 40 (low elevation) d from the first to the last tracheids in the ring. Cell wall thickening was affected by climate in a different period in the season. In particular, wall thickness of late-formed tracheids was strongly positively related to August–September temperature at high elevation. Conclusions Morphogenesis of tracheids sequentially formed in the growing season is influenced by climate conditions in successive periods. The distinct climate impacts on cell enlargement and wall thickening indicate that different morphogenetic mechanisms are responsible for different tracheid traits. Our approach of long-term and high-resolution analysis of xylem anatomy can support and extend short-term xylogenesis observations, and increase our understanding of climate control of tree growth and functioning under different environmental conditions. PMID:28130220

  10. Wnt9a secreted from the walls of hepatic sinusoids is essential for morphogenesis, proliferation, and glycogen accumulation of chick hepatic epithelium.

    PubMed

    Matsumoto, Ken; Miki, Rika; Nakayama, Mizuho; Tatsumi, Norifumi; Yokouchi, Yuji

    2008-07-15

    Hepatic epithelial morphogenesis, including hepatoblast migration and proliferation in the septum transversum, requires the interaction of hepatic epithelium with the embryonic sinusoidal wall. No factors that mediate this interaction have yet been identified. As the beta-catenin pathway is active in hepatoblast proliferation, then Wnt ligands might activate the canonical Wnt pathway during liver development. Here, we investigated the role of Wnts in mediating epithelial vessel interactions in the developing chick liver. We found that Wnt9a was specifically expressed in both endothelial and stellate cells of the embryonic sinusoidal wall. Induced overexpression of Wnt9a resulted in hepatomegaly with hyperplasia of the hepatocellular cords, and in hyperproliferation of hepatocytes. Knockdown of Wnt9a caused a reduction in liver size, with hypoplasia of hepatocellular cord branching, and hypoproliferation of hepatoblasts, and also inhibited glycogen accumulation at later developmental stages. Wnt9a promoted in vivo stabilization of beta-catenin through binding with Frizzled 4, 7, and 9, and activated TOPflash reporter expression in vitro via Frizzled 7 and 9. Our results demonstrate that Wnt9a from the embryonic sinusoidal wall is required for the proper morphogenesis of chick hepatocellular cords, proliferation of hepatoblasts/hepatocytes, and glycogen accumulation in hepatocytes. Wnt9a signaling appears to be mediated by an Fzd7/9-beta-catenin pathway.

  11. We be jammin’: an update on pectin biosynthesis, trafficking and dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Charles T.

    2015-11-20

    Pectins are complex polysaccharides that contain acidic sugars and are major determinants of the cohesion, adhesion, extensibility, porosity and electrostatic potential of plant cell walls. Recent evidence has solidified their positions as key regulators of cellular growth and tissue morphogenesis, although important details of how they achieve this regulation are still missing. Pectins are also hypothesized to function as ligands for wall integrity sensors that enable plant cells to respond to intrinsic defects in wall biomechanics and to wall degradation by attacking pathogens. This update highlights recent advances in our understanding of the biosynthesis of pectins, how they are deliveredmore » to the cell surface and become incorporated into the cell wall matrix and how pectins are modified over time in the apoplast. It also poses unanswered questions for further research into this enigmatic but essential class of carbohydrate polymers.« less

  12. Wall mechanics and exocytosis define the shape of growth domains in fission yeast.

    PubMed

    Abenza, Juan F; Couturier, Etienne; Dodgson, James; Dickmann, Johanna; Chessel, Anatole; Dumais, Jacques; Carazo Salas, Rafael E

    2015-10-12

    The amazing structural variety of cells is matched only by their functional diversity, and reflects the complex interplay between biochemical and mechanical regulation. How both regulatory layers generate specifically shaped cellular domains is not fully understood. Here, we report how cell growth domains are shaped in fission yeast. Based on quantitative analysis of cell wall expansion and elasticity, we develop a model for how mechanics and cell wall assembly interact and use it to look for factors underpinning growth domain morphogenesis. Surprisingly, we find that neither the global cell shape regulators Cdc42-Scd1-Scd2 nor the major cell wall synthesis regulators Bgs1-Bgs4-Rgf1 are reliable predictors of growth domain geometry. Instead, their geometry can be defined by cell wall mechanics and the cortical localization pattern of the exocytic factors Sec6-Syb1-Exo70. Forceful re-directioning of exocytic vesicle fusion to broader cortical areas induces proportional shape changes to growth domains, demonstrating that both features are causally linked.

  13. Vascular Cells in Blood Vessel Wall Development and Disease.

    PubMed

    Mazurek, R; Dave, J M; Chandran, R R; Misra, A; Sheikh, A Q; Greif, D M

    2017-01-01

    The vessel wall is composed of distinct cellular layers, yet communication among individual cells within and between layers results in a dynamic and versatile structure. The morphogenesis of the normal vascular wall involves a highly regulated process of cell proliferation, migration, and differentiation. The use of modern developmental biological and genetic approaches has markedly enriched our understanding of the molecular and cellular mechanisms underlying these developmental events. Additionally, the application of similar approaches to study diverse vascular diseases has resulted in paradigm-shifting insights into pathogenesis. Further investigations into the biology of vascular cells in development and disease promise to have major ramifications on therapeutic strategies to combat pathologies of the vasculature. © 2017 Elsevier Inc. All rights reserved.

  14. Nanoscale movements of cellulose microfibrils in primary cell walls.

    PubMed

    Zhang, Tian; Vavylonis, Dimitrios; Durachko, Daniel M; Cosgrove, Daniel J

    2017-04-28

    The growing plant cell wall is commonly considered to be a fibre-reinforced structure whose strength, extensibility and anisotropy depend on the orientation of crystalline cellulose microfibrils, their bonding to the polysaccharide matrix and matrix viscoelasticity 1-4 . Structural reinforcement of the wall by stiff cellulose microfibrils is central to contemporary models of plant growth, mechanics and meristem dynamics 4-12 . Although passive microfibril reorientation during wall extension has been inferred from theory and from bulk measurements 13-15 , nanometre-scale movements of individual microfibrils have not been directly observed. Here we combined nanometre-scale imaging of wet cell walls by atomic force microscopy (AFM) with a stretching device and endoglucanase treatment that induces wall stress relaxation and creep, mimicking wall behaviours during cell growth. Microfibril movements during forced mechanical extensions differ from those during creep of the enzymatically loosened wall. In addition to passive angular reorientation, we observed a diverse repertoire of microfibril movements that reveal the spatial scale of molecular connections between microfibrils. Our results show that wall loosening alters microfibril connectivity, enabling microfibril dynamics not seen during mechanical stretch. These insights into microfibril movements and connectivities need to be incorporated into refined models of plant cell wall structure, growth and morphogenesis.

  15. Partial functional redundancy of MreB isoforms, MreB, Mbl and MreBH, in cell morphogenesis of Bacillus subtilis.

    PubMed

    Kawai, Yoshikazu; Asai, Kei; Errington, Jeffery

    2009-08-01

    MreB proteins are bacterial actin homologues thought to have a role in cell shape determination by positioning the cell wall synthetic machinery. Many bacteria, particularly Gram-positives, have more than one MreB isoform. Bacillus subtilis has three, MreB, Mbl and MreBH, which colocalize in a single helical structure. We now show that the helical pattern of peptidoglycan (PG) synthesis in the cylindrical part of the rod-shaped cell is governed by the redundant action of the three MreB isoforms. Single mutants for any one of mreB isoforms can still incorporate PG in a helical pattern and generate a rod shape. However, after depletion of MreB in an mbl mutant (or depletion of all three isoforms) lateral wall PG synthesis was impaired and the cells became spherical and lytic. Overexpression of any one of the MreB isoforms overcame the lethality as well as the defects in lateral PG synthesis and cell shape. Furthermore, MreB and Mbl can associate with the peptidoglycan biosynthetic machinery independently. However, no single MreB isoform was able to support normal growth under various stress conditions, suggesting that the multiple isoforms are used to allow cells to maintain proper growth and morphogenesis under changing and sometimes adverse conditions.

  16. Cell Geometry Guides the Dynamic Targeting of Apoplastic GPI-Linked Lipid Transfer Protein to Cell Wall Elements and Cell Borders in Arabidopsis thaliana

    PubMed Central

    Wasteneys, Geoffrey

    2013-01-01

    During cellular morphogenesis, changes in cell shape and cell junction topology are fundamental to normal tissue and organ development. Here we show that apoplastic Glycophosphatidylinositol (GPI)-anchored Lipid Transfer Protein (LTPG) is excluded from cell junctions and flat wall regions, and passively accumulates around their borders in the epidermal cells of Arabidopsis thaliana. Beginning with intense accumulation beneath highly curved cell junction borders, this enrichment is gradually lost as cells become more bulbous during their differentiation. In fully mature epidermal cells, YFP-LTPG often shows a fibrous cellulose microfibril-like pattern within the bulging outer faces. Physical contact between a flat glass surface and bulbous cell surface induces rapid and reversible evacuation from contact sites and accumulation to the curved wall regions surrounding the contact borders. Thus, LTPG distribution is dynamic, responding to changes in cell shape and wall curvature during cell growth and differentiation. We hypothesize that this geometry-based mechanism guides wax-carrying LTPG to functional sites, where it may act to “seal” the vulnerable border surrounding cell-cell junctions and assist in cell wall fortification and cuticular wax deposition. PMID:24260561

  17. The Impact of Microfibril Orientations on the Biomechanics of Plant Cell Walls and Tissues.

    PubMed

    Ptashnyk, Mariya; Seguin, Brian

    2016-11-01

    The microscopic structure and anisotropy of plant cell walls greatly influence the mechanical properties, morphogenesis, and growth of plant cells and tissues. The microscopic structure and properties of cell walls are determined by the orientation and mechanical properties of the cellulose microfibrils and the mechanical properties of the cell wall matrix. Viewing the shape of a plant cell as a square prism with the axis aligning with the primary direction of expansion and growth, the orientation of the microfibrils within the side walls, i.e. the parts of the cell walls on the sides of the cells, is known. However, not much is known about their orientation at the upper and lower ends of the cell. Here we investigate the impact of the orientation of cellulose microfibrils within the upper and lower parts of the plant cell walls by solving the equations of linear elasticity numerically. Three different scenarios for the orientation of the microfibrils are considered. We also distinguish between the microstructure in the side walls given by microfibrils perpendicular to the main direction of the expansion and the situation where the microfibrils are rotated through the wall thickness. The macroscopic elastic properties of the cell wall are obtained using homogenization theory from the microscopic description of the elastic properties of the cell wall microfibrils and wall matrix. It is found that the orientation of the microfibrils in the upper and lower parts of the cell walls affects the expansion of the cell in the lateral directions and is particularly important in the case of forces acting on plant cell walls and tissues.

  18. The CWI Pathway: Regulation of the Transcriptional Adaptive Response to Cell Wall Stress in Yeast

    PubMed Central

    Sanz, Ana Belén; García, Raúl; Rodríguez-Peña, José M.; Arroyo, Javier

    2017-01-01

    Fungi are surrounded by an essential structure, the cell wall, which not only confers cell shape but also protects cells from environmental stress. As a consequence, yeast cells growing under cell wall damage conditions elicit rescue mechanisms to provide maintenance of cellular integrity and fungal survival. Through transcriptional reprogramming, yeast modulate the expression of genes important for cell wall biogenesis and remodeling, metabolism and energy generation, morphogenesis, signal transduction and stress. The yeast cell wall integrity (CWI) pathway, which is very well conserved in other fungi, is the key pathway for the regulation of this adaptive response. In this review, we summarize the current knowledge of the yeast transcriptional program elicited to counterbalance cell wall stress situations, the role of the CWI pathway in the regulation of this program and the importance of the transcriptional input received by other pathways. Modulation of this adaptive response through the CWI pathway by positive and negative transcriptional feedbacks is also discussed. Since all these regulatory mechanisms are well conserved in pathogenic fungi, improving our knowledge about them will have an impact in the developing of new antifungal therapies. PMID:29371494

  19. Cellular Force Microscopy for in Vivo Measurements of Plant Tissue Mechanics1[W][OA

    PubMed Central

    Routier-Kierzkowska, Anne-Lise; Weber, Alain; Kochova, Petra; Felekis, Dimitris; Nelson, Bradley J.; Kuhlemeier, Cris; Smith, Richard S.

    2012-01-01

    Although growth and morphogenesis are controlled by genetics, physical shape change in plant tissue results from a balance between cell wall loosening and intracellular pressure. Despite recent work demonstrating a role for mechanical signals in morphogenesis, precise measurement of mechanical properties at the individual cell level remains a technical challenge. To address this challenge, we have developed cellular force microscopy (CFM), which combines the versatility of classical microindentation techniques with the high automation and resolution approaching that of atomic force microscopy. CFM’s large range of forces provides the possibility to map the apparent stiffness of both plasmolyzed and turgid tissue as well as to perform micropuncture of cells using very high stresses. CFM experiments reveal that, within a tissue, local stiffness measurements can vary with the level of turgor pressure in an unexpected way. Altogether, our results highlight the importance of detailed physically based simulations for the interpretation of microindentation results. CFM’s ability to be used both to assess and manipulate tissue mechanics makes it a method of choice to unravel the feedbacks between mechanics, genetics, and morphogenesis. PMID:22353572

  20. How does climate influence xylem morphogenesis over the growing season? Insights from long-term intra-ring anatomy in Picea abies.

    PubMed

    Castagneri, Daniele; Fonti, Patrick; von Arx, Georg; Carrer, Marco

    2017-04-01

    During the growing season, the cambium of conifer trees produces successive rows of xylem cells, the tracheids, that sequentially pass through the phases of enlargement and secondary wall thickening before dying and becoming functional. Climate variability can strongly influence the kinetics of morphogenetic processes, eventually affecting tracheid shape and size. This study investigates xylem anatomical structure in the stem of Picea abies to retrospectively infer how, in the long term, climate affects the processes of cell enlargement and wall thickening. Tracheid anatomical traits related to the phases of enlargement (diameter) and wall thickening (wall thickness) were innovatively inspected at the intra-ring level on 87-year-long tree-ring series in Picea abies trees along a 900 m elevation gradient in the Italian Alps. Anatomical traits in ten successive tree-ring sectors were related to daily temperature and precipitation data using running correlations. Close to the altitudinal tree limit, low early-summer temperature negatively affected cell enlargement. At lower elevation, water availability in early summer was positively related to cell diameter. The timing of these relationships shifted forward by about 20 (high elevation) to 40 (low elevation) d from the first to the last tracheids in the ring. Cell wall thickening was affected by climate in a different period in the season. In particular, wall thickness of late-formed tracheids was strongly positively related to August-September temperature at high elevation. Morphogenesis of tracheids sequentially formed in the growing season is influenced by climate conditions in successive periods. The distinct climate impacts on cell enlargement and wall thickening indicate that different morphogenetic mechanisms are responsible for different tracheid traits. Our approach of long-term and high-resolution analysis of xylem anatomy can support and extend short-term xylogenesis observations, and increase our understanding of climate control of tree growth and functioning under different environmental conditions. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  1. To shape a cell: an inquiry into the causes of morphogenesis of microorganisms.

    PubMed Central

    Harold, F M

    1990-01-01

    We recognize organisms first and foremost by their forms, but how they grow and shape themselves still largely passes understanding. The objective of this article is to survey what has been learned of morphogenesis of walled eucaryotic microorganisms as a set of problems in cellular heredity, biochemistry, physiology, and organization. Despite the diversity of microbial forms and habits, some common principles can be discerned. (i) That the form of each organism represents the expression of a genetic program is almost universally taken for granted. However, reflection on the findings with morphologically aberrant mutants suggests that the metaphor of a genetic program is misleading. Cellular form is generated by a web of interacting chemical and physical processes, whose every strand is woven of multiple gene products. The relationship between genes and form is indirect and cumulative; therefore, morphogenesis must be addressed as a problem not of molecular genetics but of cellular physiology. (ii) The shape of walled cells is determined by the manner in which the wall is laid down during growth and development. Turgor pressure commonly, perhaps always, supplies the driving force for surface enlargement. Cells yield to this scalar force by localized, controlled wall synthesis; their forms represent variations on the theme of local compliance with global force. (iii) Growth and division in bacteria display most immediately the interplay of hydrostatic pressure, localized wall synthesis, and structural constraints. Koch's surface stress theory provides a comprehensive and quantitative framework for understanding bacterial shapes. (iv) In the larger and more versatile eucaryotic cells, expansion is mediated by the secretion of vesicles. Secretion and ancillary processes, such as cytoplasmic transport, are spatially organized on the micrometer scale. The diversity of vectorial physiology and of the forms it generates is illustrated by examples: apical growth of fungal hyphae, bud formation in yeasts, germination of fucoid zygotes, and development of cells of Nitella, Closterium, and other unicellular algae. (v) Unicellular organisms, no less than embryos, have a remarkable capacity to impose spatial order upon themselves with or without the help of directional cues. Self-organization is reviewed here from two perspectives: the theoretical exploration of morphogens, gradients, and fields, and experimental study of polarization in Fucus cells, extension of hyphal tips, and pattern formation in ciliates. Here is the heart of the matter, yet self-organization remains nearly as mysterious as it was a century ago, a subject in search of a paradigm. Images PMID:2128368

  2. Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures.

    PubMed

    Riquelme, Meritxell; Aguirre, Jesús; Bartnicki-García, Salomon; Braus, Gerhard H; Feldbrügge, Michael; Fleig, Ursula; Hansberg, Wilhelm; Herrera-Estrella, Alfredo; Kämper, Jörg; Kück, Ulrich; Mouriño-Pérez, Rosa R; Takeshita, Norio; Fischer, Reinhard

    2018-06-01

    Filamentous fungi constitute a large group of eukaryotic microorganisms that grow by forming simple tube-like hyphae that are capable of differentiating into more-complex morphological structures and distinct cell types. Hyphae form filamentous networks by extending at their tips while branching in subapical regions. Rapid tip elongation requires massive membrane insertion and extension of the rigid chitin-containing cell wall. This process is sustained by a continuous flow of secretory vesicles that depends on the coordinated action of the microtubule and actin cytoskeletons and the corresponding motors and associated proteins. Vesicles transport cell wall-synthesizing enzymes and accumulate in a special structure, the Spitzenkörper, before traveling further and fusing with the tip membrane. The place of vesicle fusion and growth direction are enabled and defined by the position of the Spitzenkörper, the so-called cell end markers, and other proteins involved in the exocytic process. Also important for tip extension is membrane recycling by endocytosis via early endosomes, which function as multipurpose transport vehicles for mRNA, septins, ribosomes, and peroxisomes. Cell integrity, hyphal branching, and morphogenesis are all processes that are largely dependent on vesicle and cytoskeleton dynamics. When hyphae differentiate structures for asexual or sexual reproduction or to mediate interspecies interactions, the hyphal basic cellular machinery may be reprogrammed through the synthesis of new proteins and/or the modification of protein activity. Although some transcriptional networks involved in such reprogramming of hyphae are well studied in several model filamentous fungi, clear connections between these networks and known determinants of hyphal morphogenesis are yet to be established. Copyright © 2018 American Society for Microbiology.

  3. COBRA, an Arabidopsis Extracellular Glycosyl-Phosphatidyl Inositol-Anchored Protein, Specifically Controls Highly Anisotropic Expansion through Its Involvement in Cellulose Microfibril OrientationW⃞

    PubMed Central

    Roudier, François; Fernandez, Anita G.; Fujita, Miki; Himmelspach, Regina; Borner, Georg H.H.; Schindelman, Gary; Song, Shuang; Baskin, Tobias I.; Dupree, Paul; Wasteneys, Geoffrey O.; Benfey, Philip N.

    2005-01-01

    The orientation of cell expansion is a process at the heart of plant morphogenesis. Cellulose microfibrils are the primary anisotropic material in the cell wall and thus are likely to be the main determinant of the orientation of cell expansion. COBRA (COB) has been identified previously as a potential regulator of cellulose biogenesis. In this study, characterization of a null allele, cob-4, establishes the key role of COB in controlling anisotropic expansion in most developing organs. Quantitative polarized-light and field-emission scanning electron microscopy reveal that loss of anisotropic expansion in cob mutants is accompanied by disorganization of the orientation of cellulose microfibrils and subsequent reduction of crystalline cellulose. Analyses of the conditional cob-1 allele suggested that COB is primarily implicated in microfibril deposition during rapid elongation. Immunodetection analysis in elongating root cells revealed that, in agreement with its substitution by a glycosylphosphatidylinositol anchor, COB was polarly targeted to both the plasma membrane and the longitudinal cell walls and was distributed in a banding pattern perpendicular to the longitudinal axis via a microtubule-dependent mechanism. Our observations suggest that COB, through its involvement in cellulose microfibril orientation, is an essential factor in highly anisotropic expansion during plant morphogenesis. PMID:15849274

  4. COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation.

    PubMed

    Roudier, François; Fernandez, Anita G; Fujita, Miki; Himmelspach, Regina; Borner, Georg H H; Schindelman, Gary; Song, Shuang; Baskin, Tobias I; Dupree, Paul; Wasteneys, Geoffrey O; Benfey, Philip N

    2005-06-01

    The orientation of cell expansion is a process at the heart of plant morphogenesis. Cellulose microfibrils are the primary anisotropic material in the cell wall and thus are likely to be the main determinant of the orientation of cell expansion. COBRA (COB) has been identified previously as a potential regulator of cellulose biogenesis. In this study, characterization of a null allele, cob-4, establishes the key role of COB in controlling anisotropic expansion in most developing organs. Quantitative polarized-light and field-emission scanning electron microscopy reveal that loss of anisotropic expansion in cob mutants is accompanied by disorganization of the orientation of cellulose microfibrils and subsequent reduction of crystalline cellulose. Analyses of the conditional cob-1 allele suggested that COB is primarily implicated in microfibril deposition during rapid elongation. Immunodetection analysis in elongating root cells revealed that, in agreement with its substitution by a glycosylphosphatidylinositol anchor, COB was polarly targeted to both the plasma membrane and the longitudinal cell walls and was distributed in a banding pattern perpendicular to the longitudinal axis via a microtubule-dependent mechanism. Our observations suggest that COB, through its involvement in cellulose microfibril orientation, is an essential factor in highly anisotropic expansion during plant morphogenesis.

  5. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cosgrove, Daniel J.

    The advent of user-friendly instruments for measuring force/deflection curves of plant surfaces at high spatial resolution has resulted in a recent outpouring of reports of the ‘Young's modulus’ of plant cell walls. The stimulus for these mechanical measurements comes from biomechanical models of morphogenesis of meristems and other tissues, as well as single cells, in which cell wall stress feeds back to regulate microtubule organization, auxin transport, cellulose deposition, and future growth directionality. In this article I review the differences between elastic modulus and wall extensibility in the context of cell growth. Some of the inherent complexities, assumptions, and potentialmore » pitfalls in the interpretation of indentation force/deflection curves are discussed. Reported values of elastic moduli from surface indentation measurements appear to be 10- to >1000-fold smaller than realistic tensile elastic moduli in the plane of plant cell walls. Potential reasons for this disparity are discussed, but further work is needed to make sense of the huge range in reported values. The significance of wall stress relaxation for growth is reviewed and connected to recent advances and remaining enigmas in our concepts of how cellulose, hemicellulose, and pectins are assembled to make an extensible cell wall. A comparison of the loosening action of α-expansin and Cel12A endoglucanase is used to illustrate two different ways in which cell walls may be made more extensible and the divergent effects on wall mechanics.« less

  6. Employing proteomic analysis to compare Paracoccidioides lutzii yeast and mycelium cell wall proteins.

    PubMed

    Araújo, Danielle Silva; de Sousa Lima, Patrícia; Baeza, Lilian Cristiane; Parente, Ana Flávia Alves; Melo Bailão, Alexandre; Borges, Clayton Luiz; de Almeida Soares, Célia Maria

    2017-11-01

    Paracoccidioidomycosis is an important systemic mycosis caused by thermodimorphic fungi of the Paracoccidioides genus. During the infective process, the cell wall acts at the interface between the fungus and the host. In this way, the cell wall has a key role in growth, environment sensing and interaction, as well as morphogenesis of the fungus. Since the cell wall is absent in mammals, it may present molecules that are described as target sites for new antifungal drugs. Despite its importance, up to now few studies have been conducted employing proteomics in for the identification of cell wall proteins in Paracoccidioides spp. Here, a detailed proteomic approach, including cell wall-fractionation coupled to NanoUPLC-MS E , was used to study and compare the cell wall fractions from Paracoccidioides lutzii mycelia and yeast cells. The analyzed samples consisted of cell wall proteins extracted by hot SDS followed by extraction by mild alkali. In summary, 512 proteins constituting different cell wall fractions were identified, including 7 predicted GPI-dependent cell wall proteins that are potentially involved in cell wall metabolism. Adhesins previously described in Paracoccidioides spp. such as enolase, glyceraldehyde-3-phosphate dehydrogenase were identified. Comparing the proteins in mycelium and yeast cells, we detected some that are common to both fungal phases, such as Ecm33, and some specific proteins, as glucanase Crf1. All of those proteins were described in the metabolism of cell wall. Our study provides an important elucidation of cell wall composition of fractions in Paracoccidioides, opening a way to understand the fungus cell wall architecture. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Differential growth of pavement cells of Arabidopsis thaliana leaf epidermis as revealed by microbead labeling.

    PubMed

    Elsner, Joanna; Lipowczan, Marcin; Kwiatkowska, Dorota

    2018-02-01

    In numerous vascular plants, pavement cells of the leaf epidermis are shaped like a jigsaw-puzzle piece. Knowledge about the subcellular pattern of growth that accompanies morphogenesis of such a complex shape is crucial for studies of the role of the cytoskeleton, cell wall and phytohormones in plant cell development. Because the detailed growth pattern of the anticlinal and periclinal cell walls remains unknown, our aim was to measure pavement cell growth at a subcellular resolution. Using fluorescent microbeads applied to the surface of the adaxial leaf epidermis of Arabidopsis thaliana as landmarks for growth computation, we directly assessed the growth rates for the outer periclinal and anticlinal cell walls at a subcellular scale. We observed complementary tendencies in the growth pattern of the outer periclinal and anticlinal cell walls. Central portions of periclinal walls were characterized by relatively slow growth, while growth of the other wall portions was heterogeneous. Local growth of the periclinal walls accompanying lobe development after initiation was relatively fast and anisotropic, with maximal extension usually in the direction along the lobe axis. This growth pattern of the periclinal walls was complemented by the extension of the anticlinal walls, which was faster on the lobe sides than at the tips. Growth of the anticlinal and outer periclinal walls of leaf pavement cells is heterogeneous. The growth of the lobes resembles cell elongation via diffuse growth rather than tip growth. © 2018 Botanical Society of America.

  8. The role of endoxyloglucan transferase in the organization of plant cell walls.

    PubMed

    Nishitani, K

    1997-01-01

    The plant cell wall plays a central role in morphogenesis as well as responsiveness to environmental signals. Xyloglucans are the principal component of the plant cell wall matrix and serve as cross-links between cellulose microfibrils to form the cellulose-xyloglucan framework. Endoxyloglucan transferase (EXGT), which was isolated and characterized in 1992, is an enzyme that mediates molecular grafting reaction between xyloglucan molecules. Structural studies on cDNAs encoding EXGT and its related proteins have disclosed the ubiquitous presence in the plant kingdom of a large multigene family of xyloglucan-related proteins (XRPs). Each XRP functions as either hydrolase or transferase acting on xyloglucans and is considered to be responsible for rearrangement of the cellulose-xyloglucan framework, the processes essential for the construction, modification, and degradation of plant cell walls. Different XRP genes exhibit potentially different expression profiles with respect to tissue specificity and responsiveness to hormonal and mechanical signals. The molecular approach to individual XRP genes will open a new path for exploring the controlling mechanisms by which the plant cell wall is constructed and reformed during plant growth and development.

  9. The contractile ring coordinates curvature-dependent septum assembly during fission yeast cytokinesis

    PubMed Central

    Zhou, Zhou; Munteanu, Emilia Laura; He, Jun; Ursell, Tristan; Bathe, Mark; Huang, Kerwyn Casey; Chang, Fred

    2015-01-01

    The functions of the actin-myosin–based contractile ring in cytokinesis remain to be elucidated. Recent findings show that in the fission yeast Schizosaccharomyces pombe, cleavage furrow ingression is driven by polymerization of cell wall fibers outside the plasma membrane, not by the contractile ring. Here we show that one function of the ring is to spatially coordinate septum cell wall assembly. We develop an improved method for live-cell imaging of the division apparatus by orienting the rod-shaped cells vertically using microfabricated wells. We observe that the septum hole and ring are circular and centered in wild-type cells and that in the absence of a functional ring, the septum continues to ingress but in a disorganized and asymmetric manner. By manipulating the cleavage furrow into different shapes, we show that the ring promotes local septum growth in a curvature-dependent manner, allowing even a misshapen septum to grow into a more regular shape. This curvature-dependent growth suggests a model in which contractile forces of the ring shape the septum cell wall by stimulating the cell wall machinery in a mechanosensitive manner. Mechanical regulation of the cell wall assembly may have general relevance to the morphogenesis of walled cells. PMID:25355954

  10. Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase

    NASA Technical Reports Server (NTRS)

    Xu, W.; Purugganan, M. M.; Polisensky, D. H.; Antosiewicz, D. M.; Fry, S. C.; Braam, J.

    1995-01-01

    Adaptation of plants to environmental conditions requires that sensing of external stimuli be linked to mechanisms of morphogenesis. The Arabidopsis TCH (for touch) genes are rapidly upregulated in expression in response to environmental stimuli, but a connection between this molecular response and developmental alterations has not been established. We identified TCH4 as a xyloglucan endotransglycosylase by sequence similarity and enzyme activity. Xyloglucan endotransglycosylases most likely modify cell walls, a fundamental determinant of plant form. We determined that TCH4 expression is regulated by auxin and brassinosteroids, by environmental stimuli, and during development, by a 1-kb region. Expression was restricted to expanding tissues and organs that undergo cell wall modification. Regulation of genes encoding cell wall-modifying enzymes, such as TCH4, may underlie plant morphogenetic responses to the environment.

  11. Importance of MAP Kinases during Protoperithecial Morphogenesis in Neurospora crassa

    PubMed Central

    Jeffree, Chris E.; Oborny, Radek; Boonyarungsrit, Patid; Read, Nick D.

    2012-01-01

    In order to produce multicellular structures filamentous fungi combine various morphogenetic programs that are fundamentally different from those used by plants and animals. The perithecium, the female sexual fruitbody of Neurospora crassa, differentiates from the vegetative mycelium in distinct morphological stages, and represents one of the more complex multicellular structures produced by fungi. In this study we defined the stages of protoperithecial morphogenesis in the N. crassa wild type in greater detail than has previously been described; compared protoperithecial morphogenesis in gene-deletion mutants of all nine mitogen-activated protein (MAP) kinases conserved in N. crassa; confirmed that all three MAP kinase cascades are required for sexual development; and showed that the three different cascades each have distinctly different functions during this process. However, only MAP kinases equivalent to the budding yeast pheromone response and cell wall integrity pathways, but not the osmoregulatory pathway, were essential for vegetative cell fusion. Evidence was obtained for MAP kinase signaling cascades performing roles in extracellular matrix deposition, hyphal adhesion, and envelopment during the construction of fertilizable protoperithecia. PMID:22900028

  12. The cell wall of the Arabidopsis pollen tube--spatial distribution, recycling, and network formation of polysaccharides.

    PubMed

    Chebli, Youssef; Kaneda, Minako; Zerzour, Rabah; Geitmann, Anja

    2012-12-01

    The pollen tube is a cellular protuberance formed by the pollen grain, or male gametophyte, in flowering plants. Its principal metabolic activity is the synthesis and assembly of cell wall material, which must be precisely coordinated to sustain the characteristic rapid growth rate and to ensure geometrically correct and efficient cellular morphogenesis. Unlike other model species, the cell wall of the Arabidopsis (Arabidopsis thaliana) pollen tube has not been described in detail. We used immunohistochemistry and quantitative image analysis to provide a detailed profile of the spatial distribution of the major cell wall polymers composing the Arabidopsis pollen tube cell wall. Comparison with predictions made by a mechanical model for pollen tube growth revealed the importance of pectin deesterification in determining the cell diameter. Scanning electron microscopy demonstrated that cellulose microfibrils are oriented in near longitudinal orientation in the Arabidopsis pollen tube cell wall, consistent with a linear arrangement of cellulose synthase CESA6 in the plasma membrane. The cellulose label was also found inside cytoplasmic vesicles and might originate from an early activation of cellulose synthases prior to their insertion into the plasma membrane or from recycling of short cellulose polymers by endocytosis. A series of strategic enzymatic treatments also suggests that pectins, cellulose, and callose are highly cross linked to each other.

  13. Morphological plasticity of bacteria—Open questions

    PubMed Central

    Shen, Jie-Pan

    2016-01-01

    Morphological plasticity of bacteria is a cryptic phenomenon, by which bacteria acquire adaptive benefits for coping with changing environments. Some environmental cues were identified to induce morphological plasticity, but the underlying molecular mechanisms remain largely unknown. Physical and chemical factors causing morphological changes in bacteria have been investigated and mostly associated with potential pathways linked to the cell wall synthetic machinery. These include starvation, oxidative stresses, predation effectors, antimicrobial agents, temperature stresses, osmotic shock, and mechanical constraints. In an extreme scenario of morphological plasticity, bacteria can be induced to be shapeshifters when the cell walls are defective or deficient. They follow distinct developmental pathways and transform into assorted morphological variants, and most of them would eventually revert to typical cell morphology. It is suggested that phenotypic heterogeneity might play a functional role in the development of morphological diversity and/or plasticity within an isogenic population. Accordingly, phenotypic heterogeneity and inherited morphological plasticity are found to be survival strategies adopted by bacteria in response to environmental stresses. Here, microfluidic and nanofabrication technology is considered to provide versatile solutions to induce morphological plasticity, sort and isolate morphological variants, and perform single-cell analysis including transcriptional and epigenetic profiling. Questions such as how morphogenesis network is modulated or rewired (if epigenetic controls of cell morphogenesis apply) to induce bacterial morphological plasticity could be resolved with the aid of micro-nanofluidic platforms and optimization algorithms, such as feedback system control. PMID:27375812

  14. Cell Wall and Secreted Proteins of Candida albicans: Identification, Function, and Expression

    PubMed Central

    Chaffin, W. Lajean; López-Ribot, José Luis; Casanova, Manuel; Gozalbo, Daniel; Martínez, José P.

    1998-01-01

    The cell wall is essential to nearly every aspect of the biology and pathogenicity of Candida albicans. Although it was intially considered an almost inert cellular structure that protected the protoplast against osmotic offense, more recent studies have demonstrated that it is a dynamic organelle. The major components of the cell wall are glucan and chitin, which are associated with structural rigidity, and mannoproteins. The protein component, including both mannoprotein and nonmannoproteins, comprises some 40 or more moieties. Wall proteins may differ in their expression, secretion, or topological location within the wall structure. Proteins may be modified by glycosylation (primarily addition of mannose residues), phosphorylation, and ubiquitination. Among the secreted enzymes are those that are postulated to have substrates within the cell wall and those that find substrates in the extracellular environment. Cell wall proteins have been implicated in adhesion to host tissues and ligands. Fibrinogen, complement fragments, and several extracellular matrix components are among the host proteins bound by cell wall proteins. Proteins related to the hsp70 and hsp90 families of conserved stress proteins and some glycolytic enzyme proteins are also found in the cell wall, apparently as bona fide components. In addition, the expression of some proteins is associated with the morphological growth form of the fungus and may play a role in morphogenesis. Finally, surface mannoproteins are strong immunogens that trigger and modulate the host immune response during candidiasis. PMID:9529890

  15. An early cytoplasmic step of peptidoglycan synthesis is associated to MreB in Bacillus subtilis.

    PubMed

    Rueff, Anne-Stéphanie; Chastanet, Arnaud; Domínguez-Escobar, Julia; Yao, Zhizhong; Yates, James; Prejean, Maria-Victoria; Delumeau, Olivier; Noirot, Philippe; Wedlich-Söldner, Roland; Filipe, Sergio R; Carballido-López, Rut

    2014-01-01

    MreB proteins play a major role during morphogenesis of rod-shaped bacteria by organizing biosynthesis of the peptidoglycan cell wall. However, the mechanisms underlying this process are not well understood. In Bacillus subtilis, membrane-associated MreB polymers have been shown to be associated to elongation-specific complexes containing transmembrane morphogenetic factors and extracellular cell wall assembly proteins. We have now found that an early intracellular step of cell wall synthesis is also associated to MreB. We show that the previously uncharacterized protein YkuR (renamed DapI) is required for synthesis of meso-diaminopimelate (m-DAP), an essential constituent of the peptidoglycan precursor, and that it physically interacts with MreB. Highly inclined laminated optical sheet microscopy revealed that YkuR forms uniformly distributed foci that exhibit fast motion in the cytoplasm, and are not detected in cells lacking MreB. We propose a model in which soluble MreB organizes intracellular steps of peptidoglycan synthesis in the cytoplasm to feed the membrane-associated cell wall synthesizing machineries. © 2013 John Wiley & Sons Ltd.

  16. Disruption of the Aspergillus fumigatus ECM33 homologue results in rapid conidial germination, antifungal resistance and hypervirulence.

    PubMed

    Romano, Jacob; Nimrod, Guy; Ben-Tal, Nir; Shadkchan, Yona; Baruch, Koti; Sharon, Haim; Osherov, Nir

    2006-07-01

    The ECM33/SPS2 family of glycosylphosphatidylinositol-anchored proteins plays an important role in maintaining fungal cell wall integrity and virulence. However, the precise molecular role of these proteins is unknown. In this work, AfuEcm33, the gene encoding the ECM33 homologue in the important pathogenic fungus Aspergillus fumigatus, has been cloned and its function analysed. It is shown that disruption of AfuEcm33 results in rapid conidial germination, increased cell-cell adhesion, resistance to the antifungal agent caspofungin and increased virulence in an immunocompromised mouse model for disseminated aspergillosis. These results suggest that the protein encoded by AfuEcm33 is involved in key aspects of cell wall morphogenesis and plays an important role in A. fumigatus virulence.

  17. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes.

    PubMed

    Cosgrove, Daniel J

    2016-01-01

    The advent of user-friendly instruments for measuring force/deflection curves of plant surfaces at high spatial resolution has resulted in a recent outpouring of reports of the 'Young's modulus' of plant cell walls. The stimulus for these mechanical measurements comes from biomechanical models of morphogenesis of meristems and other tissues, as well as single cells, in which cell wall stress feeds back to regulate microtubule organization, auxin transport, cellulose deposition, and future growth directionality. In this article I review the differences between elastic modulus and wall extensibility in the context of cell growth. Some of the inherent complexities, assumptions, and potential pitfalls in the interpretation of indentation force/deflection curves are discussed. Reported values of elastic moduli from surface indentation measurements appear to be 10- to >1000-fold smaller than realistic tensile elastic moduli in the plane of plant cell walls. Potential reasons for this disparity are discussed, but further work is needed to make sense of the huge range in reported values. The significance of wall stress relaxation for growth is reviewed and connected to recent advances and remaining enigmas in our concepts of how cellulose, hemicellulose, and pectins are assembled to make an extensible cell wall. A comparison of the loosening action of α-expansin and Cel12A endoglucanase is used to illustrate two different ways in which cell walls may be made more extensible and the divergent effects on wall mechanics. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Effects of Citrus sinensis (L.) Osbeck epicarp essential oil on growth and morphogenesis of Aspergillus niger (L.) Van Tieghem.

    PubMed

    Sharma, Neeta; Tripathi, Abhishek

    2008-01-01

    Essential oils from different plant parts are known for their antimicrobial activity but the antifungal effects of essential oil from Citrus sinensis (L.) Osbeck epicarp on growth and morphogenesis of Aspergillus niger has not been observed so far. The mycelial growth was inhibited at 2.5 and 3.0 microg/ml of oil in Potato Dextrose Broth and Agar medium, respectively. These concentrations were fungicidal under the test conditions. The fungitoxicity of oil did not change even at exposure to 100 degrees C and autoclaving. The main changes observed under light and scanning electron microscopy after oil treatment were loss of cytoplasm in fungal hyphae, and budding of hyphal tip. The hyphal wall and its diameter became markedly thinner, distorted and resulted in cell wall disruption. The flattened and empty hyphal tips bifurcated into bud like structures. GC-MS studies of the oil revealed the presence of 10 chemical constituents. Limonene has been found to be major component (84.2%).

  19. β-lapachone and α-nor-lapachone modulate Candida albicans viability and virulence factors.

    PubMed

    Moraes, D C; Curvelo, J A R; Anjos, C A; Moura, K C G; Pinto, M C F R; Portela, M B; Soares, R M A

    2018-03-26

    Candida albicans is the most important fungal pathogen that causes infections in humans, and the search for new therapeutic strategies for its treatment is essential. The aim of this study was to evaluate the activity of seven naphthoquinones (β-lapachone, β-nor-lapachone, bromide-β-lapachone, hydroxy-β-lapachone, α-lapachone, α-nor-lapachone and α-xyloidone) on the growth of a fluconazole-resistant C. albicans oral clinical isolate and the effects of these compounds on the viability of mammalian cells, on yeast's morphogenesis, biofilm formation and cell wall mannoproteins availability. All the compounds were able to completely inhibit the yeast growth. β-lapachone and α-nor-lapachone were the less cytotoxic compounds against L929 and RAW 264.7 cells. At IC 50 , β-lapachone inhibited morphogenesis in 92%, while the treatment of yeast cells with α-nor-lapachone decreased yeast-to-hyphae transition in 42%. At 50μg/ml, β-lapachone inhibited biofilm formation by 84%, whereas α-nor-lapachone reduced biofilm formation by 64%. The treatment of yeast cells with β-lapachone decreased cell wall mannoproteins availability in 28.5%, while α-nor-lapachone was not able to interfere on this virulence factor. Taken together, data show that β-lapachone and α-nor-lapachone exhibited in vitro cytotoxicity against a fluconazole-resistant C. albicans strain, thus demonstrating to be promising candidates to be used in the treatment of infections caused by this fungus. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. The Sur7 Protein Regulates Plasma Membrane Organization and Prevents Intracellular Cell Wall Growth in Candida albicans

    PubMed Central

    Alvarez, Francisco J.; Douglas, Lois M.; Rosebrock, Adam

    2008-01-01

    The Candida albicans plasma membrane plays important roles in cell growth and as a target for antifungal drugs. Analysis of Ca-Sur7 showed that this four transmembrane domain protein localized to stable punctate patches, similar to the plasma membrane subdomains known as eisosomes or MCC that were discovered in S. cerevisiae. The localization of Ca-Sur7 depended on sphingolipid synthesis. In contrast to S. cerevisiae, a C. albicans sur7Δ mutant displayed defects in endocytosis and morphogenesis. Septins and actin were mislocalized, and cell wall synthesis was very abnormal, including long projections of cell wall into the cytoplasm. Several phenotypes of the sur7Δ mutant are similar to the effects of inhibiting β-glucan synthase, suggesting that the abnormal cell wall synthesis is related to activation of chitin synthase activity seen under stress conditions. These results expand the roles of eisosomes by demonstrating that Sur7 is needed for proper plasma membrane organization and cell wall synthesis. A conserved Cys motif in the first extracellular loop of fungal Sur7 proteins is similar to a characteristic motif of the claudin proteins that form tight junctions in animal cells, suggesting a common role for these tetraspanning membrane proteins in forming specialized plasma membrane domains. PMID:18799621

  1. Tubulin perturbation leads to unexpected cell wall modifications and affects stomatal behaviour in Populus

    DOE PAGES

    Swamy, Prashant S.; Hu, Hao; Pattathil, Sivakumar; ...

    2015-08-05

    Cortical microtubules are integral to plant morphogenesis, cell wall synthesis, and stomatal behaviour, presumably by governing cellulose microfibril orientation. Genetic manipulation of tubulins often leads to abnormal plant development, making it difficult to probe additional roles of cortical microtubules in cell wall biogenesis. Here, it is shown that expressing post-translational C-terminal modification mimics of α-tubulin altered cell wall characteristics and guard cell dynamics in transgenic Populus tremula x alba that otherwise appear normal. 35S promoter-driven transgene expression was high in leaves but unusually low in xylem, suggesting high levels of tubulin transgene expression were not tolerated in wood-forming tissues duringmore » regeneration of transformants. Cellulose, hemicellulose, and lignin contents were unaffected in transgenic wood, but expression of cell wall-modifying enzymes, and extractability of lignin-bound pectin and xylan polysaccharides were increased in developing xylem. The results suggest that pectin and xylan polysaccharides deposited early during cell wall biogenesis are more sensitive to subtle tubulin perturbation than cellulose and matrix polysaccharides deposited later. Tubulin perturbation also affected guard cell behaviour, delaying drought-induced stomatal closure as well as light-induced stomatal opening in leaves. Pectins have been shown to confer cell wall flexibility critical for reversible stomatal movement, and results presented here are consistent with microtubule involvement in this process. In conclusion, taken together, the data show the value of growth-compatible tubulin perturbations for discerning microtubule functions, and add to the growing body of evidence for microtubule involvement in non-cellulosic polysaccharide assembly during cell wall biogenesis.« less

  2. The Cell Wall of the Arabidopsis Pollen Tube—Spatial Distribution, Recycling, and Network Formation of Polysaccharides1[C][W][OA

    PubMed Central

    Chebli, Youssef; Kaneda, Minako; Zerzour, Rabah; Geitmann, Anja

    2012-01-01

    The pollen tube is a cellular protuberance formed by the pollen grain, or male gametophyte, in flowering plants. Its principal metabolic activity is the synthesis and assembly of cell wall material, which must be precisely coordinated to sustain the characteristic rapid growth rate and to ensure geometrically correct and efficient cellular morphogenesis. Unlike other model species, the cell wall of the Arabidopsis (Arabidopsis thaliana) pollen tube has not been described in detail. We used immunohistochemistry and quantitative image analysis to provide a detailed profile of the spatial distribution of the major cell wall polymers composing the Arabidopsis pollen tube cell wall. Comparison with predictions made by a mechanical model for pollen tube growth revealed the importance of pectin deesterification in determining the cell diameter. Scanning electron microscopy demonstrated that cellulose microfibrils are oriented in near longitudinal orientation in the Arabidopsis pollen tube cell wall, consistent with a linear arrangement of cellulose synthase CESA6 in the plasma membrane. The cellulose label was also found inside cytoplasmic vesicles and might originate from an early activation of cellulose synthases prior to their insertion into the plasma membrane or from recycling of short cellulose polymers by endocytosis. A series of strategic enzymatic treatments also suggests that pectins, cellulose, and callose are highly cross linked to each other. PMID:23037507

  3. Brown Mycelial Mat as an Essential Morphological Structure of the Shiitake Medicinal Mushroom Lentinus edodes (Agaricomycetes).

    PubMed

    Vetchinkina, Elena; Gorshkov, Vladimir; Ageeva, Marina; Gogolev, Yuri; Nikitina, Valentina E

    2017-01-01

    We show here, to our knowledge for the first time, that the brown mycelial mat of the xylotrophic shiitake medicinal mushroom, Lentinus edodes, not only performs a protective function owing to significant changes in the ultrastructure (thickening of the cell wall, increased density, and pigmentation of the fungal hyphae) but also is a metabolically active stage in the development of the mushroom. The cells of this morphological structure exhibit repeated activation of expression of the genes lcc4, tir, exp1, chi, and exg1, coding for laccase, tyrosinase, a specific transcription factor, chitinase, and glucanase, which are required for fungal growth and morphogenesis. This study revealed the maximum activity of functionally important proteins with phenol oxidase and lectin activities, and the emergence of additional laccases, tyrosinases, and lectins, which are typical of only this stage of morphogenesis and have a regulatory function in the development and formation of fruiting bodies.

  4. Microtubules in root hairs.

    PubMed

    Traas, J A; Braat, P; Emons, A M; Meekes, H; Derksen, J

    1985-06-01

    The microtubules of root hairs of Raphanus sativus, Lepidium sativum, Equisetum hyemale, Limnobium stoloniferum, Ceratopteris thalictroides, Allium sativum and Urtica dioica were investigated using immunofluorescence and electron microscopy. Arrays of cortical microtubules were observed in all hairs. The microtubules in the hairs show net axial orientations, but in Allium and Urtica helical microtubule patterns are also present. Numerical parameters of microtubules in Raphanus, Equisetum and Limnobium were determined from dry-cleave preparations. The results are discussed with respect to cell wall deposition and cell morphogenesis.

  5. Members of Glycosyl-Hydrolase Family 17 of A. fumigatus Differentially Affect Morphogenesis

    PubMed Central

    Millet, Nicolas; Latgé, Jean-Paul; Mouyna, Isabelle

    2018-01-01

    Cell wall biosynthesis and remodeling are essential for fungal growth and development. In the fungal pathogen Aspergillus fumigatus, the β(1,3)glucan is the major cell wall polysaccharide. This polymer is synthesized at the plasma membrane by a transmembrane complex, then released into the parietal space to be remodeled by enzymes, and finally incorporated into the pre-existing cell wall. In the Glycosyl-Hydrolases family 17 (GH17) of A. fumigatus, two β(1,3)glucanosyltransferases, Bgt1p and Bgt2p, have been previously characterized. Disruption of BGT1 and BGT2 did not result in a phenotype, but sequence comparison and hydrophobic cluster analysis showed that three other genes in A. fumigatus belong to the GH17 family, SCW4, SCW11, and BGT3. In constrast to Δbgt1bgt2 mutants, single and multiple deletion of SCW4, SCW11, and BGT3 showed a decrease in conidiation associated with a higher conidial mortality and an abnormal conidial shape. Moreover, mycelium was also affected with a slower growth, stronger sensitivity to cell wall disturbing agents, and altered cell wall composition. Finally, the synthetic interactions between Bgt1p, Bgt2p, and the three other members, which support a functional cooperation in cell-wall assembly, were analyzed. Our data suggest that Scw4p, Scw11p, and Bgt3p are essential for cell wall integrity and might have antagonistic and distinct functions to Bgt1p and Bgt2p. PMID:29385695

  6. Macroalgal Morphogenesis Induced by Waterborne Compounds and Bacteria in Coastal Seawater

    PubMed Central

    Grueneberg, Jan; Engelen, Aschwin H.; Costa, Rodrigo; Wichard, Thomas

    2016-01-01

    Axenic gametes of the marine green macroalga Ulva mutabilis Føyn (Ria Formosa, locus typicus) exhibit abnormal development into slow-growing callus-like colonies with aberrant cell walls. Under laboratory conditions, it was previously demonstrated that all defects in growth and thallus development can be completely abolished when axenic gametes are inoculated with a combination of two specific bacterial strains originally identified as Roseobacter sp. strain MS2 and Cytophaga sp. strain MS6. These bacteria release diffusible morphogenetic compounds (= morphogens), which act similar to cytokinin and auxin. To investigate the ecological relevance of the waterborne bacterial morphogens, seawater samples were collected in the Ria Formosa lagoon (Algarve, Southern Portugal) at 20 sampling sites and tidal pools to assess their morphogenetic effects on the axenic gametes of U. mutabilis. Specifically the survey revealed that sterile-filtered seawater samples can completely recover growth and morphogenesis of U. mutabilis under axenic conditions. Morphogenetic activities of free-living and epiphytic bacteria isolated from the locally very abundant Ulva species (i.e., U. rigida) were screened using a multiwell-based testing system. The most represented genera isolated from U. rigida were Alteromonas, Pseudoalteromonas and Sulfitobacter followed by Psychrobacter and Polaribacter. Several naturally occurring bacterial species could emulate MS2 activity (= induction of cell divisions) regardless of taxonomic affiliation, whereas the MS6 activity (= induction of cell differentiation and cell wall formation) was species-specific and is probably a feature of difficult-to-culture bacteria. Interestingly, isolated bacteroidetes such as Algoriphagus sp. and Polaribacter sp. could individually trigger complete Ulva morphogenesis and thus provide a novel mode of action for bacterial-induced algal development. This study also highlights that the accumulation of algal growth factors in a shallow water body separated from the open ocean by barrier islands might have strong implications to, for example, the wide usage of natural coastal seawater in algal (land based) aquacultures of Ulva. PMID:26745366

  7. Electronically transparent graphene replicas of diatoms: a new technique for the investigation of frustule morphology

    PubMed Central

    Pan, Zhengwei; Lerch, Sarah J. L.; Xu, Liang; Li, Xufan; Chuang, Yen-Jun; Howe, Jane Y.; Mahurin, Shannon M.; Dai, Sheng; Hildebrand, Mark

    2014-01-01

    The morphogenesis of the silica cell walls (called frustules) of unicellular algae known as diatoms is one of the most intriguing mysteries of the diatoms. To study frustule morphogenesis, optical, electron and atomic force microscopy has been extensively used to reveal the frustule morphology. However, since silica frustules are opaque, past observations were limited to outer and fracture surfaces, restricting observations of interior structures. Here we show that opaque silica frustules can be converted into electronically transparent graphene replicas, fabricated using chemical vapor deposition of methane. Chemical vapor deposition creates a continuous graphene coating preserving the frustule's shape and fine, complicated internal features. Subsequent dissolution of the silica with hydrofluoric acid yields a free-standing replica of the internal and external native frustule morphologies. Electron microscopy renders these graphene replicas highly transparent, revealing previously unobserved, complex, three-dimensional, interior frustule structures, which lend new insights into the investigation of frustule morphogenesis. PMID:25135739

  8. Emerging roles for microtubules in angiosperm pollen tube growth highlight new research cues

    PubMed Central

    Onelli, Elisabetta; Idilli, Aurora I.; Moscatelli, Alessandra

    2015-01-01

    In plants, actin filaments have an important role in organelle movement and cytoplasmic streaming. Otherwise microtubules (MTs) have a role in restricting organelles to specific areas of the cell and in maintaining organelle morphology. In somatic plant cells, MTs also participate in cell division and morphogenesis, allowing cells to take their definitive shape in order to perform specific functions. In the latter case, MTs influence assembly of the cell wall, controlling the delivery of enzymes involved in cellulose synthesis and of wall modulation material to the proper sites. In angiosperm pollen tubes, organelle movement is generally attributed to the acto-myosin system, the main role of which is in distributing organelles in the cytoplasm and in carrying secretory vesicles to the apex for polarized growth. Recent data on membrane trafficking suggests a role of MTs in fine delivery and repositioning of vesicles to sustain pollen tube growth. This review examines the role of MTs in secretion and endocytosis, highlighting new research cues regarding cell wall construction and pollen tube-pistil crosstalk, that help unravel the role of MTs in polarized growth. PMID:25713579

  9. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses.

    PubMed

    Bacete, Laura; Mélida, Hugo; Miedes, Eva; Molina, Antonio

    2018-02-01

    Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  10. Oligosaccharins — a new class of signalling molecules in plants

    NASA Astrophysics Data System (ADS)

    Usov, Anatolii I.

    1993-11-01

    The review deals with oligosaccharins — biologically active oligosaccharides of the following structural types: the (1→6, 1→3)-β-D-glucan fragments of the fungal cell wall; the chitin and chitosan fragments; polygalacturonic acid fragments; the xyloglucan fragments of the plant cell wall; lipooligosaccharides synthesised by bacteria — symbionts of leguminous plants. The isolation, determination of the structure, and total syntheses of these complex compounds as well as the results of the study of their biological role as inductors of the immunity of plants to attack by pathogenic fungi and bacteria and as regulators of the morphogenesis in the development processes in plants and of interaction of the latter with symbiont bacteria are described. The bibliography includes 197 references.

  11. The mechanics behind plant development.

    PubMed

    Hamant, Olivier; Traas, Jan

    2010-01-01

    Morphogenesis in living organisms relies on the integration of both biochemical and mechanical signals. During the last decade, attention has been mainly focused on the role of biochemical signals in patterning and morphogenesis, leaving the contribution of mechanics largely unexplored. Fortunately, the development of new tools and approaches has made it possible to re-examine these processes. In plants, shape is defined by two local variables: growth rate and growth direction. At the level of the cell, these variables depend on both the cell wall and turgor pressure. Multidisciplinary approaches have been used to understand how these cellular processes are integrated in the growing tissues. These include quantitative live imaging to measure growth rate and direction in tissues with cellular resolution. In parallel, stress patterns have been artificially modified and their impact on strain and cell behavior been analysed. Importantly, computational models based on analogies with continuum mechanics systems have been useful in interpreting the results. In this review, we will discuss these issues focusing on the shoot apical meristem, a population of stem cells that is responsible for the initiation of the aerial organs of the plant.

  12. The contractile ring coordinates curvature-dependent septum assembly during fission yeast cytokinesis.

    PubMed

    Zhou, Zhou; Munteanu, Emilia Laura; He, Jun; Ursell, Tristan; Bathe, Mark; Huang, Kerwyn Casey; Chang, Fred

    2015-01-01

    The functions of the actin-myosin-based contractile ring in cytokinesis remain to be elucidated. Recent findings show that in the fission yeast Schizosaccharomyces pombe, cleavage furrow ingression is driven by polymerization of cell wall fibers outside the plasma membrane, not by the contractile ring. Here we show that one function of the ring is to spatially coordinate septum cell wall assembly. We develop an improved method for live-cell imaging of the division apparatus by orienting the rod-shaped cells vertically using microfabricated wells. We observe that the septum hole and ring are circular and centered in wild-type cells and that in the absence of a functional ring, the septum continues to ingress but in a disorganized and asymmetric manner. By manipulating the cleavage furrow into different shapes, we show that the ring promotes local septum growth in a curvature-dependent manner, allowing even a misshapen septum to grow into a more regular shape. This curvature-dependent growth suggests a model in which contractile forces of the ring shape the septum cell wall by stimulating the cell wall machinery in a mechanosensitive manner. Mechanical regulation of the cell wall assembly may have general relevance to the morphogenesis of walled cells. © 2015 Zhou et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Role of an expansin-like molecule in Dictyostelium morphogenesis and regulation of its gene expression by the signal transducer and activator of transcription protein Dd-STATa.

    PubMed

    Ogasawara, Shun; Shimada, Nao; Kawata, Takefumi

    2009-02-01

    Expansins are proteins involved in plant morphogenesis, exerting their effects on cellulose to extend cell walls. Dictyostelium is an organism that possesses expansin-like molecules, but their functions are not known. In this study, we analyzed the expL7 (expansin-like 7) gene, which has been identified as a putative target of Dd-STATa, a Dictyostelium homolog of the metazoan signal transducer and activator of transcription (STAT) proteins. Promoter fragments of the expL7 were fused to a lacZ reporter and the expression patterns determined. As expected from the behavior of the endogenous expL7 gene, the expL7/lacZ fusion gene was downregulated in Dd-STATa null slugs. In the parental strain, the expL7 promoter was activated in the anterior tip region. Mutational analysis of the promoter identified a sequence that was necessary for expression in tip cells. In addition, an activator sequence for pstAB cells was identified. These sequences act in combination with the repressor region to prevent ectopic expL7 expression in the prespore and prestalk regions of the slug and culminant. Although the expL7 null mutant showed no phenotypic change, the expL7 overexpressor showed aberrant stalk formation. These results indicate that the expansin-like molecule is important for morphogenesis in Dictyostelium.

  14. Colony Organization in the Green Alga Botryococcus braunii (Race B) Is Specified by a Complex Extracellular Matrix

    PubMed Central

    Weiss, Taylor L.; Roth, Robyn; Goodson, Carrie; Vitha, Stanislav; Black, Ian; Azadi, Parastoo; Rusch, Jannette; Holzenburg, Andreas

    2012-01-01

    Botryococcus braunii is a colonial green alga whose cells associate via a complex extracellular matrix (ECM) and produce prodigious amounts of liquid hydrocarbons that can be readily converted into conventional combustion engine fuels. We used quick-freeze deep-etch electron microscopy and biochemical/histochemical analysis to elucidate many new features of B. braunii cell/colony organization and composition. Intracellular lipid bodies associate with the chloroplast and endoplasmic reticulum (ER) but show no evidence of being secreted. The ER displays striking fenestrations and forms a continuous subcortical system in direct contact with the cell membrane. The ECM has three distinct components. (i) Each cell is surrounded by a fibrous β-1, 4- and/or β-1, 3-glucan-containing cell wall. (ii) The intracolonial ECM space is filled with a cross-linked hydrocarbon network permeated with liquid hydrocarbons. (iii) Colonies are enclosed in a retaining wall festooned with a fibrillar sheath dominated by arabinose-galactose polysaccharides, which sequesters ECM liquid hydrocarbons. Each cell apex associates with the retaining wall and contributes to its synthesis. Retaining-wall domains also form “drapes” between cells, with some folding in on themselves and penetrating the hydrocarbon interior of a mother colony, partitioning it into daughter colonies. We propose that retaining-wall components are synthesized in the apical Golgi apparatus, delivered to apical ER fenestrations, and assembled on the surfaces of apical cell walls, where a proteinaceous granular layer apparently participates in fibril morphogenesis. We further propose that hydrocarbons are produced by the nonapical ER, directly delivered to the contiguous cell membrane, and pass across the nonapical cell wall into the hydrocarbon-based ECM. PMID:22941913

  15. Colony organization in the green alga Botryococcus braunii is specified by a complex extracellular matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Taylor L.; Roth, Robyn; Goodson, Carrie

    Botryococcus braunii is a colonial green alga whose cells associate via a complex extracellular matrix (ECM) and produce prodigious amounts of liquid hydrocarbons that can be readily converted into conventional combustion engine fuels. We used quickfreeze deep-etch electron microscopy and biochemical/histochemical analysis to elucidate many new features of B. braunii cell/colony organization and composition. Intracellular lipid bodies associate with the chloroplast and endoplasmic reticulum (ER) but show no evidence of being secreted. The ER displays striking fenestrations and forms a continuous subcortical system in direct contact with the cell membrane. The ECM has three distinct components. (i) Each cell ismore » surrounded by a fibrous β-1, 4- and/or β-1, 3-glucan-containing cell wall. (ii) The intracolonial ECM space is filled with a cross-linked hydrocarbon network permeated with liquid hydrocarbons. (iii) Colonies are enclosed in a retaining wall festooned with a fibrillar sheath dominated by arabinose-galactose polysaccharides, which sequesters ECM liquid hydrocarbons. Each cell apex associates with the retaining wall and contributes to its synthesis. Retaining-wall domains also form "drapes" between cells, with some folding in on themselves and penetrating the hydrocarbon interior of a mother colony, partitioning it into daughter colonies. In addition, we propose that retaining-wall components are synthesized in the apical Golgi apparatus, delivered to apical ER fenestrations, and assembled on the surfaces of apical cell walls, where a proteinaceous granular layer apparently participates in fibril morphogenesis. We further propose that hydrocarbons are produced by the nonapical ER, directly delivered to the contiguous cell membrane, and pass across the nonapical cell wall into the hydrocarbon-based ECM.« less

  16. Colony organization in the green alga Botryococcus braunii is specified by a complex extracellular matrix

    DOE PAGES

    Weiss, Taylor L.; Roth, Robyn; Goodson, Carrie; ...

    2012-08-31

    Botryococcus braunii is a colonial green alga whose cells associate via a complex extracellular matrix (ECM) and produce prodigious amounts of liquid hydrocarbons that can be readily converted into conventional combustion engine fuels. We used quickfreeze deep-etch electron microscopy and biochemical/histochemical analysis to elucidate many new features of B. braunii cell/colony organization and composition. Intracellular lipid bodies associate with the chloroplast and endoplasmic reticulum (ER) but show no evidence of being secreted. The ER displays striking fenestrations and forms a continuous subcortical system in direct contact with the cell membrane. The ECM has three distinct components. (i) Each cell ismore » surrounded by a fibrous β-1, 4- and/or β-1, 3-glucan-containing cell wall. (ii) The intracolonial ECM space is filled with a cross-linked hydrocarbon network permeated with liquid hydrocarbons. (iii) Colonies are enclosed in a retaining wall festooned with a fibrillar sheath dominated by arabinose-galactose polysaccharides, which sequesters ECM liquid hydrocarbons. Each cell apex associates with the retaining wall and contributes to its synthesis. Retaining-wall domains also form "drapes" between cells, with some folding in on themselves and penetrating the hydrocarbon interior of a mother colony, partitioning it into daughter colonies. In addition, we propose that retaining-wall components are synthesized in the apical Golgi apparatus, delivered to apical ER fenestrations, and assembled on the surfaces of apical cell walls, where a proteinaceous granular layer apparently participates in fibril morphogenesis. We further propose that hydrocarbons are produced by the nonapical ER, directly delivered to the contiguous cell membrane, and pass across the nonapical cell wall into the hydrocarbon-based ECM.« less

  17. Bacterial morphogenesis and the enigmatic MreB helix.

    PubMed

    Errington, Jeff

    2015-04-01

    Work over the past decade has highlighted the pivotal role of the actin-like MreB family of proteins in the determination and maintenance of rod cell shape in bacteria. Early images of MreB localization revealed long helical filaments, which were suggestive of a direct role in governing cell wall architecture. However, several more recent, higher-resolution studies have questioned the existence or importance of the helical structures. In this Opinion article, I navigate a path through these conflicting reports, revive the helix model and summarize the key questions that remain to be answered.

  18. Cell wall carbohydrates content of pathogenic Candida albicans strain morphological forms.

    PubMed

    Staniszewska, Monika; Bondaryk, Małgorzata; Rabczenko, Daniel; Smoleńska-Sym, Gabriela; Kurzatkowski, Wiesław

    2013-01-01

    The study evaluated the cell wall carbohydrates fraction in blastoconidia grown in YEPD medium at 30 degrees C and in the conglomerate of true hyphae grown in human serum at 37 degrees C. The clinical isolate obtained from a child with widespread C. albicans infection was used in the study. The cells were broken with glass beads, centrifuged to harvest the cell wall followed by subjection to TFA hydrolysis and in the result of that released monosaccharides were detected by HPAEC-PAD. Both, serum and temperature conditions (37 degrees C) affected germination process influencing the cell wall carbohydrates content when incubation in serum was prolonged from 1 to 18 h. The mannan content of blastoconidia was almost twofold higher compared to filamentous forms (149.25 +/- 299.24 vs 77.26 +/- 122.07). The glucan content was threefold lower in blastoconidia compared to hyphae (251.86 +/- 243.44 vs 755.81 +/- 1299.30). The chitin level was fourfold lower in blastoconidia compared to filaments (23.86 +/- 54.09 vs 106.29 +/- 170.12). The reason for the differences in the carbohydrates content may be related to type of morphology induced in different environmental conditions. Among tested carbohydrates, glucan appeared to be present in appreciably larger amounts in both tested morphological fractions. The ultrastructure of the blastoconidial cell wall revealed striking differences compared to the hyphae indicating the carbohydrates content alterations for wall assembly during hyphal growth at alkaline pH and temp. 37 degrees C. The study provided evidence for the relationship between morphogenesis, cell-cell adhesion induced by serum and changes in the level of carbohydrates content.

  19. The Cell Wall Protein Ecm33 of Candida albicans is Involved in Chronological Life Span, Morphogenesis, Cell Wall Regeneration, Stress Tolerance, and Host-Cell Interaction.

    PubMed

    Gil-Bona, Ana; Reales-Calderon, Jose A; Parra-Giraldo, Claudia M; Martinez-Lopez, Raquel; Monteoliva, Lucia; Gil, Concha

    2016-01-01

    Ecm33 is a glycosylphosphatidylinositol-anchored protein in the human pathogen Candida albicans. This protein is known to be involved in fungal cell wall integrity (CWI) and is also critical for normal virulence in the mouse model of hematogenously disseminated candidiasis, but its function remains unknown. In this work, several phenotypic analyses of the C. albicans ecm33/ecm33 mutant (RML2U) were performed. We observed that RML2U displays the inability of protoplast to regenerate the cell wall, activation of the CWI pathway, hypersensitivity to temperature, osmotic and oxidative stresses and a shortened chronological lifespan. During the exponential and stationary culture phases, nuclear and actin staining revealed the possible arrest of the cell cycle in RML2U cells. Interestingly, a "veil growth," never previously described in C. albicans, was serendipitously observed under static stationary cells. The cells that formed this structure were also observed in cornmeal liquid cultures. These cells are giant, round cells, without DNA, and contain large vacuoles, similar to autophagic cells observed in other fungi. Furthermore, RML2U was phagocytozed more than the wild-type strain by macrophages at earlier time points, but the damage caused to the mouse cells was less than with the wild-type strain. Additionally, the percentage of RML2U apoptotic cells after interaction with macrophages was fewer than in the wild-type strain.

  20. The Cell Wall Protein Ecm33 of Candida albicans is Involved in Chronological Life Span, Morphogenesis, Cell Wall Regeneration, Stress Tolerance, and Host–Cell Interaction

    PubMed Central

    Gil-Bona, Ana; Reales-Calderon, Jose A.; Parra-Giraldo, Claudia M.; Martinez-Lopez, Raquel; Monteoliva, Lucia; Gil, Concha

    2016-01-01

    Ecm33 is a glycosylphosphatidylinositol-anchored protein in the human pathogen Candida albicans. This protein is known to be involved in fungal cell wall integrity (CWI) and is also critical for normal virulence in the mouse model of hematogenously disseminated candidiasis, but its function remains unknown. In this work, several phenotypic analyses of the C. albicans ecm33/ecm33 mutant (RML2U) were performed. We observed that RML2U displays the inability of protoplast to regenerate the cell wall, activation of the CWI pathway, hypersensitivity to temperature, osmotic and oxidative stresses and a shortened chronological lifespan. During the exponential and stationary culture phases, nuclear and actin staining revealed the possible arrest of the cell cycle in RML2U cells. Interestingly, a “veil growth,” never previously described in C. albicans, was serendipitously observed under static stationary cells. The cells that formed this structure were also observed in cornmeal liquid cultures. These cells are giant, round cells, without DNA, and contain large vacuoles, similar to autophagic cells observed in other fungi. Furthermore, RML2U was phagocytozed more than the wild-type strain by macrophages at earlier time points, but the damage caused to the mouse cells was less than with the wild-type strain. Additionally, the percentage of RML2U apoptotic cells after interaction with macrophages was fewer than in the wild-type strain. PMID:26870022

  1. Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana.

    PubMed

    Nanjo, T; Kobayashi, M; Yoshiba, Y; Sanada, Y; Wada, K; Tsukaya, H; Kakubari, Y; Yamaguchi-Shinozaki, K; Shinozaki, K

    1999-04-01

    Many organisms, including higher plants, accumulate free proline (Pro) in response to osmotic stress. Although various studies have focused on the ability of Pro as a compatible osmolyte involved in osmotolerance, its specific role throughout plant growth is still unclear. It has been reported that Pro is synthesized from Glu catalyzed by a key enzyme, delta 1-pyrroline-5-carboxylate synthetase (P5CS), in plants. To elucidate essential roles of Pro, we generated antisense transgenic Arabidopsis plants with a P5CS cDNA. Several transgenics accumulated Pro at a significantly lower level than wild-type plants, providing direct evidence for a key role of P5CS in Pro production in Arabidopsis. These antisense transgenics showed morphological alterations in leaves and a defect in elongation of inflorescences. Furthermore, transgenic leaves were hypersensitive to osmotic stress. Microscopic analysis of transgenic leaves, in which the mutated phenotype clearly occurred, showed morphological abnormalities of epidermal and parenchymatous cells and retardation of differentiation of vascular systems. These phenotypes were suppressed by exogenous L-Pro but not by D-Pro or other Pro analogues. In addition, Pro deficiency did not broadly affect all proteins but specifically affected structural proteins of cell walls in the antisense transgenic plants. These results indicate that Pro is not just an osmoregulator in stressed plants but has a unique function involved in osmotolerance as well as in morphogenesis as a major constituent of cell wall structural proteins in plants.

  2. MreB: pilot or passenger of cell wall synthesis?

    PubMed

    White, Courtney L; Gober, James W

    2012-02-01

    The discovery that the bacterial cell shape determinant MreB is related to actin spurred new insights into bacterial morphogenesis and development. The trafficking and mechanical roles of the eukaryotic cytoskeleton were hypothesized to have a functional ancestor in MreB based on evidence implicating MreB as an organizer of cell wall synthesis. Genetic, biochemical and cytological studies implicate MreB as a coordinator of a large multi-protein peptidoglycan (PG) synthesizing holoenzyme. Recent advances in microscopy and new biochemical evidence, however, suggest that MreB may function differently than previously envisioned. This review summarizes our evolving knowledge of MreB and attempts to refine the generalized model of the proteins organizing PG synthesis in bacteria. This is generally thought to be conserved among eubacteria and the majority of the discussion will focus on studies from a few well-studied model organisms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Sensitivity of Aspergillus nidulans to the Cellulose Synthase Inhibitor Dichlobenil: Insights from Wall-Related Genes’ Expression and Ultrastructural Hyphal Morphologies

    PubMed Central

    Obersriebnig, Michael; Salerno, Marco; Pum, Dietmar; Strauss, Joseph

    2013-01-01

    The fungal cell wall constitutes an important target for the development of antifungal drugs, because of its central role in morphogenesis, development and determination of fungal-specific molecular features. Fungal walls are characterized by a network of interconnected glycoproteins and polysaccharides, namely α-, β-glucans and chitin. Cell walls promptly and dynamically respond to environmental stimuli by a signaling mechanism, which triggers, among other responses, modulations in wall biosynthetic genes’ expression. Despite the absence of cellulose in the wall of the model filamentous fungus Aspergillus nidulans, we found in this study that fungal growth, spore germination and morphology are affected by the addition of the cellulose synthase inhibitor dichlobenil. Expression analysis of selected genes putatively involved in cell wall biosynthesis, carried out at different time points of drug exposure (i.e. 0, 1, 3, 6 and 24 h), revealed increased expression for the putative mixed linkage β-1,3;1,4 glucan synthase celA together with the β-1,3-glucan synthase fksA and the Rho-related GTPase rhoA. We also compared these data with the response to Congo Red, a known plant/fungal drug affecting both chitin and cellulose biosynthesis. The two drugs exerted different effects at the cell wall level, as shown by gene expression analysis and the ultrastructural features observed through atomic force microscopy and scanning electron microscopy. Although the concentration of dichlobenil required to affect growth of A. nidulans is approximately 10-fold higher than that required to inhibit plant cellulose biosynthesis, our work for the first time demonstrates that a cellulose biosynthesis inhibitor affects fungal growth, changes fungal morphology and expression of genes connected to fungal cell wall biosynthesis. PMID:24312197

  4. Chitinases are essential for sexual development but not vegetative growth in Cryptococcus neoformans.

    PubMed

    Baker, Lorina G; Specht, Charles A; Lodge, Jennifer K

    2009-11-01

    Cryptococcus neoformans is an opportunistic pathogen that mainly infects immunocompromised individuals. The fungal cell wall of C. neoformans is an excellent target for antifungal therapies since it is an essential organelle that provides cell structure and integrity. Importantly, it is needed for localization or attachment of known virulence factors, including melanin, phospholipase, and the polysaccharide capsule. The polysaccharide fraction of the cryptococcal cell wall is a complex structure composed of chitin, chitosan, and glucans. Chitin is an indispensable component of many fungal cell walls that contributes significantly to cell wall strength and integrity. Fungal cell walls are very dynamic, constantly changing during cell division and morphogenesis. Hydrolytic enzymes, such as chitinases, have been implicated in the maintenance of cell wall plasticity and separation of the mother and daughter cells at the bud neck during vegetative growth in yeast. In C. neoformans we identified four predicted endochitinases, CHI2, CHI21, CHI22, and CHI4, and a predicted exochitinase, hexosaminidase, HEX1. Enzymatic analysis indicated that Chi2, Chi22, and Hex1 actively degraded chitinoligomeric substrates. Chi2 and Hex1 activity was associated mostly with the cellular fraction, and Chi22 activity was more prominent in the supernatant. The enzymatic activity of Hex1 increased when grown in media containing only N-acetylglucosamine as a carbon source, suggesting that its activity may be inducible by chitin degradation products. Using a quadruple endochitinase deletion strain, we determined that the endochitinases do not affect the growth or morphology of C. neoformans during asexual reproduction. However, mating assays indicated that Chi2, Chi21, and Chi4 are each involved in sexual reproduction. In summary, the endochitinases were found to be dispensable for routine vegetative growth but not sexual reproduction.

  5. Using In Vivo and Tissue and Cell Explant Approaches to Study the Morphogenesis and Pathogenesis of the Embryonic and Perinatal Aorta.

    PubMed

    Misra, Ashish; Feng, Zhonghui; Zhang, Jiasheng; Lou, Zhi-Yin; Greif, Daniel M

    2017-09-12

    The aorta is the largest artery in the body. The aortic wall is composed of an inner layer of endothelial cells, a middle layer of alternating elastic lamellae and smooth muscle cells (SMCs), and an outer layer of fibroblasts and extracellular matrix. In contrast to the widespread study of pathological models (e.g., atherosclerosis) in the adult aorta, much less is known about the embryonic and perinatal aorta. Here, we focus on SMCs and provide protocols for the analysis of the morphogenesis and pathogenesis of embryonic and perinatal aortic SMCs in normal development and disease. Specifically, the four protocols included are: i) in vivo embryonic fate mapping and clonal analysis; ii) explant embryonic aorta culture; iii) SMC isolation from the perinatal aorta; and iv) subcutaneous osmotic mini-pump placement in pregnant (or non-pregnant) mice. Thus, these approaches facilitate the investigation of the origin(s), fate, and clonal architecture of SMCs in the aorta in vivo. They allow for modulating embryonic aorta morphogenesis in utero by continuous exposure to pharmacological agents. In addition, isolated aortic tissue explants or aortic SMCs can be used to gain insights into the role of specific gene targets during fundamental processes such as muscularization, proliferation, and migration. These hypothesis-generating experiments on isolated SMCs and the explanted aorta can then be assessed in the in vivo context through pharmacological and genetic approaches.

  6. Rac1/RhoA antagonism defines cell-to-cell heterogeneity during epidermal morphogenesis in nematodes

    PubMed Central

    Ouellette, Marie-Hélène

    2016-01-01

    The antagonism between the GTPases Rac1 and RhoA controls cell-to-cell heterogeneity in isogenic populations of cells in vitro and epithelial morphogenesis in vivo. Its involvement in the regulation of cell-to-cell heterogeneity during epidermal morphogenesis has, however, never been addressed. We used a quantitative cell imaging approach to characterize epidermal morphogenesis at a single-cell level during early elongation of Caenorhabditis elegans embryos. This study reveals that a Rac1-like pathway, involving the Rac/Cdc42 guanine-exchange factor β-PIX/PIX-1 and effector PAK1/PAK-1, and a RhoA-like pathway, involving ROCK/LET-502, control the remodeling of apical junctions and the formation of basolateral protrusions in distinct subsets of hypodermal cells. In these contexts, protrusions adopt lamellipodia or an amoeboid morphology. We propose that lamella formation may reduce tension building at cell–cell junctions during morphogenesis. Cell-autonomous antagonism between these pathways enables cells to switch between Rac1- and RhoA-like morphogenetic programs. This study identifies the first case of cell-to-cell heterogeneity controlled by Rac1/RhoA antagonism during epidermal morphogenesis. PMID:27821782

  7. Regulation of cell wall morphogenesis in Bacillus subtilis by recruitment of PBP1 to the MreB helix.

    PubMed

    Kawai, Yoshikazu; Daniel, Richard A; Errington, Jeffery

    2009-03-01

    The bacterial actin homologue MreB plays a key role in cell morphogenesis. In Bacillus subtilis MreB is essential under normal growth conditions and mreB mutants are defective in the control of cell diameter. However, the precise role of MreB is still unclear. Analysis of the lethal phenotypic consequences of mreB disruption revealed an unusual bulging phenotype that precedes cell death. A similar phenotype was seen in wild-type cells at very low Mg(2+) concentrations. We found that inactivation of the major bi-functional penicillin-binding protein (PBP) PBP1 of B. subtilis restored the viability of an mreB null mutant as well as preventing bulging in both mutant and wild-type backgrounds. Bulging was associated with delocalization of PBP1. We show that the normal pattern of localization of PBP1 is dependent on MreB and that the proteins can physically interact using in vivo pull-down and bacterial two-hybrid approaches. Interactions between MreB and several other PBPs were also detected. Our results suggest that MreB filaments associate directly with the peptidoglycan biosynthetic machinery in B. subtilis as part of the mechanism that brings about controlled cell elongation.

  8. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly.

    PubMed

    van Teeffelen, Sven; Wang, Siyuan; Furchtgott, Leon; Huang, Kerwyn Casey; Wingreen, Ned S; Shaevitz, Joshua W; Gitai, Zemer

    2011-09-20

    Bacterial cells possess multiple cytoskeletal proteins involved in a wide range of cellular processes. These cytoskeletal proteins are dynamic, but the driving forces and cellular functions of these dynamics remain poorly understood. Eukaryotic cytoskeletal dynamics are often driven by motor proteins, but in bacteria no motors that drive cytoskeletal motion have been identified to date. Here, we quantitatively study the dynamics of the Escherichia coli actin homolog MreB, which is essential for the maintenance of rod-like cell shape in bacteria. We find that MreB rotates around the long axis of the cell in a persistent manner. Whereas previous studies have suggested that MreB dynamics are driven by its own polymerization, we show that MreB rotation does not depend on its own polymerization but rather requires the assembly of the peptidoglycan cell wall. The cell-wall synthesis machinery thus either constitutes a novel type of extracellular motor that exerts force on cytoplasmic MreB, or is indirectly required for an as-yet-unidentified motor. Biophysical simulations suggest that one function of MreB rotation is to ensure a uniform distribution of new peptidoglycan insertion sites, a necessary condition to maintain rod shape during growth. These findings both broaden the view of cytoskeletal motors and deepen our understanding of the physical basis of bacterial morphogenesis.

  9. Limonene inhibits Candida albicans growth by inducing apoptosis.

    PubMed

    Thakre, Archana; Zore, Gajanan; Kodgire, Santosh; Kazi, Rubina; Mulange, Shradha; Patil, Rajendra; Shelar, Amruta; Santhakumari, Bayitigeri; Kulkarni, Mahesh; Kharat, Kiran; Karuppayil, Sankunny Mohan

    2018-07-01

    Anti-Candida potential of limonene was evaluated against planktonic growth, biofilm (adhesion, development and maturation) and morphogenesis of Candida albicans in this study. Limonene is a major constituent of citrus oil and most frequently used terpene in food and beverage industry due to its pleasant fragrance, nontoxic, and is generally recognized as safe (GRAS) flavoring agent as well as treatment option in many gastrointestinal diseases.Limonene exhibited excellent anti-Candida activity and was equally effective against planktonic growth of C. albicans isolates differentially susceptible to FLC (N = 35). Limonene inhibited morphogenesis significantly at low concentration. However, it showed stage dependent activity against biofilm formation, that is, it was more effective against adhesion followed by development and maturation. Limonene also exhibited excellent synergy with FLC against planktonic and biofilm growth. SWATH-MS analysis led to identification of limonene responsive proteins that provided molecular insight of its anti-Candida activity. Proteomic analysis revealed upregulation of proteins involved in cell wall glucan synthesis (Kre6); oxidative stress (Rhr2, Adh7 and Ebp1); DNA damage stress (Mbf1 and Npl3); nucleolar stress (Rpl11, Rpl7, Rpl29, Rpl15) and down regulation of cytoskeleton organization (Crn1, Pin3, Cct8, Rbl2), and so forth, in response to limonene. Limonene mediated down regulation of Tps3 indicates activation of caspase (CaMca1) and induction of apoptosis in C. albicans. These results suggest that limonene inhibits C. albicans growth by cell wall/membrane damage induced oxidative stress that leads to DNA damage resulting into modulation of cell cycle and induction of apoptosis through nucleolar stress and metacaspase dependent pathway.

  10. Dynamic localization of MreB in Vibrio parahaemolyticus and in the ectopic host bacterium Escherichia coli.

    PubMed

    Chiu, Shen-Wen; Chen, Shau-Yan; Wong, Hin-chung

    2008-11-01

    MreB, a homolog of eukaryotic actin, participates in morphogenesis, cell division, cell polarity, and chromosome segregation in prokaryotes. In this study, a yellow fluorescent protein conjugate (YFP-MreB(Vp)) was generated to investigate the behavior of MreB in merodiploid strain SC9 of the enteropathogen Vibrio parahaemolyticus. Under normal growth conditions, YFP-MreB(Vp) formed helical filaments with a pitch of 0.64 +/- 0.09 microm in about 85% of exponential-phase cells, and different clusters, relaxed coils, and ring configurations were observed in a small proportion of the cells. Overexpression of YFP-MreB(Vp) substantially altered the structure of the MreB cytoskeleton and resulted in swollen and pleomorphic cells. Disturbing the activities of penicillin-binding proteins or adding magnesium suppressed the morphological distortions. These results indicate that mislocalization of cell wall-synthesizing machinery was responsible for morphological abnormality. By expressing YFP-MreB(Vp) in the ectopic host bacterium Escherichia coli, shrinkage, fragmentation, and annealing of MreB(Vp) filaments were directly observed. This work revealed the dynamic pattern of the localization of YFP-MreB(Vp) in V. parahaemolyticus and its relationship to cell morphogenesis, and the YFP-MreB(Vp)-E. coli system may be used to investigate the dynamic spatial structures of the MreB cytoskeleton in vivo.

  11. The fungus Ustilago maydis, from the aztec cuisine to the research laboratory.

    PubMed

    Ruiz-Herrera, J; Martínez-Espinoza, A D

    1998-06-01

    Ustilago maydis is a plant pathogen fungus responsible for corn smut. It has a complex life cycle. In its saprophitic stage, it grows as haploid yeast cells, while in the invasive stage it grows as a mycelium formed by diploid cells. Thus, a correlation exists between genetic ploidy, pathogenicity and morphogenesis. Dimorphism can be modulated in vitro by changing environmental parameters such as pH. Studies with auxotrophic mutants have shown that polyamines play a central role in regulating dimorphism. Molecular biology approaches are being employed for the analysis of fundamental aspects of the biology of this fungus, such as mating type regulation, dimorphism or cell wall biogenesis.

  12. How and where to build a root hair.

    PubMed

    Dolan, L

    2001-12-01

    The root hair of Arabidopsis has become a model system for investigations of the patterning and morphogenesis of cells in plants. A cascade of transcriptional regulators controls the pattern of cellular differentiation. Recently, one of the genes that plays a specific role in cellular differentiation in roots, WEREWOLF, has been shown to be functionally equivalent to GLABRA1, which functions only in the shoot. The cloning of genes defined by mutants with defective root-hair growth has provided insights into the roles of the cell wall, ion transport and the cytoskeleton during hair growth. Genetic analyses continue to identify mutants that will be instructive in furthering our understanding of the growth and development of root-hair cells.

  13. Cell confinement controls centrosome positioning and lumen initiation during epithelial morphogenesis

    PubMed Central

    Rodríguez-Fraticelli, Alejo E.; Auzan, Muriel; Alonso, Miguel A.; Bornens, Michel

    2012-01-01

    Epithelial organ morphogenesis involves sequential acquisition of apicobasal polarity by epithelial cells and development of a functional lumen. In vivo, cells perceive signals from components of the extracellular matrix (ECM), such as laminin and collagens, as well as sense physical conditions, such as matrix stiffness and cell confinement. Alteration of the mechanical properties of the ECM has been shown to promote cell migration and invasion in cancer cells, but the effects on epithelial morphogenesis have not been characterized. We analyzed the effects of cell confinement on lumen morphogenesis using a novel, micropatterned, three-dimensional (3D) Madin-Darby canine kidney cell culture method. We show that cell confinement, by controlling cell spreading, limits peripheral actin contractility and promotes centrosome positioning and lumen initiation after the first cell division. In addition, peripheral actin contractility is mediated by master kinase Par-4/LKB1 via the RhoA–Rho kinase–myosin II pathway, and inhibition of this pathway restores lumen initiation in minimally confined cells. We conclude that cell confinement controls nuclear–centrosomal orientation and lumen initiation during 3D epithelial morphogenesis. PMID:22965908

  14. Un(MaSC)ing Stem Cell Dynamics in Mammary Branching Morphogenesis.

    PubMed

    Greenwood, Erin; Wrenn, Emma D; Cheung, Kevin J

    2017-02-27

    The properties of stem cells that participate in mammary gland branching morphogenesis remain contested. Reporting in Nature, Scheele et al. (2017) establish a model for post-pubertal mammary branching morphogenesis in which position-dependent, lineage-restricted stem cells undergo cell mixing in order to contribute to long-term growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Anisotropic shear stress patterns predict the orientation of convergent tissue movements in the embryonic heart

    PubMed Central

    2017-01-01

    Myocardial contractility and blood flow provide essential mechanical cues for the morphogenesis of the heart. In general, endothelial cells change their migratory behavior in response to shear stress patterns, according to flow directionality. Here, we assessed the impact of shear stress patterns and flow directionality on the behavior of endocardial cells, the specialized endothelial cells of the heart. At the early stages of zebrafish heart valve formation, we show that endocardial cells are converging to the valve-forming area and that this behavior depends upon mechanical forces. Quantitative live imaging and mathematical modeling allow us to correlate this tissue convergence with the underlying flow forces. We predict that tissue convergence is associated with the direction of the mean wall shear stress and of the gradient of harmonic phase-averaged shear stresses, which surprisingly do not match the overall direction of the flow. This contrasts with the usual role of flow directionality in vascular development and suggests that the full spatial and temporal complexity of the wall shear stress should be taken into account when studying endothelial cell responses to flow in vivo. PMID:29183943

  16. Proteome analysis of Aspergillus fumigatus identifies glycosylphosphatidylinositol-anchored proteins associated to the cell wall biosynthesis.

    PubMed

    Bruneau, J M; Magnin, T; Tagat, E; Legrand, R; Bernard, M; Diaquin, M; Fudali, C; Latgé, J P

    2001-08-01

    Previous studies in Aspergillus fumigatus (Mouyna I., Fontaine T., Vai M., Monod M., Fonzi W. A., Diaquin M., Popolo L., Hartland R. P., Latgé J.-P, J. Biol. Chem. 2000, 275, 14882-14889) have shown that a glucanosyltransferase playing an important role in fungal cell wall biosynthesis is glycosylphosphatidylinositol (GPI) anchored to the membrane. To identify other GPI-anchored proteins putatively involved in cell wall biogenesis, a proteomic analysis has been undertaken in A. fumigatus and the protein data were matched with the yeast genomic data. GPI-anchored proteins of A. fumigatus were released from membrane preparation by an endogenous GPI-phospholipase C, purified by liquid chromatography and separated by two-dimensional electrophoresis. They were characterized by their peptide mass fingerprint through matrix-assisted laser desorption/ionization-time of flight-(MALDI-TOF)-mass spectrometry and by internal amino acid sequencing. Nine GPI-anchored proteins were identified in A. fumigatus. Five of them were homologs of putatively GPI-anchored yeast proteins (Csa1p, Crh1p, Crh2p, Ecm33p, Gas1p) of unknown function but shown by gene disruption analysis to play a role in cell wall morphogenesis. In addition, a comparative study performed with chitin synthase and glucanosyl transferase mutants of A. fumigatus showed that a modification of the growth phenotype seen in these mutants was associated to an alteration of the pattern of GPI-anchored proteins. These results suggest that GPI-anchored proteins identified in this study are involved in A. fumigatus cell wall organization.

  17. Fine Structure and Host-Virus Relationship of a Marine Bacterium and Its Bacteriophage

    PubMed Central

    Valentine, Artrice F.; Chapman, George B.

    1966-01-01

    Valentine, Artrice F. (Georgetown University, Washington, D.C.), and George B. Chapman. Fine structure and host-virus relationship of a marine bacterium and its bacteriophage. J. Bacteriol. 92:1535–1554. 1966.—The fine structure of a gram-negative marine bacterium, Cytophaga marinoflava sp. n., has been revealed by ultrathin sectioning and electron microscopy. Stages in the morphogenesis of the bacterial virus NCMB 385, which has been shown to be highly specific for this organism, were also demonstrated in bacterial cells fixed according to the Kellenberger technique. The bacterium possessed a cell wall, cytoplasmic membrane, and nuclear and cytoplasmic regions typical of bacterial cells. Both the cell wall and the cytoplasmic membrane showed a tripartite structure, i.e., each was composed of two dense layers separated by a low-density zone. Intracytoplasmic membrane systems were also observed, especially in dividing cells and in cells in which new viruses were being formed. As many as 18 hexagonally shaped, empty phage heads (membranes only) were observed in untreated, infected bacterial cells. Phage heads, intermediate in density to empty heads and fully condensed ones, possibly representing stages in the morphological development of the virus, were also seen. Images PMID:5924277

  18. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly

    PubMed Central

    van Teeffelen, Sven; Wang, Siyuan; Furchtgott, Leon; Huang, Kerwyn Casey; Wingreen, Ned S.; Shaevitz, Joshua W.; Gitai, Zemer

    2011-01-01

    Bacterial cells possess multiple cytoskeletal proteins involved in a wide range of cellular processes. These cytoskeletal proteins are dynamic, but the driving forces and cellular functions of these dynamics remain poorly understood. Eukaryotic cytoskeletal dynamics are often driven by motor proteins, but in bacteria no motors that drive cytoskeletal motion have been identified to date. Here, we quantitatively study the dynamics of the Escherichia coli actin homolog MreB, which is essential for the maintenance of rod-like cell shape in bacteria. We find that MreB rotates around the long axis of the cell in a persistent manner. Whereas previous studies have suggested that MreB dynamics are driven by its own polymerization, we show that MreB rotation does not depend on its own polymerization but rather requires the assembly of the peptidoglycan cell wall. The cell-wall synthesis machinery thus either constitutes a novel type of extracellular motor that exerts force on cytoplasmic MreB, or is indirectly required for an as-yet-unidentified motor. Biophysical simulations suggest that one function of MreB rotation is to ensure a uniform distribution of new peptidoglycan insertion sites, a necessary condition to maintain rod shape during growth. These findings both broaden the view of cytoskeletal motors and deepen our understanding of the physical basis of bacterial morphogenesis. PMID:21903929

  19. Why plants make puzzle cells, and how their shape emerges.

    PubMed

    Sapala, Aleksandra; Runions, Adam; Routier-Kierzkowska, Anne-Lise; Das Gupta, Mainak; Hong, Lilan; Hofhuis, Hugo; Verger, Stéphane; Mosca, Gabriella; Li, Chun-Biu; Hay, Angela; Hamant, Olivier; Roeder, Adrienne Hk; Tsiantis, Miltos; Prusinkiewicz, Przemyslaw; Smith, Richard S

    2018-02-27

    The shape and function of plant cells are often highly interdependent. The puzzle-shaped cells that appear in the epidermis of many plants are a striking example of a complex cell shape, however their functional benefit has remained elusive. We propose that these intricate forms provide an effective strategy to reduce mechanical stress in the cell wall of the epidermis. When tissue-level growth is isotropic, we hypothesize that lobes emerge at the cellular level to prevent formation of large isodiametric cells that would bulge under the stress produced by turgor pressure. Data from various plant organs and species support the relationship between lobes and growth isotropy, which we test with mutants where growth direction is perturbed. Using simulation models we show that a mechanism actively regulating cellular stress plausibly reproduces the development of epidermal cell shape. Together, our results suggest that mechanical stress is a key driver of cell-shape morphogenesis. © 2018, Sapala et al.

  20. Why plants make puzzle cells, and how their shape emerges

    PubMed Central

    Routier-Kierzkowska, Anne-Lise; Das Gupta, Mainak; Hong, Lilan; Hofhuis, Hugo; Verger, Stéphane; Mosca, Gabriella; Li, Chun-Biu; Hay, Angela; Hamant, Olivier; Roeder, Adrienne HK; Tsiantis, Miltos; Prusinkiewicz, Przemyslaw

    2018-01-01

    The shape and function of plant cells are often highly interdependent. The puzzle-shaped cells that appear in the epidermis of many plants are a striking example of a complex cell shape, however their functional benefit has remained elusive. We propose that these intricate forms provide an effective strategy to reduce mechanical stress in the cell wall of the epidermis. When tissue-level growth is isotropic, we hypothesize that lobes emerge at the cellular level to prevent formation of large isodiametric cells that would bulge under the stress produced by turgor pressure. Data from various plant organs and species support the relationship between lobes and growth isotropy, which we test with mutants where growth direction is perturbed. Using simulation models we show that a mechanism actively regulating cellular stress plausibly reproduces the development of epidermal cell shape. Together, our results suggest that mechanical stress is a key driver of cell-shape morphogenesis. PMID:29482719

  1. Influence of heterologous MreB proteins on cell morphology of Bacillus subtilis.

    PubMed

    Schirner, Kathrin; Errington, Jeff

    2009-11-01

    The prokaryotic cytoskeletal protein MreB is thought to govern cell shape by positioning the cell wall synthetic apparatus at growth sites in the cell. In rod-shaped bacteria it forms helical filaments that run around the periphery of the rod during elongation. Gram-positive bacteria often contain more than one mreB gene. Bacillus subtilis has three mreB-like genes, mreB, mbl and mreBH, the first two of which have been shown to be essential under normal growth conditions. Expression of an mreB homologue from the closely related organism Bacillus licheniformis did not have any effect on cell growth or morphology. In contrast, expression of mreB from the phylogenetically more distant bacterium Clostridium perfringens produced shape defects and ultimately cell death, due to disruption of the endogenous MreB cytoskeleton. However, expression of either mreB(B. licheniformis) (mreB(Bl)) or mreB(C. perfringens) (mreB(Cp)) was sufficient to confer a rod shape to B. subtilis deleted for the three mreB isologues, supporting the idea that the three proteins have largely redundant functions in cell morphogenesis. Expression of mreBCD(Bl) could fully compensate for the loss of mreBCD in B. subtilis and led to the formation of rod-shaped cells. In contrast, expression of mreBCD(Cp) was not sufficient to confer a rod shape to B. subtilis Delta mreBCD, indicating that a complex of these three cell shape determinants is not enough for cell morphogenesis of B. subtilis.

  2. Ngn3+ endocrine progenitor cells control the fate and morphogenesis of pancreatic ductal epithelium

    PubMed Central

    Magenheim, Judith; Klein, Allon M.; Stanger, Ben Z.; Ashery-Padan, Ruth; Sosa-Pineda, Beatriz; Gu, Guoqiang; Dor, Yuval

    2013-01-01

    Summary During pancreas development, endocrine and exocrine cells arise from a common multipotent progenitor pool. How these cell fate decisions are coordinated with tissue morphogenesis is poorly understood. Here we have examined ductal morphology, endocrine progenitor cell fate and Notch signaling in Ngn3−/− mice, which do not produce islet cells. Ngn3 deficiency results in reduced branching and enlarged pancreatic duct-like structures, concomitant with Ngn3 promoter activation throughout the ductal epithelium and reduced Notch signaling. Conversely, forced generation of surplus endocrine progenitor cells causes reduced duct caliber and an excessive number of tip cells. Thus, endocrine progenitor cells normally provide a feedback signal to adjacent multipotent ductal progenitor cells that activates Notch signaling, inhibits further endocrine differentiation and promotes proper morphogenesis. These results uncover a novel layer of regulation coordinating pancreas morphogenesis and endocrine/exocrine differentiation, and suggest ways to enhance the yield of beta-cells from stem cells. PMID:21888903

  3. Programming Morphogenesis through Systems and Synthetic Biology.

    PubMed

    Velazquez, Jeremy J; Su, Emily; Cahan, Patrick; Ebrahimkhani, Mo R

    2018-04-01

    Mammalian tissue development is an intricate, spatiotemporal process of self-organization that emerges from gene regulatory networks of differentiating stem cells. A major goal in stem cell biology is to gain a sufficient understanding of gene regulatory networks and cell-cell interactions to enable the reliable and robust engineering of morphogenesis. Here, we review advances in synthetic biology, single cell genomics, and multiscale modeling, which, when synthesized, provide a framework to achieve the ambitious goal of programming morphogenesis in complex tissues and organoids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Expression Pattern of the Pro-apoptotic Gene PAR-4 During the Morphogenesis of MCF-10A Human Mammary Epithelial Cells.

    PubMed

    de Bessa Garcia, Simone A; Pereira, Michelly C; Nagai, Maria A

    2010-12-21

    The histological organization of the mammary gland involves a spatial interaction of epithelial and myoepithelial cells with the specialized basement membrane (BM), composed of extra-cellular matrix (ECM) proteins, which is disrupted during the tumorigenic process. The interactions between mammary epithelial cells and ECM components play a major role in mammary gland branching morphogenesis. Critical signals for mammary epithelial cell proliferation, differentiation, and survival are provided by the ECM proteins. Three-dimensional (3D) cell culture was developed to establish a system that simulates several features of the breast epithelium in vivo; 3D cell culture of the spontaneously immortalized cell line, MCF10A, is a well-established model system to study breast epithelial cell biology and morphogenesis. Mammary epithelial cells grown in 3D form spheroids, acquire apicobasal polarization, and form lumens that resemble acini structures, processes that involve cell death. Using this system, we evaluated the expression of the pro-apoptotic gene PAWR (PKC apoptosis WT1 regulator; also named PAR-4, prostate apoptosis response-4) by immunofluorescence and quantitative real time PCR (qPCR). A time-dependent increase in PAR-4 mRNA expression was found during the process of MCF10A acinar morphogenesis. Confocal microscopy analysis also showed that PAR-4 protein was highly expressed in the MCF10A cells inside the acini structure. During the morphogenesis of MCF10A cells in 3D cell culture, the cells within the lumen showed caspase-3 activation, indicating apoptotic activity. PAR-4 was only partially co-expressed with activated caspase-3 on these cells. Our results provide evidence, for the first time, that PAR-4 is differentially expressed during the process of MCF10A acinar morphogenesis.

  5. Measuring the mechanical properties of plant cells by combining micro-indentation with osmotic treatments.

    PubMed

    Weber, Alain; Braybrook, Siobhan; Huflejt, Michal; Mosca, Gabriella; Routier-Kierzkowska, Anne-Lise; Smith, Richard S

    2015-06-01

    Growth in plants results from the interaction between genetic and signalling networks and the mechanical properties of cells and tissues. There has been a recent resurgence in research directed at understanding the mechanical aspects of growth, and their feedback on genetic regulation. This has been driven in part by the development of new micro-indentation techniques to measure the mechanical properties of plant cells in vivo. However, the interpretation of indentation experiments remains a challenge, since the force measures results from a combination of turgor pressure, cell wall stiffness, and cell and indenter geometry. In order to interpret the measurements, an accurate mechanical model of the experiment is required. Here, we used a plant cell system with a simple geometry, Nicotiana tabacum Bright Yellow-2 (BY-2) cells, to examine the sensitivity of micro-indentation to a variety of mechanical and experimental parameters. Using a finite-element mechanical model, we found that, for indentations of a few microns on turgid cells, the measurements were mostly sensitive to turgor pressure and the radius of the cell, and not to the exact indenter shape or elastic properties of the cell wall. By complementing indentation experiments with osmotic experiments to measure the elastic strain in turgid cells, we could fit the model to both turgor pressure and cell wall elasticity. This allowed us to interpret apparent stiffness values in terms of meaningful physical parameters that are relevant for morphogenesis. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Penetration Peg Formation and Invasive Hyphae Development Require Stage-Specific Activation of MoGTI1 in Magnaporthe oryzae.

    PubMed

    Li, Yang; Wang, Guanghui; Xu, Jin-Rong; Jiang, Cong

    2016-01-01

    The hemibiotrophic pathogen Magnaporthe oryzae causes one of the most destructive diseases in cultivated rice. Complex infection-related morphogenesis and production of various effectors are known to be important for successful colonization and disease development. In this study, we characterized the activation of the MoGTI1 transcription factor and its role in infection-related morphogenesis and effector gene expression. The Mogti1 mutant was nonpathogenic, although it was normal in appressorium formation and turgor generation. Close examination showed that Mogti1 was defective in penetration and growth of normal invasive hyphae. Deletion of MoGTI1 affected the expression of the majority of effector genes. The expression of MoGti1 appeared to be controlled by the Mps1 but not Pmk1 mitogen-activated protein kinase (MAPK), and the mps1 and Mogti1 mutants had similar phenotypes in plant infection and cell wall integrity defects. However, lack of MAPK phosphorylation sites and dispensability of the putative MAPK docking site suggested that MoGti1 is not a direct target of Mps1. Site-specific mutagenesis analyses showed that the putative protein kinase A phosphorylation site was not essential for localization of MoGti1 to the nucleus but important for its normal function. Although the cyclin-dependent kinase (CDK) phosphorylation site of MoGti1 is dispensable during vegetative growth and appressorium formation, the S77A mutation affected penetration and invasive growth. Localization of MoGti1(S77A)-green fluorescent protein to the nucleus in late stages of appressorium formation and during invasive growth was not observed, suggesting a stage-specific CDK phosphorylation of MoGti1. Overall, our data indicate that Mps1 may indirectly regulate the expression of MoGti1 in maintaining cell wall integrity, conidiation, and plant infection. MoGti1 is likely a stage-specific target of CDK and plays a crucial role in effector gene expression and morphogenesis related to the development of penetration pegs and invasive hyphae.

  7. Normal morphogenesis of epithelial tissues and progression of epithelial tumors

    PubMed Central

    Wang, Chun-Chao; Jamal, Leen; Janes, Kevin A.

    2011-01-01

    Epithelial cells organize into various tissue architectures that largely maintain their structure throughout the life of an organism. For decades, the morphogenesis of epithelial tissues has fascinated scientists at the interface of cell, developmental, and molecular biology. Systems biology offers ways to combine knowledge from these disciplines by building integrative models that are quantitative and predictive. Can such models be useful for gaining a deeper understanding of epithelial morphogenesis? Here, we take inventory of some recurring themes in epithelial morphogenesis that systems approaches could strive to capture. Predictive understanding of morphogenesis at the systems level would prove especially valuable for diseases such as cancer, where epithelial tissue architecture is profoundly disrupted. PMID:21898857

  8. Advanced stages of embryonic development and cotylocidial morphogenesis in the intrauterine eggs of Aspidogaster limacoides Diesing, 1835 (Aspidogastrea), with comments on their phylogenetic implications.

    PubMed

    Świderski, Zdzisław; Poddubnaya, Larisa G; Gibson, David I; Młocicki, Daniel

    2012-06-01

    Ultrastructural aspects of the advanced embryonic development and cotylocidial morphogenesis of the aspidogastrean Aspidogaster limacoides are described. The posterior or distal regions of the uterus are filled with eggs containing larvae at advanced stages of morphogenesis and fully-formed cotylocidia. Various stages and organs of this larva are described in detail, including the aspects of the developing and fully-differentiated cotylocidium, the body wall (tegument and musculature), glandular regions and the protonephridial excretory system. Blastomere multiplication by means of mitotic divisions takes place simultaneously with the degeneration or apoptosis of some micromeres; this frequently observed characteristic is compared and discussed in relation to corresponding reports for other neodermatans. During the advanced stages of the embryonic development of A. limacoides, the vitelline syncytium disappears and the size of the embryo increases rapidly. Evident polarization of the differentiating larva was observed; towards one pole of the egg, cytodifferentiation of the mouth, surrounded by the oral sucker and cephalic glands, takes place, whereas, towards the opposite pole, differentiation of the posterior sucker (incipient ventral disc) occurs. The oral and posterior suckers are formed from numerous embryonic cells which have differentiated into myocytes. The central part of the oral sucker undergoes invagination and forms the future pharynx and intestine. Fully-developed cotylocidia of A. limacoides have a neodermatan type of tegument, flame cells and two types of glandular structures. These results suggest a sister relationship between the Aspidogastrea and the Digenea, although the systematic position of aspidogastreans in relation to other platyhelminth taxa remains somewhat equivocal.

  9. MreB drives de novo rod morphogenesis in Caulobacter crescentus via remodeling of the cell wall.

    PubMed

    Takacs, Constantin N; Poggio, Sebastian; Charbon, Godefroid; Pucheault, Mathieu; Vollmer, Waldemar; Jacobs-Wagner, Christine

    2010-03-01

    MreB, the bacterial actin-like cytoskeleton, is required for the rod morphology of many bacterial species. Disruption of MreB function results in loss of rod morphology and cell rounding. Here, we show that the widely used MreB inhibitor A22 causes MreB-independent growth inhibition that varies with the drug concentration, culture medium conditions, and bacterial species tested. MP265, an A22 structural analog, is less toxic than A22 for growth yet equally efficient for disrupting the MreB cytoskeleton. The action of A22 and MP265 is enhanced by basic pH of the culture medium. Using this knowledge and the rapid reversibility of drug action, we examined the restoration of rod shape in lemon-shaped Caulobacter crescentus cells pretreated with MP265 or A22 under nontoxic conditions. We found that reversible restoration of MreB function after drug removal causes extensive morphological changes including a remarkable cell thinning accompanied with elongation, cell branching, and shedding of outer membrane vesicles. We also thoroughly characterized the composition of C. crescentus peptidoglycan by high-performance liquid chromatography and mass spectrometry and showed that MreB disruption and recovery of rod shape following restoration of MreB function are accompanied by considerable changes in composition. Our results provide insight into MreB function in peptidoglycan remodeling and rod shape morphogenesis and suggest that MreB promotes the transglycosylase activity of penicillin-binding proteins.

  10. High-throughput, Highly Sensitive Analyses of Bacterial Morphogenesis Using Ultra Performance Liquid Chromatography*

    PubMed Central

    Desmarais, Samantha M.; Tropini, Carolina; Miguel, Amanda; Cava, Felipe; Monds, Russell D.; de Pedro, Miguel A.; Huang, Kerwyn Casey

    2015-01-01

    The bacterial cell wall is a network of glycan strands cross-linked by short peptides (peptidoglycan); it is responsible for the mechanical integrity of the cell and shape determination. Liquid chromatography can be used to measure the abundance of the muropeptide subunits composing the cell wall. Characteristics such as the degree of cross-linking and average glycan strand length are known to vary across species. However, a systematic comparison among strains of a given species has yet to be undertaken, making it difficult to assess the origins of variability in peptidoglycan composition. We present a protocol for muropeptide analysis using ultra performance liquid chromatography (UPLC) and demonstrate that UPLC achieves resolution comparable with that of HPLC while requiring orders of magnitude less injection volume and a fraction of the elution time. We also developed a software platform to automate the identification and quantification of chromatographic peaks, which we demonstrate has improved accuracy relative to other software. This combined experimental and computational methodology revealed that peptidoglycan composition was approximately maintained across strains from three Gram-negative species despite taxonomical and morphological differences. Peptidoglycan composition and density were maintained after we systematically altered cell size in Escherichia coli using the antibiotic A22, indicating that cell shape is largely decoupled from the biochemistry of peptidoglycan synthesis. High-throughput, sensitive UPLC combined with our automated software for chromatographic analysis will accelerate the discovery of peptidoglycan composition and the molecular mechanisms of cell wall structure determination. PMID:26468288

  11. Direct activation of Shroom3 transcription by Pitx proteins drives epithelial morphogenesis in the developing gut

    PubMed Central

    Chung, Mei-I; Nascone-Yoder, Nanette M.; Grover, Stephanie A.; Drysdale, Thomas A.; Wallingford, John B.

    2010-01-01

    Individual cell shape changes are essential for epithelial morphogenesis. A transcriptional network for epithelial cell shape change is emerging in Drosophila, but this area remains largely unexplored in vertebrates. The distinction is important as so far, key downstream effectors of cell shape change in Drosophila appear not to be conserved. Rather, Shroom3 has emerged as a central effector of epithelial morphogenesis in vertebrates, driving both actin- and microtubule-based cell shape changes. To date, the morphogenetic role of Shroom3 has been explored only in the neural epithelium, so the broad expression of this gene raises two important questions: what are the requirements for Shroom3 in non-neural tissues and what factors control Shroom3 transcription? Here, we show in Xenopus that Shroom3 is essential for cell shape changes and morphogenesis in the developing vertebrate gut and that Shroom3 transcription in the gut requires the Pitx1 transcription factor. Moreover, we show that Pitx proteins directly activate Shroom3 transcription, and we identify Pitx-responsive regulatory elements in the genomic DNA upstream of Shroom3. Finally, we show that ectopic expression of Pitx proteins is sufficient to induce Shroom3-dependent cytoskeletal reorganization and epithelial cell shape change. These data demonstrate new breadth to the requirements for Shroom3 in morphogenesis, and they also provide a cell-biological basis for the role of Pitx transcription factors in morphogenesis. More generally, these results provide a foundation for deciphering the transcriptional network that underlies epithelial cell shape change in developing vertebrates. PMID:20332151

  12. Cell death during the postnatal morphogenesis of the normal rabbit kidney and in experimental renal polycystosis.

    PubMed Central

    García-Porrero, J A; Ojeda, J L; Hurlé, J M

    1978-01-01

    We have studied, by means of optic and electron microscopy, the normal and abnormal cell death that takes place during the postnatal morphogenesis of rabbit kidney, and in the experimental renal polycystosis produced by methylprednisolone acetate. In the normal kidney intertubular cell death can be observed during the first 20 days of the postnatal development. However, cell death in the normal metanephric blastema is a very rare event. In the polycystic kidney numerous dead cells can be seen between the third and forty eighth days after injection. The topography and morphology of the dead cells depend on the stage in the evolution of the disease. In the 'stage of renal immaturity', dying and dead cells are present in the nephrogenic tissue, in the dilating collecting tubules and in the intertubular spaces. In this stage the cellular pathology is essentially nuclear. In the stage of tubular cysts, the dead cells are mostly located in the walls of cysts, with some dead cells, but mostly cellular debris in their lumina. At this stage the cellular pathology is basically cytoplasmic. The dead cells are eventually digested by what appear to be phagocytes of tubular epithelial origin. It is suggested that cell death is an important factor in the evolution of the lesions of renal polycystosis induced by corticosteroids, and probably in the initiation of the pathological process as well. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 PMID:670065

  13. Wsc1 and Mid2 Are Cell Surface Sensors for Cell Wall Integrity Signaling That Act through Rom2, a Guanine Nucleotide Exchange Factor for Rho1

    PubMed Central

    Philip, Bevin; Levin, David E.

    2001-01-01

    Wsc1 and Mid2 are highly O-glycosylated cell surface proteins that reside in the plasma membrane of Saccharomyces cerevisiae. They have been proposed to function as mechanosensors of cell wall stress induced by wall remodeling during vegetative growth and pheromone-induced morphogenesis. These proteins are required for activation of the cell wall integrity signaling pathway that consists of the small G-protein Rho1, protein kinase C (Pkc1), and a mitogen-activated protein kinase cascade. We show here by two-hybrid experiments that the C-terminal cytoplasmic domains of Wsc1 and Mid2 interact with Rom2, a guanine nucleotide exchange factor (GEF) for Rho1. At least with regard to Wsc1, this interaction is mediated by the Rom2 N-terminal domain. This domain is distinct from the Rho1-interacting domain, suggesting that the GEF can interact simultaneously with a sensor and with Rho1. We also demonstrate that extracts from wsc1 and mid2 mutants are deficient in the ability to catalyze GTP loading of Rho1 in vitro, providing evidence that the function of the sensor-Rom2 interaction is to stimulate nucleotide exchange toward this G-protein. In a related line of investigation, we identified the PMT2 gene in a genetic screen for mutations that confer an additive cell lysis defect with a wsc1 null allele. Pmt2 is a member of a six-protein family in yeast that catalyzes the first step in O mannosylation of target proteins. We demonstrate that Mid2 is not mannosylated in a pmt2 mutant and that this modification is important for signaling by Mid2. PMID:11113201

  14. Cell death during the development of the truncus and conus of the chick embryo heart.

    PubMed Central

    Hurle, J M; Ojeda, J L

    1979-01-01

    The presence of cell death in the walls of the truncus and conus of the developing chick heart was investigated by a variety of light and electron microscopic techniques. Necrotic areas were observed in the myocardial layer of the truncus and conus and within the mesenchymal cells of the truncoconal ridges and aortopulmonary septum. These necrotic zones appeared first at Stage 25-26 and reached their maximum extent at Stages 29-32 undergoing later progressive disappearance. The morphological changes of the degenerating cells detectable under both transmission and scanning electron microscopy are also reported. The possible role of cell death in the morphogenesis of the truncus and conus is discussed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 PMID:500497

  15. UDP-arabinopyranose mutase 3 is required for pollen wall morphogenesis in rice (Oryza sativa).

    PubMed

    Sumiyoshi, Minako; Inamura, Takuya; Nakamura, Atsuko; Aohara, Tsutomu; Ishii, Tadashi; Satoh, Shinobu; Iwai, Hiroaki

    2015-02-01

    l-Arabinose is one of the main constituents of cell wall polysaccharides such as pectic rhamnogalacturonan I (RG-I), glucuronoarabinoxylans and other glycoproteins. It is found predominantly in the furanose form rather than in the thermodynamically more stable pyranose form. UDP-L-arabinofuranose (UDP-Araf), rather than UDP-L-arabinopyranose (UDP-Arap), is a sugar donor for the biosynthesis of arabinofuranosyl (Araf) residues. UDP-arabinopyranose mutases (UAMs) have been shown to interconvert UDP-Araf and UDP-Arap and are involved in the biosynthesis of polysaccharides including Araf. The UAM gene family has three members in Oryza sativa. Co-expression network in silico analysis showed that OsUAM3 expression was independent from OsUAM1 and OsUAM2 co-expression networks. OsUAM1 and OsUAM2 were expressed ubiquitously throughout plant development, but OsUAM3 was expressed primarily in reproductive tissue, particularly at the pollen cell wall formation developmental stage. OsUAM3 co-expression networks include pectin catabolic enzymes. To determine the function of OsUAMs in reproductive tissues, we analyzed RNA interference (RNAi)-knockdown transformants (OsUAM3-KD) specific for OsUAM3. OsUAM3-KD plants grew normally and showed abnormal phenotypes in reproductive tissues, especially in terms of the pollen cell wall and exine. In addition, we examined modifications of cell wall polysaccharides at the cellular level using antibodies against polysaccharides including Araf. Immunolocalization of arabinan using the LM6 antibody showed low levels of arabinan in OsUAM3-KD pollen grains. Our results suggest that the function of OsUAM3 is important for synthesis of arabinan side chains of RG-I and is required for reproductive developmental processes, especially the formation of the cell wall in pollen. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Morphogenesis of the C. elegans vulva

    PubMed Central

    Schindler, Adam J

    2012-01-01

    Understanding how cells move, change shape, and alter cellular behaviors to form organs, a process termed morphogenesis, is one of the great challenges of developmental biology. Formation of the C. elegans vulva is a powerful, simple, and experimentally accessible model for elucidating how morphogenetic processes produce an organ. In the first step of vulval development, three epithelial precursor cells divide and differentiate to generate 22 cells of seven different vulval subtypes. The 22 vulval cells then rearrange from a linear array into a tube, with each of the seven cell types undergoing characteristic morphogenetic behaviours that construct the vulva. Vulval morphogenesis entails many of the same cellular activities that underlie organogenesis and tissue formation across species, including invagination, lumen formation, oriented cell divisions, cell-cell adhesion, cell migration, cell fusion, extracellular matrix remodelling and cell invasion. Studies of vulval development have led to pioneering discoveries in a number of these processes and are beginning to bridge the gap between the pathways that specify cells and their connections to morphogenetic behaviors. The simplicity of the vulva and the experimental tools available in C. elegans will continue to make vulval morphogenesis a powerful paradigm to further our understanding of the largely mysterious mechanisms that build tissues and organs. PMID:23418408

  17. Polycystin-1 Binds Par3/aPKC and Controls Convergent Extension During Renal Tubular Morphogenesis

    PubMed Central

    Castelli, Maddalena; Boca, Manila; Chiaravalli, Marco; Ramalingam, Harini; Rowe, Isaline; Distefano, Gianfranco; Carroll, Thomas; Boletta, Alessandra

    2013-01-01

    Several organs, including lungs and kidneys, are formed by epithelial tubes whose proper morphogenesis ensures correct function. This is best exemplified by the kidney, where defective establishment or maintanance of tubular diameter results in polycystic kidney disease, a common genetic disorder. Most polycystic kidney disease cases result from loss-of-function mutations in the PKD1 gene, encoding Polycystin-1 (PC-1), a large receptor of unknown function. Here we demonstrate that PC-1 plays an essential role in establishment of correct tubular diameter during nephron development. PC-1 associates with Par3 favoring the assembly of a pro-polarizing Par3/aPKC complex and it regulates a program of cell polarity important for oriented cell migration and for a convergent extension-like process during tubular morphogenesis. Par3 inactivation in the developing kidney results in defective convergent extension and tubular morphogenesis and in renal cyst formation. Our data define PC-1 as central to cell polarization and to epithelial tube morphogenesis and homeostasis. PMID:24153433

  18. Polycystin-1 binds Par3/aPKC and controls convergent extension during renal tubular morphogenesis

    NASA Astrophysics Data System (ADS)

    Castelli, Maddalena; Boca, Manila; Chiaravalli, Marco; Ramalingam, Harini; Rowe, Isaline; Distefano, Gianfranco; Carroll, Thomas; Boletta, Alessandra

    2013-10-01

    Several organs, including the lungs and kidneys, are formed by epithelial tubes whose proper morphogenesis ensures correct function. This is best exemplified by the kidney, where defective establishment or maintenance of tubular diameter results in polycystic kidney disease, a common genetic disorder. Most polycystic kidney disease cases result from loss-of-function mutations in the PKD1 gene, encoding Polycystin-1, a large receptor of unknown function. Here we demonstrate that PC-1 has an essential role in the establishment of correct tubular diameter during nephron development. Polycystin-1 associates with Par3 favouring the assembly of a pro-polarizing Par3/aPKC complex and it regulates a programme of cell polarity important for oriented cell migration and for a convergent extension-like process during tubular morphogenesis. Par3 inactivation in the developing kidney results in defective convergent extension and tubular morphogenesis, and in renal cyst formation. Our data define Polycystin-1 as central to cell polarization and to epithelial tube morphogenesis and homeostasis.

  19. Crk synergizes with epidermal growth factor for epithelial invasion and morphogenesis and is required for the met morphogenic program.

    PubMed

    Lamorte, Louie; Rodrigues, Sonia; Naujokas, Monica; Park, Morag

    2002-10-04

    Activation of the Met receptor tyrosine kinase through its ligand, hepatocyte growth factor, stimulates cell spreading, cell dispersal, and the inherent morphogenic program of various epithelial cell lines. Although both hepatocyte growth factor and epidermal growth factor (EGF) can activate downstream signaling pathways in Madin-Darby canine kidney epithelial cells, EGF fails to promote the breakdown of cell-cell junctional complexes and initiate an invasive morphogenic program. We have undertaken a strategy to identify signals that synergize with EGF in this process. We provide evidence that the overexpression of the CrkII adapter protein complements EGF-stimulated pathways to induce cell dispersal in two-dimensional cultures and cell invasion and branching morphogenesis in three-dimensional collagen gels. This finding correlates with the ability of CrkII to promote the breakdown of adherens junctions in stable cell lines and the ability of EGF to stimulate enhanced Rac activity in cells overexpressing CrkII. We have previously shown that the Gab1-docking protein is required for branching morphogenesis downstream of the Met receptor. Consistent with a role for CrkII in promoting EGF-dependent branching morphogenesis, the binding of Gab1 to CrkII is required for the branching morphogenic program downstream of Met. Together, our data support a role for the CrkII adapter protein in epithelial invasion and morphogenesis and underscores the importance of considering the synergistic actions of signaling pathways in cancer progression.

  20. Macroalgal-bacterial interactions: Role of dimethylsulfoniopropionate in microbial gardening by Ulva (Chlorophyta).

    PubMed

    Kessler, Ralf W; Weiss, Anne; Kuegler, Stefan; Hermes, Cornelia; Wichard, Thomas

    2018-04-01

    The marine macroalga Ulva mutabilis (Chlorophyta) develops into callus-like colonies consisting of undifferentiated cells and abnormal cell walls under axenic conditions. Ulva mutabilis is routinely cultured with two bacteria, the Roseovarius sp. MS2 strain and the Maribacter sp. MS6 strain, which release morphogenetic compounds and ensure proper algal morphogenesis. Using this tripartite community as an emerging model system, we tested the hypothesis that the bacterial-algal interactions evolved as a result of mutually taking advantage of signals in the environment. Our study aimed to determine whether cross-kingdom crosstalk is mediated by the attraction of bacteria through algal chemotactic signals. Roseovarius sp. MS2 senses the known osmolyte dimethylsulfoniopropionate (DMSP) released by Ulva into the growth medium. Roseovarius sp. is attracted by DMSP and takes it up rapidly such that DMSP can only be determined in axenic growth media. As DMSP did not promote bacterial growth under the tested conditions, Roseovarius benefited solely from glycerol as the carbon source provided by Ulva. Roseovarius quickly catabolized DMSP into methanethiol (MeSH) and dimethylsulphide (DMS). We conclude that many bacteria can use DMSP as a reliable signal indicating a food source and promote the subsequent development and morphogenesis in Ulva. © 2017 John Wiley & Sons Ltd.

  1. Effect of cinnamomum zeylanicum blume essential oil on the growth and morphogenesis of some potentially pathogenic Aspergillus species

    PubMed Central

    Carmo, Egberto Santos; de Oliveira Lima, Edeltrudes; de Souza, Evandro Leite; de Sousa, Frederico Barbosa

    2008-01-01

    Cinnamomum zeylanicum Blume is known for a wide range of medicinal properties. This study aimed to assess the interference of C. zeylanicum essential oil on the growth and morphogenesis of some potentially pathogenic Aspergillus species. The essential oil presented strong antifungal effect causing the growth inhibition of the assayed strains and development of large growth inhibition zones. MIC50 and MIC90 values were 40 and 80 μL/mL, respectively. 80, 40 and 20 μL/mL of the oil strongly inhibited the radial mycelial growth of A. niger, A. flavus and A. fumigatus along 14 days. 80 and 40 μL/mL of the oil caused a 100% inhibition of the fungal spore germination. Main morphological changes observed under light microscopy provided by the essential oil in the fungal strains were decreased conidiation, leakage of cytoplasm, loss of pigmentation and disrupted cell structure indicating fungal wall degeneration. It is concluded that C. zeylanicum essential oil could be known as potential antifungal compound, particularly, to protect against the growth of Aspergillus species. PMID:24031186

  2. DRhoGEF2 and Diaphanous Regulate Contractile Force during Segmental Groove Morphogenesis in the Drosophila Embryo

    PubMed Central

    Mulinari, Shai; Barmchi, Mojgan Padash

    2008-01-01

    Morphogenesis of the Drosophila embryo is associated with dynamic rearrangement of the actin cytoskeleton mediated by small GTPases of the Rho family. These GTPases act as molecular switches that are activated by guanine nucleotide exchange factors. One of these factors, DRhoGEF2, plays an important role in the constriction of actin filaments during pole cell formation, blastoderm cellularization, and invagination of the germ layers. Here, we show that DRhoGEF2 is equally important during morphogenesis of segmental grooves, which become apparent as tissue infoldings during mid-embryogenesis. Examination of DRhoGEF2-mutant embryos indicates a role for DRhoGEF2 in the control of cell shape changes during segmental groove morphogenesis. Overexpression of DRhoGEF2 in the ectoderm recruits myosin II to the cell cortex and induces cell contraction. At groove regression, DRhoGEF2 is enriched in cells posterior to the groove that undergo apical constriction, indicating that groove regression is an active process. We further show that the Formin Diaphanous is required for groove formation and strengthens cell junctions in the epidermis. Morphological analysis suggests that Dia regulates cell shape in a way distinct from DRhoGEF2. We propose that DRhoGEF2 acts through Rho1 to regulate acto-myosin constriction but not Diaphanous-mediated F-actin nucleation during segmental groove morphogenesis. PMID:18287521

  3. Fibronectin Deposition Participates in Extracellular Matrix Assembly and Vascular Morphogenesis

    PubMed Central

    Hielscher, Abigail; Ellis, Kim; Qiu, Connie; Porterfield, Josh; Gerecht, Sharon

    2016-01-01

    The extracellular matrix (ECM) has been demonstrated to facilitate angiogenesis. In particular, fibronectin has been documented to activate endothelial cells, resulting in their transition from a quiescent state to an active state in which the cells exhibit enhanced migration and proliferation. The goal of this study is to examine the role of polymerized fibronectin during vascular tubulogenesis using a 3 dimensional (3D) cell-derived de-cellularized matrix. A fibronectin-rich 3D de-cellularized ECM was used as a scaffold to study vascular morphogenesis of endothelial cells (ECs). Confocal analyses of several matrix proteins reveal high intra- and extra-cellular deposition of fibronectin in formed vascular structures. Using a small peptide inhibitor of fibronectin polymerization, we demonstrate that inhibition of fibronectin fibrillogenesis in ECs cultured atop de-cellularized ECM resulted in decreased vascular morphogenesis. Further, immunofluorescence and ultrastructural analyses reveal decreased expression of stromal matrix proteins in the absence of polymerized fibronectin with high co-localization of matrix proteins found in association with polymerized fibronectin. Evaluating vascular kinetics, live cell imaging showed that migration, migration velocity, and mean square displacement, are disrupted in structures grown in the absence of polymerized fibronectin. Additionally, vascular organization failed to occur in the absence of a polymerized fibronectin matrix. Consistent with these observations, we tested vascular morphogenesis following the disruption of EC adhesion to polymerized fibronectin, demonstrating that block of integrins α5β1 and αvβ3, abrogated vascular morphogenesis. Overall, fibronectin deposition in a 3D cell-derived de-cellularized ECM appears to be imperative for matrix assembly and vascular morphogenesis. PMID:26811931

  4. Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo.

    PubMed

    Barriga, Elias H; Franze, Kristian; Charras, Guillaume; Mayor, Roberto

    2018-02-22

    Collective cell migration is essential for morphogenesis, tissue remodelling and cancer invasion. In vivo, groups of cells move in an orchestrated way through tissues. This movement involves mechanical as well as molecular interactions between cells and their environment. While the role of molecular signals in collective cell migration is comparatively well understood, how tissue mechanics influence collective cell migration in vivo remains unknown. Here we investigated the importance of mechanical cues in the collective migration of the Xenopus laevis neural crest cells, an embryonic cell population whose migratory behaviour has been likened to cancer invasion. We found that, during morphogenesis, the head mesoderm underlying the cephalic neural crest stiffens. This stiffening initiates an epithelial-to-mesenchymal transition in neural crest cells and triggers their collective migration. To detect changes in their mechanical environment, neural crest cells use mechanosensation mediated by the integrin-vinculin-talin complex. By performing mechanical and molecular manipulations, we show that mesoderm stiffening is necessary and sufficient to trigger neural crest migration. Finally, we demonstrate that convergent extension of the mesoderm, which starts during gastrulation, leads to increased mesoderm stiffness by increasing the cell density underneath the neural crest. These results show that convergent extension of the mesoderm has a role as a mechanical coordinator of morphogenesis, and reveal a link between two apparently unconnected processes-gastrulation and neural crest migration-via changes in tissue mechanics. Overall, we demonstrate that changes in substrate stiffness can trigger collective cell migration by promoting epithelial-to-mesenchymal transition in vivo. More broadly, our results raise the idea that tissue mechanics combines with molecular effectors to coordinate morphogenesis.

  5. Design and studies of multiple mechanism of anti-Candida activity of a new potent Trp-rich peptide dendrimers.

    PubMed

    Zielińska, Paulina; Staniszewska, Monika; Bondaryk, Małgorzata; Koronkiewicz, Mirosława; Urbańczyk-Lipkowska, Zofia

    2015-11-13

    Eight peptide dendrimers were designed as structural mimics of natural cationic amphiphilic peptides with antifungal activity and evaluated for their anti-Candida potential against the wild type strains and mutants. Dendrimer 14 containing four Trp residues and dodecyl tail and a slightly smaller dendrimer 9 decorated with four N-methylated Trp that displayed 100 and 99.7% of growth inhibition at 16 μg/mL respectively, were selected for evaluation against the Candida albicans mutants with disabled biosynthesis of aspartic proteases responsible for host tissue colonization and morphogenesis during biofilm formation (sessile model). Flow cytometry method was employed to detect apoptotic cells with membrane alterations (phosphatidylserine translocation), and differentiation of apoptotic from necrotic cells was also performed. Simultaneous staining of cell surface phosphatidylserine with Annexin-V-Fluorescein and necrotic cells with propidium iodide was conducted. 14 at 16 μg/mL caused C. albicans cells to undergo cellular apoptosis but its increasing concentrations induced necrosis. 14 influenced C. albicans biofilm viability as well as hyphal and cell wall morphology. Confocal microscopy and cell wall staining with calcofluor white revealed that in epithelial model the cell surface structure was perturbed at MIC of peptide dendrimer. It appears that tryptophan or 1-methyltryptophan groups displayed at the surface and positive charges hidden in the dendrimer tree along with hydrocarbon tail located at C-terminus are important for the anti-Candida activity since dendrimers containing tryptamine at C-terminus showed only a moderate activity. Our results suggest that membranolytic dendrimer 14, targeting cellular apoptotic pathway and impairing the cell wall formation in mature biofilm, may be a potential multifunctional antifungal lead compound for the control of C. albicans infections. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Structure of Cellulose Microfibrils in Primary Cell Walls from Collenchyma1[C][W][OA

    PubMed Central

    Thomas, Lynne H.; Forsyth, V. Trevor; Šturcová, Adriana; Kennedy, Craig J.; May, Roland P.; Altaner, Clemens M.; Apperley, David C.; Wess, Timothy J.; Jarvis, Michael C.

    2013-01-01

    In the primary walls of growing plant cells, the glucose polymer cellulose is assembled into long microfibrils a few nanometers in diameter. The rigidity and orientation of these microfibrils control cell expansion; therefore, cellulose synthesis is a key factor in the growth and morphogenesis of plants. Celery (Apium graveolens) collenchyma is a useful model system for the study of primary wall microfibril structure because its microfibrils are oriented with unusual uniformity, facilitating spectroscopic and diffraction experiments. Using a combination of x-ray and neutron scattering methods with vibrational and nuclear magnetic resonance spectroscopy, we show that celery collenchyma microfibrils were 2.9 to 3.0 nm in mean diameter, with a most probable structure containing 24 chains in cross section, arranged in eight hydrogen-bonded sheets of three chains, with extensive disorder in lateral packing, conformation, and hydrogen bonding. A similar 18-chain structure, and 24-chain structures of different shape, fitted the data less well. Conformational disorder was largely restricted to the surface chains, but disorder in chain packing was not. That is, in position and orientation, the surface chains conformed to the disordered lattice constituting the core of each microfibril. There was evidence that adjacent microfibrils were noncovalently aggregated together over part of their length, suggesting that the need to disrupt these aggregates might be a constraining factor in growth and in the hydrolysis of cellulose for biofuel production. PMID:23175754

  7. Structure of cellulose microfibrils in primary cell walls from collenchyma.

    PubMed

    Thomas, Lynne H; Forsyth, V Trevor; Sturcová, Adriana; Kennedy, Craig J; May, Roland P; Altaner, Clemens M; Apperley, David C; Wess, Timothy J; Jarvis, Michael C

    2013-01-01

    In the primary walls of growing plant cells, the glucose polymer cellulose is assembled into long microfibrils a few nanometers in diameter. The rigidity and orientation of these microfibrils control cell expansion; therefore, cellulose synthesis is a key factor in the growth and morphogenesis of plants. Celery (Apium graveolens) collenchyma is a useful model system for the study of primary wall microfibril structure because its microfibrils are oriented with unusual uniformity, facilitating spectroscopic and diffraction experiments. Using a combination of x-ray and neutron scattering methods with vibrational and nuclear magnetic resonance spectroscopy, we show that celery collenchyma microfibrils were 2.9 to 3.0 nm in mean diameter, with a most probable structure containing 24 chains in cross section, arranged in eight hydrogen-bonded sheets of three chains, with extensive disorder in lateral packing, conformation, and hydrogen bonding. A similar 18-chain structure, and 24-chain structures of different shape, fitted the data less well. Conformational disorder was largely restricted to the surface chains, but disorder in chain packing was not. That is, in position and orientation, the surface chains conformed to the disordered lattice constituting the core of each microfibril. There was evidence that adjacent microfibrils were noncovalently aggregated together over part of their length, suggesting that the need to disrupt these aggregates might be a constraining factor in growth and in the hydrolysis of cellulose for biofuel production.

  8. Distinct subsets of Eve-positive pericardial cells stabilise cardiac outflow and contribute to Hox gene-triggered heart morphogenesis in Drosophila.

    PubMed

    Zmojdzian, Monika; de Joussineau, Svetlana; Da Ponte, Jean Philippe; Jagla, Krzysztof

    2018-01-17

    The Drosophila heart, composed of discrete subsets of cardioblasts and pericardial cells, undergoes Hox-triggered anterior-posterior morphogenesis, leading to a functional subdivision into heart proper and aorta, with its most anterior part forming a funnel-shaped cardiac outflow. Cardioblasts differentiate into Tin-positive 'working myocytes' and Svp-expressing ostial cells. However, developmental fates and functions of heart-associated pericardial cells remain elusive. Here, we show that the pericardial cells that express the transcription factor Even Skipped adopt distinct fates along the anterior-posterior axis. Among them, the most anterior Antp-Ubx-AbdA - negative cells form a novel cardiac outflow component we call the outflow hanging structure, whereas the Antp-expressing cells differentiate into wing heart precursors. Interestingly, Hox gene expression in the Even Skipped-positive cells not only underlies their antero-posterior diversification, but also influences heart morphogenesis in a non-cell-autonomous way. In brief, we identify a new cardiac outflow component derived from a subset of Even Skipped-expressing cells that stabilises the anterior heart tip, and demonstrate non-cell-autonomous effects of Hox gene expression in the Even Skipped-positive cells on heart morphogenesis. © 2018. Published by The Company of Biologists Ltd.

  9. Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klopffleisch, Karsten; Phan, Nguyen; Chen, Jay

    2011-01-01

    The heterotrimeric G-protein complex is minimally composed of G{alpha}, G{beta}, and G{gamma} subunits. In the classic scenario, the G-protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G-protein associates with heptahelical G-protein-coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G-protein effectors and scaffold proteins, we screened a set of proteins from the G-protein complex using two-hybrid complementation in yeast. After deep and exhaustive interrogation, wemore » detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G-protein interactome. Within this core, over half of the interactions comprising two-thirds of the nodes were retested and validated as genuine in planta. Co-expression analysis in combination with phenotyping of loss-of-function mutations in a set of core interactome genes revealed a novel role for G-proteins in regulating cell wall modification.« less

  10. Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis.

    PubMed

    Klopffleisch, Karsten; Phan, Nguyen; Augustin, Kelsey; Bayne, Robert S; Booker, Katherine S; Botella, Jose R; Carpita, Nicholas C; Carr, Tyrell; Chen, Jin-Gui; Cooke, Thomas Ryan; Frick-Cheng, Arwen; Friedman, Erin J; Fulk, Brandon; Hahn, Michael G; Jiang, Kun; Jorda, Lucia; Kruppe, Lydia; Liu, Chenggang; Lorek, Justine; McCann, Maureen C; Molina, Antonio; Moriyama, Etsuko N; Mukhtar, M Shahid; Mudgil, Yashwanti; Pattathil, Sivakumar; Schwarz, John; Seta, Steven; Tan, Matthew; Temp, Ulrike; Trusov, Yuri; Urano, Daisuke; Welter, Bastian; Yang, Jing; Panstruga, Ralph; Uhrig, Joachim F; Jones, Alan M

    2011-09-27

    The heterotrimeric G-protein complex is minimally composed of Gα, Gβ, and Gγ subunits. In the classic scenario, the G-protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G-protein associates with heptahelical G-protein-coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G-protein effectors and scaffold proteins, we screened a set of proteins from the G-protein complex using two-hybrid complementation in yeast. After deep and exhaustive interrogation, we detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G-protein interactome. Within this core, over half of the interactions comprising two-thirds of the nodes were retested and validated as genuine in planta. Co-expression analysis in combination with phenotyping of loss-of-function mutations in a set of core interactome genes revealed a novel role for G-proteins in regulating cell wall modification.

  11. Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis

    PubMed Central

    Klopffleisch, Karsten; Phan, Nguyen; Augustin, Kelsey; Bayne, Robert S; Booker, Katherine S; Botella, Jose R; Carpita, Nicholas C; Carr, Tyrell; Chen, Jin-Gui; Cooke, Thomas Ryan; Frick-Cheng, Arwen; Friedman, Erin J; Fulk, Brandon; Hahn, Michael G; Jiang, Kun; Jorda, Lucia; Kruppe, Lydia; Liu, Chenggang; Lorek, Justine; McCann, Maureen C; Molina, Antonio; Moriyama, Etsuko N; Mukhtar, M Shahid; Mudgil, Yashwanti; Pattathil, Sivakumar; Schwarz, John; Seta, Steven; Tan, Matthew; Temp, Ulrike; Trusov, Yuri; Urano, Daisuke; Welter, Bastian; Yang, Jing; Panstruga, Ralph; Uhrig, Joachim F; Jones, Alan M

    2011-01-01

    The heterotrimeric G-protein complex is minimally composed of Gα, Gβ, and Gγ subunits. In the classic scenario, the G-protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G-protein associates with heptahelical G-protein-coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G-protein effectors and scaffold proteins, we screened a set of proteins from the G-protein complex using two-hybrid complementation in yeast. After deep and exhaustive interrogation, we detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G-protein interactome. Within this core, over half of the interactions comprising two-thirds of the nodes were retested and validated as genuine in planta. Co-expression analysis in combination with phenotyping of loss-of-function mutations in a set of core interactome genes revealed a novel role for G-proteins in regulating cell wall modification. PMID:21952135

  12. Insights into the mode of action of anticandidal herbal monoterpenoid geraniol reveal disruption of multiple MDR mechanisms and virulence attributes in Candida albicans.

    PubMed

    Singh, Shweta; Fatima, Zeeshan; Hameed, Saif

    2016-07-01

    The anticandidal potential of Geraniol (Ger) against Candida albicans has already been established. The present study reveals deeper insights into the mechanisms of action of Ger. We observed that the repertoire of antifungal activity was not only limited to C. albicans and its clinical isolates but also against non-albicans species of Candida. The membrane tampering effect was visualized through transmission electron micrographs, depleted ergosterol levels and altered plasma membrane ATPase activity. Ger also affects cell wall as revealed by spot assays with cell wall-perturbing agents and scanning electron micrographs. Functional calcineurin pathway seems to be indispensable for the antifungal effect of Ger as calcineurin signaling mutant was hypersensitive to Ger while calcineurin overexpressing strain remained resistant. Ger also causes mitochondrial dysfunction, impaired iron homeostasis and genotoxicity. Furthermore, Ger inhibits both virulence attributes of hyphal morphogenesis and biofilm formation. Taken together, our results suggest that Ger is potential antifungal agent that warrants further investigation in clinical applications so that it could be competently employed in therapeutic strategies to treat Candida infections.

  13. Morphogenesis of the caenorhabditis elegans vulva.

    PubMed

    Schindler, Adam J; Sherwood, David R

    2013-01-01

    Understanding how cells move, change shape, and alter cellular behaviors to form organs, a process termed morphogenesis, is one of the great challenges of developmental biology. Formation of the Caenorhabditis elegans vulva is a powerful, simple, and experimentally accessible model for elucidating how morphogenetic processes produce an organ. In the first step of vulval development, three epithelial precursor cells divide and differentiate to generate 22 cells of 7 different vulval subtypes. The 22 vulval cells then rearrange from a linear array into a tube, with each of the seven cell types undergoing characteristic morphogenetic behaviors that construct the vulva. Vulval morphogenesis entails many of the same cellular activities that underlie organogenesis and tissue formation across species, including invagination, lumen formation, oriented cell divisions, cell–cell adhesion, cell migration, cell fusion, extracellular matrix remodeling, and cell invasion. Studies of vulval development have led to pioneering discoveries in a number of these processes and are beginning to bridge the gap between the pathways that specify cells and their connections to morphogenetic behaviors. The simplicity of the vulva and the experimental tools available in C. elegans will continue to make vulval morphogenesis a powerful paradigm to further our understanding of the largely mysterious mechanisms that build tissues and organs. © 2012 Wiley Periodicals, Inc.

  14. Calculation of pressure drop in the developmental stages of the medaka fish heart and microvasculature

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sreyashi; Vlachos, Pavlos

    2016-11-01

    Peristaltic contraction of the developing medaka fish heart produces temporally and spatially varying pressure drop across the atrioventricular (AV) canal. Blood flowing through the tail vessels experience a slug flow across the developmental stages. We have performed a series of live imaging experiments over 14 days post fertilization (dpf) of the medaka fish egg and cross-correlated the red blood cell (RBC) pattern intensities to obtain the two-dimensional velocity fields. Subsequently we have calculated the pressure field by integrating the pressure gradient in the momentum equation. Our calculations show that the pressure drop across the AV canal increases from 0.8mm Hg during 3dpf to 2.8 mm Hg during 14dpf. We have calculated the time-varying wall shear stress for the blood vessels by assuming a spatially constant velocity magnitude in each vessel. The calculated wall shear stress matches the wall shear stress sensed by human endothelial cells (10-12 dyne/sq. cm). The pressure drop per unit length of the vessel is obtained by doing a control volume analysis of flow in the caudal arteries and veins. The current results can be extended to investigate the effect of the fluid dynamic parameters on the vascular and cardiac morphogenesis.

  15. Altered tooth morphogenesis after silencing the planar cell polarity core component, Vangl2.

    PubMed

    Wu, Zhaoming; Epasinghe, Don Jeevanie; He, Jinquan; Li, Liwen; Green, David W; Lee, Min-Jung; Jung, Han-Sung

    2016-12-01

    Vangl2, one of the core components of the planar cell polarity (PCP) pathway, has an important role in the regulation of morphogenesis in several tissues. Although the expression of Vangl2 has been detected in the developing tooth, its role in tooth morphogenesis is not known. In this study, we show that Vangl2 is expressed in the inner dental epithelium (IDE) and in the secondary enamel knots (SEKs) of bell stage tooth germs. Inhibition of Vangl2 expression by siRNA treatment in in vitro-cultured tooth germs resulted in retarded tooth germ growth with deregulated cell proliferation and apoptosis. After kidney transplantation of Vangl2 siRNA-treated tooth germs, teeth were observed to be small and malformed. We also show that Vangl2 is required to maintain the proper pattern of cell alignment in SEKs, which maybe important for the function of SEKs as signaling centers. These results suggest that Vangl2 plays an important role in the morphogenesis of teeth.

  16. Developmental expression of Hsp90, Hsp70 and HSF during morphogenesis in the vetigastropod Haliotis asinina.

    PubMed

    Gunter, Helen M; Degnan, Bernard M

    2007-08-01

    Heat shock proteins (Hsps) have dual functions, participating in both the stress response and a broad range of developmental processes. At physiological temperatures, it has been demonstrated in deuterostomes (vertebrates) and ecdysozoans (insects) that Hsps are expressed in tissues that are undergoing differentiation and morphogenesis. Here we investigate the developmental expression of Hsp70, Hsp90 and their regulatory transcription factor heat shock transcription factor (HSF) in the marine gastropod Haliotis asinina, a representative of the 3rd major lineage of bilaterian animals, the Lophotrochozoa. HasHsp70, HasHsp90 and HasHSF are maternally expressed in H. asinina and are progressively restricted to the micromere lineage during cleavage. During larval morphogenesis, they are expressed in unique and overlapping patterns in the prototroch, foot, and mantle. Hsp expression peaked in these tissues during periods of cell differentiation and morphogenesis, returning to lower levels after morphogenesis was complete. These patterns of Hsp and HSF expression in H. asinina are akin to those observed in ecdysozoans and deuterostomes, with Hsps being activated in cells and tissues undergoing morphogenesis.

  17. Development of the septal region in the rat. II. Morphogenesis in normal and x-irradiated embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayer, S.A.

    1979-01-01

    Morphogenesis of the septal region was examined in normal rat embryos from embryonic day (E) 10 to E22. The greater part of the septal region is postulated to form from two separate anlagen which can be clearly distinguished in the telencephalon by E13 and E14. One lies in the anterior ventromedial wall and presumably forms the nucleus of the diagonal band, medial, lateral, and triangular septal nuclei. The other lies in the posterior ventrolateral ridge and presumably forms the bed nuclei of the stria terminalis and the anterior commissure. On E15, the early differentiating cells in these anlagen fuse inmore » the same region where the anterior commissure will cross on E17. On E16 and E17, a prominent subependymal zone develops in the anterior septal region and presumably gives rise to the nucleus accumbens. A quantitative analysis was made of three cell zones (neuroepithelium, subependymal zone, differentiating cell zone) at coronal levels through the developing nucleus accumbens and the nucleus of the diagonal band (anterior level) and the medial and lateral septal nuclei (middle and posterior levels). To accurately locate regions of primitive mitotic and migratory cells within the zones at each level, the number of cells surviving a single exposure to 200 R x-rays in embryonic brains (E15 to E22) were compared with controls. Each zone responded differently to x-ray insult. The radiosensitivity of the neuroepithelium decreases significantly after E19; the subependymal zone is highly radiosensitive throughout; the differentiating cell zone is radioresistant throughout. The significance of these findings is discussed in the light of the autoradiographic determination of the time of formation of septal neurons.« less

  18. Context clues: the importance of stem cell-material interactions

    PubMed Central

    Murphy, William L.

    2014-01-01

    Understanding the processes by which stem cells give rise to de novo tissues is an active focus of stem cell biology and bioengineering disciplines. Instructive morphogenic cues surrounding the stem cell during morphogenesis create what is referred to as the stem cell microenvironment. An emerging paradigm in stem cell bioengineering involves “biologically driven assembly,” in which stem cells are encouraged to largely define their own morphogenesis processes. However, even in the case of biologically driven assembly, stem cells do not act alone. The properties of the surrounding microenvironment can be critical regulators of cell fate. Stem cell-material interactions are among the most well-characterized microenvironmental effectors of stem cell fate, and they establish a signaling “context” that can define the mode of influence for morphogenic cues. Here we describe illustrative examples of cell-material interactions that occur during in vitro stem cell studies, with an emphasis on how cell-material interactions create instructive contexts for stem cell differentiation and morphogenesis. PMID:24369691

  19. Pheromone-Induced Morphogenesis Improves Osmoadaptation Capacity by Activating the HOG MAPK Pathway**

    PubMed Central

    Baltanás, Rodrigo; Bush, Alan; Couto, Alicia; Durrieu, Lucía; Hohmann, Stefan; Colman-Lerner, Alejandro

    2013-01-01

    Environmental and internal conditions expose cells to a multiplicity of stimuli whose consequences are difficult to predict. Here, we investigate the response to mating pheromone of yeast cells adapted to high osmolarity. Events downstream of pheromone binding involve two mitogen-activated protein kinase (MAPK) cascades: the pheromone response (PR) and the cell-wall integrity response (CWI). Although these MAPK pathways share components with each and a third MAPK pathway, the high osmolarity response (HOG), they are normally only activated by distinct stimuli, a phenomenon called insulation. We found that in cells adapted to high osmolarity, PR activated the HOG pathway in a pheromone- and osmolarity- dependent manner. Activation of HOG by the PR was not due to loss of insulation, but rather a response to a reduction in internal osmolarity, which resulted from an increase in glycerol release caused by the PR. By analyzing single-cell time courses, we found that stimulation of HOG occurred in discrete bursts that coincided with the “shmooing” morphogenetic process. Activation required the polarisome, the cell wall integrity MAPK Slt2, and the aquaglyceroporin Fps1. HOG activation resulted in high glycerol turnover that improved adaptability to rapid changes in osmolarity. Our work shows how a differentiation signal can recruit a second, unrelated sensory pathway to enable responses to yeast to multiple stimuli. PMID:23612707

  20. Reciprocal expression of integration host factor and HU in the developmental cycle and infectivity of Legionella pneumophila.

    PubMed

    Morash, Michael G; Brassinga, Ann Karen C; Warthan, Michelle; Gourabathini, Poornima; Garduño, Rafael A; Goodman, Steven D; Hoffman, Paul S

    2009-04-01

    Legionella pneumophila is an intracellular parasite of protozoa that differentiates late in infection into metabolically dormant cysts that are highly infectious. Regulation of this process is poorly understood. Here we report that the small DNA binding regulatory proteins integration host factor (IHF) and HU are reciprocally expressed over the developmental cycle, with HU expressed during exponential phase and IHF expressed postexponentially. To assess the role of these regulatory proteins in development, chromosomal deletions were constructed. Single (ihfA or ihfB) and double deletion (Deltaihf) IHF mutants failed to grow in Acanthamoeba castellanii unless complemented in trans when expressed temporally from the ihfA promoter but not under P(tac) (isopropyl-beta-d-thiogalactopyranoside). In contrast, IHF mutants were infectious for HeLa cells, though electron microscopic examination revealed defects in late-stage cyst morphogenesis (thickened cell wall, intracytoplasmic membranes, and inclusions of poly-beta-hydroxybutyrate), and were depressed for the developmental marker MagA. Green fluorescent protein promoter fusion assays indicated that IHF and the stationary-phase sigma factor RpoS were required for full postexponential expression of magA. Finally, defects in cyst morphogenesis noted for Deltaihf mutants in HeLa cells correlated with a loss of both detergent resistance and hyperinfectivity compared with results for wild-type cysts. These studies establish IHF and HU as markers of developmental stages and show that IHF function is required for both differentiation and full virulence of L. pneumophila in natural amoebic hosts.

  1. Ascidian notochord morphogenesis

    PubMed Central

    Jiang, Di; Smith, William C.

    2010-01-01

    The development of the notochord involves a complex set of cellular behaviors. While these morphogenic behaviors are common to all chordates, the ascidian provides a particularly attractive experimental model because of its relative simplicity. In particular, all notochord morphogenesis in ascidians takes place with only 40 cells, as opposed to the hundreds of cells in vertebrate models systems. Initial steps in ascidian notochord development convert a monolayer of epithelial-like cells in the pre-gastrula embryo to a cylindrical rod of single-cell diameter. Convergent extension is responsible for the intercalation of notochord cells and some degree of notochord elongation, while a second phase of elongation is observed as the notochord narrows medially and increases in volume. The mechanism by which the volume of the notochord increases differs between ascidian species. Some ascidian species produce extracellular pockets that will eventually coalesce to form a lumen running the length of the notochord, while others appear to make intercellular vacuoles. By either mechanism, the resulting notochord serves as a hydrostatic skeleton allowing for the locomotion of the swimming larva. Several basic cell behaviors, such as cell shape changes, cell rearrangement, establishment of cell polarity, and alteration of extracellular environment, are displayed in the process of notochord morphogenesis. Modern analysis of ascidian notochord morphogenesis promises to contribute to our understanding of these fundamental biological processes. PMID:17497687

  2. Ascidian notochord morphogenesis.

    PubMed

    Jiang, Di; Smith, William C

    2007-07-01

    The development of the notochord involves a complex set of cellular behaviors. While these morphogenic behaviors are common to all chordates, the ascidian provides a particularly attractive experimental model because of its relative simplicity. In particular, all notochord morphogenesis in ascidians takes place with only 40 cells, as opposed to the hundreds of cells in vertebrate model systems. Initial steps in ascidian notochord development convert a monolayer of epithelial-like cells in the pregastrula embryo to a cylindrical rod of single-cell diameter. Convergent extension is responsible for the intercalation of notochord cells and some degree of notochord elongation, while a second phase of elongation is observed as the notochord narrows medially and increases in volume. The mechanism by which the volume of the notochord increases differs between ascidian species. Some ascidians produce extracellular pockets that will eventually coalesce to form a lumen running the length of the notochord; whereas others do not. By either mechanism, the resulting notochord serves as a hydrostatic skeleton allowing for the locomotion of the swimming larva. Several basic cell behaviors, such as cell shape changes, cell rearrangement, establishment of cell polarity, and alteration of extracellular environment, are displayed in the process of notochord morphogenesis. Modern analysis of ascidian notochord morphogenesis promises to contribute to our understanding of these fundamental biological processes. Copyright 2007 Wiley-Liss, Inc.

  3. Foregut separation and tracheo-oesophageal malformations: The role of tracheal outgrowth, dorso-ventral patterning and programmed cell death

    PubMed Central

    Ioannides, Adonis S.; Massa, Valentina; Ferraro, Elisabetta; Cecconi, Francesco; Spitz, Lewis; Henderson, Deborah J.; Copp, Andrew J.

    2010-01-01

    Foregut division—the separation of dorsal (oesophageal) from ventral (tracheal) foregut components—is a crucial event in gastro-respiratory development, and frequently disturbed in clinical birth defects. Here, we examined three outstanding questions of foregut morphogenesis. The origin of the trachea is suggested to result either from respiratory outgrowth or progressive septation of the foregut tube. We found normal foregut lengthening despite failure of tracheo-oesophageal separation in Adriamycin-treated embryos, whereas active septation was observed only in normal foregut morphogenesis, indicating a primary role for septation. Dorso-ventral patterning of Nkx2.1 (ventral) and Sox2 (dorsal) expression is proposed to be critical for tracheo-oesophageal separation. However, normal dorso-ventral patterning of Nkx2.1 and Sox2 expression occurred in Adriamycin-treated embryos with defective foregut separation. In contrast, Shh expression shifts dynamically, ventral-to-dorsal, solely during normal morphogenesis, particularly implicating Shh in foregut morphogenesis. Dying cells localise to the fusing foregut epithelial ridges, with disturbance of this apoptotic pattern in Adriamycin, Shh and Nkx2.1 models. Strikingly, however, genetic suppression of apoptosis in the Apaf1 mutant did not prevent foregut separation, indicating that apoptosis is not required for tracheo-oesophageal morphogenesis. Epithelial remodelling during septation may cause loss of cell-cell or cell-matrix interactions, resulting in apoptosis (anoikis) as a secondary consequence. PMID:19913007

  4. Tissue architecture, cell traction, deformable scaffolds, and the forces that shape the embryo during morphogenesis.

    NASA Astrophysics Data System (ADS)

    Davidson, Lance

    2005-03-01

    Morphogenesis is the process of constucting form and shape. Morphogenesis during early development of the embryo involves orchestrated movements of cells and tissues. These morphogenetic movements establish the body plan and organs of the early embryo. The rates and trajectories of these movements depend on three physical features of the early embryo: 1) the forces generated by cells, 2) the mechanical properties of the tissues, and 3) the architecture of the tissues. These three mechanical features of the embryo are some of the earliest phenotypic features generated by the genome. We are taking an interdisciplinary approach combining biophysical, cell biological, and classical embryological techniques to understand the mechanics of morphogenesis. Using nanoNewton-sensitive force transducers we can apply forces and measure time dependent elastic modulii of tissue fragments 100 micrometers across. Using traction-force microscopy we can measure forces generated by cells on their environment. We use drugs and chimeric proteins to investigate the localization and function of molecular complexes responsible for force generation and the modulus. We use microsurgery to take-apart and construct novel tissues to investigate the role of geometry and architecture in the mechanics of morphogenesis. Together with simulation techniques these quantitative approaches will provide us with a practical nuts-and-bolts understanding of how the genome encodes the shapes and forms of life.

  5. Reverse engineering the mechanical and molecular pathways in stem cell morphogenesis.

    PubMed

    Lu, Kai; Gordon, Richard; Cao, Tong

    2015-03-01

    The formation of relevant biological structures poses a challenge for regenerative medicine. During embryogenesis, embryonic cells differentiate into somatic tissues and undergo morphogenesis to produce three-dimensional organs. Using stem cells, we can recapitulate this process and create biological constructs for therapeutic transplantation. However, imperfect imitation of nature sometimes results in in vitro artifacts that fail to recapitulate the function of native organs. It has been hypothesized that developing cells may self-organize into tissue-specific structures given a correct in vitro environment. This proposition is supported by the generation of neo-organoids from stem cells. We suggest that morphogenesis may be reverse engineered to uncover its interacting mechanical pathway and molecular circuitry. By harnessing the latent architecture of stem cells, novel tissue-engineering strategies may be conceptualized for generating self-organizing transplants. Copyright © 2013 John Wiley & Sons, Ltd.

  6. MicroRNA miR-328 Regulates Zonation Morphogenesis by Targeting CD44 Expression

    PubMed Central

    Wang, Chia-Hui; Lee, Daniel Y.; Deng, Zhaoqun; Jeyapalan, Zina; Lee, Shao-Chen; Kahai, Shireen; Lu, Wei-Yang; Zhang, Yaou; Yang, Burton B.

    2008-01-01

    Morphogenesis is crucial to initiate physiological development and tumor invasion. Here we show that a microRNA controls zonation morphogenesis by targeting hyaluronan receptor CD44. We have developed a novel system to study microRNA functions by generating constructs expressing pre-miRNAs and mature miRNAs. Using this system, we have demonstrated that expression of miR-328 reduced cell adhesion, aggregation, and migration, and regulated formation of capillary structure. Protein analysis indicated that miR-328 repressed CD44 expression. Activities of luciferase constructs harboring the target site in CD44, but not the one containing mutation, were repressed by miR-328. Zonation morphogenesis appeared in cells transfected by miR-328: miR-328-transfected cells were present on the surface of zonating structures while the control cells stayed in the middle. MiR-328-mediated CD44 actions was validated by anti-CD44 antibody, hyaluronidase, CD44 siRNA, and CD44 expression constructs. In vivo experiments showed that CD44-silencing cells appeared as layers on the surfaces of nodules or zonating structures. Immuno-histochemistry also exhibited CD44-negative cells on the surface layers of normal rat livers and the internal zones of Portal veins. Our results demonstrate that miR-328 targets CD44, which is essential in regulating zonation morphogenesis: silencing of CD44 expression is essential in sealing the zonation structures to facilitate their extension and to inhibit complex expansion. PMID:18560585

  7. MicroRNA miR-328 regulates zonation morphogenesis by targeting CD44 expression.

    PubMed

    Wang, Chia-Hui; Lee, Daniel Y; Deng, Zhaoqun; Jeyapalan, Zina; Lee, Shao-Chen; Kahai, Shireen; Lu, Wei-Yang; Zhang, Yaou; Yang, Burton B

    2008-06-18

    Morphogenesis is crucial to initiate physiological development and tumor invasion. Here we show that a microRNA controls zonation morphogenesis by targeting hyaluronan receptor CD44. We have developed a novel system to study microRNA functions by generating constructs expressing pre-miRNAs and mature miRNAs. Using this system, we have demonstrated that expression of miR-328 reduced cell adhesion, aggregation, and migration, and regulated formation of capillary structure. Protein analysis indicated that miR-328 repressed CD44 expression. Activities of luciferase constructs harboring the target site in CD44, but not the one containing mutation, were repressed by miR-328. Zonation morphogenesis appeared in cells transfected by miR-328: miR-328-transfected cells were present on the surface of zonating structures while the control cells stayed in the middle. MiR-328-mediated CD44 actions was validated by anti-CD44 antibody, hyaluronidase, CD44 siRNA, and CD44 expression constructs. In vivo experiments showed that CD44-silencing cells appeared as layers on the surfaces of nodules or zonating structures. Immuno-histochemistry also exhibited CD44-negative cells on the surface layers of normal rat livers and the internal zones of Portal veins. Our results demonstrate that miR-328 targets CD44, which is essential in regulating zonation morphogenesis: silencing of CD44 expression is essential in sealing the zonation structures to facilitate their extension and to inhibit complex expansion.

  8. Chiral cell sliding drives left-right asymmetric organ twisting

    PubMed Central

    Inaki, Mikiko; Hatori, Ryo; Nakazawa, Naotaka; Okumura, Takashi; Ishibashi, Tomoki; Kikuta, Junichi; Ishii, Masaru

    2018-01-01

    Polarized epithelial morphogenesis is an essential process in animal development. While this process is mostly attributed to directional cell intercalation, it can also be induced by other mechanisms. Using live-imaging analysis and a three-dimensional vertex model, we identified ‘cell sliding,’ a novel mechanism driving epithelial morphogenesis, in which cells directionally change their position relative to their subjacent (posterior) neighbors by sliding in one direction. In Drosophila embryonic hindgut, an initial left-right (LR) asymmetry of the cell shape (cell chirality in three dimensions), which occurs intrinsically before tissue deformation, is converted through LR asymmetric cell sliding into a directional axial twisting of the epithelial tube. In a Drosophila inversion mutant showing inverted cell chirality and hindgut rotation, cell sliding occurs in the opposite direction to that in wild-type. Unlike directional cell intercalation, cell sliding does not require junctional remodeling. Cell sliding may also be involved in other cases of LR-polarized epithelial morphogenesis. PMID:29891026

  9. Chiral cell sliding drives left-right asymmetric organ twisting.

    PubMed

    Inaki, Mikiko; Hatori, Ryo; Nakazawa, Naotaka; Okumura, Takashi; Ishibashi, Tomoki; Kikuta, Junichi; Ishii, Masaru; Matsuno, Kenji; Honda, Hisao

    2018-06-12

    Polarized epithelial morphogenesis is an essential process in animal development. While this process is mostly attributed to directional cell intercalation, it can also be induced by other mechanisms. Using live-imaging analysis and a three-dimensional vertex model, we identified 'cell sliding,' a novel mechanism driving epithelial morphogenesis, in which cells directionally change their position relative to their subjacent (posterior) neighbors by sliding in one direction. In Drosophila embryonic hindgut, an initial left-right (LR) asymmetry of the cell shape (cell chirality in three dimensions), which occurs intrinsically before tissue deformation, is converted through LR asymmetric cell sliding into a directional axial twisting of the epithelial tube. In a Drosophila inversion mutant showing inverted cell chirality and hindgut rotation, cell sliding occurs in the opposite direction to that in wild-type. Unlike directional cell intercalation, cell sliding does not require junctional remodeling. Cell sliding may also be involved in other cases of LR-polarized epithelial morphogenesis. © 2018, Inaki et al.

  10. Lamellipodia-based migrations of larval epithelial cells are required for normal closure of the adult epidermis of Drosophila

    PubMed Central

    Bischoff, Marcus

    2012-01-01

    Cell migrations are an important feature of animal development. They are, furthermore, essential to wound healing and tumour progression. Despite recent progress, it is still mysterious how cell migration is spatially and temporally regulated during morphogenesis and how cell migration is coordinated with other cellular behaviours to shape tissues and organs. The formation of the abdominal epithelium of Drosophila during metamorphosis provides an attractive system to study morphogenesis. Here, the diploid adult histoblasts replace the polyploid larval epithelial cells (LECs). Using in vivo 4D microscopy, I show that, besides apical constriction and apoptosis, the LECs undergo extensive coordinated migrations. The migrations follow a transition from a stationary (epithelial) to a migratory mode. The migratory behaviour is stimulated by autocrine Dpp signalling. Directed apical lamellipodia-like protrusions propel the cells. Initially, planar cell polarity determines the orientation of LEC migration. While LECs are migrating they also constrict apically, and changes in activity of the small GTPase Rho1 can favour one behaviour over the other. This study shows that the LECs play a more active role in morphogenesis than previously thought, with their migrations contributing to abdominal closure. It furthermore provides insights into how the migratory behaviour of cells is regulated during morphogenesis. PMID:22230614

  11. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro.

    PubMed

    Harrison, Sarah Ellys; Sozen, Berna; Christodoulou, Neophytos; Kyprianou, Christos; Zernicka-Goetz, Magdalena

    2017-04-14

    Mammalian embryogenesis requires intricate interactions between embryonic and extraembryonic tissues to orchestrate and coordinate morphogenesis with changes in developmental potential. Here, we combined mouse embryonic stem cells (ESCs) and extraembryonic trophoblast stem cells (TSCs) in a three-dimensional scaffold to generate structures whose morphogenesis is markedly similar to that of natural embryos. By using genetically modified stem cells and specific inhibitors, we show that embryogenesis of ESC- and TSC-derived embryos-ETS-embryos-depends on cross-talk involving Nodal signaling. When ETS-embryos develop, they spontaneously initiate expression of mesoderm and primordial germ cell markers asymmetrically on the embryonic and extraembryonic border, in response to Wnt and BMP signaling. Our study demonstrates the ability of distinct stem cell types to self-assemble in vitro to generate embryos whose morphogenesis, architecture, and constituent cell types resemble those of natural embryos. Copyright © 2017, American Association for the Advancement of Science.

  12. Genetic Interaction of Centrosomin and Bazooka in Apical Domain Regulation in Drosophila Photoreceptor

    PubMed Central

    Chen, Geng; Rogers, Alicia K.; League, Garrett P.; Nam, Sang-Chul

    2011-01-01

    Background Cell polarity genes including Crumbs (Crb) and Par complexes are essential for controlling photoreceptor morphogenesis. Among the Crb and Par complexes, Bazooka (Baz, Par-3 homolog) acts as a nodal component for other cell polarity proteins. Therefore, finding other genes interacting with Baz will help us to understand the cell polarity genes' role in photoreceptor morphogenesis. Methodology/Principal Findings Here, we have found a genetic interaction between baz and centrosomin (cnn). Cnn is a core protein for centrosome which is a major microtubule-organizing center. We analyzed the effect of the cnn mutation on developing eyes to determine its role in photoreceptor morphogenesis. We found that Cnn is dispensable for retinal differentiation in eye imaginal discs during the larval stage. However, photoreceptors deficient in Cnn display dramatic morphogenesis defects including the mislocalization of Crumbs (Crb) and Bazooka (Baz) during mid-stage pupal eye development, suggesting that Cnn is specifically required for photoreceptor morphogenesis during pupal eye development. This role of Cnn in apical domain modulation was further supported by Cnn's gain-of-function phenotype. Cnn overexpression in photoreceptors caused the expansion of the apical Crb membrane domain, Baz and adherens junctions (AJs). Conclusions/Significance These results strongly suggest that the interaction of Baz and Cnn is essential for apical domain and AJ modulation during photoreceptor morphogenesis, but not for the initial photoreceptor differentiation in the Drosophila photoreceptor. PMID:21253601

  13. Morphogenesis underlying the development of the everted teleost telencephalon.

    PubMed

    Folgueira, Mónica; Bayley, Philippa; Navratilova, Pavla; Becker, Thomas S; Wilson, Stephen W; Clarke, Jonathan D W

    2012-09-18

    Although the mechanisms underlying brain patterning and regionalization are very much conserved, the morphology of different brain regions is extraordinarily variable across vertebrate phylogeny. This is especially manifest in the telencephalon, where the most dramatic variation is seen between ray-finned fish, which have an everted telencephalon, and all other vertebrates, which have an evaginated telencephalon. The mechanisms that generate these distinct morphologies are not well understood. Here we study the morphogenesis of the zebrafish telencephalon from 12 hours post fertilization (hpf) to 5 days post fertilization (dpf) by analyzing forebrain ventricle formation, evolving patterns of gene and transgene expression, neuronal organization, and fate mapping. Our results highlight two key events in telencephalon morphogenesis. First, the formation of a deep ventricular recess between telencephalon and diencephalon, the anterior intraencephalic sulcus (AIS), effectively creates a posterior ventricular wall to the telencephalic lobes. This process displaces the most posterior neuroepithelial territory of the telencephalon laterally. Second, as telencephalic growth and neurogenesis proceed between days 2 and 5 of development, the pallial region of the posterior ventricular wall of the telencephalon bulges into the dorsal aspect of the AIS. This brings the ventricular zone (VZ) into close apposition with the roof of the AIS to generate a narrow ventricular space and the thin tela choroidea (tc). As the pallial VZ expands, the tc also expands over the upper surface of the telencephalon. During this period, the major axis of growth and extension of the pallial VZ is along the anteroposterior axis. This second step effectively generates an everted telencephalon by 5 dpf. Our description of telencephalic morphogenesis challenges the conventional model that eversion is simply due to a laterally directed outfolding of the telencephalic neuroepithelium. This may have significant bearing on understanding the eventual organization of the adult fish telencephalon.

  14. Morphogenesis underlying the development of the everted teleost telencephalon

    PubMed Central

    2012-01-01

    Background Although the mechanisms underlying brain patterning and regionalization are very much conserved, the morphology of different brain regions is extraordinarily variable across vertebrate phylogeny. This is especially manifest in the telencephalon, where the most dramatic variation is seen between ray-finned fish, which have an everted telencephalon, and all other vertebrates, which have an evaginated telencephalon. The mechanisms that generate these distinct morphologies are not well understood. Results Here we study the morphogenesis of the zebrafish telencephalon from 12 hours post fertilization (hpf) to 5 days post fertilization (dpf) by analyzing forebrain ventricle formation, evolving patterns of gene and transgene expression, neuronal organization, and fate mapping. Our results highlight two key events in telencephalon morphogenesis. First, the formation of a deep ventricular recess between telencephalon and diencephalon, the anterior intraencephalic sulcus (AIS), effectively creates a posterior ventricular wall to the telencephalic lobes. This process displaces the most posterior neuroepithelial territory of the telencephalon laterally. Second, as telencephalic growth and neurogenesis proceed between days 2 and 5 of development, the pallial region of the posterior ventricular wall of the telencephalon bulges into the dorsal aspect of the AIS. This brings the ventricular zone (VZ) into close apposition with the roof of the AIS to generate a narrow ventricular space and the thin tela choroidea (tc). As the pallial VZ expands, the tc also expands over the upper surface of the telencephalon. During this period, the major axis of growth and extension of the pallial VZ is along the anteroposterior axis. This second step effectively generates an everted telencephalon by 5 dpf. Conclusion Our description of telencephalic morphogenesis challenges the conventional model that eversion is simply due to a laterally directed outfolding of the telencephalic neuroepithelium. This may have significant bearing on understanding the eventual organization of the adult fish telencephalon. PMID:22989074

  15. A global regulatory system links virulence and antibiotic resistance to envelope homeostasis in Acinetobacter baumannii.

    PubMed

    Geisinger, Edward; Mortman, Nadav J; Vargas-Cuebas, Germán; Tai, Albert K; Isberg, Ralph R

    2018-05-01

    The nosocomial pathogen Acinetobacter baumannii is a significant threat due to its ability to cause infections refractory to a broad range of antibiotic treatments. We show here that a highly conserved sensory-transduction system, BfmRS, mediates the coordinate development of both enhanced virulence and resistance in this microorganism. Hyperactive alleles of BfmRS conferred increased protection from serum complement killing and allowed lethal systemic disease in mice. BfmRS also augmented resistance and tolerance against an expansive set of antibiotics, including dramatic protection from β-lactam toxicity. Through transcriptome profiling, we showed that BfmRS governs these phenotypes through global transcriptional regulation of a post-exponential-phase-like program of gene expression, a key feature of which is modulation of envelope biogenesis and defense pathways. BfmRS activity defended against cell-wall lesions through both β-lactamase-dependent and -independent mechanisms, with the latter being connected to control of lytic transglycosylase production and proper coordination of morphogenesis and division. In addition, hypersensitivity of bfmRS knockouts could be suppressed by unlinked mutations restoring a short, rod cell morphology, indicating that regulation of drug resistance, pathogenicity, and envelope morphogenesis are intimately linked by this central regulatory system in A. baumannii. This work demonstrates that BfmRS controls a global regulatory network coupling cellular physiology to the ability to cause invasive, drug-resistant infections.

  16. Eph/Ephrin signalling maintains eye field segregation from adjacent neural plate territories during forebrain morphogenesis

    PubMed Central

    Cavodeassi, Florencia; Ivanovitch, Kenzo; Wilson, Stephen W.

    2013-01-01

    During forebrain morphogenesis, there is extensive reorganisation of the cells destined to form the eyes, telencephalon and diencephalon. Little is known about the molecular mechanisms that regulate region-specific behaviours and that maintain the coherence of cell populations undergoing specific morphogenetic processes. In this study, we show that the activity of the Eph/Ephrin signalling pathway maintains segregation between the prospective eyes and adjacent regions of the anterior neural plate during the early stages of forebrain morphogenesis in zebrafish. Several Ephrins and Ephs are expressed in complementary domains in the prospective forebrain and combinatorial abrogation of their activity results in incomplete segregation of the eyes and telencephalon and in defective evagination of the optic vesicles. Conversely, expression of exogenous Ephs or Ephrins in regions of the prospective forebrain where they are not usually expressed changes the adhesion properties of the cells, resulting in segregation to the wrong domain without changing their regional fate. The failure of eye morphogenesis in rx3 mutants is accompanied by a loss of complementary expression of Ephs and Ephrins, suggesting that this pathway is activated downstream of the regional fate specification machinery to establish boundaries between domains undergoing different programmes of morphogenesis. PMID:24026122

  17. The polarity protein partitioning-defective 1 (PAR-1) regulates dendritic spine morphogenesis through phosphorylating postsynaptic density protein 95 (PSD-95).

    PubMed

    Wu, Qian; DiBona, Victoria L; Bernard, Laura P; Zhang, Huaye

    2012-08-31

    The polarity protein PAR-1 plays an essential role in many cellular contexts, including embryogenesis, asymmetric cell division, directional migration, and epithelial morphogenesis. Despite its known importance in different cellular processes, the role of PAR-1 in neuronal morphogenesis is less well understood. In particular, its role in the morphogenesis of dendritic spines, which are sites of excitatory synaptic inputs, has been unclear. Here, we show that PAR-1 is required for normal spine morphogenesis in hippocampal neurons. We further show that PAR-1 functions through phosphorylating the synaptic scaffolding protein PSD-95 in this process. Phosphorylation at a conserved serine residue in the KXGS motif in PSD-95 regulates spine morphogenesis, and a phosphomimetic mutant of this site can rescue the defects of kinase-dead PAR-1. Together, our findings uncover a role of PAR-1 in spine morphogenesis in hippocampal neurons through phosphorylating PSD-95.

  18. Quantification of shape and cell polarity reveals a novel mechanism underlying malformations resulting from related FGF mutations during facial morphogenesis

    PubMed Central

    Li, Xin; Young, Nathan M.; Tropp, Stephen; Hu, Diane; Xu, Yanhua; Hallgrímsson, Benedikt; Marcucio, Ralph S.

    2013-01-01

    Fibroblast growth factor (FGF) signaling mutations are a frequent contributor to craniofacial malformations including midfacial anomalies and craniosynostosis. FGF signaling has been shown to control cellular mechanisms that contribute to facial morphogenesis and growth such as proliferation, survival, migration and differentiation. We hypothesized that FGF signaling not only controls the magnitude of growth during facial morphogenesis but also regulates the direction of growth via cell polarity. To test this idea, we infected migrating neural crest cells of chicken embryos with  replication-competent avian sarcoma virus expressing either FgfR2C278F, a receptor mutation found in Crouzon syndrome or the ligand Fgf8. Treated embryos exhibited craniofacial malformations resembling facial dysmorphologies in craniosynostosis syndrome. Consistent with our hypothesis, ectopic activation of FGF signaling resulted in decreased cell proliferation, increased expression of the Sprouty class of FGF signaling inhibitors, and repressed phosphorylation of ERK/MAPK. Furthermore, quantification of cell polarity in facial mesenchymal cells showed that while orientation of the Golgi body matches the direction of facial prominence outgrowth in normal cells, in FGF-treated embryos this direction is randomized, consistent with aberrant growth that we observed. Together, these data demonstrate that FGF signaling regulates cell proliferation and cell polarity and that these cell processes contribute to facial morphogenesis. PMID:23906837

  19. Luminal mitosis drives epithelial cell dispersal within the branching ureteric bud

    PubMed Central

    Packard, Adam; Georgas, Kylie; Michos, Odyssé; Riccio, Paul; Cebrian, Cristina; Combes, Alexander N.; Ju, Adler; Ferrer-Vaquer, Anna; Hadjantonakis, Anna-Katerina; Zong, Hui; Little, Melissa H.; Costantini, Frank

    2013-01-01

    Summary The ureteric bud is an epithelial tube that undergoes branching morphogenesis to form the renal collecting system. Though development of a normal kidney depends on proper ureteric bud morphogenesis, the cellular events underlying this process remain obscure. Here, we used time-lapse microscopy together with several genetic labeling methods to observe ureteric bud cell behaviors in developing mouse kidneys. We observed an unexpected cell behavior in the branching tips of the ureteric bud, which we term “mitosis-associated cell dispersal”. Pre-mitotic ureteric tip cells delaminate from the epithelium and divide within the lumen; while one daughter cell retains a basal process, allowing it to reinsert into the epithelium at the site of origin, the other daughter cell reinserts at a position one to three cell diameters away. Given the high rate of cell division in ureteric tips, this cellular behavior causes extensive epithelial cell rearrangements that may contribute to renal branching morphogenesis. PMID:24183650

  20. The Rice Basic Helix-Loop-Helix Transcription Factor TDR INTERACTING PROTEIN2 Is a Central Switch in Early Anther Development[C][W

    PubMed Central

    Fu, Zhenzhen; Yu, Jing; Cheng, Xiaowei; Zong, Xu; Xu, Jie; Chen, Mingjiao; Li, Zongyun; Zhang, Dabing; Liang, Wanqi

    2014-01-01

    In male reproductive development in plants, meristemoid precursor cells possessing transient, stem cell–like features undergo cell divisions and differentiation to produce the anther, the male reproductive organ. The anther contains centrally positioned microsporocytes surrounded by four distinct layers of wall: the epidermis, endothecium, middle layer, and tapetum. Here, we report that the rice (Oryza sativa) basic helix-loop-helix (bHLH) protein TDR INTERACTING PROTEIN2 (TIP2) functions as a crucial switch in the meristemoid transition and differentiation during early anther development. The tip2 mutants display undifferentiated inner three anther wall layers and abort tapetal programmed cell death, causing complete male sterility. TIP2 has two paralogs in rice, TDR and EAT1, which are key regulators of tapetal programmed cell death. We revealed that TIP2 acts upstream of TDR and EAT1 and directly regulates the expression of TDR and EAT1. In addition, TIP2 can interact with TDR, indicating a role of TIP2 in later anther development. Our findings suggest that the bHLH proteins TIP2, TDR, and EAT1 play a central role in regulating differentiation, morphogenesis, and degradation of anther somatic cell layers, highlighting the role of paralogous bHLH proteins in regulating distinct steps of plant cell–type determination. PMID:24755456

  1. Moving domain computational fluid dynamics to interface with an embryonic model of cardiac morphogenesis.

    PubMed

    Lee, Juhyun; Moghadam, Mahdi Esmaily; Kung, Ethan; Cao, Hung; Beebe, Tyler; Miller, Yury; Roman, Beth L; Lien, Ching-Ling; Chi, Neil C; Marsden, Alison L; Hsiai, Tzung K

    2013-01-01

    Peristaltic contraction of the embryonic heart tube produces time- and spatial-varying wall shear stress (WSS) and pressure gradients (∇P) across the atrioventricular (AV) canal. Zebrafish (Danio rerio) are a genetically tractable system to investigate cardiac morphogenesis. The use of Tg(fli1a:EGFP) (y1) transgenic embryos allowed for delineation and two-dimensional reconstruction of the endocardium. This time-varying wall motion was then prescribed in a two-dimensional moving domain computational fluid dynamics (CFD) model, providing new insights into spatial and temporal variations in WSS and ∇P during cardiac development. The CFD simulations were validated with particle image velocimetry (PIV) across the atrioventricular (AV) canal, revealing an increase in both velocities and heart rates, but a decrease in the duration of atrial systole from early to later stages. At 20-30 hours post fertilization (hpf), simulation results revealed bidirectional WSS across the AV canal in the heart tube in response to peristaltic motion of the wall. At 40-50 hpf, the tube structure undergoes cardiac looping, accompanied by a nearly 3-fold increase in WSS magnitude. At 110-120 hpf, distinct AV valve, atrium, ventricle, and bulbus arteriosus form, accompanied by incremental increases in both WSS magnitude and ∇P, but a decrease in bi-directional flow. Laminar flow develops across the AV canal at 20-30 hpf, and persists at 110-120 hpf. Reynolds numbers at the AV canal increase from 0.07±0.03 at 20-30 hpf to 0.23±0.07 at 110-120 hpf (p< 0.05, n=6), whereas Womersley numbers remain relatively unchanged from 0.11 to 0.13. Our moving domain simulations highlights hemodynamic changes in relation to cardiac morphogenesis; thereby, providing a 2-D quantitative approach to complement imaging analysis.

  2. Fine structure and morphogenesis of spironolactone bodies in the zona glomerulosa of the human adrenal cortex

    PubMed Central

    Kovacs, K.; Horvath, E.; Singer, W.

    1973-01-01

    Numerous spironolactone bodies have been detected in the zona glomerulosa cells of the adrenal cortex of a 36-year-old spironolactone-treated woman whose non-tumorous right adrenal gland was removed surgically because of primary hyperaldosteronism. Electron microscopy revealed spherical laminated whorls which consisted of a central core composed of an amorphous electron-dense material surrounded by numerous smooth-walled concentric membranes. Continuous with and deriving from the endoplasmic reticulum, they were present in viable cells and were not associated with ultrastructural features indicating cellular injury. Cytoplasmic inclusions similar to spironolactone bodies can be detected in other organs after the administration of various compounds. Thus, they can be regarded as neither specific to spironolactone treatment nor exclusively inducible in the zona glomerulosa of the adrenal cortex. Images PMID:4131694

  3. Melatonin Inhibits Embryonic Salivary Gland Branching Morphogenesis by Regulating Both Epithelial Cell Adhesion and Morphology

    PubMed Central

    Miura, Jiro; Sakai, Manabu; Uchida, Hitoshi; Nakamura, Wataru; Nohara, Kanji; Maruyama, Yusuke; Hattori, Atsuhiko; Sakai, Takayoshi

    2015-01-01

    Many organs, including salivary glands, lung, and kidney, are formed by epithelial branching during embryonic development. Branching morphogenesis occurs via either local outgrowths or the formation of clefts that subdivide epithelia into buds. This process is promoted by various factors, but the mechanism of branching morphogenesis is not fully understood. Here we have defined melatonin as a potential negative regulator or “brake” of branching morphogenesis, shown that the levels of it and its receptors decline when branching morphogenesis begins, and identified the process that it regulates. Melatonin has various physiological functions, including circadian rhythm regulation, free-radical scavenging, and gonadal development. Furthermore, melatonin is present in saliva and may have an important physiological role in the oral cavity. In this study, we found that the melatonin receptor is highly expressed on the acinar epithelium of the embryonic submandibular gland. We also found that exogenous melatonin reduces salivary gland size and inhibits branching morphogenesis. We suggest that this inhibition does not depend on changes in either proliferation or apoptosis, but rather relates to changes in epithelial cell adhesion and morphology. In summary, we have demonstrated a novel function of melatonin in organ formation during embryonic development. PMID:25876057

  4. The Dual Activity Responsible for the Elongation and Branching of β-(1,3)-Glucan in the Fungal Cell Wall.

    PubMed

    Aimanianda, Vishukumar; Simenel, Catherine; Garnaud, Cecile; Clavaud, Cecile; Tada, Rui; Barbin, Lise; Mouyna, Isabelle; Heddergott, Christoph; Popolo, Laura; Ohya, Yoshikazu; Delepierre, Muriel; Latge, Jean-Paul

    2017-06-20

    β-(1,3)-Glucan, the major fungal cell wall component, ramifies through β-(1,6)-glycosidic linkages, which facilitates its binding with other cell wall components contributing to proper cell wall assembly. Using Saccharomyces cerevisiae as a model, we developed a protocol to quantify β-(1,6)-branching on β-(1,3)-glucan. Permeabilized S. cerevisiae and radiolabeled substrate UDP-( 14 C)glucose allowed us to determine branching kinetics. A screening aimed at identifying deletion mutants with reduced branching among them revealed only two, the bgl2 Δ and gas1 Δ mutants, showing 15% and 70% reductions in the branching, respectively, compared to the wild-type strain. Interestingly, a recombinant Gas1p introduced β-(1,6)-branching on the β-(1,3)-oligomers following its β-(1,3)-elongase activity. Sequential elongation and branching activity of Gas1p occurred on linear β-(1,3)-oligomers as well as Bgl2p-catalyzed products [short β-(1,3)-oligomers linked by a linear β-(1,6)-linkage]. The double S. cerevisiae gas1 Δ bgl2 Δ mutant showed a drastically sick phenotype. An Sc Gas1p ortholog, Gel4p from Aspergillus fumigatus , also showed dual β-(1,3)-glucan elongating and branching activity. Both Sc Gas1p and A. fumigatus Gel4p sequences are endowed with a carbohydrate binding module (CBM), CBM43, which was required for the dual β-(1,3)-glucan elongating and branching activity. Our report unravels the β-(1,3)-glucan branching mechanism, a phenomenon occurring during construction of the cell wall which is essential for fungal life. IMPORTANCE The fungal cell wall is essential for growth, morphogenesis, protection, and survival. In spite of being essential, cell wall biogenesis, especially the core β-(1,3)-glucan ramification, is poorly understood; the ramified β-(1,3)-glucan interconnects other cell wall components. Once linear β-(1,3)-glucan is synthesized by plasma membrane-bound glucan synthase, the subsequent event is its branching event in the cell wall space. Using Saccharomyces cerevisiae as a model, we identified GH72 and GH17 family glycosyltransferases, Gas1p and Bgl2p, respectively, involved in the β-(1,3)-glucan branching. The sick phenotype of the double Scgas1 Δ bgl2 Δ mutant suggested that β-(1,3)-glucan branching is essential. In addition to Sc Gas1p, GH72 family Sc Gas2p and Aspergillus fumigatus Gel4p, having CBM43 in their sequences, showed dual β-(1,3)-glucan elongating and branching activity. Our report identifies the fungal cell wall β-(1,3)-glucan branching mechanism. The essentiality of β-(1,3)-glucan branching suggests that enzymes involved in the glucan branching could be exploited as antifungal targets. Copyright © 2017 Aimanianda et al.

  5. klf2a couples mechanotransduction and zebrafish valve morphogenesis through fibronectin synthesis

    PubMed Central

    Steed, Emily; Faggianelli, Nathalie; Roth, Stéphane; Ramspacher, Caroline; Concordet, Jean-Paul; Vermot, Julien

    2016-01-01

    The heartbeat and blood flow signal to endocardial cell progenitors through mechanosensitive proteins that modulate the genetic program controlling heart valve morphogenesis. To date, the mechanism by which mechanical forces coordinate tissue morphogenesis is poorly understood. Here we use high-resolution imaging to uncover the coordinated cell behaviours leading to heart valve formation. We find that heart valves originate from progenitors located in the ventricle and atrium that generate the valve leaflets through a coordinated set of endocardial tissue movements. Gene profiling analyses and live imaging reveal that this reorganization is dependent on extracellular matrix proteins, in particular on the expression of fibronectin1b. We show that blood flow and klf2a, a major endocardial flow-responsive gene, control these cell behaviours and fibronectin1b synthesis. Our results uncover a unique multicellular layering process leading to leaflet formation and demonstrate that endocardial mechanotransduction and valve morphogenesis are coupled via cellular rearrangements mediated by fibronectin synthesis. PMID:27221222

  6. Arabidopsis JAGGED links floral organ patterning to tissue growth by repressing Kip-related cell cycle inhibitors.

    PubMed

    Schiessl, Katharina; Muiño, Jose M; Sablowski, Robert

    2014-02-18

    Plant morphogenesis requires coordinated cytoplasmic growth, oriented cell wall extension, and cell cycle progression, but it is debated which of these processes are primary drivers for tissue growth and directly targeted by developmental genes. Here, we used ChIP high-throughput sequencing combined with transcriptome analysis to identify global target genes of the Arabidopsis transcription factor JAGGED (JAG), which promotes growth of the distal region of floral organs. Consistent with the roles of JAG during organ initiation and subsequent distal organ growth, we found that JAG directly repressed genes involved in meristem development, such as CLAVATA1 and HANABA TARANU, and genes involved in the development of the basal region of shoot organs, such as BLADE ON PETIOLE 2 and the GROWTH REGULATORY FACTOR pathway. At the same time, JAG regulated genes involved in tissue polarity, cell wall modification, and cell cycle progression. In particular, JAG directly repressed KIP RELATED PROTEIN 4 (KRP4) and KRP2, which control the transition to the DNA synthesis phase (S-phase) of the cell cycle. The krp2 and krp4 mutations suppressed jag defects in organ growth and in the morphology of petal epidermal cells, showing that the interaction between JAG and KRP genes is functionally relevant. Our work reveals that JAG is a direct mediator between genetic pathways involved in organ patterning and cellular functions required for tissue growth, and it shows that a regulatory gene shapes plant organs by releasing a constraint on S-phase entry.

  7. Localization of ascorbic acid, ascorbic acid oxidase, and glutathione in roots of Cucurbita maxima L.

    PubMed

    Liso, Rosalia; De Tullio, Mario C; Ciraci, Samantha; Balestrini, Raffaella; La Rocca, Nicoletta; Bruno, Leonardo; Chiappetta, Adriana; Bitonti, Maria Beatrice; Bonfante, Paola; Arrigoni, Oreste

    2004-12-01

    To understand the function of ascorbic acid (ASC) in root development, the distribution of ASC, ASC oxidase, and glutathione (GSH) were investigated in cells and tissues of the root apex of Cucubita maxima. ASC was regularly distributed in the cytosol of almost all root cells, with the exception of quiescent centre (QC) cells. ASC also occurred at the surface of the nuclear membrane and correspondingly in the nucleoli. No ASC could be observed in vacuoles. ASC oxidase was detected by immunolocalization mainly in cell walls and vacuoles. This enzyme was particularly abundant in the QC and in differentiating vascular tissues and was absent in lateral root primordia. Administration of the ASC precursor L-galactono-gamma-lactone markedly increased ASC content in all root cells, including the QC. Root treatment with the ASC oxidized product, dehydroascorbic acid (DHA), also increased ASC content, but caused ASC accumulation only in peripheral tissues, where DHA was apparently reduced at the expense of GSH. The different pattern of distribution of ASC in different tissues and cell compartments reflects its possible role in cell metabolism and root morphogenesis.

  8. Mechanical models for the self-organization of tubular patterns.

    PubMed

    Guo, Chin-Lin

    2013-01-01

    Organogenesis, such as long tubule self-organization, requires long-range coordination of cell mechanics to arrange cell positions and to remodel the extracellular matrix. While the current mainstream in the field of tissue morphogenesis focuses primarily on genetics and chemical signaling, the influence of cell mechanics on the programming of patterning cues in tissue morphogenesis has not been adequately addressed. Here, we review experimental evidence and propose quantitative mechanical models by which cells can create tubular patterns.

  9. Transcriptional regulation of fksA, a β-1,3-glucan synthase gene, by the APSES protein StuA during Aspergillus nidulans development.

    PubMed

    Park, Bum-Chan; Park, Yun-Hee; Yi, Soohyun; Choi, Yu Kyung; Kang, Eun-Hye; Park, Hee-Moon

    2014-11-01

    The temporal and spatial regulation of β-1,3-glucan synthesis plays an important role in morphogenesis during fungal growth and development. Northern blot analysis showed that the transcription of fksA, the gene encoding β-1,3-glucan synthase in Aspergillus nidulans, was cell-cycle-dependent and increased steadily over the duration of the vegetative period, but its overall expression during the asexual and sexual stages was fairly constant up until the time of transcription cessation. In an A. nidulans strain mutated in the eukaryotic bHLH-like APSES transcription factor stuA1, the transcriptional level of fksA, and consequently the content of alkali-insoluble cell wall β-glucan, significantly increased at the conidial chain formation and maturation stage. Electrophoretic mobility shift assays revealed that StuA was bound to StREs (StuA Response Elements) on the fksA promoter region. Promoter analysis with sGFP-fusion constructs also indicated the negative regulation of fksA expression by StuA, especially during asexual development. Taken together, these data suggest that StuA plays an important role in cell wall biogenesis during the development of A. nidulans, by controlling the transcription level of fksA.

  10. Polarized protein transport and lumen formation during epithelial tissue morphogenesis.

    PubMed

    Blasky, Alex J; Mangan, Anthony; Prekeris, Rytis

    2015-01-01

    One of the major challenges in biology is to explain how complex tissues and organs arise from the collective action of individual polarized cells. The best-studied model of this process is the cross talk between individual epithelial cells during their polarization to form the multicellular epithelial lumen during tissue morphogenesis. Multiple mechanisms of apical lumen formation have been proposed. Some epithelial lumens form from preexisting polarized epithelial structures. However, de novo lumen formation from nonpolarized cells has recently emerged as an important driver of epithelial tissue morphogenesis, especially during the formation of small epithelial tubule networks. In this review, we discuss the latest findings regarding the mechanisms and regulation of de novo lumen formation in vitro and in vivo.

  11. From The Cover: Reconstruction of functionally normal and malignant human breast tissues in mice

    NASA Astrophysics Data System (ADS)

    Kuperwasser, Charlotte; Chavarria, Tony; Wu, Min; Magrane, Greg; Gray, Joe W.; Carey, Loucinda; Richardson, Andrea; Weinberg, Robert A.

    2004-04-01

    The study of normal breast epithelial morphogenesis and carcinogenesis in vivo has largely used rodent models. Efforts at studying mammary morphogenesis and cancer with xenotransplanted human epithelial cells have failed to recapitulate the full extent of development seen in the human breast. We have developed an orthotopic xenograft model in which both the stromal and epithelial components of the reconstructed mammary gland are of human origin. Genetic modification of human stromal cells before the implantation of ostensibly normal human mammary epithelial cells resulted in the outgrowth of benign and malignant lesions. This experimental model allows for studies of human epithelial morphogenesis and differentiation in vivo and underscores the critical role of heterotypic interactions in human breast development and carcinogenesis.

  12. Ciona intestinalis notochord as a new model to investigate the cellular and molecular mechanisms of tubulogenesis.

    PubMed

    Denker, Elsa; Jiang, Di

    2012-05-01

    Biological tubes are a prevalent structural design across living organisms. They provide essential functions during the development and adult life of an organism. Increasing progress has been made recently in delineating the cellular and molecular mechanisms underlying tubulogenesis. This review aims to introduce ascidian notochord morphogenesis as an interesting model system to study the cell biology of tube formation, to a wider cell and developmental biology community. We present fundamental morphological and cellular events involved in notochord morphogenesis, compare and contrast them with other more established tubulogenesis model systems, and point out some unique features, including bipolarity of the notochord cells, and using cell shape changes and cell rearrangement to connect lumens. We highlight some initial findings in the molecular mechanisms of notochord morphogenesis. Based on these findings, we present intriguing problems and put forth hypotheses that can be addressed in future studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Regulation of polarized morphogenesis by protein kinase C iota in oncogenic epithelial spheroids.

    PubMed

    Linch, Mark; Sanz-Garcia, Marta; Rosse, Carine; Riou, Philippe; Peel, Nick; Madsen, Chris D; Sahai, Erik; Downward, Julian; Khwaja, Asim; Dillon, Christian; Roffey, Jon; Cameron, Angus J M; Parker, Peter J

    2014-02-01

    Protein kinase C iota (PKCι), a serine/threonine kinase required for cell polarity, proliferation and migration, is commonly up- or downregulated in cancer. PKCι is a human oncogene but whether this is related to its role in cell polarity and what repertoire of oncogenes acts in concert with PKCι is not known. We developed a panel of candidate oncogene expressing Madin-Darby canine kidney (MDCK) cells and demonstrated that H-Ras, ErbB2 and phosphatidylinositol 3-kinase transformation led to non-polar spheroid morphogenesis (dysplasia), whereas MDCK spheroids expressing c-Raf or v-Src were largely polarized. We show that small interfering RNA (siRNA)-targeting PKCι decreased the size of all spheroids tested and partially reversed the aberrant polarity phenotype in H-Ras and ErbB2 spheroids only. This indicates distinct requirements for PKCι and moreover that different thresholds of PKCι activity are required for these phenotypes. By manipulating PKCι function using mutant constructs, siRNA depletion or chemical inhibition, we have demonstrated that PKCι is required for polarization of parental MDCK epithelial cysts in a 3D matrix and that there is a threshold of PKCι activity above and below which, disorganized epithelial morphogenesis results. Furthermore, treatment with a novel PKCι inhibitor, CRT0066854, was able to restore polarized morphogenesis in the dysplastic H-Ras spheroids. These results show that tightly regulated PKCι is required for normal-polarized morphogenesis in mammalian cells and that H-Ras and ErbB2 cooperate with PKCι for loss of polarization and dysplasia. The identification of a PKCι inhibitor that can restore polarized morphogenesis has implications for the treatment of Ras and ErbB2 driven malignancies.

  14. Geometric Constraints and the Anatomical Interpretation of Twisted Plant Organ Phenotypes

    PubMed Central

    Weizbauer, Renate; Peters, Winfried S.; Schulz, Burkhard

    2011-01-01

    The study of plant mutants with twisting growth in axial organs, which normally grow straight in the wild-type, is expected to improve our understanding of the interplay among microtubules, cellulose biosynthesis, cell wall structure, and organ biomechanics that control organ growth and morphogenesis. However, geometric constraints based on symplastic growth and the consequences of these geometric constraints concerning interpretations of twisted-organ phenotypes are currently underestimated. Symplastic growth, a fundamental concept in plant developmental biology, is characterized by coordinated growth of adjacent cells based on their connectivity through cell walls. This growth behavior implies that in twisting axial organs, all cell files rotate in phase around the organ axis, as has been illustrated for the Arabidopsis spr1 and twd1 mutants in this work. Evaluating the geometry of such organs, we demonstrate that a radial gradient in cell elongation and changes in cellular growth anisotropy must occur in twisting organs out of geometric necessity alone. In-phase rotation of the different cell layers results in a decrease of length and angle toward organ axis from the outer cell layers inward. Additionally, the circumference of each cell layer increases in twisting organs, which requires compensation through radial expansion or an adjustment of cell number. Therefore, differential cell elongation and growth anisotropy cannot serve as arguments for or against specific hypotheses regarding the molecular cause of twisting growth. We suggest instead, that based on mathematical modeling, geometric constraints in twisting organs are indispensable for the explanation of the causal connection of molecular and biomechanical processes in twisting as well as normal organs. PMID:22645544

  15. MoSwi6, an APSES family transcription factor, interacts with MoMps1 and is required for hyphal and conidial morphogenesis, appressorial function, and pathogenicity of Magnaporthe oryzae

    PubMed Central

    Qi, Zhongqiang; Wang, Qi; Dou, Xianying; Wang, Wei; Zhao, Qian; Lv, Ruili; Zhang, Haifeng; Zheng, Xiaobo; Wang, Ping; Zhang, Zhengguang

    2011-01-01

    Magnaporthe oryzae MAPK MoMps1 plays a critical role in regulating various developmental processes including cell wall integrity, stress responses, and pathogenicity. To identify potential effectors of MoMps1, we characterized the function of MoSwi6, a homolog of Saccharomyces cerevisiae Swi6 downstream of MAPK Slt2 signaling. MoSwi6 interacted with MoMps1 both in vivo and in vitro, suggesting a possible functional link analogous to Swi6-Slt2 in S. cerevisiae. Targeted gene disruption of MoSWI6 resulted in multiple developmental defects, including reduced hyphal growth, abnormal formation of conidia and appressoria, and impaired appressorium function. The reduction in appressorial turgor pressure also contributed to an attenuation of pathogenicity. The ΔMoswi6 mutant also displayed a defect in cell wall integrity, was hypersensitive to the oxidative stress, and showed significant reduction in transcription and activities of extracellular enzymes including peroxidases and laccases. Collectively, these roles are similar to those of MoMps1, confirming that MoSwi6 functions in the MoMps1 pathway to govern growth, development, and full pathogenicity. PMID:22321443

  16. Unified quantitative characterization of epithelial tissue development

    PubMed Central

    Guirao, Boris; Rigaud, Stéphane U; Bosveld, Floris; Bailles, Anaïs; López-Gay, Jesús; Ishihara, Shuji; Sugimura, Kaoru

    2015-01-01

    Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantified separately all morphogenetic events in the Drosophila dorsal thorax and wing pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all significantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development. DOI: http://dx.doi.org/10.7554/eLife.08519.001 PMID:26653285

  17. The Ron Receptor Tyrosine Kinase Negatively Regulates Mammary Gland Branching Morphogenesis

    PubMed Central

    Meyer, Sara E.; Zinser, Glendon M.; Stuart, William D.; Pathrose, Peterson; Waltz, Susan E.

    2009-01-01

    The Ron receptor tyrosine kinase is expressed in normal breast tissue and is overexpressed in approximately 50% of human breast cancers. Despite the recent studies on Ron in breast cancer, nothing is known about the importance of this protein during breast development. To investigate the functional significance of Ron in the normal mammary gland, we compared mammary gland development in wild-type mice to mice containing a targeted ablation of the tyrosine kinase (TK) signaling domain of Ron (TK−/−). Mammary glands from RonTK−/− mice exhibited accelerated pubertal development including significantly increased ductal extension and branching morphogenesis. While circulating levels of estrogen, progesterone, and overall rates of epithelial cell turnover were unchanged, significant increases in phosphorylated MAPK, which predominantly localized to the epithelium, were associated with increased branching morphogenesis. Additionally, purified RonTK−/− epithelial cells cultured ex vivo exhibited enhanced branching morphogenesis, which was reduced upon MAPK inhibition. Microarray analysis of pubertal RonTK−/− glands revealed 393 genes temporally impacted by Ron expression with significant changes observed in signaling networks regulating development, morphogenesis, differentiation, cell motility, and adhesion. In total, these studies represent the first evidence of a role for the Ron receptor tyrosine kinase as a critical negative regulator of mammary development. PMID:19576199

  18. The Polarity Protein Partitioning-defective 1 (PAR-1) Regulates Dendritic Spine Morphogenesis through Phosphorylating Postsynaptic Density Protein 95 (PSD-95)*

    PubMed Central

    Wu, Qian; DiBona, Victoria L.; Bernard, Laura P.; Zhang, Huaye

    2012-01-01

    The polarity protein PAR-1 plays an essential role in many cellular contexts, including embryogenesis, asymmetric cell division, directional migration, and epithelial morphogenesis. Despite its known importance in different cellular processes, the role of PAR-1 in neuronal morphogenesis is less well understood. In particular, its role in the morphogenesis of dendritic spines, which are sites of excitatory synaptic inputs, has been unclear. Here, we show that PAR-1 is required for normal spine morphogenesis in hippocampal neurons. We further show that PAR-1 functions through phosphorylating the synaptic scaffolding protein PSD-95 in this process. Phosphorylation at a conserved serine residue in the KXGS motif in PSD-95 regulates spine morphogenesis, and a phosphomimetic mutant of this site can rescue the defects of kinase-dead PAR-1. Together, our findings uncover a role of PAR-1 in spine morphogenesis in hippocampal neurons through phosphorylating PSD-95. PMID:22807451

  19. Mechanical forces as information: an integrated approach to plant and animal development

    PubMed Central

    Hernández-Hernández, Valeria; Rueda, Denisse; Caballero, Lorena; Alvarez-Buylla, Elena R.; Benítez, Mariana

    2014-01-01

    Mechanical forces such as tension and compression act throughout growth and development of multicellular organisms. These forces not only affect the size and shape of the cells and tissues but are capable of modifying the expression of genes and the localization of molecular components within the cell, in the plasma membrane, and in the plant cell wall. The magnitude and direction of these physical forces change with cellular and tissue properties such as elasticity. Thus, mechanical forces and the mesoscopic fields that emerge from their local action constitute important sources of positional information. Moreover, physical and biochemical processes interact in non-linear ways during tissue and organ growth in plants and animals. In this review we discuss how such mechanical forces are generated, transmitted, and sensed in these two lineages of multicellular organisms to yield long-range positional information. In order to do so we first outline a potentially common basis for studying patterning and mechanosensing that relies on the structural principle of tensegrity, and discuss how tensegral structures might arise in plants and animals. We then provide some examples of morphogenesis in which mechanical forces appear to act as positional information during development, offering a possible explanation for ubiquitous processes, such as the formation of periodic structures. Such examples, we argue, can be interpreted in terms of tensegral phenomena. Finally, we discuss the hypothesis of mechanically isotropic points as a potentially generic mechanism for the localization and maintenance of stem-cell niches in multicellular organisms. This comparative approach aims to help uncovering generic mechanisms of morphogenesis and thus reach a better understanding of the evolution and development of multicellular phenotypes, focusing on the role of physical forces in these processes. PMID:24959170

  20. Mechanical forces as information: an integrated approach to plant and animal development.

    PubMed

    Hernández-Hernández, Valeria; Rueda, Denisse; Caballero, Lorena; Alvarez-Buylla, Elena R; Benítez, Mariana

    2014-01-01

    Mechanical forces such as tension and compression act throughout growth and development of multicellular organisms. These forces not only affect the size and shape of the cells and tissues but are capable of modifying the expression of genes and the localization of molecular components within the cell, in the plasma membrane, and in the plant cell wall. The magnitude and direction of these physical forces change with cellular and tissue properties such as elasticity. Thus, mechanical forces and the mesoscopic fields that emerge from their local action constitute important sources of positional information. Moreover, physical and biochemical processes interact in non-linear ways during tissue and organ growth in plants and animals. In this review we discuss how such mechanical forces are generated, transmitted, and sensed in these two lineages of multicellular organisms to yield long-range positional information. In order to do so we first outline a potentially common basis for studying patterning and mechanosensing that relies on the structural principle of tensegrity, and discuss how tensegral structures might arise in plants and animals. We then provide some examples of morphogenesis in which mechanical forces appear to act as positional information during development, offering a possible explanation for ubiquitous processes, such as the formation of periodic structures. Such examples, we argue, can be interpreted in terms of tensegral phenomena. Finally, we discuss the hypothesis of mechanically isotropic points as a potentially generic mechanism for the localization and maintenance of stem-cell niches in multicellular organisms. This comparative approach aims to help uncovering generic mechanisms of morphogenesis and thus reach a better understanding of the evolution and development of multicellular phenotypes, focusing on the role of physical forces in these processes.

  1. Expression and Functional Role of Sprouty-2 in Breast Morphogenesis

    PubMed Central

    Hilmarsdottir, Bylgja; Gustafsdottir, Sigrun M.; Franzdottir, Sigridur Rut; Arason, Ari Jon; Steingrimsson, Eirikur; Magnusson, Magnus K.; Gudjonsson, Thorarinn

    2013-01-01

    Branching morphogenesis is a mechanism used by many species for organogenesis and tissue maintenance. Receptor tyrosine kinases (RTKs), including epidermal growth factor receptor (EGFR) and the sprouty protein family are believed to be critical regulators of branching morphogenesis. The aim of this study was to analyze the expression of Sprouty-2 (SPRY2) in the mammary gland and study its role in branching morphogenesis. Human breast epithelial cells, breast tissue and mouse mammary glands were used for expression studies using immunoblotting, real rime PCR and immunohistochemistry. Knockdown of SPRY2 in the breast epithelial stem cell line D492 was done by lentiviral transduction of shRNA constructs targeting SPRY2. Three dimensional culture of D492 with or without endothelial cells was done in reconstituted basement membrane matrix. We show that in the human breast, SPRY2 is predominantly expressed in the luminal epithelial cells of both ducts and lobuli. In the mouse mammary gland, SPRY2 expression is low or absent in the virgin state, while in the pregnant mammary gland SPRY2 is expressed at branching epithelial buds with increased expression during lactation. This expression pattern is closely associated with the activation of the EGFR pathway. Using D492 which generates branching structures in three-dimensional (3D) culture, we show that SPRY2 expression is low during initiation of branching with subsequent increase throughout the branching process. Immunostaining locates expression of phosphorylated SPRY2 and EGFR at the tip of lobular-like, branching ends. SPRY2 knockdown (KD) resulted in increased migration, increased pERK and larger and more complex branching structures indicating a loss of negative feedback control during branching morphogenesis. In D492 co-cultures with endothelial cells, D492 SPRY2 KD generates spindle-like colonies that bear hallmarks of epithelial to mesenchymal transition. These data indicate that SPRY2 is an important regulator of branching morphogenesis and epithelial to mesenchymal transition in the mammary gland. PMID:23573284

  2. Expression and functional role of sprouty-2 in breast morphogenesis.

    PubMed

    Sigurdsson, Valgardur; Ingthorsson, Saevar; Hilmarsdottir, Bylgja; Gustafsdottir, Sigrun M; Franzdottir, Sigridur Rut; Arason, Ari Jon; Steingrimsson, Eirikur; Magnusson, Magnus K; Gudjonsson, Thorarinn

    2013-01-01

    Branching morphogenesis is a mechanism used by many species for organogenesis and tissue maintenance. Receptor tyrosine kinases (RTKs), including epidermal growth factor receptor (EGFR) and the sprouty protein family are believed to be critical regulators of branching morphogenesis. The aim of this study was to analyze the expression of Sprouty-2 (SPRY2) in the mammary gland and study its role in branching morphogenesis. Human breast epithelial cells, breast tissue and mouse mammary glands were used for expression studies using immunoblotting, real rime PCR and immunohistochemistry. Knockdown of SPRY2 in the breast epithelial stem cell line D492 was done by lentiviral transduction of shRNA constructs targeting SPRY2. Three dimensional culture of D492 with or without endothelial cells was done in reconstituted basement membrane matrix. We show that in the human breast, SPRY2 is predominantly expressed in the luminal epithelial cells of both ducts and lobuli. In the mouse mammary gland, SPRY2 expression is low or absent in the virgin state, while in the pregnant mammary gland SPRY2 is expressed at branching epithelial buds with increased expression during lactation. This expression pattern is closely associated with the activation of the EGFR pathway. Using D492 which generates branching structures in three-dimensional (3D) culture, we show that SPRY2 expression is low during initiation of branching with subsequent increase throughout the branching process. Immunostaining locates expression of phosphorylated SPRY2 and EGFR at the tip of lobular-like, branching ends. SPRY2 knockdown (KD) resulted in increased migration, increased pERK and larger and more complex branching structures indicating a loss of negative feedback control during branching morphogenesis. In D492 co-cultures with endothelial cells, D492 SPRY2 KD generates spindle-like colonies that bear hallmarks of epithelial to mesenchymal transition. These data indicate that SPRY2 is an important regulator of branching morphogenesis and epithelial to mesenchymal transition in the mammary gland.

  3. Epithelial organization and cyst lumen expansion require efficient Sec13-Sec31-driven secretion.

    PubMed

    Townley, Anna K; Schmidt, Katy; Hodgson, Lorna; Stephens, David J

    2012-02-01

    Epithelial morphogenesis is directed by interactions with the underlying extracellular matrix. Secretion of collagen and other matrix components requires efficient coat complex II (COPII) vesicle formation at the endoplasmic reticulum. Here, we show that suppression of the outer layer COPII component, Sec13, in zebrafish embryos results in a disorganized gut epithelium. In human intestinal epithelial cells (Caco-2), Sec13 depletion causes defective epithelial polarity and organization on permeable supports. Defects are seen in the ability of cells to adhere to the substrate, form a monolayer and form intercellular junctions. When embedded in a three-dimensional matrix, Sec13-depleted Caco-2 cells form cysts but, unlike controls, are defective in lumen expansion. Incorporation of primary fibroblasts within the three-dimensional culture substantially restores normal morphogenesis. We conclude that efficient COPII-dependent secretion, notably assembly of Sec13-Sec31, is required to drive epithelial morphogenesis in both two- and three-dimensional cultures in vitro, as well as in vivo. Our results provide insight into the role of COPII in epithelial morphogenesis and have implications for the interpretation of epithelial polarity and organization assays in cell culture.

  4. Epithelial organization and cyst lumen expansion require efficient Sec13–Sec31-driven secretion

    PubMed Central

    Townley, Anna K.; Schmidt, Katy; Hodgson, Lorna; Stephens, David J.

    2012-01-01

    Epithelial morphogenesis is directed by interactions with the underlying extracellular matrix. Secretion of collagen and other matrix components requires efficient coat complex II (COPII) vesicle formation at the endoplasmic reticulum. Here, we show that suppression of the outer layer COPII component, Sec13, in zebrafish embryos results in a disorganized gut epithelium. In human intestinal epithelial cells (Caco-2), Sec13 depletion causes defective epithelial polarity and organization on permeable supports. Defects are seen in the ability of cells to adhere to the substrate, form a monolayer and form intercellular junctions. When embedded in a three-dimensional matrix, Sec13-depleted Caco-2 cells form cysts but, unlike controls, are defective in lumen expansion. Incorporation of primary fibroblasts within the three-dimensional culture substantially restores normal morphogenesis. We conclude that efficient COPII-dependent secretion, notably assembly of Sec13–Sec31, is required to drive epithelial morphogenesis in both two- and three-dimensional cultures in vitro, as well as in vivo. Our results provide insight into the role of COPII in epithelial morphogenesis and have implications for the interpretation of epithelial polarity and organization assays in cell culture. PMID:22331354

  5. Motility and more: the flagellum of Trypanosoma brucei

    PubMed Central

    Langousis, Gerasimos; Hill, Kent L.

    2014-01-01

    A central feature of trypanosome cell biology and life cycle is the parasite’s single flagellum, which is an essential and multifunctional organelle involved in cell propulsion, morphogenesis and cytokinesis. The flagellar membrane is also a specialized subdomain of the cell surface that harbors multiple parasite virulence factors with roles in signaling and host-parasite interactions. In this review, we discuss the structure, assembly and function of the trypanosome flagellum, including canonical roles in cell motility as well as novel and emerging roles in cell morphogenesis and host-parasite interaction. PMID:24931043

  6. Three-dimensional morphogenesis of MDCK cells induced by cellular contractile forces on a viscous substrate

    PubMed Central

    Imai, Misako; Furusawa, Kazuya; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi

    2015-01-01

    Substrate physical properties are essential for many physiological events such as embryonic development and 3D tissue formation. Physical properties of the extracellular matrix such as viscoelasticity and geometrical constraints are understood as factors that affect cell behaviour. In this study, we focused on the relationship between epithelial cell 3D morphogenesis and the substrate viscosity. We observed that Madin-Darby Canine Kidney (MDCK) cells formed 3D structures on a viscous substrate (Matrigel). The structures appear as a tulip hat. We then changed the substrate viscosity by genipin (GP) treatment. GP is a cross-linker of amino groups. Cells cultured on GP-treated-matrigel changed their 3D morphology in a substrate viscosity-dependent manner. Furthermore, to elucidate the spatial distribution of the cellular contractile force, localization of mono-phosphorylated and di-phosphorylated myosin regulatory light chain (P-MRLCs) was visualized by immunofluorescence. P-MRLCs localized along the periphery of epithelial sheets. Treatment with Y-27632, a Rho-kinase inhibitor, blocked the P-MRLCs localization at the edge of epithelial sheets and halted 3D morphogenesis. Our results indicate that the substrate viscosity, the substrate deformation, and the cellular contractile forces induced by P-MRLCs play crucial roles in 3D morphogenesis. PMID:26374384

  7. Three-dimensional morphogenesis of MDCK cells induced by cellular contractile forces on a viscous substrate.

    PubMed

    Imai, Misako; Furusawa, Kazuya; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi

    2015-09-16

    Substrate physical properties are essential for many physiological events such as embryonic development and 3D tissue formation. Physical properties of the extracellular matrix such as viscoelasticity and geometrical constraints are understood as factors that affect cell behaviour. In this study, we focused on the relationship between epithelial cell 3D morphogenesis and the substrate viscosity. We observed that Madin-Darby Canine Kidney (MDCK) cells formed 3D structures on a viscous substrate (Matrigel). The structures appear as a tulip hat. We then changed the substrate viscosity by genipin (GP) treatment. GP is a cross-linker of amino groups. Cells cultured on GP-treated-matrigel changed their 3D morphology in a substrate viscosity-dependent manner. Furthermore, to elucidate the spatial distribution of the cellular contractile force, localization of mono-phosphorylated and di-phosphorylated myosin regulatory light chain (P-MRLCs) was visualized by immunofluorescence. P-MRLCs localized along the periphery of epithelial sheets. Treatment with Y-27632, a Rho-kinase inhibitor, blocked the P-MRLCs localization at the edge of epithelial sheets and halted 3D morphogenesis. Our results indicate that the substrate viscosity, the substrate deformation, and the cellular contractile forces induced by P-MRLCs play crucial roles in 3D morphogenesis.

  8. Extra-embryonic tissue spreading directs early embryo morphogenesis in killifish

    PubMed Central

    Reig, Germán; Cerda, Mauricio; Sepúlveda, Néstor; Flores, Daniela; Castañeda, Victor; Tada, Masazumi; Härtel, Steffen; Concha, Miguel L.

    2017-01-01

    The spreading of mesenchymal-like cell layers is critical for embryo morphogenesis and tissue repair, yet we know little of this process in vivo. Here we take advantage of unique developmental features of the non-conventional annual killifish embryo to study the principles underlying tissue spreading in a simple cellular environment, devoid of patterning signals and major morphogenetic cell movements. Using in vivo experimentation and physical modelling we reveal that the extra-embryonic epithelial enveloping cell layer, thought mainly to provide protection to the embryo, directs cell migration and the spreading of embryonic tissue during early development. This function relies on the ability of embryonic cells to couple their autonomous random motility to non-autonomous signals arising from the expansion of the extra-embryonic epithelium, mediated by cell membrane adhesion and tension. Thus, we present a mechanism of extra-embryonic control of embryo morphogenesis that couples the mechanical properties of adjacent tissues in the early killifish embryo. PMID:28580937

  9. Functional diversification of the kinesin-14 family in land plants.

    PubMed

    Gicking, Allison M; Swentowsky, Kyle W; Dawe, R Kelly; Qiu, Weihong

    2018-05-12

    In most eukaryotes, cytoplasmic dynein serves as the primary cytoskeletal motor for minus-end-directed processes along microtubules. However, land plants lack dynein, having instead a large number of kinesin-14s, which suggests that kinesin-14s may have evolved to fill the cellular niche left by dynein. In addition, land plants do not have centrosomes, but contain specialized microtubule-based structures called phragmoplasts that facilitate the formation of new cell walls following cell division. This Review aims to compile the evidence for functional diversification of kinesin-14s in land plants. Known functions include spindle morphogenesis, microtubule-based trafficking, nuclear migration, chloroplast distribution, and phragmoplast expansion. Plant kinesin-14s have also evolved direct roles in chromosome segregation in maize and novel biochemical features such as actin transport and processive motility in the homodimeric state. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Coelomic epithelium-derived cells in visceral morphogenesis.

    PubMed

    Ariza, Laura; Carmona, Rita; Cañete, Ana; Cano, Elena; Muñoz-Chápuli, Ramón

    2016-03-01

    Coelomic cavities of vertebrates are lined by a mesothelium which develops from the lateral plate mesoderm. During development, the coelomic epithelium is a highly active cell layer, which locally is able to supply mesenchymal cells that contribute to the mesodermal elements of many organs and provide signals which are necessary for their development. The relevance of this process of mesenchymal cell supply to the developing organs is becoming clearer because genetic lineage tracing techniques have been developed in recent years. Body wall, heart, liver, lungs, gonads, and gastrointestinal tract are populated by cells derived from the coelomic epithelium which contribute to their connective and vascular tissues, and sometimes to specialized cell types such as the stellate cells of the liver, the Cajal interstitial cells of the gut or the Sertoli cells of the testicle. In this review we collect information about the contribution of coelomic epithelium derived cells to visceral development, their developmental fates and signaling functions. The common features displayed by all these processes suggest that the epithelial-mesenchymal transition of the embryonic coelomic epithelium is an underestimated but key event of vertebrate development, and probably it is shared by all the coelomate metazoans. © 2015 Wiley Periodicals, Inc.

  11. MoVam7, a Conserved SNARE Involved in Vacuole Assembly, Is Required for Growth, Endocytosis, ROS Accumulation, and Pathogenesis of Magnaporthe oryzae

    PubMed Central

    Dou, Xianying; Wang, Qi; Qi, Zhongqiang; Song, Wenwen; Wang, Wei; Guo, Min; Zhang, Haifeng; Zhang, Zhengguang; Wang, Ping; Zheng, Xiaobo

    2011-01-01

    Soluble NSF attachment protein receptor (SNARE) proteins play a central role in membrane fusion and vesicle transport of eukaryotic organisms including fungi. We previously identified MoSce22 as a homolog of Saccharomyces cerevisiae SNARE protein Sec22 to be involved in growth, stress resistance, and pathogenicity of Magnaporthe oryzae. Here, we provide evidences that MoVam7, an ortholog of S. cerevisiae SNARE protein Vam7, exerts conserved functions in vacuolar morphogenesis and functions in pathogenicity of M. oryzae. Staining with neutral red and FM4-64 revealed the presence of abnormal fragmented vacuoles and an absence of the Spitzenkörper body in the ΔMovam7 mutant. The ΔMovam7 mutant also exhibited reduced vegetative growth, poor conidiation, and failure to produce the infection structure appressorium. Additionally, treatments with cell wall perturbing agents indicated weakened cell walls and altered distributions of the cell wall component chitin. Furthermore, the ΔMovam7 mutant showed a reduced accumulation of reactive oxygen species (ROS) in the hyphal apex and failed to cause diseases on the rice plant. In summary, our studies indicate that MoVam7, like MoSec22, is a component of the SNARE complex whose functions in vacuole assembly also underlies the growth, conidiation, appressorium formation, and pathogenicity of M. oryzae. Further studies of MoVam7, MoSec22, and additional members of the SNARE complex are likely to reveal critical mechanisms in vacuole formation and membrane trafficking that is linked to fungal pathogenicity. PMID:21283626

  12. The case for applying tissue engineering methodologies to instruct human organoid morphogenesis.

    PubMed

    Marti-Figueroa, Carlos R; Ashton, Randolph S

    2017-05-01

    Three-dimensional organoids derived from human pluripotent stem cell (hPSC) derivatives have become widely used in vitro models for studying development and disease. Their ability to recapitulate facets of normal human development during in vitro morphogenesis produces tissue structures with unprecedented biomimicry. Current organoid derivation protocols primarily rely on spontaneous morphogenesis processes to occur within 3-D spherical cell aggregates with minimal to no exogenous control. This yields organoids containing microscale regions of biomimetic tissues, but at the macroscale (i.e. 100's of microns to millimeters), the organoids' morphology, cytoarchitecture, and cellular composition are non-biomimetic and variable. The current lack of control over in vitro organoid morphogenesis at the microscale induces aberrations at the macroscale, which impedes realization of the technology's potential to reproducibly form anatomically correct human tissue units that could serve as optimal human in vitro models and even transplants. Here, we review tissue engineering methodologies that could be used to develop powerful approaches for instructing multiscale, 3-D human organoid morphogenesis. Such technological mergers are critically needed to harness organoid morphogenesis as a tool for engineering functional human tissues with biomimetic anatomy and physiology. Human PSC-derived 3-D organoids are revolutionizing the biomedical sciences. They enable the study of development and disease within patient-specific genetic backgrounds and unprecedented biomimetic tissue microenvironments. However, their uncontrolled, spontaneous morphogenesis at the microscale yields inconsistences in macroscale organoid morphology, cytoarchitecture, and cellular composition that limits their standardization and application. Integration of tissue engineering methods with organoid derivation protocols could allow us to harness their potential by instructing standardized in vitro morphogenesis to generate organoids with biomimicry at all scales. Such advancements would enable the use of organoids as a basis for 'next-generation' tissue engineering of functional, anatomically mimetic human tissues and potentially novel organ transplants. Here, we discuss critical aspects of organoid morphogenesis where application of innovative tissue engineering methodologies would yield significant advancement towards this goal. Copyright © 2017. Published by Elsevier Ltd.

  13. Multicellular Models of Morphogenesis

    EPA Science Inventory

    EPA’s Virtual Embryo project (v-Embryo™), in collaboration with developers of CompuCell3D, aims to create computer models of morphogenesis that can be used to address the effects of chemical perturbation on embryo development at the cellular level. Such computational (in silico) ...

  14. Mammary collective cell migration involves transient loss of epithelial features and individual cell migration within the epithelium

    PubMed Central

    Ewald, Andrew J.; Huebner, Robert J.; Palsdottir, Hildur; Lee, Jessie K.; Perez, Melissa J.; Jorgens, Danielle M.; Tauscher, Andrew N.; Cheung, Kevin J.; Werb, Zena; Auer, Manfred

    2012-01-01

    Normal mammary morphogenesis involves transitions between simple and multilayered epithelial organizations. We used electron microscopy and molecular markers to determine whether intercellular junctions and apico-basal polarity were maintained in the multilayered epithelium. We found that multilayered elongating ducts had polarized apical and basal tissue surfaces both in three-dimensional culture and in vivo. However, individual cells were only polarized on surfaces in contact with the lumen or extracellular matrix. The basolateral marker scribble and the apical marker atypical protein kinase C zeta localized to all interior cell membranes, whereas PAR3 displayed a cytoplasmic localization, suggesting that the apico-basal polarity was incomplete. Despite membrane localization of E-cadherin and β-catenin, we did not observe a defined zonula adherens connecting interior cells. Instead, interior cells were connected through desmosomes and exhibited complex interdigitating membrane protrusions. Single-cell labeling revealed that individual cells were both protrusive and migratory within the epithelial multilayer. Inhibition of Rho kinase (ROCK) further reduced intercellular adhesion on apical and lateral surfaces but did not disrupt basal tissue organization. Following morphogenesis, segregated membrane domains were re-established and junctional complexes re-formed. We observed similar epithelial organization during mammary morphogenesis in organotypic culture and in vivo. We conclude that mammary epithelial morphogenesis involves a reversible, spatially limited, reduction in polarity and intercellular junctions and active individualistic cell migration. Our data suggest that reductions in polarity and adhesion during breast cancer progression might reflect partial recapitulation of a normal developmental program. PMID:22344263

  15. Activation of YUCCA5 by the Transcription Factor TCP4 Integrates Developmental and Environmental Signals to Promote Hypocotyl Elongation in Arabidopsis.

    PubMed

    Challa, Krishna Reddy; Aggarwal, Pooja; Nath, Utpal

    2016-09-05

    Cell expansion is an essential process in plant morphogenesis and is regulated by the coordinated action of environmental stimuli and endogenous factors, such as the phytohormones auxin and brassinosteroid. Although the biosynthetic pathways that generate these hormones and their downstream signaling mechanisms have been extensively studied, the upstream transcriptional network that modulates their levels and connects their action to cell morphogenesis is less clear. Here we show that the miR319-regulated TCP (TEOSINTE BRANCHED 1, CYCLODEA, PROLIFERATING CELL FACTORS) transcription factors, notably TCP4, directly activate YUCCA5 transcription and integrate the auxin response to a brassinosteroid-dependent molecular circuit that promotes cell elongation in Arabidopsis hypocotyls. Further, TCP4 modulates the common transcriptional network downstream to auxin-BR signaling, which is also triggered by environmental cues, such as light, to promote cell expansion. Our study links TCP function with the hormone response during cell morphogenesis and shows that developmental and environmental signals converge on a common transcriptional network to promote cell elongation. {copyright, serif} 2016 American Society of Plant Biologists. All rights reserved.

  16. Identification and Expression of Acetylcholinesterase in Octopus vulgaris Arm Development and Regeneration: a Conserved Role for ACHE?

    PubMed

    Fossati, Sara Maria; Candiani, Simona; Nödl, Marie-Therese; Maragliano, Luca; Pennuto, Maria; Domingues, Pedro; Benfenati, Fabio; Pestarino, Mario; Zullo, Letizia

    2015-08-01

    Acetylcholinesterase (ACHE) is a glycoprotein with a key role in terminating synaptic transmission in cholinergic neurons of both vertebrates and invertebrates. ACHE is also involved in the regulation of cell growth and morphogenesis during embryogenesis and regeneration acting through its non-cholinergic sites. The mollusk Octopus vulgaris provides a powerful model for investigating the mechanisms underlying tissue morphogenesis due to its high regenerative power. Here, we performed a comparative investigation of arm morphogenesis during adult arm regeneration and embryonic arm development which may provide insights on the conserved ACHE pathways. In this study, we cloned and characterized O. vulgaris ACHE, finding a single highly conserved ACHE hydrophobic variant, characterized by prototypical catalytic sites and a putative consensus region for a glycosylphosphatidylinositol (GPI)-anchor attachment at the COOH-terminus. We then show that its expression level is correlated to the stage of morphogenesis in both adult and embryonic arm. In particular, ACHE is localized in typical neuronal sites when adult-like arm morphology is established and in differentiating cell locations during the early stages of arm morphogenesis. This possibility is also supported by the presence in the ACHE sequence and model structure of both cholinergic and non-cholinergic sites. This study provides insights into ACHE conserved roles during processes of arm morphogenesis. In addition, our modeling study offers a solid basis for predicting the interaction of the ACHE domains with pharmacological blockers for in vivo investigations. We therefore suggest ACHE as a target for the regulation of tissue morphogenesis.

  17. JunB is required for endothelial cell morphogenesis by regulating core-binding factor β

    PubMed Central

    Licht, Alexander H.; Pein, Oliver T.; Florin, Lore; Hartenstein, Bettina; Reuter, Hendrik; Arnold, Bernd; Lichter, Peter; Angel, Peter; Schorpp-Kistner, Marina

    2006-01-01

    The molecular mechanism triggering the organization of endothelial cells (ECs) in multicellular tubules is mechanistically still poorly understood. We demonstrate that cell-autonomous endothelial functions of the AP-1 subunit JunB are required for proper endothelial morphogenesis both in vivo in mouse embryos with endothelial-specific ablation of JunB and in in vitro angiogenesis models. By cDNA microarray analysis, we identified core-binding factor β (CBFβ), which together with the Runx proteins forms the heterodimeric core-binding transcription complex CBF, as a novel JunB target gene. In line with our findings, expression of the CBF target MMP-13 was impaired in JunB-deficient ECs. Reintroduction of CBFβ into JunB-deficient ECs rescued the tube formation defect and MMP-13 expression, indicating an important role for CBFβ in EC morphogenesis. PMID:17158955

  18. Feedback, Lineages and Self-Organizing Morphogenesis

    PubMed Central

    Calof, Anne L.; Lowengrub, John S.; Lander, Arthur D.

    2016-01-01

    Feedback regulation of cell lineage progression plays an important role in tissue size homeostasis, but whether such feedback also plays an important role in tissue morphogenesis has yet to be explored. Here we use mathematical modeling to show that a particular feedback architecture in which both positive and negative diffusible signals act on stem and/or progenitor cells leads to the appearance of bistable or bi-modal growth behaviors, ultrasensitivity to external growth cues, local growth-driven budding, self-sustaining elongation, and the triggering of self-organization in the form of lamellar fingers. Such behaviors arise not through regulation of cell cycle speeds, but through the control of stem or progenitor self-renewal. Even though the spatial patterns that arise in this setting are the result of interactions between diffusible factors with antagonistic effects, morphogenesis is not the consequence of Turing-type instabilities. PMID:26989903

  19. Gab1 Mediates Hepatocyte Growth Factor-Stimulated Mitogenicity and Morphogenesis in Multipotent Myeloid Cells

    PubMed Central

    Felici, Angelina; Giubellino, Alessio; Bottaro, Donald P.

    2012-01-01

    Hepatocyte growth factor (HGF)-stimulated mitogenesis, motogenesis and morphogenesis in various cell types begins with activation of the Met receptor tyrosine kinase and the recruitment of intracellular adaptors and kinase substrates. The adapter protein Gab1 is a critical effector and substrate of activated Met, mediating morphogenesis, among other activities, in epithelial cells. To define its role downstream of Met in hematopoietic cells, Gab1 was expressed in the HGF-responsive, Gab1-negative murine myeloid cell line 32D. Interestingly, the adhesion and motility of Gab1-expressing cells were significantly greater than parental cells, independent of growth factor treatment. Downstream of activated Met, Gab1 expression was specifically associated with rapid Shp-2 recruitment and activation, increased mitogenic potency, suppression of GATA-1 expression and concomitant upregulation of GATA-2 transcription. In addition to enhanced proliferation, continuous culture of Gab1-expressing 32D cells in HGF resulted in cell attachment, filopodia extension and phenotypic changes suggestive of monocytic differentiation. Our results suggest that in myeloid cells, Gab1 is likely to enhance HGF mitogenicity by coupling Met to Shp-2 and GATA-2 expression, thereby potentially contributing to normal myeloid differentiation as well as oncogenic transformation. PMID:20506405

  20. Tissue-specific activities of the Fat1 cadherin cooperate to control neuromuscular morphogenesis

    PubMed Central

    2018-01-01

    Muscle morphogenesis is tightly coupled with that of motor neurons (MNs). Both MNs and muscle progenitors simultaneously explore the surrounding tissues while exchanging reciprocal signals to tune their behaviors. We previously identified the Fat1 cadherin as a regulator of muscle morphogenesis and showed that it is required in the myogenic lineage to control the polarity of progenitor migration. To expand our knowledge on how Fat1 exerts its tissue-morphogenesis regulator activity, we dissected its functions by tissue-specific genetic ablation. An emblematic example of muscle under such morphogenetic control is the cutaneous maximus (CM) muscle, a flat subcutaneous muscle in which progenitor migration is physically separated from the process of myogenic differentiation but tightly associated with elongating axons of its partner MNs. Here, we show that constitutive Fat1 disruption interferes with expansion and differentiation of the CM muscle, with its motor innervation and with specification of its associated MN pool. Fat1 is expressed in muscle progenitors, in associated mesenchymal cells, and in MN subsets, including the CM-innervating pool. We identify mesenchyme-derived connective tissue (CT) as a cell type in which Fat1 activity is required for the non–cell-autonomous control of CM muscle progenitor spreading, myogenic differentiation, motor innervation, and for motor pool specification. In parallel, Fat1 is required in MNs to promote their axonal growth and specification, indirectly influencing muscle progenitor progression. These results illustrate how Fat1 coordinates the coupling of muscular and neuronal morphogenesis by playing distinct but complementary actions in several cell types. PMID:29768404

  1. Analysis of the role of the Spitzenkörper in fungal morphogenesis by computer simulation of apical branching in Aspergillus niger

    PubMed Central

    Reynaga-Peña, Cristina G.; Gierz, Gerhard; Bartnicki-Garcia, Salomon

    1997-01-01

    High-resolution video microscopy, image analysis, and computer simulation were used to study the role of the Spitzenkörper (Spk) in apical branching of ramosa-1, a temperature-sensitive mutant of Aspergillus niger. A shift to the restrictive temperature led to a cytoplasmic contraction that destabilized the Spk, causing its disappearance. After a short transition period, new Spk appeared where the two incipient apical branches emerged. Changes in cell shape, growth rate, and Spk position were recorded and transferred to the fungus simulator program to test the hypothesis that the Spk functions as a vesicle supply center (VSC). The simulation faithfully duplicated the elongation of the main hypha and the two apical branches. Elongating hyphae exhibited the growth pattern described by the hyphoid equation. During the transition phase, when no Spk was visible, the growth pattern was nonhyphoid, with consecutive periods of isometric and asymmetric expansion; the apex became enlarged and blunt before the apical branches emerged. Video microscopy images suggested that the branch Spk were formed anew by gradual condensation of vesicle clouds. Simulation exercises where the VSC was split into two new VSCs failed to produce realistic shapes, thus supporting the notion that the branch Spk did not originate by division of the original Spk. The best computer simulation of apical branching morphogenesis included simulations of the ontogeny of branch Spk via condensation of vesicle clouds. This study supports the hypothesis that the Spk plays a major role in hyphal morphogenesis by operating as a VSC—i.e., by regulating the traffic of wall-building vesicles in the manner predicted by the hyphoid model. PMID:9256441

  2. Moving Domain Computational Fluid Dynamics to Interface with an Embryonic Model of Cardiac Morphogenesis

    PubMed Central

    Lee, Juhyun; Moghadam, Mahdi Esmaily; Kung, Ethan; Cao, Hung; Beebe, Tyler; Miller, Yury; Roman, Beth L.; Lien, Ching-Ling; Chi, Neil C.; Marsden, Alison L.; Hsiai, Tzung K.

    2013-01-01

    Peristaltic contraction of the embryonic heart tube produces time- and spatial-varying wall shear stress (WSS) and pressure gradients (∇P) across the atrioventricular (AV) canal. Zebrafish (Danio rerio) are a genetically tractable system to investigate cardiac morphogenesis. The use of Tg(fli1a:EGFP)y1 transgenic embryos allowed for delineation and two-dimensional reconstruction of the endocardium. This time-varying wall motion was then prescribed in a two-dimensional moving domain computational fluid dynamics (CFD) model, providing new insights into spatial and temporal variations in WSS and ∇P during cardiac development. The CFD simulations were validated with particle image velocimetry (PIV) across the atrioventricular (AV) canal, revealing an increase in both velocities and heart rates, but a decrease in the duration of atrial systole from early to later stages. At 20-30 hours post fertilization (hpf), simulation results revealed bidirectional WSS across the AV canal in the heart tube in response to peristaltic motion of the wall. At 40-50 hpf, the tube structure undergoes cardiac looping, accompanied by a nearly 3-fold increase in WSS magnitude. At 110-120 hpf, distinct AV valve, atrium, ventricle, and bulbus arteriosus form, accompanied by incremental increases in both WSS magnitude and ∇P, but a decrease in bi-directional flow. Laminar flow develops across the AV canal at 20-30 hpf, and persists at 110-120 hpf. Reynolds numbers at the AV canal increase from 0.07±0.03 at 20-30 hpf to 0.23±0.07 at 110-120 hpf (p< 0.05, n=6), whereas Womersley numbers remain relatively unchanged from 0.11 to 0.13. Our moving domain simulations highlights hemodynamic changes in relation to cardiac morphogenesis; thereby, providing a 2-D quantitative approach to complement imaging analysis. PMID:24009714

  3. Rap1, Canoe and Mbt cooperate with Bazooka to promote zonula adherens assembly in the fly photoreceptor

    PubMed Central

    Burki, Mubarik

    2018-01-01

    ABSTRACT In Drosophila epithelial cells, apical exclusion of Bazooka (the Drosophila Par3 protein) defines the position of the zonula adherens (ZA), which demarcates the apical and lateral membrane and allows cells to assemble into sheets. Here, we show that the small GTPase Rap1, its effector Canoe (Cno) and the Cdc42 effector kinase Mushroom bodies tiny (Mbt), converge in regulating epithelial morphogenesis by coupling stabilization of the adherens junction (AJ) protein E-Cadherin and Bazooka retention at the ZA. Furthermore, our results show that the localization of Rap1, Cno and Mbt at the ZA is interdependent, indicating that their functions during ZA morphogenesis are interlinked. In this context, we find the Rap1-GEF Dizzy is enriched at the ZA and our results suggest that it promotes Rap1 activity during ZA morphogenesis. Altogether, we propose the Dizzy, Rap1 and Cno pathway and Mbt converge in regulating the interface between Bazooka and AJ material to promote ZA morphogenesis. PMID:29507112

  4. Gonadal morphogenesis and gene expression in reptiles with temperature-dependent sex determination.

    PubMed

    Merchant-Larios, H; Díaz-Hernández, V; Marmolejo-Valencia, A

    2010-01-01

    In reptiles with temperature-dependent sexual determination, the thermosensitive period (TSP) is the interval in which the sex is defined during gonadal morphogenesis. One-shift experiments in a group of eggs define the onset and the end of the TSP as all and none responses, respectively. Timing for sex-undetermined (UG) and -determined gonads (DG) differs at male- (MPT) or female-producing temperatures (FPT). During the TSP a decreasing number of embryos respond to temperature shifts indicating that in this period embryos with both UG and DG exist. Although most UG correspond to undifferentiated gonads, some embryos extend UG after the onset of histological differentiation. Thus, temperature affects gonadal cells during the process of morphogenesis, but timing of commitment depends on individual embryos. A correlation between gonadal morphogenesis, TSP, and gene expression suggests that determination of the molecular pathways modulated by temperature in epithelial cells (surface epithelium and medullary cords) holds the key for a unifying hypothesis on temperature-dependent sex determination. (c) 2010 S. Karger AG, Basel.

  5. The signalling receptor MCAM coordinates apical-basal polarity and planar cell polarity during morphogenesis

    PubMed Central

    Gao, Qian; Zhang, Junfeng; Wang, Xiumei; Liu, Ying; He, Rongqiao; Liu, Xingfeng; Wang, Fei; Feng, Jing; Yang, Dongling; Wang, Zhaoqing; Meng, Anming; Yan, Xiyun

    2017-01-01

    The apical–basal (AB) polarity and planar cell polarity (PCP) provide an animal cell population with different phenotypes during morphogenesis. However, how cells couple these two patterning systems remains unclear. Here we provide in vivo evidence that melanoma cell adhesion molecule (MCAM) coordinates AB polarity-driven lumenogenesis and c-Jun N-terminal kinase (JNK)/PCP-dependent ciliogenesis. We identify that MCAM is an independent receptor of fibroblast growth factor 4 (FGF4), a membrane anchor of phospholipase C-γ (PLC-γ), an immediate upstream receptor of nuclear factor of activated T-cells (NFAT) and a constitutive activator of JNK. We find that MCAM-mediated vesicular trafficking towards FGF4, while generating a priority-grade transcriptional response of NFAT determines lumenogenesis. We demonstrate that MCAM plays indispensable roles in ciliogenesis through activating JNK independently of FGF signals. Furthermore, mcam-deficient zebrafish and Xenopus exhibit a global defect in left-right (LR) asymmetric establishment as a result of morphogenetic failure of their LR organizers. Therefore, MCAM coordination of AB polarity and PCP provides insight into the general mechanisms of morphogenesis. PMID:28589943

  6. Stress and strain provide positional and directional cues in development.

    PubMed

    Bozorg, Behruz; Krupinski, Pawel; Jönsson, Henrik

    2014-01-01

    The morphogenesis of organs necessarily involves mechanical interactions and changes in mechanical properties of a tissue. A long standing question is how such changes are directed on a cellular scale while being coordinated at a tissular scale. Growing evidence suggests that mechanical cues are participating in the control of growth and morphogenesis during development. We introduce a mechanical model that represents the deposition of cellulose fibers in primary plant walls. In the model both the degree of material anisotropy and the anisotropy direction are regulated by stress anisotropy. We show that the finite element shell model and the simpler triangular biquadratic springs approach provide equally adequate descriptions of cell mechanics in tissue pressure simulations of the epidermis. In a growing organ, where circumferentially organized fibers act as a main controller of longitudinal growth, we show that the fiber direction can be correlated with both the maximal stress direction and the direction orthogonal to the maximal strain direction. However, when dynamic updates of the fiber direction are introduced, the mechanical stress provides a robust directional cue for the circumferential organization of the fibers, whereas the orthogonal to maximal strain model leads to an unstable situation where the fibers reorient longitudinally. Our investigation of the more complex shape and growth patterns in the shoot apical meristem where new organs are initiated shows that a stress based feedback on fiber directions is capable of reproducing the main features of in vivo cellulose fiber directions, deformations and material properties in different regions of the shoot. In particular, we show that this purely mechanical model can create radially distinct regions such that cells expand slowly and isotropically in the central zone while cells at the periphery expand more quickly and in the radial direction, which is a well established growth pattern in the meristem.

  7. Extracellular matrix motion and early morphogenesis

    PubMed Central

    Loganathan, Rajprasad; Rongish, Brenda J.; Smith, Christopher M.; Filla, Michael B.; Czirok, Andras; Bénazéraf, Bertrand

    2016-01-01

    For over a century, embryologists who studied cellular motion in early amniotes generally assumed that morphogenetic movement reflected migration relative to a static extracellular matrix (ECM) scaffold. However, as we discuss in this Review, recent investigations reveal that the ECM is also moving during morphogenesis. Time-lapse studies show how convective tissue displacement patterns, as visualized by ECM markers, contribute to morphogenesis and organogenesis. Computational image analysis distinguishes between cell-autonomous (active) displacements and convection caused by large-scale (composite) tissue movements. Modern quantification of large-scale ‘total’ cellular motion and the accompanying ECM motion in the embryo demonstrates that a dynamic ECM is required for generation of the emergent motion patterns that drive amniote morphogenesis. PMID:27302396

  8. [Morphological and anatomical characterization of a stripe mutant with abnormal floral organs in rice].

    PubMed

    Chen, De Xi; Ma, Bing Tian; Wang, Yu Ping; Li, Shi Gui; Hao, Ming

    2006-08-01

    A rice double mutant was derived from the transgenic process,but it does not carry the alien gene. The mutant showed white stripe on stem, leaf and spikelet. In some growing stage,the leaf started to produce fork or curliness. The floret number increased, showing multi-lemma/palea, palea-like or lemma-like lodicules or enlarged lodicules, additional pistil and stamen and the spited floret. With observation of cell ultra structure using electron microscope,the white tissue showed concaved cell wall and abnormal plastid which could not develop normal lamellae and thylakoid. The contents of chlorophyll and net photosynthesis rate in the mutant were obviously lower than those in the wild type. The cells in green sectors grow normally with the exception of the bigger cell volume. The morphogenesis of floral organ was observed by using the scanning electron microscopy (SEM). Results showed that the stamen development was not synchronal and the sizes of stamen primordium were different in mutant, and the carpel was smaller than that of wild type.

  9. Multiple Phosphatidylinositol 3-Kinases Regulate Vaccinia Virus Morphogenesis

    PubMed Central

    McNulty, Shannon; Bornmann, William; Schriewer, Jill; Werner, Chas; Smith, Scott K.; Olson, Victoria A.; Damon, Inger K.; Buller, R. Mark; Heuser, John; Kalman, Daniel

    2010-01-01

    Poxvirus morphogenesis is a complex process that involves the successive wrapping of the virus in host cell membranes. We screened by plaque assay a focused library of kinase inhibitors for those that caused a reduction in viral growth and identified several compounds that selectively inhibit phosphatidylinositol 3-kinase (PI3K). Previous studies demonstrated that PI3Ks mediate poxviral entry. Using growth curves and electron microscopy in conjunction with inhibitors, we show that that PI3Ks additionally regulate morphogenesis at two distinct steps: immature to mature virion (IMV) transition, and IMV envelopment to form intracellular enveloped virions (IEV). Cells derived from animals lacking the p85 regulatory subunit of Type I PI3Ks (p85α−/−β−/−) presented phenotypes similar to those observed with PI3K inhibitors. In addition, VV appear to redundantly use PI3Ks, as PI3K inhibitors further reduce plaque size and number in p85α−/−β−/− cells. Together, these data provide evidence for a novel regulatory mechanism for virion morphogenesis involving phosphatidylinositol dynamics and may represent a new therapeutic target to contain poxviruses. PMID:20526370

  10. Mechanical Control of Tissue Morphogenesis

    PubMed Central

    Patwari, Parth; Lee, Richard T.

    2008-01-01

    Mechanical forces participate in morphogenesis from the level of individual cells to whole organism patterning. This manuscript reviews recent research that has identified specific roles for mechanical forces in important developmental events. One well-defined example is that dynein-driven cilia create fluid flow that determines left-right patterning in the early mammalian embryo. Fluid flow is also important for vasculogenesis, and evidence suggests that fluid shear stress rather than fluid transport is primarily required for remodeling the early vasculature. Contraction of the actin cytoskeleton, driven by nonmuscle myosins and regulated by the Rho family GTPases, is a recurring mechanism for controlling morphogenesis throughout development, from gastrulation to cardiogenesis. Finally, novel experimental approaches suggest critical roles for the actin cytoskeleton and the mechanical environment in determining differentiation of mesenchymal stem cells. Insights into the mechanisms linking mechanical forces to cell and tissue differentiation pathways are important for understanding many congenital diseases and for developing regenerative medicine strategies. PMID:18669930

  11. Tooth-bone morphogenesis during postnatal stages of mouse first molar development

    PubMed Central

    Lungová, Vlasta; Radlanski, Ralf J; Tucker, Abigail S; Renz, Herbert; Míšek, Ivan; Matalová, Eva

    2011-01-01

    The first mouse molar (M1) is the most common model for odontogenesis, with research particularly focused on prenatal development. However, the functional dentition forms postnatally, when the histogenesis and morphogenesis of the tooth is completed, the roots form and the tooth physically anchors into the jaw. In this work, M1 was studied from birth to eruption, assessing morphogenesis, proliferation and apoptosis, and correlating these with remodeling of the surrounding bony tissue. The M1 completed crown formation between postnatal (P) days 0–2, and the development of the tooth root was initiated at P4. From P2 until P12, cell proliferation in the dental epithelium reduced and shifted downward to the apical region of the forming root. In contrast, proliferation was maintained or increased in the mesenchymal cells of the dental follicle. At later stages, before tooth eruption (P20), cell proliferation suddenly ceased. This withdrawal from the cell cycle correlated with tooth mineralization and mesenchymal differentiation. Apoptosis was observed during all stages of M1 postnatal morphogenesis, playing a role in the removal of cells such as osteoblasts in the mandibular region and working together with osteoclasts to remodel the bone around the developing tooth. At more advanced developmental stages, apoptotic cells and bodies accumulated in the cell layers above the tooth cusps, in the path of eruption. Three-dimensional reconstruction of the developing postnatal tooth and bone indicates that the alveolar crypts form by resorption underneath the primordia, whereas the ridges form by active bone growth between the teeth and roots to form a functional complex. PMID:21418206

  12. A global sensitivity analysis approach for morphogenesis models.

    PubMed

    Boas, Sonja E M; Navarro Jimenez, Maria I; Merks, Roeland M H; Blom, Joke G

    2015-11-21

    Morphogenesis is a developmental process in which cells organize into shapes and patterns. Complex, non-linear and multi-factorial models with images as output are commonly used to study morphogenesis. It is difficult to understand the relation between the uncertainty in the input and the output of such 'black-box' models, giving rise to the need for sensitivity analysis tools. In this paper, we introduce a workflow for a global sensitivity analysis approach to study the impact of single parameters and the interactions between them on the output of morphogenesis models. To demonstrate the workflow, we used a published, well-studied model of vascular morphogenesis. The parameters of this cellular Potts model (CPM) represent cell properties and behaviors that drive the mechanisms of angiogenic sprouting. The global sensitivity analysis correctly identified the dominant parameters in the model, consistent with previous studies. Additionally, the analysis provided information on the relative impact of single parameters and of interactions between them. This is very relevant because interactions of parameters impede the experimental verification of the predicted effect of single parameters. The parameter interactions, although of low impact, provided also new insights in the mechanisms of in silico sprouting. Finally, the analysis indicated that the model could be reduced by one parameter. We propose global sensitivity analysis as an alternative approach to study the mechanisms of morphogenesis. Comparison of the ranking of the impact of the model parameters to knowledge derived from experimental data and from manipulation experiments can help to falsify models and to find the operand mechanisms in morphogenesis. The workflow is applicable to all 'black-box' models, including high-throughput in vitro models in which output measures are affected by a set of experimental perturbations.

  13. Live imaging of heart tube development in mouse reveals alternating phases of cardiac differentiation and morphogenesis

    PubMed Central

    Ivanovitch, Kenzo; Temiño, Susana

    2017-01-01

    During vertebrate heart development, two progenitor populations, first and second heart fields (FHF, SHF), sequentially contribute to longitudinal subdivisions of the heart tube (HT), with the FHF contributing the left ventricle and part of the atria, and the SHF the rest of the heart. Here, we study the dynamics of cardiac differentiation and morphogenesis by tracking individual cells in live analysis of mouse embryos. We report that during an initial phase, FHF precursors differentiate rapidly to form a cardiac crescent, while limited morphogenesis takes place. In a second phase, no differentiation occurs while extensive morphogenesis, including splanchnic mesoderm sliding over the endoderm, results in HT formation. In a third phase, cardiac precursor differentiation resumes and contributes to SHF-derived regions and the dorsal closure of the HT. These results reveal tissue-level coordination between morphogenesis and differentiation during HT formation and provide a new framework to understand heart development. PMID:29202929

  14. Mechanosensitivity of Jagged–Notch signaling can induce a switch-type behavior in vascular homeostasis

    PubMed Central

    Stassen, Oscar M. J. A.; ter Huurne, Fleur M.; Boareto, Marcelo; Sahlgren, Cecilia M.

    2018-01-01

    Hemodynamic forces and Notch signaling are both known as key regulators of arterial remodeling and homeostasis. However, how these two factors integrate in vascular morphogenesis and homeostasis is unclear. Here, we combined experiments and modeling to evaluate the impact of the integration of mechanics and Notch signaling on vascular homeostasis. Vascular smooth muscle cells (VSMCs) were cyclically stretched on flexible membranes, as quantified via video tracking, demonstrating that the expression of Jagged1, Notch3, and target genes was down-regulated with strain. The data were incorporated in a computational framework of Notch signaling in the vascular wall, where the mechanical load was defined by the vascular geometry and blood pressure. Upon increasing wall thickness, the model predicted a switch-type behavior of the Notch signaling state with a steep transition of synthetic toward contractile VSMCs at a certain transition thickness. These thicknesses varied per investigated arterial location and were in good agreement with human anatomical data, thereby suggesting that the Notch response to hemodynamics plays an important role in the establishment of vascular homeostasis. PMID:29610298

  15. Ectopic expression of Msx-2 in posterior limb bud mesoderm impairs limb morphogenesis while inducing BMP-4 expression, inhibiting cell proliferation, and promoting apoptosis.

    PubMed

    Ferrari, D; Lichtler, A C; Pan, Z Z; Dealy, C N; Upholt, W B; Kosher, R A

    1998-05-01

    During early stages of chick limb development, the homeobox-containing gene Msx-2 is expressed in the mesoderm at the anterior margin of the limb bud and in a discrete group of mesodermal cells at the midproximal posterior margin. These domains of Msx-2 expression roughly demarcate the anterior and posterior boundaries of the progress zone, the highly proliferating posterior mesodermal cells underneath the apical ectodermal ridge (AER) that give rise to the skeletal elements of the limb and associated structures. Later in development as the AER loses its activity, Msx-2 expression expands into the distal mesoderm and subsequently into the interdigital mesenchyme which demarcates the developing digits. The domains of Msx-2 expression exhibit considerably less proliferation than the cells of the progress zone and also encompass several regions of programmed cell death including the anterior and posterior necrotic zones and interdigital mesenchyme. We have thus suggested that Msx-2 may be in a regulatory network that delimits the progress zone by suppressing the morphogenesis of the regions of the limb mesoderm in which it is highly expressed. In the present study we show that ectopic expression of Msx-2 via a retroviral expression vector in the posterior mesoderm of the progress zone from the time of initial formation of the limb bud severely impairs limb morphogenesis. Msx-2-infected limbs are typically very narrow along the anteroposterior axis, are occasionally truncated, and exhibit alterations in the pattern of formation of skeletal elements, indicating that as a consequence of ectopic Msx-2 expression the morphogenesis of large portions of the posterior mesoderm has been suppressed. We further show that Msx-2 impairs limb morphogenesis by reducing cell proliferation and promoting apoptosis in the regions of the posterior mesoderm in which it is ectopically expressed. The domains of ectopic Msx-2 expression in the posterior mesoderm also exhibit ectopic expression of BMP-4, a secreted signaling molecule that is coexpressed with Msx-2 during normal limb development in the anterior limb mesoderm, the posterior necrotic zone, and interdigital mesenchyme. This indicates that Msx-2 regulates BMP-4 expression and that the suppressive effects of Msx-2 on limb morphogenesis might be mediated in part by BMP-4. These studies indicate that during normal limb development Msx-2 is a key component of a regulatory network that delimits the boundaries of the progress zone by suppressing the morphogenesis of the regions of the limb mesoderm in which it is highly expressed, thus restricting the outgrowth and formation of skeletal elements and associated structures to the progress zone. We also report that rather large numbers of apoptotic cells as well as proliferating cells are present throughout the AER during all stages of normal limb development we have examined, indicating that many of the cells of the AER are continuously undergoing programmed cell death at the same time that new AER cells are being generated by cell proliferation. Thus, a balance between cell proliferation and programmed cell death may play a very important role in maintaining the activity of the AER. Copyright 1998 Academic Press.

  16. NFIB regulates embryonic development of submandibular glands.

    PubMed

    Mellas, R E; Kim, H; Osinski, J; Sadibasic, S; Gronostajski, R M; Cho, M; Baker, O J

    2015-02-01

    NFIB (nuclear factor I B) is a NFI transcription factor family member, which is essential for the development of a variety of organ systems. Salivary gland development occurs through several stages, including prebud, bud, pseudoglandular, canalicular, and terminal. Although many studies have been done to understand mouse submandibular gland (SMG) branching morphogenesis, little is known about SMG cell differentiation during the terminal stages. The goal of this study was to determine the role of NFIB during SMG development. We analyzed SMGs from wild-type and Nfib-deficient mice (Nfib (-/-)). At embryonic (E) day 18.5, SMGs from wild-type mice showed duct branching morphogenesis and differentiation of tubule ductal cells into tubule secretory cells. In contrast, SMGs from Nfib (-/-) mice at E18.5 failed to differentiate into tubule secretory cells while branching morphogenesis was unaffected. SMGs from wild-type mice at E16.5 displayed well-organized cuboidal inner terminal tubule cells. However, SMGs from Nfib (-/-) at E16.5 displayed disorganized inner terminal tubule cells. SMGs from wild-type mice at E18.5 became fully differentiated, as indicated by a high degree of apicobasal polarization (i.e., presence of apical ZO-1 and basolateral E-cadherin) and columnar shape. Furthermore, SMGs from wild-type mice at E18.5 expressed the protein SMGC, a marker for tubule secretory cells. However, SMGs from Nfib (-/-) mice at E18.5 showed apicobasal polarity, but they were disorganized and lost the ability to secrete SMGC. These findings indicate that the transcription factor NFIB is not required for branching morphogenesis but plays a key role in tubule cell differentiation during mouse SMG development. © International & American Associations for Dental Research 2014.

  17. Evolutionary characterization and transcript profiling of β-tubulin genes in flax (Linum usitatissimum L.) during plant development.

    PubMed

    Gavazzi, Floriana; Pigna, Gaia; Braglia, Luca; Gianì, Silvia; Breviario, Diego; Morello, Laura

    2017-12-08

    Microtubules, polymerized from alpha and beta-tubulin monomers, play a fundamental role in plant morphogenesis, determining the cell division plane, the direction of cell expansion and the deposition of cell wall material. During polarized pollen tube elongation, microtubules serve as tracks for vesicular transport and deposition of proteins/lipids at the tip membrane. Such functions are controlled by cortical microtubule arrays. Aim of this study was to first characterize the flax β-tubulin family by sequence and phylogenetic analysis and to investigate differential expression of β-tubulin genes possibly related to fibre elongation and to flower development. We report the cloning and characterization of the complete flax β-tubulin gene family: exon-intron organization, duplicated gene comparison, phylogenetic analysis and expression pattern during stem and hypocotyl elongation and during flower development. Sequence analysis of the fourteen expressed β-tubulin genes revealed that the recent whole genome duplication of the flax genome was followed by massive retention of duplicated tubulin genes. Expression analysis showed that β-tubulin mRNA profiles gradually changed along with phloem fibre development in both the stem and hypocotyl. In flowers, changes in relative tubulin transcript levels took place at anthesis in anthers, but not in carpels. Phylogenetic analysis supports the origin of extant plant β-tubulin genes from four ancestral genes pre-dating angiosperm separation. Expression analysis suggests that particular tubulin subpopulations are more suitable to sustain different microtubule functions such as cell elongation, cell wall thickening or pollen tube growth. Tubulin genes possibly related to different microtubule functions were identified as candidate for more detailed studies.

  18. Extracellular matrix motion and early morphogenesis.

    PubMed

    Loganathan, Rajprasad; Rongish, Brenda J; Smith, Christopher M; Filla, Michael B; Czirok, Andras; Bénazéraf, Bertrand; Little, Charles D

    2016-06-15

    For over a century, embryologists who studied cellular motion in early amniotes generally assumed that morphogenetic movement reflected migration relative to a static extracellular matrix (ECM) scaffold. However, as we discuss in this Review, recent investigations reveal that the ECM is also moving during morphogenesis. Time-lapse studies show how convective tissue displacement patterns, as visualized by ECM markers, contribute to morphogenesis and organogenesis. Computational image analysis distinguishes between cell-autonomous (active) displacements and convection caused by large-scale (composite) tissue movements. Modern quantification of large-scale 'total' cellular motion and the accompanying ECM motion in the embryo demonstrates that a dynamic ECM is required for generation of the emergent motion patterns that drive amniote morphogenesis. © 2016. Published by The Company of Biologists Ltd.

  19. Involvement of MoVMA11, a Putative Vacuolar ATPase c’ Subunit, in Vacuolar Acidification and Infection-Related Morphogenesis of Magnaporthe oryzae

    PubMed Central

    Chen, Guoqing; Liu, Xiaohong; Zhang, Lilin; Cao, Huijuan; Lu, Jianping; Lin, Fucheng

    2013-01-01

    Many functions of vacuole depend on the activity of vacuolar ATPase which is essential to maintain an acidic lumen and create the driving forces for massive fluxes of ions and metabolites through vacuolar membrane. In filamentous fungus Magnaporthe oryzae , subcellular colocalization and quinacrine staining suggested that the V1V0 domains of V-ATPase were fully assembled and the vacuoles were kept acidic during infection-related developments. Targeted gene disruption of MoVMA11 gene, encoding the putative c’ subunit of V-ATPase, impaired vacuolar acidification and mimicked the phenotypes of yeast V-ATPase mutants in the poor colony morphology, abolished asexual and sexual reproductions, selective carbon source utilization, and increased calcium and heavy metals sensitivities, however, not in the typical pH conditional lethality. Strikingly, aerial hyphae of the MoVMA11 null mutant intertwined with each other to form extremely thick filamentous structures. The results also implicated that MoVMA11 was involved in cell wall integrity and appressorium formation. Abundant non-melanized swollen structures and rare, small appressoria without penetration ability were produced at the hyphal tips of the ΔMovma11 mutant on onion epidermal cells. Finally, the MoVMA11 null mutant lost pathogenicity on both intact and wounded host leaves. Overall, our data indicated that MoVMA11, like other fungal VMA genes, is associated with numerous cellular functions and highlighted that V-ATPase is essential for infection-related morphogenesis and pathogenesis in M . oryzae . PMID:23826342

  20. Chitosan Mediates Germling Adhesion in Magnaporthe oryzae and Is Required for Surface Sensing and Germling Morphogenesis

    PubMed Central

    Geoghegan, Ivey A.; Gurr, Sarah J.

    2016-01-01

    The fungal cell wall not only plays a critical role in maintaining cellular integrity, but also forms the interface between fungi and their environment. The composition of the cell wall can therefore influence the interactions of fungi with their physical and biological environments. Chitin, one of the main polysaccharide components of the wall, can be chemically modified by deacetylation. This reaction is catalyzed by a family of enzymes known as chitin deacetylases (CDAs), and results in the formation of chitosan, a polymer of β1,4-glucosamine. Chitosan has previously been shown to accumulate in the cell wall of infection structures in phytopathogenic fungi. Here, it has long been hypothesized to act as a 'stealth' molecule, necessary for full pathogenesis. In this study, we used the crop pathogen and model organism Magnaporthe oryzae to test this hypothesis. We first confirmed that chitosan localizes to the germ tube and appressorium, then deleted CDA genes on the basis of their elevated transcript levels during appressorium differentiation. Germlings of the deletion strains showed loss of chitin deacetylation, and were compromised in their ability to adhere and form appressoria on artificial hydrophobic surfaces. Surprisingly, the addition of exogenous chitosan fully restored germling adhesion and appressorium development. Despite the lack of appressorium development on artificial surfaces, pathogenicity was unaffected in the mutant strains. Further analyses demonstrated that cuticular waxes are sufficient to over-ride the requirement for chitosan during appressorium development on the plant surface. Thus, chitosan does not have a role as a 'stealth' molecule, but instead mediates the adhesion of germlings to surfaces, thereby allowing the perception of the physical stimuli necessary to promote appressorium development. This study thus reveals a novel role for chitosan in phytopathogenic fungi, and gives further insight into the mechanisms governing appressorium development in M.oryzae. PMID:27315248

  1. Remodeling a tissue: subtraction adds insight.

    PubMed

    Axelrod, Jeffrey D

    2012-11-27

    Sculpting a body plan requires both patterning of gene expression and translating that pattern into morphogenesis. Developmental biologists have made remarkable strides in understanding gene expression patterning, but despite a long history of fascination with the mechanics of morphogenesis, knowledge of how patterned gene expression drives the emergence of even simple shapes and forms has grown at a slower pace. The successful merging of approaches from cell biology, developmental biology, imaging, engineering, and mathematical and computational sciences is now accelerating progress toward a fuller and better integrated understanding of the forces shaping morphogenesis.

  2. The TCP4 transcription factor regulates trichome cell differentiation by directly activating GLABROUS INFLORESCENCE STEMS in Arabidopsis thaliana.

    PubMed

    Vadde, Batthula Vijaya Lakshmi; Challa, Krishna Reddy; Nath, Utpal

    2018-01-01

    Trichomes are the first cell type to be differentiated during the morphogenesis of leaf epidermis and serve as an ideal model to study cellular differentiation. Many genes involved in the patterning and differentiation of trichome cells have been studied over the past decades, and the majority of these genes encode transcription factors that specifically regulate epidermal cell development. However, the upstream regulators of these genes that link early leaf morphogenesis with cell type differentiation are less studied. The TCP proteins are the plant-specific transcription factors involved in regulating diverse aspects of plant development including lateral organ morphogenesis by modulating cell proliferation and differentiation. Here, we show that the miR319-regulated class II TCP proteins, notably TCP4, suppress trichome branching in Arabidopsis leaves and inflorescence stem by direct transcriptional activation of GLABROUS INFLORESCENCE STEMS (GIS), a known negative regulator of trichome branching. The trichome branch number is increased in plants with reduced TCP activity and decreased in the gain-of-function lines of TCP4. Biochemical analyses show that TCP4 binds to the upstream regulatory region of GIS and activates its expression. Detailed genetic analyses show that GIS and TCP4 work in same pathway and GIS function is required for TCP4-mediated regulation of trichome differentiation. Taken together, these results identify a role for the class II TCP genes in trichome differentiation, thus providing a connection between organ morphogenesis and cellular differentiation. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  3. Genomic and functional analyses unveil the response to hyphal wall stress in Candida albicans cells lacking β(1,3)-glucan remodeling.

    PubMed

    Degani, Genny; Ragni, Enrico; Botias, Pedro; Ravasio, Davide; Calderon, Julia; Pianezzola, Elena; Rodriguez-Peña, Jose Manuel; Vanoni, Maria Antonietta; Arroyo, Javier; Fonzi, William A; Popolo, Laura

    2016-07-02

    The cell wall is essential for the yeast to hypha (Y-H) transition that enables Candida albicans to invade human tissues and evade the immune system. The main constituent, β(1,3)-glucan, is remodeled by glucanosyltransferases of the GH72 family. Phr1p is responsible of glucan remodeling at neutral-alkaline pH and is essential for morphogenesis and virulence. Due to the pH-regulated expression of PHR1, the phr1Δ phenotype is manifested at pH > 6 and its severity increases with the rise in pH. We exploited the pH-conditional nature of a PHR1 null mutant to analyze the impact of glucan remodeling on the hyphal transcriptional program and the role of chitin synthases in the hyphal wall stress (HWS) response. In hyphal growth inducing conditions, phr1Δ germ tubes are defective in elongation, accumulate chitin, and constitutively activate the signaling pathways mediated by the MAP kinases Mkc1p, Cek1p and Hog1p. The transcriptional profiles revealed an increase of transcript levels for genes involved in cell wall formation (CHS2 and CHS8, CRH11, PGA23, orf19.750, RBR1, RBT4, ECM331, PGA6, PGA13), protein N-glycosylation and sorting in the ER (CWH8 and CHS7), signaling (CPP1, SSK2), ion transport (FLC2, YVC1), stress response and metabolism and a reduced expression of adhesins. A transient up-regulation of DNA replication genes associated with entry into S-phase occurred whereas cell-cycle regulating genes (PCL1, PCL2, CCN1, GIN4, DUN1, CDC28) were persistently up-regulated. To test the physiological relevance of altered CHS gene expression, phr1Δ chsxΔ (x = 2,3,8) mutant phenotypes were analyzed during the Y-H transition. PHR1 deletion was synthetic lethal with CHS3 loss on solid M199 medium-pH 7.5 and with CHS8 deletion on solid M199-pH 8. On Spider medium, PHR1 was synthetic lethal with CHS3 or CHS8 at pH 8. The absence of Phr1p triggers an adaptive response aimed to reinforce the hyphal cell wall and restore homeostasis. Chs3p is essential in preserving phr1Δ cell integrity during the Y-H transition. Our findings also unveiled an unanticipated essential role of Chs8p during filamentation on solid media. These results highlight the flexibility of fungal cells in maintaining cell wall integrity and contribute to assessments of glucan remodeling as a target for therapy.

  4. Tracing anti-cancer and cancer-promoting actions of all-trans retinoic acid in breast cancer to a RARα epigenetic mechanism of mammary epithelial cell fate.

    PubMed

    Rossetti, Stefano; Ren, MingQiang; Visconti, Nicolo; Corlazzoli, Francesca; Gagliostro, Vincenzo; Somenzi, Giulia; Yao, Jin; Sun, Yijun; Sacchi, Nicoletta

    2016-12-27

    A hallmark of cancer cells is the ability to evade the growth inhibitory/pro-apoptotic action of physiological all-trans retinoic acid (RA) signal, the bioactive derivative of Vitamin A. However, as we and others reported, RA can also promote cancer cell growth and invasion. Here we show that anticancer and cancer-promoting RA actions in breast cancer have roots in a mechanism of mammary epithelial cell morphogenesis that involves both transcriptional (epigenetic) and non-transcriptional RARα (RARA) functions. We found that the mammary epithelial cell-context specific degree of functionality of the RARA transcriptional (epigenetic) component of this mechanism, by tuning the effects of the non-transcriptional RARA component, determines different cell fate decisions during mammary morphogenesis. Indeed, factors that hamper the RARA epigenetic function make physiological RA drive aberrant morphogenesis via non-transcriptional RARA, thus leading to cell transformation. Remarkably, also the cell context-specific degree of functionality of the RARA epigenetic component retained by breast cancer cells is critical to determine cell fate decisions in response to physiological as well as supraphysiological RA variation. Overall this study supports the proof of principle that the epigenetic functional plasticity of the mammary epithelial cell RARA mechanism, which is essential for normal morphogenetic processes, is necessary to deter breast cancer onset/progression consequent to the insidious action of physiological RA.

  5. Cell cycle progression is required for zebrafish somite morphogenesis but not segmentation clock function

    PubMed Central

    Zhang, Lixia; Kendrick, Christina; Jülich, Dörthe; Holley, Scott A.

    2010-01-01

    Summary Cell division, differentiation and morphogenesis are coordinated during embryonic development and frequently in disarray in pathologies such as cancer. Here, we present a zebrafish mutant that ceases mitosis at the beginning of gastrulation, but undergoes axis elongation and develops blood, muscle and a beating heart. We identify the mutation as being in early mitotic inhibitor 1 (emi1), a negative regulator of the Anaphase Promoting Complex, and utilize the mutant to examine the role of the cell cycle in somitogenesis. The mutant phenotype indicates that axis elongation during the segmentation period is substantially driven by cell migration. We find that the segmentation clock, which regulates somitogenesis, functions normally in the absence of cell cycle progression and observe that mitosis is a modest source of noise for the clock. Somite morphogenesis involves the epithelialization of the somite border cells around a core of mesenchyme. As in wild-type embryos, somite boundary cells are polarized along a Fibronectin matrix in emi1−/−. The mutants also display evidence of segment polarity. However, in the absence of a normal cell cycle, somites appear to hyper-epithelialize as the internal mesenchymal cells exit the core of the somite after initial boundary formation. Thus, cell cycle progression is not required during the segmentation period for segmentation clock function but is necessary for normal segmental arrangement of epithelial borders and internal mesenchymal cells. PMID:18480162

  6. Cobtorin target analysis reveals that pectin functions in the deposition of cellulose microfibrils in parallel with cortical microtubules.

    PubMed

    Yoneda, Arata; Ito, Takuya; Higaki, Takumi; Kutsuna, Natsumaro; Saito, Tamio; Ishimizu, Takeshi; Osada, Hiroyuki; Hasezawa, Seiichiro; Matsui, Minami; Demura, Taku

    2010-11-01

    Cellulose and pectin are major components of primary cell walls in plants, and it is believed that their mechanical properties are important for cell morphogenesis. It has been hypothesized that cortical microtubules guide the movement of cellulose microfibril synthase in a direction parallel with the microtubules, but the mechanism by which this alignment occurs remains unclear. We have previously identified cobtorin as an inhibitor that perturbs the parallel relationship between cortical microtubules and nascent cellulose microfibrils. In this study, we searched for the protein target of cobtorin, and we found that overexpression of pectin methylesterase and polygalacturonase suppressed the cobtorin-induced cell-swelling phenotype. Furthermore, treatment with polygalacturonase restored the deposition of cellulose microfibrils in the direction parallel with cortical microtubules, and cobtorin perturbed the distribution of methylated pectin. These results suggest that control over the properties of pectin is important for the deposition of cellulose microfibrils and/or the maintenance of their orientation parallel with the cortical microtubules. © 2010 The Authors. The Plant Journal © 2010 Blackwell Publishing Ltd.

  7. Molecular mechanisms controlling pavement cell shape in Arabidopsis leaves.

    PubMed

    Qian, Pingping; Hou, Suiwen; Guo, Guangqin

    2009-08-01

    Pavement cells have an interlocking jigsaw puzzle-shaped leaf surface pattern. Twenty-three genes involved in the pavement cell morphogenesis were discovered until now. The mutations of these genes through various means lead to pavement cell shape defects, such as loss or lack of interdigitation, the reduction of lobing, gaps between lobe and neck regions in pavement cells, and distorted trichomes. These phenotypes are affected by the organization of microtubules and microfilaments. Microtubule bands are considered corresponding with the neck regions of the cell, while lobe formation depends on patches of microfilaments. The pathway of Rho of plant (ROP) GTPase signaling cascades regulates overall activity of the cytoskeleton in pavement cells. Some other proteins, in addition to the ROPs, SCAR/WAVE, and ARP2/3 complexes, are also involved in the pavement cell morphogenesis.

  8. Synthetic Morphogenesis.

    PubMed

    Teague, Brian P; Guye, Patrick; Weiss, Ron

    2016-09-01

    Throughout biology, function is intimately linked with form. Across scales ranging from subcellular to multiorganismal, the identity and organization of a biological structure's subunits dictate its properties. The field of molecular morphogenesis has traditionally been concerned with describing these links, decoding the molecular mechanisms that give rise to the shape and structure of cells, tissues, organs, and organisms. Recent advances in synthetic biology promise unprecedented control over these molecular mechanisms; this opens the path to not just probing morphogenesis but directing it. This review explores several frontiers in the nascent field of synthetic morphogenesis, including programmable tissues and organs, synthetic biomaterials and programmable matter, and engineering complex morphogenic systems de novo. We will discuss each frontier's objectives, current approaches, constraints and challenges, and future potential. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  9. Case Study: Organotypic human in vitro models of embryonic ...

    EPA Pesticide Factsheets

    Morphogenetic fusion of tissues is a common event in embryonic development and disruption of fusion is associated with birth defects of the eye, heart, neural tube, phallus, palate, and other organ systems. Embryonic tissue fusion requires precise regulation of cell-cell and cell-matrix interactions that drive proliferation, differentiation, and morphogenesis. Chemical low-dose exposures can disrupt morphogenesis across space and time by interfering with key embryonic fusion events. The Morphogenetic Fusion Task uses computer and in vitro models to elucidate consequences of developmental exposures. The Morphogenetic Fusion Task integrates multiple approaches to model responses to chemicals that leaad to birth defects, including integrative mining on ToxCast DB, ToxRefDB, and chemical structures, advanced computer agent-based models, and human cell-based cultures that model disruption of cellular and molecular behaviors including mechanisms predicted from integrative data mining and agent-based models. The purpose of the poster is to indicate progress on the CSS 17.02 Virtual Tissue Models Morphogenesis Task 1 products for the Board of Scientific Counselors meeting on Nov 16-17.

  10. HGF-induced serine 897 phosphorylation of EphA2 regulates epithelial morphogenesis of MDCK cells in 3D culture.

    PubMed

    Harada, Kohei; Negishi, Manabu; Katoh, Hironori

    2015-05-15

    Expression of EphA2 is upregulated in various cancers that are derived from epithelial cells and correlates with the ability of a cancer cell to undergo migration and invasion. Here we have investigated the role of EphA2 in the epithelial morphogenesis of Madin-Darby canine kidney (MDCK) cells in three-dimensional culture. We show that EphA2 is phosphorylated on serine residue 897 through hepatocyte growth factor (HGF) stimulation using a phosphatidylinositol 3-kinase (PI3K)-Akt-dependent mechanism and that this phosphorylation is required for the formation of extensions, the first step of tubulogenesis, in MDCK cysts. By contrast, stimulation using the ligand ephrinA1 dephosphorylates EphA2 on serine residue 897 and suppresses the HGF-induced morphological change. Furthermore, activation of the small GTPase RhoG is involved in the HGF-induced formation of extensions downstream of EphA2. These observations suggest that a ligand-independent activity of EphA2 contributes to epithelial morphogenesis. © 2015. Published by The Company of Biologists Ltd.

  11. In vivo imaging of basement membrane movement: ECM patterning shapes Hydra polyps.

    PubMed

    Aufschnaiter, Roland; Zamir, Evan A; Little, Charles D; Özbek, Suat; Münder, Sandra; David, Charles N; Li, Li; Sarras, Michael P; Zhang, Xiaoming

    2011-12-01

    Growth and morphogenesis during embryonic development, asexual reproduction and regeneration require extensive remodeling of the extracellular matrix (ECM). We used the simple metazoan Hydra to examine the fate of ECM during tissue morphogenesis and asexual budding. In growing Hydra, epithelial cells constantly move towards the extremities of the animal and into outgrowing buds. It is not known, whether these tissue movements involve epithelial migration relative to the underlying matrix or whether cells and ECM are displaced as a composite structure. Furthermore, it is unclear, how the ECM is remodeled to adapt to the shape of developing buds and tentacles. To address these questions, we used a new in vivo labeling technique for Hydra collagen-1 and laminin, and tracked the fate of ECM in all body regions of the animal. Our results reveal that Hydra 'tissue movements' are largely displacements of epithelial cells together with associated ECM. By contrast, during the evagination of buds and tentacles, extensive movement of epithelial cells relative to the matrix is observed, together with local ECM remodeling. These findings provide new insights into the nature of growth and morphogenesis in epithelial tissues.

  12. Measurement of cortical elasticity in Drosophila melanogaster embryos using ferrofluids

    PubMed Central

    Doubrovinski, Konstantin; Swan, Michael; Polyakov, Oleg; Wieschaus, Eric F.

    2017-01-01

    Many models of morphogenesis are forced to assume specific mechanical properties of cells, because the actual mechanical properties of living tissues are largely unknown. Here, we measure the rheology of epithelial cells in the cellularizing Drosophila embryo by injecting magnetic particles and studying their response to external actuation. We establish that, on timescales relevant to epithelial morphogenesis, the cytoplasm is predominantly viscous, whereas the cellular cortex is elastic. The timescale of elastic stress relaxation has a lower bound of 4 min, which is comparable to the time required for internalization of the ventral furrow during gastrulation. The cytoplasm was measured to be ∼103-fold as viscous as water. We show that elasticity depends on the actin cytoskeleton and conclude by discussing how these results relate to existing mechanical models of morphogenesis. PMID:28096360

  13. MarvelD3 regulates the c-Jun N-terminal kinase pathway during eye development in Xenopus

    PubMed Central

    Vacca, Barbara; Sanchez-Heras, Elena; Steed, Emily; Balda, Maria S.; Ohnuma, Shin-Ichi; Sasai, Noriaki; Mayor, Roberto

    2016-01-01

    ABSTRACT Ocular morphogenesis requires several signalling pathways controlling the expression of transcription factors and cell-cycle regulators. However, despite a well-known mechanism, the dialogue between those signals and factors remains to be unveiled. Here, we identify a requirement for MarvelD3, a tight junction transmembrane protein, in eye morphogenesis in Xenopus. MarvelD3 depletion led to an abnormally pigmented eye or even an eye-less phenotype, which was rescued by ectopic MarvelD3 expression. Altering MarvelD3 expression led to deregulated expression of cell-cycle regulators and transcription factors required for eye development. The eye phenotype was rescued by increased c-Jun terminal Kinase activation. Thus, MarvelD3 links tight junctions and modulation of the JNK pathway to eye morphogenesis. PMID:27870636

  14. The influence of matrix properties on growth and morphogenesis of human pancreatic ductal epithelial cells in 3D

    PubMed Central

    Raza, Asad; Ki, Chang Seok; Lin, Chien-Chi

    2013-01-01

    A highly tunable synthetic biomimetic hydrogel platform was developed to study the growth and morphogenesis of pancreatic ductal epithelial cells (PDEC) under the influence of a myriad of instructive cues. A PDEC line, PANC-1, was used as a model system to illustrate the importance of matrix compositions on cell fate determination. PANC-1 is an immortalized ductal epithelial cell line widely used in the study of pancreatic tumor cell behaviors. PANC-1 cells are also increasingly explored as a potential cell source for endocrine differentiation. Thus far, most studies related to PANC-1, among other PDEC lines, are performed on 2D culture surfaces. Here, we evaluated the effect of matrix compositions on PANC-1 cell growth and morphogenesis in 3D. Specifically, PANC-1 cells were encapsulated in PEG-based hydrogels prepared by step-growth thiol-ene photopolymerization. It was found that thiol-ene hydrogels provided a cytocompatible environment for encapsulation and 3D culture of PANC-1 cells. In contrast to a monolayer morphology on 2D culture surfaces, PANC-1 cells formed clusters in 3D thiol-ene hydrogels within 4 days of culture. After culturing for 10 days, however, the growth and structures of these clusters were significantly impacted by gel matrix properties, including sensitivity of the matrix to proteases, stiffness of the matrix, and ECM-mimetic motifs. The use of matrix metalloproteinase (MMP) sensitive linker or the immobilization of fibronectin-derived RGDS ligand in the matrix promoted PANC-1 cell growth and encouraged them to adopt ductal cyst-like structures. On the other hand, the encapsulated cells formed smaller and more compact aggregates in non-MMP responsive gels. The incorporation of laminin-derived YIGSR peptide did not enhance cell growth and caused the cells to form compact aggregates. Immobilized YIGSR also enhanced the expression of epithelial cell markers including β-catenin and E-cadherin. These studies have established PEG-peptide hydrogels formed by thiol-ene photo-click reaction as a suitable platform for studying and manipulating pancreatic epithelial cell growth and morphogenesis in 3D. PMID:23602364

  15. Regulation of tight junction assembly and epithelial morphogenesis by the heat shock protein Apg-2

    PubMed Central

    Aijaz, Saima; Sanchez-Heras, Elena; Balda, Maria S; Matter, Karl

    2007-01-01

    Background Tight junctions are required for epithelial barrier formation and participate in the regulation of signalling mechanisms that control proliferation and differentiation. ZO-1 is a tight junction-associated adaptor protein that regulates gene expression, junction assembly and epithelial morphogenesis. We have previously demonstrated that the heat shock protein Apg-2 binds ZO-1 and thereby regulates its role in cell proliferation. Here, we addressed the question whether Apg-2 is also important for junction formation and epithelial morphogenesis. Results We demonstrate that depletion of Apg-2 by RNAi in MDCK cells did not prevent formation of functional tight junctions. Similar to ZO-1, however, reduced expression of Apg-2 retarded de novo junction assembly if analysed in a Ca-switch model. Formation of functional junctions, as monitored by measuring transepithelial electrical resistance, and recruitment of tight and adherens junction markers were retarded. If cultured in three dimensional extracellular matrix gels, Apg-2 depleted cells, as previously shown for ZO-1 depleted cells, did not form hollow polarised cysts but poorly organised, irregular structures. Conclusion Our data indicate that Apg-2 regulates junction assembly and is required for normal epithelial morphogenesis in a three-dimensional culture system, suggesting that Apg-2 is an important regulator of epithelial differentiation. As the observed phenotypes are similar to those previously described for ZO-1 depleted cells and depletion of Apg-2 retards junctional recruitment of ZO-1, regulation of ZO-1 is likely to be an important functional role for Apg-2 during epithelial differentiation. PMID:18028534

  16. Regulation of tight junction assembly and epithelial morphogenesis by the heat shock protein Apg-2.

    PubMed

    Aijaz, Saima; Sanchez-Heras, Elena; Balda, Maria S; Matter, Karl

    2007-11-20

    Tight junctions are required for epithelial barrier formation and participate in the regulation of signalling mechanisms that control proliferation and differentiation. ZO-1 is a tight junction-associated adaptor protein that regulates gene expression, junction assembly and epithelial morphogenesis. We have previously demonstrated that the heat shock protein Apg-2 binds ZO-1 and thereby regulates its role in cell proliferation. Here, we addressed the question whether Apg-2 is also important for junction formation and epithelial morphogenesis. We demonstrate that depletion of Apg-2 by RNAi in MDCK cells did not prevent formation of functional tight junctions. Similar to ZO-1, however, reduced expression of Apg-2 retarded de novo junction assembly if analysed in a Ca-switch model. Formation of functional junctions, as monitored by measuring transepithelial electrical resistance, and recruitment of tight and adherens junction markers were retarded. If cultured in three dimensional extracellular matrix gels, Apg-2 depleted cells, as previously shown for ZO-1 depleted cells, did not form hollow polarised cysts but poorly organised, irregular structures. Our data indicate that Apg-2 regulates junction assembly and is required for normal epithelial morphogenesis in a three-dimensional culture system, suggesting that Apg-2 is an important regulator of epithelial differentiation. As the observed phenotypes are similar to those previously described for ZO-1 depleted cells and depletion of Apg-2 retards junctional recruitment of ZO-1, regulation of ZO-1 is likely to be an important functional role for Apg-2 during epithelial differentiation.

  17. Morphogenesis in Plants: Modeling the Shoot Apical Meristem, and Possible Applications

    NASA Technical Reports Server (NTRS)

    Mjolsness, Eric; Gor, Victoria; Meyerowitz, Elliot; Mann, Tobias

    1998-01-01

    A key determinant of overall morphogenesis in flowering plants such as Arabidopsis thaliana is the shoot apical meristem (growing tip of a shoot). Gene regulation networks can be used to model this system. We exhibit a very preliminary two-dimensional model including gene regulation and intercellular signaling, but omitting cell division and dynamical geometry. The model can be trained to have three stable regions of gene expression corresponding to the central zone, peripheral zone, and rib meristem. We also discuss a space-engineering motivation for studying and controlling the morphogenesis of plants using such computational models.

  18. Distinct Recruitment and Function of Gab1 and Gab2 in Met Receptor-mediated Epithelial Morphogenesis

    PubMed Central

    Lock, Lisa S.; Maroun, Christiane R.; Naujokas, Monica A.; Park, Morag

    2002-01-01

    The Gab family of docking proteins (Gab1 and Gab2) are phosphorylated in response to various cytokines and growth factors. Gab1 acts to diversify the signal downstream from the Met receptor tyrosine kinase through the recruitment of multiple signaling proteins, and is essential for epithelial morphogenesis. To determine whether Gab1 and Gab2 are functionally redundant, we have examined the role of Gab2 in epithelial cells. Both Gab1 and Gab2 are expressed in epithelial cells and localize to cell-cell junctions. However, whereas overexpression of Gab1 promotes a morphogenic response, the overexpression of Gab2 fails to induce this response. We show that Gab2 recruitment to the Met receptor is dependent on the Grb2 adapter protein. In contrast, Gab1 recruitment to Met is both Grb2 dependent and Grb2 independent. The latter requires a novel amino acid sequence present in the Met-binding domain of Gab1 but not Gab2. Mutation of these residues in Gab1 impairs both association with the Met receptor and the ability of Gab1 to promote a morphogenic response, whereas their insertion into Gab2 increases Gab2 association with Met, but does not confer on Gab2 the ability to promote epithelial morphogenesis. We propose that the Grb2-independent recruitment of Gab proteins to Met is necessary but not sufficient to promote epithelial morphogenesis. PMID:12058075

  19. Connexin 43 Is Necessary for Salivary Gland Branching Morphogenesis and FGF10-induced ERK1/2 Phosphorylation*

    PubMed Central

    Yamada, Aya; Futagi, Masaharu; Fukumoto, Emiko; Saito, Kan; Yoshizaki, Keigo; Ishikawa, Masaki; Arakaki, Makiko; Hino, Ryoko; Sugawara, Yu; Ishikawa, Momoko; Naruse, Masahiro; Miyazaki, Kanako; Nakamura, Takashi; Fukumoto, Satoshi

    2016-01-01

    Cell-cell interaction via the gap junction regulates cell growth and differentiation, leading to formation of organs of appropriate size and quality. To determine the role of connexin43 in salivary gland development, we analyzed its expression in developing submandibular glands (SMGs). Connexin43 (Cx43) was found to be expressed in salivary gland epithelium. In ex vivo organ cultures of SMGs, addition of the gap junctional inhibitors 18α-glycyrrhetinic acid (18α-GA) and oleamide inhibited SMG branching morphogenesis, suggesting that gap junctional communication contributes to salivary gland development. In Cx43−/− salivary glands, submandibular and sublingual gland size was reduced as compared with those from heterozygotes. The expression of Pdgfa, Pdgfb, Fgf7, and Fgf10, which induced branching of SMGs in Cx43−/− samples, were not changed as compared with those from heterozygotes. Furthermore, the blocking peptide for the hemichannel and gap junction channel showed inhibition of terminal bud branching. FGF10 induced branching morphogenesis, while it did not rescue the Cx43−/− phenotype, thus Cx43 may regulate FGF10 signaling during salivary gland development. FGF10 is expressed in salivary gland mesenchyme and regulates epithelial proliferation, and was shown to induce ERK1/2 phosphorylation in salivary epithelial cells, while ERK1/2 phosphorylation in HSY cells was dramatically inhibited by 18α-GA, a Cx43 peptide or siRNA. On the other hand, PDGF-AA and PDGF-BB separately induced ERK1/2 phosphorylation in primary cultured salivary mesenchymal cells regardless of the presence of 18α-GA. Together, our results suggest that Cx43 regulates FGF10-induced ERK1/2 phosphorylation in salivary epithelium but not in mesenchyme during the process of SMG branching morphogenesis. PMID:26565022

  20. Biochemical Characterization of Paracoccidioides brasiliensis α-1,3-Glucanase Agn1p, and Its Functionality by Heterologous Expression in Schizosaccharomyces pombe

    PubMed Central

    Villalobos-Duno, Héctor; San-Blas, Gioconda; Paulinkevicius, Maryan; Sánchez-Martín, Yolanda; Nino-Vega, Gustavo

    2013-01-01

    α-1,3-Glucan is present as the outermost layer of the cell wall in the pathogenic yeastlike (Y) form of Paracoccidioides brasiliensis. Based on experimental evidence, this polysaccharide has been proposed as a fungal virulence factor. To degrade α-1,3-glucan and allow remodeling of the cell wall, α-1,3-glucanase is required. Therefore, the study of this enzyme, its encoding gene, and regulatory mechanisms, might be of interest to understand the morphogenesis and virulence process in this fungus. A single gene, orthologous to other fungal α-1,3-glucanase genes, was identified in the Paracoccidioides genome, and labeled AGN1. Transcriptional levels of AGN1 and AGS1 (α-1,3-glucan synthase-encoding gene) increased sharply when the pathogenic Y phase was cultured in the presence of 5% horse serum, a reported booster for cell wall α-1,3-glucan synthesis in this fungus. To study the biochemical properties of P. brasiliensis Agn1p, the enzyme was heterologously overexpressed, purified, and its activity profile determined by means of the degradation of carboxymethyl α-1,3-glucan (SCMG, chemically modified from P. brasiliensis α-1,3-glucan), used as a soluble substrate for the enzymatic reaction. Inhibition assays, thin layer chromatography and enzymatic reactions with alternative substrates (dextran, starch, chitin, laminarin and cellulose), showed that Agn1p displays an endolytic cut pattern and high specificity for SCMG. Complementation of a Schizosaccharomyces pombe agn1Δ strain with the P. brasiliensis AGN1 gene restored the wild type phenotype, indicating functionality of the gene, suggesting a possible role of Agn1p in the remodeling of P. brasiliensis Y phase cell wall. Based on amino acid sequence, P. brasiliensis Agn1p, groups within the family 71 of fungal glycoside hydrolases (GH-71), showing similar biochemical characteristics to other members of this family. Also based on amino acid sequence alignments, we propose a subdivision of fungal GH-71 into at least five groups, for which specific conserved sequences can be identified. PMID:23825576

  1. Shavenbaby Couples Patterning to Epidermal Cell Shape Control

    PubMed Central

    Fernandes, Isabelle; Roch, Fernando; Payre, François

    2006-01-01

    It is well established that developmental programs act during embryogenesis to determine animal morphogenesis. How these developmental cues produce specific cell shape during morphogenesis, however, has remained elusive. We addressed this question by studying the morphological differentiation of the Drosophila epidermis, governed by a well-known circuit of regulators leading to a stereotyped pattern of smooth cells and cells forming actin-rich extensions (trichomes). It was shown that the transcription factor Shavenbaby plays a pivotal role in the formation of trichomes and underlies all examined cases of the evolutionary diversification of their pattern. To gain insight into the mechanisms of morphological differentiation, we sought to identify shavenbaby's downstream targets. We show here that Shavenbaby controls epidermal cell shape, through the transcriptional activation of different classes of cellular effectors, directly contributing to the organization of actin filaments, regulation of the extracellular matrix, and modification of the cuticle. Individual inactivation of shavenbaby's targets produces distinct trichome defects and only their simultaneous inactivation prevent trichome formation. Our data show that shavenbaby governs an evolutionarily conserved developmental module consisting of a set of genes collectively responsible for trichome formation, shedding new light on molecular mechanisms acting during morphogenesis and the way they can influence evolution of animal forms. PMID:16933974

  2. The APC tumor suppressor is required for epithelial cell polarization and three-dimensional morphogenesis

    PubMed Central

    Lesko, Alyssa C.; Goss, Kathleen H.; Yang, Frank F.; Schwertner, Adam; Hulur, Imge; Onel, Kenan; Prosperi, Jenifer R.

    2015-01-01

    The Adenomatous Polyposis Coli (APC) tumor suppressor has been previously implicated in the control of apical-basal polarity; yet, the consequence of APC loss-of-function in epithelial polarization and morphogenesis has not been characterized. To test the hypothesis that APC is required for the establishment of normal epithelial polarity and morphogenesis programs, we generated APC-knockdown epithelial cell lines. APC depletion resulted in loss of polarity and multi-layering on permeable supports, and enlarged, filled spheroids with disrupted polarity in 3D culture. Importantly, these effects of APC knockdown were independent of Wnt/β-catenin signaling, but were rescued with either full-length or a carboxy (c)-terminal segment of APC. Moreover, we identified a gene expression signature associated with APC knockdown that points to several candidates known to regulate cell-cell and cell-matrix communication. Analysis of epithelial tissues from mice and humans carrying heterozygous APC mutations further support the importance of APC as a regulator of epithelial behavior and tissue architecture. These data also suggest that the initiation of epithelial-derived tumors as a result of APC mutation or gene silencing may be driven by loss of polarity and dysmorphogenesis. PMID:25578398

  3. Antifungal activity of geraniol and citronellol, two monoterpenes alcohols, against Trichophyton rubrum involves inhibition of ergosterol biosynthesis.

    PubMed

    Pereira, Fillipe de Oliveira; Mendes, Juliana Moura; Lima, Igara Oliveira; Mota, Kelly Samara de Lira; Oliveira, Wylly Araújo de; Lima, Edeltrudes de Oliveira

    2015-02-01

    Trichophyton rubrum is the most common fungus causing chronic dermatophytosis in humans. Antifungal activity of promising agents is of great interest. Geraniol and citronellol are monoterpenes with antimicrobial properties. This study aimed to investigate the inhibitory effects and possible mechanism of antifungal activity of geraniol and citronellol against strains of T. rubrum. The minimum inhibitory concentration (MIC) of each drug against 14 strains was determined by broth microdilution. The effects of the drugs on dry mycelial weight, conidial germination, infectivity on human nail fragments, and morphogenesis of T. rubrum were analyzed. The effects on the cell wall (test with sorbitol) and cell membrane (release of intracellular material and ergosterol biosynthesis) were investigated. MIC values of geraniol ranged between 16 and 256 µg/mL while citronellol showed MIC values from 8 to 1024 µg/mL. The drugs (MIC and 2 × MIC) inhibited the mycelial growth, conidia germination, and fungal growth on nail fragments. The drugs (half of MIC) induced the formation of wide, short, and crooked hyphae in T. rubrum morphology. With sorbitol, geraniol MIC was increased by 64-fold and citronellol by 32-fold. The drugs caused leakage of intracellular material and inhibited ergosterol biosynthesis. The results suggest that the drugs damage cell wall and cell membrane of T. rubrum through a mechanism that seems to involve the inhibition of the ergosterol biosynthesis. This study confirms that geraniol and citronellol can be regarded as potential drugs for controlling T. rubrum growth, with great potential against agents of dermatophytosis.

  4. Integration of actomyosin contractility with cell-cell adhesion during dorsal closure.

    PubMed

    Duque, Julia; Gorfinkiel, Nicole

    2016-12-15

    In this work, we combine genetic perturbation, time-lapse imaging and quantitative image analysis to investigate how pulsatile actomyosin contractility drives cell oscillations, apical cell contraction and tissue closure during morphogenesis of the amnioserosa, the main force-generating tissue during the dorsal closure in Drosophila We show that Myosin activity determines the oscillatory and contractile behaviour of amnioserosa cells. Reducing Myosin activity prevents cell shape oscillations and reduces cell contractility. By contrast, increasing Myosin activity increases the amplitude of cell shape oscillations and the time cells spend in the contracted phase relative to the expanded phase during an oscillatory cycle, promoting cell contractility and tissue closure. Furthermore, we show that in AS cells, Rok controls Myosin foci formation and Mbs regulates not only Myosin phosphorylation but also adhesion dynamics through control of Moesin phosphorylation, showing that Mbs coordinates actomyosin contractility with cell-cell adhesion during amnioserosa morphogenesis. © 2016. Published by The Company of Biologists Ltd.

  5. Asymmetric cell division of stem cells in the lung and other systems

    PubMed Central

    Berika, Mohamed; Elgayyar, Marwa E.; El-Hashash, Ahmed H. K.

    2014-01-01

    New insights have been added to identification, behavior and cellular properties of embryonic and tissue-specific stem cells over the last few years. The modes of stem cell division, asymmetric vs. symmetric, are tightly regulated during development and regeneration. The proper choice of a stem cell to divide asymmetrically or symmetrically has great consequences for development and disease because inappropriate asymmetric division disrupts organ morphogenesis, whereas uncontrolled symmetric division induces tumorigenesis. Therefore, understanding the behavior of lung stem cells could identify innovative solutions for restoring normal morphogenesis and/or regeneration of different organs. In this concise review, we describe recent studies in our laboratory about the mode of division of lung epithelial stem cells. We also compare asymmetric cell division (ACD) in the lung stem cells with other tissues in different organisms. PMID:25364740

  6. Blastocyst-like structures generated solely from stem cells.

    PubMed

    Rivron, Nicolas C; Frias-Aldeguer, Javier; Vrij, Erik J; Boisset, Jean-Charles; Korving, Jeroen; Vivié, Judith; Truckenmüller, Roman K; van Oudenaarden, Alexander; van Blitterswijk, Clemens A; Geijsen, Niels

    2018-05-01

    The blastocyst (the early mammalian embryo) forms all embryonic and extra-embryonic tissues, including the placenta. It consists of a spherical thin-walled layer, known as the trophectoderm, that surrounds a fluid-filled cavity sheltering the embryonic cells 1 . From mouse blastocysts, it is possible to derive both trophoblast 2 and embryonic stem-cell lines 3 , which are in vitro analogues of the trophectoderm and embryonic compartments, respectively. Here we report that trophoblast and embryonic stem cells cooperate in vitro to form structures that morphologically and transcriptionally resemble embryonic day 3.5 blastocysts, termed blastoids. Like blastocysts, blastoids form from inductive signals that originate from the inner embryonic cells and drive the development of the outer trophectoderm. The nature and function of these signals have been largely unexplored. Genetically and physically uncoupling the embryonic and trophectoderm compartments, along with single-cell transcriptomics, reveals the extensive inventory of embryonic inductions. We specifically show that the embryonic cells maintain trophoblast proliferation and self-renewal, while fine-tuning trophoblast epithelial morphogenesis in part via a BMP4/Nodal-KLF6 axis. Although blastoids do not support the development of bona fide embryos, we demonstrate that embryonic inductions are crucial to form a trophectoderm state that robustly implants and triggers decidualization in utero. Thus, at this stage, the nascent embryo fuels trophectoderm development and implantation.

  7. SILAC-based proteomics of human primary endothelial cell morphogenesis unveils tumor angiogenic markers.

    PubMed

    Zanivan, Sara; Maione, Federica; Hein, Marco Y; Hernández-Fernaud, Juan Ramon; Ostasiewicz, Pawel; Giraudo, Enrico; Mann, Matthias

    2013-12-01

    Proteomics has been successfully used for cell culture on dishes, but more complex cellular systems have proven to be challenging and so far poorly approached with proteomics. Because of the complexity of the angiogenic program, we still do not have a complete understanding of the molecular mechanisms involved in this process, and there have been no in depth quantitative proteomic studies. Plating endothelial cells on matrigel recapitulates aspects of vessel growth, and here we investigate this mechanism by using a spike-in SILAC quantitative proteomic approach. By comparing proteomic changes in primary human endothelial cells morphogenesis on matrigel to general adhesion mechanisms in cells spreading on culture dish, we pinpoint pathways and proteins modulated by endothelial cells. The cell-extracellular matrix adhesion proteome depends on the adhesion substrate, and a detailed proteomic profile of the extracellular matrix secreted by endothelial cells identified CLEC14A as a matrix component, which binds to MMRN2. We verify deregulated levels of these proteins during tumor angiogenesis in models of multistage carcinogenesis. This is the most in depth quantitative proteomic study of endothelial cell morphogenesis, which shows the potential of applying high accuracy quantitative proteomics to in vitro models of vessel growth to shed new light on mechanisms that accompany pathological angiogenesis. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD000359.

  8. Cell death and morphogenesis during early mouse development: Are they interconnected?

    PubMed Central

    Bedzhov, Ivan; Zernicka-Goetz, Magdalena

    2015-01-01

    Shortly after implantation the embryonic lineage transforms from a coherent ball of cells into polarized cup shaped epithelium. Recently we elucidated a previously unknown apoptosis-independent morphogenic event that reorganizes the pluripotent lineage. Polarization cues from the surrounding basement membrane rearrange the epiblast into a polarized rosette-like structure, where subsequently a central lumen is established. Thus, we provided a new model revising the current concept of apoptosis-dependent epiblast morphogenesis. Cell death however has to be tightly regulated during embryogenesis to ensure developmental success. Here, we follow the stages of early mouse development and take a glimpse at the critical signaling and morphogenic events that determine cells destiny and reshape the embryonic lineage. PMID:25640415

  9. Using cell deformation and motion to predict forces and collective behavior in morphogenesis.

    PubMed

    Merkel, Matthias; Manning, M Lisa

    2017-07-01

    In multi-cellular organisms, morphogenesis translates processes at the cellular scale into tissue deformation at the scale of organs and organisms. To understand how biochemical signaling regulates tissue form and function, we must understand the mechanical forces that shape cells and tissues. Recent progress in developing mechanical models for tissues has led to quantitative predictions for how cell shape changes and polarized cell motility generate forces and collective behavior on the tissue scale. In particular, much insight has been gained by thinking about biological tissues as physical materials composed of cells. Here we review these advances and discuss how they might help shape future experiments in developmental biology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Stromal–epithelial cell interactions and alteration of branching morphogenesis in macromastic mammary glands

    PubMed Central

    Zhong, Aimei; Wang, Guohua; Yang, Jie; Xu, Qijun; Yuan, Quan; Yang, Yanqing; Xia, Yun; Guo, Ke; Horch, Raymund E; Sun, Jiaming

    2014-01-01

    True macromastia is a rare but disabling condition characterized by massive breast growth. The aetiology and pathogenic mechanisms for this disorder remain largely unexplored because of the lack of in vivo or in vitro models. Previous studies suggested that regulation of epithelial cell growth and development by oestrogen was dependent on paracrine growth factors from the stroma. In this study, a co-culture model containing epithelial and stromal cells was used to investigate the interactions of these cells in macromastia. Epithelial cell proliferation and branching morphogenesis were measured to assess the effect of macromastic stromal cells on epithelial cells. We analysed the cytokines secreted by stromal cells and identified molecules that were critical for effects on epithelial cells. Our results indicated a significant increase in cell proliferation and branching morphogenesis of macromastic and non-macromastic epithelial cells when co-cultured with macromastic stromal cells or in conditioned medium from macromastic stromal cells. Hepatocyte growth factor (HGF) is a key factor in epithelial–stromal interactions of macromastia-derived cell cultures. Blockade of HGF with neutralizing antibodies dramatically attenuated epithelial cell proliferation in conditioned medium from macromastic stromal cells. The epithelial–stromal cell co-culture model demonstrated reliability for studying interactions of mammary stromal and epithelial cells in macromastia. In this model, HGF secreted by macromastic stromal cells was found to play an important role in modifying the behaviour of co-cultured epithelial cells. This model allows further studies to investigate basic cellular and molecular mechanisms in tissue from patients with true breast hypertrophy. PMID:24720804

  11. Identification of low Ca(2+) stress-induced embryo apoptosis response genes in Arachis hypogaea by SSH-associated library lift (SSHaLL).

    PubMed

    Chen, Hua; Zhang, Chong; Cai, Tie Cheng; Deng, Ye; Zhou, Shuangbiao; Zheng, Yixiong; Ma, Shiwei; Tang, Ronghua; Varshney, Rajeev K; Zhuang, Weijian

    2016-02-01

    Calcium is a universal signal in the regulation of wide aspects in biology, but few are known about the function of calcium in the control of early embryo development. Ca(2+) deficiency in soil induces early embryo abortion in peanut, producing empty pods, which is a general problem; however, the underlying mechanism remains unclear. In this study, embryo abortion was characterized to be caused by apoptosis marked with cell wall degradation. Using a method of SSH cDNA libraries associated with library lift (SSHaLL), 62 differentially expressed genes were isolated from young peanut embryos. These genes were classified to be stress responses, catabolic process, carbohydrate and lipid metabolism, embryo morphogenesis, regulation, etc. The cell retardation with cell wall degradation was caused by up-regulated cell wall hydrolases and down-regulated cellular synthases genes. HsfA4a, which was characterized to be important to embryo development, was significantly down-regulated under Ca(2+) -deficient conditions from 15 days after pegging (DAP) to 30 DAP. Two AhCYP707A4 genes, encoding abscisic acid (ABA) 8'-hydroxylases, key enzymes for ABA catabolism, were up-regulated by 21-fold under Ca(2+) -deficient conditions upstream of HsfA4a, reducing the ABA level in early embryos. Over-expression of AhCYP707A4 in Nicotiana benthamiana showed a phenotype of low ABA content with high numbers of aborted embryos, small pods and less seeds, which confirms that AhCYP707A4 is a key player in regulation of Ca(2+) deficiency-induced embryo abortion via ABA-mediated apoptosis. The results elucidated the mechanism of low Ca(2+) -induced embryo abortion and described the method for other fields of study. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Contraction and elongation: Mechanics underlying cell boundary deformations in epithelial tissue.

    PubMed

    Hara, Yusuke

    2017-06-01

    The cell-cell boundaries of epithelial cells form cellular frameworks at the apical side of tissues. Deformations in these boundaries, for example, boundary contraction and elongation, and the associated forces form the mechanical basis of epithelial tissue morphogenesis. In this review, using data from recent Drosophila studies on cell boundary contraction and elongation, I provide an overview of the mechanism underlying the bi-directional deformations in the epithelial cell boundary, that are sustained by biased accumulations of junctional and apico-medial non-muscle myosin II. Moreover, how the junctional tensions exist on cell boundaries in different boundary dynamics and morphologies are discussed. Finally, some future perspectives on how recent knowledge about single cell boundary-level mechanics will contribute to our understanding of epithelial tissue morphogenesis are discussed. © 2017 Japanese Society of Developmental Biologists.

  13. Micropatterning of cells reveals chiral morphogenesis

    PubMed Central

    2013-01-01

    Invariant left-right (LR) patterning or chirality is critical for embryonic development. The loss or reversal of LR asymmetry is often associated with malformations and disease. Although several theories have been proposed, the exact mechanism of the initiation of the LR symmetry has not yet been fully elucidated. Recently, chirality has been detected within single cells as well as multicellular structures using several in vitro approaches. These studies demonstrated the universality of cell chirality, its dependence on cell phenotype, and the role of physical boundaries. In this review, we discuss the theories for developmental LR asymmetry, compare various in vitro cell chirality model systems, and highlight possible roles of cell chirality in stem cell differentiation. We emphasize that the in vitro cell chirality systems have great promise for helping unveil the nature of chiral morphogenesis in development. PMID:23672821

  14. Impaired hair follicle morphogenesis and polarized keratinocyte movement upon conditional inactivation of integrin-linked kinase in the epidermis.

    PubMed

    Nakrieko, Kerry-Ann; Welch, Ian; Dupuis, Holly; Bryce, Dawn; Pajak, Agnieszka; St Arnaud, René; Dedhar, Shoukat; D'Souza, Sudhir J A; Dagnino, Lina

    2008-04-01

    Integrin-linked kinase (ILK) is key for cell survival, migration, and adhesion, but little is known about its role in epidermal development and homeostasis in vivo. We generated mice with conditional inactivation of the Ilk gene in squamous epithelia. These mice die perinatally and exhibit skin blistering and severe defects in hair follicle morphogenesis, including greatly reduced follicle numbers, failure to progress beyond very early developmental stages, and pronounced defects in follicular keratinocyte proliferation. ILK-deficient epidermis shows abnormalities in adhesion to the basement membrane and in differentiation. ILK-deficient cultured keratinocytes fail to attach and spread efficiently and exhibit multiple abnormalities in actin cytoskeletal organization. Ilk gene inactivation in cultured keratinocytes causes impaired ability to form stable lamellipodia, to directionally migrate, and to polarize. These defects are accompanied by abnormal distribution of active Cdc42 to cell protrusions, as well as reduced activation of Rac1 upon induction of cell migration in scraped keratinocyte monolayers. Significantly, alterations in cell spreading and forward movement in single cells can be rescued by expression of constitutively active Rac1 or RhoG. Our studies underscore a central and distinct role for ILK in hair follicle development and in polarized cell movements, two key aspects of epithelial morphogenesis and function.

  15. Impaired Hair Follicle Morphogenesis and Polarized Keratinocyte Movement upon Conditional Inactivation of Integrin-linked Kinase in the Epidermis

    PubMed Central

    Nakrieko, Kerry-Ann; Welch, Ian; Dupuis, Holly; Bryce, Dawn; Pajak, Agnieszka; St. Arnaud, René; Dedhar, Shoukat

    2008-01-01

    Integrin-linked kinase (ILK) is key for cell survival, migration, and adhesion, but little is known about its role in epidermal development and homeostasis in vivo. We generated mice with conditional inactivation of the Ilk gene in squamous epithelia. These mice die perinatally and exhibit skin blistering and severe defects in hair follicle morphogenesis, including greatly reduced follicle numbers, failure to progress beyond very early developmental stages, and pronounced defects in follicular keratinocyte proliferation. ILK-deficient epidermis shows abnormalities in adhesion to the basement membrane and in differentiation. ILK-deficient cultured keratinocytes fail to attach and spread efficiently and exhibit multiple abnormalities in actin cytoskeletal organization. Ilk gene inactivation in cultured keratinocytes causes impaired ability to form stable lamellipodia, to directionally migrate, and to polarize. These defects are accompanied by abnormal distribution of active Cdc42 to cell protrusions, as well as reduced activation of Rac1 upon induction of cell migration in scraped keratinocyte monolayers. Significantly, alterations in cell spreading and forward movement in single cells can be rescued by expression of constitutively active Rac1 or RhoG. Our studies underscore a central and distinct role for ILK in hair follicle development and in polarized cell movements, two key aspects of epithelial morphogenesis and function. PMID:18234842

  16. Retinoic Acid signaling regulates Krt5 and Krt14 independently of stem cell markers in submandibular salivary gland epithelium

    PubMed Central

    Abashev, Timur M.; Metzler, Melissa A.; Wright, Diana M.; Sandell, Lisa L.

    2017-01-01

    Background Retinoic Acid (RA), the active metabolite of Vitamin A, has been demonstrated to be important for growth and branching morphogenesis of mammalian embryonic salivary gland epithelium. However, it is not known whether RA functions directly within epithelial cells or in associated tissues that influence morphogenesis of salivary epithelium. Moreover, downstream targets of RA regulation have not been identified. Results Here we show that canonical RA signaling occurs in multiple tissues of embryonic mouse salivary glands, including epithelium, associated parasympathetic ganglion neurons, and non-neuronal mesenchyme. By culturing epithelium explants in isolation from other tissues we demonstrate that RA influences epithelium morphogenesis by direct action in that tissue. Moreover, we demonstrate that inhibition of RA signaling represses cell proliferation and expression of FGF10 signaling targets, and upregulates expression of basal epithelial keratins Krt5 and Krt14. Importantly, we show that the stem cell gene Kit is regulated inversely from Krt5/Krt14 by RA signaling. Conclusions RA regulates Krt5 and Krt14 expression independently of stem cell character in developing salivary epithelium. RA, or chemical inhibitors of RA signaling, could potentially be used for modulating growth and differentiation of epithelial stem cells for the purpose of re-populating damaged glands or generating bioengineered organs. PMID:27884045

  17. Chitinase-like1/pom-pom1 and its homolog CTL2 are glucan-interacting proteins important for cellulose biosynthesis in Arabidopsis.

    PubMed

    Sánchez-Rodríguez, Clara; Bauer, Stefan; Hématy, Kian; Saxe, Friederike; Ibáñez, Ana Belén; Vodermaier, Vera; Konlechner, Cornelia; Sampathkumar, Arun; Rüggeberg, Markus; Aichinger, Ernst; Neumetzler, Lutz; Burgert, Ingo; Somerville, Chris; Hauser, Marie-Theres; Persson, Staffan

    2012-02-01

    Plant cells are encased by a cellulose-containing wall that is essential for plant morphogenesis. Cellulose consists of β-1,4-linked glucan chains assembled into paracrystalline microfibrils that are synthesized by plasma membrane-located cellulose synthase (CESA) complexes. Associations with hemicelluloses are important for microfibril spacing and for maintaining cell wall tensile strength. Several components associated with cellulose synthesis have been identified; however, the biological functions for many of them remain elusive. We show that the chitinase-like (CTL) proteins, CTL1/POM1 and CTL2, are functionally equivalent, affect cellulose biosynthesis, and are likely to play a key role in establishing interactions between cellulose microfibrils and hemicelluloses. CTL1/POM1 coincided with CESAs in the endomembrane system and was secreted to the apoplast. The movement of CESAs was compromised in ctl1/pom1 mutant seedlings, and the cellulose content and xyloglucan structures were altered. X-ray analysis revealed reduced crystalline cellulose content in ctl1 ctl2 double mutants, suggesting that the CTLs cooperatively affect assembly of the glucan chains, which may affect interactions between hemicelluloses and cellulose. Consistent with this hypothesis, both CTLs bound glucan-based polymers in vitro. We propose that the apoplastic CTLs regulate cellulose assembly and interaction with hemicelluloses via binding to emerging cellulose microfibrils.

  18. CHITINASE-LIKE1/POM-POM1 and Its Homolog CTL2 Are Glucan-Interacting Proteins Important for Cellulose Biosynthesis in Arabidopsis[W][OA

    PubMed Central

    Sánchez-Rodríguez, Clara; Bauer, Stefan; Hématy, Kian; Saxe, Friederike; Ibáñez, Ana Belén; Vodermaier, Vera; Konlechner, Cornelia; Sampathkumar, Arun; Rüggeberg, Markus; Aichinger, Ernst; Neumetzler, Lutz; Burgert, Ingo; Somerville, Chris; Hauser, Marie-Theres; Persson, Staffan

    2012-01-01

    Plant cells are encased by a cellulose-containing wall that is essential for plant morphogenesis. Cellulose consists of β-1,4-linked glucan chains assembled into paracrystalline microfibrils that are synthesized by plasma membrane–located cellulose synthase (CESA) complexes. Associations with hemicelluloses are important for microfibril spacing and for maintaining cell wall tensile strength. Several components associated with cellulose synthesis have been identified; however, the biological functions for many of them remain elusive. We show that the chitinase-like (CTL) proteins, CTL1/POM1 and CTL2, are functionally equivalent, affect cellulose biosynthesis, and are likely to play a key role in establishing interactions between cellulose microfibrils and hemicelluloses. CTL1/POM1 coincided with CESAs in the endomembrane system and was secreted to the apoplast. The movement of CESAs was compromised in ctl1/pom1 mutant seedlings, and the cellulose content and xyloglucan structures were altered. X-ray analysis revealed reduced crystalline cellulose content in ctl1 ctl2 double mutants, suggesting that the CTLs cooperatively affect assembly of the glucan chains, which may affect interactions between hemicelluloses and cellulose. Consistent with this hypothesis, both CTLs bound glucan-based polymers in vitro. We propose that the apoplastic CTLs regulate cellulose assembly and interaction with hemicelluloses via binding to emerging cellulose microfibrils. PMID:22327741

  19. Effects of substrate conductivity on cell morphogenesis and proliferation using tailored, atomic layer deposition-grown ZnO thin films

    PubMed Central

    Choi, Won Jin; Jung, Jongjin; Lee, Sujin; Chung, Yoon Jang; Yang, Cheol-Soo; Lee, Young Kuk; Lee, You-Seop; Park, Joung Kyu; Ko, Hyuk Wan; Lee, Jeong-O

    2015-01-01

    We demonstrate that ZnO films grown by atomic layer deposition (ALD) can be employed as a substrate to explore the effects of electrical conductivity on cell adhesion, proliferation, and morphogenesis. ZnO substrates with precisely tunable electrical conductivity were fabricated on glass substrates using ALD deposition. The electrical conductivity of the film increased linearly with increasing duration of the ZnO deposition cycle (thickness), whereas other physical characteristics, such as surface energy and roughness, tended to saturate at a certain value. Differences in conductivity dramatically affected the behavior of SF295 glioblastoma cells grown on ZnO films, with high conductivity (thick) ZnO films causing growth arrest and producing SF295 cell morphologies distinct from those cultured on insulating substrates. Based on simple electrostatic calculations, we propose that cells grown on highly conductive substrates may strongly adhere to the substrate without focal-adhesion complex formation, owing to the enhanced electrostatic interaction between cells and the substrate. Thus, the inactivation of focal adhesions leads to cell proliferation arrest. Taken together, the work presented here confirms that substrates with high conductivity disturb the cell-substrate interaction, producing cascading effects on cellular morphogenesis and disrupting proliferation, and suggests that ALD-grown ZnO offers a single-variable method for uniquely tailoring conductivity. PMID:25897486

  20. The Role of Isocitrate Lyase (ICL1) in the Metabolic Adaptation of Candida albicans Biofilms

    PubMed Central

    Ishola, Oluwaseun Ayodeji; Ting, Seng Yeat; Tabana, Yasser M; Ahmed, Mowaffaq Adam; Yunus, Muhammad Amir; Mohamed, Rafeezul; Lung Than, Leslie Thian; Sandai, Doblin

    2016-01-01

    Background A major characteristic of Candida biofilm cells that differentiates them from free-floating cells is their high tolerance to antifungal drugs. This high resistance is attributed to particular biofilm properties, including the accumulation of extrapolymeric substances, morphogenetic switching, and metabolic flexibility. Objectives This study evaluated the roles of metabolic processes (in particular the glyoxylate cycle) on biofilm formation, antifungal drug resistance, morphology, and cell wall components. Methods Growth, adhesion, biofilm formation, and cell wall carbohydrate composition were quantified for isogenic Candida albicans ICL1/ICL1, ICL1/icl1, and icl1/icl1 strains. The morphology and topography of these strains were compared by light microscopy and scanning electron microscopy. FKS1 (glucan synthase), ERG11 (14-α-demethylase), and CDR2 (efflux pump) mRNA levels were quantified using qRT-PCR. Results The ICL1/icl1 and icl1/icl1 strains formed similar biofilms and exhibited analogous drug-tolerance levels to the control ICL1/ICL1 strains. Furthermore, the drug sequestration ability of β-1, 3-glucan, a major carbohydrate component of the extracellular matrix, was not impaired. However, the inactivation of ICL1 did impair morphogenesis. ICL1 deletion also had a considerable effect on the expression of the FKS1, ERG11, and CDR2 genes. FKS1 and ERG11 were upregulated in ICL1/icl1 and icl1/icl1 cells throughout the biofilm developmental stages, and CDR2 was upregulated at the early phase. However, their expression was downregulated compared to the control ICL1/ICL1 strain. Conclusions We conclude that the glyoxylate cycle is not a specific determinant of biofilm drug resistance. PMID:27800147

  1. MicroRNAs and the Evolution of Insect Metamorphosis.

    PubMed

    Belles, Xavier

    2017-01-31

    MicroRNAs (miRNAs) are involved in the regulation of a number of processes associated with metamorphosis, either in the less modified hemimetabolan mode or in the more modified holometabolan mode. The miR-100/let-7/miR-125 cluster has been studied extensively, especially in relation to wing morphogenesis in both hemimetabolan and holometabolan species. Other miRNAs also participate in wing morphogenesis, as well as in programmed cell and tissue death, neuromaturation, neuromuscular junction formation, and neuron cell fate determination, typically during the pupal stage of holometabolan species. A special case is the control of miR-2 over Kr-h1 transcripts, which determines adult morphogenesis in the hemimetabolan metamorphosis. This is an elegant example of how a single miRNA can control an entire process by acting on a crucial mediator; however, this is a quite exceptional mechanism that was apparently lost during the transition from hemimetaboly to holometaboly.

  2. Engineering Three-dimensional Epithelial Tissues Embedded within Extracellular Matrix.

    PubMed

    Piotrowski-Daspit, Alexandra S; Nelson, Celeste M

    2016-07-10

    The architecture of branched organs such as the lungs, kidneys, and mammary glands arises through the developmental process of branching morphogenesis, which is regulated by a variety of soluble and physical signals in the microenvironment. Described here is a method created to study the process of branching morphogenesis by forming engineered three-dimensional (3D) epithelial tissues of defined shape and size that are completely embedded within an extracellular matrix (ECM). This method enables the formation of arrays of identical tissues and enables the control of a variety of environmental factors, including tissue geometry, spacing, and ECM composition. This method can also be combined with widely used techniques such as traction force microscopy (TFM) to gain more information about the interactions between cells and their surrounding ECM. The protocol can be used to investigate a variety of cell and tissue processes beyond branching morphogenesis, including cancer invasion.

  3. Pak4 Is Required during Epithelial Polarity Remodeling through Regulating AJ Stability and Bazooka Retention at the ZA

    PubMed Central

    Walther, Rhian F.; Nunes de Almeida, Francisca; Vlassaks, Evi; Burden, Jemima J.; Pichaud, Franck

    2016-01-01

    Summary The ability of epithelial cells to assemble into sheets relies on their zonula adherens (ZA), a circumferential belt of adherens junction (AJ) material, which can be remodeled during development to shape organs. Here, we show that during ZA remodeling in a model neuroepithelial cell, the Cdc42 effector P21-activated kinase 4 (Pak4/Mbt) regulates AJ morphogenesis and stability through β-catenin (β-cat/Arm) phosphorylation. We find that β-catenin phosphorylation by Mbt, and associated AJ morphogenesis, is needed for the retention of the apical determinant Par3/Bazooka at the remodeling ZA. Importantly, this retention mechanism functions together with Par1-dependent lateral exclusion of Par3/Bazooka to regulate apical membrane differentiation. Our results reveal an important functional link between Pak4, AJ material morphogenesis, and polarity remodeling during organogenesis downstream of Par3. PMID:27052178

  4. Sox17 drives functional engraftment of endothelium converted from non-vascular cells.

    PubMed

    Schachterle, William; Badwe, Chaitanya R; Palikuqi, Brisa; Kunar, Balvir; Ginsberg, Michael; Lis, Raphael; Yokoyama, Masataka; Elemento, Olivier; Scandura, Joseph M; Rafii, Shahin

    2017-01-16

    Transplanting vascular endothelial cells (ECs) to support metabolism and express regenerative paracrine factors is a strategy to treat vasculopathies and to promote tissue regeneration. However, transplantation strategies have been challenging to develop, because ECs are difficult to culture and little is known about how to direct them to stably integrate into vasculature. Here we show that only amniotic cells could convert to cells that maintain EC gene expression. Even so, these converted cells perform sub-optimally in transplantation studies. Constitutive Akt signalling increases expression of EC morphogenesis genes, including Sox17, shifts the genomic targeting of Fli1 to favour nearby Sox consensus sites and enhances the vascular function of converted cells. Enforced expression of Sox17 increases expression of morphogenesis genes and promotes integration of transplanted converted cells into injured vessels. Thus, Ets transcription factors specify non-vascular, amniotic cells to EC-like cells, whereas Sox17 expression is required to confer EC function.

  5. The large Maf factor Traffic Jam controls gonad morphogenesis in Drosophila.

    PubMed

    Li, Michelle A; Alls, Jeffrey D; Avancini, Rita M; Koo, Karen; Godt, Dorothea

    2003-11-01

    Interactions between somatic and germline cells are critical for the normal development of egg and sperm. Here we show that the gene traffic jam (tj) produces a soma-specific factor that controls gonad morphogenesis and is required for female and male fertility. tj encodes the only large Maf factor in Drosophila melanogaster, an orthologue of the atypical basic Leu zipper transcription factors c-Maf and MafB/Kreisler in vertebrates. Expression of tj occurs in somatic gonadal cells that are in direct contact with germline cells throughout development. In tj mutant gonads, somatic cells fail to inter-mingle and properly envelop germline cells, causing an early block in germ cell differentiation. In addition, tj mutant somatic cells show an increase in the level of expression for several adhesion molecules. We propose that tj is a critical modulator of the adhesive properties of somatic cells, facilitating germline-soma interactions that are essential for germ cell differentiation.

  6. Cholesteric liquid crystals in living matter.

    PubMed

    Mitov, Michel

    2017-06-14

    Liquid crystals play an important role in biology because the combination of order and mobility is a basic requirement for self-organisation and structure formation in living systems. Cholesteric liquid crystals are omnipresent in living matter under both in vivo and in vitro conditions and address the major types of molecules essential to life. In the animal and plant kingdoms, the cholesteric structure is a recurring design, suggesting a convergent evolution to an optimised left-handed helix. Herein, we review the recent advances in the cholesteric organisation of DNA, chromatin, chitin, cellulose, collagen, viruses, silk and cholesterol ester deposition in atherosclerosis. Cholesteric structures can be found in bacteriophages, archaea, eukaryotes, bacterial nucleoids, chromosomes of unicellular algae, sperm nuclei of many vertebrates, cuticles of crustaceans and insects, bone, tendon, cornea, fish scales and scutes, cuttlebone and squid pens, plant cell walls, virus suspensions, silk produced by spiders and silkworms, and arterial wall lesions. This article specifically aims at describing the consequences of the cholesteric geometry in living matter, which are far from being fully defined and understood, and discusses various perspectives. The roles and functions of biological cholesteric liquid crystals include maximisation of packing efficiency, morphogenesis, mechanical stability, optical information, radiation protection and evolution pressure.

  7. Nrk2b-mediated NAD+ production regulates cell adhesion and is required for muscle morphogenesis in vivo

    PubMed Central

    Goody, Michelle F.; Kelly, Meghan W.; Lessard, Kevin N.; Khalil, Andre; Henry, Clarissa A.

    2010-01-01

    Cell-matrix adhesion complexes (CMACs) play fundamental roles during morphogenesis. Given the ubiquitous nature of CMACs and their roles in many cellular processes, one question is how specificity of CMAC function is modulated. The clearly defined cell behaviors that generate segmentally reiterated axial skeletal muscle during zebrafish development comprise an ideal system with which to investigate CMAC function during morphogenesis. We found that Nicotinamide riboside kinase 2b (Nrk2b) cell autonomously modulates the molecular composition of CMACs in vivo. Nrk2b is required for normal Laminin polymerization at the myotendinous junction (MTJ). In Nrk2b-deficient embryos, at MTJ loci where Laminin is not properly polymerized, muscle fibers elongate into adjacent myotomes and are abnormally long. In yeast and human cells, Nrk2 phosphorylates Nicotinamide Riboside and generates NAD+ through an alternative salvage pathway. Exogenous NAD+ treatment rescues MTJ development in Nrk2b-deficient embryos, but not in laminin mutant embryos. Both Nrk2b and Laminin are required for localization of Paxillin, but not β-Dystroglycan, to CMACs at the MTJ. Overexpression of Paxillin in Nrk2b-deficient embryos is sufficient to rescue MTJ integrity. Taken together, these data show that Nrk2b plays a specific role in modulating subcellular localization of discrete CMAC components that in turn play roles in musculoskeletal development. Furthermore, these data suggest that Nrk2b-mediated synthesis of NAD+ is functionally upstream of Laminin adhesion and Paxillin subcellular localization during MTJ development. These results indicate a previously unrecognized complexity to CMAC assembly in vivo and also elucidate a novel role for NAD+ during morphogenesis. PMID:20566368

  8. hmmr mediates anterior neural tube closure and morphogenesis in the frog Xenopus.

    PubMed

    Prager, Angela; Hagenlocher, Cathrin; Ott, Tim; Schambony, Alexandra; Feistel, Kerstin

    2017-10-01

    Development of the central nervous system requires orchestration of morphogenetic processes which drive elevation and apposition of the neural folds and their fusion into a neural tube. The newly formed tube gives rise to the brain in anterior regions and continues to develop into the spinal cord posteriorly. Conspicuous differences between the anterior and posterior neural tube become visible already during neural tube closure (NTC). Planar cell polarity (PCP)-mediated convergent extension (CE) movements are restricted to the posterior neural plate, i.e. hindbrain and spinal cord, where they propagate neural fold apposition. The lack of CE in the anterior neural plate correlates with a much slower mode of neural fold apposition anteriorly. The morphogenetic processes driving anterior NTC have not been addressed in detail. Here, we report a novel role for the breast cancer susceptibility gene and microtubule (MT) binding protein Hmmr (Hyaluronan-mediated motility receptor, RHAMM) in anterior neurulation and forebrain development in Xenopus laevis. Loss of hmmr function resulted in a lack of telencephalic hemisphere separation, arising from defective roof plate formation, which in turn was caused by impaired neural tissue narrowing. hmmr regulated polarization of neural cells, a function which was dependent on the MT binding domains. hmmr cooperated with the core PCP component vangl2 in regulating cell polarity and neural morphogenesis. Disrupted cell polarization and elongation in hmmr and vangl2 morphants prevented radial intercalation (RI), a cell behavior essential for neural morphogenesis. Our results pinpoint a novel role of hmmr in anterior neural development and support the notion that RI is a major driving force for anterior neurulation and forebrain morphogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Ras GTPases Modulate Morphogenesis, Sporulation and Cellulase Gene Expression in the Cellulolytic Fungus Trichoderma reesei

    PubMed Central

    Zhang, Jiwei; Zhang, Yanmei; Zhong, Yaohua; Qu, Yinbo; Wang, Tianhong

    2012-01-01

    Background The model cellulolytic fungus Trichoderma reesei (teleomorph Hypocrea jecorina) is capable of responding to environmental cues to compete for nutrients in its natural saprophytic habitat despite its genome encodes fewer degradative enzymes. Efficient signalling pathways in perception and interpretation of environmental signals are indispensable in this process. Ras GTPases represent a kind of critical signal proteins involved in signal transduction and regulation of gene expression. In T. reesei the genome contains two Ras subfamily small GTPases TrRas1 and TrRas2 homologous to Ras1 and Ras2 from S. cerevisiae, but their functions remain unknown. Methodology/Principal Findings Here, we have investigated the roles of GTPases TrRas1 and TrRas2 during fungal morphogenesis and cellulase gene expression. We show that both TrRas1 and TrRas2 play important roles in some cellular processes such as polarized apical growth, hyphal branch formation, sporulation and cAMP level adjustment, while TrRas1 is more dominant in these processes. Strikingly, we find that TrRas2 is involved in modulation of cellulase gene expression. Deletion of TrRas2 results in considerably decreased transcription of cellulolytic genes upon growth on cellulose. Although the strain carrying a constitutively activated TrRas2G16V allele exhibits increased cellulase gene transcription, the cbh1 and cbh2 expression in this mutant still strictly depends on cellulose, indicating TrRas2 does not directly mediate the transmission of the cellulose signal. In addition, our data suggest that the effect of TrRas2 on cellulase gene is exerted through regulation of transcript abundance of cellulase transcription factors such as Xyr1, but the influence is independent of cAMP signalling pathway. Conclusions/Significance Together, these findings elucidate the functions for Ras signalling of T. reesei in cellular morphogenesis, especially in cellulase gene expression, which contribute to deciphering the powerful competitive ability of plant cell wall degrading fungi in nature. PMID:23152805

  10. The Epithelial Cell Adhesion Molecule EpCAM Is Required for Epithelial Morphogenesis and Integrity during Zebrafish Epiboly and Skin Development

    PubMed Central

    Slanchev, Krasimir; Carney, Thomas J.; Stemmler, Marc P.; Koschorz, Birgit; Amsterdam, Adam; Schwarz, Heinz; Hammerschmidt, Matthias

    2009-01-01

    The aberrant expression of the transmembrane protein EpCAM is associated with tumor progression, affecting different cellular processes such as cell–cell adhesion, migration, proliferation, differentiation, signaling, and invasion. However, the in vivo function of EpCAM still remains elusive due to the lack of genetic loss-of-function studies. Here, we describe epcam (tacstd) null mutants in zebrafish. Maternal-zygotic mutants display compromised basal protrusive activity and epithelial morphogenesis in cells of the enveloping layer (EVL) during epiboly. In partial redundancy with E-cadherin (Ecad), EpCAM made by EVL cells is further required for cell–cell adhesion within the EVL and, possibly, for proper attachment of underlying deep cells to the inner surface of the EVL, thereby also affecting deep cell epiboly movements. During later development, EpCAM per se becomes indispensable for epithelial integrity within the periderm of the skin, secondarily leading to disrupted morphology of the underlying basal epidermis and moderate hyper-proliferation of skin cells. On the molecular level, EVL cells of epcam mutant embryos display reduced levels of membranous Ecad, accompanied by an enrichment of tight junction proteins and a basal extension of apical junction complexes (AJCs). Our data suggest that EpCAM acts as a partner of E-cadherin to control adhesiveness and integrity as well as plasticity and morphogenesis within simple epithelia. In addition, EpCAM is required for the interaction of the epithelia with underlying cell layers. PMID:19609345

  11. Tumor endothelial marker 5 expression in endothelial cells during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallon, Mario, E-mail: m.vallon@arcor.de; Rohde, Franziska; Janssen, Klaus-Peter

    2010-02-01

    Tumor endothelial marker (TEM) 5 is an adhesion G-protein-coupled receptor upregulated in endothelial cells during tumor and physiologic angiogenesis. So far, the mechanisms leading to upregulation of TEM5 and its function during angiogenesis have not been identified. Here, we report that TEM5 expression in endothelial cells is induced during capillary-like network formation on Matrigel, during capillary morphogenesis in a three-dimensional collagen I matrix, and upon confluence on a two-dimensional matrix. TEM5 expression was not induced by a variety of soluble angiogenic factors, including VEGF and bFGF, in subconfluent endothelial cells. TEM5 upregulation was blocked by toxin B from Clostridium difficile,more » an inhibitor of the small GTPases Rho, Rac, and Cdc42. The Rho inhibitor C3 transferase from Clostridium botulinum did not affect TEM5 expression, whereas the Rac inhibitor NSC23766 suppressed TEM5 upregulation. An excess of the soluble TEM5 extracellular domain or an inhibitory monoclonal TEM5 antibody blocked contact inhibition of endothelial cell proliferation resulting in multilayered islands within the endothelial monolayer and increased vessel density during capillary formation. Based on our results we conclude that TEM5 expression during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of proliferation in endothelial cells.« less

  12. Notochord Morphogenesis in Mice: Current Understanding & Open Questions

    PubMed Central

    Balmer, Sophie; Nowotschin, Sonja; Hadjantonakis, Anna-Katerina

    2016-01-01

    The notochord is the structure which defines chordates. It is a rod-like mesodermal structure that runs the anterior-posterior length of the embryo, adjacent to the ventral neural tube. The notochord plays a critical role in embryonic tissue patterning, for example the dorsal-ventral patterning of the neural tube. The cells that will come to form the notochord are specified at gastrulation. Axial mesodermal cells arising at the anterior primitive streak migrate anteriorly as the precursors of the notochord and populate the notochordal plate. Interestingly, even though a lot of interest has centered on investigating the functional and structural roles of the notochord, we still have a very rudimentary understanding of notochord morphogenesis. The events driving the formation of the notochord are rapid, taking place over the period of approximately a day in mice. In this commentary we provide an overview of our current understanding of mouse notochord morphogenesis, from the initial specification of axial mesendodermal cells at the primitive streak, the emergence of these cells at the midline on the surface of the embryo, to their submergence and organization of the stereotypically positioned notochord. We will also discuss some key open questions. PMID:26845388

  13. In vivo imaging of basement membrane movement: ECM patterning shapes Hydra polyps

    PubMed Central

    Aufschnaiter, Roland; Zamir, Evan A.; Little, Charles D.; Özbek, Suat; Münder, Sandra; David, Charles N.; Li, Li; Sarras, Michael P.; Zhang, Xiaoming

    2011-01-01

    Growth and morphogenesis during embryonic development, asexual reproduction and regeneration require extensive remodeling of the extracellular matrix (ECM). We used the simple metazoan Hydra to examine the fate of ECM during tissue morphogenesis and asexual budding. In growing Hydra, epithelial cells constantly move towards the extremities of the animal and into outgrowing buds. It is not known, whether these tissue movements involve epithelial migration relative to the underlying matrix or whether cells and ECM are displaced as a composite structure. Furthermore, it is unclear, how the ECM is remodeled to adapt to the shape of developing buds and tentacles. To address these questions, we used a new in vivo labeling technique for Hydra collagen-1 and laminin, and tracked the fate of ECM in all body regions of the animal. Our results reveal that Hydra ‘tissue movements’ are largely displacements of epithelial cells together with associated ECM. By contrast, during the evagination of buds and tentacles, extensive movement of epithelial cells relative to the matrix is observed, together with local ECM remodeling. These findings provide new insights into the nature of growth and morphogenesis in epithelial tissues. PMID:22194305

  14. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling

    PubMed Central

    Sennett, Rachel; Rendl, Michael

    2012-01-01

    Embryonic hair follicle induction and formation are regulated by mesenchymal-epithelial interactions between specialized dermal cells and epidermal stem cells that switch to a hair fate. Similarly, during postnatal hair growth, communication between mesenchymal dermal papilla cells and surrounding epithelial matrix cells coordinates hair shaft production. Adult hair follicle regeneration in the hair cycle again is thought to be controlled by activating signals originating from the mesenchymal compartment and acting on hair follicle stem cells. Although many signaling pathways are implicated in hair follicle formation and growth, the precise nature, timing, and intersection of these inductive and regulatory signals remains elusive. The goal of this review is to summarize our current understanding and to discuss recent new insights into mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. PMID:22960356

  15. Cell death and morphogenesis during early mouse development: are they interconnected?

    PubMed

    Bedzhov, Ivan; Zernicka-Goetz, Magdalena

    2015-04-01

    Shortly after implantation the embryonic lineage transforms from a coherent ball of cells into polarized cup shaped epithelium. Recently we elucidated a previously unknown apoptosis-independent morphogenic event that reorganizes the pluripotent lineage. Polarization cues from the surrounding basement membrane rearrange the epiblast into a polarized rosette-like structure, where subsequently a central lumen is established. Thus, we provided a new model revising the current concept of apoptosis-dependent epiblast morphogenesis. Cell death however has to be tightly regulated during embryogenesis to ensure developmental success. Here, we follow the stages of early mouse development and take a glimpse at the critical signaling and morphogenic events that determine cells destiny and reshape the embryonic lineage. © 2015 The Authors. Bioessays published by WILEY Periodicals, Inc.

  16. Dynamic expression of a Hydra FGF at boundaries and termini.

    PubMed

    Lange, Ellen; Bertrand, Stephanie; Holz, Oliver; Rebscher, Nicole; Hassel, Monika

    2014-12-01

    Guidance of cells and tissue sheets is an essential function in developing and differentiating animal tissues. In Hydra, where cells and tissue move dynamically due to constant cell proliferation towards the termini or into lateral, vegetative buds, factors essential for guidance are still unknown. Good candidates to take over this function are fibroblast growth factors (FGFs). We present the phylogeny of several Hydra FGFs and analysis of their expression patterns. One of the FGFs is expressed in all terminal regions targeted by tissue movement and at boundaries crossed by moving tissue and cells with an expression pattern slightly differing in two Hydra strains. A model addressing an involvement of this FGF in cell movement and morphogenesis is proposed: Hydra FGFf-expressing cells might serve as sources to attract tissue and cells towards the termini of the body column and across morphological boundaries. Moreover, a function in morphogenesis and/or differentiation of cells and tissue is suggested.

  17. The C. elegans Intestine As a Model for Intercellular Lumen Morphogenesis and In Vivo Polarized Membrane Biogenesis at the Single-cell Level: Labeling by Antibody Staining, RNAi Loss-of-function Analysis and Imaging.

    PubMed

    Zhang, Nan; Khan, Liakot A; Membreno, Edward; Jafari, Gholamali; Yan, Siyang; Zhang, Hongjie; Gobel, Verena

    2017-10-03

    Multicellular tubes, fundamental units of all internal organs, are composed of polarized epithelial or endothelial cells, with apical membranes lining the lumen and basolateral membranes contacting each other and/or the extracellular matrix. How this distinctive membrane asymmetry is established and maintained during organ morphogenesis is still an unresolved question of cell biology. This protocol describes the C. elegans intestine as a model for the analysis of polarized membrane biogenesis during tube morphogenesis, with emphasis on apical membrane and lumen biogenesis. The C. elegans twenty-cell single-layered intestinal epithelium is arranged into a simple bilaterally symmetrical tube, permitting analysis on a single-cell level. Membrane polarization occurs concomitantly with polarized cell division and migration during early embryogenesis, but de novo polarized membrane biogenesis continues throughout larval growth, when cells no longer proliferate and move. The latter setting allows one to separate subcellular changes that simultaneously mediate these different polarizing processes, difficult to distinguish in most polarity models. Apical-, basolateral membrane-, junctional-, cytoskeletal- and endomembrane components can be labeled and tracked throughout development by GFP fusion proteins, or assessed by in situ antibody staining. Together with the organism's genetic versatility, the C. elegans intestine thus provides a unique in vivo model for the visual, developmental, and molecular genetic analysis of polarized membrane and tube biogenesis. The specific methods (all standard) described here include how to: label intestinal subcellular components by antibody staining; analyze genes involved in polarized membrane biogenesis by loss-of-function studies adapted to the typically essential tubulogenesis genes; assess polarity defects during different developmental stages; interpret phenotypes by epifluorescence, differential interference contrast (DIC) and confocal microscopy; quantify visual defects. This protocol can be adapted to analyze any of the often highly conserved molecules involved in epithelial polarity, membrane biogenesis, tube and lumen morphogenesis.

  18. Inhibition of Candida albicans Biofilm Formation by the Synthetic Lactoferricin Derived Peptide hLF1-11

    PubMed Central

    Morici, Paola; Fais, Roberta; Rizzato, Cosmeri

    2016-01-01

    The aim of this study was to evaluate the in vitro activity of the synthetic peptide hLF1-11 against biofilm produced by clinical isolates of Candida albicans with different fluconazole susceptibility. The antibiofilm activity of the peptide hLF1-11 was assessed in terms of reduction of biofilm cellular density, metabolic activity and sessile cell viability. The extent of morphogenesis in hLF1-11 treated and untreated biofilms was also investigated microscopically. Transcription levels of genes related to cell adhesion, hyphal development and extracellular matrix production were analysed by qRT-PCR in hLF1-11 treated and untreated biofilms. Exogenous dibutyryl-cAMP (db-cAMP) was used to rescue morphogenesis in cells exposed to the peptide. The results revealed that hLF1-11 exhibited an inhibitory effect on biofilm formation by all C. albicans isolates tested in a dose-dependent manner, regardless of their fluconazole susceptibility. Visual inspection of treated or untreated biofilm cells with an inverted microscope revealed a significant reduction in hyphal formation by hLF1-11 treated cells, as early as 3 hours of incubation. Moreover, hLF1-11 showed a reduced activity on preadherent cells. hLF1-11 induced the down-regulation of biofilm and hyphal-associated genes, which were predominantly regulated via the Ras1-cAMP-Efg1 pathway. Indeed, exogenous db-cAMP restored morphogenesis in hLF1-11 treated cells. The hLF1-11 peptide significantly inhibited biofilm formation by C. albicans mainly at early stages, interfering with biofilm cellular density and metabolic activity, and affected morphogenesis through the Ras1-cAMP-Efg1 pathway. Our findings provide the first evidence that hLF1-11 could represent a potential candidate for the prevention of biofilm formation by C. albicans. PMID:27902776

  19. Inhibition of Candida albicans Biofilm Formation by the Synthetic Lactoferricin Derived Peptide hLF1-11.

    PubMed

    Morici, Paola; Fais, Roberta; Rizzato, Cosmeri; Tavanti, Arianna; Lupetti, Antonella

    2016-01-01

    The aim of this study was to evaluate the in vitro activity of the synthetic peptide hLF1-11 against biofilm produced by clinical isolates of Candida albicans with different fluconazole susceptibility. The antibiofilm activity of the peptide hLF1-11 was assessed in terms of reduction of biofilm cellular density, metabolic activity and sessile cell viability. The extent of morphogenesis in hLF1-11 treated and untreated biofilms was also investigated microscopically. Transcription levels of genes related to cell adhesion, hyphal development and extracellular matrix production were analysed by qRT-PCR in hLF1-11 treated and untreated biofilms. Exogenous dibutyryl-cAMP (db-cAMP) was used to rescue morphogenesis in cells exposed to the peptide. The results revealed that hLF1-11 exhibited an inhibitory effect on biofilm formation by all C. albicans isolates tested in a dose-dependent manner, regardless of their fluconazole susceptibility. Visual inspection of treated or untreated biofilm cells with an inverted microscope revealed a significant reduction in hyphal formation by hLF1-11 treated cells, as early as 3 hours of incubation. Moreover, hLF1-11 showed a reduced activity on preadherent cells. hLF1-11 induced the down-regulation of biofilm and hyphal-associated genes, which were predominantly regulated via the Ras1-cAMP-Efg1 pathway. Indeed, exogenous db-cAMP restored morphogenesis in hLF1-11 treated cells. The hLF1-11 peptide significantly inhibited biofilm formation by C. albicans mainly at early stages, interfering with biofilm cellular density and metabolic activity, and affected morphogenesis through the Ras1-cAMP-Efg1 pathway. Our findings provide the first evidence that hLF1-11 could represent a potential candidate for the prevention of biofilm formation by C. albicans.

  20. SEPT9_v1 Functions in Breast Cancer Cell Division

    DTIC Science & Technology

    2012-01-01

    the regulation and function of septin filaments, and define new mechanisms regulating important cellular functions. BODY: 1). Study the effects...ciliogenesis. However, mechanisms for retaining these proteins and lipids in the primary cilia are not clear. We directly tested the presence of a diffusion...polarity and morphogenesis;  Defined mechanisms involving the roles of septins and microtubules in vesicle trafficking and epithelial morphogenesis

  1. Apical constriction: themes and variations on a cellular mechanism driving morphogenesis

    PubMed Central

    Martin, Adam C.; Goldstein, Bob

    2014-01-01

    Apical constriction is a cell shape change that promotes tissue remodeling in a variety of homeostatic and developmental contexts, including gastrulation in many organisms and neural tube formation in vertebrates. In recent years, progress has been made towards understanding how the distinct cell biological processes that together drive apical constriction are coordinated. These processes include the contraction of actin-myosin networks, which generates force, and the attachment of actin networks to cell-cell junctions, which allows forces to be transmitted between cells. Different cell types regulate contractility and adhesion in unique ways, resulting in apical constriction with varying dynamics and subcellular organizations, as well as a variety of resulting tissue shape changes. Understanding both the common themes and the variations in apical constriction mechanisms promises to provide insight into the mechanics that underlie tissue morphogenesis. PMID:24803648

  2. Arabidopsis FH1 Formin Affects Cotyledon Pavement Cell Shape by Modulating Cytoskeleton Dynamics.

    PubMed

    Rosero, Amparo; Oulehlová, Denisa; Stillerová, Lenka; Schiebertová, Petra; Grunt, Michal; Žárský, Viktor; Cvrčková, Fatima

    2016-03-01

    Plant cell morphogenesis involves concerted rearrangements of microtubules and actin microfilaments. We previously reported that FH1, the main Arabidopsis thaliana housekeeping Class I membrane-anchored formin, contributes to actin dynamics and microtubule stability in rhizodermis cells. Here we examine the effects of mutations affecting FH1 (At3g25500) on cell morphogenesis and above-ground organ development in seedlings, as well as on cytoskeletal organization and dynamics, using a combination of confocal and variable angle epifluorescence microscopy with a pharmacological approach. Homozygous fh1 mutants exhibited cotyledon epinasty and had larger cotyledon pavement cells with more pronounced lobes than the wild type. The pavement cell shape alterations were enhanced by expression of the fluorescent microtubule marker GFP-microtubule-associated protein 4 (MAP4). Mutant cotyledon pavement cells exhibited reduced density and increased stability of microfilament bundles, as well as enhanced dynamics of microtubules. Analogous results were also obtained upon treatments with the formin inhibitor SMIFH2 (small molecule inhibitor of formin homology 2 domains). Pavement cell shape in wild-type (wt) and fh1 plants in some situations exhibited a differential response towards anti-cytoskeletal drugs, especially the microtubule disruptor oryzalin. Our observations indicate that FH1 participates in the control of microtubule dynamics, possibly via its effects on actin, subsequently influencing cell morphogenesis and macroscopic organ development. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. The DCL gene of tomato is required for chloroplast development and palisade cell morphogenesis in leaves.

    PubMed

    Keddie, J S; Carroll, B; Jones, J D; Gruissem, W

    1996-08-15

    The defective chloroplasts and leaves-mutable (dcl-m) mutation of tomato was identified in a Ds mutagenesis screen. This unstable mutation affects both chloroplast development and palisade cell morphogenesis in leaves. Mutant plants are clonally variegated as a result of somatic excision of Ds and have albino leaves with green sectors. Leaf midribs and stems are light green with sectors of dark green tissue but fruit and petals are wild-type in appearance. Within dark green sectors of dcl-m leaves, palisade cells are normal, whereas in albino areas of dcl-m leaves, palisade cells do not expand to become their characteristic columnar shape. The development of chloroplasts from proplastids in albino areas is apparently blocked at an early stage. DCL was cloned using Ds as a tag and encodes a novel protein of approximately 25 kDa, containing a chloroplast transit peptide and an acidic alpha-helical region. DCL protein was imported into chloroplasts in vitro and processed to a mature form. Because of the ubiquitous expression of DCL and the proplastid-like appearance of dcl-affected plastids, the DCL protein may regulate a basic and universal function of the plastid. The novel dcl-m phenotype suggests that chloroplast development is required for correct palisade cell morphogenesis during leaf development.

  4. Visualizing morphogenesis in transgenic zebrafish embryos using BODIPY TR methyl ester dye as a vital counterstain for GFP.

    PubMed

    Cooper, Mark S; Szeto, Daniel P; Sommers-Herivel, Greg; Topczewski, Jacek; Solnica-Krezel, Lila; Kang, Hee-Chol; Johnson, Iain; Kimelman, David

    2005-02-01

    Green fluorescent protein (GFP) technology is rapidly advancing the study of morphogenesis, by allowing researchers to specifically focus on a subset of labeled cells within the living embryo. However, when imaging GFP-labeled cells using confocal microscopy, it is often essential to simultaneously visualize all of the cells in the embryo using dual-channel fluorescence to provide an embryological context for the cells expressing GFP. Although various counterstains are available, part of their fluorescence overlaps with the GFP emission spectra, making it difficult to clearly identify the cells expressing GFP. In this study, we report that a new fluorophore, BODIPY TR methyl ester dye, serves as a versatile vital counterstain for visualizing the cellular dynamics of morphogenesis within living GFP transgenic zebrafish embryos. The fluorescence of this photostable synthetic dye is spectrally separate from GFP fluorescence, allowing dual-channel, three-dimensional (3D) and four-dimensional (4D) confocal image data sets of living specimens to be easily acquired. These image data sets can be rendered subsequently into uniquely informative 3D and 4D visualizations using computer-assisted visualization software. We discuss a variety of immediate and potential applications of BODIPY TR methyl ester dye as a vital visualization counterstain for GFP in transgenic zebrafish embryos. Copyright 2004 Wiley-Liss, Inc.

  5. Genome-wide association study of Arabidopsis thaliana leaf microbial community.

    PubMed

    Horton, Matthew W; Bodenhausen, Natacha; Beilsmith, Kathleen; Meng, Dazhe; Muegge, Brian D; Subramanian, Sathish; Vetter, M Madlen; Vilhjálmsson, Bjarni J; Nordborg, Magnus; Gordon, Jeffrey I; Bergelson, Joy

    2014-11-10

    Identifying the factors that influence the outcome of host-microbial interactions is critical to protecting biodiversity, minimizing agricultural losses and improving human health. A few genes that determine symbiosis or resistance to infectious disease have been identified in model species, but a comprehensive examination of how a host genotype influences the structure of its microbial community is lacking. Here we report the results of a field experiment with the model plant Arabidopsis thaliana to identify the fungi and bacteria that colonize its leaves and the host loci that influence the microbe numbers. The composition of this community differs among accessions of A. thaliana. Genome-wide association studies (GWAS) suggest that plant loci responsible for defense and cell wall integrity affect variation in this community. Furthermore, species richness in the bacterial community is shaped by host genetic variation, notably at loci that also influence the reproduction of viruses, trichome branching and morphogenesis.

  6. Laser capture microdissection to study flower morphogenesis

    NASA Astrophysics Data System (ADS)

    Pawełkowicz, Magdalena Ewa; Skarzyńska, Agnieszka; Kowalczuk, Cezary; PlÄ der, Wojciech; Przybecki, Zbigniew

    2017-08-01

    Laser Capture Microdissection (LCM) is a sample preparation microscopic method that enables isolation of an interesting cell or cells population from human, animal or plant tissue. This technique allows for obtaining pure sample from heterogeneous mixture. From isolated cells, it is possible to obtain the appropriate quality material used for genomic research in transcriptomics, proteomics and metabolomics. We used LCM method to study flower morphogenesis and specific bud's organ organization and development. The genes expression level in developing flower buds of male (B10) and female (2gg) lines were analyzed with qPCR. The expression was checked for stamen and carpel primordia obtained with LCM and for whole flower buds at successive stages of growth.

  7. Functional analysis of the MAPK pathways in fungi.

    PubMed

    Martínez-Soto, Domingo; Ruiz-Herrera, José

    The Mitogen-Activated Protein Kinase (MAPK) signaling pathways constitute one of the most important and evolutionarily conserved mechanisms for the perception of extracellular information in all the eukaryotic organisms. The MAPK pathways are involved in the transfer to the cell of the information perceived from extracellular stimuli, with the final outcome of activation of different transcription factors that regulate gene expression in response to them. In all species of fungi, the MAPK pathways have important roles in their physiology and development; e.g. cell cycle control, mating, morphogenesis, response to different stresses, resistance to UV radiation and to temperature changes, cell wall assembly and integrity, degradation of cellular organelles, virulence, cell-cell signaling, fungus-plant interaction, and response to damage-associated molecular patterns (DAMPs). Considering the importance of the phylogenetically conserved MAPK pathways in fungi, an updated review of the knowledge on them is discussed in this article. This information reveals their importance, their distribution in fungal species evolutionarily distant and with different lifestyles, their organization and function, and the interactions occurring between different MAPK pathways, and with other signaling pathways, for the regulation of the most complex cellular processes. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Luminal Progenitors Restrict Their Lineage Potential during Mammary Gland Development

    PubMed Central

    Rodilla, Veronica; Dasti, Alessandro; Huyghe, Mathilde; Lafkas, Daniel; Laurent, Cécile; Reyal, Fabien; Fre, Silvia

    2015-01-01

    The hierarchical relationships between stem cells and progenitors that guide mammary gland morphogenesis are still poorly defined. While multipotent basal stem cells have been found within the myoepithelial compartment, the in vivo lineage potential of luminal progenitors is unclear. Here we used the expression of the Notch1 receptor, previously implicated in mammary gland development and tumorigenesis, to elucidate the hierarchical organization of mammary stem/progenitor cells by lineage tracing. We found that Notch1 expression identifies multipotent stem cells in the embryonic mammary bud, which progressively restrict their lineage potential during mammary ductal morphogenesis to exclusively generate an ERαneg luminal lineage postnatally. Importantly, our results show that Notch1-labelled cells represent the alveolar progenitors that expand during pregnancy and survive multiple successive involutions. This study reveals that postnatal luminal epithelial cells derive from distinct self-sustained lineages that may represent the cells of origin of different breast cancer subtypes. PMID:25688859

  9. Luminal progenitors restrict their lineage potential during mammary gland development.

    PubMed

    Rodilla, Veronica; Dasti, Alessandro; Huyghe, Mathilde; Lafkas, Daniel; Laurent, Cécile; Reyal, Fabien; Fre, Silvia

    2015-02-01

    The hierarchical relationships between stem cells and progenitors that guide mammary gland morphogenesis are still poorly defined. While multipotent basal stem cells have been found within the myoepithelial compartment, the in vivo lineage potential of luminal progenitors is unclear. Here we used the expression of the Notch1 receptor, previously implicated in mammary gland development and tumorigenesis, to elucidate the hierarchical organization of mammary stem/progenitor cells by lineage tracing. We found that Notch1 expression identifies multipotent stem cells in the embryonic mammary bud, which progressively restrict their lineage potential during mammary ductal morphogenesis to exclusively generate an ERαneg luminal lineage postnatally. Importantly, our results show that Notch1-labelled cells represent the alveolar progenitors that expand during pregnancy and survive multiple successive involutions. This study reveals that postnatal luminal epithelial cells derive from distinct self-sustained lineages that may represent the cells of origin of different breast cancer subtypes.

  10. Mammary stem cells and the differentiation hierarchy: current status and perspectives

    PubMed Central

    Visvader, Jane E.; Stingl, John

    2014-01-01

    The mammary epithelium is highly responsive to local and systemic signals, which orchestrate morphogenesis of the ductal tree during puberty and pregnancy. Based on transplantation and lineage tracing studies, a hierarchy of stem and progenitor cells has been shown to exist among the mammary epithelium. Lineage tracing has highlighted the existence of bipotent mammary stem cells (MaSCs) in situ as well as long-lived unipotent cells that drive morphogenesis and homeostasis of the ductal tree. Moreover, there is accumulating evidence for a heterogeneous MaSC compartment comprising fetal MaSCs, slow-cycling cells, and both long-term and short-term repopulating cells. In parallel, diverse luminal progenitor subtypes have been identified in mouse and human mammary tissue. Elucidation of the normal cellular hierarchy is an important step toward understanding the “cells of origin” and molecular perturbations that drive breast cancer. PMID:24888586

  11. Interference by 2,3,7,8-tetrachlorodibenzo-p-dioxin with cultured mouse submandibular gland branching morphogenesis involves reduced epidermal growth factor receptor signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiukkonen, Anu; Sahlberg, Carin; Partanen, Anna-Maija

    2006-05-01

    Toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to mouse embryonic teeth, sharing features of early development with salivary glands in common, involves enhanced apoptosis and depends on the expression of epidermal growth factor (EGF) receptor. EGF receptor signaling, on the other hand, is essential for salivary gland branching morphogenesis. To see if TCDD impairs salivary gland morphogenesis and if the impairment is associated with EGF receptor signaling, we cultured mouse (NMRI) E13 submandibular glands with TCDD or TCDD in combination with EGF or fibronectin (FN), both previously found to enhance branching morphogenesis. Explants were examined stereomicroscopically and processed to paraffin sections. TCDD exposuremore » impaired epithelial branching and cleft formation, resulting in enlarged buds. The glands were smaller than normal. EGF and FN alone concentration-dependently stimulated or inhibited branching morphogenesis but when co-administered with TCDD, failed to compensate for its effect. TCDD induced cytochrome P4501A1 expression in the glandular epithelium, indicating activation of the aryl hydrocarbon receptor. TCDD somewhat increased epithelial apoptosis as observed by terminal deoxynucleotidyl transferase (TdT)-mediated nick end-labeling method but the increase could not be correlated with morphological changes. The frequency of proliferating cells was not altered. Corresponding to the reduced cleft sites in TCDD-exposed explants, FN immunoreactivity in the epithelium was reduced. The results show that TCDD, comparably with EGF and FN at morphogenesis-inhibiting concentrations, impaired salivary gland branching morphogenesis in vitro. Together with the failure of EGF and FN at morphogenesis-stimulating concentrations to compensate for the effect of TCDD this implies that TCDD toxicity to developing salivary gland involves reduced EGF receptor signaling.« less

  12. Deletion of the Vaccinia Virus I2 Protein Interrupts Virion Morphogenesis, Leading to Retention of the Scaffold Protein and Mislocalization of Membrane-Associated Entry Proteins

    PubMed Central

    Hyun, Seong-In; Weisberg, Andrea

    2017-01-01

    ABSTRACT The I2L open reading frame of vaccinia virus (VACV) encodes a conserved 72-amino-acid protein with a putative C-terminal transmembrane domain. Previous studies with a tetracycline-inducible mutant demonstrated that I2-deficient virions are defective in cell entry. The purpose of the present study was to determine the step of replication or entry that is affected by loss of the I2 protein. Fluorescence microscopy experiments showed that I2 colocalized with a major membrane protein of immature and mature virions. We generated a cell line that constitutively expressed I2 and allowed construction of the VACV I2L deletion mutant vΔI2. As anticipated, vΔI2 was unable to replicate in cells that did not express I2. Unexpectedly, morphogenesis was interrupted at a stage after immature virion formation, resulting in the accumulation of dense spherical particles instead of brick-shaped mature virions with well-defined core structures. The abnormal particles retained the D13 scaffold protein of immature virions, were severely deficient in the transmembrane proteins that comprise the entry fusion complex (EFC), and had increased amounts of unprocessed membrane and core proteins. Total lysates of cells infected with vΔI2 also had diminished EFC proteins due to instability attributed to their hydrophobicity and failure to be inserted into viral membranes. A similar instability of EFC proteins had previously been found with unrelated mutants blocked earlier in morphogenesis that also accumulated viral membranes retaining the D13 scaffold. We concluded that I2 is required for virion morphogenesis, release of the D13 scaffold, and the association of EFC proteins with viral membranes. IMPORTANCE Poxviruses comprise a large family that infect vertebrates and invertebrates, cause disease in both in humans and in wild and domesticated animals, and are being engineered as vectors for vaccines and cancer therapy. In addition, investigations of poxviruses have provided insights into many aspects of cell biology. The I2 protein is conserved in all poxviruses that infect vertebrates, suggesting an important role. The present study revealed that this protein is essential for vaccinia virus morphogenesis and that its absence results in an accumulation of deformed virus particles retaining the scaffold protein and deficient in surface proteins needed for cell entry. PMID:28490596

  13. Counter-rotational cell flows drive morphological and cell fate asymmetries in mammalian hair follicles.

    PubMed

    Cetera, Maureen; Leybova, Liliya; Joyce, Bradley; Devenport, Danelle

    2018-05-01

    Organ morphogenesis is a complex process coordinated by cell specification, epithelial-mesenchymal interactions and tissue polarity. A striking example is the pattern of regularly spaced, globally aligned mammalian hair follicles, which emerges through epidermal-dermal signaling and planar polarized morphogenesis. Here, using live-imaging, we discover that developing hair follicles polarize through dramatic cell rearrangements organized in a counter-rotational pattern of cell flows. Upon hair placode induction, Shh signaling specifies a radial pattern of progenitor fates that, together with planar cell polarity, induce counter-rotational rearrangements through myosin and ROCK-dependent polarized neighbour exchanges. Importantly, these cell rearrangements also establish cell fate asymmetry by repositioning radial progenitors along the anterior-posterior axis. These movements concurrently displace associated mesenchymal cells, which then signal asymmetrically to maintain polarized cell fates. Our results demonstrate how spatial patterning and tissue polarity generate an unexpected collective cell behaviour that in turn, establishes both morphological and cell fate asymmetry.

  14. Retinoic acid signaling regulates Krt5 and Krt14 independently of stem cell markers in submandibular salivary gland epithelium.

    PubMed

    Abashev, Timur M; Metzler, Melissa A; Wright, Diana M; Sandell, Lisa L

    2017-02-01

    Retinoic acid (RA), the active metabolite of vitamin A, has been demonstrated to be important for growth and branching morphogenesis of mammalian embryonic salivary gland epithelium. However, it is not known whether RA functions directly within epithelial cells or in associated tissues that influence morphogenesis of salivary epithelium. Moreover, downstream targets of RA regulation have not been identified. Here, we show that canonical RA signaling occurs in multiple tissues of embryonic mouse salivary glands, including epithelium, associated parasympathetic ganglion neurons, and nonneuronal mesenchyme. By culturing epithelium explants in isolation from other tissues, we demonstrate that RA influences epithelium morphogenesis by direct action in that tissue. Moreover, we demonstrate that inhibition of RA signaling represses cell proliferation and expression of FGF10 signaling targets, and upregulates expression of basal epithelial keratins Krt5 and Krt14. Importantly, we show that the stem cell gene Kit is regulated inversely from Krt5/Krt14 by RA signaling. RA regulates Krt5 and Krt14 expression independently of stem cell character in developing salivary epithelium. RA, or chemical inhibitors of RA signaling, could potentially be used for modulating growth and differentiation of epithelial stem cells for the purpose of re-populating damaged glands or generating bioengineered organs. Developmental Dynamics 246:135-147, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Feedback control of growth, differentiation, and morphogenesis of pancreatic endocrine progenitors in an epithelial plexus niche

    PubMed Central

    Bankaitis, Eric D.; Bechard, Matthew E.; Wright, Christopher V.E.

    2015-01-01

    In the mammalian pancreas, endocrine cells undergo lineage allocation upon emergence from a bipotent duct/endocrine progenitor pool, which resides in the “trunk epithelium.” Major questions remain regarding how niche environments are organized within this epithelium to coordinate endocrine differentiation with programs of epithelial growth, maturation, and morphogenesis. We used EdU pulse-chase and tissue-reconstruction approaches to analyze how endocrine progenitors and their differentiating progeny are assembled within the trunk as it undergoes remodeling from an irregular plexus of tubules to form the eventual mature, branched ductal arbor. The bulk of endocrine progenitors is maintained in an epithelial “plexus state,” which is a transient intermediate during epithelial maturation within which endocrine cell differentiation is continually robust and surprisingly long-lived. Within the plexus, local feedback effects derived from the differentiating and delaminating endocrine cells nonautonomously regulate the flux of endocrine cell birth as well as proliferative growth of the bipotent cell population using Notch-dependent and Notch-independent influences, respectively. These feedback effects in turn maintain the plexus state to ensure prolonged allocation of endocrine cells late into gestation. These findings begin to define a niche-like environment guiding the genesis of the endocrine pancreas and advance current models for how differentiation is coordinated with the growth and morphogenesis of the developing pancreatic epithelium. PMID:26494792

  16. Drosophila glypican Dally-like acts in FGF-receiving cells to modulate FGF signaling during tracheal morphogenesis

    PubMed Central

    Yan, Dong; Lin, Xinhua

    2007-01-01

    Summary Previous studies in Drosophila have shown that heparan sulfate proteoglycans (HSPGs) are involved in both breathless (btl)- and heartless (htl)-mediated FGF signaling during embryogenesis. However, the mechanism(s) by which HSPGs control Btl and Htl signaling is unknown. Here we show that dally-like (dlp, a Drosophila glypican) mutant embryos exhibit severe defects in tracheal morphogenesis and show a reduction in btl-mediated FGF signaling activity. However, htl-dependent mesodermal cell migration is not affected in dlp mutant embryos. Furthermore, expression of Dlp, but not other Drosophila HSPGs, can restore effectively the tracheal morphogenesis in dlp embryos. Rescue experiments in dlp embryos demonstrate that Dlp functions only in Bnl/FGF receiving cells in a cell-autonomous manner, but is not essential for Bnl/FGF expression cells. To further dissect the mechanism(s) of Dlp in Btl signaling, we analyzed the role of Dlp in Btl-mediated air sac tracheoblast formation in wing discs. Mosaic analysis experiments show that removal of HSPG activity in FGF-producing or other surrounding cells does not affect tracheoblasts migration, while HSPG mutant tracheoblast cells fail to receive FGF signaling. Together, our results argue strongly that HSPGs regulate Btl signaling exclusively in FGF-receiving cells as co-receptors, but are not essential for the secretion and distribution of the FGF ligand. This mechanism is distinct from HSPG functions in morphogen distribution, and is likely a general paradigm for HSPG functions in FGF signaling in Drosophila. PMID:17959166

  17. Characterisation of Four LIM Protein-Encoding Genes Involved in Infection-Related Development and Pathogenicity by the Rice Blast Fungus Magnaporthe oryzae

    PubMed Central

    Li, Ya; Yue, Xiaofeng; Que, Yawei; Yan, Xia; Ma, Zhonghua; Talbot, Nicholas J.; Wang, Zhengyi

    2014-01-01

    LIM domain proteins contain contiguous double-zinc finger domains and play important roles in cytoskeletal re-organisation and organ development in multi-cellular eukaryotes. Here, we report the characterization of four genes encoding LIM proteins in the rice blast fungus Magnaporthe oryzae. Targeted gene replacement of either the paxillin-encoding gene, PAX1, or LRG1 resulted in a significant reduction in hyphal growth and loss of pathogenicity, while deletion of RGA1 caused defects in conidiogenesis and appressorium development. A fourth LIM domain gene, LDP1, was not required for infection-associated development by M. oryzae. Live cell imaging revealed that Lrg1-GFP and Rga1-GFP both localize to septal pores, while Pax1-GFP is present in the cytoplasm. To explore the function of individual LIM domains, we carried out systematic deletion of each LIM domain, which revealed the importance of the Lrg1-LIM2 and Lrg1-RhoGAP domains for Lrg1 function and overlapping functions of the three LIM domains of Pax1. Interestingly, deletion of either PAX1 or LRG1 led to decreased sensitivity to cell wall-perturbing agents, such as Congo Red and SDS (sodium dodecyl sulfate). qRT-PCR analysis demonstrated the importance of both Lrg1 and Pax1 to regulation of genes associated with cell wall biogenesis. When considered together, our results indicate that LIM domain proteins are key regulators of infection-associated morphogenesis by the rice blast fungus. PMID:24505448

  18. Characterization of a Novel, Antifungal, Chitin-Binding Protein from Streptomyces tendae Tü901 That Interferes with Growth Polarity

    PubMed Central

    Bormann, Christiane; Baier, Daniel; Hörr, Ingmar; Raps, Claudia; Berger, Jürgen; Jung, Günther; Schwarz, Heinz

    1999-01-01

    The afp1 gene, which encodes the antifungal protein AFP1, was cloned from nikkomycin-producing Streptomyces tendae Tü901, using a nikkomycin-negative mutant as a host and screening transformants for antifungal activity against Paecilomyces variotii in agar diffusion assays. The 384-bp afp1 gene has a low G+C content (63%) and a transcription termination structure with a poly(T) region, unusual attributes for Streptomyces genes. AFP1 was purified from culture filtrate of S. tendae carrying the afp1 gene on the multicopy plasmid pIJ699. The purified protein had a molecular mass of 9,862 Da and lacked a 42-residue N-terminal peptide deduced from the nucleotide sequence. AFP1 was stable at extreme pH values and high temperatures and toward commercial proteinases. AFP1 had limited similarity to cellulose-binding domains of microbial plant cell wall hydrolases and bound to crab shell chitin, chitosan, and cell walls of P. variotii but showed no enzyme activity. The biological activity of AFP1, which represents the first chitin-binding protein from bacteria exhibiting antifungal activity, was directed against specific ascomycetes, and synergistic interaction with the chitin synthetase inhibitor nikkomycin inhibited growth of Aspergillus species. Microscopy studies revealed that fluorescein-labeled AFP1 strongly bound to the surface of germinated conidia and to tips of growing hyphae, causing severe alterations in cell morphogenesis that gave rise to large spherical conidia and/or swollen hyphae and to atypical branching. PMID:10601197

  19. Myosin-II controls cellular branching morphogenesis and migration in 3D by minimizing cell surface curvature

    PubMed Central

    Elliott, Hunter; Fischer, Robert A.; Myers, Kenneth A.; Desai, Ravi A.; Gao, Lin; Chen, Christopher S.; Adelstein, Robert; Waterman, Clare M.; Danuser, Gaudenz

    2014-01-01

    In many cases cell function is intimately linked to cell shape control. We utilized endothelial cell branching morphogenesis as a model to understand the role of myosin-II in shape control of invasive cells migrating in 3D collagen gels. We applied principles of differential geometry and mathematical morphology to 3D image sets to parameterize cell branch structure and local cell surface curvature. We find that Rho/ROCK-stimulated myosin-II contractility minimizes cell-scale branching by recognizing and minimizing local cell surface curvature. Utilizing micro-fabrication to constrain cell shape identifies a positive feedback mechanism in which low curvature stabilizes myosin-II cortical association, where it acts to maintain minimal curvature. The feedback between myosin-II regulation by and control of curvature drives cycles of localized cortical myosin-II assembly and disassembly. These cycles in turn mediate alternating phases of directionally biased branch initiation and retraction to guide 3D cell migration. PMID:25621949

  20. Autocrine and paracrine Shh signaling are necessary for tooth morphogenesis, but not tooth replacement in snakes and lizards (Squamata).

    PubMed

    Handrigan, Gregory R; Richman, Joy M

    2010-01-01

    Here we study the role of Shh signaling in tooth morphogenesis and successional tooth initiation in snakes and lizards (Squamata). By characterizing the expression of Shh pathway receptor Ptc1 in the developing dentitions of three species (Eublepharis macularius, Python regius, and Pogona vitticeps) and by performing gain- and loss-of-function experiments, we demonstrate that Shh signaling is active in the squamate tooth bud and is required for its normal morphogenesis. Shh apparently mediates tooth morphogenesis by separate paracrine- and autocrine-mediated functions. According to this model, paracrine Shh signaling induces cell proliferation in the cervical loop, outer enamel epithelium, and dental papilla. Autocrine signaling within the stellate reticulum instead appears to regulate cell survival. By treating squamate dental explants with Hh antagonist cyclopamine, we induced tooth phenotypes that closely resemble the morphological and differentiation defects of vestigial, first-generation teeth in the bearded dragon P. vitticeps. Our finding that these vestigial teeth are deficient in epithelial Shh signaling further corroborates that Shh is needed for the normal development of teeth in snakes and lizards. Finally, in this study, we definitively refute a role for Shh signaling in successional dental lamina formation and conclude that other pathways regulate tooth replacement in squamates.

  1. Connexin 43 Is Necessary for Salivary Gland Branching Morphogenesis and FGF10-induced ERK1/2 Phosphorylation.

    PubMed

    Yamada, Aya; Futagi, Masaharu; Fukumoto, Emiko; Saito, Kan; Yoshizaki, Keigo; Ishikawa, Masaki; Arakaki, Makiko; Hino, Ryoko; Sugawara, Yu; Ishikawa, Momoko; Naruse, Masahiro; Miyazaki, Kanako; Nakamura, Takashi; Fukumoto, Satoshi

    2016-01-08

    Cell-cell interaction via the gap junction regulates cell growth and differentiation, leading to formation of organs of appropriate size and quality. To determine the role of connexin43 in salivary gland development, we analyzed its expression in developing submandibular glands (SMGs). Connexin43 (Cx43) was found to be expressed in salivary gland epithelium. In ex vivo organ cultures of SMGs, addition of the gap junctional inhibitors 18α-glycyrrhetinic acid (18α-GA) and oleamide inhibited SMG branching morphogenesis, suggesting that gap junctional communication contributes to salivary gland development. In Cx43(-/-) salivary glands, submandibular and sublingual gland size was reduced as compared with those from heterozygotes. The expression of Pdgfa, Pdgfb, Fgf7, and Fgf10, which induced branching of SMGs in Cx43(-/-) samples, were not changed as compared with those from heterozygotes. Furthermore, the blocking peptide for the hemichannel and gap junction channel showed inhibition of terminal bud branching. FGF10 induced branching morphogenesis, while it did not rescue the Cx43(-/-) phenotype, thus Cx43 may regulate FGF10 signaling during salivary gland development. FGF10 is expressed in salivary gland mesenchyme and regulates epithelial proliferation, and was shown to induce ERK1/2 phosphorylation in salivary epithelial cells, while ERK1/2 phosphorylation in HSY cells was dramatically inhibited by 18α-GA, a Cx43 peptide or siRNA. On the other hand, PDGF-AA and PDGF-BB separately induced ERK1/2 phosphorylation in primary cultured salivary mesenchymal cells regardless of the presence of 18α-GA. Together, our results suggest that Cx43 regulates FGF10-induced ERK1/2 phosphorylation in salivary epithelium but not in mesenchyme during the process of SMG branching morphogenesis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. The solid state environment orchestrates embryonic development and tissue remodeling

    NASA Technical Reports Server (NTRS)

    Damsky, C. H.; Moursi, A.; Zhou, Y.; Fisher, S. J.; Globus, R. K.

    1997-01-01

    Cell interactions with extracellular matrix and with other cells play critical roles in morphogenesis during development and in tissue homeostasis and remodeling throughout life. Extracellular matrix is information-rich, not only because it is comprised of multifunctional structural ligands for cell surface adhesion receptors, but also because it contains peptide signaling factors, and proteinases and their inhibitors. The functions of these groups of molecules are extensively interrelated. In this review, three primary cell culture models are described that focus on adhesion receptors and their roles in complex aspects of morphogenesis and remodeling: the regulation of proteinase expression by fibronectin and integrins in synovial fibroblasts; the regulation of osteoblast differentiation and survival by fibronectin, and the regulation of trophoblast differentiation and invasion by integrins, cadherins and immunoglobulin family adhesion receptors.

  3. Ylpex5 mutation partially suppresses the defective hyphal growth of a Yarrowia lipolytica ceramide synthase mutant, Yllac1, by recovering lipid raft polarization and vacuole morphogenesis.

    PubMed

    Bal, Jyotiranjan; Lee, Hye-Jeong; Cheon, Seon Ah; Lee, Kyung Jin; Oh, Doo-Byoung; Kim, Jeong-Yoon

    2013-01-01

    Sphingolipids are involved in cell differentiation and morphogenesis in eukaryotic cells. In this study, YlLac1p, a ceramide synthase required for glucosylceramide (GlcCer) synthesis, was found to be essential for hyphal growth in Yarrowia lipolytica. Y. lipolytica GlcCer was shown to be composed of a C16:0 fatty acid, which is hydroxylated at C2, and a C18:2 long chain base, which is unsaturated at both C4 and C8 and methylated at C9. Domain swapping analysis revealed that the entire TRAM/Lag1/CLN8 (TLC) domain, not the Lag1 motif, is crucial for the function of YlLac1p. YlDes1p, the C4 desaturase of the ceramide synthesized by YlLac1p, was also required for Y. lipolytica morphogenesis. Both Yllac1Δ and Yldes1Δ mutants neither polarize lipid rafts nor form normal vacuoles. Interestingly, mutation in YlPEX5, which encode a peroxisomal targeting signal receptor, partially suppressed the defective hyphal growth of Yllac1Δ. The Yllac1ΔYlpex5Δ mutant restored the ability to polarize lipid rafts and to form normal vacuoles, although it could not synthesize GlcCer. Taken together, our results suggest that GlcCer or GlcCer derivatives may be involved in hyphal morphogenesis in Y. lipolytica, at least in part, by affecting polarization of lipid rafts and vacuole morphogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Foxi3 deficiency compromises hair follicle stem cell specification and activation

    PubMed Central

    Shirokova, Vera; Biggs, Leah C.; Jussila, Maria; Ohyama, Takahiro; Groves, Andrew K.; Mikkola, Marja L.

    2017-01-01

    The hair follicle is an ideal system to study stem cell specification and homeostasis due to its well characterized morphogenesis and stereotypic cycles of stem cell activation upon each hair cycle to produce a new hair shaft. The adult hair follicle stem cell niche consists of two distinct populations, the bulge and the more activation-prone secondary hair germ. Hair follicle stem cells are set aside during early stages of morphogenesis. This process is known to depend on the Sox9 transcription factor, but otherwise the establishment of the hair follicle stem cell niche is poorly understood. Here we show that that mutation of Foxi3, a Forkhead family transcription factor mutated in several hairless dog breeds, compromises stem cell specification. Further, loss of Foxi3 impedes hair follicle downgrowth and progression of the hair cycle. Genome-wide profiling revealed a number of downstream effectors of Foxi3 including transcription factors with a recognized function in hair follicle stem cells such as Lhx2, Runx1, and Nfatc1, suggesting that the Foxi3 mutant phenotype results from simultaneous downregulation of several stem cell signature genes. We show that Foxi3 displays a highly dynamic expression pattern during hair morphogenesis and cycling, and identify Foxi3 as a novel secondary hair germ marker. Absence of Foxi3 results in poor hair regeneration upon hair plucking, and a sparse fur phenotype in unperturbed mice that exacerbates with age, caused by impaired secondary hair germ activation leading to progressive depletion of stem cells. Thus, Foxi3 regulates multiple aspects of hair follicle development and homeostasis. PMID:26992132

  5. Axial protocadherin (AXPC) regulates cell fate during notochordal morphogenesis.

    PubMed

    Yoder, Michael D; Gumbiner, Barry M

    2011-11-01

    The separation and specification of mesoderm into the notochord and somites involves members of the non-clustered δ-protocadherins. Axial (AXPC) and paraxial (PAPC) protocadherins are expressed in the early dorsal mesoderm and later become refined to the developing notochordal and somitic mesoderm, respectively. The role of PAPC in this process has been studied extensively, but the role of AXPC is poorly understood. Partial knockdown of AXPC causes a specific bent-axis phenotype, while more severe knockdown results in the loss of notochord formation. The inability of these embryos to develop a notochord is not due to a cell-sorting event via changes in cell adhesion during gastrulation, but rather this defect is manifested through the loss of axial mesoderm specification, but not general mesoderm induction. The results presented here show that AXPC functions in notochord morphogenesis by directing cell-fate decisions rather than cell-cell adhesion. Copyright © 2011 Wiley Periodicals, Inc.

  6. The Novel Fission Yeast Protein Pal1p Interacts with Hip1-related Sla2p/End4p and Is Involved in Cellular Morphogenesis

    PubMed Central

    Ge, Wanzhong; Chew, Ting Gang; Wachtler, Volker; Naqvi, Suniti N.; Balasubramanian, Mohan K.

    2005-01-01

    The establishment and maintenance of characteristic cellular morphologies is a fundamental property of all cells. Here we describe Schizosaccharomyces pombe Pal1p, a protein important for maintenance of cylindrical cellular morphology. Pal1p is a novel membrane-associated protein that localizes to the growing tips of interphase cells and to the division site in cells undergoing cytokinesis in an F-actin- and microtubule-independent manner. Cells deleted for pal1 display morphological defects, characterized by the occurrence of spherical and pear-shaped cells with an abnormal cell wall. Pal1p physically interacts and displays overlapping localization with the Huntingtin-interacting-protein (Hip1)-related protein Sla2p/End4p, which is also required for establishment of cylindrical cellular morphology. Sla2p is important for efficient localization of Pal1p to the sites of polarized growth and appears to function upstream of Pal1p. Interestingly, spherical pal1Δ mutants polarize to establish a pearlike morphology before mitosis in a manner dependent on the kelch-repeat protein Tea1p and the cell cycle inhibitory kinase Wee1p. Thus, overlapping mechanisms involving Pal1p, Tea1p, and Sla2p contribute to the establishment of cylindrical cellular morphology, which is important for proper spatial regulation of cytokinesis. PMID:15975911

  7. The novel fission yeast protein Pal1p interacts with Hip1-related Sla2p/End4p and is involved in cellular morphogenesis.

    PubMed

    Ge, Wanzhong; Chew, Ting Gang; Wachtler, Volker; Naqvi, Suniti N; Balasubramanian, Mohan K

    2005-09-01

    The establishment and maintenance of characteristic cellular morphologies is a fundamental property of all cells. Here we describe Schizosaccharomyces pombe Pal1p, a protein important for maintenance of cylindrical cellular morphology. Pal1p is a novel membrane-associated protein that localizes to the growing tips of interphase cells and to the division site in cells undergoing cytokinesis in an F-actin- and microtubule-independent manner. Cells deleted for pal1 display morphological defects, characterized by the occurrence of spherical and pear-shaped cells with an abnormal cell wall. Pal1p physically interacts and displays overlapping localization with the Huntingtin-interacting-protein (Hip1)-related protein Sla2p/End4p, which is also required for establishment of cylindrical cellular morphology. Sla2p is important for efficient localization of Pal1p to the sites of polarized growth and appears to function upstream of Pal1p. Interestingly, spherical pal1Delta mutants polarize to establish a pearlike morphology before mitosis in a manner dependent on the kelch-repeat protein Tea1p and the cell cycle inhibitory kinase Wee1p. Thus, overlapping mechanisms involving Pal1p, Tea1p, and Sla2p contribute to the establishment of cylindrical cellular morphology, which is important for proper spatial regulation of cytokinesis.

  8. Pak4 Is Required during Epithelial Polarity Remodeling through Regulating AJ Stability and Bazooka Retention at the ZA.

    PubMed

    Walther, Rhian F; Nunes de Almeida, Francisca; Vlassaks, Evi; Burden, Jemima J; Pichaud, Franck

    2016-04-05

    The ability of epithelial cells to assemble into sheets relies on their zonula adherens (ZA), a circumferential belt of adherens junction (AJ) material, which can be remodeled during development to shape organs. Here, we show that during ZA remodeling in a model neuroepithelial cell, the Cdc42 effector P21-activated kinase 4 (Pak4/Mbt) regulates AJ morphogenesis and stability through β-catenin (β-cat/Arm) phosphorylation. We find that β-catenin phosphorylation by Mbt, and associated AJ morphogenesis, is needed for the retention of the apical determinant Par3/Bazooka at the remodeling ZA. Importantly, this retention mechanism functions together with Par1-dependent lateral exclusion of Par3/Bazooka to regulate apical membrane differentiation. Our results reveal an important functional link between Pak4, AJ material morphogenesis, and polarity remodeling during organogenesis downstream of Par3. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. An Apical MRCK-driven Morphogenetic Pathway Controls Epithelial Polarity

    PubMed Central

    Zihni, Ceniz; Vlassaks, Evi; Terry, Stephen; Carlton, Jeremy; Leung, Thomas King Chor; Olson, Michael; Pichaud, Franck; Balda, Maria Susana; Matter, Karl

    2017-01-01

    Polarized epithelia develop distinct cell surface domains, with the apical membrane acquiring characteristic morphological features such as microvilli. Cell polarization is driven by polarity determinants including the evolutionarily conserved partitioning defective (PAR) proteins that are separated into distinct cortical domains. PAR protein segregation is thought to be a consequence of asymmetric actomyosin contractions. The mechanism of activation of apically polarized actomyosin contractility is unknown. Here we show that the Cdc42 effector MRCK activates Myosin-II at the apical pole to segregate aPKC-Par6 from junctional Par3, defining the apical domain. Apically polarized MRCK-activated actomyosin contractility is reinforced by cooperation with aPKC-Par6 downregulating antagonistic RhoA-driven junctional actomyosin contractility, and drives polarization of cytosolic brush border determinants and apical morphogenesis. MRCK-activated polarized actomyosin contractility is required for apical differentiation and morphogenesis in vertebrate epithelia and Drosophila photoreceptors. Our results identify an apical origin of actomyosin-driven morphogenesis that couples cytoskeletal reorganization to PAR polarity signalling. PMID:28825699

  10. Reprogramming cells and tissue patterning via bioelectrical pathways: molecular mechanisms and biomedical opportunities.

    PubMed

    Levin, Michael

    2013-01-01

    Transformative impact in regenerative medicine requires more than the reprogramming of individual cells: advances in repair strategies for birth defects or injuries, tumor normalization, and the construction of bioengineered organs and tissues all require the ability to control large-scale anatomical shape. Much recent work has focused on the transcriptional and biochemical regulation of cell behavior and morphogenesis. However, exciting new data reveal that bioelectrical properties of cells and their microenvironment exert a profound influence on cell differentiation, proliferation, and migration. Ion channels and pumps expressed in all cells, not just excitable nerve and muscle, establish resting potentials that vary across tissues and change with significant developmental events. Most importantly, the spatiotemporal gradients of these endogenous transmembrane voltage potentials (Vmem ) serve as instructive patterning cues for large-scale anatomy, providing organ identity, positional information, and prepattern template cues for morphogenesis. New genetic and pharmacological techniques for molecular modulation of bioelectric gradients in vivo have revealed the ability to initiate complex organogenesis, change tissue identity, and trigger regeneration of whole vertebrate appendages. A large segment of the spatial information processing that orchestrates individual cells' programs toward the anatomical needs of the host organism is electrical; this blurs the line between memory and decision-making in neural networks and morphogenesis in nonneural tissues. Advances in cracking this bioelectric code will enable the rational reprogramming of shape in whole tissues and organs, revolutionizing regenerative medicine, developmental biology, and synthetic bioengineering. Copyright © 2013 Wiley Periodicals, Inc.

  11. Tissue Motion and Assembly During Early Cardiovascular Morphogenesis

    NASA Astrophysics Data System (ADS)

    Rongish, Brenda

    2010-03-01

    Conventional dogma in the field of cardiovascular developmental biology suggests that cardiac precursor cells migrate to the embryonic midline to form a tubular heart. These progenitors are believed to move relative to their extracellular matrix (ECM); responding to stimulatory and inhibitory cues in their environment. The tubular heart that is formed by 30 hours post fertilization is comprised of two concentric layers: the muscular myocardium and the endothelial-like endocardium, which are separated by a thick layer of ECM believed to be secreted predominantly by the myocardial cells. Here we describe the origin and motility of fluorescently tagged endocardial precursors in transgenic (Tie1-YFP) quail embryos (R. Lansford, Caltech) using epifluorescence time-lapse imaging. To visualize the environment of migrating endocardial progenitors, we labeled two ECM components, fibronectin and fibrillin-2, via in vivo microinjection of fluorochrome-conjugated monoclonal antibodies. Dynamic imaging was performed at stages encompassing tubular heart assembly and early looping. We established the motion of endocardial precursor cells and presumptive cardiac ECM fibrils using both object tracking and particle image velocimetry (image cross correlation). We determined the relative importance of directed cell autonomous motility versus passive tissue movements in endocardial morphogenesis. The data show presumptive endocardial cells and cardiac ECM fibrils are swept passively into the anterior and posterior poles of the elongating tubular heart. These quantitative data indicate the contribution of cell autonomous motility displayed by endocardial precursors is limited. Thus, tissue motion drives most of the cell displacements during endocardial morphogenesis.

  12. Deposition of collagen type I onto skeletal endothelium reveals a new role for blood vessels in regulating bone morphology

    PubMed Central

    Ben Shoham, Adi; Rot, Chagai; Stern, Tomer; Krief, Sharon; Akiva, Anat; Dadosh, Tali; Sabany, Helena; Lu, Yinhui; Kadler, Karl E.

    2016-01-01

    Recently, blood vessels have been implicated in the morphogenesis of various organs. The vasculature is also known to be essential for endochondral bone development, yet the underlying mechanism has remained elusive. We show that a unique composition of blood vessels facilitates the role of the endothelium in bone mineralization and morphogenesis. Immunostaining and electron microscopy showed that the endothelium in developing bones lacks basement membrane, which normally isolates the blood vessel from its surroundings. Further analysis revealed the presence of collagen type I on the endothelial wall of these vessels. Because collagen type I is the main component of the osteoid, we hypothesized that the bone vasculature guides the formation of the collagenous template and consequently of the mature bone. Indeed, some of the bone vessels were found to undergo mineralization. Moreover, the vascular pattern at each embryonic stage prefigured the mineral distribution pattern observed one day later. Finally, perturbation of vascular patterning by overexpressing Vegf in osteoblasts resulted in abnormal bone morphology, supporting a role for blood vessels in bone morphogenesis. These data reveal the unique composition of the endothelium in developing bones and indicate that vascular patterning plays a role in determining bone shape by forming a template for deposition of bone matrix. PMID:27621060

  13. G3139, an Anti-Bcl-2 Antisense Oligomer that Binds Heparin-Binding Growth Factors and Collagen I, Alters In Vitro Endothelial Cell Growth and Tubular Morphogenesis

    PubMed Central

    Stein, C.A.; Wu, SiJian; Voskresenskiy, Anatoliy M.; Zhou, Jin-Feng; Shin, Joongho; Miller, Paul; Souleimanian, Naira; Benimetskaya, Luba

    2009-01-01

    Purpose We examined the effects of G3139 on the interaction of heparin-binding proteins (e.g., FGF2 and collagen I) with endothelial cells. G3139 is an 18mer phosphorothioate oligonucleotide targeted to the initiation codon region of the Bcl-2 mRNA. A randomized, prospective global Phase III trial in advanced melanoma (GM301) has evaluted G3139 in combination with dacarbazine. However, the mechanism of action of G3139 is incompletely understood, as it is unlikely that Bcl-2 silencing is the sole mechanism for chemo-sensitization in melanoma cells. Experimental Design The ability of G3139 to interact with and protect heparin-binding proteins was quantitated. The effects of G3139 on the binding of FGF2 to high affinity cell surface receptors, and the induction of cellular mitogenesis and tubular morphogenesis in HMEC-1 and HUVEC cells were determined. Results G3139 binds with picomolar affinity to collagen I. By replacing heparin, the drug can potentiate the binding of FGF2 to FGFR1 IIIc, and it protects FGF from oxidation and from proteolysis. G3139 can increase endothelial cell mitogenesis and tubular morphogenesis of HMEC-1 cells in 3D collagen gels, increases the mitogenesis of HUVEC cells similarly, and induces vessel sprouts in the rat aortic ring model. Conclusions G3139 dramatically affects the behavior of endothelial cells. There may be a correlation between this observation and the treatment interaction with LDH observed clinically. PMID:19351753

  14. The metabolic response of Candida albicans to farnesol under hyphae-inducing conditions.

    PubMed

    Han, Ting-Li; Cannon, Richard D; Villas-Bôas, Silas G

    2012-12-01

    Farnesol is a quorum-sensing molecule (QSM) produced, and sensed, by the polymorphic fungus, Candida albicans. This cell-to-cell communication molecule is known to suppress the hyphal formation of C. albicans at high cell density. Despite many studies investigating the signalling mechanisms by which QSMs influence the morphogenesis of C. albicans, the downstream metabolic effect of these signalling pathways in response to farnesol-mediated morphogenesis remains obscure. Here, we have used metabolomics to investigate the metabolic response of C. albicans upon exposure to farnesol under hyphae-inducing conditions. We have found a general up-regulation of central carbon metabolic pathways when hyphal formation was suppressed by farnesol evidenced by a considerably larger number of central carbon metabolic intermediates detected under this condition at an overall lower intracellular level. By combining the metabolic profiles from farnesol-exposed cells with previous metabolomics data for C. albicans undergoing morphogenesis, we have identified several metabolic pathways that are likely to be associated with the morphogenetic process of C. albicans, as well as metabolic pathways such as those involved in lipid metabolism that appeared to be specifically affected by farnesol. Therefore, our results provide important new insights into the metabolic role of farnesol in C. albicans metabolism. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. Intersection of FOXO- and RUNX1-mediated gene expression programs in single breast epithelial cells during morphogenesis and tumor progression.

    PubMed

    Wang, Lixin; Brugge, Joan S; Janes, Kevin A

    2011-10-04

    Gene expression networks are complicated by the assortment of regulatory factors that bind DNA and modulate transcription combinatorially. Single-cell measurements can reveal biological mechanisms hidden by population averages, but their value has not been fully explored in the context of mRNA regulation. Here, we adapted a single-cell expression profiling technique to examine the gene expression program downstream of Forkhead box O (FOXO) transcription factors during 3D breast epithelial acinar morphogenesis. By analyzing patterns of mRNA fluctuations among individual matrix-attached epithelial cells, we found that a subset of FOXO target genes was jointly regulated by the transcription factor Runt-related transcription factor 1 (RUNX1). Knockdown of RUNX1 causes hyperproliferation and abnormal morphogenesis, both of which require normal FOXO function. Down-regulating RUNX1 and FOXOs simultaneously causes widespread oxidative stress, which arrests proliferation and restores normal acinar morphology. In hormone-negative breast cancers lacking human epidermal growth factor receptor 2 (HER2) amplification, we find that RUNX1 down-regulation is strongly associated with up-regulation of FOXO1, which may be required to support growth of RUNX1-negative tumors. The coordinate function of these two tumor suppressors may provide a failsafe mechanism that inhibits cancer progression.

  16. Notochord morphogenesis in mice: Current understanding & open questions.

    PubMed

    Balmer, Sophie; Nowotschin, Sonja; Hadjantonakis, Anna-Katerina

    2016-05-01

    The notochord is a structure common to all chordates, and the feature that the phylum Chordata has been named after. It is a rod-like mesodermal structure that runs the anterior-posterior length of the embryo, adjacent to the ventral neural tube. The notochord plays a critical role in embryonic tissue patterning, for example the dorsal-ventral patterning of the neural tube. The cells that will come to form the notochord are specified at gastrulation. Axial mesodermal cells arising at the anterior primitive streak migrate anteriorly as the precursors of the notochord and populate the notochordal plate. Yet, even though a lot of interest has centered on investigating the functional and structural roles of the notochord, we still have a very rudimentary understanding of notochord morphogenesis. The events driving the formation of the notochord are rapid, taking place over the period of approximately a day in mice. In this commentary, we provide an overview of our current understanding of mouse notochord morphogenesis, from the initial specification of axial mesendodermal cells at the primitive streak, the emergence of these cells at the midline on the surface of the embryo, to their submergence and organization of the stereotypically positioned notochord. We will also discuss some key open questions. Developmental Dynamics 245:547-557, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Emerging pulmonary vasculature lacks fate specification.

    PubMed

    Schwarz, Margaret A; Caldwell, Lauren; Cafasso, Danielle; Zheng, Haihua

    2009-01-01

    Lung morphogenesis requires precise coordination between branching morphogenesis and vascularization to generate distal airways capable of supporting respiration at the cell-cell interface. The specific origins and types of blood vessels that initially form in the lung, however, remain obscure. Herein, we definitively show that during the early phases of lung development [i.e., embryonic day (E) 11.5], functional vessels, replete with blood flow, are restricted to the mesenchyme, distal to the epithelium. However, by day E14.5, and in response to epithelial-derived VEGF signals, functional vessels extend from the mesenchyme to the epithelial interface. Moreover, these vessels reside adjacent to multipotent mesenchymal stromal cells that likely play a regulatory role in this process. As well as and distinct from the systemic vasculature, immunostaining for EphrinB2 and EphB4 revealed that arterial and venous identity is not distinguishable in emergent pulmonary vasculature. Collectively, this study provides evidence that lung vascularization initially originates in the mesenchyme, distal to the epithelium, and that arterial-venous specification does not exist in the early lung. At a mechanistic level, we show that basilar epithelial VEGF prompts endothelial cells to move toward the epithelium where they undergo morphogenesis during the proliferative, canalicular stage. Thus our findings challenge existing notions of vascular origin and identity during development.

  18. NuMA-microtubule interactions are critical for spindle orientation and the morphogenesis of diverse epidermal structures

    PubMed Central

    Seldin, Lindsey; Muroyama, Andrew; Lechler, Terry

    2016-01-01

    Mitotic spindle orientation is used to generate cell fate diversity and drive proper tissue morphogenesis. A complex of NuMA and dynein/dynactin is required for robust spindle orientation in a number of cell types. Previous research proposed that cortical dynein/dynactin was sufficient to generate forces on astral microtubules (MTs) to orient the spindle, with NuMA acting as a passive tether. In this study, we demonstrate that dynein/dynactin is insufficient for spindle orientation establishment in keratinocytes and that NuMA’s MT-binding domain, which targets MT tips, is also required. Loss of NuMA-MT interactions in skin caused defects in spindle orientation and epidermal differentiation, leading to neonatal lethality. In addition, we show that NuMA-MT interactions are also required in adult mice for hair follicle morphogenesis and spindle orientation within the transit-amplifying cells of the matrix. Loss of spindle orientation in matrix cells results in defective differentiation of matrix-derived lineages. Our results reveal an additional and direct function of NuMA during mitotic spindle positioning, as well as a reiterative use of spindle orientation in the skin to build diverse structures. DOI: http://dx.doi.org/10.7554/eLife.12504.001 PMID:26765568

  19. Sox17 drives functional engraftment of endothelium converted from non-vascular cells

    PubMed Central

    Schachterle, William; Badwe, Chaitanya R.; Palikuqi, Brisa; Kunar, Balvir; Ginsberg, Michael; Lis, Raphael; Yokoyama, Masataka; Elemento, Olivier; Scandura, Joseph M.; Rafii, Shahin

    2017-01-01

    Transplanting vascular endothelial cells (ECs) to support metabolism and express regenerative paracrine factors is a strategy to treat vasculopathies and to promote tissue regeneration. However, transplantation strategies have been challenging to develop, because ECs are difficult to culture and little is known about how to direct them to stably integrate into vasculature. Here we show that only amniotic cells could convert to cells that maintain EC gene expression. Even so, these converted cells perform sub-optimally in transplantation studies. Constitutive Akt signalling increases expression of EC morphogenesis genes, including Sox17, shifts the genomic targeting of Fli1 to favour nearby Sox consensus sites and enhances the vascular function of converted cells. Enforced expression of Sox17 increases expression of morphogenesis genes and promotes integration of transplanted converted cells into injured vessels. Thus, Ets transcription factors specify non-vascular, amniotic cells to EC-like cells, whereas Sox17 expression is required to confer EC function. PMID:28091527

  20. Bone morphogenetic protein-4 strongly potentiates growth factor-induced proliferation of mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montesano, Roberto; Sarkoezi, Rita; Schramek, Herbert

    2008-09-12

    Bone morphogenetic proteins (BMPs) are multifunctional cytokines that elicit pleiotropic effects on biological processes such as cell proliferation, cell differentiation and tissue morphogenesis. With respect to cell proliferation, BMPs can exert either mitogenic or anti-mitogenic activities, depending on the target cells and their context. Here, we report that in low-density cultures of immortalized mammary epithelial cells, BMP-4 did not stimulate cell proliferation by itself. However, when added in combination with suboptimal concentrations of fibroblast growth factor (FGF)-2, FGF-7, FGF-10, epidermal growth factor (EGF) or hepatocyte growth factor (HGF), BMP-4 potently enhanced growth factor-induced cell proliferation. These results reveal a hithertomore » unsuspected interplay between BMP-4 and growth factors in the regulation of mammary epithelial cell proliferation. We suggest that the ability of BMP-4 to potentiate the mitogenic activity of multiple growth factors may contribute to mammary gland ductal morphogenesis as well as to breast cancer progression.« less

  1. Cell-cell adhesion in the cnidaria: insights into the evolution of tissue morphogenesis.

    PubMed

    Magie, Craig R; Martindale, Mark Q

    2008-06-01

    Cell adhesion is a major aspect of cell biology and one of the fundamental processes involved in the development of a multicellular animal. Adhesive mechanisms, both cell-cell and between cell and extracellular matrix, are intimately involved in assembling cells into the three-dimensional structures of tissues and organs. The modulation of adhesive complexes could therefore be seen as a central component in the molecular control of morphogenesis, translating information encoded within the genome into organismal form. The availability of whole genomes from early-branching metazoa such as cnidarians is providing important insights into the evolution of adhesive processes by allowing for the easy identification of the genes involved in adhesion in these organisms. Discovery of the molecular nature of cell adhesion in the early-branching groups, coupled with comparisons across the metazoa, is revealing the ways evolution has tinkered with this vital cellular process in the generation of the myriad forms seen across the animal kingdom.

  2. WAVE2 is required for directed cell migration and cardiovascular development.

    PubMed

    Yamazaki, Daisuke; Suetsugu, Shiro; Miki, Hiroaki; Kataoka, Yuki; Nishikawa, Shin-Ichi; Fujiwara, Takashi; Yoshida, Nobuaki; Takenawa, Tadaomi

    2003-07-24

    WAVE2, a protein related to Wiskott-Aldrich syndrome protein, is crucial for Rac-induced membrane ruffling, which is important in cell motility. Cell movement is essential for morphogenesis, but it is unclear how cell movement is regulated or related to morphogenesis. Here we show the physiological functions of WAVE2 by disruption of the WAVE2 gene in mice. WAVE2 was expressed predominantly in vascular endothelial cells during embryogenesis. WAVE2-/- embryos showed haemorrhages and died at about embryonic day 10. Deficiency in WAVE2 had no significant effect on vasculogenesis, but it decreased sprouting and branching of endothelial cells from existing vessels during angiogenesis. In WAVE2-/- endothelial cells, cell polarity formed in response to vascular endothelial growth factor, but the formation of lamellipodia at leading edges and capillaries was severely impaired. These findings indicate that WAVE2-regulated actin reorganization might be required for proper cell movement and that a lack of functional WAVE2 impairs angiogenesis in vivo.

  3. Scribble is required for normal epithelial cell–cell contacts and lumen morphogenesis in the mammalian lung

    PubMed Central

    Yates, Laura L.; Schnatwinkel, Carsten; Hazelwood, Lee; Chessum, Lauren; Paudyal, Anju; Hilton, Helen; Romero, M. Rosario; Wilde, Jonathan; Bogani, Debora; Sanderson, Jeremy; Formstone, Caroline; Murdoch, Jennifer N.; Niswander, Lee A.; Greenfield, Andy; Dean, Charlotte H.

    2013-01-01

    During lung development, proper epithelial cell arrangements are critical for the formation of an arborized network of tubes. Each tube requires a lumen, the diameter of which must be tightly regulated to enable optimal lung function. Lung branching and lumen morphogenesis require close epithelial cell–cell contacts that are maintained as a result of adherens junctions, tight junctions and by intact apical–basal (A/B) polarity. However, the molecular mechanisms that maintain epithelial cohesion and lumen diameter in the mammalian lung are unknown. Here we show that Scribble, a protein implicated in planar cell polarity (PCP) signalling, is necessary for normal lung morphogenesis. Lungs of the Scrib mouse mutant Circletail (Crc) are abnormally shaped with fewer airways, and these airways often lack a visible, ‘open’ lumen. Mechanistically we show that Scrib genetically interacts with the core PCP gene Vangl2 in the developing lung and that the distribution of PCP pathway proteins and Rho mediated cytoskeletal modification is perturbed in ScribCrc/Crc lungs. However A/B polarity, which is disrupted in Drosophila Scrib mutants, is largely unaffected. Notably, we find that Scrib mediates functions not attributed to other PCP proteins in the lung. Specifically, Scrib localises to both adherens and tight junctions of lung epithelia and knockdown of Scrib in lung explants and organotypic cultures leads to reduced cohesion of lung epithelial cells. Live imaging of Scrib knockdown lungs shows that Scrib does not affect bud bifurcation, as previously shown for the PCP protein Celsr1, but is required to maintain epithelial cohesion. To understand the mechanism leading to reduced cell–cell association, we show that Scrib associates with β-catenin in embryonic lung and the sub-cellular distribution of adherens and tight junction proteins is perturbed in mutant lung epithelia. Our data reveal that Scrib is required for normal lung epithelial organisation and lumen morphogenesis by maintaining cell–cell contacts. Thus we reveal novel and important roles for Scrib in lung development operating via the PCP pathway, and in regulating junctional complexes and cell cohesion. PMID:23195221

  4. Patterns of muscular strain in the embryonic heart wall.

    PubMed

    Damon, Brooke J; Rémond, Mathieu C; Bigelow, Michael R; Trusk, Thomas C; Xie, Wenjie; Perucchio, Renato; Sedmera, David; Denslow, Stewart; Thompson, Robert P

    2009-06-01

    The hypothesis that inner layers of contracting muscular tubes undergo greater strain than concentric outer layers was tested by numerical modeling and by confocal microscopy of strain within the wall of the early chick heart. We modeled the looped heart as a thin muscular shell surrounding an inner layer of sponge-like trabeculae by two methods: calculation within a two-dimensional three-variable lumped model and simulated expansion of a three-dimensional, four-layer mesh of finite elements. Analysis of both models, and correlative microscopy of chamber dimensions, sarcomere spacing, and membrane leaks, indicate a gradient of strain decreasing across the wall from highest strain along inner layers. Prediction of wall thickening during expansion was confirmed by ultrasonography of beating hearts. Degree of stretch determined by radial position may thus contribute to observed patterns of regional myocardial conditioning and slowed proliferation, as well as to the morphogenesis of ventricular trabeculae and conduction fascicles. Developmental Dynamics 238:1535-1546, 2009. (c) 2009 Wiley-Liss, Inc.

  5. Functional characterization of the gene FoOCH1 encoding a putative α-1,6-mannosyltransferase in Fusarium oxysporum f. sp. cubense.

    PubMed

    Li, Min-Hui; Xie, Xiao-Ling; Lin, Xian-Feng; Shi, Jin-Xiu; Ding, Zhao-Jian; Ling, Jin-Feng; Xi, Ping-Gen; Zhou, Jia-Nuan; Leng, Yueqiang; Zhong, Shaobin; Jiang, Zi-De

    2014-04-01

    Fusarium oxysporum f. sp. cubense (FOC) is the causal agent of banana Fusarium wilt and has become one of the most destructive pathogens threatening the banana production worldwide. However, few genes related to morphogenesis and pathogenicity of this fungal pathogen have been functionally characterized. In this study, we identified and characterized the disrupted gene in a T-DNA insertional mutant (L953) of FOC with significantly reduced virulence on banana plants. The gene disrupted by T-DNA insertion in L953 harbors an open reading frame, which encodes a protein with homology to α-1,6-mannosyltransferase (OCH1) in fungi. The deletion mutants (ΔFoOCH1) of the OCH1 orthologue (FoOCH1) in FOC were impaired in fungal growth, exhibited brighter staining with fluorescein isothiocyanate (FITC)-Concanavalin A, had less cell wall proteins and secreted more proteins into liquid media than the wild type. Furthermore, the mutation or deletion of FoOCH1 led to loss of ability to penetrate cellophane membrane and decline in hyphal attachment and colonization as well as virulence to the banana host. The mutant phenotypes were fully restored by complementation with the wild type FoOCH1 gene. Our data provide a first evidence for the critical role of FoOCH1 in maintenance of cell wall integrity and virulence of F. oxysporum f. sp. cubense. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. The mechanics of development: models and methods for tissue morphogenesis

    PubMed Central

    Gjorevski, Nikolce; Nelson, Celeste M.

    2011-01-01

    Embryonic development is a physical process during which masses of cells are sculpted into functional organs. The mechanical properties of tissues and the forces exerted on them serve as epigenetic regulators of morphogenesis. Understanding these mechanobiological effects in the embryo requires new experimental approaches. Here we focus on branching of the lung airways and bending of the heart tube to describe examples of mechanical and physical cues that guide cell fate decisions and organogenesis. We highlight recent technological advances to measure tissue elasticity and endogenous mechanical stresses in real time during organ development. We also discuss recent progress in manipulating forces in intact embryos. PMID:20860059

  7. Engineering epithelial-stromal interactions in vitro for toxicology assessment.

    PubMed

    Belair, David G; Abbott, Barbara D

    2017-05-01

    Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue homeostasis. Epithelial-stromal interactions (ESIs) have historically been examined using mammalian models and ex vivo tissue recombination. Although these approaches have elucidated signaling mechanisms underlying embryonic morphogenesis processes and adult mammalian epithelial tissue function, they are limited by the availability of tissue, low throughput, and human developmental or physiological relevance. In this review, we describe how bioengineered ESIs, using either human stem cells or co-cultures of human primary epithelial and stromal cells, have enabled the development of human in vitro epithelial tissue models that recapitulate the architecture, phenotype, and function of adult human epithelial tissues. We discuss how the strategies used to engineer mature epithelial tissue models in vitro could be extrapolated to instruct the design of organotypic culture models that can recapitulate the structure of embryonic ectodermal tissues and enable the in vitro assessment of events critical to organ/tissue morphogenesis. Given the importance of ESIs towards normal epithelial tissue development and function, such models present a unique opportunity for toxicological screening assays to incorporate ESIs to assess the impact of chemicals on mature and developing epidermal tissues. Published by Elsevier B.V.

  8. Engineering epithelial-stromal interactions in vitro for toxicology assessment

    PubMed Central

    Belair, David G.; Abbott, Barbara D.

    2018-01-01

    Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue homeostasis. Epithelial-stromal interactions (ESIs) have historically been examined using mammalian models and ex vivo tissue recombination. Although these approaches have elucidated signaling mechanisms underlying embryonic morphogenesis processes and adult mammalian epithelial tissue function, they are limited by the availability of tissue, low throughput, and human developmental or physiological relevance. In this review, we describe how bioengineered ESIs, using either human stem cells or co-cultures of human primary epithelial and stromal cells, have enabled the development of human in vitro epithelial tissue models that recapitulate the architecture, phenotype, and function of adult human epithelial tissues. We discuss how the strategies used to engineer mature epithelial tissue models in vitro could be extrapolated to instruct the design of organotypic culture models that can recapitulate the structure of embryonic ectodermal tissues and enable the in vitro assessment of events critical to organ/tissue morphogenesis. Given the importance of ESIs towards normal epithelial tissue development and function, such models present a unique opportunity for toxicological screening assays to incorporate ESIs to assess the impact of chemicals on mature and developing epidermal tissues. PMID:28285100

  9. Morphogenesis and gravity in a whole amphibian embryo and in isolated blastomeres of sea urchins.

    PubMed

    Izumi-Kurotani, Akemi; Kiyomoto, Masato

    2003-01-01

    Fertilization and subsequent embryogenesis of newts occurred normally under microgravity in two Astronewt flight experiments. By accumulation of the results from the amphibian flight experiments including 'Astronewt', it is considered that gravity has rather small effects on the early development of amphibian eggs. However, some temporary abnormalities, which recover in the course of the further developmental process, have been observed. Some regulations may occur in whole embryos. For a thorough knowledge about the role of gravity in morphogenesis, we need to investigate the gravitational effects on a single cell in a whole embryo. We propose a new experimental system with sea urchin embryos and micromeres for further studies at a cellular level of the effects of gravity on morphogenesis.

  10. An Organotypic 3D Assay for Primary Human Mammary Epithelial Cells that Recapitulates Branching Morphogenesis.

    PubMed

    Linnemann, Jelena R; Meixner, Lisa K; Miura, Haruko; Scheel, Christina H

    2017-01-01

    We have developed a three-dimensional organotypic culture system for primary human mammary epithelial cells (HMECs) in which the cells are cultured in free floating collagen type I gels. In this assay, luminal cells predominantly form multicellular spheres, while basal/myoepithelial cells form complex branched structures resembling terminal ductal lobular units (TDLUs), the functional units of the human mammary gland in situ. The TDLU-like organoids can be cultured for at least 3 weeks and can then be passaged multiple times. Subsequently, collagen gels can be stained with carmine or by immunofluorescence to allow for the analysis of morphology, protein expression and polarization, and to facilitate quantification of structures. In addition, structures can be isolated for gene expression analysis. In summary, this technique is suitable for studying branching morphogenesis, regeneration, and differentiation of HMECs as well as their dependence on the physical environment.

  11. Mechanical Influences on Morphogenesis of the Knee Joint Revealed through Morphological, Molecular and Computational Analysis of Immobilised Embryos

    PubMed Central

    Roddy, Karen A.; Prendergast, Patrick J.; Murphy, Paula

    2011-01-01

    Very little is known about the regulation of morphogenesis in synovial joints. Mechanical forces generated from muscle contractions are required for normal development of several aspects of normal skeletogenesis. Here we show that biophysical stimuli generated by muscle contractions impact multiple events during chick knee joint morphogenesis influencing differential growth of the skeletal rudiment epiphyses and patterning of the emerging tissues in the joint interzone. Immobilisation of chick embryos was achieved through treatment with the neuromuscular blocking agent Decamethonium Bromide. The effects on development of the knee joint were examined using a combination of computational modelling to predict alterations in biophysical stimuli, detailed morphometric analysis of 3D digital representations, cell proliferation assays and in situ hybridisation to examine the expression of a selected panel of genes known to regulate joint development. This work revealed the precise changes to shape, particularly in the distal femur, that occur in an altered mechanical environment, corresponding to predicted changes in the spatial and dynamic patterns of mechanical stimuli and region specific changes in cell proliferation rates. In addition, we show altered patterning of the emerging tissues of the joint interzone with the loss of clearly defined and organised cell territories revealed by loss of characteristic interzone gene expression and abnormal expression of cartilage markers. This work shows that local dynamic patterns of biophysical stimuli generated from muscle contractions in the embryo act as a source of positional information guiding patterning and morphogenesis of the developing knee joint. PMID:21386908

  12. Loss of laminin alpha 1 results in multiple structural defects and divergent effects on adhesion during vertebrate optic cup morphogenesis

    PubMed Central

    Bryan, Chase D.; Chien, Chi-Bin; Kwan, Kristen M.

    2016-01-01

    The vertebrate eye forms via a complex set of morphogenetic events. The optic vesicle evaginates and undergoes transformative shape changes to form the optic cup, in which neural retina and retinal pigmented epithelium enwrap the lens. It has long been known that a complex, glycoprotein-rich extracellular matrix layer surrounds the developing optic cup throughout the process, yet the functions of the matrix and its specific molecular components have remained unclear. Previous work established a role for laminin extracellular matrix in particular steps of eye development, including optic vesicle evagination, lens differentiation, and retinal ganglion cell polarization, yet it is unknown what role laminin might play in the early process of optic cup formation subsequent to the initial step of optic vesicle evagination. Here, we use the zebrafish lama1 mutant (lama1UW1) to determine the function of laminin during optic cup morphogenesis. Using live imaging, we find, surprisingly, that loss of laminin leads to divergent effects on focal adhesion assembly in a spatiotemporally-specific manner, and that laminin is required for multiple steps of optic cup morphogenesis, including optic stalk constriction, invagination, and formation of a spherical lens. Laminin is not required for single cell behaviors and changes in cell shape. Rather, in lama1UW1 mutants, loss of epithelial polarity and altered adhesion lead to defective tissue architecture and formation of a disorganized retina. These results demonstrate that the laminin extracellular matrix plays multiple critical roles regulating adhesion and polarity to establish and maintain tissue structure during optic cup morphogenesis. PMID:27339294

  13. Reprogramming cells and tissue patterning via bioelectrical pathways: molecular mechanisms and biomedical opportunities

    PubMed Central

    Levin, Michael

    2013-01-01

    Transformative impact in regenerative medicine requires more than the reprogramming of individual cells: advances in repair strategies for birth defects or injuries, tumor normalization, and the construction of bioengineered organs and tissues all require the ability to control large-scale anatomical shape. Much recent work has focused on the transcriptional and biochemical regulation of cell behaviour and morphogenesis. However, exciting new data reveal that bioelectrical properties of cells and their microenvironment exert a profound influence on cell differentiation, proliferation, and migration. Ion channels and pumps expressed in all cells, not just excitable nerve and muscle, establish resting potentials that vary across tissues and change with significant developmental events. Most importantly, the spatio-temporal gradients of these endogenous transmembrane voltage potentials (Vmem) serve as instructive patterning cues for large-scale anatomy, providing organ identity, positional information, and prepattern template cues for morphogenesis. New genetic and pharmacological techniques for molecular modulation of bioelectric gradients in vivo have revealed the ability to initiate complex organogenesis, change tissue identity, and trigger regeneration of whole vertebrate appendages. A large segment of the spatial information processing that orchestrates individual cells’ programs towards the anatomical needs of the host organism is electrical; this blurs the line between memory and decision-making in neural networks and morphogenesis in non-neural tissues. Advances in cracking this bioelectric code will enable the rational reprogramming of shape in whole tissues and organs, revolutionizing regenerative medicine, developmental biology, and synthetic bioengineering. PMID:23897652

  14. Zic1 and Zic4 regulate zebrafish roof plate specification and hindbrain ventricle morphogenesis

    PubMed Central

    Elsen, Gina E.; Choi, Louis; Millen, Kathleen; Grinblat, Yevgenya; Prince, Victoria E.

    2008-01-01

    During development, the lumen of the neural tube develops into a system of brain cavities or ventricles, which play important roles in normal CNS function. We have established that the formation of the hindbrain (4th) ventricle in zebrafish is dependent upon the pleiotropic functions of the genes implicated in human Dandy Walker Malformation, Zic1 and Zic4. Using morpholino knockdown we show that zebrafish Zic1 and Zic4 are required for normal morphogenesis of the 4th ventricle. In Zic1 and/or Zic4 morphants the ventricle does not open properly, but remains completely or partially fused from the level of rhombomere (r) 2 towards the posterior. In the absence of Zic function early hindbrain regionalization and neural crest development remain unaffected, but dorsal hindbrain progenitor cell proliferation is significantly reduced. Importantly, we find that Zic1 and Zic4 are required for development of the dorsal roof plate. In Zic morphants expression of roof plate markers, including lmx1b.1 and lmx1b.2, is disrupted. We further demonstrate that zebrafish Lmx1b function is required for both hindbrain roof plate development and 4th ventricle morphogenesis, confirming that roof plate formation is a critical component of ventricle development. Finally, we show that dorsal rhombomere boundary signaling centers depend on Zic1 and Zic4 function and on roof plate signals, and provide evidence that these boundary signals are also required for ventricle morphogenesis. In summary, we conclude that Zic1 and Zic4 control zebrafish 4th ventricle morphogenesis by regulating multiple mechanisms including cell proliferation and fate specification in the dorsal hindbrain. PMID:18191121

  15. Patterned cortical tension mediated by N-cadherin controls cell geometric order in the Drosophila eye

    PubMed Central

    Chan, Eunice HoYee; Chavadimane Shivakumar, Pruthvi; Clément, Raphaël; Laugier, Edith; Lenne, Pierre-François

    2017-01-01

    Adhesion molecules hold cells together but also couple cell membranes to a contractile actomyosin network, which limits the expansion of cell contacts. Despite their fundamental role in tissue morphogenesis and tissue homeostasis, how adhesion molecules control cell shapes and cell patterns in tissues remains unclear. Here we address this question in vivo using the Drosophila eye. We show that cone cell shapes depend little on adhesion bonds and mostly on contractile forces. However, N-cadherin has an indirect control on cell shape. At homotypic contacts, junctional N-cadherin bonds downregulate Myosin-II contractility. At heterotypic contacts with E-cadherin, unbound N-cadherin induces an asymmetric accumulation of Myosin-II, which leads to a highly contractile cell interface. Such differential regulation of contractility is essential for morphogenesis as loss of N-cadherin disrupts cell rearrangements. Our results establish a quantitative link between adhesion and contractility and reveal an unprecedented role of N-cadherin on cell shapes and cell arrangements. DOI: http://dx.doi.org/10.7554/eLife.22796.001 PMID:28537220

  16. In vitro cementoblast-like differentiation of postmigratory neural crest-derived p75{sup +} stem cells with dental follicle cell conditioned medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Xiujie; Liu, Luchuan; Deng, Manjing

    Cranial neural crest-derived cells (CNCCs) play important role in epithelial–mesenchymal interactions during tooth morphogenesis. However, the heterogeneity of CNCCs and their tendency to spontaneously differentiate along smooth muscle or osteoblast lineages in vitro limit further understanding of their biological properties. We studied the differentiation properties of isolated rat embryonic postmigratory CNCCs, expressing p75 neurotrophin receptor (p75NTR). These p75NTR positive (p75{sup +}) CNCCs, isolated using fluorescence activated cell sorter, exhibited fibroblast-like morphology and characteristics of mesenchymal stem cells. Incubation of p75{sup +} CNCCs in dental follicle cell conditioned medium (DFCCM) combined with dentin non-collagenous proteins (dNCPs), altered their morphological features tomore » cementoblast-like appearance. These cells also showed low proliferative activity, high ALP activity and significantly increased calcified nodule formation. Markers related to mineralization or specific to cementoblast lineage were highly expressed in dNCPs/DFCCM-treated p75{sup +} cells, suggesting their differentiation along cementoblast-like lineage. p75{sup +} stem cells selected from postmigratory CNCCs represent a pure stem cell population and could be used as a stem cell model for in vitro studies due to their intrinsic ability to differentiate to neuronal cells and transform from neuroectoderm to ectomesenchyme. They can provide a potential stem cell resource for tooth engineering studies and help to further investigate mechanisms of epithelial–mesenchymal interactions in tooth morphogenesis. - Highlights: • Cranial neural crest-derived cells (CNCCs) take part in tooth morphogenesis. • positive (p75{sup +}) CNCCs are fibroblast-like and resemble mesenchymal stem cells. • p75{sup +} CNCCs in dental follicle cell medium (DFCCM/dNCP) appear like cementoblasts. • DFCCM/dNCP-treated p75{sup +} cells express cementoblast specific mineralization markers. • p75{sup +} cells are pure stem cells and able to differentiate to neuronal cells.« less

  17. An Antarctic hypotrichous ciliate, Parasterkiella thompsoni (Foissner) nov. gen., nov. comb., recorded in Argentinean peat-bogs: morphology, morphogenesis, and molecular phylogeny.

    PubMed

    Küppers, Gabriela Cristina; Paiva, Thiago da Silva; Borges, Bárbara do Nascimento; Harada, Maria Lúcia; Garraza, Gabriela González; Mataloni, Gabriela

    2011-05-01

    The ciliate Parasterkiella thompsoni (Foissner, 1996) nov. gen., nov. comb. was originally described from Antarctica. In the present study, we report the morphology, morphogenesis during cell division, and molecular phylogeny inferred from the 18S-rDNA sequence of a population isolated from the Rancho Hambre peat bog, Tierra del Fuego Province (Argentina). The study is based on live and protargol-impregnated specimens. Molecular phylogeny was inferred from trees constructed by means of the maximum parsimony, neighbor joining, and Bayesian analyses. The interphase morphology matches the original description of the species. During the cell division, stomatogenesis begins with the de novo proliferation of two fields of basal bodies, each one left of the postoral ventral cirri and of transverse cirri, which later unify. Primordia IV-VI of the proter develop from disaggregation of cirrus IV/3, while primordium IV of the opisthe develops from cirrus IV/2 and primordia V and VI from cirrus V/4. Dorsal morphogenesis occurs in the Urosomoida pattern-that is, the fragmentation of kinety 3 is lacking. Three macronuclear nodules are generated before cytokinesis. Phylogenetic analyses consistently placed P. thompsoni within the stylonychines. New data on the morphogenesis of the dorsal ciliature justifies the transference of Sterkiella thompsoni to a new genus Parasterkiella. Copyright © 2011 Elsevier GmbH. All rights reserved.

  18. Autonomy and Non-autonomy of Angiogenic Cell Movements Revealed by Experiment-Driven Mathematical Modeling.

    PubMed

    Sugihara, Kei; Nishiyama, Koichi; Fukuhara, Shigetomo; Uemura, Akiyoshi; Arima, Satoshi; Kobayashi, Ryo; Köhn-Luque, Alvaro; Mochizuki, Naoki; Suda, Toshio; Ogawa, Hisao; Kurihara, Hiroki

    2015-12-01

    Angiogenesis is a multicellular phenomenon driven by morphogenetic cell movements. We recently reported morphogenetic vascular endothelial cell (EC) behaviors to be dynamic and complex. However, the principal mechanisms orchestrating individual EC movements in angiogenic morphogenesis remain largely unknown. Here we present an experiment-driven mathematical model that enables us to systematically dissect cellular mechanisms in branch elongation. We found that cell-autonomous and coordinated actions governed these multicellular behaviors, and a cell-autonomous process sufficiently illustrated essential features of the morphogenetic EC dynamics at both the single-cell and cell-population levels. Through refining our model and experimental verification, we further identified a coordinated mode of tip EC behaviors regulated via a spatial relationship between tip and follower ECs, which facilitates the forward motility of tip ECs. These findings provide insights that enhance our mechanistic understanding of not only angiogenic morphogenesis, but also other types of multicellular phenomenon. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Deletion of the Vaccinia Virus I2 Protein Interrupts Virion Morphogenesis, Leading to Retention of the Scaffold Protein and Mislocalization of Membrane-Associated Entry Proteins.

    PubMed

    Hyun, Seong-In; Weisberg, Andrea; Moss, Bernard

    2017-08-01

    The I2L open reading frame of vaccinia virus (VACV) encodes a conserved 72-amino-acid protein with a putative C-terminal transmembrane domain. Previous studies with a tetracycline-inducible mutant demonstrated that I2-deficient virions are defective in cell entry. The purpose of the present study was to determine the step of replication or entry that is affected by loss of the I2 protein. Fluorescence microscopy experiments showed that I2 colocalized with a major membrane protein of immature and mature virions. We generated a cell line that constitutively expressed I2 and allowed construction of the VACV I2L deletion mutant vΔI2. As anticipated, vΔI2 was unable to replicate in cells that did not express I2. Unexpectedly, morphogenesis was interrupted at a stage after immature virion formation, resulting in the accumulation of dense spherical particles instead of brick-shaped mature virions with well-defined core structures. The abnormal particles retained the D13 scaffold protein of immature virions, were severely deficient in the transmembrane proteins that comprise the entry fusion complex (EFC), and had increased amounts of unprocessed membrane and core proteins. Total lysates of cells infected with vΔI2 also had diminished EFC proteins due to instability attributed to their hydrophobicity and failure to be inserted into viral membranes. A similar instability of EFC proteins had previously been found with unrelated mutants blocked earlier in morphogenesis that also accumulated viral membranes retaining the D13 scaffold. We concluded that I2 is required for virion morphogenesis, release of the D13 scaffold, and the association of EFC proteins with viral membranes. IMPORTANCE Poxviruses comprise a large family that infect vertebrates and invertebrates, cause disease in both in humans and in wild and domesticated animals, and are being engineered as vectors for vaccines and cancer therapy. In addition, investigations of poxviruses have provided insights into many aspects of cell biology. The I2 protein is conserved in all poxviruses that infect vertebrates, suggesting an important role. The present study revealed that this protein is essential for vaccinia virus morphogenesis and that its absence results in an accumulation of deformed virus particles retaining the scaffold protein and deficient in surface proteins needed for cell entry. Copyright © 2017 American Society for Microbiology.

  20. Tissue morphodynamics shaping the early mouse embryo.

    PubMed

    Sutherland, Ann E

    2016-07-01

    Generation of the elongated vertebrate body plan from the initially radially symmetrical embryo requires comprehensive changes to tissue form. These shape changes are generated by specific underlying cell behaviors, coordinated in time and space. Major principles and also specifics are emerging, from studies in many model systems, of the cell and physical biology of how region-specific cell behaviors produce regional tissue morphogenesis, and how these, in turn, are integrated at the level of the embryo. New technical approaches have made it possible more recently, to examine the morphogenesis of the mouse embryo in depth, and to elucidate the underlying cellular mechanisms. This review focuses on recent advances in understanding the cellular basis for the early fundamental events that establish the basic form of the embryo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Tenascin-C in the extracellular matrix promotes the selection of highly proliferative and tubulogenesis-defective endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alves, Tercia Rodrigues; Universidade Federal do Rio de Janeiro; Carvalho da Fonseca, Anna Carolina

    2011-09-10

    The extracellular matrix (ECM) contains important cues for tissue homeostasis and morphogenesis. The matricellular protein tenascin-C (TN-C) is overexpressed in remodeling tissues and cancer. In the present work, we studied the effect of different ECM-which exhibited a significant diversity in their TN-C content-in endothelial survival, proliferation and tubulogenic differentiation: autologous (endothelial) ECM devoid of TN-C, but bearing large amounts of FN; fibroblast ECM, bearing both high TN-C and FN contents; and finally, glioma-derived matrices, usually poor in FN, but very rich in TN-C. HUVECs initially adhered to the immobilized matrix produced by U373 MG glioma cells, but significantly detached andmore » died by anoikis (50 to 80%) after 24 h, as compared with cells incubated with endothelial and fibroblast matrices. Surviving endothelial cells (20 to 50%) became up to 6-fold more proliferative and formed 74-97% less tube-like structures in vitro than cells grown on non-tumoral matrices. An antibody against the EGF-like repeats of tenascin-C (TN-C) partially rescued cells from the tubulogenic defect, indicating that this molecule is responsible for the selection of highly proliferative and tubulogenic defective endothelial cells. Interestingly, by using defined substrata, in conditions that mimic glioma and normal cell ECM composition, we observed that fibronectin (FN) modulates the TN-C-induced selection of endothelial cells. Our data show that TN-C is able to modulate endothelial branching morphogenesis in vitro and, since it is prevalent in matrices of injured and tumor tissues, also suggest a role for this protein in vascular morphogenesis, in these physiological contexts.« less

  2. Unique patterns of organization and migration of FGF-expressing cells during Drosophila morphogenesis.

    PubMed

    Du, Lijuan; Zhou, Amy; Patel, Akshay; Rao, Mishal; Anderson, Kelsey; Roy, Sougata

    2017-07-01

    Fibroblast growth factors (FGF) are essential signaling proteins that regulate diverse cellular functions in developmental and metabolic processes. In Drosophila, the FGF homolog, branchless (bnl) is expressed in a dynamic and spatiotemporally restricted pattern to induce branching morphogenesis of the trachea, which expresses the Bnl-receptor, breathless (btl). Here we have developed a new strategy to determine bnl- expressing cells and study their interactions with the btl-expressing cells in the range of tissue patterning during Drosophila development. To enable targeted gene expression specifically in the bnl expressing cells, a new LexA based bnl enhancer trap line was generated using CRISPR/Cas9 based genome editing. Analyses of the spatiotemporal expression of the reporter in various embryonic stages, larval or adult tissues and in metabolic hypoxia, confirmed its target specificity and versatility. With this tool, new bnl expressing cells, their unique organization and functional interactions with the btl-expressing cells were uncovered in a larval tracheoblast niche in the leg imaginal discs, in larval photoreceptors of the developing retina, and in the embryonic central nervous system. The targeted expression system also facilitated live imaging of simultaneously labeled Bnl sources and tracheal cells, which revealed a unique morphogenetic movement of the embryonic bnl- source. Migration of bnl- expressing cells may create a dynamic spatiotemporal pattern of the signal source necessary for the directional growth of the tracheal branch. The genetic tool and the comprehensive profile of expression, organization, and activity of various types of bnl-expressing cells described in this study provided us with an important foundation for future research investigating the mechanisms underlying Bnl signaling in tissue morphogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function

    PubMed Central

    Nguema-Ona, Eric; Vicré-Gibouin, Maïté; Gotté, Maxime; Plancot, Barbara; Lerouge, Patrice; Bardor, Muriel; Driouich, Azeddine

    2014-01-01

    Cell wall O-glycoproteins and N-glycoproteins are two types of glycomolecules whose glycans are structurally complex. They are both assembled and modified within the endomembrane system, i.e., the endoplasmic reticulum (ER) and the Golgi apparatus, before their transport to their final locations within or outside the cell. In contrast to extensins (EXTs), the O-glycan chains of arabinogalactan proteins (AGPs) are highly heterogeneous consisting mostly of (i) a short oligo-arabinoside chain of three to four residues, and (ii) a larger β-1,3-linked galactan backbone with β-1,6-linked side chains containing galactose, arabinose and, often, fucose, rhamnose, or glucuronic acid. The fine structure of arabinogalactan chains varies between, and within plant species, and is important for the functional activities of the glycoproteins. With regards to N-glycans, ER-synthesizing events are highly conserved in all eukaryotes studied so far since they are essential for efficient protein folding. In contrast, evolutionary adaptation of N-glycan processing in the Golgi apparatus has given rise to a variety of organism-specific complex structures. Therefore, plant complex-type N-glycans contain specific glyco-epitopes such as core β,2-xylose, core α1,3-fucose residues, and Lewisa substitutions on the terminal position of the antenna. Like O-glycans, N-glycans of proteins are essential for their stability and function. Mutants affected in the glycan metabolic pathways have provided valuable information on the role of N-/O-glycoproteins in the control of growth, morphogenesis and adaptation to biotic and abiotic stresses. With regards to O-glycoproteins, only EXTs and AGPs are considered herein. The biosynthesis of these glycoproteins and functional aspects are presented and discussed in this review. PMID:25324850

  4. Potent blockade of hepatocyte growth factor-stimulated cell motility, matrix invasion and branching morphogenesis by antagonists of Grb2 Src homology 2 domain interactions.

    PubMed

    Atabey, N; Gao, Y; Yao, Z J; Breckenridge, D; Soon, L; Soriano, J V; Burke, T R; Bottaro, D P

    2001-04-27

    Hepatocyte growth factor (HGF) stimulates mitogenesis, motogenesis, and morphogenesis in a wide range of cellular targets during development, homeostasis and tissue regeneration. Inappropriate HGF signaling occurs in several human cancers, and the ability of HGF to initiate a program of protease production, cell dissociation, and motility has been shown to promote cellular invasion and is strongly linked to tumor metastasis. Upon HGF binding, several tyrosines within the intracellular domain of its receptor, c-Met, become phosphorylated and mediate the binding of effector proteins, such as Grb2. Grb2 binding through its SH2 domain is thought to link c-Met with downstream mediators of cell proliferation, shape change, and motility. We analyzed the effects of Grb2 SH2 domain antagonists on HGF signaling and observed potent blockade of cell motility, matrix invasion, and branching morphogenesis, with ED(50) values of 30 nm or less, but only modest inhibition of mitogenesis. These compounds are 1000-10,000-fold more potent anti-motility agents than any previously characterized Grb2 SH2 domain antagonists. Our results suggest that SH2 domain-mediated c-Met-Grb2 interaction contributes primarily to the motogenic and morphogenic responses to HGF, and that these compounds may have therapeutic application as anti-metastatic agents for tumors where the HGF signaling pathway is active.

  5. Mechanical Forces Program the Orientation of Cell Division during Airway Tube Morphogenesis.

    PubMed

    Tang, Zan; Hu, Yucheng; Wang, Zheng; Jiang, Kewu; Zhan, Cheng; Marshall, Wallace F; Tang, Nan

    2018-02-05

    Oriented cell division plays a key role in controlling organogenesis. The mechanisms for regulating division orientation at the whole-organ level are only starting to become understood. By combining 3D time-lapse imaging, mouse genetics, and mathematical modeling, we find that global orientation of cell division is the result of a combination of two types of spindles with distinct spindle dynamic behaviors in the developing airway epithelium. Fixed spindles follow the classic long-axis rule and establish their division orientation before metaphase. In contrast, rotating spindles do not strictly follow the long-axis rule and determine their division orientation during metaphase. By using both a cell-based mechanical model and stretching-lung-explant experiments, we showed that mechanical force can function as a regulatory signal in maintaining the stable ratio between fixed spindles and rotating spindles. Our findings demonstrate that mechanical forces, cell geometry, and oriented cell division function together in a highly coordinated manner to ensure normal airway tube morphogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Apolar and polar transitions drive the conversion between amoeboid and mesenchymal shapes in melanoma cells

    PubMed Central

    Cooper, Sam; Sadok, Amine; Bousgouni, Vicky; Bakal, Chris

    2015-01-01

    Melanoma cells can adopt two functionally distinct forms, amoeboid and mesenchymal, which facilitates their ability to invade and colonize diverse environments during the metastatic process. Using quantitative imaging of single living tumor cells invading three-dimensional collagen matrices, in tandem with unsupervised computational analysis, we found that melanoma cells can switch between amoeboid and mesenchymal forms via two different routes in shape space—an apolar and polar route. We show that whereas particular Rho-family GTPases are required for the morphogenesis of amoeboid and mesenchymal forms, others are required for transitions via the apolar or polar route and not amoeboid or mesenchymal morphogenesis per se. Altering the transition rates between particular routes by depleting Rho-family GTPases can change the morphological heterogeneity of cell populations. The apolar and polar routes may have evolved in order to facilitate conversion between amoeboid and mesenchymal forms, as cells are either searching for, or attracted to, particular migratory cues, respectively. PMID:26310441

  7. Mechanisms of bacterial morphogenesis: evolutionary cell biology approaches provide new insights.

    PubMed

    Jiang, Chao; Caccamo, Paul D; Brun, Yves V

    2015-04-01

    How Darwin's "endless forms most beautiful" have evolved remains one of the most exciting questions in biology. The significant variety of bacterial shapes is most likely due to the specific advantages they confer with respect to the diverse environments they occupy. While our understanding of the mechanisms generating relatively simple shapes has improved tremendously in the last few years, the molecular mechanisms underlying the generation of complex shapes and the evolution of shape diversity are largely unknown. The emerging field of bacterial evolutionary cell biology provides a novel strategy to answer this question in a comparative phylogenetic framework. This relatively novel approach provides hypotheses and insights into cell biological mechanisms, such as morphogenesis, and their evolution that would have been difficult to obtain by studying only model organisms. We discuss the necessary steps, challenges, and impact of integrating "evolutionary thinking" into bacterial cell biology in the genomic era. © 2015 WILEY Periodicals, Inc.

  8. Cytoskeletal self-organization in neuromorphogenesis.

    PubMed

    Dehmelt, Leif

    2014-01-01

    Self-organization of dynamic microtubules via interactions with associated motors plays a critical role in spindle formation. The microtubule-based mechanisms underlying other aspects of cellular morphogenesis, such as the formation and development of protrusions from neuronal cells is less well understood. In a recent study, we investigated the molecular mechanism that underlies the massive reorganization of microtubules induced in non-neuronal cells by expression of the neuronal microtubule stabilizer MAP2c. In that study we directly observed cortical dynein complexes and how they affect the dynamic behavior of motile microtubules in living cells. We found that stationary dynein complexes transiently associate with motile microtubules near the cell cortex and that their rapid turnover facilitates efficient microtubule transport. Here, we discuss our findings in the larger context of cellular morphogenesis with specific focus on self-organizing principles from which cellular shape patterns such as the thin protrusions of neurons can emerge.

  9. Development and Function of the Drosophila Tracheal System.

    PubMed

    Hayashi, Shigeo; Kondo, Takefumi

    2018-06-01

    The tracheal system of insects is a network of epithelial tubules that functions as a respiratory organ to supply oxygen to various target organs. Target-derived signaling inputs regulate stereotyped modes of cell specification, branching morphogenesis, and collective cell migration in the embryonic stage. In the postembryonic stages, the same set of signaling pathways controls highly plastic regulation of size increase and pattern elaboration during larval stages, and cell proliferation and reprograming during metamorphosis. Tracheal tube morphogenesis is also regulated by physicochemical interaction of the cell and apical extracellular matrix to regulate optimal geometry suitable for air flow. The trachea system senses both the external oxygen level and the metabolic activity of internal organs, and helps organismal adaptation to changes in environmental oxygen level. Cellular and molecular mechanisms underlying the high plasticity of tracheal development and physiology uncovered through research on Drosophila are discussed. Copyright © 2018 by the Genetics Society of America.

  10. Cytoskeletal self-organization in neuromorphogenesis

    PubMed Central

    Dehmelt, Leif

    2014-01-01

    Self-organization of dynamic microtubules via interactions with associated motors plays a critical role in spindle formation. The microtubule-based mechanisms underlying other aspects of cellular morphogenesis, such as the formation and development of protrusions from neuronal cells is less well understood. In a recent study, we investigated the molecular mechanism that underlies the massive reorganization of microtubules induced in non-neuronal cells by expression of the neuronal microtubule stabilizer MAP2c. In that study we directly observed cortical dynein complexes and how they affect the dynamic behavior of motile microtubules in living cells. We found that stationary dynein complexes transiently associate with motile microtubules near the cell cortex and that their rapid turnover facilitates efficient microtubule transport. Here, we discuss our findings in the larger context of cellular morphogenesis with specific focus on self-organizing principles from which cellular shape patterns such as the thin protrusions of neurons can emerge. PMID:24847718

  11. Quantitative semi-automated analysis of morphogenesis with single-cell resolution in complex embryos.

    PubMed

    Giurumescu, Claudiu A; Kang, Sukryool; Planchon, Thomas A; Betzig, Eric; Bloomekatz, Joshua; Yelon, Deborah; Cosman, Pamela; Chisholm, Andrew D

    2012-11-01

    A quantitative understanding of tissue morphogenesis requires description of the movements of individual cells in space and over time. In transparent embryos, such as C. elegans, fluorescently labeled nuclei can be imaged in three-dimensional time-lapse (4D) movies and automatically tracked through early cleavage divisions up to ~350 nuclei. A similar analysis of later stages of C. elegans development has been challenging owing to the increased error rates of automated tracking of large numbers of densely packed nuclei. We present Nucleitracker4D, a freely available software solution for tracking nuclei in complex embryos that integrates automated tracking of nuclei in local searches with manual curation. Using these methods, we have been able to track >99% of all nuclei generated in the C. elegans embryo. Our analysis reveals that ventral enclosure of the epidermis is accompanied by complex coordinated migration of the neuronal substrate. We can efficiently track large numbers of migrating nuclei in 4D movies of zebrafish cardiac morphogenesis, suggesting that this approach is generally useful in situations in which the number, packing or dynamics of nuclei present challenges for automated tracking.

  12. bullwinkle and shark regulate dorsal-appendage morphogenesis in Drosophila oogenesis.

    PubMed

    Tran, David H; Berg, Celeste A

    2003-12-01

    bullwinkle (bwk) regulates embryonic anteroposterior patterning and, through a novel germline-to-soma signal, morphogenesis of the eggshell dorsal appendages. We screened for dominant modifiers of the bullwinkle mooseantler eggshell phenotype and identified shark, which encodes an SH2-domain, ankyrin-repeat tyrosine kinase. At the onset of dorsal-appendage formation, shark is expressed in a punctate pattern in the squamous stretch cells overlying the nurse cells. Confocal microscopy with cell-type-specific markers demonstrates that the stretch cells act as a substrate for the migrating dorsal-appendage-forming cells and extend cellular projections towards them. Mosaic analyses reveal that shark is required in follicle cells for cell migration and chorion deposition. Proper shark RNA expression in the stretch cells requires bwk activity, while restoration of shark expression in the stretch cells suppresses the bwk dorsal-appendage phenotype. These results suggest that shark plays an important downstream role in the bwk-signaling pathway. Candidate testing implicates Src42A in a similar role, suggesting conservation with a vertebrate signaling pathway involving non-receptor tyrosine kinases.

  13. CPK3-phosphorylated RhoGDI1 is essential in the development of Arabidopsis seedlings and leaf epidermal cells

    PubMed Central

    Wu, Yan

    2013-01-01

    The regulation of Rho of plants (ROP) in morphogenesis of leaf epidermal cells has been well studied, but the roles concerning regulators of ROPs such as RhoGDIs are poorly understood. This study reports that AtRhoGDI1 (GDI1) acts as a versatile regulator to modulate development of seedlings and leaf pavement cells. In mutant gdi1, leaf pavement cells showed shorter lobes in comparison with those in wild type. In GDI1-14 seedlings (GDI1-overexpression line) the growth of lobes in pavement cells was severely suppressed and the development of seedlings was altered. These results indicate that GDI1 plays an essential role in morphogenesis of epidermal pavement cells through modulating the ROP signalling pathways. The interaction between GDI1 and ROP2 or ROP6 was detected in the leaf pavement cells using FRET analysis. Dominant negative, not constitutively active, DN-rop6 could weaken the effect caused by overexpression of GDI1; because the pleiotropic phenotype of GDI1-14 plants was eliminated in the hybrid line GDI1-14 DN-rop6. GDI1 could be phosphorylated by CPK3. Three conserved Ser/Thr residues in GDI1 were determined as targeted amino acids for CPK3. Overexpression of GDI1(3D), not GDI1(3A), could rescue the abnormal growth phenotypes of gdi1-1 seedlings, demonstrating the impact of GDI1 phosphorylation in the development of Arabidopsis. In summary, these results suggest that GDI1 regulation in morphogenesis of seedlings and leaf pavement cells could be undergone through modulating the ROP signalling pathways and the phosphorylation of GDI1 by CPK3 was required for the developmental modulation in Arabidopsis. PMID:23846874

  14. The C. elegans Excretory Canal as a Model for Intracellular Lumen Morphogenesis and In Vivo Polarized Membrane Biogenesis in a Single Cell: labeling by GFP-fusions, RNAi Interaction Screen and Imaging.

    PubMed

    Zhang, Nan; Membreno, Edward; Raj, Susan; Zhang, Hongjie; Khan, Liakot A; Gobel, Verena

    2017-10-03

    The four C. elegans excretory canals are narrow tubes extended through the length of the animal from a single cell, with almost equally far extended intracellular endotubes that build and stabilize the lumen with a membrane and submembraneous cytoskeleton of apical character. The excretory cell expands its length approximately 2,000 times to generate these canals, making this model unique for the in vivo assessment of de novo polarized membrane biogenesis, intracellular lumen morphogenesis and unicellular tubulogenesis. The protocol presented here shows how to combine standard labeling, gain- and loss-of-function genetic or RNA interference (RNAi)-, and microscopic approaches to use this model to visually dissect and functionally analyze these processes on a molecular level. As an example of a labeling approach, the protocol outlines the generation of transgenic animals with fluorescent fusion proteins for live analysis of tubulogenesis. As an example of a genetic approach, it highlights key points of a visual RNAi-based interaction screen designed to modify a gain-of-function cystic canal phenotype. The specific methods described are how to: label and visualize the canals by expressing fluorescent proteins; construct a targeted RNAi library and strategize RNAi screening for the molecular analysis of canal morphogenesis; visually assess modifications of canal phenotypes; score them by dissecting fluorescence microscopy; characterize subcellular canal components at higher resolution by confocal microscopy; and quantify visual parameters. The approach is useful for the investigator who is interested in taking advantage of the C. elegans excretory canal for identifying and characterizing genes involved in the phylogenetically conserved processes of intracellular lumen and unicellular tube morphogenesis.

  15. Sea Urchin Morphogenesis.

    PubMed

    McClay, David R

    2016-01-01

    In the sea urchin morphogenesis follows extensive molecular specification. The specification controls the many morphogenetic events and these, in turn, precede patterning steps that establish the larval body plan. To understand how the embryo is built it was necessary to understand those series of molecular steps. Here an example of the historical sequence of those discoveries is presented as it unfolded over the last 50 years, the years during which major progress in understanding development of many animals and plants was documented by CTDB. In sea urchin development a rich series of experimental studies first established many of the phenomenological components of skeletal morphogenesis and patterning without knowledge of the molecular components. The many discoveries of transcription factors, signals, and structural proteins that contribute to the shape of the endoskeleton of the sea urchin larva then followed as molecular tools became available. A number of transcription factors and signals were discovered that were necessary for specification, morphogenesis, and patterning. Perturbation of the transcription factors and signals provided the means for assembling models of the gene regulatory networks used for specification and controlled the subsequent morphogenetic events. The earlier experimental information informed perturbation experiments that asked how patterning worked. As a consequence it was learned that ectoderm provides a series of patterning signals to the skeletogenic cells and as a consequence the skeletogenic cells secrete a highly patterned skeleton based on their ability to genotypically decode the localized reception of several signals. We still do not understand the complexity of the signals received by the skeletogenic cells, nor do we understand in detail how the genotypic information shapes the secreted skeletal biomineral, but the current knowledge at least outlines the sequence of events and provides a useful template for future discoveries. © 2016 Elsevier Inc. All rights reserved.

  16. In vivo imaging of emerging endocrine cells reveals a requirement for PI3K-regulated motility in pancreatic islet morphogenesis

    PubMed Central

    Freudenblum, Julia; Iglesias, José A.; Hermann, Martin; Walsen, Tanja; Wilfinger, Armin; Meyer, Dirk

    2018-01-01

    ABSTRACT The three-dimensional architecture of the pancreatic islet is integral to beta cell function, but the process of islet formation remains poorly understood due to the difficulties of imaging internal organs with cellular resolution. Within transparent zebrafish larvae, the developing pancreas is relatively superficial and thus amenable to live imaging approaches. We performed in vivo time-lapse and longitudinal imaging studies to follow islet development, visualizing both naturally occurring islet cells and cells arising with an accelerated timecourse following an induction approach. These studies revealed previously unappreciated fine dynamic protrusions projecting between neighboring and distant endocrine cells. Using pharmacological compound and toxin interference approaches, and single-cell analysis of morphology and cell dynamics, we determined that endocrine cell motility is regulated by phosphoinositide 3-kinase (PI3K) and G-protein-coupled receptor (GPCR) signaling. Linking cell dynamics to islet formation, perturbation of protrusion formation disrupted endocrine cell coalescence, and correlated with decreased islet cell differentiation. These studies identified novel cell behaviors contributing to islet morphogenesis, and suggest a model in which dynamic exploratory filopodia establish cell-cell contacts that subsequently promote cell clustering. PMID:29386244

  17. Bone Marrow Stromal Cells Stimulate an Angiogenic Program that Requires Endothelial MT1-MMP

    PubMed Central

    Kachgal, Suraj; Carrion, Bita; Janson, Isaac A.; Putnam, Andrew J.

    2012-01-01

    Bone marrow-derived stromal/stem cells (BMSCs) have recently been characterized as mediators of tissue regeneration after injury. In addition to preventing fibrosis at the wound site, BMSCs elicit an angiogenic response within the fibrin matrix. The mechanistic interactions between BMSCs and invading endothelial cells (ECs) during this process are not fully understood. Using a three-dimensional, fibrin-based angiogenesis model, we sought to investigate the proteolytic mechanisms by which BMSCs promote vessel morphogenesis. We find that BMSC-mediated vessel formation depends on the proteolytic ability of membrane type 1-matrix metalloproteinase (MT1-MMP). Knockdown of the protease results in a small network of vessels with enlarged lumens. Contrastingly, vessel morphogenesis is unaffected by the knockdown of MMP-2 and MMP-9. Furthermore, we find that BMSC-mediated vessel morphogenesis in vivo follows mechanisms similar to what we observe in vitro. Subcutaneous, cellular fibrin implants in C.B-17/SCID mice form aberrant vasculature when MMPs are inhibited with a broad spectrum chemical inhibitor, and a very minimal amount of vessels when MT1-MMP proteolytic activity is interrupted in ECs. Other studies have debated the necessity of MT1-MMP in the context of vessel invasion in fibrin, but this study clearly demonstrates its requirement in BMSC-mediated angiogenesis. PMID:22262018

  18. Muscle contraction controls skeletal morphogenesis through regulation of chondrocyte convergent extension.

    PubMed

    Shwartz, Yulia; Farkas, Zsuzsanna; Stern, Tomer; Aszódi, Attila; Zelzer, Elazar

    2012-10-01

    Convergent extension driven by mediolateral intercalation of chondrocytes is a key process that contributes to skeletal growth and morphogenesis. While progress has been made in deciphering the molecular mechanism that underlies this process, the involvement of mechanical load exerted by muscle contraction in its regulation has not been studied. Using the zebrafish as a model system, we found abnormal pharyngeal cartilage morphology in both chemically and genetically paralyzed embryos, demonstrating the importance of muscle contraction for zebrafish skeletal development. The shortening of skeletal elements was accompanied by prominent changes in cell morphology and organization. While in control the cells were elongated, chondrocytes in paralyzed zebrafish were smaller and exhibited a more rounded shape, confirmed by a reduction in their length-to-width ratio. The typical columnar organization of cells was affected too, as chondrocytes in various skeletal elements exhibited abnormal stacking patterns, indicating aberrant intercalation. Finally, we demonstrate impaired chondrocyte intercalation in growth plates of muscle-less Sp(d) mouse embryos, implying the evolutionary conservation of muscle force regulation of this essential morphogenetic process.Our findings provide a new perspective on the regulatory interaction between muscle contraction and skeletal morphogenesis by uncovering the role of muscle-induced mechanical loads in regulating chondrocyte intercalation in two different vertebrate models. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. 3D stromal tissue equivalent affects intestinal epithelium morphogenesis in vitro.

    PubMed

    De Gregorio, Vincenza; Imparato, Giorgia; Urciuolo, Francesco; Netti, Paolo A

    2018-04-01

    Current in vitro models of human intestine commonly fail to mimic the complex intestinal functions and features required for drug development and disease research. Here, we deeply investigate the interaction existing between epithelium and the underneath stroma, and its role in the epithelium morphogenesis. We cultured human intestinal subepithelial myofibroblasts (ISEMFs) in two different 3D configurations: 3D-collagen gel equivalent (3D-CGE) and 3D cell-synthetized stromal equivalent (3D-CSSE). The 3D-CGEs were obtained by means of the traditional collagen-based cell technique and the 3D-CSSE were obtained by bottom-up tissue engineering strategy. The biophysical properties of both 3D models with regard to cell growth and composition (via histological analysis, immunofluorescence, and multiphoton imaging) were assessed. Then, human colorectal adenocarcinoma cell line (CaCo-2) was cultured on both the 3D constructs in order to produce the intestinal model. We identified higher levels of matrix-associated proteins from ISEMFs cultured in 3D-CSSE compared to 3D-CGE. Furthermore, multiphoton investigation revealed differences in the collagen network architecture in both models. At last, the more physiologically relevant stromal environment of the 3D-CSSE drove the CaCo-2 cell differentiation toward the four different type of intestinal epithelial cells (absorptive, mucus-secretory, enteroendocrine, and Paneth) phenotype and promotes, in contrast to the 3D-CGE, the production of the basement membrane. Taken together, these results highlight a fundamental role of the 3D stromal environment in addressing a correct epithelium morphogenesis as well as epithelial-stromal interface establishment. © 2017 Wiley Periodicals, Inc.

  20. Modulation of Morphogenesis in Candida albicans by Various Small Molecules ▿

    PubMed Central

    Shareck, Julie; Belhumeur, Pierre

    2011-01-01

    The pathogenic yeast Candida albicans, a member of the mucosal microbiota, is responsible for a large spectrum of infections, ranging from benign thrush and vulvovaginitis in both healthy and immunocompromised individuals to severe, life-threatening infections in immunocompromised patients. A striking feature of C. albicans is its ability to grow as budding yeast and as filamentous forms, including hyphae and pseudohyphae. The yeast-to-hypha transition contributes to the overall virulence of C. albicans and may even constitute a target for the development of antifungal drugs. Indeed, impairing morphogenesis in C. albicans has been shown to be a means to treat candidiasis. Additionally, a large number of small molecules such as farnesol, fatty acids, rapamycin, geldanamycin, histone deacetylase inhibitors, and cell cycle inhibitors have been reported to modulate the yeast-to-hypha transition in C. albicans. In this minireview, we take a look at molecules that modulate morphogenesis in this pathogenic yeast. When possible, we address experimental findings regarding their mechanisms of action and their therapeutic potential. We discuss whether or not modulating morphogenesis constitutes a strategy to treat Candida infections. PMID:21642508

  1. Growth and morphogenesis of embryonic mouse organs on non-coated and extracellular matrix-coated Biopore membrane

    NASA Technical Reports Server (NTRS)

    Hardman, P.; Klement, B. J.; Spooner, B. S.

    1993-01-01

    Embryonic mouse salivary glands, pancreata, and kidneys were isolated from embryos of appropriate gestational age by microdissection, and were cultured on Biopore membrane either non-coated or coated with type I collagen or Matrigel. As expected, use of Biopore membrane allowed high quality photomicroscopy of the living organs. In all organs extensive mesenchymal spreading was observed in the presence of type I collagen or Matrigel. However, differences were noted in the effects of extracellular matrix (ECM) coatings on epithelial growth and morphogenesis: salivary glands were minimally affected, pancreas morphogenesis was adversely affected, and kidney growth and branching apparently was enhanced. It is suggested that these differences in behaviour reflect differences in the strength of interactions between the mesenchymal cells and their surrounding endogenous matrix, compared to the exogenous ECM macromolecules. This method will be useful for culture of these and other embryonic organs. In particular, culture of kidney rudiments on ECM-coated Biopore offers a great improvement over previously used methods which do not allow morphogenesis to be followed in vitro.

  2. Huntingtin Is Required for Epithelial Polarity through RAB11A-Mediated Apical Trafficking of PAR3-aPKC

    PubMed Central

    Elias, Salah; McGuire, John Russel; Yu, Hua; Humbert, Sandrine

    2015-01-01

    The establishment of apical-basolateral polarity is important for both normal development and disease, for example, during tumorigenesis and metastasis. During this process, polarity complexes are targeted to the apical surface by a RAB11A-dependent mechanism. Huntingtin (HTT), the protein that is mutated in Huntington disease, acts as a scaffold for molecular motors and promotes microtubule-based dynamics. Here, we investigated the role of HTT in apical polarity during the morphogenesis of the mouse mammary epithelium. We found that the depletion of HTT from luminal cells in vivo alters mouse ductal morphogenesis and lumen formation. HTT is required for the apical localization of PAR3-aPKC during epithelial morphogenesis in virgin, pregnant, and lactating mice. We show that HTT forms a complex with PAR3, aPKC, and RAB11A and ensures the microtubule-dependent apical vesicular translocation of PAR3-aPKC through RAB11A. We thus propose that HTT regulates polarized vesicular transport, lumen formation and mammary epithelial morphogenesis. PMID:25942483

  3. Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans

    PubMed Central

    Douglas, Lois M.; Konopka, James. B.

    2017-01-01

    Candida albicans is a human fungal pathogen capable of causing lethal systemic infections. The plasma membrane plays key roles in virulence because it not only functions as a protective barrier, it also mediates dynamic functions including secretion of virulence factors, cell wall synthesis, invasive hyphal morphogenesis, endocytosis, and nutrient uptake. Consistent with this functional complexity, the plasma membrane is composed of a wide array of lipids and proteins. These components are organized into distinct domains that will be the topic of this review. Some of the plasma membrane domains that will be described are known to act as scaffolds or barriers to diffusion, such as MCC/eisosomes, septins, and sites of contact with the endoplasmic reticulum. Other zones mediate dynamic processes, including secretion, endocytosis, and a special region at hyphal tips that facilitates rapid growth. The highly organized architecture of the plasma membrane facilitates the coordination of diverse functions and promotes the pathogenesis of C. albicans. PMID:26920878

  4. Symbiotic adaptations in the fungal cultivar of leaf-cutting ants.

    PubMed

    De Fine Licht, Henrik H; Boomsma, Jacobus J; Tunlid, Anders

    2014-12-01

    Centuries of artificial selection have dramatically improved the yield of human agriculture; however, strong directional selection also occurs in natural symbiotic interactions. Fungus-growing attine ants cultivate basidiomycete fungi for food. One cultivar lineage has evolved inflated hyphal tips (gongylidia) that grow in bundles called staphylae, to specifically feed the ants. Here we show extensive regulation and molecular signals of adaptive evolution in gene trancripts associated with gongylidia biosynthesis, morphogenesis and enzymatic plant cell wall degradation in the leaf-cutting ant cultivar Leucoagaricus gongylophorus. Comparative analysis of staphylae growth morphology and transcriptome-wide expressional and nucleotide divergence indicate that gongylidia provide leaf-cutting ants with essential amino acids and plant-degrading enzymes, and that they may have done so for 20-25 million years without much evolutionary change. These molecular traits and signatures of selection imply that staphylae are highly advanced coevolutionary organs that play pivotal roles in the mutualism between leaf-cutting ants and their fungal cultivars.

  5. Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans.

    PubMed

    Douglas, Lois M; Konopka, James B

    2016-03-01

    Candida albicans is a human fungal pathogen capable of causing lethal systemic infections. The plasma membrane plays key roles in virulence because it not only functions as a protective barrier, it also mediates dynamic functions including secretion of virulence factors, cell wall synthesis, invasive hyphal morphogenesis, endocytosis, and nutrient uptake. Consistent with this functional complexity, the plasma membrane is composed of a wide array of lipids and proteins. These components are organized into distinct domains that will be the topic of this review. Some of the plasma membrane domains that will be described are known to act as scaffolds or barriers to diffusion, such as MCC/eisosomes, septins, and sites of contact with the endoplasmic reticulum. Other zones mediate dynamic processes, including secretion, endocytosis, and a special region at hyphal tips that facilitates rapid growth. The highly organized architecture of the plasma membrane facilitates the coordination of diverse functions and promotes the pathogenesis of C. albicans.

  6. Connecting Teratogen-Induced Congenital Heart Defects to Neural Crest Cells and Their Effect on Cardiac Function

    PubMed Central

    Karunamuni, Ganga H.; Ma, Pei; Gu, Shi; Rollins, Andrew M.; Jenkins, Michael W.; Watanabe, Michiko

    2014-01-01

    Neural crest cells play many key roles in embryonic development, as demonstrated by the abnormalities that result from their specific absence or dysfunction. Unfortunately, these key cells are particularly sensitive to abnormalities in various intrinsic and extrinsic factors, such as genetic deletions or ethanol-exposure that lead to morbidity and mortality for organisms. This review discusses the role identified for a segment of neural crest is in regulating the morphogenesis of the heart and associated great vessels. The paradox is that their derivatives constitute a small proportion of cells to the cardiovascular system. Findings supporting that these cells impact early cardiac function raises the interesting possibility that they indirectly control cardiovascular development at least partially through regulating function. Making connections between insults to the neural crest, cardiac function, and morphogenesis is more approachable with technological advances. Expanding our understanding of early functional consequences could be useful in improving diagnosis and testing therapies. PMID:25220155

  7. Bidirectional Interplay between Vimentin Intermediate Filaments and Contractile Actin Stress Fibers.

    PubMed

    Jiu, Yaming; Lehtimäki, Jaakko; Tojkander, Sari; Cheng, Fang; Jäälinoja, Harri; Liu, Xiaonan; Varjosalo, Markku; Eriksson, John E; Lappalainen, Pekka

    2015-06-16

    The actin cytoskeleton and cytoplasmic intermediate filaments contribute to cell migration and morphogenesis, but the interplay between these two central cytoskeletal elements has remained elusive. Here, we find that specific actin stress fiber structures, transverse arcs, interact with vimentin intermediate filaments and promote their retrograde flow. Consequently, myosin-II-containing arcs are important for perinuclear localization of the vimentin network in cells. The vimentin network reciprocally restricts retrograde movement of arcs and hence controls the width of flat lamellum at the leading edge of the cell. Depletion of plectin recapitulates the vimentin organization phenotype of arc-deficient cells without affecting the integrity of vimentin filaments or stress fibers, demonstrating that this cytoskeletal cross-linker is required for productive interactions between vimentin and arcs. Collectively, our results reveal that plectin-mediated interplay between contractile actomyosin arcs and vimentin intermediate filaments controls the localization and dynamics of these two cytoskeletal systems and is consequently important for cell morphogenesis. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. YAP is essential for mechanical force production and epithelial cell proliferation during lung branching morphogenesis

    PubMed Central

    Lin, Chuwen; Yao, Erica; Zhang, Kuan; Jiang, Xuan; Croll, Stacey; Thompson-Peer, Katherine; Chuang, Pao-Tien

    2017-01-01

    Branching morphogenesis is a fundamental program for tissue patterning. We show that active YAP, a key mediator of Hippo signaling, is distributed throughout the murine lung epithelium and loss of epithelial YAP severely disrupts branching. Failure to branch is restricted to regions where YAP activity is removed. This suggests that YAP controls local epithelial cell properties. In support of this model, mechanical force production is compromised and cell proliferation is reduced in Yap mutant lungs. We propose that defective force generation and insufficient epithelial cell number underlie the branching defects. Through genomic analysis, we also uncovered a feedback control of pMLC levels, which is critical for mechanical force production, likely through the direct induction of multiple regulators by YAP. Our work provides a molecular pathway that could control epithelial cell properties required for proper morphogenetic movement and pattern formation. DOI: http://dx.doi.org/10.7554/eLife.21130.001 PMID:28323616

  9. Structure-Function Analysis of a Broad Specificity Populus trichocarpa Endo-β-glucanase Reveals an Evolutionary Link between Bacterial Licheninases and Plant XTH Gene Products*

    PubMed Central

    Eklöf, Jens M.; Shojania, Shaheen; Okon, Mark; McIntosh, Lawrence P.; Brumer, Harry

    2013-01-01

    The large xyloglucan endotransglycosylase/hydrolase (XTH) gene family continues to be the focus of much attention in studies of plant cell wall morphogenesis due to the unique catalytic functions of the enzymes it encodes. The XTH gene products compose a subfamily of glycoside hydrolase family 16 (GH16), which also comprises a broad range of microbial endoglucanases and endogalactanases, as well as yeast cell wall chitin/β-glucan transglycosylases. Previous whole-family phylogenetic analyses have suggested that the closest relatives to the XTH gene products are the bacterial licheninases (EC 3.2.1.73), which specifically hydrolyze linear mixed linkage β(1→3)/β(1→4)-glucans. In addition to their specificity for the highly branched xyloglucan polysaccharide, XTH gene products are distinguished from the licheninases and other GH16 enzyme subfamilies by significant active site loop alterations and a large C-terminal extension. Given these differences, the molecular evolution of the XTH gene products in GH16 has remained enigmatic. Here, we present the biochemical and structural analysis of a unique, mixed function endoglucanase from black cottonwood (Populus trichocarpa), which reveals a small, newly recognized subfamily of GH16 members intermediate between the bacterial licheninases and plant XTH gene products. We postulate that this clade comprises an important link in the evolution of the large plant XTH gene families from a putative microbial ancestor. As such, this analysis provides new insights into the diversification of GH16 and further unites the apparently disparate members of this important family of proteins. PMID:23572521

  10. Actin capping protein CAPZB regulates cell morphology, differentiation, and neural crest migration in craniofacial morphogenesis†

    PubMed Central

    Mukherjee, Kusumika; Ishii, Kana; Pillalamarri, Vamsee; Kammin, Tammy; Atkin, Joan F.; Hickey, Scott E.; Xi, Qiongchao J.; Zepeda, Cinthya J.; Gusella, James F.; Talkowski, Michael E.; Morton, Cynthia C.; Maas, Richard L.; Liao, Eric C.

    2016-01-01

    CAPZB is an actin-capping protein that caps the growing end of F-actin and modulates the cytoskeleton and tethers actin filaments to the Z-line of the sarcomere in muscles. Whole-genome sequencing was performed on a subject with micrognathia, cleft palate and hypotonia that harbored a de novo, balanced chromosomal translocation that disrupts the CAPZB gene. The function of capzb was analyzed in the zebrafish model. capzb−/− mutants exhibit both craniofacial and muscle defects that recapitulate the phenotypes observed in the human subject. Loss of capzb affects cell morphology, differentiation and neural crest migration. Differentiation of both myogenic stem cells and neural crest cells requires capzb. During palate morphogenesis, defective cranial neural crest cell migration in capzb−/− mutants results in loss of the median cell population, creating a cleft phenotype. capzb is also required for trunk neural crest migration, as evident from melanophores disorganization in capzb−/− mutants. In addition, capzb over-expression results in embryonic lethality. Therefore, proper capzb dosage is important during embryogenesis, and regulates both cell behavior and tissue morphogenesis. PMID:26758871

  11. Vertex Models of Epithelial Morphogenesis

    PubMed Central

    Fletcher, Alexander G.; Osterfield, Miriam; Baker, Ruth E.; Shvartsman, Stanislav Y.

    2014-01-01

    The dynamic behavior of epithelial cell sheets plays a central role during numerous developmental processes. Genetic and imaging studies of epithelial morphogenesis in a wide range of organisms have led to increasingly detailed mechanisms of cell sheet dynamics. Computational models offer a useful means by which to investigate and test these mechanisms, and have played a key role in the study of cell-cell interactions. A variety of modeling approaches can be used to simulate the balance of forces within an epithelial sheet. Vertex models are a class of such models that consider cells as individual objects, approximated by two-dimensional polygons representing cellular interfaces, in which each vertex moves in response to forces due to growth, interfacial tension, and pressure within each cell. Vertex models are used to study cellular processes within epithelia, including cell motility, adhesion, mitosis, and delamination. This review summarizes how vertex models have been used to provide insight into developmental processes and highlights current challenges in this area, including progressing these models from two to three dimensions and developing new tools for model validation. PMID:24896108

  12. Cell chirality: emergence of asymmetry from cell culture.

    PubMed

    Wan, Leo Q; Chin, Amanda S; Worley, Kathryn E; Ray, Poulomi

    2016-12-19

    Increasing evidence suggests that intrinsic cell chirality significantly contributes to the left-right (LR) asymmetry in embryonic development, which is a well-conserved characteristic of living organisms. With animal embryos, several theories have been established, but there are still controversies regarding mechanisms associated with embryonic LR symmetry breaking and the formation of asymmetric internal organs. Recently, in vitro systems have been developed to determine cell chirality and to recapitulate multicellular chiral morphogenesis on a chip. These studies demonstrate that chirality is indeed a universal property of the cell that can be observed with well-controlled experiments such as micropatterning. In this paper, we discuss the possible benefits of these in vitro systems to research in LR asymmetry, categorize available platforms for single-cell chirality and multicellular chiral morphogenesis, and review mathematical models used for in vitro cell chirality and its applications in in vivo embryonic development. These recent developments enable the interrogation of the intracellular machinery in LR axis establishment and accelerate research in birth defects in laterality.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Author(s).

  13. Cell chirality: emergence of asymmetry from cell culture

    PubMed Central

    Wan, Leo Q.; Chin, Amanda S.; Worley, Kathryn E.; Ray, Poulomi

    2016-01-01

    Increasing evidence suggests that intrinsic cell chirality significantly contributes to the left–right (LR) asymmetry in embryonic development, which is a well-conserved characteristic of living organisms. With animal embryos, several theories have been established, but there are still controversies regarding mechanisms associated with embryonic LR symmetry breaking and the formation of asymmetric internal organs. Recently, in vitro systems have been developed to determine cell chirality and to recapitulate multicellular chiral morphogenesis on a chip. These studies demonstrate that chirality is indeed a universal property of the cell that can be observed with well-controlled experiments such as micropatterning. In this paper, we discuss the possible benefits of these in vitro systems to research in LR asymmetry, categorize available platforms for single-cell chirality and multicellular chiral morphogenesis, and review mathematical models used for in vitro cell chirality and its applications in in vivo embryonic development. These recent developments enable the interrogation of the intracellular machinery in LR axis establishment and accelerate research in birth defects in laterality. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821525

  14. Multi-view light-sheet imaging and tracking with the MaMuT software reveals the cell lineage of a direct developing arthropod limb

    PubMed Central

    Stamataki, Evangelia; Harich, Benjamin; Guignard, Léo; Preibisch, Stephan; Shorte, Spencer; Keller, Philipp J

    2018-01-01

    During development, coordinated cell behaviors orchestrate tissue and organ morphogenesis. Detailed descriptions of cell lineages and behaviors provide a powerful framework to elucidate the mechanisms of morphogenesis. To study the cellular basis of limb development, we imaged transgenic fluorescently-labeled embryos from the crustacean Parhyale hawaiensis with multi-view light-sheet microscopy at high spatiotemporal resolution over several days of embryogenesis. The cell lineage of outgrowing thoracic limbs was reconstructed at single-cell resolution with new software called Massive Multi-view Tracker (MaMuT). In silico clonal analyses suggested that the early limb primordium becomes subdivided into anterior-posterior and dorsal-ventral compartments whose boundaries intersect at the distal tip of the growing limb. Limb-bud formation is associated with spatial modulation of cell proliferation, while limb elongation is also driven by preferential orientation of cell divisions along the proximal-distal growth axis. Cellular reconstructions were predictive of the expression patterns of limb development genes including the BMP morphogen Decapentaplegic. PMID:29595475

  15. Morphogenesis of the vulva and the vulval-uterine connection.

    PubMed Central

    Gupta, Bhagwati P; Hanna-Rose, Wendy; Sternberg, Paul W

    2012-01-01

    The C. elegans hermaphrodite vulva is an established model system to study mechanisms of cell fate specification and tissue morphogenesis. The adult vulva is a tubular shaped organ composed of seven concentric toroids that arise from selective fusion between differentiated vulval progeny. The dorsal end of the vulval tubule is connected to the uterus via a multinucleate syncytium utse (uterine-seam) cell. The vulval tubule and utse are formed as a result of changes in morphogenetic processes such as cell polarity, adhesion, and invagination. A number of genes controlling these processes are conserved all the way up to human and function in similar developmental contexts. This makes it possible to extend the findings to other metazoan systems. Gene expression studies in the vulval and uterine cells have revealed the presence of regulatory networks specifying distinct cell fates. Thus, these two cell types serve as a good system to understand how gene networks confer unique cell identities both experimentally and computationally. This chapter focuses on morphogenetic processes during the formation of the vulva and its connection to uterus. PMID:23208727

  16. Morphogenesis of the vulva and the vulval-uterine connection.

    PubMed

    Gupta, Bhagwati P; Hanna-Rose, Wendy; Sternberg, Paul W

    2012-11-30

    The C. elegans hermaphrodite vulva is an established model system to study mechanisms of cell fate specification and tissue morphogenesis. The adult vulva is a tubular shaped organ composed of seven concentric toroids that arise from selective fusion between differentiated vulval progeny. The dorsal end of the vulval tubule is connected to the uterus via a multinucleate syncytium utse (uterine-seam) cell. The vulval tubule and utse are formed as a result of changes in morphogenetic processes such as cell polarity, adhesion, and invagination. A number of genes controlling these processes are conserved all the way up to human and function in similar developmental contexts. This makes it possible to extend the findings to other metazoan systems. Gene expression studies in the vulval and uterine cells have revealed the presence of regulatory networks specifying distinct cell fates. Thus, these two cell types serve as a good system to understand how gene networks confer unique cell identities both experimentally and computationally. This chapter focuses on morphogenetic processes during the formation of the vulva and its connection to uterus.

  17. New robust algorithm for tracking cells in videos of Drosophila morphogenesis based on finding an ideal path in segmented spatio-temporal cellular structures.

    PubMed

    Bellaïche, Yohanns; Bosveld, Floris; Graner, François; Mikula, Karol; Remesíková, Mariana; Smísek, Michal

    2011-01-01

    In this paper, we present a novel algorithm for tracking cells in time lapse confocal microscopy movie of a Drosophila epithelial tissue during pupal morphogenesis. We consider a 2D + time video as a 3D static image, where frames are stacked atop each other, and using a spatio-temporal segmentation algorithm we obtain information about spatio-temporal 3D tubes representing evolutions of cells. The main idea for tracking is the usage of two distance functions--first one from the cells in the initial frame and second one from segmented boundaries. We track the cells backwards in time. The first distance function attracts the subsequently constructed cell trajectories to the cells in the initial frame and the second one forces them to be close to centerlines of the segmented tubular structures. This makes our tracking algorithm robust against noise and missing spatio-temporal boundaries. This approach can be generalized to a 3D + time video analysis, where spatio-temporal tubes are 4D objects.

  18. WNTLESS IS REQUIRED FOR PERIPHERAL LUNG DIFFERENTIATION AND PULMONARY VASCULAR DEVELOPMENT

    PubMed Central

    Cornett, Bridget; Snowball, John; Varisco, Brian M.; Lang, Richard; Whitsett, Jeffrey; Sinner, Debora

    2013-01-01

    Wntless (Wls), a gene highly conserved across the animal kingdom, encodes for a transmembrane protein that mediates Wnt ligand secretion. Wls is expressed in developing lung, wherein Wnt signaling is necessary for pulmonary morphogenesis. We hypothesize that Wls plays a critical role in modulating Wnt signaling during lung development and therefore affects processes critical for pulmonary morphogenesis. We generated conditional Wls mutant mice utilizing Shh-Cre and Dermo1-Cre mice to delete Wls in the embryonic respiratory epithelium and mesenchyme, respectively. Epithelial deletion of Wls disrupted lung branching morphogenesis, peripheral lung development and pulmonary endothelial differentiation. Epithelial Wls mutant mice died at birth due to respiratory failure caused by lung hypoplasia and pulmonary hemorrhage. In the lungs of these mice, VEGF and Tie2-angiopoietin signaling pathways, which mediate vascular development, were downregulated from early stages of development. In contrast, deletion of Wls in mesenchymal cells of the developing lung did not alter branching morphogenesis or early mesenchymal differentiation. In vitro assays support the concept that Wls acts in part via Wnt5a to regulate pulmonary vascular development. We conclude that epithelial Wls modulates Wnt ligand activities critical for pulmonary vascular differentiation and peripheral lung morphogenesis. These studies provide a new framework for understanding the molecular mechanisms underlying normal pulmonary vasculature formation and the dysmorphic pulmonary vasculature development associated with congenital lung disease. PMID:23523683

  19. Wntless is required for peripheral lung differentiation and pulmonary vascular development.

    PubMed

    Cornett, Bridget; Snowball, John; Varisco, Brian M; Lang, Richard; Whitsett, Jeffrey; Sinner, Debora

    2013-07-01

    Wntless (Wls), a gene highly conserved across the animal kingdom, encodes for a transmembrane protein that mediates Wnt ligand secretion. Wls is expressed in developing lung, wherein Wnt signaling is necessary for pulmonary morphogenesis. We hypothesize that Wls plays a critical role in modulating Wnt signaling during lung development and therefore affects processes critical for pulmonary morphogenesis. We generated conditional Wls mutant mice utilizing Shh-Cre and Dermo1-Cre mice to delete Wls in the embryonic respiratory epithelium and mesenchyme, respectively. Epithelial deletion of Wls disrupted lung branching morphogenesis, peripheral lung development and pulmonary endothelial differentiation. Epithelial Wls mutant mice died at birth due to respiratory failure caused by lung hypoplasia and pulmonary hemorrhage. In the lungs of these mice, VEGF and Tie2-angiopoietin signaling pathways, which mediate vascular development, were downregulated from early stages of development. In contrast, deletion of Wls in mesenchymal cells of the developing lung did not alter branching morphogenesis or early mesenchymal differentiation. In vitro assays support the concept that Wls acts in part via Wnt5a to regulate pulmonary vascular development. We conclude that epithelial Wls modulates Wnt ligand activities critical for pulmonary vascular differentiation and peripheral lung morphogenesis. These studies provide a new framework for understanding the molecular mechanisms underlying normal pulmonary vasculature formation and the dysmorphic pulmonary vasculature development associated with congenital lung disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Epithelial tricellular junctions act as interphase cell shape sensors to orient mitosis

    PubMed Central

    Bosveld, Floris; Markova, Olga; Guirao, Boris; Martin, Charlotte; Wang, Zhimin; Pierre, Anaëlle; Balakireva, Maria; Gaugue, Isabelle; Ainslie, Anna; Christophorou, Nicolas; Lubensky, David K.; Minc, Nicolas; Bellaïche, Yohanns

    2017-01-01

    The orientation of cell division along the interphase cell long-axis, the century old Hertwig’s rule, has profound roles in tissue proliferation, morphogenesis, architecture and mechanics1,2. In epithelial tissues, the shape of the interphase cell is influenced by cell adhesion, mechanical stress, neighbour topology, and planar polarity pathways3–12. At mitosis, epithelial cells usually round up to ensure faithful chromosome segregation and to promote morphogenesis1. The mechanisms underlying interphase cell shape sensing in tissues are therefore unknown. We found that in Drosophila epithelia, tricellular junctions (TCJ) localize microtubule force generators, orienting cell division via the Dynein associated protein Mud independently of the classical Pins/Gαi pathway. Moreover, as cells round up during mitosis, TCJs serve as spatial landmarks, encoding information about interphase cell shape anisotropy to orient division in the rounded mitotic cell. Finally, experimental and simulation data show that shape and mechanical strain sensing by the TCJ emerge from a general geometric property of TCJ distributions in epithelial tissues. Thus, in addition to their function as epithelial barrier structures, TCJs serve as polarity cues promoting geometry and mechanical sensing in epithelial tissues. PMID:26886796

  1. Stem/Progenitor Cell Proteoglycans Decorated with 7-D-4, 4-C-3 and 3-B-3(-) Chondroitin Sulphate Motifs Are Morphogenetic Markers Of Tissue Development.

    PubMed

    Hayes, Anthony J; Smith, Susan M; Caterson, Bruce; Melrose, James

    2018-06-11

    This study reviewed the occurrence of chondroitin sulphate (CS) motifs 4-C-3, 7-D-4 and 3-B-3(-) which are expressed by progenitor cells in tissues undergoing morphogenesis. These motifs have a transient early expression pattern during tissue development and also appear in mature tissues during pathological remodeling and attempted repair processes by activated adult stem cells. The CS motifs are information and recognition modules, which may regulate cellular behavior and delineate stem cell niches in developmental tissues. One of the difficulties in determining the precise role of stem cells in tissue development and repair processes is their short engraftment period and the lack of specific markers, which differentiate the activated stem cell lineages from the resident cells. The CS sulphation motifs 7-D-4, 4-C-3 and 3-B-3 (-) decorate cell surface proteoglycans on activated stem/progenitor cells and appear to identify these cells in transitional areas of tissue development and in tissue repair and may be applicable to determining a more precise role for stem cells in tissue morphogenesis. This article is protected by copyright. All rights reserved. © 2018 AlphaMed Press.

  2. Anabaena sp. strain PCC 7120 conR contains a LytR-CpsA-Psr domain, is developmentally regulated, and is essential for diazotrophic growth and heterocyst morphogenesis.

    PubMed

    Mella-Herrera, Rodrigo A; Neunuebel, M Ramona; Golden, James W

    2011-03-01

    The conR (all0187) gene of the filamentous cyanobacterium Anabaena (Nostoc) sp. strain PCC 7120 is predicted to be part of a family of proteins that contain the LytR-CpsA-Psr domain associated with septum formation and cell wall maintenance. The conR gene was originally misannotated as a transcription regulator. Northern RNA blot analysis showed that conR expression was upregulated 8 h after nitrogen step-down. Fluorescence microscopy of a P(conR)-gfp reporter strain revealed increased GFP fluorescence in proheterocysts and heterocysts beginning 9 h after nitrogen step-down. Insertional inactivation of conR caused a septum-formation defect of vegetative cells grown in nitrate-containing medium. In nitrate-free medium, mutant filaments formed abnormally long heterocysts and were defective for diazotrophic growth. Septum formation between heterocysts and adjacent vegetative cells was abnormal, often with one or both poles of the heterocysts appearing partially open. In a conR mutant, expression of nifH was delayed after nitrogen step-down and nitrogenase activity was approximately 70 % of wild-type activity, indicating that heterocysts of the conR mutant strain are partially functional. We hypothesize that the diazotrophic growth defect is caused by an inability of the heterocysts to transport fixed nitrogen to the neighbouring vegetative cells.

  3. Yeast Gup1(2) Proteins Are Homologues of the Hedgehog Morphogens Acyltransferases HHAT(L): Facts and Implications

    PubMed Central

    Lucas, Cândida; Ferreira, Célia; Cazzanelli, Giulia; Franco-Duarte, Ricardo; Tulha, Joana

    2016-01-01

    In multiple tissues, the Hedgehog secreted morphogen activates in the receiving cells a pathway involved in cell fate, proliferation and differentiation in the receiving cells. This pathway is particularly important during embryogenesis. The protein HHAT (Hedgehog O-acyltransferase) modifies Hh morphogens prior to their secretion, while HHATL (Hh O-acyltransferase-like) negatively regulates the pathway. HHAT and HHATL are homologous to Saccharomyces cerevisiae Gup2 and Gup1, respectively. In yeast, Gup1 is associated with a high number and diversity of biological functions, namely polarity establishment, secretory/endocytic pathway functionality, vacuole morphology and wall and membrane composition, structure and maintenance. Phenotypes underlying death, morphogenesis and differentiation are also included. Paracrine signalling, like the one promoted by the Hh pathway, has not been shown to occur in microbial communities, despite the fact that large aggregates of cells like biofilms or colonies behave as proto-tissues. Instead, these have been suggested to sense the population density through the secretion of quorum-sensing chemicals. This review focuses on Gup1/HHATL and Gup2/HHAT proteins. We review the functions and physiology associated with these proteins in yeasts and higher eukaryotes. We suggest standardisation of the presently chaotic Gup-related nomenclature, which includes KIAA117, c3orf3, RASP, Skinny, Sightless and Central Missing, in order to avoid the disclosure of otherwise unnoticed information. PMID:29615596

  4. Expression of genes responsible for cell morphogenesis involved in differentiation in porcine buccal pouch mucosal cells during long-term primary culture and real-time proliferation in vitro.

    PubMed

    Dyszkiewicz-Konwińska, M; Bryja, A; Jopek, K; Budna, J; Khozmi, R; Jeseta, M; Bukowska, D; Antosik, P; Bruska, M; Nowicki, M; Zabel, M; Kempisty, B

    2017-01-01

    Recently, using experimental animal model, we demonstrated that porcine buccal pouch mucosal cells reflect increased proliferation capability during primary cultivation in vitro. Although the histological structure and morphogenesis in oral cavity is well recognized, the molecular mechanisms which regulate this process still need further investigation. This study was aimed to analyze the molecular marker expression profile involved in morphogenesis and differentiation capacity of porcine buccal pouch mucosal cells during their long-term primary cultivation in vitro. The experiment was performed on buccal pouch mucosal cells isolated from 80 pubertal crossbred Landrace gilts. After collection, the cells were treated enzymatically and transferred into a primary in vitro culture (IVC) system and cultured for 30 days. The cells were collected for RNA isolation after 7, 15 and 30 days of IVC and were checked for their real-time proliferative status using the RTCA system. We found an increased expression of FN1 and SOX9 genes when calculated against ACTB after 7, and 30 days of IVC, (P less than 0.01, P less than 0.001, respectively). The CXCL12 mRNA was down-regulated after 7, 15 and 30 days of IVC, but not statistically significant. Similar expression profile was observed when calculated against HPRT, however, DAB2 was found to be higher expressed at day 15 of IVC, (P less than 0.05). The cell index measured during real-time cell proliferation was substantially increased between 96 h and 147h of IVC and reached the log phase. Since FN1 and SOX9 revealed significant increase of expression after long-term culture in vitro, it is suggested that expression of these differentiation and stemness genes is accompanied by cell proliferation. Moreover, FN1 and SOX9 might be recognized as new markers of buccal pouch mucosal cell proliferation and differentiation in pigs in in vitro primary culture model.

  5. Simple rules for a "simple" nervous system? Molecular and biomathematical approaches to enteric nervous system formation and malformation.

    PubMed

    Newgreen, Donald F; Dufour, Sylvie; Howard, Marthe J; Landman, Kerry A

    2013-10-01

    We review morphogenesis of the enteric nervous system from migratory neural crest cells, and defects of this process such as Hirschsprung disease, centering on cell motility and assembly, and cell adhesion and extracellular matrix molecules, along with cell proliferation and growth factors. We then review continuum and agent-based (cellular automata) models with rules of cell movement and logistical proliferation. Both movement and proliferation at the individual cell level are modeled with stochastic components from which stereotyped outcomes emerge at the population level. These models reproduced the wave-like colonization of the intestine by enteric neural crest cells, and several new properties emerged, such as colonization by frontal expansion, which were later confirmed biologically. These models predict a surprising level of clonal heterogeneity both in terms of number and distribution of daughter cells. Biologically, migrating cells form stable chains made up of unstable cells, but this is not seen in the initial model. We outline additional rules for cell differentiation into neurons, axon extension, cell-axon and cell-cell adhesions, chemotaxis and repulsion which can reproduce chain migration. After the migration stage, the cells re-arrange as a network of ganglia. Changes in cell adhesion molecules parallel this, and we describe additional rules based on Steinberg's Differential Adhesion Hypothesis, reflecting changing levels of adhesion in neural crest cells and neurons. This was able to reproduce enteric ganglionation in a model. Mouse mutants with disturbances of enteric nervous system morphogenesis are discussed, and these suggest future refinement of the models. The modeling suggests a relatively simple set of cell behavioral rules could account for complex patterns of morphogenesis. The model has allowed the proposal that Hirschsprung disease is mostly an enteric neural crest cell proliferation defect, not a defect of cell migration. In addition, the model suggests an explanations for zonal and skip segment variants of Hirschsprung disease, and also gives a novel stochastic explanation for the observed discordancy of Hirschsprung disease in identical twins. © 2013 Elsevier Inc. All rights reserved.

  6. Role of cranial neural crest cells in visceral arch muscle positioning and morphogenesis in the Mexican axolotl, Ambystoma mexicanum.

    PubMed

    Ericsson, Rolf; Cerny, Robert; Falck, Pierre; Olsson, Lennart

    2004-10-01

    The role of cranial neural crest cells in the formation of visceral arch musculature was investigated in the Mexican axolotl, Ambystoma mexicanum. DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine, perchlorate) labeling and green fluorescent protein (GFP) mRNA injections combined with unilateral transplantations of neural folds showed that neural crest cells contribute to the connective tissues but not the myofibers of developing visceral arch muscles in the mandibular, hyoid, and branchial arches. Extirpations of individual cranial neural crest streams demonstrated that neural crest cells are necessary for correct morphogenesis of visceral arch muscles. These do, however, initially develop in their proper positions also in the absence of cranial neural crest. Visceral arch muscles forming in the absence of neural crest cells start to differentiate at their origins but fail to extend toward their insertions and may have a frayed appearance. Our data indicate that visceral arch muscle positioning is controlled by factors that do not have a neural crest origin. We suggest that the cranial neural crest-derived connective tissues provide directional guidance important for the proper extension of the cranial muscles and the subsequent attachment to the insertion on the correct cartilage. In a comparative context, our data from the Mexican axolotl support the view that the cranial neural crest plays a fundamental role in the development of not only the skeleton of the vertebrate head but also in the morphogenesis of the cranial muscles and that this might be a primitive feature of cranial development in vertebrates. 2004 Wiley-Liss, Inc.

  7. Membrane Targeting of Grb2-associated Binder-1 (Gab1) Scaffolding Protein through Src Myristoylation Sequence Substitutes for Gab1 Pleckstrin Homology Domain and Switches an Epidermal Growth Factor Response to an Invasive Morphogenic Program

    PubMed Central

    Maroun, Christiane R.; Naujokas, Monica A.; Park, Morag

    2003-01-01

    The hepatocyte growth factor receptor tyrosine kinase Met promotes cell dissociation and the inherent morphogenic program of epithelial cells. In a search for substrates downstream from Met, we have previously identified the Grb2-associated binder-1 (Gab1) as critical for the morphogenic program. Gab1 is a scaffold protein that acts to diversify the signal downstream from the Met receptor through its ability to couple with multiple signal transduction pathways. Gab1 contains a pleckstrin homology (PH) domain with specificity for phosphatidylinositol 3,4,5-trisphosphate. The phospholipid binding capacity of the Gab1 PH domain is required for the localization of Gab1 at sites of cell-cell contact in colonies of epithelial cells and for epithelial morphogenesis, suggesting that PH domain-dependent subcellular localization of Gab1 is a prerequisite for function. We have investigated the requirement for membrane localization of Gab1 for biological activity. We show that substitution of the Gab1 PH domain with the myristoylation signal from the c-Src protein is sufficient to replace the Gab1 PH domain for epithelial morphogenesis. The membrane targeting of Gab1 enhances Rac activity in the absence of stimulation and switches a nonmorphogenic noninvasive response to epidermal growth factor to a morphogenic invasive program. These results suggest that the subcellular localization of Gab1 is a critical determinant for epithelial morphogenesis and invasiveness. PMID:12686619

  8. Inverse tissue mechanics of cell monolayer expansion.

    PubMed

    Kondo, Yohei; Aoki, Kazuhiro; Ishii, Shin

    2018-03-01

    Living tissues undergo deformation during morphogenesis. In this process, cells generate mechanical forces that drive the coordinated cell motion and shape changes. Recent advances in experimental and theoretical techniques have enabled in situ measurement of the mechanical forces, but the characterization of mechanical properties that determine how these forces quantitatively affect tissue deformation remains challenging, and this represents a major obstacle for the complete understanding of morphogenesis. Here, we proposed a non-invasive reverse-engineering approach for the estimation of the mechanical properties, by combining tissue mechanics modeling and statistical machine learning. Our strategy is to model the tissue as a continuum mechanical system and to use passive observations of spontaneous tissue deformation and force fields to statistically estimate the model parameters. This method was applied to the analysis of the collective migration of Madin-Darby canine kidney cells, and the tissue flow and force were simultaneously observed by the phase contrast imaging and traction force microscopy. We found that our monolayer elastic model, whose elastic moduli were reverse-engineered, enabled a long-term forecast of the traction force fields when given the tissue flow fields, indicating that the elasticity contributes to the evolution of the tissue stress. Furthermore, we investigated the tissues in which myosin was inhibited by blebbistatin treatment, and observed a several-fold reduction in the elastic moduli. The obtained results validate our framework, which paves the way to the estimation of mechanical properties of living tissues during morphogenesis.

  9. Feather regeneration as a model for organogenesis

    PubMed Central

    Lin, Sung-Jan; Wideliz, Randall B; Yue, Zhicao; Li, Ang; Wu, Xiaoshan; Jiang, Ting-Xin; Wu, Ping; Chuong, Cheng-Ming

    2013-01-01

    In the process of organogenesis, different cell types form organized tissues and tissues are integrated into an organ. Most organs form in the developmental stage, but new organs can also form in physiological states or following injuries during adulthood. Feathers are a good model to study post-natal organogenesis because they regenerate episodically under physiological conditions and in response to injuries such as plucking. Epidermal stem cells in the collar can respond to activation signals. Dermal papilla located at the follicle base controls the regenerative process. Adhesion molecules (e.g., NCAM, tenascin), morphogens (e.g., Wnt3a, sprouty, FGF10), and differentiation markers (e.g., keratins) are expressed dynamically in initiation, growth and resting phases of the feather cycle. Epidermal cells are shaped into different feather morphologies based on the molecular micro-environment at the moment of morphogenesis. Chicken feather variants provide a rich resource for us to identify genetic determinants involved in feather regeneration and morphogenesis. An example of using genome-wide SNP analysis to identify alpha keratin 75 as the mutation in frizzled chickens is demonstrated. Due to its accessibility to experimental manipulation and observation, results of regeneration can be analyzed in a comprehensive way. The layout of time dimension along the distal (formed earlier) - proximal (formed later) feather axis makes the morphological analyses easier. Therefore feather regeneration can be a unique model for understanding organogenesis: from activation of stems cell under various physiological conditions to serving as the Rosetta stone for deciphering the language of morphogenesis. PMID:23294361

  10. Morphogenesis and calcification of the statoconia in the chick (Gallus domesticus) embryo - Implications for future studies

    NASA Technical Reports Server (NTRS)

    Fermin, C. D.; Igarashi, M.

    1985-01-01

    The morphogenesis of the statoconia in the chick, Gallus domesticus, injected with a carbon anhydrase inhibitor is studied. The preparation of the embryo specimens for analysis is described. The early, middle, and late stages of embryonic development are examined. The data reveal that acetozolamide inhibits statoconia formation in the middle stage of development and the calcification process follows statoconia formation. The spatial relationship between the development of type 1 and type 2 hair cells and the appearance and maturation of the statoconia is investigated.

  11. Latrunculin B-induced plant dwarfism: Plant cell elongation is F-actin-dependent.

    PubMed

    Baluska, F; Jasik, J; Edelmann, H G; Salajová, T; Volkmann, D

    2001-03-01

    Marine macrolides latrunculins are highly specific toxins which effectively depolymerize actin filaments (generally F-actin) in all eukaryotic cells. We show that latrunculin B is effective on diverse cell types in higher plants and describe the use of this drug in probing F-actin-dependent growth and in plant development-related processes. In contrast to other eukaryotic organisms, cell divisions occurs in plant cells devoid of all actin filaments. However, the alignment of the division planes is often distorted. In addition to cell division, postembryonic development and morphogenesis also continue in the absence of F-actin. These experimental data suggest that F-actin is of little importance in the morphogenesis of higher plants, and that plants can develop more or less normally without F-actin. In contrast, F-actin turns out to be essential for cell elongation. When latrunculin B was added during germination, morphologically normal Arabidopsis and rye seedlings developed but, as a result of the absence of cell elongation, these were stunted, resembling either genetic dwarfs or environmental bonsai plants. In conclusion, F-actin is essential for the plant cell elongation, while this F-actin-dependent cell elongation is not an essential feature of plant-specific developmental programs.

  12. Canonical TGF-β Signaling Negatively Regulates Neuronal Morphogenesis through TGIF/Smad Complex-Mediated CRMP2 Suppression.

    PubMed

    Nakashima, Hideyuki; Tsujimura, Keita; Irie, Koichiro; Ishizu, Masataka; Pan, Miao; Kameda, Tomonori; Nakashima, Kinichi

    2018-05-16

    Functional neuronal connectivity requires proper neuronal morphogenesis and its dysregulation causes neurodevelopmental diseases. Transforming growth factor-β (TGF-β) family cytokines play pivotal roles in development, but little is known about their contribution to morphological development of neurons. Here we show that the Smad-dependent canonical signaling of TGF-β family cytokines negatively regulates neuronal morphogenesis during brain development. Mechanistically, activated Smads form a complex with transcriptional repressor TG-interacting factor (TGIF), and downregulate the expression of a neuronal polarity regulator, collapsin response mediator protein 2. We also demonstrate that TGF-β family signaling inhibits neurite elongation of human induced pluripotent stem cell-derived neurons. Furthermore, the expression of TGF-β receptor 1, Smad4, or TGIF, which have mutations found in patients with neurodevelopmental disorders, disrupted neuronal morphogenesis in both mouse (male and female) and human (female) neurons. Together, these findings suggest that the regulation of neuronal morphogenesis by an evolutionarily conserved function of TGF-β signaling is involved in the pathogenesis of neurodevelopmental diseases. SIGNIFICANCE STATEMENT Canonical transforming growth factor-β (TGF-β) signaling plays a crucial role in multiple organ development, including brain, and mutations in components of the signaling pathway associated with several human developmental disorders. In this study, we found that Smads/TG-interacting factor-dependent canonical TGF-β signaling regulates neuronal morphogenesis through the suppression of collapsin response mediator protein-2 (CRMP2) expression during brain development, and that function of this signaling is evolutionarily conserved in the mammalian brain. Mutations in canonical TGF-β signaling factors identified in patients with neurodevelopmental disorders disrupt the morphological development of neurons. Thus, our results suggest that proper control of TGF-β/Smads/CRMP2 signaling pathways is critical for the precise execution of neuronal morphogenesis, whose impairment eventually results in neurodevelopmental disorders. Copyright © 2018 the authors 0270-6474/18/384791-20$15.00/0.

  13. The Nematode Caenorhabditis Elegans.

    ERIC Educational Resources Information Center

    Kenyon, Cynthia

    1988-01-01

    Discusses advantages of nematode use for studying patterns of cell division, differentiation, and morphogenesis. Describes nematode development. Cites experimental approaches available for genetic studies. Reviews the topics of control of cell division and differentiation, the nervous system, and muscle assembly and function of the organism. (RT)

  14. The F-BAR domains from srGAP1, srGAP2 and srGAP3 regulate membrane deformation differently

    PubMed Central

    Coutinho-Budd, Jaeda; Ghukasyan, Vladimir; Zylka, Mark J.; Polleux, Franck

    2012-01-01

    Summary Coordination of membrane deformation and cytoskeletal dynamics lies at the heart of many biological processes critical for cell polarity, motility and morphogenesis. We have recently shown that Slit-Robo GTPase-activating protein 2 (srGAP2) regulates neuronal morphogenesis through the ability of its F-BAR domain to regulate membrane deformation and induce filopodia formation. Here, we demonstrate that the F-BAR domains of two closely related family members, srGAP1 and srGAP3 [designated F-BAR(1) and F-BAR(3), respectively] display significantly different membrane deformation properties in non-neuronal COS7 cells and in cortical neurons. F-BAR(3) induces filopodia in both cell types, though less potently than F-BAR(2), whereas F-BAR(1) prevents filopodia formation in cortical neurons and reduces plasma membrane dynamics. These three F-BAR domains can heterodimerize, and they act synergistically towards filopodia induction in COS7 cells. As measured by fluorescence recovery after photobleaching, F-BAR(2) displays faster molecular dynamics than F-BAR(3) and F-BAR(1) at the plasma membrane, which correlates well with its increased potency to induce filopodia. We also show that the molecular dynamic properties of F-BAR(2) at the membrane are partially dependent on F-Actin. Interestingly, acute phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] depletion in cells does not interfere with plasma membrane localization of F-BAR(2), which is compatible with our result showing that F-BAR(2) binds to a broad range of negatively-charged phospholipids present at the plasma membrane, including phosphatidylserine (PtdSer). Overall, our results provide novel insights into the functional diversity of the membrane deformation properties of this subclass of F-BAR-domains required for cell morphogenesis. PMID:22467852

  15. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation

    PubMed Central

    Niessen, Carien M.; Leckband, Deborah; Yap, Alpha S.

    2013-01-01

    This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains; the regulation of cadherin expression at the cell surface; cooperation between cadherins and the actin cytoskeleton; and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields. PMID:21527735

  16. Regulation of Facial Morphogenesis by Endothelin Signaling: Insights from Mice and Fish

    PubMed Central

    Clouthier, David E.; Garcia, Elvin; Schilling, Thomas F.

    2010-01-01

    Craniofacial morphogenesis is accomplished through a complex set of developmental events, most of which are initiated in neural crest cells within the pharyngeal arches. Local patterning cues from the surrounding environment induce gene expression within neural crest cells, leading to formation of a diverse set of skeletal elements. Endothelin-1 (Edn1) is one of the primary signals that establish the identities of neural crest cells within the mandibular portion of the first pharyngeal arch. Signaling through its cognate receptor, the endothelin-A receptor, is critical for patterning the ventral/distal portion of the arch (lower jaw) and also participates with Hox genes in patterning more posterior arches. Edn1/Ednra signaling is highly conserved between mouse and zebrafish, and genetic analyses in these two species have provided complementary insights into the patterning cues responsible for establishing the craniofacial complex as well as the genetic basis of facial birth defect syndromes. PMID:20684004

  17. Microfabricated tissues for investigating traction forces involved in cell migration and tissue morphogenesis

    PubMed Central

    Nerger, Bryan A.; Siedlik, Michael J.; Nelson, Celeste M.

    2016-01-01

    Cell-generated forces drive an array of biological processes ranging from wound healing to tumor metastasis. Whereas experimental techniques such as traction force microscopy are capable of quantifying traction forces in multidimensional systems, the physical mechanisms by which these forces induce changes in tissue form remain to be elucidated. Understanding these mechanisms will ultimately require techniques that are capable of quantifying traction forces with high precision and accuracy in vivo or in systems that recapitulate in vivo conditions, such as microfabricated tissues and engineered substrata. To that end, here we review the fundamentals of traction forces, their quantification, and the use of microfabricated tissues designed to study these forces during cell migration and tissue morphogenesis. We emphasize the differences between traction forces in two- and three-dimensional systems, and highlight recently developed techniques for quantifying traction forces. PMID:28008471

  18. Quantitative semi-automated analysis of morphogenesis with single-cell resolution in complex embryos

    PubMed Central

    Giurumescu, Claudiu A.; Kang, Sukryool; Planchon, Thomas A.; Betzig, Eric; Bloomekatz, Joshua; Yelon, Deborah; Cosman, Pamela; Chisholm, Andrew D.

    2012-01-01

    A quantitative understanding of tissue morphogenesis requires description of the movements of individual cells in space and over time. In transparent embryos, such as C. elegans, fluorescently labeled nuclei can be imaged in three-dimensional time-lapse (4D) movies and automatically tracked through early cleavage divisions up to ~350 nuclei. A similar analysis of later stages of C. elegans development has been challenging owing to the increased error rates of automated tracking of large numbers of densely packed nuclei. We present Nucleitracker4D, a freely available software solution for tracking nuclei in complex embryos that integrates automated tracking of nuclei in local searches with manual curation. Using these methods, we have been able to track >99% of all nuclei generated in the C. elegans embryo. Our analysis reveals that ventral enclosure of the epidermis is accompanied by complex coordinated migration of the neuronal substrate. We can efficiently track large numbers of migrating nuclei in 4D movies of zebrafish cardiac morphogenesis, suggesting that this approach is generally useful in situations in which the number, packing or dynamics of nuclei present challenges for automated tracking. PMID:23052905

  19. Functional studies on the role of Notch signaling in Hydractinia development.

    PubMed

    Gahan, James M; Schnitzler, Christine E; DuBuc, Timothy Q; Doonan, Liam B; Kanska, Justyna; Gornik, Sebastian G; Barreira, Sofia; Thompson, Kerry; Schiffer, Philipp; Baxevanis, Andreas D; Frank, Uri

    2017-08-01

    The function of Notch signaling was previously studied in two cnidarians, Hydra and Nematostella, representing the lineages Hydrozoa and Anthozoa, respectively. Using pharmacological inhibition in Hydra and a combination of pharmacological and genetic approaches in Nematostella, it was shown in both animals that Notch is required for tentacle morphogenesis and for late stages of stinging cell maturation. Surprisingly, a role for Notch in neural development, which is well documented in bilaterians, was evident in embryonic Nematostella but not in adult Hydra. Adult neurogenesis in the latter seemed to be unaffected by DAPT, a drug that inhibits Notch signaling. To address this apparent discrepancy, we studied the role of Notch in Hydractinia echinata, an additional hydrozoan, in all life stages. Using CRISPR-Cas9 mediated mutagenesis, transgenesis, and pharmacological interference we show that Notch is dispensable for Hydractinia normal neurogenesis in all life stages but is required for the maturation of stinging cells and for tentacle morphogenesis. Our results are consistent with a conserved role for Notch in morphogenesis and nematogenesis across Cnidaria, and a lineage-specific loss of Notch dependence in neurogenesis in hydrozoans. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A Transient Exposure to Symbiosis-Competent Bacteria Induces Light Organ Morphogenesis in the Host Squid.

    PubMed

    Doino, J A; McFall-Ngai, M J

    1995-12-01

    Recent studies of the symbiotic association between the Hawaiian sepiolid squid Euprymna scolopes and the luminous bacterium Vibrio fischeri have shown that colonization of juvenile squid with symbiosis-competent bacteria induces morphogenetic changes of the light organ. These changes occur over a 4-day period and include cell death and tissue regression of the external ciliated epithelium. In the absence of bacterial colonization, morphogenesis does not occur. To determine whether the bacteria must be present throughout the morphogenetic process, we used the antibiotic chloramphenicol to clear the light organ of bacteria at various times during the initial colonization. We provide evidence in this study that a transient, 12-hour exposure to symbiosis-competent bacteria is necessary and sufficient to induce tissue regression in the light organ over the next several days. Further, we show that successful entrance into the light organ is necessary to induce morphogenesis, suggesting that induction results from bacterial interaction with internal crypt cells and not with the external ciliated epithelium. Finally, no difference in development was observed when the light organ was colonized by a mutant strain of V. fischeri that did not produce autoinducer, a potential light organ morphogen.

  1. The role of integrin α8β1 in fetal lung morphogenesis and injury

    PubMed Central

    Benjamin, John T.; Gaston, David C.; Halloran, Brian A.; Schnapp, Lynn M.; Zent, Roy; Prince, Lawrence S.

    2009-01-01

    Prenatal inflammation prevents normal lung morphogenesis and leads to bronchopulmonary dysplasia (BPD), a common complication of preterm birth. We previously demonstrated in a bacterial endotoxin mouse model of BPD that disrupting fibronectin localization in the fetal lung mesenchyme causes arrested saccular airway branching. In this study we show that expression of the fibronectin receptor, integrin α8β1, is decreased in the lung mesenchyme in the same inflammation model suggesting it is required for normal lung development. We verified a role for integrin α8β1 in lung development using integrin α8-null mice, which develop fusion of the medial and caudal lobes as well as abnormalities in airway division. We further show in vivo and vitro that α8-null fetal lung mesenchymal cells fail to form stable adhesions and have increased migration. Thus we propose that integrin α8β1 plays a critical role in lung morphogenesis by regulating mesenchymal cell adhesion and migration. Furthermore, our data suggests that disruption of the interactions between extracellular matrix and integrin α8β1 may contribute to the pathogenesis of BPD. PMID:19769957

  2. Proinsulin in development: New roles for an ancient prohormone.

    PubMed

    Hernández-Sánchez, C; Mansilla, A; de la Rosa, E J; de Pablo, F

    2006-06-01

    In postnatal organisms, insulin is well known as an essential anabolic hormone responsible for maintaining glucose homeostasis. Its biosynthesis by the pancreatic beta cell has been considered a model of tissue-specific gene expression. However, proinsulin mRNA and protein have been found in embryonic stages before the formation of the pancreatic primordium, and later, in extrapancreatic tissues including the nervous system. Phylogenetic studies have also confirmed that production of insulin-like peptides antecedes the morphogenesis of a pancreas, and that these peptides contribute to normal development. In recent years, other roles for insulin distinct from its metabolic function have emerged also in vertebrates. During embryonic development, insulin acts as a survival factor and is involved in early morphogenesis. These findings are consistent with the observation that, at these stages, the proinsulin gene product remains as the precursor form, proinsulin. Independent of its low metabolic activity, proinsulin stimulates proliferation in developing neuroretina, as well as cell survival and cardiogenesis in early embryos. Insulin/proinsulin levels are finely regulated during development, since an excess of the protein interferes with correct morphogenesis and is deleterious for the embryo. This fine-tuned regulation is achieved by the expression of alternative embryonic proinsulin transcripts that have diminished translational activity.

  3. Epithelial junction formation requires confinement of Cdc42 activity by a novel SH3BP1 complex

    PubMed Central

    Elbediwy, Ahmed; Zihni, Ceniz; Terry, Stephen J.; Clark, Peter

    2012-01-01

    Epithelial cell–cell adhesion and morphogenesis require dynamic control of actin-driven membrane remodeling. The Rho guanosine triphosphatase (GTPase) Cdc42 regulates sequential molecular processes during cell–cell junction formation; hence, mechanisms must exist that inactivate Cdc42 in a temporally and spatially controlled manner. In this paper, we identify SH3BP1, a GTPase-activating protein for Cdc42 and Rac, as a regulator of junction assembly and epithelial morphogenesis using a functional small interfering ribonucleic acid screen. Depletion of SH3BP1 resulted in loss of spatial control of Cdc42 activity, stalled membrane remodeling, and enhanced growth of filopodia. SH3BP1 formed a complex with JACOP/paracingulin, a junctional adaptor, and CD2AP, a scaffolding protein; both were required for normal Cdc42 signaling and junction formation. The filamentous actin–capping protein CapZ also associated with the SH3BP1 complex and was required for control of actin remodeling. Epithelial junction formation and morphogenesis thus require a dual activity complex, containing SH3BP1 and CapZ, that is recruited to sites of active membrane remodeling to guide Cdc42 signaling and cytoskeletal dynamics. PMID:22891260

  4. Epithelial stratification and placode invagination are separable functions in early morphogenesis of the molar tooth

    PubMed Central

    Li, Jingjing; Chatzeli, Lemonia; Panousopoulou, Eleni; Tucker, Abigail S.; Green, Jeremy B. A.

    2016-01-01

    Ectodermal organs, which include teeth, hair follicles, mammary ducts, and glands such as sweat, mucous and sebaceous glands, are initiated in development as placodes, which are epithelial thickenings that invaginate and bud into the underlying mesenchyme. These placodes are stratified into a basal and several suprabasal layers of cells. The mechanisms driving stratification and invagination are poorly understood. Using the mouse molar tooth as a model for ectodermal organ morphogenesis, we show here that vertical, stratifying cell divisions are enriched in the forming placode and that stratification is cell division dependent. Using inhibitor and gain-of-function experiments, we show that FGF signalling is necessary and sufficient for stratification but not invagination as such. We show that, instead, Shh signalling is necessary for, and promotes, invagination once suprabasal tissue is generated. Shh-dependent suprabasal cell shape suggests convergent migration and intercalation, potentially accounting for post-stratification placode invagination to bud stage. We present a model in which FGF generates suprabasal tissue by asymmetric cell division, while Shh triggers cell rearrangement in this tissue to drive invagination all the way to bud formation. PMID:26755699

  5. Whole-mount Confocal Microscopy for Adult Ear Skin: A Model System to Study Neuro-vascular Branching Morphogenesis and Immune Cell Distribution.

    PubMed

    Yamazaki, Tomoko; Li, Wenling; Mukouyama, Yoh-Suke

    2018-03-29

    Here, we present a protocol of a whole-mount adult ear skin imaging technique to study comprehensive three-dimensional neuro-vascular branching morphogenesis and patterning, as well as immune cell distribution at a cellular level. The analysis of peripheral nerve and blood vessel anatomical structures in adult tissues provides some insights into the understanding of functional neuro-vascular wiring and neuro-vascular degeneration in pathological conditions such as wound healing. As a highly informative model system, we have focused our studies on adult ear skin, which is readily accessible for dissection. Our simple and reproducible protocol provides an accurate depiction of the cellular components in the entire skin, such as peripheral nerves (sensory axons, sympathetic axons, and Schwann cells), blood vessels (endothelial cells and vascular smooth muscle cells), and inflammatory cells. We believe this protocol will pave the way to investigate morphological abnormalities in peripheral nerves and blood vessels as well as the inflammation in the adult ear skin under different pathological conditions.

  6. Spatial control of translation repression and polarized growth by conserved NDR kinase Orb6 and RNA-binding protein Sts5.

    PubMed

    Nuñez, Illyce; Rodriguez Pino, Marbelys; Wiley, David J; Das, Maitreyi E; Chen, Chuan; Goshima, Tetsuya; Kume, Kazunori; Hirata, Dai; Toda, Takashi; Verde, Fulvia

    2016-07-30

    RNA-binding proteins contribute to the formation of ribonucleoprotein (RNP) granules by phase transition, but regulatory mechanisms are not fully understood. Conserved fission yeast NDR (Nuclear Dbf2-Related) kinase Orb6 governs cell morphogenesis in part by spatially controlling Cdc42 GTPase. Here we describe a novel, independent function for Orb6 kinase in negatively regulating the recruitment of RNA-binding protein Sts5 into RNPs to promote polarized cell growth. We find that Orb6 kinase inhibits Sts5 recruitment into granules, its association with processing (P) bodies, and degradation of Sts5-bound mRNAs by promoting Sts5 interaction with 14-3-3 protein Rad24. Many Sts5-bound mRNAs encode essential factors for polarized cell growth, and Orb6 kinase spatially and temporally controls the extent of Sts5 granule formation. Disruption of this control system affects cell morphology and alters the pattern of polarized cell growth, revealing a role for Orb6 kinase in the spatial control of translational repression that enables normal cell morphogenesis.

  7. Intrinsic properties of limb bud cells can be differentially reset.

    PubMed

    Saiz-Lopez, Patricia; Chinnaiya, Kavitha; Towers, Matthew; Ros, Maria A

    2017-02-01

    An intrinsic timing mechanism specifies the positional values of the zeugopod (i.e. radius/ulna) and then autopod (i.e. wrist/digits) segments during limb development. Here, we have addressed whether this timing mechanism ensures that patterning events occur only once by grafting GFP-expressing autopod progenitor cells to the earlier host signalling environment of zeugopod progenitor cells. We show by detecting Hoxa13 expression that early and late autopod progenitors fated for the wrist and phalanges, respectively, both contribute to the entire host autopod, indicating that the autopod positional value is irreversibly determined. We provide evidence that Hoxa13 provides an autopod-specific positional value that correctly allocates cells into the autopod, most likely through the control of cell-surface properties as shown by cell-cell sorting analyses. However, we demonstrate that only the earlier autopod cells can adopt the host proliferation rate to permit normal morphogenesis. Therefore, our findings reveal that the ability of embryonic cells to differentially reset their intrinsic behaviours confers robustness to limb morphogenesis. We speculate that this plasticity could be maintained beyond embryogenesis in limbs with regenerative capacity. © 2017. Published by The Company of Biologists Ltd.

  8. Adenosine kinase modulates root gravitropism and cap morphogenesis in Arabidopsis.

    PubMed

    Young, Li-Sen; Harrison, Benjamin R; Narayana Murthy, U M; Moffatt, Barbara A; Gilroy, Simon; Masson, Patrick H

    2006-10-01

    Adenosine kinase (ADK) is a key enzyme that regulates intra- and extracellular levels of adenosine, thereby modulating methyltransferase reactions, production of polyamines and secondary compounds, and cell signaling in animals. Unfortunately, little is known about ADK's contribution to the regulation of plant growth and development. Here, we show that ADK is a modulator of root cap morphogenesis and gravitropism. Upon gravistimulation, soluble ADK levels and activity increase in the root tip. Mutation in one of two Arabidopsis (Arabidopsis thaliana) ADK genes, ADK1, results in cap morphogenesis defects, along with alterations in root sensitivity to gravistimulation and slower kinetics of root gravitropic curvature. The kinetics defect can be partially rescued by adding spermine to the growth medium, whereas the defects in cap morphogenesis and gravitropic sensitivity cannot. The root morphogenesis and gravitropism defects of adk1-1 are accompanied by altered expression of the PIN3 auxin efflux facilitator in the cap and decreased expression of the auxin-responsive DR5-GUS reporter. Furthermore, PIN3 fails to relocalize to the bottom membrane of statocytes upon gravistimulation. Consequently, adk1-1 roots cannot develop a lateral auxin gradient across the cap, necessary for the curvature response. Interestingly, adk1-1 does not affect gravity-induced cytoplasmic alkalinization of the root statocytes, suggesting either that ADK1 functions between cytoplasmic alkalinization and PIN3 relocalization in a linear pathway or that the pH and PIN3-relocalization responses to gravistimulation belong to distinct branches of the pathway. Our data are consistent with a role for ADK and the S-adenosyl-L-methionine pathway in the control of root gravitropism and cap morphogenesis.

  9. Adenosine Kinase Modulates Root Gravitropism and Cap Morphogenesis in Arabidopsis1[W][OA

    PubMed Central

    Young, Li-Sen; Harrison, Benjamin R.; U.M., Narayana Murthy; Moffatt, Barbara A.; Gilroy, Simon; Masson, Patrick H.

    2006-01-01

    Adenosine kinase (ADK) is a key enzyme that regulates intra- and extracellular levels of adenosine, thereby modulating methyltransferase reactions, production of polyamines and secondary compounds, and cell signaling in animals. Unfortunately, little is known about ADK's contribution to the regulation of plant growth and development. Here, we show that ADK is a modulator of root cap morphogenesis and gravitropism. Upon gravistimulation, soluble ADK levels and activity increase in the root tip. Mutation in one of two Arabidopsis (Arabidopsis thaliana) ADK genes, ADK1, results in cap morphogenesis defects, along with alterations in root sensitivity to gravistimulation and slower kinetics of root gravitropic curvature. The kinetics defect can be partially rescued by adding spermine to the growth medium, whereas the defects in cap morphogenesis and gravitropic sensitivity cannot. The root morphogenesis and gravitropism defects of adk1-1 are accompanied by altered expression of the PIN3 auxin efflux facilitator in the cap and decreased expression of the auxin-responsive DR5-GUS reporter. Furthermore, PIN3 fails to relocalize to the bottom membrane of statocytes upon gravistimulation. Consequently, adk1-1 roots cannot develop a lateral auxin gradient across the cap, necessary for the curvature response. Interestingly, adk1-1 does not affect gravity-induced cytoplasmic alkalinization of the root statocytes, suggesting either that ADK1 functions between cytoplasmic alkalinization and PIN3 relocalization in a linear pathway or that the pH and PIN3-relocalization responses to gravistimulation belong to distinct branches of the pathway. Our data are consistent with a role for ADK and the S-adenosyl-l-methionine pathway in the control of root gravitropism and cap morphogenesis. PMID:16891550

  10. A Microfluidic-Based Multi-Shear Device for Investigating the Effects of Low Fluid-Induced Stresses on Osteoblasts

    PubMed Central

    Yu, Weiliang; Qu, Hong; Hu, Guoqing; Zhang, Qian; Song, Kui; Guan, Haijie; Liu, Tingjiao; Qin, Jianhua

    2014-01-01

    Interstitial fluid flow (IFF) within the extracellular matrix (ECM) produces low magnitude shear stresses on cells. Fluid flow-induced stress (FSS) plays an important role during tissue morphogenesis. To investigate the effect of low FSS generated by IFF on cells, we developed a microfluidic-based cell culture device that can generate multiple low shear stresses. By changing the length and width of the flow-in channels, different continuous low level shear stresses could be generated in individual cell culture chambers. Numerical calculations demonstrate uniform shear stress distributions of the major cell culture area of each chamber. This calculation is further confirmed by the wall shear stress curves. The effects of low FSS on MC3T3-E1 proliferation and differentiation were studied using this device. It was found that FSS ranging from 1.5 to 52.6 µPa promoted MC3T3-E1 proliferation and differentiation, but FSS over 412 µPa inhibited the proliferation and differentiation of MC3T3-E1 cells. FSS ranging from 1.5 to 52.6 µPa also increased the expression of Runx2, a key transcription factor regulating osteoblast differentiation. It is suggested that Runx2 might be an important regulator in low FSS-induced MC3T3-E1 differentiation. This device allows for detailed study of the effect of low FSS on the behaviors of cells; thus, it would be a useful tool for analysis of the effects of IFF-induced shear stresses on cells. PMID:24587156

  11. Identifying the cellular mechanisms of symbiont-induced epithelial morphogenesis in the squid-vibrio association

    PubMed Central

    Koropatnick, Tanya; Goodson, Michael S.; Heath-Heckman, Elizabeth A. C.; McFall-Ngai, Margaret

    2014-01-01

    The symbiotic association between the Hawaiian bobtail squid Euprymna scolopes and the luminous marine bacterium Vibrio fischeri provides a unique opportunity to study epithelial morphogenesis. Shortly after hatching, the squid host harvests bacteria from the seawater using currents created by two elaborate fields of ciliated epithelia on the surface of the juvenile light organ. After light organ colonization, the symbiont population signals the gradual loss of the ciliated epithelia through apoptosis of the cells, which culminates in the complete regression of these tissues. Whereas aspects of this process have been studied at the morphological, biochemical and molecular levels, no in-depth analysis of the cellular events has been reported. Here we describe the cellular structure of the epithelial field and present evidence that the symbiosis-induced regression occurs in two steps. Using confocal microscopic analyses, we observed an initial epithelial remodeling, which serves to disable the function of the harvesting apparatus, followed by a protracted regression involving actin rearrangements and epithelial cell extrusion. We identified a metal-dependent gelatinolytic activity in the symbiont-induced morphogenic epithelial fields, suggesting the involvement of Zn-dependent matrix metalloproteinase(s) (MMP) in light organ morphogenesis. These data show that the bacterial symbionts not only induce apoptosis of the field, but also change the form, function and biochemistry of the cells as part of the morphogenic program. PMID:24648207

  12. Epithelial Markers aSMA, Krt14, and Krt19 Unveil Elements of Murine Lacrimal Gland Morphogenesis and Maturation.

    PubMed

    Kuony, Alison; Michon, Frederic

    2017-01-01

    As an element of the lacrimal apparatus, the lacrimal gland (LG) produces the aqueous part of the tear film, which protects the eye surface. Therefore, a defective LG can lead to serious eyesight impairment. Up to now, little is known about LG morphogenesis and subsequent maturation. In this study, we delineated elements of the cellular and molecular events involved in LG formation by using three epithelial markers, namely aSMA, Krt14, and Krt19. While aSMA marked a restricted epithelial population of the terminal end buds (TEBs) in the forming LG, Krt14 was found in the whole embryonic LG epithelial basal cell layer. Interestingly, Krt19 specifically labeled the presumptive ductal domain and subsequently, the luminal cell layer. By combining these markers, the Fucci reporter mouse strain and genetic fate mapping of the Krt14 + population, we demonstrated that LG epithelium expansion is fuelled by a patterned cell proliferation, and to a lesser extent by epithelial reorganization and possible mesenchymal-to-epithelial transition. We pointed out that this epithelial reorganization, which is associated with apoptosis, regulated the lumen formation. Finally, we showed that the inhibition of Notch signaling prevented the ductal identity from setting, and led to a LG covered by ectopic TEBs. Taken together our results bring a deeper understanding on LG morphogenesis, epithelial domain identity, and organ expansion.

  13. Epithelial Markers aSMA, Krt14, and Krt19 Unveil Elements of Murine Lacrimal Gland Morphogenesis and Maturation

    PubMed Central

    Kuony, Alison; Michon, Frederic

    2017-01-01

    As an element of the lacrimal apparatus, the lacrimal gland (LG) produces the aqueous part of the tear film, which protects the eye surface. Therefore, a defective LG can lead to serious eyesight impairment. Up to now, little is known about LG morphogenesis and subsequent maturation. In this study, we delineated elements of the cellular and molecular events involved in LG formation by using three epithelial markers, namely aSMA, Krt14, and Krt19. While aSMA marked a restricted epithelial population of the terminal end buds (TEBs) in the forming LG, Krt14 was found in the whole embryonic LG epithelial basal cell layer. Interestingly, Krt19 specifically labeled the presumptive ductal domain and subsequently, the luminal cell layer. By combining these markers, the Fucci reporter mouse strain and genetic fate mapping of the Krt14+ population, we demonstrated that LG epithelium expansion is fuelled by a patterned cell proliferation, and to a lesser extent by epithelial reorganization and possible mesenchymal-to-epithelial transition. We pointed out that this epithelial reorganization, which is associated with apoptosis, regulated the lumen formation. Finally, we showed that the inhibition of Notch signaling prevented the ductal identity from setting, and led to a LG covered by ectopic TEBs. Taken together our results bring a deeper understanding on LG morphogenesis, epithelial domain identity, and organ expansion. PMID:29033846

  14. Identifying the cellular mechanisms of symbiont-induced epithelial morphogenesis in the squid-Vibrio association.

    PubMed

    Koropatnick, Tanya; Goodson, Michael S; Heath-Heckman, Elizabeth A C; McFall-Ngai, Margaret

    2014-02-01

    The symbiotic association between the Hawaiian bobtail squid Euprymna scolopes and the luminous marine bacterium Vibrio fischeri provides a unique opportunity to study epithelial morphogenesis. Shortly after hatching, the squid host harvests bacteria from the seawater using currents created by two elaborate fields of ciliated epithelia on the surface of the juvenile light organ. After light organ colonization, the symbiont population signals the gradual loss of the ciliated epithelia through apoptosis of the cells, which culminates in the complete regression of these tissues. Whereas aspects of this process have been studied at the morphological, biochemical, and molecular levels, no in-depth analysis of the cellular events has been reported. Here we describe the cellular structure of the epithelial field and present evidence that the symbiosis-induced regression occurs in two steps. Using confocal microscopic analyses, we observed an initial epithelial remodeling, which serves to disable the function of the harvesting apparatus, followed by a protracted regression involving actin rearrangements and epithelial cell extrusion. We identified a metal-dependent gelatinolytic activity in the symbiont-induced morphogenic epithelial fields, suggesting the involvement of Zn-dependent matrix metalloproteinase(s) (MMP) in light organ morphogenesis. These data show that the bacterial symbionts not only induce apoptosis of the field, but also change the form, function, and biochemistry of the cells as part of the morphogenic program.

  15. Bacterial Community Morphogenesis Is Intimately Linked to the Intracellular Redox State

    PubMed Central

    Okegbe, Chinweike; Price-Whelan, Alexa; Sakhtah, Hassan; Hunter, Ryan C.; Newman, Dianne K.

    2013-01-01

    Many microbial species form multicellular structures comprising elaborate wrinkles and concentric rings, yet the rules governing their architecture are poorly understood. The opportunistic pathogen Pseudomonas aeruginosa produces phenazines, small molecules that act as alternate electron acceptors to oxygen and nitrate to oxidize the intracellular redox state and that influence biofilm morphogenesis. Here, we show that the depth occupied by cells within colony biofilms correlates well with electron acceptor availability. Perturbations in the environmental provision, endogenous production, and utilization of electron acceptors affect colony development in a manner consistent with redox control. Intracellular NADH levels peak before the induction of colony wrinkling. These results suggest that redox imbalance is a major factor driving the morphogenesis of P. aeruginosa biofilms and that wrinkling itself is an adaptation that maximizes oxygen accessibility and thereby supports metabolic homeostasis. This type of redox-driven morphological change is reminiscent of developmental processes that occur in metazoans. PMID:23292774

  16. Generation of Functional Thyroid Tissue Using 3D-Based Culture of Embryonic Stem Cells.

    PubMed

    Antonica, Francesco; Kasprzyk, Dominika Figini; Schiavo, Andrea Alex; Romitti, Mírian; Costagliola, Sabine

    2017-01-01

    During the last decade three-dimensional (3D) cultures of pluripotent stem cells have been intensively used to understand morphogenesis and molecular signaling important for the embryonic development of many tissues. In addition, pluripotent stem cells have been shown to be a valid tool for the in vitro modeling of several congenital or chronic human diseases, opening new possibilities to study their physiopathology without using animal models. Even more interestingly, 3D culture has proved to be a powerful and versatile tool to successfully generate functional tissues ex vivo. Using similar approaches, we here describe a protocol for the generation of functional thyroid tissue using mouse embryonic stem cells and give all the details and references for its characterization and analysis both in vitro and in vivo. This model is a valid approach to study the expression and the function of genes involved in the correct morphogenesis of thyroid gland, to elucidate the mechanisms of production and secretion of thyroid hormones and to test anti-thyroid drugs.

  17. Msx-2 expression and glucocorticoid-induced overexpression in embryonic mouse submandibular glands.

    PubMed

    Jaskoll, T; Luo, W; Snead, M L

    1998-01-01

    It is well known that the process of branching morphogenesis requires epithelial-mesenchymal interactions. One outstanding model for the study of tissue interactions during branching morphogenesis is the embryonic mouse submandibular gland (SMG). Although it has been clearly demonstrated that the branching pattern is dependent on interactions between the epithelium and the surrounding mesenchyme, little is known about the molecular mechanism underlying the branching process. One group of transcription factors that likely participates in the control of epithelial-mesenchymal inductive interactions are the Msx-class of homeodomain-containing proteins. In this paper, we focus on Msx-2 because its developmental expression is correlated with inductive interactions, suggesting that Msx-2 may play a functional role during cell-cell interactions. We demonstrate the expression of Msx-2 mRNA and protein to be primarily in the branching epithelia with progressive embryonic (E13 to E15) SMG development and, to a lesser extent, in the mesenchyme. We also show that Msx-2 is expressed by embryonic SMG primordia cultured under defined conditions. In addition, to begin to delineate a functional role for Msx-2, we employed an experimental strategy by using exogenous glucocorticoid (CORT) treatment of embryonic SMGs in vitro and in vivo to significantly enhance branching morphogenesis and evaluate the effect of CORT treatment on embryonic SMG Msx-2 expression. A marked increase in Msx-2 transcripts and protein is detected with in vitro and in vivo CORT treatment. Our studies indicate that one mechanism of CORT regulation of salivary gland morphogenesis is likely through the modulation of Msx-2 gene expression.

  18. Regulation of lung branching morphogenesis by bombesin-like peptides and neutral endopeptidase.

    PubMed

    Aguayo, S M; Schuyler, W E; Murtagh, J J; Roman, J

    1994-06-01

    The expression of bombesin-like peptides (BLPs) by pulmonary neuroendocrine cells is transiently upregulated during lung development. A functional role for BLPs is supported by their ability to stimulate lung growth and maturation both in vitro and in vivo during the late stages of lung development. In addition, the cell membrane-associated enzyme CD10/neutral endopeptidase 24.11 (CD10/NEP), which inactivates BLPs and other regulatory peptides, is also expressed by developing lungs and modulates the stimulatory effects of BLPs on lung growth and maturation. We hypothesized that, in addition to expressing BLPs and CD10/NEP, embryonic lungs must express BLP receptors, and that BLPs may also regulate processes that occur during early lung development such as branching morphogenesis. Using reverse transcriptase-polymerase chain reaction and oligonucleotide primers designed for amplifying a BLP receptor originally isolated from Swiss 3T3 mouse fibroblasts, we found that embryonic mouse lungs express a similar BLP receptor mRNA during the pseudoglandular stage of lung development when branching morphogenesis take place. Subsequently, we evaluated the effects of ligands for this BLP receptor using embryonic mouse lungs in an in vitro model of lung branching morphogenesis. We found that, in comparison with control lungs, treatment with bombesin (1 to 100 nM) resulted in a modest increase in clefts or branching points. In contrast, embryonic mouse lungs treated with the BLP analog [Leu13-psi(CH2NH)Leu14]bombesin (1 microM), which also binds to this BLP receptor but has predominantly antagonistic effects, demonstrated fewer branching points.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Nanoscale biophysical properties of the cell surface galactosaminogalactan from the fungal pathogen Aspergillus fumigatus

    NASA Astrophysics Data System (ADS)

    Beaussart, Audrey; El-Kirat-Chatel, Sofiane; Fontaine, Thierry; Latgé, Jean-Paul; Dufrêne, Yves F.

    2015-09-01

    Many fungal pathogens produce cell surface polysaccharides that play essential roles in host-pathogen interactions. In Aspergillus fumigatus, the newly discovered polysaccharide galactosaminogalactan (GAG) mediates adherence to a variety of substrates through molecular mechanisms that are poorly understood. Here we use atomic force microscopy to unravel the localization and adhesion of GAG on living fungal cells. Using single-molecule imaging with tips bearing anti-GAG antibodies, we found that GAG is massively exposed on wild-type (WT) germ tubes, consistent with the notion that this glycopolymer is secreted by the mycelium of A. fumigatus, while it is lacking on WT resting conidia and on germ tubes from a mutant (Δuge3) deficient in GAG. Imaging germ tubes with tips bearing anti-β-glucan antibodies shows that exposure of β-glucan is strongly increased in the Δuge3 mutant, indicating that this polysaccharide is masked by GAG during hyphal growth. Single-cell force measurements show that expression of GAG on germ tubes promotes specific adhesion to pneumocytes and non-specific adhesion to hydrophobic substrates. These results provide a molecular foundation for the multifunctional adhesion properties of GAG, thus suggesting it could be used as a potential target in anti-adhesion therapy and immunotherapy. Our methodology represents a powerful approach for characterizing the nanoscale organization and adhesion of cell wall polysaccharides during fungal morphogenesis, thereby contributing to increase our understanding of their role in biofilm formation and immune responses.

  20. Biochemical Composition and Assembly of Biosilica-associated Insoluble Organic Matrices from the Diatom Thalassiosira pseudonana*

    PubMed Central

    Kotzsch, Alexander; Pawolski, Damian; Milentyev, Alexander; Shevchenko, Anna; Scheffel, André; Poulsen, Nicole; Shevchenko, Andrej; Kröger, Nils

    2016-01-01

    The nano- and micropatterned biosilica cell walls of diatoms are remarkable examples of biological morphogenesis and possess highly interesting material properties. Only recently has it been demonstrated that biosilica-associated organic structures with specific nanopatterns (termed insoluble organic matrices) are general components of diatom biosilica. The model diatom Thalassiosira pseudonana contains three types of insoluble organic matrices: chitin meshworks, organic microrings, and organic microplates, the latter being described in the present study for the first time. To date, little is known about the molecular composition, intracellular assembly, and biological functions of organic matrices. Here we have performed structural and functional analyses of the organic microrings and organic microplates from T. pseudonana. Proteomics analysis yielded seven proteins of unknown function (termed SiMat proteins) together with five known silica biomineralization proteins (four cingulins and one silaffin). The location of SiMat1-GFP in the insoluble organic microrings and the similarity of tyrosine- and lysine-rich functional domains identifies this protein as a new member of the cingulin protein family. Mass spectrometric analysis indicates that most of the lysine residues of cingulins and the other insoluble organic matrix proteins are post-translationally modified by short polyamine groups, which are known to enhance the silica formation activity of proteins. Studies with recombinant cingulins (rCinY2 and rCinW2) demonstrate that acidic conditions (pH 5.5) trigger the assembly of mixed cingulin aggregates that have silica formation activity. Our results suggest an important role for cingulins in the biogenesis of organic microrings and support the hypothesis that this type of insoluble organic matrix functions in biosilica morphogenesis. PMID:26710847

  1. Identification of growth stage molecular markers in Trichoderma sp. 'atroviride type B' and their potential application in monitoring fungal growth and development in soil.

    PubMed

    Mendoza-Mendoza, Artemio; Steyaert, Johanna; Nieto-Jacobo, Maria Fernanda; Holyoake, Andrew; Braithwaite, Mark; Stewart, Alison

    2015-11-01

    Several members of the genus Trichoderma are biocontrol agents of soil-borne fungal plant pathogens. The effectiveness of biocontrol agents depends heavily on how they perform in the complex field environment. Therefore, the ability to monitor and track Trichoderma within the environment is essential to understanding biocontrol efficacy. The objectives of this work were to: (a) identify key genes involved in Trichoderma sp. 'atroviride type B' morphogenesis; (b) develop a robust RNA isolation method from soil; and (c) develop molecular marker assays for characterizing morphogenesis whilst in the soil environment. Four cDNA libraries corresponding to conidia, germination, vegetative growth and conidiogenesis were created, and the genes identified by sequencing. Stage specificity of the different genes was confirmed by either Northern blot or quantitative reverse-transcriptase PCR (qRT-PCR) analysis using RNA from the four stages. con10, a conidial-specific gene, was observed in conidia, as well as one gene also involved in subsequent stages of germination (L-lactate/malate dehydrogenase encoding gene). The germination stage revealed high expression rates of genes involved in amino acid and protein biosynthesis, while in the vegetative-growth stage, genes involved in differentiation, including the mitogen-activated protein kinase kinase similar to Kpp7 from Ustilago maydis and the orthologue to stuA from Aspergillus nidulans, were preferentially expressed. Genes involved in cell-wall synthesis were expressed during conidiogenesis. We standardized total RNA isolation from Trichoderma sp. 'atroviride type B' growing in soil and then examined the expression profiles of selected genes using qRT-PCR. The results suggested that the relative expression patterns were cyclic and not accumulative.

  2. Geometric control of capillary architecture via cell-matrix mechanical interactions.

    PubMed

    Sun, Jian; Jamilpour, Nima; Wang, Fei-Yue; Wong, Pak Kin

    2014-03-01

    Capillary morphogenesis is a multistage, multicellular activity that plays a pivotal role in various developmental and pathological situations. In-depth understanding of the regulatory mechanism along with the capability of controlling the morphogenic process will have direct implications on tissue engineering and therapeutic angiogenesis. Extensive research has been devoted to elucidate the biochemical factors that regulate capillary morphogenesis. The roles of geometric confinement and cell-matrix mechanical interactions on the capillary architecture, nevertheless, remain largely unknown. Here, we show geometric control of endothelial network topology by creating physical confinements with microfabricated fences and wells. Decreasing the thickness of the matrix also results in comparable modulation of the network architecture, supporting the boundary effect is mediated mechanically. The regulatory role of cell-matrix mechanical interaction on the network topology is further supported by alternating the matrix stiffness by a cell-inert PEG-dextran hydrogel. Furthermore, reducing the cell traction force with a Rho-associated protein kinase inhibitor diminishes the boundary effect. Computational biomechanical analysis delineates the relationship between geometric confinement and cell-matrix mechanical interaction. Collectively, these results reveal a mechanoregulation scheme of endothelial cells to regulate the capillary network architecture via cell-matrix mechanical interactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Sequoia, a tramtrack-related zinc finger protein, functions as a pan-neural regulator for dendrite and axon morphogenesis in Drosophila.

    PubMed

    Brenman, J E; Gao, F B; Jan, L Y; Jan, Y N

    2001-11-01

    Morphological complexity of neurons contributes to their functional complexity. How neurons generate different dendritic patterns is not known. We identified the sequoia mutant from a previous screen for dendrite mutants. Here we report that Sequoia is a pan-neural nuclear protein containing two putative zinc fingers homologous to the DNA binding domain of Tramtrack. sequoia mutants affect the cell fate decision of a small subset of neurons but have global effects on axon and dendrite morphologies of most and possibly all neurons. In support of sequoia as a specific regulator of neuronal morphogenesis, microarray experiments indicate that sequoia may regulate downstream genes that are important for executing neurite development rather than altering a variety of molecules that specify cell fates.

  4. Msx-1 and Msx-2 in mammary gland development.

    PubMed

    Satoh, Kennichi; Ginsburg, Erika; Vonderhaar, Barbara K

    2004-04-01

    Homeobox genes do not generally function alone to determine cell fate and morphogenesis. Rather it is the distinct combination of various members of the homeobox family of genes and their spatiotemporal patterns of expression that determine cell identity and function. Functional redundancy often makes it difficult to clearly discern the role of any one given homeobox gene. The roles that Msx1 and Msx2 play in branching morphogenesis of the mammary gland are only now becoming more evident. Many signaling pathways and transcription factors are implicated in how these homeobox genes correctly determine the morphological development of the gland. Overexpression of Msx1 and Msx2 may also be involved in tumorigenesis. Additional studies are needed to elucidate the roles of these genes in both breast development and cancer.

  5. Activation of PPARbeta/delta induces endothelial cell proliferation and angiogenesis.

    PubMed

    Piqueras, Laura; Reynolds, Andrew R; Hodivala-Dilke, Kairbaan M; Alfranca, Arántzazu; Redondo, Juan M; Hatae, Toshihisa; Tanabe, Tadashi; Warner, Timothy D; Bishop-Bailey, David

    2007-01-01

    The role of the nuclear receptor peroxisome-proliferator activated receptor (PPAR)-beta/delta in endothelial cells remains unclear. Interestingly, the selective PPARbeta/delta ligand GW501516 is in phase II clinical trials for dyslipidemia. Here, using GW501516, we have assessed the involvement of PPARbeta/delta in endothelial cell proliferation and angiogenesis. Western blot analysis indicated PPARbeta/delta was expressed in primary human umbilical and aortic endothelial cells, and in the endothelial cell line, EAHy926. Treatment with GW501516 increased human endothelial cell proliferation and morphogenesis in cultures in vitro, endothelial cell outgrowth from murine aortic vessels in vitro, and angiogenesis in a murine matrigel plug assay in vivo. GW501516 induced vascular endothelial cell growth factor mRNA and peptide release, as well as adipose differentiation-related protein (ADRP), a PPARbeta/delta target gene. GW501516-induced proliferation, morphogenesis, vascular endothelial growth factor (VEGF), and ADRP were absent in endothelial cells transfected with dominant-negative PPARbeta/delta. Furthermore, treatment of cells with cyclo-VEGFI, a VEGF receptor1/2 antagonist, abolished GW501516-induced endothelial cell proliferation and tube formation. PPARbeta/delta is a novel regulator of endothelial cell proliferation and angiogenesis through VEGF. The use of GW501516 to treat dyslipidemia may need to be carefully monitored in patients susceptible to angiogenic disorders.

  6. MEMBRANOUS LABYRINTH IN BACULOVIRUS-INFECTED CRUSTRACEAN CELLS: POSSIBLE ROLES IN VIRAL REPRODUCTION

    EPA Science Inventory

    The origins and morphogenesis of the membranous labyrinth (ML) in Baculovirus penaei (BP) infected cells of penaeid shrimps (Crustacea:Decapoda) are described. t is hypothesized that, because of the close parallel and concurrent development of the ML and virus reproduction, and o...

  7. Effect of Levonorgestrel (NORPLANT) on the Immune Regulation of Bone Morphogenesis in Calvarial Cultures from the Laboratory Mouse (Mus muscularis).

    DTIC Science & Technology

    1995-10-01

    continually releases a synthetic progestin, levonorgestrel , for five years. In order to assess the impact of levonorgestrel on bone cells, murine calvarial...cell cultures were harvested, grown to confluence and treated with levonorgestrel , progesterone and estrogen. The majority of the cells grown in these

  8. The microRNA-200 family coordinately regulates cell adhesion and proliferation in hair morphogenesis.

    PubMed

    Hoefert, Jaimee E; Bjerke, Glen A; Wang, Dongmei; Yi, Rui

    2018-06-04

    The microRNA (miRNA)-200 (miR-200) family is highly expressed in epithelial cells and frequently lost in metastatic cancer. Despite intensive studies into their roles in cancer, their targets and functions in normal epithelial tissues remain unclear. Importantly, it remains unclear how the two subfamilies of the five-miRNA family, distinguished by a single nucleotide within the seed region, regulate their targets. By directly ligating miRNAs to their targeted mRNA regions, we identify numerous miR-200 targets involved in the regulation of focal adhesion, actin cytoskeleton, cell cycle, and Hippo/Yap signaling. The two subfamilies bind to largely distinct target sites, but many genes are coordinately regulated by both subfamilies. Using inducible and knockout mouse models, we show that the miR-200 family regulates cell adhesion and orientation in the hair germ, contributing to precise cell fate specification and hair morphogenesis. Our findings demonstrate that combinatorial targeting of many genes is critical for miRNA function and provide new insights into miR-200's functions. © 2018 Hoefert et al.

  9. Actin cables and the exocyst form two independent morphogenesis pathways in the fission yeast

    PubMed Central

    Bendezú, Felipe O.; Martin, Sophie G.

    2011-01-01

    Cell morphogenesis depends on polarized exocytosis. One widely held model posits that long-range transport and exocyst-dependent tethering of exocytic vesicles at the plasma membrane sequentially drive this process. Here, we describe that disruption of either actin-based long-range transport and microtubules or the exocyst did not abolish polarized growth in rod-shaped fission yeast cells. However, disruption of both actin cables and exocyst led to isotropic growth. Exocytic vesicles localized to cell tips in single mutants but were dispersed in double mutants. In contrast, a marker for active Cdc42, a major polarity landmark, localized to discreet cortical sites even in double mutants. Localization and photobleaching studies show that the exocyst subunits Sec6 and Sec8 localize to cell tips largely independently of the actin cytoskeleton, but in a cdc42 and phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2)–dependent manner. Thus in fission yeast long-range cytoskeletal transport and PIP2-dependent exocyst represent parallel morphogenetic modules downstream of Cdc42, raising the possibility of similar mechanisms in other cell types. PMID:21148300

  10. MpWIP regulates air pore complex development in the liverwort Marchantia polymorpha

    PubMed Central

    Jones, Victor A. S.

    2017-01-01

    The colonisation of the land by plants was accompanied by the evolution of complex tissues and multicellular structures comprising different cell types as morphological adaptations to the terrestrial environment. Here, we show that the single WIP protein in the early-diverging land plant Marchantia polymorpha L. is required for the development of the multicellular gas exchange structure: the air pore complex. This 16-cell barrel-shaped structure surrounds an opening between epidermal cells that facilitates the exchange of gases between the chamber containing the photosynthetic cells inside the plant and the air outside. MpWIP is expressed in cells of the developing air pore complex and the morphogenesis of the complex is defective in plants with reduced MpWIP function. The role of WIP proteins in the control of different multicellular structures in M. polymorpha and the flowering plant Arabidopsis thaliana suggests that these proteins controlled the development of multicellular structures in the common ancestor of land plants. We hypothesise that WIP genes were subsequently co-opted in the control of morphogenesis of novel multicellular structures that evolved during the diversification of land plants. PMID:28174248

  11. Ecdysone signaling induces two phases of cell cycle exit in Drosophila cells

    PubMed Central

    Guo, Yongfeng; Flegel, Kerry; Kumar, Jayashree; McKay, Daniel J.

    2016-01-01

    ABSTRACT During development, cell proliferation and differentiation must be tightly coordinated to ensure proper tissue morphogenesis. Because steroid hormones are central regulators of developmental timing, understanding the links between steroid hormone signaling and cell proliferation is crucial to understanding the molecular basis of morphogenesis. Here we examined the mechanism by which the steroid hormone ecdysone regulates the cell cycle in Drosophila. We find that a cell cycle arrest induced by ecdysone in Drosophila cell culture is analogous to a G2 cell cycle arrest observed in the early pupa wing. We show that in the wing, ecdysone signaling at the larva-to-puparium transition induces Broad which in turn represses the cdc25c phosphatase String. The repression of String generates a temporary G2 arrest that synchronizes the cell cycle in the wing epithelium during early pupa wing elongation and flattening. As ecdysone levels decline after the larva-to-puparium pulse during early metamorphosis, Broad expression plummets, allowing String to become re-activated, which promotes rapid G2/M progression and a subsequent synchronized final cell cycle in the wing. In this manner, pulses of ecdysone can both synchronize the final cell cycle and promote the coordinated acquisition of terminal differentiation characteristics in the wing. PMID:27737823

  12. Transcription Factors Runx1 to 3 Are Expressed in the Lacrimal Gland Epithelium and Are Involved in Regulation of Gland Morphogenesis and Regeneration

    PubMed Central

    Voronov, Dmitry; Gromova, Anastasia; Liu, Daren; Zoukhri, Driss; Medvinsky, Alexander; Meech, Robyn; Makarenkova, Helen P.

    2013-01-01

    Purpose. Lacrimal gland (LG) morphogenesis and repair are regulated by a complex interplay of intrinsic factors (e.g., transcription factors) and extrinsic signals (e.g., soluble growth/signaling factors). Many of these interconnections remain poorly characterized. Runt-related (Runx) factors belong to a small family of heterodimeric transcription factors known to regulate lineage-specific proliferation and differentiation of stem cells. The purpose of this study was to define the expression pattern and the role of Runx proteins in LG development and regeneration. Methods. Expression of epithelial-restricted transcription factors in murine LG was examined using immunostaining, qRT-PCR, and RT2Profiler PCR microarrays. The role of Runx transcription factors in LG morphogenesis was studied using siRNA and ex vivo LG cultures. Expression of Runx transcription factors during LG regeneration was assessed using in vivo model of LG regeneration. Results. We found that Runx factors are expressed in the epithelial compartment of the LG; in particular, Runx1 was restricted to the epithelium with highest level of expression in ductal and centroacinar cells. Downregulation of Runx1 to 3 expression using Runx-specific siRNAs abolished LG growth and branching and our data suggest that Runx1, 2, and 3 are partially redundant in LG development. In siRNA-treated LG, reduction of branching correlated with reduction of epithelial proliferation, as well as expression of cyclin D1 and the putative epithelial progenitor cell marker cytokeratin-5. Runx1, Runx3, and cytokeratin-5 expression increased significantly in regenerating LG and there was modest increase in Runx2 expression during LG differentiation. Conclusions. Runx1 and 2 are new markers of the LG epithelial lineage and Runx factors are important for normal LG morphogenesis and regeneration. PMID:23532528

  13. Rsr1 Focuses Cdc42 Activity at Hyphal Tips and Promotes Maintenance of Hyphal Development in Candida albicans

    PubMed Central

    Pulver, Rebecca; Heisel, Timothy; Gonia, Sara; Robins, Robert; Norton, Jennifer; Haynes, Paula

    2013-01-01

    The extremely elongated morphology of fungal hyphae is dependent on the cell's ability to assemble and maintain polarized growth machinery over multiple cell cycles. The different morphologies of the fungus Candida albicans make it an excellent model organism in which to study the spatiotemporal requirements for constitutive polarized growth and the generation of different cell shapes. In C. albicans, deletion of the landmark protein Rsr1 causes defects in morphogenesis that are not predicted from study of the orthologous protein in the related yeast Saccharomyces cerevisiae, thus suggesting that Rsr1 has expanded functions during polarized growth in C. albicans. Here, we show that Rsr1 activity localizes to hyphal tips by the differential localization of the Rsr1 GTPase-activating protein (GAP), Bud2, and guanine nucleotide exchange factor (GEF), Bud5. In addition, we find that Rsr1 is needed to maintain the focused localization of hyphal polarity structures and proteins, including Bem1, a marker of the active GTP-bound form of the Rho GTPase, Cdc42. Further, our results indicate that tip-localized Cdc42 clusters are associated with the cell's ability to express a hyphal transcriptional program and that the ability to generate a focused Cdc42 cluster in early hyphae (germ tubes) is needed to maintain hyphal morphogenesis over time. We propose that in C. albicans, Rsr1 “fine-tunes” the distribution of Cdc42 activity and that self-organizing (Rsr1-independent) mechanisms of polarized growth are not sufficient to generate narrow cell shapes or to provide feedback to the transcriptional program during hyphal morphogenesis. PMID:23223038

  14. Rho-associated kinase activity is required for proper morphogenesis of the inner cell mass in the mouse blastocyst.

    PubMed

    Laeno, Arlene May A; Tamashiro, Dana Ann A; Alarcon, Vernadeth B

    2013-11-01

    The blastocyst consists of the outer layer of trophectoderm and pluripotent inner cell mass (ICM), the precursor of the placenta and fetus, respectively. During blastocyst expansion, the ICM adopts a compact, ovoidal shape, whose proper morphology is crucial for normal embryogenesis. Rho-associated kinase (ROCK), an effector of small GTPase RHO signaling, mediates the diverse cellular processes of morphogenesis, but its role in ICM morphogenesis is unclear. Here, we demonstrate that ROCK is required for cohesion of ICM cells and formation of segregated tissues called primitive endoderm (PrE) and epiblast (Epi) in the ICM of the mouse blastocyst. Blastocyst treatment with ROCK inhibitors Y-27632 and Fasudil caused widening or spreading of the ICM, and intermingling of PrE and Epi. Widening of ICM was independent of trophectoderm because isolated ICMs as well as colonies of mouse embryonic stem cells (mESC) also spread upon Y-27632 treatment. PrE, Epi, and trophectoderm cell numbers were similar between control and treated blastocysts, suggesting that ROCK inhibition affected ICM morphology but not lineage differentiation. Rock1 and Rock2 knockdown via RNA interference in mESC also induced spreading, supporting the conclusion that morphological defects caused by the pharmacological inhibitors were due to ROCK inactivation. When blastocysts were transferred into surrogates, implantation efficiencies were unaffected by ROCK inhibition, but treated blastocysts yielded greater fetal loss. These results show that proper ICM morphology is dependent on ROCK activity and is crucial for fetal development. Our studies have wider implication for improving efficiencies of human assisted reproductive technologies that diminish pregnancy loss and promote successful births.

  15. Concise review: can the intrinsic power of branching morphogenesis be used for engineering epithelial tissues and organs?

    PubMed

    Nigam, Sanjay K

    2013-12-01

    Branching morphogenesis is critical to the development of organs such as kidney, lung, mammary gland, prostate, pancreas, and salivary gland. Essentially, an epithelial bud becomes an iterative tip-stalk generator (ITSG) able to form a tree of branching ducts and/or tubules. In different organs, branching morphogenesis is governed by similar sets of genes. Epithelial branching has been recapitulated in vitro (or ex vivo) using three-dimensional cell culture and partial organ culture systems, and several such systems relevant to kidney tissue engineering are discussed here. By adapting systems like these it may be possible to harness the power inherent in the ITSG program to propagate and engineer epithelial tissues and organs. It is also possible to conceive of a universal ITSG capable of propagation that may, by recombination with organ-specific mesenchymal cells, be used for engineering many organ-like tissues similar to the organ from which the mesenchyme cells were derived, or toward which they are differentiated (from stem cells). The three-dimensional (3D) branched epithelial structure could act as a dynamic branching cellular scaffold to establish the architecture for the rest of the tissue. Another strategy-that of recombining propagated organ-specific ITSGs in 3D culture with undifferentiated mesenchymal stem cells-is also worth exploring. If feasible, such engineered tissues may be useful for the ex vivo study of drug toxicity, developmental biology, and physiology in the laboratory. Over the long term, they have potential clinical applications in the general fields of transplantation, regenerative medicine, and bioartificial medical devices to aid in the treatment of chronic kidney disease, diabetes, and other diseases.

  16. 8-Oxoguanine DNA glycosylase 1 (ogg1) maintains the function of cardiac progenitor cells during heart formation in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Lifeng; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029; Zhou, Yong

    Genomic damage may devastate the potential of progenitor cells and consequently impair early organogenesis. We found that ogg1, a key enzyme initiating the base-excision repair, was enriched in the embryonic heart in zebrafish. So far, little is known about DNA repair in cardiogenesis. Here, we addressed the critical role of ogg1 in cardiogenesis for the first time. ogg1 mainly expressed in the anterior lateral plate mesoderm (ALPM), the primary heart tube, and subsequently the embryonic myocardium by in situ hybridisation. Loss of ogg1 resulted in severe cardiac morphogenesis and functional abnormalities, including the short heart length, arrhythmia, decreased cardiomyocytes andmore » nkx2.5{sup +} cardiac progenitor cells. Moreover, the increased apoptosis and repressed proliferation of progenitor cells caused by ogg1 deficiency might contribute to the heart phenotype. The microarray analysis showed that the expression of genes involved in embryonic heart tube morphogenesis and heart structure were significantly changed due to the lack of ogg1. Among those, foxh1 is an important partner of ogg1 in the cardiac development in response to DNA damage. Our work demonstrates the requirement of ogg1 in cardiac progenitors and heart development in zebrafish. These findings may be helpful for understanding the aetiology of congenital cardiac deficits. - Highlights: • A key DNA repair enzyme ogg1 is expressed in the embryonic heart in zebrafish. • We found that ogg1 is essential for normal cardiac morphogenesis in zebrafish. • The production of embryonic cardiomyocytes requires appropriate ogg1 expression. • Ogg1 critically regulated proliferation of cardiac progenitor cells in zebrafish. • foxh1 is a partner of ogg1 in the cardiac development in response to DNA damage.« less

  17. The Cotton Kinesin-Like Calmodulin-Binding Protein Associates with Cortical Microtubles in Cotton Fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preuss, Mary L.; Delmar, Deborah P.; Liu, Bo

    Microtubules in interphase plant cells form a cortical array, which is critical for plant cell morphogenesis. Genetic studies imply that the minus end-directed microtubule motor kinesin-like calmodulin-binding protein (KCBP) plays a role in trichome morphogenesis in Arabidopsis. However, it was not clear whether this motor interacted with interphase microtubules. In cotton (Gossypium hirsutum) fibers, cortical microtubules undergo dramatic reorganization during fiber development. In this study, cDNA clones of the cotton KCBP homolog GhKCBP were isolated from a cotton fiber-specific cDNA library. During cotton fiber development from 10 to 21 DPA, the GhKCBP protein level gradually decreases. By immunofluorescence, GhKCBP wasmore » detected as puncta along cortical microtubules in fiber cells of different developmental stages. Thus the results provide evidence that GhKCBP plays a role in interphase cell growth likely by interacting with cortical microtubules. In contrast to fibers, in dividing cells of cotton, GhKCBP localized to the nucleus, the microtubule preprophase band, mitotic spindle, and the phragmoplast. Therefore KCBP likely exerts multiple roles in cell division and cell growth in flowering plants.« less

  18. On the genetic control of planar growth during tissue morphogenesis in plants.

    PubMed

    Enugutti, Balaji; Kirchhelle, Charlotte; Schneitz, Kay

    2013-06-01

    Tissue morphogenesis requires extensive intercellular communication. Plant organs are composites of distinct radial cell layers. A typical layer, such as the epidermis, is propagated by stereotypic anticlinal cell divisions. It is presently unclear what mechanisms coordinate cell divisions relative to the plane of a layer, resulting in planar growth and maintenance of the layer structure. Failure in the regulation of coordinated growth across a tissue may result in spatially restricted abnormal growth and the formation of a tumor-like protrusion. Therefore, one way to approach planar growth control is to look for genetic mutants that exhibit localized tumor-like outgrowths. Interestingly, plants appear to have evolved quite robust genetic mechanisms that govern these aspects of tissue morphogenesis. Here we provide a short summary of the current knowledge about the genetics of tumor formation in plants and relate it to the known control of coordinated cell behavior within a tissue layer. We further portray the integuments of Arabidopsis thaliana as an excellent model system to study the regulation of planar growth. The value of examining this process in integuments was established by the recent identification of the Arabidopsis AGC VIII kinase UNICORN as a novel growth suppressor involved in the regulation of planar growth and the inhibition of localized ectopic growth in integuments and other floral organs. An emerging insight is that misregulation of central determinants of adaxial-abaxial tissue polarity can lead to the formation of spatially restricted multicellular outgrowths in several tissues. Thus, there may exist a link between the mechanisms regulating adaxial-abaxial tissue polarity and planar growth in plants.

  19. An Engineered Organoid Culture Model That Incorporates Human Mesenchymal and Epithelial Cells to Model Palatal Fusion.

    EPA Science Inventory

    During embryonic development, fusion events are critical to morphogenesis of organs and tissues, including the iris, urethra, heart, neural tube, and secondary palate. Modeling this process in vitro is challenging as the interactions of mesenchymal and epithelial cells can be cr...

  20. The SLT2 mitogen-activated protein kinase-mediated signalling pathway governs conidiation, morphogenesis, fungal virulence and production of toxin and melanin in the tangerine pathotype of Alternaria alternata.

    PubMed

    Yago, Jonar Ingan; Lin, Ching-Hsuan; Chung, Kuang-Ren

    2011-09-01

    Fungi respond and adapt to different environmental stimuli via signal transduction systems. We determined the function of a yeast SLT2 mitogen-activated protein (MAP) kinase homologue (AaSLT2) in Alternaria alternata, the fungal pathogen of citrus. Analysis of the loss-of-function mutant indicated that AaSLT2 is required for the production of a host-selective toxin, and is crucial for fungal pathogenicity. Moreover, the A. alternata slt2 mutants displayed hypersensitivity to cell wall-degrading enzymes and chemicals such as Calcofluor white and Congo red. This implicates an important role of AaSLT2 in the maintenance of cell wall integrity in A. alternata. The A. alternata slt2 mutants were also hypersensitive to a heteroaromatic compound, 2-chloro-5-hydroxypyridine, and a plant growth regulator, 2,3,5-triiodobenzoic acid. Developmentally, the AaSLT2 gene product was shown to be critical for conidial formation and hyphal elongation. Compared with the wild-type, the mutants produced fewer but slightly larger conidia with less transverse septae. The mutants also accumulated lower levels of melanin and chitin. Unlike the wild-type progenitor, the A. alternata slt2 mutants produced globose, swollen hyphae that did not elongate in a straight radial direction. All defective phenotypes in the mutant were restored by transformation and expression of a wild-type copy of AaSLT2 under the control of its endogenous promoter. This study highlights an important role of the AaSLT2 MAP kinase-mediated signalling pathway, regulating diverse physiological, developmental and pathological functions, in the tangerine pathotype of A. alternata. © 2011 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2011 BSPP AND BLACKWELL PUBLISHING LTD.

  1. The Nuclear Dbf2-Related Kinase COT1 and the Mitogen-Activated Protein Kinases MAK1 and MAK2 Genetically Interact to Regulate Filamentous Growth, Hyphal Fusion and Sexual Development in Neurospora crassa

    PubMed Central

    Maerz, Sabine; Ziv, Carmit; Vogt, Nico; Helmstaedt, Kerstin; Cohen, Nourit; Gorovits, Rena; Yarden, Oded; Seiler, Stephan

    2008-01-01

    Ndr kinases, such as Neurospora crassa COT1, are important for cell differentiation and polar morphogenesis, yet their input signals as well as their integration into a cellular signaling context are still elusive. Here, we identify the cot-1 suppressor gul-4 as mak-2 and show that mutants of the gul-4/mak-2 mitogen-activated protein (MAP) kinase pathway suppress cot-1 phenotypes along with a concomitant reduction in protein kinase A (PKA) activity. Furthermore, mak-2 pathway defects are partially overcome in a cot-1 background and are associated with increased MAK1 MAPK signaling. A comparative characterization of N. crassa MAPKs revealed that they act as three distinct modules during vegetative growth and asexual development. In addition, common functions of MAK1 and MAK2 signaling during maintenance of cell-wall integrity distinguished the two ERK-type pathways from the p38-type OS2 osmosensing pathway. In contrast to separate functions during vegetative growth, the concerted activity of the three MAPK pathways is essential for cell fusion and for the subsequent formation of multicellular structures that are required for sexual development. Taken together, our data indicate a functional link between COT1 and MAPK signaling in regulating filamentous growth, hyphal fusion, and sexual development. PMID:18562669

  2. A protein interaction map for cell polarity development

    PubMed Central

    Drees, Becky L.; Sundin, Bryan; Brazeau, Elizabeth; Caviston, Juliane P.; Chen, Guang-Chao; Guo, Wei; Kozminski, Keith G.; Lau, Michelle W.; Moskow, John J.; Tong, Amy; Schenkman, Laura R.; McKenzie, Amos; Brennwald, Patrick; Longtine, Mark; Bi, Erfei; Chan, Clarence; Novick, Peter; Boone, Charles; Pringle, John R.; Davis, Trisha N.; Fields, Stanley; Drubin, David G.

    2001-01-01

    Many genes required for cell polarity development in budding yeast have been identified and arranged into a functional hierarchy. Core elements of the hierarchy are widely conserved, underlying cell polarity development in diverse eukaryotes. To enumerate more fully the protein–protein interactions that mediate cell polarity development, and to uncover novel mechanisms that coordinate the numerous events involved, we carried out a large-scale two-hybrid experiment. 68 Gal4 DNA binding domain fusions of yeast proteins associated with the actin cytoskeleton, septins, the secretory apparatus, and Rho-type GTPases were used to screen an array of yeast transformants that express ∼90% of the predicted Saccharomyces cerevisiae open reading frames as Gal4 activation domain fusions. 191 protein–protein interactions were detected, of which 128 had not been described previously. 44 interactions implicated 20 previously uncharacterized proteins in cell polarity development. Further insights into possible roles of 13 of these proteins were revealed by their multiple two-hybrid interactions and by subcellular localization. Included in the interaction network were associations of Cdc42 and Rho1 pathways with proteins involved in exocytosis, septin organization, actin assembly, microtubule organization, autophagy, cytokinesis, and cell wall synthesis. Other interactions suggested direct connections between Rho1- and Cdc42-regulated pathways; the secretory apparatus and regulators of polarity establishment; actin assembly and the morphogenesis checkpoint; and the exocytic and endocytic machinery. In total, a network of interactions that provide an integrated response of signaling proteins, the cytoskeleton, and organelles to the spatial cues that direct polarity development was revealed. PMID:11489916

  3. Rotation is the primary motion of paired human epidermal keratinocytes.

    PubMed

    Tate, Sota; Imai, Matome; Matsushita, Natsuki; Nishimura, Emi K; Higashiyama, Shigeki; Nanba, Daisuke

    2015-09-01

    Collective motion of keratinocytes is involved in morphogenesis, homeostasis, and wound healing of the epidermis. Yet how the collective motion of keratinocytes emerges from the behavior of individual cells is still largely unknown. The aim of this study was to find the cellular behavior that links single and collective motion of keratinocytes. We investigated the behavior of two-cell colonies of HaCaT keratinocytes by a combination of time-lapse imaging and image processing. The two-cell colonies of HaCaT cells were formed as a contacted pair of keratinocyte clones. Image analysis and cell culture experiments revealed that the rotational speed of two-cell colonies was positively associated with their proliferative capacity. α6 integrin was required for the rotational motion of two-cell keratinocyte colonies. We also confirmed that two-cell colonies of keratinocytes predominantly exhibited the rotational, but not translational, motion, two modes of motion in a contact pair of rotating objects. The rotational motion is the primary motion of two-cell keratinocyte colonies and its speed is positively associated with their proliferative capacity. This study suggests that the assembly of rotating keratinocytes generates the collective motion of proliferative keratinocytes during morphogenesis and wound healing of the epidermis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. ROP GTPase-mediated auxin signaling regulates pavement cell interdigitation in Arabidopsis thaliana.

    PubMed

    Lin, Deshu; Ren, Huibo; Fu, Ying

    2015-01-01

    In multicellular plant organs, cell shape formation depends on molecular switches to transduce developmental or environmental signals and to coordinate cell-to-cell communication. Plants have a specific subfamily of the Rho GTPase family, usually called Rho of Plants (ROP), which serve as a critical signal transducer involved in many cellular processes. In the last decade, important advances in the ROP-mediated regulation of plant cell morphogenesis have been made by using Arabidopsis thaliana leaf and cotyledon pavement cells. Especially, the auxin-ROP signaling networks have been demonstrated to control interdigitated growth of pavement cells to form jigsaw-puzzle shapes. Here, we review findings related to the discovery of this novel auxin-signaling mechanism at the cell surface. This signaling pathway is to a large extent independent of the well-known Transport Inhibitor Response (TIR)-Auxin Signaling F-Box (AFB) pathway, and instead requires Auxin Binding Protein 1 (ABP1) interaction with the plasma membrane-localized, transmembrane kinase (TMK) receptor-like kinase to regulate ROP proteins. Once activated, ROP influences cytoskeletal organization and inhibits endocytosis of the auxin transporter PIN1. The present review focuses on ROP signaling and its self-organizing feature allowing ROP proteins to serve as a bustling signal decoder and integrator for plant cell morphogenesis. © 2014 Institute of Botany, Chinese Academy of Sciences.

  5. Virtual Tissue Models in Developmental Toxicity Research

    EPA Science Inventory

    Prenatal exposure to drugs and chemicals may perturb, directly or indirectly, core developmental processes in the embryo (patterning, morphogenesis, proliferation and apoptosis, and cell differentiation), leading to adverse developmental outcomes. Because embryogenesis entails a...

  6. Plant development. Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation.

    PubMed

    Furuta, Kaori Miyashima; Yadav, Shri Ram; Lehesranta, Satu; Belevich, Ilya; Miyashima, Shunsuke; Heo, Jung-ok; Vatén, Anne; Lindgren, Ove; De Rybel, Bert; Van Isterdael, Gert; Somervuo, Panu; Lichtenberger, Raffael; Rocha, Raquel; Thitamadee, Siripong; Tähtiharju, Sari; Auvinen, Petri; Beeckman, Tom; Jokitalo, Eija; Helariutta, Ykä

    2014-08-22

    Photoassimilates such as sugars are transported through phloem sieve element cells in plants. Adapted for effective transport, sieve elements develop as enucleated living cells. We used electron microscope imaging and three-dimensional reconstruction to follow sieve element morphogenesis in Arabidopsis. We show that sieve element differentiation involves enucleation, in which the nuclear contents are released and degraded in the cytoplasm at the same time as other organelles are rearranged and the cytosol is degraded. These cellular reorganizations are orchestrated by the genetically redundant NAC domain-containing transcription factors, NAC45 and NAC86 (NAC45/86). Among the NAC45/86 targets, we identified a family of genes required for enucleation that encode proteins with nuclease domains. Thus, sieve elements differentiate through a specialized autolysis mechanism. Copyright © 2014, American Association for the Advancement of Science.

  7. Dynamin 2 regulation of integrin endocytosis, but not VEGF signaling, is crucial for developmental angiogenesis

    PubMed Central

    Lee, Monica Y.; Skoura, Athanasia; Park, Eon Joo; Landskroner-Eiger, Shira; Jozsef, Levente; Luciano, Amelia K.; Murata, Takahisa; Pasula, Satish; Dong, Yunzhou; Bouaouina, Mohamed; Calderwood, David A.; Ferguson, Shawn M.; De Camilli, Pietro; Sessa, William C.

    2014-01-01

    Here we show that dynamin 2 (Dnm2) is essential for angiogenesis in vitro and in vivo. In cultured endothelial cells lacking Dnm2, vascular endothelial growth factor (VEGF) signaling and receptor levels are augmented whereas cell migration and morphogenesis are impaired. Mechanistically, the loss of Dnm2 increases focal adhesion size and the surface levels of multiple integrins and reduces the activation state of β1 integrin. In vivo, the constitutive or inducible loss of Dnm2 in endothelium impairs branching morphogenesis and promotes the accumulation of β1 integrin at sites of failed angiogenic sprouting. Collectively, our data show that Dnm2 uncouples VEGF signaling from function and coordinates the endocytic turnover of integrins in a manner that is crucially important for angiogenesis in vitro and in vivo. PMID:24598168

  8. ΔNp63 is an ectodermal gatekeeper of epidermal morphogenesis

    PubMed Central

    Shalom-Feuerstein, R; Lena, A M; Zhou, H; De La Forest Divonne, S; Van Bokhoven, H; Candi, E; Melino, G; Aberdam, D

    2011-01-01

    p63, a member of p53 family, has a significant role in the development and maintenance of stratified epithelia. However, a persistent dispute remained over the last decade concerning the interpretation of the severe failure of p63-null embryos to develop stratified epithelia. In this study, by investigating both p63-deficient strains, we demonstrated that p63-deficient epithelia failed to develop beyond ectodermal stage as they remained a monolayer of non-proliferating cells expressing K8/K18. Importantly, in the absence of p63, corneal-epithelial commitment (which occurs at embryonic day 12.5 of mouse embryogenesis) was hampered 3 weeks before corneal stem cell renewal (that begins at P14). Taken together, these data illustrate the significant role of p63 in epithelial embryogenesis, before and independently of other functions of p63 in adult stem cells regulation. Transcriptome analysis of laser captured-embryonic tissues confirmed the latter hypothesis, demonstrating that a battery of epidermal genes that were activated in wild-type epidermis remained silent in p63-null tissues. Furthermore, we defined a subset of novel bona fide p63-induced genes orchestrating first epidermal stratification and a subset of p63-repressed mesodermal-specific genes. These data highlight the earliest recognized action of ΔNp63 in the induction epidermal morphogenesis at E11.5. In the absence of p63, a mesodermal program is activated while epidermal morphogenesis does not initiate. PMID:21127502

  9. Virus-induced gene silencing unravels multiple transcription factors involved in floral growth and development in Phalaenopsis orchids.

    PubMed

    Hsieh, Ming-Hsien; Pan, Zhao-Jun; Lai, Pei-Han; Lu, Hsiang-Chia; Yeh, Hsin-Hung; Hsu, Chia-Chi; Wu, Wan-Lin; Chung, Mei-Chu; Wang, Shyh-Shyan; Chen, Wen-Huei; Chen, Hong-Hwa

    2013-09-01

    Orchidaceae, one of the largest angiosperm families, has significant commercial value. Isolation of genes involved in orchid floral development and morphogenesis, scent production, and colouration will advance knowledge of orchid flower formation and facilitate breeding new varieties to increase the commercial value. With high-throughput virus-induced gene silencing (VIGS), this study identified five transcription factors involved in various aspects of flower morphogenesis in the orchid Phalaenopsis equestris. These genes are PeMADS1, PeMADS7, PeHB, PebHLH, and PeZIP. Silencing PeMADS1 and PebHLH resulted in reduced flower size together with a pelaloid column containing petal-like epidermal cells and alterations of epidermal cell arrangement in lip lateral lobes, respectively. Silencing PeMADS7, PeHB, and PeZIP alone resulted in abortion of the first three fully developed flower buds of an inflorescence, which indicates the roles of the genes in late flower development. Furthermore, double silencing PeMADS1 and PeMADS6, C- and B-class MADS-box genes, respectively, produced a combinatorial phenotype with two genes cloned in separate vectors. Both PeMADS1 and PeMADS6 are required to ensure the normal development of the lip and column as well as the cuticle formation on the floral epidermal cell surface. Thus, VIGS allows for unravelling the interaction between two classes of MADS transcription factors for dictating orchid floral morphogenesis.

  10. Virus-induced gene silencing unravels multiple transcription factors involved in floral growth and development in Phalaenopsis orchids

    PubMed Central

    Hsieh, Ming-Hsien; Pan, Zhao-Jun; Lai, Pei-Han; Lu, Hsiang-Chia; Yeh, Hsin-Hung; Hsu, Chia-Chi; Wu, Wan-Lin; Chung, Mei-Chu; Wang, Shyh-Shyan; Chen, Wen-Huei; Chen, Hong-Hwa

    2013-01-01

    Orchidaceae, one of the largest angiosperm families, has significant commercial value. Isolation of genes involved in orchid floral development and morphogenesis, scent production, and colouration will advance knowledge of orchid flower formation and facilitate breeding new varieties to increase the commercial value. With high-throughput virus-induced gene silencing (VIGS), this study identified five transcription factors involved in various aspects of flower morphogenesis in the orchid Phalaenopsis equestris. These genes are PeMADS1, PeMADS7, PeHB, PebHLH, and PeZIP. Silencing PeMADS1 and PebHLH resulted in reduced flower size together with a pelaloid column containing petal-like epidermal cells and alterations of epidermal cell arrangement in lip lateral lobes, respectively. Silencing PeMADS7, PeHB, and PeZIP alone resulted in abortion of the first three fully developed flower buds of an inflorescence, which indicates the roles of the genes in late flower development. Furthermore, double silencing PeMADS1 and PeMADS6, C- and B-class MADS-box genes, respectively, produced a combinatorial phenotype with two genes cloned in separate vectors. Both PeMADS1 and PeMADS6 are required to ensure the normal development of the lip and column as well as the cuticle formation on the floral epidermal cell surface. Thus, VIGS allows for unravelling the interaction between two classes of MADS transcription factors for dictating orchid floral morphogenesis. PMID:23956416

  11. Nonlinear Chemical Dynamics and Synchronization

    NASA Astrophysics Data System (ADS)

    Li, Ning

    Alan Turing's work on morphogenesis, more than half a century ago, continues to motivate and inspire theoretical and experimental biologists even today. That said, there are very few experimental systems for which Turing's theory is applicable. In this thesis we present an experimental reaction-diffusion system ideally suited for testing Turing's ideas in synthetic "cells" consisting of microfluidically produced surfactant-stabilized emulsions in which droplets containing the Belousov-Zhabotinsky (BZ) oscillatory chemical reactants are dispersed in oil. The BZ reaction has become the prototype of nonlinear dynamics in chemistry and a preferred system for exploring the behavior of coupled nonlinear oscillators. Our system consists of a surfactant stabilized monodisperse emulsion of drops of aqueous BZ solution dispersed in a continuous phase of oil. In contrast to biology, here the chemistry is understood, rate constants are measured and interdrop coupling is purely diffusive. We explore a large set of parameters through control of rate constants, drop size, spacing, and spatial arrangement of the drops in lines and rings in one-dimension (1D) and hexagonal arrays in two-dimensions (2D). The Turing model is regarded as a metaphor for morphogenesis in biology but not for prediction. Here, we develop a quantitative and falsifiable reaction-diffusion model that we experimentally test with synthetic cells. We quantitatively establish the extent to which the Turing model in 1D describes both stationary pattern formation and temporal synchronization of chemical oscillators via reaction-diffusion and in 2D demonstrate that chemical morphogenesis drives physical differentiation in synthetic cells.

  12. Developmental biology and tissue engineering.

    PubMed

    Marga, Francoise; Neagu, Adrian; Kosztin, Ioan; Forgacs, Gabor

    2007-12-01

    Morphogenesis implies the controlled spatial organization of cells that gives rise to tissues and organs in early embryonic development. While morphogenesis is under strict genetic control, the formation of specialized biological structures of specific shape hinges on physical processes. Tissue engineering (TE) aims at reproducing morphogenesis in the laboratory, i.e., in vitro, to fabricate replacement organs for regenerative medicine. The classical approach to generate tissues/organs is by seeding and expanding cells in appropriately shaped biocompatible scaffolds, in the hope that the maturation process will result in the desired structure. To accomplish this goal more naturally and efficiently, we set up and implemented a novel TE method that is based on principles of developmental biology and employs bioprinting, the automated delivery of cellular composites into a three-dimensional (3D) biocompatible environment. The novel technology relies on the concept of tissue liquidity according to which multicellular aggregates composed of adhesive and motile cells behave in analogy with liquids: in particular, they fuse. We emphasize the major role played by tissue fusion in the embryo and explain how the parameters (surface tension, viscosity) that govern tissue fusion can be used both experimentally and theoretically to control and simulate the self-assembly of cellular spheroids into 3D living structures. The experimentally observed postprinting shape evolution of tube- and sheet-like constructs is presented. Computer simulations, based on a liquid model, support the idea that tissue liquidity may provide a mechanism for in vitro organ building. Copyright 2008 Wiley-Liss, Inc.

  13. Whole-Mount Adult Ear Skin Imaging Reveals Defective Neuro-Vascular Branching Morphogenesis in Obese and Type 2 Diabetic Mouse Models.

    PubMed

    Yamazaki, Tomoko; Li, Wenling; Yang, Ling; Li, Ping; Cao, Haiming; Motegi, Sei-Ichiro; Udey, Mark C; Bernhard, Elise; Nakamura, Takahisa; Mukouyama, Yoh-Suke

    2018-01-11

    Obesity and type 2 diabetes are frequently associated with peripheral neuropathy. Though there are multiple methods for diagnosis and analysis of morphological changes of peripheral nerves and blood vessels, three-dimensional high-resolution imaging is necessary to appreciate the pathogenesis with an anatomically recognizable branching morphogenesis and patterning. Here we established a novel technique for whole-mount imaging of adult mouse ear skin to visualize branching morphogenesis and patterning of peripheral nerves and blood vessels. Whole-mount immunostaining of adult mouse ear skin showed that peripheral sensory and sympathetic nerves align with large-diameter blood vessels. Diet-induced obesity (DIO) mice exhibit defective vascular smooth muscle cells (VSMCs) coverage, while there is no significant change in the amount of peripheral nerves. The leptin receptor-deficient db/db mice, a severe obese and type 2 diabetic mouse model, exhibit defective VSMC coverage and a large increase in the amount of smaller-diameter nerve bundles with myelin sheath and unmyelinated nerve fibers. Interestingly, an increase in the amount of myeloid immune cells was observed in the DIO but not db/db mouse skin. These data suggest that our whole-mount imaging method enables us to investigate the neuro-vascular and neuro-immune phenotypes in the animal models of obesity and diabetes.

  14. Gonad morphogenesis defects drive hybrid male sterility in asymmetric hybrid breakdown of Caenorhabditis nematodes

    PubMed Central

    Dey, Alivia; Jin, Qi; Chen, Yen-Chu; Cutter, Asher D.

    2014-01-01

    Determining the causes and evolution of reproductive barriers to gene flow between populations, speciation, is the key to understanding the origin of diversity in nature. Many species manifest hybrid breakdown when they intercross, characterized by increasingly exacerbated problems in later generations of hybrids. Recently, Caenorhabditis nematodes have emerged as a genetic model for studying speciation, and here we investigate the nature and causes of hybrid breakdown between C. remanei and C. latens. We quantify partial F1 hybrid inviability and extensive F2 hybrid inviability; the ~75% F2 embryonic arrest occurs primarily during gastrulation or embryonic elongation. Moreover, F1 hybrid males exhibit Haldane’s rule asymmetrically for both sterility and inviability, being strongest when C. remanei serves as maternal parent. We show that the mechanism by which sterile hybrid males are incapable of transferring sperm or a copulatory plug involves defective gonad morphogenesis, which we hypothesize results from linker cell defects in migration and/or cell death during development. This first documented case of partial hybrid male sterility in Caenorhabditis follows expectations of Darwin’s corollary to Haldane’s rule for asymmetric male fitness, providing a powerful foundation for molecular dissection of intrinsic reproductive barriers and divergence of genetic pathways controlling organ morphogenesis. PMID:25196892

  15. Gonad morphogenesis defects drive hybrid male sterility in asymmetric hybrid breakdown of Caenorhabditis nematodes.

    PubMed

    Dey, Alivia; Jin, Qi; Chen, Yen-Chu; Cutter, Asher D

    2014-01-01

    Determining the causes and evolution of reproductive barriers to gene flow between populations, speciation, is the key to understanding the origin of diversity in nature. Many species manifest hybrid breakdown when they intercross, characterized by increasingly exacerbated problems in later generations of hybrids. Recently, Caenorhabditis nematodes have emerged as a genetic model for studying speciation, and here we investigate the nature and causes of hybrid breakdown between Caenorhabditis remanei and C. latens. We quantify partial F1 hybrid inviability and extensive F2 hybrid inviability; the ~75% F2 embryonic arrest occurs primarily during gastrulation or embryonic elongation. Moreover, F1 hybrid males exhibit Haldane's rule asymmetrically for both sterility and inviability, being strongest when C. remanei serves as maternal parent. We show that the mechanism by which sterile hybrid males are incapable of transferring sperm or a copulatory plug involves defective gonad morphogenesis, which we hypothesize results from linker cell defects in migration and/or cell death during development. This first documented case of partial hybrid male sterility in Caenorhabditis follows expectations of Darwin's corollary to Haldane's rule for asymmetric male fitness, providing a powerful foundation for molecular dissection of intrinsic reproductive barriers and divergence of genetic pathways controlling organ morphogenesis. © 2014 Wiley Periodicals, Inc.

  16. Mesodermal expression of integrin α5β1 regulates neural crest development and cardiovascular morphogenesis

    PubMed Central

    Liang, Dong; Wang, Xia; Mittal, Ashok; Dhiman, Sonam; Hou, Shuan-Yu; Degenhardt, Karl; Astrof, Sophie

    2014-01-01

    Integrin α5-null embryos die in mid-gestation from severe defects in cardiovascular morphogenesis, which stem from defective development of the neural crest, heart and vasculature. To investigate the role of integrin α5β1 in cardiovascular development, we used the Mesp1Cre knock-in strain of mice to ablate integrin α5 in the anterior mesoderm, which gives rise to all of the cardiac and many of the vascular and muscle lineages in the anterior portion of the embryo. Surprisingly, we found that mutant embryos displayed numerous defects related to the abnormal development of the neural crest such as cleft palate, ventricular septal defect, abnormal development of hypoglossal nerves, and defective remodeling of the aortic arch arteries. We found that defects in arch artery remodeling stem from the role of mesodermal integrin α5β1 in neural crest proliferation and differentiation into vascular smooth muscle cells, while proliferation of pharyngeal mesoderm and differentiation of mesodermal derivatives into vascular smooth muscle cells was not defective. Taken together our studies demonstrate a requisite role for mesodermal integrin α5β1 in signaling between the mesoderm and the neural crest, thereby regulating neural crest-dependent morphogenesis of essential embryonic structures. PMID:25242040

  17. Fucus as a Model System to Study the Role of Auxin Transport and the Actin Cytoskeleton in Gravity Response

    NASA Technical Reports Server (NTRS)

    Muday, Gloria K.

    2003-01-01

    The overarching goal of this proposal was to examine the mechanisms for the cellular asymmetry in auxin transport proteins. As auxin transport polarity changes in response to reorientation of algal and plant cells relative to the gravity vector, it was critical to ask how auxin transport polarity is established and how this transport polarity may change in response to gravity stimulation. The experiments conducted with this NASA grant fell into two categories. The first area of experimentation was to explore the biochemical interactions between an auxin transport protein and the actin cytoskeleton. These experiments used biochemical techniques, including actin affinity chromatography, to demonstrate that one auxin transport protein interacts with the actin cytoskeleton. The second line of experiments examined whether in the initially symmetrical single celled embryos of Fucus distichus, whether auxin regulates development and whether gravity is a cue to control the morphogenesis of these embryos and whether gravi-morphogenesis is auxin dependent. Results in these two areas are summarized separately below. As a result of this funding, in combination with results from other investigators, we have strong evidence for an important role for the actin cytoskeleton in both establishing and change auxin transport polarity. It is also clear that Fucus distichus embryos are auxin responsive and gravity controls their morphogenesis.

  18. The Bio-Logic and machinery of plant morphogenesis.

    PubMed

    Niklas, Karl J

    2003-04-01

    Morphogenesis (the development of organic form) requires signal-trafficking and cross-talking across all levels of organization to coordinate the operation of metabolic and genomic networked systems. Many biologists are currently converging on the pictorial conventions of computer scientists to render biological signaling as logic circuits supervising the operation of one or more signal-activated metabolic or gene networks. This approach can redact and simplify complex morphogenetic phenomena and allows for their aggregation into diagrams of larger, more "global" networked systems. This conceptualization is discussed in terms of how logic circuits and signal-activated subsystems work, and it is illustrated for examples of increasingly more complex morphogenetic phenomena, e.g., auxin-mediated cell expansion, entry into the mitotic cell cycle phases, and polar/lateral intercellular auxin transport. For each of these phenomena, a posited circuit/subsystem diagram draws rapid attention to missing components, either in the logic circuit or in the subsystem it supervises. These components must be identified experimentally if each of these basic phenomena is to be fully understood. Importantly, the power of the circuit/subsystem approach to modeling developmental phenomena resides not in its pictorial appeal but in the mathematical tools that are sufficiently strong to reveal and quantify the synergistics of networked systems and thus foster a better understanding of morphogenesis.

  19. Compensatory branching morphogenesis of stalk cells in the Drosophila trachea.

    PubMed

    Francis, Deanne; Ghabrial, Amin S

    2015-06-01

    Tubes are essential for nutrient transport and gas exchange in multicellular eukaryotes, but how connections between different tube types are maintained over time is unknown. In the Drosophila tracheal system, mutations in oak gall (okg) and conjoined (cnj) confer identical defects, including late onset blockage near the terminal cell-stalk cell junction and the ectopic extension of autocellular, seamed tubes into the terminal cell. We determined that okg and cnj encode the E and G subunits of the vacuolar ATPase (vATPase) and showed that both the V0 and V1 domains are required for terminal cell morphogenesis. Remarkably, the ectopic seamed tubes running along vATPase-deficient terminal cells belonged to the neighboring stalk cells. All vATPase-deficient tracheal cells had reduced apical domains and terminal cells displayed mislocalized apical proteins. Consistent with recent reports that the mTOR and vATPase pathways intersect, we found that mTOR pathway mutants phenocopied okg and cnj. Furthermore, terminal cells depleted for the apical determinants Par6 or aPKC had identical ectopic seamed tube defects. We thus identify a novel mechanism of compensatory branching in which stalk cells extend autocellular tubes into neighboring terminal cells with undersized apical domains. This compensatory branching also occurs in response to injury, with damaged terminal cells being rapidly invaded by their stalk cell neighbor. © 2015. Published by The Company of Biologists Ltd.

  20. The anatomical placode in reptile scale morphogenesis indicates shared ancestry among skin appendages in amniotes

    PubMed Central

    Di-Poï, Nicolas; Milinkovitch, Michel C.

    2016-01-01

    Most mammals, birds, and reptiles are readily recognized by their hairs, feathers, and scales, respectively. However, the lack of fossil intermediate forms between scales and hairs and substantial differences in their morphogenesis and protein composition have fueled the controversy pertaining to their potential common ancestry for decades. Central to this debate is the apparent lack of an “anatomical placode” (that is, a local epidermal thickening characteristic of feathers’ and hairs’ early morphogenesis) in reptile scale development. Hence, scenarios have been proposed for the independent development of the anatomical placode in birds and mammals and parallel co-option of similar signaling pathways for their morphogenesis. Using histological and molecular techniques on developmental series of crocodiles and snakes, as well as of unique wild-type and EDA (ectodysplasin A)–deficient scaleless mutant lizards, we show for the first time that reptiles, including crocodiles and squamates, develop all the characteristics of an anatomical placode: columnar cells with reduced proliferation rate, as well as canonical spatial expression of placode and underlying dermal molecular markers. These results reveal a new evolutionary scenario where hairs, feathers, and scales of extant species are homologous structures inherited, with modification, from their shared reptilian ancestor’s skin appendages already characterized by an anatomical placode and associated signaling molecules. PMID:28439533

  1. The anatomical placode in reptile scale morphogenesis indicates shared ancestry among skin appendages in amniotes.

    PubMed

    Di-Poï, Nicolas; Milinkovitch, Michel C

    2016-06-01

    Most mammals, birds, and reptiles are readily recognized by their hairs, feathers, and scales, respectively. However, the lack of fossil intermediate forms between scales and hairs and substantial differences in their morphogenesis and protein composition have fueled the controversy pertaining to their potential common ancestry for decades. Central to this debate is the apparent lack of an "anatomical placode" (that is, a local epidermal thickening characteristic of feathers' and hairs' early morphogenesis) in reptile scale development. Hence, scenarios have been proposed for the independent development of the anatomical placode in birds and mammals and parallel co-option of similar signaling pathways for their morphogenesis. Using histological and molecular techniques on developmental series of crocodiles and snakes, as well as of unique wild-type and EDA (ectodysplasin A)-deficient scaleless mutant lizards, we show for the first time that reptiles, including crocodiles and squamates, develop all the characteristics of an anatomical placode: columnar cells with reduced proliferation rate, as well as canonical spatial expression of placode and underlying dermal molecular markers. These results reveal a new evolutionary scenario where hairs, feathers, and scales of extant species are homologous structures inherited, with modification, from their shared reptilian ancestor's skin appendages already characterized by an anatomical placode and associated signaling molecules.

  2. MorphoGraphX: A platform for quantifying morphogenesis in 4D.

    PubMed

    Barbier de Reuille, Pierre; Routier-Kierzkowska, Anne-Lise; Kierzkowski, Daniel; Bassel, George W; Schüpbach, Thierry; Tauriello, Gerardo; Bajpai, Namrata; Strauss, Sören; Weber, Alain; Kiss, Annamaria; Burian, Agata; Hofhuis, Hugo; Sapala, Aleksandra; Lipowczan, Marcin; Heimlicher, Maria B; Robinson, Sarah; Bayer, Emmanuelle M; Basler, Konrad; Koumoutsakos, Petros; Roeder, Adrienne H K; Aegerter-Wilmsen, Tinri; Nakayama, Naomi; Tsiantis, Miltos; Hay, Angela; Kwiatkowska, Dorota; Xenarios, Ioannis; Kuhlemeier, Cris; Smith, Richard S

    2015-05-06

    Morphogenesis emerges from complex multiscale interactions between genetic and mechanical processes. To understand these processes, the evolution of cell shape, proliferation and gene expression must be quantified. This quantification is usually performed either in full 3D, which is computationally expensive and technically challenging, or on 2D planar projections, which introduces geometrical artifacts on highly curved organs. Here we present MorphoGraphX ( www.MorphoGraphX.org), a software that bridges this gap by working directly with curved surface images extracted from 3D data. In addition to traditional 3D image analysis, we have developed algorithms to operate on curved surfaces, such as cell segmentation, lineage tracking and fluorescence signal quantification. The software's modular design makes it easy to include existing libraries, or to implement new algorithms. Cell geometries extracted with MorphoGraphX can be exported and used as templates for simulation models, providing a powerful platform to investigate the interactions between shape, genes and growth.

  3. An FGF autocrine loop initiated in second heart field mesoderm regulates morphogenesis at the arterial pole of the heart

    PubMed Central

    Park, Eon Joo; Watanabe, Yusuke; Smyth, Graham; Miyagawa-Tomita, Sachiko; Meyers, Erik; Klingensmith, John; Camenisch, Todd; Buckingham, Margaret; Moon, Anne M.

    2009-01-01

    In order to understand how secreted signals regulate complex morphogenetic events, it is crucial to identify their cellular targets. By conditional inactivation of Fgfr1 and Fgfr2 and overexpression of the FGF antagonist sprouty 2 in different cell types, we have dissected the role of FGF signaling during heart outflow tract development in mouse. Contrary to expectation, cardiac neural crest and endothelial cells are not primary paracrine targets. FGF signaling within second heart field mesoderm is required for remodeling of the outflow tract: when disrupted, outflow myocardium fails to produce extracellular matrix and TGFβ and BMP signals essential for endothelial cell transformation and invasion of cardiac neural crest. We conclude that an autocrine regulatory loop, initiated by the reception of FGF signals by the mesoderm, regulates correct morphogenesis at the arterial pole of the heart. These findings provide new insight into how FGF signaling regulates context-dependent cellular responses during development. PMID:18832392

  4. Plant Development, Auxin, and the Subsystem Incompleteness Theorem

    PubMed Central

    Niklas, Karl J.; Kutschera, Ulrich

    2012-01-01

    Plant morphogenesis (the process whereby form develops) requires signal cross-talking among all levels of organization to coordinate the operation of metabolic and genomic subsystems operating in a larger network of subsystems. Each subsystem can be rendered as a logic circuit supervising the operation of one or more signal-activated system. This approach simplifies complex morphogenetic phenomena and allows for their aggregation into diagrams of progressively larger networks. This technique is illustrated here by rendering two logic circuits and signal-activated subsystems, one for auxin (IAA) polar/lateral intercellular transport and another for IAA-mediated cell wall loosening. For each of these phenomena, a circuit/subsystem diagram highlights missing components (either in the logic circuit or in the subsystem it supervises) that must be identified experimentally if each of these basic plant phenomena is to be fully understood. We also illustrate the “subsystem incompleteness theorem,” which states that no subsystem is operationally self-sufficient. Indeed, a whole-organism perspective is required to understand even the most simple morphogenetic process, because, when isolated, every biological signal-activated subsystem is morphogenetically ineffective. PMID:22645582

  5. Pituitary gland morphogenesis and ontogeny of adenohypophyseal cells of Salminus brasiliensis (Teleostei, Characiformes).

    PubMed

    de Jesus, Lázaro Wender Oliveira; Chehade, Chayrra; Costa, Fabiano Gonçalves; Borella, Maria Inês

    2014-06-01

    In this study, we describe for the first time the details of the pituitary gland morphogenesis and the ontogeny of adenohypophyseal cells of a South American Characiform species with great importance for Brazilian Aquaculture, Salminus brasiliensis (Characiformes, Characidae), from hatching to 25 days after hatching (dah), by histochemical and immunocytochemical methods. The pituitary placode was first detected at hatching (0 dah), and the pituitary anlage became more defined at 0.5 dah. The neurohypophysis (NH) development started at 3 dah, and the early formation of its stalk at 12.5 dah. An increase in adenohypophyseal and NH tissues was also observed, and in juveniles at 25 dah, the pituitary displayed similar morphology to that found in adults of this species, displaying the main features of the teleost pituitary. PRL cells were detected at 0.5 dah, together with ACTH and α-MSH cells, followed by GH and SL cells at 1.5 dah. β-FSH cells were detected at 25 dah, while β-LH cells at 5 dah. The pituitary development in this species comprises a dynamic process similar to other teleosts. Our findings in S. brasiliensis corroborate the heterogeneity in the ontogeny of adenohypophyseal cells in teleosts and suggest a role for adenohypophyseal hormones in the early development of this species.

  6. Stochasticity and stereotypy in the Ciona notochord.

    PubMed

    Carlson, Maia; Reeves, Wendy; Veeman, Michael

    2015-01-15

    Fate mapping with single cell resolution has typically been confined to embryos with completely stereotyped development. The lineages giving rise to the 40 cells of the Ciona notochord are invariant, but the intercalation of those cells into a single-file column is not. Here we use genetic labeling methods to fate map the Ciona notochord with both high resolution and large sample sizes. We find that the ordering of notochord cells into a single column is not random, but instead shows a distinctive signature characteristic of mediolaterally-biased intercalation. We find that patterns of cell intercalation in the notochord are somewhat stochastic but far more stereotyped than previously believed. Cell behaviors vary by lineage, with the secondary notochord lineage being much more constrained than the primary lineage. Within the primary lineage, patterns of intercalation reflect the geometry of the intercalating tissue. We identify the latest point at which notochord morphogenesis is largely stereotyped, which is shortly before the onset of mediolateral intercalation and immediately after the final cell divisions in the primary lineage. These divisions are consistently oriented along the AP axis. Our results indicate that the interplay between stereotyped and stochastic cell behaviors in morphogenesis can only be assessed by fate mapping experiments that have both cellular resolution and large sample sizes. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Stochasticity and Stereotypy in the Ciona Notochord

    PubMed Central

    Carlson, Maia; Reeves, Wendy; Veeman, Michael

    2015-01-01

    Fate mapping with single cell resolution has typically been confined to embryos with completely stereotyped development. The lineages giving rise to the 40 cells of the Ciona notochord are invariant, but the intercalation of those cells into a single-file column is not. Here we use genetic labeling methods to fate map the Ciona notochord with both high resolution and large sample sizes. We find that the ordering of notochord cells into a single column is not random, but instead shows a distinctive signature characteristic of mediolaterally-biased intercalation. We find that patterns of cell intercalation in the notochord are somewhat stochastic but far more stereotyped than previously believed. Cell behaviors vary by lineage, with the secondary notochord lineage being much more constrained than the primary lineage. Within the primary lineage, patterns of intercalation reflect the geometry of the intercalating tissue. We identify the latest point at which notochord morphogenesis is largely stereotyped, which is shortly before the onset of mediolateral intercalation and immediately after the final cell divisions in the primary lineage. These divisions are consistently oriented along the AP axis. Our results indicate that the interplay between stereotyped and stochastic cell behaviors in morphogenesis can only be assessed by fate mapping experiments that have both cellular resolution and large sample sizes. PMID:25459659

  8. NFIX Regulates Neural Progenitor Cell Differentiation During Hippocampal Morphogenesis

    PubMed Central

    Heng, Yee Hsieh Evelyn; McLeay, Robert C.; Harvey, Tracey J.; Smith, Aaron G.; Barry, Guy; Cato, Kathleen; Plachez, Céline; Little, Erica; Mason, Sharon; Dixon, Chantelle; Gronostajski, Richard M.; Bailey, Timothy L.; Richards, Linda J.; Piper, Michael

    2014-01-01

    Neural progenitor cells have the ability to give rise to neurons and glia in the embryonic, postnatal and adult brain. During development, the program regulating whether these cells divide and self-renew or exit the cell cycle and differentiate is tightly controlled, and imbalances to the normal trajectory of this process can lead to severe functional consequences. However, our understanding of the molecular regulation of these fundamental events remains limited. Moreover, processes underpinning development of the postnatal neurogenic niches within the cortex remain poorly defined. Here, we demonstrate that Nuclear factor one X (NFIX) is expressed by neural progenitor cells within the embryonic hippocampus, and that progenitor cell differentiation is delayed within Nfix−/− mice. Moreover, we reveal that the morphology of the dentate gyrus in postnatal Nfix−/− mice is abnormal, with fewer subgranular zone neural progenitor cells being generated in the absence of this transcription factor. Mechanistically, we demonstrate that the progenitor cell maintenance factor Sry-related HMG box 9 (SOX9) is upregulated in the hippocampus of Nfix−/− mice and demonstrate that NFIX can repress Sox9 promoter-driven transcription. Collectively, our findings demonstrate that NFIX plays a central role in hippocampal morphogenesis, regulating the formation of neuronal and glial populations within this structure. PMID:23042739

  9. Cellular Basis of Mechanotransduction

    NASA Technical Reports Server (NTRS)

    Ingber, Donald E.

    1996-01-01

    Physical forces, such as those due to gravity are fundamental regulators of tissue development. To influence morphogenesis, mechanical forces must alter growth and function. Yet little is known about how cells convert mechanical signals into a chemical response. This presentation attempts to place the potential molecular mediators of mechanotransduction within the context of the structural complexity of living cells.

  10. Differences in mushroom bodies morphogenesis in workers, queens and drones of Apis mellifera: neuroblasts proliferation and death.

    PubMed

    Roat, Thaisa Cristina; da Cruz Landim, Carminda

    2010-06-01

    Apis mellifera is an interesting model to neurobiological studies. It has a relatively small brain that commands the complex learning and memory tasks demanded by the social organization. An A. mellifera colony is made up of a queen, thousands of workers and a varying number of drones. The latter are males, whereas the former are the two female castes. These three phenotypes differ in morphology, physiology and behavior, correlated with their respective functions in the society. Such differences include the morphology and architecture of their brains. To understand the processes generating such polymorphic brains we characterized the cell division and cell death dynamics which underlie the morphogenesis of the mushroom bodies, through several methods suitable for evidence the time and place of occurrence. Cell death was detected in mushroom bodies of last larval instar and mainly in black-eyed pupae. Cell division was observed in mushroom bodies, primarily at the start of metamorphosis, exhibiting temporal differences among workers, queens and males. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Cdc42 regulates junctional actin but not cell polarization in the Caenorhabditis elegans epidermis

    PubMed Central

    Zilberman, Yuliya; Abrams, Joshua; Anderson, Dorian C.

    2017-01-01

    During morphogenesis, adherens junctions (AJs) remodel to allow changes in cell shape and position while preserving adhesion. Here, we examine the function of Rho guanosine triphosphatase CDC-42 in AJ formation and regulation during Caenorhabditis elegans embryo elongation, a process driven by asymmetric epidermal cell shape changes. cdc-42 mutant embryos arrest during elongation with epidermal ruptures. Unexpectedly, we find using time-lapse fluorescence imaging that cdc-42 is not required for epidermal cell polarization or junction assembly, but rather is needed for proper junctional actin regulation during elongation. We show that the RhoGAP PAC-1/ARHGAP21 inhibits CDC-42 activity at AJs, and loss of PAC-1 or the interacting linker protein PICC-1/CCDC85A-C blocks elongation in embryos with compromised AJ function. pac-1 embryos exhibit dynamic accumulations of junctional F-actin and an increase in AJ protein levels. Our findings identify a previously unrecognized molecular mechanism for inhibiting junctional CDC-42 to control actin organization and AJ protein levels during epithelial morphogenesis. PMID:28903999

  12. BAF200 is required for heart morphogenesis and coronary artery development.

    PubMed

    He, Lingjuan; Tian, Xueying; Zhang, Hui; Hu, Tianyuan; Huang, Xiuzhen; Zhang, Libo; Wang, Zhong; Zhou, Bin

    2014-01-01

    ATP-dependent SWI/SNF chromatin remodeling complexes utilize ATP hydrolysis to non-covalently change nucleosome-DNA interactions and are essential in stem cell development, organogenesis, and tumorigenesis. Biochemical studies show that SWI/SNF in mammalian cells can be divided into two subcomplexes BAF and PBAF based on the subunit composition. ARID2 or BAF200 has been defined as an intrinsic subunit of PBAF complex. However, the function of BAF200 in vivo is not clear. To dissect the possible role of BAF200 in regulating embryogenesis and organ development, we generated BAF200 mutant mice and found they were embryonic lethal. BAF200 mutant embryos exhibited multiple cardiac defects including thin myocardium, ventricular septum defect, common atrioventricular valve, and double outlet right ventricle around E14.5. Moreover, we also detected reduced intramyocardial coronary arteries in BAF200 mutants, suggesting that BAF200 is required for proper migration and differentiation of subepicardial venous cells into arterial endothelial cells. Our work revealed that PBAF complex plays a critical role in heart morphogenesis and coronary artery angiogenesis.

  13. Wound Repair: Toward Understanding and Integration of Single-Cell and Multicellular Wound Responses

    PubMed Central

    Sonnemann, Kevin J.; Bement, William M.

    2016-01-01

    The importance of wound healing to medicine and biology has long been evident, and consequently, wound healing has been the subject of intense investigation for many years. However, several relatively recent developments have added new impetus to wound repair research: the increasing application of model systems; the growing recognition that single cells have a robust, complex, and medically relevant wound healing response; and the emerging recognition that different modes of wound repair bear an uncanny resemblance to other basic biological processes such as morphogenesis and cytokinesis. In this review, each of these developments is described, and their significance for wound healing research is considered. In addition, overlapping mechanisms of single-cell and multicellular wound healing are highlighted, and it is argued that they are more similar than is often recognized. Based on this and other information, a simple model to explain the evolutionary relationships of cytokinesis, single-cell wound repair, multicellular wound repair, and developmental morphogenesis is proposed. Finally, a series of important, but as yet unanswered, questions is posed. PMID:21721944

  14. Oligomerization-Dependent Regulation of Motility and Morphogenesis by the Collagen Xviii Nc1/Endostatin Domain

    PubMed Central

    Kuo, Calvin J.; LaMontagne, Kenneth R.; Garcia-Cardeña, Guillermo; Ackley, Brian D.; Kalman, Daniel; Park, Susan; Christofferson, Rolf; Kamihara, Junne; Ding, Yuan-Hua; Lo, Kin-Ming; Gillies, Stephen; Folkman, Judah; Mulligan, Richard C.; Javaherian, Kashi

    2001-01-01

    Collagen XVIII (c18) is a triple helical endothelial/epithelial basement membrane protein whose noncollagenous (NC)1 region trimerizes a COOH-terminal endostatin (ES) domain conserved in vertebrates, Caenorhabditis elegans and Drosophila. Here, the c18 NC1 domain functioned as a motility-inducing factor regulating the extracellular matrix (ECM)-dependent morphogenesis of endothelial and other cell types. This motogenic activity required ES domain oligomerization, was dependent on rac, cdc42, and mitogen-activated protein kinase, and exhibited functional distinction from the archetypal motogenic scatter factors hepatocyte growth factor and macrophage stimulatory protein. The motility-inducing and mitogen-activated protein kinase–stimulating activities of c18 NC1 were blocked by its physiologic cleavage product ES monomer, consistent with a proteolysis-dependent negative feedback mechanism. These data indicate that the collagen XVIII NC1 region encodes a motogen strictly requiring ES domain oligomerization and suggest a previously unsuspected mechanism for ECM regulation of motility and morphogenesis. PMID:11257123

  15. Effect of lanthanum on rooting of in vitro regenerated shoots of Saussurea involucrata Kar. et Kir.

    PubMed

    Guo, Bin; Xu, Ling-Ling; Guan, Zhen-Jun; Wei, Ya-Hui

    2012-06-01

    In present study, the effect of lanthanum (La) on the rooting of regenerated shoots of Saussurea involucrata Kar. et Kir was analyzed. Rooting occurred from regenerated shoots inoculated on a medium supplemented with La, the plant rooting hormone indole-3-acetic acid (IAA), or both La and IAA together. The highest rooting efficiency (96%), root number/shoot (8.5), and root length (63 mm) were recorded in shoots cultured on medium containing 2.5 μM IAA combined with 100 μM La(3+). In order to elucidate the mechanism of rooting enhancement by La, we examined dynamic changes in antioxidant enzyme activities in plant tissue over time in culture. We found that the activities of peroxidase (POX) and superoxide dismutase (SOD) were significantly higher in plant tissue cultured in IAA plus La than in La or IAA alone. At the same time, the highest H(2)O(2) content was detected in plant tissue in the presence of 2.5 μM IAA plus 100 μM La(3+). In light of these data and previous results, we speculate that La enhanced IAA-induced rooting by acting as a mild abiotic stress to stimulate POX and SOD activities in plant cells. Then, IAA reacted with oxygen and POX to form the ternary complex enzyme-IAA-O(2) that dissociated into IAA radicals and O(2)(-). Subsequently, IAA-induced O(2)(-) readily converted to hydroxyl radical (HO·) via SOD-catalyzed dismutation. Finally, cell wall loosening and cell elongation occurred as a consequence of HO-dependent scission of wall components, leading to root growth. The treatment of IAA combined with La resulted in the highest plantlet survival (80%) compared to single treatments with IAA or La alone. These data suggest that rare earth elements enhance root morphogenesis and the growth of S. involucrata.

  16. Stomach curvature is generated by left-right asymmetric gut morphogenesis

    PubMed Central

    Davis, Adam; Amin, Nirav M.; Johnson, Caroline; Bagley, Kristen; Ghashghaei, H. Troy

    2017-01-01

    Left-right (LR) asymmetry is a fundamental feature of internal anatomy, yet the emergence of morphological asymmetry remains one of the least understood phases of organogenesis. Asymmetric rotation of the intestine is directed by forces outside the gut, but the morphogenetic events that generate anatomical asymmetry in other regions of the digestive tract remain unknown. Here, we show in mouse and Xenopus that the mechanisms that drive the curvature of the stomach are intrinsic to the gut tube itself. The left wall of the primitive stomach expands more than the right wall, as the left epithelium becomes more polarized and undergoes radial rearrangement. These asymmetries exist across several species, and are dependent on LR patterning genes, including Foxj1, Nodal and Pitx2. Our findings have implications for how LR patterning manifests distinct types of morphological asymmetries in different contexts. PMID:28242610

  17. Stomach curvature is generated by left-right asymmetric gut morphogenesis.

    PubMed

    Davis, Adam; Amin, Nirav M; Johnson, Caroline; Bagley, Kristen; Ghashghaei, H Troy; Nascone-Yoder, Nanette

    2017-04-15

    Left-right (LR) asymmetry is a fundamental feature of internal anatomy, yet the emergence of morphological asymmetry remains one of the least understood phases of organogenesis. Asymmetric rotation of the intestine is directed by forces outside the gut, but the morphogenetic events that generate anatomical asymmetry in other regions of the digestive tract remain unknown. Here, we show in mouse and Xenopus that the mechanisms that drive the curvature of the stomach are intrinsic to the gut tube itself. The left wall of the primitive stomach expands more than the right wall, as the left epithelium becomes more polarized and undergoes radial rearrangement. These asymmetries exist across several species, and are dependent on LR patterning genes, including Foxj1 , Nodal and Pitx2 Our findings have implications for how LR patterning manifests distinct types of morphological asymmetries in different contexts. © 2017. Published by The Company of Biologists Ltd.

  18. Expansion of the neck reconstituted the shoulder-diaphragm in amniote evolution.

    PubMed

    Hirasawa, Tatsuya; Fujimoto, Satoko; Kuratani, Shigeru

    2016-01-01

    The neck acquired flexibility through modifications of the head-trunk interface in vertebrate evolution. Although developmental programs for the neck musculoskeletal system have attracted the attention of evolutionary developmental biologists, how the heart, shoulder and surrounding tissues are modified during development has remained unclear. Here we show, through observation of the lateral plate mesoderm at cranial somite levels in chicken-quail chimeras, that the deep part of the lateral body wall is moved concomitant with the caudal transposition of the heart, resulting in the infolding of the expanded cervical lateral body wall into the thorax. Judging from the brachial plexus pattern, an equivalent infolding also appears to take place in mammalian and turtle embryos. In mammals, this infolding process is particularly important because it separates the diaphragm from the shoulder muscle mass. In turtles, the expansion of the cervical lateral body wall affects morphogenesis of the shoulder. Our findings highlight the cellular expansion in developing amniote necks that incidentally brought about the novel adaptive traits. © 2015 The Authors Development, Growth & Differentiation published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Developmental Biologists.

  19. Morphogenesis by symbiogenesis

    NASA Technical Reports Server (NTRS)

    Chapman, M. J.; Margulis, L.

    1998-01-01

    Here we review cases where initiation of morphogenesis, including the differentiation of specialized cells and tissues, has clearly evolved due to cyclical symbiont integration. For reasons of space, our examples are drawn chiefly from the plant, fungal and bacterial kingdoms. Partners live in symbioses and show unique morphological specializations that result when they directly and cyclically interact. We include here brief citations to relevant literature where plant, bacterial or fungal partners alternate independent with entirely integrated living. The independent, or at least physically unassociated stages, are correlated with the appearance of distinctive morphologies that can be traced to the simultaneous presence and strong interaction of the plant with individuals that represent different taxa.

  20. MicroRNA-200c-141 and ∆Np63 are required for breast epithelial differentiation and branching morphogenesis.

    PubMed

    Hilmarsdóttir, Bylgja; Briem, Eirikur; Sigurdsson, Valgardur; Franzdóttir, Sigrídur Rut; Ringnér, Markus; Arason, Ari Jon; Bergthorsson, Jon Thor; Magnusson, Magnus Karl; Gudjonsson, Thorarinn

    2015-07-15

    The epithelial compartment of the breast contains two lineages, the luminal- and the myoepithelial cells. D492 is a breast epithelial cell line with stem cell properties that forms branching epithelial structures in 3D culture with both luminal- and myoepithelial differentiation. We have recently shown that D492 undergo epithelial to mesenchymal transition (EMT) when co-cultured with endothelial cells. This 3D co-culture model allows critical analysis of breast epithelial lineage development and EMT. In this study, we compared the microRNA (miR) expression profiles for D492 and its mesenchymal-derivative D492M. Suppression of the miR-200 family in D492M was among the most profound changes observed. Exogenous expression of miR-200c-141 in D492M reversed the EMT phenotype resulting in gain of luminal but not myoepithelial differentiation. In contrast, forced expression of ∆Np63 in D492M restored the myoepithelial phenotype only. Co-expression of miR-200c-141 and ∆Np63 in D492M restored the branching morphogenesis in 3D culture underlining the requirement for both luminal and myoepithelial elements for obtaining full branching morphogenesis in breast epithelium. Introduction of a miR-200c-141 construct in both D492 and D492M resulted in resistance to endothelial induced EMT. In conclusion, our data suggests that expression of miR-200c-141 and ∆Np63 in D492M can reverse EMT resulting in luminal- and myoepithelial differentiation, respectively, demonstrating the importance of these molecules in epithelial integrity in the human breast. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

Top