Sample records for cell-based immunological simulation

  1. PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems.

    PubMed

    Ghaffarizadeh, Ahmadreza; Heiland, Randy; Friedman, Samuel H; Mumenthaler, Shannon M; Macklin, Paul

    2018-02-01

    Many multicellular systems problems can only be understood by studying how cells move, grow, divide, interact, and die. Tissue-scale dynamics emerge from systems of many interacting cells as they respond to and influence their microenvironment. The ideal "virtual laboratory" for such multicellular systems simulates both the biochemical microenvironment (the "stage") and many mechanically and biochemically interacting cells (the "players" upon the stage). PhysiCell-physics-based multicellular simulator-is an open source agent-based simulator that provides both the stage and the players for studying many interacting cells in dynamic tissue microenvironments. It builds upon a multi-substrate biotransport solver to link cell phenotype to multiple diffusing substrates and signaling factors. It includes biologically-driven sub-models for cell cycling, apoptosis, necrosis, solid and fluid volume changes, mechanics, and motility "out of the box." The C++ code has minimal dependencies, making it simple to maintain and deploy across platforms. PhysiCell has been parallelized with OpenMP, and its performance scales linearly with the number of cells. Simulations up to 105-106 cells are feasible on quad-core desktop workstations; larger simulations are attainable on single HPC compute nodes. We demonstrate PhysiCell by simulating the impact of necrotic core biomechanics, 3-D geometry, and stochasticity on the dynamics of hanging drop tumor spheroids and ductal carcinoma in situ (DCIS) of the breast. We demonstrate stochastic motility, chemical and contact-based interaction of multiple cell types, and the extensibility of PhysiCell with examples in synthetic multicellular systems (a "cellular cargo delivery" system, with application to anti-cancer treatments), cancer heterogeneity, and cancer immunology. PhysiCell is a powerful multicellular systems simulator that will be continually improved with new capabilities and performance improvements. It also represents a significant independent code base for replicating results from other simulation platforms. The PhysiCell source code, examples, documentation, and support are available under the BSD license at http://PhysiCell.MathCancer.org and http://PhysiCell.sf.net.

  2. Hematology/immunology (M110 series). [human hemodynamic response to weightlessness simulation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The hematology/immunology experiments in the Skylab mission study various aspects of the red blood cell, including its metabolism and life span, and blood volume changes under zero gravity conditions to determine the precise mechanism of the transient changes which have been seen on the relatively brief missions of the past.

  3. Simulation of B Cell Affinity Maturation Explains Enhanced Antibody Cross-Reactivity Induced by the Polyvalent Malaria Vaccine AMA1

    DTIC Science & Technology

    2014-07-01

    cell decisions in lymphoid tissue. Mol. Cell . Biol. 28: 4040–4051. 22. Kosmrlj, A., A. K. Jha, E. S. Huseby, M. Kardar, and A. K. Chakraborty. 2008. How...JUL 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Simulation of B Cell Affinity Maturation Explains...8-98) Prescribed by ANSI Std Z39-18 The Journal of Immunology Simulation of B Cell Affinity Maturation Explains Enhanced Antibody Cross-Reactivity

  4. PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems

    PubMed Central

    Ghaffarizadeh, Ahmadreza; Mumenthaler, Shannon M.

    2018-01-01

    Many multicellular systems problems can only be understood by studying how cells move, grow, divide, interact, and die. Tissue-scale dynamics emerge from systems of many interacting cells as they respond to and influence their microenvironment. The ideal “virtual laboratory” for such multicellular systems simulates both the biochemical microenvironment (the “stage”) and many mechanically and biochemically interacting cells (the “players” upon the stage). PhysiCell—physics-based multicellular simulator—is an open source agent-based simulator that provides both the stage and the players for studying many interacting cells in dynamic tissue microenvironments. It builds upon a multi-substrate biotransport solver to link cell phenotype to multiple diffusing substrates and signaling factors. It includes biologically-driven sub-models for cell cycling, apoptosis, necrosis, solid and fluid volume changes, mechanics, and motility “out of the box.” The C++ code has minimal dependencies, making it simple to maintain and deploy across platforms. PhysiCell has been parallelized with OpenMP, and its performance scales linearly with the number of cells. Simulations up to 105-106 cells are feasible on quad-core desktop workstations; larger simulations are attainable on single HPC compute nodes. We demonstrate PhysiCell by simulating the impact of necrotic core biomechanics, 3-D geometry, and stochasticity on the dynamics of hanging drop tumor spheroids and ductal carcinoma in situ (DCIS) of the breast. We demonstrate stochastic motility, chemical and contact-based interaction of multiple cell types, and the extensibility of PhysiCell with examples in synthetic multicellular systems (a “cellular cargo delivery” system, with application to anti-cancer treatments), cancer heterogeneity, and cancer immunology. PhysiCell is a powerful multicellular systems simulator that will be continually improved with new capabilities and performance improvements. It also represents a significant independent code base for replicating results from other simulation platforms. The PhysiCell source code, examples, documentation, and support are available under the BSD license at http://PhysiCell.MathCancer.org and http://PhysiCell.sf.net. PMID:29474446

  5. Mass spectrometry-based proteomic exploration of the human immune system: focus on the inflammasome, global protein secretion, and T cells.

    PubMed

    Nyman, Tuula A; Lorey, Martina B; Cypryk, Wojciech; Matikainen, Sampsa

    2017-05-01

    The immune system is our defense system against microbial infections and tissue injury, and understanding how it works in detail is essential for developing drugs for different diseases. Mass spectrometry-based proteomics can provide in-depth information on the molecular mechanisms involved in immune responses. Areas covered: Summarized are the key immunology findings obtained with MS-based proteomics in the past five years, with a focus on inflammasome activation, global protein secretion, mucosal immunology, immunopeptidome and T cells. Special focus is on extracellular vesicle-mediated protein secretion and its role in immune responses. Expert commentary: Proteomics is an essential part of modern omics-scale immunology research. To date, MS-based proteomics has been used in immunology to study protein expression levels, their subcellular localization, secretion, post-translational modifications, and interactions in immune cells upon activation by different stimuli. These studies have made major contributions to understanding the molecular mechanisms involved in innate and adaptive immune responses. New developments in proteomics offer constantly novel possibilities for exploring the immune system. Examples of these techniques include mass cytometry and different MS-based imaging approaches which can be widely used in immunology.

  6. Immunological classification of high grade non-Hodgkin's lymphomas (NHL) in children.

    PubMed

    Pituch-Noworolska, A; Miezyński, W

    1994-01-01

    The immunological classification of 28 high grade non-Hodgkin's lymphomas (NHL) in children was shown. The morphological classification was based on Working Formulation, the immunological classification--on acute lymphoblastic leukemia subtypes. The phenotypes were assayed cytofluorometrically with monoclonal antibodies and compared to ontogenic stages in B and T cell development. Small non-cleaved cell lymphoma (Burkitt's type) was seen in 13 patients, lymphoblastic lymphoma in 12 patients, low differentiated in 3 patients. Immunological classification showed B-lymphocyte origin of blast cells in 15 patients including 11 small non-cleaved Burkitt's lymphoma (mature B and cALL phenotype), 3 undifferentiated cases (pro-B and mature B cell) and 1 case of lymphoblastic lymphoma (cALL type). T-cell origin of blast cells was demonstrated in 13 patients. The immunological classification used routinely was helpful in selection of patients with unfavourable prognosis. The more precise description of blast cells was valuable for better adjustment of therapy and better prognosis.

  7. Dissecting the human immunologic memory for pathogens.

    PubMed

    Zielinski, Christina E; Corti, Davide; Mele, Federico; Pinto, Dora; Lanzavecchia, Antonio; Sallusto, Federica

    2011-03-01

    Studies on immunologic memory in animal models and especially in the human system are instrumental to identify mechanisms and correlates of protection necessary for vaccine development. In this article, we provide an overview of the cellular basis of immunologic memory. We also describe experimental approaches based on high throughput cell cultures, which we have developed to interrogate human memory T cells, B cells, and plasma cells. We discuss how these approaches can provide new tools and information for vaccine design, in a process that we define as 'analytic vaccinology'. © 2011 John Wiley & Sons A/S.

  8. Stem Cell Niche, the Microenvironment and Immunological Crosstalk

    PubMed Central

    Sujata, Law; Chaudhuri, S

    2008-01-01

    The concept of stem cells, their physiological existence, the intricate anatomical localization, the known and the unknown functions, and their exclusive utility for the purpose of regenerative medicine, are all now encompassed within an emergent question, ‘how compatible these cells are immunologically?' Indeed, the medical aspects of stem cells are dependent on a large number of queries based on the basic properties of the cells. It has greatly been emphasized to probe into the basic research on stem cells before any successful therapeutic attempts are made. One of the intricate aspects of the adult stem cells is its immunological behavior in relation to the microenvironmental associates, the stromal cells in the presence of a suitable target. PMID:18445340

  9. Stem cell niche, the microenvironment and immunological crosstalk.

    PubMed

    Sujata, Law; Chaudhuri, S

    2008-04-01

    The concept of stem cells, their physiological existence, the intricate anatomical localization, the known and the unknown functions, and their exclusive utility for the purpose of regenerative medicine, are all now encompassed within an emergent question, 'how compatible these cells are immunologically?' Indeed, the medical aspects of stem cells are dependent on a large number of queries based on the basic properties of the cells. It has greatly been emphasized to probe into the basic research on stem cells before any successful therapeutic attempts are made. One of the intricate aspects of the adult stem cells is its immunological behavior in relation to the microenvironmental associates, the stromal cells in the presence of a suitable target.

  10. Prevalence and Predictors of Immunological Failure among HIV Patients on HAART in Southern Ethiopia.

    PubMed

    Yirdaw, Kesetebirhan Delele; Hattingh, Susan

    2015-01-01

    Immunological monitoring is part of the standard of care for patients on antiretroviral treatment. Yet, little is known about the routine implementation of immunological laboratory monitoring and utilization in clinical care in Ethiopia. This study assessed the pattern of immunological monitoring, immunological response, level of immunological treatment failure and factors related to it among patients on antiretroviral therapy in selected hospitals in southern Ethiopia. A retrospective longitudinal analytic study was conducted using documents of patients started on antiretroviral therapy. Adequacy of timely immunological monitoring was assessed every six months the first year and every one year thereafter. Immunological response was assessed every six months at cohort level. Immunological failure was based on the criteria: fall of follow-up CD4 cell count to baseline (or below), or CD4 levels persisting below 100 cells/mm3, or 50% fall from on-treatment peak value. A total of 1,321 documents of patients reviewed revealed timely immunological monitoring were inadequate. There was adequate immunological response, with pediatric patients, females, those with less advanced illness (baseline WHO Stage I or II) and those with higher baseline CD4 cell count found to have better immunological recovery. Thirty-nine patients (3%) were not evaluated for immunological failure because they had frequent treatment interruption. Despite overall adequate immunological response at group level, the prevalence of those who ever experienced immunological failure was 17.6% (n=226), while after subsequent re-evaluation it dropped to 11.5% (n=147). Having WHO Stage III/IV of the disease or a higher CD4 cell count at baseline was identified as a risk for immunological failure. Few patients with confirmed failure were switched to second line therapy. These findings highlight the magnitude of the problem of immunological failure and the gap in management. Prioritizing care for high risk patients may help in effective utilization of meager resources.

  11. Prevalence and Predictors of Immunological Failure among HIV Patients on HAART in Southern Ethiopia

    PubMed Central

    2015-01-01

    Immunological monitoring is part of the standard of care for patients on antiretroviral treatment. Yet, little is known about the routine implementation of immunological laboratory monitoring and utilization in clinical care in Ethiopia. This study assessed the pattern of immunological monitoring, immunological response, level of immunological treatment failure and factors related to it among patients on antiretroviral therapy in selected hospitals in southern Ethiopia. A retrospective longitudinal analytic study was conducted using documents of patients started on antiretroviral therapy. Adequacy of timely immunological monitoring was assessed every six months the first year and every one year thereafter. Immunological response was assessed every six months at cohort level. Immunological failure was based on the criteria: fall of follow-up CD4 cell count to baseline (or below), or CD4 levels persisting below 100 cells/mm3, or 50% fall from on-treatment peak value. A total of 1,321 documents of patients reviewed revealed timely immunological monitoring were inadequate. There was adequate immunological response, with pediatric patients, females, those with less advanced illness (baseline WHO Stage I or II) and those with higher baseline CD4 cell count found to have better immunological recovery. Thirty-nine patients (3%) were not evaluated for immunological failure because they had frequent treatment interruption. Despite overall adequate immunological response at group level, the prevalence of those who ever experienced immunological failure was 17.6% (n=226), while after subsequent re-evaluation it dropped to 11.5% (n=147). Having WHO Stage III/IV of the disease or a higher CD4 cell count at baseline was identified as a risk for immunological failure. Few patients with confirmed failure were switched to second line therapy. These findings highlight the magnitude of the problem of immunological failure and the gap in management. Prioritizing care for high risk patients may help in effective utilization of meager resources. PMID:25961732

  12. HapMap scanning of novel human minor histocompatibility antigens.

    PubMed

    Kamei, Michi; Nannya, Yasuhito; Torikai, Hiroki; Kawase, Takakazu; Taura, Kenjiro; Inamoto, Yoshihiro; Takahashi, Taro; Yazaki, Makoto; Morishima, Satoko; Tsujimura, Kunio; Miyamura, Koichi; Ito, Tetsuya; Togari, Hajime; Riddell, Stanley R; Kodera, Yoshihisa; Morishima, Yasuo; Takahashi, Toshitada; Kuzushima, Kiyotaka; Ogawa, Seishi; Akatsuka, Yoshiki

    2009-05-21

    Minor histocompatibility antigens (mHags) are molecular targets of allo-immunity associated with hematopoietic stem cell transplantation (HSCT) and involved in graft-versus-host disease, but they also have beneficial antitumor activity. mHags are typically defined by host SNPs that are not shared by the donor and are immunologically recognized by cytotoxic T cells isolated from post-HSCT patients. However, the number of molecularly identified mHags is still too small to allow prospective studies of their clinical importance in transplantation medicine, mostly due to the lack of an efficient method for isolation. Here we show that when combined with conventional immunologic assays, the large data set from the International HapMap Project can be directly used for genetic mapping of novel mHags. Based on the immunologically determined mHag status in HapMap panels, a target mHag locus can be uniquely mapped through whole genome association scanning taking advantage of the unprecedented resolution and power obtained with more than 3 000 000 markers. The feasibility of our approach could be supported by extensive simulations and further confirmed by actually isolating 2 novel mHags as well as 1 previously identified example. The HapMap data set represents an invaluable resource for investigating human variation, with obvious applications in genetic mapping of clinically relevant human traits.

  13. T cells' immunological synapses induce polarization of brain astrocytes in vivo and in vitro: a novel astrocyte response mechanism to cellular injury.

    PubMed

    Barcia, Carlos; Sanderson, Nicholas S R; Barrett, Robert J; Wawrowsky, Kolja; Kroeger, Kurt M; Puntel, Mariana; Liu, Chunyan; Castro, Maria G; Lowenstein, Pedro R

    2008-08-20

    Astrocytes usually respond to trauma, stroke, or neurodegeneration by undergoing cellular hypertrophy, yet, their response to a specific immune attack by T cells is poorly understood. Effector T cells establish specific contacts with target cells, known as immunological synapses, during clearance of virally infected cells from the brain. Immunological synapses mediate intercellular communication between T cells and target cells, both in vitro and in vivo. How target virally infected astrocytes respond to the formation of immunological synapses established by effector T cells is unknown. Herein we demonstrate that, as a consequence of T cell attack, infected astrocytes undergo dramatic morphological changes. From normally multipolar cells, they become unipolar, extending a major protrusion towards the immunological synapse formed by the effector T cells, and withdrawing most of their finer processes. Thus, target astrocytes become polarized towards the contacting T cells. The MTOC, the organizer of cell polarity, is localized to the base of the protrusion, and Golgi stacks are distributed throughout the protrusion, reaching distally towards the immunological synapse. Thus, rather than causing astrocyte hypertrophy, antiviral T cells cause a major structural reorganization of target virally infected astrocytes. Astrocyte polarization, as opposed to hypertrophy, in response to T cell attack may be due to T cells providing a very focused attack, and thus, astrocytes responding in a polarized manner. A similar polarization of Golgi stacks towards contacting T cells was also detected using an in vitro allogeneic model. Thus, different T cells are able to induce polarization of target astrocytes. Polarization of target astrocytes in response to immunological synapses may play an important role in regulating the outcome of the response of astrocytes to attacking effector T cells, whether during antiviral (e.g. infected during HIV, HTLV-1, HSV-1 or LCMV infection), anti-transplant, autoimmune, or anti-tumor immune responses in vivo and in vitro.

  14. Antibodyomics: bioinformatics technologies for understanding B-cell immunity to HIV-1.

    PubMed

    Kwong, Peter D; Chuang, Gwo-Yu; DeKosky, Brandon J; Gindin, Tatyana; Georgiev, Ivelin S; Lemmin, Thomas; Schramm, Chaim A; Sheng, Zizhang; Soto, Cinque; Yang, An-Suei; Mascola, John R; Shapiro, Lawrence

    2017-01-01

    Numerous antibodies have been identified from HIV-1-infected donors that neutralize diverse strains of HIV-1. These antibodies may provide the basis for a B cell-mediated HIV-1 vaccine. However, it has been unclear how to elicit similar antibodies by vaccination. To address this issue, we have undertaken an informatics-based approach to understand the genetic and immunologic processes controlling the development of HIV-1-neutralizing antibodies. As DNA sequencing comprises the fastest growing database of biological information, we focused on incorporating next-generation sequencing of B-cell transcripts to determine the origin, maturation pathway, and prevalence of broadly neutralizing antibody lineages (Antibodyomics1, 2, 4, and 6). We also incorporated large-scale robotic analyses of serum neutralization to identify and quantify neutralizing antibodies in donor cohorts (Antibodyomics3). Statistical analyses furnish another layer of insight (Antibodyomics5), with physical characteristics of antibodies and their targets through molecular dynamics simulations (Antibodyomics7) and free energy perturbation analyses (Antibodyomics8) providing information-rich output. Functional interrogation of individual antibodies (Antibodyomics9) and synthetic antibody libraries (Antibodyomics10) also yields multi-dimensional data by which to understand and improve antibodies. Antibodyomics, described here, thus comprise resolution-enhancing tools, which collectively embody an information-driven discovery engine aimed toward the development of effective B cell-based vaccines. © 2017 The Authors. Immunological Reviews published by John Wiley & Sons Ltd.

  15. Live single cell functional phenotyping in droplet nano-liter reactors

    NASA Astrophysics Data System (ADS)

    Konry, Tania; Golberg, Alexander; Yarmush, Martin

    2013-11-01

    While single cell heterogeneity is present in all biological systems, most studies cannot address it due to technical limitations. Here we describe a nano-liter droplet microfluidic-based approach for stimulation and monitoring of surfaceand secreted markers of live single immune dendritic cells (DCs) as well as monitoring the live T cell/DC interaction. This nano-liter in vivo simulating microenvironment allows delivering various stimuli reagents to each cell and appropriate gas exchanges which are necessary to ensure functionality and viability of encapsulated cells. Labeling bioassay and microsphere sensors were integrated into nano-liter reaction volume of the droplet to monitor live single cell surface markers and secretion analysis in the time-dependent fashion. Thus live cell stimulation, secretion and surface monitoring can be obtained simultaneously in distinct microenvironment, which previously was possible using complicated and multi-step in vitro and in vivo live-cell microscopy, together with immunological studies of the outcome secretion of cellular function.

  16. Qualitative features of the HIV-specific CD8+ T-cell response associated with immunologic control.

    PubMed

    Hersperger, Adam R; Migueles, Stephen A; Betts, Michael R; Connors, Mark

    2011-05-01

    Over the past 2 years, a clearer picture has emerged regarding the properties of HIV-specific CD8+ T cells associated with immunologic control of HIV replication. These properties represent a potential mechanism by which rare patients might control HIV replication in the absence of antiretroviral therapy. This review addresses the background and recent findings that have lead to our current understanding of these mechanism(s). Patients with immunologic control of HIV are not distinguished by targeted specificities, or greater numbers or breadth of their HIV-specific CD8+ T-cell response. For this reason, recent work has focused greater attention on qualitative features of this response. The qualitative features most closely associated with immunologic control of HIV are related to the granule-exocytosis-mediated elimination of HIV-infected CD4 T cells. The ability of HIV-specific CD8+ T cells to increase their contents of proteins known to mediate cytotoxicity, such as granzyme B and perforin, appears to be a critical means by which HIV-specific cytotoxic capacity is regulated. Investigation from multiple groups has now focused upon HIV-specific CD8+ T-cell granule-exocytosis-mediated cytotoxicity as a correlate of immunologic control of HIV. In the near future, a more detailed understanding of the qualities associated with immunologic control may provide critical insights regarding the necessary features of a response that should be stimulated by immunotherapies or T-cell-based vaccines.

  17. Comparison of hindlimb unloading and partial weight suspension models for spaceflight-type condition induced effects on white blood cells

    NASA Astrophysics Data System (ADS)

    Wilson, Jolaine M.; Krigsfeld, Gabriel S.; Sanzari, Jenine K.; Wagner, Erika B.; Mick, Rosemarie; Kennedy, Ann R.

    2012-01-01

    Animal models are frequently used to assist in the determination of the long- and short-term effects of space flight. The space environment, including microgravity, can impact many physiological and immunological system parameters. It has been found that ground based models of microgravity produce changes in white blood cell counts, which negatively affects immunologic function. As part of the Center of Acute Radiation Research (CARR), we compared the acute effects on white blood cell parameters induced by the more traditionally used animal model of hindlimb unloading (HU) with a recently developed reduced weightbearing analog known as partial weight suspension (PWS). Female ICR mice were either hindlimb unloaded or placed in the PWS system at 16% quadrupedal weightbearing for 4 h, 1, 2, 7 or 10 days, at which point complete blood counts were obtained. Control animals (jacketed and non-jacketed) were exposed to identical conditions without reduced weightbearing. Results indicate that significant changes in total white blood cell (WBC), neutrophil, lymphocyte, monocyte and eosinophil counts were observed within the first 2 days of exposure to each system. These differences in blood cell counts normalized by day 7 in both systems. The results of these studies indicate that there are some statistically significant changes observed in the blood cell counts for animals exposed to both the PWS and HU simulated microgravity systems.

  18. Search for biomarkers of asbestos exposure and asbestos-induced cancers in investigations of the immunological effects of asbestos.

    PubMed

    Matsuzaki, Hidenori; Kumagai-Takei, Naoko; Lee, Suni; Maeda, Megumi; Sada, Nagisa; Hatayama, Tamayo; Yamamoto, Shoko; Ikeda, Miho; Yoshitome, Kei; Min, Yu; Nishimura, Yasumitsu; Otsuki, Takemi

    2017-06-09

    The immunological effects of asbestos exposure on various lymphocytes such as the regulatory T cell (Treg), responder CD4+ T helper cell (Tresp), CD8+ cytotoxic T lymphocytes (CTL), and natural killer (NK) cells were investigated. Results show that asbestos exposure impairs antitumor immunity through enhancement of regulatory T cell function and volume, reduction of CXCR3 chemokine receptor in responder CD4+ T helper cells, and impairment of the killing activities of CD8+ cytotoxic T lymphocytes (CTL) and NK cells. These findings were used to explore biological markers associated with asbestos exposure and asbestos-induced cancers and suggested the usefulness of serum/plasma IL-10 and TGF-β, surface CXCR3 expression in Tresp, the secreting potential of IFN-γ in Tresp, intracellular perforin level in CTL, and surface expression NKp46 in NK cells. Although other unexplored cytokines in serum/plasma and molecules in these immunological cells, including Th17, should be investigated by experimental procedures in addition to a comprehensive analysis of screening methods, biomarkers based on immunological alterations may be helpful in clinical situations to screen the high-risk population exposed to asbestos and susceptible to asbestos-related cancers such as mesothelioma.

  19. Chimeric antigen receptors: driving immunology towards synthetic biology

    PubMed Central

    Sadelain, Michel

    2017-01-01

    The advent of second generation CARs and the CD19 paradigm have ushered a new therapeutic modality in oncology. In contrast to earlier forms of adoptive cell therapy, which were based on the isolation and expansion of naturally occurring T cells, CAR therapy is based on the design and manufacture of engineered T cells with optimized properties. A new armamentarium, comprising not only CARs but also chimeric costimulatory receptors, chimeric cytokine receptors, inhibitory receptors and synthetic Notch receptors, expressed in naïve, central memory or stem cell-like memory T cells, is being developed for clinical use in a wide range of cancers. Immunological principles are thus finding a new purpose thanks to advances in genetic engineering, synthetic biology and cell manufacturing sciences. PMID:27372731

  20. Modelling and Simulation of the Dynamics of the Antigen-Specific T Cell Response Using Variable Structure Control Theory.

    PubMed

    Anelone, Anet J N; Spurgeon, Sarah K

    2016-01-01

    Experimental and mathematical studies in immunology have revealed that the dynamics of the programmed T cell response to vigorous infection can be conveniently modelled using a sigmoidal or a discontinuous immune response function. This paper hypothesizes strong synergies between this existing work and the dynamical behaviour of engineering systems with a variable structure control (VSC) law. These findings motivate the interpretation of the immune system as a variable structure control system. It is shown that dynamical properties as well as conditions to analytically assess the transition from health to disease can be developed for the specific T cell response from the theory of variable structure control. In particular, it is shown that the robustness properties of the specific T cell response as observed in experiments can be explained analytically using a VSC perspective. Further, the predictive capacity of the VSC framework to determine the T cell help required to overcome chronic Lymphocytic Choriomeningitis Virus (LCMV) infection is demonstrated. The findings demonstrate that studying the immune system using variable structure control theory provides a new framework for evaluating immunological dynamics and experimental observations. A modelling and simulation tool results with predictive capacity to determine how to modify the immune response to achieve healthy outcomes which may have application in drug development and vaccine design.

  1. A correlative and quantitative imaging approach enabling characterization of primary cell-cell communication: Case of human CD4+ T cell-macrophage immunological synapses.

    PubMed

    Kasprowicz, Richard; Rand, Emma; O'Toole, Peter J; Signoret, Nathalie

    2018-05-22

    Cell-to-cell communication engages signaling and spatiotemporal reorganization events driven by highly context-dependent and dynamic intercellular interactions, which are difficult to capture within heterogeneous primary cell cultures. Here, we present a straightforward correlative imaging approach utilizing commonly available instrumentation to sample large numbers of cell-cell interaction events, allowing qualitative and quantitative characterization of rare functioning cell-conjugates based on calcium signals. We applied this approach to examine a previously uncharacterized immunological synapse, investigating autologous human blood CD4 + T cells and monocyte-derived macrophages (MDMs) forming functional conjugates in vitro. Populations of signaling conjugates were visualized, tracked and analyzed by combining live imaging, calcium recording and multivariate statistical analysis. Correlative immunofluorescence was added to quantify endogenous molecular recruitments at the cell-cell junction. By analyzing a large number of rare conjugates, we were able to define calcium signatures associated with different states of CD4 + T cell-MDM interactions. Quantitative image analysis of immunostained conjugates detected the propensity of endogenous T cell surface markers and intracellular organelles to polarize towards cell-cell junctions with high and sustained calcium signaling profiles, hence defining immunological synapses. Overall, we developed a broadly applicable approach enabling detailed single cell- and population-based investigations of rare cell-cell communication events with primary cells.

  2. Role of Osmolytes in Regulating Immune System.

    PubMed

    Kumar, Tarun; Yadav, Manisha; Singh, Laishram Rajendrakumar

    2016-01-01

    The immune system has evolved to protect the host organism from diverse range of pathogenic microbes that are themselves constantly evolving. It is a complex network of cells, humoral factors, chemokines and cytokines. Dysregulation of immune system results in various kinds of immunological disorders. There are several external agents which govern the regulation of immune system. Recent studies have indicated the role of osmolytes in regulation of various immunological processes such as Ag-Ab interaction, Ig assembly, Ag presentation etc. In this present review, we have systematically discussed the role of osmolytes involved in regulation of several key immunological processes. Osmolytes are involved in the regulation of several key immunological processes such as immunoglobulin assembly and folding, immune cells proliferation, regulation of immune cells function, Ag-Ab interaction, antigen presentation, inflammatory response and protection against photo-immunosuppression. Hence, osmolytes and their transporters might be used as potential drug and drug targets respectively. This review is therefore designed to help clinicians in development of osmolyte based therapeutic strategies in the treatment of various immunological disorders. Appropriate future perspectives have also been included.

  3. WASp-dependent actin cytoskeleton stability at the dendritic cell immunological synapse is required for extensive, functional T cell contacts.

    PubMed

    Malinova, Dessislava; Fritzsche, Marco; Nowosad, Carla R; Armer, Hannah; Munro, Peter M G; Blundell, Michael P; Charras, Guillaume; Tolar, Pavel; Bouma, Gerben; Thrasher, Adrian J

    2016-05-01

    The immunological synapse is a highly structured and molecularly dynamic interface between communicating immune cells. Although the immunological synapse promotes T cell activation by dendritic cells, the specific organization of the immunological synapse on the dendritic cell side in response to T cell engagement is largely unknown. In this study, confocal and electron microscopy techniques were used to investigate the role of dendritic cell actin regulation in immunological synapse formation, stabilization, and function. In the dendritic cell-restricted absence of the Wiskott-Aldrich syndrome protein, an important regulator of the actin cytoskeleton in hematopoietic cells, the immunological synapse contact with T cells occupied a significantly reduced surface area. At a molecular level, the actin network localized to the immunological synapse exhibited reduced stability, in particular, of the actin-related protein-2/3-dependent, short-filament network. This was associated with decreased polarization of dendritic cell-associated ICAM-1 and MHC class II, which was partially dependent on Wiskott-Aldrich syndrome protein phosphorylation. With the use of supported planar lipid bilayers incorporating anti-ICAM-1 and anti-MHC class II antibodies, the dendritic cell actin cytoskeleton organized into recognizable synaptic structures but interestingly, formed Wiskott-Aldrich syndrome protein-dependent podosomes within this area. These findings demonstrate that intrinsic dendritic cell cytoskeletal remodeling is a key regulatory component of normal immunological synapse formation, likely through consolidation of adhesive interaction and modulation of immunological synapse stability. © The Author(s).

  4. Widespread immunological functions of mast cells: fact or fiction?

    PubMed

    Rodewald, Hans-Reimer; Feyerabend, Thorsten B

    2012-07-27

    Immunological functions of mast cells are currently considered to be much broader than the original role of mast cells in IgE-driven allergic disease. The spectrum of proposed mast cell functions includes areas as diverse as the regulation of innate and adaptive immune responses, protective immunity against viral, microbial, and parasitic pathogens, autoimmunity, tolerance to graft rejection, promotion of or protection from cancer, wound healing, angiogenesis, cardiovascular diseases, diabetes, obesity, and others. The vast majority of in vivo mast cell data have been based on mast cell-deficient Kit mutant mice. However, work in new mouse mutants with unperturbed Kit function, which have a surprisingly normal immune system, has failed to corroborate some key immunological aspects, formerly attributed to mast cells. Here, we consider the implications of these recent developments for the state of the field as well as for future work, aiming at deciphering the physiological functions of mast cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. A CD4+ cell count <200 cells per cubic millimeter at 2 years after initiation of combination antiretroviral therapy is associated with increased mortality in HIV-infected individuals with viral suppression.

    PubMed

    Loutfy, Mona R; Genebat, Miguel; Moore, David; Raboud, Janet; Chan, Keith; Antoniou, Tony; Milan, David; Shen, Anya; Klein, Marina B; Cooper, Curtis; Machouf, Nima; Rourke, Sean B; Rachlis, Anita; Tsoukas, Chris; Montaner, Julio S G; Walmsley, Sharon L; Smieja, Marek; Bayoumi, Ahmed; Mills, Edward; Hogg, Robert S

    2010-12-01

    To determine the long-term impact of immunologic discordance (viral load <50 copies/mL and CD4+ count <=200 cells/mm3) in antiretroviral-naive patients initiating combination antiretroviral therapy (cART). Our analysis included antiretroviral-naive individuals from a population-based Canadian Observational Cohort that initiated cART after January 1, 2000, and achieved virologic suppression. Multivariable Cox proportional hazards regression was used to examine the association between 1-year and 2-year immunologic discordance and time to death from all-causes. Correlates of immunologic discordance were assessed with logistic regression. Immunologic discordance was observed in 19.9% (404 of 2028) and 10.2% (176 of 1721) of individuals at 1 and 2 years after cART initiation, respectively. Two-year immunologic discordance was associated with an increased risk of death [adjusted hazard ratio = 2.69; 95% confidence interval (CI): 1.26 to 5.78]. One-year immunologic discordance was not associated with death (adjusted hazard ratio = 1.12; 95% CI: 0.54 to 2.30). Two-year immunologic discordance was associated with older age (aOR per decade = 1.23; 95% CI: 1.03 to 1.48), male gender (aOR = 1.86; 95% CI: 1.09 to 3.16), injection drug use (aOR = 2.75; 95% CI: 1.81 to 4.17), and lower baseline CD4+ count (aOR per 100 cells = 0.24; 95% CI: 0.19 to 0.31) and viral load (aOR per log10 copies/mL = 0.46; 95% CI: 0.33 to 0.65). Immunologic discordance after 2 years of cART in antiretroviral-naive individuals was significantly associated with an increased risk of mortality.

  6. [Dentists on Mars

    NASA Technical Reports Server (NTRS)

    Duke, P. J.

    2004-01-01

    The oral health of astronauts, last studied in the mid- 1970s on Skylab, has not been a priority area of study for NASA due to the short length of shuttle stays. But with longer stays on the International Space Station, and planning for a trip to Mars, investigations into how spaceflight affects oral health are needed. The objective of this symposium is to introduce the dental research community to changes occurring in humans who go into space, and how these changes might impact oral health. Dr. Millie Hughes-Fulford, an astronaut-scientist, will review what happens to humans who go into space, and the difficulties of living, and carrying out experiments in space. She will then discuss her research on cell cultures of osteoblasts in space, and in hypergravity Dr. Gerald Sonnenfeld will review immunological changes that occur in spaceflight, and relate the observed decreases in various types of immunological responses to possible effects on oral immunological factors. Dr. Marian Lewis will discuss the effects of spaceflight on gene expression using results from her spaceflight experiments on various cell types. Dr. Jack van Loon, fiom the Dutch Experiment Support Center, will review what is known about bone loss in humans and rats and metatarsal cultures which go into space, and review ground based models (head down bedrest, and tail suspension) that simulate the unloading of spaceflight. Attendees will gain a knowledge of spaceflight research, and information on getting their own experiments in space. The symposium is supported by the NASA Office of Bioastronautics

  7. Live single cell functional phenotyping in droplet nano-liter reactors.

    PubMed

    Konry, Tania; Golberg, Alexander; Yarmush, Martin

    2013-11-11

    While single cell heterogeneity is present in all biological systems, most studies cannot address it due to technical limitations. Here we describe a nano-liter droplet microfluidic-based approach for stimulation and monitoring of surface and secreted markers of live single immune dendritic cells (DCs) as well as monitoring the live T cell/DC interaction. This nano-liter in vivo simulating microenvironment allows delivering various stimuli reagents to each cell and appropriate gas exchanges which are necessary to ensure functionality and viability of encapsulated cells. Labeling bioassay and microsphere sensors were integrated into nano-liter reaction volume of the droplet to monitor live single cell surface markers and secretion analysis in the time-dependent fashion. Thus live cell stimulation, secretion and surface monitoring can be obtained simultaneously in distinct microenvironment, which previously was possible using complicated and multi-step in vitro and in vivo live-cell microscopy, together with immunological studies of the outcome secretion of cellular function.

  8. Advances in cancer immunology and cancer immunotherapy.

    PubMed

    Voena, Claudia; Chiarle, Roberto

    2016-02-01

    After decades of setbacks, cancer immunology is living its Golden Age. Recent advances in cancer immunology have provided new therapeutic approaches to treat cancer. The objective clinical response observed in patients treated with antibodies that block the immune checkpoints, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell-death protein 1 (PD-1)/programmed cell-death 1 ligand 1 (PD-L1) pathways, has led to their FDA approval for the treatment of melanoma in 2011 and in 2014, respectively. The anti-PD-1 antibody nivolumab has received the FDA-approval in March 2015 for squamous lung cancer treatment. In addition, antibodies targeting PD-1 or PD-L1 have demonstrated their efficacy and safety in additional tumors, including non-small cell lung carcinoma (NSCLC), renal cell carcinoma (RCC), bladder cancer, and Hodgkin's lymphoma. Almost at the same time, the field of adoptive cell transfer has exploded. The chimeric antigen receptor (CAR) T technology has provided strong evidence of efficacy in the treatment of B cell malignancies, and different T cell based treatments are currently under investigation for different types of tumors. In this review we will discuss the latest advances in cancer immunology and immunotherapy as well as new treatments now under development in the clinic and potential strategies that have shown promising results in preclinical models.

  9. Hydrogel-based encapsulation of biological, functional tissue: fundamentals, technologies and applications

    NASA Astrophysics Data System (ADS)

    Zimmermann, H.; Ehrhart, F.; Zimmermann, D.; Müller, K.; Katsen-Globa, A.; Behringer, M.; Feilen, P. J.; Gessner, P.; Zimmermann, G.; Shirley, S. G.; Weber, M. M.; Metze, J.; Zimmermann, U.

    2007-12-01

    Replacing dysfunctional endocrine cells or tissues (e.g. islets, parathyroid tissue) by functional, foreign material without using immunosuppressives could soon become reality. Immunological reactions are avoided by encapsulating cells/tissues in hydrogel (e.g. alginate) microcapsules, preventing interaction of the enclosed material with the host’s immune system while permitting the unhindered passage of nutrients, oxygen and secreted therapeutic factors. Detailed investigations of the physical, physico-chemical and immunological parameters of alginate-based microcapsules have led recently to the development of a novel class of cell-entrapping microcapsules that meet the demands of biocompatibility, long-term integrity and function. This together with the development of ‘good medical practice’ microfluidic chip technology and of advanced cryopreservation technology for generation and storage of immunoisolated transplants will bring cell-based therapy to clinics and the market.

  10. Synthetic immunology: modulating the human immune system.

    PubMed

    Geering, Barbara; Fussenegger, Martin

    2015-02-01

    Humans have manipulated the immune system to dampen or boost the immune response for thousands of years. As our understanding of fundamental immunology and biotechnological methodology accumulates, we can capitalize on this combined knowledge to engineer biological devices with the aim of rationally manipulating the immune response. We address therapeutic approaches based on the principles of synthetic immunology that either ameliorate disorders of the immune system by interfering with the immune response, or improve diverse pathogenic conditions by exploiting immune cell effector functions. We specifically highlight synthetic proteins investigated in preclinical and clinical trials, summarize studies that have used engineered immune cells, and finish with a discussion of possible future therapeutic concepts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Immunologic Approaches for the Treatment of Multiple Myeloma

    PubMed Central

    Rasche, Leo; Weinhold, Niels; Morgan, Gareth J; van Rhee, Frits; Davies, Faith E

    2017-01-01

    The FDA approval of two monoclonal antibodies in 2015 has heralded a new era of targeted immunotherapies for multiple myeloma (MM). In this review we discuss the recent approaches using different immunological components to treat MM. In particular, we review current monoclonal antibody based therapies, engineered T- and NK cell products, ‘off-target’ immunomodulation, and strategies utilizing allogeneic cell transplantation in MM. We discuss how an immunologic approach offers promise for the treatment of this genetically heterogeneous disease, and how patients with acquired drug resistance may particularly benefit from these therapies. We also describe some of the limitations of the current strategies and speculate on the future of personalized immunotherapies for MM. PMID:28431262

  12. White matter microstructure alterations correlate with terminally differentiated CD8+ effector T cell depletion in the peripheral blood in mania: Combined DTI and immunological investigation in the different phases of bipolar disorder.

    PubMed

    Magioncalda, Paola; Martino, Matteo; Tardito, Samuele; Sterlini, Bruno; Conio, Benedetta; Marozzi, Valentina; Adavastro, Giulia; Capobianco, Laura; Russo, Daniel; Parodi, Alessia; Kalli, Francesca; Nasi, Giorgia; Altosole, Tiziana; Piaggio, Niccolò; Northoff, Georg; Fenoglio, Daniela; Inglese, Matilde; Filaci, Gilberto; Amore, Mario

    2018-05-01

    White matter (WM) microstructural abnormalities and, independently, signs of immunological activation were consistently demonstrated in bipolar disorder (BD). However, the relationship between WM and immunological alterations as well as their occurrence in the various phases of BD remain unclear. In 60 type I BD patients - 20 in manic, 20 in depressive, 20 in euthymic phases - and 20 controls we investigated: (i) diffusion tensor imaging (DTI)-derived fractional anisotropy (FA), radial diffusivity (RD) and axial diffusivity (AD) using a tract-based spatial statistics (TBSS) approach; (ii) circulating T cell subpopulations frequencies, as well as plasma levels of different cytokines; (iii) potential relationships between WM and immunological data. We found: (i) a significant widespread combined FA-RD alteration mainly in mania, with involvement of the body of corpus callosum (BCC) and superior corona radiata (SCR); (ii) significant increase in CD4+ T cells as well as significant decrease in CD8+ T cells and their subpopulations effector memory (CD8+ CD28-CD45RA-), terminal effector memory (CD8+ CD28-CD45RA+) and CD8+ IFNγ+ in mania; (iii) a significant relationship between WM and immunological alterations in the whole cohort, and a significant correlation of FA-RD abnormalities in the BCC and SCR with reduced frequencies of CD8+ terminal effector memory and CD8+ IFNγ+ T cells in mania only. Our data show a combined occurrence of WM and immunological alterations in mania. WM abnormalities highly correlated with reduction in circulating CD8+ T cell subpopulations that are terminally differentiated effector cells prone to tissue migration, suggesting that these T cells could play a role in WM alteration in BD. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Antiretroviral therapy suppressed participants with low CD4+ T-cell counts segregate according to opposite immunological phenotypes

    PubMed Central

    Pérez-Santiago, Josué; Ouchi, Dan; Urrea, Victor; Carrillo, Jorge; Cabrera, Cecilia; Villà-Freixa, Jordi; Puig, Jordi; Paredes, Roger; Negredo, Eugènia; Clotet, Bonaventura; Massanella, Marta; Blanco, Julià

    2016-01-01

    Background: The failure to increase CD4+ T-cell counts in some antiretroviral therapy suppressed participants (immunodiscordance) has been related to perturbed CD4+ T-cell homeostasis and impacts clinical evolution. Methods: We evaluated different definitions of immunodiscordance based on CD4+ T-cell counts (cutoff) or CD4+ T-cell increases from nadir value (ΔCD4) using supervised random forest classification of 74 immunological and clinical variables from 196 antiretroviral therapy suppressed individuals. Unsupervised clustering was performed using relevant variables identified in the supervised approach from 191 individuals. Results: Cutoff definition of CD4+ cell count 400 cells/μl performed better than any other definition in segregating immunoconcordant and immunodiscordant individuals (85% accuracy), using markers of activation, nadir and death of CD4+ T cells. Unsupervised clustering of relevant variables using this definition revealed large heterogeneity between immunodiscordant individuals and segregated participants into three distinct subgroups with distinct production, programmed cell-death protein-1 (PD-1) expression, activation and death of T cells. Surprisingly, a nonnegligible number of immunodiscordant participants (22%) showed high frequency of recent thymic emigrants and low CD4+ T-cell activation and death, very similar to immunoconcordant participants. Notably, human leukocyte antigen - antigen D related (HLA-DR) PD-1 and CD45RA expression in CD4+ T cells allowed reproducing subgroup segregation (81.4% accuracy). Despite sharp immunological differences, similar and persistently low CD4+ values were maintained in these participants over time. Conclusion: A cutoff value of CD4+ T-cell count 400 cells/μl classified better immunodiscordant and immunoconcordant individuals than any ΔCD4 classification. Immunodiscordance may present several, even opposite, immunological patterns that are identified by a simple immunological follow-up. Subgroup classification may help clinicians to delineate diverse approaches that may be needed to boost CD4+ T-cell recovery. PMID:27427875

  14. Immunological Approaches to Biomass Characterization and Utilization

    PubMed Central

    Pattathil, Sivakumar; Avci, Utku; Zhang, Tiantian; Cardenas, Claudia L.; Hahn, Michael G.

    2015-01-01

    Plant biomass is the major renewable feedstock resource for sustainable generation of alternative transportation fuels to replace fossil carbon-derived fuels. Lignocellulosic cell walls are the principal component of plant biomass. Hence, a detailed understanding of plant cell wall structure and biosynthesis is an important aspect of bioenergy research. Cell walls are dynamic in their composition and structure, varying considerably among different organs, cells, and developmental stages of plants. Hence, tools are needed that are highly efficient and broadly applicable at various levels of plant biomass-based bioenergy research. The use of plant cell wall glycan-directed probes has seen increasing use over the past decade as an excellent approach for the detailed characterization of cell walls. Large collections of such probes directed against most major cell wall glycans are currently available worldwide. The largest and most diverse set of such probes consists of cell wall glycan-directed monoclonal antibodies (McAbs). These McAbs can be used as immunological probes to comprehensively monitor the overall presence, extractability, and distribution patterns among cell types of most major cell wall glycan epitopes using two mutually complementary immunological approaches, glycome profiling (an in vitro platform) and immunolocalization (an in situ platform). Significant progress has been made recently in the overall understanding of plant biomass structure, composition, and modifications with the application of these immunological approaches. This review focuses on such advances made in plant biomass analyses across diverse areas of bioenergy research. PMID:26579515

  15. Immunology of Bee Venom.

    PubMed

    Elieh Ali Komi, Daniel; Shafaghat, Farzaneh; Zwiener, Ricardo D

    2018-06-01

    Bee venom is a blend of biochemicals ranging from small peptides and enzymes to biogenic amines. It is capable of triggering severe immunologic reactions owing to its allergenic fraction. Venom components are presented to the T cells by antigen-presenting cells within the skin. These Th2 type T cells then release IL-4 and IL-13 which subsequently direct B cells to class switch to production of IgE. Generating venom-specific IgE and crosslinking FcεR1(s) on the surface of mast cells complete the sensitizing stage in allergic individuals who are most likely to experience severe and even fatal allergic reactions after being stung. Specific IgE for bee venom is a double-edged sword as it is a powerful mediator in triggering allergic events but is also applied successfully in diagnosis of the venom allergic patient. The healing capacity of bee venom has been rediscovered under laboratory-controlled conditions using animal models and cell cultures. The potential role of enzymatic fraction of bee venom including phospholipase A2 in the initiation and development of immune responses also has been studied in numerous research settings. Undoubtedly, having insights into immunologic interactions between bee venom components and innate/specific immune cells both locally and systematically will contribute to the development of immunologic strategies in specific and epitope-based immunotherapy especially in individuals with Hymenoptera venom allergy.

  16. Strategy for selecting nanotechnology carriers to overcome immunological and hematological toxicities challenging clinical translation of nucleic acid-based therapeutics.

    PubMed

    Dobrovolskaia, Marina A; McNeil, Scott E

    2015-07-01

    Clinical translation of nucleic acid-based therapeutics (NATs) is hampered by assorted challenges in immunotoxicity, hematotoxicity, pharmacokinetics, toxicology and formulation. Nanotechnology-based platforms are being considered to help address some of these challenges due to the nanoparticles' ability to change drug biodistribution, stability, circulation half-life, route of administration and dosage. Addressing toxicology and pharmacology concerns by various means including NATs reformulation using nanotechnology-based carriers has been reviewed before. However, little attention was given to the immunological and hematological issues associated with nanotechnology reformulation. This review focuses on application of nanotechnology carriers for delivery of various types of NATs, and how reformulation using nanoparticles affects immunological and hematological toxicities of this promising class of therapeutic agents. NATs share several immunological and hematological toxicities with common nanotechnology carriers. In order to avoid synergy or exaggeration of undesirable immunological and hematological effects of NATs by a nanocarrier, it is critical to consider the immunological compatibility of the nanotechnology platform and its components. Since receptors sensing nucleic acids are located essentially in all cellular compartments, a strategy for developing a nanoformulation with reduced immunotoxicity should first focus on precise delivery to the target site/cells and then on optimizing intracellular distribution.

  17. Isolation and preservation of peripheral blood mononuclear cells for analysis of islet antigen-reactive T cell responses: position statement of the T-Cell Workshop Committee of the Immunology of Diabetes Society.

    PubMed

    Mallone, R; Mannering, S I; Brooks-Worrell, B M; Durinovic-Belló, I; Cilio, C M; Wong, F S; Schloot, N C

    2011-01-01

    Autoimmune T cell responses directed against insulin-producing β cells are central to the pathogenesis of type 1 diabetes (T1D). Detection of such responses is therefore critical to provide novel biomarkers for T1D 'immune staging' and to understand the mechanisms underlying the disease. While different T cell assays are being developed for these purposes, it is important to optimize and standardize methods for processing human blood samples for these assays. To this end, we review data relevant to critical parameters in peripheral blood mononuclear cell (PBMC) isolation, (cryo)preservation, distribution and usage for detecting antigen-specific T cell responses. Based on these data, we propose recommendations on processing blood samples for T cell assays and identify gaps in knowledge that need to be addressed. These recommendations may be relevant not only for the analysis of T cell responses in autoimmune disease, but also in cancer and infectious disease, particularly in the context of clinical trials. © 2010 The Authors. Clinical and Experimental Immunology © 2010 British Society for Immunology.

  18. HIV Molecular Immunology 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusim, Karina; Korber, Bette Tina; Brander, Christian

    The scope and purpose of the HIV molecular immunology database: HIV Molecular Immunology is a companion volume to HIV Sequence Compendium. This publication, the 2015 edition, is the PDF version of the web-based HIV Immunology Database (http://www.hiv.lanl.gov/ content/immunology/). The web interface for this relational database has many search options, as well as interactive tools to help immunologists design reagents and interpret their results. In the HIV Immunology Database, HIV-specific B-cell and T-cell responses are summarized and annotated. Immunological responses are divided into three parts, CTL, T helper, and antibody. Within these parts, defined epitopes are organized by protein and bindingmore » sites within each protein, moving from left to right through the coding regions spanning the HIV genome. We include human responses to natural HIV infections, as well as vaccine studies in a range of animal models and human trials. Responses that are not specifically defined, such as responses to whole proteins or monoclonal antibody responses to discontinuous epitopes, are summarized at the end of each protein section. Studies describing general HIV responses to the virus, but not to any specific protein, are included at the end of each part. The annotation includes information such as cross-reactivity, escape mutations, antibody sequence, TCR usage, functional domains that overlap with an epitope, immune response associations with rates of progression and therapy, and how specific epitopes were experimentally defined. Basic information such as HLA specificities for T-cell epitopes, isotypes of monoclonal antibodies, and epitope sequences are included whenever possible. All studies that we can find that incorporate the use of a specific monoclonal antibody are included in the entry for that antibody. A single T-cell epitope can have multiple entries, generally one entry per study. Finally, maps of all defined linear epitopes relative to the HXB2 reference proteins are provided. Alignments of CTL, helper T-cell, and antibody epitopes are available through the search interface on our web site at http:// www.hiv.lanl.gov/content/immunology.« less

  19. Comparison of cytotoxicity, genotoxicity and immunological inflammatory biomarker activity of several endodontic sealers against immortalized human pulp cells.

    PubMed

    Martinho, F C; Camargo, S E A; Fernandes, A M M; Campos, M S; Prado, R F; Camargo, C H R; Valera, M C

    2018-01-01

    To establish an SV40 T-Ag-transfected cell line of human pulp-derived cells in order to compare the cytotoxicity, genotoxicity and to investigate the activities of immunological biomarkers of several endodontic sealers. Primary human pulp cells and transfected cells were cultured. Cell morphology and proliferation were analysed, and the expression of cell-specific gene transcripts and proteins was detected by RT-PCR and immunohistochemistry. Transfection of human pulp-derived cells resulted in an immortalized cell line retaining phenotypic characteristics from the primarily cells tested. The SV40 T-Ag-transfected cells were cultured and stimulated by sealers (Apexit Plus, Real Seal, AH Plus, and EndoREZ) to evaluate the cytotoxicity and genotoxicity by MTT and MTN assays, respectively. Immunological inflammatory biomarkers (IL6, IL8 and TNF-α) were determined by ELISA assay. The differences between median values were statistically analysed using Kruskal-Wallis and Dunn's tests at 5% significance level. The cytotoxicity assay revealed that multimethacrylate (Real Seal) was the most cytotoxic sealer (P < 0.05) and exhibited the highest inflammatory potential against the SV40 T-Ag-transfected cells (P < 0.05). All root canal sealers tested were able to stimulate the immortalized pulp cells to produce IL-6, IL-8 and TNF-α, with differences in relation to the control group (P < 0.05). Higher levels of IL-6, IL-8 and TNF-α were found in cell supernatant after stimulation with multimethacrylate (Real Seal) compared to all other sealers tested (P < 0.05). No differences were found comparing epoxy resin-based sealer (AHPlus), single-methacrylate sealer (EndoREZ) and calcium hydroxide-based sealer (Apexit Plus), regardless of the cytokine investigated (all P > 0.05). A SV40 T-Ag-transfected cell line of human pulp-derived cells was established. The methacrylate resin-based sealer (Real Seal) exhibited the greatest cytoxicity and inflammatory potential against immortalized pulp cells compared to an epoxy resin-based sealer (AH Plus), a methacrylate-based sealer (EndoRez) and a calcium hydroxide-based sealer (Apexit). © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  20. An Investigation of Immunological Tolerance Based on Chimaera Analysis

    PubMed Central

    Michie, Donald; Woodruff, M. F. A.; Zeiss, Irmgard M.

    1961-01-01

    Newborn mice of strain A were injected intravenously at birth with 9–15 million spleen cells from adult CBA donors. The recipients exhibited splenomegaly and other signs of graft-versus-host reaction during the first 3 weeks of life. Adult survivors were uniformly tolerant of CBA skin. They showed no sign of a continuing graft-versus-host reaction. The spleens of the treated mice were tested for the presence of immunologically competent donor and host cells by Simonsen's discriminant spleen assay. From the age of 7 days onwards the spleens were found to contain a small percentage of donor cells which were immunologically active against antigens of a third strain. In spleens from adult survivors activity, attributable to the host component, against third-party antigens was undiminished as compared with that of untreated A-strain mice. But activity against the CBA donor strain was absent. PMID:14473459

  1. Actin Engine in Immunological Synapse

    PubMed Central

    Piragyte, Indre

    2012-01-01

    T cell activation and function require physical contact with antigen presenting cells at a specialized junctional structure known as the immunological synapse. Once formed, the immunological synapse leads to sustained T cell receptor-mediated signalling and stabilized adhesion. High resolution microscopy indeed had a great impact in understanding the function and dynamic structure of immunological synapse. Trends of recent research are now moving towards understanding the mechanical part of immune system, expanding our knowledge in mechanosensitivity, force generation, and biophysics of cell-cell interaction. Actin cytoskeleton plays inevitable role in adaptive immune system, allowing it to bear dynamic and precise characteristics at the same time. The regulation of mechanical engine seems very complicated and overlapping, but it enables cells to be very sensitive to external signals such as surface rigidity. In this review, we focus on actin regulators and how immune cells regulate dynamic actin rearrangement process to drive the formation of immunological synapse. PMID:22916042

  2. Multiscale modeling of mucosal immune responses

    PubMed Central

    2015-01-01

    Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation. PMID:26329787

  3. Multiscale modeling of mucosal immune responses.

    PubMed

    Mei, Yongguo; Abedi, Vida; Carbo, Adria; Zhang, Xiaoying; Lu, Pinyi; Philipson, Casandra; Hontecillas, Raquel; Hoops, Stefan; Liles, Nathan; Bassaganya-Riera, Josep

    2015-01-01

    Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation.Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM.

  4. The Immunological Genome Project: networks of gene expression in immune cells.

    PubMed

    Heng, Tracy S P; Painter, Michio W

    2008-10-01

    The Immunological Genome Project combines immunology and computational biology laboratories in an effort to establish a complete 'road map' of gene-expression and regulatory networks in all immune cells.

  5. Immunologically active biomaterials for cancer therapy.

    PubMed

    Ali, Omar A; Mooney, David J

    2011-01-01

    Our understanding of immunological regulation has progressed tremendously alongside the development of materials science, and at their intersection emerges the possibility to employ immunologically active biomaterials for cancer immunotherapy. Strong and sustained anticancer, immune responses are required to clear large tumor burdens in patients, but current approaches for immunotherapy are formulated as products for delivery in bolus, which may be indiscriminate and/or shortlived. Multifunctional biomaterial particles are now being developed to target and sustain antigen and adjuvant delivery to dendritic cells in vivo, and these have the potential to direct and prolong antigen-specific T cell responses. Three-dimensional immune cell niches are also being developed to regulate the recruitment, activation and deployment of immune cells in situ to promote potent antitumor responses. Recent studies demonstrate that materials with immune targeting and stimulatory capabilities can enhance the magnitude and duration of immune responses to cancer antigens, and preclinical results utilizing material-based immunotherapy in tumor models show a strong therapeutic benefit, justifying translation to and future testing in the clinic.

  6. Engineering approaches to immunotherapy.

    PubMed

    Swartz, Melody A; Hirosue, Sachiko; Hubbell, Jeffrey A

    2012-08-22

    As the science of immunology grows increasingly mechanistic, motivation for developing quantitative, design-based engineering approaches has also evolved, both for therapeutic interventions and for elucidating immunological pathways in human disease. This has seeded the nascent field of "immunoengineering," which seeks to apply engineering analyses and design approaches to problems in translational immunology. For example, cell engineers are creating ways to tailor and use immune cells as living therapeutics; protein engineers are devising new methods of rapid antibody discovery; biomaterials scientists are guiding vaccine delivery and immune-cell activation with novel constructs; and systems immunologists are deciphering the evolution and maintenance of T and B cell receptor repertoires, which could help guide vaccine design. The field is multidisciplinary and collaborative, with engineers and immunologists working together to better understand and treat disease. We discuss the scientific progress in this young, yet rapidly evolving research area, which has yielded numerous start-up companies that are betting on impact in clinical and commercial translation in the near future.

  7. Tumor-specific antigens and immunologic adjuvants in cancer immunotherapy.

    PubMed

    Seremet, Teofila; Brasseur, Francis; Coulie, Pierre G

    2011-01-01

    T cell-based cancer immunotherapy relies on advancements made over the last 20 years on the molecular mechanisms underlying the antigenicity of tumors. This review focuses on human tumor antigens recognized by T lymphocytes, particularly the reasons why some are tumor-specific but others are not, and on the immunologic adjuvants used in clinical trials on therapeutic vaccination with defined tumor antigens.

  8. HIV Molecular Immunology 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusim, Karina; Korber, Bette Tina Marie; Barouch, Dan

    HIV Molecular Immunology is a companion volume to HIV Sequence Compendium. This publication, the 2014 edition, is the PDF version of the web-based HIV Immunology Database (http://www.hiv.lanl.gov/content/immunology/). The web interface for this relational database has many search options, as well as interactive tools to help immunologists design reagents and interpret their results. In the HIV Immunology Database, HIV-specific B-cell and T-cell responses are summarized and annotated. Immunological responses are divided into three parts, CTL, T helper, and antibody. Within these parts, defined epitopes are organized by protein and binding sites within each protein, moving from left to right through themore » coding regions spanning the HIV genome. We include human responses to natural HIV infections, as well as vaccine studies in a range of animal models and human trials. Responses that are not specifically defined, such as responses to whole proteins or monoclonal antibody responses to discontinuous epitopes, are summarized at the end of each protein section. Studies describing general HIV responses to the virus, but not to any specific protein, are included at the end of each part. The annotation includes information such as crossreactivity, escape mutations, antibody sequence, TCR usage, functional domains that overlap with an epitope, immune response associations with rates of progression and therapy, and how specific epitopes were experimentally defined. Basic information such as HLA specificities for T-cell epitopes, isotypes of monoclonal antibodies, and epitope sequences are included whenever possible. All studies that we can find that incorporate the use of a specific monoclonal antibody are included in the entry for that antibody. A single T-cell epitope can have multiple entries, generally one entry per study. Finally, maps of all defined linear epitopes relative to the HXB2 reference proteins are provided.« less

  9. Orchestrating cytoskeleton and intracellular vesicle traffic to build functional immunological synapses.

    PubMed

    Soares, Helena; Lasserre, Rémi; Alcover, Andrés

    2013-11-01

    Immunological synapses are specialized cell-cell contacts formed between T lymphocytes and antigen-presenting cells. They are induced upon antigen recognition and are crucial for T-cell activation and effector functions. The generation and function of immunological synapses depend on an active T-cell polarization process, which results from a finely orchestrated crosstalk between the antigen receptor signal transduction machinery, the actin and microtubule cytoskeletons, and controlled vesicle traffic. Although we understand how some of these particular events are regulated, we still lack knowledge on how these multiple cellular elements are harmonized to ensure appropriate T-cell responses. We discuss here our view on how T-cell receptor signal transduction initially commands cytoskeletal and vesicle traffic polarization, which in turn sets the immunological synapse molecular design that regulates T-cell activation. We also discuss how the human immunodeficiency virus (HIV-1) hijacks some of these processes impairing immunological synapse generation and function. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Single-Cell Genomics: Approaches and Utility in Immunology.

    PubMed

    Neu, Karlynn E; Tang, Qingming; Wilson, Patrick C; Khan, Aly A

    2017-02-01

    Single-cell genomics offers powerful tools for studying immune cells, which make it possible to observe rare and intermediate cell states that cannot be resolved at the population level. Advances in computer science and single-cell sequencing technology have created a data-driven revolution in immunology. The challenge for immunologists is to harness computing and turn an avalanche of quantitative data into meaningful discovery of immunological principles, predictive models, and strategies for therapeutics. Here, we review the current literature on computational analysis of single-cell RNA-sequencing data and discuss underlying assumptions, methods, and applications in immunology, and highlight important directions for future research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Single Cell Genomics: Approaches and Utility in Immunology

    PubMed Central

    Neu, Karlynn E; Tang, Qingming; Wilson, Patrick C; Khan, Aly A

    2017-01-01

    Single cell genomics offers powerful tools for studying lymphocytes, which make it possible to observe rare and intermediate cell states that cannot be resolved at the population-level. Advances in computer science and single cell sequencing technology have created a data-driven revolution in immunology. The challenge for immunologists is to harness computing and turn an avalanche of quantitative data into meaningful discovery of immunological principles, predictive models, and strategies for therapeutics. Here, we review the current literature on computational analysis of single cell RNA-seq data and discuss underlying assumptions, methods, and applications in immunology, and highlight important directions for future research. PMID:28094102

  12. Theoretical immunology, Part 2: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perelson, A.S.

    1988-01-01

    This document contains 43 papers on current topics in immunology. Topics include cell chemotaxis, killer cells, AIDS, antigen reactivity, t-cells, crosslinking, cell-cell adhesion, immune response, and the regulation of lymphocyte proliferation. (TEM)

  13. Immunological Demyelination Triggers Macrophage/Microglial Cells Activation without Inducing Astrogliosis

    PubMed Central

    Sears-Kraxberger, Ilse; Keirstead, Hans S.

    2013-01-01

    The glial scar formed by reactive astrocytes and axon growth inhibitors associated with myelin play important roles in the failure of axonal regeneration following central nervous system (CNS) injury. Our laboratory has previously demonstrated that immunological demyelination of the CNS facilitates regeneration of severed axons following spinal cord injury. In the present study, we evaluate whether immunological demyelination is accompanied with astrogliosis. We compared the astrogliosis and macrophage/microglial cell responses 7 days after either immunological demyelination or a stab injury to the dorsal funiculus. Both lesions induced a strong activated macrophage/microglial cells response which was significantly higher within regions of immunological demyelination. However, immunological demyelination regions were not accompanied by astrogliosis compared to stab injury that induced astrogliosis which extended several millimeters above and below the lesions, evidenced by astroglial hypertrophy, formation of a glial scar, and upregulation of intermediate filaments glial fibrillary acidic protein (GFAP). Moreover, a stab or a hemisection lesion directly within immunological demyelination regions did not induced astrogliosis within the immunological demyelination region. These results suggest that immunological demyelination creates a unique environment in which astrocytes do not form a glial scar and provides a unique model to understand the putative interaction between astrocytes and activated macrophage/microglial cells. PMID:24319469

  14. Innate immunological function of TH2 cells in vivo

    USDA-ARS?s Scientific Manuscript database

    Th2 cells produce IL-13 when stimulated by papain or house dust mites (HDM) and induce eosinophilic inflammation. This innate response of cells of the adaptive immune system is dependent on IL-33-, not T cell receptor-, based stimulation. While type 2 innate lymphoid cells (ILC2s) are the dominant ...

  15. Integration of lyoplate based flow cytometry and computational analysis for standardized immunological biomarker discovery.

    PubMed

    Villanova, Federica; Di Meglio, Paola; Inokuma, Margaret; Aghaeepour, Nima; Perucha, Esperanza; Mollon, Jennifer; Nomura, Laurel; Hernandez-Fuentes, Maria; Cope, Andrew; Prevost, A Toby; Heck, Susanne; Maino, Vernon; Lord, Graham; Brinkman, Ryan R; Nestle, Frank O

    2013-01-01

    Discovery of novel immune biomarkers for monitoring of disease prognosis and response to therapy in immune-mediated inflammatory diseases is an important unmet clinical need. Here, we establish a novel framework for immunological biomarker discovery, comparing a conventional (liquid) flow cytometry platform (CFP) and a unique lyoplate-based flow cytometry platform (LFP) in combination with advanced computational data analysis. We demonstrate that LFP had higher sensitivity compared to CFP, with increased detection of cytokines (IFN-γ and IL-10) and activation markers (Foxp3 and CD25). Fluorescent intensity of cells stained with lyophilized antibodies was increased compared to cells stained with liquid antibodies. LFP, using a plate loader, allowed medium-throughput processing of samples with comparable intra- and inter-assay variability between platforms. Automated computational analysis identified novel immunophenotypes that were not detected with manual analysis. Our results establish a new flow cytometry platform for standardized and rapid immunological biomarker discovery with wide application to immune-mediated diseases.

  16. Integration of Lyoplate Based Flow Cytometry and Computational Analysis for Standardized Immunological Biomarker Discovery

    PubMed Central

    Villanova, Federica; Di Meglio, Paola; Inokuma, Margaret; Aghaeepour, Nima; Perucha, Esperanza; Mollon, Jennifer; Nomura, Laurel; Hernandez-Fuentes, Maria; Cope, Andrew; Prevost, A. Toby; Heck, Susanne; Maino, Vernon; Lord, Graham; Brinkman, Ryan R.; Nestle, Frank O.

    2013-01-01

    Discovery of novel immune biomarkers for monitoring of disease prognosis and response to therapy in immune-mediated inflammatory diseases is an important unmet clinical need. Here, we establish a novel framework for immunological biomarker discovery, comparing a conventional (liquid) flow cytometry platform (CFP) and a unique lyoplate-based flow cytometry platform (LFP) in combination with advanced computational data analysis. We demonstrate that LFP had higher sensitivity compared to CFP, with increased detection of cytokines (IFN-γ and IL-10) and activation markers (Foxp3 and CD25). Fluorescent intensity of cells stained with lyophilized antibodies was increased compared to cells stained with liquid antibodies. LFP, using a plate loader, allowed medium-throughput processing of samples with comparable intra- and inter-assay variability between platforms. Automated computational analysis identified novel immunophenotypes that were not detected with manual analysis. Our results establish a new flow cytometry platform for standardized and rapid immunological biomarker discovery with wide application to immune-mediated diseases. PMID:23843942

  17. HPVdb: a data mining system for knowledge discovery in human papillomavirus with applications in T cell immunology and vaccinology

    PubMed Central

    Zhang, Guang Lan; Riemer, Angelika B.; Keskin, Derin B.; Chitkushev, Lou; Reinherz, Ellis L.; Brusic, Vladimir

    2014-01-01

    High-risk human papillomaviruses (HPVs) are the causes of many cancers, including cervical, anal, vulvar, vaginal, penile and oropharyngeal. To facilitate diagnosis, prognosis and characterization of these cancers, it is necessary to make full use of the immunological data on HPV available through publications, technical reports and databases. These data vary in granularity, quality and complexity. The extraction of knowledge from the vast amount of immunological data using data mining techniques remains a challenging task. To support integration of data and knowledge in virology and vaccinology, we developed a framework called KB-builder to streamline the development and deployment of web-accessible immunological knowledge systems. The framework consists of seven major functional modules, each facilitating a specific aspect of the knowledgebase construction process. Using KB-builder, we constructed the Human Papillomavirus T cell Antigen Database (HPVdb). It contains 2781 curated antigen entries of antigenic proteins derived from 18 genotypes of high-risk HPV and 18 genotypes of low-risk HPV. The HPVdb also catalogs 191 verified T cell epitopes and 45 verified human leukocyte antigen (HLA) ligands. Primary amino acid sequences of HPV antigens were collected and annotated from the UniProtKB. T cell epitopes and HLA ligands were collected from data mining of scientific literature and databases. The data were subject to extensive quality control (redundancy elimination, error detection and vocabulary consolidation). A set of computational tools for an in-depth analysis, such as sequence comparison using BLAST search, multiple alignments of antigens, classification of HPV types based on cancer risk, T cell epitope/HLA ligand visualization, T cell epitope/HLA ligand conservation analysis and sequence variability analysis, has been integrated within the HPVdb. Predicted Class I and Class II HLA binding peptides for 15 common HLA alleles are included in this database as putative targets. HPVdb is a knowledge-based system that integrates curated data and information with tailored analysis tools to facilitate data mining for HPV vaccinology and immunology. To our best knowledge, HPVdb is a unique data source providing a comprehensive list of HPV antigens and peptides. Database URL: http://cvc.dfci.harvard.edu/hpv/ PMID:24705205

  18. HPVdb: a data mining system for knowledge discovery in human papillomavirus with applications in T cell immunology and vaccinology.

    PubMed

    Zhang, Guang Lan; Riemer, Angelika B; Keskin, Derin B; Chitkushev, Lou; Reinherz, Ellis L; Brusic, Vladimir

    2014-01-01

    High-risk human papillomaviruses (HPVs) are the causes of many cancers, including cervical, anal, vulvar, vaginal, penile and oropharyngeal. To facilitate diagnosis, prognosis and characterization of these cancers, it is necessary to make full use of the immunological data on HPV available through publications, technical reports and databases. These data vary in granularity, quality and complexity. The extraction of knowledge from the vast amount of immunological data using data mining techniques remains a challenging task. To support integration of data and knowledge in virology and vaccinology, we developed a framework called KB-builder to streamline the development and deployment of web-accessible immunological knowledge systems. The framework consists of seven major functional modules, each facilitating a specific aspect of the knowledgebase construction process. Using KB-builder, we constructed the Human Papillomavirus T cell Antigen Database (HPVdb). It contains 2781 curated antigen entries of antigenic proteins derived from 18 genotypes of high-risk HPV and 18 genotypes of low-risk HPV. The HPVdb also catalogs 191 verified T cell epitopes and 45 verified human leukocyte antigen (HLA) ligands. Primary amino acid sequences of HPV antigens were collected and annotated from the UniProtKB. T cell epitopes and HLA ligands were collected from data mining of scientific literature and databases. The data were subject to extensive quality control (redundancy elimination, error detection and vocabulary consolidation). A set of computational tools for an in-depth analysis, such as sequence comparison using BLAST search, multiple alignments of antigens, classification of HPV types based on cancer risk, T cell epitope/HLA ligand visualization, T cell epitope/HLA ligand conservation analysis and sequence variability analysis, has been integrated within the HPVdb. Predicted Class I and Class II HLA binding peptides for 15 common HLA alleles are included in this database as putative targets. HPVdb is a knowledge-based system that integrates curated data and information with tailored analysis tools to facilitate data mining for HPV vaccinology and immunology. To our best knowledge, HPVdb is a unique data source providing a comprehensive list of HPV antigens and peptides. Database URL: http://cvc.dfci.harvard.edu/hpv/.

  19. Overcoming immunological barriers in regenerative medicine.

    PubMed

    Zakrzewski, Johannes L; van den Brink, Marcel R M; Hubbell, Jeffrey A

    2014-08-01

    Regenerative therapies that use allogeneic cells are likely to encounter immunological barriers similar to those that occur with transplantation of solid organs and allogeneic hematopoietic stem cells (HSCs). Decades of experience in clinical transplantation hold valuable lessons for regenerative medicine, offering approaches for developing tolerance-induction treatments relevant to cell therapies. Outside the field of solid-organ and allogeneic HSC transplantation, new strategies are emerging for controlling the immune response, such as methods based on biomaterials or mimicry of antigen-specific peripheral tolerance. Novel biomaterials can alter the behavior of cells in tissue-engineered constructs and can blunt host immune responses to cells and biomaterial scaffolds. Approaches to suppress autoreactive immune cells may also be useful in regenerative medicine. The most innovative solutions will be developed through closer collaboration among stem cell biologists, transplantation immunologists and materials scientists.

  20. From Hayflick to Walford: the role of T cell replicative senescence in human aging.

    PubMed

    Effros, Rita B

    2004-06-01

    The immunologic theory of aging, proposed more than 40 years ago by Roy Walford, suggests that the normal process of aging in man and in animals is pathogenetically related to faulty immunological processes. Since that time, research on immunological aging has undergone extraordinary expansion, leading to new information in areas spanning from molecular biology and cell signaling to large-scale clinical studies. Investigation in this area has also provided unexpected insights into HIV disease, many aspects of which represent accelerated immunological aging. This article describes the initial insights and vision of Roy Walford into one particular facet of human immunological aging, namely, the potential relevance of the well-studied human fibroblast replicative senescence model, initially developed by Leonard Hayflick, to cells of the immune system. Extensive research on T cell senescence in cell culture has now documented changes in vitro that closely mirror alterations occurring during in vivo aging in humans, underscoring the biological significance of T cell replicative senescence. Moreover, the inclusion of high proportions of putatively senescent T cells in the 'immune risk phenotype' that is associated with early mortality in octogenarians provides initial clinical confirmation of both the immunologic theory of aging and the role of the T cell Hayflick Limit in human aging, two areas of gerontological research pioneered by Roy Walford.

  1. The Immunological Challenges of Cell Transplantation for the Treatment of Parkinson’s Disease

    PubMed Central

    Piquet, Amanda L.; Venkiteswaran, Kala; Marupudi, Neena I.; Berk, Matthew; Subramanian, Thyagarajan

    2012-01-01

    Dopaminergic cell transplantation is an experimental therapy for Parkinson’s disease (PD). It has many potential theoretical advantages over current treatment strategies such as providing continuous local dopaminergic replenishment, eliminating motor fluctuations and medication-induced dyskinesias, slowing down disease progression or even reversing disease pathology in the host. Recent studies also show that dopaminergic cell transplants provide long-term neuromodulation in the basal ganglia that simulates the combined effects of oral dopaminergic therapy and surgical therapies like deep brain stimulation, the contemporary therapeutic approach to advanced PD. However, dopaminergic cell transplantation in PD as not been optimized and current experimental techniques have many drawbacks. In published experiments to date of attempted dopaminergic grafting in PD, the major challenges are unacceptable graft-induced dyskinesias or failure of such grafts to exceed the benefits afforded by sham surgery. A deleterious host immune response to the transplant has been implicated as a major putative cause for these adverse outcomes. This article focuses on recent advances in understanding the immunology of the transplantation in PD and possible methods to overcome adverse events such that we could translate cell replacement strategies into viable clinical treatments in the future. PMID:22521427

  2. The immunological challenges of cell transplantation for the treatment of Parkinson's disease.

    PubMed

    Piquet, Amanda L; Venkiteswaran, Kala; Marupudi, Neena I; Berk, Matthew; Subramanian, Thyagarajan

    2012-07-01

    Dopaminergic cell transplantation is an experimental therapy for Parkinson's disease (PD). It has many potential theoretical advantages over current treatment strategies such as providing continuous local dopaminergic replenishment, eliminating motor fluctuations and medication-induced dyskinesias, slowing down disease progression or even reversing disease pathology in the host. Recent studies also show that dopaminergic cell transplants provide long-term neuromodulation in the basal ganglia that simulates the combined effects of oral dopaminergic therapy and surgical therapies like deep brain stimulation, the contemporary therapeutic approach to advanced PD. However, dopaminergic cell transplantation in PD as not been optimized and current experimental techniques have many drawbacks. In published experiments to date of attempted dopaminergic grafting in PD, the major challenges are unacceptable graft-induced dyskinesias or failure of such grafts to exceed the benefits afforded by sham surgery. A deleterious host immune response to the transplant has been implicated as a major putative cause for these adverse outcomes. This article focuses on recent advances in understanding the immunology of the transplantation in PD and possible methods to overcome adverse events such that we could translate cell replacement strategies into viable clinical treatments in the future. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Cell Therapy for Prophylactic Tolerance in Immunoglobulin E-mediated Allergy.

    PubMed

    Baranyi, Ulrike; Farkas, Andreas M; Hock, Karin; Mahr, Benedikt; Linhart, Birgit; Gattringer, Martina; Focke-Tejkl, Margit; Petersen, Arnd; Wrba, Fritz; Rülicke, Thomas; Valenta, Rudolf; Wekerle, Thomas

    2016-05-01

    Therapeutic strategies for the prophylaxis of IgE-mediated allergy remain an unmet medical need. Cell therapy is an emerging approach with high potential for preventing and treating immunological diseases. We aimed to develop a cell-based therapy inducing permanent allergen-specific immunological tolerance for preventing IgE-mediated allergy. Wild-type mice were treated with allergen-expressing bone marrow cells under a short course of tolerogenic immunosuppression (mTOR inhibition and costimulation blockade). Bone marrow was retrieved from a novel transgenic mouse ubiquitously expressing the major grass pollen allergen Phl p 5 as a membrane-anchored protein (BALB/c-Tg[Phlp5-GFP], here mPhl p 5). After transplantation recipients were IgE-sensitized at multiple time points with Phl p 5 and control allergen. Mice treated with mPhl p 5 bone marrow did not develop Phl p 5-specific IgE (or other isotypes) despite repeated administration of the allergen, while mounting and maintaining a strong humoral response towards the control allergen. Notably, Phl p 5-specific T cell responses and allergic airway inflammation were also completely prevented. Interestingly allergen-specific B cell tolerance was maintained independent of Treg functions indicating deletional tolerance as underlying mechanism. This proof-of-concept study demonstrates that allergen-specific immunological tolerance preventing occurrence of allergy can be established through a cell-based therapy employing allergen-expressing leukocytes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Immunology of the gastrointestinal tract and liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heyworth, M.F.; Jones, A.L.

    1988-01-01

    This book contains 11 chapters. Some of the chapter titles are: T cells and Other Non-B Lymphocytes; Mucosal Mast Cells and IgE; Genetic Aspects of Gastrointestinal Immunology; Immunological Functions of the Liver; Lymphocyte Migration and Mucosal Immunity; and Immunoglobulin Circulation and Secretion.

  5. Engineering antigen-specific immunological tolerance.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontos, Stephan; Grimm, Alizee J.; Hubbell, Jeffrey A.

    2015-05-01

    Unwanted immunity develops in response to many protein drugs, in autoimmunity, in allergy, and in transplantation. Approaches to induce immunological tolerance aim to either prevent these responses or reverse them after they have already taken place. We present here recent developments in approaches, based on engineered peptides, proteins and biomaterials, that harness mechanisms of peripheral tolerance both prophylactically and therapeutically to induce antigenspecific immunological tolerance. These mechanisms are based on responses of B and T lymphocytes to other cells in their immune environment that result in cellular deletion or ignorance to particular antigens, or in development of active immune regulatorymore » responses. Several of these approaches are moving toward clinical development, and some are already in early stages of clinical testing.« less

  6. 21 CFR 866.5470 - Hemoglobin immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... hemoglobin (the oxygen-carrying pigment in red blood cells) in blood, urine, plasma, or other body fluids... Hemoglobin immunological test system. (a) Indentification. A hemoglobin immunological test system is a device... blood cells), and leukemia (cancer of the blood-forming organs). (b) Classification. Class II...

  7. 21 CFR 866.5470 - Hemoglobin immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... hemoglobin (the oxygen-carrying pigment in red blood cells) in blood, urine, plasma, or other body fluids... Hemoglobin immunological test system. (a) Indentification. A hemoglobin immunological test system is a device... blood cells), and leukemia (cancer of the blood-forming organs). (b) Classification. Class II...

  8. 21 CFR 866.5470 - Hemoglobin immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... hemoglobin (the oxygen-carrying pigment in red blood cells) in blood, urine, plasma, or other body fluids... Hemoglobin immunological test system. (a) Indentification. A hemoglobin immunological test system is a device... blood cells), and leukemia (cancer of the blood-forming organs). (b) Classification. Class II...

  9. 21 CFR 866.5470 - Hemoglobin immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... hemoglobin (the oxygen-carrying pigment in red blood cells) in blood, urine, plasma, or other body fluids... Hemoglobin immunological test system. (a) Indentification. A hemoglobin immunological test system is a device... blood cells), and leukemia (cancer of the blood-forming organs). (b) Classification. Class II...

  10. Regulation of immunity and inflammation by hypoxia in immunological niches.

    PubMed

    Taylor, Cormac T; Colgan, Sean P

    2017-12-01

    Immunological niches are focal sites of immune activity that can have varying microenvironmental features. Hypoxia is a feature of physiological and pathological immunological niches. The impact of hypoxia on immunity and inflammation can vary depending on the microenvironment and immune processes occurring in a given niche. In physiological immunological niches, such as the bone marrow, lymphoid tissue, placenta and intestinal mucosa, physiological hypoxia controls innate and adaptive immunity by modulating immune cell proliferation, development and effector function, largely via transcriptional changes driven by hypoxia-inducible factor (HIF). By contrast, in pathological immunological niches, such as tumours and chronically inflamed, infected or ischaemic tissues, pathological hypoxia can drive tissue dysfunction and disease development through immune cell dysregulation. Here, we differentiate between the effects of physiological and pathological hypoxia on immune cells and the consequences for immunity and inflammation in different immunological niches. Furthermore, we discuss the possibility of targeting hypoxia-sensitive pathways in immune cells for the treatment of inflammatory disease.

  11. Memory-like Responses of Natural Killer Cells

    PubMed Central

    Cooper, Megan A.; Yokoyama, Wayne M.

    2010-01-01

    Summary Natural killer (NK) cells are lymphocytes with the capacity to produce cytokines and kill target cells upon activation. NK cells have long been categorized as members of the innate immune system and as such have been thought to follow the ‘rules’ of innate immunity, including the principle that they have no immunologic memory, a property thought to be strictly limited to adaptive immunity. However, recent studies have suggested that NK cells have the capacity to alter their behavior based on prior activation. This property is analogous to adaptive immune memory; however, some NK cell memory-like functions are not strictly antigen-dependent and can be demonstrated following cytokine stimulation. Here we discuss the recent evidence that NK cells can exhibit properties of immunologic memory, focusing on the ability of cytokines to non-specifically induce memory-like NK cells with enhanced responses to restimulation. PMID:20536571

  12. Liposomes containing NY‑ESO‑1/tetanus toxoid and adjuvant peptides targeted to human dendritic cells via the Fc receptor for cancer vaccines.

    PubMed

    Cruz, Luis J; Rueda, Felix; Simón, Lorena; Cordobilla, Begoña; Albericio, Fernando; Domingo, Joan C

    2014-04-01

    To improve the immunological response against tumors, a vaccine based on nanoliposomes targeted to the Fcg-receptor was developed to enhance the immunogenicity of tumor-associated antigens (TAAs). Using human dendritic cells in vitro, a fragment of the TAA NY-ESO-1 combined with a T-helper peptide from the tetanus toxoid encapsulated in nanoliposomes was evaluated. In addition, peptides Palm-IL-1 and MAP-IFN-g were coadministered as adjuvants to enhance the immunological response. Coadministration of Palm-IL-1 or MAP-IFN-g peptide adjuvants and the hybrid NY-ESO-1-tetanus toxoid (soluble or encapsulated in nanoliposomes without targeting) increased immunogenicity. However, the most potent immunological response was obtained when the peptide adjuvants were encapsulated in liposomes targeted to human dendritic cells via the Fc receptor. This targeted vaccine strategy is a promising tool to activate and deliver antigens to dendritic cells, thus improving immunotherapeutic response in situations in which the immune system is frequently compromised, as in advanced cancers.

  13. Immune cell screening of a nanoparticle library improves atherosclerosis therapy

    PubMed Central

    Baxter, Samantha; Menon, Arjun; Alaarg, Amr; Sanchez-Gaytan, Brenda L.; Fay, Francois; Zhao, Yiming; Ouimet, Mireille; Braza, Mounia S.; Longo, Valerie A.; Abdel-Atti, Dalya; Duivenvoorden, Raphael; Calcagno, Claudia; Storm, Gert; Tsimikas, Sotirios; Moore, Kathryn J.; Swirski, Filip K.; Nahrendorf, Matthias; Fisher, Edward A.; Pérez-Medina, Carlos; Fayad, Zahi A.; Reiner, Thomas; Mulder, Willem J. M.

    2016-01-01

    Immunological complexity in atherosclerosis warrants targeted treatment of specific inflammatory cells that aggravate the disease. With the initiation of large phase III trials investigating immunomodulatory drugs for atherosclerosis, cardiovascular disease treatment enters a new era. We here propose a radically different approach: implementing and evaluating in vivo a combinatorial library of nanoparticles with distinct physiochemical properties and differential immune cell specificities. The library’s nanoparticles are based on endogenous high-density lipoprotein, which can preferentially deliver therapeutic compounds to pathological macrophages in atherosclerosis. Using the apolipoprotein E-deficient (Apoe−/−) mouse model of atherosclerosis, we quantitatively evaluated the library’s immune cell specificity by combining immunological techniques and in vivo positron emission tomography imaging. Based on this screen, we formulated a liver X receptor agonist (GW3965) and abolished its liver toxicity while still preserving its therapeutic function. Screening the immune cell specificity of nanoparticles can be used to develop tailored therapies for atherosclerosis and other inflammatory diseases. PMID:27791119

  14. 21 CFR 866.5460 - Haptoglobin immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... that binds hemoglobin, the oxygen-carrying pigment in red blood cells) in serum. Measurement of haptoglobin may aid in the diagnosis of hemolytic diseases (diseases in which the red blood cells rupture and... Haptoglobin immunological test system. (a) Identification. A haptoglobin immunological test system is a device...

  15. 21 CFR 866.5490 - Hemopexin immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... survival of mature red blood cells and inability of the bone marrow to compensate for their decreased life span) and sickle cell anemia. (b) Classification. Class II (special controls). The device is exempt... Hemopexin immunological test system. (a) Indentification. A hemopexin immunological test system is a device...

  16. 21 CFR 866.5460 - Haptoglobin immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... that binds hemoglobin, the oxygen-carrying pigment in red blood cells) in serum. Measurement of haptoglobin may aid in the diagnosis of hemolytic diseases (diseases in which the red blood cells rupture and... Haptoglobin immunological test system. (a) Identification. A haptoglobin immunological test system is a device...

  17. 21 CFR 866.5490 - Hemopexin immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... survival of mature red blood cells and inability of the bone marrow to compensate for their decreased life span) and sickle cell anemia. (b) Classification. Class II (special controls). The device is exempt... Hemopexin immunological test system. (a) Indentification. A hemopexin immunological test system is a device...

  18. 21 CFR 866.5490 - Hemopexin immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... survival of mature red blood cells and inability of the bone marrow to compensate for their decreased life span) and sickle cell anemia. (b) Classification. Class II (special controls). The device is exempt... Hemopexin immunological test system. (a) Indentification. A hemopexin immunological test system is a device...

  19. 21 CFR 866.5490 - Hemopexin immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... survival of mature red blood cells and inability of the bone marrow to compensate for their decreased life span) and sickle cell anemia. (b) Classification. Class II (special controls). The device is exempt... Hemopexin immunological test system. (a) Indentification. A hemopexin immunological test system is a device...

  20. 21 CFR 866.5460 - Haptoglobin immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... that binds hemoglobin, the oxygen-carrying pigment in red blood cells) in serum. Measurement of haptoglobin may aid in the diagnosis of hemolytic diseases (diseases in which the red blood cells rupture and... Haptoglobin immunological test system. (a) Identification. A haptoglobin immunological test system is a device...

  1. 21 CFR 866.5460 - Haptoglobin immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... that binds hemoglobin, the oxygen-carrying pigment in red blood cells) in serum. Measurement of haptoglobin may aid in the diagnosis of hemolytic diseases (diseases in which the red blood cells rupture and... Haptoglobin immunological test system. (a) Identification. A haptoglobin immunological test system is a device...

  2. Immunological responses induced by the combination of phototherapy and immunotherapy in the treatment of metastatic tumors

    NASA Astrophysics Data System (ADS)

    Chen, Wei R.; Naylor, Mark F.; Nordquist, Robert E.; Teague, T. Kent; Liu, Hong

    2008-02-01

    Combination therapy using laser photothermal interaction and immunological stimulation has demonstrated its ability to induce immunological responses. Glycated chitosan (GC), an immunological stimulant, and imiquimod, a new type of immune response modifier (IRM), when used in conjunction with laser phototherapy, have shown to have a great immunological stimulation function. Specifically, imiquimod can help release cytokines from immunocompetent cells, stimulate TH1 lymphocyte responses (CD8+ T-cells), and recruit additional dendritic cells. To study the effects of immunoadjuvnats in combination of laser photo-irradiation, we treated animal tumors with laser-ICG-GC combination and late-stage melanoma patients with laser-ICG-imiquimod combination. At designated times, tumors, blood, and spleens in both treated and untreated animals were colleted for analysis. The major immunological indicators, such as IL-6, IL-12, IFN-gamma, CD4, and CD8 were analyzed. The same immunological analysis was also performed for melanoma patients treated by the laser-imiquimod combination.

  3. HIV Envelope gp120 Alters T Cell Receptor Mobilization in the Immunological Synapse of Uninfected CD4 T Cells and Augments T Cell Activation

    PubMed Central

    Deng, Jing; Mitsuki, Yu-ya; Shen, Guomiao; Ray, Jocelyn C.; Cicala, Claudia; Arthos, James; Dustin, Michael L.

    2016-01-01

    ABSTRACT HIV is transmitted most efficiently from cell to cell, and productive infection occurs mainly in activated CD4 T cells. It is postulated that HIV exploits immunological synapses formed between CD4 T cells and antigen-presenting cells to facilitate the targeting and infection of activated CD4 T cells. This study sought to evaluate how the presence of the HIV envelope (Env) in the CD4 T cell immunological synapse affects synapse formation and intracellular signaling to impact the downstream T cell activation events. CD4 T cells were applied to supported lipid bilayers that were reconstituted with HIV Env gp120, anti-T cell receptor (anti-TCR) monoclonal antibody, and ICAM-1 to represent the surface of HIV Env-bearing antigen-presenting cells. The results showed that the HIV Env did not disrupt immunological synapse formation. Instead, the HIV Env accumulated with TCR at the center of the synapse, altered the kinetics of TCR recruitment to the synapse and affected synapse morphology over time. The HIV Env also prolonged Lck phosphorylation at the synapse and enhanced TCR-induced CD69 upregulation, interleukin-2 secretion, and proliferation to promote virus infection. These results suggest that HIV uses the immunological synapse as a conduit not only for selective virus transmission to activated CD4 T cells but also for boosting the T cell activation state, thereby increasing its likelihood of undergoing productive replication in targeted CD4 T cells. IMPORTANCE There are about two million new HIV infections every year. A better understanding of how HIV is transmitted to susceptible cells is critical to devise effective strategies to prevent HIV infection. Activated CD4 T cells are preferentially infected by HIV, although how this is accomplished is not fully understood. This study examined whether HIV co-opts the normal T cell activation process through the so-called immunological synapse. We found that the HIV envelope is recruited to the center of the immunological synapse together with the T cell receptor and enhances the T cell receptor-induced activation of CD4 T cells. Heightened cellular activation promotes the capacity of CD4 T cells to support productive HIV replication. This study provides evidence of the exploitation of the normal immunological synapse and T cell activation process by HIV to boost the activation state of targeted CD4 T cells and promote the infection of these cells. PMID:27630246

  4. The Role of Progesterone in the Feto-Maternal Immunological Crosstalk.

    PubMed

    Szekeres-Bartho, Julia

    2018-06-27

    This review aims to provide a brief historical overview of the feto-maternal immunological relationship, which profoundly influences the outcome of pregnancy. The initial question posed in the nineteen fifties by Medawar, was based on the assumption that the maternal immune system recognizes the fetus as an allograft. Indeed, based on the association between HLA-matching and spontaneous miscarriage, it became obvious that immunological recognition of pregnancy is required for a successful gestation. The restricted expression of polymorphic HLA antigens on the trophoblast, together with the presence of non-polymorphic MHC products excludes recognition by both T and NK cells of trophoblast presented antigens, however, T cells, which constitute the majority of decidual T cells are likely candidates. Indeed, a high number of activated, progesterone receptor-expressing T cells are present in peripheral blood of healthy pregnant women, and in the presence of progesterone, these cells secrete an immunomodulatory protein called Progesterone-induced Blocking Factor or PIBF. As early as in the peri-implantation period, the embryo communicates with the maternal immune system via PIBF containing extracellular vesicles. PIBF contributes to the dominance of Th2-type reactivity characterising normal pregnancy, by inducing increased production of Th2 cytokines. The high expression of this molecule in the decidua might be one of the reasons for the low cytotoxic activity of decidual NK cells. ©2018The Author(s). Published by S. Karger AG, Basel.

  5. Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation

    PubMed Central

    Fritzsche, Marco; Fernandes, Ricardo A.; Chang, Veronica T.; Colin-York, Huw; Clausen, Mathias P.; Felce, James H.; Galiani, Silvia; Erlenkämper, Christoph; Santos, Ana M.; Heddleston, John M.; Pedroza-Pacheco, Isabela; Waithe, Dominic; de la Serna, Jorge Bernardino; Lagerholm, B. Christoffer; Liu, Tsung-li; Chew, Teng-Leong; Betzig, Eric; Davis, Simon J.; Eggeling, Christian

    2017-01-01

    T cell activation and especially trafficking of T cell receptor microclusters during immunological synapse formation are widely thought to rely on cytoskeletal remodeling. However, important details on the involvement of actin in the latter transport processes are missing. Using a suite of advanced optical microscopes to analyze resting and activated T cells, we show that, following contact formation with activating surfaces, these cells sequentially rearrange their cortical actin across the entire cell, creating a previously unreported ramifying actin network above the immunological synapse. This network shows all the characteristics of an inward-growing transportation network and its dynamics correlating with T cell receptor rearrangements. This actin reorganization is accompanied by an increase in the nanoscale actin meshwork size and the dynamic adjustment of the turnover times and filament lengths of two differently sized filamentous actin populations, wherein formin-mediated long actin filaments support a very flat and stiff contact at the immunological synapse interface. The initiation of immunological synapse formation, as highlighted by calcium release, requires markedly little contact with activating surfaces and no cytoskeletal rearrangements. Our work suggests that incipient signaling in T cells initiates global cytoskeletal rearrangements across the whole cell, including a stiffening process for possibly mechanically supporting contact formation at the immunological synapse interface as well as a central ramified transportation network apparently directed at the consolidation of the contact and the delivery of effector functions. PMID:28691087

  6. Ratio of Circulating IFNγ (+) "Th17 Cells" in Memory Th Cells Is Inversely Correlated with the Titer of Anti-CCP Antibodies in Early-Onset Rheumatoid Arthritis Patients Based on Flow Cytometry Methods of the Human Immunology Project.

    PubMed

    Kotake, Shigeru; Nanke, Yuki; Yago, Toru; Kawamoto, Manabu; Kobashigawa, Tsuyoshi; Yamanaka, Hisashi

    2016-01-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease with chronic joint inflammation characterized by activated T cells. IL-17 and Th17 cells play important roles in the pathogenesis of RA. Recently, plasticity in helper T cells has been demonstrated; Th17 cells can convert to Th1 cells. However, it remains to be elucidated whether this conversion occurs in the early phase of RA. Here, we validated the methods of the Human Immunology Project using only the cell-surface marker through measuring the actual expression of IL-17 and IFNγ. We also evaluated the expression of CD161 in human Th17 cells. We then tried to identify Th17 cells, IL-17(+)Th17 cells, and IFNγ (+)Th17 cells in the peripheral blood of early-onset RA patients using the standardized method of the Human Immunology Project. Our findings validated the method and the expression of CD161. The ratio of IFNγ (+)Th17 cells in memory T cells was inversely correlated to the titers of anti-CCP antibodies in the early-onset RA patients. These findings suggest that Th17 cells play important roles in the early phase of RA and that anti-IL-17 antibodies should be administered to patients with early phase RA, especially those with high titers of CCP antibodies.

  7. The immunological synapse

    PubMed Central

    Dustin, Michael L.

    2015-01-01

    The molecular interactions underlying regulation of the immune response take place in a nano-scale gap between T cells and antigen presenting cells, termed the immunological synapse. If these interactions are regulated appropriately, the host is defended against a wide range of pathogens and deranged host cells. If these interactions are dis-regulated, the host is susceptible to pathogens or tumor escape at one extreme and autoimmunity at the other. Treatments targeting the synapse have helped to establish immunotherapy as a mainstream element in cancer treatment. This Masters primer will cover the basics of the immunological synapse and some of the applications to tumor immunology. PMID:25367977

  8. Ratio of Circulating IFNγ + “Th17 Cells” in Memory Th Cells Is Inversely Correlated with the Titer of Anti-CCP Antibodies in Early-Onset Rheumatoid Arthritis Patients Based on Flow Cytometry Methods of the Human Immunology Project

    PubMed Central

    Kotake, Shigeru; Nanke, Yuki; Yago, Toru; Kawamoto, Manabu; Kobashigawa, Tsuyoshi; Yamanaka, Hisashi

    2016-01-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease with chronic joint inflammation characterized by activated T cells. IL-17 and Th17 cells play important roles in the pathogenesis of RA. Recently, plasticity in helper T cells has been demonstrated; Th17 cells can convert to Th1 cells. However, it remains to be elucidated whether this conversion occurs in the early phase of RA. Here, we validated the methods of the Human Immunology Project using only the cell-surface marker through measuring the actual expression of IL-17 and IFNγ. We also evaluated the expression of CD161 in human Th17 cells. We then tried to identify Th17 cells, IL-17+Th17 cells, and IFNγ +Th17 cells in the peripheral blood of early-onset RA patients using the standardized method of the Human Immunology Project. Our findings validated the method and the expression of CD161. The ratio of IFNγ +Th17 cells in memory T cells was inversely correlated to the titers of anti-CCP antibodies in the early-onset RA patients. These findings suggest that Th17 cells play important roles in the early phase of RA and that anti-IL-17 antibodies should be administered to patients with early phase RA, especially those with high titers of CCP antibodies. PMID:27294146

  9. The influence of sublingual immunotherapy on several parameters of immunological response in children suffering from atopic asthma and allergic rhinitis depending on asthma features.

    PubMed

    Ciepiela, Olga; Zawadzka-Krajewska, Anna; Kotuła, Iwona; Demkow, Urszula

    2014-01-01

    The clinical efficacy of sublingual immunotherapy (SLIT) has already been proven and is known to be high. Its influence on the immunological system of patients suffering from bronchial asthma was also examined. However, it is still unclear how the polysensitisation, coexistence of other atopic disease and asthma treatment step influence the response to treatment with specific immunotherapy. Herein we evaluate the impact of one-year SLIT on selected markers of immunological response depending on different individual and clinical factors of children suffering from atopic asthma and allergic rhinitis. Twenty-five patients aged 8.1 ± 3.1 years (range 5-15 years), 21 boys and 4 girls, suffering from asthma and allergic rhinitis with polysensitisation to seasonal and non-seasonal allergens, shortlisted for SLIT, were included in the study. Th1 cell and Th2 cell percentages, Bcl-2 expression in T cells, and basophil activation after allergen challenge (house dust mite and/or grass pollen antigen in solution used for skin prick tests) in peripheral blood were measured using flow cytometry. The association between clinical features of asthma and the influence of SLIT on immunological parameters was evaluated with exact Fisher test. No association between the influence of one-year sublingual immunotherapy on immunological system and patients' age, polysensitisation, asthma treatment step, or coexistence of any other atopic diseases was observed. However, an increase of the Th1 percentage in children sensitised against more than three allergens was found more often (at the limit of statistical significance) than in the group of children sensitised against three or less allergens. Based on our results, we cannot point to any subgroup isolated in the study, in which the response of the immunological system to sublingual immunotherapy is more satisfactory than any other. Nevertheless, the increase of Th1 cells may be more specific for polysensitised children.

  10. The effects of laser immunotherapy on cancer cell migration

    NASA Astrophysics Data System (ADS)

    Bahavar, Cody F.; Zhou, Feifan; Hasanjee, Aamr M.; Layton, Elivia; Lam, Anh; Chen, Wei R.; Vaughan, Melville B.

    2016-03-01

    Laser immunotherapy (LIT) uses laser irradiation and immunological stimulation to target all types of metastases and creates a long-term tumor resistance. Glycated chitosan (GC) is the immunological stimulant used in LIT. Interestingly, GC can act as a surfactant for single-walled carbon nanotubes (SWNTs) to immunologically modify SWNTs. SWNT-GC retains the optical properties of SWNTs and the immunological functions of GC to help increase the selectivity of the laser and create a more optimal immune response. One essential aspect of understanding this immune response is knowing how laser irradiation affects cancer cells' ability to metastasize. In this experiment, a cell migration assay was performed. A 2mm circular elastomer plugs were placed at the bottom of multi-well dishes. Pre-cancerous keratinocytes, different tumor cells, and fibroblasts were then plated separately in treated wells. Once the cells reached 100% confluence, they were irradiated by either a 980nm or 805nm wavelength laser. The goal was to determine the effects of laser irradiation and immunological stimulation on cancer cell migration in vitro, paying the way to understand the mechanism of LIT in treating metastatic tumors in cancer patients.

  11. The immunological synapse: the gateway to the HIV reservoir

    PubMed Central

    Kulpa, Deanna A; Brehm, Jessica H; Fromentin, Rémi; Cooper, Anthony; Cooper, Colleen; Ahlers, Jeffrey; Chomont, Nicolas; Sékaly, Rafick-Pierre

    2013-01-01

    A major challenge in the development of a cure for human immunodeficiency virus (HIV) has been the incomplete understanding of the basic mechanisms underlying HIV persistence during antiretroviral therapy. It is now realized that the establishment of a latently infected reservoir refractory to immune system recognition has thus far hindered eradication efforts. Recent investigation into the innate immune response has shed light on signaling pathways downstream of the immunological synapse critical for T-cell activation and establishment of T-cell memory. This has led to the understanding that the cell-to-cell contacts observed in an immunological synapse that involve the CD4+ T cell and antigen-presenting cell or T-cell–T-cell interactions enhance efficient viral spread and facilitate the induction and maintenance of latency in HIV-infected memory T cells. This review focuses on recent work characterizing the immunological synapse and the signaling pathways involved in T-cell activation and gene regulation in the context of HIV persistence. PMID:23772628

  12. Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse.

    PubMed

    Choudhuri, Kaushik; Llodrá, Jaime; Roth, Eric W; Tsai, Jones; Gordo, Susana; Wucherpfennig, Kai W; Kam, Lance C; Stokes, David L; Dustin, Michael L

    2014-03-06

    The recognition events that mediate adaptive cellular immunity and regulate antibody responses depend on intercellular contacts between T cells and antigen-presenting cells (APCs). T-cell signalling is initiated at these contacts when surface-expressed T-cell receptors (TCRs) recognize peptide fragments (antigens) of pathogens bound to major histocompatibility complex molecules (pMHC) on APCs. This, along with engagement of adhesion receptors, leads to the formation of a specialized junction between T cells and APCs, known as the immunological synapse, which mediates efficient delivery of effector molecules and intercellular signals across the synaptic cleft. T-cell recognition of pMHC and the adhesion ligand intercellular adhesion molecule-1 (ICAM-1) on supported planar bilayers recapitulates the domain organization of the immunological synapse, which is characterized by central accumulation of TCRs, adjacent to a secretory domain, both surrounded by an adhesive ring. Although accumulation of TCRs at the immunological synapse centre correlates with T-cell function, this domain is itself largely devoid of TCR signalling activity, and is characterized by an unexplained immobilization of TCR-pMHC complexes relative to the highly dynamic immunological synapse periphery. Here we show that centrally accumulated TCRs are located on the surface of extracellular microvesicles that bud at the immunological synapse centre. Tumour susceptibility gene 101 (TSG101) sorts TCRs for inclusion in microvesicles, whereas vacuolar protein sorting 4 (VPS4) mediates scission of microvesicles from the T-cell plasma membrane. The human immunodeficiency virus polyprotein Gag co-opts this process for budding of virus-like particles. B cells bearing cognate pMHC receive TCRs from T cells and initiate intracellular signals in response to isolated synaptic microvesicles. We conclude that the immunological synapse orchestrates TCR sorting and release in extracellular microvesicles. These microvesicles deliver transcellular signals across antigen-dependent synapses by engaging cognate pMHC on APCs.

  13. Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse

    NASA Astrophysics Data System (ADS)

    Choudhuri, Kaushik; Llodrá, Jaime; Roth, Eric W.; Tsai, Jones; Gordo, Susana; Wucherpfennig, Kai W.; Kam, Lance C.; Stokes, David L.; Dustin, Michael L.

    2014-03-01

    The recognition events that mediate adaptive cellular immunity and regulate antibody responses depend on intercellular contacts between T cells and antigen-presenting cells (APCs). T-cell signalling is initiated at these contacts when surface-expressed T-cell receptors (TCRs) recognize peptide fragments (antigens) of pathogens bound to major histocompatibility complex molecules (pMHC) on APCs. This, along with engagement of adhesion receptors, leads to the formation of a specialized junction between T cells and APCs, known as the immunological synapse, which mediates efficient delivery of effector molecules and intercellular signals across the synaptic cleft. T-cell recognition of pMHC and the adhesion ligand intercellular adhesion molecule-1 (ICAM-1) on supported planar bilayers recapitulates the domain organization of the immunological synapse, which is characterized by central accumulation of TCRs, adjacent to a secretory domain, both surrounded by an adhesive ring. Although accumulation of TCRs at the immunological synapse centre correlates with T-cell function, this domain is itself largely devoid of TCR signalling activity, and is characterized by an unexplained immobilization of TCR-pMHC complexes relative to the highly dynamic immunological synapse periphery. Here we show that centrally accumulated TCRs are located on the surface of extracellular microvesicles that bud at the immunological synapse centre. Tumour susceptibility gene 101 (TSG101) sorts TCRs for inclusion in microvesicles, whereas vacuolar protein sorting 4 (VPS4) mediates scission of microvesicles from the T-cell plasma membrane. The human immunodeficiency virus polyprotein Gag co-opts this process for budding of virus-like particles. B cells bearing cognate pMHC receive TCRs from T cells and initiate intracellular signals in response to isolated synaptic microvesicles. We conclude that the immunological synapse orchestrates TCR sorting and release in extracellular microvesicles. These microvesicles deliver transcellular signals across antigen-dependent synapses by engaging cognate pMHC on APCs.

  14. Formation and organization of protein domains in the immunological synapse

    NASA Astrophysics Data System (ADS)

    Carlson, Andreas; Mahadevan, L.

    2014-11-01

    The cellular basis for the adaptive immune response during antigen recognition relies on a specialized protein interface known as the immunological synapse. Here, we propose a minimal mathematical model for the dynamics of the IS that encompass membrane mechanics, hydrodynamics and protein kinetics. Simple scaling laws describe the dynamics of protein clusters as a function of membrane stiffness, rigidity of the adhesive proteins, and fluid flow in the synaptic cleft. Numerical simulations complement the scaling laws by quantifying the nucleation, growth and stabilization of proteins domains on the size of the cell. Direct comparison with experiment suggests that passive dynamics suffices to describe the short-time formation and organization of protein clusters, while the stabilization and long time dynamics of the synapse is likely determined by active cytoskeleton processes triggered by receptor binding. Our study reveals that the fluid flow generated by the interplay between membrane deformation and protein binding kinetics can assist immune cells in regulating protein sorting.

  15. T cell costimulation by chemokine receptors.

    PubMed

    Molon, Barbara; Gri, Giorgia; Bettella, Monica; Gómez-Moutón, Concepción; Lanzavecchia, Antonio; Martínez-A, Carlos; Mañes, Santos; Viola, Antonella

    2005-05-01

    Signals mediated by chemokine receptors may compete with T cell receptor stop signals and determine the duration of T cell-antigen-presenting cell interactions. Here we show that during T cell stimulation by antigen-presenting cells, T cell chemokine receptors coupled to G(q) and/or G(11) protein were recruited to the immunological synapse by a G(i)-independent mechanism. When chemokine receptors were sequestered at the immunological synapse, T cells became insensitive to chemotactic gradients, formed more stable conjugates and finally responded with enhanced proliferation and cytokine production. We suggest that chemokine receptor trapping at the immunological synapse enhances T cell activation by improving T cell-antigen-presenting cell attraction and impeding the 'distraction' of successfully engaged T cells by other chemokine sources.

  16. The Human Leukocyte Antigen–presented Ligandome of B Lymphocytes*

    PubMed Central

    Hassan, Chopie; Kester, Michel G. D.; de Ru, Arnoud H.; Hombrink, Pleun; Drijfhout, Jan Wouter; Nijveen, Harm; Leunissen, Jack A. M.; Heemskerk, Mirjam H. M.; Falkenburg, J. H. Frederik; van Veelen, Peter A.

    2013-01-01

    Peptides presented by human leukocyte antigen (HLA) molecules on the cell surface play a crucial role in adaptive immunology, mediating the communication between T cells and antigen presenting cells. Knowledge of these peptides is of pivotal importance in fundamental studies of T cell action and in cellular immunotherapy and transplantation. In this paper we present the in-depth identification and relative quantification of 14,500 peptide ligands constituting the HLA ligandome of B cells. This large number of identified ligands provides general insight into the presented peptide repertoire and antigen presentation. Our uniquely large set of HLA ligands allowed us to characterize in detail the peptides constituting the ligandome in terms of relative abundance, peptide length distribution, physicochemical properties, binding affinity to the HLA molecule, and presence of post-translational modifications. The presented B-lymphocyte ligandome is shown to be a rich source of information by the presence of minor histocompatibility antigens, virus-derived epitopes, and post-translationally modified HLA ligands, and it can be a good starting point for solving a wealth of specific immunological questions. These HLA ligands can form the basis for reversed immunology approaches to identify T cell epitopes based not on in silico predictions but on the bona fide eluted HLA ligandome. PMID:23481700

  17. Antibody response against Betaferon® in immune tolerant mice: involvement of marginal zone B-cells and CD4+ T-cells and apparent lack of immunological memory.

    PubMed

    Sauerborn, Melody; van Beers, Miranda M C; Jiskoot, Wim; Kijanka, Grzegorz M; Boon, Louis; Schellekens, Huub; Brinks, Vera

    2013-01-01

    The immunological processes underlying immunogenicity of recombinant human therapeutics are poorly understood. Using an immune tolerant mouse model we previously demonstrated that aggregates are a major trigger of the antidrug antibody (ADA) response against recombinant human interferon beta (rhIFNβ) products including Betaferon®, and that immunological memory seems to be lacking after a rechallenge with non-aggregated rhIFNβ. The apparent absence of immunological memory indicates a CD4+ T-cell independent (Tind) immune response underlying ADA formation against Betaferon®. This hypothesis was tested. Using the immune tolerant mouse model we first validated that rechallenge with highly aggregated rhIFNβ (Betaferon®) does not lead to a subsequent fast increase in ADA titers, suggesting a lack of immunological memory. Next we assessed whether Betaferon® could act as Tind antigen by inactivation of marginal zone (MZ) B-cells during treatment. MZ B-cells are major effector cells involved in a Tind immune response. In a following experiment we depleted the mice from CD4+ T-cells to test their involvement in the ADA response against Betaferon®. Inactivation of MZ B-cells at the start of Betaferon® treatment drastically lowered ADA levels, suggesting a Tind immune response. However, persistent depletion of CD4+ T-cells before and during Betaferon® treatment abolished the ADA response in almost all mice. The immune response against rhIFNβ in immune tolerant mice is neither a T-cell independent nor a classical T-cell dependent immune response. Further studies are needed to confirm absence of immunological memory (cells).

  18. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    Highly motivated postdoctoral fellows sought to work on tumor immunology with a strong background in biology preferentially cellular immunology. The tumor immunology group in the laboratory is exploring mechanisms of improving vaccines and immunotherapy for cancer, especially by discovering new principles to enhance and steer T cell immune responses. The group is focusing on negative immunoregulatory mechanisms used for immune evasion by cancer cells. The postdoctoral fellow will work on a project to understand the negative regulatory mechanisms of tumor immunity especially the mechanisms initiated by NKT cells. Group members also have an opportunity to gain knowledge of HIV/mucosal immunology by interacting with the HIV research group in the lab.

  19. A Redundant Role of Human Thyroid Peroxidase Propeptide for Cellular, Enzymatic, and Immunological Activity

    PubMed Central

    Góra, Monika; Buckle, Ashley M.; Porebski, Benjamin T.; Kemp, E. Helen; Sutton, Brian J.; Czarnocka, Barbara; Banga, J. Paul

    2014-01-01

    Background: Thyroid peroxidase (TPO) is a dimeric membrane-bound enzyme of thyroid follicular cells, responsible for thyroid hormone biosynthesis. TPO is also a common target antigen in autoimmune thyroid disease (AITD). With two active sites, TPO is an unusual enzyme, and thus there is much interest in understanding its structure and role in AITD. Homology modeling has shown TPO to be composed of different structural modules, as well as a propeptide sequence. During the course of studies to obtain homogeneous preparations of recombinant TPO for structural studies, we investigated the role of the large propeptide sequence in TPO. Methods: An engineered recombinant human TPO preparation expressed in Chinese hamster ovary (CHO) cells lacking the propeptide (TPOΔpro; amino acid residues 21–108) was characterized and its properties compared to wild-type TPO. Plasma membrane localization was determined by cell surface protein biotinylation, and biochemical studies were performed to evaluate enzymatic activity and the effect of deglycosylation. Immunological investigations using autoantibodies from AITD patients and other epitope-specific antibodies that recognize conformational determinants on TPO were evaluated for binding to TPOΔpro by flow cytometry, immunocytochemistry, and capture enzyme-linked immunosorbent assay. Molecular modeling and dynamics simulation of TPOΔpro comprising a dimer of myeloperoxidase-like domains was performed in order to investigate the impact of propeptide removal and the role of glycosylation. Results: The TPOΔpro was expressed on the cell surface at comparable levels to wild-type TPO. The TPOΔpro was enzymatically active and recognized by patients' autoantibodies and a panel of epitope-specific antibodies, confirming structural integrity of the two major conformational determinants recognized by autoantibodies. Faithful intracellular trafficking and N-glycosylation of TPOΔpro was also maintained. Molecular modeling and dynamics simulations were consistent with these observations. Conclusions: Our results point to a redundant role for the propeptide sequence in TPO. The successful expression of TPOΔpro in a membrane-anchored, enzymatically active form that is insensitive to intramolecular proteolysis, and importantly is recognized by patients' autoantibodies, is a key advance for purification of substantial quantities of homogeneous preparation of TPO for crystallization, structural, and immunological studies. PMID:23668778

  20. A redundant role of human thyroid peroxidase propeptide for cellular, enzymatic, and immunological activity.

    PubMed

    Godlewska, Marlena; Góra, Monika; Buckle, Ashley M; Porebski, Benjamin T; Kemp, E Helen; Sutton, Brian J; Czarnocka, Barbara; Banga, J Paul

    2014-02-01

    Thyroid peroxidase (TPO) is a dimeric membrane-bound enzyme of thyroid follicular cells, responsible for thyroid hormone biosynthesis. TPO is also a common target antigen in autoimmune thyroid disease (AITD). With two active sites, TPO is an unusual enzyme, and thus there is much interest in understanding its structure and role in AITD. Homology modeling has shown TPO to be composed of different structural modules, as well as a propeptide sequence. During the course of studies to obtain homogeneous preparations of recombinant TPO for structural studies, we investigated the role of the large propeptide sequence in TPO. An engineered recombinant human TPO preparation expressed in Chinese hamster ovary (CHO) cells lacking the propeptide (TPOΔpro; amino acid residues 21-108) was characterized and its properties compared to wild-type TPO. Plasma membrane localization was determined by cell surface protein biotinylation, and biochemical studies were performed to evaluate enzymatic activity and the effect of deglycosylation. Immunological investigations using autoantibodies from AITD patients and other epitope-specific antibodies that recognize conformational determinants on TPO were evaluated for binding to TPOΔpro by flow cytometry, immunocytochemistry, and capture enzyme-linked immunosorbent assay. Molecular modeling and dynamics simulation of TPOΔpro comprising a dimer of myeloperoxidase-like domains was performed in order to investigate the impact of propeptide removal and the role of glycosylation. The TPOΔpro was expressed on the cell surface at comparable levels to wild-type TPO. The TPOΔpro was enzymatically active and recognized by patients' autoantibodies and a panel of epitope-specific antibodies, confirming structural integrity of the two major conformational determinants recognized by autoantibodies. Faithful intracellular trafficking and N-glycosylation of TPOΔpro was also maintained. Molecular modeling and dynamics simulations were consistent with these observations. Our results point to a redundant role for the propeptide sequence in TPO. The successful expression of TPOΔpro in a membrane-anchored, enzymatically active form that is insensitive to intramolecular proteolysis, and importantly is recognized by patients' autoantibodies, is a key advance for purification of substantial quantities of homogeneous preparation of TPO for crystallization, structural, and immunological studies.

  1. Actin polymerization‐dependent activation of Cas‐L promotes immunological synapse stability

    PubMed Central

    Santos, Luís C; Blair, David A; Kumari, Sudha; Cammer, Michael; Iskratsch, Thomas; Herbin, Olivier; Alexandropoulos, Konstantina

    2016-01-01

    The immunological synapse formed between a T‐cell and an antigen‐presenting cell is important for cell–cell communication during T‐cell‐mediated immune responses. Immunological synapse formation begins with stimulation of the T‐cell receptor (TCR). TCR microclusters are assembled and transported to the center of the immunological synapse in an actin polymerization‐dependent process. However, the physical link between TCR and actin remains elusive. Here we show that lymphocyte‐specific Crk‐associated substrate (Cas‐L), a member of a force sensing protein family, is required for transport of TCR microclusters and for establishing synapse stability. We found that Cas‐L is phosphorylated at TCR microclusters in an actin polymerization‐dependent fashion. Furthermore, Cas‐L participates in a positive feedback loop leading to amplification of Ca2+ signaling, inside–out integrin activation, and actomyosin contraction. We propose a new role for Cas‐L in T‐cell activation as a mechanical transducer linking TCR microclusters to the underlying actin network and coordinating multiple actin‐dependent structures in the immunological synapse. Our studies highlight the importance of mechanotransduction processes in T‐cell‐mediated immune responses. PMID:27359298

  2. Integration of immunological aspects in the European Human Embryonic Stem Cell Registry.

    PubMed

    Borstlap, Joeri; Kurtz, Andreas

    2008-05-01

    The immunological properties of stem cells are of increasing importance in regenerative medicine. Immunomodulatory mechanisms seem to play an important role not only with respect to the understanding of underlying mechanisms of autologous versus allogenic therapeutic approaches, but also for endogeneous tissue regeneration. The newly established European human embryonic stem cell registry (hESCreg) offers an international database for the registration, documentation and characterisation of human embryonic stem cells (hESC) and their use. By doing so, hESCreg aims to develop a model procedure for further standardisation efforts in the field of stem cell research and regenerative medicine, and eventually the registry may lead to a repository of therapy-related information. Currently the stem cell characterisation data acquired by the registry are divided into several categories such as cell derivation, culture conditions, genetic constitution, stem cell marker expression and degree of modification. This article describes immunological aspects of stem cell characterisation and explores the layout and relevance of a possible additional section to the hESCreg repository to include immunological characteristics of human embryonic stem cells.

  3. A controlled clinical trial to evaluate the effect of GanedenBC(30) on immunological markers.

    PubMed

    Kimmel, M; Keller, D; Farmer, S; Warrino, D E

    2010-03-01

    GanedenBC(30), a probiotic, has been shown to significantly increase T-cell production of TNF-alpha after ex vivo exposure to a strain of adenovirus (AdenoVI) or influenza A (H3N2 Texas strain [FluTex]). The current controlled study was designed to further evaluate the effect of GanedenBC(30) on immunological marker levels following viral exposure. Ten healthy subjects' baseline immunological marker levels were analyzed. Subjects consumed 1 capsule/day of GanedenBC(30) for 28 days and returned for post-treatment immunological marker evaluation. Subjects' baseline measurements served as their own control. All subjects completed the study with no adverse events; however, one subject was excluded from the final analysis based on a reasonable consideration as an outlier. CD3+CD69+ cells, IL-6, IL-8, interferon-gamma (IFN-gamma) and TNF-alpha levels were increased after exposure to AdenoVI and FluTex. IL-1beta levels also increased after exposure to AdenoVI but were decreased after ex vivo exposure to FluTex. CD3+CD69+ cells increased significantly (P = 0.023) after exposure to both viral strains. Differences in IL-8 levels after FluTex exposure achieved statistical significance (P = 0.039) as did IFN-gamma levels after AdenoVI exposure (P = 0.039). A regimen of one capsule per day containing 500 million CFU of GanedenBC30 may be a safe and effective option for enhancing the immunological response to common viral respiratory tract infections. 2010 Prous Science, S.A.U. or its licensors. All rights reserved.

  4. A Randomized, Controlled Trial of Mindfulness-Based Stress Reduction in HIV Infection.

    PubMed

    Hecht, Frederick M; Moskowitz, Judith T; Moran, Patricia; Epel, Elissa S; Bacchetti, Peter; Acree, Michael; Kemeny, Margaret E; Mendes, Wendy B; Duncan, Larissa G; Weng, Helen; Levy, Jay A; Deeks, Steven G; Folkman, Susan

    2018-05-26

    Evidence links depression and stress to more rapid progression of HIV-1 disease. We conducted a randomized controlled trial to test whether an intervention aimed at improving stress management and emotion regulation, mindfulness-based stress reduction (MBSR), would improve immunological (i.e. CD4+ t-cell counts) and psychological outcomes in persons with HIV-1 infection. We randomly assigned participants with HIV-1 infection and CD4 T-cell counts > 350 cells/μl who were not on antiretroviral therapy in a 1:1 ratio to either an MBSR group (n=89) or an HIV disease self-management skills group (n=88). The study was conducted at the University of California at San Francisco. We assessed immunologic (CD4, c-reactive protein, IL-6, and d-dimer) and psychological measures (Beck Depression Inventory for depression, modified Differential Emotions Scale for positive and negative affect, Perceived stress-scale, and mindfulness) at 3, 6 and 12 months after initiation of the intervention; we used multiple imputation to address missing values. We observed statistically significant improvements from baseline to 3-months within the MBSR group in depression, positive and negative affect, perceived stress, and mindfulness; between group differences in change were significantly greater in the MBSR group only for positive affect (per item difference on DES-positive 0.25, 95% CI 0.049, 0.44, p = .015). By 12 months the between group difference in positive affect was not statistically significant, although both groups had trends toward improvements compared to baseline in several psychological outcomes that were maintained at 12-months; these improvements were only statistically significant for depression and negative affect in the MBSR group and perceived stress for the control group. The groups did not differ significantly on rates of antiretroviral therapy initiation (MBSR = 39%, control = 29%, p = .22). After 12 months, the mean decrease in CD4+ T-cell count was 49.6 cells/μl in participants in the MBSR arm, compared to 54.2 cells/μl in the control group, a difference of 4.6 cells favoring the MBSR group (95% CI, -44.6, 53.7, p=.85). The between group differences in other immunologic-related outcomes (c-reactive protein, IL-6, HIV-1 viral load, and d-dimer) were not statistically significant at any time point. MBSR improved positive affect more than an active control arm in the 3 months following the start of the intervention. However, this difference was not maintained over the 12-month follow-up and there were no significant differences in immunologic outcomes between intervention groups. These results emphasize the need for further carefully designed research if we are to translate evidence linking psychological states to immunological outcomes into evidence-based clinical practices. Copyright © 2018. Published by Elsevier Inc.

  5. 21 CFR 866.5880 - Transferrin immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... transferrin levels aids in the diagnosis of malnutrition, acute inflammation, infection, and red blood cell... Transferrin immunological test system. (a) Identification. A transferrin immunological test system is a device...

  6. 21 CFR 866.5880 - Transferrin immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... transferrin levels aids in the diagnosis of malnutrition, acute inflammation, infection, and red blood cell... Transferrin immunological test system. (a) Identification. A transferrin immunological test system is a device...

  7. 21 CFR 866.5880 - Transferrin immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... transferrin levels aids in the diagnosis of malnutrition, acute inflammation, infection, and red blood cell... Transferrin immunological test system. (a) Identification. A transferrin immunological test system is a device...

  8. 21 CFR 866.5880 - Transferrin immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... transferrin levels aids in the diagnosis of malnutrition, acute inflammation, infection, and red blood cell... Transferrin immunological test system. (a) Identification. A transferrin immunological test system is a device...

  9. [The distribution of B-lymphocytes in lymphoepithelial tissues as well as in tumors of the neck-, nose-, and throat region derived from lymphoreticular and lymphoepithelial tissues (author's transl)].

    PubMed

    Uhlmann, C; Krüger, G R; Sesterhenn, K; Wustrow, F; Fisher, R

    1975-08-28

    B-Lymphocytes carrying IgG-, IgM,- and IgA-surface receptors were estimated by fluorescence microscopy in the palatine tonsil of 50 patients aged 3 to 18 years as well as in 44 patients with various types of malignant lymphoms and lymphoepithelial carcinomas. Hyperplastic tonsillartissue contains large numbers of B-cells with a marked variability in concentration (4-30% IgG-cells, medium 12,9%;6-36 IgM-cells, medium 23.4%;3-38% IgA cells, medium 20.8%). There appears to exist an age-dependent increase in IgM-cells and an increase in IgG-and IgA-cells in patients with numerous recurrent infections of the upper respiratory tract. Malignant lymphomas can be grouped into three main categories: Such with a predominance of one B-cell line (above 75-80% of one immunological cell type); these include primarily malignant lymphomas of the well differentiated lymphocytic type (IgM and IgA receptors). Secondly, such with a significant decrease in B-cells (below 10%) which include primarily malignant lymphomas of the poorly differentiated lymphocytic type. Thirdly, such with an increased B-cell content but with more than one cell line participating in cell proliferation. The latter ones comprise certain cases of Hodkin's lymphomas. Lymphoepithial carcinomas are charactersized by a significant decrease in total B-cell content, except for IgE- and IgD-cells which were not investigated. The results show that the immunologic classification of malignant lymphomas correlates only to a certain degree with the morphologic classification; i.e. the same morphologic type of tumor may possess different immunologic characteristics. Since the immunologic characteristics may reflect a certain functional potential of these tumors as well as probably a certain kind of immunologic incompetence prior to tumor development, it is suggested, that future morphologic investigations of malignant lymphomas and lymphoepithelial carcinomas are combined with immunologic classifications.

  10. An adaptive drug delivery design using neural networks for effective treatment of infectious diseases: a simulation study.

    PubMed

    Padhi, Radhakant; Bhardhwaj, Jayender R

    2009-06-01

    An adaptive drug delivery design is presented in this paper using neural networks for effective treatment of infectious diseases. The generic mathematical model used describes the coupled evolution of concentration of pathogens, plasma cells, antibodies and a numerical value that indicates the relative characteristic of a damaged organ due to the disease under the influence of external drugs. From a system theoretic point of view, the external drugs can be interpreted as control inputs, which can be designed based on control theoretic concepts. In this study, assuming a set of nominal parameters in the mathematical model, first a nonlinear controller (drug administration) is designed based on the principle of dynamic inversion. This nominal drug administration plan was found to be effective in curing "nominal model patients" (patients whose immunological dynamics conform to the mathematical model used for the control design exactly. However, it was found to be ineffective in curing "realistic model patients" (patients whose immunological dynamics may have off-nominal parameter values and possibly unwanted inputs) in general. Hence, to make the drug delivery dosage design more effective for realistic model patients, a model-following adaptive control design is carried out next by taking the help of neural networks, that are trained online. Simulation studies indicate that the adaptive controller proposed in this paper holds promise in killing the invading pathogens and healing the damaged organ even in the presence of parameter uncertainties and continued pathogen attack. Note that the computational requirements for computing the control are very minimal and all associated computations (including the training of neural networks) can be carried out online. However it assumes that the required diagnosis process can be carried out at a sufficient faster rate so that all the states are available for control computation.

  11. Testisimmune privilege - Assumptions versus facts

    PubMed Central

    Kaur, G.; Mital, P.; Dufour, J.M.

    2013-01-01

    The testis has long enjoyed a reputation as an immunologically privileged site based on its ability to protect auto-antigenic germ cells and provide an optimal environment for the extended survival of transplanted allo- or xeno-grafts. Exploration of the role of anatomical, physiological, immunological and cellular components in testis immune privilege revealed that the tolerogenic environment of the testis is a result of the immunomodulatory factors expressed or secreted by testicular cells (mainly Sertoli cells, peritubular myoid cells, Leydig cells, and resident macrophages). The blood-testis barrier/Sertoli cell barrier, is also important to seclude advanced germ cells but its requirement in testis immune privilege needs further investigation. Testicular immune privilege is not permanent, as an effective immune response can be mounted against transplanted tissue, and bacterial/viral infections in the testis can be effectively eliminated. Overall, the cellular components control the fate of the immune response and can shift the response from immunodestructive to immunoprotective, resulting in immune privilege. PMID:25309630

  12. [Immunological background and pathomechanisms of food allergies].

    PubMed

    Schülke, Stefan; Scheurer, Stephan

    2016-06-01

    Recent advances in immunology have greatly improved our understanding of the pathomechanisms of food allergies. Food allergies are caused and maintained by complex interactions of the innate and adaptive immune system involving antigen-presenting cells (APC), T cells, group 2 innate lymphoid cells (ILC2), epithelial cells (EC) and effectors cells. Additionally, epigenetic factors, the intestinal microbiome and nutritional factors modulating the gastrointestinal lymphatic tissue probably have a significant impact on allergy development. However, why certain individuals develop tolerance while others mount allergic responses, the factors defining the allergenicity of food proteins, as well as the immunological mechanisms triggering allergy development have yet to be analyzed in detail.

  13. Immunological changes in human skeletal muscle and blood after eccentric exercise and multiple biopsies

    PubMed Central

    Malm, Christer; Nyberg, Pernilla; Engström, Marianne; Sjödin, Bertil; Lenkei, Rodica; Ekblom, Björn; Lundberg, Ingrid

    2000-01-01

    A role of the immune system in muscular adaptation to physical exercise has been suggested but data from controlled human studies are scarce. The present study investigated immunological events in human blood and skeletal muscle by immunohistochemistry and flow cytometry after eccentric cycling exercise and multiple biopsies. Immunohistochemical detection of neutrophil- (CD11b, CD15), macrophage- (CD163), satellite cell- (CD56) and IL-1β-specific antigens increased similarly in human skeletal muscle after eccentric cycling exercise together with multiple muscle biopsies, or multiple biopsies only. Changes in immunological variables in blood and muscle were related, and monocytes and natural killer (NK) cells appeared to have governing functions over immunological events in human skeletal muscle. Delayed onset muscle soreness, serum creatine kinase activity and C-reactive protein concentration were not related to leukocyte infiltration in human skeletal muscle. Eccentric cycling and/or muscle biopsies did not result in T cell infiltration in human skeletal muscle. Modes of stress other than eccentric cycling should therefore be evaluated as a myositis model in human. Based on results from the present study, and in the light of previously published data, it appears plausible that muscular adaptation to physical exercise occurs without preceding muscle inflammation. Nevertheless, leukocytes seem important for repair, regeneration and adaptation of human skeletal muscle. PMID:11080266

  14. Impact of sequencing depth and read length on single cell RNA sequencing data of T cells.

    PubMed

    Rizzetto, Simone; Eltahla, Auda A; Lin, Peijie; Bull, Rowena; Lloyd, Andrew R; Ho, Joshua W K; Venturi, Vanessa; Luciani, Fabio

    2017-10-06

    Single cell RNA sequencing (scRNA-seq) provides great potential in measuring the gene expression profiles of heterogeneous cell populations. In immunology, scRNA-seq allowed the characterisation of transcript sequence diversity of functionally relevant T cell subsets, and the identification of the full length T cell receptor (TCRαβ), which defines the specificity against cognate antigens. Several factors, e.g. RNA library capture, cell quality, and sequencing output affect the quality of scRNA-seq data. We studied the effects of read length and sequencing depth on the quality of gene expression profiles, cell type identification, and TCRαβ reconstruction, utilising 1,305 single cells from 8 publically available scRNA-seq datasets, and simulation-based analyses. Gene expression was characterised by an increased number of unique genes identified with short read lengths (<50 bp), but these featured higher technical variability compared to profiles from longer reads. Successful TCRαβ reconstruction was achieved for 6 datasets (81% - 100%) with at least 0.25 millions (PE) reads of length >50 bp, while it failed for datasets with <30 bp reads. Sufficient read length and sequencing depth can control technical noise to enable accurate identification of TCRαβ and gene expression profiles from scRNA-seq data of T cells.

  15. Predictors of immunological failure of antiretroviral therapy among HIV infected patients in Ethiopia: a matched case-control study.

    PubMed

    Teshome, Wondu; Asefa, Anteneh; Assefa, Anteneh

    2014-01-01

    In resource constrained settings, immunological assessment through CD4 count is used to assess response to first line Highly Active Antiretroviral Therapy (HAART). In this study, we aim to investigate factors associated with immunological treatment failure. A matched case-control study design was used. Cases were subjects who already experienced immunological treatment failure and controls were those without immunological failure after an exactly or approximately equivalent duration of first line treatment with cases. Data were analyzed using SPSS v16.0. Conditional logistic regression was carried out. A total of 134 cases and 134 controls were included in the study. At baseline, the mean age ± 1 SD of cases was 37.5 ± 9.7 years whereas it was 36.9 ± 9.2 years among controls. The median baseline CD4 counts of cases and controls were 121.0 cells/µl (IQR: 47-183 cells/µl) and 122.0 cells/µl (IQR: 80.0-189.8 cells/µl), respectively. The median rate of CD4 cells increase was comparable for the two groups in the first six months of commencing HAART (P = 0.442). However, the median rate of CD4 increase was significantly different for the two groups in the next 6 months period (M6 to M12). The rate of increment was 8.8 (IQR: 0.5, 14.6) and 1.8 (IQR: 8.8, 11.3) cells/µl/month for controls and cases, respectively (Mann-Whitney U test, P = 0.003). In conditional logistic regressions grouped baseline CD4 count (P = 0.028), old age group and higher educational status (P<0.001) were significant predictors of immunological treatment failure. Subjects with immunological treatment failure have an optimal rate of immunological recovery in the first 6 months of treatment with first line HAART, but relative to the non-failing group the rate declines at a later period, notably between 6 and 12 months. Low baseline CD4 count, old age and higher educational status were associated with immunological treatment failure.

  16. Long survival and immunologic reconstitution following transplantation with syngeneic or allogeneic fetal liver and neonatal spleen cells. [X radiation, mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunis, E.J.; Fernandes, G.; Smith, J.

    1976-12-01

    Spleen cells from newborn syngeneic and allogeneic mice that lack fully differentiated T lymphocytes can be used as a hematopoietic source to reconstitute both hematopoietic and lymphoid systems of lethally irradiated mice without producing a GVHR. Fetal liver cells from syngeneic and allogeneic mice that lack postthymic T lymphocytes can also be used for hematopoietic and immunologic reconstitution of lethally irradiated mice without producing GVHR. Immunologic deficiency is observed in some experiments in mice given supralethal irradiation (1000 R) and fetal liver as reconstituting hematopoietic tissue. The findings suggest that T cells, at an early stage of differentiation, are moremore » susceptible to tolerance induction than are T lymphocytes at later stages of differentiation and do not, in general, produce GVHR. It is postulated that hematopoietic cells, free of postthymic lymphoid cells, can be used for hematopoietic or immunologic reconstitution and celular engineering without producing GVHD.« less

  17. Manipulation of cells with laser microbeam scissors and optical tweezers: a review

    NASA Astrophysics Data System (ADS)

    Greulich, Karl Otto

    2017-02-01

    The use of laser microbeams and optical tweezers in a wide field of biological applications from genomic to immunology is discussed. Microperforation is used to introduce a well-defined amount of molecules into cells for genetic engineering and optical imaging. The microwelding of two cells induced by a laser microbeam combines their genetic outfit. Microdissection allows specific regions of genomes to be isolated from a whole set of chromosomes. Handling the cells with optical tweezers supports investigation on the attack of immune systems against diseased or cancerous cells. With the help of laser microbeams, heart infarction can be simulated, and optical tweezers support studies on the heartbeat. Finally, laser microbeams are used to induce DNA damage in living cells for studies on cancer and ageing.

  18. Anti-tumor response with immunologically modified carbon nanotubes and phototherapy

    NASA Astrophysics Data System (ADS)

    Acquaviva, Joseph T.; Zhou, Feifan; Boarman, Ellen; Chen, Wei R.

    2013-02-01

    While successes of different cancer therapies have been achieved in various degrees a systemic immune response is needed to effectively treat late-stage, metastatic cancers, and to establish long-term tumor resistance in the patients. A novel method for combating metastatic cancers has been developed using immunologically modified carbon nanotubes in conjunction with phototherapy. Glycated chitosan (GC) is a potent immunological adjuvant capable of increasing host immune responses, including antigen presentation by activation of dendritic cells (DCs) and causing T cell proliferation. GC is also an effective surfactant for nanomaterials. By combining single-walled carbon nanotubes (SWNTs) and GC, immunologically modified carbon nanotubes (SWNT-GC) were constructed. The SWNT-GC suspension retains the enhanced light absorption properties in the near infrared (NIR) region and the ability to enter cells, which are characteristic of SWNTs. The SWNT-GC also retains the immunological properties of GC. Cellular SWNT-GC treatments increased macrophage activity, DC activation and T cell proliferation. When cellular SWNT-GC was irradiated with a laser of an appropriate wavelength, these immune activities could be enhanced. The combination of laser irradiation and SWNT-GC induced cellular toxicity in targeted tumor cells, leading to a systemic antitumor response. Immunologically modified carbon nanotubes in conjunction with phototherapy is a novel and promising method to produce a systemic immune response for the treatment of metastatic cancers.

  19. Dendritic Cells Pulsed with Leukemia Cell-Derived Exosomes More Efficiently Induce Antileukemic Immunities

    PubMed Central

    Wei, Wei; Shen, Chang; Deng, Xiaohui; Chen, Linjun; Ma, Liyuan; Hao, Siguo

    2014-01-01

    Dendritic cells (DCs) and tumor cell-derived exosomes have been used to develop antitumor vaccines. However, the biological properties and antileukemic effects of leukemia cell-derived exosomes (LEXs) are not well described. In this study, the biological properties and induction of antileukemic immunity of LEXs were investigated using transmission electron microscopy, western blot analysis, cytotoxicity assays, and animal studies. Similar to other tumor cells, leukemia cells release exosomes. Exosomes derived from K562 leukemia cells (LEXK562) are membrane-bound vesicles with diameters of approximately 50–100 μm and harbor adhesion molecules (e.g., intercellular adhesion molecule-1) and immunologically associated molecules (e.g., heat shock protein 70). In cytotoxicity assays and animal studies, LEXs-pulsed DCs induced an antileukemic cytotoxic T-lymphocyte immune response and antileukemic immunity more effectively than did LEXs and non-pulsed DCs (P<0.05). Therefore, LEXs may harbor antigens and immunological molecules associated with leukemia cells. As such, LEX-based vaccines may be a promising strategy for prolonging disease-free survival in patients with leukemia after chemotherapy or hematopoietic stem cell transplantation. PMID:24622345

  20. Cancer immunotherapy and immunological memory.

    PubMed

    Murata, Kenji; Tsukahara, Tomohide; Torigoe, Toshihiko

    2016-01-01

    Human immunological memory is the key distinguishing hallmark of the adaptive immune system and plays an important role in the prevention of morbidity and the severity of infection. The differentiation system of T cell memory has been clarified using mouse models. However, the human T cell memory system has great diversity induced by natural antigens derived from many pathogens and tumor cells throughout life, and profoundly differs from the mouse memory system constructed using artificial antigens and transgenic T cells. We believe that only human studies can elucidate the human immune system. The importance of immunological memory in cancer immunotherapy has been pointed out, and the trafficking properties and long-lasting anti-tumor capacity of memory T cells play a crucial role in the control of malignant tumors. Adoptive cell transfer of less differentiated T cells has consistently demonstrated superior anti-tumor capacity relative to more differentiated T cells. Therefore, a human T cell population with the characteristics of stem cell memory is thought to be attractive for peptide vaccination and adoptive cell transfer. A novel human memory T cell population that we have identified is closer to the naive state than previous memory T cells in the T cell differentiation lineage, and has the characteristics of stem-like chemoresistance. Here we introduce this novel population and describe the fundamentals of immunological memory in cancer immunotherapy.

  1. Spatial and Temporal Control of T Cell Activation Using a Photoactivatable Agonist.

    PubMed

    Sanchez, Elisa; Huse, Morgan

    2018-04-25

    T lymphocytes engage in rapid, polarized signaling, occurring within minutes following TCR activation. This induces formation of the immunological synapse, a stereotyped cell-cell junction that regulates T cell activation and directionally targets effector responses. To study these processes effectively, an imaging approach that is tailored to capturing fast, polarized responses is necessary. This protocol describes such a system, which is based on a photoactivatable peptide-major histocompatibility complex (pMHC) that is non-stimulatory until it is exposed to ultraviolet light. Targeted decaging of this reagent during videomicroscopy experiments enables precise spatiotemporal control of TCR activation and high-resolution monitoring of subsequent cellular responses by total internal reflection (TIRF) imaging. This approach is also compatible with genetic and pharmacological perturbation strategies. This allows for the assembly of well-defined molecular pathways that link TCR signaling to the formation of the polarized cytoskeletal structures that underlie the immunological synapse.

  2. The Yin and Yang of Innate Lymphoid Cells in Cancer.

    PubMed

    Carrega, Paolo; Campana, Stefania; Bonaccorsi, Irene; Ferlazzo, Guido

    2016-11-01

    The recent appreciation of novel subsets of innate lymphoid cells (ILCs) as important regulators of tissue homeostasis, inflammation and repair, raise questions regarding the presence and role of these cells in cancer tissues. In addition to natural killer and fetal lymphoid tissue inducer (LTi) cells, the ILC family comprises non-cytolytic, cytokine-producing cells that are classified into ILC1, ILC2 and ILC3 based on phenotypic and functional characteristics. Differently from natural killer cells, which are the prototypical members of ILC1 and whose role in tumors is better established, the involvement of other ILC subsets in cancer progression or resistance is still fuzzy and in several instances controversial, since current studies indicate both context-dependent beneficial or pathogenic effects. Here, we review the current knowledge regarding the involvement of these novel ILC subsets in the context of tumor immunology, highlighting how ILC subsets might behave either as friends or foes. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  3. Local immunological mechanisms of sublingual immunotherapy.

    PubMed

    Allam, Jean-Pierre; Novak, Natalija

    2011-12-01

    To summarize novel insights into the immunological mechanisms of sublingual immunotherapy (SLIT). Within the recent decades, several alternative noninvasive allergen application strategies have been investigated in allergen-specific immunotherapy (AIT), of which intra-oral allergen application to sublingual mucosa has been proven to be well tolerated and effective. To date, SLIT is widely accepted by most allergists as an alternative option to conventional subcutaneous immunotherapy (SCIT). Although detailed immunological mechanisms remain to be elucidated, much scientific effort has been made to shed some light on local and systemic immunological responses to SLIT in mice as well as humans. Only a few studies focused on the detailed mechanisms following allergen application to the oral mucosa as part of the sophisticated mucosal immunological network. Within this network, the pro-tolerogenic properties of local antigen-presenting cells (APCs) such as dendritic cells - which are able to enforce tolerogenic mechanisms and to induce T-cell immune responses - play a central role. Further on, basic research focused not only on the immune response in nasal and bronchial mucosa but also on the systemic T-cell immune response. Thus, much exiting data have been published providing a better understanding of immunological features of SLIT but far more investigations are necessary to uncover further exciting details on the key mechanisms of SLIT.

  4. PTSD is associated with an increase in aged T cell phenotypes in adults living in Detroit

    PubMed Central

    Aiello, Allison E.; Dowd, Jennifer B.; Jayabalasingham, Bamini; Feinstein, Lydia; Uddin, Monica; Simanek, Amanda M.; Cheng, Caroline K.; Galea, Sandro; Wildman, Derek E.; Koenen, Karestan; Pawelec, Graham

    2016-01-01

    Background Psychosocial stress is thought to play a key role in the acceleration of immunological aging. This study investigated the relationship between lifetime and past-year history of post-traumatic stress disorder (PTSD) and the distribution of T cell phenotypes thought to be characteristic of immunological aging. Methods Data were from 85 individuals who participated in the community-based Detroit Neighborhood Health Study. Immune markers assessed included the CD4:CD8 ratio, the ratio of late-differentiated effector (CCR7-CD45RA+CD27-CD28-) to naïve (CCR7+CD45RA+CD27+CD28+) T cells, the percentage of KLRG1-expressing cells, and the percentage of CD57-expressing cells. Results In models adjusted for age, gender, race/ethnicity, education, smoking status, and medication use, we found that past-year PTSD was associated with statistically significant differences in the CD8+ T cell population, including a higher ratio of late-differentiated effector to naïve T cells, a higher percentage of KLRG1+ cells, and a higher percentage of CD57+ cells. The percentage of CD57+ cells in the CD4 subset was also significantly higher and the CD4:CD8 ratio significantly lower among individuals who had experienced past-year PTSD. Lifetime PTSD was also associated with differences in several parameters of immune aging. Conclusions PTSD is associated with an aged immune phenotype and should be evaluated as a potential catalyzer of accelerated immunological aging in future studies. PMID:26894484

  5. A second chance for telomerase reverse transcriptase in anticancer immunotherapy.

    PubMed

    Zanetti, Maurizio

    2017-02-01

    Telomerase reverse transcriptase (TERT) is a self-antigen that is expressed constitutively in many tumours, and is, therefore, an important target for anticancer immunotherapy. In the past 10 years, trials of immunotherapy with TERT-based vaccines have demonstrated only modest benefits. In this Perspectives, I discuss the possible immunological reasons for this limited antitumour efficacy, and propose that advances in our understanding of the genetics and biology of the involvement of TERT in cancer provides the basis for renewed interest in TERT- based immunotherapy. Telomerase and TERT are expressed in cancer cells at every stage of tumour evolution, from the cancer stem cell to circulating tumour cells and tumour metastases. Many cancer types also harbour cells with mutations in the TERT promoter region, which increase transcriptional activation of this gene. These new findings should spur new interest in the development of TERT-based immunotherapies that are redesigned in line with established immunological considerations and working principles, and are tailored to patients stratified on the basis of TERT-promoter mutations and other underlying tumour characteristics. Thus, despite the disappointment of previous clinical trials, TERT offers the potential for personalized immunotherapy, perhaps in combination with immune-checkpoint inhibition.

  6. Enhanced Immune Response and Protective Effects of Nano-chitosan-based DNA Vaccine Encoding T Cell Epitopes of Esat-6 and FL against Mycobacterium Tuberculosis Infection

    PubMed Central

    Feng, Ganzhu; Jiang, Qingtao; Xia, Mei; Lu, Yanlai; Qiu, Wen; Zhao, Dan; Lu, Liwei; Peng, Guangyong; Wang, Yingwei

    2013-01-01

    Development of a novel and effective vaccine against Mycobacterium tuberculosis (M.tb) is a challenging for preventing TB infection. In this study, a novel nanoparticle-based recombinant DNA vaccine was developed, which contains Esat-6 three T cell epitopes (Esat-6/3e) and fms-like tyrosine kinase 3 ligand (FL) genes (termed Esat-6/3e-FL), and was enveloped with chitosan (CS) nanoparticles (nano-chitosan). The immunologic and protective efficacy of the nano-chitosan-based DNA vaccine (termed nano-Esat-6/3e-FL) was assessed in C57BL/6 mice after intramuscular prime vaccination with the plasmids DNA and nasal boost with the Esat-6/3e peptides. The results showed that the immunized mice remarkably elicited enhanced T cell responses and protection against M.tb H37Rv challenge. These findings indicate that the nano-chitosan can significantly elevate the immunologic and protective effects of the DNA vaccine, and the nano-Esat-6/3e-FL is a useful vaccine for preventing M.tb infection in mice. PMID:23637790

  7. Functional Tooth Restoration by Allogeneic Mesenchymal Stem Cell-Based Bio-Root Regeneration in Swine

    PubMed Central

    Wei, Fulan; Song, Tieli; Ding, Gang; Xu, Junji; Liu, Yi; Liu, Dayong; Fan, Zhipeng; Zhang, Chunmei

    2013-01-01

    Our previous proof-of-concept study showed the feasibility of regenerating the dental stem cell-based bioengineered tooth root (bio-root) structure in a large animal model. Here, we used allogeneic dental mesenchymal stem cells to regenerate bio-root, and then installed a crown on the bio-root to restore tooth function. A root shape hydroxyapatite tricalcium phosphate scaffold containing dental pulp stem cells was covered by a Vc-induced periodontal ligament stem cell sheet and implanted into a newly generated jaw bone implant socket. Six months after implantation, a prefabricated porcelain crown was cemented to the implant and subjected to tooth function. Clinical, radiological, histological, ultrastructural, systemic immunological evaluations and mechanical properties were analyzed for dynamic changes in the bio-root structure. The regenerated bio-root exhibited characteristics of a normal tooth after 6 months of use, including dentinal tubule-like and functional periodontal ligament-like structures. No immunological response to the bio-roots was observed. We developed a standard stem cell procedure for bio-root regeneration to restore adult tooth function. This study is the first to successfully regenerate a functional bio-root structure for artificial crown restoration by using allogeneic dental stem cells and Vc-induced cell sheet, and assess the recipient immune response in a preclinical model. PMID:23363023

  8. Design Considerations for a Web-based Database System of ELISpot Assay in Immunological Research

    PubMed Central

    Ma, Jingming; Mosmann, Tim; Wu, Hulin

    2005-01-01

    The enzyme-linked immunospot (ELISpot) assay has been a primary means in immunological researches (such as HIV-specific T cell response). Due to huge amount of data involved in ELISpot assay testing, the database system is needed for efficient data entry, easy retrieval, secure storage, and convenient data process. Besides, the NIH has recently issued a policy to promote the sharing of research data (see http://grants.nih.gov/grants/policy/data_sharing). The Web-based database system will be definitely benefit to data sharing among broad research communities. Here are some considerations for a database system of ELISpot assay (DBSEA). PMID:16779326

  9. Effects of lead shot ingestion on selected cells of the mallard immune system

    USGS Publications Warehouse

    Rocke, T.E.; Samuel, M.D.

    1991-01-01

    The immunologic effects of lead were measured in game-farm mallards (Anas platyrhynchos) that ingested lead shot while foraging naturally, mallards intubated with lead shot, and unexposed controls. Circulating white blood cells (WBC) declined significantly in male mallards exposed to lead by either natural ingestion or intubation, but not females. Spleen plaque-forming cell (SPFC) counts were significantly lower in mallards intubated with lead pellets compared to controls. Declines in WBC and SPFC means with increasing tissue lead concentrations provide further evidence that lead exposure reduced immunologic cell numbers. Hormonal activity and diet may have influenced the immunologic effects of lead exposure in this study.

  10. Anergic CD4+ T cells form mature immunological synapses with enhanced accumulation of c-Cbl and Cbl-b1

    PubMed Central

    Doherty, Melissa; Osborne, Douglas G.; Browning, Diana L.; Parker, David C.; Wetzel, Scott A.

    2010-01-01

    CD4+ T cell recognition of MHC:peptide complexes in the context of a costimulatory signal results in the large-scale redistribution of molecules at the T-APC interface to form the immunological synapse. The immunological synapse is the location of sustained TCR signaling and delivery of a subset of effector functions. T cells activated in the absence of costimulation are rendered anergic and are hyporesponsive when presented with antigen in the presence of optimal costimulation. Several previous studies have looked at aspects of immunological synapses formed by anergic T cells, but it remains unclear whether there are differences in the formation or composition of anergic immunological synapses. In this study we anergized primary murine CD4+ T cells by incubation of costimulation-deficient, transfected fibroblast APC. Using a combination of TCR, MHC:peptide, and ICAM-1 staining, we found that anergic T cells make mature immunological synapses with characteristic cSMAC and pSMAC domains that were indistinguishable from control synapses. There were small increases in total phosphotyrosine at the anergic synapse along with significant decreases in phosphorylated ERK 1/2 accumulation. Most striking, there was specific accumulation of c-Cbl and Cbl-b to the anergic synapses. Cbl-b, previously shown to be essential in anergy induction, was found in both the pSMAC and the cSMAC of the anergic synapse. This Cbl-b (and c-Cbl) accumulation at the anergic synapse may play an important role in anergy maintenance and/or induction. PMID:20207996

  11. Case report: retroperitoneal fibrosis simulating local relapse of sarcomatoid renal cell carcinoma.

    PubMed

    Esquena, Salvador; Abascal, José Maria; Trilla, Enrique; De Torres, Inés; Morote, Juan

    2006-01-01

    Generally, retroperitoneal fibrosis is an idiopathic process that envelopes and displaces ureters, causing hydronefrosis and renal failure. CT scan is the best choice for diagnosis. Other aetiologies described are malignancies, drugs, aorta aneurisms and immunological or rheumatological diseases. A 53-year-old male with hypertension and diabetes was operated on radical nephrectomy for renal mass. Pathological examination showed sarcomatoid renal cell carcinoma, Fürhman 3 grade, pT2 N0. Within 6 months of surgery, control CT scan demonstrated a left retroperitoneal mass, without separation with pancreas queue and spleen hilium, suggesting local relapse. Resection of the mass with splenectomy and partial pancreatectomy en bloc was performed. Microscopic evaluation revealed a dense collagenic tissue with a prominent inflammatory infiltrate, and the immunohistochemical study was negative for cytokeratin AE1-AE3. There was no evidence of malignancy in the histological examination. All these findings aided to diagnose a retroperitoneal fibrosis. Sometimes retroperitoneal fibrosis can simulate or is associated to malignancies. Presentation of a retroperitoneal fibrosis simulating local relapse of sarcomatoid renal cell carcinoma has not been previously reported in the English literature.

  12. CD4 responses in the setting or suboptimal virological responses to antiretroviral therapy: features, outcomes, and associated factors.

    PubMed

    Collazos, Julio; Asensi, Víctor; Cartón, José Antonio

    2009-07-01

    The factors associated with discordant viroimmunological responses following antiretroviral therapy are unclear. We studied 1380 patients who initiated a protease inhibitor (PI)-based antiretroviral regimen and who fulfilled the criteria for inclusion. Of them, 255 (18.5%) had CD4 increases > or =100 cells/microl after 1 year of therapy despite detectable viral load (immunological responders); they were compared with 669 patients (48.5%) who had CD4 increases <100 cells/microl regardless of their final viral load (immunological nonresponders). Immunological responders had higher rates of sexual acquisition of HIV (p = 0.03), lower rates of clinical progression (p = 0.02), higher probabilities of being naive to antiretroviral therapy (p = 0.006) or to PI if antiretroviral experienced (p = 0.03), higher rates of receiving only nucleoside reverse transcriptase inhibitors in addition to the PI (p = 0.04), and lower baseline CD4 counts (p = 0.007) and higher viral loads (p = 0.009), as compared with nonresponders. Multivariate analysis revealed that sexual transmission of HIV (homosexual p = 0.004, heterosexual p = 0.03), no prior PI experience (p = 0.005), absence of clinical progression (p = 0.02), and lower baseline CD4 counts (p = 0.03) were independently associated with immunological response. However, these factors differed according to the patients' prior antiretroviral status, as higher baseline viral load was also associated with immunological response in antiretroviral-experienced patients (p = 0.02), whereas baseline CD4 count (p = 0.007) was the only predictive parameter in antiretroviral-naive patients. We conclude that immunological responses despite suboptimal viral suppression are common. Prior PI experience, HIV transmission category, baseline CD4 counts, and clinical progression were independently predictive of this condition, although the associated factors were different depending on the patient's prior antiretroviral history.

  13. Pharmacokinetic/pharmacodynamic modelling approaches in paediatric infectious diseases and immunology☆

    PubMed Central

    Barker, Charlotte I.S.; Germovsek, Eva; Hoare, Rollo L.; Lestner, Jodi M.; Lewis, Joanna; Standing, Joseph F.

    2014-01-01

    Pharmacokinetic/pharmacodynamic (PKPD) modelling is used to describe and quantify dose–concentration–effect relationships. Within paediatric studies in infectious diseases and immunology these methods are often applied to developing guidance on appropriate dosing. In this paper, an introduction to the field of PKPD modelling is given, followed by a review of the PKPD studies that have been undertaken in paediatric infectious diseases and immunology. The main focus is on identifying the methodological approaches used to define the PKPD relationship in these studies. The major findings were that most studies of infectious diseases have developed a PK model and then used simulations to define a dose recommendation based on a pre-defined PD target, which may have been defined in adults or in vitro. For immunological studies much of the modelling has focused on either PK or PD, and since multiple drugs are usually used, delineating the relative contributions of each is challenging. The use of dynamical modelling of in vitro antibacterial studies, and paediatric HIV mechanistic PD models linked with the PK of all drugs, are emerging methods that should enhance PKPD-based recommendations in the future. PMID:24440429

  14. Immunological compatibility status of placenta-derived stem cells is mediated by scaffold 3D structure.

    PubMed

    Azizian, Sara; Khatami, Fatemeh; Modaresifar, Khashayar; Mosaffa, Nariman; Peirovi, Habibollah; Tayebi, Lobat; Bahrami, Soheyl; Redl, Heinz; Niknejad, Hassan

    2018-02-23

    Placenta-derived amniotic epithelial cells (AECs), a great cell source for tissue engineering and stem cell therapy, are immunologically inert in their native state; however, immunological changes in these cells after culture and differentiation have challenged their applications. The aim of this study was to investigate the effect of 2D and 3D scaffolds on human lymphocyte antigens (HLA) expression by AECs. The effect of different preparation parameters including pre-freezing time and temperature was evaluated on 3D chitosan-gelatine scaffolds properties. Evaluation of MHC class I, HLA-DR and HLA-G expression in AECs after 7 d culture on 2D bed and 3D scaffold of chitosan-gelatine showed that culture of AECs on the 2D substrate up-regulated MHC class I and HLA-DR protein markers on AECs surface and down-regulated HLA-G protein. In contrast, 3D scaffold did not increase protein expression of MHC class I and HLA-DR. Moreover, HLA-G protein expression remained unchanged in 3D culture. These results confirm that 3D scaffold can remain AECs in their native immunological state and modification of physical properties of the scaffold is a key regulator of immunological markers at the gene and protein expression levels; a strategy which circumvents rejection challenge of amniotic stem cells to be translated into the clinic.

  15. Development and testing of a mouse simulated space flight model

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1987-01-01

    The development and testing of a mouse model for simulating some aspects of weightlessness that occurs during space flight, and the carrying out of immunological experiments on animals undergoing space flight is examined. The mouse model developed was an antiorthostatic, hypokinetic, hypodynamic suspension model similar to one used with rats. The study was divided into two parts. The first involved determination of which immunological parameters should be observed on animals flown during space flight or studied in the suspension model. The second involved suspending mice and determining which of those immunological parameters were altered by the suspension. Rats that were actually flown in Space Shuttle SL-3 were used to test the hypotheses.

  16. Immunological implications of pregnancy-induced microchimerism

    PubMed Central

    Kinder, Jeremy M.; Stelzer, Ina A.; Arck, Petra C.; Way, Sing Sing

    2017-01-01

    Immunological identity is traditionally defined by genetically encoded antigens, with equal maternal and paternal contributions as a result of Mendelian inheritance. However, vertically transferred maternal cells also persist in individuals at very low levels throughout postnatal development. Reciprocally, mothers are seeded during pregnancy with genetically foreign fetal cells that persist long after parturition. Recent findings suggest that these microchimeric cells expressing noninherited familially relevant antigenic traits are not accidental souvenirs of pregnancy, but are purposefully retained within mothers and their offspring to promote genetic fitness by improving the outcome of future pregnancies. Here, we discuss the immunological implications, benefits and potential consequences of individuals being constitutively chimeric with a biologically active ‘microchiome’ of genetically foreign cells. PMID:28480895

  17. [Quantitative variations of lymphocyte subsets in various kinds of cancer patients in the terminal stage].

    PubMed

    Nakajima, Y; Akimoto, M; Iwasaki, H; Matano, S; Hirakawa, H; Kimura, M

    1986-12-01

    Immunological studies of the peripheral blood were made in terminal breast cancer and terminal abdominal cancer patients. Two immunological parameters were studied: (1) lymphocyte subsets and (2) proliferative response to PHA. A decrease in the number of OKT-3(+) cells and an increase in that of OKT-8(+) cells were observed in abdominal cancer. It was suggested that the immunological status in abdominal cancer is more suppressive than in breast cancer. Increases in the number of OK-M1(+) cells and Leu-7(+) cells were observed in breast cancer. It is suggested that cytotoxic lymphocytes increase in number in breast cancer more than in abdominal cancer.

  18. Practical immunology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudson, L.; Hay, F.C.

    1989-01-01

    This book covers the advances in contemporary molecular and cellular immunology which have provided the experimentalist with tools of unparalleled reproducibility and precision. Techniques for the propagation and manipulation of cells, genes and gene products have a central place in the new edition, reflecting their role in modern immunology.

  19. Multidimensional analysis of the frequencies and rates of cytokine secretion from single cells by quantitative microengraving.

    PubMed

    Han, Qing; Bradshaw, Elizabeth M; Nilsson, Björn; Hafler, David A; Love, J Christopher

    2010-06-07

    The large diversity of cells that comprise the human immune system requires methods that can resolve the individual contributions of specific subsets to an immunological response. Microengraving is process that uses a dense, elastomeric array of microwells to generate microarrays of proteins secreted from large numbers of individual live cells (approximately 10(4)-10(5) cells/assay). In this paper, we describe an approach based on this technology to quantify the rates of secretion from single immune cells. Numerical simulations of the microengraving process indicated an operating regime between 30 min-4 h that permits quantitative analysis of the rates of secretion. Through experimental validation, we demonstrate that microengraving can provide quantitative measurements of both the frequencies and the distribution in rates of secretion for up to four cytokines simultaneously released from individual viable primary immune cells. The experimental limits of detection ranged from 0.5 to 4 molecules/s for IL-6, IL-17, IFNgamma, IL-2, and TNFalpha. These multidimensional measures resolve the number and intensities of responses by cells exposed to stimuli with greater sensitivity than single-parameter assays for cytokine release. We show that cells from different donors exhibit distinct responses based on both the frequency and magnitude of cytokine secretion when stimulated under different activating conditions. Primary T cells with specific profiles of secretion can also be recovered after microengraving for subsequent expansion in vitro. These examples demonstrate the utility of quantitative, multidimensional profiles of single cells for analyzing the diversity and dynamics of immune responses in vitro and for identifying rare cells from clinical samples.

  20. Elucidation of Seventeen Human Peripheral Blood B cell Subsets and Quantification of the Tetanus Response Using a Density-Based Method for the Automated Identification of Cell Populations in Multidimensional Flow Cytometry Data

    PubMed Central

    Qian, Yu; Wei, Chungwen; Lee, F. Eun-Hyung; Campbell, John; Halliley, Jessica; Lee, Jamie A.; Cai, Jennifer; Kong, Megan; Sadat, Eva; Thomson, Elizabeth; Dunn, Patrick; Seegmiller, Adam C.; Karandikar, Nitin J.; Tipton, Chris; Mosmann, Tim; Sanz, Iñaki; Scheuermann, Richard H.

    2011-01-01

    Background Advances in multi-parameter flow cytometry (FCM) now allow for the independent detection of larger numbers of fluorochromes on individual cells, generating data with increasingly higher dimensionality. The increased complexity of these data has made it difficult to identify cell populations from high-dimensional FCM data using traditional manual gating strategies based on single-color or two-color displays. Methods To address this challenge, we developed a novel program, FLOCK (FLOw Clustering without K), that uses a density-based clustering approach to algorithmically identify biologically relevant cell populations from multiple samples in an unbiased fashion, thereby eliminating operator-dependent variability. Results FLOCK was used to objectively identify seventeen distinct B cell subsets in a human peripheral blood sample and to identify and quantify novel plasmablast subsets responding transiently to tetanus and other vaccinations in peripheral blood. FLOCK has been implemented in the publically available Immunology Database and Analysis Portal – ImmPort (http://www.immport.org) for open use by the immunology research community. Conclusions FLOCK is able to identify cell subsets in experiments that use multi-parameter flow cytometry through an objective, automated computational approach. The use of algorithms like FLOCK for FCM data analysis obviates the need for subjective and labor intensive manual gating to identify and quantify cell subsets. Novel populations identified by these computational approaches can serve as hypotheses for further experimental study. PMID:20839340

  1. Pathophysiology and immunological profile of myasthenia gravis and its subgroups.

    PubMed

    Romi, Fredrik; Hong, Yu; Gilhus, Nils Erik

    2017-12-01

    Myasthenia gravis (MG) is an autoimmune antibody-mediated disease characterized by muscle weakness and fatigability. It is believed that the initial steps triggering humoral immunity in MG take place inside thymic tissue and thymoma. The immune response against one or several epitopes expressed on thymic tissue cells spills over to neuromuscular junction components sharing the same epitope causing humoral autoimmunity and antibody production. The main cause of MG is acetylcholine receptor antibodies. However, many other neuromuscular junction membrane protein targets, intracellular and extracellular proteins are suggested to participate in MG pathophysiology. MG should be divided into subgroups based on clinical presentation and immunology. This includes onset age, clinical characteristics, thymic pathology and antibody profile. The immunological profile of these subgroups is determined by the antibodies present. Copyright © 2017. Published by Elsevier Ltd.

  2. Petri Net computational modelling of Langerhans cell Interferon Regulatory Factor Network predicts their role in T cell activation.

    PubMed

    Polak, Marta E; Ung, Chuin Ying; Masapust, Joanna; Freeman, Tom C; Ardern-Jones, Michael R

    2017-04-06

    Langerhans cells (LCs) are able to orchestrate adaptive immune responses in the skin by interpreting the microenvironmental context in which they encounter foreign substances, but the regulatory basis for this has not been established. Utilising systems immunology approaches combining in silico modelling of a reconstructed gene regulatory network (GRN) with in vitro validation of the predictions, we sought to determine the mechanisms of regulation of immune responses in human primary LCs. The key role of Interferon regulatory factors (IRFs) as controllers of the human Langerhans cell response to epidermal cytokines was revealed by whole transcriptome analysis. Applying Boolean logic we assembled a Petri net-based model of the IRF-GRN which provides molecular pathway predictions for the induction of different transcriptional programmes in LCs. In silico simulations performed after model parameterisation with transcription factor expression values predicted that human LC activation of antigen-specific CD8 T cells would be differentially regulated by epidermal cytokine induction of specific IRF-controlled pathways. This was confirmed by in vitro measurement of IFN-γ production by activated T cells. As a proof of concept, this approach shows that stochastic modelling of a specific immune networks renders transcriptome data valuable for the prediction of functional outcomes of immune responses.

  3. Selenium Pretreatment Alleviated LPS-Induced Immunological Stress Via Upregulation of Several Selenoprotein Encoding Genes in Murine RAW264.7 Cells.

    PubMed

    Wang, Longqiong; Jing, Jinzhong; Yan, Hui; Tang, Jiayong; Jia, Gang; Liu, Guangmang; Chen, Xiaoling; Tian, Gang; Cai, Jingyi; Shang, Haiying; Zhao, Hua

    2018-04-18

    This study was conducted to profile selenoprotein encoding genes in mouse RAW264.7 cells upon lipopolysaccharide (LPS) challenge and integrate their roles into immunological regulation in response to selenium (Se) pretreatment. LPS was used to develop immunological stress in macrophages. Cells were pretreated with different levels of Se (0, 0.5, 1.0, 1.5, 2.0 μmol Se/L) for 2 h, followed by LPS (100 ng/mL) stimulation for another 3 h. The mRNA expression of 24 selenoprotein encoding genes and 9 inflammation-related genes were investigated. The results showed that LPS (100 ng/mL) effectively induced immunological stress in RAW264.7 cells with induced inflammation cytokines, IL-6 and TNF-α, mRNA expression, and cellular secretion. LPS increased (P < 0.05) mRNA profiles of 9 inflammation-related genes in cells, while short-time Se pretreatment modestly reversed (P < 0.05) the LPS-induced upregulation of 7 genes (COX-2, ICAM-1, IL-1β, IL-6, IL-10, iNOS, and MCP-1) and further increased (P < 0.05) expression of IFN-β and TNF-α in stressed cells. Meanwhile, LPS decreased (P < 0.05) mRNA levels of 18 selenoprotein encoding genes and upregulated mRNA levels of TXNRD1 and TXNRD3 in cells. Se pretreatment recovered (P < 0.05) expression of 3 selenoprotein encoding genes (GPX1, SELENOH, and SELENOW) in a dose-dependent manner and increased (P < 0.05) expression of another 5 selenoprotein encoding genes (SELENOK, SELENOM, SELENOS, SELENOT, and TXNRD2) only at a high level (2.0 μmol Se/L). Taken together, LPS-induced immunological stress in RAW264.7 cells accompanied with the global downregulation of selenoprotein encoding genes and Se pretreatment alleviated immunological stress via upregulation of a subset of selenoprotein encoding genes.

  4. Biological effect of OK-432 (picibanil) and possible application to dendritic cell therapy.

    PubMed

    Ryoma, Yoshiki; Moriya, Yoichiro; Okamoto, Masato; Kanaya, Isao; Saito, Motoo; Sato, Mitsunobu

    2004-01-01

    OK-432 (Picibanil), a streptococcal preparation with potent biological response modifying activities, was approved in Japan as an anticancer agent in 1975. In the ensuing 30 years, since then, a significant amount of data, including clinical as well as experimental studies, has been accumulated. OK-432 has been reported to induce various cytokines, activate immunological cells and thus augment anticancer immunity. Recently, the interrelation between innate immunity and adaptive immunity has become clear and it was reported that OK-432 acts, at least in part, via Toll-like receptor (TLR) 4-MD2 signaling pathway. In addition, dendritic cells (DCs) are considered to play a pivotal role in immunological response and it is reported that OK-432 induced maturation of DCs both in vitro and in vivo. These results suggest that OK-432 is a useful adjuvant in DC-based anticancer immunotherapy. Clinical studies of DC therapy with OK-432 are under way.

  5. An immune clock of human pregnancy

    PubMed Central

    Aghaeepour, Nima; Ganio, Edward A.; Mcilwain, David; Tsai, Amy S.; Tingle, Martha; Van Gassen, Sofie; Gaudilliere, Dyani K.; Baca, Quentin; McNeil, Leslie; Okada, Robin; Ghaemi, Mohammad S.; Furman, David; Wong, Ronald J.; Winn, Virginia D.; Druzin, Maurice L.; El-Sayed, Yaser Y.; Quaintance, Cecele; Gibbs, Ronald; Darmstadt, Gary L.; Shaw, Gary M.; Stevenson, David K.; Tibshirani, Robert; Nolan, Garry P.; Lewis, David B.; Angst, Martin S.; Gaudilliere, Brice

    2017-01-01

    The maintenance of pregnancy relies on finely tuned immune adaptations. We demonstrate that these adaptations are precisely timed, reflecting an immune clock of pregnancy in women delivering at term. Using mass cytometry, the abundance and functional responses of all major immune cell subsets were quantified in serial blood samples collected throughout pregnancy. Cell signaling–based Elastic Net, a regularized regression method adapted from the elastic net algorithm, was developed to infer and prospectively validate a predictive model of interrelated immune events that accurately captures the chronology of pregnancy. Model components highlighted existing knowledge and revealed previously unreported biology, including a critical role for the interleukin-2–dependent STAT5ab signaling pathway in modulating T cell function during pregnancy. These findings unravel the precise timing of immunological events occurring during a term pregnancy and provide the analytical framework to identify immunological deviations implicated in pregnancy-related pathologies. PMID:28864494

  6. Cutaneous defenses against dermatophytes and yeasts.

    PubMed Central

    Wagner, D K; Sohnle, P G

    1995-01-01

    Predispositions to the superficial mycoses include warmth and moisture, natural or iatrogenic immunosuppression, and perhaps some degree of inherited susceptibility. Some of these infections elicit a greater inflammatory response than others, and the noninflammatory ones are generally more chronic. The immune system is involved in the defense against these infections, and cell-mediated immunity appears to be particularly important. The mechanisms involved in generating immunologic reactions in the skin are complex, with epidermal Langerhans cells, other dendritic cells, lymphocytes, microvascular endothelial cells, and the keratinocytes themselves all participating in one way or another. A variety of defects in the immunologic response to the superficial mycoses have been described. In some cases the defect may be preexistent, whereas in others the infection itself may interfere with protective cell-mediated immune responses against the organisms. A number of different mechanisms may underlie these immunologic defects and lead to the development of chronic superficial fungal infection in individual patients. Although the immunologic defects appear to be involved in the chronicity of certain types of cutaneous fungal infections, treatment of these defects remains experimental at the present time. PMID:7553568

  7. Laser assisted immunotherapy (LIT) for chemotherapy-resistant neoplasms: recent case reports

    NASA Astrophysics Data System (ADS)

    Nordquist, Robert E.; Bahavar, Cody; Zhou, Feifan; Hode, Tomas; Chen, Wei R.; Li, Xiaosong; Naylor, Mark F.

    2014-02-01

    T-cell stimulators such as anti-CTLA-4 antibodies enhance immunologic responses to chemotherapy-resistant solid tumors, such as melanoma, advanced breast cancer, ovarian cancer and pancreatic cancer. The efficacy of these new immunotherapy agents can in theory be enhanced substantially by therapies that stimulate new immunologic (T-cell) responses against the tumor. Laser immunotherapy (LIT) with imiquimod and InCVAX are techniques that produce useful responses in patients with advanced melanoma, the prototypical chemotherapy resistant solid tumor. The mechanism of action of these therapies is thought to be immunological, including the development of new T-cell responses. We have therefore been combining LIT using imiquimod and InCVAX treatment with the new T-cell stimulators (ipilimumab) in cases of stage IV melanoma. While still anecdotal, the use of novel combinations of immunologic therapies should provide much improved responses for chemotherapy-resistant solid tumors (such as melanoma) than was previously possible. Newer T-cell stimulating drugs such as the anti-PD-1 antibodies and anti-PD-L1 antibodies will make this general approach to treating chemoresistant advanced tumors even more effective in the future.

  8. Development of a bead-based Luminex assay using lipopolysaccharide specific monoclonal antibodies to detect biological threats from Brucella species.

    PubMed

    Silbereisen, Angelika; Tamborrini, Marco; Wittwer, Matthias; Schürch, Nadia; Pluschke, Gerd

    2015-10-05

    Brucella, a Gram-negative bacterium, is classified as a potential bioterrorism agent mainly due to the low dose needed to cause infection and the ability to transmit the bacteria via aerosols. Goats/sheep, cattle, pigs, dogs, sheep and rodents are infected by B. melitensis, B. abortus, B. suis, B. canis, B. ovis and B. neotomae, respectively, the six classical Brucella species. Most human cases are caused by B. melitensis and B. abortus. Our aim was to specifically detect Brucellae with 'smooth' lipopolysaccharide (LPS) using a highly sensitive monoclonal antibody (mAb) based immunological assay. To complement molecular detection systems for potential bioterror agents, as required by international biodefense regulations, sets of mAbs were generated by B cell hybridoma technology and used to develop immunological assays. The combination of mAbs most suitable for an antigen capture assay format was identified and an immunoassay using the Luminex xMAP technology was developed. MAbs specific for the LPS O-antigen of Brucella spp. were generated by immunising mice with inactivated B. melitensis or B. abortus cells. Most mAbs recognised both B. melitensis and B. abortus and antigen binding was not impeded by inactivation of the bacterial cells by γ irradiation, formalin or heat treatment, a step required to analyse the samples immunologically under biosafety level two conditions. The Luminex assay recognised all tested Brucella species with 'smooth' LPS with detection limits of 2×10(2) to 8×10(4) cells per mL, depending on the species tested. Milk samples spiked with Brucella spp. cells were identified successfully using the Luminex assay. In addition, the bead-based immunoassay was integrated into a multiplex format, allowing for simultaneous, rapid and specific detection of Brucella spp., Bacillus anthracis, Francisella tularensis and Yersinia pestis within a single sample. Overall, the robust Luminex assay should allow detection of Brucella spp. in both natural outbreak and bio-threat situations.

  9. Enhancing the Breadth of Efficacy of Therapeutic Vaccines for Breast Cancer

    DTIC Science & Technology

    2014-10-01

    4b. Generate specific tumor antigen lysates from recombinant baculovirus- infected insect cells. *Currently expressing antigens in C1R cells since... Immunology Conference, Breckenridge CO (invited by Jim Hagman). Sept 20, 2014, Analysis of the T cell repertoire in breast cancer using emulsion...by Jonathan Bramson).   13 Nov 11, 2014 (anticipated), Elimination of the bottlenecks in T cell receptor antigen discovery, Immunology Forum

  10. Physical properties of ordered mesoporous SBA-15 silica as immunological adjuvant

    NASA Astrophysics Data System (ADS)

    Mariano-Neto, F.; Matos, J. R.; Cides da Silva, L. C.; Carvalho, L. V.; Scaramuzzi, K.; Sant'Anna, O. A.; Oliveira, C. P.; Fantini, M. C. A.

    2014-10-01

    This work reports a detailed analysis of the ordered mesoporous SBA-15 silica synthesis procedure that provides a matrix with mean pore diameter around 10 nm. The encapsulation of bovine serum albumin (BSA) by four different methods allowed the determination of the best imbibition condition, which is keeping the mixture under rest and solvent evaporation. Simulation of the in situ SAXS scattered intensity of the BSA release in potassium buffer solution, gastrointestinal fluids revealed a slow evolution of BSA content, independent of the media. Proton induced x-ray emission results obtained in calcined mouse organs revealed that silica is only present in the spleen after 35 days and is completely eliminated from all mouse organs after 10 weeks. Biological studies showed that Santa Barbara Amorphous-15 is an effective adjuvant when compared to the traditional Al(OH)3, and is non-toxic to mice, rats, dogs and even cells, such as macrophages and dendritic cells. Recent studies showed that the immunological response is improved by enhancing the inflammatory response and the recruitment of immune competent cells to the site of injection as by the oral route and, most importantly, by increasing the number of phagocytes of a particulate antigen by antigen presenting cells. This research is under the scope of the International Patent WO 07030901, IN248654,ZA2008/02277, KR 1089400, MX297263, JP5091863, CN101287491B.

  11. Association of T and NK Cell Phenotype With the Diagnosis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS).

    PubMed

    Rivas, Jose Luis; Palencia, Teresa; Fernández, Guerau; García, Milagros

    2018-01-01

    Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a pathological condition characterized by incapacitating fatigue and a combination of neurologic, immunologic, and endocrine symptoms. At present its diagnosis is based exclusively on clinical criteria. Several studies have described altered immunologic profiles; therefore, we proposed to further examine the more significant differences, particularly T and NK cell subpopulations that could be conditioned by viral infections, to discern their utility in improving the diagnosis and characterization of the patients. The study included 76 patients that fulfilled the revised Canadian Consensus Criteria (CCC 2010) for ME/CFS and 73 healthy controls, matched for age and gender. Immunophenotyping of different T cell and natural killer cell subpopulations in peripheral blood was determined by flow cytometry. ME/CFS patients showed significantly lower values of T regulatory cells (CD4 + CD25 ++(high) FOXP3 + ) and higher NKT-like cells (CD3 + CD16 +/- CD56 + ) than the healthy individuals. Regarding NK phenotypes, NKG2C was significantly lower and NKCD69 and NKCD56 bright were significantly higher in the patients group. A classification model was generated using the more relevant cell phenotype differences (NKG2C and T regulatory cells) that was able to classify the individuals as ME/CFS patients or healthy in a 70% of cases. The observed differences in some of the subpopulations of T and NK cells between patients and healthy controls could define a distinct immunological profile that can help in the diagnostic process of ME/CFS patients, contribute to the recognition of the disease and to the search of more specific treatments. However, more studies are needed to corroborate these findings and to contribute to establish a consensus in diagnosis.

  12. Association of T and NK Cell Phenotype With the Diagnosis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

    PubMed Central

    Rivas, Jose Luis; Palencia, Teresa; Fernández, Guerau; García, Milagros

    2018-01-01

    Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a pathological condition characterized by incapacitating fatigue and a combination of neurologic, immunologic, and endocrine symptoms. At present its diagnosis is based exclusively on clinical criteria. Several studies have described altered immunologic profiles; therefore, we proposed to further examine the more significant differences, particularly T and NK cell subpopulations that could be conditioned by viral infections, to discern their utility in improving the diagnosis and characterization of the patients. The study included 76 patients that fulfilled the revised Canadian Consensus Criteria (CCC 2010) for ME/CFS and 73 healthy controls, matched for age and gender. Immunophenotyping of different T cell and natural killer cell subpopulations in peripheral blood was determined by flow cytometry. ME/CFS patients showed significantly lower values of T regulatory cells (CD4+CD25++(high)FOXP3+) and higher NKT-like cells (CD3+CD16+/−CD56+) than the healthy individuals. Regarding NK phenotypes, NKG2C was significantly lower and NKCD69 and NKCD56 bright were significantly higher in the patients group. A classification model was generated using the more relevant cell phenotype differences (NKG2C and T regulatory cells) that was able to classify the individuals as ME/CFS patients or healthy in a 70% of cases. The observed differences in some of the subpopulations of T and NK cells between patients and healthy controls could define a distinct immunological profile that can help in the diagnostic process of ME/CFS patients, contribute to the recognition of the disease and to the search of more specific treatments. However, more studies are needed to corroborate these findings and to contribute to establish a consensus in diagnosis. PMID:29867995

  13. Immunologic features of a carcinogen-induced murine bladder cancer: in vivo and in vitro studies.

    PubMed

    Javadpour, N; Hyatt, C L; Soares, T

    1979-01-01

    Certain in vivo and in vitro immunologic features of carcinogen-induced murine bladder cancer have been studied. The consistency of tumor induction, its natural history, and immunogenicity both in vivo and in vitro render this syngeneic murine bladder tumor a suitable model for immunologic studies. Pre-immunization of strain C3H/Hen mice with mid-gestational fetal cells did not protect the animals from tumor challenge. Sera of mice immunized with mid-gestational fetal cells were not cytotoxic to cultured tumor cells in a microcytotoxicity assay indicative of dissimilarity between the tumor associated antigen and the syngeneic mid-gestational fetal antigen.

  14. Infectious Agents as Stimuli of Trained Innate Immunity.

    PubMed

    Rusek, Paulina; Wala, Mateusz; Druszczyńska, Magdalena; Fol, Marek

    2018-02-03

    The discoveries made over the past few years have modified the current immunological paradigm. It turns out that innate immunity cells can mount some kind of immunological memory, similar to that observed in the acquired immunity and corresponding to the defense mechanisms of lower organisms, which increases their resistance to reinfection. This phenomenon is termed trained innate immunity. It is based on epigenetic changes in innate immune cells (monocytes/macrophages, NK cells) after their stimulation with various infectious or non-infectious agents. Many infectious stimuli, including bacterial or fungal cells and their components (LPS, β-glucan, chitin) as well as viruses or even parasites are considered potent inducers of innate immune memory. Epigenetic cell reprogramming occurring at the heart of the phenomenon may provide a useful basis for designing novel prophylactic and therapeutic strategies to prevent and protect against multiple diseases. In this article, we present the current state of art on trained innate immunity occurring as a result of infectious agent induction. Additionally, we discuss the mechanisms of cell reprogramming and the implications for immune response stimulation/manipulation.

  15. 21 CFR 866.5530 - Immunoglobulin G (Fc fragment specific) immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological... immunoglobulin G (resulting from breakdown of immunoglobulin G antibodies) in urine, serum, and other body fluids. Measurement of immunoglobulin G Fc fragments aids in the diagnosis of plasma cell antibody-forming...

  16. 21 CFR 866.5530 - Immunoglobulin G (Fc fragment specific) immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological... immunoglobulin G (resulting from breakdown of immunoglobulin G antibodies) in urine, serum, and other body fluids. Measurement of immunoglobulin G Fc fragments aids in the diagnosis of plasma cell antibody-forming...

  17. 21 CFR 866.5530 - Immunoglobulin G (Fc fragment specific) immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological... immunoglobulin G (resulting from breakdown of immunoglobulin G antibodies) in urine, serum, and other body fluids. Measurement of immunoglobulin G Fc fragments aids in the diagnosis of plasma cell antibody-forming...

  18. 21 CFR 866.5530 - Immunoglobulin G (Fc fragment specific) immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological... immunoglobulin G (resulting from breakdown of immunoglobulin G antibodies) in urine, serum, and other body fluids. Measurement of immunoglobulin G Fc fragments aids in the diagnosis of plasma cell antibody-forming...

  19. The Immunologic Revolution: Photoimmunology

    PubMed Central

    Ullrich, Stephen E.; Byrne, Scott N.

    2011-01-01

    UV radiation targets the skin and is a primary cause of skin cancer (both melanoma and non-melanoma skin cancer). Exposure to UV also suppresses the immune response, and UV-induced immune suppression is a major risk factor for skin cancer induction. The efforts of Dermatologists and Cancer Biologists to understand how UV exposure suppresses the immune response and contributes to skin cancer induction led to the development of the sub-discipline we call photoimmunology. Advances in photoimmunology have generally paralleled advances in immunology. However, there are a number of examples where investigations into the mechanisms underlying UV-induced immune suppression reshaped our understanding of basic immunological concepts. Unconventional immune regulatory roles for Langerhans cells, mast cells, and NKT cells as well as the immune suppressive function of lipid mediators of inflammation and alarmins, are just some examples of how advances in immunodermatology have altered our understanding of basic immunology. In this anniversary issue celebrating 75 years of Cutaneous Science, we will provide examples of how concepts that grew out of efforts by Immunologists and Dermatologists to understand immune regulation by UV radiation impacted on immunology in general. PMID:22170491

  20. The immunology of smallpox vaccines

    PubMed Central

    Kennedy, Richard B; Ovsyannikova, Inna G; Jacobson, Robert M; Poland, Gregory A

    2010-01-01

    In spite of the eradication of smallpox over 30 years ago; orthopox viruses such as smallpox and monkeypox remain serious public health threats both through the possibility of bioterrorism and the intentional release of smallpox and through natural outbreaks of emerging infectious diseases such as monkeypox. The eradication effort was largely made possible by the availability of an effective vaccine based on the immunologically cross-protective vaccinia virus. Although the concept of vaccination dates back to the late 1800s with Edward Jenner, it is only in the past decade that modern immunologic tools have been applied toward deciphering poxvirus immunity. Smallpox vaccines containing vaccinia virus elicit strong humoral and cellular immune responses that confer cross-protective immunity against variola virus for decades after immunization. Recent studies have focused on: establishing the longevity of poxvirus-specific immunity, defining key immune epitopes targeted by T and B cells, developing subunit-based vaccines, and developing genotypic and phenotypic immune response profiles that predict either vaccine response or adverse events following immunization. PMID:19524427

  1. Kinetics and clonality of immunological memory in humans.

    PubMed

    Beverley, Peter C L

    2004-10-01

    T-cell immunological memory consists largely of clones of proliferating lymphocytes maintained by antigenic stimulation and the survival and proliferative effects of cytokines. The duration of survival of memory clones in humans is determine by the Hayflick limit on the number of cell divisions, the rate of cycling of memory cells and factors that control erosion of telomeres, including mechanisms that control telomerase.

  2. A Pronounced Inflammatory Activity Characterizes the Early Fracture Healing Phase in Immunologically Restricted Patients

    PubMed Central

    Hoff, Paula; Gaber, Timo; Strehl, Cindy; Jakstadt, Manuela; Hoff, Holger; Schmidt-Bleek, Katharina; Lang, Annemarie; Röhner, Eric; Huscher, Dörte; Matziolis, Georg; Burmester, Gerd-Rüdiger; Schmidmaier, Gerhard; Perka, Carsten; Duda, Georg N.; Buttgereit, Frank

    2017-01-01

    Immunologically restricted patients such as those with autoimmune diseases or malignancies often suffer from delayed or insufficient fracture healing. In human fracture hematomas and the surrounding bone marrow obtained from immunologically restricted patients, we analyzed the initial inflammatory phase on cellular and humoral level via flow cytometry and multiplex suspension array. Compared with controls, we demonstrated higher numbers of immune cells like monocytes/macrophages, natural killer T (NKT) cells, and activated T helper cells within the fracture hematomas and/or the surrounding bone marrow. Also, several pro-inflammatory cytokines such as Interleukin (IL)-6 and Tumor necrosis factor α (TNFα), chemokines (e.g., Eotaxin and RANTES), pro-angiogenic factors (e.g., IL-8 and Macrophage migration inhibitory factor: MIF), and regulatory cytokines (e.g., IL-10) were found at higher levels within the fracture hematomas and/or the surrounding bone marrow of immunologically restricted patients when compared to controls. We conclude here that the inflammatory activity on cellular and humoral levels at fracture sites of immunologically restricted patients considerably exceeds that of control patients. The initial inflammatory phase profoundly differs between these patient groups and is probably one of the reasons for prolonged or insufficient fracture healing often occurring within immunologically restricted patients. PMID:28282868

  3. Genomic Circuitry Underlying Immunological Response to Pediatric Acute Respiratory Infection.

    PubMed

    Henrickson, Sarah E; Manne, Sasikanth; Dolfi, Douglas V; Mansfield, Kathleen D; Parkhouse, Kaela; Mistry, Rakesh D; Alpern, Elizabeth R; Hensley, Scott E; Sullivan, Kathleen E; Coffin, Susan E; Wherry, E John

    2018-01-09

    Acute respiratory tract viral infections (ARTIs) cause significant morbidity and mortality. CD8 T cells are fundamental to host responses, but transcriptional alterations underlying anti-viral mechanisms and links to clinical characteristics remain unclear. CD8 T cell transcriptional circuitry in acutely ill pediatric patients with influenza-like illness was distinct for different viral pathogens. Although changes included expected upregulation of interferon-stimulated genes (ISGs), transcriptional downregulation was prominent upon exposure to innate immune signals in early IFV infection. Network analysis linked changes to severity of infection, asthma, sex, and age. An influenza pediatric signature (IPS) distinguished acute influenza from other ARTIs and outperformed other influenza prediction gene lists. The IPS allowed a deeper investigation of the connection between transcriptional alterations and clinical characteristics of acute illness, including age-based differences in circuits connecting the STAT1/2 pathway to ISGs. A CD8 T cell-focused systems immunology approach in pediatrics identified age-based alterations in ARTI host response pathways. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Altered Actin Centripetal Retrograde Flow in Physically Restricted Immunological Synapses

    PubMed Central

    Yu, Cheng-han; Wu, Hung-Jen; Kaizuka, Yoshihisa; Vale, Ronald D.; Groves, Jay T.

    2010-01-01

    Antigen recognition by T cells involves large scale spatial reorganization of numerous receptor, adhesion, and costimulatory proteins within the T cell-antigen presenting cell (APC) junction. The resulting patterns can be distinctive, and are collectively known as the immunological synapse. Dynamical assembly of cytoskeletal network is believed to play an important role in driving these assembly processes. In one experimental strategy, the APC is replaced with a synthetic supported membrane. An advantage of this configuration is that solid structures patterned onto the underlying substrate can guide immunological synapse assembly into altered patterns. Here, we use mobile anti-CD3ε on the spatial-partitioned supported bilayer to ligate and trigger T cell receptor (TCR) in live Jurkat T cells. Simultaneous tracking of both TCR clusters and GFP-actin speckles reveals their dynamic association and individual flow patterns. Actin retrograde flow directs the inward transport of TCR clusters. Flow-based particle tracking algorithms allow us to investigate the velocity distribution of actin flow field across the whole synapse, and centripetal velocity of actin flow decreases as it moves toward the center of synapse. Localized actin flow analysis reveals that, while there is no influence on actin motion from substrate patterns directly, velocity differences of actin are observed over physically trapped TCR clusters. Actin flow regains its velocity immediately after passing through confined TCR clusters. These observations are consistent with a dynamic and dissipative coupling between TCR clusters and viscoelastic actin network. PMID:20686692

  5. The effect of incident tuberculosis on immunological response of HIV patients on highly active anti-retroviral therapy at the university of Gondar hospital, northwest Ethiopia: a retrospective follow-up study.

    PubMed

    Assefa, Abate; Gelaw, Baye; Getnet, Gebeyaw; Yitayew, Gashaw

    2014-08-27

    Human immunodeficiency virus (HIV) infection is usually complicated by high rates of tuberculosis (TB) co-infection. Impaired immune response has been reported during HIV/TB co-infection and may have significant effect on anti-retroviral therapy (ART). TB/HIV co - infection is a major public health problem in Ethiopia. Therefore, the aim of the study was to assess the effect of TB incidence on immunological response of HIV patients during ART. A retrospective follow-up study was conducted among adult HIV patients who started ART at the University of Gondar Hospital. Changes in CD4+ T - lymphocyte count and incident TB episodes occurring during 42 months of follow up on ART were assessed. Life table was used to estimate the cumulative immunologic failure. Kaplan-Meier curve was used to compare survival curves between the different categories. Cox-proportional hazard model was employed to examine predictors of immunological failure. Among 400 HIV patients, 89(22.2%) were found to have immunological failure with a rate of 8.5 per 100 person-years (PY) of follow-up. Incident TB developed in 26(6.5%) of patients, with an incidence rate of 2.2 cases per 100 PY. The immunological failure rate was high (20.1/100PY) at the first year of treatment. At multivariate analysis, Cox regression analysis showed that baseline CD4+ T - cell count <100 cells/mm3 (adjusted hazard ratio (AHR) 1.8; 95%CI: 1.10 - 2.92, p = 0.023) and being male sex (AHR 1.6; 95%CI: 1.01 - 2.68, p = 0.046) were found to be significant predictors of immunological failure. There was borderline significant association with incident TB (AHR 2.2; 95%CI: 0.94 - 5.09, p = 0.06). The risk of immunological failure was significantly higher (38.5%) among those with incident TB compared with TB - free (21.1%) (Log rank p = 0.036). High incidence of immunological failure occurred within the first year of initiating ART. The proportions of patients with impaired immune restoration were higher among patients with incident TB. Lower baseline CD4+ T - cells count of <100 cells/mm3 and being male sex were significant predictors of immunological failure. The result highlighted the beneficial effects of earlier initiation of ART on CD4+ T - cell count recovery.

  6. Basic and clinical immunology

    NASA Technical Reports Server (NTRS)

    Chinen, Javier; Shearer, William T.

    2003-01-01

    Progress in immunology continues to grow exponentially every year. New applications of this knowledge are being developed for a broad range of clinical conditions. Conversely, the study of primary and secondary immunodeficiencies is helping to elucidate the intricate mechanisms of the immune system. We have selected a few of the most significant contributions to the fields of basic and clinical immunology published between October 2001 and October 2002. Our choice of topics in basic immunology included the description of T-bet as a determinant factor for T(H)1 differentiation, the role of the activation-induced cytosine deaminase gene in B-cell development, the characterization of CD4(+)CD25(+) regulatory T cells, and the use of dynamic imaging to study MHC class II transport and T-cell and dendritic cell membrane interactions. Articles related to clinical immunology that were selected for review include the description of immunodeficiency caused by caspase 8 deficiency; a case series report on X-linked agammaglobulinemia; the mechanism of action, efficacy, and complications of intravenous immunoglobulin; mechanisms of autoimmunity diseases; and advances in HIV pathogenesis and vaccine development. We also reviewed two articles that explore the possible alterations of the immune system caused by spaceflights, a new field with increasing importance as human space expeditions become a reality in the 21st century.

  7. Advances in mechanisms of asthma, allergy, and immunology in 2010.

    PubMed

    Broide, David H; Finkelman, Fred; Bochner, Bruce S; Rothenberg, Marc E

    2011-03-01

    2010 was marked by rapid progress in our understanding of the cellular and molecular mechanisms involved in the pathogenesis of allergic inflammation and asthma. Studies published in the Journal of Allergy and Clinical Immunology described advances in our knowledge of cells associated with allergic inflammation (mast cells, eosinophils, dendritic cells, and T cells), as well as IgE, cytokines, receptors, signaling molecules, and pathways. Studies used animal models, as well as human cells and tissues, to advance our understanding of mechanisms of asthma, eosinophilic esophagitis, food allergy, anaphylaxis and immediate hypersensitivity, mast cells and their disorders, atopic dermatitis, nasal polyposis, and hypereosinophilic syndromes. Additional studies provided novel information about the induction and regulation of allergic inflammation and the genetic contribution to allergic inflammation. Critical features of these studies and their potential effects on human atopic disorders are summarized here. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  8. Qa-1/HLA-E-restricted regulatory CD8+ T cells and self-nonself discrimination: an essay on peripheral T-cell regulation.

    PubMed

    Jiang, Hong; Chess, Leonard

    2008-11-01

    By discriminating self from nonself and controlling the magnitude and class of immune responses, the immune system mounts effective immunity against virtually any foreign antigens but avoids harmful immune responses to self. These are two equally important and related but distinct processes, which function in concert to ensure an optimal function of the immune system. Immunologically relevant clinical problems often occur because of failure of either process, especially the former. Currently, there is no unified conceptual framework to characterize the precise relationship between thymic negative selection and peripheral immune regulation, which is the basis for understanding self-non-self discrimination versus control of magnitude and class of immune responses. In this article, we explore a novel hypothesis of how the immune system discriminates self from nonself in the periphery during adaptive immunity. This hypothesis permits rational analysis of various seemingly unrelated biomedical problems inherent in immunologic disorders that cannot be uniformly interpreted by any currently existing paradigms. The proposed hypothesis is based on a unified conceptual framework of the "avidity model of peripheral T-cell regulation" that we originally proposed and tested, in both basic and clinical immunology, to understand how the immune system achieves self-nonself discrimination in the periphery.

  9. Consortium biology in immunology: the perspective from the Immunological Genome Project.

    PubMed

    Benoist, Christophe; Lanier, Lewis; Merad, Miriam; Mathis, Diane

    2012-10-01

    Although the field has a long collaborative tradition, immunology has made less use than genetics of 'consortium biology', wherein groups of investigators together tackle large integrated questions or problems. However, immunology is naturally suited to large-scale integrative and systems-level approaches, owing to the multicellular and adaptive nature of the cells it encompasses. Here, we discuss the value and drawbacks of this organization of research, in the context of the long-running 'big science' debate, and consider the opportunities that may exist for the immunology community. We position this analysis in light of our own experience, both positive and negative, as participants of the Immunological Genome Project.

  10. [Preventive and therapeutic effect of genetic vaccine based on recombinant alpha virus against mouse mastocytoma P815].

    PubMed

    Ni, Bing; Yang, Ri-gao; Li, Yan-qiu; Wu, Yu-zhang

    2004-01-01

    To explore the immunological effect of genetic vaccine based on alpha-virus and to seek out better forms of gene vaccines. Expression plasmid P1A/pSMART2a and packaging plasmid helper were cotransfected into mammalian 293 cells by calcium phosphate precipitation method and high level of recombinant alpha-virus P1A/SFV was prepared. Following identification of rSFV and its expression, BALB/c mice were inoculated with rSFV, and the production of antigen-specific antibody and the cytotoxic effect of CTLs were determined. In the preventive and therapeutic experiments, the percents of tumor-free and of survival mice immunized with rSFV were observed. The recombinant SFV could express correctly in cultured cells. After being inoculated into the mice, rSFV could prime stronger CTL response than that in control mice. When the ratio of E/T cells was 100:1, the (51)Cr release rate reached 75%. No antibody could be detected in mice from all groups. The immunological effect of P1A/SFV among all groups was the best in both preventive and therapeutic experiment within experimental deadline. On 60th day in preventive experiment, the percent of tumor-free animal in P1A/SFV group reached 60%, whereas that was only 20% in P1A/pCI-neogroup. On 60th day in therapeutic experiment, survival rate of mice in P1A/SFV group reached 50%, but only 10% mice could survive in all control groups. Compared with common gene vaccines, the genetic vaccine based on recombinant SFV has the best immunological effect, which provides some new strategies for clinical genetic therapy of tumors.

  11. Therapeutic cancer vaccines: are we there yet?

    PubMed Central

    Klebanoff, Christopher A.; Acquavella, Nicholas; Yu, Zhiya; Restifo, Nicholas P.

    2011-01-01

    Summary Enthusiasm for therapeutic cancer vaccines has been rejuvenated with the recent completion of several large, randomized phase III clinical trials that in some cases have reported an improvement in progression free or overall survival. However, an honest appraisal of their efficacy reveals modest clinical benefit and a frequent requirement for patients with relatively indolent cancers and minimal or no measurable disease. Experience with adoptive cell transfer-based immunotherapies unequivocally establishes that T cells can mediate durable complete responses, even in the setting of advanced metastatic disease. Further, these findings reveal that the successful vaccines of the future must confront (i) a corrupted tumor microenvironment containing regulatory T cells and aberrantly matured myeloid cells, (ii) a tumor-specific T-cell repertoire that is prone to immunologic exhaustion and senescence, and (iii) highly mutable tumor targets capable of antigen loss and immune evasion. Future progress may come from innovations in the development of selective preparative regimens that eliminate or neutralize suppressive cellular populations, more effective immunologic adjuvants, and further refinement of agents capable of antagonizing immune check-point blockade pathways. PMID:21198663

  12. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    Highly motivated postdoctoral fellows sought to work on tumor immunology with a strong background in biology preferentially cellular immunology. The tumor immunology group in the laboratory is exploring mechanisms of improving vaccines and immunotherapy for cancer, especially by discovering new principles to enhance and steer T cell immune responses. The group is focusing on

  13. Therapeutic cloning in individual parkinsonian mice

    PubMed Central

    Tabar, Viviane; Tomishima, Mark; Panagiotakos, Georgia; Wakayama, Sayaka; Menon, Jayanthi; Chan, Bill; Mizutani, Eiji; Al-Shamy, George; Ohta, Hiroshi; Wakayama, Teruhiko; Studer, Lorenz

    2009-01-01

    Cell transplantation with embryonic stem (ES) cell progeny requires immunological compatibility with host tissue. ‘Therapeutic cloning’ is a strategy to overcome this limitation by generating nuclear transfer (nt)ES cells that are genetically matched to an individual. Here we establish the feasibility of treating individual mice via therapeutic cloning. Derivation of 187 ntES cell lines from 24 parkinsonian mice, dopaminergic differentiation, and transplantation into individually matched host mice showed therapeutic efficacy and lack of immunological response. PMID:18376409

  14. Adipose tissue as an immunological organ

    PubMed Central

    Grant, Ryan W.; Dixit, Vishwa Deep

    2014-01-01

    Objective This review will focus on the immunological aspects of adipose tissue and its potential role in development of chronic inflammation that instigates obesity-associated co-morbidities. Design and Methods The review utilized PubMed searches of current literature to examine adipose tissue leukocytosis. Results The adipose tissue of obese subjects becomes inflamed and contributes to the development of insulin resistance, type 2 diabetes and metabolic syndrome. Numerous immune cells including B cells, T cells, macrophages and neutrophils have been identified in adipose tissue, and obesity influences both the quantity and the nature of immune cell subtypes which emerges as an active immunological organ capable of modifying whole body metabolism through paracrine and endocrine mechanisms. Conclusion Adipose tissue is a large immunologically active organ during obesity that displays hallmarks of both and innate and adaptive immune response. Despite the presence of hematopoietic lineage cells in adipose tissue, it is presently unclear whether the adipose compartment has a direct role in immune-surveillance or host defense. Understanding the interactions between leukocytes and adipocytes may reveal the clinically relevant pathways that control adipose tissue inflammation and is likely to reveal mechanism by which obesity contributes to increased susceptibility to both metabolic and certain infectious disease. PMID:25612251

  15. Immunological characterization of pulmonary intravascular macrophages

    NASA Technical Reports Server (NTRS)

    Chitko-McKown, C. G.; Reddy, D. N.; Chapes, S. K.; McKown, R. D.; Blecha, F.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Pulmonary intravascular macrophages (PIMs) are lung macrophages found apposed to the endothelium of pulmonary capillaries. In many species, they are responsible for the clearance of blood-borne particulates and pathogens; however, little else is known about their roles as immunologic effector cells. We compared PIMs with pulmonary alveolar macrophages (PAMs) to determine the relative immunological activities of these two cell populations. Our results suggested that both populations possess similar phagocytic and bactericidal activities. In assays measuring cytotoxicity, PIMs were more cytotoxic than PAMs against virally infected target cells; however, differences between these macrophage populations were not as marked when noninfected targets were used. LPS-stimulated PIMs produced more T-cell proliferative cytokines than PAMs, and both populations of nonstimulated macrophages produced similar amounts of the cytokines. In contrast, PAMs produced more TNF alpha and NO2- than PIMs when both populations were stimulated with LPS; however, nonstimulated PAMs and PIMs produced similar amounts of TNF alpha and NO2. These data suggest that bovine PIMs are immunologically active. Differences between the degrees of activity of PIMs and PAMs indicate that these macrophage populations may have different roles in lung surveillance.

  16. DNA homology and immunological cross-reactivity between Aeromonas hydrophila cytotonic toxin and cholera toxin.

    PubMed Central

    Schultz, A J; McCardell, B A

    1988-01-01

    DNA colony hybridization with three 18- to 20-base-long synthetic oligonucleotide probes for cholera toxin (CT) was used to screen 12 clinical isolates of Aeromonas hydrophila. Under stringent hybridizing (overnight at 40 degrees C) and washing (1 h at 50 degrees C) conditions, nine strains reacted with the 32P-labeled CT probes. Concentrated (10x) cell-free supernatants or lysates from eight cultures, heated at 56 degrees C for 20 min, produced cytotonic effects in Y-1 mouse adrenal cells and Chinese hamster ovary (CHO) cells and caused a 1.5- to 22-fold increase in production of cyclic AMP in CHO cells. Preincubation with anti-CT reduced the CHO cell titer of cell lysates by 10-fold. In the GM1 ganglioside enzyme-linked immunosorbent assay, heated supernatants and lysates gave readings equivalent to 3.5 to 100 ng of CT. Three proteins with molecular weights of 89,900, 37,000, and 11,000 reacted with anti-CT on immunoblots of cell lysates from sodium dodecyl sulfate-polyacrylamide gels. These results suggest that there is DNA homology and immunological cross-reactivity between CT and the A. hydrophila cytotonic toxin. Images PMID:2830300

  17. Panel 5: Microbiology and Immunology Panel

    PubMed Central

    Murphy, Timothy F.; Chonmaitree, Tasnee; Barenkamp, Stephen; Kyd, Jennelle; Nokso-Koivisto, Johanna; Patel, Janak A.; Heikkinen, Terho; Yamanaka, Noboru; Ogra, Pearay; Swords, W. Edward; Sih, Tania; Pettigrew, Melinda M.

    2014-01-01

    Objective The objective is to perform a comprehensive review of the literature from January 2007 through June 2011 on the virology, bacteriology, and immunology related to otitis media. Data Sources PubMed database of the National Library of Medicine. Review Methods Three subpanels with co-chairs comprising experts in the virology, bacteriology, and immunology of otitis media were formed. Each of the panels reviewed the literature in their respective fields and wrote draft reviews. The reviews were shared with all panel members, and a second draft was created. The entire panel met at the 10th International Symposium on Recent Advances in Otitis Media in June 2011 and discussed the review and refined the content further. A final draft was created, circulated, and approved by the panel. Conclusion Excellent progress has been made in the past 4 years in advancing an understanding of the microbiology and immunology of otitis media. Advances include laboratory-based basic studies, cell-based assays, work in animal models, and clinical studies. Implications for Practice The advances of the past 4 years formed the basis of a series of short-term and long-term research goals in an effort to guide the field. Accomplishing these goals will provide opportunities for the development of novel interventions, including new ways to better treat and prevent otitis media. PMID:23536533

  18. Immunological Tolerance to Muscle Autoantigens Involves Peripheral Deletion of Autoreactive CD8+ T Cells

    PubMed Central

    Franck, Emilie; Bonneau, Carole; Jean, Laetitia; Henry, Jean-Paul; Lacoume, Yann; Salvetti, Anna; Boyer, Olivier; Adriouch, Sahil

    2012-01-01

    Muscle potentially represents the most abundant source of autoantigens of the body and can be targeted by a variety of severe autoimmune diseases. Yet, the mechanisms of immunological tolerance toward muscle autoantigens remain mostly unknown. We investigated this issue in transgenic SM-Ova mice that express an ovalbumin (Ova) neo-autoantigen specifically in skeletal muscle. We previously reported that antigen specific CD4+ T cell are immunologically ignorant to endogenous Ova in this model but can be stimulated upon immunization. In contrast, Ova-specific CD8+ T cells were suspected to be either unresponsive to Ova challenge or functionally defective. We now extend our investigations on the mechanisms governing CD8+ tolerance in SM-Ova mice. We show herein that Ova-specific CD8+ T cells are not detected upon challenge with strongly immunogenic Ova vaccines even after depletion of regulatory T cells. Ova-specific CD8+ T cells from OT-I mice adoptively transferred to SM-Ova mice started to proliferate in vivo, acquired CD69 and PD-1 but subsequently down-regulated Bcl-2 and disappeared from the periphery, suggesting a mechanism of peripheral deletion. Peripheral deletion of endogenous Ova-specific cells was formally demonstrated in chimeric SM-Ova mice engrafted with bone marrow cells containing T cell precursors from OT-I TCR-transgenic mice. Thus, the present findings demonstrate that immunological tolerance to muscle autoantigens involves peripheral deletion of autoreactive CD8+ T cells. PMID:22570714

  19. Introduction to a Special Issue of the Journal of Immunological Methods: Building global resource programs to support HIV/AIDS clinical trial studies.

    PubMed

    Sanchez, Ana M; Denny, Thomas N; O'Gorman, Maurice

    2014-07-01

    This Special Issue of the Journal of Immunological Methods includes 16 manuscripts describing quality assurance activities related to virologic and immunologic monitoring of six global laboratory resource programs that support international HIV/AIDS clinical trial studies: Collaboration for AIDS Vaccine Discovery (CAVD); Center for HIV/AIDS Vaccine Immunology (CHAVI); External Quality Assurance Program Oversight Laboratory (EQAPOL); HIV Vaccine Trial Network (HVTN); International AIDS Vaccine Initiative (IAVI); and Immunology Quality Assessment (IQA). The reports from these programs address the many components required to develop comprehensive quality control activities and subsequent quality assurance programs for immune monitoring in global clinical trials including: all aspects of processing, storing, and quality assessment of PBMC preparations used ubiquitously in HIV clinical trials, the development and optimization of assays for CD8 HIV responses and HIV neutralization, a comprehensive global HIV virus repository, and reports on the development and execution of novel external proficiency testing programs for immunophenotyping, intracellular cytokine staining, ELISPOT and luminex based cytokine measurements. In addition, there are articles describing the implementation of Good Clinical Laboratory Practices (GCLP) in a large quality assurance laboratory, the development of statistical methods specific for external proficiency testing assessment, a discussion on the ability to set objective thresholds for measuring rare events by flow cytometry, and finally, a manuscript which addresses a framework for the structured reporting of T cell immune function based assays. It is anticipated that this series of manuscripts covering a wide range of quality assurance activities associated with the conduct of global clinical trials will provide a resource for individuals and programs involved in improving the harmonization, standardization, accuracy, and sensitivity of virologic and immunologic testing. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. PD-1 blocks lytic granule polarization with concomitant impairment of integrin outside-in signaling in the natural killer cell immunological synapse.

    PubMed

    Huang, Yu; Chen, Zhiying; Jang, Joon Hee; Baig, Mirza S; Bertolet, Grant; Schroeder, Casey; Huang, Shengjian; Hu, Qian; Zhao, Yong; Lewis, Dorothy E; Qin, Lidong; Zhu, Michael Xi; Liu, Dongfang

    2018-04-18

    The inhibitory receptor programmed cell death protein 1 (PD-1) is upregulated on a variety of immune cells, including natural killer (NK) cells, during chronic viral infection and tumorigenesis. Blockade of PD-1 or its ligands produces durable clinical responses with tolerable side effects in patients with a broad spectrum of cancers. However, the underlying molecular mechanisms of how PD-1 regulates NK cell function remain poorly characterized. We sought to determine the effect of PD-1 signaling on NK cells. PD-1 was overexpressed in CD16-KHYG-1 (a human NK cell line with both antibody-dependent cellular cytotoxicity through CD16 and natural cytotoxicity through NKG2D) cells and stimulated by exposing the cells to NK-sensitive target cells expressing programmed death ligand 1 (PD-L1). PD-1 engagement by PD-L1 specifically blocked NK cell-mediated cytotoxicity without interfering with the conjugation between NK cells and target cells. Further examination showed that PD-1 signaling blocked lytic granule polarization in NK cells, which was accompanied by failure of integrin-linked kinase, a key molecule in the integrin outside-in signaling pathway, to accumulate in the immunological synapse after NK-target cell conjugation. Our results suggest that NK cell cytotoxicity is inhibited by PD-1 engagement, which blocks lytic granule polarization to the NK cell immunological synapse with concomitant impairment of integrin outside-in signaling. This study provides novel mechanistic insights into how PD-1 inhibition disrupts NK cell function. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  1. Cell-based dose responses from open-well microchambers.

    PubMed

    Hamon, Morgan; Jambovane, Sachin; Bradley, Lauren; Khademhosseini, Ali; Hong, Jong Wook

    2013-05-21

    Cell-based assays play a critical role in discovery of new drugs and facilitating research in cancer, immunology, and stem cells. Conventionally, they are performed in Petri dishes, tubes, or well plates, using milliliters of reagents and thousands of cells to obtain one data point. Here, we are introducing a new platform to realize cell-based assay capable of increased throughput and greater sensitivity with a limited number of cells. We integrated an array of open-well microchambers into a gradient generation system. Consequently, cell-based dose responses were examined with a single device. We measured IC50 values of three cytotoxic chemicals, Triton X-100, H2O2, and cadmium chloride, as model compounds. The present system is highly suitable for the discovery of new drugs and studying the effect of chemicals on cell viability or mortality with limited samples and cells.

  2. Highlights of the advances in basic immunology in 2011.

    PubMed

    Liu, Juan; Liu, Shuxun; Cao, Xuetao

    2012-05-01

    In this review, we summarize the major fundamental advances in immunological research reported in 2011. The highlights focus on the improved understanding of key questions in basic immunology, including the initiation and activation of innate responses as well as mechanisms for the development and function of various T-cell subsets. The research includes the identification of novel cytosolic RNA and DNA sensors as well as the identification of the novel regulators of the Toll-like receptor (TLR) and retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling pathway. Moreover, remarkable advances have been made in the developmental and functional properties of innate lymphoid cells (ILCs). Helper T cells and regulatory T (Treg) cells play indispensable roles in orchestrating adaptive immunity. There have been exciting discoveries regarding the regulatory mechanisms of the development of distinct T-cell subsets, particularly Th17 cells and Treg cells. The emerging roles of microRNAs (miRNAs) in T cell immunity are discussed, as is the recent identification of a novel T-cell subset referred to as follicular regulatory T (TFR) cells.

  3. Highlights of the advances in basic immunology in 2011

    PubMed Central

    Liu, Juan; Liu, Shuxun; Cao, Xuetao

    2012-01-01

    In this review, we summarize the major fundamental advances in immunological research reported in 2011. The highlights focus on the improved understanding of key questions in basic immunology, including the initiation and activation of innate responses as well as mechanisms for the development and function of various T-cell subsets. The research includes the identification of novel cytosolic RNA and DNA sensors as well as the identification of the novel regulators of the Toll-like receptor (TLR) and retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling pathway. Moreover, remarkable advances have been made in the developmental and functional properties of innate lymphoid cells (ILCs). Helper T cells and regulatory T (Treg) cells play indispensable roles in orchestrating adaptive immunity. There have been exciting discoveries regarding the regulatory mechanisms of the development of distinct T-cell subsets, particularly Th17 cells and Treg cells. The emerging roles of microRNAs (miRNAs) in T cell immunity are discussed, as is the recent identification of a novel T-cell subset referred to as follicular regulatory T (TFR) cells. PMID:22522654

  4. Immunological considerations in in utero hematopoetic stem cell transplantation (IUHCT)

    PubMed Central

    Loewendorf, Andrea I.; Csete, Marie; Flake, Alan

    2014-01-01

    In utero hematopoietic stem cell transplantation (IUHCT) is an attractive approach and a potentially curative surgery for several congenital hematopoietic diseases. In practice, this application has succeeded only in the context of Severe Combined Immunodeficiency Disorders. Here, we review potential immunological hurdles for the long-term establishment of chimerism and discuss relevant models and findings from both postnatal hematopoietic stem cell transplantation and IUHCT. PMID:25610396

  5. Diversity in immunological synapse structure

    PubMed Central

    Thauland, Timothy J; Parker, David C

    2010-01-01

    Immunological synapses (ISs) are formed at the T cell–antigen-presenting cell (APC) interface during antigen recognition, and play a central role in T-cell activation and in the delivery of effector functions. ISs were originally described as a peripheral ring of adhesion molecules surrounding a central accumulation of T-cell receptor (TCR)–peptide major histocompatibility complex (pMHC) interactions. Although the structure of these ‘classical’ ISs has been the subject of intense study, non-classical ISs have also been observed under a variety of conditions. Multifocal ISs, characterized by adhesion molecules dispersed among numerous small accumulations of TCR–pMHC, and motile ‘immunological kinapses’ have both been described. In this review, we discuss the conditions under which non-classical ISs are formed. Specifically, we explore the profound effect that the phenotypes of both T cells and APCs have on IS structure. We also comment on the role that IS structure may play in T-cell function. PMID:21039474

  6. Association between discordant immunological response to highly active anti-retroviral therapy, regulatory T cell percentage, immune cell activation and very low-level viraemia in HIV-infected patients.

    PubMed

    Saison, J; Ferry, T; Demaret, J; Maucort Boulch, D; Venet, F; Perpoint, T; Ader, F; Icard, V; Chidiac, C; Monneret, G

    2014-06-01

    The mechanisms sustaining the absence of complete immune recovery in HIV-infected patients upon long-term effective highly active anti-retroviral therapy (HAART) remain elusive. Immune activation, regulatory T cells (T(regs)) or very low-level viraemia (VLLV) have been alternatively suspected, but rarely investigated simultaneously. We performed a cross-sectional study in HIV-infected aviraemic subjects (mean duration of HAART: 12 years) to concomitantly assess parameters associated independently with inadequate immunological response. Patients were classified as complete immunological responders (cIR, n = 48) and inadequate immunological responders (iIR, n = 39), depending on the CD4(+) T cell count (> or < 500/mm(3)). Clinical and virological data (including very low-level viraemia) were collected. In parallel, immunophenotyping of CD4(+) lymphocytes, including T(reg) subsets, and CD8(+) T cells was performed. Percentages of activated CD4(+) T cells, T(regs), effector T(regs) and terminal effector T(regs) were found to be significantly elevated in iIR. Neither the percentage of activated CD8(+) T cells nor VLLV were found to be associated with iIR. In the multivariate analysis, nadir of CD4(+) T cell count and percentage of T(regs) were the only two parameters associated independently with iIR [odds ratio (OR) = 2·339, P = 0·001, and OR = 0·803, P = 0·041]. We present here the largest study investigating simultaneously the immune response to long-term HAART, activation of CD4(+) and CD8(+) T cells, T(reg) percentages and very low-level viraemia. Causative interactions between T(regs) and CD4(+) T cells should now be explored prospectively in a large patients cohort. © 2014 British Society for Immunology.

  7. In-Vitro Induced Immunosuppression in a Rotary Cell Culture System

    NASA Technical Reports Server (NTRS)

    Grimm, Elizabeth A.

    1998-01-01

    The function of the innate immune system is to provide a first-line of defense against infectious organisms, via control of bacterial and viral growth using antigen nonspecific means. These nonspecific immune effectors include macrophages and Natural Killing (NK) cells, and certain cytokines elicited in response to "super antigens" on the infectious agents. This innate system usually keeps most infectious agents from rapidly growing while the adaptive immune system is generating a specific response complete with immunologic memory. Compelling evidence suggests that space flight results in various immunosuppressive effects, including reduced innate and adaptive immune responses. We were particularly concerned with reduced NK activity at landing, and have asked whether the microgravity component of space flight could be responsible for the previously observed NK defect. We have conclusively demonstrated that simulated microgravity as provided by the Synthecon bioreactors does not inhibit the NK function nor the IL-2 activation of lymphokine-activated killing (LAK). Interleukin-2 is the key cytokine responsible for activation of NK cells to express LAK, as well as to support differentiation of lymphocytes during adaptive immune responses. Therefore, we have disproved our original hypothesis based on poor NK in many of the astronauts upon landing.

  8. Removal of detergents from protein extracts using activated charcoal prior to immunological analysis.

    PubMed

    Malhas, Ashraf N; Abuknesha, Ramadan A; Price, Robert G

    2002-06-01

    The use of dextran-coated activated charcoal (DCC) powder to absorb solubilising detergents from cell lysates is described. Normal embryonic epithelial cells were lysed in the presence of sodium dodecyl sulphate (SDS). The detergent was then absorbed with DCC to facilitate analysis of polycystin-1 with antibody-based methods. Polycystin-1 is a membrane protein that is involved in the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD). The adverse effect of SDS on antibody-polycystin-1 binding was studied and the improvement resulting from its removal demonstrated using enzyme-linked immunosorbent assays (ELISAs). The results indicate that DCC can be used in a simple manner to remove highly reactive membrane-solubilising reagents from protein mixtures prior to immunological analysis. This procedure may be relevant to a variety of other techniques that are normally affected by detergents.

  9. Years in Cologne.

    PubMed

    Rajewsky, Klaus

    2013-01-01

    This review describes the building and scientific activity of the Immunology Department at the Institute for Genetics in Cologne, cofounded by Max Delbrück in post-World War II Germany. The protagonist, a child of Russian emigrants, became interested in antibodies as a postdoc at the Pasteur Institute in Paris and a proponent of the antigen-bridge model of T-B cell collaboration during his early time in Cologne. He was challenged by the gap between cellular immunology and molecular genetics and profited from the advances of the latter as well as postwar economic growth in Germany. The Immunology Department became a place, and little universe in itself, where young scientists from all over the world came together to study cellular and molecular mechanisms of antibody formation. This included work on normal and malignant B cells in the human, particularly the origin of Hodgkin lymphoma, but the main focus was on B cell development and homeostasis, the germinal center reaction, and immunological memory, developing recombinase-assisted and conditional gene targeting in mice as a main technical tool.

  10. Cosmos-1989 immunology studies

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1991-01-01

    Evidence from both human and rodent studies has indicated that alterations in immunological parameters occur after space flight. The number of flight experiments has been small, and the full breadth of immunological alterations occurring after space flight remains to be established. Among the major effects on immune responses after space flight that have been reported are: alterations in lymphocyte blastogenesis and natural killer cell activity, alterations in production of cytokines, changes in leukocyte sub-population distribution, and decreases in the ability in the ability of bone marrow cells to respond to colony stimulating factors. Changes have been reported in immunological parameters of both humans and rodents. The significance of these alterations in relation to resistance to infection remains to be established. The current study involved a determination of the effects of flight on Cosmos mission 2044 on leukocyte subset distribution and the sensitivity of bone marrow cells to colony stimulating factor-GM. A parallel study with antiorthostatic suspension was also carried out. The study involved repetition and expansion of studies carried out on Cosmos 1887.

  11. Defining immunological dysfunction in sepsis: A requisite tool for precision medicine.

    PubMed

    Bermejo-Martin, Jesús F; Andaluz-Ojeda, David; Almansa, Raquel; Gandía, Francisco; Gómez-Herreras, Jose Ignacio; Gomez-Sanchez, Esther; Heredia-Rodríguez, María; Eiros, Jose Maria; Kelvin, David J; Tamayo, Eduardo

    2016-05-01

    Immunological dysregulation is now recognised as a major pathogenic event in sepsis. Stimulation of immune response and immuno-modulation are emerging approaches for the treatment of this disease. Defining the underlying immunological alterations in sepsis is important for the design of future therapies with immuno-modulatory drugs. Clinical studies evaluating the immunological response in adult patients with Sepsis and published in PubMed were reviewed to identify features of immunological dysfunction. For this study we used key words related with innate and adaptive immunity. Ten major features of immunological dysfunction (FID) were identified involving quantitative and qualitative alterations of [antigen presentation](FID1), [T and B lymphocytes] (FID2), [natural killer cells] (FID3), [relative increase in T regulatory cells] (FID4), [increased expression of PD-1 and PD-ligand1](FID5), [low levels of immunoglobulins](FID6), [low circulating counts of neutrophils and/or increased immature forms in non survivors](FID7), [hyper-cytokinemia] (FID8), [complement consumption] (FID9), [defective bacterial killing by neutrophil extracellular traps](FID10). This review article identified ten major features associated with immunosuppression and immunological dysregulation in sepsis. Assessment of these features could help in utilizing precision medicine for the treatment of sepsis with immuno-modulatory drugs. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  12. Naive B cells generate regulatory T cells in the presence of a mature immunologic synapse.

    PubMed

    Reichardt, Peter; Dornbach, Bastian; Rong, Song; Beissert, Stefan; Gueler, Faikah; Loser, Karin; Gunzer, Matthias

    2007-09-01

    Naive B cells are ineffective antigen-presenting cells and are considered unable to activate naive T cells. However, antigen-specific contact of these cells leads to stable cell pairs that remain associated over hours in vivo. The physiologic role of such pairs has not been evaluated. We show here that antigen-specific conjugates between naive B cells and naive T cells display a mature immunologic synapse in the contact zone that is absent in T-cell-dendritic-cell (DC) pairs. B cells induce substantial proliferation but, contrary to DCs, no loss of L-selectin in T cells. Surprisingly, while DC-triggered T cells develop into normal effector cells, B-cell stimulation over 72 hours induces regulatory T cells inhibiting priming of fresh T cells in a contact-dependent manner in vitro. In vivo, the regulatory T cells home to lymph nodes where they potently suppress immune responses such as in cutaneous hypersensitivity and ectopic allogeneic heart transplant rejection. Our finding might help to explain old observations on tolerance induction by B cells, identify the mature immunologic synapse as a central functional module of this process, and suggest the use of naive B-cell-primed regulatory T cells, "bTregs," as a useful approach for therapeutic intervention in adverse adaptive immune responses.

  13. In vitro evaluation of immunological properties of extracellular polysaccharides produced by Lactobacillus delbrueckii strains

    PubMed Central

    KISHIMOTO, Mana; NOMOTO, Ryohei; OSAWA, Ro

    2014-01-01

    We investigated the variation in immunological properties of the extracellular polysaccharides (EPSs) produced by different Lactobacillus delbrueckii strains as well as that of their monosaccharide composition. The monosaccharide composition of each EPS produced by L. delbrueckii strains, as determined by thin layer chromatography (TLC), showed an appreciable variation in a strain-dependent manner, which could be broadly assigned to 4 TLC groups. Meanwhile, the immunological properties of the EPSs produced by 10 L. delbrueckii strains were evaluated in a semi-intestinal model using a Transwell co-culture system, which employed human intestinal epithelial Caco-2 cells on the apical side and murine macrophage RAW264.7 cells on the basolateral side. Each EPS was added to the apical side to allow direct contact with Caco-2 cells and incubated for 6 hr. After incubation, the amounts of TNF-α and several cytokines that had been released by either RAW264.7 or Caco-2 cells were then quantified by cytotoxic activity on L929 cells or the RT-PCR method. It was found that the EPS-stimulated RAW264.7 cells express different profiles of cytokine production via Caco-2 cells but that the profile difference could not be related to the above TLC grouping. The evidence suggests that the EPSs of L. delbrueckii strains are diverse not only in their biochemical structure but also in their immunological properties. PMID:25625033

  14. In vitro evaluation of immunological properties of extracellular polysaccharides produced by Lactobacillus delbrueckii strains.

    PubMed

    Kishimoto, Mana; Nomoto, Ryohei; Osawa, Ro

    2015-01-01

    We investigated the variation in immunological properties of the extracellular polysaccharides (EPSs) produced by different Lactobacillus delbrueckii strains as well as that of their monosaccharide composition. The monosaccharide composition of each EPS produced by L. delbrueckii strains, as determined by thin layer chromatography (TLC), showed an appreciable variation in a strain-dependent manner, which could be broadly assigned to 4 TLC groups. Meanwhile, the immunological properties of the EPSs produced by 10 L. delbrueckii strains were evaluated in a semi-intestinal model using a Transwell co-culture system, which employed human intestinal epithelial Caco-2 cells on the apical side and murine macrophage RAW264.7 cells on the basolateral side. Each EPS was added to the apical side to allow direct contact with Caco-2 cells and incubated for 6 hr. After incubation, the amounts of TNF-α and several cytokines that had been released by either RAW264.7 or Caco-2 cells were then quantified by cytotoxic activity on L929 cells or the RT-PCR method. It was found that the EPS-stimulated RAW264.7 cells express different profiles of cytokine production via Caco-2 cells but that the profile difference could not be related to the above TLC grouping. The evidence suggests that the EPSs of L. delbrueckii strains are diverse not only in their biochemical structure but also in their immunological properties.

  15. STUDIES ON NON-HEMOLYTIC STREPTOCOCCI ISOLATED FROM THE RESPIRATORY TRACT OF MAN

    PubMed Central

    Horsfall, Frank L.

    1951-01-01

    The type specific immunological properties of certain non-hemolytic streptococci, including Str. salivarius type I and type II, present in the respiratory tract of human beings appear to be dependent upon the presence of capsular polysaccharides. The levans formed from sucrose by Str. salivarius (encapsulated S cells or non-encapsulated R variants), or by cell-free enzymes derived from these microorganisms, are indistinguishable immunologically and show no evidence of type specificity. Such levans appear to be immunologically distinct from and unrelated to the capsular polysaccharides of the microorganisms which produce them. PMID:14824398

  16. Complex chimerism

    PubMed Central

    Ma, Kimberly K.; Petroff, Margaret G.; Coscia, Lisa A.; Armenti, Vincent T.; Adams Waldorf, Kristina M.

    2013-01-01

    Thousands of women with organ transplantation have undergone successful pregnancies, however little is known about how the profound immunologic changes associated with pregnancy might influence tolerance or rejection of the allograft. Pregnant women with a solid organ transplant are complex chimeras with multiple foreign cell populations from the donor organ, fetus, and mother of the pregnant woman. We consider the impact of complex chimerism and pregnancy-associated immunologic changes on tolerance of the allograft both during pregnancy and the postpartum period. Mechanisms of allograft tolerance are likely dynamic during pregnancy and affected by the influx of fetal microchimeric cells, HLA relationships (between the fetus, pregnant woman and/or donor), peripheral T cell tolerance to fetal cells, and fetal minor histocompatibility antigens. Further research is necessary to understand the complex immunology during pregnancy and the postpartum period of women with a solid organ transplant. PMID:23974274

  17. A two-scale model for correlation between B cell VDJ usage in zebrafish

    NASA Astrophysics Data System (ADS)

    Pan, Keyao; Deem, Michael

    2011-03-01

    The zebrafish (Danio rerio) is one of the model animals for study of immunology. The dynamics of the adaptive immune system in zebrafish is similar to that in higher animals. In this work, we built a two-scale model to simulate the dynamics of B cells in primary and secondary immune reactions in zebrafish and to explain the reported correlation between VDJ usage of B cell repertoires in distinct zebrafish. The first scale of the model consists of a generalized NK model to simulate the B cell maturation process in the 10-day primary immune response. The second scale uses a delay ordinary differential equation system to model the immune responses in the 6-month lifespan of zebrafish. The generalized NK model shows that mature B cells specific to one antigen mostly possess a single VDJ recombination. The probability that mature B cells in two zebrafish have the same VDJ recombination increases with the B cell population size or the B cell selection intensity and decreases with the B cell hypermutation rate. The ODE model shows a distribution of correlation in the VDJ usage of the B cell repertoires in two six-month-old zebrafish that is highly similar to that from experiment. This work presents a simple theory to explain the experimentally observed correlation in VDJ usage of distinct zebrafish B cell repertoires after an immune response.

  18. Matched and Mismatched Metabolic Fuels in Lymphocyte Function

    PubMed Central

    Caro-Maldonado, Alfredo; Gerriets, Valerie A.; Rathmell, Jeffrey C.

    2012-01-01

    Immunological function requires metabolic support to suit the needs of lymphocytes at a variety of distinct differentiation and activation states. It is now evident that the signaling pathways that drive lymphocyte survival and activity can directly control cellular metabolism. This linkage provides a mechanism by which activation and specific signaling pathways provide a supply of appropriate and required nutrients to support cell functions in a pro-active supply rather than consumption-based metabolic model. In this way, the metabolism and fuel choices of lymphocytes are guided to specifically match the anticipated needs. If the fuel choice or metabolic pathways of lymphocytes are dysregulated, however, metabolic checkpoints can become activated to disrupt immunological function. These changes are now shown in several immunological diseases and may open new opportunities to selectively enhance or suppress specific immune functions through targeting of glucose, lipid, or amino acid metabolism. PMID:23290889

  19. The role of EMMPRIN in T cell biology and immunological diseases.

    PubMed

    Hahn, Jennifer Nancy; Kaushik, Deepak Kumar; Yong, V Wee

    2015-07-01

    EMMPRIN (CD147), originally described as an inducer of the expression of MMPs, has gained attention in its involvement in various immunologic diseases, such that anti-EMMPRIN antibodies are considered as potential therapeutic medications. Given that MMPs are involved in the pathogenesis of various disease states, it is relevant that targeting an upstream inducer would make for an effective therapeutic strategy. Additionally, EMMPRIN is now appreciated to have multiple roles apart from MMP induction, including in cellular functions, such as migration, adhesion, invasion, energy metabolism, as well as T cell activation and proliferation. Here, we review what is known about EMMPRIN in numerous immunologic/inflammatory disease conditions with a particular focus on its complex roles in T cell biology. © Society for Leukocyte Biology.

  20. [Value of immunologic phenotyping of acute leukemias in children].

    PubMed

    Vannier, J P; Bene, M C

    1989-10-01

    Immunologic typing has demonstrated considerable heterogeneity among the acute leukemias. The most significant recent advance has been development of monoclonal antibody techniques. Some markers identified using these techniques seem to be specific for a given stage of maturation of one lymphoid or myeloid cell line. Most acute lymphoblastic leukemias (ALLs) are malignant proliferations whose differentiation appears to have become 'stuck' at one stage of maturation. Results of immunologic typing correlate well with the other clinical and biological data. For prognostic purposes, several patterns can be identified. Among B line ALLs, four varieties have been differentiated, i.e., CD10 negative ALLs, common ALLs, pre-B ALLs, and B ALLs. T ALLs include a broad spectrum of heterogeneous proliferations whose immunologic classification is made difficult by the large number of phenotypes encountered. Among acute myeloblastic leukemias (AMLs), some highly undifferentiated forms have been recognized, by means of immunologic typing, as originating in one of the myeloid cell lines. However, the nosologic and prognostic significance of these studies is less obvious than in ALLs.

  1. Immunological Relationship of Different Preparations of Coliform Enterotoxins

    PubMed Central

    Klipstein, Frederick A.; Engert, Richard F.

    1978-01-01

    Antisera raised in rabbits to ultrafiltrate toxin preparations containing either the heat-labile (LT) toxin form obtained from whole cell lysates or broth filtrates or the heat-stable (ST) toxin form prepared from broth filtrates from nontoxigenic and toxigenic strains of Escherichia coli and Klebsiella were examined for their ability to neutralize the secretory effect on water transport of these toxins in the rat jejunum as determined by the in vivo marker perfusion technique. Antisera to the heat-labile toxin derived from whole cell lysate preparations from nontoxigenic strains had no neutralizing effect. Antisera to both types of LT preparation from both toxigenic strains neutralized, with several exceptions, all of the homologous and heterologous LT toxins as well as a heat-labile toxin preparation derived from sequential ultrafiltration of cell-free whole cell lysates which had a defined molecular weight of between 30,000 and 100,000. These antisera also neutralized homologous and heterologous ST preparations obtained from broth filtrates, but they had no neutraliziṅg effect on low-molecular-weight, ST toxin material obtained during the sequential ultrafiltration of cell lysates. Antisera to ST prepared from broth filtrates had no neutralizing capacity against either LT or ST toxin preparations. These observations (i) indicate that the immunological relationship of E. coli and Klebsiella LT and ST toxins extends to antisera raised against LT prepared by several different methods, (ii) raise the possibility that, based on the response to antisera to LT, there may be several immunologically heterogeneous forms of low-molecular-weight ST toxin, and (c) confirm the lack of immunogenicity of ST. PMID:361578

  2. Acute effects of alemtuzumab infusion in patients with active relapsing-remitting MS

    PubMed Central

    Thomas, Katja; Eisele, Judith; Rodriguez-Leal, Francisco Alejandro; Hainke, Undine

    2016-01-01

    Objective: Alemtuzumab exerts its clinical efficacy by its specific pattern of depletion and repopulation of different immune cells. Beyond long-term immunologic and clinical data, little is known about acute changes in immunologic and routine laboratory parameters and their clinical relevance during the initial alemtuzumab infusion. Methods: Fifteen patients with highly active MS were recruited. In addition to parameters including heart rate, blood pressure, body temperature, and monitoring of adverse events, complete blood cell count, liver enzymes, kidney function, acute-phase proteins, serum cytokine profile, complement activation, peripheral immune cell distribution, and their potential of cytokine release were investigated prior to and after methylprednisolone and after alemtuzumab on each day of alemtuzumab infusion. Results: After the first alemtuzumab infusion, both the total leukocyte and granulocyte counts markedly increased, whereas lymphocyte counts dramatically decreased. In addition to lymphocyte depletion, cell subtypes important for innate immunity also decreased within the first week after alemtuzumab infusion. Although patients reported feeling well, C-reactive protein and procalcitonin peaked at serum levels consistent with septic conditions. Increases in liver enzymes were detected, although kidney function remained stable. Proinflammatory serum cytokine levels clearly rose after the first alemtuzumab infusion. Alemtuzumab led to impaired cytokine release ex vivo in nondepleted cells. Normal clinical parameters and mild adverse events were presented. Conclusions: Dramatic immunologic effects were observed. Standardized infusion procedure and pretreatment management attenuated infusion-related reactions. Alemtuzumab-mediated effects led to artificially altered parameters in standard blood testing. We recommend clinical decision-making based on primarily clinical symptoms within the first alemtuzumab treatment week. PMID:27213173

  3. Novel approaches in cancer immunotherapy.

    PubMed

    Subramaniam, Deepa S; Liu, Stephen V; Giaccone, Giuseppe

    2016-04-01

    Our understanding of tumor immunology has exploded in the past 3 decades. The complex relationships between tumor cells, the tumor microenvironment and the immune system cells, especially the cytotoxic and helper T cells and the regulatory T cells are beginning to be elucidated. In this review, we will attempt to provide a brief primer of tumor immunology. Cytokine therapy has historically been the mainstay of immunotherapy in cancers such as melanoma and kidney cancer. We will review some of the advances made with cancer vaccines, with a focus on peptide vaccines, tumor cell vaccines and immune cell vaccines. The pros and cons of nucleic acid-based vaccines including DNA and RNA vaccines will be discussed. Adoptive cell therapy has made significant progress utilizing chimeric antigen-receptor transduced T cells, especially in hematologic malignancies. We will also consider the key targets in checkpoint inhibition, and summarize some of the preclinical and clinical data with respect to checkpoint inhibition. Progress made in the novel immunotherapeutic approach of oncolytic viral therapy will be analyzed. PDL-1 expression by tumor cells and tumor infiltrating lymphocytes has been looked at as a biomarker in clinical trials. Limitations to such an approach and potential candidates for future predictive biomarkers of response to immunotherapy and biomarkers of autoimmunity and adverse reactions will be considered.

  4. Effect of fruits of Opuntia elatior Mill on mast cell degranulation

    PubMed Central

    Chauhan, Sanjay P.; Sheth, N. R.; Suhagia, B. N.

    2015-01-01

    Background: The presence of potentially active nutrients and their multifunctional properties make prickly pear a perfect candidate for the production of phytopharmaceutical products. Among the numerous Opuntia species, bioactive compounds have been isolated and characterized primarily from Opuntia ficus-indica, Opuntia polycantha, Opuntia stricta, Opuntia dilleni for various medicinal properties. Objective: Based on the traditional use of prickly pear for enhancement of immune function, the objective of the present study to evaluate the effect of prickly pear on mast cell degranulation function. Materials and Methods: The Opuntia fruit juice (OFJ) (10-200 μl/ml) were studied for the effect on sensitized rat peritoneal mast cell degranulation induced by immunological (egg albumin), and nonimmunological (compound 48/80) stimuli and compared with that of the reference standard, sodium cromoglycate and ketotifen (10 μg/ml). Results and Conclusion: The OFJ exhibited significantly (P < 0.001) concentration dependent inhibition of mast cell degranulation. The IC50 value of OFJ was found 12.24 and 18 μl/ml for immunological and nonimmunological induced mast cell degranulation, respectively. The betacyanin is an active principle compound in prickly pear that may responsible for mast cell stabilizing action. PMID:25883521

  5. Tumor immunology.

    PubMed

    Mocellin, Simone; Lise, Mario; Nitti, Donato

    2007-01-01

    Advances in tumor immunology are supporting the clinical implementation of several immunological approaches to cancer in the clinical setting. However, the alternate success of current immunotherapeutic regimens underscores the fact that the molecular mechanisms underlying immune-mediated tumor rejection are still poorly understood. Given the complexity of the immune system network and the multidimensionality of tumor/host interactions, the comprehension of tumor immunology might greatly benefit from high-throughput microarray analysis, which can portrait the molecular kinetics of immune response on a genome-wide scale, thus accelerating the discovery pace and ultimately catalyzing the development of new hypotheses in cell biology. Although in its infancy, the implementation of microarray technology in tumor immunology studies has already provided investigators with novel data and intriguing new hypotheses on the molecular cascade leading to an effective immune response against cancer. Although the general principles of microarray-based gene profiling have rapidly spread in the scientific community, the need for mastering this technique to produce meaningful data and correctly interpret the enormous output of information generated by this technology is critical and represents a tremendous challenge for investigators, as outlined in the first section of this book. In the present Chapter, we report on some of the most significant results obtained with the application of DNA microarray in this oncology field.

  6. Sculpting the Immunological Response against Viral Disease: Statistical Mechanics and Network Theory

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Deem, Michael

    2007-03-01

    The twin challenges of immunodominance and heterologous immunity have hampered discovery of an effective vaccine against all four dengue viruses. Here we develop a generalized NK, or spin glass, theory of T cell original antigenic sin and immunodominance. The theory we develop predicts dengue vaccine clinical trial data well. From the insights that we gain by this theory, we propose two new ideas for design of epitope-based T cell vaccines against dengue. The H5N1 strain of avian influenza first appeared in Hong Kong in 1997. Since then, it has spread to at least eight other Asian countries, Romania, and Russia, and it is widely expected to enter the rest of Europe through migratory birds. Various countries around the world have started to create stockpiles of avian influenza vaccines. However, since the avian influenza is mutating, how many and which strains should be stockpiled? Here we use a combination of statistical physics and network theory to simulate the bird flu transmission and evolution. From the insights that we gain by the theory, we propose new strategies to improve the vaccine efficacy.

  7. RNAimmuno: A database of the nonspecific immunological effects of RNA interference and microRNA reagents

    PubMed Central

    Olejniczak, Marta; Galka-Marciniak, Paulina; Polak, Katarzyna; Fligier, Andrzej; Krzyzosiak, Wlodzimierz J.

    2012-01-01

    The RNAimmuno database was created to provide easy access to information regarding the nonspecific effects generated in cells by RNA interference triggers and microRNA regulators. Various RNAi and microRNA reagents, which differ in length and structure, often cause non-sequence-specific immune responses, in addition to triggering the intended sequence-specific effects. The activation of the cellular sensors of foreign RNA or DNA may lead to the induction of type I interferon and proinflammatory cytokine release. Subsequent changes in the cellular transcriptome and proteome may result in adverse effects, including cell death during therapeutic treatments or the misinterpretation of experimental results in research applications. The manually curated RNAimmuno database gathers the majority of the published data regarding the immunological side effects that are caused in investigated cell lines, tissues, and model organisms by different reagents. The database is accessible at http://rnaimmuno.ibch.poznan.pl and may be helpful in the further application and development of RNAi- and microRNA-based technologies. PMID:22411954

  8. RNAimmuno: a database of the nonspecific immunological effects of RNA interference and microRNA reagents.

    PubMed

    Olejniczak, Marta; Galka-Marciniak, Paulina; Polak, Katarzyna; Fligier, Andrzej; Krzyzosiak, Wlodzimierz J

    2012-05-01

    The RNAimmuno database was created to provide easy access to information regarding the nonspecific effects generated in cells by RNA interference triggers and microRNA regulators. Various RNAi and microRNA reagents, which differ in length and structure, often cause non-sequence-specific immune responses, in addition to triggering the intended sequence-specific effects. The activation of the cellular sensors of foreign RNA or DNA may lead to the induction of type I interferon and proinflammatory cytokine release. Subsequent changes in the cellular transcriptome and proteome may result in adverse effects, including cell death during therapeutic treatments or the misinterpretation of experimental results in research applications. The manually curated RNAimmuno database gathers the majority of the published data regarding the immunological side effects that are caused in investigated cell lines, tissues, and model organisms by different reagents. The database is accessible at http://rnaimmuno.ibch.poznan.pl and may be helpful in the further application and development of RNAi- and microRNA-based technologies.

  9. PEGylated graphene oxide elicits strong immunological responses despite surface passivation

    NASA Astrophysics Data System (ADS)

    Luo, Nana; Weber, Jeffrey K.; Wang, Shuang; Luan, Binquan; Yue, Hua; Xi, Xiaobo; Du, Jing; Yang, Zaixing; Wei, Wei; Zhou, Ruhong; Ma, Guanghui

    2017-02-01

    Engineered nanomaterials promise to transform medicine at the bio-nano interface. However, it is important to elucidate how synthetic nanomaterials interact with critical biological systems before such products can be safely utilized in humans. Past evidence suggests that polyethylene glycol-functionalized (PEGylated) nanomaterials are largely biocompatible and elicit less dramatic immune responses than their pristine counterparts. We here report results that contradict these findings. We find that PEGylated graphene oxide nanosheets (nGO-PEGs) stimulate potent cytokine responses in peritoneal macrophages, despite not being internalized. Atomistic molecular dynamics simulations support a mechanism by which nGO-PEGs preferentially adsorb onto and/or partially insert into cell membranes, thereby amplifying interactions with stimulatory surface receptors. Further experiments demonstrate that nGO-PEG indeed provokes cytokine secretion by enhancing integrin β8-related signalling pathways. The present results inform that surface passivation does not always prevent immunological reactions to 2D nanomaterials but also suggest applications for PEGylated nanomaterials wherein immune stimulation is desired.

  10. Characterization of the oropharynx: anatomy, histology, immunology, squamous cell carcinoma and surgical resection.

    PubMed

    Fossum, Croix C; Chintakuntlawar, Ashish V; Price, Daniel L; Garcia, Joaquin J

    2017-06-01

    Understanding the structure and function of the oropharynx is paramount for providing excellent patient care. In clinical oncology, the oropharynx is generally divided into four distinct components: (i) the base of the tongue; (ii) the soft palate; (iii) the palatine tonsillar fossa; and (iv) the pharyngeal wall. The oropharyngeal mucosa is distinct from other mucosal surfaces in the body, as it is composed of a reticulated epithelium with a discontinuous basement membrane, also known as lymphoepithelium. This review describes the anatomy, histology, immunology and surgical resection of the oropharynx as they relate to oncological care. © 2016 John Wiley & Sons Ltd.

  11. Overview of spaceflight immunology studies

    NASA Technical Reports Server (NTRS)

    Taylor, G. R.

    1993-01-01

    The effects of spaceflight and analogues of spaceflight are discussed here and in nine accompanying articles. In this summary we present spaceflight studies with human subjects, animal subjects, and cell cultures and we review ground-based systems used to model the observed effects of spaceflight on the immune system. Human paradigms include bed rest, academic or psychological stress, physical stress, hypobaric or high altitude stress, and confinement. Animal models include antiorthostatic and orthostatic suspension, hypobarism, and confinement. The ten manuscripts in this collection were selected to provide a summary that should give the reader an overview of the various activities of spaceflight immunology researchers throughout the history of space travel. This manuscript identifies the major contributors to the study of spaceflight immunology, explains what types of studies have been conducted, and how they have changed over the years. Also presented is a discussion of the unusual limitations associated with spaceflight research and the efforts to develop appropriate ground-based surrogate model systems. Specific details, data, and mechanistic speculations will be held to a minimum, because they will be discussed in depth in the other articles in the collection.

  12. Evaluation of cellular immunological responses in mono- and polymorphic clinical forms of post-kala-azar dermal leishmaniasis in India.

    PubMed

    Kaushal, H; Bras-Gonçalves, R; Avishek, K; Kumar Deep, D; Petitdidier, E; Lemesre, J-L; Papierok, G; Kumar, S; Ramesh, V; Salotra, P

    2016-07-01

    Post-kala-azar dermal leishmaniasis (PKDL) is a chronic dermal complication that occurs usually after recovery from visceral leishmaniasis (VL). The disease manifests into macular, papular and/or nodular clinical types with mono- or polymorphic presentations. Here, we investigated differences in immunological response between these two distinct clinical forms in Indian PKDL patients. Peripheral blood mononuclear cells of PKDL and naive individuals were exposed in vitro to total soluble Leishmania antigen (TSLA). The proliferation index was evaluated using an enzyme-linked immunosorbent assay (ELISA)-based lymphoproliferative assay. Cytokines and granzyme B levels were determined by cytometric bead array. Parasite load in tissue biopsy samples of PKDL was quantified by quantitative polymerase chain reaction (qPCR). The proportion of different lymphoid subsets in peripheral blood and the activated T cell population were estimated using flow cytometry. The study demonstrated heightened cellular immune responses in the polymorphic PKDL group compared to the naive group. The polymorphic group showed significantly higher lymphoproliferation, increased cytokines and granzyme B levels upon TSLA stimulation, and a raised proportion of circulating natural killer (NK) T cells against naive controls. Furthermore, the polymorphic group showed a significantly elevated proportion of activated CD4(+) and CD8(+) T cells upon in-vitro TSLA stimulation. Thus, the polymorphic variants showed pronounced cellular immunity while the monomorphic form demonstrated a comparatively lower cellular response. Additionally, the elevated level of both activated CD4(+) and CD8(+) T cells, coupled with high granzyme B secretion upon in-vitro TSLA stimulation, indicated the role of cytotoxic cells in resistance to L. donovani infection in polymorphic PKDL. © 2016 British Society for Immunology.

  13. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    Dr. Hinrichs’ laboratory in the NCI Experimental Transplantation and Immunology Branch in Bethesda, Maryland, is recruiting postdoctoral fellows in tumor immunology, and T-cell receptor (TCR) and chimeric antigen receptor (CAR) genetic engineering.

  14. Immunologic Regulation in Pregnancy: From Mechanism to Therapeutic Strategy for Immunomodulation

    PubMed Central

    Chen, Shyi-Jou; Liu, Yung-Liang; Sytwu, Huey-Kang

    2012-01-01

    The immunologic interaction between the fetus and the mother is a paradoxical communication that is regulated by fetal antigen presentation and/or by recognition of and reaction to these antigens by the maternal immune system. There have been significant advances in understanding of abnormalities in the maternal-fetal immunologic relationship in the placental bed that can lead to pregnancy disorders. Moreover, immunologic recognition of pregnancy is vital for the maintenance of gestation, and inadequate recognition of fetal antigens may cause abortion. In this paper, we illustrate the complex immunologic aspects of human reproduction in terms of the role of human leukocyte antigen (HLA), immune cells, cytokines and chemokines, and the balance of immunity in pregnancy. In addition, we review the immunologic processes of human reproduction and the current immunologic therapeutic strategies for pathological disorders of pregnancy. PMID:22110530

  15. AZT Impairs Immunological Recovery on First-line ART: Collaborative analysis of cohort studies in Southern Africa

    PubMed Central

    WANDELER, Gilles; GSPONER, Thomas; MULENGA, Lloyd; GARONE, Daniela; WOOD, Robin; MASKEW, Mhairi; PROZESKY, Hans; HOFFMANN, Christopher; EHMER, Jochen; DICKINSON, Diana; DAVIES, Mary-Ann; EGGER, Matthias; KEISER, Olivia

    2013-01-01

    Objectives Zidovudine (AZT) is recommended for first-line antiretroviral therapy (ART) in resource limited settings. AZT may, however, lead to anemia and impaired immunological response. We compared CD4 counts over 5 years between patients starting ART with and without AZT in Southern Africa. Design Cohort study Methods Patients aged ≥16 years who started first-line ART in South Africa, Botswana, Zambia or Lesotho were included. We used linear mixed-effect models to compare CD4 cell count trajectories between patients on AZT-containing regimens and patients on other regimens, censoring follow-up at first treatment change. Impaired immunological recovery, defined as a CD4 count below 100 cells/μl at 1 year, was assessed in logistic regression. Analyses were adjusted for baseline CD4 count and haemoglobin level, age, gender, type of regimen, viral load monitoring and calendar year. Results 72,597 patients starting ART, including 19,758 (27.2%) on AZT, were analysed. Patients on AZT had higher CD4 cell counts (150 vs.128 cells/μl) and haemoglobin level (12.0 vs. 11.0 g/dl) at baseline, and were less likely to be female than those on other regimens. Adjusted differences in CD4 counts between regimens containing and not containing AZT were −16 cells/μl (95% CI −18 to −14) at 1 year and −56 cells/μl (95% CI −59 to −52) at 5 years. Impaired immunological recovery was more likely with AZT compared to other regimens (odds ratio 1.40, 95% CI 1.22–1.61). Conclusions In Southern Africa AZT is associated with inferior immunological recovery compared to other backbones. Replacing AZT with another NRTI could avoid unnecessary switches to second-line ART. PMID:23660577

  16. In this issue: from basic immunology to oncogenesis and inflammation.

    PubMed

    Bot, Adrian

    2013-06-01

    This issue of the International Reviews of Immunology features very diverse topics from basic immunology to inflammation, oncogenesis and immunopathology. Specifically, this volume hosts reviews describing the role of TCRγδ T cells, the significance of Epstein Barr virus-associated miRNAs and the genetic basis of Hashimoto's thyroiditis along with other reviews on the topics mentioned above.

  17. A baseline metabolomic signature is associated with immunological CD4+ T-cell recovery after 36 months of antiretroviral therapy in HIV-infected patients.

    PubMed

    Rodríguez-Gallego, Esther; Gómez, Josep; Pacheco, Yolanda M; Peraire, Joaquim; Viladés, Consuelo; Beltrán-Debón, Raúl; Mallol, Roger; López-Dupla, Miguel; Veloso, Sergi; Alba, Verónica; Blanco, Julià; Cañellas, Nicolau; Rull, Anna; Leal, Manuel; Correig, Xavier; Domingo, Pere; Vidal, Francesc

    2018-03-13

    Poor immunological recovery in treated HIV-infected patients is associated with greater morbidity and mortality. To date, predictive biomarkers of this incomplete immune reconstitution have not been established. We aimed to identify a baseline metabolomic signature associated with a poor immunological recovery after antiretroviral therapy (ART) to envisage the underlying mechanistic pathways that influence the treatment response. This was a multicentre, prospective cohort study in ART-naive and a pre-ART low nadir (<200 cells/μl) HIV-infected patients (n = 64). We obtained clinical data and metabolomic profiles for each individual, in which low molecular weight metabolites, lipids and lipoproteins (including particle concentrations and sizes) were measured by NMR spectroscopy. Immunological recovery was defined as reaching CD4 T-cell count at least 250 cells/μl after 36 months of virologically successful ART. We used univariate comparisons, Random Forest test and receiver-operating characteristic curves to identify and evaluate the predictive factors of immunological recovery after treatment. HIV-infected patients with a baseline metabolic pattern characterized by high levels of large high density lipoprotein (HDL) particles, HDL cholesterol and larger sizes of low density lipoprotein particles had a better immunological recovery after treatment. Conversely, patients with high ratios of non-HDL lipoprotein particles did not experience this full recovery. Medium very-low-density lipoprotein particles and glucose increased the classification power of the multivariate model despite not showing any significant differences between the two groups. In HIV-infected patients, a baseline healthier metabolomic profile is related to a better response to ART where the lipoprotein profile, mainly large HDL particles, may play a key role.

  18. Cosmos 2229 immunology study (Experiment K-8-07)

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1993-01-01

    The purpose of the current study was to further validate use of the rhesus monkey as a model for humans in future space flight testing. The areas of immunological importance examined in the Cosmos 2229 flight were represented by two sets of studies. The first set of studies determined the effect of space flight on the ability of bone marrow cells to respond to granulocyte/monocyte colony stimulating factor (GM-CSF). GM-CSF is an important regulator in the differentiation of bone marrow cells of both monocyte/macrophage and granulocyte lineages and any change in the ability of these cells to respond to GM-CSF can result in altered immune function. A second set of studies determined space flight effects on the expression of cell surface markers on both spleen and bone marrow cells. Immune cell markers included in this study were those for T-cell, B-cell, natural killer cell, and interleukin-2 populations. Variations from a normal cell population percentage, as represented by these markers, can be correlated with alterations in immunological function. Cells were stained with fluorescein-labelled antibodies directed against the appropriate antigens, and then analyzed using a flow cytometer.

  19. Immunology for rheumatology residents: working toward a Canadian national curriculum consensus.

    PubMed

    Chow, Shirley L; Herman-Kideckel, Sari; Mahendira, Dharini; McDonald-Blumer, Heather

    2015-01-01

    Immunologic mechanisms play an integral role in understanding the pathogenesis and management of rheumatic conditions. Currently, there is limited access to formal instruction in immunology for rheumatology trainees across Canada. The aims of this study were (1) to describe current immunology curricula among adult rheumatology training programs across Canada and (2) to compare the perceived learning needs of rheumatology trainees from the perspective of program directors and trainees to help develop a focused nationwide immunology curriculum. Rheumatology trainees and program directors from adult rheumatology programs across Canada completed an online questionnaire and were asked to rank a comprehensive list of immunology topics. A modified Delphi approach was implemented to obtain consensus on immunology topics. Only 42% of program directors and 31% of trainees felt the current method of teaching immunology was effective. Results illustrate concordance between program directors and trainees for the highest-ranked immunology topics including innate immunity, adaptive immunity, and cells and tissues of the immune system. However, there was discordance among other topics, such as diagnostic laboratory immunology and therapeutics. There is a need to improve immunology teaching in rheumatology training programs. Results show high concordance between the basic immunology topics. This study provides the groundwork for development of future immunology curricula.

  20. Mast Cells and Th17 Cells Contribute to the Lymphoma-Associated Pro-Inflammatory Microenvironment of Angioimmunoblastic T-Cell Lymphoma

    PubMed Central

    Tripodo, Claudio; Gri, Giorgia; Piccaluga, Pier Paolo; Frossi, Barbara; Guarnotta, Carla; Piconese, Silvia; Franco, Giovanni; Vetri, Valeria; Pucillo, Carlo Ennio; Florena, Ada Maria; Colombo, Mario Paolo; Pileri, Stefano Aldo

    2010-01-01

    Reports focusing on the immunological microenvironment of peripheral T-cell lymphomas (PTCL) are rare. Here we studied the reciprocal contribution of regulatory (Treg) and interleukin-17-producing (Th17) T-cells to the composition of the lymphoma-associated microenvironment of angioimmunoblastic T-cell lymphoma (AITL) and PTCL not otherwise specified on tissue microarrays from 30 PTCLs not otherwise specified and 37 AITLs. We found that Th17 but not Treg cells were differently represented in the two lymphomas and correlated with the amount of mast cells (MCs) and granulocytes, which preferentially occurred in the cellular milieu of AITL cases. We observed that MCs directly synthesized interleukin-6 and thus contribute to the establishment of a pro-inflammatory, Th17 permissive environment in AITL. We further hypothesized that the AITL clone itself could be responsible for the preferential accumulation of MCs at sites of infiltration through the synthesis of CXCL-13 and its interaction with the CXCR3 and CXCR5 receptors expressed on MCs. Consistent with this hypothesis, we observed MCs efficiently migrating in response to CXCL-13. On these bases, we conclude that MCs have a role in molding the immunological microenvironment of AITL toward the maintenance of pro-inflammatory conditions prone to Th17 generation and autoimmunity. PMID:20595635

  1. Mast cells and Th17 cells contribute to the lymphoma-associated pro-inflammatory microenvironment of angioimmunoblastic T-cell lymphoma.

    PubMed

    Tripodo, Claudio; Gri, Giorgia; Piccaluga, Pier Paolo; Frossi, Barbara; Guarnotta, Carla; Piconese, Silvia; Franco, Giovanni; Vetri, Valeria; Pucillo, Carlo Ennio; Florena, Ada Maria; Colombo, Mario Paolo; Pileri, Stefano Aldo

    2010-08-01

    Reports focusing on the immunological microenvironment of peripheral T-cell lymphomas (PTCL) are rare. Here we studied the reciprocal contribution of regulatory (Treg) and interleukin-17-producing (Th17) T-cells to the composition of the lymphoma-associated microenvironment of angioimmunoblastic T-cell lymphoma (AITL) and PTCL not otherwise specified on tissue microarrays from 30 PTCLs not otherwise specified and 37 AITLs. We found that Th17 but not Treg cells were differently represented in the two lymphomas and correlated with the amount of mast cells (MCs) and granulocytes, which preferentially occurred in the cellular milieu of AITL cases. We observed that MCs directly synthesized interleukin-6 and thus contribute to the establishment of a pro-inflammatory, Th17 permissive environment in AITL. We further hypothesized that the AITL clone itself could be responsible for the preferential accumulation of MCs at sites of infiltration through the synthesis of CXCL-13 and its interaction with the CXCR3 and CXCR5 receptors expressed on MCs. Consistent with this hypothesis, we observed MCs efficiently migrating in response to CXCL-13. On these bases, we conclude that MCs have a role in molding the immunological microenvironment of AITL toward the maintenance of pro-inflammatory conditions prone to Th17 generation and autoimmunity.

  2. 75 FR 11896 - National Institute of Allergy and Infectious Diseases; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ...: National Institute of Allergy and Infectious Diseases Special Emphasis Panel; B cell Immunology Partnership..., Allergy, Immunology, and Transplantation Research; 93.856, Microbiology and Infectious Diseases Research...

  3. [The experimental evaluation with flow cytofluorimetry technique of the level of cellular immunologic memory in persons vaccinated against plague and anthrax].

    PubMed

    Bogacheva, N V; Kriuchkov, A V; Darmov, I V; Vorob'ev, K A; Pechenkin, D V; Elagin, G D; Kolesnikiov, D P

    2013-11-01

    The article deals with experimental evaluation with flow cytofluorimetry technique of the level of cellular immunologic memory in persons vaccinated with plague and anthrax live dry vaccines. It is established that the introduction of plague and anthrax live dry vaccines into organism of vaccinated persons ignites immunologic rearrangement manifested by reliable increase of level of blood concentration of Th1-lymphocytes (immunologic memory cells) against the background of vaccination. The higher correlation coefficient is detected between leucocytes lysis coefficient and stimulation coefficient according blood concentration level of T-lymphocytes predominantly at the expense of Th1-lymphocytes. The values of stimulation coefficient were calculated for corresponding blood cells of vaccinated persons. This data testifies the effectiveness of application of vaccination against plague and anthrax.

  4. Membrane-bound Dickkopf-1 in Foxp3+ regulatory T cells suppresses T-cell-mediated autoimmune colitis.

    PubMed

    Chae, Wook-Jin; Park, Jong-Hyun; Henegariu, Octavian; Yilmaz, Saliha; Hao, Liming; Bothwell, Alfred L M

    2017-10-01

    Induction of tolerance is a key mechanism to maintain or to restore immunological homeostasis. Here we show that Foxp3 + regulatory T (Treg) cells use Dickkopf-1 (DKK-1) to regulate T-cell-mediated tolerance in the T-cell-mediated autoimmune colitis model. Treg cells from DKK-1 hypomorphic doubleridge mice failed to control CD4 + T-cell proliferation, resulting in CD4 T-cell-mediated autoimmune colitis. Thymus-derived Treg cells showed a robust expression of DKK-1 but not in naive or effector CD4 T cells. DKK-1 expression in Foxp3 + Treg cells was further increased upon T-cell receptor stimulation in vitro and in vivo. Interestingly, Foxp3 + Treg cells expressed DKK-1 in the cell membrane and the functional inhibition of DKK-1 using DKK-1 monoclonal antibody abrogated the suppressor function of Foxp3 + Treg cells. DKK-1 expression was dependent on de novo protein synthesis and regulated by the mitogen-activated protein kinase pathway but not by the canonical Wnt pathway. Taken together, our results highlight membrane-bound DKK-1 as a novel Treg-derived mediator to maintain immunological tolerance in T-cell-mediated autoimmune colitis. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.

  5. Cellular Sites of Immunologic Unresponsiveness*

    PubMed Central

    Chiller, Jacques M.; Habicht, Gail S.; Weigle, William O.

    1970-01-01

    The reconstitution of the immune response of lethally irradiated mice to human γ-globulin is dependent on the synergistic action of bone marrow with thymus cells. Immunologic unresponsiveness appears to involve a functional defect at each of these cellular levels, inasmuch as neither bone marrow nor thymus cells from unresponsive donors are capable of demonstrating synergism in combination with their normal counterpart. PMID:4192271

  6. Advances in basic and clinical immunology in 2016.

    PubMed

    Chinen, Javier; Badran, Yousef R; Geha, Raif S; Chou, Janet S; Fried, Ari J

    2017-10-01

    Advances in basic immunology in 2016 included studies that further characterized the role of different proteins in the differentiation of effector T and B cells, including cytokines and proteins involved in the actin cytoskeleton. Regulation of granule formation and secretion in cytotoxic cells was also further described by examining patients with familial hemophagocytic lymphohistiocytosis. The role of prenylation in patients with mevalonate kinase deficiency leading to inflammation has been established. We reviewed advances in clinical immunology, as well as new approaches of whole-genome sequencing and genes newly reported to be associated with immunodeficiency, such as linker of activation of T cells (LAT); B-cell CLL/lymphoma 11B (BCL11B); RGD, leucine-rich repeat, tropomodulin domain, and proline-rich domain-containing protein (RLTPR); moesin; and Janus kinase 1 (JAK1). Trials of hematopoietic stem cell transplantation and gene therapy for primary immunodeficiency have had relative success; the use of autologous virus-specific cytotoxic T cells has proved effective as well. New medications are being explored, such as pioglitazone, which is under study for its role in enhancing the oxidative burst in patients with chronic granulomatous disease. Development of vaccines for HIV infection continues to provide insight into the immune response against a virus with an extraordinary mutation rate. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  7. IMMUNOLOGIC MEMORY CELLS OF BONE MARROW ORIGIN

    PubMed Central

    Miller, Harold C.; Cudkowicz, Gustavo

    1972-01-01

    Individual immunocompetent precursor cells of (C57BL/10 x C3H)F1 mouse marrow generate, on transplantation, three to five times more antibody-forming cells localized in recipient spleens during secondary than during primary immune responses. The increased burst size is immunologically specific since antigens of horse and chicken erythrocytes and of Salmonella typhimurium do not cause this effect in marrow cells responsive to sheep red blood cells. Both sensitized and nonsensitized precursors require the helper function of thymus-derived cells and antigen for the final steps of differentiation and maturation. The burst size of primed precursor cells is the same after cooperative interactions with virgin or educated helper cells of thymic origin. The greater potential of these marrow precursors may be attributable to self-replication and migration before differentiation into antibody-forming descendants. In fact, the progeny cells of primed precursor units are distributed among a multiplicity of foci, whereas those of nonimmune precursors are clustered into one focus. The described properties of specifically primed marrow precursors are those underlying immunologic memory. It remains to be established whether memory cells are induced or selected by antigens and whether the thymus plays a role in this process. PMID:4553850

  8. An MSI tumor specific frameshift mutation in a coding microsatellite of MSH3 encodes for HLA-A0201-restricted CD8+ cytotoxic T cell epitopes.

    PubMed

    Garbe, Yvette; Maletzki, Claudia; Linnebacher, Michael

    2011-01-01

    Microsatellite instability (MSI) resulting from inactivation of the DNA mismatch repair system (MMR) characterizes a highly immunological subtype of colorectal carcinomas. Those tumors express multiple frameshift-mutated proteins which present a unique pool of tumor-specific antigens. The DNA MMR protein MSH3 is frequently mutated in MSI(+) colorectal tumors, thus making it an attractive candidate for T cell-based immunotherapies. FSP-specific CD8(+) T cells were generated from a healthy donor using reverse immunology. Those T cells specifically recognized T2 cells sensitized with the respective peptides. Specific recognition and killing of MSI(+) colorectal carcinoma cells harbouring the mutated reading frame was observed. The results obtained with T cell bulk cultures could be reproduced with T cell clones obtained from the same cultures. Blocking experiments (using antibodies and cold target inhibition) confirmed peptide as well as HLA-A0201-specificity. We identified two novel HLA-A0201-restricted cytotoxic T cell epitopes derived from a (-1) frameshift mutation of a coding A(8) tract within the MSH3 gene. These were (386)-FLLALWECSL (FSP18) and (387)-LLALWECSL (FSP19) as well as (403)-IVSRTLLLV (FSP23) and (402)-LIVSRTLLLV (FSP31), respectively. These results suggest that MSH3(-1) represents another promising MSI(+)-induced target antigen. By identifying two distinct epitopes within MSH3(-1), the sustained immunogenicity of the frameshift mutated sequence was confirmed. Our data therefore encourage further exploitation of MSH3 as a piece for peptide-based vaccines either for therapeutic or--even more important--preventive purposes.

  9. AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data

    PubMed Central

    Toseland, Christopher P; Clayton, Debra J; McSparron, Helen; Hemsley, Shelley L; Blythe, Martin J; Paine, Kelly; Doytchinova, Irini A; Guan, Pingping; Hattotuwagama, Channa K; Flower, Darren R

    2005-01-01

    AntiJen is a database system focused on the integration of kinetic, thermodynamic, functional, and cellular data within the context of immunology and vaccinology. Compared to its progenitor JenPep, the interface has been completely rewritten and redesigned and now offers a wider variety of search methods, including a nucleotide and a peptide BLAST search. In terms of data archived, AntiJen has a richer and more complete breadth, depth, and scope, and this has seen the database increase to over 31,000 entries. AntiJen provides the most complete and up-to-date dataset of its kind. While AntiJen v2.0 retains a focus on both T cell and B cell epitopes, its greatest novelty is the archiving of continuous quantitative data on a variety of immunological molecular interactions. This includes thermodynamic and kinetic measures of peptide binding to TAP and the Major Histocompatibility Complex (MHC), peptide-MHC complexes binding to T cell receptors, antibodies binding to protein antigens and general immunological protein-protein interactions. The database also contains quantitative specificity data from position-specific peptide libraries and biophysical data, in the form of diffusion co-efficients and cell surface copy numbers, on MHCs and other immunological molecules. The uses of AntiJen include the design of vaccines and diagnostics, such as tetramers, and other laboratory reagents, as well as helping parameterize the bioinformatic or mathematical in silico modeling of the immune system. The database is accessible from the URL: . PMID:16305757

  10. Nutritional and Immunological Correlates of Memory and Neurocognitive Development Among HIV-Infected Children Living in Kayunga, Uganda.

    PubMed

    Ruiseñor-Escudero, Horacio; Familiar-Lopez, Itziar; Sikorskii, Alla; Jambulingam, Nikita; Nakasujja, Noelline; Opoka, Robert; Bass, Judith; Boivin, Michael

    2016-04-15

    To identify the nutritional and immunological correlates of memory and neurocognitive development as measured by the Mullen Scales of Early Learning (MSEL) and by the Color Object Association Test (COAT) among children in Uganda. This analysis uses baseline data collected between 2008 and 2010 from 119 HIV-infected children aged 1-6 years, participating in a randomized controlled trial of an interventional parenting program in Kayunga, Uganda. Peripheral blood draws were performed to determine immunological biomarkers. Unadjusted and adjusted linear regression models were used to relate MSEL and COAT scores to sociodemographic characteristics, weight-for-age Z scores (WAZs), antiretroviral therapy status, and immunological biomarkers. In the final analysis, 111 children were included. Lower levels of CD4 CD38 T cells (P = 0.04) were associated to higher immediate and total recall scores (P = 0.04). Higher levels of CD8 HLA-DR T cells were associated with higher total recall score (P = 0.04) of the COAT. Higher CD4 CD38 HLA-DR T cells levels were associated with higher gross motor scores of the MSEL (P = 0.02). WAZ was positively correlated to visual reception, fine motor, expressive language, and composite score of the MSEL. Overall, WAZ was a stronger predictor of neurocognitive outcomes assessed by the MSEL. CD4 CD38 T cells were more specifically associated with memory-related outcomes. Future research should include immunological markers and standardized neurocognitive tests to further understand this relationship.

  11. Pharmacologic Induction of CD8+ T Cell Memory: Better Living Through Chemistry

    PubMed Central

    Gattinoni, Luca; Klebanoff, Christopher A.; Restifo, Nicholas P.

    2011-01-01

    The generation of a robust population of memory T cells is critical for effective vaccine and cell-based therapies to prevent and treat infectious diseases and cancer. A series of recent papers have established a new, cell-intrinsic approach in which small molecules target key metabolic and developmental pathways to enhance the formation and maintenance of highly functional CD8+ memory T cells. These findings raise the exciting new possibility of using small molecules, many of which are already approved for human use, for the pharmacologic induction of immunologic memory. PMID:20371454

  12. In-silico insights on the prognostic potential of immune cell infiltration patterns in the breast lobular epithelium

    PubMed Central

    Alfonso, J. C. L.; Schaadt, N. S.; Schönmeyer, R.; Brieu, N.; Forestier, G.; Wemmert, C.; Feuerhake, F.; Hatzikirou, H.

    2016-01-01

    Scattered inflammatory cells are commonly observed in mammary gland tissue, most likely in response to normal cell turnover by proliferation and apoptosis, or as part of immunosurveillance. In contrast, lymphocytic lobulitis (LLO) is a recurrent inflammation pattern, characterized by lymphoid cells infiltrating lobular structures, that has been associated with increased familial breast cancer risk and immune responses to clinically manifest cancer. The mechanisms and pathogenic implications related to the inflammatory microenvironment in breast tissue are still poorly understood. Currently, the definition of inflammation is mainly descriptive, not allowing a clear distinction of LLO from physiological immunological responses and its role in oncogenesis remains unclear. To gain insights into the prognostic potential of inflammation, we developed an agent-based model of immune and epithelial cell interactions in breast lobular epithelium. Physiological parameters were calibrated from breast tissue samples of women who underwent reduction mammoplasty due to orthopedic or cosmetic reasons. The model allowed to investigate the impact of menstrual cycle length and hormone status on inflammatory responses to cell turnover in the breast tissue. Our findings suggested that the immunological context, defined by the immune cell density, functional orientation and spatial distribution, contains prognostic information previously not captured by conventional diagnostic approaches. PMID:27659691

  13. GATA3 Abundance Is a Critical Determinant of T Cell Receptor β Allelic Exclusion

    PubMed Central

    Ku, Chia-Jui; Sekiguchi, JoAnn M.; Panwar, Bharat; Guan, Yuanfang; Takahashi, Satoru; Yoh, Keigyou; Maillard, Ivan; Hosoya, Tomonori

    2017-01-01

    ABSTRACT Allelic exclusion describes the essential immunological process by which feedback repression of sequential DNA rearrangements ensures that only one autosome expresses a functional T or B cell receptor. In wild-type mammals, approximately 60% of cells have recombined the DNA of one T cell receptor β (TCRβ) V-to-DJ-joined allele in a functional configuration, while the second allele has recombined only the DJ sequences; the other 40% of cells have recombined the V to the DJ segments on both alleles, with only one of the two alleles predicting a functional TCRβ protein. Here we report that the transgenic overexpression of GATA3 leads predominantly to biallelic TCRβ gene (Tcrb) recombination. We also found that wild-type immature thymocytes can be separated into distinct populations based on intracellular GATA3 expression and that GATA3LO cells had almost exclusively recombined only one Tcrb locus (that predicted a functional receptor sequence), while GATA3HI cells had uniformly recombined both Tcrb alleles (one predicting a functional and the other predicting a nonfunctional rearrangement). These data show that GATA3 abundance regulates the recombination propensity at the Tcrb locus and provide new mechanistic insight into the historic immunological conundrum for how Tcrb allelic exclusion is mediated. PMID:28320875

  14. In-silico insights on the prognostic potential of immune cell infiltration patterns in the breast lobular epithelium

    NASA Astrophysics Data System (ADS)

    Alfonso, J. C. L.; Schaadt, N. S.; Schönmeyer, R.; Brieu, N.; Forestier, G.; Wemmert, C.; Feuerhake, F.; Hatzikirou, H.

    2016-09-01

    Scattered inflammatory cells are commonly observed in mammary gland tissue, most likely in response to normal cell turnover by proliferation and apoptosis, or as part of immunosurveillance. In contrast, lymphocytic lobulitis (LLO) is a recurrent inflammation pattern, characterized by lymphoid cells infiltrating lobular structures, that has been associated with increased familial breast cancer risk and immune responses to clinically manifest cancer. The mechanisms and pathogenic implications related to the inflammatory microenvironment in breast tissue are still poorly understood. Currently, the definition of inflammation is mainly descriptive, not allowing a clear distinction of LLO from physiological immunological responses and its role in oncogenesis remains unclear. To gain insights into the prognostic potential of inflammation, we developed an agent-based model of immune and epithelial cell interactions in breast lobular epithelium. Physiological parameters were calibrated from breast tissue samples of women who underwent reduction mammoplasty due to orthopedic or cosmetic reasons. The model allowed to investigate the impact of menstrual cycle length and hormone status on inflammatory responses to cell turnover in the breast tissue. Our findings suggested that the immunological context, defined by the immune cell density, functional orientation and spatial distribution, contains prognostic information previously not captured by conventional diagnostic approaches.

  15. Size-dependent protein segregation at membrane interfaces

    NASA Astrophysics Data System (ADS)

    Schmid, Eva M.; Bakalar, Matthew H.; Choudhuri, Kaushik; Weichsel, Julian; Ann, Hyoung Sook; Geissler, Phillip L.; Dustin, Michael L.; Fletcher, Daniel A.

    2016-07-01

    Membrane interfaces formed at cell-cell junctions are associated with characteristic patterns of membrane proteins whose organization is critical for intracellular signalling. To isolate the role of membrane protein size in pattern formation, we reconstituted model membrane interfaces in vitro using giant unilamellar vesicles decorated with synthetic binding and non-binding proteins. We show that size differences between membrane proteins can drastically alter their organization at membrane interfaces, with as little as a ~5 nm increase in non-binding protein size driving its exclusion from the interface. Combining in vitro measurements with Monte Carlo simulations, we find that non-binding protein exclusion is also influenced by lateral crowding, binding protein affinity, and thermally driven membrane height fluctuations that transiently limit access to the interface. This sensitive and highly effective means of physically segregating proteins has implications for cell-cell contacts such as T-cell immunological synapses (for example, CD45 exclusion) and epithelial cell junctions (for example, E-cadherin enrichment), as well as for protein sorting at intracellular contact points between membrane-bound organelles.

  16. Third-Kind Encounters in Biomedicine: Immunology Meets Mathematics and Informatics to Become Quantitative and Predictive.

    PubMed

    Eberhardt, Martin; Lai, Xin; Tomar, Namrata; Gupta, Shailendra; Schmeck, Bernd; Steinkasserer, Alexander; Schuler, Gerold; Vera, Julio

    2016-01-01

    The understanding of the immune response is right now at the center of biomedical research. There are growing expectations that immune-based interventions will in the midterm provide new, personalized, and targeted therapeutic options for many severe and highly prevalent diseases, from aggressive cancers to infectious and autoimmune diseases. To this end, immunology should surpass its current descriptive and phenomenological nature, and become quantitative, and thereby predictive.Immunology is an ideal field for deploying the tools, methodologies, and philosophy of systems biology, an approach that combines quantitative experimental data, computational biology, and mathematical modeling. This is because, from an organism-wide perspective, the immunity is a biological system of systems, a paradigmatic instance of a multi-scale system. At the molecular scale, the critical phenotypic responses of immune cells are governed by large biochemical networks, enriched in nested regulatory motifs such as feedback and feedforward loops. This network complexity confers them the ability of highly nonlinear behavior, including remarkable examples of homeostasis, ultra-sensitivity, hysteresis, and bistability. Moving from the cellular level, different immune cell populations communicate with each other by direct physical contact or receiving and secreting signaling molecules such as cytokines. Moreover, the interaction of the immune system with its potential targets (e.g., pathogens or tumor cells) is far from simple, as it involves a number of attack and counterattack mechanisms that ultimately constitute a tightly regulated multi-feedback loop system. From a more practical perspective, this leads to the consequence that today's immunologists are facing an ever-increasing challenge of integrating massive quantities from multi-platforms.In this chapter, we support the idea that the analysis of the immune system demands the use of systems-level approaches to ensure the success in the search for more effective and personalized immune-based therapies.

  17. Innate lymphoid cells and parasites: Ancient foes with shared history.

    PubMed

    Neill, D R; Fallon, P G

    2018-02-01

    This special issue of Parasite Immunology charts the rapid advances made in our understanding of the myriad interactions between innate lymphoid cells and parasites and how these interactions have shaped our evolutionary history. Here, we provide an overview of the issue and highlight key findings from studies in mice and man. © 2017 The Authors. Parasite Immunology Published by John Wiley & Sons Ltd.

  18. Multiscale modelling in immunology: a review.

    PubMed

    Cappuccio, Antonio; Tieri, Paolo; Castiglione, Filippo

    2016-05-01

    One of the greatest challenges in biomedicine is to get a unified view of observations made from the molecular up to the organism scale. Towards this goal, multiscale models have been highly instrumental in contexts such as the cardiovascular field, angiogenesis, neurosciences and tumour biology. More recently, such models are becoming an increasingly important resource to address immunological questions as well. Systematic mining of the literature in multiscale modelling led us to identify three main fields of immunological applications: host-virus interactions, inflammatory diseases and their treatment and development of multiscale simulation platforms for immunological research and for educational purposes. Here, we review the current developments in these directions, which illustrate that multiscale models can consistently integrate immunological data generated at several scales, and can be used to describe and optimize therapeutic treatments of complex immune diseases. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  19. An in vitro investigation of immunomodulatory properties of Lactobacillus plantarum and L. delbrueckii cells and their extracellular polysaccharides

    PubMed Central

    KISHIMOTO, Mana; NOMOTO, Ryohei; MIZUNO, Masashi; OSAWA, Ro

    2017-01-01

    Many probiotic lactobacilli and their extracellular polysaccharides (EPS) have beneficial immunological properties. However, it is unclear how they elicit the host immune response. We thus investigated the immunological properties of UV-killed Lactobacillus delbrueckii TU-1 and L. plantarum KM-9 cells as well as their extracellular polysaccharides (EPSs). High-performance liquid chromatography and ion exchange chromatography analyses showed that their EPSs differ in sugar composition and sugar fractionation. The immunological properties were evaluated in a semi-intestinal model using a Transwell co-culture system that employed human intestinal epithelial (Caco-2) cells on the apical side and murine macrophage (RAW264.7) cells on the basolateral side. The UV-killed cells and EPSs were added to the apical side to allow direct contact with Caco-2 cells and incubated for 6 hr. After incubation, the amounts of tumor necrosis factor-α and several cytokines released by RAW264.7 or Caco-2 cells were quantified by cytotoxic activity on L929 cells (murine fibrosarcoma cell line) and quantitative reverse-transcriptase PCR. We found that the UV-killed cells and their EPSs had immunological effects on RAW264.7 cells via Caco-2 cells. The RAW264.7 cells showed different cytokine production profiles when treated with UV-killed cells and EPSs. The UV-killed cells and EPSs promoted a Th1-type cellular response. Furthermore, we found that the UV-killed cells sent positive signals through Toll-like receptor (TLR) 2. Meanwhile, neither EPS sent a positive signal through TLR4 and TLR2. This evidence suggests that both UV-killed cells of the lactobacillus strains and their EPSs trigger a Th1-type immune response in a human host, with the former triggering the response via the TLRs expressed on its epithelium and the latter employing a mechanism yet to be determined, possibly involving a novel receptor that is designed to recognize specific patterns of repeating sugar in the EPSs. PMID:28748131

  20. An in vitro investigation of immunomodulatory properties of Lactobacillus plantarum and L. delbrueckii cells and their extracellular polysaccharides.

    PubMed

    Kishimoto, Mana; Nomoto, Ryohei; Mizuno, Masashi; Osawa, Ro

    2017-01-01

    Many probiotic lactobacilli and their extracellular polysaccharides (EPS) have beneficial immunological properties. However, it is unclear how they elicit the host immune response. We thus investigated the immunological properties of UV-killed Lactobacillus delbrueckii TU-1 and L. plantarum KM-9 cells as well as their extracellular polysaccharides (EPSs). High-performance liquid chromatography and ion exchange chromatography analyses showed that their EPSs differ in sugar composition and sugar fractionation. The immunological properties were evaluated in a semi-intestinal model using a Transwell co-culture system that employed human intestinal epithelial (Caco-2) cells on the apical side and murine macrophage (RAW264.7) cells on the basolateral side. The UV-killed cells and EPSs were added to the apical side to allow direct contact with Caco-2 cells and incubated for 6 hr. After incubation, the amounts of tumor necrosis factor-α and several cytokines released by RAW264.7 or Caco-2 cells were quantified by cytotoxic activity on L929 cells (murine fibrosarcoma cell line) and quantitative reverse-transcriptase PCR. We found that the UV-killed cells and their EPSs had immunological effects on RAW264.7 cells via Caco-2 cells. The RAW264.7 cells showed different cytokine production profiles when treated with UV-killed cells and EPSs. The UV-killed cells and EPSs promoted a Th1-type cellular response. Furthermore, we found that the UV-killed cells sent positive signals through Toll-like receptor (TLR) 2. Meanwhile, neither EPS sent a positive signal through TLR4 and TLR2. This evidence suggests that both UV-killed cells of the lactobacillus strains and their EPSs trigger a Th1-type immune response in a human host, with the former triggering the response via the TLRs expressed on its epithelium and the latter employing a mechanism yet to be determined, possibly involving a novel receptor that is designed to recognize specific patterns of repeating sugar in the EPSs.

  1. 75 FR 48978 - National Institute of Allergy and Infectious Diseases; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-12

    ... Infectious Diseases Special Emphasis Panel; T-Cell Immunology. Date: September 16, 2010. Time: 12:30 p.m. to....gov . (Catalogue of Federal Domestic Assistance Program Nos. 93.855, Allergy, Immunology, and...

  2. Breaking immunological tolerance through OX40 (CD134).

    PubMed

    Bansal-Pakala, P; Croft, M

    2001-11-06

    Immunological tolerance represents a mechanism by which cells of the host remain protected from the immune system. Breaking of immunological tolerance can result in a variety of autoimmune diseases such as rheumatoid arthritis, diabetes, and multiple sclerosis. The reasons for tolerance breaking down and autoimmune processes arising are largely unknown but of obvious interest for therapeutic intervention of these diseases. Although reversal of the tolerant state is generally unwanted, there are instances where this may be of benefit to the host. In particular, one way a cancerous cell escapes being targeted by the immune system is through tolerance mechanisms that in effect turn off the reactivity of T lymphocytes that can respond to tumor-associated peptides. Thus tolerance represents a major obstacle in developing effective immunotherapy against tumors. The molecules that are involved in regulating immunological tolerance are then of interest as they may be great targets for positively or negatively manipulating the tolerance process.

  3. Importin Beta Plays an Essential Role in the Regulation of the LysRS-Ap4A Pathway in Immunologically Activated Mast Cells ▿

    PubMed Central

    Carmi-Levy, Irit; Motzik, Alex; Ofir-Birin, Yifat; Yagil, Zohar; Yang, Christopher Maolin; Kemeny, David Michael; Han, Jung Min; Kim, Sunghoon; Kay, Gillian; Nechushtan, Hovav; Suzuki, Ryo; Rivera, Juan; Razin, Ehud

    2011-01-01

    We recently reported that diadenosine tetraphosphate hydrolase (Ap4A hydrolase) plays a critical role in gene expression via regulation of intracellular Ap4A levels. This enzyme serves as a component of our newly described lysyl tRNA synthetase (LysRS)-Ap4A biochemical pathway that is triggered upon immunological challenge. Here we explored the mechanism of this enzyme's translocation into the nucleus and found its immunologically dependent association with importin beta. Silencing of importin beta prevented Ap4A hydrolase nuclear translocation and affected the local concentration of Ap4A, which led to an increase in microphthalmia transcription factor (MITF) transcriptional activity. Furthermore, immunological activation of mast cells resulted in dephosphorylation of Ap4A hydrolase, which changed the hydrolytic activity of the enzyme. PMID:21402779

  4. Clinical and laboratorial impact of antiretroviral therapy in a cohort of Portuguese patients chronically infected with HIV-2.

    PubMed

    Miranda, Ana; Peres, Susana; Moneti, Virginia; Azevedo, Telma; Aldir, Isabel; Mansinho, Kamal

    2014-01-01

    HIV-2 infection is endemic in West Africa and some European countries, namely Portugal. HIV-2 antiretroviral (ARV) treatment presents some restrains related to intrinsic resistance to non-nucleoside reverse transcriptase inhibitors (NNRTI) and fusion inhibitors, and poorer response to protease inhibitors (PI). Retrospective observational study of a cohort of 135 infected HIV-2 patients, diagnosed between 1989 and 2008. Evaluation of epidemiologic, clinical, immunologic and virologic progression, comparing to groups of patients (naïve vs ARV experienced); characterization of therapeutic, immunologic and virologic response. SPSS version 20.0 was used for statistical analysis. The study included 135 patients: 41% (n=55) naïve and 59% (n=80) with ARV experience. The comparison between groups (naïve vs ARV) revealed: male prevalence 76% vs 50%; mean age 54.5 years vs 54.8 (p=0.90); main geographic origin Guiné Bissau (47% vs 44%) and Portugal (22% vs 33%); and transmission mainly acquired by heterosexual contact (87% vs 80%). Mean time since diagnosis was 14 vs 13 years (p=0.31); 2% vs 50% presented AIDS criteria at diagnosis (p<0.001) and 93% vs 38% registered TCD4>350 cell/mm(3) at diagnosis (p<0.001). Immunological evolution showed no significant decline in naïve population (Δ=-67 cell/mm(3) - p=0.18) and a significant recovery in ARV experienced (Δ=+207 cell/mm(3) - p<0.001). Global mortality rate found was 18% (6% vs 13% - p=0.122). Eighty patients initiated ARV: 84% presented a time interval of ARV exposure between 0-5 years (42%) and 5-10 years (42%). Fifty percent experienced ≤2 ARV regimens and the remaining >2 regimes. Considering the first ARV therapy: 56% initiated PI, 30% NTRI and 5% integrase inhibitor (II)-based regimens. Currently, 54 patients maintain regular follow-up and ARV therapy: 60% NTRI+PI; 37% NRTI+PI+II and 3% NRTI+II. TDF/FTC is the backbone in 56%. Most frequent PIs are LPV/r (54%), DRV/r (19%) and ATV/r (12%). Mean time of exposure to NRTI=3 years, PI=7 years and II=2 years. Immunologic recovery was sustained for each of the ARV class considered (NRTI Δ=+144 cell/mm(3); PI=Δ+92 cell/mm(3); II=Δ=+116 cell/mm(3)). This is a cohort accompanied for a long period and the majority of patients present extensive ARV experience. The ARV-experienced patients registered a favourable response to treatment, with sustained immune recovery (Δ=+207 cell/mm(3)) and virologic control in 74%. Immunologic behaviour evidenced a sustained gain for each of the ARV class considered.

  5. Association between discordant immunological response to highly active anti-retroviral therapy, regulatory T cell percentage, immune cell activation and very low-level viraemia in HIV-infected patients

    PubMed Central

    Saison, J; Ferry, T; Demaret, J; Maucort Boulch, D; Venet, F; Perpoint, T; Ader, F; Icard, V; Chidiac, C; Monneret, G

    2014-01-01

    The mechanisms sustaining the absence of complete immune recovery in HIV-infected patients upon long-term effective highly active anti-retroviral therapy (HAART) remain elusive. Immune activation, regulatory T cells (Tregs) or very low-level viraemia (VLLV) have been alternatively suspected, but rarely investigated simultaneously. We performed a cross-sectional study in HIV-infected aviraemic subjects (mean duration of HAART: 12 years) to concomitantly assess parameters associated independently with inadequate immunological response. Patients were classified as complete immunological responders (cIR, n = 48) and inadequate immunological responders (iIR, n = 39), depending on the CD4+ T cell count (> or < 500/mm3). Clinical and virological data (including very low-level viraemia) were collected. In parallel, immunophenotyping of CD4+ lymphocytes, including Treg subsets, and CD8+ T cells was performed. Percentages of activated CD4+ T cells, Tregs, effector Tregs and terminal effector Tregs were found to be significantly elevated in iIR. Neither the percentage of activated CD8+ T cells nor VLLV were found to be associated with iIR. In the multivariate analysis, nadir of CD4+ T cell count and percentage of Tregs were the only two parameters associated independently with iIR [odds ratio (OR) = 2·339, P = 0·001, and OR = 0·803, P = 0·041]. We present here the largest study investigating simultaneously the immune response to long-term HAART, activation of CD4+ and CD8+ T cells, Treg percentages and very low-level viraemia. Causative interactions between Tregs and CD4+ T cells should now be explored prospectively in a large patients cohort. PMID:24460818

  6. Adoptive immunotherapy for cancer.

    PubMed

    Ruella, Marco; Kalos, Michael

    2014-01-01

    Recent clinical success has underscored the potential for immunotherapy based on the adoptive cell transfer (ACT) of engineered T lymphocytes to mediate dramatic, potent, and durable clinical responses. This success has led to the broader evaluation of engineered T-lymphocyte-based adoptive cell therapy to treat a broad range of malignancies. In this review, we summarize concepts, successes, and challenges for the broader development of this promising field, focusing principally on lessons gleaned from immunological principles and clinical thought. We present ACT in the context of integrating T-cell and tumor biology and the broader systemic immune response. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Capture-related stressors impair immune system function in sablefish

    USGS Publications Warehouse

    Lupes, S.C.; Davis, M.W.; Olla, B.L.; Schreck, C.B.

    2006-01-01

    The sablefish Anoplopoma fimbria is a valuable North Pacific Ocean species that, when not targeted in various commercial fisheries, is often a part of discarded bycatch. Predictions of the survival of discarded fish are dependent on understanding how a fish responds to stressful conditions. Our objective was to describe the immunological health of sablefish exposed to capture stressors. In laboratory experiments designed to simulate the capture process, we subjected sablefish to various stressors that might influence survival: towing in a net, hooking, elevated seawater and air temperatures, and air exposure time. After stress was imposed, the in vitro mitogen-stimulated proliferation of sablefish leukocytes was used to evaluate the function of the immune system in an assay we validated for this species. The results demonstrated that regardless of fishing gear type, exposure to elevated seawater temperature, or time in air, the leukocytes from stressed sablefish exhibited significantly diminished proliferative responses to the T-cell mitogen, concanavalin A, or the B-cell mitogen, lipopolysaccharide. There was no difference in the immunological responses associated with seawater or air temperature. The duration and severity of the capture stressors applied in our study were harsh enough to induce significantly elevated levels of plasma cortisol and glucose, but there was no difference in the magnitude of levels among stressor treatments. These data suggest that immunological suppression occurs in sablefish subjected to capture-related stressors. The functional impairment of the immune system after capture presents a potential reason why delayed mortality is possible in discarded sablefish. Further studies are needed to determine whether delayed mortality in discarded sablefish can be caused by increased susceptibility to infectious agents resulting from stressor-mediated immunosuppression.

  8. Potential immunologic targets for treating fibrosis in systemic sclerosis: a review focused on leukocytes and cytokines.

    PubMed

    Hasegawa, Minoru; Takehara, Kazuhiko

    2012-12-01

    Systemic sclerosis (SSc) is a connective tissue disease characterized by tissue fibrosis. Although the pathogenesis remains unclear, a variety of cells contribute to the fibrotic process via interactions with each other and production of various cytokines. Recent literature related to the immunologic pathogenesis and future strategies for treating the fibrosis of SSc are discussed and, especially, this literature-based review that includes the authors' perspective, focused on leukocytes and cytokines. A PubMed search for articles published between January 2005 and January 2012 was conducted using the following keywords: systemic sclerosis, leukocyte, cytokine, growth factor, and chemokine. The reference lists of identified articles were searched for further articles. Targeting profibrogenic cytokines, including transforming growth factor-β, is still a very active area of research in SSc and most cellular studies have focused on the roles of fibroblasts in SSc. However, a growing number of recent studies indicate a role for B cells in the development of SSc and other autoimmune diseases such as systemic lupus erythematosus. Therefore, B-cell-targeted therapies, including currently available monoclonal antibodies against CD19, CD20, CD22, and B-cell-activating factor, belonging to the tumor necrosis factor family represent possible treatment options. Furthermore, the modulation of T-cell costimulatory molecules such as a recombinant fusion protein of cytotoxic T-lymphocyte antigen-4 may be as effective in SSc as it is in treating other autoimmune diseases. Approaches to antagonize interleukin (IL)-1, IL-6, or IL-17A signaling may also be attractive. This review describes recent advances in the treatment of fibrosis in SSc patients focused on immunologic strategies, such as leukocyte- or cytokine-targeted therapies. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Performance of immunological response in predicting virological failure.

    PubMed

    Ingole, Nayana; Mehta, Preeti; Pazare, Amar; Paranjpe, Supriya; Sarkate, Purva

    2013-03-01

    In HIV-infected individuals on antiretroviral therapy (ART), the decision on when to switch from first-line to second-line therapy is dictated by treatment failure, and this can be measured in three ways: clinically, immunologically, and virologically. While viral load (VL) decreases and CD4 cell increases typically occur together after starting ART, discordant responses may be seen. Hence the current study was designed to determine the immunological and virological response to ART and to evaluate the utility of immunological response to predict virological failure. All treatment-naive HIV-positive individuals aged >18 years who were eligible for ART were enrolled and assessed at baseline, 6 months, and 12 months clinically and by CD4 cell count and viral load estimations. The patients were categorized as showing concordant favorable (CF), immunological only (IO), virological only (VO), and concordant unfavorable responses (CU). The efficiency of immunological failure to predict virological failure was analyzed across various levels of virological failure (VL>50, >500, and >5,000 copies/ml). At 6 months, 87(79.81%), 7(5.5%), 13 (11.92%), and 2 (1.83%) patients and at 12 months 61(69.3%), 9(10.2%), 16 (18.2%), and 2 (2.3%) patients had CF, IO, VO, and CU responses, respectively. Immunological failure criteria had a very low sensitivity (11.1-40%) and positive predictive value (8.3-25%) to predict virological failure. Immunological criteria do not accurately predict virological failure resulting in significant misclassification of therapeutic responses. There is an urgent need for inclusion of viral load testing in the initiation and monitoring of ART.

  10. Combinatorial biomatrix/cell-based therapies for restoration of host tissue architecture and function

    PubMed Central

    Cantu, David Antonio; Kao, W. John

    2014-01-01

    This Progress Report reviews recent advances in the utility of extracellular matrix (ECM)-mimic biomaterials in presenting and delivering therapeutic cells to promote tissue healing. This overview gives a brief introduction of different cell types being used in regenerative medicine and tissue engineering while addressing critical issues that must be overcome before cell-based approaches can be routinely employed in the clinic. A selection of 5 commonly used cell-associated, biomaterial platforms (collagen, hyaluronic acid, fibrin, alginate, and poly(ethylene glycol)) are reviewed for treatment of a number of acute injury or diseases with emphasis on animal models and clinical trials. This article concludes with current challenges and future perspectives regarding foreign body host response to biomaterials and immunological reactions to allogeneic or xenogeneic cells, vascularization and angiogenesis, matching mechanical strength and anisotropy of native tissues, as well as other non-technical issues regarding the clinical translation of biomatrix/cell-based therapies. PMID:23828863

  11. Recombinant allergy vaccines based on allergen-derived B cell epitopes.

    PubMed

    Valenta, Rudolf; Campana, Raffaela; Niederberger, Verena

    2017-09-01

    Immunoglobulin E (IgE)-associated allergy is the most common immunologically-mediated hypersensitivity disease. It affects more than 25% of the population. In IgE-sensitized subjects, allergen encounter can causes a variety of symptoms ranging from hayfever (allergic rhinoconjunctivitis) to asthma, skin inflammation, food allergy and severe life-threatening anaphylactic shock. Allergen-specific immunotherapy (AIT) is based on vaccination with the disease-causing allergens. AIT is an extremely effective, causative and disease-modifying treatment. However, administration of natural allergens can cause severe side effects and the quality of natural allergen extracts limits its application. Research in the field of molecular allergen characterization has allowed deciphering the molecular structures of the disease-causing allergens and it has become possible to engineer novel molecular allergy vaccines which precisely target the mechanisms of the allergic immune response and even appear suitable for prophylactic allergy vaccination. Here we discuss recombinant allergy vaccines which are based on allergen-derived B cell epitopes regarding their molecular and immunological properties and review the results obtained in clinical studies with this new type of allergy vaccines. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. THE EFFICACY OF THREE MEDICINAL PLANTS: GARLIC, GINGER AND MIRAZID AND A CHEMICAL DRUG METRONIDAZOLE AGAINST CRYPTOSPORIDIUM PARVUM. I-IMMUNOLOGICAL RESPONSE.

    PubMed

    Abouel-Nour, Mohamed F; EL-Shewehy, Dina Magdy M; Hamada, Shadia F; Morsy, Tosson A

    2015-12-01

    Cryptosporidisis parvum is a zoonotic protozoan parasite infects intestinal epithelial cells causing a major health problem for man and animals. Experimentally the immunologic mediated elimination of C. parvum requires CD4+ T cells and IFN-gamma. But, the innate immune responses also have a significant protective role in both man and animals. the mucosal immune response to C. parvum in C57BL/6 neonatal and GKO mice shows a concomitant Thl and Th2 cytokine mRNA expression, with a crucial role for IFN-gamma in the resolution of the infection. NK cells and IFN-gamma have been shown to be important components in immunity in T and B cell-deficient mice, but IFN-gamma-dependent resistance is demonstrated in alymphocytic mice. Epithelial cells may play a vital role in immunity as once infected these cells have increased expression of inflammatory chemokines and cytokines and demonstrate anti-infection killing mechanisms. C. parvum immunological response was used to evaluate the efficacy of anti-cryptosporidisis agents of Garlic, Ginger, Mirazid and Metronidazole in experimentally infected mice.

  13. Personal historical chronicle of six decades of basic and applied research in virology, immunology, and vaccinology.

    PubMed

    Hilleman, M R

    1999-08-01

    The sciences of vaccinology and of immunology were created just two centuries ago by Jenner's studies of prevention of smallpox by inoculation with cowpox virus. This rudimentary beginning was expanded greatly by the giants of late 19th and early 20th centuries biomedical sciences. The period from 1930 to 1950 was a transitional era with the introduction of chick embryos and minced tissues for propagating viruses and rickettsiae in vitro for vaccines. Modern era vaccinology began about 1950 as a continuum of notable advances made during the 1940s and World War II. Present vaccinology is based largely on breakthroughs in cell culture, bacterial polysaccharide chemistry, molecular biology, and immunology. By invitation, the author, who is a microbe hunter in fact, was asked to chronicle his six decades of pioneering achievements in basic and applied virology, bacteriology, immunology, molecular biology, epidemiology, and cancer, with special reference to the pioneering creation of most of the present day vaccines. Knowledge of the past may guide the present and future. This chronicle will have achieved its legacy if it helps others to understand the why and how of the past that may help to create the substance of the future.

  14. [Immunological aspects of ulcerative colitis. Treatment with disodium cromoglycate].

    PubMed

    Cavallini, L; Marchi, S; Spisni, L; Li Calzi, M

    1980-01-01

    The various components of the normal intestinal immunological system have been examined, i.e. immunocompetent cells (isolated and in clusters) and humoral factors. The modifications observed in this system during ulcerous colitis are then analysed, mention being made of the various pathogenetic interpretations that have been put forward to explain this condition. The pharmacology and action mechanism of DSCG are then examined. This drug has been in use for some years in the treatment of a number of extraintestinal and immuno-allergic based conditions and, recently, of some enteropathis attributed to food allergies. The reported results of using DSCG in ulcerous colitis are then reviewed. They would appear to be fairly encouraging.

  15. Advanced Method for Isolation of Mouse Hepatocytes, Liver Sinusoidal Endothelial Cells, and Kupffer Cells.

    PubMed

    Liu, Jia; Huang, Xuan; Werner, Melanie; Broering, Ruth; Yang, Dongliang; Lu, Mengji

    2017-01-01

    Separation of pure cell populations from the liver is a prerequisite to study the role of hepatic parenchymal and non-parenchymal cells in liver physiology, pathophysiology, and immunology. Traditional methods for hepatic cell separation usually purify only single cell types from liver specimens. Here, we describe an efficient method that can simultaneously purify populations of hepatocytes (HCs), liver sinusoidal endothelial cells (LSECs), and Kupffer cells (KCs) from a single mouse liver specimen. A liberase-based perfusion technique in combination with a low-speed centrifugation and magnetic-activated cell sorting (MACS) led to the isolation and purification of HCs, KCs, and LSECs with high yields and purity.

  16. Computational modeling of heterogeneity and function of CD4+ T cells

    PubMed Central

    Carbo, Adria; Hontecillas, Raquel; Andrew, Tricity; Eden, Kristin; Mei, Yongguo; Hoops, Stefan; Bassaganya-Riera, Josep

    2014-01-01

    The immune system is composed of many different cell types and hundreds of intersecting molecular pathways and signals. This large biological complexity requires coordination between distinct pro-inflammatory and regulatory cell subsets to respond to infection while maintaining tissue homeostasis. CD4+ T cells play a central role in orchestrating immune responses and in maintaining a balance between pro- and anti- inflammatory responses. This tight balance between regulatory and effector reactions depends on the ability of CD4+ T cells to modulate distinct pathways within large molecular networks, since dysregulated CD4+ T cell responses may result in chronic inflammatory and autoimmune diseases. The CD4+ T cell differentiation process comprises an intricate interplay between cytokines, their receptors, adaptor molecules, signaling cascades and transcription factors that help delineate cell fate and function. Computational modeling can help to describe, simulate, analyze, and predict some of the behaviors in this complicated differentiation network. This review provides a comprehensive overview of existing computational immunology methods as well as novel strategies used to model immune responses with a particular focus on CD4+ T cell differentiation. PMID:25364738

  17. Advances in asthma, allergy and immunology series 2004: basic and clinical immunology.

    PubMed

    Chinen, Javier; Shearer, William T

    2004-08-01

    This review highlights some of the most significant advances in basic and clinical immunology that were published from August 2002 to December 2003, focusing on manuscripts that appeared in the Journal. Articles selected were those considered most relevant to Journal readers. With regard to basic immunology, this report includes articles describing FcepsilonRI expression in mucosal Langerhans cells and type II dendritic cells, mechanisms of TH1 and TH2 regulation, the role of Foxp3 in the development of CD4+CD25+ regulatory T cells, and the increasing importance of Toll receptors in immunity. Articles related to clinical immunology that were selected include the first report of lymphocyte subsets values from a large cohort of normal children; the description of new genetic defects in primary immunodeficiencies; a description of the complications of gene therapy for X-linked severe combined immunodeficiency; a report of 79 patients with hyper-IgM syndrome; a report of the mechanism of action and complications of intravenous immunoglobulin; a report of new approaches for immunotherapy; and an article on advances in HIV infection and management, including a report of defensins, small molecules with anti-HIV properties. Also summarized is an article that studied the immune system during a prolonged stay in the Antarctic, a model for human studies on the effect of environmental conditions similar to space expeditions.

  18. Nutritional and immunological correlates of memory and neurocognitive development among HIV infected children living in Kayunga, Uganda

    PubMed Central

    Horacio, Ruiseñor-Escudero; Itziar, Familiar-Lopez; Alla, Sikorskii; Nikita, Jambulingam; Noelline, Nakasujja; Robert, Opoka; Judith, Bass; Michael, Boivin

    2015-01-01

    Objective To identify the nutritional and immunological correlates of memory and neurocognitive development as measured by the Mullen Scales of Early Learning (MSEL) and by the Color Object Association Test (COAT) among children in Uganda. Design This analysis uses baseline data collected between 2008 and 2010 from 119 HIV-infected children ages 1–6 years participating in a randomized controlled trial of an interventional parenting program in Kayunga, Uganda. Methods Peripheral blood draws were performed to determine immunological biomarkers. Unadjusted and adjusted linear regression models were used to relate MSEL and COAT scores to sociodemographic characteristics, weight-for-age Z-scores (WAZ), antiretroviral therapy (ART) status and immunological biomarkers. Results 111 children were included in the final analysis. Lower levels of CD4+ CD38+ T-cells (p=0.04) were associated to higher Immediate and Total Recall scores (p=0.04). Higher levels of CD8+ HLA-DR+ T-cells were associated with higher Total Recall score (p=0.04) of the COAT. Higher CD4+ CD38+ HLA-DR+ T-cells levels were associated with higher Gross Motor scores of the MSEL (p=0.02). WAZ was positively correlated to Visual Reception, Fine Motor, Expressive Language and composite score of the MSEL. Conclusions Overall, WAZ was a stronger predictor of neurocognitive outcomes assessed by the MSEL. CD4+ CD38+ T-cells were more specifically associated with memory-related outcomes. Future research should include immunological markers and standardized neurocognitive tests to further understand this relationship. PMID:26605506

  19. [Pharmacotherapy of solid tumors. New hopes and frustrations].

    PubMed

    Grünwald, V; Rickmann, M

    2014-10-01

    Recent years have seen dramatic changes in the biological understanding and treatment of solid tumors. Based on the tumor biology, targeting agents have been developed which directly affect the underlying genetic or immunological changes found in specific tumor entities. Significant increases in survival have delivered the functional proof of the concept of targeted and immunological tumor therapy. The management and adherence of the patient as well as optimized cooperation with clinicians are decisive for the results of therapy and disease control.Several solid tumors are currently under investigation in clinical studies evaluating the (sequential) therapy with targeting and immunologically active agents, e.g. tyrosine kinase and mTOR inhibitors, targeting antibodies, such as bevacizumab, specific antagonists, such as enzalutamide and immunological checkpoint inhibitors via PD(L)1 and/or CTLA 4 antibodies.Currently approved agents have dramatically changed the landscape of treatment options especially for prostate cancer. Such agents include hormone therapy with enzalutamide and abiraterone, radiotherapy with cabazitaxel and xofigo (radium 223), metastatic breast cancer (eribulin and everolimus), renal cell carcinoma (sunitinib, sorafenib, axitinib, everolimus and temsirolimus), non-small cell lung cancer (crizotinib and afatinib), colorectal cancer and gastrointestinal stromal tumor (regorafenib) and melanoma (ipilimumab and vemurafenib). The treatment of rarer tumors, such as pancreatic and hepatocellular cancer and soft tissue sarcoma has entered the stage of targeted therapy with the approval of nanoparticle albumin-bound (nab)-paclitaxel, sorafenib, and eribulin/pazopanib. Current clinical trials are focusing on the best time point and sequence of therapy and also improvement in the management of these promising agents.

  20. Travel vaccination recommendations and endemic infection risks in solid organ transplantation recipients.

    PubMed

    Trubiano, Jason A; Johnson, Douglas; Sohail, Asma; Torresi, Joseph

    2016-06-01

    Solid organ transplant (SOT) recipients are often heavily immunosuppressed and consequently at risk of serious illness from vaccine preventable viral and bacterial infections or with endemic fungal and parasitic infections. We review the literature to provide guidance regarding the timing and appropriateness of vaccination and pathogen avoidance related to the immunological status of SOT recipients. A PUBMED search ([Vaccination OR vaccine] AND/OR ["specific vaccine"] AND/OR [immunology OR immune response OR cytokine OR T lymphocyte] AND transplant was performed. A review of the literature was performed in order to develop recommendations on vaccination for SOT recipients travelling to high-risk destinations. Whilst immunological failure of vaccination in SOT is primarily the result of impaired B-cell responses, the role of T-cells in vaccine failure and success remains unknown. Vaccination should be initiated at least 4 weeks prior to SOT or more than 6 months post-SOT. Avoidance of live vaccination is generally recommended, although some live vaccines may be considered in the specific situations (e.g. yellow fever). The practicing physician requires a detailed understanding of region-specific endemic pathogen risks. We provide a vaccination and endemic pathogen guide for physicians and travel clinics involved in the care of SOT recipients. In addition, recommendations based on timing of anticipated immunological recovery and available evidence regarding vaccine immunogenicity in SOT recipients are provided to help guide pre-travel consultations. © International Society of Travel Medicine, 2016. All rights reserved. Published by Oxford University Press. For permissions, please e-mail: journals.permissions@oup.com.

  1. Myeloid-Derived Suppressor Cells Prevent Type 1 Diabetes in Murine Models

    DTIC Science & Technology

    2010-11-01

    participating in anti-CD28- mediated tolerance in allo-kidney transplantation ( 15), and ame- lioration of symptoms in the inflammatory bowel disease ...Zhou,* George X. Wang,* Celia M. Divino/ Sofia Casares,§ Shu-Hsia Chen,*’, Wen-Chin Yang/’* and Ping-Ying Pan* Effective immunotherapy for type 1...cell-based tolerogenic therapy in the control of TID and other autoimmune diseases . The Journal of Immunology, 2010, 185: 5828-5834. T ype I

  2. Cell-free immunology: construction and in vitro expression of a PCR-based library encoding a single-chain antibody repertoire.

    PubMed

    Makeyev, E V; Kolb, V A; Spirin, A S

    1999-02-12

    A novel cloning-independent strategy has been developed to generate a combinatorial library of PCR fragments encoding a murine single-chain antibody repertoire and express it directly in a cell-free system. The new approach provides an effective alternative to the techniques involving in vivo procedures of preparation and handling large libraries of antibodies. The possible use of the described strategy in the ribosome display is discussed.

  3. A novel pathogenesis of inflammatory bowel disease from the perspective of glyco-immunology.

    PubMed

    Shinzaki, Shinichiro; Iijima, Hideki; Fujii, Hironobu; Kamada, Yoshihiro; Naka, Tetsuji; Takehara, Tetsuo; Miyoshi, Eiji

    2017-05-01

    Oligosaccharide modifications play an essential role in various inflammatory diseases and cancers, but their pathophysiologic roles, especially in inflammation, are not clear. Inflammatory bowel disease (IBD) is an intractable chronic inflammatory disorder with an unknown aetiology, and the number of patients with IBD is increasing throughout the world. Certain types of immunosuppressant drugs, such as corticosteroids, are effective for IBD, suggesting that immune function is closely associated with the pathophysiology of IBD. Recent progress in the analysis of oligosaccharides revealed a role for oligosaccharides in intestinal inflammation based on both experimental models and human samples from IBD patients. Moreover, changes in the oligosaccharide structures on glycoproteins in the sera and tissue samples may serve as biomarkers of IBD. Here, we present current studies of IBD with regard to the immunologic aspects of glycobiology, suggesting a novel concept for IBD pathogenesis and the function of oligosaccharides on immune cells, termed "glyco-immunology". © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  4. Intestinal lymphangiectasia: an undescribed cause of malabsorption and incomplete immunological recovery in HIV-infected patients.

    PubMed

    Marco-Lattur, Maria D; Payeras, Antoni; Campins, Antoni A; Pons, Jaume; Cifuentes, Carmen; Riera, Melcior

    2011-02-01

    Although paradoxical virological and immunological response after HAART has been well studied, intestinal lymphangiectasia (IL) in HIV-1 infected patients has not previously described. To describe HIV patients who developed IL. Clinical Case series. 4 patients with HIV and IL diagnosis based on clinical, endoscopic and pathological findings. All four cases had prior mycobacterial infections with abdominal lymph node involvement and a very low CD4 cell count nadir. They developed intestinal lymphangiectasia despite appropriate virological suppression with HAART and repeatedly negative mycobacterial cultures. Two patients were clinically symptomatic with oedemas, ascites, diarrhoea, asthenia, weight loss; but the other two were diagnosed with malabsorption as a result of laboratory findings, with hypoproteinemia and hypoalbuminemia. Three of them were diagnosed by video capsule endoscopy. IL should be considered in HIV-1 infected patients who present with clinical or biochemical malabsorption parameters when there is no immunological recovery while on HAART. Copyright © 2010 Elsevier España, S.L. All rights reserved.

  5. An MSI Tumor Specific Frameshift Mutation in a Coding Microsatellite of MSH3 Encodes for HLA-A0201-Restricted CD8+ Cytotoxic T Cell Epitopes

    PubMed Central

    Garbe, Yvette; Maletzki, Claudia; Linnebacher, Michael

    2011-01-01

    Background Microsatellite instability (MSI) resulting from inactivation of the DNA mismatch repair system (MMR) characterizes a highly immunological subtype of colorectal carcinomas. Those tumors express multiple frameshift-mutated proteins which present a unique pool of tumor-specific antigens. The DNA MMR protein MSH3 is frequently mutated in MSI+ colorectal tumors, thus making it an attractive candidate for T cell-based immunotherapies. Methodology/Principal Findings FSP-specific CD8+ T cells were generated from a healthy donor using reverse immunology. Those T cells specifically recognized T2 cells sensitized with the respective peptides. Specific recognition and killing of MSI+ colorectal carcinoma cells harbouring the mutated reading frame was observed. The results obtained with T cell bulk cultures could be reproduced with T cell clones obtained from the same cultures. Blocking experiments (using antibodies and cold target inhibition) confirmed peptide as well as HLA-A0201-specificity. Conclusions We identified two novel HLA-A0201-restricted cytotoxic T cell epitopes derived from a (-1) frameshift mutation of a coding A(8) tract within the MSH3 gene. These were 386-FLLALWECSL (FSP18) and 387-LLALWECSL (FSP19) as well as 403-IVSRTLLLV (FSP23) and 402-LIVSRTLLLV (FSP31), respectively. These results suggest that MSH3(-1) represents another promising MSI+-induced target antigen. By identifying two distinct epitopes within MSH3(-1), the sustained immunogenicity of the frameshift mutated sequence was confirmed. Our data therefore encourage further exploitation of MSH3 as a piece for peptide-based vaccines either for therapeutic or –even more important– preventive purposes. PMID:22110587

  6. Leveraging natural killer cells for cancer immunotherapy.

    PubMed

    Grossenbacher, Steven K; Aguilar, Ethan G; Murphy, William J

    2017-05-01

    Natural killer (NK) cells are potent antitumor effector cells of the innate immune system. Based on their ability to eradicate tumors in vitro and in animal models, significant enthusiasm surrounds the prospect of leveraging human NK cells as vehicles for cancer immunotherapy. While interest in manipulating the effector functions of NK cells has existed for over 30 years, there is renewed optimism for this approach today. Although T cells receive much of the clinical and preclinical attention when it comes to cancer immunotherapy, new strategies are utilizing adoptive NK-cell immunotherapy and monoclonal antibodies and engineered molecules which have been developed to specifically activate NK cells against tumors. Despite the numerous challenges associated with the preclinical and clinical development of NK cell-based therapies for cancer, NK cells possess many unique immunological properties and hold the potential to provide an effective means for cancer immunotherapy.

  7. New strategies for improving stem cell therapy in ischemic heart disease.

    PubMed

    Huang, Peisen; Tian, Xiaqiu; Li, Qing; Yang, Yuejin

    2016-11-01

    Stem cell therapy is a promising approach to the treatment of ischemic heart disease via replenishing cell loss after myocardial infarction. Both preclinical studies and clinical trials have indicated that cardiac function improved consistently, but very modestly after cell-based therapy. This mainly attributed to low cell survival rate, engraftment and functional integration, which became the major challenges to regenerative medicine. In recent years, several new cell types have been developed to regenerate cardiomyocytes and novel delivery approaches helped to increase local cell retention. New strategies, such as cell pretreatment, gene-based therapy, tissue engineering, extracellular vesicles application and immunologic regulation, have surged and brought about improved cell survival and functional integration leading to better therapeutic effects after cell transplantation. In this review, we summarize these new strategies targeting at challenges of cardiac regenerative medicine and discuss recent evidences that may hint their effectiveness in the future clinical settings.

  8. Parameter estimation and sensitivity analysis in an agent-based model of Leishmania major infection

    PubMed Central

    Jones, Douglas E.; Dorman, Karin S.

    2009-01-01

    Computer models of disease take a systems biology approach toward understanding host-pathogen interactions. In particular, data driven computer model calibration is the basis for inference of immunological and pathogen parameters, assessment of model validity, and comparison between alternative models of immune or pathogen behavior. In this paper we describe the calibration and analysis of an agent-based model of Leishmania major infection. A model of macrophage loss following uptake of necrotic tissue is proposed to explain macrophage depletion following peak infection. Using Gaussian processes to approximate the computer code, we perform a sensitivity analysis to identify important parameters and to characterize their influence on the simulated infection. The analysis indicates that increasing growth rate can favor or suppress pathogen loads, depending on the infection stage and the pathogen’s ability to avoid detection. Subsequent calibration of the model against previously published biological observations suggests that L. major has a relatively slow growth rate and can replicate for an extended period of time before damaging the host cell. PMID:19837088

  9. Immunology-directed methods for distributed robotics: a novel immunity-based architecture for robust control and coordination

    NASA Astrophysics Data System (ADS)

    Singh, Surya P. N.; Thayer, Scott M.

    2002-02-01

    This paper presents a novel algorithmic architecture for the coordination and control of large scale distributed robot teams derived from the constructs found within the human immune system. Using this as a guide, the Immunology-derived Distributed Autonomous Robotics Architecture (IDARA) distributes tasks so that broad, all-purpose actions are refined and followed by specific and mediated responses based on each unit's utility and capability to timely address the system's perceived need(s). This method improves on initial developments in this area by including often overlooked interactions of the innate immune system resulting in a stronger first-order, general response mechanism. This allows for rapid reactions in dynamic environments, especially those lacking significant a priori information. As characterized via computer simulation of a of a self-healing mobile minefield having up to 7,500 mines and 2,750 robots, IDARA provides an efficient, communications light, and scalable architecture that yields significant operation and performance improvements for large-scale multi-robot coordination and control.

  10. Hematology and immunology studies - The second manned Skylab mission

    NASA Technical Reports Server (NTRS)

    Kimzey, S. L.; Johnson, P. C.; Ritzman, S. E.; Mengel, C. E.

    1976-01-01

    The hematologic and immunologic functions of the Skylab 3 astronauts were monitored during the preflight, inflight, and postflight phases of the mission. Plasma protein profiles showed high consistency in all phases. A transient suppression of lymphocyte responsiveness was observed postflight. A reduction in the circulating blood volume due to drops in both the plasma volume and red cell mass was found. The loss of red cell mass is most likely a suppressed erythrypoiesis. The functional integrity of the circulating red cells did not appear to be compromised in the course of flight.

  11. Hematology and immunology studies

    NASA Technical Reports Server (NTRS)

    Kimzey, S. L.

    1977-01-01

    A coordinated series of experiments were conducted to evaluate immunologic and hemotologic system responses of Skylab crewmen to prolonged space flights. A reduced PHA responsiveness was observed on recovery, together with a reduced number of T-cells, with both values returning to normal 3 to 5 days postflight. Subnormal red cell count, hemoglobin concentration, and hematocrit values also returned gradually to preflight limits. Most pronounced changes were found in the shape of red blood cells during extended space missions with a rapid reversal of these changes upon reentry into a normal gravitational environment.

  12. Compartmentalized Culture of Perivascular Stroma and Endothelial Cells in a Microfluidic Model of the Human Endometrium.

    PubMed

    Gnecco, Juan S; Pensabene, Virginia; Li, David J; Ding, Tianbing; Hui, Elliot E; Bruner-Tran, Kaylon L; Osteen, Kevin G

    2017-07-01

    The endometrium is the inner lining of the uterus. Following specific cyclic hormonal stimulation, endometrial stromal fibroblasts (stroma) and vascular endothelial cells exhibit morphological and biochemical changes to support embryo implantation and regulate vascular function, respectively. Herein, we integrated a resin-based porous membrane in a dual chamber microfluidic device in polydimethylsiloxane that allows long term in vitro co-culture of human endometrial stromal and endothelial cells. This transparent, 2-μm porous membrane separates the two chambers, allows for the diffusion of small molecules and enables high resolution bright field and fluorescent imaging. Within our primary human co-culture model of stromal and endothelial cells, we simulated the temporal hormone changes occurring during an idealized 28-day menstrual cycle. We observed the successful differentiation of stroma into functional decidual cells, determined by morphology as well as biochemically as measured by increased production of prolactin. By controlling the microfluidic properties of the device, we additionally found that shear stress forces promoted cytoskeleton alignment and tight junction formation in the endothelial layer. Finally, we demonstrated that the endometrial perivascular stroma model was sustainable for up to 4 weeks, remained sensitive to steroids and is suitable for quantitative biochemical analysis. Future utilization of this device will allow the direct evaluation of paracrine and endocrine crosstalk between these two cell types as well as studies of immunological events associated with normal vs. disease-related endometrial microenvironments.

  13. CD4 T-Cell Memory Generation and Maintenance

    PubMed Central

    Gasper, David J.; Tejera, Melba Marie; Suresh, M.

    2014-01-01

    Immunologic memory is the adaptive immune system's powerful ability to remember a previous antigen encounter and react with accelerated vigor upon antigen re-exposure. It provides durable protection against reinfection with pathogens and is the foundation for vaccine-induced immunity. Unlike the relatively restricted immunologic purview of memory B cells and CD8 T cells, the field of CD4 T-cell memory must account for multiple distinct lineages with diverse effector functions, the issue of lineage commitment and plasticity, and the variable distribution of memory cells within each lineage. Here, we discuss the evidence for lineage-specific CD4 T-cell memory and summarize the known factors contributing to memory-cell generation, plasticity, and long-term maintenance. PMID:24940912

  14. Effect of age on immunological response in the first year of antiretroviral therapy in HIV-1-infected adults in West Africa.

    PubMed

    Balestre, Eric; Eholié, Serge P; Lokossue, Amani; Sow, Papa Salif; Charurat, Man; Minga, Albert; Drabo, Joseph; Dabis, François; Ekouevi, Didier K; Thiébaut, Rodolphe

    2012-05-15

    To assess the effect of aging on the immunological response to antiretroviral therapy (ART) in the West African context. The change in CD4 T-cell count was analysed according to age at the time of ART initiation among HIV-infected patients enrolled in the International epidemiological Database to Evaluate AIDS (IeDEA) Collaboration in the West African region. CD4 gain over 12 months of ART was estimated using linear mixed models. Models were adjusted for baseline CD4 cell count, sex, baseline clinical stage, calendar period and ART regimen. The total number of patients included was 24,107, contributing for 50,893 measures of CD4 cell count in the first year of ART. The baseline median CD4 cell count was 144 cells/μl [interquartile range (IQR) 61-235]; median CD4 cell count reached 310 cells/μl (IQR 204-443) after 1 year of ART. The median age at treatment initiation was 36.3 years (10th-90th percentiles = 26.5-50.1). In adjusted analysis, the mean CD4 gain was significantly higher in younger patients (P < 0.0001). At 12 months, patients below 30 years recovered an additional 22 cells/μl on average [95% confidence interval (CI) 2-43] compared to patients at least 50 years. Among HIV-infected adults in West Africa, the immunological response after 12 months of ART was significantly poorer in elderly patients. As the population of treated patients is likely to get older, the impact of this age effect on immunological response to ART may increase over time.

  15. Investigating the effectiveness of an educational card game for learning how human immunology is regulated.

    PubMed

    Su, TzuFen; Cheng, Meng-Tzu; Lin, Shu-Hua

    2014-01-01

    This study was conducted in an attempt to investigate the effectiveness of an educational card game we developed for learning human immunology. Two semesters of evaluation were included to examine the impact of the game on students' understanding and perceptions of the game-based instruction. Ninety-nine senior high school students (11th graders) were recruited for the first evaluation, and the second-semester group consisted of 72 students (also 11th graders). The results obtained indicate that students did learn from the educational card game. Moreover, students who learned from playing the game significantly outperformed their counterparts in terms of their understanding of the processes and connections among different lines of immunological defense (first semester: t = 2.92, p < 0.01; second semester: t = 3.45, p < 0.01) according to the qualitative analysis of an open-ended question. They generally had positive perceptions toward the game-based instruction and its learning efficiency, and they felt the game-based instruction was much more interesting than traditional didactic lectures (first semester: t = 2.79, p < 0.01; second semester: t = 2.41, p < 0.05). This finding is evidence that the educational card game has potential to facilitate students' learning of how the immune system works. The implications and suggestions for future work are further discussed. © 2014 T. Su et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. Advances in Mechanisms of Asthma, Allergy, and Immunology in 2008

    PubMed Central

    Boyce, Joshua A.; Broide, David; Matsumoto, Kenji; Bochner, Bruce S.

    2009-01-01

    This review summarizes selected articles appearing in 2008 in the Journal of Allergy and Clinical Immunology (JACI). Papers chosen include those improving our understanding of mechanisms of allergic diseases by focusing on human basophil, mast cell and eosinophil biology; IgE and its high affinity receptor on various cells; novel properties of omalizumab; airways remodeling; and genetics. Papers from other journals have been included to supplement the topics being presented. PMID:19281904

  17. What vaccination studies tell us about immunological memory within the innate immune system of cultured shrimp and crayfish.

    PubMed

    Chang, Yu-Hsuan; Kumar, Ramya; Ng, Tze Hann; Wang, Han-Ching

    2018-03-01

    The possibility of immunological memory in invertebrates is a topic that has recently attracted a lot of attention. Today, even vertebrates are known to exhibit innate immune responses that show memory-like properties, and since these responses are triggered by cells that are involved in the innate immune system, it seems that immune specificity and immune memory do not necessarily require the presence of B cells and T cells after all. This kind of immune response has been called "immune priming" or "trained immunity". In this report, we review recent observations and our current understanding of immunological memory within the innate immune system in cultured shrimp and crayfish after vaccination with live vaccine, killed vaccine and subunit vaccines. We also discuss the possible mechanisms involved in this immune response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Depletion of CD52-positive cells inhibits the development of central nervous system autoimmune disease, but deletes an immune-tolerance promoting CD8 T-cell population. Implications for secondary autoimmunity of alemtuzumab in multiple sclerosis.

    PubMed

    von Kutzleben, Stephanie; Pryce, Gareth; Giovannoni, Gavin; Baker, David

    2017-04-01

    The objective was to determine whether CD52 lymphocyte depletion can act to promote immunological tolerance induction by way of intravenous antigen administration such that it could be used to either improve efficiency of multiple sclerosis (MS) inhibition or inhibit secondary autoimmunities that may occur following alemtuzumab use in MS. Relapsing experimental autoimmune encephalomyelitis was induced in ABH mice and immune cell depletion was therapeutically applied using mouse CD52 or CD4 (in conjunction with CD8 or CD20) depleting monoclonal antibodies. Immunological unresponsiveness was then subsequently induced using intravenous central nervous system antigens and responses were assessed clinically. A dose-response of CD4 monoclonal antibody depletion indicated that the 60-70% functional CD4 T-cell depletion achieved in perceived failed trials in MS was perhaps too low to even stop disease in animals. However, more marked (~75-90%) physical depletion of CD4 T cells by CD4 and CD52 depleting antibodies inhibited relapsing disease. Surprisingly, in contrast to CD4 depletion, CD52 depletion blocked robust immunological unresponsiveness through a mechanism involving CD8 T cells. Although efficacy was related to the level of CD4 T-cell depletion, the observations that CD52 depletion of CD19 B cells was less marked in lymphoid organs than in the blood provides a rationale for the rapid B-cell hyper-repopulation that occurs following alemtuzumab administration in MS. That B cells repopulate in the relative absence of T-cell regulatory mechanisms that promote immune tolerance may account for the secondary B-cell autoimmunities, which occur following alemtuzumab treatment of MS. © 2016 The Authors. Immunology Published by John Wiley & Sons Ltd.

  19. [Phase II clinical trial of autologous dendritic cell vaccine with immunologic adjuvant in cutaneous melanoma patients].

    PubMed

    Baldueva, I A; Novik, A V; Moiseenko, V M; Nekhaeva, T L; Danilova, A B; Danilov, A O; Protsenko, S A; Petrova, T Iu; Uleĭskaia, G I; Shchekina, L A; Semenova, A I; Mikhaĭlichenko, T D; Teletaeva, G M; Zhabina, A S; Volkov, N V; Komarov, Iu I

    2012-01-01

    This paper describes the clinical results and immunologic changes in cutaneous melanoma patients receiving active specific immunotherapy with autologous dendritic cell vaccine (DCV) in combination with cyclophosphamide used as immunologic adjuvant. Twenty eight patients with morphologically verified stage III-IV cutaneous melanoma receiving therapy in N. N. Petrov Research Institute of Oncology between 2008 and 2011 were included in the study. All patients signed an informed consent form. Nineteen patients (67,9%) received DCV in therapeutic setting, 9 (32,1%) received it in adjuvant setting. DCV therapy was well tolerated. No serious adverse events were registered. Frequent adverse events included Grade 1-2 unspecific symptoms (fever, fatigue, flu-like symptoms) observed in 22% patients after 3,5% of vaccinations. In therapeutic settings the use DCV lead to clinical effect (PR+SD) in 36,6% of patients. PR was observed in 5% of (95% CI 0-15%) patients, SD in 31,6% (95% CI 13-56%). Duration of the objective responses was 168-965+days. Addition of immunologic adjuvant (cyclophosphamide 300 mg/m2 IV 2 hours) 3 days before vaccination increased its efficacy. In this patients group (n=12) the therapy lead to clinical benefit in 42% (95% CI 17-69%) of cases, median time to progression was 91 (95% CI 55-126) days. This regimen was selected for adjuvant therapy. In the adjuvant therapy group (n=9) the median time to progression was 112 (95% CI 58-166) days. Immunologic monitoring showed correlation ofT- and B-cell immune response with DCV clinical efficacy (p<0,05), no correlation with delayed hypersensivity reaction was observed (p>0,1). DCV is well tolerated and shows immunological and clinical response in stage III-IV skin melanoma patients.

  20. Contributions of basic immunology to human health.

    PubMed

    Albright, J F; Oppenheim, J J

    1991-03-01

    The sixth symposium in the series "Contemporary Topics in Immunology" was held in New Orleans on June 3, 1990, at the joint meeting of The American Association of Immunologists and the American Society of Biochemistry and Molecular Biology. The symposium was sponsored jointly by The American Association of Immunologists, the Clinical Immunology Society, and and the National Institute of Allergy and Infectious Diseases, and was titled "The Contributions of Basic Immunology to Human Health." Five speakers, whose research has clear relevance to the treatment and prevention of major human diseases, discussed topics of great current interest: hematopoietic stem cells, cell adhesion and lymphocyte homing; the complexities of autoimmunity and approaches to diverting or depressing autoaggressive immunity; structure and functions of the interferons and the construction of designer and chimeric interferons; the varied functions of transforming growth factors and molecular events that regulate the synthesis of TGF beta; and the roles of cytokines in the expression of human immunodeficiency virus and the prospects for controlling HIV infections by regulating selected cytokines. This symposium will be remembered for the exceptional clarity with which each speaker illustrated how fundamental knowledge in immunology fuels advances in the treatment and prevention of those human disorders that involve the immune system.

  1. Adsorption orientations and immunological recognition of antibodies on graphene

    NASA Astrophysics Data System (ADS)

    Vilhena, J. G.; Dumitru, A. C.; Herruzo, Elena T.; Mendieta-Moreno, Jesús I.; Garcia, Ricardo; Serena, P. A.; Pérez, Rubén

    2016-07-01

    Large-scale molecular dynamics (MD) simulations and atomic force microscopy (AFM) in liquid are combined to characterize the adsorption of Immunoglobulin G (IgG) antibodies over a hydrophobic surface modeled with a three-layer graphene slab. We consider explicitly the water solvent, simulating systems with massive sizes (up to 770 000 atoms), for four different adsorption orientations. Protocols based on steered MD to speed up the protein diffusion stage and to enhance the dehydration process are combined with long simulation times (>150 ns) in order to make sure that the final adsorption states correspond to actual stable configurations. Our MD results and the AFM images demonstrate that the IgG antibodies are strongly adsorbed, do not unfold, and retain their secondary and tertiary structures upon deposition. Statistical analysis of the AFM images shows that many of the antibodies adopt vertical orientations, even at very small coverages, which expose at least one Fab binding site for recognition events. Single molecule force spectroscopy experiments demonstrate the immunological response of the deposited antibodies by recognizing its specific antigens. The above properties together with the strong anchoring and preservation of the secondary structure, make graphene an excellent candidate for the development of immunosensors.Large-scale molecular dynamics (MD) simulations and atomic force microscopy (AFM) in liquid are combined to characterize the adsorption of Immunoglobulin G (IgG) antibodies over a hydrophobic surface modeled with a three-layer graphene slab. We consider explicitly the water solvent, simulating systems with massive sizes (up to 770 000 atoms), for four different adsorption orientations. Protocols based on steered MD to speed up the protein diffusion stage and to enhance the dehydration process are combined with long simulation times (>150 ns) in order to make sure that the final adsorption states correspond to actual stable configurations. Our MD results and the AFM images demonstrate that the IgG antibodies are strongly adsorbed, do not unfold, and retain their secondary and tertiary structures upon deposition. Statistical analysis of the AFM images shows that many of the antibodies adopt vertical orientations, even at very small coverages, which expose at least one Fab binding site for recognition events. Single molecule force spectroscopy experiments demonstrate the immunological response of the deposited antibodies by recognizing its specific antigens. The above properties together with the strong anchoring and preservation of the secondary structure, make graphene an excellent candidate for the development of immunosensors. Electronic supplementary information (ESI) available: Further details concerning the experimental methods, the MD simulation protocols, and the characterization and stability of the different adsorption configurations. See DOI: 10.1039/C5NR07612A

  2. Immune Interventions to Preserve Beta Cell Function in Type 1 Diabetes

    PubMed Central

    Ehlers, Mario R.

    2015-01-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease that leads to destruction of pancreatic beta cells, lifelong dependence on insulin, and increased morbidity and mortality from diabetes-related complications. Preservation of residual beta cells at diagnosis is a major goal because higher levels of endogenous insulin secretion are associated with better short- and long-term outcomes. Over the past 3 decades, a variety of immune interventions have been evaluated in the setting of new-onset T1D, including nonspecific immunosuppression, pathway-specific immune modulation, antigen-specific therapies, and cellular therapies. To date, no single intervention has produced durable remission off-therapy in the majority of treated patients, but the field has gained valuable insights into disease mechanisms and potential immunologic correlates of success. In particular, T cell-directed therapies, including therapies that lead to partial depletion or modulation of effector T (Teff) cells and preservation or augmentation of regulatory T (Treg) cells, have shown the most success and will likely form the backbone of future approaches. The next phase will see evaluation of rational combinations, comprising one or more of the following: a Teff-depleting or modulating drug, a cytokine-based tolerogenic (Treg-promoting) agent, and an antigen-specific component. The long-term goal is to reestablish immunologic tolerance to beta cells, thereby preserving residual beta cells early after diagnosis or enabling restoration of beta cell mass from autologous stem cells or induced neogenesis in patients with established T1D. PMID:26225763

  3. Cutaneous immunology: basics and new concepts.

    PubMed

    Yazdi, Amir S; Röcken, Martin; Ghoreschi, Kamran

    2016-01-01

    As one of the largest organs, the skin forms a mechanical and immunological barrier to the environment. The skin immune system harbors cells of the innate immune system and cells of the adaptive immune system. Signals of the innate immune system typically initiate skin immune responses, while cells and cytokines of the adaptive immune system perpetuate the inflammation. Skin immune responses ensure effective host defense against pathogens but can also cause inflammatory skin diseases. An extensive crosstalk between the different cell types of the immune system, tissue cells, and pathogens is responsible for the complexity of skin immune reactions. Here we summarize the major cellular and molecular components of the innate and adaptive skin immune system.

  4. Association of Immunological Cell Profiles with Specific Clinical Phenotypes of Scleroderma Disease

    PubMed Central

    Calzada, David; Mayayo, Teodoro; González-Rodríguez, María Luisa; Rabasco, Antonio María; Lahoz, Carlos

    2014-01-01

    This study aimed to search the correlation among immunological profiles and clinical phenotypes of scleroderma in well-characterized groups of scleroderma patients, comparing forty-nine scleroderma patients stratified according to specific clinical phenotypes with forty-nine healthy controls. Five immunological cell subpopulations (B, CD4+ and CD8+ T-cells, NK, and monocytes) and their respective stages of apoptosis and activation were analyzed by flow cytometry, in samples of peripheral blood mononuclear cells (PBMCs). Analyses of results were stratified according to disease stage, time since the diagnosis, and visceral damage (pulmonary fibrosis, pulmonary hypertension, and cardiac affliction) and by time of treatment with corticosteroids. An increase in the percentages of monocytes and a decrease in the B cells were mainly related to the disease progression. A general apoptosis decrease was found in all phenotypes studied, except in localized scleroderma. An increase of B and NK cells activation was found in patients diagnosed more than 10 years ago. Specific cell populations like monocytes, NK, and B cells were associated with the type of affected organ. This study shows how, in a heterogeneous disease, proper patient's stratification according to clinical phenotypes allows finding specific cellular profiles. Our data may lead to improvements in the knowledge of prognosis factors and to aid in the analysis of future specific therapies. PMID:24818126

  5. The lymphopenic mouse in immunology: from patron to pariah.

    PubMed

    Singh, Nevil J; Schwartz, Ronald H

    2006-12-01

    A recent surge of interest in the behavior of T and B cells in lymphopenic model systems has resurrected a certain cynicism about the validity of using such models to answer important immunological questions. Here we discuss this skepticism in a broader historical context.

  6. Magnetic Labeling of Activated Microglia in Experimental Gliomas1

    PubMed Central

    Fleige, Gerrit; Nolte, Christiane; Synowitz, Michael; Seeberger, Florian; Kettenmann, Helmut; Zimmer, Claus

    2001-01-01

    Abstract Microglia, as intrinsic immunoeffector cells of the central nervous system (CNS), play a very sensitive, crucial role in the response to almost any brain pathology where they are activated to a phagocytic state. Based on the characteristic features of activated microglia, we investigated whether these cells can be visualized with magnetic resonance imaging (MRI) using ultrasmall superparamagnetic iron oxides (USPIOs). The hypothesis of this study was that MR microglia visualization could not only reveal the extent of the tumor, but also allow for assessing the status of immunologic defense. Using USPIOs in cell culture experiments and in a rat glioma model, we showed that microglia can be labeled magnetically. Labeled microglia are detected by confocal microscopy within and around tumors in a typical border-like pattern. Quantitative in vitro studies revealed that microglia internalize amounts of USPIOs that are significantly higher than those incorporated by tumor cells and astrocytes. Labeled microglia can be detected and quantified with MRI in cell phantoms, and the extent of the tumor can be seen in glioma-bearing rats in vivo. We conclude that magnetic labeling of microglia provides a potential tool for MRI of gliomas, which reflects tumor morphology precisely. Furthermore, the results suggest that MRI may yield functional data on the immunologic reaction of the CNS. PMID:11774031

  7. Current Features of Secondary (Acquired) Types of Immune Deficiency.

    PubMed

    Kovalchuk, Leonid V.; Pinegin, Boris V.

    1999-12-01

    Secondary (acquired) types of immune deficiencies (SID) take a leading place in practice of modern clinical immunology. The causes for SID development are extremely variable. Special attention is concerned with accumulating facts about target action of microorganisms, and first of all viruses, on certain processes in immune system. Damageable action of HIV-1 on cell elements expressing CD4 molecules is known in most precise manner. It is noteworthy that the search of real molecular defects, induced by microorganisms in immune system is required. It is not to be ruled out that the increased level of apoptosis of immune system cells is one of the causes of SID. The basis of it is disbalance between positive and negative activation processes of immunocompetent cells. Multiple factors may serve as apoptogens, including drugs (glucocorticoids etc.), xenobiotics, physical factors (radiation) and many others. In practice of clinical laboratories a certain spectrum of immunological investigations is recommended that allows to diagnose the degree of immunopathology. At present, in clinical practice these methods are focused around flow cytometry (immunophenotyping), immunodiffusion and immunoenzyme tests (determination of immunoglobulins, cytokines, other soluble components of immune system), tests of estimation of immunocompetent cell activation, proliferation and differentiation. As a prospective, some methods, based on identification of molecular defects in cells and soluble factors of immune system, may be taken into consideration.

  8. Xenografted human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes.

    PubMed

    Tsuji, Hiroko; Miyoshi, Shunichiro; Ikegami, Yukinori; Hida, Naoko; Asada, Hironori; Togashi, Ikuko; Suzuki, Junshi; Satake, Masaki; Nakamizo, Hikaru; Tanaka, Mamoru; Mori, Taisuke; Segawa, Kaoru; Nishiyama, Nobuhiro; Inoue, Junko; Makino, Hatsune; Miyado, Kenji; Ogawa, Satoshi; Yoshimura, Yasunori; Umezawa, Akihiro

    2010-05-28

    Amniotic membrane is known to have the ability to transdifferentiate into multiple organs and is expected to stimulate a reduced immunologic reaction. Determine whether human amniotic membrane-derived mesenchymal cells (hAMCs) can be an ideal allograftable stem cell source for cardiac regenerative medicine. We established hAMCs. After cardiomyogenic induction in vitro, hAMCs beat spontaneously, and the calculated cardiomyogenic transdifferentiation efficiency was 33%. Transplantation of hAMCs 2 weeks after myocardial infarction improved impaired left ventricular fractional shortening measured by echocardiogram (34+/-2% [n=8] to 39+/-2% [n=11]; P<0.05) and decreased myocardial fibrosis area (18+/-1% [n=9] to 13+/-1% [n=10]; P<0.05), significantly. Furthermore hAMCs transplanted into the infarcted myocardium of Wistar rats were transdifferentiated into cardiomyocytes in situ and survived for more than 4 weeks after the transplantation without using any immunosuppressant. Immunologic tolerance was caused by the hAMC-derived HLA-G expression, lack of MHC expression of hAMCs, and activation of FOXP3-positive regulatory T cells. Administration of IL-10 or progesterone, which is known to play an important role in feto-maternal tolerance during pregnancy, markedly increased HLA-G expression in hAMCs in vitro and, surprisingly, also increased cardiomyogenic transdifferentiation efficiency in vitro and in vivo. Because hAMCs have a high ability to transdifferentiate into cardiomyocytes and to acquire immunologic tolerance in vivo, they can be a promising cellular source for allograftable stem cells for cardiac regenerative medicine.

  9. In vivo immunologic selection of class I major histocompatibility complex gene deletion variants from the B16-BL6 melanoma.

    PubMed

    Talmadge, J E; Talmadge, C B; Zbar, B; McEwen, R; Meeker, A K; Tribble, H

    1987-06-01

    The mechanism by which tumor allografts escape host immunologic attack was investigated. B16-BL6 cells (the bladder 6 subline of the B16 melanoma) (H-2b) were transfected with a gene (Dd) encoding an allogeneic class I major histocompatibility complex antigen. Clones that expressed Dd antigen were injected into the footpads of nonimmune syngeneic mice, syngeneic immune mice, and nude mice. Under conditions of immunologic selection a clone that contained multiple copies of the transfected gene formed variants that lacked the transfected gene. Primary tumors and pulmonary metastases of immunized mice and pulmonary metastases of nonimmunized mice had lost the Dd gene and, in most cases, all of the associated plasmid. In contrast, in immunodeficient nude mice, primary tumors and pulmonary metastases retained the Dd gene and the associated plasmid. Deletion of genes encoding cell surface antigens may be one of the mechanisms by which allogeneic tumors escape immunologic attack.

  10. Movement Limitation and Immune Responses of Rhesus Monkeys

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Morton, Darla S.; Swiggett, Jeanene P.; Hakenewerth, Anne M.; Fowler, Nina A.

    1993-01-01

    The effects of restraint on immunological parameters was determined in an 18 day ARRT (adult rhesus restraint test). The monkeys were restrained for 18 days in the experimental station for the orbiting primate (ESOP), the chair of choice for Space Shuttle experiments. Several immunological parameters were determined using peripheral blood, bone marrow, and lymph node specimens from the monkeys. The parameters included: response of bone marrow cells to GM-CSF (granulocyte-macrophage colony stimulating factor), leukocyte subset distribution, and production of IFN-alpha (interferon-alpha) and IFN-gamma (interferon-gamma). The only parameter changed after 18 days of restraint was the percentage of CDB+ T cells. No other immunological parameters showed changes due to restraint. Handling and changes in housing prior to the restraint period did apparently result in some restraint-independent immunological changes. Handling must be kept to a minimum and the animals allowed time to recover prior to flight. All experiments must be carefully controlled. Restraint does not appear to be a major issue regarding the effects of space flight on immune responses.

  11. Spaceflight and immune responses of rhesus monkeys

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Morton, Darla S.; Swiggett, Jeanene P.; Hakenewerth, Anne M.; Fowler, Nina A.

    1995-01-01

    The effects of restraint on immunological parameters was determined in an 18 day ARRT (adult rhesus restraint test). The monkeys were restrained for 18 days in the experimental station for the orbiting primate (ESOP), the chair of choice for Space Shuttle experiments. Several immunological parameters were determined using peripheral blood, bone marrow, and lymph node specimens from the monkeys. The parameters included: response of bone marrow cells to GM-CSF (granulocyte-macrophage colony stimulating factor), leukocyte subset distribution, and production of IFN-a (interferon-alpha) and IFN-gamma (interferon-gamma). The only parameter changed after 18 days of restraint was the percentage of CD8+ T cells. No other immunological parameters showed changes due to restraint. Handling and changes in housing prior to the restraint period did apparently result in some restraint-independent immunological changes. Handling must be kept to a minimum and the animals allowed time to recover prior to flight. All experiments must be carefully controlled. Restraint does not appear to be a major issue regarding the effects of space flight on immune responses.

  12. Ocular diseases: immunological and molecular mechanisms

    PubMed Central

    Song, Jing; Huang, Yi-Fei; Zhang, Wen-Jing; Chen, Xiao-Fei; Guo, Yu-Mian

    2016-01-01

    Many factors, such as environmental, microbial and endogenous stress, antigen localization, can trigger the immunological events that affect the ending of the diverse spectrum of ocular disorders. Significant advances in understanding of immunological and molecular mechanisms have been researched to improve the diagnosis and therapy for patients with ocular inflammatory diseases. Some kinds of ocular diseases are inadequately responsive to current medications; therefore, immunotherapy may be a potential choice as an alternative or adjunctive treatment, even in the prophylactic setting. This article first provides an overview of the immunological and molecular mechanisms concerning several typical and common ocular diseases; second, the functions of immunological roles in some of systemic autoimmunity will be discussed; third, we will provide a summary of the mechanisms that dictate immune cell trafficking to ocular local microenvironment in response to inflammation. PMID:27275439

  13. Ocular diseases: immunological and molecular mechanisms.

    PubMed

    Song, Jing; Huang, Yi-Fei; Zhang, Wen-Jing; Chen, Xiao-Fei; Guo, Yu-Mian

    2016-01-01

    Many factors, such as environmental, microbial and endogenous stress, antigen localization, can trigger the immunological events that affect the ending of the diverse spectrum of ocular disorders. Significant advances in understanding of immunological and molecular mechanisms have been researched to improve the diagnosis and therapy for patients with ocular inflammatory diseases. Some kinds of ocular diseases are inadequately responsive to current medications; therefore, immunotherapy may be a potential choice as an alternative or adjunctive treatment, even in the prophylactic setting. This article first provides an overview of the immunological and molecular mechanisms concerning several typical and common ocular diseases; second, the functions of immunological roles in some of systemic autoimmunity will be discussed; third, we will provide a summary of the mechanisms that dictate immune cell trafficking to ocular local microenvironment in response to inflammation.

  14. Different Patterns of Cytokines and Chemokines Combined with IFN-γ Production Reflect Mycobacterium tuberculosis Infection and Disease

    PubMed Central

    Hu, Shizong; Jin, Dongdong; Chen, Xinchun; Jin, Qi; Liu, Haiying

    2012-01-01

    Background IFN-γ is presently the only soluble immunological marker used to help diagnose latent Mycobacterium tuberculosis (M.tb) infection. However, IFN-γ is not available to distinguish latent from active TB infection. Moreover, extrapulmonary tuberculosis, such as tuberculous pleurisy, cannot be properly diagnosed by IFN-γ release assay. As a result, other disease- or infection-related immunological biomarkers that would be more effective need to be screened and identified. Methodology A panel of 41 soluble immunological molecules (17 cytokines and 24 chemokines) was tested using Luminex liquid array-based multiplexed immunoassays. Samples, including plasma and pleural effusions, from healthy donors (HD, n = 12) or patients with latent tuberculosis infection (LTBI, n = 20), pulmonary tuberculosis (TB, n = 12), tuberculous pleurisy (TP, n = 15) or lung cancer (LC, n = 15) were collected and screened for soluble markers. Peripheral blood mononuclear cells (PBMCs) and pleural fluid mononuclear cells (PFMCs) were also isolated to investigate antigen-specific immune factors. Principal Findings For the 41 examined factors, our results indicated that three patterns were closely associated with infection and disease. (1) Significantly elevated plasma levels of IL-2, IP-10, CXCL11 and CXCL12 were present in both patients with tuberculosis and in a sub-group participant with latent tuberculosis infection who showed a higher level of IFN-γ producing cells by ELISPOT assay compared with other latently infected individuals. (2) IL-6 and IL-9 were only significantly increased in plasma from active TB patients, and the two factors were consistently highly secreted after M.tb antigen stimulation. (3) When patients developed tuberculous pleurisy, CCL1, CCL21 and IL-6 were specifically increased in the pleural effusions. In particular, these three factors were consistently highly secreted by pleural fluid mononuclear cells following M.tb-specific antigen stimulation. In conclusion, our data imply that the specific secretion of soluble immunological factors, in addition to IFN-γ, may be used to evaluate M.tb infection and tuberculosis disease. PMID:23028695

  15. Environmental factors and human health: fibrous and particulate substance-induced immunological disorders and construction of a health-promoting living environment.

    PubMed

    Otsuki, Takemi; Matsuzaki, Hidenori; Lee, Suni; Kumagai-Takei, Naoko; Yamamoto, Shoko; Hatayama, Tamayo; Yoshitome, Kei; Nishimura, Yasumitsu

    2016-03-01

    Among the various scientific fields covered in the area of hygiene such as environmental medicine, epidemiology, public health and preventive medicine, we are investigating the immunological effects of fibrous and particulate substances in the environment and work surroundings, such as asbestos fibers and silica particles. In addition to these studies, we have attempted to construct health-promoting living conditions. Thus, in this review we will summarize our investigations regarding the (1) immunological effects of asbestos fibers, (2) immunological effects of silica particles, and (3) construction of a health-promoting living environment. This review article summarizes the 2014 Japanese Society for Hygiene (JSH) Award Lecture of the 85th Annual Meeting of the JSH entitled "Environmental health effects: immunological effects of fibrous and particulate matter and establishment of health-promoting environments" presented by the first author of this manuscript, Prof. Otsuki, Department of Hygiene, Kawasaki Medical School, Kurashiki, Japan, the recipient of the 2014 JSH award. The results of our experiments can be summarized as follows: (1) asbestos fibers reduce anti-tumor immunity, (2) silica particles chronically activate responder and regulatory T cells causing an unbalance of these two populations of T helper cells, which may contribute to the development of autoimmune disorders frequently complicating silicosis, and (3) living conditions to enhance natural killer cell activity were developed, which may promote the prevention of cancers and diminish symptoms of virus infections.

  16. Leukocytes in expressed breast milk of asthmatic mothers.

    PubMed

    Dixon, D-L; Forsyth, K D

    Infants are born immunologically immature. However, breastfeeding mothers retain an immunological link to their infants. While it is generally accepted that infants are at an immunological advantage when compared with formula-fed infants, the benefit of long-term exclusive breastfeeding by atopic mothers remains controversial. Inconsistency in the conferral of benefit may be due to differences in the immunological constituents passed to the recipient infant. The aim of this investigation was to examine the profile of human milk cells and cytokines from asthmatic compared to non-asthmatic mothers. Twenty-five exclusively breastfeeding mothers with a clinical diagnosis of asthma were postpartum age matched in a double-control 2:1 design with 50 non-asthmatic controls. Each mother provided a single milk sample which was assayed for cell differential by flow cytometry, for ex vivo cytokine production in culture and for aqueous phase cytokines. Milks from asthmatic mothers differed from non-asthmatics in that they contained a higher proportion of polymorphonuclear (PMN) cells and lower proportion of lymphocytes, predominantly CD3 + /CD4 + T helper cells, reflected by a decrease in the chemokine CCL5 in the milk aqueous phase. More PMN and lymphocytes from asthmatic mothers expressed the adhesion molecule CD11b and lymphocytes the IgE receptor CD23, than those from non-asthmatic mothers. Changes to human milk leucocyte prevalence, activation state and cytokines due to maternal asthma may result in changes to immunological priming in the infant. Consequently, the protective effect of long-term breastfeeding may be altered in these mother-infant pairs. Copyright © 2016 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.

  17. The development of a fully-integrated immune response model (FIRM) simulator of the immune response through integration of multiple subset models

    PubMed Central

    2013-01-01

    Background The complexity and multiscale nature of the mammalian immune response provides an excellent test bed for the potential of mathematical modeling and simulation to facilitate mechanistic understanding. Historically, mathematical models of the immune response focused on subsets of the immune system and/or specific aspects of the response. Mathematical models have been developed for the humoral side of the immune response, or for the cellular side, or for cytokine kinetics, but rarely have they been proposed to encompass the overall system complexity. We propose here a framework for integration of subset models, based on a system biology approach. Results A dynamic simulator, the Fully-integrated Immune Response Model (FIRM), was built in a stepwise fashion by integrating published subset models and adding novel features. The approach used to build the model includes the formulation of the network of interacting species and the subsequent introduction of rate laws to describe each biological process. The resulting model represents a multi-organ structure, comprised of the target organ where the immune response takes place, circulating blood, lymphoid T, and lymphoid B tissue. The cell types accounted for include macrophages, a few T-cell lineages (cytotoxic, regulatory, helper 1, and helper 2), and B-cell activation to plasma cells. Four different cytokines were accounted for: IFN-γ, IL-4, IL-10 and IL-12. In addition, generic inflammatory signals are used to represent the kinetics of IL-1, IL-2, and TGF-β. Cell recruitment, differentiation, replication, apoptosis and migration are described as appropriate for the different cell types. The model is a hybrid structure containing information from several mammalian species. The structure of the network was built to be physiologically and biochemically consistent. Rate laws for all the cellular fate processes, growth factor production rates and half-lives, together with antibody production rates and half-lives, are provided. The results demonstrate how this framework can be used to integrate mathematical models of the immune response from several published sources and describe qualitative predictions of global immune system response arising from the integrated, hybrid model. In addition, we show how the model can be expanded to include novel biological findings. Case studies were carried out to simulate TB infection, tumor rejection, response to a blood borne pathogen and the consequences of accounting for regulatory T-cells. Conclusions The final result of this work is a postulated and increasingly comprehensive representation of the mammalian immune system, based on physiological knowledge and susceptible to further experimental testing and validation. We believe that the integrated nature of FIRM has the potential to simulate a range of responses under a variety of conditions, from modeling of immune responses after tuberculosis (TB) infection to tumor formation in tissues. FIRM also has the flexibility to be expanded to include both complex and novel immunological response features as our knowledge of the immune system advances. PMID:24074340

  18. Dysregulation in microRNA Expression Is Associated with Alterations in Immune Functions in Combat Veterans with Post-Traumatic Stress Disorder

    PubMed Central

    Zhou, Juhua; Nagarkatti, Prakash; Zhong, Yin; Ginsberg, Jay P.; Singh, Narendra P.; Zhang, Jiajia; Nagarkatti, Mitzi

    2014-01-01

    While the immunological dysfunction in combat Veterans with post-traumatic stress disorder (PTSD) has been well documented, the precise mechanisms remain unclear. The current study evaluated the role of microRNA (miR) in immunological dysfunction associated with PTSD. The presence of peripheral blood mononuclear cells (PBMC) and various lymphocyte subsets in blood collected from PTSD patients were analyzed. Our studies demonstrated that the numbers of both PBMC and various lymphocyte subsets increased significantly in PTSD patients. When T cells were further analyzed, the percentage of Th1 cells and Th17 cells increased, regulatory T cells(Tregs) decreased, while Th2 cells remained unaltered in PTSD patients. These data correlated with increased plasma levels of IFN-γ and IL-17 while IL-4 showed no significant change. The increase in PBMC counts, Th1 and Th17 cells seen in PTSD patients correlated with the clinical scores. High-throughput analysis of PBMCs for 1163 miRs showed that the expression of a significant number of miRs was altered in PTSD patients. Pathway analysis of dysregulated miRs seen in PTSD patients revealed relationship between selected miRNAs and genes that showed direct/indirect role in immunological signaling pathways consistent with the immunological changes seen in these patients. Of interest was the down-regulation of miR-125a in PTSD, which specifically targeted IFN-γ production. Together, the current study demonstrates for the first time that PTSD was associated with significant alterations in miRNAs, which may promote pro-inflammatory cytokine profile. Such epigenetic events may provide useful tools to identify potential biomarkers for diagnosis, and facilitate therapy of PTSD. PMID:24759737

  19. Dysregulation in microRNA expression is associated with alterations in immune functions in combat veterans with post-traumatic stress disorder.

    PubMed

    Zhou, Juhua; Nagarkatti, Prakash; Zhong, Yin; Ginsberg, Jay P; Singh, Narendra P; Zhang, Jiajia; Nagarkatti, Mitzi

    2014-01-01

    While the immunological dysfunction in combat Veterans with post-traumatic stress disorder (PTSD) has been well documented, the precise mechanisms remain unclear. The current study evaluated the role of microRNA (miR) in immunological dysfunction associated with PTSD. The presence of peripheral blood mononuclear cells (PBMC) and various lymphocyte subsets in blood collected from PTSD patients were analyzed. Our studies demonstrated that the numbers of both PBMC and various lymphocyte subsets increased significantly in PTSD patients. When T cells were further analyzed, the percentage of Th1 cells and Th17 cells increased, regulatory T cells(Tregs) decreased, while Th2 cells remained unaltered in PTSD patients. These data correlated with increased plasma levels of IFN-γ and IL-17 while IL-4 showed no significant change. The increase in PBMC counts, Th1 and Th17 cells seen in PTSD patients correlated with the clinical scores. High-throughput analysis of PBMCs for 1163 miRs showed that the expression of a significant number of miRs was altered in PTSD patients. Pathway analysis of dysregulated miRs seen in PTSD patients revealed relationship between selected miRNAs and genes that showed direct/indirect role in immunological signaling pathways consistent with the immunological changes seen in these patients. Of interest was the down-regulation of miR-125a in PTSD, which specifically targeted IFN-γ production. Together, the current study demonstrates for the first time that PTSD was associated with significant alterations in miRNAs, which may promote pro-inflammatory cytokine profile. Such epigenetic events may provide useful tools to identify potential biomarkers for diagnosis, and facilitate therapy of PTSD.

  20. Introduction of a Framework for Dynamic Knowledge Representation of the Control Structure of Transplant Immunology: Employing the Power of Abstraction with a Solid Organ Transplant Agent-Based Model

    PubMed Central

    An, Gary

    2015-01-01

    Agent-based modeling has been used to characterize the nested control loops and non-linear dynamics associated with inflammatory and immune responses, particularly as a means of visualizing putative mechanistic hypotheses. This process is termed dynamic knowledge representation and serves a critical role in facilitating the ability to test and potentially falsify hypotheses in the current data- and hypothesis-rich biomedical research environment. Importantly, dynamic computational modeling aids in identifying useful abstractions, a fundamental scientific principle that pervades the physical sciences. Recognizing the critical scientific role of abstraction provides an intellectual and methodological counterweight to the tendency in biology to emphasize comprehensive description as the primary manifestation of biological knowledge. Transplant immunology represents yet another example of the challenge of identifying sufficient understanding of the inflammatory/immune response in order to develop and refine clinically effective interventions. Advances in immunosuppressive therapies have greatly improved solid organ transplant (SOT) outcomes, most notably by reducing and treating acute rejection. The end goal of these transplant immune strategies is to facilitate effective control of the balance between regulatory T cells and the effector/cytotoxic T-cell populations in order to generate, and ideally maintain, a tolerant phenotype. Characterizing the dynamics of immune cell populations and the interactive feedback loops that lead to graft rejection or tolerance is extremely challenging, but is necessary if rational modulation to induce transplant tolerance is to be accomplished. Herein is presented the solid organ agent-based model (SOTABM) as an initial example of an agent-based model (ABM) that abstractly reproduces the cellular and molecular components of the immune response to SOT. Despite its abstract nature, the SOTABM is able to qualitatively reproduce acute rejection and the suppression of acute rejection by immunosuppression to generate transplant tolerance. The SOTABM is intended as an initial example of how ABMs can be used to dynamically represent mechanistic knowledge concerning transplant immunology in a scalable and expandable form and can thus potentially serve as useful adjuncts to the investigation and development of control strategies to induce transplant tolerance. PMID:26594211

  1. Introduction of a Framework for Dynamic Knowledge Representation of the Control Structure of Transplant Immunology: Employing the Power of Abstraction with a Solid Organ Transplant Agent-Based Model.

    PubMed

    An, Gary

    2015-01-01

    Agent-based modeling has been used to characterize the nested control loops and non-linear dynamics associated with inflammatory and immune responses, particularly as a means of visualizing putative mechanistic hypotheses. This process is termed dynamic knowledge representation and serves a critical role in facilitating the ability to test and potentially falsify hypotheses in the current data- and hypothesis-rich biomedical research environment. Importantly, dynamic computational modeling aids in identifying useful abstractions, a fundamental scientific principle that pervades the physical sciences. Recognizing the critical scientific role of abstraction provides an intellectual and methodological counterweight to the tendency in biology to emphasize comprehensive description as the primary manifestation of biological knowledge. Transplant immunology represents yet another example of the challenge of identifying sufficient understanding of the inflammatory/immune response in order to develop and refine clinically effective interventions. Advances in immunosuppressive therapies have greatly improved solid organ transplant (SOT) outcomes, most notably by reducing and treating acute rejection. The end goal of these transplant immune strategies is to facilitate effective control of the balance between regulatory T cells and the effector/cytotoxic T-cell populations in order to generate, and ideally maintain, a tolerant phenotype. Characterizing the dynamics of immune cell populations and the interactive feedback loops that lead to graft rejection or tolerance is extremely challenging, but is necessary if rational modulation to induce transplant tolerance is to be accomplished. Herein is presented the solid organ agent-based model (SOTABM) as an initial example of an agent-based model (ABM) that abstractly reproduces the cellular and molecular components of the immune response to SOT. Despite its abstract nature, the SOTABM is able to qualitatively reproduce acute rejection and the suppression of acute rejection by immunosuppression to generate transplant tolerance. The SOTABM is intended as an initial example of how ABMs can be used to dynamically represent mechanistic knowledge concerning transplant immunology in a scalable and expandable form and can thus potentially serve as useful adjuncts to the investigation and development of control strategies to induce transplant tolerance.

  2. 6-O-Branched Oligo-β-glucan-Based Antifungal Glycoconjugate Vaccines.

    PubMed

    Liao, Guochao; Zhou, Zhifang; Liao, Jun; Zu, Luning; Wu, Qiuye; Guo, Zhongwu

    2016-02-12

    With the rapid growth in fungal infections and drug-resistant fungal strains, antifungal vaccines have become an especially attractive strategy to tackle this important health problem. β-Glucans, a class of extracellular carbohydrate antigens abundantly and consistently expressed on fungal cell surfaces, are intriguing epitopes for antifungal vaccine development. β-Glucans have a conserved β-1,3-glucan backbone with sporadic β-1,3- or β-1,6-linked short glucans as branches at the 6-O-positions, and the branches may play a critical role in their immunologic functions. To study the immunologic properties of branched β-glucans and develop β-glucan-based antifungal vaccines, three branched β-glucan oligosaccharides with 6-O-linked β-1,6-tetraglucose, β-1,3-diglucose, and β-1,3-tetraglucose branches on a β-1,3-nonaglucan backbone, which mimic the structural epitopes of natural β-glucans, were synthesized and coupled with keyhole limpet hemocyanin (KLH) to form novel synthetic conjugate vaccines. These glycoconjugates were proved to elicit strong IgG antibody responses in mice. It was also discovered that the number, size, and structure of branches linked to the β-glucan backbone had a significant impact on the immunologic property. Moreover, antibodies induced by the synthetic oligosaccharide-KLH conjugates were able to recognize and bind to natural β-glucans and fungal cells. Most importantly, these conjugates elicited effective protection against systemic Candida albicans infection in mice. Thus, branched oligo-β-glucans were identified as functional epitopes for antifungal vaccine design and the corresponding protein conjugates as promising antifungal vaccine candidates.

  3. Computational and Experimental Validation of B and T-Cell Epitopes of the In Vivo Immune Response to a Novel Malarial Antigen

    DTIC Science & Technology

    2013-08-16

    approach in the context of a novel, immunologically relevant antigen. The limited accuracy of the tested algorithms to predict the in vivo immune responses...overlapping peptides spanning the entire sequence are individually tested for antibody interacting residues. Conformational B cell epitopes, in contrast...a blind assessment of this approach in the context of a novel, immunologically relevant antigen. The limited accuracy of the tested algorithms to

  4. Tumor Necrosis Factor Is a Therapeutic Target for Immunological Unbalance and Cardiac Abnormalities in Chronic Experimental Chagas' Heart Disease

    PubMed Central

    Pereira, Isabela Resende; Vilar-Pereira, Glaucia; Silva, Andrea Alice; Moreira, Otacilio Cruz; Britto, Constança; Sarmento, Ellen Diana Marinho

    2014-01-01

    Background. Chagas disease (CD) is characterized by parasite persistence and immunological unbalance favoring systemic inflammatory profile. Chronic chagasic cardiomyopathy, the main manifestation of CD, occurs in a TNF-enriched milieu and frequently progresses to heart failure. Aim of the Study. To challenge the hypothesis that TNF plays a key role in Trypanosoma cruzi-induced immune deregulation and cardiac abnormalities, we tested the effect of the anti-TNF antibody Infliximab in chronically T. cruzi-infected C57BL/6 mice, a model with immunological, electrical, and histopathological abnormalities resembling Chagas' heart disease. Results. Infliximab therapy did not reactivate parasite but reshaped the immune response as reduced TNF mRNA expression in the cardiac tissue and plasma TNF and IFNγ levels; diminished the frequency of IL-17A+ but increased IL-10+ CD4+ T-cells; reduced TNF+ but augmented IL-10+ Ly6C+ and F4/80+ cells. Further, anti-TNF therapy decreased cytotoxic activity but preserved IFNγ-producing VNHRFTLV-specific CD8+ T-cells in spleen and reduced the number of perforin+ cells infiltrating the myocardium. Importantly, Infliximab reduced the frequency of mice afflicted by arrhythmias and second degree atrioventricular blocks and decreased fibronectin deposition in the cardiac tissue. Conclusions. Our data support that TNF is a crucial player in the pathogenesis of Chagas' heart disease fueling immunological unbalance which contributes to cardiac abnormalities. PMID:25140115

  5. Interaction of microbial agents with the immune system during infectious disease.

    PubMed

    Frøland, S S

    1984-01-01

    Research during the last years has revealed a considerable complexity of the immune system. It is clear that immunological reactions depend on extensive and only partly clarified interactions between a number of different cell types (e.g. B lymphocytes, plasma cells, T cell subpopulations, cytotoxic K and NK cells, monocytic cells, neutrophilic and eosinophilic granulocytes) and their molecular products (e.g. immunoglobulins, lymphokines and interleukins). These components further interact with the complement system, as well as with immunologically nonspecific components like acute phase proteins (e.g. C-reactive protein) and with other pathophysiological phenomena occurring during infections, e.g. the fever response. The application of these observations from basic and experimental immunology to the investigation of antimicrobial immune reactions is still only in its beginning, but has already resulted in new concepts of clinical value for the understanding of infectious diseases. The present paper briefly describes certain aspects of the immune response to infections with various microbial agents, with particular emphasis on reactions of clinical importance. In addition to B and T cell reactions, possible antimicrobial functions of K cells and NK cells are discussed, and the possible importance in infectious disease of various T cell subpopulations, particularly T suppressor cells, is discussed. Lastly, various escape mechanisms are mentioned whereby certain microbial agents may evade elimination by the immune response of the host.

  6. Absence of LTB4/BLT1 axis facilitates generation of mouse GM-CSF-induced long-lasting antitumor immunologic memory by enhancing innate and adaptive immune systems.

    PubMed

    Yokota, Yosuke; Inoue, Hiroyuki; Matsumura, Yumiko; Nabeta, Haruka; Narusawa, Megumi; Watanabe, Ayumi; Sakamoto, Chika; Hijikata, Yasuki; Iga-Murahashi, Mutsunori; Takayama, Koichi; Sasaki, Fumiyuki; Nakanishi, Yoichi; Yokomizo, Takehiko; Tani, Kenzaburo

    2012-10-25

    BLT1 is a high-affinity receptor for leukotriene B4 (LTB4) that is a potent lipid chemoattractant for myeloid leukocytes. The role of LTB4/BLT1 axis in tumor immunology, including cytokine-based tumor vaccine, however, remains unknown. We here demonstrated that BLT1-deficient mice rejected subcutaneous tumor challenge of GM-CSF gene-transduced WEHI3B (WGM) leukemia cells (KO/WGM) and elicited robust antitumor responses against second tumor challenge with WEHI3B cells. During GM-CSF-induced tumor regression, the defective LTB4/BLT1 signaling significantly reduced tumor-infiltrating myeloid-derived suppressor cells, increased the maturation status of dendritic cells in tumor tissues, enhanced their CD4(+) T-cell stimulation capacity and migration rate of dendritic cells that had phagocytosed tumor-associated antigens into tumor-draining lymph nodes, suggesting a positive impact on GM-CSF-sensitized innate immunity. Furthermore, KO/WGM mice displayed activated adaptive immunity by attenuating regulatory CD4(+) T subsets and increasing numbers of Th17 and memory CD44(hi)CD4(+) T subsets, both of which elicited superior antitumor effects as evidenced by adoptive cell transfer. In vivo depletion assays also revealed that CD4(+) T cells were the main effectors of the persistent antitumor immunity. Our data collectively underscore a negative role of LTB4/BLT1 signaling in effective generation and maintenance of GM-CSF-induced antitumor memory CD4(+) T cells.

  7. Characterization of lymphoid cells in the blood of healthy adults: sequential immunological, cytochemical and cytokinetic studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirt, A.; Wagner, H.P.

    1980-01-01

    With a new method, sequential immunological, cytochemical and cytokinetic studies were done on lymphoid cells in the peripheral blood of 12 healthy adults. Every single lymphoid cell could therefore be characterized by the following markers: surface immunoglobulins (sIg); rosetting with sheep red blood cells (E); unspecific acid alpha-naphthyl acetate esterase (ANAE); and 3HdT incorporation. Significantly more E+sIg-ANAE-cells (51% and 22% of all lymphoid cells, respectively). Of all ANAE+ cells 90% were E+, but 64% of all ANAE- cells were also E+. In all individuals a subpopulation of E+sIg+ cells was found. The esterase pattern of these cells was similar tomore » that of E-sIg+ cells. The overall labeling index of the lymphoid cells examined was less than or equal to 0.2%.« less

  8. IT-25DEVELOPMENTALLY REGULATED ANTIGENS FOR IMMUNOLOGIC TARGETING OF MEDULLOBLASTOMA SUBTYPES

    PubMed Central

    Pham, Christina; Flores, Catherine; Pei, Yanxin; Wechsler-Reya, Robert; Mitchell, Duane

    2014-01-01

    INTRODUCTION: Medulloblastoma (MB) remains incurable in one third of patients despite aggressive multi-modality standard therapies. Immunotherapy presents a promising alternative by specifically targeting cancer cells. To date, there have been no successful immunologic applications targeting MB. Emerging evidence from integrated genomic studies has suggested MB variants arise from deregulation of pathways affecting proliferation of progenitor cell populations within the developing cerebellum. Using total embryonic RNA as a source of tumor rejection antigens is attractive because it can be delivered as a single vaccine, target both known and unknown fetal proteins, and can be refined to preferentially treat distinct MB subtypes. METHODS: We have created two transplantable, syngeneic animal MB models recapitulating human SHH and Group 3 variants to investigate the immunologic targeting of different MB subtypes. We generated T cells specific to the developing mouse cerebellum (P5) and tested their reactivity to target cells pulsed with total RNA from two MB subtypes and the normal brain. Immune responses were evaluated by measuring cytokine secretion following re-stimulation of activated T cells with both normal and tumor cell targets. In vivo antitumor efficacy was also tested in survival studies of intracranial tumor-bearing animals. RESULTS: We generated T cells specific to the developing cerebellum in vitro, confirming the immunogenicity of developmentally regulated antigens. Additionally, we have shown that developmental antigen-specific T cells produce high levels of Th1-type cytokines in response to tumor cells of two immunologically distinct subtypes of MB. Interestingly, developmental antigen specific T cells do not show cross reactivity with the normal brain or subsequent stages of the developing brain after P5. Targeting developmental antigens also conferred a significant survival benefit in a treatment model of Group 3 tumor bearing animals. CONCLUSIONS: Developmental antigens can safely target multiple MB subtypes with equal effectiveness compared to previously established total tumor strategies.

  9. Predicting Sensitivity of Breast Tumors to Src-Targeted Therapies through Assessment of Cas/Src/BCAR3 Activity

    DTIC Science & Technology

    2016-10-01

    Amy H. Bouton, Ph.D. Associate Dean of Graduate and Medical ScienXst Programs Professor of Microbiology , Immunology, and Cancer Biology Box...We found that all of the BCAR3 in invasive breast cancer cells is present in a complex with Cas and 1Department of Microbiology , Immunology and Cancer...Harrisonburg, VA, USA. Correspondence: Dr AH Bouton, Department of Microbiology , Immunology and Cancer Biology, University of Virginia School of Medicine, Box

  10. Intense flight and endotoxin injection elicit similar effects on leukocyte distributions but dissimilar effects on plasma-based immunological indices in pigeons.

    PubMed

    Matson, Kevin D; Horrocks, Nicholas P C; Tieleman, B Irene; Haase, Eberhard

    2012-11-01

    Most birds rely on flight for survival. Yet as an energetically taxing and physiologically integrative process, flight has many repercussions. Studying pigeons (Columba livia) and employing physiological and immunological indices that are relevant to ecologists working with wild birds, we determined what, if any, acute immune-like responses result from bouts of intense, non-migratory flight. We compared the effects of flight with the effects of a simulated bacterial infection. We also investigated indices in terms of their post-flight changes within individuals and their relationship with flight speed among individuals. Compared to un-flown controls, flown birds exhibited significant elevations in numbers of heterophils relative to numbers of lymphocytes and significant reductions in numbers of eosinophils and monocytes. Furthermore, within-individual changes in concentrations of an acute phase protein were greater in flown birds than in controls. However, none of the flight-affected indices showed any evidence of being related to flight speed. While some of the effects of flight were comparable to the effects of the simulated bacterial infection, other effects were observed only after one of these two physiological challenges. Our study suggests that flight by pigeons yields immune-like responses, and these responses have the potential to complicate the conclusions drawn by ecologists regarding immune function in free-living birds. Still, a better understanding of the repercussions of flight can help clarify the ties between the physiology of exercise and the disease ecology of migration and will ultimately assist in the broader goal of accounting for immunological variation within and among species.

  11. Immunology: Exhausted T cells perk up

    NASA Astrophysics Data System (ADS)

    Williams, Matthew A.; Bevan, Michael J.

    2006-02-01

    During persistent infections, the immune cells responsible for killing infected cells and maintaining inflammation gradually stop functioning, allowing the pathogen to thrive. But can this process be reversed?

  12. Chimeric antigen receptor (CAR)-modified natural killer cell-based immunotherapy and immunological synapse formation in cancer and HIV.

    PubMed

    Liu, Dongfang; Tian, Shuo; Zhang, Kai; Xiong, Wei; Lubaki, Ndongala Michel; Chen, Zhiying; Han, Weidong

    2017-12-01

    Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells contribute to the body's immune defenses. Current chimeric antigen receptor (CAR)-modified T cell immunotherapy shows strong promise for treating various cancers and infectious diseases. Although CAR-modified NK cell immunotherapy is rapidly gaining attention, its clinical applications are mainly focused on preclinical investigations using the NK92 cell line. Despite recent advances in CAR-modified T cell immunotherapy, cost and severe toxicity have hindered its widespread use. To alleviate these disadvantages of CAR-modified T cell immunotherapy, additional cytotoxic cell-mediated immunotherapies are urgently needed. The unique biology of NK cells allows them to serve as a safe, effective, alternative immunotherapeutic strategy to CAR-modified T cells in the clinic. While the fundamental mechanisms underlying the cytotoxicity and side effects of CAR-modified T and NK cell immunotherapies remain poorly understood, the formation of the immunological synapse (IS) between CAR-modified T or NK cells and their susceptible target cells is known to be essential. The role of the IS in CAR T and NK cell immunotherapies will allow scientists to harness the power of CAR-modified T and NK cells to treat cancer and infectious diseases. In this review, we highlight the potential applications of CAR-modified NK cells to treat cancer and human immunodeficiency virus (HIV), and discuss the challenges and possible future directions of CAR-modified NK cell immunotherapy, as well as the importance of understanding the molecular mechanisms of CAR-modified T cell- or NK cell-mediated cytotoxicity and side effects, with a focus on the CAR-modified NK cell IS.

  13. Seventeen-Year Journey Working With a Master.

    PubMed

    Zhu, Jinfang

    2018-01-01

    It had been a great honor for me to work with the late Dr. William E. Paul for 17 years in the Laboratory of Immunology (LI) from 1998 until his passing in 2015. He was such a master in the immunology field. Under his outstanding guidance, my research has been focusing on transcriptional regulation of T helper (Th) cell differentiation, especially, on the role of a master transcription factor GATA3 during Th2 cell differentiation. Just as enormous scientific contributions of Dr. Paul (we all call him Bill) to the immunology community are far beyond his serving as the Chief of the LI, GATA3 also plays important roles in different lymphocytes at various developmental stages besides its critical functions in Th2 cells. In this special review dedicated to the memory of Bill, I will summarize the research that I have carried out in Bill's lab working on GATA3 in the context of related studies by other groups in the field of T cell differentiation and innate lymphoid cell (ILC) development. These include the essential role of GATA3 in regulating Th2/ILC2 differentiation/development and their functions, the critical role of GATA3 during the development of T cells and innate lymphoid cells, and dynamic and quantitative expression of GATA3 in controlling lymphocyte homeostasis and functions.

  14. The research on the influences of hyperthermal perfusion chemotherapy combined with immunologic therapy on the immunologic function and levels of circulating tumor cells of the advanced colorectal cancer patients with liver metastasis.

    PubMed

    Sun, J-J; Fan, G-L; Wang, X-G; Xu, K

    2017-07-01

    To investigated the influence of hyperthermal perfusion chemotherapy combined with immunologic therapy on the immunologic function and levels of circulating tumor cells of the advanced colorectal cancer patients with liver metastasis. We enrolled 98 advanced colorectal cancer patients with liver metastasis that were admitted to this hospital for treatment and were randomly divided into two groups, the observation group (n = 49) and the control group (n = 49). We administered systemic vein chemotherapy for patients in the control group, and hyperthermal perfusion chemotherapy for the patients in the observation group in order to compare the subgroup levels of T lymphocytes, NK cells and immunoglobulin (IgG, IgA, and IgM) in the immune system of patients in both groups. We also assayed the circulating tumor cells (CTC) in the peripheral blood of patients in both groups using the cell search method, and compared the efficacy using response evaluation criteria in solid tumors and the survival rates of patients in both groups using the Kaplan-Meier method. After two treatment courses, the levels of CD3+, CD4+ and CD4+/CD8+ of the patients in the observation group were significantly higher than those of the control group, but the levels of CD8+ of patients in the observation group was lower than that in the control group (p< 0.05). The levels of immunoglobulins (IgG, IgA, and IgM) in the observation group were higher than the control group (p < 0.05). The levels of NK cell cells were significantly lower than the control group (p < 0.05). The objective response rate, as well as the disease control rate of the observation group, were remarkably higher than those of the control group (p < 0.05). Compared to the control group, the observation group enjoyed a prolonged survival time, higher survival rate and significantly lower positive rate of CTC (p < 0.05). Better efficacy and tolerance, fewer toxic and side effects, improvement in the immunologic functions of patients for the indirect anti-tumor effect, a significant decrease in CTC of patients, and a higher long-term survival rate have been achieved in the treatment with hyperthermal perfusion chemotherapy combined with immunologic therapy for the advanced colorectal cancer patients with liver metastasis. Thus, it can serve as the preferable drug for the treatment of advanced colorectal cancer with liver metastasis.

  15. Effect of vitamin C on innate immune responses of rainbow trout (Oncorhynchus mykiss) leukocytes.

    PubMed

    Leal, Esther; Zarza, Carlos; Tafalla, Carolina

    2017-08-01

    Vitamin C, also known as ascorbic acid, is an essential micronutrient that influences a wide variety of physiological processes, including immunological functions. Although the positive effects of vitamin C supplementation on the immunological status of fish has been established in different species, the bases for these positive effects are still unknown. Hence, the aim of our study was to evaluate the in vitro effect of vitamin C on several innate immune functions of rainbow trout (Oncorhynchus mykiss) leukocyte populations. For this, we assessed the effects exerted on the established rainbow trout monocyte-macrophage cell line RTS11, and compared them to those observed in trout head kidney leukocytes. Our results demonstrate that vitamin C increases the production of reactive oxygen species and the percentage of phagocytic cells in both cell populations. On the other hand, vitamin C had no effect on the surface MHC II levels and only in the case of RTS11 cells increased the capacity of these cells to migrate towards the CK9 chemokine. Finally, vitamin C also increased the transcription of several pro-inflammatory and antimicrobial genes elicited by Escherichia coli, with some differences depending on the cell population studied. Our results contribute to further understand how vitamin C supplementation regulates the fish immune system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. September 2011 DMM Podcast: an interview with Irv Weissman

    PubMed Central

    2011-01-01

    SUMMARY This podcast includes excerpts from an interview with Irv Weissman, of Stanford University, in which he recalls his early years studying immunology in mice and discusses more recent challenges he has faced when attempting to develop stem-cell-based therapies with industry. Narrated by Sarah E. Allan. To listen to this podcast, visit http://www.biologists.com/DMM/podcasts/index.html.

  17. Investigation of Macrophage Differentiation and Cytokine Production in an Undergraduate Immunology Laboratory

    ERIC Educational Resources Information Center

    Berkes, Charlotte; Chan, Leo Li-Ying

    2015-01-01

    We have developed a semester-long laboratory project for an undergraduate immunology course in which students study multiple aspects of macrophage biology including differentiation from progenitors in the bone marrow, activation upon stimulation with microbial ligands, expression of cell surface markers, and modulation of cytokine production. In…

  18. Immunological Prevention of Spontaneous Mammary Carcinoma in Transgenic Mice

    DTIC Science & Technology

    2001-08-01

    respectively, and a sera Mouse Typer Iso- TUBO cell inhibition was found in BALB/c mice injected with typing kit (Bio-Rad, Richmond , CA) as previously described...Curr. Opin. Immunol., 6: 41. Lapp6, M. A., and Prehn . R. T. Immunologic surveillance at the macroscopic level: 414-419. 1994. nonselective

  19. 21 CFR 866.5560 - Lactic dehydrogenase immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... immunological test system is a device that consists of the reagents used to measure by immunochemical techniques... found in a variety of conditions, including megaloblastic anemia (decrease in the number of mature red blood cells), myocardial infarction (heart disease), and some forms of leukemia (cancer of the blood...

  20. 21 CFR 866.5560 - Lactic dehydrogenase immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... immunological test system is a device that consists of the reagents used to measure by immunochemical techniques... found in a variety of conditions, including megaloblastic anemia (decrease in the number of mature red blood cells), myocardial infarction (heart disease), and some forms of leukemia (cancer of the blood...

  1. 21 CFR 866.5560 - Lactic dehydrogenase immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... immunological test system is a device that consists of the reagents used to measure by immunochemical techniques... found in a variety of conditions, including megaloblastic anemia (decrease in the number of mature red blood cells), myocardial infarction (heart disease), and some forms of leukemia (cancer of the blood...

  2. 21 CFR 866.5560 - Lactic dehydrogenase immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... immunological test system is a device that consists of the reagents used to measure by immunochemical techniques... found in a variety of conditions, including megaloblastic anemia (decrease in the number of mature red blood cells), myocardial infarction (heart disease), and some forms of leukemia (cancer of the blood...

  3. IL-2 induces a WAVE2-dependent pathway for actin reorganization that enables WASp-independent human NK cell function.

    PubMed

    Orange, Jordan S; Roy-Ghanta, Sumita; Mace, Emily M; Maru, Saumya; Rak, Gregory D; Sanborn, Keri B; Fasth, Anders; Saltzman, Rushani; Paisley, Allison; Monaco-Shawver, Linda; Banerjee, Pinaki P; Pandey, Rahul

    2011-04-01

    Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency associated with an increased susceptibility to herpesvirus infection and hematologic malignancy as well as a deficiency of NK cell function. It is caused by defective WAS protein (WASp). WASp facilitates filamentous actin (F-actin) branching and is required for F-actin accumulation at the NK cell immunological synapse and NK cell cytotoxicity ex vivo. Importantly, the function of WASp-deficient NK cells can be restored in vitro after exposure to IL-2, but the mechanisms underlying this remain unknown. Using a WASp inhibitor as well as cells from patients with WAS, we have defined a direct effect of IL-2 signaling upon F-actin that is independent of WASp function. We found that IL-2 treatment of a patient with WAS enhanced the cytotoxicity of their NK cells and the F-actin content at the immunological synapses formed by their NK cells. IL-2 stimulation of NK cells in vitro activated the WASp homolog WAVE2, which was required for inducing WASp-independent NK cell function, but not for baseline activity. Thus, WAVE2 and WASp define parallel pathways to F-actin reorganization and function in human NK cells; although WAVE2 was not required for NK cell innate function, it was accessible through adaptive immunity via IL-2. These results demonstrate how overlapping cytoskeletal activities can utilize immunologically distinct pathways to achieve synonymous immune function.

  4. IL-2 induces a WAVE2-dependent pathway for actin reorganization that enables WASp-independent human NK cell function

    PubMed Central

    Orange, Jordan S.; Roy-Ghanta, Sumita; Mace, Emily M.; Maru, Saumya; Rak, Gregory D.; Sanborn, Keri B.; Fasth, Anders; Saltzman, Rushani; Paisley, Allison; Monaco-Shawver, Linda; Banerjee, Pinaki P.; Pandey, Rahul

    2011-01-01

    Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency associated with an increased susceptibility to herpesvirus infection and hematologic malignancy as well as a deficiency of NK cell function. It is caused by defective WAS protein (WASp). WASp facilitates filamentous actin (F-actin) branching and is required for F-actin accumulation at the NK cell immunological synapse and NK cell cytotoxicity ex vivo. Importantly, the function of WASp-deficient NK cells can be restored in vitro after exposure to IL-2, but the mechanisms underlying this remain unknown. Using a WASp inhibitor as well as cells from patients with WAS, we have defined a direct effect of IL-2 signaling upon F-actin that is independent of WASp function. We found that IL-2 treatment of a patient with WAS enhanced the cytotoxicity of their NK cells and the F-actin content at the immunological synapses formed by their NK cells. IL-2 stimulation of NK cells in vitro activated the WASp homolog WAVE2, which was required for inducing WASp-independent NK cell function, but not for baseline activity. Thus, WAVE2 and WASp define parallel pathways to F-actin reorganization and function in human NK cells; although WAVE2 was not required for NK cell innate function, it was accessible through adaptive immunity via IL-2. These results demonstrate how overlapping cytoskeletal activities can utilize immunologically distinct pathways to achieve synonymous immune function. PMID:21383498

  5. Chimeric Lyssavirus Glycoproteins with Increased Immunological Potential

    PubMed Central

    Jallet, Corinne; Jacob, Yves; Bahloul, Chokri; Drings, Astrid; Desmezieres, Emmanuel; Tordo, Noël; Perrin, Pierre

    1999-01-01

    The rabies virus glycoprotein molecule (G) can be divided into two parts separated by a flexible hinge: the NH2 half (site II part) containing antigenic site II up to the linear region (amino acids [aa] 253 to 275 encompassing epitope VI [aa 264]) and the COOH half (site III part) containing antigenic site III and the transmembrane and cytoplasmic domains. The structural and immunological roles of each part were investigated by cell transfection and mouse DNA-based immunization with homogeneous and chimeric G genes formed by fusion of the site II part of one genotype (GT) with the site III part of the same or another GT. Various site II-site III combinations between G genes of PV (Pasteur virus strain) rabies (GT1), Mokola (GT3), and EBL1 (European bat lyssavirus 1 [GT5]) viruses were tested. Plasmids pGPV-PV, pGMok-Mok, pGMok-PV, and pGEBL1-PV induced transient expression of correctly transported and folded antigens in neuroblastoma cells and virus-neutralizing antibodies against parental viruses in mice, whereas, pG-PVIII (site III part only) and pGPV-Mok did not. The site III part of PV (GT1) was a strong inducer of T helper cells and was very effective at presenting the site II part of various GTs. Both parts are required for correct folding and transport of chimeric G proteins which have a strong potential value for immunological studies and development of multivalent vaccines. Chimeric plasmid pGEBL1-PV broadens the spectrum of protection against European lyssavirus genotypes (GT1, GT5, and GT6). PMID:9847325

  6. Role of Immunologic Disturbance in Human Oncogenesis: Some Facts and Fancies*

    PubMed Central

    Kaplan, Henry S.

    1971-01-01

    A brief review is presented of the evidence linking the development of certain types of neoplasms, and of the malignant lymphomas in particular, to chronic immunosuppression in animals and man and to the naturally occurring human immunologic deficiency states. The discussion then focuses on Hodgkin's disease and considers recent evidence concerning the relation between the clinical stage of the disease and its associated defect in cell-mediated immunity. Finally, the prior occurrence of infectious mononucleosis in some cases of Hodgkin's disease is considered in the context of the hypothesis that the neoplastic cells of Hodgkin's disease may evolve from a chronic immunologic reaction, analogous to that of graft-versus-host, stemming from the induction of antigenic alteration in a subpopulation of lymphocytes by certain types of non-neoplastic viral infections. PMID:4401360

  7. Regenerative immunology: the immunological reaction to biomaterials.

    PubMed

    Cravedi, Paolo; Farouk, Samira; Angeletti, Andrea; Edgar, Lauren; Tamburrini, Riccardo; Duisit, Jerome; Perin, Laura; Orlando, Giuseppe

    2017-12-01

    Regenerative medicine promises to meet two of the most urgent needs of modern organ transplantation, namely immunosuppression-free transplantation and an inexhaustible source of organs. Ideally, bioengineered organs would be manufactured from a patient's own biomaterials-both cells and the supporting scaffolding materials in which cells would be embedded and allowed to mature to eventually regenerate the organ in question. While some groups are focusing on the feasibility of this approach, few are focusing on the immunogenicity of the scaffolds that are being developed for organ bioengineering purposes. This review will succinctly discuss progress in the understanding of immunological characteristics and behavior of different scaffolds currently under development, with emphasis on the extracellular matrix scaffolds obtained decellularized animal or human organs which seem to provide the ideal template for bioengineering purposes. © 2017 Steunstichting ESOT.

  8. Nijmegen breakage syndrome.

    PubMed Central

    van der Burgt, I; Chrzanowska, K H; Smeets, D; Weemaes, C

    1996-01-01

    Nijmegen breakage syndrome (NBS), a rare autosomal recessive condition also known as ataxia telangiectasia (AT) variants V1 and V2, is characterised by microcephaly, typical facies, short stature, immunodeficiency, and chromosomal instability. We report the clinical, immunological, chromosomal, and cell biological findings in 42 patients who are included in the NBS Registry in Nijmegen. The immunological, chromosomal, and cell biological findings resemble those in AT, but the clinical findings are quite different. NBS appears to be a separate entity not allelic with AT. Images PMID:8929954

  9. Selective pre-priming of HA-specific CD4 T cells restores immunological reactivity to HA on heterosubtypic influenza infection.

    PubMed

    Alam, Shabnam; Chan, Cory; Qiu, Xing; Shannon, Ian; White, Chantelle L; Sant, Andrea J; Nayak, Jennifer L

    2017-01-01

    A hallmark of the immune response to influenza is repeated encounters with proteins containing both genetically conserved and variable components. Therefore, the B and T cell repertoire is continually being remodeled, with competition between memory and naïve lymphocytes. Our previous work using a mouse model of secondary heterosubtypic influenza infection has shown that this competition results in a focusing of CD4 T cell response specificity towards internal virion proteins with a selective decrease in CD4 T cell reactivity to the novel HA epitopes. Strikingly, this shift in CD4 T cell specificity was associated with a diminished anti-HA antibody response. Here, we sought to determine whether the loss in HA-specific reactivity that occurs as a consequence of immunological memory could be reversed by selectively priming HA-specific CD4 T cells prior to secondary infection. Using a peptide-based priming strategy, we found that selective expansion of the anti-HA CD4 T cell memory repertoire enhanced HA-specific antibody production upon heterosubtypic infection. These results suggest that the potentially deleterious consequences of repeated exposure to conserved influenza internal virion proteins could be reversed by vaccination strategies that selectively arm the HA-specific CD4 T cell compartment. This could be a potentially useful pre-pandemic vaccination strategy to promote accelerated neutralizing antibody production on challenge with a pandemic influenza strain that contains few conserved HA epitopes.

  10. Regulatory immune cells and functions in autoimmunity and transplantation immunology.

    PubMed

    Papp, Gabor; Boros, Peter; Nakken, Britt; Szodoray, Peter; Zeher, Margit

    2017-05-01

    In physiological circumstances, various tolerogenic mechanisms support the protection of self-structures during immune responses. However, quantitative and/or qualitative changes in regulatory immune cells and mediators can evoke auto-reactive immune responses, and upon susceptible genetic background, along with the presence of other concomitant etiological factors, autoimmune disease may develop. In transplant immunology, tolerogenic mechanisms are also critical, since the balance between of alloantigen-reactive effector cells and the regulatory immune cells will ultimately determine whether a graft is accepted or rejected. Better understanding of the immunological tolerance and the potential modulations of immune regulatory processes are crucial for developing effective therapies in autoimmune diseases as well as in organ transplantation. In this review, we focus on the novel insights regarding the impaired immune regulation and other relevant factors contributing to the development of auto-reactive and graft-reactive immune responses in autoimmune diseases and transplant rejection, respectively. We also address some promising approaches for modification of immune-regulatory processes and tolerogenic mechanisms in autoimmunity and solid organ transplantation, which may be beneficial in future therapeutic strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Setting the proportion of CD4+ and CD8+ T-cells co-cultured with canine macrophages infected with Leishmania chagasi.

    PubMed

    Viana, Kelvinson Fernandes; Aguiar-Soares, Rodrigo Dian Oliveira; Ker, Henrique Gama; Resende, Lucilene Aparecida; Souza-Fagundes, Elaine Maria; Dutra, Walderez Ornelas; Fujiwara, Ricardo Toshio; da Silveira-Lemos, Denise; Sant'Ana, Rita de Cássia Oliveira; Wardini, Amanda Brito; Araújo, Márcio Sobreira Silva; Martins-Filho, Olindo Assis; Reis, Alexandre Barbosa; Giunchetti, Rodolfo Cordeiro

    2015-07-30

    New methods for evaluating the canine immune system are necessary, not only to monitor immunological disorders, but also to provide insights for vaccine evaluations and therapeutic interventions, reducing the costs of assays using dog models, and provide a more rational way for analyzing the canine immune response. The present study intended to establish an in vitro toll to assess the parasitological/immunological status of dogs, applicable in pre-clinical trials of vaccinology, prognosis follow-up and therapeutics analysis of canine visceral leishmaniasis. We have evaluated the performance of co-culture systems of canine Leishmania chagasi-infected macrophages with different cell ratios of total lymphocytes or purified CD4(+) and CD8(+) T-cells. Peripheral blood mononuclear cells from uninfected dogs were used for the system set up. Employing the co-culture systems of L. chagasi-infected macrophages and purified CD4(+) or CD8(+) T-cell subsets we observed a microenvironment compatible with the expected status of the analyzed dogs. In this context, it was clearly demonstrated that, at this selected T-cell:target ratio, the adaptive immune response of uninfected dogs, composed by L. chagasi-unprimed T-cells was not able to perform the in vitro killing of L. chagasi-infected macrophages. Our data demonstrated that the co-culture system with T-cells from uninfected dogs at 1:5 and 1:2 ratio did not control the infection, yielding to patent in vitro parasitism (≥ 80%), low NO production (≤ 5 μM) and IL-10 modulated (IFN-γ/IL-10 ≤ 2) immunological profile in vitro. CD4(+) or CD8(+) T-cells at 1:5 or 1:2 ratio to L. chagasi-infected macrophages seems to be ideal for in vitro assays. This co-culture system may have great potential as a canine immunological analysis method, as well as in vaccine evaluations, prognosis follow-up and therapeutic interventions. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Immunological abnormalities associated with hereditary haemorrhagic telangiectasia.

    PubMed

    Guilhem, A; Malcus, C; Clarivet, B; Plauchu, H; Dupuis-Girod, S

    2013-10-01

    Hereditary haemorrhagic telangiectasia (HHT) is a genetic disorder related to mutations in one of the coreceptors to the transforming growth factor-β superfamily (ALK1 or endoglin). Besides the obvious vascular symptoms (epistaxis and arteriovenous malformations), patients have an unexplained high risk of severe bacterial infections. The aim of the study was to assess the main immunological functions of patients with HHT using the standard biological tests for primary immunodeficiencies. A prospective single-centre study of 42 consecutive adult patients with an established diagnosis of HHT was conducted at the National French HHT Reference Center (Lyon). Lymphocyte subpopulations and proliferation capacity, immunoglobulin levels and neutrophil and monocyte phagocytosis, oxidative burst and chemotaxis were assessed. Innate immunity was not altered in patients with HHT. With regard to adaptive immunity, significant changes were seen in immunological parameters: primarily, a lymphopenia in patients with HHT compared with healthy control subjects affecting mean CD4 (642 cells μL(-1) vs. 832 cells μL(-1) , P < 0.001), CD8 (295 cells μL(-1) vs. 501 cells μL(-1) , P < 0.0001) and natural killer (NK) cells (169 cells μL(-1) vs. 221 cells μL(-1) , P < 0.01), associated with increased levels of immunoglobulins G and A. This lymphopenia mainly concerned naïve T cells. Proliferation capacities of lymphocytes were normal. Lymphopenic patients had a higher frequency of iron supplementation but no increase in infection rate. Lower levels of immunoglobulin M and a higher rate of pulmonary arteriovenous malformations were found amongst patients with a history of severe infection. Patients with HHT exhibit immunological abnormalities including T CD4, T CD8 and NK cell lymphopenia and increased levels of immunoglobulins G and A. The observed low level of immunoglobulin M requires further investigation to determine whether it is a specific risk factor for infection in HHT. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  13. Simultaneous detection of circulating immunological parameters and tumor biomarkers in early stage breast cancer patients during adjuvant chemotherapy.

    PubMed

    Rovati, B; Mariucci, S; Delfanti, S; Grasso, D; Tinelli, C; Torre, C; De Amici, M; Pedrazzoli, P

    2016-06-01

    Chemotherapy-induced immune suppression has mainly been studied in patients with advanced cancer, but the influence of chemotherapy on the immune system in early stage cancer patients has so far not been studied systematically. The aim of the present study was to monitor the immune system during anthracycline- and taxane-based adjuvant chemotherapy in early stage breast cancer patients, to assess the impact of circulating tumor cells on selected immune parameters and to reveal putative angiogenic effects of circulating endothelial cells. Peripheral blood samples from 20 early stage breast cancer patients were analyzed using a flow cytometric multi-color of antibodies to enumerate lymphocyte and dendritic cell subsets, as well as endothelial and tumor cells. An enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of various serological factors. During chemotherapy, all immunological parameters and angiogenesis surrogate biomarkers showed significant decreases. The numbers of circulating tumor cells showed significant inverse correlations with the numbers of T helper cells, a lymphocyte subset directly related to effective anti-tumor responses. Reduced T helper cell numbers may contribute to systemic immunosuppression and, as such, the activation of dormant tumor cells. From our results we conclude that adjuvant chemotherapy suppresses immune function in early stage breast cancer patients. In addition, we conclude that the presence of circulating tumor cells, defined as pan-cytokeratin(+), CD326(+), CD45(-) cells, may serve as an important indicator of a patient's immune status. Further investigations are needed to firmly define circulating tumor cells as a predictor for the success of breast cancer adjuvant chemotherapy.

  14. Detecting proteins in highly autofluorescent cells using quantum dot antibody conjugates.

    PubMed

    Orcutt, Karen M; Ren, Shanshan; Gundersen, Kjell

    2009-01-01

    We have applied quantum dot (Qdot) antibody conjugates as a biomolecular probe for cellular proteins important in biogeochemical cycling in the sea. Conventional immunological methods have been hampered by the strong autofluorescence found in cyanobacteria cells. Qdot conjugates provide an ideal alternative for studies that require long-term imaging of cells such as detection of low abundance cellular antigens by fluorescence microscopy. The advantage of Qdot labeled probes over conventional immunological methods is the photostability of the probe. Phycoerythrin bleaches in cyanobacterial cells under prolonged UV or blue light excitation, which means that the semiconducting nanocrystal probe, the Qdot, can yield a strong fluorescent signal without interference from cellular pigments.

  15. In vivo and in vitro studies into the immunological changes following iodine 131 therapy for Graves' disease.

    PubMed

    Wilson, R; McKillop, J H; Jenkins, C; Thomson, J A

    1991-01-01

    Radio-iodine therapy for Graves' disease is followed by immunological changes in addition to effects on thyroid hormone production. The present study examined these changes and the mechanisms responsible for them. Of the 15 patients enrolled in the study, 10 became hypothyroid in the first year after iodine 131 therapy. Patients who became hypothyroid had a tendency to show a rise in serum thyrotropin receptor antibody levels (30 +/- 14 to 40 +/- 9 units; NS) and a significant rise in immunoglobulin production (324 +/- 153 to 740 +/- 200 ng/ml; P less than 0.0005) from mitogen-stimulated peripheral blood lymphocytes (a measure of B-cell activity) 2 months after iodine 131 therapy. The increases were not seen in the patients who remained euthyroid at 1 year. In vitro studies suggested that the rise in B-cell activity is due to a fall in suppressor T cell numbers, a change shown to occur following iodine 131 therapy in previous studies. Our results indicate that immunological changes do arise after iodine 131 therapy for Graves' disease but appear to be confined to patients who subsequently became hypothyroid. It is not possible from this study to determine whether the immunological changes appear as a consequence of thyroidal destruction leading to hypothyroidism or whether they contribute directly to it.

  16. Immunohistochemical analysis of immune response in breast cancer and melanoma patients after laser immunotherapy

    NASA Astrophysics Data System (ADS)

    Nordquist, Robert E.; Bishop, Shelly L.; Ferguson, Halie; Vaughan, Melville B.; Jose, Jessnie; Kastl, Katherine; Nguyen, Long; Li, Xiaosong; Liu, Hong; Chen, Wei R.

    2011-03-01

    Laser immunotherapy (LIT) has shown great promise in pre-clinical studies and preliminary clinical trials. It could not only eradicate treated local tumors but also cause regression and elimination of untreated metastases at distant sites. Combining a selective photothermal therapy with an active immunological stimulation, LIT can induce systemic anti-tumor immune responses. Imiquimod (IMQ), a toll-like receptor agonist, was used for the treatment of late-stage melanoma patients and glycated chitosan (GC), a biological immunological modulator, was used for the treatment of late-stage breast cancer patients, in combination of irradiation of a near-infrared laser light. To observe the immunological changes before and after LIT treatment, the pathological tissues of melanoma and breast cancer patients were processed for immunohistochemical analysis. Our results show that LIT changed the expressions of several crucial T cell types. Specifically, we observed significant decreases of CD3+ T-cells and a significant increase of CD4+,CD8+, and CD68+ T-cells in the tumor samples after LIT treatment. While not conclusive, our study could shed light on one the possible mechanisms of anti-tumor immune responses induced by LIT. Further studies will be conducted to identify immunological biomarkers associated with LIT-induced clinical response.

  17. Immunologic Memory Induced by a Glycoconjugate Vaccine in a Murine Adoptive Lymphocyte Transfer Model

    PubMed Central

    Guttormsen, Hilde-Kari; Wetzler, Lee M.; Finberg, Robert W.; Kasper, Dennis L.

    1998-01-01

    We have developed an adoptive cell transfer model in mice to study the ability of a glycoprotein conjugate vaccine to induce immunologic memory for the polysaccharide moiety. We used type III capsular polysaccharide from the clinically relevant pathogen group B streptococci conjugated to tetanus toxoid (GBSIII-TT) as our model vaccine. GBS are a major cause of neonatal infections in humans, and type-specific antibodies to the capsular polysaccharide protect against invasive disease. Adoptive transfer of splenocytes from mice immunized with the GBSIII-TT conjugate vaccine conferred anti-polysaccharide immunologic memory to naive recipient mice. The transfer of memory occurred in a dose-dependent manner. The observed anamnestic immune response was characterized by (i) more rapid kinetics, (ii) isotype switching from immunoglobulin M (IgM) to IgG, and (iii) 10-fold-higher levels of type III-specific IgG antibody than for the primary response in animals with cells transferred from placebo-immunized mice. The adoptive cell transfer model described in this paper can be used for at least two purposes: (i) to evaluate conjugate vaccines with different physicochemical properties for their ability to induce immunologic memory and (ii) to study the cellular interactions required for an immune response to these molecules. PMID:9573085

  18. [Impact of highly active antiretroviral therapy in the clinical, immunological and virological response from AIDS patients].

    PubMed

    Reyes Corcho, Andrés; Mosquera Fernández, Miguel A; Bouza Jiménez, Yanelka; Pérez Avila, Jorge; Hernández, Vivian; Jam Morales, Blas; Alvarez Amador, Gustavo; Bouza Jiménez, Yadira

    2007-01-01

    A longitudinal prospective study was made to evaluate the clinical, immunological and virological response of a cohort of 34 AIDS patients in Cienfuegos provinces, who had been treated with highly active antiretroviral therapy (HAART). Males comprised 67.6% of the total number and average age was 32 years. Sexual infection path was identified in 91.2% of cases. The CD4+ T counting under 200 cells defined AIDS in 79.4% of individuals. Twenty six patients suffered minor opportunistic infections (76.5%) whereas 32.4% got sick due to some major opportunistic disease prior to the therapy. After this therapy, these frequencies lowered to 20.6% and 11.8% respectively. Average CD4+ counting at the starting of HAART was 196 cell/mm3 and exceeded 400 cells in the rest of further countings. From a PVC average of 15 251 copies/mL one year after therapy, this figure reduced to 8 048 copies at 2 years. Only 10 cases required hospitalization after a HAART (29.4%). Treatment adherence reached over 80% and was correlated to immunological restoration. Survival after one year was 100% and only 2 patients died in the following 4 years. The positive impact of HAART on the frequency of opportunistic infections, immunological restoration and survival was proved.

  19. The dynamics of health in wild field vole populations: a haematological perspective

    PubMed Central

    Beldomenico, Pablo M.; Telfer, Sandra; Gebert, Stephanie; Lukomski, Lukasz; Bennett, Malcolm; Begon, Michael

    2010-01-01

    Summary Pathogens have been proposed as potentially important drivers of population dynamics, but while a few studies have investigated the impact of specific pathogens, the wealth of information provided by general indices of health has hardly been exploited. By evaluating haematological parameters in wild populations, our knowledge of the dynamics of health and infection may be better understood. Here, haematological dynamics in natural populations of field voles are investigated to determine environmental and host factors associated with indicators of inflammatory response (counts of monocytes and neutrophils) and of condition: measures of immunological investment (lymphocyte counts) and aerobic capacity (red blood cell counts). Individuals from three field vole populations were sampled monthly for 2 years. Comparisons with individuals kept under controlled conditions facilitated interpretation of field data. Mixed effects models were developed for each cell type to evaluate separately the effects of various factors on post-juvenile voles and mature breeding females. There were three well-characterized ‘physiological’ seasons. The immunological investment appeared lowest in winter (lowest lymphocyte counts), but red blood cells were at their highest levels and indices of inflammatory response at their lowest. Spring was characterized by a fall in red blood cell counts and peaks in indicators of inflammatory response. During the course of summer—autumn, red blood cell counts recovered, the immunological investment increased and the indicators of inflammatory response decreased. Poor body condition appeared to affect the inflammatory response (lower neutrophil and monocyte peaks) and the immunological investment (lower lymphocyte counts), providing evidence that the capacity to fight infection is dependent upon host condition. Breeding early in the year was most likely in females in better condition (high lymphocyte and red blood cell counts). All the haematological parameters were affected adversely by high population densities. PMID:18564292

  20. Modulation of Human Allogeneic and Syngeneic Pluripotent Stem Cells and Immunological Implications for Transplantation

    PubMed Central

    Sackett, S.D.; Brown, M.E.; Tremmel, D.M.; Ellis, T.; Burlingham, W.J.; Odorico, J.S.

    2016-01-01

    Tissues derived from induced pluripotent stem cells (iPSCs) are a promising source of cells for building various regenerative medicine therapies; from simply transplanting cells to reseeding decellularized organs to reconstructing multicellular tissues. Although reprogramming strategies for producing iPSCs have improved, the clinical use of iPSCs is limited by the presence of unique human leukocyte antigen (HLA) genes, the main immunologic barrier to transplantation. In order to overcome the immunological hurdles associated with allogeneic tissues and organs, the generation of patient-histocompatible iPSCs (autologous or HLA-matched cells) provides an attractive platform for personalized medicine. However, concerns have been raised as to the fitness, safety and immunogenicity of iPSC derivatives because of variable differentiation potential of different lines and the identification of genetic and epigenetic aberrations that can occur during the reprogramming process. In addition, significant cost and regulatory barriers may deter commercialization of patient specific therapies in the short-term. Nonetheless, recent studies provide some evidence of immunological benefit for using autologous iPSCs. Yet, more studies are needed to evaluate the immunogenicity of various autologous and allogeneic human iPSC-derived cell types as well as test various methods to abrogate rejection. Here, we present perspectives of using allogeneic vs autologous iPSCs for transplantation therapies and the advantages and disadvantages of each related to differentiation potential, immunogenicity, genetic stability and tumorigenicity. We also review the current literature on the immunogenicity of syngeneic iPSCs and discuss evidence that questions the feasibility of HLA-matched iPSC banks. Finally, we will discuss emerging methods of abrogating or reducing host immune responses to PSC derivatives. PMID:26970668

  1. Modulation of human allogeneic and syngeneic pluripotent stem cells and immunological implications for transplantation.

    PubMed

    Sackett, S D; Brown, M E; Tremmel, D M; Ellis, T; Burlingham, W J; Odorico, J S

    2016-04-01

    Tissues derived from induced pluripotent stem cells (iPSCs) are a promising source of cells for building various regenerative medicine therapies; from simply transplanting cells to reseeding decellularized organs to reconstructing multicellular tissues. Although reprogramming strategies for producing iPSCs have improved, the clinical use of iPSCs is limited by the presence of unique human leukocyte antigen (HLA) genes, the main immunologic barrier to transplantation. In order to overcome the immunological hurdles associated with allogeneic tissues and organs, the generation of patient-histocompatible iPSCs (autologous or HLA-matched cells) provides an attractive platform for personalized medicine. However, concerns have been raised as to the fitness, safety and immunogenicity of iPSC derivatives because of variable differentiation potential of different lines and the identification of genetic and epigenetic aberrations that can occur during the reprogramming process. In addition, significant cost and regulatory barriers may deter commercialization of patient specific therapies in the short-term. Nonetheless, recent studies provide some evidence of immunological benefit for using autologous iPSCs. Yet, more studies are needed to evaluate the immunogenicity of various autologous and allogeneic human iPSC-derived cell types as well as test various methods to abrogate rejection. Here, we present perspectives of using allogeneic vs. autologous iPSCs for transplantation therapies and the advantages and disadvantages of each related to differentiation potential, immunogenicity, genetic stability and tumorigenicity. We also review the current literature on the immunogenicity of syngeneic iPSCs and discuss evidence that questions the feasibility of HLA-matched iPSC banks. Finally, we will discuss emerging methods of abrogating or reducing host immune responses to PSC derivatives. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The immunological response and post-treatment survival of DC-vaccinated melanoma patients are associated with increased Th1/Th17 and reduced Th3 cytokine responses.

    PubMed

    Durán-Aniotz, Claudia; Segal, Gabriela; Salazar, Lorena; Pereda, Cristián; Falcón, Cristián; Tempio, Fabián; Aguilera, Raquel; González, Rodrigo; Pérez, Claudio; Tittarelli, Andrés; Catalán, Diego; Nervi, Bruno; Larrondo, Milton; Salazar-Onfray, Flavio; López, Mercedes N

    2013-04-01

    Immunization with autologous dendritic cells (DCs) loaded with a heat shock-conditioned allogeneic melanoma cell lysate caused lysate-specific delayed type hypersensitivity (DTH) reactions in a number of patients. These responses correlated with a threefold prolonged long-term survival of DTH(+) with respect to DTH(-) unresponsive patients. Herein, we investigated whether the immunological reactions associated with prolonged survival were related to dissimilar cellular and cytokine responses in blood. Healthy donors and melanoma patient's lymphocytes obtained from blood before and after vaccinations and from DTH biopsies were analyzed for T cell population distribution and cytokine release. Peripheral blood lymphocytes from melanoma patients have an increased proportion of Th3 (CD4(+) TGF-β(+)) regulatory T lymphocytes compared with healthy donors. Notably, DTH(+) patients showed a threefold reduction of Th3 cells compared with DTH(-) patients after DCs vaccine treatment. Furthermore, DCs vaccination resulted in a threefold augment of the proportion of IFN-γ releasing Th1 cells and in a twofold increase of the IL-17-producing Th17 population in DTH(+) with respect to DTH(-) patients. Increased Th1 and Th17 cell populations in both blood and DTH-derived tissues suggest that these profiles may be related to a more effective anti-melanoma response. Our results indicate that increased proinflammatory cytokine profiles are related to detectable immunological responses in vivo (DTH) and to prolonged patient survival. Our study contributes to the understanding of immunological responses produced by DCs vaccines and to the identification of follow-up markers for patient outcome that may allow a closer individual monitoring of patients.

  3. Interpreting T-Cell Cross-reactivity through Structure: Implications for TCR-Based Cancer Immunotherapy.

    PubMed

    Antunes, Dinler A; Rigo, Maurício M; Freitas, Martiela V; Mendes, Marcus F A; Sinigaglia, Marialva; Lizée, Gregory; Kavraki, Lydia E; Selin, Liisa K; Cornberg, Markus; Vieira, Gustavo F

    2017-01-01

    Immunotherapy has become one of the most promising avenues for cancer treatment, making use of the patient's own immune system to eliminate cancer cells. Clinical trials with T-cell-based immunotherapies have shown dramatic tumor regressions, being effective in multiple cancer types and for many different patients. Unfortunately, this progress was tempered by reports of serious (even fatal) side effects. Such therapies rely on the use of cytotoxic T-cell lymphocytes, an essential part of the adaptive immune system. Cytotoxic T-cells are regularly involved in surveillance and are capable of both eliminating diseased cells and generating protective immunological memory. The specificity of a given T-cell is determined through the structural interaction between the T-cell receptor (TCR) and a peptide-loaded major histocompatibility complex (MHC); i.e., an intracellular peptide-ligand displayed at the cell surface by an MHC molecule. However, a given TCR can recognize different peptide-MHC (pMHC) complexes, which can sometimes trigger an unwanted response that is referred to as T-cell cross-reactivity. This has become a major safety issue in TCR-based immunotherapies, following reports of melanoma-specific T-cells causing cytotoxic damage to healthy tissues (e.g., heart and nervous system). T-cell cross-reactivity has been extensively studied in the context of viral immunology and tissue transplantation. Growing evidence suggests that it is largely driven by structural similarities of seemingly unrelated pMHC complexes. Here, we review recent reports about the existence of pMHC "hot-spots" for cross-reactivity and propose the existence of a TCR interaction profile (i.e., a refinement of a more general TCR footprint in which some amino acid residues are more important than others in triggering T-cell cross-reactivity). We also make use of available structural data and pMHC models to interpret previously reported cross-reactivity patterns among virus-derived peptides. Our study provides further evidence that structural analyses of pMHC complexes can be used to assess the intrinsic likelihood of cross-reactivity among peptide-targets. Furthermore, we hypothesize that some apparent inconsistencies in reported cross-reactivities, such as a preferential directionality, might also be driven by particular structural features of the targeted pMHC complex. Finally, we explain why TCR-based immunotherapy provides a special context in which meaningful T-cell cross-reactivity predictions can be made.

  4. Interpreting T-Cell Cross-reactivity through Structure: Implications for TCR-Based Cancer Immunotherapy

    PubMed Central

    Antunes, Dinler A.; Rigo, Maurício M.; Freitas, Martiela V.; Mendes, Marcus F. A.; Sinigaglia, Marialva; Lizée, Gregory; Kavraki, Lydia E.; Selin, Liisa K.; Cornberg, Markus; Vieira, Gustavo F.

    2017-01-01

    Immunotherapy has become one of the most promising avenues for cancer treatment, making use of the patient’s own immune system to eliminate cancer cells. Clinical trials with T-cell-based immunotherapies have shown dramatic tumor regressions, being effective in multiple cancer types and for many different patients. Unfortunately, this progress was tempered by reports of serious (even fatal) side effects. Such therapies rely on the use of cytotoxic T-cell lymphocytes, an essential part of the adaptive immune system. Cytotoxic T-cells are regularly involved in surveillance and are capable of both eliminating diseased cells and generating protective immunological memory. The specificity of a given T-cell is determined through the structural interaction between the T-cell receptor (TCR) and a peptide-loaded major histocompatibility complex (MHC); i.e., an intracellular peptide–ligand displayed at the cell surface by an MHC molecule. However, a given TCR can recognize different peptide–MHC (pMHC) complexes, which can sometimes trigger an unwanted response that is referred to as T-cell cross-reactivity. This has become a major safety issue in TCR-based immunotherapies, following reports of melanoma-specific T-cells causing cytotoxic damage to healthy tissues (e.g., heart and nervous system). T-cell cross-reactivity has been extensively studied in the context of viral immunology and tissue transplantation. Growing evidence suggests that it is largely driven by structural similarities of seemingly unrelated pMHC complexes. Here, we review recent reports about the existence of pMHC “hot-spots” for cross-reactivity and propose the existence of a TCR interaction profile (i.e., a refinement of a more general TCR footprint in which some amino acid residues are more important than others in triggering T-cell cross-reactivity). We also make use of available structural data and pMHC models to interpret previously reported cross-reactivity patterns among virus-derived peptides. Our study provides further evidence that structural analyses of pMHC complexes can be used to assess the intrinsic likelihood of cross-reactivity among peptide-targets. Furthermore, we hypothesize that some apparent inconsistencies in reported cross-reactivities, such as a preferential directionality, might also be driven by particular structural features of the targeted pMHC complex. Finally, we explain why TCR-based immunotherapy provides a special context in which meaningful T-cell cross-reactivity predictions can be made. PMID:29046675

  5. Differential segregation in a cell-cell contact interface: the dynamics of the immunological synapse.

    PubMed Central

    Burroughs, Nigel John; Wülfing, Christoph

    2002-01-01

    Receptor-ligand couples in the cell-cell contact interface between a T cell and an antigen-presenting cell form distinct geometric patterns and undergo spatial rearrangement within the contact interface. Spatial segregation of the antigen and adhesion receptors occurs within seconds of contact, central aggregation of the antigen receptor then occurring over 1-5 min. This structure, called the immunological synapse, is becoming a paradigm for localized signaling. However, the mechanisms driving its formation, in particular spatial segregation, are currently not understood. With a reaction diffusion model incorporating thermodynamics, elasticity, and reaction kinetics, we examine the hypothesis that differing bond lengths (extracellular domain size) is the driving force behind molecular segregation. We derive two key conditions necessary for segregation: a thermodynamic criterion on the effective bond elasticity and a requirement for the seeding/nucleation of domains. Domains have a minimum length scale and will only spontaneously coalesce/aggregate if the contact area is small or the membrane relaxation distance large. Otherwise, differential attachment of receptors to the cytoskeleton is required for central aggregation. Our analysis indicates that differential bond lengths have a significant effect on synapse dynamics, i.e., there is a significant contribution to the free energy of the interaction, suggesting that segregation by differential bond length is important in cell-cell contact interfaces and the immunological synapse. PMID:12324401

  6. Immune modulation of i.v. immunoglobulin in women with reproductive failure.

    PubMed

    Han, Ae R; Lee, Sung K

    2018-04-01

    The mechanism of maternal immune tolerance of the semi-allogenic fetus has been explored extensively. The immune reaction to defend from invasion by pathogenic microorganisms should be maintained during pregnancy. An imbalance between the immune tolerance to the fetus and immune activation to the pathogenic organisms is associated with poor pregnancy outcomes. This emphasizes that the immune mechanism of successful reproduction is not just immune suppression, but adequate immune modulation. In this review, the action of i.v. immunoglobulin G (IVIg) on the immune system and its efficacy in reproductive failure (RF) was summarized. Also suggested is the indication of IVIg therapy for women with RF. Based on the mechanism of the immune regulation of IVIg and following confirmation of the immune modulation effects of it in various aberrant immune parameters in patients with RF, it is obvious that IVIg is effective in recurrent pregnancy losses and repeated implantation failures with immunologic disturbances. The authors recommend IVIg therapy in patients with RF with aberrant cellular immunologic parameters, including a high natural killer cell proportion and its cytotoxicity or elevated T helper 1 to T helper 2 ratio, based on each clinic's cut-off values. Further clinical studies about the safety of IVIg in the fetus and its efficacy in other immunologic abnormalities of RF are needed.

  7. Comparison of Immunological Characteristics of Mesenchymal Stem Cells Derived from Human Embryonic Stem Cells and Bone Marrow

    PubMed Central

    Fu, Xin; Chen, Yao; Xie, Fang-Nan; Dong, Ping; Liu, Wen-bo; Cao, Yilin

    2015-01-01

    Mesenchymal stem cell (MSC) has great potential for both regenerative medicine and immunotherapy due to its multipotency and immunomodulatory property. The derivation of MSCs from human tissues involves an invasive procedure and the obtained MSCs often suffer from inconsistent quality. To overcome these issues, the approaches of deriving a highly potent and replenishable population of MSCs from human embryonic stem cells (hESCs) were established. However, few studies compared the immunological characteristics of MSCs derived from hESCs with tissue-derived MSCs or demonstrated differences and the underlying mechanisms. Here, we differentiated H9 hESCs into MSC-like cells (H9-MSCs) through an embryoid body outgrowth method and compared the immunological characteristics of H9-MSCs with bone marrow-derived MSCs (BMSCs). Both sources of derived cells exhibited typical MSC morphologies and surface marker expressions, as well as multipotency to differentiate into osteogenic and adipogenic lineages. A immunological characterization study showed that H9-MSCs and BMSCs had similar immunoprivileged properties without triggering allogeneic lymphocyte proliferation as well as equivalent immunosuppressive effects on T-cell proliferation induced by either cellular or mitogenic stimuli. Flow cytometry analysis revealed a lower expression of human major histocompatability complex class II molecule human lymphocyte antigen (HLA)-DR and a higher expression of coinhibitory molecule B7-H1 in H9-MSCs than in BMSCs. Interferon gamma (IFN-γ) is a proinflammatory cytokine that can induce the expression of HLA class II molecules in many cell types. Our results showed that pretreatment of H9-MSCs and BMSCs with IFN-γ did not change their immunogenicity and immunosuppressive abilities, but increased the difference between H9-MSCs and BMSCs for their expression of HLA-DR. Further detection of expression of molecules involved in IFN-γ signaling pathways suggested that the lower expression of HLA-DR in H9-MSCs could be partially attributed to the lower expression and the less nuclear translocation of its transcriptional factor CIITA. The present study provides evidence that the hESC-derived MSCs share similar immunogenicity and immunosuppressive abilities with BMSCs, but differ in the expression profile of immunological markers and the responsiveness to certain inflammatory cytokines, which suggests that H9-MSCs could be a safe and efficient candidate for MSC treatment in patients with inflammatory disorders. PMID:25256849

  8. A high dose of intravenous immunoglobulin increases CD94 expression on natural killer cells in women with recurrent spontaneous abortion.

    PubMed

    Shimada, Shigeki; Takeda, Masamitsu; Nishihira, Jun; Kaneuchi, Masanori; Sakuragi, Noriaki; Minakami, Hisanori; Yamada, Hideto

    2009-11-01

    A high dose of intravenous immunoglobulin (HIVIg) therapy is effective in various diseases such as autoimmune diseases, and also is expected to have efficacy in recurrent spontaneous abortion (RSA). The aim of this study was to understand immunological mechanisms of this therapy. By flowcytometric analyses, we examined phenotypic changes of a variety of immunological cells including natural killer (NK) cells, cytotoxic T cells, regulatory T cells and macrophages in peripheral blood of RSA women with HIVIg therapy (n = 8). Expression percentages of inhibitory CD94 on NK cells significantly (P = 0.01) increased after the therapy (58.8 +/- 21.4% versus 71.0 +/- 17.6%). Mechanisms of possible efficacy of HIVIg therapy for RSA may include enhancement of CD94 expression and subsequent suppression of NK cell cytotoxicity.

  9. Interfaces of Malignant and Immunologic Clonal Dynamics in Ovarian Cancer.

    PubMed

    Zhang, Allen W; McPherson, Andrew; Milne, Katy; Kroeger, David R; Hamilton, Phineas T; Miranda, Alex; Funnell, Tyler; Little, Nicole; de Souza, Camila P E; Laan, Sonya; LeDoux, Stacey; Cochrane, Dawn R; Lim, Jamie L P; Yang, Winnie; Roth, Andrew; Smith, Maia A; Ho, Julie; Tse, Kane; Zeng, Thomas; Shlafman, Inna; Mayo, Michael R; Moore, Richard; Failmezger, Henrik; Heindl, Andreas; Wang, Yi Kan; Bashashati, Ali; Grewal, Diljot S; Brown, Scott D; Lai, Daniel; Wan, Adrian N C; Nielsen, Cydney B; Huebner, Curtis; Tessier-Cloutier, Basile; Anglesio, Michael S; Bouchard-Côté, Alexandre; Yuan, Yinyin; Wasserman, Wyeth W; Gilks, C Blake; Karnezis, Anthony N; Aparicio, Samuel; McAlpine, Jessica N; Huntsman, David G; Holt, Robert A; Nelson, Brad H; Shah, Sohrab P

    2018-05-07

    High-grade serous ovarian cancer (HGSC) exhibits extensive malignant clonal diversity with widespread but non-random patterns of disease dissemination. We investigated whether local immune microenvironment factors shape tumor progression properties at the interface of tumor-infiltrating lymphocytes (TILs) and cancer cells. Through multi-region study of 212 samples from 38 patients with whole-genome sequencing, immunohistochemistry, histologic image analysis, gene expression profiling, and T and B cell receptor sequencing, we identified three immunologic subtypes across samples and extensive within-patient diversity. Epithelial CD8+ TILs negatively associated with malignant diversity, reflecting immunological pruning of tumor clones inferred by neoantigen depletion, HLA I loss of heterozygosity, and spatial tracking between T cell and tumor clones. In addition, combinatorial prognostic effects of mutational processes and immune properties were observed, illuminating how specific genomic aberration types associate with immune response and impact survival. We conclude that within-patient spatial immune microenvironment variation shapes intraperitoneal malignant spread, provoking new evolutionary perspectives on HGSC clonal dispersion. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Effects of feed-borne Fusarium mycotoxins on hematology and immunology of turkeys.

    PubMed

    Chowdhury, S R; Smith, T K; Boermans, H J; Woodward, B

    2005-11-01

    Feeding grains naturally-contaminated with Fusarium mycotoxins has been shown to alter the metabolism and performance of turkeys. The objectives of the current experiment were to examine the effects of feeding turkeys with grains naturally contaminated with Fusarium mycotoxins on their hematology and immunological indices (including functions), and the possible protective effect of feeding a polymeric glucomannan mycotoxin adsorbent (GMA). Two hundred twenty-five 1-d-old male turkey poults were fed corn, wheat, and soybean meal-based starter (0 to 3 wk), grower (4 to 6 wk), developer (7 to 9 wk), and finisher (10 to 12 wk) diets formulated with uncontaminated grains, contaminated grains, or contaminated grains with 0.2% GMA. The chronic consumption of Fusarium mycotoxins caused minor and transient changes in hematocrit (0.33 L/L) and hemoglobin (10(6) g/L) concentrations as well as in blood basophil (0.13 x 10(9)/L) and monocyte counts (3.42 x 10(9)/L) compared with controls. Supplementation of the contaminated diet with GMA prevented these effects on blood cell counts. Biliary IgA concentrations were significantly increased (4.45-fold) when birds were fed contaminated grains compared with controls, but serum IgA concentrations were not affected. Contact hypersensitivity to dinitrochlorobenzene, which is a CD8+ T-cell-mediated delayed-type hypersensitivity response, was decreased (48%) by feed-borne mycotoxins compared with the control. By contrast, the primary and secondary antibody response to sheep red blood cells, a CD4+ T-cell-mediated response, was not affected. It was concluded that chronic consumption of grains naturally contaminated with Fusarium mycotoxins exerts only minor adverse effects on the hematology and some immunological indices of turkeys. Consumption of grains naturally contaminated with Fusarium mycotoxins may, however, increase the susceptibility of turkeys to infectious agents against which CD8+ T cells play a major role in defense.

  11. The top ten clues to understand the origin of chronic lymphocytic leukemia (CLL).

    PubMed

    García-Muñoz, Ricardo; Feliu, Jesús; Llorente, Luis

    2015-01-01

    The fundamental task of the immune system is to protect the individual from infectious organisms without serious injury to self. The essence of acquired immunity is molecular self/non self discrimination. Chronic lymphocytic leukemia is characterized by a global failure of immune system that begins with the failure of immunological tolerance mechanisms (autoimmunity) and finish with the incapacity to response to non-self antigens (immunodeficiency). Immunological tolerance mechanisms are involved in chronic lymphocytic leukemia (CLL) development. During B cell development some self-reactive B cells acquire a special BCR that recognize their own BCR. This self-autoantibody-self BCR interaction promotes survival, differentiation and proliferation of self-reactive B cells. Continuous self-autoantibody-self BCR interaction cross-linking induces an increased rate of surface BCR elimination, CD5+ expression, receptor editing and anergy. Unfortunately, some times this mechanisms increase genomic instability and promote additional genetic damage that immortalize self-reactive B cells and convert them into CLL like clones with the capability of clonal evolution and transformed CLL B cells. This review summarizes the immunological effects of continuous self-autoantibody-self BCR interaction cross-linking in the surface of self-reactive B cells and their role in CLL development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Regionally compartmentalized resident memory T cells mediate naturally acquired protection against pneumococcal pneumonia.

    PubMed

    Smith, N Ms; Wasserman, G A; Coleman, F T; Hilliard, K L; Yamamoto, K; Lipsitz, E; Malley, R; Dooms, H; Jones, M R; Quinton, L J; Mizgerd, J P

    2018-01-01

    As children age, they become less susceptible to the diverse microbes causing pneumonia. These microbes are pathobionts that infect the respiratory tract multiple times during childhood, generating immunological memory. To elucidate mechanisms of such naturally acquired immune protection against pneumonia, we modeled a relevant immunological history in mice by infecting their airways with mismatched serotypes of Streptococcus pneumoniae (pneumococcus). Previous pneumococcal infections provided protection against a heterotypic, highly virulent pneumococcus, as evidenced by reduced bacterial burdens and long-term sterilizing immunity. This protection was diminished by depletion of CD4 + cells prior to the final infection. The resolution of previous pneumococcal infections seeded the lungs with CD4 + resident memory T (T RM ) cells, which responded to heterotypic pneumococcus stimulation by producing multiple effector cytokines, particularly interleukin (IL)-17A. Following lobar pneumonias, IL-17-producing CD4 + T RM cells were confined to the previously infected lobe, rather than dispersed throughout the lower respiratory tract. Importantly, pneumonia protection also was confined to that immunologically experienced lobe. Thus regionally localized memory cells provide superior local tissue protection to that mediated by systemic or central memory immune defenses. We conclude that respiratory bacterial infections elicit CD4 + T RM cells that fill a local niche to optimize heterotypic protection of the affected tissue, preventing pneumonia.

  13. Current status and future challenges in T-cell receptor/peptide/MHC molecular dynamics simulations.

    PubMed

    Knapp, Bernhard; Demharter, Samuel; Esmaielbeiki, Reyhaneh; Deane, Charlotte M

    2015-11-01

    The interaction between T-cell receptors (TCRs) and major histocompatibility complex (MHC)-bound epitopes is one of the most important processes in the adaptive human immune response. Several hypotheses on TCR triggering have been proposed. Many of them involve structural and dynamical adjustments in the TCR/peptide/MHC interface. Molecular Dynamics (MD) simulations are a computational technique that is used to investigate structural dynamics at atomic resolution. Such simulations are used to improve understanding of signalling on a structural level. Here we review how MD simulations of the TCR/peptide/MHC complex have given insight into immune system reactions not achievable with current experimental methods. Firstly, we summarize methods of TCR/peptide/MHC complex modelling and TCR/peptide/MHC MD trajectory analysis methods. Then we classify recently published simulations into categories and give an overview of approaches and results. We show that current studies do not come to the same conclusions about TCR/peptide/MHC interactions. This discrepancy might be caused by too small sample sizes or intrinsic differences between each interaction process. As computational power increases future studies will be able to and should have larger sample sizes, longer runtimes and additional parts of the immunological synapse included. © The Author 2015. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

  14. Effects of dietary administration of stinging nettle (Urtica dioica) on the growth performance, biochemical, hematological and immunological parameters in juvenile and adult Victoria Labeo (Labeo victorianus) challenged with Aeromonas hydrophila.

    PubMed

    Ngugi, Charles C; Oyoo-Okoth, Elijah; Mugo-Bundi, James; Orina, Paul Sagwe; Chemoiwa, Emily Jepyegon; Aloo, Peninah A

    2015-06-01

    We investigated effects of dietary administration of stinging nettle (Urtica dioica) on growth performance, biochemical, hematological and immunological parameters in juvenile and adult Victoria Labeo (Labeo victorianus) against Aeromonas hydrophila. Fish were divided into 4 groups and fed for 4 and 16 weeks with 0%, 1%, 2% and 5% of U. dioica incorporated into the diet. Use of U. dioica in the diet resulted in improved biochemical, hematological and immunological parameters. Among the biochemical parameters; plasma cortisol, glucose, triglyceride and cholesterol decreased while total protein and albumin in fish increased with increasing dietary inclusion of U. dioica. Among the haematology parameters: red blood cell (RBC), white blood cell (WBC) counts, haematocrit (Htc), mean cell haemoglobin (MCH), mean cell haemoglobin concentration (MCHC) and netrophiles increased with increasing dietary inclusion levels of U. dioica, some depending on the fish age. Serum immunoglobulins, lysozyme activity and respiratory burst were the main immunological parameters in the adult and juvenile L. victorianus measured and they all increased with increasing herbal inclusion of U. dioica in the diet. Dietary incorporation of U. dioica at 5% showed significantly higher relative percentage survival (up to 95%) against A. hydrophila. The current results demonstrate that using U. dioica can stimulate fish immunity and make L. victorianus more resistant to bacterial infection (A. hydrophila). Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Molecular detection and immunological localization of gill Na+/H+ exchanger in the dogfish (Squalus acanthias).

    PubMed

    Claiborne, James B; Choe, Keith P; Morrison-Shetlar, Alison I; Weakley, Jill C; Havird, Justin; Freiji, Abe; Evans, David H; Edwards, Susan L

    2008-03-01

    The dogfish (Squalus acanthias) can make rapid adjustments to gill acid-base transfers to compensate for internal acidosis/alkalosis. Branchial Na+/H+ exchange (NHE) has been postulated as one mechanism driving the excretion of H+ following acidosis. We have cloned gill cDNA that includes an open reading frame coding for a 770-residue protein most homologous (approximately 71%) to mammalian NHE2. RT-PCR revealed NHE2 transcripts predominantly in gill, stomach, rectal gland, intestine, and kidney. In situ hybridization with an antisense probe against NHE2 in gill sections revealed a strong mRNA signal from a subset of interlamellar and lamellae cells. We developed dogfish-specific polyclonal antibodies against NHE2 that detected a approximately 70-kDa protein in Western blots and immunologically recognized branchial cells having two patterns of protein expression. Cytoplasmic and apical NHE2 immunoreactivity were observed in cells coexpressing basolateral Na+-K+-ATPase. Other large ovoid cells more generally staining for NHE2 also were strongly positive for basolateral H+-ATPase. Gill mRNA levels for NHE2 and H+-ATPase did not change following systemic acidosis (as measured by quantitative PCR 2 h after a 1- or 2-meq/kg acid infusion). These data indicate that posttranslational adjustments of NHE2 and other transport systems (e.g., NHE3) following acidosis may be of importance in the short-term pH adjustment and net branchial H+ efflux observed in vivo. NHE2 may play multiple roles in the gills, involved with H+ efflux from acid-secreting cells, basolateral H+ reabsorption for pHi regulation, and in parallel with H+-ATPase for the generation of HCO3(-) in base-secreting cells.

  16. Immunological targeting of tumor cells undergoing an epithelial-mesenchymal transition via a recombinant brachyury-yeast vaccine

    PubMed Central

    Jales, Alessandra; Huang, Bruce; Fernando, Romaine I.; Hodge, James W.; Ardiani, Andressa; Apelian, David

    2013-01-01

    The embryonic T-box transcription factor brachyury is aberrantly expressed in a range of human tumors. Previous studies have demonstrated that brachyury is a driver of the epithelial-mesenchymal transition (EMT), a process associated with cancer progression. Brachyury expression in human tumor cells enhances tumor invasiveness in vitro and metastasis in vivo, and induces resistance to various conventional therapeutics including chemotherapy and radiation. These characteristics, and the selective expression of brachyury for a range of human tumor types vs. normal adult tissues, make brachyury an attractive tumor target. Due to its intracellular localization and the “undruggable” character of transcription factors, available options to target brachyury are currently limited. Here we report on the development and characterization of an immunological platform for the efficient targeting of brachyury-positive tumors consisting of a heat-killed, recombinant Saccharomyces cerevisiae (yeast)–brachyury vector-based vaccine (designated as GI-6301) that expresses the full-length human brachyury protein. We demonstrate that human dendritic cells treated with recombinant yeast-brachyury can activate and expand brachyury-specific CD4+ and CD8+ T cells in vitro that, in turn, can effectively lyse human tumor cells expressing the brachyury protein. Vaccination of mice with recombinant yeast-brachyury is also shown here to elicit brachyury-specific CD4+ and CD8+ T-cell responses, and to induce anti-tumor immunity in the absence of toxicity. Based on these results, a Phase I clinical trial of GI-6301 is currently ongoing in patients with advanced tumors; to our knowledge, this is the first vaccine platform aimed at targeting a driver of tumor EMT that has successfully reached the clinical stage. PMID:24125763

  17. Understanding immunology via engineering design: the role of mathematical prototyping.

    PubMed

    Klinke, David J; Wang, Qing

    2012-01-01

    A major challenge in immunology is how to translate data into knowledge given the inherent complexity and dynamics of human physiology. Both the physiology and engineering communities have rich histories in applying computational approaches to translate data obtained from complex systems into knowledge of system behavior. However, there are some differences in how disciplines approach problems. By referring to mathematical models as mathematical prototypes, we aim to highlight aspects related to the process (i.e., prototyping) rather than the product (i.e., the model). The objective of this paper is to review how two related engineering concepts, specifically prototyping and "fitness for use," can be applied to overcome the pressing challenge in translating data into improved knowledge of basic immunology that can be used to improve therapies for disease. These concepts are illustrated using two immunology-related examples. The prototypes presented focus on the beta cell mass at the onset of type 1 diabetes and the dynamics of dendritic cells in the lung. This paper is intended to illustrate some of the nuances associated with applying mathematical modeling to improve understanding of the dynamics of disease progression in humans.

  18. The host immunological response to cancer therapy: An emerging concept in tumor biology.

    PubMed

    Voloshin, Tali; Voest, Emile E; Shaked, Yuval

    2013-07-01

    Almost any type of anti-cancer treatment including chemotherapy, radiation, surgery and targeted drugs can induce host molecular and cellular immunological effects which, in turn, can lead to tumor outgrowth and relapse despite an initial successful therapy outcome. Tumor relapse due to host immunological effects is attributed to angiogenesis, tumor cell dissemination from the primary tumors and seeding at metastatic sites. This short review will describe the types of host cells that participate in this process, the types of factors secreted from the host following therapy that can promote tumor re-growth, and the possible implications of this unique and yet only partially-known process. It is postulated that blocking these specific immunological effects in the reactive host in response to cancer therapy may aid in identifying new host-dependent targets for cancer, which in combination with conventional treatments can prolong therapy efficacy and extend survival. Additional studies investigating this specific research direction-both in preclinical models and in the clinical setting are essential in order to advance our understanding of how tumors relapse and evade therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Peptide-MHC Class I Tetramers Can Fail To Detect Relevant Functional T Cell Clonotypes and Underestimate Antigen-Reactive T Cell Populations.

    PubMed

    Rius, Cristina; Attaf, Meriem; Tungatt, Katie; Bianchi, Valentina; Legut, Mateusz; Bovay, Amandine; Donia, Marco; Thor Straten, Per; Peakman, Mark; Svane, Inge Marie; Ott, Sascha; Connor, Tom; Szomolay, Barbara; Dolton, Garry; Sewell, Andrew K

    2018-04-01

    Peptide-MHC (pMHC) multimers, usually used as streptavidin-based tetramers, have transformed the study of Ag-specific T cells by allowing direct detection, phenotyping, and enumeration within polyclonal T cell populations. These reagents are now a standard part of the immunology toolkit and have been used in many thousands of published studies. Unfortunately, the TCR-affinity threshold required for staining with standard pMHC multimer protocols is higher than that required for efficient T cell activation. This discrepancy makes it possible for pMHC multimer staining to miss fully functional T cells, especially where low-affinity TCRs predominate, such as in MHC class II-restricted responses or those directed against self-antigens. Several recent, somewhat alarming, reports indicate that pMHC staining might fail to detect the majority of functional T cells and have prompted suggestions that T cell immunology has become biased toward the type of cells amenable to detection with multimeric pMHC. We use several viral- and tumor-specific pMHC reagents to compare populations of human T cells stained by standard pMHC protocols and optimized protocols that we have developed. Our results confirm that optimized protocols recover greater populations of T cells that include fully functional T cell clonotypes that cannot be stained by regular pMHC-staining protocols. These results highlight the importance of using optimized procedures that include the use of protein kinase inhibitor and Ab cross-linking during staining to maximize the recovery of Ag-specific T cells and serve to further highlight that many previous quantifications of T cell responses with pMHC reagents are likely to have considerably underestimated the size of the relevant populations. Copyright © 2018 The Authors.

  20. A Lower Baseline CD4/CD8 T-Cell Ratio Is Independently Associated with Immunodiscordant Response to Antiretroviral Therapy in HIV-Infected Subjects

    PubMed Central

    Rosado-Sánchez, I.; Herrero-Fernández, I.; Álvarez-Ríos, A. I.; Genebat, M.; Abad-Carrillo, M. A.; Ruiz-Mateos, E.; Pulido, F.; González-García, J.; Montero, M.; Bernal-Morell, E.; Vidal, F.; Leal, M.

    2017-01-01

    ABSTRACT We explored if baseline CD4/CD8 T-cell ratio is associated with immunodiscordant response to antiretroviral therapy in HIV-infected subjects. Comparing immunodiscordant and immunoconcordant subjects matched by pretreatment CD4 counts, we observed a lower pretreatment CD4/CD8 T-cell ratio in immunodiscordant subjects. Furthermore, pretreatment CD4/CD8 T-cell ratio, but not CD4 counts, correlated with the main immunological alterations observed in immunodiscordants, including increased regulatory T-cell (Treg) frequency and T-cell turnover-related markers. Then, in a larger cohort, only baseline CD4/CD8 T-cell ratio was independently associated with immunodiscordance, after adjusting by the viral CXCR4-tropic HIV variants. Our results suggest that the CD4/CD8 T-cell ratio could be an accurate biomarker of the subjacent immunological damage triggering immunodiscordance. PMID:28559274

  1. Rationale and Design of a Clinical Trial to Evaluate the Safety and Efficacy of Intracoronary Infusion of Allogeneic Human Cardiac Stem Cells in Patients With Acute Myocardial Infarction and Left Ventricular Dysfunction: The Randomized Multicenter Double-Blind Controlled CAREMI Trial (Cardiac Stem Cells in Patients With Acute Myocardial Infarction).

    PubMed

    Sanz-Ruiz, Ricardo; Casado Plasencia, Ana; Borlado, Luis R; Fernández-Santos, María Eugenia; Al-Daccak, Reem; Claus, Piet; Palacios, Itziar; Sádaba, Rafael; Charron, Dominique; Bogaert, Jan; Mulet, Miguel; Yotti, Raquel; Gilaberte, Immaculada; Bernad, Antonio; Bermejo, Javier; Janssens, Stefan; Fernández-Avilés, Franciso

    2017-06-23

    Stem cell therapy has increased the therapeutic armamentarium in the fight against ischemic heart disease and heart failure. The administration of exogenous stem cells has been investigated in patients suffering an acute myocardial infarction, with the final aim of salvaging jeopardized myocardium and preventing left ventricular adverse remodeling and functional deterioration. However, phase I and II clinical trials with autologous and first-generation stem cells have yielded inconsistent benefits and mixed results. In the search for new and more efficient cellular regenerative products, interesting cardioprotective, immunoregulatory, and cardioregenerative properties have been demonstrated for human cardiac stem cells. On the other hand, allogeneic cells show several advantages over autologous sources: they can be produced in large quantities, easily administered off-the-shelf early after an acute myocardial infarction, comply with stringent criteria for product homogeneity, potency, and quality control, and may exhibit a distinctive immunologic behavior. With a promising preclinical background, CAREMI (Cardiac Stem Cells in Patients With Acute Myocardial Infarction) has been designed as a double-blind, 2:1 randomized, controlled, and multicenter clinical trial that will evaluate the safety, feasibility, and efficacy of intracoronary delivery of allogeneic human cardiac stem cell in 55 patients with large acute myocardial infarction, left ventricular dysfunction, and at high risk of developing heart failure. This phase I/II clinical trial represents a novel experience in humans with allogeneic cardiac stem cell in a rigorously imaging-based selected group of acute myocardial infarction patients, with detailed safety immunologic assessments and magnetic resonance imaging-based efficacy end points. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02439398. © 2017 American Heart Association, Inc.

  2. Building tolerance by dismantling synapses: inhibitory receptor signaling in natural killer cells.

    PubMed

    Huse, Morgan; Catherine Milanoski, S; Abeyweera, Thushara P

    2013-01-01

    Cell surface receptors bearing immunotyrosine-based inhibitory motifs (ITIMs) maintain natural killer (NK) cell tolerance to normal host tissues. These receptors are difficult to analyze mechanistically because they block activating responses in a rapid and comprehensive manner. The advent of high-resolution single cell imaging techniques has enabled investigators to explore the cell biological basis of the inhibitory response. Recent studies using these approaches indicate that ITIM-containing receptors function at least in part by structurally undermining the immunological synapse between the NK cell and its target. In this review, we discuss these new advances and how they might relate to what is known about the biochemistry of inhibitory signaling in NK cells and other cell types. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  3. Field Immune Assessment during Simulated Planetary Exploration in the Canadian Arctic

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Lee, Pascal; Stowe, Raymond; Jones, Jeff; Effenhauser, Rainer; Widen, Raymond; Sams, Clarence

    2006-01-01

    Dysregulation of the immune system has been shown to occur during space flight, although the detailed nature of the phenomenon and the clinical risks for exploration class missions has yet to be established. In addition, the growing clinical significance of immune system evaluation combined with epidemic infectious disease rates in third world countries provides a strong rationale for the development of field-compatible clinical immunology techniques and equipment. In July 2002 NASA performed a comprehensive field immunology assessment on crewmembers participating in the Haughton-Mars Project (HMP) on Devon Island in the high Canadian Arctic. The purpose of the study was to evaluate mission-associated effects on the human immune system, as well as to evaluate techniques developed for processing immune samples in remote field locations. Ten HMP-2002 participants volunteered for the study. A field protocol was developed at NASA-JSC for performing sample collection, blood staining/processing for immunophenotype analysis, wholeblood mitogenic culture for functional assessments and cell-sample preservation on-location at Devon Island. Specific assays included peripheral leukocyte distribution; constitutively activated T cells, intracellular cytokine profiles and plasma EBV viral antibody levels. Study timepoints were L-30, midmission and R+60. The protocol developed for immune sample processing in remote field locations functioned properly. Samples were processed in the field location, and stabilized for subsequent analysis at the Johnson Space Center in Houston. The data indicated that some phenotype, immune function and stress hormone changes occurred in the HMP field participants that were largely distinct from pre-mission baseline and post-mission recovery data. These immune changes appear similar to those observed in Astronauts following spaceflight. The sample processing protocol developed for this study may have applications for immune assessment during exploration-class space missions or in remote terrestrial field locations. The data validate the use of the HMP as a ground-based spaceflight/planetary exploration analog for some aspects of human physiology.

  4. Advances in mechanisms of asthma, allergy, and immunology in 2011.

    PubMed

    Boyce, Joshua A; Bochner, Bruce; Finkelman, Fred D; Rothenberg, Marc E

    2012-02-01

    2011 was marked by rapid progress in the identification of basic mechanisms of allergic disease and the translation of these mechanisms into human cell systems. Studies published in the Journal of Allergy and Clinical Immunology this year provided new insights into the molecular determinants of allergenicity, as well as the environmental, cellular, and genetic factors involved in sensitization to allergens. Several articles focused on mechanisms of allergen immunotherapy and the development of novel strategies to achieve tolerance to allergens. Additional studies identified substantial contributions from T(H)17-type cells and cytokines to human disease pathogenesis. Finally, new therapeutic applications of anti-IgE were identified. The highlights of these studies and their potential clinical implications are summarized in this review. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  5. [Metaphors of immunology: war and peace].

    PubMed

    Löwy, I

    1996-01-01

    Immunology has always relied on metaphorical language. In its early beginnings, it varied between bellicose images and images that stressed the interaction of immunity mechanisms with the organism's physiological functions overall. In the late nineteenth century, white blood globules were not only compared to 'border police' assigned to rebuffing intruders -- an army formed to combat the invaders -- but were also described as a physiological mechanism for eliminating aged, dead cells, at times exterminators of foreign bodies. Antibodies were described as very powerful, deadly weapons but also as an integral part of mechanisms that allowed cells to assimilate food. This duality of images holds true today. The article analyzes the emergence and development of these images, relating them to the redefinition of immunology as a science of the self and non-self and dissecting them in light of recent events, such as the Aids epidemic.

  6. Renal and adrenal tumors: Pathology, radiology, ultrasonography, therapy, immunology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lohr, E.; Leder, L.D.

    1987-01-01

    Aspects as diverse as radiology, pathology, urology, pediatrics and immunology have been brought together in one book. The most up-do-date methods of tumor diagnosis by CT, NMR, and ultrasound are covered, as are methods of catheter embolization and radiation techniques in case of primarily inoperable tumors. Contents: Pathology of Renal and Adrenal Neoplasms; Ultrasound Diagnosis of Renal and Pararenal Tumors; Computed-Body-Tomography of Renal Carcinoma and Perirenal Masses; Magnetic Resonance Imaging of Renal Mass Lesions; I-125 Embolotherapy of Renal Tumors; Adrenal Mass Lesions in Infants and Children; Computed Tomography of the Adrenal Glands; Scintigraphic Studies of Renal and Adrenal Function; Surgicalmore » Management of Renal Cell Carcinoma; Operative Therapy of Nephroblastoma; Nonoperative Treatment of Renal Cell Carcinoma; Prenatal Wilms' Tumor; Congenital Neuroblastoma; Nonsurgical Management of Wilms' Tumor; Immunologic Aspects of Malignant Renal Disease.« less

  7. Immunologically augmented skin flap as a novel dendritic cell vaccine against head and neck cancer in a rat model.

    PubMed

    Inoue, Keita; Saegusa, Noriko; Omiya, Maho; Ashizawa, Tadashi; Miyata, Haruo; Komiyama, Masaru; Iizuka, Akira; Kume, Akiko; Sugino, Takashi; Yamaguchi, Ken; Kiyohara, Yoshio; Nakagawa, Masahiro; Akiyama, Yasuto

    2015-02-01

    Local recurrence is a major clinical issue following surgical resection in head and neck cancer, and the dissemination and lymph node metastasis of minimal residual disease is relatively difficult to treat due to the lack of suitable therapeutic approaches. In the present study, we developed and evaluated a novel immunotherapy using a skin flap transfer treated with sensitized dendritic cells (DC), termed the "immuno-flap," in a rat tumor model. After the local round area of skin was resected, SCC-158 cells (a rat head and neck cancer cell line) were inoculated into the muscle surface; lastly, the groin skin flap injected with mature DC was overlaid. Two weeks after the second DC injection, systemic immunological reactions and tumor size were measured. The DC-treated group showed a significant reduction in tumor size compared with the control. Although the induction of CTL activity in spleen cells was marginal, Th1 cytokines such as interleukin-2 and interferon-γ were elevated in the DC-treated group. These results suggest that a novel immunotherapy based on the immuno-flap method has the potential for clinical application to prevent the local recurrence of head and neck cancer patients. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  8. Molecular biology and immunology of head and neck cancer.

    PubMed

    Guo, Theresa; Califano, Joseph A

    2015-07-01

    In recent years, our knowledge and understanding of head and neck squamous cell carcinoma (HNSCC) has expanded dramatically. New high-throughput sequencing technologies have accelerated these discoveries since the first reports of whole-exome sequencing of HNSCC tumors in 2011. In addition, the discovery of human papillomavirus in relationship with oropharyngeal squamous cell carcinoma has shifted our molecular understanding of the disease. New investigation into the role of immune evasion in HNSCC has also led to potential novel therapies based on immune-specific systemic therapies. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Killer artificial antigen-presenting cells: the synthetic embodiment of a ‘guided missile’

    PubMed Central

    Schütz, Christian; Oelke, Mathias; Schneck, Jonathan P; Mackensen, Andreas; Fleck, Martin

    2010-01-01

    At present, the treatment of T-cell-dependent autoimmune diseases relies exclusively on strategies leading to nonspecific suppression of the immune systems causing a substantial reduced ability to control concomitant infections or malignancies. Furthermore, long-term treatment with most drugs is accompanied by several serious adverse effects and does not consequently result in cure of the primary immunological malfunction. By contrast, antigen-specific immunotherapy offers the potential to achieve the highest therapeutic efficiency in accordance with minimal adverse effects. Therefore, several studies have been performed utilizing antigen-presenting cells specifically engineered to deplete allo- or antigen-specific T cells (‘guided missiles’). Many of these strategies take advantage of the Fas/Fas ligand signaling pathway to efficiently induce antigen-presenting cell-mediated apoptosis in targeted T cells. In this article, we discuss the advantages and shortcomings of a novel non-cell-based ‘killer artificial antigen-presenting cell’ strategy, developed to overcome obstacles related to current cell-based approaches for the treatment of T-cell-mediated autoimmunity. PMID:20636007

  10. Cell death and immunity in cancer: From danger signals to mimicry of pathogen defense responses.

    PubMed

    Garg, Abhishek D; Agostinis, Patrizia

    2017-11-01

    The immunogenicity of cancer cells is an emerging determinant of anti-cancer immunotherapy. Beyond developing immunostimulatory regimens like dendritic cell-based vaccines, immune-checkpoint blockers, and adoptive T-cell transfer, investigators are beginning to focus on the immunobiology of dying cancer cells and its relevance for the success of anticancer immunotherapies. It is currently accepted that cancer cells may die in response to anti-cancer therapies through regulated cell death programs, which may either repress or increase their immunogenic potential. In particular, the induction of immunogenic cancer cell death (ICD), which is hallmarked by the emission of damage-associated molecular patterns (DAMPs); molecules analogous to pathogen-associated molecular patterns (PAMPs) acting as danger signals/alarmins, is of great relevance in cancer therapy. These ICD-associated danger signals favor immunomodulatory responses that lead to tumor-associated antigens (TAAs)-directed T-cell immunity, which paves way for the removal of residual, treatment-resistant cancer cells. It is also emerging that cancer cells succumbing to ICD can orchestrate "altered-self mimicry" i.e. mimicry of pathogen defense responses, on the levels of nucleic acids and/or chemokines (resulting in type I interferon/IFN responses or pathogen response-like neutrophil activity). In this review, we exhaustively describe the main molecular, immunological, preclinical, and clinical aspects of immunosuppressive cell death or ICD (with respect to apoptosis, necrosis and necroptosis). We also provide an extensive historical background of these fields, with special attention to the self/non-self and danger models, which have shaped the field of cell death immunology. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Comparative Anatomy of Phagocytic and Immunological Synapses

    PubMed Central

    Niedergang, Florence; Di Bartolo, Vincenzo; Alcover, Andrés

    2016-01-01

    The generation of phagocytic cups and immunological synapses are crucial events of the innate and adaptive immune responses, respectively. They are triggered by distinct immune receptors and performed by different cell types. However, growing experimental evidence shows that a very close series of molecular and cellular events control these two processes. Thus, the tight and dynamic interplay between receptor signaling, actin and microtubule cytoskeleton, and targeted vesicle traffic are all critical features to build functional phagosomes and immunological synapses. Interestingly, both phagocytic cups and immunological synapses display particular spatial and temporal patterns of receptors and signaling molecules, leading to the notion of “phagocytic synapse.” Here, we discuss both types of structures, their organization, and the mechanisms by which they are generated and regulated. PMID:26858721

  12. Influence of space flight conditions on phenotypes and functionality of nephritic immune cells of fish (Xiphophorus helleri)

    NASA Astrophysics Data System (ADS)

    Piepenbreier, K.; Renn, J.; Fischer, R.; Goerlich, R.

    Microgravity is considered to directly perturb a number of immunological and haematological parameters in mammalians, and therefore is of fundamental importance in space biology. The viviparous teleost Xiphophorus helleri (swordtail) was used as a "lower vertebrate model" in the shuttle missions STS-89 (Small Payload) and STS-90 (NEUROLAB). When developing a regenerative aquatic system (like the Closed Equilibrated Biological Aquatic System - C.E.B.A.S.) to produce food fish on long-term space missions, we have to make sure that microgravity and other space conditions do not endanger the animals' health. Immunological aspects are very important in this field. The major research targets were immunological research of accessory (monocytes) and immunoreactive cells (lymphocytes) of the kidney from X. helleri, which were exposed to microgravity in comparison to ground control animals. Cell cycle analysis of the main haematopoetic organ (kidney), cell behaviour, cell cytochemistry, phagocytic ability and in vitro stimulation of immunoreactive cells from kidney after return to earth were investigated. The results are also important for basic research in immunotoxicology and developmental biology. As there is an interrelation between immune cells and bone metabolism, the investigations are also interesting for space medicine. Acknowledgement: This work was supported by the German Aerospace Center (DLR) (50 WB 9412, 50 WB 9996) and the National Aeronautics and Space Administration (NASA 98HEDS-02-418)

  13. Agent-based modeling of the immune system: NetLogo, a promising framework.

    PubMed

    Chiacchio, Ferdinando; Pennisi, Marzio; Russo, Giulia; Motta, Santo; Pappalardo, Francesco

    2014-01-01

    Several components that interact with each other to evolve a complex, and, in some cases, unexpected behavior, represents one of the main and fascinating features of the mammalian immune system. Agent-based modeling and cellular automata belong to a class of discrete mathematical approaches in which entities (agents) sense local information and undertake actions over time according to predefined rules. The strength of this approach is characterized by the appearance of a global behavior that emerges from interactions among agents. This behavior is unpredictable, as it does not follow linear rules. There are a lot of works that investigates the immune system with agent-based modeling and cellular automata. They have shown the ability to see clearly and intuitively into the nature of immunological processes. NetLogo is a multiagent programming language and modeling environment for simulating complex phenomena. It is designed for both research and education and is used across a wide range of disciplines and education levels. In this paper, we summarize NetLogo applications to immunology and, particularly, how this framework can help in the development and formulation of hypotheses that might drive further experimental investigations of disease mechanisms.

  14. Signet-ring cell lymphoma of T-cell origin. An immunocytochemical and ultrastructural study relating giant vacuole formation to cytoplasmic sequestration of surface membrane.

    PubMed

    Grogan, T M; Richter, L C; Payne, C M; Rangel, C S

    1985-09-01

    In contrast to previous accounts of signet-ring lymphoma as a B-cell neoplasm, we report a case of signet-ring, large-cell lymphoma of T-cell lineage. Immunologic and ultrastructural studies were performed on a subcutaneous mass noted initially, as well as on an enlarged lymph node that developed later, in a 69-year-old man. Immunologic assessment indicated strong expression of T-helper antigen (Leu 3a + b), universal T-antigens (Leu 1, 5), and Ia. There was an absence of T-suppressor/cytotoxic antigen (Leu 2a), universal T-antigens (Leu 4, 9), and immunoglobulin light and heavy chains. Collectively, these findings indicate a mature T-cell lymphoma of T-helper type in an activated (Ia+) state. In contrast to previous reports of T-cell and Ia occurring solely as surface antigens, we demonstrated pools of cytoplasmic Leu 1, 3, 5 and Ia that displaced the nucleus. The ultrastructure of the giant cytoplasmic vacuoles was identical to the microvesicle-containing vacuoles reported in signet-ring cell lymphomas of B-cell lineage. In our case of T-cell lineage, we found substantial evidence of endocytosis by the neoplastic cells and numerous giant multivesicular bodies. The pools of cytoplasmic T and Ia antigens may result from abnormal internalization of surface T-antigens or the sequestration of T-antigen-containing Golgi-derived vesicles. Our combined immunologic and ultrastructural findings suggest that aberrant membrane recycling may be the common denominator of signet-ring formation in both B- and T-cell signet-ring lymphomas.

  15. [Development of an incubation system for an inverted microscopy for long-term observation of cell cultures using chamber slides].

    PubMed

    Feicht, W; Buchner, A; Riesenberg, R

    2001-05-01

    Trifunctional bispecific antibodies open up new immunological possibilities in tumour treatment. Prior to clinical application, comprehensive investigations using animal models and in vitro examinations need to be done. To investigate long-term interactions between various immunologically active blood cells and individual tumour cells in the presence of antibodies, we developed an incubation system for experimental cell cultures on an inverted microscope. The system consists of a perspex box with a central moisture chamber with integrated water reservoir, external air circulation heating, and a CO2 supply. The sterile cell cultures are located in the wells of a slide positioned within a depression in the water reservoir. The newly developed incubation system enables continuous observation over the long term of experiments under optimal cell cultures conditions in combination with modern video techniques.

  16. Changes in immunological profile as a function of urbanization and lifestyle

    PubMed Central

    Mbow, Moustapha; de Jong, Sanne E; Meurs, Lynn; Mboup, Souleymane; Dieye, Tandakha Ndiaye; Polman, Katja; Yazdanbakhsh, Maria

    2014-01-01

    Differences in lifestyle and break with natural environment appear to be associated with changes in the immune system resulting in various adverse health effects. Although genetics can have a major impact on the immune system and disease susceptibility, the contribution of environmental factors is thought to be substantial. Here, we investigated the immunological profile of healthy volunteers living in a rural and an urban area of a developing African country (Senegal), and in a European country (the Netherlands). Using flow cytometry, we investigated T helper type 1 (Th1), Th2, Th17, Th22 and regulatory T cells, as well as CD4+ T-cell and B-cell activation markers, and subsets of memory T and B cells in the peripheral blood. Rural Senegalese had significantly higher frequencies of Th1, Th2 and Th22 cells, memory CD4+ T and B cells, as well as activated CD4+ T and B cells compared with urban Senegalese and urban Dutch people. Within the Senegalese population, rural paritcipants displayed significantly higher frequencies of Th2 and Th22 cells, as well as higher pro-inflammatory and T-cell activation and memory profiles compared with the urban population. The greater magnitude of immune activation and the enlarged memory pool, together with Th2 polarization, seen in rural participants from Africa, followed by urban Africans and Europeans suggest that environmental changes may define immunological footprints, which could have consequences for disease patterns in general and vaccine responses in particular. PMID:24924958

  17. A Journey with Elie Metchnikoff: From Innate Cell Mechanisms in Infectious Diseases to Quantum Biology

    PubMed Central

    Merien, Fabrice

    2016-01-01

    Many reviews of Elie Metchnikoff’s work have been published, all unanimously acknowledging the significant contributions of his cellular theory to the fields of immunology and infectious diseases. In 1883, he published a key paper describing phagocytic cells in frogs. His descriptions were not just about phagocytes involved in host defense, he also described how these specialized cells eliminated degenerating or dying cells of the host. This perspective focuses on key concepts developed by Metchnikoff by presenting relevant excerpts of his 1883 paper and matching these concepts with challenges of modern immunology. A new approach to macrophage polarization is included to introduce some creative thinking about the exciting emerging area of quantum biology. PMID:27379227

  18. Magnetophoresis of flexible DNA-based dumbbell structures

    NASA Astrophysics Data System (ADS)

    Babić, B.; Ghai, R.; Dimitrov, K.

    2008-02-01

    Controlled movement and manipulation of magnetic micro- and nanostructures using magnetic forces can give rise to important applications in biomedecine, diagnostics, and immunology. We report controlled magnetophoresis and stretching, in aqueous solution, of a DNA-based dumbbell structure containing magnetic and diamagnetic microspheres. The velocity and stretching of the dumbbell were experimentally measured and correlated with a theoretical model based on the forces acting on individual magnetic beads or the entire dumbbell structures. The results show that precise and predictable manipulation of dumbbell structures is achievable and can potentially be applied to immunomagnetic cell separators.

  19. Imaging Vesicular Traffic at the Immune Synapse.

    PubMed

    Bouchet, Jérôme; Del Río-Iñiguez, Iratxe; Alcover, Andrés

    2017-01-01

    Immunological synapse formation is the result of a profound T cell polarization process that involves the coordinated action of the actin and microtubule cytoskeleton, as well as intracellular vesicle traffic. Endosomal vesicle traffic ensures the targeting of the T cell receptor (TCR) and various signaling molecules to the synapse, being necessary for the generation of signaling complexes downstream of the TCR. Here we describe the microscopy imaging methods that we currently use to unveil how TCR and signaling molecules are associated with endosomal compartments and deliver their cargo to the immunological synapse.

  20. Pediatric common variable immunodeficiency: immunologic and phenotypic associations with switched memory B cells.

    PubMed

    Yong, Pierre L; Orange, Jordan S; Sullivan, Kathleen E

    2010-08-01

    Recent studies suggest that patients with common variable immunodeficiency (CVID) and low numbers of switched memory B cells have lower IgG levels and higher rates of autoimmune disease, splenomegaly, and granulomatous disease; however, no prior literature has focused exclusively on pediatric cases. We examined the relationship between switched memory B cells and clinical and immunologic manifestations of CVID in a pediatric population. Forty-five patients were evaluated. Patients were categorized as Group I (<5 switched memory B cells/ml, n = 24) or Group II (> or =5 switched memory B cells/mL, n = 21). CD3(+) T-cell counts and CD19(+) B-cell levels were lower among Group I patients. Only those in Group I had meningitis, sepsis, bronchiectasis, granulomatous lung disease, autoimmune cytopenias, or hematologic malignancies. Segregation of pediatric patients into high risk (Group I) and average risk (Group II) may assist in targeting surveillance appropriately.

  1. Functional and molecular alterations in T Cells induced by CCL5.

    PubMed

    Cridge, T J; Horowitz, K M; Marinucci, M N; Rose, K M; Wells, M; Werner, M T; Kurt, Robert A

    2006-01-01

    To delineate whether, and the extent to which, CCL5 could impact T cell function we examined cytokine production and proliferative ability following CCL5 treatment in vitro. We report a decreased ability of splenic T cells to produce IFN-? and TNF-a as well as proliferate in response to crosslinking with antibody to CD3 after 72, but not 24 hours of CCL5 exposure. To identify a mechanism by which CCL5 modulated T cell function, we examined T cell receptor translocation and lipid raft clustering. After exposure to CCL5, T cells were less efficient at translocating the TCR and clustering lipid rafts. Since TCR translocation and lipid raft clustering are required for creation of an immunological synapse, these data suggest that extended exposure to CCL5 may impact T cell effector function by modulating the ability to create a functional immunological synapse.

  2. Biohybrid cochlear implants in human neurosensory restoration.

    PubMed

    Roemer, Ariane; Köhl, Ulrike; Majdani, Omid; Klöß, Stephan; Falk, Christine; Haumann, Sabine; Lenarz, Thomas; Kral, Andrej; Warnecke, Athanasia

    2016-10-07

    The success of cochlear implantation may be further improved by minimizing implantation trauma. The physical trauma of implantation and subsequent immunological sequelae can affect residual hearing and the viability of the spiral ganglion. An ideal electrode should therefore decrease post-implantation trauma and provide support to the residual spiral ganglion population. Combining a flexible electrode with cells producing and releasing protective factors could present a potential means to achieve this. Mononuclear cells obtained from bone marrow (BM-MNC) consist of mesenchymal and hematopoietic progenitor cells. They possess the innate capacity to induce repair of traumatized tissue and to modulate immunological reactions. Human bone marrow was obtained from the patients that received treatment with biohybrid electrodes. Autologous mononuclear cells were isolated from bone marrow (BM-MNC) by centrifugation using the Regenlab™ THT-centrifugation tubes. Isolated BM-MNC were characterised using flow cytometry. In addition, the release of cytokines was analysed and their biological effect tested on spiral ganglion neurons isolated from neonatal rats. Fibrin adhesive (Tisseal™) was used for the coating of silicone-based cochlear implant electrode arrays for human use in order to generate biohybrid electrodes. Toxicity of the fibrin adhesive and influence on insertion, as well on the cell coating, was investigated. Furthermore, biohybrid electrodes were implanted in three patients. Human BM-MNC release cytokines, chemokines, and growth factors that exert anti-inflammatory and neuroprotective effects. Using fibrin adhesive as a carrier for BM-MNC, a simple and effective cell coating procedure for cochlear implant electrodes was developed that can be utilised on-site in the operating room for the generation of biohybrid electrodes for intracochlear cell-based drug delivery. A safety study demonstrated the feasibility of autologous progenitor cell transplantation in humans as an adjuvant to cochlear implantation for neurosensory restoration. This is the first report of the use of autologous cell transplantation to the human inner ear. Due to the simplicity of this procedure, we hope to initiate its widespread utilization in various fields.

  3. Performance of computer vision in vivo flow cytometry with low fluorescence contrast

    NASA Astrophysics Data System (ADS)

    Markovic, Stacey; Li, Siyuan; Niedre, Mark

    2015-03-01

    Detection and enumeration of circulating cells in the bloodstream of small animals are important in many areas of preclinical biomedical research, including cancer metastasis, immunology, and reproductive medicine. Optical in vivo flow cytometry (IVFC) represents a class of technologies that allow noninvasive and continuous enumeration of circulating cells without drawing blood samples. We recently developed a technique termed computer vision in vivo flow cytometry (CV-IVFC) that uses a high-sensitivity fluorescence camera and an automated computer vision algorithm to interrogate relatively large circulating blood volumes in the ear of a mouse. We detected circulating cells at concentrations as low as 20 cells/mL. In the present work, we characterized the performance of CV-IVFC with low-contrast imaging conditions with (1) weak cell fluorescent labeling using cell-simulating fluorescent microspheres with varying brightness and (2) high background tissue autofluorescence by varying autofluorescence properties of optical phantoms. Our analysis indicates that CV-IVFC can robustly track and enumerate circulating cells with at least 50% sensitivity even in conditions with two orders of magnitude degraded contrast than our previous in vivo work. These results support the significant potential utility of CV-IVFC in a wide range of in vivo biological models.

  4. Endometrial Stromal Cells and Immune Cell Populations Within Lymph Nodes in a Nonhuman Primate Model of Endometriosis

    PubMed Central

    Fazleabas, A. T.; Braundmeier, A. G.; Markham, R.; Fraser, I. S.; Berbic, M.

    2011-01-01

    Mounting evidence suggests that immunological responses may be altered in endometriosis. The baboon (Papio anubis) is generally considered the best model of endometriosis pathogenesis. The objective of the current study was to investigate for the first time immunological changes within uterine and peritoneal draining lymph nodes in a nonhuman primate baboon model of endometriosis. Paraffin-embedded femoral lymph nodes were obtained from 22 normally cycling female baboons (induced endometriosis n = 11; control n = 11). Immunohistochemical staining was performed with antibodies for endometrial stromal cells, T cells, immature and mature dendritic cells, and B cells. Lymph nodes were evaluated using an automated cellular imaging system. Endometrial stromal cells were significantly increased in lymph nodes from animals with induced endometriosis, compared to control animals (P = .033). In animals with induced endometriosis, some lymph node immune cell populations including T cells, dendritic cells and B cells were increased, suggesting an efficient early response or peritoneal drainage. PMID:21617251

  5. Revisiting the B-cell compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and beyond.

    PubMed

    Garraud, Olivier; Borhis, Gwenoline; Badr, Gamal; Degrelle, Séverine; Pozzetto, Bruno; Cognasse, Fabrice; Richard, Yolande

    2012-11-29

    The immunological roles of B-cells are being revealed as increasingly complex by functions that are largely beyond their commitment to differentiate into plasma cells and produce antibodies, the key molecular protagonists of innate immunity, and also by their compartmentalisation, a more recently acknowledged property of this immune cell category. For decades, B-cells have been recognised by their expression of an immunoglobulin that serves the function of an antigen receptor, which mediates intracellular signalling assisted by companion molecules. As such, B-cells were considered simple in their functioning compared to the other major type of immune cell, the T-lymphocytes, which comprise conventional T-lymphocyte subsets with seminal roles in homeostasis and pathology, and non-conventional T-lymphocyte subsets for which increasing knowledge is accumulating. Since the discovery that the B-cell family included two distinct categories - the non-conventional, or extrafollicular, B1 cells, that have mainly been characterised in the mouse; and the conventional, or lymph node type, B2 cells - plus the detailed description of the main B-cell regulator, FcγRIIb, and the function of CD40(+) antigen presenting cells as committed/memory B-cells, progress in B-cell physiology has been slower than in other areas of immunology. Cellular and molecular tools have enabled the revival of innate immunity by allowing almost all aspects of cellular immunology to be re-visited. As such, B-cells were found to express "Pathogen Recognition Receptors" such as TLRs, and use them in concert with B-cell signalling during innate and adaptive immunity. An era of B-cell phenotypic and functional analysis thus began that encompassed the study of B-cell microanatomy principally in the lymph nodes, spleen and mucosae. The novel discovery of the differential localisation of B-cells with distinct phenotypes and functions revealed the compartmentalisation of B-cells. This review thus aims to describe novel findings regarding the B-cell compartments found in the mouse as a model organism, and in human physiology and pathology. It must be emphasised that some differences are noticeable between the mouse and human systems, thus increasing the complexity of B-cell compartmentalisation. Special attention will be given to the (lymph node and spleen) marginal zones, which represent major crossroads for B-cell types and functions and a challenge for understanding better the role of B-cell specificities in innate and adaptive immunology.

  6. Immunology and immunity against infection: General rules

    NASA Astrophysics Data System (ADS)

    Zinkernagel, Rolf M.

    2005-12-01

    Simplified and generalizable rules of immune responses against infections or vaccines have been summarized into 20 statements previously (Scand. J. Immunol. 60 (2004) 9-13) and are restated in a slightly different form here. The key terms of immunology (e.g. specificity, tolerance and memory) are explained in terms of their co-evolutionary importance in the equilibrium between infectious agents and diseases with higher vertebrate hosts. Specificity is best defined by protective antibodies or protective activated T cells; e.g. serotype specific neutralizing antibodies against polio viruses represent the discriminatory power of an immune response very well indeed. Tolerance is reviewed in terms of reactivity rather than self-nonself discrimination. Immune respones are deleted against antigens expressed at sufficient levels within the lymphoheamopoetic system, but may well exist at both, the T and the B cell level against antigens strictly outside of secondary lymphatic organs. In this respect the immune system behaves identically against virus infections and against self antigens. Persistent virus infections delete responsive T cells, once eliminated immune T cell responses wane, if a virus keeps outside of secondary lymphatic tissues no immune response is induced. Immunological memory is usually defined as earlier and greater responses but this does not correlate with protective immunity stringently. It is summarized here that pre-existing titers of protective neutralizing antibodies or pre-existence of activated T cells are the correlates of protection acute cytopathic lethal infections and toxins or against intracellular parasites. It is concluded that many discrepancies and uncertainties in immunological research derive from model situations and experimental results that are correctly measured but cannot be related to co-evolutionary contexts, i.e. survival.

  7. Improvement of Antitumor Therapies Based on Vaccines and Immune-Checkpoint Inhibitors by Counteracting Tumor-Immunostimulation.

    PubMed

    Chiarella, Paula; Vermeulen, Mónica; Montagna, Daniela R; Vallecorsa, Pablo; Strazza, Ariel Ramiro; Meiss, Roberto P; Bustuoabad, Oscar D; Ruggiero, Raúl A; Prehn, Richmond T

    2018-01-01

    Immune-checkpoint inhibitors and antitumor vaccines may produce both tumor-inhibitory and tumor-stimulatory effects on growing tumors depending on the stage of tumor growth at which treatment is initiated. These paradoxical results are not necessarily incompatible with current tumor immunology but they might better be explained assuming the involvement of the phenomenon of tumor immunostimulation. This phenomenon was originally postulated on the basis that the immune response (IR) evoked in Winn tests by strong chemical murine tumors was not linear but biphasic, with strong IR producing inhibition and weak IR inducing stimulation of tumor growth. Herein, we extended those former observations to weak spontaneous murine tumors growing in pre-immunized, immune-competent and immune-depressed mice. Furthermore, we demonstrated that the interaction of specifical T cells and target tumor cells at low stimulatory ratios enhanced the production of chemokines aimed to recruit macrophages at the tumor site, which, upon activation of toll-like receptor 4 and p38 signaling pathways, would recruit and activate more macrophages and other inflammatory cells which would produce growth-stimulating signals leading to an accelerated tumor growth. On this basis, the paradoxical effects achieved by immunological therapies on growing tumors could be explained depending upon where the therapy-induced IR stands on the biphasic IR curve at each stage of tumor growth. At stages where tumor growth was enhanced (medium and large-sized tumors), counteraction of the tumor-immunostimulatory effect with anti-inflammatory strategies or, more efficiently, with selective inhibitors of p38 signaling pathways enabled the otherwise tumor-promoting immunological strategies to produce significant inhibition of tumor growth.

  8. Improvement of Antitumor Therapies Based on Vaccines and Immune-Checkpoint Inhibitors by Counteracting Tumor-Immunostimulation

    PubMed Central

    Chiarella, Paula; Vermeulen, Mónica; Montagna, Daniela R.; Vallecorsa, Pablo; Strazza, Ariel Ramiro; Meiss, Roberto P.; Bustuoabad, Oscar D.; Ruggiero, Raúl A.; Prehn, Richmond T.

    2018-01-01

    Immune-checkpoint inhibitors and antitumor vaccines may produce both tumor-inhibitory and tumor-stimulatory effects on growing tumors depending on the stage of tumor growth at which treatment is initiated. These paradoxical results are not necessarily incompatible with current tumor immunology but they might better be explained assuming the involvement of the phenomenon of tumor immunostimulation. This phenomenon was originally postulated on the basis that the immune response (IR) evoked in Winn tests by strong chemical murine tumors was not linear but biphasic, with strong IR producing inhibition and weak IR inducing stimulation of tumor growth. Herein, we extended those former observations to weak spontaneous murine tumors growing in pre-immunized, immune-competent and immune-depressed mice. Furthermore, we demonstrated that the interaction of specifical T cells and target tumor cells at low stimulatory ratios enhanced the production of chemokines aimed to recruit macrophages at the tumor site, which, upon activation of toll-like receptor 4 and p38 signaling pathways, would recruit and activate more macrophages and other inflammatory cells which would produce growth-stimulating signals leading to an accelerated tumor growth. On this basis, the paradoxical effects achieved by immunological therapies on growing tumors could be explained depending upon where the therapy-induced IR stands on the biphasic IR curve at each stage of tumor growth. At stages where tumor growth was enhanced (medium and large-sized tumors), counteraction of the tumor-immunostimulatory effect with anti-inflammatory strategies or, more efficiently, with selective inhibitors of p38 signaling pathways enabled the otherwise tumor-promoting immunological strategies to produce significant inhibition of tumor growth. PMID:29435437

  9. Immunological characteristics of outer membrane protein omp31 of goat Brucella and its monoclonal antibody.

    PubMed

    Zheng, W Y; Wang, Y; Zhang, Z C; Yan, F

    2015-10-05

    We examined the immunological characteristics of outer membrane protein omp31 of goat Brucella and its monoclonal antibody. Genomic DNA from the M5 strain of goat Brucella was amplified by polymerase chain reaction and cloned into the prokaryotic expression vector pGEX-4T-1. The expression and immunological characteristics of the fusion protein GST-omp31 were subjected to preliminary western blot detection with goat Brucella rabbit immune serum. The Brucella immunized BALB/c mouse serum was detected using purified protein. The high-potency mouse splenocytes and myeloma Sp2/0 cells were fused. Positive clones were screened by enzyme-linked immunosorbent assay to establish a hybridoma cell line. Mice were inoculated intraperitoneally with hybridoma cells to prepare ascites. The mAb was purified using the n-caprylic acid-ammonium sulfate method. The characteristics of mAb were examined using western blotting and enzyme-linked immunosorbent assay. A 680-base pair band was observed after polymerase chain reaction. Enzyme digestion identification and sequencing showed that the pGEX-4T-1-omp31 prokaryotic expression vector was successfully established; a target band of approximately 57 kDa with an apparent molecular weight consistent with the size of the target fusion protein. At 25°C, the expression of soluble expression increased significantly; the fusion protein GST-omp31 was detected by western blotting. Anti-omp31 protein mAb was obtained from 2 strains of Brucella. The antibody showed strong specificity and sensitivity and did not cross-react with Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Mycobacterium tuberculosis, or Bacillus pyocyaneus. The pGEX-4T-1-omp31 prokaryotic expression vector was successfully established and showed good immunogenicity. The antibody also showed strong specificity and good sensitivity.

  10. Dendritic cells pulsed with a tumor-specific peptide induce long-lasting immunity and are effective against murine intracerebral melanoma.

    PubMed

    Heimberger, Amy B; Archer, Gary E; Crotty, Laura E; McLendon, Roger E; Friedman, Allan H; Friedman, Henry S; Bigner, Darell D; Sampson, John H

    2002-01-01

    Dendritic cells (DCs) are specialized cells of the immune system that are capable of generating potent immune responses that are active even within the "immunologically privileged" central nervous system. However, immune responses generated by DCs have also been demonstrated to produce clinically significant autoimmunity. Targeting the epidermal growth factor receptor variant III (EGFRvIII), which is a mutation specific to tumor tissue, could eliminate this risk. The purpose of this study was to demonstrate that DC-based immunizations directed solely against this tumor-specific antigen, which is commonly found on tumors that originate within or metastasize to the brain, could be efficacious. C3H mice were vaccinated with DCs mixed with a keyhole limpet hemocyanin conjugate of the tumor-specific peptide, PEP-3, which spans the EGFRvIII mutation, or the random-sequence peptide, PEP-1, and were intracerebrally challenged with a syngeneic melanoma expressing a murine homologue of EGFRvIII. Systemic immunization with DCs mixed with PEP-3-keyhole limpet hemocyanin generated antigen-specific immunity. Among mice challenged with intracerebral tumors, this resulted in an approximately 600% increase in the median survival time (>300 d, P < 0.0016), relative to control values. Sixty-three percent of mice treated with DCs mixed with the tumor-specific peptide survived in the long term and 100% survived rechallenge with tumor, indicating that antitumor immunological memory was also induced. In a murine melanoma model, immunization with DCs mixed with tumor-specific peptide results in an antigen-specific immunological response that recognizes the EGFRvIII mutation, has potent antitumor efficacy against intracerebral tumors that express EGFRvIII, and results in long-lasting antitumor immunity.

  11. The host immunological response to cancer therapy: An emerging concept in tumor biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voloshin, Tali; Voest, Emile E.; Shaked, Yuval, E-mail: yshaked@tx.technion.ac.il

    Almost any type of anti-cancer treatment including chemotherapy, radiation, surgery and targeted drugs can induce host molecular and cellular immunological effects which, in turn, can lead to tumor outgrowth and relapse despite an initial successful therapy outcome. Tumor relapse due to host immunological effects is attributed to angiogenesis, tumor cell dissemination from the primary tumors and seeding at metastatic sites. This short review will describe the types of host cells that participate in this process, the types of factors secreted from the host following therapy that can promote tumor re-growth, and the possible implications of this unique and yet onlymore » partially-known process. It is postulated that blocking these specific immunological effects in the reactive host in response to cancer therapy may aid in identifying new host-dependent targets for cancer, which in combination with conventional treatments can prolong therapy efficacy and extend survival. Additional studies investigating this specific research direction—both in preclinical models and in the clinical setting are essential in order to advance our understanding of how tumors relapse and evade therapy. -- Highlights: • Cancer therapy induces host molecular and cellular pro-tumorigenic effects. • Host effects in response to therapy may promote tumor relapse and metastasis. • The reactive host consists of immunological mediators promoting tumor re-growth. • Blocking therapy-induced host mediators may improve outcome.« less

  12. Lessons from reproductive immunology for other fields of immunology and clinical approaches.

    PubMed

    Markert, Udo R; Fitzgerald, Justine S; Seyfarth, Lydia; Heinzelmann, Joana; Varosi, Frauke; Voigt, Sandra; Schleussner, Ekkehard; Seewald, Hans-Joachim

    2005-01-01

    Reproduction is indispensable to evolution and, thus, life. Nonetheless, it overcomes common rules known to established life. Immunology of reproduction, and especially the tolerance of two genetically distinct organisms and their fruitful symbiosis, is one of the most imposing paradox of life. Mechanisms, which are physiologically used for induction of said tolerance, are frequently abused by pathogens or tumors intending to escape the host's immune response. Understanding the regulation of immune responses in pregnancy and the invasion of allogeneic fetus-derived trophoblast cells into the decidua may lead to new therapeutic concepts. In transplantation, knowledge concerning local physiological immunotolerance may be useful for the development of new therapies, which do not require a general immune suppression of the patient. In immunological disorders, such as autoimmune diseases or allergies, immune deviations occur which are either prevented during pregnancy or have parallels to pregnancy. Vice versa, lessons from other fields of immunology may also offer new notions for the comprehension of reproductive immunology and may lead to new therapies for the treatment of pregnancy-related problems.

  13. Modulatory efficacy of green tea polyphenols on glycoconjugates and immunological markers in 4-Nitroquinoline 1-oxide-induced oral carcinogenesis-A therapeutic approach.

    PubMed

    Srinivasan, Periasamy; Sabitha, Kuruvimalai Ekambaram; Shyamaladevi, Chennam Srinivasulu

    2006-08-25

    Green tea polyphenols (GTP) has been used as a chemopreventive agent world wide against chemically induced cancer. The present study is aimed to understand the therapeutic action of GTP on glycoconjugates and immunological markers in 4-Nitroquinoline 1-oxide (4-NQO)-induced oral cancer over a period of 30 days at 200mg/kg, p.o., Oral cancer was induced by painting 4-NQO for 8 weeks followed by administration of GTP after 22 weeks, for 30 days. Glycoconjugates such as hexose, hexosamine, sialicacid, fucose and mucoprotein were analysed. Expression of glycoconjugates was examined through histology and SDS-PAGE. Immunological markers such as circulating immune complex and mast cell density were studied. Oral cancer-induced animals showed a significant increase in levels of glycoconjugates and its expression, similar to that observed for immunological markers. Treatment with GTP altered the expression of glycoconjugates as well as immunological markers. The results suggest that GTP modulates both the expression of glycoconjugates and immunological markers resulting in regression of oral cancer.

  14. Mitochondrial and Plasma Membrane Pools of Stomatin-Like Protein 2 Coalesce at the Immunological Synapse during T Cell Activation

    PubMed Central

    Christie, Darah A.; Kirchhof, Mark G.; Vardhana, Santosh; Dustin, Michael L.; Madrenas, Joaquín

    2012-01-01

    Stomatin-like protein 2 (SLP-2) is a member of the stomatin – prohibitin – flotillin – HflC/K (SPFH) superfamily. Recent evidence indicates that SLP-2 is involved in the organization of cardiolipin-enriched microdomains in mitochondrial membranes and the regulation of mitochondrial biogenesis and function. In T cells, this role translates into enhanced T cell activation. Although the major pool of SLP-2 is associated with mitochondria, we show here that there is an additional pool of SLP-2 associated with the plasma membrane of T cells. Both plasma membrane-associated and mitochondria-associated pools of SLP-2 coalesce at the immunological synapse (IS) upon T cell activation. SLP-2 is not required for formation of IS nor for the re-localization of mitochondria to the IS because SLP-2-deficient T cells showed normal re-localization of these organelles in response to T cell activation. Interestingly, upon T cell activation, we found the surface pool of SLP-2 mostly excluded from the central supramolecular activation complex, and enriched in the peripheral area of the IS where signalling TCR microclusters are located. Based on these results, we propose that SLP-2 facilitates the compartmentalization not only of mitochondrial membranes but also of the plasma membrane into functional microdomains. In this latter location, SLP-2 may facilitate the optimal assembly of TCR signalosome components. Our data also suggest that there may be a net exchange of membrane material between mitochondria and plasma membrane, explaining the presence of some mitochondrial proteins in the plasma membrane. PMID:22623988

  15. Age-Related Changes in Immunological Factors and Their Relevance in Allergic Disease Development During Childhood.

    PubMed

    Chang, Woo Sung; Kim, Eun Jin; Lim, Yeon Mi; Yoon, Dankyu; Son, Jo Young; Park, Jung Won; Hong, Soo Jong; Cho, Sang Heon; Lee, Joo Shil

    2016-07-01

    Allergic diseases are triggered by Th2-mediated immune reactions to allergens and orchestrated by various immunological factors, including immune cells and cytokines. Although many reports have suggested that childhood is the critical period in the onset of allergic diseases and aging leads to alter the susceptibility of an individual to allergic diseases, age-related changes in various immunological factors in healthy individuals as well as their difference between healthy and allergic children have not yet been established. We investigated the ratio of Th1/Th2 cells and the levels of 22 allergy-related cytokines across all age groups in individuals who were classified as clinically non-atopic and healthy. We also examined their differences between healthy and allergic children to evaluate immunological changes induced by the development of allergic diseases during childhood. The Th1/Th2 ratio rose gradually during the growth period including childhood, reaching peak values in the twenties-thirties age group. Th1/Th2 ratios were significantly lower in allergic children than in healthy controls, whereas 14 of 22 cytokines were significantly higher in allergic children than in healthy controls. On the other hand, there were no differences in Th1/Th2 ratios and cytokines between healthy and allergic adolescents. In this study, age-related changes in Th1/Th2 ratios were found in normal controls across all age groups, and decreases in Th1/Th2 ratio were observed with increasing of 14 cytokines in allergic children. The results of this study may be helpful as reference values for both monitoring immunological changes according to aging in healthy individuals and distinguishing between normal and allergic subjects in terms of immune cells and soluble factors.

  16. Immunological and molecular epidemiological characteristics of acute and fulminant viral hepatitis A.

    PubMed

    Hussain, Zahid; Husain, Syed A; Almajhdi, Fahad N; Kar, Premashis

    2011-05-23

    Hepatitis A virus is an infection of liver; it is hyperendemic in vast areas of the world including India. In most cases it causes an acute self limited illness but rarely fulminant. There is growing concern about change in pattern from asymptomatic childhood infection to an increased incidence of symptomatic disease in the adult population. In-depth analysis of immunological, viral quantification and genotype of acute and fulminant hepatitis A virus. Serum samples obtained from 1009 cases of suspected acute viral hepatitis was employed for different biochemical and serological examination. RNA was extracted from blood serum, reverse transcribed into cDNA and amplified using nested PCR for viral quantification, sequencing and genotyping. Immunological cell count from freshly collected whole blood was carried out by fluorescence activated cell sorter. Fulminant hepatitis A was mostly detected with other hepatic viruses. CD8+ T cells count increases in fulminant hepatitis to a significantly high level (P = 0.005) compared to normal healthy control. The immunological helper/suppressor (CD4+/CD8+) ratio of fulminant hepatitis was significantly lower compared to acute cases. The serologically positive patients were confirmed by RT-PCR and total of 72 (69.2%) were quantified and sequenced. The average quantitative viral load of fulminant cases was significantly higher (P < 0.05). There was similar genotypic distribution in both acute and fulminant category, with predominance of genotype IIIA (70%) compared to IA (30%). Immunological factors in combination with viral load defines the severity of the fulminant hepatitis A. Phylogenetic analysis of acute and fulminant hepatitis A confirmed genotypes IIIA as predominant against IA with no preference of disease severity.

  17. Immunological and molecular epidemiological characteristics of acute and fulminant viral hepatitis A

    PubMed Central

    2011-01-01

    Background Hepatitis A virus is an infection of liver; it is hyperendemic in vast areas of the world including India. In most cases it causes an acute self limited illness but rarely fulminant. There is growing concern about change in pattern from asymptomatic childhood infection to an increased incidence of symptomatic disease in the adult population. Objective In-depth analysis of immunological, viral quantification and genotype of acute and fulminant hepatitis A virus. Methods Serum samples obtained from 1009 cases of suspected acute viral hepatitis was employed for different biochemical and serological examination. RNA was extracted from blood serum, reverse transcribed into cDNA and amplified using nested PCR for viral quantification, sequencing and genotyping. Immunological cell count from freshly collected whole blood was carried out by fluorescence activated cell sorter. Results Fulminant hepatitis A was mostly detected with other hepatic viruses. CD8+ T cells count increases in fulminant hepatitis to a significantly high level (P = 0.005) compared to normal healthy control. The immunological helper/suppressor (CD4+/CD8+) ratio of fulminant hepatitis was significantly lower compared to acute cases. The serologically positive patients were confirmed by RT-PCR and total of 72 (69.2%) were quantified and sequenced. The average quantitative viral load of fulminant cases was significantly higher (P < 0.05). There was similar genotypic distribution in both acute and fulminant category, with predominance of genotype IIIA (70%) compared to IA (30%). Conclusions Immunological factors in combination with viral load defines the severity of the fulminant hepatitis A. Phylogenetic analysis of acute and fulminant hepatitis A confirmed genotypes IIIA as predominant against IA with no preference of disease severity. PMID:21605420

  18. Response of lymphocytes to a mitogenic stimulus during spaceflight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1989-01-01

    Several studies were performed that demonstrate that immunological activities of lymphocytes can be affected by spaceflight or by models that attempt to simulate some aspects of weightlessness. Included among these are the responses of lymphocytes to external stimuli such as mitogens and viruses. When cultures of lymphocytes were flown in space, the ability of the lymphocytes to respond to mitogens was inhibited. Similar results were obtained when lymphocytes from astronauts or animals just returned from space were placed into culture immediately upon return to earth, and when models of hypogravity were used. Lymphocytes placed in culture during spaceflights produced enhanced levels of interferon compared to control cultures. When cultures of lymphocytes were prepared for cosmonauts or rodents immediately upon return to earth, interferon production was inhibited. These results suggest that space flight can have profound effects on lymphocyte function, and that effects on isolated cells may be different from that on cells in the whole organism.

  19. Immunological non-response and low hemoglobin levels are predictors of incident tuberculosis among HIV-infected individuals on Truvada-based therapy in Botswana.

    PubMed

    Mupfumi, Lucy; Moyo, Sikhulile; Molebatsi, Kesaobaka; Thami, Prisca K; Anderson, Motswedi; Mogashoa, Tuelo; Iketleng, Thato; Makhema, Joseph; Marlink, Ric; Kasvosve, Ishmael; Essex, Max; Musonda, Rosemary M; Gaseitsiwe, Simani

    2018-01-01

    There is a high burden of tuberculosis (TB) in HIV antiretroviral programmes in Africa. However, few studies have looked at predictors of incident TB while on Truvada-based combination antiretroviral therapy (cART) regimens. We estimated TB incidence among individuals enrolled into an observational cohort evaluating the efficacy and tolerability of Truvada-based cART in Gaborone, Botswana between 2008 and 2011. We used Cox proportional hazards regressions to determine predictors of incident TB. Of 300 participants enrolled, 45 (15%) had a diagnosis of TB at baseline. During 428 person-years (py) of follow-up, the incidence rate of TB was 3.04/100py (95% CI, 1.69-5.06), with 60% of the cases occurring within 3 months of ART initiation. Incident cases had low baseline CD4+ T cell counts (153cells/mm3 [Q1, Q3: 82, 242]; p = 0.69) and hemoglobin levels (9.2g/dl [Q1, Q3: 8.5,10.1]; p<0.01). In univariate analysis, low BMI (HR = 0.73; 95% CI 0.58-0.91; p = 0.01) and hemoglobin levels <8 g/dl (HR = 10.84; 95%CI: 2.99-40.06; p<0.01) were risk factors for TB. Time to incident TB diagnosis was significantly reduced in patients with poor immunological recovery (p = 0.04). There was no association between baseline viral load and risk of TB (HR = 1.75; 95%CI: 0.70-4.37). Low hemoglobin levels prior to initiation of ART are significant predictors of incident tuberculosis. Therefore, there is potential utility of iron biomarkers to identify patients at risk of TB prior to initiation on ART. Furthermore, additional strategies are required for patients with poor immunological recovery to reduce excess risk of TB while on ART.

  20. Concise review: humanized models of tumor immunology in the 21st century: convergence of cancer research and tissue engineering.

    PubMed

    Holzapfel, Boris Michael; Wagner, Ferdinand; Thibaudeau, Laure; Levesque, Jean-Pierre; Hutmacher, Dietmar Werner

    2015-06-01

    Despite positive testing in animal studies, more than 80% of novel drug candidates fail to proof their efficacy when tested in humans. This is primarily due to the use of preclinical models that are not able to recapitulate the physiological or pathological processes in humans. Hence, one of the key challenges in the field of translational medicine is to "make the model organism mouse more human." To get answers to questions that would be prognostic of outcomes in human medicine, the mouse's genome can be altered in order to create a more permissive host that allows the engraftment of human cell systems. It has been shown in the past that these strategies can improve our understanding of tumor immunology. However, the translational benefits of these platforms have still to be proven. In the 21st century, several research groups and consortia around the world take up the challenge to improve our understanding of how to humanize the animal's genetic code, its cells and, based on tissue engineering principles, its extracellular microenvironment, its tissues, or entire organs with the ultimate goal to foster the translation of new therapeutic strategies from bench to bedside. This article provides an overview of the state of the art of humanized models of tumor immunology and highlights future developments in the field such as the application of tissue engineering and regenerative medicine strategies to further enhance humanized murine model systems. © 2015 AlphaMed Press.

  1. Mucosal-associated invariant T cells in autoimmunity, immune-mediated diseases and airways disease.

    PubMed

    Hinks, Timothy S C

    2016-05-01

    Mucosal-associated invariant T (MAIT) cells are a novel class of innate-like T cells, expressing a semi-invariant T-cell receptor (TCR) and able to recognize small molecules presented on the non-polymorphic MHC-related protein 1. Their intrinsic effector-memory phenotype, enabling secretion of pro-inflammatory cytokines, and their relative abundance in humans imply a significant potential to contribute to autoimmune processes. However, as MAIT cells were unknown until recently and specific immunological tools were unavailable, little is known of their roles in disease. Here I review observations from clinical studies and animal models of autoimmune and immune-mediated diseases including the roles of MAIT cells in systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease and airways diseases. MAIT cell deficiencies are frequently observed in peripheral blood, and at sites of disease such as the airways in asthma. However, MAIT cells have a specific sensitivity to suppression by therapeutic corticosteroids that may confound many of these observations, as may the tendency of the surface marker CD161 to activation-induced down-regulation. Nonetheless, the dependence on bacteria for the development of MAIT cells suggests a potentially important protective role linking the influences of early life microbial exposures and subsequent development of autoimmunity. Conversely, MAIT cells could contribute to chronic inflammation either through TCR-independent activation, or potentially by TCR recognition of as yet undiscovered ligands. Future research will be greatly facilitated by the immunological tools that are now available, including murine genetic models and human and murine specific tetramers. © 2016 The Authors. Immunology published by John Wiley & Sons Ltd.

  2. Comparison of pathogenicity of highly pathogenic porcine reproductive and respiratory syndrome virus between wild and domestic pigs.

    PubMed

    Do, T D; Park, C; Choi, K; Jeong, J; Vo, M K; Nguyen, T T; Chae, C

    2015-03-01

    The objective of this study was to compare the pathogenicity of highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) infection between wild and domestic pigs based on clinical, immunological, and pathological evaluation. Upon challenge with HP-PRRSV, five wild pigs died compared to none of the domestic. Anti-PRRSV antibody titers were significantly (P < 0.05) higher in wild HP-PRRSV-infected pigs versus the domestic HP-PRRSV-infected pigs at 21 days post inoculation (dpi). Lung lesion scores at 7 dpi were also significantly (P < 0.01) higher in domestic infected pigs than wild infected pigs. The most striking difference was the viral tissue distribution between the wild and domestic HP-PRRSV-infected pigs. HP-PRRSV-positive cells were observed in bronchiolar, gastric, and renal tubular epithelial cells from wild HP-PRRSV-infected pigs only. The results in this study demonstrated a genetic difference exists between wild and domestic pigs, which could results in different clinical signs, immunological responses, and pathological outcomes to HP-PRRSV infection.

  3. Report of the joint ESOT and TTS basic science meeting 2013: current concepts and discoveries in translational transplantation.

    PubMed

    Ebner, Susanne; Fabritius, Cornelia; Ritschl, Paul; Oberhuber, Rupert; Günther, Julia; Kotsch, Katja

    2014-10-01

    A joint meeting organized by the European (ESOT) and The Transplantation (TTS) Societies for basic science research was organized in Paris, France, on November 7-9, 2013. Focused on new ideas and concepts in translational transplantation, the meeting served as a venue for state-of-the-art developments in basic transplantation immunology, such as the potential for tolerance induction through regulation of T-cell signaling. This meeting report summarizes important insights which were presented in Paris. It not only offers an overview of established aspects, such as the role of Tregs in transplantation, presented by Nobel laureate Rolf Zinkernagel, but also highlights novel facets in the field of transplantation, that is cell-therapy-based immunosuppression or composite tissue transplantation as presented by the emotional story given by Vasyly Rohovyy, who received two hand transplants. The ESOT/TTS joint meeting was an overall productive and enjoyable platform for basic science research in translational transplantation and fulfilled all expectations by giving a promising outlook for the future of research in the field of immunological transplantation research. © 2014 Steunstichting ESOT.

  4. Cre-mediated cell ablation contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity.

    PubMed

    Feyerabend, Thorsten B; Weiser, Anne; Tietz, Annette; Stassen, Michael; Harris, Nicola; Kopf, Manfred; Radermacher, Peter; Möller, Peter; Benoist, Christophe; Mathis, Diane; Fehling, Hans Jörg; Rodewald, Hans-Reimer

    2011-11-23

    Immunological functions of mast cells remain poorly understood. Studies in Kit mutant mice suggest key roles for mast cells in certain antibody- and T cell-mediated autoimmune diseases. However, Kit mutations affect multiple cell types of both immune and nonimmune origin. Here, we show that targeted insertion of Cre-recombinase into the mast cell carboxypeptidase A3 locus deleted mast cells in connective and mucosal tissues by a genotoxic Trp53-dependent mechanism. Cre-mediated mast cell eradication (Cre-Master) mice had, with the exception of a lack of mast cells and reduced basophils, a normal immune system. Cre-Master mice were refractory to IgE-mediated anaphylaxis, and this defect was rescued by mast cell reconstitution. This mast cell-deficient strain was fully susceptible to antibody-induced autoimmune arthritis and to experimental autoimmune encephalomyelitis. Differences comparing Kit mutant mast cell deficiency models to selectively mast cell-deficient mice call for a systematic re-evaluation of immunological functions of mast cells beyond allergy. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Limited Variation in BK Virus T-Cell Epitopes Revealed by Next-Generation Sequencing

    PubMed Central

    Sahoo, Malaya K.; Tan, Susanna K.; Chen, Sharon F.; Kapusinszky, Beatrix; Concepcion, Katherine R.; Kjelson, Lynn; Mallempati, Kalyan; Farina, Heidi M.; Fernández-Viña, Marcelo; Tyan, Dolly; Grimm, Paul C.; Anderson, Matthew W.; Concepcion, Waldo

    2015-01-01

    BK virus (BKV) infection causing end-organ disease remains a formidable challenge to the hematopoietic cell transplant (HCT) and kidney transplant fields. As BKV-specific treatments are limited, immunologic-based therapies may be a promising and novel therapeutic option for transplant recipients with persistent BKV infection. Here, we describe a whole-genome, deep-sequencing methodology and bioinformatics pipeline that identify BKV variants across the genome and at BKV-specific HLA-A2-, HLA-B0702-, and HLA-B08-restricted CD8 T-cell epitopes. BKV whole genomes were amplified using long-range PCR with four inverse primer sets, and fragmentation libraries were sequenced on the Ion Torrent Personal Genome Machine (PGM). An error model and variant-calling algorithm were developed to accurately identify rare variants. A total of 65 samples from 18 pediatric HCT and kidney recipients with quantifiable BKV DNAemia underwent whole-genome sequencing. Limited genetic variation was observed. The median number of amino acid variants identified per sample was 8 (range, 2 to 37; interquartile range, 10), with the majority of variants (77%) detected at a frequency of <5%. When normalized for length, there was no statistical difference in the median number of variants across all genes. Similarly, the predominant virus population within samples harbored T-cell epitopes similar to the reference BKV strain that was matched for the BKV genotype. Despite the conservation of epitopes, low-level variants in T-cell epitopes were detected in 77.7% (14/18) of patients. Understanding epitope variation across the whole genome provides insight into the virus-immune interface and may help guide the development of protocols for novel immunologic-based therapies. PMID:26202116

  6. [Immunopathology of ulcerative colitis and granulomatous colitis (author's transl)].

    PubMed

    Bläker, F

    1975-08-01

    There is no convincing evidence as yet for a key role of immunological processes in the pathogenesis of unspecific colitis. However clinical findings as well as immunological data do support the hypothesis that immune reactions are involved primarily or secondarily in the pathogenesis and the clinical course of ulcerative colitis and granulomatous colitis. In such patients a specific adaptation of humoral and cell-bound immune reactions against antigenic material from the colon and other tissues has been found in peripheral blood, lymphatic tissue and bowel wall. In this context it seems to be especially noteworthy, that lymphocytes taken from patients with colitis lead to disintegration of colon epithelial cells in vitro. This cytotoxic effect of the lymphocytes is lost after colectomy or remission of the disease. Ulcerative and granulomatous colitis do have many clinical and immunological peculiarities in common. This makes one think, that possibly the same noxious factors induce differential local reactions because of different hereditary disposition.

  7. The comparative immunology of wild and laboratory mice, Mus musculus domesticus

    PubMed Central

    Abolins, Stephen; King, Elizabeth C.; Lazarou, Luke; Weldon, Laura; Hughes, Louise; Drescher, Paul; Raynes, John G.; Hafalla, Julius C. R.; Viney, Mark E.; Riley, Eleanor M.

    2017-01-01

    The laboratory mouse is the workhorse of immunology, used as a model of mammalian immune function, but how well immune responses of laboratory mice reflect those of free-living animals is unknown. Here we comprehensively characterize serological, cellular and functional immune parameters of wild mice and compare them with laboratory mice, finding that wild mouse cellular immune systems are, comparatively, in a highly activated (primed) state. Associations between immune parameters and infection suggest that high level pathogen exposure drives this activation. Moreover, wild mice have a population of highly activated myeloid cells not present in laboratory mice. By contrast, in vitro cytokine responses to pathogen-associated ligands are generally lower in cells from wild mice, probably reflecting the importance of maintaining immune homeostasis in the face of intense antigenic challenge in the wild. These data provide a comprehensive basis for validating (or not) laboratory mice as a useful and relevant immunological model system. PMID:28466840

  8. Centrosome docking at the immunological synapse is controlled by Lck signaling

    PubMed Central

    Tsun, Andy; Qureshi, Ihjaaz; Stinchcombe, Jane C.; Jenkins, Misty R.; de la Roche, Maike; Kleczkowska, Joanna; Zamoyska, Rose

    2011-01-01

    Docking of the centrosome at the plasma membrane directs lytic granules to the immunological synapse. To identify signals controlling centrosome docking at the synapse, we have studied cytotoxic T lymphocytes (CTLs) in which expression of the T cell receptor–activated tyrosine kinase Lck is ablated. In the absence of Lck, the centrosome is able to translocate around the nucleus toward the immunological synapse but is unable to dock at the plasma membrane. Lytic granules fail to polarize and release their contents, and target cells are not killed. In CTLs deficient in both Lck and the related tyrosine kinase Fyn, centrosome translocation is impaired, and the centrosome remains on the distal side of the nucleus relative to the synapse. These results show that repositioning of the centrosome in CTLs involves at least two distinct steps, with Lck signaling required for the centrosome to dock at the plasma membrane. PMID:21339332

  9. AllergoOncology: Opposite outcomes of immune tolerance in allergy and cancer.

    PubMed

    Jensen-Jarolim, E; Bax, H J; Bianchini, R; Crescioli, S; Daniels-Wells, T R; Dombrowicz, D; Fiebiger, E; Gould, H J; Irshad, S; Janda, J; Josephs, D H; Levi-Schaffer, F; O'Mahony, L; Pellizzari, G; Penichet, M L; Redegeld, F; Roth-Walter, F; Singer, J; Untersmayr, E; Vangelista, L; Karagiannis, S N

    2018-02-01

    While desired for the cure of allergy, regulatory immune cell subsets and nonclassical Th2-biased inflammatory mediators in the tumour microenvironment can contribute to immune suppression and escape of tumours from immunological detection and clearance. A key aim in the cancer field is therefore to design interventions that can break immunological tolerance and halt cancer progression, whereas on the contrary allergen immunotherapy exactly aims to induce tolerance. In this position paper, we review insights on immune tolerance derived from allergy and from cancer inflammation, focusing on what is known about the roles of key immune cells and mediators. We propose that research in the field of AllergoOncology that aims to delineate these immunological mechanisms with juxtaposed clinical consequences in allergy and cancer may point to novel avenues for therapeutic interventions that stand to benefit both disciplines. © 2017 The Authors. Allergy Published by John Wiley & Sons Ltd.

  10. Impact of folate therapy on combined immunodeficiency secondary to hereditary folate malabsorption.

    PubMed

    Kishimoto, Kenji; Kobayashi, Ryoji; Sano, Hirozumi; Suzuki, Daisuke; Maruoka, Hayato; Yasuda, Kazue; Chida, Natsuko; Yamada, Masafumi; Kobayashi, Kunihiko

    2014-07-01

    Hereditary folate malabsorption (HFM) is a rare autosomal recessive disorder. Severe folate deficiency in HFM can result in immunodeficiency. We describe a female infant with HFM who acquired severe Pneumocystis pneumonia. The objective of the present study was to elucidate her immunological phenotype and to examine the time course of immune recovery following parenteral folate therapy. The patient demonstrated a combined immunodeficiency with an impaired T cell proliferation response, pan-hypogammaglobulinemia, and an imbalanced pro-inflammatory cytokine profile. She had normal white blood cell count, normal lymphocyte subsets, and normal complement levels. Two novel mutations were identified within the SLC46A1 gene to produce a compound heterozygote. We confirmed full recovery of her immunological and neurophysiological status with parenteral folate replacement. The time course of recovery of her immunological profile varied widely, however. HFM should be recognized as a unique form of immunodeficiency. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Advances in clinical immunology in 2015.

    PubMed

    Chinen, Javier; Notarangelo, Luigi D; Shearer, William T

    2016-12-01

    Advances in clinical immunology in the past year included the report of practice parameters for the diagnosis and management of primary immunodeficiencies to guide the clinician in the approach to these relatively uncommon disorders. We have learned of new gene defects causing immunodeficiency and of new phenotypes expanding the spectrum of conditions caused by genetic mutations such as a specific regulator of telomere elongation (RTEL1) mutation causing isolated natural killer cell deficiency and mutations in ras-associated RAB (RAB27) resulting in immunodeficiency without albinism. Advances in diagnosis included the increasing use of whole-exome sequencing to identify gene defects and the measurement of serum free light chains to identify secondary hypogammaglobulinemias. For several primary immunodeficiencies, improved outcomes have been reported after definitive therapy with hematopoietic stem cell transplantation and gene therapy. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  12. Immune activation by nucleic acids: A role in pregnancy complications.

    PubMed

    Konečná, B; Lauková, L; Vlková, B

    2018-04-01

    Cell-free self-DNA or RNA may induce an immune response by activating specific sensing receptors. During pregnancy, placental nucleic acids present in the maternal circulation further activate these receptors due to the presence of unmethylated CpG islands. A higher concentration of cell-free foetal DNA is associated with pregnancy complications and a higher risk for foetal rejection. Cell-free foetal DNA originates from placental trophoblasts. It appears in different forms: free, bound to histones in nucleosomes, in neutrophil extracellular traps (NETs) and in extracellular vesicles (EVs). In several pregnancy complications, cell-free foetal DNA triggers the production of proinflammatory cytokines, and this production results in a cellular and humoral immune response. This review discusses preeclampsia, systemic lupus erythematosus, foetal growth restriction, gestational diabetes, rheumatoid arthritis and obesity in pregnancy from an immunological point of view and closely examines the different pathways that result in maternal inflammation. Understanding the role of cell-free nucleic acids, as well as the biogenesis of NETs and EVs, will help us to specify their functions or targets, which seem to be important in pregnancy complications. It is still not clear whether higher concentrations of cell-free nucleic acids in the maternal circulation are the cause or consequence of various complications. Therefore, further clinical studies and, even more importantly, animal experiments that focus on the involved immunological pathways are needed. © 2018 The Foundation for the Scandinavian Journal of Immunology.

  13. Lymphatic-targeted cationic liposomes: a robust vaccine adjuvant for promoting long-term immunological memory.

    PubMed

    Wang, Ce; Liu, Peng; Zhuang, Yan; Li, Ping; Jiang, Boling; Pan, Hong; Liu, Lanlan; Cai, Lintao; Ma, Yifan

    2014-09-22

    Although retaining antigens at the injection site (the so-called "depot effect") is an important strategy for vaccine development, increasing evidence showed that lymphatic-targeted vaccine delivery with liposomes could be a promising approach for improving vaccine efficacy. However, it remains unclear whether antigen depot or lymphatic targeting would benefit long-term immunological memory, a major determinant of vaccine efficacy. In the present study, OVA antigen was encapsulated with DOTAP cationic liposomes (LP) or DOTAP-PEG-mannose liposomes (LP-Man) to generate depot or lymphatic-targeted liposome vaccines, respectively. The result of in vivo imaging showed that LP mostly accumulated near the injection site, whereas LP-Man not only effectively accumulated in draining lymph nodes (LNs) and the spleen, but also enhanced the uptake by resident antigen-presenting cells. Although LP vaccines with depot effect induced anti-OVA IgG more potently than LP-Man vaccines did on day 40 after priming, they failed to mount an effective B-cell memory response upon OVA re-challenge after three months. In contrast, lymphatic-targeted LP-Man vaccines elicited sustained antibody production and robust recall responses three months after priming, suggesting lymphatic targeting rather than antigen depot promoted the establishment of long-term memory responses. The enhanced long-term immunological memory by LP-Man was attributed to vigorous germinal center responses as well as increased Tfh cells and central memory CD4(+) T cells in the secondary lymphoid organs. Hence, lymphatic-targeted vaccine delivery with LP-Man could be an effective strategy to promote long-lasting immunological memory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. CD8+ T Cells Provide an Immunologic Signature of Tuberculosis in Young Children

    PubMed Central

    Nyendak, Melissa; Kiguli, Sarah; Zalwango, Sarah; Mori, Tomi; Mayanja-Kizza, Harriet; Balyejusa, Stephen; Null, Megan; Baseke, Joy; Mulindwa, Deo; Byrd, Laura; Swarbrick, Gwendolyn; Scott, Christine; Johnson, Denise F.; Malone, LaShaunda; Mudido-Musoke, Philipa; Boom, W. Henry; Lewinsohn, David M.; Lewinsohn, Deborah A.

    2012-01-01

    Rationale: The immunologic events surrounding primary Mycobacterium tuberculosis infection and development of tuberculosis remain controversial. Young children who develop tuberculosis do so quickly after first exposure, thus permitting study of immune response to primary infection and disease. We hypothesized that M. tuberculosis–specific CD8+ T cells are generated in response to high bacillary loads occurring during tuberculosis. Objectives: To determine if M. tuberculosis–specific T cells are generated among healthy children exposed to M. tuberculosis and children with tuberculosis. Methods: Enzyme-linked immunosorbent spot assays were used to measure IFN-γ production in response to M. tuberculosis–specific proteins ESAT-6/CFP-10 by peripheral blood mononuclear cells and CD8+ T cells isolated from Ugandan children hospitalized with tuberculosis (n = 96) or healthy tuberculosis contacts (n = 62). Measurements and Main Results: The proportion of positive CD8+ T-cell assays and magnitude of CD8+ T-cell responses were significantly greater among young (<5 yr) tuberculosis cases compared with young contacts (P = 0.02, Fisher exact test, P = 0.01, Wilcoxon rank-sum, respectively). M. tuberculosis–specific T-cell responses measured in peripheral blood mononuclear cells were equivalent between groups. Conclusions: Among young children, M. tuberculosis–specific CD8+ T cells develop in response to high bacillary loads, as occurs during tuberculosis, and are unlikely to be found after M. tuberculosis exposure. T-cell responses measured in peripheral blood mononuclear cells are generated after M. tuberculosis exposure alone, and thus cannot distinguish exposure from disease. In young children, IFN-γ–producing M. tuberculosis–specific CD8+ T cells provide an immunologic signature of primary M. tuberculosis infection resulting in disease. PMID:22071329

  15. [Inflammasome and its role in immunological and inflammatory response at early stage of burns].

    PubMed

    Zhang, Fang; Li, Jiahui; Xia, Zhaofan

    2014-06-01

    Inflammasomes are large multi-protein complexes that serve as a platform for caspase-1 activation, and this process induces subsequent maturation and secretion of the proinflammatory cytokines IL-1β and IL-18, as well as pyroptosis. As an important component of the innate immune system, early activation of inflammasomes in a variety of immune cell subsets can mediate inflammatory response and immunological conditions after burn injury. Here, we review the current knowledge of inflammasomes and its role in immunological and inflammatory response at the early stage of burn injury.

  16. [Report on the 34th meeting of the German Clinical Immunology Workgroup, Frankfurt, 03.-04.11.2006].

    PubMed

    Aries, P M; Witte, T; Lamprecht, P

    2007-02-01

    The annual meeting of the Clinical Immunology Workgroup focused on autoimmune vasculitides. The role of innate immunity, T- and B-cells, and innovative therapies for autoimmune vasculitides was discussed. Further topics of the meeting were the role of endothelial microparticles, ghrelin and leptin, regulatory and effector-memory T-cells in ANCA-associated vasculitides, as well as the lethal midline granuloma, intracytoplasmic cytokine-profile in Behcet's disease, autoantibodies in rheumatoid arthritis, polyarteritis nodosa with cranial manifestation, ILT6 as genetic marker in multiple sclerosis and Sjögren's syndrome, alpha-fodrin autoantibodies in multiple sclerosis, interferon-g autoantibodies in a patient with atypical mycobacteriosis, and autoreactive T-cells in murine lupus.

  17. Antiradiation Vaccine: Immunological neutralization of Radiation Toxins at Acute Radiation Syndromes.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava

    Introduction: Current medical management of the Acute Radiation Syndromes (ARS) does not include immune prophylaxis based on the Antiradiation Vaccine. Existing principles for the treatment of acute radiation syndromes are based on the replacement and supportive therapy. Haemotopoietic cell transplantation is recomended as an important method of treatment of a Haemopoietic form of the ARS. Though in the different hospitals and institutions, 31 pa-tients with a haemopoietic form have previously undergone transplantation with stem cells, in all cases(100%) the transplantants were rejected. Lethality rate was 87%.(N.Daniak et al. 2005). A large amount of biological substances or antigens isolated from bacterias (flagellin and derivates), plants, different types of venom (honeybees, scorpions, snakes) have been studied. This biological active substances can produce a nonspecific stimulation of immune system of mammals and protect against of mild doses of irradiation. But their radioprotection efficacy against high doses of radiation were not sufficient. Relative radioprotection characteristics or adaptive properties of antioxidants were expressed only at mild doses of radiation. However antioxidants demonstrated a very low protective efficacy at high doses of radiation. Some ex-periments demonstrated even a harmful effect of antioxidants administered to animals that had severe forms of the ARS. Only Specific Radiation Toxins roused a specific antigenic stim-ulation of antibody synthesis. An active immunization by non-toxic doses of radiation toxins includes a complex of radiation toxins that we call the Specific Radiation Determinant (SRD). Immunization must be provided not less than 24 days before irradiation and it is effective up to three years and more. Active immunization by radiation toxins significantly reduces the mortality rate (100%) and improves survival rate up to 60% compare with the 0% sur-vival rate among the irradiated animals in control groups. Material and Methods: The SRD molecules were isolated from Lymphatic Systems of animals that were irradiated with high doses of irradiation and had a clinical and laboratory picture of the Cerebral Acute Radia-tion Syndrome, Cardiovascular Acute Radiation Syndrome, Gastrointestinal Acute Radiation Syndrome, and Hematological Acute Radiation Syndrome. Our classification of radiation tox-ins includes 4 major groups: 1.SRD-1, Cerebrovascular neurotoxic Radiation Toxins (CvARS); 2.SRD-2, Cardiovascular Radiation Toxins(CrARS); 3.SRD-3,Gastrointestinal neurotoxic Ra-diation Toxins (GiARS); 4.SRD-4, Hematopietic Radiation Toxins (HpARS). Radiation tox-ins possess both toxic and immunological properties. But mechanisms of immune-toxicity by which radiation toxins stimulate development of the ARS are poorly understood. We have studied lethal toxicity of radiation toxins and an ability of specific antibodies to neutralize toxic activity of radiation toxins by specific antibodies. Results: The Blocking Antiradiation Antibodies induce an immunologically specific effect and inhibiting effects on radiation induced neuro-toxicity, vascular-toxicity, gastrointestinal toxcity, hematopoietic toxicity. Antiradiation Antibodies prevent the radiation induced cytolysis of selected groups of cells that are sensitive to radiation. The Blocking Antiradiation Antibodies are immunologically specific and can be produced by immunization with the different radiation toxins isolated from irradiated mam-mals. We propose that Specific Antiradiation Antibodies targeted against the radiation induced Toxins. Specific Antiradiation Antibodies neutralize toxic properties of radiation toxins. Anti-radiation Antibodies in different phases of the Acute Radiation Syndromes can compete with cytotoxic lymphocytes and prevent cytolysis mediated by cytotoxic lymphocytes. Conclusions: Immunological inhibition of cytotoxic and neurotoxic properties of Specific Radiation Toxins are significant factors for improving results of Medical Management of severe forms of the ARS and will optimize results of traditional methods of therapy of the ARS. Immunological inhi-bition of Radiation Toxins must be a part of technical procedure before haemotopoietic stem cells transplantation. Positive therapeutic results of neutralization of SRD RT could make a procedure of haemopoietic stem cell transplantation unnecessary.

  18. Rationalization of a nanoparticle-based nicotine nanovaccine as an effective next-generation nicotine vaccine: A focus on hapten localization.

    PubMed

    Zhao, Zongmin; Hu, Yun; Harmon, Theresa; Pentel, Paul; Ehrich, Marion; Zhang, Chenming

    2017-09-01

    A lipid-polymeric hybrid nanoparticle-based next-generation nicotine nanovaccine was rationalized in this study to combat nicotine addiction. A series of nanovaccines, which had nicotine-haptens localized on carrier protein (LPKN), nanoparticle surface (LPNK), or both (LPNKN), were designed to study the impact of hapten localization on their immunological efficacy. All three nanovaccines were efficiently taken up and processed by dendritic cells. LPNKN induced a significantly higher immunogenicity against nicotine and a significantly lower anti-carrier protein antibody level compared to LPKN and LPNK. Meanwhile, it was found that the anti-nicotine antibodies elicited by LPKN and LPNKN bind nicotine stronger than those elicited by LPKN, and LPNK and LPNKN resulted in a more balanced Th1-Th2 immunity than LPKN. Moreover, LPNKN exhibited the best ability to block nicotine from entering the brain of mice. Collectively, the results demonstrated that the immunological efficacy of the hybrid nanoparticle-based nicotine vaccine could be enhanced by modulating hapten localization, providing a promising strategy to combatting nicotine addiction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Short-term additional enfuvirtide therapy is associated with a greater immunological recovery in HIV very late presenters: a controlled pilot study.

    PubMed

    Bonora, S; Calcagno, A; Cometto, C; Fontana, S; Aguilar, D; D'Avolio, A; Gonzalez de Requena, D; Maiello, A; Dal Conte, I; Lucchini, A; Di Perri, G

    2012-02-01

    To evaluate whether the addition of enfuvirtide to standard highly active antiretroviral therapy (HAART) could confer immunovirological benefits in human immunodeficiency virus (HIV)-infected very late presenters. The current study is an open comparative therapeutic trial of standard protease inhibitor (PI)-based HAART ± additional enfuvirtide in treatment-naïve deeply immunologically impaired HIV-positive patients. Very late presenters (CD4 <50/mm(3)), without tuberculosis and neoplasms, were alternatively allocated to two nucleoside reverse transcriptase inhibitors (NRTIs) and lopinavir/ritonavir without (control arm, CO) or with (ENF arm) enfuvirtide 90 mg bid. Enfuvirtide was administered until the achievement of viral load <50 copies/ml and for at least 24 weeks. The primary objective was the magnitude of CD4+ cell recovery at 6 months. HIV RNA was intensively monitored in the first month, and, thereafter, monthly, as for CD4+ cell count and percentage, clinical data, and plasma drug concentrations. Of 22 enrolled patients (11 per arm), 19 completed the study (10 in the ENF arm). Baseline CD4+ cell counts and % were comparable, with 20 CD4+/mm(3) (12-37) and a percentage of 3.3 (1.7-7.1) in the ENF arm, and 16 CD4+/mm(3) (9-29) and a percentage of 3.1 (2.3-3.8) in the CO arm, respectively. The baseline viral load was also comparable between the two arms, with 5.77 log10 (5.42-6) and 5.39 log10 (5.06-6) in the ENF and CO arms, respectively. Enfuvirtide recipients had higher CD4+ percentage at week 8 (7.6 vs. 3.6%, p = 0.02) and at week 24 (10.7 vs. 5.9%, p = 0.02), and a greater CD4+ increase at week 24 (207 vs. 134 cells/mm(3), p = 0.04), with 70% of enfuvirtide intakers versus 12.5% of controls who achieved a CD4+ cell count >200/mm(3) (p = 0.01). At 48 weeks, patients in the ENF arm had CD4+ cell counts higher than controls (251 vs. 153cells/mm(3), p = 0.04) and were also found to be faster in reaching a CD4 cell count over 200/mm(3): 18 (8-24) versus 48 (36-108) weeks (p = 0.01). Viral load decay at week 4 was greater in the ENF arm (-3 vs. -2.2 log, p = 0.04), while the proportion of patients with viral load <50 copies/ml at week 24 was comparable. In this pilot study, the addition of enfuvirtide to a lopinavir-based HAART was shown to be associated with a significantly faster and greater immunological recovery in newly discovered HIV-positive patients with very low CD4+ cell counts. Induction strategies using an enfuvirtide-based approach in such subjects warrant further investigation.

  20. Dendritic cells: key to fetal tolerance?

    PubMed

    Blois, Sandra M; Kammerer, Ulrike; Alba Soto, Catalina; Tometten, Mareike C; Shaikly, Valerie; Barrientos, Gabriela; Jurd, Richard; Rukavina, Daniel; Thomson, Angus W; Klapp, Burghard F; Fernández, Nelson; Arck, Petra C

    2007-10-01

    Pregnancy is a unique event in which a fetus, despite being genetically and immunologically different from the mother (a hemi-allograft), develops in the uterus. Successful pregnancy implies avoidance of rejection by the maternal immune system. Fetal and maternal immune cells come into direct contact at the decidua, which is a highly specialized mucous membrane that plays a key role in fetal tolerance. Uterine dendritic cells (DC) within the decidua have been implicated in pregnancy maintenance. DC serve as antigen-presenting cells with the unique ability to induce primary immune responses. Just as lymphocytes comprise different subsets, DC subsets have been identified that differentially control lymphocyte function. DC may also act to induce immunologic tolerance and regulation of T cell-mediated immunity. Current understanding of DC immunobiology within the context of mammalian fetal-maternal tolerance is reviewed and discussed herein.

  1. Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease.

    PubMed

    Fox, Ira J; Daley, George Q; Goldman, Steven A; Huard, Johnny; Kamp, Timothy J; Trucco, Massimo

    2014-08-22

    Pluripotent stem cells (PSCs) directed to various cell fates holds promise as source material for treating numerous disorders. The availability of precisely differentiated PSC-derived cells will dramatically affect blood component and hematopoietic stem cell therapies and should facilitate treatment of diabetes, some forms of liver disease and neurologic disorders, retinal diseases, and possibly heart disease. Although an unlimited supply of specific cell types is needed, other barriers must be overcome. This review of the state of cell therapies highlights important challenges. Successful cell transplantation will require optimizing the best cell type and site for engraftment, overcoming limitations to cell migration and tissue integration, and occasionally needing to control immunologic reactivity, as well as a number of other challenges. Collaboration among scientists, clinicians, and industry is critical for generating new stem cell-based therapies. Copyright © 2014, American Association for the Advancement of Science.

  2. T Cell Receptors and the Evolution of Recognition Mechanisms in Immunity.

    ERIC Educational Resources Information Center

    Inchley, C. J.

    1986-01-01

    Discusses recent advances in the study of mammalian immunology. Explains the roles of two families of lymphocytes, the B cells and T cells. Also examines evolutionary mechanisms related to the immune system. (ML)

  3. Towards a global human embryonic stem cell bank.

    PubMed

    Lott, Jason P; Savulescu, Julian

    2007-08-01

    An increasingly unbridgeable gap exists between the supply and demand of transplantable organs. Human embryonic stem cell technology could solve the organ shortage problem by restoring diseased or damaged tissue across a range of common conditions. However, such technology faces several largely ignored immunological challenges in delivering cell lines to large populations. We address some of these challenges and argue in favor of encouraging contribution or intentional creation of embryos from which widely immunocompatible stem cell lines could be derived. Further, we argue that current immunological constraints in tissue transplantation demand the creation of a global stem cell bank, which may hold particular promise for minority populations and other sub-groups currently marginalized from organ procurement and allocation systems. Finally, we conclude by offering a number of practical and ethically oriented recommendations for constructing a human embryonic stem cell bank that we hope will help solve the ongoing organ shortage problem.

  4. A T-Cell Receptor Breaks the Rules | Center for Cancer Research

    Cancer.gov

    Most mature T cells function immunologically when a T-cell receptor (TCR) located on the cell surface encounters and engages its ligand, a major histocompatability complex (MHC), which displays a specific part of a target protein called an antigen. This antigen-presenting complex is assembled from one of the dozen or so MHC molecules that every person inherits from their parents; and the antigen fragment, called a peptide epitope, is excised from one of thousands of possible proteins—originally part of an invading pathogen or a cancer cell—that T cells are capable of identifying and attacking. The framework of an MHC molecule holding a centrally displayed or “presented” peptide is what engages the TCR and triggers T-cell action. This role of MHC molecules presenting antigens to the TCR is a central tenet of immunology, with the fit between a TCR and the MHC framework actually “hardwired” into their three-dimensional structures.

  5. 21st Nantes Actualités Transplantation: "When Stem Cells Meet Immunology".

    PubMed

    Anegon, Ignacio; Nguyen, Tuan Huy

    2017-01-01

    "When Stem Cells Meet Immunology" has been the topic of the 21st annual "Nantes Actualités en Transplantation" meeting (June 9-10, 2016, Nantes, France). This meeting brought together pioneers and leading experts in the fields of stem cells, biomaterials and immunoregulation. Presentations covered multipotent (mesenchymal and hematopoietic) and pluripotent stem cells (embryonic and induced) for regenerative medicine of incurable diseases, immunotherapy and blood transfusions. An additional focus had been immune rejections and responses of allogeneic or autologous stem cells. Conversely, stem cells are also able to directly modulate the immune response through the production of immunoregulatory molecules. Moreover, stem cells may also provide an unlimited source of immune cells (DCs, NK cells, B cells, and T cells) that can operate as "super" immune cells, for example, through genetic engineering with chimeric antigen receptors.This meeting report puts presentations into an overall context highlighting new potential biomarkers for potency prediction of mesenchymal stem cell-derived and pluripotent stem cell-derived multicellular organoids. Finally, we propose future directions arising from the flourishing encounter of stem cell and immune biology.

  6. Chimeric Antigen Receptor- and TCR-Modified T Cells Enter Main Street and Wall Street.

    PubMed

    Barrett, David M; Grupp, Stephan A; June, Carl H

    2015-08-01

    The field of adoptive cell transfer (ACT) is currently comprised of chimeric Ag receptor (CAR)- and TCR-engineered T cells and has emerged from principles of basic immunology to paradigm-shifting clinical immunotherapy. ACT of T cells engineered to express artificial receptors that target cells of choice is an exciting new approach for cancer, and it holds equal promise for chronic infection and autoimmunity. Using principles of synthetic biology, advances in immunology, and genetic engineering have made it possible to generate human T cells that display desired specificities and enhanced functionalities. Clinical trials in patients with advanced B cell leukemias and lymphomas treated with CD19-specific CAR T cells have induced durable remissions in adults and children. The prospects for the widespread availability of engineered T cells have changed dramatically given the recent entry of the pharmaceutical industry to this arena. In this overview, we discuss some of the challenges and opportunities that face the field of ACT. Copyright © 2015 by The American Association of Immunologists, Inc.

  7. Detection of cell mediated immune response to avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    In birds, lymphomyeloid tissues develop from epithelial (Bursa of Fabricus or thymus) or mesenchymal tissue which are populated by heamatopoietic stem cells. These stem cells develop directly into immunologically competent B (bursa) and T (thymus) cells. Cell-mediated immunity (CMI) is a part of the...

  8. Immunological Applications of Stem Cells in Type 1 Diabetes

    PubMed Central

    Voltarelli, Julio; Zavazava, Nicholas

    2011-01-01

    Current approaches aiming to cure type 1 diabetes (T1D) have made a negligible number of patients insulin-independent. In this review, we revisit the role of stem cell (SC)-based applications in curing T1D. The optimal therapeutic approach for T1D should ideally preserve the remaining β-cells, restore β-cell function, and protect the replaced insulin-producing cells from autoimmunity. SCs possess immunological and regenerative properties that could be harnessed to improve the treatment of T1D; indeed, SCs may reestablish peripheral tolerance toward β-cells through reshaping of the immune response and inhibition of autoreactive T-cell function. Furthermore, SC-derived insulin-producing cells are capable of engrafting and reversing hyperglycemia in mice. Bone marrow mesenchymal SCs display a hypoimmunogenic phenotype as well as a broad range of immunomodulatory capabilities, they have been shown to cure newly diabetic nonobese diabetic (NOD) mice, and they are currently undergoing evaluation in two clinical trials. Cord blood SCs have been shown to facilitate the generation of regulatory T cells, thereby reverting hyperglycemia in NOD mice. T1D patients treated with cord blood SCs also did not show any adverse reaction in the absence of major effects on glycometabolic control. Although hematopoietic SCs rarely revert hyperglycemia in NOD mice, they exhibit profound immunomodulatory properties in humans; newly hyperglycemic T1D patients have been successfully reverted to normoglycemia with autologous nonmyeloablative hematopoietic SC transplantation. Finally, embryonic SCs also offer exciting prospects because they are able to generate glucose-responsive insulin-producing cells. Easy enthusiasm should be mitigated mainly because of the potential oncogenicity of SCs. PMID:21862682

  9. Effects of wear particles of polyether-ether-ketone and cobalt-chromium-molybdenum on CD4- and CD8-T-cell responses

    PubMed Central

    Du, Zhe; Wang, Shujun; Yue, Bing; Wang, Ying; Wang, You

    2018-01-01

    T-cells, second only to macrophages, are often considered as the potential cells involved in debris-related failure of arthroplasty. Here, we assessed the effects of particulate wear debris on T-cells and inflammatory reactions. Blood samples from 25 donors were incubated with polyether-ether-ketone (PEEK) and cobalt-chromium-molybdenum (CoCrMo) particles generated by custom cryo-milling and pulverization. The T-cell phenotypes were assessed using immunostaining and flow cytometry. For the in vivo study, 0.1 mL of each particle suspension (approximately 1.0 × 108 wear particles) was injected into murine knee joints; the synovium and spleen were collected one week after the operation for histological examination and immunofluorescence staining. The T-cell responses observed included low-level activation of Th1, Th2, Th17, and CD8+ pathways after 72 h of co-culture of the particles with peripheral blood mononuclear cells. Obvious CD8+ T-cell responses were observed in local synovium and peripheral spleen, with higher inflammatory cytokine expression in the CoCrMo group. Relatively minor cytotoxic and immunological reactions were observed in vitro, with PEEK and CoCrMo particle-induced immune responses being primarily mediated by CD8+ T-cells, rather than CD4+ T-cells, in vivo. Overall, PEEK wear particles induced fewer inflammatory reactions than CoCrMo particles. This study verified that PEEK was suitable as a potential alternative for metals in total knee replacements in terms of the immunological reaction to PEEK particles, and shed light on the effects of wear particles from polymer and metal-based implants on immune responses. PMID:29541407

  10. Effects of wear particles of polyether-ether-ketone and cobalt-chromium-molybdenum on CD4- and CD8-T-cell responses.

    PubMed

    Du, Zhe; Wang, Shujun; Yue, Bing; Wang, Ying; Wang, You

    2018-02-16

    T-cells, second only to macrophages, are often considered as the potential cells involved in debris-related failure of arthroplasty. Here, we assessed the effects of particulate wear debris on T-cells and inflammatory reactions. Blood samples from 25 donors were incubated with polyether-ether-ketone (PEEK) and cobalt-chromium-molybdenum (CoCrMo) particles generated by custom cryo-milling and pulverization. The T-cell phenotypes were assessed using immunostaining and flow cytometry. For the in vivo study, 0.1 mL of each particle suspension (approximately 1.0 × 10 8 wear particles) was injected into murine knee joints; the synovium and spleen were collected one week after the operation for histological examination and immunofluorescence staining. The T-cell responses observed included low-level activation of Th1, Th2, Th17, and CD8+ pathways after 72 h of co-culture of the particles with peripheral blood mononuclear cells. Obvious CD8+ T-cell responses were observed in local synovium and peripheral spleen, with higher inflammatory cytokine expression in the CoCrMo group. Relatively minor cytotoxic and immunological reactions were observed in vitro , with PEEK and CoCrMo particle-induced immune responses being primarily mediated by CD8+ T-cells, rather than CD4+ T-cells, in vivo . Overall, PEEK wear particles induced fewer inflammatory reactions than CoCrMo particles. This study verified that PEEK was suitable as a potential alternative for metals in total knee replacements in terms of the immunological reaction to PEEK particles, and shed light on the effects of wear particles from polymer and metal-based implants on immune responses.

  11. Immunologic memory response induced by a meningococcal serogroup C conjugate vaccine using the P64k recombinant protein as carrier.

    PubMed

    Guirola, María; Urquiza, Dioslaida; Alvarez, Anabel; Cannan-Haden, Leonardo; Caballero, Evelin; Guillén, Gerardo

    2006-03-01

    In this study, we used an adoptive lymphocyte transfer experiment to evaluate the ability of the P64k recombinant protein to recruit T-helper activity and induce immunologic memory response to the polysaccharide moiety in a meningococcal serogroup C conjugate vaccine. Adoptive transfer of splenocytes from mice immunized with the glycoconjugate conferred antipolysaccharide immunologic memory to naive recipient mice. The observed anamnestic immune response was characterized by more rapid kinetics, isotype switching from IgM to IgG and higher antipolysaccharide antibody titers compared with those reached in groups transferred with splenocytes from plain polysaccharide or phosphate-immunized mice. The memory response generated was also long lasting. Sera from mice transferred with cells from conjugate-immunized mice were the only protective in the infant rat passive protection assay, and also showed higher bactericidal titers. We demonstrated that priming the mice immune system with the glycoconjugate using the P64k protein as carrier induced a memory response to the polysaccharide, promoting a switch of the T-cell-independent response to a T-cell dependent one.

  12. Intranasal immunization with protective antigen of Bacillus anthracis induces a long-term immunological memory response.

    PubMed

    Woo, Sun-Je; Kang, Seok-Seong; Park, Sung-Moo; Yang, Jae Seung; Song, Man Ki; Yun, Cheol-Heui; Han, Seung Hyun

    2015-10-01

    Although intranasal vaccination has been shown to be effective for the protection against inhalational anthrax, establishment of long-term immunity has yet to be achieved. Here, we investigated whether intranasal immunization with recombinant protective antigen (rPA) of Bacillus anthracis induces immunological memory responses in the mucosal and systemic compartments. Intranasal immunization with rPA plus cholera toxin (CT) sustained PA-specific antibody responses for 6 months in lung, nasal washes, and vaginal washes as well as serum. A significant induction of PA-specific memory B cells was observed in spleen, cervical lymph nodes (CLNs) and lung after booster immunization. Furthermore, intranasal immunization with rPA plus CT remarkably generated effector memory CD4(+) T cells in the lung. PA-specific CD4(+) T cells preferentially increased the expression of Th1- and Th17-type cytokines in lung, but not in spleen or CLNs. Collectively, the intranasal immunization with rPA plus CT promoted immunologic memory responses in the mucosal and systemic compartments, providing long-term immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Ezrin tunes T-cell activation by controlling Dlg1 and microtubule positioning at the immunological synapse

    PubMed Central

    Lasserre, Rémi; Charrin, Stéphanie; Cuche, Céline; Danckaert, Anne; Thoulouze, Maria-Isabel; de Chaumont, Fabrice; Duong, Tarn; Perrault, Nathalie; Varin-Blank, Nadine; Olivo-Marin, Jean-Christophe; Etienne-Manneville, Sandrine; Arpin, Monique; Di Bartolo, Vincenzo; Alcover, Andrés

    2010-01-01

    T-cell receptor (TCR) signalling is triggered and tuned at immunological synapses by the generation of signalling complexes that associate into dynamic microclusters. Microcluster movement is necessary to tune TCR signalling, but the molecular mechanism involved remains poorly known. We show here that the membrane-microfilament linker ezrin has an important function in microcluster dynamics and in TCR signalling through its ability to set the microtubule network organization at the immunological synapse. Importantly, ezrin and microtubules are important to down-regulate signalling events leading to Erk1/2 activation. In addition, ezrin is required for appropriate NF-AT activation through p38 MAP kinase. Our data strongly support the notion that ezrin regulates immune synapse architecture and T-cell activation through its interaction with the scaffold protein Dlg1. These results uncover a crucial function for ezrin, Dlg1 and microtubules in the organization of the immune synapse and TCR signal down-regulation. Moreover, they underscore the importance of ezrin and Dlg1 in the regulation of NF-AT activation through p38. PMID:20551903

  14. Size-dependent protein segregation at membrane interfaces

    PubMed Central

    Schmid, Eva M; Bakalar, Matthew H; Choudhuri, Kaushik; Weichsel, Julian; Ann, HyoungSook; Geissler, Phillip L; Dustin, Michael L; Fletcher, Daniel A

    2016-01-01

    Membrane interfaces formed at cell-cell junctions are associated with characteristic patterns of membrane protein organization, such as E-cadherin enrichment in epithelial junctional complexes and CD45 exclusion from the signaling foci of immunological synapses. To isolate the role of protein size in these processes, we reconstituted membrane interfaces in vitro using giant unilamellar vesicles decorated with synthetic binding and non-binding proteins. We show that size differences between binding and non-binding proteins can dramatically alter their organization at membrane interfaces in the absence of active contributions from the cytoskeleton, with as little as a ~5 nm increase in non-binding protein size driving its exclusion from the interface. Combining in vitro measurements with Monte Carlo simulations, we find that non-binding protein exclusion is also influenced by lateral crowding, binding protein affinity, and thermally-driven membrane height fluctuations that transiently limit access to the interface. This simple, sensitive, and highly effective means of passively segregating proteins has implications for signaling at cell-cell junctions and protein sorting at intracellular contact points between membrane-bound organelles. PMID:27980602

  15. Therapeutic Role of Hematopoietic Stem Cells in Autism Spectrum Disorder-Related Inflammation

    PubMed Central

    Siniscalco, Dario; Bradstreet, James Jeffrey; Antonucci, Nicola

    2013-01-01

    Autism and autism spectrum disorders (ASDs) are heterogeneous, severe neuro-developmental disorders with core symptoms of dysfunctions in social interactions and communication skills, restricted interests, repetitive – stereotypic verbal and non-verbal behaviors. Biomolecular evidence points to complex gene-environmental interactions in ASDs. Several biochemical processes are associated with ASDs: oxidative stress (including endoplasmic reticulum stress), decreased methylation capacity, limited production of glutathione; mitochondrial dysfunction, intestinal dysbiosis, increased toxic metal burden, and various immune abnormalities. The known immunological disorders include: T-lymphocyte populations and function, gene expression changes in monocytes, several autoimmune-related findings, high levels of N-acetylgalactosaminidase (which precludes macrophage activation), and primary immune deficiencies. These immunological observations may result in minicolumn structural changes in the brain, as well as, abnormal immune mediation of synaptic functions. Equally, these immune dysregulations serve as the rationale for immune-directed interventions such as hematopoietic stem cells (HSCs), which are pivotal in controlling chronic inflammation and in the restoration of immunological balance. These properties make them intriguing potential agents for ASD treatments. This prospective review will focus on the current state-of-the-art knowledge and challenges intrinsic in the application of HSCs for ASD-related immunological disorders. PMID:23772227

  16. Understanding Immunology via Engineering Design: The Role of Mathematical Prototyping

    PubMed Central

    Klinke, David J.; Wang, Qing

    2012-01-01

    A major challenge in immunology is how to translate data into knowledge given the inherent complexity and dynamics of human physiology. Both the physiology and engineering communities have rich histories in applying computational approaches to translate data obtained from complex systems into knowledge of system behavior. However, there are some differences in how disciplines approach problems. By referring to mathematical models as mathematical prototypes, we aim to highlight aspects related to the process (i.e., prototyping) rather than the product (i.e., the model). The objective of this paper is to review how two related engineering concepts, specifically prototyping and “fitness for use,” can be applied to overcome the pressing challenge in translating data into improved knowledge of basic immunology that can be used to improve therapies for disease. These concepts are illustrated using two immunology-related examples. The prototypes presented focus on the beta cell mass at the onset of type 1 diabetes and the dynamics of dendritic cells in the lung. This paper is intended to illustrate some of the nuances associated with applying mathematical modeling to improve understanding of the dynamics of disease progression in humans. PMID:22973412

  17. From Immunologically Archaic to Neoteric Glycovaccines

    PubMed Central

    Cavallari, Marco; De Libero, Gennaro

    2017-01-01

    Polysaccharides (PS) are present in the outermost surface of bacteria and readily come in contact with immune cells. They interact with specific antibodies, which in turn confer protection from infections. Vaccines with PS from pneumococci, meningococci, Haemophilus influenzae type b, and Salmonella typhi may be protective, although with the important constraint of failing to generate permanent immunological memory. This limitation has in part been circumvented by conjugating glycovaccines to proteins that stimulate T helper cells and facilitate the establishment of immunological memory. Currently, protection evoked by conjugated PS vaccines lasts for a few years. The same approach failed with PS from staphylococci, Streptococcus agalactiae, and Klebsiella. All those germs cause severe infections in humans and often develop resistance to antibiotic therapy. Thereby, prevention is of increasing importance to better control outbreaks. As only 23 of more than 90 pneumococcal serotypes and 4 of 13 clinically relevant Neisseria meningitidis serogroups are covered by available vaccines there is still tremendous clinical need for PS vaccines. This review focuses on glycovaccines and the immunological mechanisms for their success or failure. We discuss recent advances that may facilitate generation of high affinity anti-PS antibodies and confer specific immunity and long-lasting protection. PMID:28134792

  18. Immunological Assays as an Opportunity of Assessment of Health Risks of Airborne Particle Mixture Including Nanoparticles

    NASA Astrophysics Data System (ADS)

    Brzicová, Táňa; Lochman, Ivo; Danihelka, Pavel; Lochmanová, Alexandra; Lach, Karel; Mička, Vladimír

    2013-04-01

    The aim of this pilot study was to evaluate perspectives of the assessment of nonspecific biological effects of airborne particulate matter including nanoparticles using appropriate immunological assays. We have selected various in vitro immunological assays to establish an array allowing us to monitor activation of the cell-mediated and humoral response of both the innate and adaptive immunity. To assess comprehensive interactions and effects, the assays were performed in whole blood cultures from healthy volunteers and we used an original airborne particle mixture from high pollution period in Ostrava region representing areas with one of the most polluted air in Europe. Even if certain effects were observed, the results of the immunological assays did not prove significant effects of airborne particles on immune cells' functions of healthy persons. However, obtained data do not exclude health risks of long-term exposure to airborne particles, especially in case of individuals with genetic predisposition to certain diseases or already existing disease. This study emphasizes the in vitro assessment of complex effects of airborne particles in conditions similar to actual ones in an organism exposed to particle mixture present in the polluted air.

  19. Carbon nanotubes toxicology and effects on metabolism and immunological modification in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Chiaretti, M.; Mazzanti, G.; Bosco, S.; Bellucci, S.; Cucina, A.; LeFoche, F.; Carru, G. A.; Mastrangelo, S.; Di Sotto, A.; Masciangelo, R.; Chiaretti, A. M.; Balasubramanian, C.; DeBellis, G.; Micciulla, F.; Porta, N.; Deriu, G.; Tiberia, A.

    2008-11-01

    The aim of this research is focused on the biological effects of multi wall carbon nanotubes (MWCNTs) on three different human cell types, laboratory animals in vivo, and immunological effects. Large numbers of researchers are directly involved in the handling of nanostructured materials such as MWCNTs and nanoparticles. It is important to assess the potential health risks related to their daily exposure to carbon nanotubes. The administration of sterilized nanosamples has been performed on laboratory animals, in both acute and chronic administration, and the pathological effects on the parenchymal tissues have been investigated. We studied the serum immunological modifications after intraperitoneal administration of the MWCNTs. We did not observe any antigenic reaction; the screening of ANA, anti-ENA, anti-cardiolipin, C-ANCA and P-ANCA was negative. No quantitative modification of immunoglobulins was observed, hence no modification of humoral immunity was documented. We also studied the effects of MWCNTs on the proliferation of three different cell types. MCF-7 showed a significant inhibition of proliferation for all conditions studied, whereas hSMCs demonstrated a reduction of cell growth only for the highest MWCNTs concentrations after 72 h. Also, no growth modification was observed in the Caco-2 cell line. We observed that a low quantity of MWCNTs does not provoke any inflammatory reaction. However, for future medical applications, it is important to realize prosthesis based on MWCNTs, through studying the corresponding implantation effects. Moreover, it has to be emphasized that this investigation does not address, at the moment, the carcinogenicity of MWCNTs, which requires a detailed follow-up investigation on the specific topic. In view of the subsequent and more extensive use of MWCNTs, especially in applications where carbon nanotubes are injected into the human body for drug delivery, as a contrast agent carrying entities for MRI, or as the basic material of a new prosthesis generation, more extended tests and experiments are necessary.

  20. [Clinical and experimental study of treating aplastic anemia with fetal liver cell suspension and fetal liver cell-free suspension].

    PubMed

    Han, J R; Yuan, S W; Ren, Q F

    1990-06-01

    Fresh fetal liver obtained from 3- to 6-month fetus was prepared. Fetal liver cell suspension (FLC) or fetal liver cell-free suspension (FLCF) were then transfused into two groups of patient of aplastic anemia. 15 of 21 patients of aplastic anemia treated with FLC showed reconstitution of haemopoietic function or improvement of peripheral blood pictures, while 27 of 30 patients treated with FLCF showed reconstitution or improvement. It is verified that there is a stimulating factor for CFU-CM, BFU-E, and CFU-E and also a immunologic stimulant for improving the nonspecific immunologic function of the organism as shown by clinical analysis and experimental study. It is obvious that the therapeutic effect of FLCF is much better than that of the FLC.

  1. Immunological unresponsiveness in mice. II. Cellular basis of immunological unresponsiveness induced in foetal and neonatal mice by transfer of human gamma-globulin by the maternal route.

    PubMed Central

    Shinka, S; Komatsu, T; Dohi, Y; Amano, T

    1979-01-01

    The cellular basis of the mechanism of immunological tolerance to human gamma-globulin (H gamma G) induced in foetal and neonatal mice by materno-foetal or materno-neonatal transfer after a single injection of tolerogen (deaggregated H gamma G) into the mothers was investigated using a cell transfer system and assays of passive haemagglutinating antibodies and plaque-forming cells to H gamma G. The results demonstrated that B cells are mainly involved in the tolerance induced on the fourteenth day of gestation, whereas inactivation of T cells may account for the tolerance induced on the eighteenth day of gestation and in the neonatal stage. Treatment of the mothers with tolerogen and then anti-H gamma G serum reduced the tolerance induced on the fourteenth day of gestation, but did not affect that induced on the eighteenth day of gestation and in the neonatal stage. Cell transfer experiments showed that B-cell tolerance induced on the fourteenth day of gestation was prevented by passive antibody, while T-cell tolerance induced on the eighteenth day of gestation and in the neonatal stage was not affected by passive antibody. Assay of the anti-DNP antibody response after immunization with DNP10-H gamma G showed that treatment of mice with the tolerogen on the eighteenth day of gestation, but not the fourteenth day of gestation, inactivated H gamma G-reactive helper cells. The significance of these results is discussed in relation to the results of the cell transfer experiments described as above. PMID:89080

  2. Myocardial aging as a T-cell–mediated phenomenon

    PubMed Central

    Ramos, Gustavo Campos; van den Berg, Anne; Nunes-Silva, Vânia; Weirather, Johannes; Peters, Laura; Burkard, Matthias; Friedrich, Mike; Pinnecker, Jürgen; Abeßer, Marco; Heinze, Katrin G.; Schuh, Kai; Beyersdorf, Niklas; Kerkau, Thomas; Demengeot, Jocelyne; Frantz, Stefan; Hofmann, Ulrich

    2017-01-01

    In recent years, the myocardium has been rediscovered under the lenses of immunology, and lymphocytes have been implicated in the pathogenesis of cardiomyopathies with different etiologies. Aging is an important risk factor for heart diseases, and it also has impact on the immune system. Thus, we sought to determine whether immunological activity would influence myocardial structure and function in elderly mice. Morphological, functional, and molecular analyses revealed that the age-related myocardial impairment occurs in parallel with shifts in the composition of tissue-resident leukocytes and with an accumulation of activated CD4+ Foxp3− (forkhead box P3) IFN-γ+ T cells in the heart-draining lymph nodes. A comprehensive characterization of different aged immune-deficient mouse strains revealed that T cells significantly contribute to age-related myocardial inflammation and functional decline. Upon adoptive cell transfer, the T cells isolated from the mediastinal lymph node (med-LN) of aged animals exhibited increased cardiotropism, compared with cells purified from young donors or from other irrelevant sites. Nevertheless, these cells caused rather mild effects on cardiac functionality, indicating that myocardial aging might stem from a combination of intrinsic and extrinsic (immunological) factors. Taken together, the data herein presented indicate that heart-directed immune responses may spontaneously arise in the elderly, even in the absence of a clear tissue damage or concomitant infection. These observations might shed new light on the emerging role of T cells in myocardial diseases, which primarily affect the elderly population. PMID:28255084

  3. Depletion of autoreactive immunologic memory followed by autologous hematopoietic stem cell transplantation in patients with refractory SLE induces long-term remission through de novo generation of a juvenile and tolerant immune system.

    PubMed

    Alexander, Tobias; Thiel, Andreas; Rosen, Oliver; Massenkeil, Gero; Sattler, Arne; Kohler, Siegfried; Mei, Henrik; Radtke, Hartmut; Gromnica-Ihle, Erika; Burmester, Gerd-Rüdiger; Arnold, Renate; Radbruch, Andreas; Hiepe, Falk

    2009-01-01

    Clinical trials have indicated that immunoablation followed by autologous hematopoietic stem cell transplantation (ASCT) has the potential to induce clinical remission in patients with refractory systemic lupus erythematosus (SLE), but the mechanisms have remained unclear. We now report the results of a single-center prospective study of long-term immune reconstitution after ASCT in 7 patients with SLE. The clinical remissions observed in these patients are accompanied by the depletion of autoreactive immunologic memory, reflected by the disappearance of pathogenic anti-double-stranded DNA (dsDNA) antibodies and protective antibodies in serum and a fundamental resetting of the adaptive immune system. The latter comprises recurrence of CD31(+)CD45RA(+)CD4(+) T cells (recent thymic emigrants) with a doubling in absolute numbers compared with age-matched healthy controls at the 3-year follow-up (P = .016), the regeneration of thymic-derived FoxP3(+) regulatory T cells, and normalization of peripheral T-cell receptor (TCR) repertoire usage. Likewise, responders exhibited normalization of the previously disturbed B-cell homeostasis with numeric recovery of the naive B-cell compartment within 1 year after ASCT. These data are the first to demonstrate that both depletion of the autoreactive immunologic memory and a profound resetting of the adaptive immune system are required to reestablish self-tolerance in SLE.

  4. Immunological characteristics of patients infected with common intestinal helminths: results of a study based on reverse-transcriptase PCR.

    PubMed

    Lertanekawattana, S; Wichatrong, T; Chaisari, K; Uchikawa, R; Arizono, N

    2005-01-01

    To determine whether common helminth infections could modify the intestinal immunopathological status of the host, the expression in the human duodenal mucosa of cytokines, eosinophil- and mast-cell-specific molecules and monosaccharide transporters of the glucose-transporter (GLUT) family was explored. The 31 subjects were all patients at the gastro-intestinal disease unit of Nongkhai Hospital, Thailand. Four of the 10 patients who presented with eosinophilia (> or = 6.0% of their leucocytes were eosinophils), and five of the other 21 patients, had intestinal infections with helminths when they presented or within the previous 3 months. Studies based on semi-quantitative, reverse-transcriptase PCR revealed that the interleukin-5/interferon-gamma ratio was significantly higher in the noneosinophilic, helminth-infected patients than in the non-eosinophilic, uninfected patients, whereas the IgE receptor type I (Fc epsilon RI)/mast-cell tryptase ratio was significantly higher in the eosinophilic, helminth-infected patients than in the eosinophilic, uninfected patients. Expression of Charcot-Leyden-crystal protein, GLUT-1 and GLUT-5, however, showed no significant inter-group differences. Principal-components analysis of the data on eosinophils, interleukin-5, interferon-gamma, Fc epsilon RI and mast-cell tryptase revealed that one principal component could discriminate the patients who had helminth infection from the non-eosinophilic, uninfected patients, but not from the eosinophilic, uninfected patients. These results indicate that, whatever the intestinal pathology, patients infected with common intestinal helminths tend to develop a mucosal immunological response of the Th2 type.

  5. International Consensus on drug allergy.

    PubMed

    Demoly, P; Adkinson, N F; Brockow, K; Castells, M; Chiriac, A M; Greenberger, P A; Khan, D A; Lang, D M; Park, H-S; Pichler, W; Sanchez-Borges, M; Shiohara, T; Thong, B Y- H

    2014-04-01

    When drug reactions resembling allergy occur, they are called drug hypersensitivity reactions (DHRs) before showing the evidence of either drug-specific antibodies or T cells. DHRs may be allergic or nonallergic in nature, with drug allergies being immunologically mediated DHRs. These reactions are typically unpredictable. They can be life-threatening, may require or prolong hospitalization, and may necessitate changes in subsequent therapy. Both underdiagnosis (due to under-reporting) and overdiagnosis (due to an overuse of the term ‘allergy’) are common. A definitive diagnosis of such reactions is required in order to institute adequate treatment options and proper preventive measures. Misclassification based solely on the DHR history without further testing may affect treatment options, result in adverse consequences, and lead to the use of more-expensive or less-effective drugs, in contrast to patients who had undergone a complete drug allergy workup. Several guidelines and/or consensus documents on general or specific drug class-induced DHRs are available to support the medical decision process. The use of standardized systematic approaches for the diagnosis and management of DHRs carries the potential to improve outcomes and should thus be disseminated and implemented. Consequently, the International Collaboration in Asthma, Allergy and Immunology (iCAALL), formed by the European Academy of Allergy and Clinical Immunology (EAACI), the American Academy of Allergy, Asthma and Immunology (AAAAI), the American College of Allergy, Asthma and Immunology (ACAAI), and the World Allergy Organization (WAO), has decided to issue an International CONsensus (ICON) on drug allergy. The purpose of this document is to highlight the key messages that are common to many of the existing guidelines, while critically reviewing and commenting on any differences and deficiencies of evidence, thus providing a comprehensive reference document for the diagnosis and management of DHRs.

  6. A very low geno2pheno false positive rate is associated with poor viro-immunological response in drug-naïve patients starting a first-line HAART.

    PubMed

    Armenia, Daniele; Soulie, Cathia; Di Carlo, Domenico; Fabeni, Lavinia; Gori, Caterina; Forbici, Federica; Svicher, Valentina; Bertoli, Ada; Sarmati, Loredana; Giuliani, Massimo; Latini, Alessandra; Boumis, Evangelo; Zaccarelli, Mauro; Bellagamba, Rita; Andreoni, Massimo; Marcelin, Anne-Geneviève; Calvez, Vincent; Antinori, Andrea; Ceccherini-Silberstein, Francesca; Perno, Carlo-Federico; Santoro, Maria Mercedes

    2014-01-01

    We previously found that a very low geno2pheno false positive rate (FPR ≤ 2%) defines a viral population associated with low CD4 cell count and the highest amount of X4-quasispecies. In this study, we aimed at evaluating whether FPR ≤ 2% might impact on the viro-immunological response in HIV-1 infected patients starting a first-line HAART. The analysis was performed on 305 HIV-1 B subtype infected drug-naïve patients who started their first-line HAART. Baseline FPR (%) values were stratified according to the following ranges: ≤ 2; 2-5; 5-10; 10-20; 20-60; >60. The impact of genotypically-inferred tropism on the time to achieve immunological reconstitution (a CD4 cell count gain from HAART initiation ≥ 150 cells/mm(3)) and on the time to achieve virological success (the first HIV-RNA measurement <50 copies/mL from HAART initiation) was evaluated by survival analyses. Overall, at therapy start, 27% of patients had FPR ≤ 10 (6%, FPR ≤ 2; 7%, FPR 2-5; 14%, FPR 5-10). By 12 months of therapy the rate of immunological reconstitution was overall 75.5%, and it was significantly lower for FPR ≤ 2 (54.1%) in comparison to other FPR ranks (78.8%, FPR 2-5; 77.5%, FPR 5-10; 71.7%, FPR 10-20; 81.8%, FPR 20-60; 75.1%, FPR >60; p = 0.008). The overall proportion of patients achieving virological success was 95.5% by 12 months of therapy. Multivariable Cox analyses showed that patients having pre-HAART FPR ≤ 2% had a significant lower relative adjusted hazard [95% C.I.] both to achieve immunological reconstitution (0.37 [0.20-0.71], p = 0.003) and to achieve virological success (0.50 [0.26-0.94], p = 0.031) than those with pre-HAART FPR >60%. Beyond the genotypically-inferred tropism determination, FPR ≤ 2% predicts both a poor immunological reconstitution and a lower virological response in drug-naïve patients who started their first-line therapy. This parameter could be useful to identify patients potentially with less chance of achieving adequate immunological reconstitution and virological undetectability.

  7. Antiglioma Immunological Memory in Response to Conditional Cytotoxic/Immune-Stimulatory Gene Therapy: Humoral and Cellular Immunity Lead to Tumor Regression

    PubMed Central

    Muhammad, A.K.M. Ghulam; Candolfi, Marianela; King, Gwendalyn D.; Yagiz, Kader; Foulad, David; Mineharu, Yohei; Kroeger, Kurt M.; Treuer, Katherine A.; Nichols, W. Stephen; Sanderson, Nicholas S.; Yang, Jieping; Khayznikov, Maksim; Van Rooijen, Nico; Lowenstein, Pedro R.; Castro, Maria G.

    2009-01-01

    Purpose Glioblastoma multiforme is a deadly primary brain cancer. Because the tumor kills due to recurrences, we tested the hypothesis that a new treatment would lead to immunological memory in a rat model of recurrent glioblastoma multiforme. Experimental Design We developed a combined treatment using an adenovirus (Ad) expressing fms-like tyrosine kinase-3 ligand (Flt3L), which induces the infiltration of immune cells into the tumor microenvironment, and an Ad expressing herpes simplex virus-1–thymidine kinase (TK), which kills proliferating tumor cells in the presence of ganciclovir. Results This treatment induced immunological memory that led to rejection of a second glioblastoma multiforme implanted in the contralateral hemisphere and of an extracranial glioblastoma multiforme implanted intradermally. Rechallenged long-term survivors exhibited anti-glioblastoma multiforme–specific T cells and displayed specific delayed-type hypersensitivity. Using depleting antibodies, we showed that rejection of the second tumor was dependent on CD8+ T cells. Circulating anti-glioma antibodies were observed when glioblastoma multiforme cells were implanted intradermally in naïve rats or in long-term survivors. However, rats bearing intracranial glioblastoma multiforme only exhibited circulating antitumoral antibodies upon treatment with Ad-Flt3L + Ad-TK. This combined treatment induced tumor regression and release of the chromatin-binding protein high mobility group box 1 in two further intracranial glioblastoma multiforme models, that is, Fisher rats bearing intracranial 9L and F98 glioblastoma multiforme cells. Conclusions Treatment with Ad-Flt3L + Ad-TK triggered systemic anti–glioblastoma multiforme cellular and humoral immune responses, and anti–glioblastoma multiforme immunological memory. Release of the chromatin-binding protein high mobility group box 1 could be used as a noninvasive biomarker of therapeutic efficacy for glioblastoma multiforme. The robust treatment efficacy lends further support to its implementation in a phase I clinical trial. PMID:19789315

  8. Rapid reduction of hepatitis C virus-Core protein in the peripheral blood improve the immunological response in chronic hepatitis C patients.

    PubMed

    Kondo, Yasuteru; Ueno, Yoshiyuki; Wakui, Yuta; Ninomiya, Masashi; Kakazu, Eiji; Inoue, Jun; Kobayashi, Koju; Obara, Noriyuki; Shimosegawa, Tooru

    2011-12-01

      The extracellular hepatitis C virus (HCV)-antigen, including HCV-Core protein, can suppress immune cells. Recently, the efficacy of double filtration plasmapheresis (DFPP) for chronic hepatitis C (CHC) was reported. However, the mechanism of efficacy of DFPP might not be only the reduction of HCV but also the effect of immune cells via direct and/or indirect mechanisms. The aim of this study is to analyze the virological and immunological parameters of difficult-to-treat HCV patients treated with DFPP combined with Peg-interferon and RBV (DFPP/Peg-IFN/RBV) therapy.   Twelve CHC patients were enrolled and treated with DFPP/Peg-IFN/RBV therapy. The immunological, virological and genetic parameters were studied.   All patients (4/4) treated with the major IL28B allele (T/T) could achieve complete early virological response (EVR). The amounts of HCV-Core antigen in the peripheral blood of EVR patients treated with DFPP/Peg-IFN/RBV rapidly declined in comparison to those of late virological response (LVR) patients treated with DFPP/Peg-IFN/RBV and EVR patients treated with Peg-IFN and RBV (Peg-IFN/RBV). The amount of IFN-γ produced from peripheral blood gradually increased. On the other hand, the amount of IL10 gradually decreased in the EVR patients. The frequencies of HCV-Core binding on CD3+ T cells rapidly declined in EVR patients treated with DFPP/Peg-IFN/RBV therapy. Moreover, the distributions of activated CD4(+) and CD8(+) T cells and CD16-CD56 high natural killer cells were significantly changed between before and after DFPP.   The rapid reduction of HCV-Core antigens and changes in the distribution of lymphoid cells could contribute to the favorable immunological response during DFPP/Peg-IFN/RBV therapy. © 2011 The Japan Society of Hepatology.

  9. Treatment of non-muscle invasive bladder cancer with Bacillus Calmette–Guerin (BCG): Biological markers and simulation studies

    PubMed Central

    Kiselyov, Alex; Bunimovich-Mendrazitsky, Svetlana; Startsev, Vladimir

    2015-01-01

    Intravesical Bacillus Calmette–Guerin (BCG) vaccine is the preferred first line treatment for non-muscle invasive bladder carcinoma (NMIBC) in order to prevent recurrence and progression of cancer. There is ongoing need for the rational selection of i) BCG dose, ii) frequency of BCG administration along with iii) synergistic adjuvant therapy and iv) a reliable set of biochemical markers relevant to tumor response. In this review we evaluate cellular and molecular markers pertinent to the immunological response triggered by the BCG instillation and respective mathematical models of the treatment. Specific examples of markers include diverse immune cells, genetic polymorphisms, miRNAs, epigenetics, immunohistochemistry and molecular biology ‘beacons’ as exemplified by cell surface proteins, cytokines, signaling proteins and enzymes. We identified tumor associated macrophages (TAMs), human leukocyte antigen (HLA) class I, a combination of Ki-67/CK20, IL-2, IL-8 and IL-6/IL-10 ratio as the most promising markers for both pre-BCG and post-BCG treatment suitable for the simulation studies. The intricate and patient-specific nature of these data warrants the use of powerful multi-parametral mathematical methods in combination with molecular/cellular biology insight and clinical input. PMID:26673853

  10. Humoral and cell-mediated immune responses after a booster dose of HBV vaccine in HIV-infected children, adolescents and young adults.

    PubMed

    Giacomet, Vania; Masetti, Michela; Nannini, Pilar; Forlanini, Federica; Clerici, Mario; Zuccotti, Gian Vincenzo; Trabattoni, Daria

    2018-01-01

    HBV vaccine induces protective antibodies only in 23-56% of HIV-infected children. The aim of our study is to evaluate the immunologic effects of a booster dose of HBV vaccine in HIV-infected youth. 53 young HIV-infected patients in whom HBV vaccination did not elicit protective Ab titers were enrolled. All patients were on ART with optimal immunological and viral response. All patients received a booster dose of HBV vaccine (HBVAXPRO 10 μg i.m.). HBV-specific Ab titer, viral load and CD4+ T cells were measured at baseline (T0), T1, T6 and T12 months. In a subgroup of 16 patients HBV-specific cell mediated immune responses were evaluated at baseline, at T1 and T6. The booster dose induced seroconversion in 51% of patients at T1, 57% at T6, and49% at T12; seroconversion rate was significantly correlated with CD4+T cells at T0 and to the CD4 nadir. The booster dose induced HBV-specific cell mediated immunity at T6 mainly in Responders (Rs): Effector Memory CD8+T cells, HBV-specific TNFα-, IFNγ-, granzyme secreting CD8+ T cells and IL2-secreting CD4+ T cells were significantly increased in Rs compared to T0. In Non Responders (NRs), HBV-specific IL2-secreting CD4+ T cells, Central and Effector Memory CD8+ T cells were the only parameters modified at T6. Seroconversion induced by a booster dose of vaccine correlates with the development of T cell immunological memory in HIV-infected patients who did not respond to the standard immunization. Alternate immunization schedules need to be considered in NRs.

  11. American Academy of Allergy, Asthma, and Immunology

    MedlinePlus

    ... Life Spectrum of Asthma Meeting School-based Asthma Management Program – (SAMPRO TM ) This central resource focuses on ... endorse HR 2285, the School-Based Respiratory Health Management Act Read Practice Matters! Allergy, Asthma & Immunology Quality ...

  12. Laser ablation-inductively coupled plasma mass spectrometry: an emerging technology for detecting rare cells in tissue sections.

    PubMed

    Managh, Amy J; Hutchinson, Robert W; Riquelme, Paloma; Broichhausen, Christiane; Wege, Anja K; Ritter, Uwe; Ahrens, Norbert; Koehl, Gudrun E; Walter, Lisa; Florian, Christian; Schlitt, Hans J; Reid, Helen J; Geissler, Edward K; Sharp, Barry L; Hutchinson, James A

    2014-09-01

    Administering immunoregulatory cells to patients as medicinal agents is a potentially revolutionary approach to the treatment of immunologically mediated diseases. Presently, there are no satisfactory, clinically applicable methods of tracking human cells in patients with adequate spatial resolution and target cell specificity over a sufficient period of time. Laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) represents a potential solution to the problem of detecting very rare cells in tissues. In this article, this exquisitely sensitive technique is applied to the tracking of gold-labeled human regulatory macrophages (Mregs) in immunodeficient mice. Optimal conditions for labeling Mregs with 50-nm gold particles were investigated by exposing Mregs in culture to variable concentrations of label: Mregs incubated with 3.5 × 10(9) particles/ml for 1 h incorporated an average of 3.39 × 10(8) Au atoms/cell without loss of cell viability. Analysis of single, gold-labeled Mregs by LA-ICP-MS registered an average of 1.9 × 10(5) counts/cell. Under these conditions, 100% labeling efficiency was achieved, and label was retained by Mregs for ≥36 h. Gold-labeled Mregs adhered to glass surfaces; after 24 h of culture, it was possible to colabel these cells with human-specific (154)Sm-tagged anti-HLA-DR or (174)Yb-tagged anti-CD45 mAbs. Following injection into immunodeficient mice, signals from gold-labeled human Mregs could be detected in mouse lung, liver, and spleen for at least 7 d by solution-based inductively coupled plasma mass spectrometry and LA-ICP-MS. These promising results indicate that LA-ICP-MS tissue imaging has great potential as an analytical technique in immunology. Copyright © 2014 by The American Association of Immunologists, Inc.

  13. Comparative effects of vaccination against porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) in a PCV2-PRRSV challenge model.

    PubMed

    Park, Changhoon; Oh, Yeonsu; Seo, Hwi Won; Han, Kiwon; Chae, Chanhee

    2013-03-01

    The objective of the present study was to determine the effects of porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) vaccinations in an experimental PCV2-PRRSV challenge model, based on virological (viremia), immunological (neutralizing antibodies [NAs], gamma interferon-secreting cells [IFN-γ-SCs], and CD4(+) CD8(+) double-positive cells), and pathological (lesions and antigens in lymph nodes and lungs) evaluations. A total of 72 pigs were randomly divided into 9 groups (8 pigs per group): 5 vaccinated and challenged groups, 3 nonvaccinated and challenged groups, and a negative-control group. Vaccination against PCV2 induced immunological responses (NAs and PCV2-specific IFN-γ-SCs) and reduced PCV2 viremia, PCV2-induced lesions, and PCV2 antigens in the dually infected pigs. However, vaccination against PCV2 did not affect the PRRSV immunological responses (NAs and PRRSV-specific IFN-γ-SCs), PRRSV viremia, PRRSV-induced lesions, or PRRSV antigens in the dually infected pigs. Vaccination against PRRSV did not induce immunological responses (PRRSV-specific IFN-γ-SCs) or reduce PRRSV viremia, PRRSV-induced lesions, or PRRSV antigens in the dually infected pigs. In addition, vaccination against PRRSV increased PCV2 viremia, PCV2-induced lesions, and PCV2 antigens in the dually infected pigs. In summary, vaccination against PCV2 reduced PCV2 viremia, PCV2-induced lesions, and PCV2 antigens in the dually infected pigs. However, vaccination against PRRSV increased PCV2 viremia, PCV2-induced lesions, and PCV2 antigens in the dually infected pigs. Therefore, the PCV2 vaccine decreased the potentiation of PCV2-induced lesions by PRRSV in dually infected pigs. In contrast, the PRRSV vaccine alone did not decrease the potentiation of PCV2-induced lesions by PRRSV in dually infected pigs.

  14. Comparative Effects of Vaccination against Porcine Circovirus Type 2 (PCV2) and Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) in a PCV2-PRRSV Challenge Model

    PubMed Central

    Park, Changhoon; Oh, Yeonsu; Seo, Hwi Won; Han, Kiwon

    2013-01-01

    The objective of the present study was to determine the effects of porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) vaccinations in an experimental PCV2-PRRSV challenge model, based on virological (viremia), immunological (neutralizing antibodies [NAs], gamma interferon-secreting cells [IFN-γ-SCs], and CD4+ CD8+ double-positive cells), and pathological (lesions and antigens in lymph nodes and lungs) evaluations. A total of 72 pigs were randomly divided into 9 groups (8 pigs per group): 5 vaccinated and challenged groups, 3 nonvaccinated and challenged groups, and a negative-control group. Vaccination against PCV2 induced immunological responses (NAs and PCV2-specific IFN-γ-SCs) and reduced PCV2 viremia, PCV2-induced lesions, and PCV2 antigens in the dually infected pigs. However, vaccination against PCV2 did not affect the PRRSV immunological responses (NAs and PRRSV-specific IFN-γ-SCs), PRRSV viremia, PRRSV-induced lesions, or PRRSV antigens in the dually infected pigs. Vaccination against PRRSV did not induce immunological responses (PRRSV-specific IFN-γ-SCs) or reduce PRRSV viremia, PRRSV-induced lesions, or PRRSV antigens in the dually infected pigs. In addition, vaccination against PRRSV increased PCV2 viremia, PCV2-induced lesions, and PCV2 antigens in the dually infected pigs. In summary, vaccination against PCV2 reduced PCV2 viremia, PCV2-induced lesions, and PCV2 antigens in the dually infected pigs. However, vaccination against PRRSV increased PCV2 viremia, PCV2-induced lesions, and PCV2 antigens in the dually infected pigs. Therefore, the PCV2 vaccine decreased the potentiation of PCV2-induced lesions by PRRSV in dually infected pigs. In contrast, the PRRSV vaccine alone did not decrease the potentiation of PCV2-induced lesions by PRRSV in dually infected pigs. PMID:23302743

  15. How advances in immunology provide insight into improving vaccine efficacy

    PubMed Central

    Slifka, Mark K.; Amanna, Ian

    2014-01-01

    Vaccines represent one of the most compelling examples of how biomedical research has improved society by saving lives and dramatically reducing the burden of infectious disease. Despite the importance of vaccinology, we are still in the early stages of understanding how the best vaccines work and how we can achieve better protective efficacy through improved vaccine design. Most successful vaccines have been developed empirically, but recent advances in immunology are beginning to shed new light on the mechanisms of vaccine-mediated protection and development of long-term immunity. Although natural infection will often elicit lifelong immunity, almost all current vaccines require booster vaccination in order to achieve durable protective humoral immune responses, regardless of whether the vaccine is based on infection with replicating live-attenuated vaccine strains of the specific pathogen or whether they are derived from immunization with inactivated, non-replicating vaccines or subunit vaccines. The form of the vaccine antigen (e.g., soluble or particulate/aggregate) appears to play an important role in determining immunogenicity and the interactions between dendritic cells, B cells and T cells in the germinal center are likely to dictate the magnitude and duration of protective immunity. By learning how to optimize these interactions, we may be able to elicit more effective and long-lived immunity with fewer vaccinations. PMID:24709587

  16. Kidney regeneration: Where we are and future perspectives

    PubMed Central

    Zambon, Joao Paulo; Magalhaes, Renata S; Ko, Inkap; Ross, Christina L; Orlando, Giuseppe; Peloso, Andrea; Atala, Anthony; Yoo, James J

    2014-01-01

    In 2012, about 16487 people received kidney transplants in the United States, whereas 95022 candidates were on the waiting list by the end of the year. Despite advances in renal transplant immunology, approximately 40% of recipients will die or lose graft within 10 years. The limitations of current therapies for renal failure have led researchers to explore the development of modalities that could improve, restore, or replace the renal function. The aim of this paper is to describe a reasonable approach for kidney regeneration and review the current literature regarding cell sources and mechanisms to develop a bioengineering kidney. Due to kidneys peculiar anatomy, extracellular matrix based scaffolds are rational starting point for their regeneration. The perfusion of detergents through the kidney vasculature is an efficient method for delivering decellularizing agents to cells and for removing of cellular material from the tissue. Many efforts have focused on the search of a reliable cell source to provide enrichment for achieving stable renal cell systems. For an efficient bioengineered kidney, these cells must be attached to the organ and then maturated into the bioractors, which simulates the human body environment. A functional bioengineered kidney is still a big challenge for scientists. In the last ten years we have got many improvements on the field of solid organ regeneration; however, we are still far away from the main target. Currently, regenerative centers worldwide have been striving to find feasible strategies to develop bioengineered kidneys. Cell-scaffold technology gives hope to end-stage renal disease patients who struggle with morbidity and mortality due to extended periods on dialysis or immunosupression. The potential of bioengineered organ is to provide a reliable source of organs, which can be refunctionalized and transplanted. PMID:25332894

  17. IL-7 differentially regulates cell cycle progression and HIV-1-based vector infection in neonatal and adult CD4+ T cells.

    PubMed

    Dardalhon, V; Jaleco, S; Kinet, S; Herpers, B; Steinberg, M; Ferrand, C; Froger, D; Leveau, C; Tiberghien, P; Charneau, P; Noraz, N; Taylor, N

    2001-07-31

    Differences in the immunological reactivity of umbilical cord (UC) and adult peripheral blood (APB) T cells are poorly understood. Here, we show that IL-7, a cytokine involved in lymphoid homeostasis, has distinct regulatory effects on APB and UC lymphocytes. Neither naive nor memory APB CD4(+) cells proliferated in response to IL-7, whereas naive UC CD4(+) lymphocytes underwent multiple divisions. Nevertheless, both naive and memory IL-7-treated APB T cells progressed into the G(1b) phase of the cell cycle, albeit at higher levels in the latter subset. The IL-7-treated memory CD4(+) lymphocyte population was significantly more susceptible to infection with an HIV-1-derived vector than dividing CD4(+) UC lymphocytes. However, activation through the T cell receptor rendered UC lymphocytes fully susceptible to HIV-1-based vector infection. These data unveil differences between UC and APB CD4(+) T cells with regard to IL-7-mediated cell cycle progression and HIV-1-based vector infectivity. This evidence indicates that IL-7 differentially regulates lymphoid homeostasis in adults and neonates.

  18. IL-7 differentially regulates cell cycle progression and HIV-1-based vector infection in neonatal and adult CD4+ T cells

    PubMed Central

    Dardalhon, Valérie; Jaleco, Sara; Kinet, Sandrina; Herpers, Bjorn; Steinberg, Marcos; Ferrand, Christophe; Froger, Delphine; Leveau, Christelle; Tiberghien, Pierre; Charneau, Pierre; Noraz, Nelly; Taylor, Naomi

    2001-01-01

    Differences in the immunological reactivity of umbilical cord (UC) and adult peripheral blood (APB) T cells are poorly understood. Here, we show that IL-7, a cytokine involved in lymphoid homeostasis, has distinct regulatory effects on APB and UC lymphocytes. Neither naive nor memory APB CD4+ cells proliferated in response to IL-7, whereas naive UC CD4+ lymphocytes underwent multiple divisions. Nevertheless, both naive and memory IL-7-treated APB T cells progressed into the G1b phase of the cell cycle, albeit at higher levels in the latter subset. The IL-7-treated memory CD4+ lymphocyte population was significantly more susceptible to infection with an HIV-1-derived vector than dividing CD4+ UC lymphocytes. However, activation through the T cell receptor rendered UC lymphocytes fully susceptible to HIV-1-based vector infection. These data unveil differences between UC and APB CD4+ T cells with regard to IL-7-mediated cell cycle progression and HIV-1-based vector infectivity. This evidence indicates that IL-7 differentially regulates lymphoid homeostasis in adults and neonates. PMID:11470908

  19. Assessment of interactions of efavirenz solid drug nanoparticles with human immunological and haematological systems.

    PubMed

    Liptrott, Neill J; Giardiello, Marco; McDonald, Tom O; Rannard, Steve P; Owen, Andrew

    2018-03-15

    Recent work has developed solid drug nanoparticles (SDNs) of efavirenz that have been demonstrated, preclinically, improved oral bioavailability and the potential to enable up to a 50% dose reduction, and is currently being studied in a healthy volunteer clinical trial. Other SDN formulations are being studied for parenteral administration, either as intramuscular long-acting formulations, or for direct administration intravenously. The interaction of nanoparticles with the immunological and haematological systems can be a major barrier to successful translation but has been understudied for SDN formulations. Here we have conducted a preclinical evaluation of efavirenz SDN to assess their potential interaction with these systems. Platelet aggregation and activation, plasma coagulation, haemolysis, complement activation, T cell functionality and phenotype, monocyte derived macrophage functionality, and NK cell function were assessed in primary healthy volunteer samples treated with either aqueous efavirenz or efavirenz SDN. Efavirenz SDNs were shown not to interfere with any of the systems studied in terms of immunostimulation nor immunosuppression. Although efavirenz aqueous solution was shown to cause significant haemolysis ex vivo, efavirenz SDNs did not. No other interaction with haematological systems was observed. Efavirenz SDNs have been demonstrated to be immunologically and haematologically inert in the utilised assays. Taken collectively, along with the recent observation that lopinavir SDN formulations did not impact immunological responses, these data indicate that this type of nanoformulation does not elicit immunological consequences seen with other types of nanomaterial. The methodologies presented here provide a framework for pre-emptive preclinical characterisation of nanoparticle safety.

  20. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and enumeration...

  1. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and enumeration...

  2. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and enumeration...

  3. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and enumeration...

  4. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and enumeration...

  5. Primary adenocarcinomas of the human urinary bladder: histochemical, immunological and ultrastructural studies.

    PubMed

    Alroy, J; Roganovic, D; Banner, B F; Jacobs, J B; Merk, F B; Ucci, A A; Kwan, P W; Coon, J S; Miller, A W

    1981-01-01

    Neoplastic and non-neoplastic tissue specimens from ten patients with primary adenocarcinoma of the urinary bladder were examined. Most of these tumors were associated with either foci of transitional cell carcinoma and/or with glandular metaplasia of the bladder epithelium. The mucin produced by the neoplastic cells was PAS, alcian blue, mucicarmine, PB/KOH/PAS, and RPB/KOH/PAS-positive. ABH isoantigens of these tumors were not always deleted. Ultrastructurally, the neoplastic cells resembled goblet cells. Their plasma membrane had numerous microvilli with prominent glycocalyx. Proliferation and attenuation of tight junctions were noted. The gap junctions were few and small. Two types of desmosomes were found. The ultrastructural features of the neoplastic cells were attributed in part to the malignant transformation and in part to the direction of their differentiation. We have not observed any distinctive morphologic, histochemical, immunologic or ultrastructural features that might be diagnostic for these adenocarcinomas.

  6. Prebiotics, probiotics, synbiotics, and the immune system: experimental data and clinical evidence.

    PubMed

    Frei, Remo; Akdis, Mübeccel; O'Mahony, Liam

    2015-03-01

    The intestinal immune system is constantly exposed to foreign antigens, which for the most part should be tolerated. Certain probiotics, prebiotics, and synbiotics are able to influence immune responses. In this review, we highlight the recent publications (within the last 2 years) that have substantially progressed this field. The immunological mechanisms underpinning probiotics, prebiotics, and synbiotics effects continue to be better defined with novel mechanisms being described for dendritic cells, epithelial cells, T regulatory cells, effector lymphocytes, natural killer T cells, and B cells. Many of the mechanisms being described are bacterial strain or metabolite specific, and should not be extrapolated to other probiotics or prebiotics. In addition, the timing of intervention seems to be important, with potentially the greatest effects being observed early in life. In this review, we discuss the recent findings relating to probiotics, prebiotics, and synbiotics, specifically their effects on immunological functions.

  7. Immunological mechanisms of sublingual allergen-specific immunotherapy.

    PubMed

    Novak, Natalija; Bieber, T; Allam, J-P

    2011-06-01

    Within the last 100 years of allergen-specific immunotherapy, many clinical and scientific efforts have been made to establish alternative noninvasive allergen application strategies. Thus, intra-oral allergen delivery to the sublingual mucosa has been proven to be safe and effective. As a consequence, to date, sublingual immunotherapy (SLIT) is widely accepted by most allergists as an alternative to conventional subcutaneous immunotherapy. Although immunological mechanisms remain to be elucidated in detail, several studies in mice and humans within recent years provided deeper insights into local as well as systemic immunological features in response to SLIT. First of all, it was shown that the target organ, the oral mucosa, harbours a sophisticated immunological network as an important prerequisite for SLIT, which contains among other cells, local antigen-presenting cells (APC), such as dendritic cells (DCs), with a constitutive disposition to enforce tolerogenic mechanisms. Further on, basic research on local DCs within the oral mucosa gave rise to possible alternative strategies to deliver the allergens to other mucosal regions than sublingual tissue, such as the vestibulum oris. Moreover, characterization of oral DCs led to the identification of target structures for both allergens as well as adjuvants, which could be applied during SLIT. Altogether, SLIT came a long way since its very beginning in the last century and some, but not all questions about SLIT could be answered so far. However, recent research efforts as well as clinical approaches paved the way for another exciting 100 years of SLIT. © 2011 John Wiley & Sons A/S.

  8. Spaceflight and Development of Immune Responses

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1996-01-01

    Evidence from both human and rodent studies has indicated that alterations in immunological parameters occur after space flight. The number of flight experiments has been small, and the full breadth of immunological alterations occurring after space flight remains to be established. Among the major effects on immune responses after space flight that have been reported are: alterations in lymphocyte blastogenesis and natural killer cell activity, alterations in production of cytokines, changes in leukocyte sub-population distribution, and decreases in the ability of bone marrow cells to respond to colony stimulating factors. Changes have been reported in immunological parameters of both humans and rodents. The significance of these alterations in relation to resistance to infection remains to be established. The objective of the studies contained in this project was to determine the effects of space flight on immune responses of pregnant rats and their offspring. The hypothesis was that space flight and the attendant period of microgravity will result in alteration of immunological parameters of both the pregnant rats as well as their offspring carried in utero during the flight. The parameters tested included: production of cytokines, composition of leukocyte sub- populations, response of bone marrow/liver cells to granulocyte/monocyte colony stimulating factor, and leukocyte blastogenesis. Changes in immune responses that could yield alterations in resistance to infection were determined. This yielded useful information for planning studies that could contribute to crew health. Additional information that could eventually prove useful to determine the potential for establishment of a permanent colony in space was obtained.

  9. Is There Natural Killer Cell Memory and Can It Be Harnessed by Vaccination? Natural Killer Cells in Vaccination.

    PubMed

    Neely, Harold R; Mazo, Irina B; Gerlach, Carmen; von Andrian, Ulrich H

    2017-12-18

    Natural killer (NK) cells have historically been considered to be a part of the innate immune system, exerting a rapid response against pathogens and tumors in an antigen (Ag)-independent manner. However, over the past decade, evidence has accumulated suggesting that at least some NK cells display certain characteristics of adaptive immune cells. Indeed, NK cells can learn and remember encounters with a variety of Ags, including chemical haptens and viruses. Upon rechallenge, memory NK cells mount potent recall responses selectively to those Ags. This phenomenon, traditionally termed "immunological memory," has been reported in mice, nonhuman primates, and even humans and appears to be concentrated in discrete NK cell subsets. Because immunological memory protects against recurrent infections and is the central goal of active vaccination, it is crucial to define the mechanisms and consequences of NK cell memory. Here, we summarize the different kinds of memory responses that have been attributed to specific NK cell subsets and discuss the possibility to harness NK cell memory for vaccination purposes. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  10. 21 CFR 866.5520 - Immunoglobulin G (Fab fragment specific) immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... multiple myeloma (tumor of bone marrow cells), Waldenstrom's macroglobulinemia (increased immunoglobulin production by the spleen and bone marrow cells), and lymphoma (tumor of the lymphoid tissues). (b...

  11. 21 CFR 866.5520 - Immunoglobulin G (Fab fragment specific) immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... multiple myeloma (tumor of bone marrow cells), Waldenstrom's macroglobulinemia (increased immunoglobulin production by the spleen and bone marrow cells), and lymphoma (tumor of the lymphoid tissues). (b...

  12. 21 CFR 866.5520 - Immunoglobulin G (Fab fragment specific) immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... multiple myeloma (tumor of bone marrow cells), Waldenstrom's macroglobulinemia (increased immunoglobulin production by the spleen and bone marrow cells), and lymphoma (tumor of the lymphoid tissues). (b...

  13. 21 CFR 866.5520 - Immunoglobulin G (Fab fragment specific) immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... multiple myeloma (tumor of bone marrow cells), Waldenstrom's macroglobulinemia (increased immunoglobulin production by the spleen and bone marrow cells), and lymphoma (tumor of the lymphoid tissues). (b...

  14. Optofluidic time-stretch microscopy: recent advances

    NASA Astrophysics Data System (ADS)

    Lei, Cheng; Nitta, Nao; Ozeki, Yasuyuki; Goda, Keisuke

    2018-06-01

    Flow cytometry is an indispensable method for valuable applications in numerous fields such as immunology, pathology, pharmacology, molecular biology, and marine biology. Optofluidic time-stretch microscopy is superior to conventional flow cytometry methods for its capability to acquire high-quality images of single cells at a high-throughput exceeding 10,000 cells per second. This makes it possible to extract copious information from cellular images for accurate cell detection and analysis with the assistance of machine learning. Optofluidic time-stretch microscopy has proven its effectivity in various applications, including microalga-based biofuel production, evaluation of thrombotic disorders, as well as drug screening and discovery. In this review, we discuss the principles and recent advances of optofluidic time-stretch microscopy.

  15. Optofluidic time-stretch microscopy: recent advances

    NASA Astrophysics Data System (ADS)

    Lei, Cheng; Nitta, Nao; Ozeki, Yasuyuki; Goda, Keisuke

    2018-04-01

    Flow cytometry is an indispensable method for valuable applications in numerous fields such as immunology, pathology, pharmacology, molecular biology, and marine biology. Optofluidic time-stretch microscopy is superior to conventional flow cytometry methods for its capability to acquire high-quality images of single cells at a high-throughput exceeding 10,000 cells per second. This makes it possible to extract copious information from cellular images for accurate cell detection and analysis with the assistance of machine learning. Optofluidic time-stretch microscopy has proven its effectivity in various applications, including microalga-based biofuel production, evaluation of thrombotic disorders, as well as drug screening and discovery. In this review, we discuss the principles and recent advances of optofluidic time-stretch microscopy.

  16. Memory T cells maintain protracted protection against malaria.

    PubMed

    Krzych, Urszula; Zarling, Stasya; Pichugin, Alexander

    2014-10-01

    Immunologic memory is one of the cardinal features of antigen-specific immune responses, and the persistence of memory cells contributes to prophylactic immunizations against infectious agents. Adequately maintained memory T and B cell pools assure a fast, effective and specific response against re-infections. However, many aspects of immunologic memory are still poorly understood, particularly immunologic memory inducible by parasites, for example, Plasmodium spp., the causative agents of malaria. For example, memory responses to Plasmodium antigens amongst residents of malaria endemic areas appear to be either inadequately developed or maintained, because persons who survive episodes of childhood malaria remain vulnerable to intermittent malaria infections. By contrast, multiple exposures of humans and laboratory rodents to radiation-attenuated Plasmodium sporozoites (γ-spz) induce sterile and long-lasting protection against experimental sporozoite challenge. Multifactorial immune mechanisms maintain this protracted and sterile protection. While the presence of memory CD4 T cell subsets has been associated with lasting protection in humans exposed to multiple bites from Anopheles mosquitoes infected with attenuated Plasmodium falciparum, memory CD8 T cells maintain protection induced with Plasmodium yoelii and Plasmodium berghei γ-spz in murine models. In this review, we discuss our observations that show memory CD8 T cells specific for antigens expressed by P. berghei liver stage parasites as an indispensable component for the maintenance of protracted protective immunity against experimental malaria infection; moreover, the provision of an Ag-depot assures a quick recall of memory T cells as IFN-γ-producing effector CD8 T cells and IL-4- producing CD4 T cells that collaborate with B cells for an effective antibody response. Published by Elsevier B.V.

  17. Pyruvate dehydrogenase has a major role in mast cell function, and its activity is regulated by mitochondrial microphthalmia transcription factor.

    PubMed

    Sharkia, Israa; Hadad Erlich, Tal; Landolina, Nadine; Assayag, Miri; Motzik, Alex; Rachmin, Inbal; Kay, Gillian; Porat, Ziv; Tshori, Sagi; Berkman, Neville; Levi-Schaffer, Francesca; Razin, Ehud

    2017-07-01

    We have recently observed that oxidative phosphorylation-mediated ATP production is essential for mast cell function. Pyruvate dehydrogenase (PDH) is the main regulator of the Krebs cycle and is located upstream of the electron transport chain. However, the role of PDH in mast cell function has not been described. Microphthalmia transcription factor (MITF) regulates the development, number, and function of mast cells. Localization of MITF to the mitochondria and its interaction with mitochondrial proteins has not been explored. We sought to explore the role played by PDH in mast cell exocytosis and to determine whether MITF is localized in the mitochondria and involved in regulation of PDH activity. Experiments were performed in vitro by using human and mouse mast cells, as well as rat basophil leukemia cells, and in vivo in mice. The effect of PDH inhibition on mast cell function was examined. PDH interaction with MITF was measured before and after immunologic activation. Furthermore, mitochondrial localization of MITF and its effect on PDH activity were determined. PDH is essential for immunologically mediated degranulation of mast cells. After activation, PDH is serine dephosphorylated. In addition, for the first time, we show that MITF is partially located in the mitochondria and interacts with PDH. This interaction is dependent on the phosphorylation state of PDH. Furthermore, mitochondrial MITF regulates PDH activity. The association of mitochondrial MITF with PDH emerges as an important regulator of mast cell function. Our findings indicate that PDH could arise as a new target for the manipulation of allergic diseases. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  18. Effects of microgravity on the immune system

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Taylor, Gerald R.

    1991-01-01

    Changes in resistance to bacterial and viral infections in Apollo crew members has stimulated interest in the study of immunity and space flight. Results of studies from several laboratories in both humans and rodents have indicated alterations after space flight that include the following immunological parameters: thymus size, lymphocyte blastogenesis, interferon and interleukin production, natural killer cell activity, cytotoxic T-cell activity, leukocyte subset population distribution, response of bone marrow cells to colony stimulating factors, and delayed hypersensitivity skin test reactivity. The interactions of the immune system with other physiological systems, including muscle, bone, and the nervous system, may play a major role in the development of these immunological parameters during and after flight. There may also be direct effects of space flight on immune responses.

  19. B cells in operational tolerance.

    PubMed

    Chesneau, M; Danger, R; Soulillou, J-P; Brouard, S

    2018-05-01

    Transplantation is currently the therapy of choice for endstage organ failure even though it requires long-term immunosuppresive therapy, with its numerous side effects, for acceptance of the transplanted organ. In rare cases however, patients develop operational tolerance, that is, graft survival without immunosuppression. Studies conducted on these patients reveal genetic, phenotypic, and functional signatures. They provide a better understanding of the immunological mechanisms involved in operational tolerance and define biomarkers that could be used to adapt immunosuppressive treatment to the individual, safely reduce immunosuppression doses, and ideally and safely guide immunosuppression withdrawal. This review summarizes studies that suggest a role for B cells as biomarkers of operational tolerance and discusses the use of B cells as a predictive tool for immunologic risk. Copyright © 2018. Published by Elsevier Inc.

  20. Immunologic "vaccination" for the prevention of autoimmune diabetes (type 1A).

    PubMed

    Simone, E A; Wegmann, D R; Eisenbarth, G S

    1999-03-01

    Diabetes type 1A is an autoimmune condition characterized by lymphocytic infiltration of islets and selective destruction of insulin-secreting beta-cells. Numerous investigators have prevented diabetes in animal models with a variety of antigens and routes of administration. It is also now possible to identify high-risk individuals even before the appearance of autoantibodies. These advances have created the opportunity to design and begin human prevention trials. This review focuses on a variety of immunomodulatory approaches (including administration of adjuvants, autoantigens, T-cells, T-cell receptors, and DNA) that we have collectively termed immunologic "vaccination." In addition, we discuss the potential benefits and dangers of these approaches and issues relating to the design of human trials.

  1. Rapid allergen-induced interleukin-17 and interferon-γ secretion by skin-resident memory CD8+ T cells.

    PubMed

    Schmidt, Jonas D; Ahlström, Malin G; Johansen, Jeanne D; Dyring-Andersen, Beatrice; Agerbeck, Christina; Nielsen, Morten M; Poulsen, Steen S; Woetmann, Anders; Ødum, Niels; Thomsen, Allan R; Geisler, Carsten; Bonefeld, Charlotte M

    2017-04-01

    Skin-resident memory T (T RM ) cells are associated with immunological memory in the skin. Whether immunological memory responses to allergens in the skin are solely localized to previously allergen-exposed sites or are present globally in the skin is not clear. Furthermore, the mechanisms whereby T RM cells induce rapid recall responses need further investigation. To study whether contact allergens induce local and/or global memory, and to determine the mechanisms involved in memory responses in the skin. To address these questions, we analysed responses to contact allergens in mice and humans sensitized to 2,4-dinitrofluorobenzene and nickel, respectively. Challenge responses in both mice and humans were dramatically increased at sites previously exposed to allergens as compared with previously unexposed sites. Importantly, the magnitude of the challenge response correlated with the epidermal accumulation of interleukin (IL)-17A-producing and interferon (IFN)-γ-producing T RM cells. Moreover, IL-17A and IFN-γ enhanced allergen-induced IL-1β production in keratinocytes. We show that sensitization with contact allergens induces a strong, long-lasting local memory and a weaker, temporary global immunological memory response to the allergen that is mediated by IL-17A-producing and IFN-γ-producing CD8 + T RM cells. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Effects of isolation on interferon production and hematological and immunological parameters

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.; Measel, J.; Loken, M. R.; Degioanni, J.; Follini, S.; Galvagno, A.; Montalbini, M.

    1992-01-01

    A 27-year-old woman was maintained in an isolated state for 131 days in Carlsbad Caverns, New Mexico. Her diet was vitamin D-depleted. Determinations on the effects of such isolation on levels and activities of peripheral blood cells that are important for hematological homeostasis and immunological function were carried out. Throughout the duration of the study, the percentage of lymphoid cells that expressed CD3, CD4, CD8, CD19, Leu 8, and other markers remained relatively constant although the absolute numbers of these cells varied. Although the percentage of natural killer (NK) cells did not vary, the activity of these cells did change. NK cell activity became elevated as the isolation study progressed. Production of interferon-gamma (IFN-gamma) in response to mitogen stimulation was higher than expected throughout the isolation periods, but returned to the normal range after termination of the isolation. Red and white cell counts dropped significantly upon entering isolation, but soon returned to normal.

  3. Regulatory T cells in human disease and their potential for therapeutic manipulation

    PubMed Central

    Taams, Leonie S; Palmer, Donald B; Akbar, Arne N; Robinson, Douglas S; Brown, Zarin; Hawrylowicz, Catherine M

    2006-01-01

    Regulatory T cells are proposed to play a central role in the maintenance of immunological tolerance in the periphery, and studies in many animal models demonstrate their capacity to inhibit inflammatory pathologies in vivo. At a recent meeting [Clinical Application of Regulatory T Cells, 7–8 April 2005, Horsham, UK, organized by the authors of this review, in collaboration with the British Society for Immunology and Novartis] evidence was discussed that certain human autoimmune, infectious and allergic diseases are associated with impaired regulatory T-cell function. In contrast, evidence from several human cancer studies and some infections indicates that regulatory T cells may impair the development of protective immunity. Importantly, certain therapies, both those that act non-specifically to reduce inflammation and antigen-specific immunotherapies, may induce or enhance regulatory T-cell function. The purpose of this review was to summarize current knowledge on regulatory T-cell function in human disease, and to assess critically how this can be tailored to suit the therapeutic manipulation of immunity. PMID:16630018

  4. Effects of testosterone undecanoate as a male contraceptive candidate on rat immunological features.

    PubMed

    Yu, Mingcan; Cao, Xiaomei; Xu, Jinju; Wang, Xiaolei; Yang, Jing; Wang, Xinghai; Ben, Kunlong

    2003-11-01

    Testosterone undecanoate (TU) is under phase III clinical trial as a hormonal male contraceptive in China. Sex hormones can modulate the immune system. Female hormonal contraceptives may affect SIV/HIV-1 transmission. To evaluate the safety of TU and to understand whether long-term use of TU for a male contraceptive affects users' immunological features, adult male rats were treated for a 32-week TU-treated phase at the dose of 20 mg TU/kg body weight and a 24-week recovery phase. The reproductive and immunological parameters of 4-6 rats in each subgroup were examined at the stated time point. The mean sperm count and viability in the treated rats were significantly suppressed (p < 0.01). In the TU-treated group: the mean blood leukocyte and lymphocyte counts; the proliferation indexes of T cells from peripheral blood mononuclear cells (PBMC) and spleen; and, of B cells from spleen, as well as the mean counts of blood T, NK, and B cells decreased in comparison with those of control group. These decreases were not significant (p > 0.01). Similarly, the mean serum IgM, IgG, and IgA levels and complement activity in TU-treated rats were lower than those in control group (p > 0.01), and the changes in the antibody levels of the examined genital secretions were not significant (p > 0.01). The changes in the thickness of urethra epithelium, and in secretory component (SC) expression in genitals were not observed in the treated group. These results demonstrated that long-term supraphysiological TU injection did not obviously affect the examined rat immunological parameters.

  5. Screening and Identification for Immunological Active Components from Andrographis Herba Using Macrophage Biospecific Extraction Coupled with UPLC/Q-TOF-MS.

    PubMed

    Wang, Yaqi; Jiao, Jiaojiao; Yang, Yuanzhen; Yang, Ming; Zheng, Qin

    2018-04-30

    The method of cell biospecific extraction coupled with UPLC/Q-TOF-MS has been developed as a tool for the screening and identification of potential immunological active components from Andrographis Herba (AH). In our study, a macrophage cell line (RAW264.7) was used to extract cell-combining compounds from the ethanol extract of AH. The cell binding system was then analyzed and identified by UPLC/Q-TOF-MS analysis. Finally, nine compounds, which could combine with macrophages, in an ethanol extract of AH were detected by comparing basic peak intensity (BPI) profiles of macrophages before and after treatment with AH. Then they were identified as Andrographidine E ( 1 ), Andrographidine D ( 2 ), Neoandrographolide ( 3 ), Dehydroandrographolide ( 4 ), 5, 7, 2′, 3′-tetramethoxyflavone ( 5 ), β-sitosterol ( 7 ), 5-hydroxy-7, 2′, 3′-trimethoxyflavone ( 8 ) and 5-hydroxy-7, 8, 2′, 3′-tetramethoxyflavone ( 9 ), which could classified into five flavonoids, three diterpene lactones, and one sterol. Their structures were recognized by their characteristic fragment ions and fragmentations pattern of diterpene lactones and flavonoids. Additionally, the activity of compounds 3 , 4 , and 7 was tested in vitro. Results showed that these three compounds could decrease the release of NO ( p < 0.01) in macrophages remarkably. Moreover, 3 , 4 , and 7 showed satisfactory dose-effect relationships and their IC 50 values were 9.03, 18.18, and 13.76 μg/mL, respectively. This study is the first reported work on the screening of immunological active components from AH. The potential immunological activity of flavonoids from AH has not been reported previously.

  6. Immunological network analysis in HPV associated head and neck squamous cancer and implications for disease prognosis.

    PubMed

    Chen, Xiaohang; Yan, Bingqing; Lou, Huihuang; Shen, Zhenji; Tong, Fangjia; Zhai, Aixia; Wei, Lanlan; Zhang, Fengmin

    2018-04-01

    Human papillomavirus-positive (HPV+) head and neck squamous cell cancer (HNSCC) exhibits a better prognosis than HPV-negative (HPV-) HNSCC. This difference may in part be due to enhanced immune activation in the HPV+ HNSCC tumor microenvironment. To characterize differences in immune activation between HPV+ and HPV- HNSCC tumors, we identified and annotated differentially expressed genes based upon mRNA expression data from The Cancer Genome Atlas (TCGA). Immune network between immune cells and cytokines was constructed by using single sample Gene Set Enrichment Analysis and conditional mutual information. Multivariate Cox regression analysis was used to determine the prognostic value of immune microenvironment characterization. A total of 1673 differentially expressed genes were functionally annotated. We found that genes upregulated in HPV+ HNSCC are enriched in immune-associated processes. And the up-regulated gene sets were validated by Gene Set Enrichment Analysis. The microenvironment of HPV+ HNSCC exhibited greater numbers of infiltrating B and T cells and fewer neutrophils than HPV- HNSCC. These findings were validated by two independent datasets in the Gene Expression Omnibus (GEO) database. Further analyses of T cell subtypes revealed that cytotoxic T cell subtypes predominated in HPV+ HNSCC. In addition, the ratio of M1/M2 macrophages was much higher in HPV+ HNSCC. The infiltration of these immune cells was correlated with differentially expressed cytokine-associated genes. Enhanced infiltration of B cells and CD8+ T cells were identified as independent protective factors, while high neutrophil infiltration was a risk enhancing factor for HPV+ HNSCC patients. A schematic model of immunological network was established for HPV+ HNSCC to summarize our findings. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Bayesian Immunological Model Development from the Literature: Example Investigation of Recent Thymic Emigrants†

    PubMed Central

    Holmes, Tyson H.; Lewis, David B.

    2014-01-01

    Bayesian estimation techniques offer a systematic and quantitative approach for synthesizing data drawn from the literature to model immunological systems. As detailed here, the practitioner begins with a theoretical model and then sequentially draws information from source data sets and/or published findings to inform estimation of model parameters. Options are available to weigh these various sources of information differentially per objective measures of their corresponding scientific strengths. This approach is illustrated in depth through a carefully worked example for a model of decline in T-cell receptor excision circle content of peripheral T cells during development and aging. Estimates from this model indicate that 21 years of age is plausible for the developmental timing of mean age of onset of decline in T-cell receptor excision circle content of peripheral T cells. PMID:25179832

  8. Immunology and Immunotherapy of Head and Neck Cancer

    PubMed Central

    Ferris, Robert L.

    2015-01-01

    The immune system plays a key role in the development, establishment, and progression of head and neck squamous cell carcinoma (HNSCC). A greater understanding of the dysregulation and evasion of the immune system in the evolution and progression of HNSCC provides the basis for improved therapies and outcomes for patients. HNSCC cells evade the host immune system through manipulation of their own immunogenicity, production of immunosuppressive mediators, and promotion of immunomodulatory cell types. Through the tumor's influence on the microenvironment, the immune system can be exploited to promote metastasis, angiogenesis, and growth. This article provides a brief overview of key components of the immune infiltrating cells in the tumor microenvironment, reviewing immunological principles related to head and neck cancer, including the concept of cancer immunosurveillance and immune escape. Current immunotherapeutic strategies and emerging results from ongoing clinical trials are presented. PMID:26351330

  9. Cloning and Characterization of Inducible Nitric Oxide Synthase from Mouse Macrophages

    NASA Astrophysics Data System (ADS)

    Xie, Qiao-Wen; Cho, Hearn J.; Calaycay, Jimmy; Mumford, Richard A.; Swiderek, Kristine M.; Lee, Terry D.; Ding, Aihao; Troso, Tiffany; Nathan, Carl

    1992-04-01

    Nitric oxide (NO) conveys a variety of messages between cells, including signals for vasorelaxation, neurotransmission, and cytotoxicity. In some endothelial cells and neurons, a constitutive NO synthase is activated transiently by agonists that elevate intracellular calcium concentrations and promote the binding of calmodulin. In contrast, in macrophages, NO synthase activity appears slowly after exposure of the cells to cytokines and bacterial products, is sustained, and functions independently of calcium and calmodulin. A monospecific antibody was used to clone complementary DNA that encoded two isoforms of NO synthase from immunologically activated mouse macrophages. Liquid chromatography-mass spectrometry was used to confirm most of the amino acid sequence. Macrophage NO synthase differs extensively from cerebellar NO synthase. The macrophage enzyme is immunologically induced at the transcriptional level and closely resembles the enzyme in cytokine-treated tumor cells and inflammatory neutrophils.

  10. Immunological network signatures of cancer progression and survival

    PubMed Central

    2011-01-01

    Background The immune contribution to cancer progression is complex and difficult to characterize. For example in tumors, immune gene expression is detected from the combination of normal, tumor and immune cells in the tumor microenvironment. Profiling the immune component of tumors may facilitate the characterization of the poorly understood roles immunity plays in cancer progression. However, the current approaches to analyze the immune component of a tumor rely on incomplete identification of immune factors. Methods To facilitate a more comprehensive approach, we created a ranked immunological relevance score for all human genes, developed using a novel strategy that combines text mining and information theory. We used this score to assign an immunological grade to gene expression profiles, and thereby quantify the immunological component of tumors. This immunological relevance score was benchmarked against existing manually curated immune resources as well as high-throughput studies. To further characterize immunological relevance for genes, the relevance score was charted against both the human interactome and cancer information, forming an expanded interactome landscape of tumor immunity. We applied this approach to expression profiles in melanomas, thus identifying and grading their immunological components, followed by identification of their associated protein interactions. Results The power of this strategy was demonstrated by the observation of early activation of the adaptive immune response and the diversity of the immune component during melanoma progression. Furthermore, the genome-wide immunological relevance score classified melanoma patient groups, whose immunological grade correlated with clinical features, such as immune phenotypes and survival. Conclusions The assignment of a ranked immunological relevance score to all human genes extends the content of existing immune gene resources and enriches our understanding of immune involvement in complex biological networks. The application of this approach to tumor immunity represents an automated systems strategy that quantifies the immunological component in complex disease. In so doing, it stratifies patients according to their immune profiles, which may lead to effective computational prognostic and clinical guides. PMID:21453479

  11. Data-driven analysis of immune infiltrate in a large cohort of breast cancer and its association with disease progression, ER activity, and genomic complexity

    PubMed Central

    Dannenfelser, Ruth; Nome, Marianne; Tahiri, Andliena; Ursini-Siegel, Josie; Vollan, Hans Kristian Moen; Haakensen, Vilde D.; Helland, Åslaug; Naume, Bjørn; Caldas, Carlos; Børresen-Dale, Anne-Lise; Kristensen, Vessela N.; Troyanskaya, Olga G.

    2017-01-01

    The tumor microenvironment is now widely recognized for its role in tumor progression, treatment response, and clinical outcome. The intratumoral immunological landscape, in particular, has been shown to exert both pro-tumorigenic and anti-tumorigenic effects. Identifying immunologically active or silent tumors may be an important indication for administration of therapy, and detecting early infiltration patterns may uncover factors that contribute to early risk. Thus far, direct detailed studies of the cell composition of tumor infiltration have been limited; with some studies giving approximate quantifications using immunohistochemistry and other small studies obtaining detailed measurements by isolating cells from excised tumors and sorting them using flow cytometry. Herein we utilize a machine learning based approach to identify lymphocyte markers with which we can quantify the presence of B cells, cytotoxic T-lymphocytes, T-helper 1, and T-helper 2 cells in any gene expression data set and apply it to studies of breast tissue. By leveraging over 2,100 samples from existing large scale studies, we are able to find an inherent cell heterogeneity in clinically characterized immune infiltrates, a strong link between estrogen receptor activity and infiltration in normal and tumor tissues, changes with genomic complexity, and identify characteristic differences in lymphocyte expression among molecular groupings. With our extendable methodology for capturing cell type specific signal we systematically studied immune infiltration in breast cancer, finding an inverse correlation between beneficial lymphocyte infiltration and estrogen receptor activity in normal breast tissue and reduced infiltration in estrogen receptor negative tumors with high genomic complexity. PMID:28915659

  12. In situ induction of dendritic cell–based T cell tolerance in humanized mice and nonhuman primates

    PubMed Central

    Jung, Kyeong Cheon; Jeon, Yoon Kyung; Ban, Young Larn; Min, Hye Sook; Kim, Eun Ji; Kim, Ju Hyun; Kang, Byung Hyun; Bae, Youngmee; Yoon, Il-Hee; Kim, Yong-Hee; Lee, Jae-Il; Kim, Jung-Sik; Shin, Jun-Seop; Yang, Jaeseok; Kim, Sung Joo; Rostlund, Emily; Muller, William A.

    2011-01-01

    Induction of antigen-specific T cell tolerance would aid treatment of diverse immunological disorders and help prevent allograft rejection and graft versus host disease. In this study, we establish a method of inducing antigen-specific T cell tolerance in situ in diabetic humanized mice and Rhesus monkeys receiving porcine islet xenografts. Antigen-specific T cell tolerance is induced by administration of an antibody ligating a particular epitope on ICAM-1 (intercellular adhesion molecule 1). Antibody-mediated ligation of ICAM-1 on dendritic cells (DCs) led to the arrest of DCs in a semimature stage in vitro and in vivo. Ablation of DCs from mice completely abrogated anti–ICAM-1–induced antigen-specific T cell tolerance. T cell responses to unrelated antigens remained unaffected. In situ induction of DC-mediated T cell tolerance using this method may represent a potent therapeutic tool for preventing graft rejection. PMID:22025302

  13. Pathogen boosted adoptive cell transfer immunotherapy to treat solid tumors.

    PubMed

    Xin, Gang; Schauder, David M; Jing, Weiqing; Jiang, Aimin; Joshi, Nikhil S; Johnson, Bryon; Cui, Weiguo

    2017-01-24

    Because of insufficient migration and antitumor function of transferred T cells, especially inside the immunosuppressive tumor microenvironment (TME), the efficacy of adoptive cell transfer (ACT) is much curtailed in treating solid tumors. To overcome these challenges, we sought to reenergize ACT (ReACT) with a pathogen-based cancer vaccine. To bridge ACT with a pathogen, we genetically engineered tumor-specific CD8 T cells in vitro with a second T-cell receptor (TCR) that recognizes a bacterial antigen. We then transferred these dual-specific T cells in combination with intratumoral bacteria injection to treat solid tumors in mice. The dual-specific CD8 T cells expanded vigorously, migrated to tumor sites, and robustly eradicated primary tumors. The mice cured from ReACT also developed immunological memory against tumor rechallenge. Mechanistically, we have found that this combined approach reverts the immunosuppressive TME and recruits CD8 T cells with an increased number and killing ability to the tumors.

  14. Rehabilitation or the death penalty: autoimmune B cells in the dock.

    PubMed

    Dahal, Lekh N; Cragg, Mark S

    2015-03-01

    CD20-based monoclonal antibodies have become established as treatments for lymphoma, rheumatoid arthritis, systemic lupus erythematosus, vasculitis and dermatomyositis, with the principle therapeutic mechanism relating to B-cell depletion through effector cell engagement. An article by Brühl et al. in this issue of the European Journal of Immunology [Eur. J. Immunol. 2015. 45: 705-715] reveals a fundamentally distinct mechanism of silencing autoimmune B-cell responses. Rather than B-cell depletion, the authors use anti-CD79b antibodies to induce B-cell tolerance and suppress humoral immune responses against collagen to prevent the development of arthritis in mice. Here we highlight the differences in the mechanisms used by anti-CD20 and anti-CD79b Ab therapy and discuss why depletion of B cells may not be required to treat autoimmune arthritis and other B-cell-associated pathologies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. B-cell Ligand Processing Pathways Detected by Large-scale Comparative Analysis

    PubMed Central

    Towfic, Fadi; Gupta, Shakti; Honavar, Vasant; Subramaniam, Shankar

    2012-01-01

    The initiation of B-cell ligand recognition is a critical step for the generation of an immune response against foreign bodies. We sought to identify the biochemical pathways involved in the B-cell ligand recognition cascade and sets of ligands that trigger similar immunological responses. We utilized several comparative approaches to analyze the gene coexpression networks generated from a set of microarray experiments spanning 33 different ligands. First, we compared the degree distributions of the generated networks. Second, we utilized a pairwise network alignment algorithm, BiNA, to align the networks based on the hubs in the networks. Third, we aligned the networks based on a set of KEGG pathways. We summarized our results by constructing a consensus hierarchy of pathways that are involved in B cell ligand recognition. The resulting pathways were further validated through literature for their common physiological responses. Collectively, the results based on our comparative analyses of degree distributions, alignment of hubs, and alignment based on KEGG pathways provide a basis for molecular characterization of the immune response states of B-cells and demonstrate the power of comparative approaches (e.g., gene coexpression network alignment algorithms) in elucidating biochemical pathways involved in complex signaling events in cells. PMID:22917187

  16. The immunology of the allergy epidemic and the hygiene hypothesis.

    PubMed

    Lambrecht, Bart N; Hammad, Hamida

    2017-09-19

    The immunology of the hygiene hypothesis of allergy is complex and involves the loss of cellular and humoral immunoregulatory pathways as a result of the adoption of a Western lifestyle and the disappearance of chronic infectious diseases. The influence of diet and reduced microbiome diversity now forms the foundation of scientific thinking on how the allergy epidemic occurred, although clear mechanistic insights into the process in humans are still lacking. Here we propose that barrier epithelial cells are heavily influenced by environmental factors and by microbiome-derived danger signals and metabolites, and thus act as important rheostats for immunoregulation, particularly during early postnatal development. Preventive strategies based on this new knowledge could exploit the diversity of the microbial world and the way humans react to it, and possibly restore old symbiotic relationships that have been lost in recent times, without causing disease or requiring a return to an unhygienic life style.

  17. Semi-autonomous inline water analyzer: design of a common light detector for bacterial, phage, and immunological biosensors.

    PubMed

    Descamps, Elodie C T; Meunier, Damien; Brutesco, Catherine; Prévéral, Sandra; Franche, Nathalie; Bazin, Ingrid; Miclot, Bertrand; Larosa, Philippe; Escoffier, Camille; Fantino, Jean-Raphael; Garcia, Daniel; Ansaldi, Mireille; Rodrigue, Agnès; Pignol, David; Cholat, Pierre; Ginet, Nicolas

    2017-01-01

    The use of biosensors as sensitive and rapid alert systems is a promising perspective to monitor accidental or intentional environmental pollution, but their implementation in the field is limited by the lack of adapted inline water monitoring devices. We describe here the design and initial qualification of an analyzer prototype able to accommodate three types of biosensors based on entirely different methodologies (immunological, whole-cell, and bacteriophage biosensors), but whose responses rely on the emission of light. We developed a custom light detector and a reaction chamber compatible with the specificities of the three systems and resulting in statutory detection limits. The water analyzer prototype resulting from the COMBITOX project can be situated at level 4 on the Technology Readiness Level (TRL) scale and this technical advance paves the way to the use of biosensors on-site.

  18. Big data analytics in immunology: a knowledge-based approach.

    PubMed

    Zhang, Guang Lan; Sun, Jing; Chitkushev, Lou; Brusic, Vladimir

    2014-01-01

    With the vast amount of immunological data available, immunology research is entering the big data era. These data vary in granularity, quality, and complexity and are stored in various formats, including publications, technical reports, and databases. The challenge is to make the transition from data to actionable knowledge and wisdom and bridge the knowledge gap and application gap. We report a knowledge-based approach based on a framework called KB-builder that facilitates data mining by enabling fast development and deployment of web-accessible immunological data knowledge warehouses. Immunological knowledge discovery relies heavily on both the availability of accurate, up-to-date, and well-organized data and the proper analytics tools. We propose the use of knowledge-based approaches by developing knowledgebases combining well-annotated data with specialized analytical tools and integrating them into analytical workflow. A set of well-defined workflow types with rich summarization and visualization capacity facilitates the transformation from data to critical information and knowledge. By using KB-builder, we enabled streamlining of normally time-consuming processes of database development. The knowledgebases built using KB-builder will speed up rational vaccine design by providing accurate and well-annotated data coupled with tailored computational analysis tools and workflow.

  19. Development of the neonatal B and T cell repertoire in swine: implications for comparative and veterinary immunology.

    PubMed

    Butler, John E; Sinkora, Marek; Wertz, Nancy; Holtmeier, Wolfgang; Lemke, Caitlin D

    2006-01-01

    Birth in all higher vertebrates is at the center of the critical window of development in which newborns transition from dependence on innate immunity to dependence on their own adaptive immunity, with passive maternal immunity bridging this transition. Therefore we have studied immunological development through fetal and early neonatal life. In swine, B cells appear earlier in fetal development than T cells. B cell development begins in the yolk sac at the 20th day of gestation (DG20), progresses to fetal liver at DG30 and after DG45 continues in bone marrow. The first wave of developing T cells is gammadelta cells expressing a monomorphic Vdelta rearrangement. Thereafter, alphabeta T cells predominate and at birth, at least 19 TRBV subgroups are expressed, 17 of which appear highly homologous with those in humans. In contrast to the T cell repertoire and unlike humans and mice, the porcine pre-immune VH (IGHV-D-J) repertoire is highly restricted, depending primarily on CDR3 for diversity. The V-KAPPA (IGKV-J) repertoire and apparently also the V-LAMBDA (IGLV-J) repertoire, are also restricted. Diversification of the pre-immune B cell repertoire of swine and the ability to respond to both T-dependent and T-independent antigen depends on colonization of the gut after birth in which colonizing bacteria stimulate with Toll-like receptor ligands, especially bacterial DNA. This may explain the link between repertoire diversification and the anatomical location of primary lymphoid tissue like the ileal Peyers patches. Improper development of adaptive immunity can be caused by infectious agents like the porcine reproductive and respiratory syndrome virus that causes immune dysregulation resulting in immunological injury and autoimmunity.

  20. Tumor-infiltrating lymphocytes predict response to chemotherapy in patients with advance non-small cell lung cancer.

    PubMed

    Liu, Hui; Zhang, Tiantuo; Ye, Jin; Li, Hongtao; Huang, Jing; Li, Xiaodong; Wu, Benquan; Huang, Xubing; Hou, Jinghui

    2012-10-01

    Accumulating preclinical evidence suggests that anticancer immune responses contribute to the success of chemotherapy. The predictive significance of tumor-infiltrating lymphocytes (TILs) for response to neoadjuvant chemotherapy in non-small cell lung cancer (NSCLC) remains unknown. The aim of this study was to investigate the prognostic and predictive value of TIL subtypes in patients with advanced NSCLC treated with platinum-based chemotherapy. In total, 159 patients with stage III and IV NSCLC were retrospectively enrolled. The prevalence of CD3(+), CD4(+), CD8(+) and Foxp3(+) TILs was assessed by immunohistochemistry in tumor tissue obtained before chemotherapy. The density of TILs subgroups was treated as dichotomous variables using the median values as cutoff. Survival curves were estimated by the Kaplan-Meier method, and differences in overall survival between groups were determined using the Log-rank test. Prognostic effects of TIL subsets density were evaluated by Cox regression analysis. The presence of CD3(+), CD4(+), CD8(+), and FOXP3(+) TILs was not correlated with any clinicopathological features. Neither the prevalence of TILs nor combined analysis displayed obvious prognostic performances for overall survival in Cox regression model. Instead, higher FOXP3(+)/CD8(+) ratio in tumor sites was an independent factor for poor response to platinum-based chemotherapy in overall cohort. These findings suggest that immunological CD8(+) and FOXP3(+)Tregs cell infiltrate within tumor environment is predictive of response to platinum-based neoadjuvant chemotherapy in advanced NSCLC patients. The understanding of the clinical relevance of the microenvironmental immunological milieu might provide an important clue for the design of novel strategies in cancer immunotherapy.

Top