Sample records for cell-cell communication system

  1. Engineered cell-cell communication via DNA messaging

    PubMed Central

    2012-01-01

    Background Evolution has selected for organisms that benefit from genetically encoded cell-cell communication. Engineers have begun to repurpose elements of natural communication systems to realize programmed pattern formation and coordinate other population-level behaviors. However, existing engineered systems rely on system-specific small molecules to send molecular messages among cells. Thus, the information transmission capacity of current engineered biological communication systems is physically limited by specific biomolecules that are capable of sending only a single message, typically “regulate transcription.” Results We have engineered a cell-cell communication platform using bacteriophage M13 gene products to autonomously package and deliver heterologous DNA messages of varying lengths and encoded functions. We demonstrate the decoupling of messages from a common communication channel via the autonomous transmission of various arbitrary genetic messages. Further, we increase the range of engineered DNA messaging across semisolid media by linking message transmission or receipt to active cellular chemotaxis. Conclusions We demonstrate decoupling of a communication channel from message transmission within engineered biological systems via the autonomous targeted transduction of user-specified heterologous DNA messages. We also demonstrate that bacteriophage M13 particle production and message transduction occurs among chemotactic bacteria. We use chemotaxis to improve the range of DNA messaging, increasing both transmission distance and communication bit rates relative to existing small molecule-based communication systems. We postulate that integration of different engineered cell-cell communication platforms will allow for more complex spatial programming of dynamic cellular consortia. PMID:22958599

  2. Exosomes and nanotubes: control of immune cell communication

    PubMed Central

    McCoy-Simandle, Kessler; Hanna, Samer J.; Cox, Dianne

    2015-01-01

    Cell-cell communication is critical to coordinate the activity and behavior of a multicellular organism. The cells of the immune system not only must communicate with similar cells, but also with many other cell types in the body. Therefore, the cells of the immune system have evolved multiple ways to communicate. Exosomes and tunneling nanotubes (TNTs) are two means of communication used by immune cells that contribute to immune functions. Exosomes are small membrane vesicles secreted by most cell types that can mediate intercellular communication and in the immune system they are proposed to play a role in antigen presentation and modulation of gene expression. TNTs are membranous structures that mediate direct cell-cell contact over several cell diameters in length (and possibly longer) and facilitate the interaction and/or the transfer of signals, material and other cellular organelles between connected cells. Recent studies have revealed additional, but sometimes conflicting, structural and functional features of both exosomes and TNTs. Despite the new and exciting information in exosome and TNT composition, origin and in vitro function, biologically significant functions are still being investigated and determined. In this review, we discuss the current field regarding exosomes and TNTs in immune cells providing evaluation and perspectives of the current literature. PMID:26704468

  3. Calcium signal communication in the central nervous system.

    PubMed

    Braet, Katleen; Cabooter, Liesbet; Paemeleire, Koen; Leybaert, Luc

    2004-02-01

    The communication of calcium signals between cells is known to be operative between neurons where these signals integrate intimately with electrical and chemical signal communication at synapses. Recently, it has become clear that glial cells also exchange calcium signals between each other in cultures and in brain slices. This communication pathway has received utmost attention since it is known that astrocytic calcium signals can be induced by neuronal stimulation and can be communicated back to the neurons to modulate synaptic transmission. In addition to this, cells that are generally not considered as brain cells become progressively incorporated in the picture, as astrocytic calcium signals are reported to be communicated to endothelial cells of the vessel wall and can affect smooth muscle cell tone to influence the vessel diameter and thus blood flow. We review the available evidence for calcium signal communication in the central nervous system, taking into account a basic functional unit -the brain cell tripartite- consisting of neurons, glial cells and vascular cells and with emphasis on glial-vascular calcium signaling aspects.

  4. Systems Biology Analysis of Heterocellular Signaling.

    PubMed

    Tape, Christopher J

    2016-08-01

    Tissues comprise multiple heterotypic cell types (e.g., epithelial, mesenchymal, and immune cells). Communication between heterotypic cell types is essential for biological cohesion and is frequently dysregulated in disease. Despite the importance of heterocellular communication, most systems biology techniques do not report cell-specific signaling data from mixtures of cells. As a result, our existing perspective of cellular behavior under-represents the influence of heterocellular signaling. Recent technical advances now permit the resolution of systems-level cell-specific signaling data. This review discusses how new physical, spatial, and isotopic resolving methods are facilitating unique systems biology studies of heterocellular communication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Application of AirCell Cellular AMPS Network and Iridium Satellite System Dual Mode Service to Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Shamma, Mohammed A.

    2004-01-01

    The AirCell/Iridium dual mode service is evaluated for potential applications to Air Traffic Management (ATM) communication needs. The AirCell system which is largely based on the Advanced Mobile Phone System (AMPS) technology, and the Iridium FDMA/TDMA system largely based on the Global System for Mobile Communications(GSM) technology, can both provide communication relief for existing or future aeronautical communication links. Both have a potential to serve as experimental platforms for future technologies via a cost effective approach. The two systems are well established in the entire CONUS and globally hence making it feasible to utilize in all regions, for all altitudes, and all classes of aircraft. Both systems have been certified for air usage. The paper summarizes the specifications of the AirCell/Iridium system, as well as the ATM current and future links, and application specifications. the paper highlights the scenarios, applications, and conditions under which the AirCell/Iridium technology can be suited for ATM Communication.

  6. A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling.

    PubMed

    Gilroy, Simon; Suzuki, Nobuhiro; Miller, Gad; Choi, Won-Gyu; Toyota, Masatsugu; Devireddy, Amith R; Mittler, Ron

    2014-10-01

    Systemic signaling pathways enable multicellular organisms to prepare all of their tissues and cells to an upcoming challenge that may initially only be sensed by a few local cells. They are activated in plants in response to different stimuli including mechanical injury, pathogen infection, and abiotic stresses. Key to the mobilization of systemic signals in higher plants are cell-to-cell communication events that have thus far been mostly unstudied. The recent identification of systemically propagating calcium (Ca(2+)) and reactive oxygen species (ROS) waves in plants has unraveled a new and exciting cell-to-cell communication pathway that, together with electric signals, could provide a working model demonstrating how plant cells transmit long-distance signals via cell-to-cell communication mechanisms. Here, we summarize recent findings on the ROS and Ca(2+) waves and outline a possible model for their integration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. RovS and its associated signaling peptide form a cell-to-cell communication system required for Streptococcus agalactiae pathogenesis.

    PubMed

    Pérez-Pascual, David; Gaudu, Philippe; Fleuchot, Betty; Besset, Colette; Rosinski-Chupin, Isabelle; Guillot, Alain; Monnet, Véronique; Gardan, Rozenn

    2015-01-20

    Bacteria can communicate with each other to coordinate their biological functions at the population level. In a previous study, we described a cell-to-cell communication system in streptococci that involves a transcriptional regulator belonging to the Rgg family and short hydrophobic peptides (SHPs) that act as signaling molecules. Streptococcus agalactiae, an opportunistic pathogenic bacterium responsible for fatal infections in neonates and immunocompromised adults, has one copy of the shp/rgg locus. The SHP-associated Rgg is called RovS in S. agalactiae. In this study, we found that the SHP/RovS cell-to-cell communication system is active in the strain NEM316 of S. agalactiae, and we identified different partners that are involved in this system, such as the Eep peptidase, the PptAB, and the OppA1-F oligopeptide transporters. We also identified a new target gene controlled by this system and reexamined the regulation of a previously proposed target gene, fbsA, in the context of the SHP-associated RovS system. Furthermore, our results are the first to indicate the SHP/RovS system specificity to host liver and spleen using a murine model, which demonstrates its implication in streptococci virulence. Finally, we observed that SHP/RovS regulation influences S. agalactiae's ability to adhere to and invade HepG2 hepatic cells. Hence, the SHP/RovS cell-to-cell communication system appears to be an essential mechanism that regulates pathogenicity in S. agalactiae and represents an attractive target for the development of new therapeutic strategies. Rgg regulators and their cognate pheromones, called small hydrophobic peptides (SHPs), are present in nearly all streptococcal species. The general pathways of the cell-to-cell communication system in which Rgg and SHP take part are well understood. However, many other players remain unidentified, and the direct targets of the system, as well as its link to virulence, remain unclear. Here, we identified the different players involved in the SHP/Rgg system in S. agalactiae, which is the leading agent of severe infections in human newborns. We have identified a direct target of the Rgg regulator in S. agalactiae (called RovS) and examined a previously proposed target, all in the context of associated SHP. For the first time, we have also demonstrated the implication of the SHP/RovS mechanism in virulence, as well as its host organ specificity. Thus, this cell-to-cell communication system may represent a future target for S. agalactiae disease treatment. Copyright © 2015 Pérez-Pascual et al.

  8. Intra- and Interorgan Communication in the Cardiovascular System: A Special View on Redox Regulation.

    PubMed

    Gödecke, Axel; Haendeler, Judith

    2017-04-20

    Intraorgan communication in the cardiovascular system is exerted not only by direct cell-cell contacts but also by locally released factors, which modulate neighboring cells by paracrine signals (e.g., NO, vascular endothelial growth factor, adenosine, reactive oxygen species). Moreover, cells in close proximity to the typical cardiovascular cells such as fibroblasts, red blood cells, as well as resident and invading immune cells must be considered in attempts to understand cardiovascular function in physiology and pathology. The second level of communication is the interorgan communication, which may be distinguished from intraorgan communication, since it involves signaling from remote organs to the heart and circulation. Therefore, mediators released by, for example, the kidney or skeletal muscle reach the heart and modulate its function. This is not only the case under physiological conditions, because there is increasing evidence that the organ-specific response to a primary insult may affect also the function of remote organs by the release of factors. This Forum will summarize novel mechanisms involved in intraorgan and interorgan communication of the cardiovascular system, with a special view on the remote organs, skeletal muscle and kidney. Antioxid. Redox Signal. 26, 613-615.

  9. Conservation and Evolutionary Dynamics of the agr Cell-to-Cell Communication System across Firmicutes▿ †

    PubMed Central

    Wuster, Arthur; Babu, M. Madan

    2008-01-01

    We present evidence that the agr cell-to-cell communication system is present across firmicutes, including the human pathogen Clostridium perfringens. Although we find that the agr system is evolutionarily conserved and that the general functions which it regulates are similar in different species, the individual regulated genes are not the same. This suggests that the regulatory network controlled by agr is dynamic and evolves rapidly. PMID:17933897

  10. The use of cell phones and radio communication systems to reduce delays in getting help for pregnant women in low- and middle-income countries: a scoping review.

    PubMed

    Oyeyemi, Sunday O; Wynn, Rolf

    2015-01-01

    Delays in getting medical help are important factors in the deaths of many pregnant women and unborn children in the low- and middle-income countries (LMIC). Studies have suggested that the use of cell phones and radio communication systems might reduce such delays. We review the literature regarding the impact of cell phones and radio communication systems on delays in getting medical help by pregnant women in the LMIC. Cochrane Library, PubMed, Maternity and Infant care (Ovid), Web of Science (ISI), and Google Scholar were searched for studies relating to the use of cell phones for maternal and child health services, supplemented with hand searches. We included studies in LMIC and in English involving the simple use of cell phones (or radio communication) to either make calls or send text messages. Fifteen studies met the inclusion criteria. All the studies, while of various designs, demonstrated positive contributory effects of cell phones or radio communication systems in reducing delays experienced by pregnant women in getting medical help. While the results suggested that cell phones could contribute in reducing delays, more studies of a longer duration are needed to strengthen the finding.

  11. The use of cell phones and radio communication systems to reduce delays in getting help for pregnant women in low- and middle-income countries: a scoping review

    PubMed Central

    Oyeyemi, Sunday O.; Wynn, Rolf

    2015-01-01

    Background Delays in getting medical help are important factors in the deaths of many pregnant women and unborn children in the low- and middle-income countries (LMIC). Studies have suggested that the use of cell phones and radio communication systems might reduce such delays. Objectives We review the literature regarding the impact of cell phones and radio communication systems on delays in getting medical help by pregnant women in the LMIC. Design Cochrane Library, PubMed, Maternity and Infant care (Ovid), Web of Science (ISI), and Google Scholar were searched for studies relating to the use of cell phones for maternal and child health services, supplemented with hand searches. We included studies in LMIC and in English involving the simple use of cell phones (or radio communication) to either make calls or send text messages. Results Fifteen studies met the inclusion criteria. All the studies, while of various designs, demonstrated positive contributory effects of cell phones or radio communication systems in reducing delays experienced by pregnant women in getting medical help. Conclusions While the results suggested that cell phones could contribute in reducing delays, more studies of a longer duration are needed to strengthen the finding. PMID:26362421

  12. Cell boundary fault detection system

    DOEpatents

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  13. Cell boundary fault detection system

    DOEpatents

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN

    2011-04-19

    An apparatus and program product determine a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  14. Communicating the molecular basis of cancer cell-by-cell: an interview with Tatsushi Igaki.

    PubMed

    Igaki, Tatsushi

    2015-12-01

    Tatsushi Igaki is currently based at the Kyoto University Graduate School of Biostudies, where he leads a research group dedicated to using Drosophila genetics to build a picture of the cell-cell communications underlying the establishment and maintenance of multicellular systems. His work has provided insight into the molecular bases of cell competition in the context of development and tumorigenesis, including the landmark discovery that oncogenic cells communicate with normal cells in the tumor microenvironment to induce tumor progression in a non-autonomous fashion. In this interview, he describes his career path, highlighting the shift in his research focus from the basic principles of apoptosis to clonal evolution in cancer, and also explains why Drosophila provides a powerful model system for studying cancer biology. © 2015. Published by The Company of Biologists Ltd.

  15. Electrochemical cell operation and system

    DOEpatents

    Maru, Hansraj C.

    1980-03-11

    Thermal control in fuel cell operation is affected through sensible heat of process gas by providing common input manifolding of the cell gas flow passage in communication with the cell electrolyte and an additional gas flow passage which is isolated from the cell electrolyte and in thermal communication with a heat-generating surface of the cell. Flow level in the cell gas flow passage is selected based on desired output electrical energy and flow level in the additional gas flow passage is selected in accordance with desired cell operating temperature.

  16. One step preparation and electrochemical analysis of IQS, a cell-cell communication signal in the nosocomial pathogen Pseudomonas aeruginosa.

    PubMed

    Shang, Fengjun; Muimhneacháin, Eoin Ó; Jerry Reen, F; Buzid, Alyah; O'Gara, Fergal; Luong, John H T; Glennon, Jeremy D; McGlacken, Gerard P

    2014-10-01

    Pseudomonas aeruginosa uses a hierarchical cell-cell communication system consisting of a number of regulatory elements to coordinate the expression of bacterial virulence genes. Sensitive detection of quorum sensing (QS) molecules has the potential for early identification of P. aeruginosa facilitating early medical intervention. A recently isolated cell-cell communication molecule, a thiazole termed IQS, can bypass the las QS system of P. aeruginosa under times of stress, activating a subset of QS-controlled genes. This compound offers a new target for pathogen detection and has been prepared in a one step protocol. A simple electrochemical strategy was employed for its sensitive detection using boron-doped diamond and glassy carbon electrodes by cyclic voltammetry and amperometry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The Molecular Basis of Communication between Cells.

    ERIC Educational Resources Information Center

    Snyder, Solomon H.

    1985-01-01

    Chemical messengers mediate long-range hormonal communication and short-range neural communication between cells. Background information on peptides, steroids, neuropeptides, and specialized enzymes is given. Investigations reveal that the two systems have many common intercellular messenger molecules. (DH)

  18. [The cell theory. Progress in studies on cell-cell communications].

    PubMed

    Brodskiĭ, V Ia

    2009-01-01

    Current data confirm the fundamental statement of the cell theory concerning the cell reproduction in a series of generations (omnis cellula e cellula). Cell communities or ensembles integrated by the signaling systems established in prokaryotes and protists and functioning in multicellular organisms including mammals are considered as the structural and functional unit of a multicellular organism. The cell is an elementary unit of life and basis of organism development and functioning. At the same time, the adult organism is not just a totality of cells. Multinucleated cells in some tissues, syncytial structure, and structural-functional units of organs are adaptations for optimal functioning of the multicellular organism and manifestations of cell-cell communications in development and definitive functioning. The cell theory was supplemented and developed by studies on cell-cell communications; however, these studies do not question the main generalizations of the theory.

  19. The Novel Roles of Connexin Channels and Tunneling Nanotubes in Cancer Pathogenesis

    PubMed Central

    Valdebenito, Silvana; Lou, Emil; Baldoni, John

    2018-01-01

    Neoplastic growth and cellular differentiation are critical hallmarks of tumor development. It is well established that cell-to-cell communication between tumor cells and “normal” surrounding cells regulates tumor differentiation and proliferation, aggressiveness, and resistance to treatment. Nevertheless, the mechanisms that result in tumor growth and spread as well as the adaptation of healthy surrounding cells to the tumor environment are poorly understood. A major component of these communication systems is composed of connexin (Cx)-containing channels including gap junctions (GJs), tunneling nanotubes (TNTs), and hemichannels (HCs). There are hundreds of reports about the role of Cx-containing channels in the pathogenesis of cancer, and most of them demonstrate a downregulation of these proteins. Nonetheless, new data demonstrate that a localized communication via Cx-containing GJs, HCs, and TNTs plays a key role in tumor growth, differentiation, and resistance to therapies. Moreover, the type and downstream effects of signals communicated between the different populations of tumor cells are still unknown. However, new approaches such as artificial intelligence (AI) and machine learning (ML) could provide new insights into these signals communicated between connected cells. We propose that the identification and characterization of these new communication systems and their associated signaling could provide new targets to prevent or reduce the devastating consequences of cancer. PMID:29695070

  20. Three-wheel air turbocompressor for PEM fuel cell systems

    DOEpatents

    Rehg, Tim; Gee, Mark; Emerson, Terence P.; Ferrall, Joe; Sokolov, Pavel

    2003-08-19

    A fuel cell system comprises a compressor and a fuel processor downstream of the compressor. A fuel cell stack is in communication with the fuel processor and compressor. A combustor is downstream of the fuel cell stack. First and second turbines are downstream of the fuel processor and in parallel flow communication with one another. A distribution valve is in communication with the first and second turbines. The first and second turbines are mechanically engaged to the compressor. A bypass valve is intermediate the compressor and the second turbine, with the bypass valve enabling a compressed gas from the compressor to bypass the fuel processor.

  1. Engineering quorum sensing signaling of Pseudomonas for enhanced wastewater treatment and electricity harvest: A review.

    PubMed

    Yong, Yang-Chun; Wu, Xiang-Yang; Sun, Jian-Zhong; Cao, Ying-Xiu; Song, Hao

    2015-12-01

    Cell-cell communication that enables synchronized population behaviors in microbial communities dictates various biological processes. It is of great interest to unveil the underlying mechanisms of fine-tuning cell-cell communication to achieve environmental and energy applications. Pseudomonas is a ubiquitous microbe in environments that had wide applications in bioremediation and bioenergy generation. The quorum sensing (QS, a generic cell-cell communication mechanism) systems of Pseudomonas underlie the aromatics biodegradation, denitrification and electricity harvest. Here, we reviewed the recent progresses of the genetic strategies in engineering QS circuits to improve efficiency of wastewater treatment and the performance of microbial fuel cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. (Neuro)transmitter systems in circulating immune cells: a target of immunopharmacological interventions?

    PubMed

    Tayebati, Seyed Khosrow; Amenta, Francesco

    2008-01-01

    Increasing evidence indicates the existence of an association between nervous and immune systems. The two systems communicate with each-other to maintain immune homeostasis. Activated immune cells secrete cytokines that influence central nervous system activity. Nervous system, through its peripheral and/or autonomic divisions activates output regulating levels of immune cell activity and the subsequent magnitude of an immune response. On the other hand, neurotransmitters, which represent the main substances involved in nerve cell communications, can influence immune function. Immune organs and circulating immune cells express several (neuro)transmitter systems that can be involved in regulating their activity. The expression of neurotransmitter systems by different subsets of circulating immune cells was reviewed. The regulatory role of different families of (neuro)transmitters (catecholamines, 5-hydroxytryptamine, acetylcholine, histamine and neuropeptides) in modulating levels of immune mediators or specific immune responses is discussed.

  3. A RET-ER81-NRG1 Signaling Pathway Drives the Development of Pacinian Corpuscles.

    PubMed

    Fleming, Michael S; Li, Jian J; Ramos, Daniel; Li, Tong; Talmage, David A; Abe, Shin-Ichi; Arber, Silvia; Luo, Wenqin

    2016-10-05

    Axon-Schwann cell interactions are crucial for the development, function, and repair of the peripheral nervous system, but mechanisms underlying communication between axons and nonmyelinating Schwann cells are unclear. Here, we show that ER81 is functionally required in a subset of mouse RET + mechanosensory neurons for formation of Pacinian corpuscles, which are composed of a single myelinated axon and multiple layers of nonmyelinating Schwann cells, and Ret is required for the maintenance of Er81 expression. Interestingly, Er81 mutants have normal myelination but exhibit deficient interactions between axons and corpuscle-forming nonmyelinating Schwann cells. Finally, ablating Neuregulin-1 (Nrg1) in mechanosensory neurons results in no Pacinian corpuscles, and an Nrg1 isoform not required for communication with myelinating Schwann cells is specifically decreased in Er81-null somatosensory neurons. Collectively, our results suggest that a RET-ER81-NRG1 signaling pathway promotes axon communication with nonmyelinating Schwann cells, and that neurons use distinct mechanisms to interact with different types of Schwann cells. Communication between neurons and Schwann cells is critical for development, normal function, and regeneration of the peripheral nervous system. Despite many studies about axonal communication with myelinating Schwann cells, mostly via a specific isoform of Neuregulin1, the molecular nature of axonal communication with nonmyelinating Schwann cells is poorly understood. Here, we described a RET-ER81-Neuregulin1 signaling pathway in neurons innervating Pacinian corpuscle somatosensory end organs, which is essential for communication between the innervating axon and the end organ nonmyelinating Schwann cells. We also showed that this signaling pathway uses isoforms of Neuregulin1 that are not involved in myelination, providing evidence that neurons use different isoforms of Neuregulin1 to interact with different types of Schwann cells. Copyright © 2016 the authors 0270-6474/16/3610337-19$15.00/0.

  4. The Sleep-inducing Lipid Oleamide Deconvolutes Gap Junction Communication and Calcium Wave Transmission in Glial Cells

    PubMed Central

    Guan, Xiaojun; Cravatt, Benjamin F.; Ehring, George R.; Hall, James E.; Boger, Dale L.; Lerner, Richard A.; Gilula, Norton B.

    1997-01-01

    Oleamide is a sleep-inducing lipid originally isolated from the cerebrospinal fluid of sleep-deprived cats. Oleamide was found to potently and selectively inactivate gap junction–mediated communication between rat glial cells. In contrast, oleamide had no effect on mechanically stimulated calcium wave transmission in this same cell type. Other chemical compounds traditionally used as inhibitors of gap junctional communication, like heptanol and 18β-glycyrrhetinic acid, blocked not only gap junctional communication but also intercellular calcium signaling. Given the central role for intercellular small molecule and electrical signaling in central nervous system function, oleamide- induced inactivation of glial cell gap junction channels may serve to regulate communication between brain cells, and in doing so, may influence higher order neuronal events like sleep induction. PMID:9412472

  5. A synthetic mammalian network to compute population borders based on engineered reciprocal cell-cell communication.

    PubMed

    Kolar, Katja; Wischhusen, Hanna M; Müller, Konrad; Karlsson, Maria; Weber, Wilfried; Zurbriggen, Matias D

    2015-12-30

    Multicellular organisms depend on the exchange of information between specialized cells. This communication is often difficult to decipher in its native context, but synthetic biology provides tools to engineer well-defined systems that allow the convenient study and manipulation of intercellular communication networks. Here, we present the first mammalian synthetic network for reciprocal cell-cell communication to compute the border between a sender/receiver and a processing cell population. The two populations communicate via L-tryptophan and interleukin-4 to highlight the population border by the production of a fluorescent protein. The sharpness of that visualized edge can be adjusted by modulating key parameters of the network. We anticipate that this network will on the one hand be a useful tool to gain deeper insights into the mechanisms of tissue formation in nature and will on the other hand contribute to our ability to engineer artificial tissues.

  6. Proteomics of Dense Core Secretory Vesicles Reveal Distinct Protein Categories for Secretion of Neuroeffectors for Cell-Cell Communication

    PubMed Central

    Wegrzyn, Jill L.; Bark, Steven J.; Funkelstein, Lydiane; Mosier, Charles; Yap, Angel; Kazemi-Esfarjani, Parasa; La Spada, Albert; Sigurdson, Christina; O’Connor, Daniel T.; Hook, Vivian

    2010-01-01

    Regulated secretion of neurotransmitters and neurohumoural factors from dense core secretory vesicles provides essential neuroeffectors for cell-cell communication in the nervous and endocrine systems. This study provides comprehensive proteomic characterization of the categories of proteins in chromaffin dense core secretory vesicles that participate in cell-cell communication from the adrenal medulla. Proteomic studies were conducted by nano-HPLC Chip MS/MS tandem mass spectrometry. Results demonstrate that these secretory vesicles contain proteins of distinct functional categories consisting of neuropeptides and neurohumoural factors, protease systems, neurotransmitter enzymes and transporters, receptors, enzymes for biochemical processes, reduction/oxidation regulation, ATPases, protein folding, lipid biochemistry, signal transduction, exocytosis, calcium regulation, as well as structural and cell adhesion proteins. The secretory vesicle proteomic data identified 371 distinct proteins in the soluble fraction and 384 distinct membrane proteins, for a total of 686 distinct secretory vesicle proteins. Notably, these proteomic analyses illustrate the presence of several neurological disease-related proteins in these secretory vesicles, including huntingtin interacting protein, cystatin C, ataxin 7, and prion protein. Overall, these findings demonstrate that multiple protein categories participate in dense core secretory vesicles for production, storage, and secretion of bioactive neuroeffectors for cell-cell communication in health and disease. PMID:20695487

  7. Gap-junction-mediated communication in human periodontal ligament cells.

    PubMed

    Kato, R; Ishihara, Y; Kawanabe, N; Sumiyoshi, K; Yoshikawa, Y; Nakamura, M; Imai, Y; Yanagita, T; Fukushima, H; Kamioka, H; Takano-Yamamoto, T; Yamashiro, T

    2013-07-01

    Periodontal tissue homeostasis depends on a complex cellular network that conveys cell-cell communication. Gap junctions (GJs), one of the intercellular communication systems, are found between adjacent human periodontal ligament (hPDL) cells; however, the functional GJ coupling between hPDL cells has not yet been elucidated. In this study, we investigated functional gap-junction-mediated intercellular communication in isolated primary hPDL cells. SEM images indicated that the cells were in contact with each other via dendritic processes, and also showed high anti-connexin43 (Cx43) immunoreactivity on these processes. Gap-junctional intercellular communication (GJIC) among hPDL cells was assessed by fluorescence recovery after a photobleaching (FRAP) analysis, which exhibited dye coupling between hPDL cells, and was remarkably down-regulated when the cells were treated with a GJ blocker. Additionally, we examined GJs under hypoxic stress. The fluorescence recovery and expression levels of Cx43 decreased time-dependently under the hypoxic condition. Exposure to GJ inhibitor or hypoxia increased RANKL expression, and decreased OPG expression. This study shows that GJIC is responsible for hPDL cells and that its activity is reduced under hypoxia. This is consistent with the possible role of hPDL cells in regulating the biochemical reactions in response to changes in the hypoxic environment.

  8. Gas venting system

    DOEpatents

    Khan, Amjad; Dreier, Ken Wayne; Moulthrop, Lawrence Clinton; White, Erik James

    2010-06-29

    A system to vent a moist gas stream is disclosed. The system includes an enclosure and an electrochemical cell disposed within the enclosure, the electrochemical cell productive of the moist gas stream. A first vent is in fluid communication with the electrochemical cell for venting the moist gas stream to an exterior of the enclosure, and a second vent is in fluid communication with an interior of the enclosure and in thermal communication with the first vent for discharging heated air to the exterior of the enclosure. At least a portion of the discharging heated air is for preventing freezing of the moist gas stream within the first vent.

  9. Innate cell communication kick-starts pathogen-specific immunity

    PubMed Central

    Rivera, Amariliz; Siracusa, Mark C.; Yap, George S.; Gause, William C.

    2016-01-01

    Innate cells are responsible for the rapid recognition of infection and mediate essential mechanisms of pathogen elimination, and also facilitate adaptive immune responses. We review here the numerous intricate interactions among innate cells that initiate protective immunity. The efficient eradication of pathogens depends on the coordinated actions of multiple cells, including innate cells and epithelial cells. Rather than acting as isolated effector cells, innate cells are in constant communication with other responding cells of the immune system, locally and distally. These interactions are critically important for the efficient control of primary infections as well for the development of ‘trained’ innate cells that facilitate the rapid elimination of homologous or heterologous infections. PMID:27002843

  10. A Tunable Diffusion-Consumption Mechanism of Cytokine Propagation Enables Plasticity in Cell-to-Cell Communication in the Immune System.

    PubMed

    Oyler-Yaniv, Alon; Oyler-Yaniv, Jennifer; Whitlock, Benjamin M; Liu, Zhiduo; Germain, Ronald N; Huse, Morgan; Altan-Bonnet, Grégoire; Krichevsky, Oleg

    2017-04-18

    Immune cells communicate by exchanging cytokines to achieve a context-appropriate response, but the distances over which such communication happens are not known. Here, we used theoretical considerations and experimental models of immune responses in vitro and in vivo to quantify the spatial extent of cytokine communications in dense tissues. We established that competition between cytokine diffusion and consumption generated spatial niches of high cytokine concentrations with sharp boundaries. The size of these self-assembled niches scaled with the density of cytokine-consuming cells, a parameter that gets tuned during immune responses. In vivo, we measured interactions on length scales of 80-120 μm, which resulted in a high degree of cell-to-cell variance in cytokine exposure. Such heterogeneous distributions of cytokines were a source of non-genetic cell-to-cell variability that is often overlooked in single-cell studies. Our findings thus provide a basis for understanding variability in the patterning of immune responses by diffusible factors. Published by Elsevier Inc.

  11. Cysteine-rich peptides (CRPs) mediate diverse aspects of cell-cell communication in plant reproduction and development.

    PubMed

    Marshall, Eleanor; Costa, Liliana M; Gutierrez-Marcos, Jose

    2011-03-01

    Cell-cell communication in plants is essential for the correct co-ordination of reproduction, growth, and development. Studies to dissect this mode of communication have previously focussed primarily on the action of plant hormones as mediators of intercellular signalling. In animals, peptide signalling is a well-documented intercellular communication system, however, relatively little is known about this system in plants. In recent years, numerous reports have emerged about small, secreted peptides controlling different aspects of plant reproduction. Interestingly, most of these peptides are cysteine-rich, and there is convincing evidence suggesting multiple roles for related cysteine-rich peptides (CRPs) as signalling factors in developmental patterning as well as during plant pathogen responses and symbiosis. In this review, we discuss how CRPs are emerging as key signalling factors in regulating multiple aspects of vegetative growth and reproductive development in plants.

  12. Stochastic simulations of a synthetic bacteria-yeast ecosystem

    PubMed Central

    2012-01-01

    Background The field of synthetic biology has greatly evolved and numerous functions can now be implemented by artificially engineered cells carrying the appropriate genetic information. However, in order for the cells to robustly perform complex or multiple tasks, co-operation between them may be necessary. Therefore, various synthetic biological systems whose functionality requires cell-cell communication are being designed. These systems, microbial consortia, are composed of engineered cells and exhibit a wide range of behaviors. These include yeast cells whose growth is dependent on one another, or bacteria that kill or rescue each other, synchronize, behave as predator-prey ecosystems or invade cancer cells. Results In this paper, we study a synthetic ecosystem comprising of bacteria and yeast that communicate with and benefit from each other using small diffusible molecules. We explore the behavior of this heterogeneous microbial consortium, composed of Saccharomyces cerevisiae and Escherichia coli cells, using stochastic modeling. The stochastic model captures the relevant intra-cellular and inter-cellular interactions taking place in and between the eukaryotic and prokaryotic cells. Integration of well-characterized molecular regulatory elements into these two microbes allows for communication through quorum sensing. A gene controlling growth in yeast is induced by bacteria via chemical signals and vice versa. Interesting dynamics that are common in natural ecosystems, such as obligatory and facultative mutualism, extinction, commensalism and predator-prey like dynamics are observed. We investigate and report on the conditions under which the two species can successfully communicate and rescue each other. Conclusions This study explores the various behaviors exhibited by the cohabitation of engineered yeast and bacterial cells. The way that the model is built allows for studying the dynamics of any system consisting of two species communicating with one another via chemical signals. Therefore, key information acquired by our model may potentially drive the experimental design of various synthetic heterogeneous ecosystems. PMID:22672814

  13. Therapeutic application of extracellular vesicles in acute and chronic renal injury.

    PubMed

    Rovira, Jordi; Diekmann, Fritz; Campistol, Josep M; Ramírez-Bajo, María José

    A new cell-to-cell communication system was discovered in the 1990s, which involves the release of vesicles into the extracellular space. These vesicles shuttle bioactive particles, including proteins, mRNA, miRNA, metabolites, etc. This particular communication has been conserved throughout evolution, which explains why most cell types are capable of producing vesicles. Extracellular vesicles (EVs) are involved in the regulation of different physiological processes, as well as in the development and progression of several diseases. EVs have been widely studied over recent years, especially those produced by embryonic and adult stem cells, blood cells, immune system and nervous system cells, as well as tumour cells. EV analysis from bodily fluids has been used as a diagnostic tool for cancer and recently for different renal diseases. However, this review analyses the importance of EVs generated by stem cells, their function and possible clinical application in renal diseases and kidney transplantation. Copyright © 2016. Published by Elsevier España, S.L.U.

  14. Biomorphic Multi-Agent Architecture for Persistent Computing

    NASA Technical Reports Server (NTRS)

    Lodding, Kenneth N.; Brewster, Paul

    2009-01-01

    A multi-agent software/hardware architecture, inspired by the multicellular nature of living organisms, has been proposed as the basis of design of a robust, reliable, persistent computing system. Just as a multicellular organism can adapt to changing environmental conditions and can survive despite the failure of individual cells, a multi-agent computing system, as envisioned, could adapt to changing hardware, software, and environmental conditions. In particular, the computing system could continue to function (perhaps at a reduced but still reasonable level of performance) if one or more component( s) of the system were to fail. One of the defining characteristics of a multicellular organism is unity of purpose. In biology, the purpose is survival of the organism. The purpose of the proposed multi-agent architecture is to provide a persistent computing environment in harsh conditions in which repair is difficult or impossible. A multi-agent, organism-like computing system would be a single entity built from agents or cells. Each agent or cell would be a discrete hardware processing unit that would include a data processor with local memory, an internal clock, and a suite of communication equipment capable of both local line-of-sight communications and global broadcast communications. Some cells, denoted specialist cells, could contain such additional hardware as sensors and emitters. Each cell would be independent in the sense that there would be no global clock, no global (shared) memory, no pre-assigned cell identifiers, no pre-defined network topology, and no centralized brain or control structure. Like each cell in a living organism, each agent or cell of the computing system would contain a full description of the system encoded as genes, but in this case, the genes would be components of a software genome.

  15. Electrolytic/fuel cell bundles and systems including a current collector in communication with an electrode thereof

    DOEpatents

    Hawkes, Grant L.; Herring, James S.; Stoots, Carl M.; O& #x27; Brien, James E.

    2013-03-05

    Electrolytic/fuel cell bundles and systems including such bundles include an electrically conductive current collector in communication with an anode or a cathode of each of a plurality of cells. A cross-sectional area of the current collector may vary in a direction generally parallel to a general direction of current flow through the current collector. The current collector may include a porous monolithic structure. At least one cell of the plurality of cells may include a current collector that surrounds an outer electrode of the cell and has at least six substantially planar exterior surfaces. The planar surfaces may extend along a length of the cell, and may abut against a substantially planar surface of a current collector of an adjacent cell. Methods for generating electricity and for performing electrolysis include flowing current through a conductive current collector having a varying cross-sectional area.

  16. Bidirectional communication between sensory neurons and osteoblasts in an in vitro coculture system.

    PubMed

    Kodama, Daisuke; Hirai, Takao; Kondo, Hisataka; Hamamura, Kazunori; Togari, Akifumi

    2017-02-01

    Recent studies have revealed that the sensory nervous system is involved in bone metabolism. However, the mechanism of communication between neurons and osteoblasts is yet to be elucidated. In this study, we investigated the signaling pathways between sensory neurons of the dorsal root ganglion (DRG) and the osteoblast-like MC3T3-E1 cells using an in vitro coculture system. Our findings indicate that signal transduction from DRG-derived neurons to MC3T3-E1 cells is suppressed by antagonists of the AMPA receptor and the NK 1 receptor. Conversely, signal transduction from MC3T3-E1 cells to DRG-derived neurons is suppressed by a P2X 7 receptor antagonist. Our results suggest that these cells communicate with each other by exocytosis of glutamate, substance P in the efferent signal, and ATP in the afferent signal. © 2017 Federation of European Biochemical Societies.

  17. Eavesdropping on altered cell-to-cell signaling in cancer by secretome profiling.

    PubMed

    Klinke, David J

    2016-01-01

    In the past decade, cumulative clinical experiences with molecular targeted therapies and immunotherapies for cancer have promoted a shift in our conceptual understanding of cancer. This view shifted from viewing solid tumors as a homogeneous mass of malignant cells to viewing tumors as heterogeneous structures that are dynamically shaped by intercellular interactions among the variety of stromal, immune, and malignant cells present within the tumor microenvironment. As in any dynamic system, identifying how cells communicate to maintain homeostasis and how this communication is altered during oncogenesis are key hurdles for developing therapies to restore normal tissue homeostasis. Here, I discuss tissues as dynamic systems, using the mammary gland as an example, and the evolutionary concepts applied to oncogenesis. Drawing from these concepts, I present 2 competing hypotheses for how intercellular communication might be altered during oncogenesis. As an initial test of these competing hypotheses, a recent secretome comparison between normal human mammary and HER2+ breast cancer cell lines suggested that the particular proteins secreted by the malignant cells reflect a convergent evolutionary path associated with oncogenesis in a specific anatomical niche, despite arising in different individuals. Overall, this study illustrates the emerging power of secretome proteomics to probe, in an unbiased way, how intercellular communication changes during oncogenesis.

  18. Pancreatic Cancer Cell Exosome-Mediated Macrophage Reprogramming and the Role of MicroRNAs 155 and 125b2 Transfection using Nanoparticle Delivery Systems

    PubMed Central

    Su, Mei-Ju; Aldawsari, Hibah; Amiji, Mansoor

    2016-01-01

    Exosomes are nano-sized endosome-derived small intraluminal vesicles, which are important facilitators of intercellular communication by transporting contents, such as protein, mRNA, and microRNAs, between neighboring cells, such as in the tumor microenvironment. The purpose of this study was to understand the mechanisms of exosomes-mediated cellular communication between human pancreatic cancer (Panc-1) cells and macrophages (J771.A1) using a Transwell co-culture system. Following characterization of exosome-mediated cellular communication and pro-tumoral baseline M2 macrophage polarization, the Panc-1 cells were transfected with microRNA-155 (miR-155) and microRNA-125b-2 (miR-125b2) expressing plasmid DNA using hyaluronic acid-poly(ethylene imine)/hyaluronic acid-poly(ethylene glycol) (HA-PEI/HA-PEG) self-assembling nanoparticle-based non-viral vectors. Our results show that upon successful transfection of Panc-1 cells, the exosome content was altered leading to differential communication and reprogramming of the J774.A1 cells to an M1 phenotype. Based on these results, genetic therapies targeted towards selective manipulation of tumor cell-derived exosome content may be very promising for cancer therapy. PMID:27443190

  19. Eavesdropping on altered cell-to-cell signaling in cancer by secretome profiling

    PubMed Central

    Klinke, David J

    2016-01-01

    In the past decade, cumulative clinical experiences with molecular targeted therapies and immunotherapies for cancer have promoted a shift in our conceptual understanding of cancer. This view shifted from viewing solid tumors as a homogeneous mass of malignant cells to viewing tumors as heterogeneous structures that are dynamically shaped by intercellular interactions among the variety of stromal, immune, and malignant cells present within the tumor microenvironment. As in any dynamic system, identifying how cells communicate to maintain homeostasis and how this communication is altered during oncogenesis are key hurdles for developing therapies to restore normal tissue homeostasis. Here, I discuss tissues as dynamic systems, using the mammary gland as an example, and the evolutionary concepts applied to oncogenesis. Drawing from these concepts, I present 2 competing hypotheses for how intercellular communication might be altered during oncogenesis. As an initial test of these competing hypotheses, a recent secretome comparison between normal human mammary and HER2+ breast cancer cell lines suggested that the particular proteins secreted by the malignant cells reflect a convergent evolutionary path associated with oncogenesis in a specific anatomical niche, despite arising in different individuals. Overall, this study illustrates the emerging power of secretome proteomics to probe, in an unbiased way, how intercellular communication changes during oncogenesis. PMID:27308541

  20. The role of extracellular vesicles when innate meets adaptive.

    PubMed

    Groot Kormelink, Tom; Mol, Sanne; de Jong, Esther C; Wauben, Marca H M

    2018-04-03

    Innate immune cells are recognized for their rapid and critical contribution to the body's first line of defense against invading pathogens and harmful agents. These actions can be further amplified by specific adaptive immune responses adapted to the activating stimulus. Recently, the awareness has grown that virtually all innate immune cells, i.e., mast cells, neutrophils, macrophages, eosinophils, basophils, and NK cells, are able to communicate with dendritic cells (DCs) and/or T and B cells, and thereby significantly contribute to the orchestration of adaptive immune responses. The means of communication that are thus far primarily associated with this function are cell-cell contacts and the release of a broad range of soluble mediators. Moreover, the possible contribution of innate immune cell-derived extracellular vesicles (EVs) to the modulation of adaptive immunity will be outlined in this review. EVs are submicron particles composed of a lipid bilayer, proteins, and nucleic acids released by cells in a regulated fashion. EVs are involved in intercellular communication between multiple cell types, including those of the immune system. A good understanding of the mechanisms by which innate immune cell-derived EVs influence adaptive immune responses, or vice versa, may reveal novel insights in the regulation of the immune system and can open up new possibilities for EVs (or their components) in controlling immune responses, either as a therapy, target, or as an adjuvant in future immune modulating treatments.

  1. Importance of symplasmic communication in cell differentiation

    PubMed Central

    Marzec, Marek; Kurczynska, Ewa

    2014-01-01

    Symplasmic communication via plasmodesmata (PD) is part of the system of information exchange between plant cells. Molecules that pass through the PD include ions, some hormones, minerals, amino acids, and sugars but also proteins, transcription factors, and different classes of RNA, and as such PD can participate in the coordination of plant growth and development. This review summarizes the current literature on this subject and the role of PD in signal exchange, the importance of symplasmic communication and symplasmic domains in plant cell differentiation, and highlights the future prospective in the exploration of PD functions in plants. Moreover, this review also describes the potential use of barley root epidermis and non-zygotic embryogenesis in study of symplasmic communication during cell differentiation. PMID:24476959

  2. A feasibility study of cell phone and landline phone interviews for monitoring of risk and protection factors for chronic diseases in Brazil.

    PubMed

    Moura, Erly Catarina; Claro, Rafael Moreira; Bernal, Regina; Ribeiro, Juliano; Malta, Deborah Carvalho; Morais Neto, Otaliba

    2011-02-01

    The study objective was to evaluate the feasibility of interviews by cell phone as a complement to interviews by landline to estimate risk and protection factors for chronic non-communicable diseases. Adult cell phone users were evaluated by random digit dialing. Questions asked were: age, sex, education, race, marital status, ownership of landline and cell phones, health condition, weight and height, medical diagnosis of hypertension and diabetes, physical activity, diet, binge drinking and smoking. The estimates were calculated using post-stratification weights. The cell phone interview system showed a reduced capacity to reach elderly and low educated populations. The estimates of the risk and protection factors for chronic non-communicable diseases in cell phone interviews were equal to the estimates obtained by landline phone. Eligibility, success and refusal rates using the cell phone system were lower than those of the landline system, but loss and cost were much higher, suggesting it is unsatisfactory as a complementary method in such a context.

  3. Plasmodesmata in integrated cell signalling: insights from development and environmental signals and stresses

    PubMed Central

    Sager, Ross; Lee, Jung-Youn

    2014-01-01

    To survive as sedentary organisms built of immobile cells, plants require an effective intercellular communication system, both locally between neighbouring cells within each tissue and systemically across distantly located organs. Such a system enables cells to coordinate their intracellular activities and produce concerted responses to internal and external stimuli. Plasmodesmata, membrane-lined intercellular channels, are essential for direct cell-to-cell communication involving exchange of diffusible factors, including signalling and information molecules. Recent advances corroborate that plasmodesmata are not passive but rather highly dynamic channels, in that their density in the cell walls and gating activities are tightly linked to developmental and physiological processes. Moreover, it is becoming clear that specific hormonal signalling pathways play crucial roles in relaying primary cellular signals to plasmodesmata. In this review, we examine a number of studies in which plasmodesmal structure, occurrence, and/or permeability responses are found to be altered upon given cellular or environmental signals, and discuss common themes illustrating how plasmodesmal regulation is integrated into specific cellular signalling pathways. PMID:25262225

  4. Bi-directional exchange of membrane components occurs during co-culture of mesenchymal stem cells and nucleus pulposus cells.

    PubMed

    Strassburg, Sandra; Hodson, Nigel W; Hill, Patrick I; Richardson, Stephen M; Hoyland, Judith A

    2012-01-01

    Mesenchymal stem cell (MSC)-based therapies have been proposed as novel treatments for intervertebral disc (IVD) degeneration. We have previously demonstrated that when MSCs are co-cultured with nucleus pulposus (NP) cells with direct cell-cell contact, they differentiate along the NP lineage and simultaneously stimulate the degenerate NP cell population to regain a normal (non-degenerate) phenotype, an effect which requires cell-cell communication. However, the mechanisms by which NP cells and MSCs interact in this system are currently unclear. Thus, in this study we investigated a range of potential mechanisms for exchange of cellular components or information that may direct these changes, including cell fusion, gap-junctional communication and exchange of membrane components by direct transfer or via microvesicle formation. Flow cytometry of fluorescently labeled MSCs and NP cells revealed evidence of some cell fusion and formation of gapjunctions, although at the three timepoints studied these phenomena were detectable only in a small proportion of cells. While these mechanisms may play a role in cell-cell communication, the data suggests they are not the predominant mechanism of interaction. However, flow cytometry of fluorescently dual-labeled cells showed that extensive bi-directional transfer of membrane components is operational during direct co-culture of MSCs and NP cells. Furthermore, there was also evidence for secretion and internalization of membrane-bound microvesicles by both cell types. Thus, this study highlights bi-directional intercellular transfer of membrane components as a possible mechanism of cellular communication between MSC and NP cells.

  5. E-cadherin and cell adhesion: a role in architecture and function in the pancreatic islet.

    PubMed

    Rogers, Gareth J; Hodgkin, Matthew N; Squires, Paul E

    2007-01-01

    The efficient secretion of insulin from beta-cells requires extensive intra-islet communication. The cell surface adhesion protein epithelial (E)-cadherin (ECAD) establishes and maintains epithelial tissues such as the islets of Langerhans. In this study, the role of ECAD in regulating insulin secretion from pseudoislets was investigated. The effect of an immuno-neutralising ECAD on gross morphology, cytosolic calcium signalling, direct cell-to-cell communication and insulin secretion was assessed by fura-2 microfluorimetry, Lucifer Yellow dye injection and insulin ELISA in an insulin-secreting model system. Antibody blockade of ECAD reduces glucose-evoked changes in [Ca(2+)](i) and insulin secretion. Neutralisation of ECAD causes a breakdown in the glucose-stimulated synchronicity of calcium oscillations between discrete regions within the pseudoislet, and the transfer of dye from an individual cell within a cell cluster is attenuated in the absence of ECAD ligation, demonstrating that gap junction communication is disrupted. The functional consequence of neutralising ECAD is a significant reduction in insulin secretion. Cell adhesion via ECAD has distinct roles in the regulation of intercellular communication between beta-cells within islets, with potential repercussions for insulin secretion.

  6. Fast massive preventive security and information communication systems

    NASA Astrophysics Data System (ADS)

    Akopian, David; Chen, Philip; Miryakar, Susheel; Kumar, Abhinav

    2008-04-01

    We present a fast massive information communication system for data collection from distributive sources such as cell phone users. As a very important application one can mention preventive notification systems when timely notification and evidence communication may help to improve safety and security through wide public involvement by ensuring easy-to-access and easy-to-communicate information systems. The technology significantly simplifies the response to the events and will help e.g. special agencies to gather crucial information in time and respond as quickly as possible. Cellular phones are nowadays affordable for most of the residents and became a common personal accessory. The paper describes several ways to design such systems including existing internet access capabilities of cell phones or downloadable specialized software. We provide examples of such designs. The main idea is in structuring information in predetermined way and communicating data through a centralized gate-server which will automatically process information and forward it to a proper destination. The gate-server eliminates a need in knowing contact data and specific local community infrastructure. All the cell phones will have self-localizing capability according to FCC E911 mandate, thus the communicated information can be further tagged automatically by location and time information.

  7. Locality of Area Coverage on Digital Acoustic Communication in Air using Differential Phase Shift Keying

    NASA Astrophysics Data System (ADS)

    Mizutani, Keiichi; Ebihara, Tadashi; Wakatsuki, Naoto; Mizutani, Koichi

    2009-07-01

    We experimentally evaluate the locality of digital acoustic communication in air. Digital acoustic communication in air is suitable for a small cell system, because acoustic waves have a short propagation distance in air. In this study, optimal cell size is experimentally evaluated. Each base station (BS) transmits different commands. In our experiment, differential phase shift keying (DPSK), especially binary DPSK (DBPSK), is adopted as a modulation and demodulation scheme. The evaluated system consists of a personal computer (PC), a digital-to-analog converter (DAC), an analog-to-digital converter (ADC), a loud speaker (SP), a microphone (MIC), and transceiver software. All experiments are performed in an anechoic room. The cell size of the transmitter can be limited under low signal-to-noise ratio (SNR) condition. If another transmitter works, cell size is limited by the effect of the interference from that transmitter. The cell size-to-distance ratio of transmitter A to transmitter B is 37.5%, if cell edge bit-error-rate (BER) is taken as 10-3.

  8. Generalized Monitoring Facility. Users Manual.

    DTIC Science & Technology

    1982-05-01

    based monitor. The RMC will sample system queues and tables on a 30-second time interval. The data captured from these queues and cells are written...period, only the final change will be reported. The following communication region cells are constantly monitored for changes, since a processor...is reported as zeros in WW6.4. When GMC terminates, it writes a record containing information read from communication region cells and information

  9. Bioluminescence Truth Data Measurement and Signature Detection

    DTIC Science & Technology

    2006-01-01

    bioluminescence activity and related forcing factors. Kilroy sensors are shown attached to pilings with the senor system below water and the cell phone based...communications module attached to the top of the piling. A cell phone tower represents communication of data to shore. Also shown are distributed...installation are located based on GPS coordinates telemetered by the cell phone module. Icons point in direction of most recently measured flow and

  10. A critical-like collective state leads to long-range cell communication in Dictyostelium discoideum aggregation

    PubMed Central

    De Palo, Giovanna; Yi, Darvin; Endres, Robert G.

    2017-01-01

    The transition from single-cell to multicellular behavior is important in early development but rarely studied. The starvation-induced aggregation of the social amoeba Dictyostelium discoideum into a multicellular slug is known to result from single-cell chemotaxis towards emitted pulses of cyclic adenosine monophosphate (cAMP). However, how exactly do transient, short-range chemical gradients lead to coherent collective movement at a macroscopic scale? Here, we developed a multiscale model verified by quantitative microscopy to describe behaviors ranging widely from chemotaxis and excitability of individual cells to aggregation of thousands of cells. To better understand the mechanism of long-range cell—cell communication and hence aggregation, we analyzed cell—cell correlations, showing evidence of self-organization at the onset of aggregation (as opposed to following a leader cell). Surprisingly, cell collectives, despite their finite size, show features of criticality known from phase transitions in physical systems. By comparing wild-type and mutant cells with impaired aggregation, we found the longest cell—cell communication distance in wild-type cells, suggesting that criticality provides an adaptive advantage and optimally sized aggregates for the dispersal of spores. PMID:28422986

  11. Cell-to-cell communication via plasmodesmata in vascular plants

    PubMed Central

    Sevilem, Iris; Miyashima, Shunsuke; Helariutta, Ykä

    2013-01-01

    In plant development, cell-to-cell signaling is mediated by mobile signals, including transcription factors and small RNA molecules. This communication is essential for growth and patterning. Short-range movement of signals occurs in the extracellular space via the apoplastic pathway or directly from cell-to-cell via the symplastic pathway. Symplastic transport is mediated by plant specific structures called plasmodesmata, which are plasma membrane-lined pores that traverse the cell walls of adjacent cells thus connecting their cytoplasms. However, a thorough understanding of molecules moving via plasmodesmata and regulatory networks relying on symplastic signaling is lacking. Traffic via plasmodesmata is highly regulated, and callose turnover is known to be one mechanism. In Arabidopsis, plasmodesmata apertures can be regulated in a spatially and temporally specific manner with the icals3m, an inducible vector system expressing the mutated CalS3 gene encoding a plasmodesmata localized callose synthase that increases callose deposition at plasmodesmata. We discuss strategies to use the icals3m system for global analyses on symplastic signaling in plants. PMID:23076211

  12. Strategy for signaling molecule detection by using an integrated microfluidic device coupled with mass spectrometry to study cell-to-cell communication.

    PubMed

    Mao, Sifeng; Zhang, Jie; Li, Haifang; Lin, Jin-Ming

    2013-01-15

    Cell-to-cell communication is a very important physiological behavior in life entity, and most of human behaviors are related to it. Although cell-to-cell communications are attracting much attention and financial support, rare methods have been successfully developed for in vitro cell-to-cell communication study. In this work, we developed a novel method for cell-to-cell communication study on an integrated microdevice, and signaling molecule and metabolites were online-detected by an electrospray ionization-quadrupole-time-of-flight-mass spectrometer (ESI-Q-TOF-MS) after on-chip solid-phase extraction. Moreover, we presented a "Surface Tension Plug" on a microchip to control cell-to-cell communication. The microdevice consists of three functional sections: cell coculture channel, targets pretreatment, and targets detection sections. To verify the feasibility of cell-to-cell communications on the integrated microdevice, we studied the communication between the 293 and the L-02 cells. Epinephrine and glucose were successfully detected using an ESI-Q-TOF-MS with short analysis time (<10 min). The results demonstrated that the developed microfluidic device is a potentially useful tool for high throughput cell-to-cell communication study.

  13. An Information Theoretical Analysis of Human Insulin-Glucose System Toward the Internet of Bio-Nano Things.

    PubMed

    Abbasi, Naveed A; Akan, Ozgur B

    2017-12-01

    Molecular communication is an important tool to understand biological communications with many promising applications in Internet of Bio-Nano Things (IoBNT). The insulin-glucose system is of key significance among the major intra-body nanonetworks, since it fulfills metabolic requirements of the body. The study of biological networks from information and communication theoretical (ICT) perspective is necessary for their introduction in the IoBNT framework. Therefore, the objective of this paper is to provide and analyze for the first time in the literature, a simple molecular communication model of the human insulin-glucose system from ICT perspective. The data rate, channel capacity, and the group propagation delay are analyzed for a two-cell network between a pancreatic beta cell and a muscle cell that are connected through a capillary. The results point out a correlation between an increase in insulin resistance and a decrease in the data rate and channel capacity, an increase in the insulin transmission rate, and an increase in the propagation delay. We also propose applications for the introduction of the system in the IoBNT framework. Multi-cell insulin glucose system models may be based on this simple model to help in the investigation, diagnosis, and treatment of insulin resistance by means of novel IoBNT applications.

  14. Gene expression profiling of rat spermatogonia and Sertoli cells reveals signaling pathways from stem cells to niche and testicular cancer cells to surrounding stroma

    PubMed Central

    2011-01-01

    Background Stem cells and their niches are studied in many systems, but mammalian germ stem cells (GSC) and their niches are still poorly understood. In rat testis, spermatogonia and undifferentiated Sertoli cells proliferate before puberty, but at puberty most spermatogonia enter spermatogenesis, and Sertoli cells differentiate to support this program. Thus, pre-pubertal spermatogonia might possess GSC potential and pre-pubertal Sertoli cells niche functions. We hypothesized that the different stem cell pools at pre-puberty and maturity provide a model for the identification of stem cell and niche-specific genes. We compared the transcript profiles of spermatogonia and Sertoli cells from pre-pubertal and pubertal rats and examined how these related to genes expressed in testicular cancers, which might originate from inappropriate communication between GSCs and Sertoli cells. Results The pre-pubertal spermatogonia-specific gene set comprised known stem cell and spermatogonial stem cell (SSC) markers. Similarly, the pre-pubertal Sertoli cell-specific gene set comprised known niche gene transcripts. A large fraction of these specifically enriched transcripts encoded trans-membrane, extra-cellular, and secreted proteins highlighting stem cell to niche communication. Comparing selective gene sets established in this study with published gene expression data of testicular cancers and their stroma, we identified sets expressed genes shared between testicular tumors and pre-pubertal spermatogonia, and tumor stroma and pre-pubertal Sertoli cells with statistic significance. Conclusions Our data suggest that SSC and their niche specifically express complementary factors for cell communication and that the same factors might be implicated in the communication between tumor cells and their micro-enviroment in testicular cancer. PMID:21232125

  15. Controlled shutdown of a fuel cell

    DOEpatents

    Clingerman, Bruce J.; Keskula, Donald H.

    2002-01-01

    A method is provided for the shutdown of a fuel cell system to relieve system overpressure while maintaining air compressor operation, and corresponding vent valving and control arrangement. The method and venting arrangement are employed in a fuel cell system, for instance a vehicle propulsion system, comprising, in fluid communication, an air compressor having an outlet for providing air to the system, a combustor operative to provide combustor exhaust to the fuel processor.

  16. Integrated Antenna/Solar Array Cell (IA/SAC) System for Flexible Access Communications

    NASA Technical Reports Server (NTRS)

    Lee, Ricard Q.; Clark, Eric B.; Pal, Anna Maria T.; Wilt, David M.; Mueller, Carl H.

    2004-01-01

    Present satellite communications systems normally use separate solar cells and antennas. Since solar cells generally account for the largest surface area of the spacecraft, co-locating the antenna and solar cells on the same substrate opens the possibility for a number of data-rate-enhancing communications link architecture that would have minimal impact on spacecraft weight and size. The idea of integrating printed planar antenna and solar array cells on the same surface has been reported in the literature. The early work merely attempted to demonstrate the feasibility by placing commercial solar cells besides a patch antenna. Recently, Integrating multiple antenna elements and solar cell arrays on the same surface was reported for both space and terrestrial applications. The application of photovoltaic solar cell in a planar antenna structure where the radiating patch antenna is replaced by a Si solar cell has been demonstrated in wireless communication systems (C. Bendel, J. Kirchhof and N. Henze, 3rd Would Photovotaic Congress, Osaka, Japan, May 2003). Based on a hybrid approach, a 6x1 slot array with circularly polarized crossdipole elements co-located on the same surface of the solar cells array has been demonstrated (S. Vaccaro, J. R. Mosig and P. de Maagt, IEEE Trans. Ant. and Propag., Vol. 5 1, No. 8, Aug. 2003). Amorphous silicon solar cells with about 5-10% efficiency were used in these demonstrations. This paper describes recent effort to integrate advanced solar cells with printed planar antennas. Compared to prior art, the proposed WSAC concept is unique in the following ways: 1) Active antenna element will be used to achieve dynamic beam steering; 2) High efficiency (30%) GaAs multi-junction solar cells will be used instead of Si, which has an efficiency of about 15%; 3) Antenna and solar cells are integrated on a common GaAs substrate; and 4) Higher data rate capability. The IA/SAC is designed to operate at X-band (8-12 GH) and higher frequencies Higher operating frequencies enable greater bandwidth and thus higher data transfer rates. The first phase of the effort involves the development of GaAs solar cell MIMs (Monolithically Integrated Module) with a single patch antenna on the opposite side of the substrate. Subsequent work will involve the integration of MIMs and antennas on the same side of the substrate. Results from the phase one efforts will be presented.

  17. Interactions between Innate Lymphoid Cells and Cells of the Innate and Adaptive Immune System.

    PubMed

    Symowski, Cornelia; Voehringer, David

    2017-01-01

    Type 2 innate lymphoid cells (ILC2s) are a major source of cytokines, which are also produced by Th2 cells and several cell types of the innate immune system. Work over the past few years indicates that ILC2s play a central role in regulating type 2 immune responses against allergens and helminths. ILC2s can interact with a variety of cells types of the innate and adaptive immune system by cell-cell contacts or by communication via soluble factors. In this review, we provide an overview about recent advances in our understanding how ILC2s orchestrate type 2 immune responses with focus on direct interactions between ILC2s and other cells of the immune system.

  18. Performance enhancement technique of visible light communications using passive photovoltaic cell

    NASA Astrophysics Data System (ADS)

    Wu, Jhao-Ting; Chow, Chi-Wai; Liu, Yang; Hsu, Chin-Wei; Yeh, Chien-Hung

    2017-06-01

    The light emitting diode (LED) based visible light communication (VLC) system can provide lighting and communication simultaneously. It has attracted much attenuation recently. As the photovoltaic cell (also known as solar cell) is physically flexible, low cost, and easily available, it could be a good choice for the VLC receiver (Rx). Furthermore, besides acting as the VLC Rx, the solar cell can convert VLC signal into electricity for charging up the Rx devices. Hence, it could be a promising candidate for the future internet-of-thing (IoT) networks. However, using solar cell as VLC Rx is challenging, since the response of the solar cell is highly limited and it will limit the VLC data rate. In this work, we propose and demonstrate for the first time using pre-distortion Manchester coding (MC) signal to enhance the signal performance of solar cell Rx based VLC. The proposed scheme can significantly mitigate the slow response, as well as the direct-current (DC) wandering effect of the solar cell; hence 50 times increase in data rate can be experimentally achieved.

  19. Bench-to-bedside review: Quorum sensing and the role of cell-to-cell communication during invasive bacterial infection

    PubMed Central

    Asad, Shadaba; Opal, Steven M

    2008-01-01

    Bacteria communicate extensively with each other and employ a communal approach to facilitate survival in hostile environments. A hierarchy of cell-to-cell signaling pathways regulates bacterial growth, metabolism, biofilm formation, virulence expression, and a myriad of other essential functions in bacterial populations. The notion that bacteria can signal each other and coordinate their assault patterns against susceptible hosts is now well established. These signaling networks represent a previously unrecognized survival strategy by which bacterial pathogens evade antimicrobial defenses and overwhelm the host. These quorum sensing communication signals can transgress species barriers and even kingdom barriers. Quorum sensing molecules can regulate human transcriptional programs to the advantage of the pathogen. Human stress hormones and cytokines can be detected by bacterial quorum sensing systems. By this mechanism, the pathogen can detect the physiologically stressed host, providing an opportunity to invade when the patient is most vulnerable. These rather sophisticated, microbial communication systems may prove to be a liability to pathogens as they make convenient targets for therapeutic intervention in our continuing struggle to control microbial pathogens. PMID:19040778

  20. Fuel cell assembly with electrolyte transport

    DOEpatents

    Chi, Chang V.

    1983-01-01

    A fuel cell assembly wherein electrolyte for filling the fuel cell matrix is carried via a transport system comprising a first passage means for conveying electrolyte through a first plate and communicating with a groove in a second plate at a first point, the first and second plates together sandwiching the matrix, and second passage means acting to carry electrolyte exclusively through the second plate and communicating with the groove at a second point exclusive of the first point.

  1. Gap junction coupling is required for tumor cell migration through lymphatic endothelium.

    PubMed

    Karpinich, Natalie O; Caron, Kathleen M

    2015-05-01

    The lymphatic vasculature is a well-established conduit for metastasis, but the mechanisms by which tumor cells interact with lymphatic endothelial cells (LECs) to facilitate escape remain poorly understood. Elevated levels of the lymphangiogenic peptide adrenomedullin are found in many tumors, and we previously characterized that its expression is necessary for lymphatic vessel growth within both tumors and sentinel lymph nodes and for distant metastasis. This study used a tumor cell-LEC coculture system to identify a series of adrenomedullin-induced events that facilitated transendothelial migration of the tumor cells through a lymphatic monolayer. High levels of adrenomedullin expression enhanced adhesion of tumor cells to LECs, and further analysis revealed that adrenomedullin promoted gap junction coupling between LECs as evidenced by spread of Lucifer yellow dye. Adrenomedullin also enhanced heterocellular gap junction coupling as demonstrated by Calcein dye transfer from tumor cells into LECs. This connexin-mediated gap junction intercellular communication was necessary for tumor cells to undergo transendothelial migration because pharmacological blockade of this heterocellular communication prevented the ability of tumor cells to transmigrate through the lymphatic monolayer. In addition, treatment of LECs with adrenomedullin caused nuclear translocation of β-catenin, a component of endothelial cell junctions, causing an increase in transcription of the downstream target gene C-MYC. Importantly, blockade of gap junction intercellular communication prevented β-catenin nuclear translocation. Our findings indicate that maintenance of cell-cell communication is necessary to facilitate a cascade of events that lead to tumor cell migration through the lymphatic endothelium. © 2015 American Heart Association, Inc.

  2. Orthogonal frequency-division multiplexing access (OFDMA) based wireless visible light communication (VLC) system

    NASA Astrophysics Data System (ADS)

    Sung, Jiun-Yu; Yeh, Chien-Hung; Chow, Chi-Wai; Lin, Wan-Feng; Liu, Yang

    2015-11-01

    An orthogonal frequency-division multiplexing access (OFDMA) based visible light communication (VLC) system is proposed in this paper. The architecture of the proposed system is divided into several VLC cells, which is defined in this paper. The deployment and upgrade of the system involve only simple combination of the VLC cells. Hence it is economically advantageous. To guarantee smooth communication, nearly equal data rate is provided at every location within the system with no concern on the system scale. The user location monitor strategy is also discussed to solve the region division issues. The characteristics of the proposed system are analyzed in detail in this paper. A one-dimensional experiment was demonstrated with 13.6 Mb/s data rate.

  3. A unified pathogenesis for kidney diseases, including genetic diseases and cancers, by the protein-homeostasis-system hypothesis.

    PubMed

    Lee, Kyung-Yil

    2017-06-01

    Every cell of an organism is separated and protected by a cell membrane. It is proposed that harmony between intercellular communication and the health of an organism is controlled by a system, designated the protein-homeostasis-system (PHS). Kidneys consist of a variety of types of renal cells, each with its own characteristic cell-receptor interactions and producing characteristic proteins. A functional union of these renal cells can be determined by various renal function tests, and harmonious intercellular communication is essential for the healthy state of the host. Injury to a kind of renal cells can impair renal function and induce an imbalance in total body health. Every acute or chronic renal disease has unknown etiologic substances that are responsible for renal cell injury at the molecular level. The immune/repair system of the host should control the etiologic substances acting against renal cells; if this system fails, the disease progresses to end stage renal disease. Each renal disease has its characteristic pathologic lesions where immune cells and immune proteins, such as immunoglobulins and complements, are infiltrated. These immune cells and immune proteins may control the etiologic substances involved in renal pathologic lesions. Also, genetic renal diseases and cancers may originate from a protein deficiency or malfunctioning protein under the PHS. A unified pathogenesis for renal diseases, including acute glomerulonephritis, idiopathic nephrotic syndrome, immunoglobulin A nephropathy, genetic renal diseases such as Alport syndrome, and malignancies such as Wilms tumor and renal cell carcinoma, is proposed using the PHS hypothesis.

  4. Riding the Waves: How Our Cells Send Signals | Center for Cancer Research

    Cancer.gov

    The ability of cells to perceive and respond to their environment is critical in order to maintain basic cellular functions such as development, tissue repair, and response to stress. This process happens through a complex system of communication, called cell signaling, which governs basic cellular activities and coordinates cell actions. Errors in cell signaling have been

  5. Interactions between Innate Lymphoid Cells and Cells of the Innate and Adaptive Immune System

    PubMed Central

    Symowski, Cornelia; Voehringer, David

    2017-01-01

    Type 2 innate lymphoid cells (ILC2s) are a major source of cytokines, which are also produced by Th2 cells and several cell types of the innate immune system. Work over the past few years indicates that ILC2s play a central role in regulating type 2 immune responses against allergens and helminths. ILC2s can interact with a variety of cells types of the innate and adaptive immune system by cell–cell contacts or by communication via soluble factors. In this review, we provide an overview about recent advances in our understanding how ILC2s orchestrate type 2 immune responses with focus on direct interactions between ILC2s and other cells of the immune system. PMID:29163497

  6. In vitro study of stem cell communication via gap junctions for fibrocartilage regeneration at entheses.

    PubMed

    Nayak, Bibhukalyan Prasad; Goh, James Cho Hong; Toh, Siew Lok; Satpathy, Gyan Ranjan

    2010-03-01

    Entheses are fibrocartilaginous organs that bridge ligament with bone at their interface and add significant insertional strength. To replace a severely damaged ligament, a tissue-engineered graft preinstalled with interfacial fibrocartilage, which is being regenerated from stem cells, appears to be more promising than ligament-alone graft. Such a concept can be realized by a biomimetic approach of establishing a dynamic communication of stem cells with bone cells and/or ligament fibroblasts in vitro. The current study has two objectives. The first objective is to demonstrate functional coculture of bone marrow-derived stem cells (BMSCs) with mature bone cells/ligament fibroblasts as evidenced by gap-junctional communication in vitro. The second objective is to investigate the role of BMSCs in the regeneration of fibrocartilage within the coculture. Rabbit bone/ligament fibroblasts were dual-stained with DiI-Red and calcein (gap-junction permeable dye), and cocultured with unlabeled BMSCs at fixed ratio (1:10). The functional gap junction was demonstrated by the transfer of calcein from donor to recipient cells that was confirmed and quantified by flow cytometry. Type 2 collagen (cartilage extracellular matrix-specific protein) expressed by the mixed cell lines in the cocultures were estimated by real-time reverse transcription PCR and compared with that of the ligament-bone coculture (control). Significant transfer of calcein into BMSCs was observed and flow cytometry analyses showed a gradual increase in the percentage of BMSCs acquiring calcein with time. Cocultures that included BMSCs expressed significantly more type 2 collagen compared with the control. The current study, for the first time, reported the expression of gap-junctional communication of BMSCs with two adherent cell lines of musculoskeletal system in vitro and also confirmed that incorporation of stem cells augments fibrocartilage regeneration. The results open up a path to envisage a composite graft preinstalled with enthesial fibrocartilage using a stem cell-based coculture system.

  7. A Study of Chaos in Cellular Automata

    NASA Astrophysics Data System (ADS)

    Kamilya, Supreeti; Das, Sukanta

    This paper presents a study of chaos in one-dimensional cellular automata (CAs). The communication of information from one part of the system to another has been taken into consideration in this study. This communication is formalized as a binary relation over the set of cells. It is shown that this relation is an equivalence relation and all the cells form a single equivalence class when the cellular automaton (CA) is chaotic. However, the communication between two cells is sometimes blocked in some CAs by a subconfiguration which appears in between the cells during evolution. This blocking of communication by a subconfiguration has been analyzed in this paper with the help of de Bruijn graph. We identify two types of blocking — full and partial. Finally a parameter has been developed for the CAs. We show that the proposed parameter performs better than the existing parameters.

  8. Exosome-Mediated Genetic Information Transfer, a Missing Piece of Osteoblast-Osteoclast Communication Puzzle.

    PubMed

    Yin, Pengbin; Lv, Houchen; Li, Yi; Deng, Yuan; Zhang, Licheng; Tang, Peifu

    2017-01-01

    The skeletal system functions and maintains itself based on communication between cells of diverse origins, especially between osteoblasts (OBs) and osteoclasts (OCs), accounting for bone formation and resorption, respectively. Previously, protein-level information exchange has been the research focus, and this has been discussed in detail. The regulative effects of microRNAs (miRNAs) on OB and OC ignite the question as to whether genetic information could be transferred between bone cells. Exosomes, extracellular membrane vesicles 30-100 nm in diameter, have recently been demonstrated to transfer functional proteins, mRNAs, and miRNAs, and serve as mediators of intercellular communication. By reviewing the distinguishing features of exosomes, a hypothesis was formulated and evaluated in this article that exosome-mediated genetic information transfer may represent a novel strategy for OB-OC communication. The exosomes may coordinately regulate these two cells under certain physiological conditions by transferring genetic information. Further research in exosome-shuttered miRNAs in OB-OC communication may add a missing piece to the bone cells communication "puzzle."

  9. Immature, Semi-Mature, and Fully Mature Dendritic Cells: Toward a DC-Cancer Cells Interface That Augments Anticancer Immunity

    PubMed Central

    Dudek, Aleksandra M.; Martin, Shaun; Garg, Abhishek D.; Agostinis, Patrizia

    2013-01-01

    Dendritic cells (DCs) are the sentinel antigen-presenting cells of the immune system; such that their productive interface with the dying cancer cells is crucial for proper communication of the “non-self” status of cancer cells to the adaptive immune system. Efficiency and the ultimate success of such a communication hinges upon the maturation status of the DCs, attained following their interaction with cancer cells. Immature DCs facilitate tolerance toward cancer cells (observed for many apoptotic inducers) while fully mature DCs can strongly promote anticancer immunity if they secrete the correct combinations of cytokines [observed when DCs interact with cancer cells undergoing immunogenic cell death (ICD)]. However, an intermediate population of DC maturation, called semi-mature DCs exists, which can potentiate either tolerogenicity or pro-tumorigenic responses (as happens in the case of certain chemotherapeutics and agents exerting ambivalent immune reactions). Specific combinations of DC phenotypic markers, DC-derived cytokines/chemokines, dying cancer cell-derived danger signals, and other less characterized entities (e.g., exosomes) can define the nature and evolution of the DC maturation state. In the present review, we discuss these different maturation states of DCs, how they might be attained and which anticancer agents or cell death modalities (e.g., tolerogenic cell death vs. ICD) may regulate these states. PMID:24376443

  10. Power attenuation characteristics as switch-over criterion in personal satellite mobile communications

    NASA Technical Reports Server (NTRS)

    Castro, Jonathan P.

    1993-01-01

    A third generation mobile system intends to support communications in all environments (i.e., outdoors, indoors at home or office and when moving). This system will integrate services that are now available in architectures such as cellular, cordless, mobile data networks, paging, including satellite services to rural areas. One way through which service integration will be made possible is by supporting a hierarchical cellular structure based on umbrella cells, macro cells, micro and pico cells. In this type of structure, satellites are part of the giant umbrella cells allowing continuous global coverage, the other cells belong to cities, neighborhoods, and buildings respectively. This does not necessarily imply that network operation of terrestrial and satellite segments interconnect to enable roaming and spectrum sharing. However, the cell concept does imply hand-off between different cell types, which may involve change of frequency. Within this propsective, the present work uses power attenuation characteristics to determine a dynamic criterion that allows smooth transition from space to terrestrial networks. The analysis includes a hybrid channel that combines Rician, Raleigh and Log Normal fading characteristics.

  11. Immunomodulatory properties of carbon nanotubes are able to compensate immune function dysregulation caused by microgravity conditions

    NASA Astrophysics Data System (ADS)

    Crescio, Claudia; Orecchioni, Marco; Ménard-Moyon, Cécilia; Sgarrella, Francesco; Pippia, Proto; Manetti, Roberto; Bianco, Alberto; Delogu, Lucia Gemma

    2014-07-01

    Spaceflights lead to dysregulation of the immune cell functionality affecting the expression of activation markers and cytokine production. Short oxidized multi-walled carbon nanotubes functionalized by 1,3-dipolar cycloaddition have been reported to activate immune cells. In this Communication we have performed surface marker assays and multiplex ELISA on primary monocytes and T cells under microgravity. We have discovered that carbon nanotubes, through their immunostimulatory properties, are able to fight spaceflight immune system dysregulations.Spaceflights lead to dysregulation of the immune cell functionality affecting the expression of activation markers and cytokine production. Short oxidized multi-walled carbon nanotubes functionalized by 1,3-dipolar cycloaddition have been reported to activate immune cells. In this Communication we have performed surface marker assays and multiplex ELISA on primary monocytes and T cells under microgravity. We have discovered that carbon nanotubes, through their immunostimulatory properties, are able to fight spaceflight immune system dysregulations. Electronic supplementary information (ESI) available: Experimental section, structures of f-MWCNTs and uptake by human primary immune cells. See DOI: 10.1039/c4nr02711f

  12. Combined chemical and structural signals of biomaterials synergistically activate cell-cell communications for improving tissue regeneration.

    PubMed

    Xu, Yachen; Peng, Jinliang; Dong, Xin; Xu, Yuhong; Li, Haiyan; Chang, Jiang

    2017-06-01

    Biomaterials are only used as carriers of cells in the conventional tissue engineering. Considering the multi-cell environment and active cell-biomaterial interactions in tissue regeneration process, in this study, structural signals of aligned electrospun nanofibers and chemical signals of bioglass (BG) ionic products in cell culture medium are simultaneously applied to activate fibroblast-endothelial co-cultured cells in order to obtain an improved skin tissue engineering construct. Results demonstrate that the combined biomaterial signals synergistically activate fibroblast-endothelial co-culture skin tissue engineering constructs through promotion of paracrine effects and stimulation of gap junctional communication between cells, which results in enhanced vascularization and extracellular matrix protein synthesis in the constructs. Structural signals of aligned electrospun nanofibers play an important role in stimulating both of paracrine and gap junctional communication while chemical signals of BG ionic products mainly enhance paracrine effects. In vivo experiments reveal that the activated skin tissue engineering constructs significantly enhance wound healing as compared to control. This study indicates the advantages of synergistic effects between different bioactive signals of biomaterials can be taken to activate communication between different types of cells for obtaining tissue engineering constructs with improved functions. Tissue engineering can regenerate or replace tissue or organs through combining cells, biomaterials and growth factors. Normally, for repairing a specific tissue, only one type of cells, one kind of biomaterials, and specific growth factors are used to support cell growth. In this study, we proposed a novel tissue engineering approach by simply using co-cultured cells and combined biomaterial signals. Using a skin tissue engineering model, we successfully proved that the combined biomaterial signals such as surface nanostructures and bioactive ions could synergistically stimulate the cell-cell communication in co-culture system through paracrine effects and gap junction activation, and regulated expression of growth factors and extracellular matrix proteins, resulting in an activated tissue engineering constructs that significantly enhanced skin regeneration. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Neuron-Glia Interactions and Nervous System Homeostasis

    DTIC Science & Technology

    1988-06-01

    active neuron states, the mechanisms which glial cells and neurons use to modulate each others metabolic state and the chemical, electrical and... mechanisms by which axons/neurons and their glial cell investments communicate to actively regulate the ionic microenvironment of the nervous system and...of the glial cell in maintenance of the ionic homeostasis of the perineural environment during resting and active neuron states, the mechanisms which

  14. Microfluidic co-culture platform for investigating osteocyte-osteoclast signalling during fluid shear stress mechanostimulation.

    PubMed

    Middleton, K; Al-Dujaili, S; Mei, X; Günther, A; You, L

    2017-07-05

    Bone cells exist in a complex environment where they are constantly exposed to numerous dynamic biochemical and mechanical stimuli. These stimuli regulate bone cells that are involved in various bone disorders, such as osteoporosis. Knowledge of how these stimuli affect bone cells have been utilised to develop various treatments, such as pharmaceuticals, hormone therapy, and exercise. To investigate the role that bone loading has on these disorders in vitro, bone cell mechanotransduction studies are typically performed using parallel plate flow chambers (PPFC). However, these chambers do not allow for dynamic cellular interactions among different cell populations to be investigated. We present a microfluidic approach that exposes different cell populations, which are located at physiologically relevant distances within adjacent channels, to different levels of fluid shear stress, and promotes cell-cell communication between the different channels. We employed this microfluidic system to assess mechanically regulated osteocyte-osteoclast communication. Osteoclast precursors (RAW264.7 cells) responded to cytokine gradients (e.g., RANKL, OPG, PGE-2) developed by both mechanically stimulated (fOCY) and unstimulated (nOCY) osteocyte-like MLO-Y4 cells simultaneously. Specifically, we observed increased osteoclast precursor cell densities and osteoclast differentiation towards nOCY. We also used this system to show an increased mechanoresponse of osteocytes when in co-culture with osteoclasts. We envision broad applicability of the presented approach for microfluidic perfusion co-culture of multiple cell types in the presence of fluid flow stimulation, and as a tool to investigate osteocyte mechanotransduction, as well as bone metastasis extravasation. This system could also be applied to any multi-cell population cross-talk studies that are typically performed using PPFCs (e.g. endothelial cells, smooth muscle cells, and fibroblasts). Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Host parasite communications-Messages from helminths for the immune system: Parasite communication and cell-cell interactions.

    PubMed

    Coakley, Gillian; Buck, Amy H; Maizels, Rick M

    2016-07-01

    Helminths are metazoan organisms many of which have evolved parasitic life styles dependent on sophisticated manipulation of the host environment. Most notably, they down-regulate host immune responses to ensure their own survival, by exporting a range of immuno-modulatory mediators that interact with host cells and tissues. While a number of secreted immunoregulatory parasite proteins have been defined, new work also points to the release of extracellular vesicles, or exosomes, that interact with and manipulate host gene expression. These recent results are discussed in the overall context of how helminths communicate effectively with the host organism. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Suppression of bacterial cell-cell signalling, biofilm formation and type III secretion system by citrus flavonoids.

    PubMed

    Vikram, A; Jayaprakasha, G K; Jesudhasan, P R; Pillai, S D; Patil, B S

    2010-08-01

    This study investigated the quorum sensing, biofilm and type three secretion system (TTSS) inhibitory properties of citrus flavonoids. Flavonoids were tested for their ability to inhibit quorum sensing using Vibrio harveyi reporter assay. Biofilm assays were carried out in 96-well plates. Inhibition of biofilm formation in Escherichia coli O157:H7 and V. harveyi by citrus flavonoids was measured. Furthermore, effect of naringenin on expression of V. harveyi TTSS was investigated by semi-quantitative PCR. Differential responses for different flavonoids were observed for different cell-cell signalling systems. Among the tested flavonoids, naringenin, kaempferol, quercetin and apigenin were effective antagonists of cell-cell signalling. Furthermore, these flavonoids suppressed the biofilm formation in V. harveyi and E. coli O157:H7. In addition, naringenin altered the expression of genes encoding TTSS in V. harveyi. The results of the study indicate a potential modulation of bacterial cell-cell communication, E. coli O157:H7 biofilm and V. harveyi virulence, by flavonoids especially naringenin, quercetin, sinensetin and apigenin. Among the tested flavonoids, naringenin emerged as potent and possibly a nonspecific inhibitor of autoinducer-mediated cell-cell signalling. Naringenin and other flavonoids are prominent secondary metabolites present in citrus species. Therefore, citrus, being a major source of some of these flavonoids and by virtue of widely consumed fruit, may modulate the intestinal microflora. Currently, a limited number of naturally occurring compounds have demonstrated their potential in inhibition of cell-cell communications; therefore, citrus flavonoids may be useful as lead compounds for the development of antipathogenic agents.

  17. Multicellular Computing Using Conjugation for Wiring

    PubMed Central

    Goñi-Moreno, Angel; Amos, Martyn; de la Cruz, Fernando

    2013-01-01

    Recent efforts in synthetic biology have focussed on the implementation of logical functions within living cells. One aim is to facilitate both internal “re-programming” and external control of cells, with potential applications in a wide range of domains. However, fundamental limitations on the degree to which single cells may be re-engineered have led to a growth of interest in multicellular systems, in which a “computation” is distributed over a number of different cell types, in a manner analogous to modern computer networks. Within this model, individual cell type perform specific sub-tasks, the results of which are then communicated to other cell types for further processing. The manner in which outputs are communicated is therefore of great significance to the overall success of such a scheme. Previous experiments in distributed cellular computation have used global communication schemes, such as quorum sensing (QS), to implement the “wiring” between cell types. While useful, this method lacks specificity, and limits the amount of information that may be transferred at any one time. We propose an alternative scheme, based on specific cell-cell conjugation. This mechanism allows for the direct transfer of genetic information between bacteria, via circular DNA strands known as plasmids. We design a multi-cellular population that is able to compute, in a distributed fashion, a Boolean XOR function. Through this, we describe a general scheme for distributed logic that works by mixing different strains in a single population; this constitutes an important advantage of our novel approach. Importantly, the amount of genetic information exchanged through conjugation is significantly higher than the amount possible through QS-based communication. We provide full computational modelling and simulation results, using deterministic, stochastic and spatially-explicit methods. These simulations explore the behaviour of one possible conjugation-wired cellular computing system under different conditions, and provide baseline information for future laboratory implementations. PMID:23840385

  18. Biophotons as neural communication signals demonstrated by in situ biophoton autography.

    PubMed

    Sun, Yan; Wang, Chao; Dai, Jiapei

    2010-03-01

    Cell to cell communication by biophotons has been demonstrated in plants, bacteria, animal neutrophil granulocytes and kidney cells. Whether such signal communication exists in neural cells is unclear. By developing a new biophoton detection method, called in situ biophoton autography (IBA), we have investigated biophotonic activities in rat spinal nerve roots in vitro. We found that different spectral light stimulation (infrared, red, yellow, blue, green and white) at one end of the spinal sensory or motor nerve roots resulted in a significant increase in the biophotonic activity at the other end. Such effects could be significantly inhibited by procaine (a regional anaesthetic for neural conduction block) or classic metabolic inhibitors, suggesting that light stimulation can generate biophotons that conduct along the neural fibers, probably as neural communication signals. The mechanism of biophotonic conduction along neural fibers may be mediated by protein-protein biophotonic interactions. This study may provide a better understanding of the fundamental mechanisms of neural communication, the functions of the nervous system, such as vision, learning and memory, as well as the mechanisms of human neurological diseases.

  19. Design approach for solar cell and battery of a persistent solar powered GPS tracker

    NASA Astrophysics Data System (ADS)

    Sahraei, Nasim; Watson, Sterling M.; Pennes, Anthony; Marius Peters, Ian; Buonassisi, Tonio

    2017-08-01

    Sensors with wireless communication can be powered by photovoltaic (PV) devices. However, using solar power requires thoughtful design of the power system, as well as a careful management of the power consumption, especially for devices with cellular communication (because of their higher power consumption). A design approach can minimize system size, weight, and/or cost, while maximizing device performance (data transmission rate and persistence). In this contribution, we describe our design approach for a small form-factor, solar-powered GPS tracker with cellular communication. We evaluate the power consumption of the device in different stages of operation. Combining measured power consumption and the calculated energy-yield of a solar cell, we estimate the battery capacity and solar cell area required for 5 years of continuous operation. We evaluate trade-offs between PV and battery size by simulating the battery state of charge. The data show a trade-off between battery capacity and solar-cell area for given target data transmission rate and persistence. We use this analysis to determine the combination of solar panel area and battery capacity for a given application and the data transmission rate that results in minimum cost or total weight of the system.

  20. Research and design of photovoltaic power monitoring system based on Zig Bee

    NASA Astrophysics Data System (ADS)

    Zhu, Lijuan; Yun, Zhonghua; Bianbawangdui; Bianbaciren

    2018-01-01

    In order to monitor and study the impact of environmental parameters on photovoltaic cells, a photovoltaic cell monitoring system based on ZigBee is designed. The system uses ZigBee wireless communication technology to achieve real-time acquisition of P-I-V curves and environmental parameters of terminal nodes, and transfer the data to the coordinator, the coordinator communicates with the STM32 through the serial port. In addition, STM32 uses the serial port to transfer data to the host computer written by LabVIEW, and the collected data is displayed in real time, as well as stored in the background database. The experimental results show that the system has a stable performance, accurate measurement, high sensitivity, high reliability, can better realize real-time collection of photovoltaic cell characteristics and environmental parameters.

  1. Intercellular and systemic spread of RNA and RNAi in plants.

    PubMed

    Nazim Uddin, Mohammad; Kim, Jae-Yean

    2013-01-01

    Plants possess dynamic networks of intercellular communication that are crucial for plant development and physiology. In plants, intercellular communication involves a combination of ligand-receptor-based apoplasmic signaling, and plasmodesmata and phloem-mediated symplasmic signaling. The intercellular trafficking of macromolecules, including RNAs and proteins, has emerged as a novel mechanism of intercellular communication in plants. Various forms of regulatory RNAs move over distinct cellular boundaries through plasmodesmata and phloem. This plant-specific, non-cell-autonomous RNA trafficking network is also involved in development, nutrient homeostasis, gene silencing, pathogen defense, and many other physiological processes. However, the mechanism underlying macromolecular trafficking in plants remains poorly understood. Current progress made in RNA trafficking research and its biological relevance to plant development will be summarized. Diverse plant regulatory mechanisms of cell-to-cell and systemic long-distance transport of RNAs, including mRNAs, viral RNAs, and small RNAs, will also be discussed. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Microfluidic device to control interstitial flow-mediated homotypic and heterotypic cellular communication.

    PubMed

    Alonzo, Luis F; Moya, Monica L; Shirure, Venktesh S; George, Steven C

    2015-09-07

    Tissue engineering can potentially recreate in vivo cellular microenvironments in vitro for an array of applications such as biological inquiry and drug discovery. However, the majority of current in vitro systems still neglect many biological, chemical, and mechanical cues that are known to impact cellular functions such as proliferation, migration, and differentiation. To address this gap, we have developed a novel microfluidic device that precisely controls the spatial and temporal interactions between adjacent three-dimensional cellular environments. The device consists of four interconnected microtissue compartments (~0.1 mm(3)) arranged in a square. The top and bottom pairs of compartments can be sequentially loaded with discrete cellularized hydrogels creating the opportunity to investigate homotypic (left to right or x-direction) and heterotypic (top to bottom or y-direction) cell-cell communication. A controlled hydrostatic pressure difference across the tissue compartments in both x and y direction induces interstitial flow and modulates communication via soluble factors. To validate the biological significance of this novel platform, we examined the role of stromal cells in the process of vasculogenesis. Our device confirms previous observations that soluble mediators derived from normal human lung fibroblasts (NHLFs) are necessary to form a vascular network derived from endothelial colony forming cell-derived endothelial cells (ECFC-ECs). We conclude that this platform could be used to study important physiological and pathological processes that rely on homotypic and heterotypic cell-cell communication.

  3. Biofilm formation, communication and interactions of leaching bacteria during colonization of pyrite and sulfur surfaces.

    PubMed

    Bellenberg, Sören; Díaz, Mauricio; Noël, Nanni; Sand, Wolfgang; Poetsch, Ansgar; Guiliani, Nicolas; Vera, Mario

    2014-11-01

    Bioleaching of metal sulfides is an interfacial process where biofilm formation is considered to be important in the initial steps of this process. Among the factors regulating biofilm formation, molecular cell-to-cell communication such as quorum sensing is involved. A functional LuxIR-type I quorum sensing system is present in Acidithiobacillus ferrooxidans. However, cell-to-cell communication among different species of acidophilic mineral-oxidizing bacteria has not been studied in detail. These aspects were the scope of this study with emphasis on the effects exerted by the external addition of mixtures of synthetic N-acyl-homoserine-lactones on pure and binary cultures. Results revealed that some mixtures had inhibitory effects on pyrite leaching. Some of them correlated with changes in biofilm formation patterns on pyrite coupons. We also provide evidence that A. thiooxidans and Acidiferrobacter spp. produce N-acyl-homoserine-lactones. In addition, the observation that A. thiooxidans cells attached more readily to pyrite pre-colonized by living iron-oxidizing acidophiles than to heat-inactivated or biofilm-free pyrite grains suggests that other interactions also occur. Our experiments show that pre-cultivation conditions influence A. ferrooxidans attachment to pre-colonized pyrite surfaces. The understanding of cell-to-cell communication may consequently be used to develop attempts to influence biomining/bioremediation processes. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  4. Dioscin augments HSV-tk-mediated suicide gene therapy for melanoma by promoting connexin-based intercellular communication

    PubMed Central

    Li, Bin; Wu, Yingya; Liu, Xijuan; Tan, Yuhui; Du, Biaoyan

    2017-01-01

    Suicide gene therapy is a promising strategy against melanoma. However, the low efficiency of the gene transfer technique can limit its application. Our preliminary data showed that dioscin, a glucoside saponin, could upregulate the expression of connexins Cx26 and Cx43, major components of gap junctions, in melanoma cells. We hypothesized that dioscin may increase the bystander effect of herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV) through increasing the formation of gap junctions. Further analysis showed that dioscin indeed could increase the gap junctional intercellular communication in B16 melanoma cells, resulting in more efficient GCV-induced bystander killing in B16tk cells. By contrast, overexpression of dominant negative Cx43 impaired the cell-cell communication of B16 cells and subsequently weakened the bystander effect of HSV-tk/GCV gene therapy. In vivo, combination treatment with dioscin and GCV of tumor-bearing mice with 30% positive B16tk cells and 70% wild-type B16 cells caused a significant reduction in tumor volume and weight compared to treatment with GCV or dioscin alone. Taken together, these results demonstrated that dioscin could augment the bystander effect of the HSV-tk/GCV system through increasing connexin-mediated gap junction coupling. PMID:27903977

  5. How Stem Cells Speak with Host Immune Cells in Inflammatory Brain Diseases

    PubMed Central

    Pluchino, Stefano; Cossetti, Chiara

    2014-01-01

    Advances in stem cell biology have raised great expectations that diseases and injuries of the central nervous system (CNS) may be ameliorated by the development of non-hematopoietic stem cell medicines. Yet, the application of adult stem cells as CNS therapeutics is challenging and the interpretation of some of the outcomes ambiguous. In fact, the initial idea that stem cell transplants work only via structural cell replacement has been challenged by the observation of consistent cellular signaling between the graft and the host. Cellular signaling is the foundation of coordinated actions and flexible responses, and arises via networks of exchanging and interacting molecules that transmit patterns of information between cells. Sustained stem cell graft-to-host communication leads to remarkable trophic effects on endogenous brain cells and beneficial modulatory actions on innate and adaptive immune responses in vivo, ultimately promoting the healing of the injured CNS. Among a number of adult stem cell types, mesenchymal stem cells (MSCs) and neural stem/precursor cells (NPCs) are being extensively investigated for their ability to signal to the immune system upon transplantation in experimental CNS diseases. Here, we focus on the main cellular signaling pathways that grafted MSCs and NPCs use to establish a therapeutically relevant cross talk with host immune cells, while examining the role of inflammation in regulating some of the bidirectionality of these communications. We propose that the identification of the players involved in stem cell signaling might contribute to the development of innovative, high clinical impact therapeutics for inflammatory CNS diseases. PMID:23633288

  6. Limits to the precision of gradient sensing with spatial communication and temporal integration.

    PubMed

    Mugler, Andrew; Levchenko, Andre; Nemenman, Ilya

    2016-02-09

    Gradient sensing requires at least two measurements at different points in space. These measurements must then be communicated to a common location to be compared, which is unavoidably noisy. Although much is known about the limits of measurement precision by cells, the limits placed by the communication are not understood. Motivated by recent experiments, we derive the fundamental limits to the precision of gradient sensing in a multicellular system, accounting for communication and temporal integration. The gradient is estimated by comparing a "local" and a "global" molecular reporter of the external concentration, where the global reporter is exchanged between neighboring cells. Using the fluctuation-dissipation framework, we find, in contrast to the case when communication is ignored, that precision saturates with the number of cells independently of the measurement time duration, because communication establishes a maximum length scale over which sensory information can be reliably conveyed. Surprisingly, we also find that precision is improved if the local reporter is exchanged between cells as well, albeit more slowly than the global reporter. The reason is that whereas exchange of the local reporter weakens the comparison, it decreases the measurement noise. We term such a model "regional excitation-global inhibition." Our results demonstrate that fundamental sensing limits are necessarily sharpened when the need to communicate information is taken into account.

  7. Generation and Characterization of JCV Permissive Hybrid Cell Lines

    PubMed Central

    Sariyer, Ilker K.; Safak, Mahmut; Gordon, Jennifer; Khalili, Kamel

    2009-01-01

    JC virus (JCV) is a human neurotropic polyomavirus whose replication in the central nervous system induces the fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). JCV particles have been detected primarily in oligodendrocytes and astrocytes of the brains of patients with PML and in the laboratory its propagation is limited to primary cultures of human fetal glial cells. In this short communication, the development of a new cell culture system is described through the fusion of primary human fetal astrocytes with the human glioblastoma cell line, U-87MG. The new hybrid cell line obtained from this fusion has the capacity to support efficiently expression of JCV and replication of viral DNA in vitro up to 16 passages. This cell line can serve as a reliable culture system to study the biology of JCV host cell interaction, determine the mechanisms involved in cell type specific replication of JCV, and provide a convenient cell culture system for high throughput screening of anti-viral agents. PMID:19442856

  8. Imaging of Cell-Cell Communication in a Vertical Orientation Reveals High-Resolution Structure of Immunological Synapse and Novel PD-1 Dynamics

    PubMed Central

    Jang, Joon Hee; Huang, Yu; Zheng, Peilin; Jo, Myeong Chan; Bertolet, Grant; Qin, Lidong; Liu, Dongfang

    2015-01-01

    The immunological synapse (IS) is one of the most pivotal communication strategies in immune cells. Understanding the molecular basis of the IS provides critical information regarding how immune cells mount an effective immune response. Fluorescence microscopy provides a fundamental tool to study the IS. However, current imaging techniques for studying the IS cannot sufficiently achieve high resolution in real cell-cell conjugates. Here we present a new device that allows for high-resolution imaging of the IS with conventional confocal microscopy in a high-throughput manner. Combining micropits and single cell trap arrays, we have developed a new microfluidic platform that allows visualization of the IS in vertically “stacked” cells. Using this vertical cell pairing (VCP) system, we investigated the dynamics of the inhibitory synapse mediated by an inhibitory receptor, programed death protein-1 (PD-1) and the cytotoxic synapse at the single cell level. In addition to the technique innovation, we demonstrated novel biological findings by this VCP device, including novel distribution of F-actin and cytolytic granules at the IS, PD-1 microclusters in the NK IS, and kinetics of cytotoxicity. We propose that this high-throughput, cost-effective, easy-to-use VCP system, along with conventional imaging techniques, can be used to address a number of significant biological questions in a variety of disciplines. PMID:26123352

  9. LOH- RadGene experiment at Cell Biology Experiment Facility (CBEF)

    NASA Image and Video Library

    2009-02-20

    ISS018-E-034090 (20 Feb. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, uses a communication system near the Cell Biology Experiment Facility (CBEF) in the Kibo laboratory of the International Space Station.

  10. Biomimetic Delivery with Micro- and Nanoparticles

    PubMed Central

    Balmert, Stephen C.; Little, Steven R.

    2013-01-01

    The nascent field of biomimetic delivery with micro- and nanoparticles (MNP) has advanced considerably in recent years. Drawing inspiration from the ways that cells communicate in the body, several different modes of “delivery” (i.e. temporospatial presentation of biological signals) have been investigated in a number of therapeutic contexts. In particular, this review focuses on (1) controlled release formulations that deliver natural soluble factors with physiologically relevant temporal context, (2) presentation of surface-bound ligands to cells, with spatial organization of ligands ranging from isotropic to dynamically anisotropic, and (3) physical properties of particles, including size, shape and mechanical stiffness, which mimic those of natural cells. Importantly, the context provided by multimodal, or multifactor delivery represents a key element of most biomimetic MNP systems, a concept illustrated by an analogy to human interpersonal communication. Regulatory implications of increasingly sophisticated and “cell-like” biomimetic MNP systems are also discussed. PMID:22528985

  11. Biophotons, microtubules and CNS, is our brain a "holographic computer"?

    PubMed

    Grass, F; Klima, H; Kasper, S

    2004-01-01

    Several experiments show that there is a cell to cell communication by light in different cell types. This article describes theoretical mechanisms and subcellular structures that could be involved in this phenomenon. Special consideration is given to the nervous system, since it would have excellent conditions for such mechanisms. Neurons are large colourless cells with wide arborisations, have an active metabolism generating photons, contain little pigment, and have a prominent cytoskeleton consisting of hollow microtubules. As brain and spinal cord are protected from environmental light by bone and connective tissue, the signal to noise ratio should be high for photons as signal. Fluorescent and absorbing substances should interfere with such a communication system. Of all biogenic amines nature has chosen the ones with the strongest fluorescence as neurotransmitters for mood reactions: serotonin, dopamine and norepinephrine. If these mechanisms are of relevance our brain would have to be looked upon as a "holographic computer".

  12. A native IP satellite communications system

    NASA Astrophysics Data System (ADS)

    Koudelka, O.; Schmidt, M.; Ebert, J.; Schlemmer, H.; Kastner-Puschl, S.; Riedler, W.

    2004-08-01

    ≪ In the framework of ESA's ARTES-5 program the Institute of Applied Systems Technology (Joanneum Research) in cooperation with the Department of Communications and Wave Propagation has developed a novel meshed satellite communications system which is optimised for Internet traffic and applications (L*IP—Local Network Interconnection via Satellite Systems Using the IP Protocol Suite). Both symmetrical and asymmetrical connections are supported. Bandwidth on demand and guaranteed quality of service are key features of the system. A novel multi-frequency TDMA access scheme utilises efficient methods of IP encapsulation. In contrast to other solutions it avoids legacy transport network techniques. While the DVB-RCS standard is based on ATM or MPEG transport cells, the solution of the L*IP system uses variable-length cells which reduces the overhead significantly. A flexible and programmable platform based on Linux machines was chosen to allow the easy implementation and adaptation to different standards. This offers the possibility to apply the system not only to satellite communications, but provides seamless integration with terrestrial fixed broadcast wireless access systems. The platform is also an ideal test-bed for a variety of interactive broadband communications systems. The paper describes the system architecture and the key features of the system.

  13. A web-server of cell type discrimination system.

    PubMed

    Wang, Anyou; Zhong, Yan; Wang, Yanhua; He, Qianchuan

    2014-01-01

    Discriminating cell types is a daily request for stem cell biologists. However, there is not a user-friendly system available to date for public users to discriminate the common cell types, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and somatic cells (SCs). Here, we develop WCTDS, a web-server of cell type discrimination system, to discriminate the three cell types and their subtypes like fetal versus adult SCs. WCTDS is developed as a top layer application of our recent publication regarding cell type discriminations, which employs DNA-methylation as biomarkers and machine learning models to discriminate cell types. Implemented by Django, Python, R, and Linux shell programming, run under Linux-Apache web server, and communicated through MySQL, WCTDS provides a friendly framework to efficiently receive the user input and to run mathematical models for analyzing data and then to present results to users. This framework is flexible and easy to be expended for other applications. Therefore, WCTDS works as a user-friendly framework to discriminate cell types and subtypes and it can also be expended to detect other cell types like cancer cells.

  14. A Web-Server of Cell Type Discrimination System

    PubMed Central

    Zhong, Yan

    2014-01-01

    Discriminating cell types is a daily request for stem cell biologists. However, there is not a user-friendly system available to date for public users to discriminate the common cell types, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and somatic cells (SCs). Here, we develop WCTDS, a web-server of cell type discrimination system, to discriminate the three cell types and their subtypes like fetal versus adult SCs. WCTDS is developed as a top layer application of our recent publication regarding cell type discriminations, which employs DNA-methylation as biomarkers and machine learning models to discriminate cell types. Implemented by Django, Python, R, and Linux shell programming, run under Linux-Apache web server, and communicated through MySQL, WCTDS provides a friendly framework to efficiently receive the user input and to run mathematical models for analyzing data and then to present results to users. This framework is flexible and easy to be expended for other applications. Therefore, WCTDS works as a user-friendly framework to discriminate cell types and subtypes and it can also be expended to detect other cell types like cancer cells. PMID:24578634

  15. Santa Clara County Planar Solid Oxide Fuel Cell Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fred Mitlitsky; Sara Mulhauser; David Chien

    2009-11-14

    The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project demonstrated the technical viability of pre-commercial PSOFC technology at the County 911 Communications headquarters, as well as the input fuel flexibility of the PSOFC. PSOFC operation was demonstrated on natural gas and denatured ethanol. The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project goals were to acquire, site, and demonstrate the technical viability of a pre-commercial PSOFC technology at the County 911 Communications headquarters. Additional goals included educating local permit approval authorities, and other governmental entities about PSOFC technology, existing fuel cell standards and specific code requirements.more » The project demonstrated the Bloom Energy (BE) PSOFC technology in grid parallel mode, delivering a minimum 15 kW over 8760 operational hours. The PSOFC system demonstrated greater than 81% electricity availability and 41% electrical efficiency (LHV net AC), providing reliable, stable power to a critical, sensitive 911 communications system that serves geographical boundaries of the entire Santa Clara County. The project also demonstrated input fuel flexibility. BE developed and demonstrated the capability to run its prototype PSOFC system on ethanol. BE designed the hardware necessary to deliver ethanol into its existing PSOFC system. Operational parameters were determined for running the system on ethanol, natural gas (NG), and a combination of both. Required modeling was performed to determine viable operational regimes and regimes where coking could occur.« less

  16. Diagram of Cell to Cell Communication

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Diagram depicts the importance of cell-cell communication as central to the understanding of cancer growth and progression, the focus of the NASA bioreactor demonstration system (BDS-05) investigation. Microgravity studies will allow us to unravel the signaling and communication between these cells with the host and potential development of therapies for the treatment of cancer metastasis. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: Emory University.

  17. Communication among Oral Bacteria

    PubMed Central

    Kolenbrander, Paul E.; Andersen, Roxanna N.; Blehert, David S.; Egland, Paul G.; Foster, Jamie S.; Palmer, Robert J.

    2002-01-01

    Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication. The discovery of soluble signals, such as autoinducer-2, that may be exchanged within multispecies communities to convey information between organisms has emerged as a new research direction. Direct-contact signals, such as adhesins and receptors, that elicit changes in gene expression after cell-cell contact and biofilm growth are also an active research area. Considering that the majority of oral bacteria are organized in dense three-dimensional biofilms on teeth, confocal microscopy and fluorescently labeled probes provide valuable approaches for investigating the architecture of these organized communities in situ. Oral biofilms are readily accessible to microbiologists and are excellent model systems for studies of microbial communication. One attractive model system is a saliva-coated flowcell with oral bacterial biofilms growing on saliva as the sole nutrient source; an intergeneric mutualism is discussed. Several oral bacterial species are amenable to genetic manipulation for molecular characterization of communication both among bacteria and between bacteria and the host. A successful search for genes critical for mixed-species community organization will be accomplished only when it is conducted with mixed-species communities. PMID:12209001

  18. Electrochemical cell and separator plate thereof

    DOEpatents

    Baker, Bernard S.; Dharia, Dilip J.

    1979-10-02

    A fuel cell includes a separator plate having first and second flow channels extending there through contiguously with an electrode and respectively in flow communication with the cell electrolyte and in flow isolation with respect to such electrolyte. In fuel cell system arrangement, the diverse type channels are supplied in common with process gas for thermal control purposes. The separator plate is readily formed by corrugation of integral sheet material. 10 figs.

  19. Does the immune reaction cause malignant transformation by disrupting cell-to-cell or cell-to-matrix communications?

    PubMed

    Prehn, Richmond T

    2007-05-04

    TUMOR PROGRESSION: In many (perhaps in all) tumor systems, a malignant cancer is preceded by a benign lesion. Most benign lesions do not transform to malignancy and many regress. The final transformative step to malignancy differs from the preceding steps in, among other things, that it often occurs in the absence of the original carcinogenic stimulus. Relatively low titers of specific immune reactants are known to stimulate, but cell-to-cell or cell-to-matrix interactions appear to be major inhibitors of tumor-growth. Therefore, it seems reasonable to hypothesize that the mechanism of immunostimulation may be an interference with cell-to-cell or cell-to-matrix communication by a sub-lethal immune-reaction. While the above hypothesis remains unproven, some evidence suggests that immunity may have a major facilitating effect on tumor growth especially at the time of malignant transformation. There is even some evidence suggesting that transformation in vivo may seldom occur in the absence of immunostimulation of the premalignant lesion. Positive selection by the immune reaction may be the reason that tumors are immunogenic.

  20. Operating principles of Notch-Delta-Jagged module of cell-cell communication

    NASA Astrophysics Data System (ADS)

    Jolly, Mohit Kumar; Boareto, Marcelo; Lu, Mingyang; Onuchic, Jose' N.; Clementi, Cecilia; Ben-Jacob, Eshel

    2015-05-01

    Notch pathway is an evolutionarily conserved cell-cell communication mechanism governing cell-fate during development and tumor progression. It is activated when Notch receptor of one cell binds to either of its ligand—Delta or Jagged—of another cell. Notch-Delta (ND) signaling forms a two-way switch, and two cells interacting via ND signaling adopt different fates—Sender (high ligand, low receptor) and Receiver (low ligand, high receptor). Notch-Delta-Jagged signaling (NDJ) behaves as a three-way switch and enables an additional fate—hybrid Sender/Receiver (S/R) (medium ligand, medium receptor). Here, by extending our framework of NDJ signaling for a two-cell system, we show that higher production rate of Jagged, but not that of Delta, expands the range of parameters for which both cells attain the hybrid S/R state. Conversely, glycosyltransferase Fringe and cis-inhibition reduces this range of conditions, and reduces the relative stability of the hybrid S/R state, thereby promoting cell-fate divergence and consequently lateral inhibition-based patterns. Lastly, soluble Jagged drives the cells to attain the hybrid S/R state, and soluble Delta drives them to be Receivers. We also discuss the critical role of hybrid S/R state in promoting cancer metastasis by enabling collective cell migration and expanding cancer stem cell (CSC) population.

  1. Physically disconnected non-diffusible cell-to-cell communication between neuroblastoma SH-SY5Y and DRG primary sensory neurons.

    PubMed

    Chaban, Victor V; Cho, Taehoon; Reid, Christopher B; Norris, Keith C

    2013-01-01

    Cell-cell communication occurs via a variety of mechanisms, including long distances (hormonal), short distances (paracrine and synaptic) or direct coupling via gap junctions, antigen presentation, or ligand-receptor interactions. We evaluated the possibility of neuro-hormonal independent, non-diffusible, physically disconnected pathways for cell-cell communication using dorsal root ganglion (DRG) neurons. We assessed intracellular calcium ([Ca(2+)]) in primary culture DRG neurons that express ATP-sensitive P2X3, capsaicinsensitive TRPV1 receptors modulated by estradiol. Physically disconnected (dish-in-dish system; inner chamber enclosed) mouse DRG were cultured for 12 hours near: a) media alone (control 1), b) mouse DRG (control 2), c) human neuroblastoma SHSY-5Y cells (cancer intervention), or d) mouse DRG treated with KCl (apoptosis intervention). Chemosensitive receptors [Ca(2+)](i) signaling did not differ between control 1 and 2. ATP (10 μM) and capsaicin (100nM) increased [Ca(2+)](i) transients to 425.86 + 49.5 nM, and 399.21 ± 44.5 nM, respectively. 17β-estradiol (100 nM) exposure reduced ATP (171.17 ± 48.9 nM) and capsaicin (175.01±34.8 nM) [Ca(2+)](i) transients. The presence of cancer cells reduced ATP- and capsaicin-induced [Ca(2+)](i) by >50% (p<0.05) and abolished the 17β-estradiol effect. By contrast, apoptotic DRG cells increased initial ATP-induced [Ca(2+)](i), flux four fold and abolished subsequent [Ca(2+)](i), responses to ATP stimulation (p<0.001). Capsaicin (100nM) induced [Ca(2+)](i) responses were totally abolished. The local presence of apoptotic DRG or human neuroblastoma cells induced differing abnormal ATP and capsaicin-mediated [Ca(2+)](i) fluxes in normal DRG. These findings support physically disconnected, non-diffusible cell-to-cell signaling. Further studies are needed to delineate the mechanism(s) of and model(s) of communication.

  2. An Analysis for Capital Expenditure Decisions at a Naval Regional Medical Center.

    DTIC Science & Technology

    1981-12-01

    Service Equipment Review Committee 1. Portable defibrilator Computed tomographic scanner and cardioscope 2. ECG cart Automated blood cell counter 3. Gas...system sterilizer Gas system sterilizer 4. Automated blood cell Portable defibrilator and counter cardioscope 5. Computed tomographic ECG cart scanner...dictating and automated typing) systems. e. Filing equipment f. Automatic data processing equipment including data communications equipment. g

  3. Frequency Reuse, Cell Separation, and Capacity Analysis of VHF Digital Link Mode 3 TDMA

    NASA Technical Reports Server (NTRS)

    Shamma, Mohammed A.; Nguyen, Thanh C.; Apaza, Rafael D.

    2003-01-01

    The most recent studies by the Federal Aviation Administration (FAA) and the aviation industry have indicated that it has become increasingly difficult to make new VHF frequency or channel assignments to meet the aviation needs for air-ground communications. FAA has planned for several aggressive improvement measures to the existing systems, but these measures would not meet the projected voice communications needs beyond 2009. FAA found that since 1974 there has been, on the average, a 4 percent annual increase in the number of channel assignments needed to satisfy the air-ground communication traffic (approximately 300 new channel assignments per year). With the planned improvement measures, the channel assignments are expected to reach a maximum number of 16615 channels by about 2010. Hence, the FAA proposed the use of VDL Mode 3 as a new integrated digital voice and data communications systems to meet the future air traffic demand. This paper presents analytical results of frequency reuse; cell separation and capacity estimation of VDL Mode 3 TDMA systems that FAA has planned to implement the future VHF air-ground communications system by the year 2010. For TDMA, it is well understood that the frequency reuse factor is a crucial parameter for capacity estimation. Formulation of this frequency reuse factor is shown, taking into account the limitation imposed by the requirement to have a sufficient Signal to Co-Channel Interference Ratio. Several different values for the Signal to Co-Channel Interference Ratio were utilized corresponding to the current analog VHF DSB-AM systems, and the future digital VDL Mode 3. The required separation of Co-Channel cells is computed for most of the Frequency Protected Service Volumes (FPSV's) currently in use by the FAA. Additionally, the ideal cell capacity for each FPSV is presented. Also, using actual traffic for the Detroit air space, a FPSV traffic distribution model is used to generate a typical cell for channel capacity prediction. Such prediction is useful for evaluating the improvement of future VDL Mode 3 deployment and capacity planning.

  4. Bone cell communication factors and Semaphorins

    PubMed Central

    Negishi-Koga, Takako; Takayanagi, Hiroshi

    2012-01-01

    Bone tissue is continuously renewed throughout adult life by a process called 'remodeling', which involves a dynamic interplay among bone cells including osteoclasts, osteoblasts and osteocytes. For example, a tight coupling between bone resorption and formation is essential for the homeostasis of the skeletal system. Studies on the coupling mechanism in physiological and pathological settings have revealed that osteoclasts or osteoclastic bone resorption promote bone formation through the production of diverse coupling factors. The classical coupling factors are the molecules that promote bone formation after resorption, but there may be distinct mechanisms at work in various phases of bone remodeling. A recent study revealed that the Semaphorin 4D expressed by osteoclasts inhibits bone formation, which represents a mechanism by which coupling is dissociated. Furthermore, it has been demonstrated that osteoblastic expression of Semaphorin 3A exerts an osteoprotective effect by both suppressing bone resorption and increasing bone formation. Thus, recent advances have made it increasingly clear that bone remodeling is regulated by not only classical coupling factors, but also molecules that mediate cell–cell communication among bone cells. We propose that such factors be called bone cell communication factors, which control the delicate balance of the interaction of bone cells so as to maintain bone homeostasis. PMID:24171101

  5. Radiation-hardened microwave communications system

    NASA Astrophysics Data System (ADS)

    Smith, S. F.; Bible, D. W.; Crutcher, R. I.; Hannah, J. H.; Moore, J. A.; Nowlin, C. H.; Vandermolen, R. I.; Chagnot, D.; Leroy, A.

    1993-03-01

    To develop a wireless communication system to meet the stringent requirements for a nuclear hot cell and similar environments, including control of advanced servomanipulators, a microwave signal transmission system development program was established to produce a demonstration prototype for the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory (ORNL). Proof-of-principle tests in a partially metal lined enclosure at ORNL successfully demonstrated the feasibility of directed microwave signal transmission techniques for remote systems applications. The potential for much more severe radio-frequency (RF) multipath propagation conditions in fully metal lined cells led to a programmatic decision to conduct additional testing in more typical hot-cell environments at other sites. Again, the test results were excellent. Based on the designs of the earlier systems, an advanced microwave signal transmission system configuration was subsequently developed that, in highly reflective environments, will support both high-performance video channels and high baud-rate digital data links at total gamma dose tolerance levels exceeding 10(exp 7) rads and at elevated ambient temperatures.

  6. Design and Experimental Verification of a 0.19 V 53 μW 65 nm CMOS Integrated Supply-Sensing Sensor With a Supply-Insensitive Temperature Sensor and an Inductive-Coupling Transmitter for a Self-Powered Bio-sensing System Using a Biofuel Cell.

    PubMed

    Kobayashi, Atsuki; Ikeda, Kei; Ogawa, Yudai; Kai, Hiroyuki; Nishizawa, Matsuhiko; Nakazato, Kazuo; Niitsu, Kiichi

    2017-12-01

    In this paper, we present a self-powered bio-sensing system with the capability of proximity inductive-coupling communication for supply sensing and temperature monitoring. The proposed bio-sensing system includes a biofuel cell as a power source and a sensing frontend that is associated with the CMOS integrated supply-sensing sensor. The sensor consists of a digital-based gate leakage timer, a supply-insensitive time-domain temperature sensor, and a current-driven inductive-coupling transmitter and achieves low-voltage operation. The timer converts the output voltage from a biofuel cell to frequency. The temperature sensor provides a pulse width modulation (PWM) output that is not dependent on the supply voltage, and the associated inductive-coupling transmitter enables proximity communication. A test chip was fabricated in 65 nm CMOS technology and consumed 53 μW with a supply voltage of 190 mV. The low-voltage-friendly design satisfied the performance targets of each integrated sensor without any trimming. The chips allowed us to successfully demonstrate proximity communication with an asynchronous receiver, and the measurement results show the potential for self-powered operation using biofuel cells. The analysis and experimental verification of the system confirmed their robustness.

  7. Pharmacological Tools to Study the Role of Astrocytes in Neural Network Functions.

    PubMed

    Peña-Ortega, Fernando; Rivera-Angulo, Ana Julia; Lorea-Hernández, Jonathan Julio

    2016-01-01

    Despite that astrocytes and microglia do not communicate by electrical impulses, they can efficiently communicate among them, with each other and with neurons, to participate in complex neural functions requiring broad cell-communication and long-lasting regulation of brain function. Glial cells express many receptors in common with neurons; secrete gliotransmitters as well as neurotrophic and neuroinflammatory factors, which allow them to modulate synaptic transmission and neural excitability. All these properties allow glial cells to influence the activity of neuronal networks. Thus, the incorporation of glial cell function into the understanding of nervous system dynamics will provide a more accurate view of brain function. Our current knowledge of glial cell biology is providing us with experimental tools to explore their participation in neural network modulation. In this chapter, we review some of the classical, as well as some recent, pharmacological tools developed for the study of astrocyte's influence in neural function. We also provide some examples of the use of these pharmacological agents to understand the role of astrocytes in neural network function and dysfunction.

  8. Design of biomimetic cellular scaffolds for co-culture system and their application.

    PubMed

    Kook, Yun-Min; Jeong, Yoon; Lee, Kangwon; Koh, Won-Gun

    2017-01-01

    The extracellular matrix of most natural tissues comprises various types of cells, including fibroblasts, stem cells, and endothelial cells, which communicate with each other directly or indirectly to regulate matrix production and cell functionality. To engineer multicellular interactions in vitro, co-culture systems have achieved tremendous success achieving a more realistic microenvironment of in vivo metabolism than monoculture system in the past several decades. Recently, the fields of tissue engineering and regenerative medicine have primarily focused on three-dimensional co-culture systems using cellular scaffolds, because of their physical and biological relevance to the extracellular matrix of actual tissues. This review discusses several materials and methods to create co-culture systems, including hydrogels, electrospun fibers, microfluidic devices, and patterning for biomimetic co-culture system and their applications for specific tissue regeneration. Consequently, we believe that culture systems with appropriate physical and biochemical properties should be developed, and direct or indirect cell-cell interactions in the remodeled tissue must be considered to obtain an optimal tissue-specific microenvironment.

  9. Whole-cell biocomputing

    NASA Technical Reports Server (NTRS)

    Simpson, M. L.; Sayler, G. S.; Fleming, J. T.; Applegate, B.

    2001-01-01

    The ability to manipulate systems on the molecular scale naturally leads to speculation about the rational design of molecular-scale machines. Cells might be the ultimate molecular-scale machines and our ability to engineer them is relatively advanced when compared with our ability to control the synthesis and direct the assembly of man-made materials. Indeed, engineered whole cells deployed in biosensors can be considered one of the practical successes of molecular-scale devices. However, these devices explore only a small portion of cellular functionality. Individual cells or self-organized groups of cells perform extremely complex functions that include sensing, communication, navigation, cooperation and even fabrication of synthetic nanoscopic materials. In natural systems, these capabilities are controlled by complex genetic regulatory circuits, which are only partially understood and not readily accessible for use in engineered systems. Here, we focus on efforts to mimic the functionality of man-made information-processing systems within whole cells.

  10. Limits to the precision of gradient sensing with spatial communication and temporal integration

    PubMed Central

    Mugler, Andrew; Levchenko, Andre; Nemenman, Ilya

    2016-01-01

    Gradient sensing requires at least two measurements at different points in space. These measurements must then be communicated to a common location to be compared, which is unavoidably noisy. Although much is known about the limits of measurement precision by cells, the limits placed by the communication are not understood. Motivated by recent experiments, we derive the fundamental limits to the precision of gradient sensing in a multicellular system, accounting for communication and temporal integration. The gradient is estimated by comparing a “local” and a “global” molecular reporter of the external concentration, where the global reporter is exchanged between neighboring cells. Using the fluctuation–dissipation framework, we find, in contrast to the case when communication is ignored, that precision saturates with the number of cells independently of the measurement time duration, because communication establishes a maximum length scale over which sensory information can be reliably conveyed. Surprisingly, we also find that precision is improved if the local reporter is exchanged between cells as well, albeit more slowly than the global reporter. The reason is that whereas exchange of the local reporter weakens the comparison, it decreases the measurement noise. We term such a model “regional excitation–global inhibition.” Our results demonstrate that fundamental sensing limits are necessarily sharpened when the need to communicate information is taken into account. PMID:26792517

  11. Extracellular Vesicles from Neural Stem Cells Transfer IFN-γ via Ifngr1 to Activate Stat1 Signaling in Target Cells

    PubMed Central

    Cossetti, Chiara; Iraci, Nunzio; Mercer, Tim R.; Leonardi, Tommaso; Alpi, Emanuele; Drago, Denise; Alfaro-Cervello, Clara; Saini, Harpreet K.; Davis, Matthew P.; Schaeffer, Julia; Vega, Beatriz; Stefanini, Matilde; Zhao, CongJian; Muller, Werner; Garcia-Verdugo, Jose Manuel; Mathivanan, Suresh; Bachi, Angela; Enright, Anton J.; Mattick, John S.; Pluchino, Stefano

    2015-01-01

    SUMMARY The idea that stem cell therapies work only via cell replacement is challenged by the observation of consistent intercellular molecule exchange between the graft and the host. Here we defined a mechanism of cellular signaling by which neural stem/precursor cells (NPCs) communicate with the microenvironment via extracellular vesicles (EVs), and we elucidated its molecular signature and function. We observed cytokine-regulated pathways that sort proteins and mRNAs into EVs. We described induction of interferon gamma (IFN-γ) pathway in NPCs exposed to proinflammatory cytokines that is mirrored in EVs. We showed that IFN-γ bound to EVs through Ifngr1 activates Stat1 in target cells. Finally, we demonstrated that endogenous Stat1 and Ifngr1 in target cells are indispensable to sustain the activation of Stat1 signaling by EV-associated IFN-γ/Ifngr1 complexes. Our study identifies a mechanism of cellular signaling regulated by EV-associated IFN-γ/Ifngr1 complexes, which grafted stem cells may use to communicate with the host immune system. PMID:25242146

  12. Emission Measurements of Ultracell XX25 Reformed Methanol Fuel Cell System

    DTIC Science & Technology

    2008-06-01

    combination of electrochemical devices such as fuel cell and battery. Polymer electrolyte membrane fuel cells ( PEMFC ) using hydrogen or liquid...communications and computers, sensors and night vision capabilities. High temperature PEMFC offers some advantages such as enhanced electrode kinetics and better...tolerance of carbon monoxide that will poison the conventional PEMFC . Ultracell Corporation, Livermore, California has developed a first

  13. Cell-to-cell communication in plants, animals, and fungi: a comparative review.

    PubMed

    Bloemendal, Sandra; Kück, Ulrich

    2013-01-01

    Cell-to-cell communication is a prerequisite for differentiation and development in multicellular organisms. This communication has to be tightly regulated to ensure that cellular components such as organelles, macromolecules, hormones, or viruses leave the cell in a precisely organized way. During evolution, plants, animals, and fungi have developed similar ways of responding to this biological challenge. For example, in higher plants, plasmodesmata connect adjacent cells and allow communication to regulate differentiation and development. In animals, two main general structures that enable short- and long-range intercellular communication are known, namely gap junctions and tunneling nanotubes, respectively. Finally, filamentous fungi have also developed specialized structures called septal pores that allow intercellular communication via cytoplasmic flow. This review summarizes the underlying mechanisms for intercellular communication in these three eukaryotic groups and discusses its consequences for the regulation of differentiation and developmental processes.

  14. Cell-to-cell communication in plants, animals, and fungi: a comparative review

    NASA Astrophysics Data System (ADS)

    Bloemendal, Sandra; Kück, Ulrich

    2013-01-01

    Cell-to-cell communication is a prerequisite for differentiation and development in multicellular organisms. This communication has to be tightly regulated to ensure that cellular components such as organelles, macromolecules, hormones, or viruses leave the cell in a precisely organized way. During evolution, plants, animals, and fungi have developed similar ways of responding to this biological challenge. For example, in higher plants, plasmodesmata connect adjacent cells and allow communication to regulate differentiation and development. In animals, two main general structures that enable short- and long-range intercellular communication are known, namely gap junctions and tunneling nanotubes, respectively. Finally, filamentous fungi have also developed specialized structures called septal pores that allow intercellular communication via cytoplasmic flow. This review summarizes the underlying mechanisms for intercellular communication in these three eukaryotic groups and discusses its consequences for the regulation of differentiation and developmental processes.

  15. Application of cell co-culture system to study fat and muscle cells.

    PubMed

    Pandurangan, Muthuraman; Hwang, Inho

    2014-09-01

    Animal cell culture is a highly complex process, in which cells are grown under specific conditions. The growth and development of these cells is a highly unnatural process in vitro condition. Cells are removed from animal tissues and artificially cultured in various culture vessels. Vitamins, minerals, and serum growth factors are supplied to maintain cell viability. Obtaining result homogeneity of in vitro and in vivo experiments is rare, because their structure and function are different. Living tissues have highly ordered complex architecture and are three-dimensional (3D) in structure. The interaction between adjacent cell types is quite distinct from the in vitro cell culture, which is usually two-dimensional (2D). Co-culture systems are studied to analyze the interactions between the two different cell types. The muscle and fat co-culture system is useful in addressing several questions related to muscle modeling, muscle degeneration, apoptosis, and muscle regeneration. Co-culture of C2C12 and 3T3-L1 cells could be a useful diagnostic tool to understand the muscle and fat formation in animals. Even though, co-culture systems have certain limitations, they provide a more realistic 3D view and information than the individual cell culture system. It is suggested that co-culture systems are useful in evaluating the intercellular communication and composition of two different cell types.

  16. Cell–cell signaling drives the evolution of complex traits: introduction—lung evo-devo

    PubMed Central

    Torday, John S.; Rehan, V. K.

    2009-01-01

    Physiology integrates biology with the environment through cell–cell interactions at multiple levels. The evolution of the respiratory system has been “deconvoluted” (Torday and Rehan in Am J Respir Cell Mol Biol 31:8–12, 2004) through Gene Regulatory Networks (GRNs) applied to cell–cell communication for all aspects of lung biology development, homeostasis, regeneration, and aging. Using this approach, we have predicted the phenotypic consequences of failed signaling for lung development, homeostasis, and regeneration based on evolutionary principles. This cell–cell communication model predicts other aspects of vertebrate physiology as adaptational responses. For example, the oxygen-induced differentiation of alveolar myocytes into alveolar adipocytes was critical for the evolution of the lung in land dwelling animals adapting to fluctuating Phanarezoic oxygen levels over the past 500 million years. Adipocytes prevent lung injury due to oxygen radicals and facilitate the rise of endothermy. In addition, they produce the class I cytokine leptin, which augments pulmonary surfactant activity and alveolar surface area, increasing selection pressure for both respiratory oxygenation and metabolic demand initially constrained by high-systemic vascular pressure, but subsequently compensated by the evolution of the adrenomedullary beta-adrenergic receptor mechanism. Conserted positive selection for the lung and adrenals created further selection pressure for the heart, which becomes progressively more complex phylogenetically in tandem with the lung. Developmentally, increasing heart complexity and size impinges precociously on the gut mesoderm to induce the liver. That evolutionary-developmental interaction is significant because the liver provides regulated sources of glucose and glycogen to the evolving physiologic system, which is necessary for the evolution of the neocortex. Evolution of neocortical control furthers integration of physiologic systems. Such an evolutionary vertical integration of cell-to-tissue-to-organ-to-physiology of intrinsic cell–cell signaling and extrinsic factors is the reverse of the “top-down” conventional way in which physiologic systems are usually regarded. This novel mechanistic approach, incorporating a “middle-out” cell–cell signaling component, will lead to a readily available algorithm for integrating genes and phenotypes. This symposium surveyed the phylogenetic origins of such vertically integrated mechanisms for the evolution of cell–cell communication as the basis for complex physiologic traits, from sponges to man. PMID:20607136

  17. Is the Phone Mightier Than the Sword? Cell Phones and Insurgent Violence in Iraq

    DTIC Science & Technology

    2012-01-07

    Does improved communication as provided by modern cell phone technology affect the production of violence during insurgencies? Theoretical... cell phone communications on conflict using data on Iraq’s cell phone network and event data on violence. We show that increased mobile communications

  18. The Role of Gap Junction Channels During Physiologic and Pathologic Conditions of the Human Central Nervous System

    PubMed Central

    Basilio, Daniel; Sáez, Juan C.; Orellana, Juan A.; Raine, Cedric S.; Bukauskas, Feliksas; Bennett, Michael V. L.; Berman, Joan W.

    2013-01-01

    Gap junctions (GJs) are expressed in most cell types of the nervous system, including neuronal stem cells, neurons, astrocytes, oligodendrocytes, cells of the blood brain barrier (endothelial cells and astrocytes) and under inflammatory conditions in microglia/macrophages. GJs connect cells by the docking of two hemichannels, one from each cell with each hemichannel being formed by 6 proteins named connexins (Cx). Unapposed hemichannels (uHC) also can be open on the surface of the cells allowing the release of different intracellular factors to the extracellular space. GJs provide a mechanism of cell-to-cell communication between adjacent cells that enables the direct exchange of intracellular messengers, such as calcium, nucleotides, IP3, and diverse metabolites, as well as electrical signals that ultimately coordinate tissue homeostasis, proliferation, differentiation, metabolism, cell survival and death. Despite their essential functions in physiological conditions, relatively little is known about the role of GJs and uHC in human diseases, especially within the nervous system. The focus of this review is to summarize recent findings related to the role of GJs and uHC in physiologic and pathologic conditions of the central nervous system. PMID:22438035

  19. Direct cellular vs. indirect pager communication during orthopaedic surgical procedures: a prospective study.

    PubMed

    Ortega, Gil R; Taksali, Sudeep; Smart, Ryan; Baumgaertner, Michael R

    2009-01-01

    Cellular phone use within the hospital setting has increased as physicians, nurses, and ancillary staff incorporate wireless technologies in improving efficiencies, cost, and maintaining patient safety and high quality healthcare [11]. Through the use of wireless, cellular communication, an overall improvement in communication accuracy and efficiency between intraoperative orthopaedic surgeons and floor nurses may be achieved. Both communication types occurred while the surgeon was scrubbed in the operating room (OR). Indirect communication occurred when the pager call was answered by the OR circulating nurse with communication between the surgeon, circulating nurse, and floor nurse. Direct communication consisted of cell phone and Jabra Bluetooth BT200 wireless ear piece used by the surgeon. The surgeon answered the floor nurse's cellular call by phone ring-activated automatic answering. The study was conducted during scheduled orthopaedic procedures. An independent observer measured time variables with a stop-watch while orthopaedic nurses randomly called via pager or cell phone. The nurses asked for patient caregiver confirmation and answers to 30 different patient-care questions. Sixty trials were performed with 30 cell and 30 page communications. Direct cellular communication showed a better response rate than indirect page (Cell 100%, Page 73%). Indirect page communication allowed a 27% and 33% error rate with patient problem and surgeon solution communications, respectively. There were no reported communication errors while using direct wireless, cellular communication. When compared to page communications, cellular communications showed statistically significant improvements in mean time intervals in response time (Cell = 11s, Page = 211s), correct patient identification (Cell = 5s, Page = 172s), patient problem and solution time (Cell = 13s, Page = 189s), and total communication time (Cell = 32s, Page = 250s) (s = seconds, all P < 0.001). Floor nurse satisfaction ratings (dependent on communication times and/or difficulties) were improved with direct cellular communication (Cell = 29 excellent, Page = 11 excellent). Intraoperative case interruptions (defined as delaying surgical progress) were more frequent with indirect page communication (10 page v. 0 cell). Our study demonstrates that direct wireless communication may be used to improve intraoperative communication and enhance patient safety. Direct wireless, cellular intraoperative communication improves communication times, communication accuracy, communication satisfaction, and minimizes intraoperative case interruption. As a result of this study, we hope to maintain our transition to direct wireless, cellular intraoperative orthopaedic communication to reduce medical errors, improve patient care, and enhance both orthopaedic surgeon and nursing efficiencies.

  20. Infrared-Proximity-Sensor Modules For Robot

    NASA Technical Reports Server (NTRS)

    Parton, William; Wegerif, Daniel; Rosinski, Douglas

    1995-01-01

    Collision-avoidance system for articulated robot manipulators uses infrared proximity sensors grouped together in array of sensor modules. Sensor modules, called "sensorCells," distributed processing board-level products for acquiring data from proximity-sensors strategically mounted on robot manipulators. Each sensorCell self-contained and consists of multiple sensing elements, discrete electronics, microcontroller and communications components. Modules connected to central control computer by redundant serial digital communication subsystem including both serial and a multi-drop bus. Detects objects made of various materials at distance of up to 50 cm. For some materials, such as thermal protection system tiles, detection range reduced to approximately 20 cm.

  1. Stability of distributed MPC in an intersection scenario

    NASA Astrophysics Data System (ADS)

    Sprodowski, T.; Pannek, J.

    2015-11-01

    The research topic of autonomous cars and the communication among them has attained much attention in the last years and is developing quickly. Among others, this research area spans fields such as image recognition, mathematical control theory, communication networks, and sensor fusion. We consider an intersection scenario where we divide the shared road space in different cells. These cells form a grid. The cars are modelled as an autonomous multi-agent system based on the Distributed Model Predictive Control algorithm (DMPC). We prove that the overall system reaches stability using Optimal Control for each multi-agent and demonstrate that by numerical results.

  2. Cationic Conjugated Polymers-Induced Quorum Sensing of Bacteria Cells.

    PubMed

    Zhang, Pengbo; Lu, Huan; Chen, Hui; Zhang, Jiangyan; Liu, Libing; Lv, Fengting; Wang, Shu

    2016-03-15

    Bacteria quorum sensing (QS) has attracted significant interest for understanding cell-cell communication and regulating biological functions. In this work, we demonstrate that water-soluble cationic conjugated polymers (PFP-G2) can interact with bacteria to form aggregates through electrostatic interactions. With bacteria coated in the aggregate, PFP-G2 can induce the bacteria QS system and prolong the time duration of QS signal molecules (autoinducer-2 (AI-2)) production. The prolonged AI-2 can bind with specific protein and continuously regulate downstream gene expression. Consequently, the bacteria show a higher survival rate against antibiotics, resulting in decreased antimicrobial susceptibility. Also, AI-2 induced by PFP-G2 can stimulate 55.54 ± 12.03% more biofilm in E. coli. This method can be used to understand cell-cell communication and regulate biological functions, such as the production of signaling molecules, antibiotics, other microbial metabolites, and even virulence.

  3. Spatial pattern of long-distance symplasmic transport and communication in trees

    PubMed Central

    Sokołowska, Katarzyna; Brysz, Alicja Maria; Zagórska-Marek, Beata

    2013-01-01

    Symplasmic short- and long-distance communication may be regulated at different levels of plant body organization. It depends on cell-to-cell transport modulated by plasmodesmata conductivity and frequency but above all on morphogenetic fields that integrate a plant at the supracellular level. Their control of physiological and developmental processes is especially important in trees, where the continuum consists of 3-dimensional systems of: 1) stem cells in cambium, and 2) living parenchyma cells in the secondary conductive tissues. We found that long-distance symplasmic transport in trees is spatially regulated. Uneven distribution of fluorescent tracer in cambial cells along the branches examined illustrates an unknown intrinsic phenomenon that can possibly be important for plant organism integration. Here we illustrate the spatial dynamics of symplasmic transport in cambium, test and exclude the role of callose in its regulation, and discuss the mechanism that could possibly be responsible for the maintenance of this spatial pattern. PMID:23989002

  4. Chloroplast-to-nucleus communication

    PubMed Central

    Chan, Kai Xun; Crisp, Peter Alexander; Estavillo, Gonzalo Martin

    2010-01-01

    In order for plant cells to function efficiently under different environmental conditions, chloroplastic processes have to be tightly regulated by the nucleus. It is widely believed that there is inter-organelle communication from the chloroplast to the nucleus, called retrograde signaling. Although some pathways of communication have been identified, the actual signals that move between the two cellular compartments are largely unknown. This review provides an overview of retrograde signaling including its importance to the cell, candidate signals, recent advances and current experimental systems. In addition, we highlight the potential of using drought stress as a model for studying retrograde signaling. PMID:21512326

  5. Communication and complexity in a GRN-based multicellular system for graph colouring.

    PubMed

    Buck, Moritz; Nehaniv, Chrystopher L

    2008-01-01

    Artificial Genetic Regulatory Networks (GRNs) are interesting control models through their simplicity and versatility. They can be easily implemented, evolved and modified, and their similarity to their biological counterparts makes them interesting for simulations of life-like systems as well. These aspects suggest they may be perfect control systems for distributed computing in diverse situations, but to be usable for such applications the computational power and evolvability of GRNs need to be studied. In this research we propose a simple distributed system implementing GRNs to solve the well known NP-complete graph colouring problem. Every node (cell) of the graph to be coloured is controlled by an instance of the same GRN. All the cells communicate directly with their immediate neighbours in the graph so as to set up a good colouring. The quality of this colouring directs the evolution of the GRNs using a genetic algorithm. We then observe the quality of the colouring for two different graphs according to different communication protocols and the number of different proteins in the cell (a measure for the possible complexity of a GRN). Those two points, being the main scalability issues that any computational paradigm raises, will then be discussed.

  6. A Designers’ Guide to Reliable Distributed Systems: Design and Analysis Methods. An Example Design. Volume 1

    DTIC Science & Technology

    1988-08-01

    exchanged between the cells, thus requiring existence of fast , high capacity, high availability communication channels. The same arguments indicate...mininet - loss of a cell - intermittent communications failure in the maxinet - partitioning of the maxinet or the mininet o Query decomposition. 3.3...take place. A new sequencer is selected by the timeout mechanism described above. This process Pj must set its priority to 0 in order to ensure fast

  7. Endogenous voltage gradients as mediators of cell-cell communication: strategies for investigating bioelectrical signals during pattern formation

    PubMed Central

    Adams, Dany S.; Levin, Michael

    2013-01-01

    Alongside the well-known chemical modes of cell-cell communication, we find an important and powerful system of bioelectrical signaling: changes in the resting voltage potential (Vmem) of the plasma membrane driven by ion channels, pumps and gap junctions. Slow Vmem changes in all cells serve as a highly conserved, information-bearing pathway that regulates cell proliferation, migration and differentiation. In embryonic and regenerative pattern formation and in the disorganization of neoplasia, bioelectrical cues serve as mediators of large-scale anatomical polarity, organ identity and positional information. Recent developments have resulted in tools that enable a high-resolution analysis of these biophysical signals and their linkage with upstream and downstream canonical genetic pathways. Here, we provide an overview for the study of bioelectric signaling, focusing on state-of-the-art approaches that use molecular physiology and developmental genetics to probe the roles of bioelectric events functionally. We highlight the logic, strategies and well-developed technologies that any group of researchers can employ to identify and dissect ionic signaling components in their own work and thus to help crack the bioelectric code. The dissection of bioelectric events as instructive signals enabling the orchestration of cell behaviors into large-scale coherent patterning programs will enrich on-going work in diverse areas of biology, as biophysical factors become incorporated into our systems-level understanding of cell interactions. PMID:22350846

  8. Probing cooperative force generation in collective cancer invasion

    NASA Astrophysics Data System (ADS)

    Alobaidi, Amani A.; Xu, Yaopengxiao; Chen, Shaohua; Jiao, Yang; Sun, Bo

    2017-08-01

    Collective cellular dynamics in the three-dimensional extracellular matrix (ECM) plays a crucial role in many physiological processes such as cancer invasion. Both chemical and mechanical signaling support cell-cell communications on a variety of length scales, leading to collective migratory behaviors. Here we conduct experiments using 3D in vitro tumor models and develop a phenomenological model in order to probe the cooperativity of force generation in the collective invasion of breast cancer cells. In our model, cell-cell communication is characterized by a single parameter that quantifies the correlation length of cellular migration cycles. We devise a stochastic reconstruction method to generate realizations of cell colonies with specific contraction phase correlation functions and correlation length a. We find that as a increases, the characteristic size of regions containing cells with similar contraction phases grows. For small a values, the large fluctuations in individual cell contraction phases smooth out the temporal fluctuations in the time-dependent deformation field in the ECM. For large a values, the periodicity of an individual cell contraction cycle is clearly manifested in the temporal variation of the overall deformation field in the ECM. Through quantitative comparisons of the simulated and experimentally measured deformation fields, we find that the correlation length for collective force generation in the breast cancer diskoid in geometrically micropatterned ECM (DIGME) system is a≈ 25~μ \\text{m} , which is roughly twice the linear size of a single cell. One possible mechanism for this intermediate cell correlation length is the fiber-mediated stress propagation in the 3D ECM network in the DIGME system.

  9. Mechanical Cell-Cell Communication in Fibrous Networks: The Importance of Network Geometry.

    PubMed

    Humphries, D L; Grogan, J A; Gaffney, E A

    2017-03-01

    Cells contracting in extracellular matrix (ECM) can transmit stress over long distances, communicating their position and orientation to cells many tens of micrometres away. Such phenomena are not observed when cells are seeded on substrates with linear elastic properties, such as polyacrylamide (PA) gel. The ability for fibrous substrates to support far reaching stress and strain fields has implications for many physiological processes, while the mechanical properties of ECM are central to several pathological processes, including tumour invasion and fibrosis. Theoretical models have investigated the properties of ECM in a variety of network geometries. However, the effects of network architecture on mechanical cell-cell communication have received little attention. This work investigates the effects of geometry on network mechanics, and thus the ability for cells to communicate mechanically through different networks. Cell-derived displacement fields are quantified for various network geometries while controlling for network topology, cross-link density and micromechanical properties. We find that the heterogeneity of response, fibre alignment, and substrate displacement fields are sensitive to network choice. Further, we show that certain geometries support mechanical communication over longer distances than others. As such, we predict that the choice of network geometry is important in fundamental modelling of cell-cell interactions in fibrous substrates, as well as in experimental settings, where mechanical signalling at the cellular scale plays an important role. This work thus informs the construction of theoretical models for substrate mechanics and experimental explorations of mechanical cell-cell communication.

  10. In-depth characterization of the secretome of mouse CNS cell lines by LC-MS/MS without prefractionation.

    PubMed

    Woo, Jongmin; Han, Dohyun; Park, Joonho; Kim, Sang Jeong; Kim, Youngsoo

    2015-11-01

    Microglia, astrocytes, and neurons, which have important functions in the central nervous system (CNS), communicate mutually to generate a signal through secreted proteins or small molecules, but many of which have not been identified. Because establishing a reference for the secreted proteins from CNS cells could be invaluable in examining cell-to-cell communication in the brain, we analyzed the secretome of three murine CNS cell lines without prefractionation by high-resolution mass spectrometry. In this study, 2795 proteins were identified from conditioned media of the three cell lines, and 2125 proteins were annotated as secreted proteins by bioinformatics analysis. Further, approximately 500 secreted proteins were quantifiable as differentially expressed proteins by label-free quantitation. As a result, our secretome references are useful datasets for the future study of neuronal diseases. All MS data have been deposited in the ProteomeXchange with identifier PXD001597 (http://proteomecentral.proteomexchange.org/dataset/PXD001597). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Does the immune reaction cause malignant transformation by disrupting cell-to-cell or cell-to-matrix communications?

    PubMed Central

    Prehn, Richmond T

    2007-01-01

    Tumor progression In many (perhaps in all) tumor systems, a malignant cancer is preceded by a benign lesion. Most benign lesions do not transform to malignancy and many regress. The final transformative step to malignancy differs from the preceding steps in, among other things, that it often occurs in the absence of the original carcinogenic stimulus. Mechanism of immunostimulation Relatively low titers of specific immune reactants are known to stimulate, but cell-to-cell or cell-to-matrix interactions appear to be major inhibitors of tumor-growth. Therefore, it seems reasonable to hypothesize that the mechanism of immunostimulation may be an interference with cell-to-cell or cell-to-matrix communication by a sub-lethal immune-reaction. Discussion While the above hypothesis remains unproven, some evidence suggests that immunity may have a major facilitating effect on tumor growth especially at the time of malignant transformation. There is even some evidence suggesting that transformation in vivo may seldom occur in the absence of immunostimulation of the premalignant lesion. Positive selection by the immune reaction may be the reason that tumors are immunogenic. PMID:17480231

  12. Regulation of the Host Antiviral State by Intercellular Communications

    PubMed Central

    Assil, Sonia; Webster, Brian; Dreux, Marlène

    2015-01-01

    Viruses usually induce a profound remodeling of host cells, including the usurpation of host machinery to support their replication and production of virions to invade new cells. Nonetheless, recognition of viruses by the host often triggers innate immune signaling, preventing viral spread and modulating the function of immune cells. It conventionally occurs through production of antiviral factors and cytokines by infected cells. Virtually all viruses have evolved mechanisms to blunt such responses. Importantly, it is becoming increasingly recognized that infected cells also transmit signals to regulate innate immunity in uninfected neighboring cells. These alternative pathways are notably mediated by vesicular secretion of various virus- and host-derived products (miRNAs, RNAs, and proteins) and non-infectious viral particles. In this review, we focus on these newly-described modes of cell-to-cell communications and their impact on neighboring cell functions. The reception of these signals can have anti- and pro-viral impacts, as well as more complex effects in the host such as oncogenesis and inflammation. Therefore, these “broadcasting” functions, which might be tuned by an arms race involving selective evolution driven by either the host or the virus, constitute novel and original regulations of viral infection, either highly localized or systemic. PMID:26295405

  13. Statistical mechanics of tuned cell signalling: sensitive collective response by synthetic biological circuits

    NASA Astrophysics Data System (ADS)

    Voliotis, M.; Liverpool, T. B.

    2017-03-01

    Living cells sense and process environmental cues through noisy biochemical mechanisms. This apparatus limits the scope of engineering cells as viable sensors. Here, we highlight a mechanism that enables robust, population-wide responses to external stimulation based on cellular communication, known as quorum sensing. We propose a synthetic circuit consisting of two mutually repressing quorum sensing modules. At low cell densities the system behaves like a genetic toggle switch, while at higher cell densities the behaviour of nearby cells is coupled via diffusible quorum sensing molecules. We show by systematic coarse graining that at large length and timescales that the system can be described using the Ising model of a ferromagnet. Thus, in analogy with magnetic systems, the sensitivity of the population-wide response, or its ‘susceptibility’ to a change in the external signal, is highly enhanced for a narrow range of cell-cell coupling close to a critical value. We expect that our approach will be used to enhance the sensitivity of synthetic bio-sensing networks.

  14. Working together for the common good: cell-cell communication in bacteria.

    PubMed

    Stevens, Ann M; Schuster, Martin; Rumbaugh, Kendra P

    2012-05-01

    The 4th ASM Conference on Cell-Cell Communication in Bacteria was held in Miami, FL, from 6 to 9 November 2011. This review highlights three key themes that emerged from the many exciting talks and poster presentations in the area of quorum sensing: sociomicrobiology, signal transduction mechanisms, and interspecies communication.

  15. Hardwiring stem cell communication through tissue structure

    PubMed Central

    Xin, Tianchi; Greco, Valentina; Myung, Peggy

    2016-01-01

    Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues. PMID:26967287

  16. The role of radiation hard solar cells in minimizing the costs of global satellite communications systems

    NASA Technical Reports Server (NTRS)

    Summers, Geoffrey P.; Walters, Robert J.; Messenger, Scott R.; Burke, Edward A.

    1995-01-01

    An analysis embodied in a PC computer program is presented which quantitatively demonstrates how the availability of radiation hard solar cells can minimize the cost of a global satellite communication system. The chief distinction between the currently proposed systems, such as Iridium Odyssey and Ellipsat, is the number of satellites employed and their operating altitudes. Analysis of the major costs associated with implementing these systems shows that operation within the earth's radiation belts can reduce the total system cost by as much as a factor of two, so long as radiation hard components including solar cells, can be used. A detailed evaluation of several types of planar solar cells is given, including commercially available Si and GaAs/Ge cells, and InP/Si cells which are under development. The computer program calculates the end of life (EOL) power density of solar arrays taking into account the cell geometry, coverglass thickness, support frame, electrical interconnects, etc. The EOL power density can be determined for any altitude from low earth orbit (LEO) to geosynchronous (GEO) and for equatorial to polar planes of inclination. The mission duration can be varied over the entire range planned for the proposed satellite systems. An algorithm is included in the program for determining the degradation of cell efficiency for different cell technologies due to proton and electron irradiation. The program can be used to determine the optimum configuration for any cell technology for a particular orbit and for a specified mission life. Several examples of applying the program are presented, in which it is shown that the EOL power density of different technologies can vary by an order of magnitude for certain missions. Therefore, although a relatively radiation soft technology can be made to provide the required EOL power by simply increasing the size of the array, the impact on the total system budget could be unacceptable, due to increased launch and hardware costs. In aggregate these factors can account for more than a 10% increase in the total system cost. Since the estimated total costs of proposed global coverage systems range from $1 Billion to $9 Billion, the availability of radiation hard solar cells could make a decisive difference in the selection of a particular constellation architecture.

  17. Artificially Constructed Quorum-Sensing Circuits Are Used for Subtle Control of Bacterial Population Density

    PubMed Central

    Wang, Zhaoshou; Wu, Xin; Peng, Jianghai; Hu, Yidan; Fang, Baishan; Huang, Shiyang

    2014-01-01

    Vibrio fischeri is a typical quorum-sensing bacterium for which lux box, luxR, and luxI have been identified as the key elements involved in quorum sensing. To decode the quorum-sensing mechanism, an artificially constructed cell–cell communication system has been built. In brief, the system expresses several programmed cell-death BioBricks and quorum-sensing genes driven by the promoters lux pR and PlacO-1 in Escherichia coli cells. Their transformation and expression was confirmed by gel electrophoresis and sequencing. To evaluate its performance, viable cell numbers at various time periods were investigated. Our results showed that bacteria expressing killer proteins corresponding to ribosome binding site efficiency of 0.07, 0.3, 0.6, or 1.0 successfully sensed each other in a population-dependent manner and communicated with each other to subtly control their population density. This was also validated using a proposed simple mathematical model. PMID:25119347

  18. Intercellular communication in Arabidopsis thaliana pollen discovered via AHG3 transcript movement from the vegetative cell to sperm

    USDA-ARS?s Scientific Manuscript database

    An Arabidopsis pollen grain (male gametophyte) consists of three cells: the vegetative cell, which forms the pollen tube, and two sperm cells enclosed within the vegetative cell. It is still unclear if there is intercellular communication between the vegetative cell and the sperm cells. Here we show...

  19. Collective synchronization of self/non-self discrimination in T cell activation, across multiple spatio-temporal scales

    NASA Astrophysics Data System (ADS)

    Altan-Bonnet, Gregoire

    The immune system is a collection of cells whose function is to eradicate pathogenic infections and malignant tumors while protecting healthy tissues. Recent work has delineated key molecular and cellular mechanisms associated with the ability to discriminate self from non-self agents. For example, structural studies have quantified the biophysical characteristics of antigenic molecules (those prone to trigger lymphocyte activation and a subsequent immune response). However, such molecular mechanisms were found to be highly unreliable at the individual cellular level. We will present recent efforts to build experimentally validated computational models of the immune responses at the collective cell level. Such models have become critical to delineate how higher-level integration through nonlinear amplification in signal transduction, dynamic feedback in lymphocyte differentiation and cell-to-cell communication allows the immune system to enforce reliable self/non-self discrimination at the organism level. In particular, we will present recent results demonstrating how T cells tune their antigen discrimination according to cytokine cues, and how competition for cytokine within polyclonal populations of cells shape the repertoire of responding clones. Additionally, we will present recent theoretical and experimental results demonstrating how competition between diffusion and consumption of cytokines determine the range of cell-cell communications within lymphoid organs. Finally, we will discuss how biochemically explicit models, combined with quantitative experimental validation, unravel the relevance of new feedbacks for immune regulations across multiple spatial and temporal scales.

  20. Hybrid fuel cell/diesel generation total energy system, part 2

    NASA Astrophysics Data System (ADS)

    Blazek, C. F.

    1982-11-01

    Meeting the Goldstone Deep Space Communications Complex (DGSCC) electrical and thermal requirements with the existing system was compared with using fuel cells. Fuel cell technology selection was based on a 1985 time frame for installation. The most cost-effective fuel feedstock for fuel cell application was identified. Fuels considered included diesel oil, natural gas, methanol and coal. These fuel feedstocks were considered not only on the cost and efficiency of the fuel conversion process, but also on complexity and integration of the fuel processor on system operation and thermal energy availability. After a review of fuel processor technology, catalytic steam reformer technology was selected based on the ease of integration and the economics of hydrogen production. The phosphoric acid fuel cell was selected for application at the GDSCC due to its commercial readiness for near term application. Fuel cell systems were analyzed for both natural gas and methanol feedstock. The subsequent economic analysis indicated that a natural gas fueled system was the most cost effective of the cases analyzed.

  1. Hybrid fuel cell/diesel generation total energy system, part 2

    NASA Technical Reports Server (NTRS)

    Blazek, C. F.

    1982-01-01

    Meeting the Goldstone Deep Space Communications Complex (DGSCC) electrical and thermal requirements with the existing system was compared with using fuel cells. Fuel cell technology selection was based on a 1985 time frame for installation. The most cost-effective fuel feedstock for fuel cell application was identified. Fuels considered included diesel oil, natural gas, methanol and coal. These fuel feedstocks were considered not only on the cost and efficiency of the fuel conversion process, but also on complexity and integration of the fuel processor on system operation and thermal energy availability. After a review of fuel processor technology, catalytic steam reformer technology was selected based on the ease of integration and the economics of hydrogen production. The phosphoric acid fuel cell was selected for application at the GDSCC due to its commercial readiness for near term application. Fuel cell systems were analyzed for both natural gas and methanol feedstock. The subsequent economic analysis indicated that a natural gas fueled system was the most cost effective of the cases analyzed.

  2. Increased symplasmic permeability in barley root epidermal cells correlates with defects in root hair development

    PubMed Central

    Marzec, M; Muszynska, A; Melzer, M; Sas-Nowosielska, H; Kurczynska, E U; Wick, S

    2014-01-01

    It is well known that the process of plant cell differentiation depends on the symplasmic isolation of cells. Before starting the differentiation programme, the individual cell or group of cells should restrict symplasmic communication with neighbouring cells. We tested the symplasmic communication between epidermal cells in the different root zones of parental barley plants Hordeum vulgare L., cv. ‘Karat’ with normal root hair development, and two root hairless mutants (rhl1.a and rhl1.b). The results clearly show that symplasmic communication was limited during root hair differentiation in the parental variety, whereas in both root hairless mutants epidermal cells were still symplasmically connected in the corresponding root zone. This paper is the first report on the role of symplasmic isolation in barley root cell differentiation, and additionally shows that a disturbance in the restriction of symplasmic communication is present in root hairless mutants. PMID:23927737

  3. Mechanisms for Cell-to-Cell Transmission of HIV-1

    PubMed Central

    Bracq, Lucie; Xie, Maorong; Benichou, Serge; Bouchet, Jérôme

    2018-01-01

    While HIV-1 infection of target cells with cell-free viral particles has been largely documented, intercellular transmission through direct cell-to-cell contact may be a predominant mode of propagation in host. To spread, HIV-1 infects cells of the immune system and takes advantage of their specific particularities and functions. Subversion of intercellular communication allows to improve HIV-1 replication through a multiplicity of intercellular structures and membrane protrusions, like tunneling nanotubes, filopodia, or lamellipodia-like structures involved in the formation of the virological synapse. Other features of immune cells, like the immunological synapse or the phagocytosis of infected cells are hijacked by HIV-1 and used as gateways to infect target cells. Finally, HIV-1 reuses its fusogenic capacity to provoke fusion between infected donor cells and target cells, and to form infected syncytia with high capacity of viral production and improved capacities of motility or survival. All these modes of cell-to-cell transfer are now considered as viral mechanisms to escape immune system and antiretroviral therapies, and could be involved in the establishment of persistent virus reservoirs in different host tissues. PMID:29515578

  4. WE-EF-BRA-08: Cell Survival in Modulated Radiation Fields and Altered DNA-Repair at Field Edges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartzsch, S; Oelfke, U; Eismann, S

    2015-06-15

    Purpose: Tissue damage prognoses in radiotherapy are based on clonogenic assays that provide dose dependent cell survival rates. However, recent work has shown that apart from dose, systemic reactions and cell-cell communication crucially influence the radiation response. These effects are probably a key in understanding treatment approaches such as microbeam radiation therapy (MRT). In this study we tried to quantify the effects on a cellular level in spatially modulated radiation fields. Methods: Pancreas carcinoma cells were cultured, plated and irradiated by spatially modulated radiation fields with an X-ray tube and at a synchrotron. During and after treatment cells were ablemore » to communicate via the intercellular medium. Afterwards we stained for DNA and DNA damage and imaged with a fluorescence microscope. Results: Intriguingly we found that DNA damage does not strictly increase with dose. Two cell entities appear that have either a high or a low amount of DNA lesions, indicating that DNA damage is also a cell stress reaction. Close to radiation boundaries damage-levels became alike; they were higher than expected at low and lower than expected at high doses. Neighbouring cells reacted similarly. 6 hours after exposure around 40% of the cells resembled in their reactions neighbouring cells more than randomly chosen cells that received the same dose. We also observed that close to radiation boundaries the radiation induced cell-cycle arrest disappeared and the size of DNA repair-centres increased. Conclusion: Cell communication plays an important role in the radiation response of tissues and may be both, protective and destructive. These effects may not only have the potential to affect conventional radiotherapy but may also be exploited to spare organs at risk by intelligently designing irradiation geometries. To that end intensive work is required to shed light on the still obscure processes in cell-signalling and radiation biology.« less

  5. Modelling the heart as a communication system.

    PubMed

    Ashikaga, Hiroshi; Aguilar-Rodríguez, José; Gorsky, Shai; Lusczek, Elizabeth; Marquitti, Flávia Maria Darcie; Thompson, Brian; Wu, Degang; Garland, Joshua

    2015-04-06

    Electrical communication between cardiomyocytes can be perturbed during arrhythmia, but these perturbations are not captured by conventional electrocardiographic metrics. We developed a theoretical framework to quantify electrical communication using information theory metrics in two-dimensional cell lattice models of cardiac excitation propagation. The time series generated by each cell was coarse-grained to 1 when excited or 0 when resting. The Shannon entropy for each cell was calculated from the time series during four clinically important heart rhythms: normal heartbeat, anatomical reentry, spiral reentry and multiple reentry. We also used mutual information to perform spatial profiling of communication during these cardiac arrhythmias. We found that information sharing between cells was spatially heterogeneous. In addition, cardiac arrhythmia significantly impacted information sharing within the heart. Entropy localized the path of the drifting core of spiral reentry, which could be an optimal target of therapeutic ablation. We conclude that information theory metrics can quantitatively assess electrical communication among cardiomyocytes. The traditional concept of the heart as a functional syncytium sharing electrical information cannot predict altered entropy and information sharing during complex arrhythmia. Information theory metrics may find clinical application in the identification of rhythm-specific treatments which are currently unmet by traditional electrocardiographic techniques. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Exosomes: From Garbage Bins to Promising Therapeutic Targets

    PubMed Central

    H. Rashed, Mohammed; Bayraktar, Emine; K. Helal, Gouda; Abd-Ellah, Mohamed F.; Amero, Paola; Chavez-Reyes, Arturo; Rodriguez-Aguayo, Cristian

    2017-01-01

    Intercellular communication via cell-released vesicles is a very important process for both normal and tumor cells. Cell communication may involve exosomes, small vesicles of endocytic origin that are released by all types of cells and are found in abundance in body fluids, including blood, saliva, urine, and breast milk. Exosomes have been shown to carry lipids, proteins, mRNAs, non-coding RNAs, and even DNA out of cells. They are more than simply molecular garbage bins, however, in that the molecules they carry can be taken up by other cells. Thus, exosomes transfer biological information to neighboring cells and through this cell-to-cell communication are involved not only in physiological functions such as cell-to-cell communication, but also in the pathogenesis of some diseases, including tumors and neurodegenerative conditions. Our increasing understanding of why cells release exosomes and their role in intercellular communication has revealed the very complex and sophisticated contribution of exosomes to health and disease. The aim of this review is to reveal the emerging roles of exosomes in normal and pathological conditions and describe the controversial biological role of exosomes, as it is now understood, in carcinogenesis. We also summarize what is known about exosome biogenesis, composition, functions, and pathways and discuss the potential clinical applications of exosomes, especially as biomarkers and novel therapeutic agents. PMID:28257101

  7. AFM study shows prominent physical changes in elasticity and pericellular layer in human acute leukemic cells due to inadequate cell-cell communication

    NASA Astrophysics Data System (ADS)

    Guz, Nataliia V.; Patel, Sapan J.; Dokukin, Maxim E.; Clarkson, Bayard; Sokolov, Igor

    2016-12-01

    Biomechanical properties of single cells in vitro or ex vivo and their pericellular interfaces have recently attracted a lot of attention as a potential biophysical (and possibly prognostic) marker of various diseases and cell abnormalities. At the same time, the influence of the cell environment on the biomechanical properties of cells is not well studied. Here we use atomic force microscopy to demonstrate that cell-cell communication can have a profound effect on both cell elasticity and its pericellular coat. A human pre-B p190BCR/ABL acute lymphoblastic leukemia cell line (ALL3) was used in this study. Assuming that cell-cell communication is inversely proportional to the distance between cells, we study ALL3 cells in vitro growing at different cell densities. ALL3 cells demonstrate a clear density dependent behavior. These cells grow very well if started at a relatively high cell density (HD, >2 × 105 cells ml-1) and are poised to grow at low cell density (LD, <1 × 104 cells ml-1). Here we observe ˜6× increase in the elastic (Young’s) modulus of the cell body and ˜3.6× decrease in the pericellular brush length of LD cells compared to HD ALL3 cells. The difference observed in the elastic modulus is much larger than typically reported for pathologically transformed cells. Thus, cell-cell communication must be taken into account when studying biomechanics of cells, in particular, correlating cell phenotype and its biophysical properties.

  8. The neuropeptides CCK and NPY and the changing view of cell-to-cell communication in the taste bud.

    PubMed

    Herness, Scott; Zhao, Fang-Li

    2009-07-14

    The evolving view of the taste bud increasingly suggests that it operates as a complex signal processing unit. A number of neurotransmitters and neuropeptides and their corresponding receptors are now known to be expressed in subsets of taste receptor cells in the mammalian bud. These expression patterns set up hard-wired cell-to-cell communication pathways whose exact physiological roles still remain obscure. As occurs in other cellular systems, it is likely that neuropeptides are co-expressed with neurotransmitters and function as neuromodulators. Several neuropeptides have been identified in taste receptor cells including cholecystokinin (CCK), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), and glucagon-like peptide 1 (GLP-1). Of these, CCK and NPY are the best studied. These two peptides are co-expressed in the same presynaptic cells; however, their postsynaptic actions are both divergent and antagonistic. CCK and its receptor, the CCK-1 subtype, are expressed in the same subset of taste receptor cells and the autocrine activation of these cells produces a number of excitatory physiological actions. Further, most of these cells are responsive to bitter stimuli. On the other hand, NPY and its receptor, the NPY-1 subtype, are expressed in different cells. NPY, acting in a paracrine fashion on NPY-1 receptors, results in inhibitory actions on the cell. Preliminary evidence suggests the NPY-1 receptor expressing cell co-expresses T1R3, a member of the T1R family of G-protein coupled receptors thought to be important in detection of sweet and umami stimuli. Thus the neuropeptide expressing cells co-express CCK, NPY, and CCK-1 receptor. Neuropeptides released from these cells during bitter stimulation may work in concert to both modulate the excitation of bitter-sensitive taste receptor cells while concurrently inhibiting sweet-sensitive cells. This modulatory process is similar to the phenomenon of lateral inhibition that occurs in other sensory systems.

  9. microRNAs as mediators and communicators between cancer cells and the tumor micro-environment

    PubMed Central

    Kohlhapp, Frederick J.; Mitra, Anirban K.; Lengyel, Ernst; Peter, Marcus E.

    2015-01-01

    Cancer cells grow in an environment comprised of multiple components that support tumor growth and contribute to therapy resistance. Major cell types in the tumor micro-environment are fibroblasts, endothelial cells and infiltrating immune cells all of which communicate with cancer cells. One way that these cell types promote cancer progression is by altering expression of miRNAs, small noncoding RNAs that negatively regulate protein expression, either in the cancer cells or in associated normal cells. Changes in miRNA expression can be brought about by direct interaction between the stromal cells and cancer cells, by paracrine factors secreted by any of the cell types, or even through direct communication between cells through secreted miRNAs. Understanding the role of miRNAs in the complex interactions between the tumor and cells in its micro-environment is necessary if we are to understand tumor progression and devise new treatments. PMID:25867073

  10. Communications Network Design, Simulation, and Analysis for an Autonomous Unmanned Vehicle System

    DTIC Science & Technology

    2011-06-01

    of which type to use depends on the type of demands placed on the network. 1. Central Control Network Architecture Cell phones, the IEEE 802.11, and...distances that do not exceed the wireless transmission distances of the BS and SSs. This BS coverage region is sometimes referred to as a cell . To...In this manner, multiple cells can be connected together by connecting the cell BSs. In so doing, a large geographical area can be covered by a

  11. Data Management of Watershed Information and Data Enterprise Repository Implementation at Fort Hood, Texas

    DTIC Science & Technology

    2003-03-01

    is a 20-ft (6.1-m) mast supporting a cell phone antenna and a solar panel. Contained with in the enclosure is a Forest Technology Systems data...logger, a deep cycle battery, a voltage regulator, a cell phone modem, and a Motorola cell phone . The stream level, turbidity, and soil moisture sensors...DOIM) Security Protocols at Fort Hood, computers connected to the Fort Hood network cannot utilize cell phone communication to retrieve the data

  12. Superior Cervical Ganglia Neurons Induce Foxp3+ Regulatory T Cells via Calcitonin Gene-Related Peptide.

    PubMed

    Szklany, Kirsten; Ruiter, Evelyn; Mian, Firoz; Kunze, Wolfgang; Bienenstock, John; Forsythe, Paul; Karimi, Khalil

    2016-01-01

    The nervous and immune systems communicate bidirectionally, utilizing diverse molecular signals including cytokines and neurotransmitters to provide an integrated response to changes in the body's internal and external environment. Although, neuro-immune interactions are becoming better understood under inflammatory circumstances and it has been evidenced that interaction between neurons and T cells results in the conversion of encephalitogenic T cells to T regulatory cells, relatively little is known about the communication between neurons and naïve T cells. Here, we demonstrate that following co-culture of naïve CD4+ T cells with superior cervical ganglion neurons, the percentage of Foxp3 expressing CD4+CD25+ cells significantly increased. This was mediated in part by immune-regulatory cytokines TGF-β and IL-10, as well as the neuropeptide calcitonin gene-related peptide while vasoactive intestinal peptide was shown to play no role in generation of T regulatory cells. Additionally, T cells co-cultured with neurons showed a decrease in the levels of pro-inflammatory cytokine IFN-γ released upon in vitro stimulation. These findings suggest that the generation of Tregs may be promoted by naïve CD4+ T cell: neuron interaction through the release of neuropeptide CGRP.

  13. Propagation experiment of COMETS Ka/Q-band communication link for future satellite cellular system

    NASA Technical Reports Server (NTRS)

    Hase, Yoshihiro

    1995-01-01

    Mobile/Personal Satellite Communication Systems in L/S-bands are going into the operational phase. In the future, they will be operated in much higher frequency bands, for example in Ka-band, because the available bandwidth in L-band is limited. Systems with large on-board antennas in higher frequencies allow the same configuration as terrestrial cellular radio systems, since the on-board antennas will have many small spot beams. This may be true especially in a low earth orbit system such as Teledesic, which will use Ka-band. The most important parameter of Satellite Cellular may be cell size, that is, a diameter of the spot beam. A system designer needs the local correlation data in a cell and the size of the correlative area. On the other hand, the most significant difficulty of Ka and higher band systems is the countermeasure to rain attenuation. Many-cell systems can manage the limited power of on-board transponders by controlling output power of each beam depending on the rain attenuation of each cell. If the cell size is equal to the correlative area, the system can probably achieve the maximum performance. Propagation data of Ka and higher band obtained in the past shows a long term cumulative feature and link availability, but do not indicate the correlative area. The Japanese COMETS satellite, which will be launched in February 1997, has transponders in Ka and Q-band. The CRL is planning to measure the correlative area using 21 GHz and 44 GHz CW transmissions from the COMETS.

  14. Distributed solar radiation fast dynamic measurement for PV cells

    NASA Astrophysics Data System (ADS)

    Wan, Xuefen; Yang, Yi; Cui, Jian; Du, Xingjing; Zheng, Tao; Sardar, Muhammad Sohail

    2017-10-01

    To study the operating characteristics about PV cells, attention must be given to the dynamic behavior of the solar radiation. The dynamic behaviors of annual, monthly, daily and hourly averages of solar radiation have been studied in detail. But faster dynamic behaviors of solar radiation need more researches. The solar radiation random fluctuations in minute-long or second-long range, which lead to alternating radiation and cool down/warm up PV cell frequently, decrease conversion efficiency. Fast dynamic processes of solar radiation are mainly relevant to stochastic moving of clouds. Even in clear sky condition, the solar irradiations show a certain degree of fast variation. To evaluate operating characteristics of PV cells under fast dynamic irradiation, a solar radiation measuring array (SRMA) based on large active area photodiode, LoRa spread spectrum communication and nanoWatt MCU is proposed. This cross photodiodes structure tracks fast stochastic moving of clouds. To compensate response time of pyranometer and reduce system cost, the terminal nodes with low-cost fast-responded large active area photodiode are placed besides positions of tested PV cells. A central node, consists with pyranometer, large active area photodiode, wind detector and host computer, is placed in the center of the central topologies coordinate to scale temporal envelope of solar irradiation and get calibration information between pyranometer and large active area photodiodes. In our SRMA system, the terminal nodes are designed based on Microchip's nanoWatt XLP PIC16F1947. FDS-100 is adopted for large active area photodiode in terminal nodes and host computer. The output current and voltage of each PV cell are monitored by I/V measurement. AS62-T27/SX1278 LoRa communication modules are used for communicating between terminal nodes and host computer. Because the LoRa LPWAN (Low Power Wide Area Network) specification provides seamless interoperability among Smart Things without the need of complex local installations, configuring of our SRMA system is very easy. Lora also provides SRMA a means to overcome the short communication distance and weather signal propagation decline such as in ZigBee and WiFi. The host computer in SRMA system uses the low power single-board PC EMB-3870 which was produced by NORCO. Wind direction sensor SM5386B and wind-force sensor SM5387B are installed to host computer through RS-485 bus for wind reference data collection. And Davis 6450 solar radiation sensor, which is a precision instrument that detects radiation at wavelengths of 300 to 1100 nanometers, allow host computer to follow real-time solar radiation. A LoRa polling scheme is adopt for the communication between host computer and terminal nodes in SRMA. An experimental SRMA has been established. This system was tested in Ganyu, Jiangshu province from May to August, 2016. In the test, the distances between the nodes and the host computer were between 100m and 1900m. At work, SRMA system showed higher reliability. Terminal nodes could follow the instructions from host computer and collect solar radiation data of distributed PV cells effectively. And the host computer managed the SRAM and achieves reference parameters well. Communications between the host computer and terminal nodes were almost unaffected by the weather. In conclusion, the testing results show that SRMA could be a capable method for fast dynamic measuring about solar radiation and related PV cell operating characteristics.

  15. Design of biomimetic cellular scaffolds for co-culture system and their application

    PubMed Central

    Kook, Yun-Min; Jeong, Yoon; Lee, Kangwon; Koh, Won-Gun

    2017-01-01

    The extracellular matrix of most natural tissues comprises various types of cells, including fibroblasts, stem cells, and endothelial cells, which communicate with each other directly or indirectly to regulate matrix production and cell functionality. To engineer multicellular interactions in vitro, co-culture systems have achieved tremendous success achieving a more realistic microenvironment of in vivo metabolism than monoculture system in the past several decades. Recently, the fields of tissue engineering and regenerative medicine have primarily focused on three-dimensional co-culture systems using cellular scaffolds, because of their physical and biological relevance to the extracellular matrix of actual tissues. This review discusses several materials and methods to create co-culture systems, including hydrogels, electrospun fibers, microfluidic devices, and patterning for biomimetic co-culture system and their applications for specific tissue regeneration. Consequently, we believe that culture systems with appropriate physical and biochemical properties should be developed, and direct or indirect cell–cell interactions in the remodeled tissue must be considered to obtain an optimal tissue-specific microenvironment. PMID:29081966

  16. The Role of Innovation Regimes and Policy for Creating Radical Innovations: Comparing Some Aspects of Fuel Cells and Hydrogen Technology Development with the Development of Internet and GSM

    ERIC Educational Resources Information Center

    Godoe, Helge

    2006-01-01

    Telegraphy, the distant ancestor of Internet and GSM (Global System for Mobile Communications), was invented by Samuel Morse in 1838. One year later, William Grove invented the fuel cell. Although numerous highly successful innovations stemming from telegraphy may be observed, the development of fuel cells has been insignificant, slow, and erratic…

  17. Electric and magnetic fields do not modify the biochemical properties of FRTL-5 cells.

    PubMed

    Dimida, A; Ferrarini, E; Agretti, P; De Marco, G; Grasso, L; Martinelli, M; Longo, I; Giulietti, D; Ricci, A; Galimberti, M; Siervo, B; Licitra, G; Francia, F; Pinchera, A; Vitti, P; Tonacchera, M

    2011-03-01

    Electric and magnetic fields (EMF) might be involved in human disease and numerous research and scientific reviews have been conducted to address this question. In particular thyroid structural and functional alterations caused by various forms of non-ionizing radiation have been described. The aim of this study was to analyze the possible effects of EMF on thyroid, in particular we analyzed the effects caused by a GSM (Global System for Mobile Communications) signal (900 MHz) on cultured thyroid cells (FRTL- 5). The experimental setup was designed in order to expose samples to a radiofrequency wave in well-controlled conditions. We used the FRTL-5 cell line, an epithelial monoclonal continuous cell line derived from Fisher rat thyroid tissue growing as monolayer, expressing the TSH receptor and the sodium-iodide symporter (NIS). FRTL-5 were subsequently irradiate for 24, 48, and 96 h with EMF (800-900 MHz, power-frequency of mobile communication systems) and iodide uptake and cAMP production were measured. The irradiation of cells with EMF at 900 Mhz for 24, 48, and 96 h did not influence the level of cAMP production and was not able to modify iodide accumulation in FRTL- 5 cells with respect to basal conditions. In conclusion, EMF do not seem to be able to interfere with the biochemical properties of FRTL-5 cells in vitro.

  18. Tunneling Nanotubes: Intimate Communication between Myeloid Cells.

    PubMed

    Dupont, Maeva; Souriant, Shanti; Lugo-Villarino, Geanncarlo; Maridonneau-Parini, Isabelle; Vérollet, Christel

    2018-01-01

    Tunneling nanotubes (TNT) are dynamic connections between cells, which represent a novel route for cell-to-cell communication. A growing body of evidence points TNT towards a role for intercellular exchanges of signals, molecules, organelles, and pathogens, involving them in a diverse array of functions. TNT form among several cell types, including neuronal cells, epithelial cells, and almost all immune cells. In myeloid cells (e.g., macrophages, dendritic cells, and osteoclasts), intercellular communication via TNT contributes to their differentiation and immune functions. Importantly, TNT enable myeloid cells to communicate with a targeted neighboring or distant cell, as well as with other cell types, therefore creating a complex variety of cellular exchanges. TNT also contribute to pathogen spread as they serve as "corridors" from a cell to another. Herein, we addressed the complexity of the definition and in vitro characterization of TNT in innate immune cells, the different processes involved in their formation, and their relevance in vivo . We also assess our current understanding of how TNT participate in immune surveillance and the spread of pathogens, with a particular interest for HIV-1. Overall, despite recent progress in this growing research field, we highlight that further investigation is needed to better unveil the role of TNT in both physiological and pathological conditions.

  19. 76 FR 75492 - Atlantic Highly Migratory Species; Vessel Monitoring Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    ... and fishing gears possessed to be made by phone. Some small fishing vessels remain within cell phone... terminals represent a more reliable means of communication than cellular phones because they use satellites rather than cell towers as the principle means of transmitting data. Furthermore, vessels need to provide...

  20. Chloroplast-to-nucleus communication: current knowledge, experimental strategies and relationship to drought stress signaling.

    PubMed

    Chan, Kai Xun; Crisp, Peter Alexander; Estavillo, Gonzalo Martin; Pogson, Barry James

    2010-12-01

    In order for plant cells to function efficiently under different environmental conditions, chloroplastic processes have to be tightly regulated by the nucleus. It is widely believed that there is inter-organelle communication from the chloroplast to the nucleus, called retrograde signaling. Although some pathways of communication have been identified, the actual signals that move between the two cellular compartments are largely unknown. This review provides an overview of retrograde signaling including its importance to the cell, candidate signals, recent advances, and current experimental systems. In addition, we highlight the potential of using drought stress as a model for studying retrograde signaling.

  1. The fine structure of sheep myocardial cells; sarcolemmal invaginations and the transverse tubular system.

    PubMed

    SIMPSON, F O; OERTELIS, S J

    1962-01-01

    An electron microscope study of sheep myocardial cells has demonstrated the presence of a transverse tubular system, apparently forming a network across the cell at each Z band level. The walls of these tubules resemble the sarcolemma in consisting of two dense layers-plasma membrane and basement menbrane; continuity of the tubule walls with the sarcolemma can be seen when longitudinal sections of a cell are obtained between two subsarcolemmal myofibrils and at the same time perpendicular to the cell surface. The demonstration of communication between the lumen of the transverse tubular system and the extracellular space appears to be more definite in this study than in any work hitherto published. It provides anatomical evidence of a possible direct pathway for transmission of the activating impulse from the sarcolemma to the myofibril Z bands.

  2. THE FINE STRUCTURE OF SHEEP MYOCARDIAL CELLS; SARCOLEMMAL INVAGINATIONS AND THE TRANSVERSE TUBULAR SYSTEM

    PubMed Central

    Simpson, F. O.; Oertelis, S. J.

    1962-01-01

    An electron microscope study of sheep myocardial cells has demonstrated the presence of a transverse tubular system, apparently forming a network across the cell at each Z band level. The walls of these tubules resemble the sarcolemma in consisting of two dense layers—plasma membrane and basement menbrane; continuity of the tubule walls with the sarcolemma can be seen when longitudinal sections of a cell are obtained between two subsarcolemmal myofibrils and at the same time perpendicular to the cell surface. The demonstration of communication between the lumen of the transverse tubular system and the extracellular space appears to be more definite in this study than in any work hitherto published. It provides anatomical evidence of a possible direct pathway for transmission of the activating impulse from the sarcolemma to the myofibril Z bands. PMID:13913207

  3. Phosphene phenomenon: a new concept.

    PubMed

    Bókkon, István

    2008-05-01

    This paper proposes a new biopsychophysical concept of phosphene phenomenon. Namely, visual sensation of phosphenes is due to the intrinsic perception of ultraweak bioluminescent photon emission of cells in the visual system. In other words, phosphenes are bioluminescent biophotons in the visual system induced by various stimuli (mechanical, electrical, magnetic, ionizing radiation, etc.) as well as random bioluminescent biophotons firings of cells in the visual pathway. This biophoton emission can become conscious if induced or spontaneous biophoton emission of cells in the visual system exceeds a distinct threshold. Neuronal biophoton communication can occur by means of non-visual neuronal opsins and natural photosensitive biomolecules. Our interpretation is in direct connection with the functional roles of free radicals and excited biomolecules in living cells.

  4. CHLORAL HYDRATE DECREASES GAP JUNCTION COMMUNICATION IN RAT LIVER EPITHELIAL CELLS

    EPA Science Inventory

    Chloral hydrate decreases gap junction communication in rat liver epithelial cells

    Gap junction communication (GJC) is involved in controlling cell proliferation and differentiation. Connexins (Cx) that make up these junctions are composed of a closely related group of m...

  5. GAL4 transactivation-based assay for the detection of selective intercellular protein movement.

    PubMed

    Kumar, Dhinesh; Chen, Huan; Rim, Yeonggil; Kim, Jae-Yean

    2015-01-01

    Several plant proteins function as intercellular messenger to specify cell fate and coordinate plant development. Such intercellular communication can be achieved by direct, selective, or nonselective (diffusion-based) trafficking through plasmodesmata (PD), the symplasmic membrane-lined nanochannels adjoining two cells. A trichome rescue trafficking assay was reported to allow the detection of protein movement in Arabidopsis leaf tissue using transgenic gene expression. Here, we provide a protocol to dissect the mode of intercellular protein movement in Arabidopsis root. This assay system involves a root ground tissue-specific GAL4/UAS transactivation expression system in combination with fluorescent reporter proteins. In this system, mCherry, a red fluorescent protein, can move cell to cell via diffusion, while mCherry-H2B is tightly cell autonomous. Thus, a protein fused to mCherry-H2B that can move out from the site of synthesis likely contains a selective trafficking signal to impart a cell-to-cell gain-of-trafficking function to the cell-autonomous mCherry-H2B. This approach can be adapted to investigate the cell-to-cell trafficking properties of any protein of interest.

  6. [Metabolic changes in cells under electromagnetic radiation of mobile communication systems].

    PubMed

    Iakimenko, I L; Sidorik, E P; Tsybulin, A S

    2011-01-01

    Review is devoted to the analysis of biological effects of microwaves. The results of last years' researches indicated the potential risks of long-term low-level microwaves exposure for human health. The analysis of metabolic changes in living cells under the exposure of microwaves from mobile communication systems indicates that this factor is stressful for cells. Among the reproducible effects of low-level microwave radiation are overexpression of heat shock proteins, an increase of reactive oxygen species level, an increase of intracellular Ca2+, damage of DNA, inhibition of DNA reparation, and induction of apoptosis. Extracellular-signal-regulated kinases ERK and stress-related kinases p38MAPK are involved in metabolic changes. Analysis of current data suggests that the concept of exceptionally thermal mechanism of biological effects of microwaves is not correct. In turn, this raises the question of the need to revaluation of modern electromagnetic standards based on thermal effects of non-ionizing radiation on biological systems.

  7. Achieving the Promise of Therapeutic Extracellular Vesicles: The Devil is in Details of Therapeutic Loading.

    PubMed

    Sutaria, Dhruvitkumar S; Badawi, Mohamed; Phelps, Mitch A; Schmittgen, Thomas D

    2017-05-01

    Extracellular vesicles (EVs) represent a class of cell secreted organelles which naturally contain biomolecular cargo such as miRNA, mRNA and proteins. EVs mediate intercellular communication, enabling the transfer of functional nucleic acids from the cell of origin to the recipient cells. In addition, EVs make an attractive delivery vehicle for therapeutics owing to their increased stability in circulation, biocompatibility, low immunogenicity and toxicity profiles. EVs can also be engineered to display targeting moieties on their surfaces which enables targeting to desired tissues, organs or cells. While much has been learned on the role of EVs as cell communicators, the field of therapeutic EV application is currently under development. Critical to the future success of EV delivery system is the description of methods by which therapeutics can be successfully and efficiently loaded within the EVs. Two methods of loading of EVs with therapeutic cargo exist, endogenous and exogenous loading. We have therefore focused this review on describing the various published approaches for loading EVs with therapeutics.

  8. Crosstalk between cancer and the neuro-immune system.

    PubMed

    Kuol, Nyanbol; Stojanovska, Lily; Apostolopoulos, Vasso; Nurgali, Kulmira

    2018-02-15

    In the last decade, understanding of cancer initiation and progression has been given much attention with studies mainly focusing on genetic abnormalities. Importantly, cancer cells can influence their microenvironment and bi-directionally communicate with other systems such as the immune system. The nervous system plays a fundamental role in regulating immune responses to a range of disease states including cancer. Its dysfunction influences the progression of cancer. The role of the immune system in tumor progression is of relevance to the nervous system since they can bi-directionally communicate via neurotransmitters and neuropeptides, common receptors, and, cytokines. However, cross-talk between these cells is highly complex in nature, and numerous variations are possible according to the type of cancer involved. The neuro-immune interaction is essential in influencing cancer development and progression. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary.

    PubMed

    Jiang, Chen; Diao, Fan; Sang, Yong-Juan; Xu, Na; Zhu, Rui-Lou; Wang, Xiu-Xing; Chen, Zhong; Tao, Wei-Wei; Yao, Bing; Sun, Hai-Xiang; Huang, Xing-Xu; Xue, Bin; Li, Chao-Jun

    2017-01-01

    Folliculogenesis is a progressive and highly regulated process, which is essential to provide ova for later reproductive life, requires the bidirectional communication between the oocyte and granulosa cells. This physical connection-mediated communication conveys not only the signals from the oocyte to granulosa cells that regulate their proliferation but also metabolites from the granulosa cells to the oocyte for biosynthesis. However, the underlying mechanism of establishing this communication is largely unknown. Here, we report that oocyte geranylgeranyl diphosphate (GGPP), a metabolic intermediate involved in protein geranylgeranylation, is required to establish the oocyte-granulosa cell communication. GGPP and geranylgeranyl diphosphate synthase (Ggpps) levels in oocytes increased during early follicular development. The selective depletion of GGPP in mouse oocytes impaired the proliferation of granulosa cells, primary-secondary follicle transition and female fertility. Mechanistically, GGPP depletion inhibited Rho GTPase geranylgeranylation and its GTPase activity, which was responsible for the accumulation of cell junction proteins in the oocyte cytoplasm and the failure to maintain physical connection between oocyte and granulosa cells. GGPP ablation also blocked Rab27a geranylgeranylation, which might account for the impaired secretion of oocyte materials such as Gdf9. Moreover, GGPP administration restored the defects in oocyte-granulosa cell contact, granulosa cell proliferation and primary-secondary follicle transition in Ggpps depletion mice. Our study provides the evidence that GGPP-mediated protein geranylgeranylation contributes to the establishment of oocyte-granulosa cell communication and then regulates the primary-secondary follicle transition, a key phase of folliculogenesis essential for female reproductive function.

  10. Circuit Design Features of a Stable Two-Cell System.

    PubMed

    Zhou, Xu; Franklin, Ruth A; Adler, Miri; Jacox, Jeremy B; Bailis, Will; Shyer, Justin A; Flavell, Richard A; Mayo, Avi; Alon, Uri; Medzhitov, Ruslan

    2018-02-08

    Cell communication within tissues is mediated by multiple paracrine signals including growth factors, which control cell survival and proliferation. Cells and the growth factors they produce and receive constitute a circuit with specific properties that ensure homeostasis. Here, we used computational and experimental approaches to characterize the features of cell circuits based on growth factor exchange between macrophages and fibroblasts, two cell types found in most mammalian tissues. We found that the macrophage-fibroblast cell circuit is stable and robust to perturbations. Analytical screening of all possible two-cell circuit topologies revealed the circuit features sufficient for stability, including environmental constraint and negative-feedback regulation. Moreover, we found that cell-cell contact is essential for the stability of the macrophage-fibroblast circuit. These findings illustrate principles of cell circuit design and provide a quantitative perspective on cell interactions. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Is the Phone Mightier than the Sword? Cell Phones and Insurgent Violence in Iraq

    DTIC Science & Technology

    2012-09-03

    Does improved communication as provided by modern cell phone technology affect the production of violence during insurgencies? A priori predictions... phone communications on conflict using data on Iraq’s cell phone network and event data on violence. We show that increased mobile communications...with counterinsurgents, and it creates passive signals intelligence collection opportunities. We provide the first systematic test of the effect of cell

  12. Communication-dependent mineralization of osteoblasts via gap junctions.

    PubMed

    Hashida, Yukihiko; Nakahama, Ken-ichi; Shimizu, Kaori; Akiyama, Masako; Harada, Kiyoshi; Morita, Ikuo

    2014-04-01

    Connexin43 (Cx43) is a major gap junction (GJ) protein in bone and plays a critical role in osteoblast differentiation. Several studies show that osteoblast differentiation is delayed by Cx43 ablation. However, the precise mechanism underlying the role of Cx43 in osteoblast differentiation is not fully understood. Firstly, we analyzed the phenotype of a conditional knockout mouse, which was generated by mating of an osterix promoter-driven Cre expressing mouse with a Cx43-floxed mouse. As expected, delayed ossification was observed. Secondly, we demonstrated that the cell communication via gap junctions played an important role in osteoblast differentiation using a tamoxifen-inducible knockout system in vitro. Genetic ablation of Cx43 resulted in both the disruption of cell-communications and the attenuation of osteoblast mineralization induced by BMP-2, but not by ascorbic acid. Moreover, restoring full-length Cx43 (382aa) expression rescued the impairment of osteoblast cell-communication and osteoblast mineralization; however, the expression of the Cx43 N-terminal mutant (382aaG2V) did not rescue either of them. Comparing the gene expression profiles, the genes directly regulated by BMP-2 were attenuated by Cx43 gene ablation. These results suggested that the cell-communication mediated by gap junctions was indispensable for normal differentiation of osteoblast induced by BMP-2. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Environmentally induced amplitude death and firing provocation in large-scale networks of neuronal systems

    NASA Astrophysics Data System (ADS)

    Pankratova, Evgeniya V.; Kalyakulina, Alena I.

    2016-12-01

    We study the dynamics of multielement neuronal systems taking into account both the direct interaction between the cells via linear coupling and nondiffusive cell-to-cell communication via common environment. For the cells exhibiting individual bursting behavior, we have revealed the dependence of the network activity on its scale. Particularly, we show that small-scale networks demonstrate the inability to maintain complicated oscillations: for a small number of elements in an ensemble, the phenomenon of amplitude death is observed. The existence of threshold network scales and mechanisms causing firing in artificial and real multielement neural networks, as well as their significance for biological applications, are discussed.

  14. Information transmission in microbial and fungal communication: from classical to quantum.

    PubMed

    Majumdar, Sarangam; Pal, Sukla

    2018-06-01

    Microbes have their own communication systems. Secretion and reception of chemical signaling molecules and ion-channels mediated electrical signaling mechanism are yet observed two special ways of information transmission in microbial community. In this article, we address the aspects of various crucial machineries which set the backbone of microbial cell-to-cell communication process such as quorum sensing mechanism (bacterial and fungal), quorum sensing regulated biofilm formation, gene expression, virulence, swarming, quorum quenching, role of noise in quorum sensing, mathematical models (therapy model, evolutionary model, molecular mechanism model and many more), synthetic bacterial communication, bacterial ion-channels, bacterial nanowires and electrical communication. In particular, we highlight bacterial collective behavior with classical and quantum mechanical approaches (including quantum information). Moreover, we shed a new light to introduce the concept of quantum synthetic biology and possible cellular quantum Turing test.

  15. ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCTED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS

    EPA Science Inventory

    ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS.
    OBJECTIVE: We have shown that functional gap junction communication as measured by Lucifer yellow dye transfer (DT) in Clone-9 rat liver epithelial cells, c...

  16. The skeletal vascular system - Breathing life into bone tissue.

    PubMed

    Stegen, Steve; Carmeliet, Geert

    2017-08-26

    During bone development, homeostasis and repair, a dense vascular system provides oxygen and nutrients to highly anabolic skeletal cells. Characteristic for the vascular system in bone is the serial organization of two capillary systems, each typified by specific morphological and physiological features. Especially the arterial capillaries mediate the growth of the bone vascular system, serve as a niche for skeletal and hematopoietic progenitors and couple angiogenesis to osteogenesis. Endothelial cells and osteoprogenitor cells interact not only physically, but also communicate to each other by secretion of growth factors. A vital angiogenic growth factor is vascular endothelial growth factor and its expression in skeletal cells is controlled by osteogenic transcription factors and hypoxia signaling, whereas the secretion of angiocrine factors by endothelial cells is regulated by Notch signaling, blood flow and possibly hypoxia. Bone loss and impaired fracture repair are often associated with reduced and disorganized blood vessel network and therapeutic targeting of the angiogenic response may contribute to enhanced bone regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Oxygen-induced cell migration and on-line monitoring biomarkers modulation of cervical cancers on a microfluidic system

    PubMed Central

    Lin, Xuexia; Chen, Qiushui; Liu, Wu; Zhang, Jie; Wang, Shiqi; Lin, Zhixiong; Lin, Jin-Ming

    2015-01-01

    In this work, we report an integrated microfluidic device for cell co-culture under different concentrations of oxygen, in which the secreted protein VEGF165 was on-line qualitatively and semi-quantitatively analyzed by functional nucleic acid, hemin, ABTS and peroxide system. This microfluidic platform allowed investigation of various oxygen and distances effect on cell-to-cell communication. Besides, the microfluidic device was used for real-time analysis of VEGF165 protein by aptamer-functionalized microchannels. Under 5% O2 condition, we found that the migration of CaSki cells was faster than the migration of human umbilical vein endothelial cells. However, the migration of CaSki cells was slower than the migration of HUVECs under 15% O2 condition. Moreover, the shorter intercellular distances, the quicker cells migration. Furthermore, HIF-1α and VEGF165 genes, ROS were analyzed, and the results would provide new perspectives for the diagnosis and medical treatment of cervical cancer. PMID:25905434

  18. Spatial Distribution and Receptor Specificity of Zebrafish Kit System - Evidence for a Kit-Mediated Bi-Directional Communication System in the Preovulatory Ovarian Follicle

    PubMed Central

    Yao, Kai; Ge, Wei

    2013-01-01

    Consisting of Kit ligand and receptor Kit, the Kit system is involved in regulating many ovarian functions such as follicle activation, granulosa cell proliferation, and oocyte growth and maturation. In mammals, Kit ligand is derived from the granulosa cells and Kit receptor is expressed in the oocyte and theca cells. In the zebrafish, the Kit system contains two ligands (Kitlga and Kitlgb) and two receptors (Kita and Kitb). Interestingly, Kitlga and Kitb are localized in the somatic follicle cells, but Kitlgb and Kita are expressed in the oocyte. Using recombinant zebrafish Kitlga and Kitlgb, we demonstrated that Kitlga preferentially activated Kita whereas Kitlgb specifically activated Kitb by Western analysis for receptor phosphorylation. In support of this, Kitlgb triggered a stronger and longer MAPK phosphorylation in follicle cells than Kitlga, whereas Kitlga but not Kitlgb activated MAPK in the denuded oocytes, in agreement with the distribution of Kita and Kitb in the follicle and their specificity for Kitlga and Kitlgb. Further analysis of the interaction between Kit ligands and receptors by homology modeling showed that Kitlga-Kita and Kitlgb-Kitb both have more stable electrostatic interaction than Kitlgb-Kita or Kitlga-Kitb. A functional study of Kit involvement in final oocyte maturation showed that Kitlga and Kitlgb both suppressed the spontaneous maturation significantly; in contrast, Kitlgb but not Kitlga significantly promoted 17α, 20β-dihydroxy-4-pregnen-3-one (DHP) -induced oocyte maturation. Our results provided strong evidence for a Kit-mediated bi-directional communication system in the zebrafish ovarian follicle, which could be part of the complex interplay between the oocyte and the follicle cells in the development of follicles. PMID:23409152

  19. Group 3 Innate Lymphoid Cells: Communications Hubs of the Intestinal Immune System.

    PubMed

    Withers, David R; Hepworth, Matthew R

    2017-01-01

    The maintenance of mammalian health requires the generation of appropriate immune responses against a broad range of environmental and microbial challenges, which are continually encountered at barrier tissue sites including the skin, lung, and gastrointestinal tract. Dysregulated barrier immune responses result in inflammation, both locally and systemically in peripheral organs. Group 3 innate lymphoid cells (ILC3) are constitutively present at barrier sites and appear to be highly specialized in their ability to sense a range of environmental and host-derived signals. Under homeostatic conditions, ILC3 respond to local cues to maintain tissue homeostasis and restrict inflammatory responses. In contrast, perturbations in the tissue microenvironment resulting from disease, infection, or tissue damage can drive dysregulated pro-inflammatory ILC3 responses and contribute to immunopathology. The tone of the ILC3 response is dictated by a balance of "exogenous" signals, such as dietary metabolites and commensal microbes, and "endogenous" host-derived signals from stromal cells, immune cells, and the nervous system. ILC3 must therefore have the capacity to simultaneously integrate a wide array of complex and dynamic inputs in order to regulate barrier function and tissue health. In this review, we discuss the concept of ILC3 as a "communications hub" in the intestinal tract and associated lymphoid tissues and address the variety of signals, derived from multiple biological systems, which are interpreted by ILC3 to modulate the release of downstream effector molecules and regulate cell-cell crosstalk. Successful integration of environmental cues by ILC3 and downstream propagation to the broader immune system is required to maintain a tolerogenic and anti-inflammatory tone and reinforce barrier function, whereas dysregulation of ILC3 responses can contribute to the onset or progression of clinically relevant chronic inflammatory diseases.

  20. The Self-Identity Protein IdsD Is Communicated between Cells in Swarming Proteus mirabilis Colonies.

    PubMed

    Saak, Christina C; Gibbs, Karine A

    2016-12-15

    Proteus mirabilis is a social bacterium that is capable of self (kin) versus nonself recognition. Swarming colonies of this bacterium expand outward on surfaces to centimeter-scale distances due to the collective motility of individual cells. Colonies of genetically distinct populations remain separate, while those of identical populations merge. Ids proteins are essential for this recognition behavior. Two of these proteins, IdsD and IdsE, encode identity information for each strain. These two proteins bind in vitro in an allele-restrictive manner. IdsD-IdsE binding is correlated with the merging of populations, whereas a lack of binding is correlated with the separation of populations. Key questions remained about the in vivo interactions of IdsD and IdsE, specifically, whether IdsD and IdsE bind within single cells or whether IdsD-IdsE interactions occur across neighboring cells and, if so, which of the two proteins is exchanged. Here we demonstrate that IdsD must originate from another cell to communicate identity and that this nonresident IdsD interacts with IdsE resident in the recipient cell. Furthermore, we show that unbound IdsD in recipient cells does not cause cell death and instead appears to contribute to a restriction in the expansion radius of the swarming colony. We conclude that P. mirabilis communicates IdsD between neighboring cells for nonlethal kin recognition, which suggests that the Ids proteins constitute a type of cell-cell communication. We demonstrate that self (kin) versus nonself recognition in P. mirabilis entails the cell-cell communication of an identity-encoding protein that is exported from one cell and received by another. We further show that this intercellular exchange affects swarm colony expansion in a nonlethal manner, which adds social communication to the list of potential swarm-related regulatory factors. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. The Self-Identity Protein IdsD Is Communicated between Cells in Swarming Proteus mirabilis Colonies

    PubMed Central

    Saak, Christina C.

    2016-01-01

    ABSTRACT Proteus mirabilis is a social bacterium that is capable of self (kin) versus nonself recognition. Swarming colonies of this bacterium expand outward on surfaces to centimeter-scale distances due to the collective motility of individual cells. Colonies of genetically distinct populations remain separate, while those of identical populations merge. Ids proteins are essential for this recognition behavior. Two of these proteins, IdsD and IdsE, encode identity information for each strain. These two proteins bind in vitro in an allele-restrictive manner. IdsD-IdsE binding is correlated with the merging of populations, whereas a lack of binding is correlated with the separation of populations. Key questions remained about the in vivo interactions of IdsD and IdsE, specifically, whether IdsD and IdsE bind within single cells or whether IdsD-IdsE interactions occur across neighboring cells and, if so, which of the two proteins is exchanged. Here we demonstrate that IdsD must originate from another cell to communicate identity and that this nonresident IdsD interacts with IdsE resident in the recipient cell. Furthermore, we show that unbound IdsD in recipient cells does not cause cell death and instead appears to contribute to a restriction in the expansion radius of the swarming colony. We conclude that P. mirabilis communicates IdsD between neighboring cells for nonlethal kin recognition, which suggests that the Ids proteins constitute a type of cell-cell communication. IMPORTANCE We demonstrate that self (kin) versus nonself recognition in P. mirabilis entails the cell-cell communication of an identity-encoding protein that is exported from one cell and received by another. We further show that this intercellular exchange affects swarm colony expansion in a nonlethal manner, which adds social communication to the list of potential swarm-related regulatory factors. PMID:27672195

  2. Riding the Waves: How Our Cells Send Signals | Center for Cancer Research

    Cancer.gov

    The ability of cells to perceive and respond to their environment is critical in order to maintain basic cellular functions such as development, tissue repair, and response to stress. This process happens through a complex system of communication, called cell signaling, which governs basic cellular activities and coordinates cell actions. Errors in cell signaling have been linked to numerous diseases, including cancer. NF-κB is a protein complex that plays a critical role in many cell signaling pathways by controlling gene activation. It is widely used by cells to regulate cell growth and survival and helps to protect the cell from conditions that would otherwise cause it to die. Many tumor cells have mutations in genes that cause NF-κB to become overactive. Blocking NF-κB could cause tumor cells to stop growing, die, or become more sensitive to therapeutics.

  3. Engineering Cell-Cell Signaling

    PubMed Central

    Milano, Daniel F.; Natividad, Robert J.; Asthagiri, Anand R.

    2014-01-01

    Juxtacrine cell-cell signaling mediated by the direct interaction of adjoining mammalian cells is arguably the mode of cell communication that is most recalcitrant to engineering. Overcoming this challenge is crucial for progress in biomedical applications, such as tissue engineering, regenerative medicine, immune system engineering and therapeutic design. Here, we describe the significant advances that have been made in developing synthetic platforms (materials and devices) and synthetic cells (cell surface engineering and synthetic gene circuits) to modulate juxtacrine cell-cell signaling. In addition, significant progress has been made in elucidating design rules and strategies to modulate juxtacrine signaling based on quantitative, engineering analysis of the mechanical and regulatory role of juxtacrine signals in the context of other cues and physical constraints in the microenvironment. These advances in engineering juxtacrine signaling lay a strong foundation for an integrative approach to utilizing synthetic cells, advanced ‘chassis’ and predictive modeling to engineer the form and function of living tissues. PMID:23856592

  4. Exploring the human mesenchymal stem cell tubule communication network through electron microscopy.

    PubMed

    Valente, Sabrina; Rossi, Roberta; Resta, Leonardo; Pasquinelli, Gianandrea

    2015-04-01

    Cells use several mechanisms to transfer information to other cells. In this study, we describe micro/nanotubular connections and exosome-like tubule fragments in multipotent mesenchymal stem cells (MSCs) from human arteries. Scanning and transmission electron microscopy allowed characterization of sinusoidal microtubular projections (700 nm average size, 200 µm average length, with bulging mitochondria and actin microfilaments); short, uniform, variously shaped nanotubular projections (100 nm, bidirectional communication); and tubule fragments (50 nm). This is the first study demonstrating that MSCs from human arteries constitutively interact through an articulate and dynamic tubule network allowing long-range cell to cell communication.

  5. A transwell assay that excludes exosomes for assessment of tunneling nanotube-mediated intercellular communication.

    PubMed

    Thayanithy, Venugopal; O'Hare, Patrick; Wong, Phillip; Zhao, Xianda; Steer, Clifford J; Subramanian, Subbaya; Lou, Emil

    2017-11-13

    Tunneling nanotubes (TNTs) are naturally-occurring filamentous actin-based membranous extensions that form across a wide spectrum of mammalian cell types to facilitate long-range intercellular communication. Valid assays are needed to accurately assess the downstream effects of TNT-mediated transfer of cellular signals in vitro. We recently reported a modified transwell assay system designed to test the effects of intercellular transfer of a therapeutic oncolytic virus, and viral-activated drugs, between cells via TNTs. The objective of the current study was to demonstrate validation of this in vitro approach as a new method for effectively excluding diffusible forms of long- and close-range intercellular transfer of intracytoplasmic cargo, including exosomes/microvesicles and gap junctions in order to isolate TNT-selective cell communication. We designed several steps to effectively reduce or eliminate diffusion and long-range transfer via these extracellular vesicles, and used Nanoparticle Tracking Analysis to quantify exosomes following implementation of these steps. The experimental approach outlined here effectively reduced exosome trafficking by >95%; further use of heparin to block exosome uptake by putative recipient cells further impeded transfer of these extracellular vesicles. This validated assay incorporates several steps that can be taken to quantifiably control for extracellular vesicles in order to perform studies focused on TNT-selective communication.

  6. Acetylation mediates Cx43 reduction caused by electrical stimulation

    PubMed Central

    Meraviglia, Viviana; Azzimato, Valerio; Colussi, Claudia; Florio, Maria Cristina; Binda, Anna; Panariti, Alice; Qanud, Khaled; Suffredini, Silvia; Gennaccaro, Laura; Miragoli, Michele; Barbuti, Andrea; Lampe, Paul D.; Gaetano, Carlo; Pramstaller, Peter P.; Capogrossi, Maurizio C.; Recchia, Fabio A.; Pompilio, Giulio; Rivolta, Ilaria; Rossini, Alessandra

    2015-01-01

    Communication between cardiomyocytes depends upon Gap Junctions (GJ). Previous studies have demonstrated that electrical stimulation induces GJ remodeling and modifies histone acetylases (HAT) and deacetylases (HDAC) activities, although these two results have not been linked. The aim of this work was to establish whether electrical stimulation modulates GJ-mediated cardiac cell-cell communication by acetylation-dependent mechanisms. Field stimulation of HL-1 cardiomyocytes at 0.5 Hz for 24 hours significantly reduced Connexin43 (Cx43) expression and cell-cell communication. HDAC activity was down-regulated whereas HAT activity was not modified resulting in increased acetylation of Cx43. Consistent with a post-translational mechanism, we did not observe a reduction in Cx43 mRNA in electrically stimulated cells, while the proteasomal inhibitor MG132 maintained Cx43 expression. Further, the treatment of paced cells with the HAT inhibitor Anacardic Acid maintained both the levels of Cx43 and cell-cell communication. Finally, we observed increased acetylation of Cx43 in the left ventricles of dogs subjected to chronic tachypacing as a model of abnormal ventricular activation. In conclusion, our findings suggest that altered electrical activity can regulate cardiomyocyte communication by influencing the acetylation status of Cx43. PMID:26264759

  7. Exploring parent-sibling communication in families of children with sickle cell disease.

    PubMed

    Graff, J Carolyn; Hankins, Jane S; Hardy, Belinda T; Hall, Heather R; Roberts, Ruth J; Neely-Barnes, Susan L

    2010-01-01

    Communication within families of children with sickle cell disease is important yet has not been adequately investigated. Focus group interviews were conducted with parents of children with sickle cell disease to explore parent-sibling communication about sickle cell disease. Communication was influenced by attributes and behaviors of the parent, the child with sickle cell disease, and the sibling; extended family, neighbors, friends, and church members or social networks; and available, accessible resources related to the child's health, child's school, and parent employment. Outcomes that influenced and were influenced by factors within and outside the parent-sibling dyad and nuclear family included parent satisfaction, parent roles, family intactness, and status attainment. These findings support previous research with African-American families and expand our views of the importance of educating parents, family members, and others about sickle cell disease. The findings suggest a need to explore sibling perception of this communication, parent and sibling perception of the impact of frequent hospitalizations and clinic visits on the sibling and family, and variations within families of children with sickle cell disease.

  8. Improved Separators For Rechargeable Lithium Cells

    NASA Technical Reports Server (NTRS)

    Shen, David; Surampudi, Subbarao; Huang, Chen-Kuo; Halpert, Gerald

    1994-01-01

    Improved pairs of separators proposed for use in rechargeable lithium cells operating at ambient temperature. Block growth of lithium dendrites and help prevent short circuits. Each cell contains one separator made of microporous polypropylene placed next to anode, and one separator made of microporous polytetrafluoroethylene (PTFE) next to cathode. Separators increase cycle lives of secondary lithium cells. Cells to which concept applicable those of Li/TiS(2), Li/NbSe(3), Li/CoO(2), Li/MoS(2), Li/VO(x), and Li/MnO(2) chemical systems. Advantageous in spacecraft, military, communications, automotive, and other applications in which high energy density and rechargeability needed.

  9. Feasibility and Perceptions of Cell Phone-Based, Health-Related Communication With Adolescents in an Economically Depressed Area.

    PubMed

    Sawni, Anju; Cederna-Meko, Crystal; LaChance, Jenny L; Buttigieg, Angie; Le, Quoc; Nunuk, Irene; Ang, Joyce; Burrell, Katherine M

    2017-02-01

    We examined the feasibility and perception of cell-based (texting, voicemail [VM], and email/social media), health-related communication with adolescents in Genesee County, MI, where 22% reside below the poverty level. Results of an anonymous survey found that 86% of respondents owned a cell phone, 87% had data, 96% texted, 90.5% emailed/used social media, and 68% had VM. Most adolescents were interested in cell-based communication via texting (52%), VM (37%), and email/social media (31%). Interest in types of health communication included appointment reminders (99% texting; 94% VM; 95% email/social media), shot reminders (84.5% texting; 74.5% VM; 81% email/social media), call for test results (71.5% texting; 75% VM; 65% email/social media), medication reminders (63% texting; 54% VM; 58% e-mail/social media), and health tips (36% texting; 18.5% VM; 73% email/social media). Cell-based health-related communication with adolescents is feasible even within low socioeconomic status populations, primarily via texting. Health providers should embrace cell-based patient communication.

  10. The role of radiation hard solar cells in minimizing the costs of global satellite communication systems

    NASA Technical Reports Server (NTRS)

    Summers, Geoffrey P.; Walters, Robert J.; Messenger, Scott R.; Burke, Edward A.

    1996-01-01

    An analysis embodied in a PC computer program is presented, which quantitatively demonstrates how the availability of radiation hard solar cells can help minimize the cost of a global satellite communications system. An important distinction between the currently proposed systems, such as Iridium, Odyssey and Ellipsat, is the number of satellites employed and their operating altitudes. Analysis of the major costs associated with implementing these systems shows that operation at orbital altitudes within the earth's radiation belts (10(exp 3) to 10(exp 4)km) can reduce the total cost of a system by several hundred percent, so long as radiation hard components including solar cells can be used. A detailed evaluation of the predicted performance of photovoltaic arrays using several different planar solar cell technologies is given, including commercially available Si and GaAs/Ge, and InP/Si which is currently under development. Several examples of applying the program are given, which show that the end of life (EOL) power density of different technologies can vary by a factor of ten for certain missions. Therefore, although a relatively radiation-soft technology can usually provide the required EOL power by simply increasing the size of the array, the impact upon the total system budget could be unacceptable, due to increased launch and hardware costs. In aggregate, these factors can account for more than a 10% increase in the total system cost. Since the estimated total costs of proposed global-coverage systems range from $1B to $9B, the availability of radiation-hard solar cells could make a decisive difference in the selection of a particular constellation architecture.

  11. Oxygen sensor for monitoring gas mixtures containing hydrocarbons

    DOEpatents

    Ruka, Roswell J.; Basel, Richard A.

    1996-01-01

    A gas sensor measures O.sub.2 content of a reformable monitored gas containing hydrocarbons H.sub.2 O and/or CO.sub.2, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system.

  12. Oxygen sensor for monitoring gas mixtures containing hydrocarbons

    DOEpatents

    Ruka, R.J.; Basel, R.A.

    1996-03-12

    A gas sensor measures O{sub 2} content of a reformable monitored gas containing hydrocarbons, H{sub 2}O and/or CO{sub 2}, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system. 4 figs.

  13. Forward Technology Solar Cell Experiment First On-Orbit Data

    NASA Technical Reports Server (NTRS)

    Walters, R. J.; Garner, J. C.; Lam, S. N.; Vazquez, J. A.; Braun, W. R.; Ruth, R. E.; Warner, J. H.; Lorentzen, J. R.; Messenger, S. R.; Bruninga, R.; hide

    2007-01-01

    This paper presents first on orbit measured data from the Forward Technology Solar Cell Experiment (FTSCE). FTSCE is a space experiment housed within the 5th Materials on the International Space Station Experiment (MISSE-5). MISSE-5 was launched aboard the Shuttle return to flight mission (STS-114) on July 26, 2005 and deployed on the exterior of the International Space Station (ISS). The experiment will remain in orbit for nominally one year, after which it will be returned to Earth for post-flight testing and analysis. While on orbit, the experiment is designed to measure a 36 point current vs. voltage (IV) curve on each of the experimental solar cells, and the data is continuously telemetered to Earth. The experiment also measures the solar cell temperature and the orientation of the solar cells to the sun. A range of solar cell technologies are included in the experiment including state-of-the-art triple junction InGaP/GaAs/Ge solar cells from several vendors, thin film amorphous Si and CuIn(Ga)Se2 cells, and next-generation technologies like single-junction GaAs cells grown on Si wafers and metamorphic InGaP/InGaAs/Ge triple-junction cells. In addition to FTSCE, MISSE-5 also contains a Thin-Film Materials experiment. This is a passive experiment that will provide data on the effect of the space environment on more than 200 different materials. FTSCE was initially conceived in response to various on-orbit and ground test anomalies associated with space power systems. The Department of Defense (DoD) required a method of rapidly obtaining on orbit validation data for new space solar cell technologies, and NRL was tasked to devise an experiment to meet this requirement. Rapid access to space was provided by the MISSE Program which is a NASA Langley Research Center program. MISSE-5 is a completely self-contained experiment system with its own power generation and storage system and communications system. The communications system, referred to as PCSat, transmits and receives in the Amateur Radio band providing a node on the Amateur Radio Satellite Service. This paper presents an overview of the various aspects of MISSE-5 and a sample of the first measured on orbit data.

  14. An Interference Mitigation Scheme of Device-to-Device Communications for Sensor Networks Underlying LTE-A

    PubMed Central

    Kim, Jeehyeong; Karim, Nzabanita Abdoul; Cho, Sunghyun

    2017-01-01

    Device-to-Device (D2D) communication technology has become a key factor in wireless sensor networks to form autonomous communication links among sensor nodes. Many research results for D2D have been presented to resolve different technical issues of D2D. Nevertheless, the previous works have not resolved the shortage of data rate and limited coverage of wireless sensor networks. Due to bandwidth shortages and limited communication coverage, 3rd Generation Partnership Project (3GPP) has introduced a new Device-to-Device (D2D) communication technique underlying cellular networks, which can improve spectral efficiencies by enabling the direct communication of devices in proximity without passing through enhanced-NodeB (eNB). However, to enable D2D communication in a cellular network presents a challenge with regard to radio resource management since D2D links reuse the uplink radio resources of cellular users and it can cause interference to the receiving channels of D2D user equipment (DUE). In this paper, a hybrid mechanism is proposed that uses Fractional Frequency Reuse (FFR) and Almost Blank Sub-frame (ABS) schemes to handle inter-cell interference caused by cellular user equipments (CUEs) to D2D receivers (DUE-Rxs), reusing the same resources at the cell edge area. In our case, DUE-Rxs are considered as victim nodes and CUEs as aggressor nodes, since our primary target is to minimize inter-cell interference in order to increase the signal to interference and noise ratio (SINR) of the target DUE-Rx at the cell edge area. The numerical results show that the interference level of the target D2D receiver (DUE-Rx) decreases significantly compared to the conventional FFR at the cell edge. In addition, the system throughput of the proposed scheme can be increased up to 60% compared to the conventional FFR. PMID:28489064

  15. An Interference Mitigation Scheme of Device-to-Device Communications for Sensor Networks Underlying LTE-A.

    PubMed

    Kim, Jeehyeong; Karim, Nzabanita Abdoul; Cho, Sunghyun

    2017-05-10

    Device-to-Device (D2D) communication technology has become a key factor in wireless sensor networks to form autonomous communication links among sensor nodes. Many research results for D2D have been presented to resolve different technical issues of D2D. Nevertheless, the previous works have not resolved the shortage of data rate and limited coverage of wireless sensor networks. Due to bandwidth shortages and limited communication coverage, 3rd Generation Partnership Project (3GPP) has introduced a new Device-to-Device (D2D) communication technique underlying cellular networks, which can improve spectral efficiencies by enabling the direct communication of devices in proximity without passing through enhanced-NodeB (eNB). However, to enable D2D communication in a cellular network presents a challenge with regard to radio resource management since D2D links reuse the uplink radio resources of cellular users and it can cause interference to the receiving channels of D2D user equipment (DUE). In this paper, a hybrid mechanism is proposed that uses Fractional Frequency Reuse (FFR) and Almost Blank Sub-frame (ABS) schemes to handle inter-cell interference caused by cellular user equipments (CUEs) to D2D receivers (DUE-Rxs), reusing the same resources at the cell edge area. In our case, DUE-Rxs are considered as victim nodes and CUEs as aggressor nodes, since our primary target is to minimize inter-cell interference in order to increase the signal to interference and noise ratio (SINR) of the target DUE-Rx at the cell edge area. The numerical results show that the interference level of the target D2D receiver (DUE-Rx) decreases significantly compared to the conventional FFR at the cell edge. In addition, the system throughput of the proposed scheme can be increased up to 60% compared to the conventional FFR.

  16. Talking About Killing: Cell Phones, Collective Action, and Insurgent Violence in Iraq

    DTIC Science & Technology

    2011-09-06

    Does improved communication as provided by modern cell phone technology affect the production of violence during insurgencies? Theoretical...the effect of cell phone communications on conflict using data on Iraq’s cell phone network and event data on violence. We show that increased mobile

  17. 47 CFR 12.2 - Backup power.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Backup power. 12.2 Section 12.2 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL REDUNDANCY OF COMMUNICATIONS SYSTEMS § 12.2 Backup power..., must have an emergency backup power source (e.g., batteries, generators, fuel cells) for all assets...

  18. Effect of space flight on cytokine production

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Gerald

    Space flight has been shown to alter many immunological responses. Among those affected are the production of cytokines, Cytokines are the messengers of the immune system that facilitate communication among cells that allow the interaction among cells leading to the development of immune responses. Included among the cytokines are the interferons, interleukins, and colony stimulating factors. Cytokines also facilitate communication between the immune system and other body systems, such as the neuroendocrine and musculoskeletal systems. Some cytokines also have direct protective effects on the host, such as interferon, which can inhibit the replication of viruses. Studies in both humans and animals indicate that models of space flight as well as actual space flight alter the production and action of cytokines. Included among these changes are altered interferon production, altered responsiveness of bone marrow cells to granulocyte/monocyte-colony stimulating factor, but no alteration in the production of interleukin-3. This suggests that there are selective effects of space flight on immune responses, i.e. not all cytokines are affected in the same fashion by space flight. Tissue culture studies also suggest that there may be direct effects of space flight on the cells responsible for cytokine production and action. The results of the above study indicate that the effects of space flight on cytokines may be a fundamental mechanism by which space flight not only affects immune responses, but also other biological systems of the human.

  19. Gap Junctional Communication in Morphogenesis

    PubMed Central

    Levin, Michael

    2007-01-01

    Gap junctions permit the direct passage of small molecules from the cytosol of one cell to that of its neighbor, and thus form a system of cell-cell communication that exists alongside familiar secretion/receptor signaling. Because of the rich potential for regulation of junctional conductance, and directional and molecular gating (specificity), gap junctional communication (GJC) plays a crucial role in many aspects of normal tissue physiology. However, the most exciting role for GJC is in the regulation of information flow that takes place during embryonic development, regeneration, and tumor progression. The molecular mechanisms by which GJC establishes local and long-range instructive morphogenetic cues are just beginning to be understood. This review summarizes the current knowledge of the involvement of GJC in the patterning of both vertebrate and invertebrate systems and discusses in detail several morphogenetic systems in which the properties of this signaling have been molecularly characterized. One model consistent with existing data in the fields of vertebrate left-right patterning and anterior-posterior polarity in flatworm regeneration postulates electrophoretically-guided movement of small molecule morphogens through long-range GJC paths. The discovery of mechanisms controlling embryonic and regenerative GJC-mediated signaling, and identification of the downstream targets of GJC-permeable molecules, represent exciting next areas of research in this fascinating field. PMID:17481700

  20. New materials for old problems: What can nanomaterials do for biology and neuroscience?

    NASA Astrophysics Data System (ADS)

    Srivatsan, Malathi; Badanavalu, Mahadevappa P.; Yancey, Justin; Xie, Jining; Chen, Linfeng; Hankins, Philip T.; Yoon, Hargsoon; Varadan, Vijay K.

    2009-03-01

    The emerging field of nanotechnology offers the development of new materials and methods for crucial neuroscience applications namely (a) promoting survival and growth of the neurons, and (b) monitoring physiological signals generated in the nervous system such as excitation, synaptic transmission, release of neurotransmitter molecules and cell-to-cell communication. Such bio-devices will have several novel applications in basic science, laboratory analysis and therapeutic treatments. Our goals in this field of research include (a) development of new biocompatible substrates to guide and promote neuronal growth along specific pathways; (b) designing a neuron-friendly, bio-molecule delivery system for neuroprotection; (c) monitoring of electrical activity from neuron and also from neuronal networks; (d) determining the diffusion and intracellular localization of nanomaterial interacting with neurons at high resolution; and (e) detection of release of neurotransmitter molecules by means of newly designed nanosensors. Here we describe the fabrication and use of magnetic nanotubes and nanowire electrode arrays in studies using a cell culture model of neuronally differentiating rat pheochromocytoma (PC 12) cells. The magnetic nanotubes were fabricated by a template method yielding hematite (α-Fe2O3) nanotubes. These nanotubes were coupled with nerve growth factor (NGF). Vertically aligned nanowires were fabricated on glass substrates using the lithography-assisted template bonding (LATB) method. Rat pheochromocytoma (PC12) cells were cultured on these nanotubes and polylysine coated nanowire electrodes. Our results showed that magnetic nanotube bound NGF was available to PC12 cells as they showed significant differentiation into neurons. PC12 cells growing on nanowires in the presence of NGF differentiated into neurons capable of synthesis and release of dopamine upon stimulation. The neurons grew healthy neurites appearing to form synapses with other neurons in the dish. These results show that the magnetic nanotubes were capable of delivering neurotrophic molecules and the nanowire electrodes are neuron-friendly, promote cell to cell communication and can be used as bio-sensors in the nervous system.

  1. Ammonia impairs glutamatergic communication in astroglial cells: protective role of resveratrol.

    PubMed

    Bobermin, Larissa Daniele; Hansel, Gisele; Scherer, Emilene B S; Wyse, Angela T S; Souza, Diogo Onofre; Quincozes-Santos, André; Gonçalves, Carlos-Alberto

    2015-12-01

    Ammonia is a key toxin in the precipitation of hepatic encephalopathy (HE), a neuropsychiatric disorder associated with liver failure. In response to ammonia, various toxic events are triggered in astroglial cells, and alterations in brain glutamate communication are common. Resveratrol is a polyphenolic compound that has been extensively studied in pathological events because it presents several beneficial effects, including some in the central nervous system (CNS). We previously described that resveratrol is able to significantly modulate glial functioning and has a protective effect during ammonia challenge in vitro. In this study, we addressed the mechanisms by which resveratrol can protect C6 astroglial cells from glutamatergic alterations induced by ammonia. Resveratrol was able to prevent all the effects triggered by ammonia: (i) decrease in glutamate uptake activity and expression of the EAAC1 glutamate transporter, the main glutamate transporter present in C6 cells; (ii) increase of glutamate release, which was also dependent on the activation of the Na(+)-K(+)-Cl(-) co-transporter NKCC1; (iii) reduction in GS activity and intracellular GSH content; and (iv) impairment of Na(+)K(+)-ATPase activity. Interestingly, resveratrol, per se, also positively modulated the astroglial functions evaluated. Moreover, we demonstrated that heme oxygenase 1 (HO1), an enzyme that is part of the cellular defense system, mediated some of the effects of resveratrol. In conclusion, the mechanisms of the putative protective role of resveratrol against ammonia toxicity involve the modulation of pathways and molecules related to glutamate communication in astroglial cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Self-Organizing OFDMA System for Broadband Communication

    NASA Technical Reports Server (NTRS)

    Roy, Aloke (Inventor); Anandappan, Thanga (Inventor); Malve, Sharath Babu (Inventor)

    2016-01-01

    Systems and methods for a self-organizing OFDMA system for broadband communication are provided. In certain embodiments a communication node for a self organizing network comprises a communication interface configured to transmit data to and receive data from a plurality of nodes; and a processing unit configured to execute computer readable instructions. Further, computer readable instructions direct the processing unit to identify a sub-region within a cell, wherein the communication node is located in the sub-region; and transmit at least one data frame, wherein the data from the communication node is transmitted at a particular time and frequency as defined within the at least one data frame, where the time and frequency are associated with the sub-region.

  3. Immunology for physicists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perelson, A.S.; Weisbuch, G.

    1997-10-01

    The immune system is a complex system of cells and molecules that can provide us with a basic defense against pathogenic organisms. Like the nervous system, the immune system performs pattern recognition tasks, learns, and retains a memory of the antigens that it has fought. The immune system contains more than 10{sup 7} different clones of cells that communicate via cell-cell contact and the secretion of molecules. Performing complex tasks such as learning and memory involves cooperation among large numbers of components of the immune system and hence there is interest in using methods and concepts from statistical physics. Furthermore,more » the immune response develops in time and the description of its time evolution is an interesting problem in dynamical systems. In this paper, the authors provide a brief introduction to the biology of the immune system and discuss a number of immunological problems in which the use of physical concepts and mathematical methods has increased our understanding. {copyright} {ital 1997} {ital The American Physical Society}« less

  4. Multicellular regulation of entropy, spatial order, and information

    NASA Astrophysics Data System (ADS)

    Youk, Hyun

    Many multicellular systems such as tissues and microbial biofilms consist of cells that secrete and sense signalling molecules. Understanding how collective behaviours of secrete-and-sense cells is an important challenge. We combined experimental and theoretical approaches to understand multicellular coordination of gene expression and spatial pattern formation among secrete-and-sense cells. We engineered secrete-and-sense yeast cells to show that cells can collectively and permanently remember a past event by reminding each other with their secreted signalling molecule. If one cell ``forgets'' then another cell can remind it. Cell-cell communication ensures a long-term (permanent) memory by overcoming common limitations of intracellular memory. We also established a new theoretical framework inspired by statistical mechanics to understand how fields of secrete-and-sense cells form spatial patterns. We introduce new metrics - cellular entropy, cellular Hamiltonian, and spatial order index - for dynamics of cellular automata that form spatial patterns. Our theory predicts how fast any spatial patterns form, how ordered they are, and establishes cellular Hamiltonian that, like energy for non-living systems, monotonically decreases towards a minimum over time. ERC Starting Grant (MultiCellSysBio), NWO VIDI, NWO NanoFront.

  5. Dynamic nanoplatforms in biosensor and membrane constitutional systems.

    PubMed

    Mahon, Eugene; Aastrup, Teodor; Barboiu, Mihail

    2012-01-01

    Molecular recognition in biological systems occurs mainly at interfacial environments such as membrane surfaces, enzyme active sites, or the interior of the DNA double helix. At the cell membrane surface, carbohydrate-protein recognition principles apply to a range of specific non-covalent interactions including immune response, cell proliferation, adhesion and death, cell-cell interaction and communication. Protein-protein recognition meanwhile accounts for signalling processes and ion channel structure. In this chapter we aim to describe such constitutional dynamic interfaces for biosensing and membrane transport applications. Constitutionally adaptive interfaces may mimic the recognition capabilities intrinsic to natural recognition processes. We present some recent examples of 2D and 3D constructed sensors and membranes of this type and describe their sensing and transport capabilities.

  6. Message-adjusted network (MAN) hypothesis in gastro-entero-pancreatic (GEP) endocrine system.

    PubMed

    Aykan, N Faruk

    2007-01-01

    Several types of communication coordinate body functions to maintain homeostasis. Clarifying intercellular communication systems is as important as intracellular signal mechanisms. In this study, we propose an intercellular network model to establish novel targets in GEP-endocrine system, based on up-to-date information from medical publications. As materials, two physiologic events which are Pavlov's sham-feeding assay and bicarbonate secretion into the duodenum from pancreas were explored by new biologic data from the literature. Major key words used in Pub-Med were modes of regulations (autocrine, paracrine, endocrine, neurocrine, juxtacrine, lumencrine), GEP cells, hormones, peptides and neuro-transmitters. In these two examples of physiologic events, we can design a model of network to clarify transmission of a message. When we take a simple, unique message, we can observe a complete intercellular network. In our examples, these messages are "food is coming" and "hydrogen ions are increasing" in human language (humanese). We need to find molecular counterparts of these unique messages in cell language (cellese). In this network (message-adjusted network; MAN), message is an input which can affect the physiologic equilibrium, mission is an output to improve the disequilibrium and aim is always maintenance of homeostasis. If we orientate to a transmission of a unique message we can distinguish that different cells use different chemical messengers in different modes of regulations to transmit the same message. This study also supports Shannon's information theory and cell language theories such as von Neumann-Patte principles. After human genome project (HU-GO) and protein organisations (HU-PO), finding true messages and the establishment of their networks (in our model HU-MAN project) can be a novel and exciting field in cell biology. We established an intercellular network model to understand intercellular communication in the physiology of GEP endocrine system. This model could help to explain complex physiologic events as well as to generate new treatment concepts.

  7. Assessment of the suitability of public mobile data networks for aircraft telemetry and control purposes

    NASA Astrophysics Data System (ADS)

    Gonzalez, F.; Walker, R.; Rutherford, N.; Turner, C.

    2011-04-01

    This paper provides a review of the state of the art of relevant work on the use of public mobile data networks for aircraft telemetry and control proposes. Moreover, it describes the characterisation for airborne uses of the public mobile data communication systems known broadly as 3G. The motivation for this study was to explore how this mature public communication systems could be used for aviation purposes. An experimental system was fitted to a light aircraft to record communication latency, line speed, RF level, packet loss and cell tower identifier. Communications was established using internet protocols and connection was made to a local server. The aircraft was flown in both remote and populous areas at altitudes up to 8500 ft in a region located in South East Queensland, Australia. Results show that the average airborne RF levels are better than those on the ground by 21% and in the order of -77 dbm. Latencies were in the order of 500 ms (1/2 the latency of Iridium), an average download speed of 0.48 Mb/s, average uplink speed of 0.85 Mb/s, a packet of information loss of 6.5%. The maximum communication range was also observed to be 70 km from a single cell station. The paper also describes possible limitations and utility of using such communications architecture for both manned and unmanned aircraft systems.

  8. Neuronal somatic ATP release triggers neuron–satellite glial cell communication in dorsal root ganglia

    PubMed Central

    Zhang, X.; Chen, Y.; Wang, C.; Huang, L.-Y. M.

    2007-01-01

    It has been generally assumed that the cell body (soma) of a neuron, which contains the nucleus, is mainly responsible for synthesis of macromolecules and has a limited role in cell-to-cell communication. Using sniffer patch recordings, we show here that electrical stimulation of dorsal root ganglion (DRG) neurons elicits robust vesicular ATP release from their somata. The rate of release events increases with the frequency of nerve stimulation; external Ca2+ entry is required for the release. FM1–43 photoconversion analysis further reveals that small clear vesicles participate in exocytosis. In addition, the released ATP activates P2X7 receptors in satellite cells that enwrap each DRG neuron and triggers the communication between neuronal somata and glial cells. Blocking L-type Ca2+ channels completely eliminates the neuron–glia communication. We further show that activation of P2X7 receptors can lead to the release of tumor necrosis factor-α (TNFα) from satellite cells. TNFα in turn potentiates the P2X3 receptor-mediated responses and increases the excitability of DRG neurons. This study provides strong evidence that somata of DRG neurons actively release transmitters and play a crucial role in bidirectional communication between neurons and surrounding satellite glial cells. These results also suggest that, contrary to the conventional view, neuronal somata have a significant role in cell–cell signaling. PMID:17525149

  9. Study terrestrial applications of solar cell powered systems

    NASA Technical Reports Server (NTRS)

    Ravin, J. W.

    1973-01-01

    Terrestrial applications of solar cells and design systems are considered for those applications that show the most promise for becoming practical and accepted by users within the next five years. The study includes the definition, categorization, evaluation and screening of the most attractive potential terrestrial applications for solar cells. Potential markets are initially grouped and categorized in a general sense and are weighted in priority by their business volume, present and future. From a categorized list including marine, transportation, security, communication, meteorological and others, 66 potential solar cell applications have been cataloged. A methodology was formulated to include the criteria for evaluation and screening. The evaluation process covers all parts and components of the complete system required for each application and gives consideration to all factors, such as engineering, economic, production, marketing and other factors that may have an influence on the acceptance of the system.

  10. Quorum sensing and microbial drug resistance.

    PubMed

    Chen, Yu-fan; Liu, Shi-yin; Liang, Zhi-bin; Lv, Ming-fa; Zhou, Jia-nuan; Zhang, Lian-hui

    2016-10-20

    Microbial drug resistance has become a serious problem of global concern, and the evolution and regulatory mechanisms of microbial drug resistance has become a hotspot of research in recent years. Recent studies showed that certain microbial resistance mechanisms are regulated by quorum sensing system. Quorum sensing is a ubiquitous cell-cell communication system in the microbial world, which associates with cell density. High-density microbial cells produce sufficient amount of small signal molecules, activating a range of downstream cellular processes including virulence and drug resistance mechanisms, which increases bacterial drug tolerance and causes infections on host organisms. In this review, the general mechanisms of microbial drug resistance and quorum-sensing systems are summarized with a focus on the association of quorum sensing and chemical signaling systems with microbial drug resistance mechanisms, including biofilm formation and drug efflux pump. The potential use of quorum quenching as a new strategy to control microbial resistance is also discussed.

  11. Theoretical aspects and modelling of cellular decision making, cell killing and information-processing in photodynamic therapy of cancer.

    PubMed

    Gkigkitzis, Ioannis

    2013-01-01

    The aim of this report is to provide a mathematical model of the mechanism for making binary fate decisions about cell death or survival, during and after Photodynamic Therapy (PDT) treatment, and to supply the logical design for this decision mechanism as an application of rate distortion theory to the biochemical processing of information by the physical system of a cell. Based on system biology models of the molecular interactions involved in the PDT processes previously established, and regarding a cellular decision-making system as a noisy communication channel, we use rate distortion theory to design a time dependent Blahut-Arimoto algorithm where the input is a stimulus vector composed of the time dependent concentrations of three PDT related cell death signaling molecules and the output is a cell fate decision. The molecular concentrations are determined by a group of rate equations. The basic steps are: initialize the probability of the cell fate decision, compute the conditional probability distribution that minimizes the mutual information between input and output, compute the cell probability of cell fate decision that minimizes the mutual information and repeat the last two steps until the probabilities converge. Advance to the next discrete time point and repeat the process. Based on the model from communication theory described in this work, and assuming that the activation of the death signal processing occurs when any of the molecular stimulants increases higher than a predefined threshold (50% of the maximum concentrations), for 1800s of treatment, the cell undergoes necrosis within the first 30 minutes with probability range 90.0%-99.99% and in the case of repair/survival, it goes through apoptosis within 3-4 hours with probability range 90.00%-99.00%. Although, there is no experimental validation of the model at this moment, it reproduces some patterns of survival ratios of predicted experimental data. Analytical modeling based on cell death signaling molecules has been shown to be an independent and useful tool for prediction of cell surviving response to PDT. The model can be adjusted to provide important insights for cellular response to other treatments such as hyperthermia, and diseases such as neurodegeneration.

  12. A New Improved and Extended Version of the Multicell Bacterial Simulator gro.

    PubMed

    Gutiérrez, Martín; Gregorio-Godoy, Paula; Pérez Del Pulgar, Guillermo; Muñoz, Luis E; Sáez, Sandra; Rodríguez-Patón, Alfonso

    2017-08-18

    gro is a cell programming language developed in Klavins Lab for simulating colony growth and cell-cell communication. It is used as a synthetic biology prototyping tool for simulating multicellular biocircuits and microbial consortia. In this work, we present several extensions made to gro that improve the performance of the simulator, make it easier to use, and provide new functionalities. The new version of gro is between 1 and 2 orders of magnitude faster than the original version. It is able to grow microbial colonies with up to 10 5 cells in less than 10 min. A new library, CellEngine, accelerates the resolution of spatial physical interactions between growing and dividing cells by implementing a new shoving algorithm. A genetic library, CellPro, based on Probabilistic Timed Automata, simulates gene expression dynamics using simplified and easy to compute digital proteins. We also propose a more convenient language specification layer, ProSpec, based on the idea that proteins drive cell behavior. CellNutrient, another library, implements Monod-based growth and nutrient uptake functionalities. The intercellular signaling management was improved and extended in a library called CellSignals. Finally, bacterial conjugation, another local cell-cell communication process, was added to the simulator. To show the versatility and potential outreach of this version of gro, we provide studies and novel examples ranging from synthetic biology to evolutionary microbiology. We believe that the upgrades implemented for gro have made it into a powerful and fast prototyping tool capable of simulating a large variety of systems and synthetic biology designs.

  13. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOEpatents

    Mukerjee, Subhasish [Pittsford, NY; Haltiner, Jr., Karl J; Weissman, Jeffrey G [West Henrietta, NY

    2012-03-06

    A system for adding sulfur to a fuel cell stack, having a reformer adapted to reform a hydrocarbon fuel stream containing sulfur contaminants, thereby providing a reformate stream having sulfur; a sulfur trap fluidly coupled downstream of the reformer for removing sulfur from the reformate stream, thereby providing a desulfurized reformate stream; and a metering device in fluid communication with the reformate stream upstream of the sulfur trap and with the desulfurized reformate stream downstream of the sulfur trap. The metering device is adapted to bypass a portion of the reformate stream to mix with the desulfurized reformate stream, thereby producing a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  14. A correlative and quantitative imaging approach enabling characterization of primary cell-cell communication: Case of human CD4+ T cell-macrophage immunological synapses.

    PubMed

    Kasprowicz, Richard; Rand, Emma; O'Toole, Peter J; Signoret, Nathalie

    2018-05-22

    Cell-to-cell communication engages signaling and spatiotemporal reorganization events driven by highly context-dependent and dynamic intercellular interactions, which are difficult to capture within heterogeneous primary cell cultures. Here, we present a straightforward correlative imaging approach utilizing commonly available instrumentation to sample large numbers of cell-cell interaction events, allowing qualitative and quantitative characterization of rare functioning cell-conjugates based on calcium signals. We applied this approach to examine a previously uncharacterized immunological synapse, investigating autologous human blood CD4 + T cells and monocyte-derived macrophages (MDMs) forming functional conjugates in vitro. Populations of signaling conjugates were visualized, tracked and analyzed by combining live imaging, calcium recording and multivariate statistical analysis. Correlative immunofluorescence was added to quantify endogenous molecular recruitments at the cell-cell junction. By analyzing a large number of rare conjugates, we were able to define calcium signatures associated with different states of CD4 + T cell-MDM interactions. Quantitative image analysis of immunostained conjugates detected the propensity of endogenous T cell surface markers and intracellular organelles to polarize towards cell-cell junctions with high and sustained calcium signaling profiles, hence defining immunological synapses. Overall, we developed a broadly applicable approach enabling detailed single cell- and population-based investigations of rare cell-cell communication events with primary cells.

  15. All row, planar fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D; Smith, Brian Edward

    2013-07-23

    An apparatus, program product and method for detecting nodal faults may simultaneously cause designated nodes of a cell to communicate with all nodes adjacent to each of the designated nodes. Furthermore, all nodes along the axes of the designated nodes are made to communicate with their adjacent nodes, and the communications are analyzed to determine if a node or connection is faulty.

  16. Monitoring Extracellular Vesicle Cargo Active Uptake by Imaging Flow Cytometry.

    PubMed

    Ofir-Birin, Yifat; Abou Karam, Paula; Rudik, Ariel; Giladi, Tal; Porat, Ziv; Regev-Rudzki, Neta

    2018-01-01

    Extracellular vesicles are essential for long distance cell-cell communication. They function as carriers of different compounds, including proteins, lipids and nucleic acids. Pathogens, like malaria parasites ( Plasmodium falciparum, Pf ), excel in employing vesicle release to mediate cell communication in diverse processes, particularly in manipulating the host response. Establishing research tools to study the interface between pathogen-derived vesicles and their host recipient cells will greatly benefit the scientific community. Here, we present an imaging flow cytometry (IFC) method for monitoring the uptake of malaria-derived vesicles by host immune cells. By staining different cargo components, we were able to directly track the cargo's internalization over time and measure the kinetics of its delivery. Impressively, we demonstrate that this method can be used to specifically monitor the translocation of a specific protein within the cellular milieu upon internalization of parasitic cargo; namely, we were able to visually observe how uptaken parasitic Pf -DNA cargo leads to translocation of transcription factor IRF3 from the cytosol to the nucleus within the recipient immune cell. Our findings demonstrate that our method can be used to study cellular dynamics upon vesicle uptake in different host-pathogen and pathogen-pathogen systems.

  17. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells

    PubMed Central

    Florencio-Silva, Rinaldo; Sasso-Cerri, Estela; Simões, Manuel Jesus; Cerri, Paulo Sérgio

    2015-01-01

    Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling. PMID:26247020

  18. An Underlay Communication Channel for 5G Cognitive Mesh Networks: Packet Design, Implementation, Analysis, and Experimental Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarek Haddadin; Stephen Andrew Laraway; Arslan Majid

    This paper proposes and presents the design and implementation of an underlay communication channel (UCC) for 5G cognitive mesh networks. The UCC builds its waveform based on filter bank multicarrier spread spectrum (FB-MCSS) signaling. The use of this novel spread spectrum signaling allows the device-to-device (D2D) user equipments (UEs) to communicate at a level well below noise temperature and hence, minimize taxation on macro-cell/small-cell base stations and their UEs in 5G wireless systems. Moreover, the use of filter banks allows us to avoid those portions of the spectrum that are in use by macro-cell and small-cell users. Hence, both D2D-to-cellularmore » and cellular-to-D2D interference will be very close to none. We propose a specific packet for UCC and develop algorithms for packet detection, timing acquisition and tracking, as well as channel estimation and equalization. We also present the detail of an implementation of the proposed transceiver on a software radio platform and compare our experimental results with those from a theoretical analysis of our packet detection algorithm.« less

  19. ACHIEVING THE PROMISE OF THERAPEUTIC EXTRACELLULAR VESICLES: THE DEVIL IS IN DETAILS OF THERAPEUTIC LOADING

    PubMed Central

    Sutaria, Dhruvitkumar S.; Badawi, Mohamed; Phelps, Mitch A.; Schmittgen, Thomas D.

    2017-01-01

    Extracellular vesicles (EVs) represent a class of cell secreted organelles which naturally contain biomolecular cargo such as miRNA, mRNA and proteins. EVs mediate intercellular communication, enabling the transfer of functional nucleic acids from the cell of origin to the recipient cells. In addition, EVs make an attractive delivery vehicle for therapeutics owing to their increased stability in circulation, biocompatibility, low immunogenicity and toxicity profiles. EVs can also be engineered to display targeting moieties on their surfaces which enables targeting to desired tissues, organs or cells. While much has been learned on the role of EVs as cell communicators, the field of therapeutic EV application is currently under development. Critical to the future success of EV delivery system is the description of methods by which therapeutics can be successfully and efficiently loaded within the EVs. Two methods of loading of EVs with therapeutic cargo exist, endogenous and exogenous loading. We have therefore focused this review on describing the various published approaches for loading EVs with therapeutics. PMID:28315083

  20. Biotechnology

    NASA Image and Video Library

    2002-07-02

    Diagram depicts the importance of cell-cell communication as central to the understanding of cancer growth and progression, the focus of the NASA bioreactor demonstration system (BDS-05) investigation. Microgravity studies will allow us to unravel the signaling and communication between these cells with the host and potential development of therapies for the treatment of cancer metastasis. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: Emory University.

  1. Validating a Conceptual Framework for the Core Concept of "Cell-Cell Communication"

    ERIC Educational Resources Information Center

    Michael, Joel; Martinkova, Patricia; McFarland, Jenny; Wright, Ann; Cliff, William; Modell, Harold; Wenderoth, Mary Pat

    2017-01-01

    We have created and validated a conceptual framework for the core physiology concept of "cell-cell communication." The conceptual framework is composed of 51 items arranged in a hierarchy that is, in some instances, four levels deep. We have validated it with input from faculty who teach at a wide variety of institutional types. All…

  2. Functional assessment of gap junctions in monolayer and three-dimensional cultures of human tendon cells using fluorescence recovery after photobleaching

    PubMed Central

    Kuzma-Kuzniarska, Maria; Yapp, Clarence; Pearson-Jones, Thomas W.; Jones, Andrew K.; Hulley, Philippa A.

    2014-01-01

    Abstract. Gap junction-mediated intercellular communication influences a variety of cellular activities. In tendons, gap junctions modulate collagen production, are involved in strain-induced cell death, and are involved in the response to mechanical stimulation. The aim of the present study was to investigate gap junction-mediated intercellular communication in healthy human tendon-derived cells using fluorescence recovery after photobleaching (FRAP). The FRAP is a noninvasive technique that allows quantitative measurement of gap junction function in living cells. It is based on diffusion-dependent redistribution of a gap junction-permeable fluorescent dye. Using FRAP, we showed that human tenocytes form functional gap junctions in monolayer and three-dimensional (3-D) collagen I culture. Fluorescently labeled tenocytes following photobleaching rapidly reacquired the fluorescent dye from neighboring cells, while HeLa cells, which do not communicate by gap junctions, remained bleached. Furthermore, both 18 β-glycyrrhetinic acid and carbenoxolone, standard inhibitors of gap junction activity, impaired fluorescence recovery in tendon cells. In both monolayer and 3-D cultures, intercellular communication in isolated cells was significantly decreased when compared with cells forming many cell-to-cell contacts. In this study, we used FRAP as a tool to quantify and experimentally manipulate the function of gap junctions in human tenocytes in both two-dimensional (2-D) and 3-D cultures. PMID:24390370

  3. Communication Technologies Preferred by School Based Administrators

    ERIC Educational Resources Information Center

    Weir, Paul

    2012-01-01

    The purpose of this study was to determine the communication technologies preferred by school based administrators. This study surveyed and interviewed 96 school based administrators in a mid-sized suburban school system. The data show that individual emails, email lists, and cell phone technologies had the highest percentage effectiveness ratings…

  4. [A skin cell segregating control system based on PC].

    PubMed

    Liu, Wen-zhong; Zhou, Ming; Zhang, Hong-bing

    2005-11-01

    A skin cell segregating control system based on PC (personal computer) is presented in this paper. Its front controller is a single-chip microcomputer which enables the manipulation for 6 patients simultaneously, and thus provides a great convenience for clinical treatments for vitiligo. With the use of serial port communication technology, it's possible to monitor and control the front controller in a PC terminal. And the application of computer image acquisition technology realizes the synchronous acquisition of pathologic shin cell images pre/after the operation and a case history. Clinical tests prove its conformity with national standards and the pre-set technological requirements.

  5. Kinetics of biochemical sensing by single cells and populations of cells

    NASA Astrophysics Data System (ADS)

    Saakian, David B.

    2017-10-01

    We investigate the collective stationary sensing using N communicative cells, which involves surface receptors, diffusive signaling molecules, and cell-cell communication messengers. We restrict the scenarios to the signal-to-noise ratios (SNRs) for both strong communication and extrinsic noise only. We modified a previous model [Bialek and Setayeshgar, Proc. Natl. Acad. Sci. USA 102, 10040 (2005), 10.1073/pnas.0504321102] to eliminate the singularities in the fluctuation correlations by considering a uniform receptor distribution over the surface of each cell with a finite radius a . The modified model enables a simple and rigorous mathematical treatment of the collective sensing phenomenon. We then derive the scaling of the SNR for both juxtacrine and autocrine cases in all dimensions. For the optimal locations of the cells in the autocrine case, we find identical scaling for both two and three dimensions.

  6. S-aryl-L-cysteine sulphoxides and related organosulphur compounds alter oral biofilm development and AI-2-based cell-cell communication.

    PubMed

    Kasper, S H; Samarian, D; Jadhav, A P; Rickard, A H; Musah, R A; Cady, N C

    2014-11-01

    To design and synthesize a library of structurally related, small molecules related to homologues of compounds produced by the plant Petiveria alliacea and determine their ability to interfere with AI-2 cell-cell communication and biofilm formation by oral bacteria. Many human diseases are associated with persistent bacterial biofilms. Oral biofilms (dental plaque) are problematic as they are often associated with tooth decay, periodontal disease and systemic disorders such as heart disease and diabetes. Using a microplate-based approach, a bio-inspired small molecule library was screened for anti-biofilm activity against the oral species Streptococcus mutans UA159, Streptococcus sanguis 10556 and Actinomyces oris MG1. To complement the static screen, a flow-based BioFlux microfluidic system screen was also performed under conditions representative of the human oral cavity. Several compounds were found to display biofilm inhibitory activity in all three of the oral bacteria tested. These compounds were also shown to inhibit bioluminescence by Vibrio harveyi and were thus inferred to be quorum sensing (QS) inhibitors. Due to the structural similarity of these compounds to each other, and to key molecules in AI-2 biosynthetic pathways, we propose that these molecules potentially reduce biofilm formation via antagonism of QS or QS-related pathways. This study highlights the potential for a non-antimicrobial-based strategy, focused on AI-2 cell-cell signalling, to control the development of dental plaque. Considering that many bacterial species use AI-2 cell-cell signalling, as well as the increased concern of the use of antimicrobials in healthcare products, such an anti-biofilm approach could also be used to control biofilms in environments beyond the human oral cavity. © 2014 The Society for Applied Microbiology.

  7. From neural-based object recognition toward microelectronic eyes

    NASA Technical Reports Server (NTRS)

    Sheu, Bing J.; Bang, Sa Hyun

    1994-01-01

    Engineering neural network systems are best known for their abilities to adapt to the changing characteristics of the surrounding environment by adjusting system parameter values during the learning process. Rapid advances in analog current-mode design techniques have made possible the implementation of major neural network functions in custom VLSI chips. An electrically programmable analog synapse cell with large dynamic range can be realized in a compact silicon area. New designs of the synapse cells, neurons, and analog processor are presented. A synapse cell based on Gilbert multiplier structure can perform the linear multiplication for back-propagation networks. A double differential-pair synapse cell can perform the Gaussian function for radial-basis network. The synapse cells can be biased in the strong inversion region for high-speed operation or biased in the subthreshold region for low-power operation. The voltage gain of the sigmoid-function neurons is externally adjustable which greatly facilitates the search of optimal solutions in certain networks. Various building blocks can be intelligently connected to form useful industrial applications. Efficient data communication is a key system-level design issue for large-scale networks. We also present analog neural processors based on perceptron architecture and Hopfield network for communication applications. Biologically inspired neural networks have played an important role towards the creation of powerful intelligent machines. Accuracy, limitations, and prospects of analog current-mode design of the biologically inspired vision processing chips and cellular neural network chips are key design issues.

  8. [Cell phone communication: hygienic characteristics, biological action, standardization (a review)].

    PubMed

    Gudina, M V; Volkotrub, L P

    2010-01-01

    The paper considers the topical issues concerning the functioning of the cellular communication system. It provides the hygienic characteristics of its individual elements. The factors influencing the size of an electromagnetic field generated by mobile phones are stated. Research data on the impact of electromagnetic radiation from a mobile phone on users' health are reviewed. The pivots of present-day Russian hygienic rating regarding the permissible exposures to nonionizing electromagnetic energy generated by the elements of the cellular communication system are identified.

  9. Using exosomes, naturally-equipped nanocarriers, for drug delivery.

    PubMed

    Batrakova, Elena V; Kim, Myung Soo

    2015-12-10

    Exosomes offer distinct advantages that uniquely position them as highly effective drug carriers. Comprised of cellular membranes with multiple adhesive proteins on their surface, exosomes are known to specialize in cell-cell communications and provide an exclusive approach for the delivery of various therapeutic agents to target cells. In addition, exosomes can be amended through their parental cells to express a targeting moiety on their surface, or supplemented with desired biological activity. Development and validation of exosome-based drug delivery systems are the focus of this review. Different techniques of exosome isolation, characterization, drug loading, and applications in experimental disease models and clinic are discussed. Exosome-based drug formulations may be applied to a wide variety of disorders such as cancer, various infectious, cardiovascular, and neurodegenerative disorders. Overall, exosomes combine benefits of both synthetic nanocarriers and cell-mediated drug delivery systems while avoiding their limitations. Published by Elsevier B.V.

  10. The Role of Gap Junction Communication and Oxidative Stress in the Propagation of Toxic Effects among High-Dose α-Particle-Irradiated Human Cells

    PubMed Central

    Autsavapromporn, Narongchai; de Toledo, Sonia M.; Little, John B.; Jay-Gerin, Jean-Paul; Harris, Andrew L.; Azzam, Edouard I.

    2011-01-01

    We investigated the roles of gap junction communication and oxidative stress in modulating potentially lethal damage repair in human fibroblast cultures exposed to doses of α particles or γ rays that targeted all cells in the cultures. As expected, α particles were more effective than γ rays at inducing cell killing; further, holding γ-irradiated cells in the confluent state for several hours after irradiation promoted increased survival and decreased chromosomal damage. However, maintaining α-particle-irradiated cells in the confluent state for various times prior to subculture resulted in increased rather than decreased lethality and was associated with persistent DNA damage and increased protein oxidation and lipid peroxidation. Inhibiting gap junction communication with 18-α-glycyrrhetinic acid or by knockdown of connexin43, a constitutive protein of junctional channels in these cells, protected against the toxic effects in α-particle-irradiated cell cultures during confluent holding. Upregulation of antioxidant defense by ectopic overexpression of glutathione peroxidase protected against cell killing by α particles when cells were analyzed shortly after exposure. However, it did not attenuate the decrease in survival during confluent holding. Together, these findings indicate that the damaging effect of α particles results in oxidative stress, and the toxic effects in the hours after irradiation are amplified by intercellular communication, but the communicated molecule(s) is unlikely to be a substrate of glutathione peroxidase. PMID:21388278

  11. High voltage solar cell power generating system

    NASA Technical Reports Server (NTRS)

    Levy, E., Jr.; Opjorden, R. W.; Hoffman, A. C.

    1974-01-01

    A laboratory solar power system regulated by on-panel switches has been delivered for operating high power (3 kW), high voltage (15,000 volt) loads (communication tubes, ion thrusters). The modular system consists of 26 solar arrays, each with an integral light source and cooling system. A typical array contains 2,560 series-connected cells. Each light source consists of twenty 500-watt tungsten iodide lamps providing plus or minus 5 percent uniformity at one solar constant. An array temperature of less than 40 C is achieved using an infrared filter, a water-cooled plate, a vacuum hold-down system, and air flushing.

  12. Low Connexin Channel-Dependent Intercellular Communication in Human Adult Hematopoietic Progenitor/Stem Cells: Probing Mechanisms of Autologous Stem Cell Therapy

    PubMed Central

    Yang, Jian; Darley, Richard L; Hallett, Maurice; Evans, W Howard

    2009-01-01

    Human bone marrow is a clinical source of autologous progenitor stem cells showing promise for cardiac repair following ischemic insult. Functional improvements following delivery of adult bone marrow CD34+ cells into heart tissue may require metabolic/electrical communication between participating cells. Since connexin43 (Cx43) channels are implicated in cardiogenesis and provide intercellular connectivity in the heart, the authors analyzed the expression of 20 connexins (Cx) in CD34+ cells and in monocytes and granulocytes in bone marrow and spinal cord. Reverse transcriptase-polymerase chain reaction (RT-PCR) detected only low expression of Cx43 and Cx37. Very low level dye coupling was detected by flow cytometry between CD34+ cells and other Cx43 expressing cells, including HL-1 cardiac cells, and was not inhibited by specific gap junction inhibitors. The results indicate that CD34+ cells are unlikely to communicate via gap junctions and the authors conclude that use of CD34+ cells to repair damaged hearts is unlikely to involve gap junctions. The results concur with the hypothesis that bone marrow cells elicit improved cardiac function through release of undefined paracrine mediators. PMID:20298144

  13. Subsets of ATP-sensitive potassium channel (KATP) inhibitors increase gap junctional intercellular communication in metastatic cancer cell lines independent of SUR expression

    USDA-ARS?s Scientific Manuscript database

    Gap junctional intercellular communication (GJIC) is a process whereby cells share molecules and nutrients with each other by physical contact through cell membrane pores. In tumor cells, GJIC is often altered, suggesting that this process may be important in the context of cancer. Certain ion chan...

  14. Microenvironment Influences Interaction of Signaling Molecules | Center for Cancer Research

    Cancer.gov

    Tumor progression depends not only on events that occur within cancer cells but also on the interaction of cancer cells with their environment, which can regulate tumor growth and metastasis and modulate the formation of new blood vessels to nourish the tumor. All cells communicate with other cells around them, including endothelial cells (the cells that make up blood vessels). They also interact with the extracellular matrix (ECM), a network of sugars and proteins that supports cells. Communication between neighboring cells and molecules often occurs through interaction among and between molecules on the cell surface and molecules of the ECM. Defining these interactions should facilitate the development of novel approaches to limit tumor progression.

  15. Biophoton signal transmission and processing in the brain.

    PubMed

    Tang, Rendong; Dai, Jiapei

    2014-10-05

    The transmission and processing of neural information in the nervous system plays a key role in neural functions. It is well accepted that neural communication is mediated by bioelectricity and chemical molecules via the processes called bioelectrical and chemical transmission, respectively. Indeed, the traditional theories seem to give valuable explanations for the basic functions of the nervous system, but difficult to construct general accepted concepts or principles to provide reasonable explanations of higher brain functions and mental activities, such as perception, learning and memory, emotion and consciousness. Therefore, many unanswered questions and debates over the neural encoding and mechanisms of neuronal networks remain. Cell to cell communication by biophotons, also called ultra-weak photon emissions, has been demonstrated in several plants, bacteria and certain animal cells. Recently, both experimental evidence and theoretical speculation have suggested that biophotons may play a potential role in neural signal transmission and processing, contributing to the understanding of the high functions of nervous system. In this paper, we review the relevant experimental findings and discuss the possible underlying mechanisms of biophoton signal transmission and processing in the nervous system. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Mechanical dynamics in live cells and fluorescence-based force/tension sensors

    PubMed Central

    Yang, Chao; Zhang, Xiaohan; Guo, Yichen; Meng, Fanjie; Sachs, Frederick; Guo, Jun

    2016-01-01

    Three signaling systems play the fundamental roles in modulating cell activities: chemical, electrical, and mechanical. While the former two are well studied, the mechanical signaling system is still elusive because of the lack of methods to measure structural forces in real time at cellular and subcellular levels. Indeed, almost all biological processes are responsive to modulation by mechanical forces that trigger dispersive downstream electrical and biochemical pathways. Communication among the three systems is essential to make cells and tissues receptive to environmental changes. Cells have evolved many sophisticated mechanisms for the generation, perception and transduction of mechanical forces, including motor proteins and mechanosensors. In this review, we introduce some background information about mechanical dynamics in live cells, including the ubiquitous mechanical activity, various types of mechanical stimuli exerted on cells and the different mechanosensors. We also summarize recent results obtained using genetically encoded FRET (fluorescence resonance energy transfer)-based force/tension sensors; a new technique used to measure mechanical forces in structural proteins. The sensors have been incorporated into many specific structural proteins and have measured the force gradients in real time within live cells, tissues, and animals. PMID:25958335

  17. The role of the micro-pattern and nano-topography of hydroxyapatite bioceramics on stimulating osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Zhao, Cancan; Wang, Xiaoya; Gao, Long; Jing, Linguo; Zhou, Quan; Chang, Jiang

    2018-06-01

    The micro/nano hybrid structure is considered to be a biomaterial characteristic to stimulate osteogenesis by mimicking the three-dimensional structure of the bone matrix. However, the mechanism of the hybrid structure induced osteogenic differentiation of stem cells is still unknown. For elucidating the mechanisms, one of the challenge is to directly fabricate micro/nano hybrid structure on bioceramics because of its brittleness. In this study, hydroxyapatite (HA) bioceramics with the micro/nano hybrid structure were firstly fabricated via a hydrothermal treatment and template method, and the effect of the different surface structures on the expression of integrins, BMP2 signaling pathways and cell-cell communication was investigated. Interestingly, the results suggested that the osteogenic differentiation induced by micro/nano structures was modulated first through activating integrins and then further activating BMP2 signaling pathway and cell-cell communication, while activated BMP2 could in turn activate integrins and Cx43-related cell-cell communication. Furthermore, differences in activation of integrins, BMP2 signaling pathway, and gap junction-mediated cell-cell communication were observed, in which nanorod and micropattern structures activated different integrin subunits, BMP downstream receptors and Cx43. This finding may explain the synergistic effect of the micro/nano hybrid structure on the activation of osteogenic differentiation of BMSCs. Based on our study, we concluded that the different activation mechanisms of micro- and nano-structures led to the synergistic stimulatory effect on integrin activation and osteogenesis, in which not only the direct contact of cells on micro/nano structure played an important role, but also other surface characteristics such as protein adsorption might contribute to the bioactive effect. The micro/nano hybrid structure has been found to have synergistic bioactivity on osteogenesis. However, it is still a challenge to fabricate the hybrid structure directly on the bioceramics, and the role of micro- and nano-structure, in particular the mechanism of the micro/nano-hybrid structure induced stem cell differentiation is still unknown. In this study, we firstly fabricated hydroxyapatite bioceramics with the micro/nano hybrid structure, and then investigated the effect of different surface structure on expression of integrins, BMP2 signaling pathways and cell-cell communication. Interestingly, we found that the osteogenic differentiation induced by structure was modulated first through activating integrins and then further activating BMP2 signaling pathway and cell-cell communication, and activated BMP2 could in turn activate some integrin subunits and Cx43-related cell-cell communication. Furthermore, differences in activation of integrins, BMP2 signaling pathway, and gap junction-mediated cell-cell communication were observed, in which nanorod and micropattern structures activated different integrin subunits, BMP downstream receptors and Cx43. This finding may explain the synergistic effect of the micro/nano hybrid structure on the activation of osteogenic differentiation of BMSCs. Based on our study, we concluded that the different activation mechanisms of micro- and nano-structures led to the synergistic stimulatory effect on integrin activation and osteogenesis, in which not only the direct contact of cells on micro/nano structure played an important role, but also other surface characteristics such as protein adsorption might contribute to the bioactive effect. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Data-driven modeling reveals cell behaviors controlling self-organization during Myxococcus xanthus development

    PubMed Central

    Cotter, Christopher R.; Schüttler, Heinz-Bernd; Igoshin, Oleg A.; Shimkets, Lawrence J.

    2017-01-01

    Collective cell movement is critical to the emergent properties of many multicellular systems, including microbial self-organization in biofilms, embryogenesis, wound healing, and cancer metastasis. However, even the best-studied systems lack a complete picture of how diverse physical and chemical cues act upon individual cells to ensure coordinated multicellular behavior. Known for its social developmental cycle, the bacterium Myxococcus xanthus uses coordinated movement to generate three-dimensional aggregates called fruiting bodies. Despite extensive progress in identifying genes controlling fruiting body development, cell behaviors and cell–cell communication mechanisms that mediate aggregation are largely unknown. We developed an approach to examine emergent behaviors that couples fluorescent cell tracking with data-driven models. A unique feature of this approach is the ability to identify cell behaviors affecting the observed aggregation dynamics without full knowledge of the underlying biological mechanisms. The fluorescent cell tracking revealed large deviations in the behavior of individual cells. Our modeling method indicated that decreased cell motility inside the aggregates, a biased walk toward aggregate centroids, and alignment among neighboring cells in a radial direction to the nearest aggregate are behaviors that enhance aggregation dynamics. Our modeling method also revealed that aggregation is generally robust to perturbations in these behaviors and identified possible compensatory mechanisms. The resulting approach of directly combining behavior quantification with data-driven simulations can be applied to more complex systems of collective cell movement without prior knowledge of the cellular machinery and behavioral cues. PMID:28533367

  19. Group 3 Innate Lymphoid Cells: Communications Hubs of the Intestinal Immune System

    PubMed Central

    Withers, David R.; Hepworth, Matthew R.

    2017-01-01

    The maintenance of mammalian health requires the generation of appropriate immune responses against a broad range of environmental and microbial challenges, which are continually encountered at barrier tissue sites including the skin, lung, and gastrointestinal tract. Dysregulated barrier immune responses result in inflammation, both locally and systemically in peripheral organs. Group 3 innate lymphoid cells (ILC3) are constitutively present at barrier sites and appear to be highly specialized in their ability to sense a range of environmental and host-derived signals. Under homeostatic conditions, ILC3 respond to local cues to maintain tissue homeostasis and restrict inflammatory responses. In contrast, perturbations in the tissue microenvironment resulting from disease, infection, or tissue damage can drive dysregulated pro-inflammatory ILC3 responses and contribute to immunopathology. The tone of the ILC3 response is dictated by a balance of “exogenous” signals, such as dietary metabolites and commensal microbes, and “endogenous” host-derived signals from stromal cells, immune cells, and the nervous system. ILC3 must therefore have the capacity to simultaneously integrate a wide array of complex and dynamic inputs in order to regulate barrier function and tissue health. In this review, we discuss the concept of ILC3 as a “communications hub” in the intestinal tract and associated lymphoid tissues and address the variety of signals, derived from multiple biological systems, which are interpreted by ILC3 to modulate the release of downstream effector molecules and regulate cell–cell crosstalk. Successful integration of environmental cues by ILC3 and downstream propagation to the broader immune system is required to maintain a tolerogenic and anti-inflammatory tone and reinforce barrier function, whereas dysregulation of ILC3 responses can contribute to the onset or progression of clinically relevant chronic inflammatory diseases. PMID:29085366

  20. Signal percolation through plants and the shape of the calcium signature.

    PubMed

    Plieth, Christoph

    2010-04-01

    Plants respond to almost any kind of external stimulus with transients in their cytoplasmic free calcium concentration ([Ca(2+)](c)). A huge variety of kinetics recorded by optical techniques has been reported in the past. This variety has been credited the specificity needed to explain how information about incoming stimuli is evaluated by the organism and turned into the right physiological responses which provide advantages for survival and reproduction. A physiological response often takes place away from the site of stimulation. This requires cell-to-cell communication. Hence, responding cells are not necessarily directly stimulated but rather receive an indirect stimulus via cell-to-cell communication. It appears unlikely that the '[Ca(2+)](c) signature' in the primarily stimulated cell is conveyed over long distances via cell-to-cell communication from the 'receptor cells' to the 'effector cells'. Here, a novel aspect is highlighted to explain the variety of [Ca(2+)] kinetics seen by integrating methods of [Ca(2+)](c) recording. Plants can generally be seen as cellular automata with specific morphology and capable for cell-to-cell communication. Just a few rules are needed to demonstrate how waves of [Ca(2+)](c)-increases percolate through the organism and thereby deliver a broad variety of 'signatures'. Modelling intercellular signalling may be a possible way to find explanations for different kinds of signal transmission, signal amplification, wave formation, oscillations and stimulus-response coupling. The basic examples presented here show that care has to be taken when interpreting cellular '[Ca(2+)](c) signatures' recorded by optical techniques which integrate over a big number of cells or even whole plants.

  1. Evaluation of medicinal plant hepatotoxicity in co-cultures of hepatocytes and monocytes.

    PubMed

    Saad, Bashar; Dakwar, Suha; Said, Omar; Abu-Hijleh, Ghassan; Al Battah, Feras; Kmeel, Abedelsalam; Aziazeh, Hassan

    2006-03-01

    Non-parenchymal cells might play an important role in the modulation of xenobiotic metabolism in liver and its pharmacological and toxicological consequences. Therefore, the role of cell-to-cell interactions in herbal induced liver toxicity was investigated in monocultures of cells from the human hepatocyte cell line (HepG2) and in co-cultures of cells from the HepG2 cell line and cells from the human monocyte cell line (THP1). Cells were treated with various concentrations (1-500 microg ml(-1)) of extracts of Pistacia palaestina, Juglans regia and Quercus ithaburensis for 24 h. Extracts from Cleome droserifolia, a known toxic plant, were taken as positive control. In the co-culture system, toxic effects were observed after exposure to extracts of Pistacia palestina and C. droserifolia. These two extracts significantly reduced by cell viability as measured the MTT test and the LDH assay. Whereas in hepatocyte cultures, only extracts of C. droserifolia were found to affect the cell viability. The production levels of albumin from hepatocytes were not affected by treatment with plant extracts in both culture systems. It seems that the observed reduction in cell viability after exposure to extracts of P. palestina in co-cultures but not in monocultures is a result of monocyte-derived factors. The use of liver cell co-cultures is therefore a useful approach to investigate the influence of intercellular communication on xenobiotic metabolism in liver.

  2. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators

    PubMed Central

    Bodenmiller, Bernd; Zunder, Eli R.; Finck, Rachel; Chen, Tiffany J.; Savig, Erica S.; Bruggner, Robert V.; Simonds, Erin F.; Bendall, Sean C.; Sachs, Karen; Krutzik, Peter O.; Nolan, Garry P.

    2013-01-01

    The ability to comprehensively explore the impact of bio-active molecules on human samples at the single-cell level can provide great insight for biomedical research. Mass cytometry enables quantitative single-cell analysis with deep dimensionality, but currently lacks high-throughput capability. Here we report a method termed mass-tag cellular barcoding (MCB) that increases mass cytometry throughput by sample multiplexing. 96-well format MCB was used to characterize human peripheral blood mononuclear cell (PBMC) signaling dynamics, cell-to-cell communication, the signaling variability between 8 donors, and to define the impact of 27 inhibitors on this system. For each compound, 14 phosphorylation sites were measured in 14 PBMC types, resulting in 18,816 quantified phosphorylation levels from each multiplexed sample. This high-dimensional systems-level inquiry allowed analysis across cell-type and signaling space, reclassified inhibitors, and revealed off-target effects. MCB enables high-content, high-throughput screening, with potential applications for drug discovery, pre-clinical testing, and mechanistic investigation of human disease. PMID:22902532

  3. System and method for detecting gas

    DOEpatents

    Chow, Oscar Ken; Moulthrop, Lawrence Clinton; Dreier, Ken Wayne; Miller, Jacob Andrew

    2010-03-16

    A system to detect a presence of a specific gas in a mixture of gaseous byproducts comprising moisture vapor is disclosed. The system includes an electrochemical cell, a transport to deliver the mixture of gaseous byproducts from the electrochemical cell, a gas sensor in fluid communication with the transport, the sensor responsive to a presence of the specific gas to generate a signal corresponding to a concentration of the specific gas, and a membrane to prevent transmission of liquid moisture, the membrane disposed between the transport and the gas sensor.

  4. Adrenocortical Gap Junctions and Their Functions

    PubMed Central

    Bell, Cheryl L.; Murray, Sandra A.

    2016-01-01

    Adrenal cortical steroidogenesis and proliferation are thought to be modulated by gap junction-mediated direct cell–cell communication of regulatory molecules between cells. Such communication is regulated by the number of gap junction channels between contacting cells, the rate at which information flows between these channels, and the rate of channel turnover. Knowledge of the factors regulating gap junction-mediated communication and the turnover process are critical to an understanding of adrenal cortical cell functions, including development, hormonal response to adrenocorticotropin, and neoplastic dedifferentiation. Here, we review what is known about gap junctions in the adrenal gland, with particular attention to their role in adrenocortical cell steroidogenesis and proliferation. Information and insight gained from electrophysiological, molecular biological, and imaging (immunocytochemical, freeze fracture, transmission electron microscopic, and live cell) techniques will be provided. PMID:27445985

  5. EXPLORING PARENT-SIBLING COMMUNICATION IN FAMILIES OF CHILDREN WITH SICKLE CELL DISEASE

    PubMed Central

    Graff, J. Carolyn; Hankins, Jane S.; Hardy, Belinda T.; Hall, Heather R.; Roberts, Ruth J.; Neely-Barnes, Susan L.

    2011-01-01

    Focus group interviews were conducted with parents of children with sickle cell disease to explore parent-sibling communication about sickle cell disease. Communication was influenced by attributes and behaviors of the parent, the child with sickle cell disease, and the sibling; extended family, neighbors, friends, and church members or social networks; and available, accessible resources related to the child’s health, child’s school, and parent employment. Outcomes that influenced and were influenced by factors within and outside the parent-sibling dyad and nuclear family included parent satisfaction, parent roles, family intactness, and status attainment. These findings support previous research with African American families and expand our views of the importance of educating parents, family members, and others about sickle cell disease. The findings suggest a need to explore sibling perception of this communication, parent and sibling perception of the impact of frequent hospitalizations and clinic visits on the sibling and family, and variations within families of children with sickle cell disease. PMID:20384476

  6. Cell–cell communication enhances the capacity of cell ensembles to sense shallow gradients during morphogenesis

    PubMed Central

    Ellison, David; Mugler, Andrew; Brennan, Matthew D.; Lee, Sung Hoon; Huebner, Robert J.; Shamir, Eliah R.; Woo, Laura A.; Kim, Joseph; Amar, Patrick; Nemenman, Ilya; Ewald, Andrew J.; Levchenko, Andre

    2016-01-01

    Collective cell responses to exogenous cues depend on cell–cell interactions. In principle, these can result in enhanced sensitivity to weak and noisy stimuli. However, this has not yet been shown experimentally, and little is known about how multicellular signal processing modulates single-cell sensitivity to extracellular signaling inputs, including those guiding complex changes in the tissue form and function. Here we explored whether cell–cell communication can enhance the ability of cell ensembles to sense and respond to weak gradients of chemotactic cues. Using a combination of experiments with mammary epithelial cells and mathematical modeling, we find that multicellular sensing enables detection of and response to shallow epidermal growth factor (EGF) gradients that are undetectable by single cells. However, the advantage of this type of gradient sensing is limited by the noisiness of the signaling relay, necessary to integrate spatially distributed ligand concentration information. We calculate the fundamental sensory limits imposed by this communication noise and combine them with the experimental data to estimate the effective size of multicellular sensory groups involved in gradient sensing. Functional experiments strongly implicated intercellular communication through gap junctions and calcium release from intracellular stores as mediators of collective gradient sensing. The resulting integrative analysis provides a framework for understanding the advantages and limitations of sensory information processing by relays of chemically coupled cells. PMID:26792522

  7. HIV-1 evades virus-specific IgG2 and IgA class switching by targeting systemic and intestinal B cells via long-range intercellular conduits

    PubMed Central

    Xu, Weifeng; Santini, Paul A.; Sullivan, John S.; He, Bing; Shan, Meimei; Ball, Susan C.; Dyer, Wayne B.; Ketas, Thomas J.; Chadburn, Amy; Cohen-Gould, Leona; Knowles, Daniel M.; Chiu, April; Sanders, Rogier W.; Chen, Kang; Cerutti, Andrea

    2009-01-01

    Contact-dependent communication between immune cells generates protection, but also facilitates viral spread. We found that macrophages formed long-range actin-propelled conduits in response to negative factor (Nef), a human immunodeficiency virus type-1 (HIV-1) protein with immunosuppressive functions. Conduits attenuated immunoglobulin G2 (IgG2) and IgA class switching in systemic and intestinal lymphoid follicles by shuttling Nef from infected macrophages to B cells through a guanine exchange factor-dependent pathway involving the amino-terminal anchor, central core and carboxy-terminal flexible loop of Nef. By showing stronger virus-specific IgG2 and IgA responses in patients harboring Nef-deficient virions, our data suggest that HIV-1 exploits intercellular highways as a “Trojan horse” to deliver Nef to B cells and evade humoral immunity systemically and at mucosal sites of entry. PMID:19648924

  8. Electronic control of gene expression and cell behaviour in Escherichia coli through redox signalling

    NASA Astrophysics Data System (ADS)

    Tschirhart, Tanya; Kim, Eunkyoung; McKay, Ryan; Ueda, Hana; Wu, Hsuan-Chen; Pottash, Alex Eli; Zargar, Amin; Negrete, Alejandro; Shiloach, Joseph; Payne, Gregory F.; Bentley, William E.

    2017-01-01

    The ability to interconvert information between electronic and ionic modalities has transformed our ability to record and actuate biological function. Synthetic biology offers the potential to expand communication `bandwidth' by using biomolecules and providing electrochemical access to redox-based cell signals and behaviours. While engineered cells have transmitted molecular information to electronic devices, the potential for bidirectional communication stands largely untapped. Here we present a simple electrogenetic device that uses redox biomolecules to carry electronic information to engineered bacterial cells in order to control transcription from a simple synthetic gene circuit. Electronic actuation of the native transcriptional regulator SoxR and transcription from the PsoxS promoter allows cell response that is quick, reversible and dependent on the amplitude and frequency of the imposed electronic signals. Further, induction of bacterial motility and population based cell-to-cell communication demonstrates the versatility of our approach and potential to drive intricate biological behaviours.

  9. Exosome and microvesicle mediated phene transfer in mammalian cells.

    PubMed

    Christianson, Helena C; Svensson, Katrin J; Belting, Mattias

    2014-10-01

    Extracellular vesicles (EVs), e.g. exosomes and microvesicles, emerge as new signaling organelles in the exchange of information between cells at the paracrine and systemic level. It is clear that these virus like particles carry complex biological information that can elicit a pleiotropic response in recipient cells with potential relevance in physiology as well as in cancer and other pathological conditions. Numerous studies convincingly show that the molecular composition of EVs closely reflects their cell or tissue of origin. Thus, the signaling status of donor cells, more specifically their endosomal compartments, may largely determine the biological output in recipient cells, a process that we then may conceptualize as vesicle mediated phene transfer. Whereas more conventional modes of cell-cell communication mostly depend on extracellular ligand concentration and cell-surface receptor availability, the magnitude of the EV signaling response relies on the capture and uptake by target cells, allowing release of the EV content. Numerous reports point at the intriguing possibility that, among thousands of mRNAs, miRNAs, and proteins, single EV constituents effectuate the biological response, e.g. stimulation of angiogenesis and cancer cell metastasis, in recipient cells; however, we find it conceivable that strategies targeted at general mechanisms of EV function should provide more rational avenues for therapeutic intervention directed at the EV system. Such strategies include manipulation of EV formation in the endolysosomal system, EV stability in the extracellular milieu, and EV entry into target cells. Here, we provide important insights into potential mechanisms of EV transport in mammalian cells and how these may be targeted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Tumor and Endothelial Cell-Derived Microvesicles Carry Distinct CEACAMs and Influence T-Cell Behavior

    PubMed Central

    Muturi, Harrison T.; Dreesen, Janine D.; Nilewski, Elena; Jastrow, Holger; Giebel, Bernd; Ergun, Suleyman; Singer, Bernhard B.

    2013-01-01

    Normal and malignant cells release a variety of different vesicles into their extracellular environment. The most prominent vesicles are the microvesicles (MVs, 100-1 000 nm in diameter), which are shed of the plasma membrane, and the exosomes (70-120 nm in diameter), derivates of the endosomal system. MVs have been associated with intercellular communication processes and transport numerous proteins, lipids and RNAs. As essential component of immune-escape mechanisms tumor-derived MVs suppress immune responses. Additionally, tumor-derived MVs have been found to promote metastasis, tumor-stroma interactions and angiogenesis. Since members of the carcinoembryonic antigen related cell adhesion molecule (CEACAM)-family have been associated with similar processes, we studied the distribution and function of CEACAMs in MV fractions of different human epithelial tumor cells and of human and murine endothelial cells. Here we demonstrate that in association to their cell surface phenotype, MVs released from different human epithelial tumor cells contain CEACAM1, CEACAM5 and CEACAM6, while human and murine endothelial cells were positive for CEACAM1 only. Furthermore, MVs derived from CEACAM1 transfected CHO cells carried CEACAM1. In terms of their secretion kinetics, we show that MVs are permanently released in low doses, which are extensively increased upon cellular starvation stress. Although CEACAM1 did not transmit signals into MVs it served as ligand for CEACAM expressing cell types. We gained evidence that CEACAM1-positive MVs significantly increase the CD3 and CD3/CD28-induced T-cell proliferation. All together, our data demonstrate that MV-bound forms of CEACAMs play important roles in intercellular communication processes, which can modulate immune response, tumor progression, metastasis and angiogenesis. PMID:24040308

  11. Gap Junction Intercellular Communication: A Review of a Potential Platform to Modulate Craniofacial Tissue Engineering

    PubMed Central

    Rossello, Ricardo A.; Kohn, David H.

    2009-01-01

    Defects in craniofacial tissues, resulting from trauma, congenital abnormalities, oncologic resection or progressive deforming diseases, may result in aesthetic deformity, pain and reduced function. Restoring the structure, function and aesthetics of craniofacial tissues represents a substantial clinical problem in need of new solutions. More biologically-interactive biomaterials could potentially improve the treatment of craniofacial defects, and an understanding of developmental processes may help identify strategies and materials that can be used in tissue engineering. One such strategy that can potentially advance tissue engineering is cell–cell communication. Gap junction intercellular communication is the most direct way of achieving such signaling. Gap junction communication through connexin-mediated junctions, in particular connexin 43 (Cx43), plays a major role bone development. Given the important role of Cx43 in controlling development and differentiation, especially in bone cells, controlling the expression of Cx43 may provide control over cell-to-cell communication and may help overcome some of the challenges in craniofacial tissue engineering. Following a review of gap junctions in bone cells, the ability to enhance cell–cell communication and osteogenic differentiation via control of gap junctions is discussed, as is the potential utility of this approach in craniofacial tissue engineering. PMID:18481782

  12. Extracellular vesicles and intercellular communication within the nervous system

    PubMed Central

    Fitzpatrick, Zachary; Maguire, Casey A.; Breakefield, Xandra O.

    2016-01-01

    Extracellular vesicles (EVs, including exosomes) are implicated in many aspects of nervous system development and function, including regulation of synaptic communication, synaptic strength, and nerve regeneration. They mediate the transfer of packets of information in the form of nonsecreted proteins and DNA/RNA protected within a membrane compartment. EVs are essential for the packaging and transport of many cell-fate proteins during development as well as many neurotoxic misfolded proteins during pathogenesis. This form of communication provides another dimension of cellular crosstalk, with the ability to assemble a “kit” of directional instructions made up of different molecular entities and address it to specific recipient cells. This multidimensional form of communication has special significance in the nervous system. How EVs help to orchestrate the wiring of the brain while allowing for plasticity associated with learning and memory and contribute to regeneration and degeneration are all under investigation. Because they carry specific disease-related RNAs and proteins, practical applications of EVs include potential uses as biomarkers and therapeutics. This Review describes our current understanding of EVs and serves as a springboard for future advances, which may reveal new important mechanisms by which EVs in coordinate brain and body function and dysfunction. PMID:27035811

  13. Self-organized, near-critical behavior during aggregation in Dictyostelium discoideum

    NASA Astrophysics Data System (ADS)

    de Palo, Giovanna; Yi, Darvin; Gregor, Thomas; Endres, Robert

    During starvation, the social amoeba Dictyostelium discoideum aggregates artfully via pattern formation into a multicellular slug and finally spores. The aggregation process is mediated by the secretion and sensing of cyclic adenosine monophosphate, leading to the synchronized movement of cells. The whole process is a remarkable example of collective behavior, spontaneously emerging from single-cell chemotaxis. Despite this phenomenon being broadly studied, a precise characterization of the transition from single cells to multicellularity has been elusive. Here, using fluorescence imaging data of thousands of cells, we investigate the role of cell shape in aggregation, demonstrating remarkable transitions in cell behavior. To better understand their functional role, we analyze cell-cell correlations and provide evidence for self-organization at the onset of aggregation (as opposed to leader cells), with features of criticality in this finite system. To capture the mechanism of self-organization, we extend a detailed single-cell model of D.discoideum chemotaxis by adding cell-cell communication. We then use these results to extract a minimal set of rules leading to aggregation in the population model. If universal, similar rules may explain other types of collective cell behavior.

  14. [Influence of Cx26/Cx32 gap junction channel on antineoplastic effect of etoposide in Hela cells].

    PubMed

    Tong, Xu-Hui; Dong, Shu-Ying; Jiang, Guo-Jun; Fan, Gao-Fu

    2012-03-01

    To observe the influence of Cx26/Cx32 gap junction channel on the antineoplastic effect of etoposide in Hela cervical cancer cells. Fluorescence trace was used to assay the gap junction intercellular communication mediated by Cx26/Cx32 in Hela cells and its functional modulation by the pharmacological agents (oleamide, retinoid acid). A standard colony-forming assay was applied to determine the cell growth-inhibiting effect of etoposide in Hela cells with functional modulation of the gap junction. Hoechst 33258 staining was used to assess the changes in etoposide-induced apoptosis of Hela cells with altered gap junction functions. Oleamide markedly decreased while retinoid acid obviously increased the gap junction function in Hela cells. Standard colony-forming assay showed that etoposide produced a lowered antiproliferative effect in Hela cells with reduced gap junction and an increased antiproliferative effect in cells with enhanced gap junction function. In cells with a reduced gap junction function, etoposide induced a lowered apoptosis rate, which increased obviously in cells with an enhanced gap junction function. The antineoplastic effect of etoposide is reduced in Hela cells with a decreased gap junction intercellular communication mediated by Cx26/Cx32 and is enhanced in cells with an increased gap junction intercellular communication.

  15. Bioluminescence Truth Data Measurement and Signature Detection

    DTIC Science & Technology

    2007-09-30

    cell phone based communications module attached to the top of the piling. A cell phone tower represents communication of data to shore. Also shown...representing each Kilroy installation are located based on GPS coordinates telemetered by the cell phone module. Icons point in direction of most recently

  16. Biochar and microbial signaling: production conditions determine effects on microbial communication.

    PubMed

    Masiello, Caroline A; Chen, Ye; Gao, Xiaodong; Liu, Shirley; Cheng, Hsiao-Ying; Bennett, Matthew R; Rudgers, Jennifer A; Wagner, Daniel S; Zygourakis, Kyriacos; Silberg, Jonathan J

    2013-10-15

    Charcoal has a long soil residence time, which has resulted in its production and use as a carbon sequestration technique (biochar). A range of biological effects can be triggered by soil biochar that can positively and negatively influence carbon storage, such as changing the decomposition rate of organic matter and altering plant biomass production. Sorption of cellular signals has been hypothesized to underlie some of these effects, but it remains unknown whether the binding of biochemical signals occurs, and if so, on time scales relevant to microbial growth and communication. We examined biochar sorption of N-3-oxo-dodecanoyl-L-homoserine lactone, an acyl-homoserine lactone (AHL) intercellular signaling molecule used by many gram-negative soil microbes to regulate gene expression. We show that wood biochars disrupt communication within a growing multicellular system that is made up of sender cells that synthesize AHL and receiver cells that express green fluorescent protein in response to an AHL signal. However, biochar inhibition of AHL-mediated cell-cell communication varied, with the biochar prepared at 700 °C (surface area of 301 m(2)/g) inhibiting cellular communication 10-fold more than an equivalent mass of biochar prepared at 300 °C (surface area of 3 m(2)/g). These findings provide the first direct evidence that biochars elicit a range of effects on gene expression dependent on intercellular signaling, implicating the method of biochar preparation as a parameter that could be tuned to regulate microbial-dependent soil processes, like nitrogen fixation and pest attack of root crops.

  17. Biochar and microbial signaling: production conditions determine effects on microbial communication

    PubMed Central

    Masiello, Caroline A.; Chen, Ye; Gao, Xiaodong; Liu, Shirley; Cheng, Hsiao-Ying; Bennett, Matthew R.; Rudgers, Jennifer A.; Wagner, Daniel S.; Zygourakis, Kyriacos; Silberg, Jonathan J.

    2013-01-01

    Charcoal has a long soil residence time, which has resulted in its production and use as a carbon sequestration technique (biochar). A range of biological effects can be triggered by soil biochar that can positively and negatively influence carbon storage, such as changing the decomposition rate of organic matter and altering plant biomass production. Sorption of cellular signals has been hypothesized to underlie some of these effects, but it remains unknown whether the binding of biochemical signals occurs, and if so, on time scales relevant to microbial growth and communication. We examined biochar sorption of N-3-oxo-dodecanoyl-L-homoserine lactone, an acyl-homoserine lactone (AHL) intercellular signaling molecule used by many gram-negative soil microbes to regulate gene expression. We show that wood biochars disrupt communication within a growing multicellular system that is made up of sender cells that synthesize AHL and receiver cells that express green fluorescent protein in response to an AHL signal. However, biochar inhibition of AHL-mediated cell-cell communication varied, with the biochar prepared at 700°C (surface area of 301 m2/g) inhibiting cellular communication 10-fold more than an equivalent mass of biochar prepared at 300°C (surface area of 3 m2/g). These findings provide the first direct evidence that biochars elicit a range of effects on gene expression dependent on intercellular signaling, implicating the method of biochar preparation as a parameter that could be tuned to regulate microbial-dependent soil processes, like nitrogen fixation and pest attack of root crops. PMID:24066613

  18. An optofluidic channel model for in vivo nanosensor networks in human blood

    NASA Astrophysics Data System (ADS)

    Johari, Pedram; Jornet, Josep M.

    2017-05-01

    In vivo Wireless Nanosensor Networks (iWNSNs) consist of nano-sized communicating devices with unprece- dented sensing and actuation capabilities, which are able to operate inside the human body. iWNSNs are a disruptive technology that enables the monitoring and control of biological processes at the cellular and sub- cellular levels. Compared to ex vivo measurements, which are conducted on samples extracted from the human body, iWNSNs can track (sub) cellular processes when and where they occur. Major progress in the field of na- noelectronics, nanophotonics and wireless communication is enabling the interconnection of nanosensors. Among others, plasmonic nanolasers with sub-micrometric footprint, plasmonic nano-antennas able to confine light in nanometric structures, and single-photon detectors with unrivaled sensitivity, enable the communication among implanted nanosensors in the near infrared and optical transmission windows. Motivated by these results, in this paper, an optofluidic channel model is developed to investigate the communication properties and temporal dynamics between a pair of in vivo nanosensors in the human blood. The developed model builds upon the authors' recent work on light propagation modeling through multi-layered single cells and cell assemblies and takes into account the geometric, electromagnetic and microfluidic properties of red blood cells in the human circulatory system. The proposed model guides the development of practical communication strategies among nanosensors, and paves the way through new nano-biosensing strategies able to identify diseases by detecting the slight changes in the channel impulse response, caused by either the change in shape of the blood cells or the presence of pathogens.

  19. Low cost balancing unit design

    NASA Astrophysics Data System (ADS)

    Golembiovsky, Matej; Dedek, Jan; Slanina, Zdenek

    2017-06-01

    This article deals with the design of a low-cost balancing system which consist of battery balancing units, accumulator pack units and coordinator unit with interface for higher level of battery management system. This solution allows decentralized mode of operation and the aim of this work is implementation of controlling and diagnostic mechanism into an electric scooter project realized at Technical university of Ostrava. In todays world which now fully enjoys the prime of electromobility, off-grid battery systems and other, it is important to seek the optimal balance between functionality and the economy side of BMS that being electronics which deals with secondary cells of batery packs. There were numerous sophisticated, but not too practical BMS models in the past, such as centralized system or standalone balance modules of individual cells. This article aims at development of standalone balance modules which are able to communicate with the coordinator, adjust their parameters and ensure their cells safety in case of a communication failure. With the current worldwide cutting cost trend in mind, the emphasis was put on the lowest price possible for individual component. The article is divided into two major categories, the first one being desing of power electronics with emphasis on quality, safety (cooling) and also cost. The second part describes development of a communication interface with reliability and cost in mind. The article contains numerous graphs from practical measurements. The outcome of the work and its possible future is defined in the conclusion.

  20. [The morphological features of the nervous and vascular components of communication systems in the cervix uteri].

    PubMed

    Dorosevich, A E; Bekhtereva, I A; Sudilovskaia, V V

    2009-01-01

    The investigation has indicated the presence of adrenergic and cholinergic autonomic nerve terminals (ANT) in the tissues of squamous cell carcinomas of the cervix uteri in a tumor growth area and contralaterally. Heterogeneity of the local neuromediator background in the tumor growth area and contralaterally may be explained, by studying the specific features of the cell microenvironment of ANT.

  1. A hydrogen fuel cell for rapid, enzyme-catalysed organic synthesis with continuous monitoring.

    PubMed

    Wan, Lei; Megarity, Clare F; Siritanaratkul, Bhavin; Armstrong, Fraser A

    2018-01-23

    A one-pot fuel cell for specific, enzyme-catalysed organic synthesis, with continuous monitoring of rate and reaction progress, combines an electrode catalysing rapid, reversible and diffusion-controlled interconversion of NADP + and NADPH with a Pt electrode catalysing 2H + /H 2 interconversion. This Communication demonstrates its performance and characteristics using the reductive amination of 2-oxoglutarate as a test system.

  2. Alpha-, Delta- and PP-cells

    PubMed Central

    Brereton, Melissa F.; Vergari, Elisa; Zhang, Quan

    2015-01-01

    Islet non-β-cells, the α- δ- and pancreatic polypeptide cells (PP-cells), are important components of islet architecture and intercellular communication. In α-cells, glucagon is found in electron-dense granules; granule exocytosis is calcium-dependent via P/Q-type Ca2+-channels, which may be clustered at designated cell membrane sites. Somatostatin-containing δ-cells are neuron-like, creating a network for intra-islet communication. Somatostatin 1-28 and 1-14 have a short bioactive half-life, suggesting inhibitory action via paracrine signaling. PP-cells are the most infrequent islet cell type. The embryologically separate ventral pancreas anlage contains PP-rich islets that are morphologically diffuse and α-cell deficient. Tissue samples taken from the head region are unlikely to be representative of the whole pancreas. PP has anorexic effects on gastro-intestinal function and alters insulin and glucagon secretion. Islet architecture is disrupted in rodent diabetic models, diabetic primates and human Type 1 and Type 2 diabetes, with an increased α-cell population and relocation of non-β-cells to central areas of the islet. In diabetes, the transdifferentiation of non-β-cells, with changes in hormone content, suggests plasticity of islet cells but cellular function may be compromised. Understanding how diabetes-related disordered islet structure influences intra-islet cellular communication could clarify how non-β-cells contribute to the control of islet function. PMID:26216135

  3. Versatile roles of extracellular vesicles in cancer

    PubMed Central

    Kosaka, Nobuyoshi; Yoshioka, Yusuke; Fujita, Yu

    2016-01-01

    Numerous studies have shown that non–cell-autonomous regulation of cancer cells is an important aspect of tumorigenesis. Cancer cells need to communicate with stromal cells by humoral factors such as VEGF, FGFs, and Wnt in order to survive. Recently, extracellular vesicles (EVs) have also been shown to be involved in cell-cell communication between cancer cells and the surrounding microenvironment and to be important for the development of cancer. In addition, these EVs contain small noncoding RNAs, including microRNAs (miRNAs), which contribute to the malignancy of cancer cells. Here, we provide an overview of current research on EVs, especially miRNAs in EVs. We also propose strategies to treat cancers by targeting EVs around cancer cells. PMID:26974161

  4. Charcoal disrupts cell-cell communication through multiple mechanisms

    NASA Astrophysics Data System (ADS)

    Gao, X.; Cheng, H. Y.; Liu, S.; Masiello, C. A.; Silberg, J. J.; Del Valle, I.

    2016-12-01

    Microbial cell-cell communication through the release and detection of small signaling molecules is employed by soil microbes to manage many biogeochemically relevant processes including production of biofilms, priming effects on native SOM, and management of methanogenesis and denitrification. Charcoal is a ubiquitous component of soil, entering soil either from natural fire or intentionally amended as biochar. Charcoal's presence in soil introduces spatial and temporal heterogeneity in nutrients and habitats for soil microbes and may trigger a range of biological effects not yet predictable, in part because it interferes with microbial cell-cell communication. We hypothesized that charcoal's alkalinity and large active surface area could affect the lifetime of some chemical compounds that microbes use for cell-cell signaling on times scales relevant to growth and communication. To test this idea, we examined the extent and rate of charcoal quenching of cell-cell communication caused by ten charcoals with a wide range of physicochemical properties. Our measurements focused on signaling mediated by an acyl-homoserine lactone (AHL), N-3-oxo-dodecanoyl-L-homoserine lactone, which is used by many gram-negative bacteria for quorum sensing. Our results from a bioassay and chemical sorption experiments revealed that charcoal can decrease the bioavailable level of AHL through a combination of sorption and pH-dependent hydrolysis of the lactone ring. We found that the kinetics of hydrolysis can exceed those of sorption. These findings implicate charcoal surface area and alkalinity as properties that could be tuned to regulate the degradation rates of cell-cell signaling molecules in soils. We then built a quantitative model that predicts the half-lives of different microbial signaling compounds in the presence of charcoals varying in pH and surface area. Our model results suggest that the effects of charcoal on pH-sensitive bacterial AHL signals will be fundamentally distinct from effects on pH-insensitive fungal signals, potentially leading to shifts in microbial community structures.

  5. Wireless Battery Management System of Electric Transport

    NASA Astrophysics Data System (ADS)

    Rahman, Ataur; Rahman, Mizanur; Rashid, Mahbubur

    2017-11-01

    Electric vehicles (EVs) are being developed and considered as the future transportation to reduce emission of toxic gas, cost and weight. The battery pack is one of the main crucial parts of the electric vehicle. The power optimization of the battery pack has been maintained by developing a two phase evaporative thermal management system which operation has been controlled by using a wireless battery management system. A large number of individual cells in a battery pack have many wire terminations that are liable for safety failure. To reduce the wiring problem, a wireless battery management system based on ZigBee communication protocol and point-to-point wireless topology has been presented. Microcontrollers and wireless modules are employed to process the information from several sensors (voltage, temperature and SOC) and transmit to the display devices respectively. The WBMS multistage charge balancing system offering more effective and efficient responses for several numbers of series connected battery cells. The concept of double tier switched capacitor converter and resonant switched capacitor converter is used for reducing the charge balancing time of the cells. The balancing result for 2 cells and 16 cells are improved by 15.12% and 25.3% respectively. The balancing results are poised to become better when the battery cells are increased.

  6. Exosome: emerging biomarker in breast cancer

    PubMed Central

    Jia, Yunlu; Chen, Yongxia; Wang, Qinchuan; Jayasinghe, Ushani; Luo, Xiao; Wei, Qun; Wang, Ji; Xiong, Hanchu; Chen, Cong; Xu, Bin; Hu, Wenxian; Wang, Linbo; Zhao, Wenhe; Zhou, Jichun

    2017-01-01

    Exosomes are nano-sized membrane vesicles released by a variety of cell types, and are thought to play important roles in intercellular communications. In breast cancer, through horizontal transfer of various bioactive molecules, such as proteins and mRNAs, exosomes are emerging as local and systemic cell-to-cell mediators of oncogenic information and play an important role on cancer progression. This review outlines the current knowledge and concepts concerning the exosomes involvement in breast cancer pathogenesis (including tumor initiation, invasion and metastasis, angiogenesis, immune system modulation and tumor microenvironment) and cancer therapy resistance. Moreover, the potential use of exosomes as promising diagnostic and therapeutic biomarkers in breast cancer are also discussed. PMID:28402944

  7. Maternal cell phone use in early pregnancy and child's language, communication and motor skills at 3 and 5 years: the Norwegian mother and child cohort study (MoBa).

    PubMed

    Papadopoulou, Eleni; Haugen, Margaretha; Schjølberg, Synnve; Magnus, Per; Brunborg, Gunnar; Vrijheid, Martine; Alexander, Jan

    2017-09-05

    Cell phone use during pregnancy is a public health concern. We investigated the association between maternal cell phone use in pregnancy and child's language, communication and motor skills at 3 and 5 years. This prospective study includes 45,389 mother-child pairs, participants of the MoBa, recruited at mid-pregnancy from 1999 to 2008. Maternal frequency of cell phone use in early pregnancy and child language, communication and motor skills at 3 and 5 years, were assessed by questionnaires. Logistic regression was used to estimate the associations. No cell phone use in early pregnancy was reported by 9.8% of women, while 39%, 46.9% and 4.3% of the women were categorized as low, medium and high cell phone users. Children of cell phone user mothers had 17% (OR = 0.83, 95% CI: 0.77, 0.89) lower adjusted risk of having low sentence complexity at 3 years, compared to children of non-users. The risk was 13%, 22% and 29% lower by low, medium and high maternal cell phone use. Additionally, children of cell phone users had lower risk of low motor skills score at 3 years, compared to children of non-users, but this association was not found at 5 years. We found no association between maternal cell phone use and low communication skills. We reported a decreased risk of low language and motor skills at three years in relation to prenatal cell phone use, which might be explained by enhanced maternal-child interaction among cell phone users. No evidence of adverse neurodevelopmental effects of prenatal cell phone use was reported.

  8. Prostate cancer cells specifically reorganize epithelial cell-fibroblast communication through proteoglycan and junction pathways.

    PubMed

    Suhovskih, Anastasia V; Kashuba, Vladimir I; Klein, George; Grigorieva, Elvira V

    2017-01-02

    Microenvironment and stromal fibroblasts are able to inhibit tumor cell proliferation both through secreted signaling molecules and direct cell-cell interactions but molecular mechanisms of these effects remain unclear. In this study, we investigated a role of cell-cell contact-related molecules (protein ECM components, proteoglycans (PGs) and junction-related molecules) in intercellular communications between the human TERT immortalized fibroblasts (BjTERT fibroblasts) and normal (PNT2) or cancer (LNCaP, PC3, DU145) prostate epithelial cells. It was shown that BjTERT-PNT2 cell coculture resulted in significant decrease of both BjTERT and PNT2 proliferation rates and reorganization of transcriptional activity of cell-cell contact-related genes in both cell types. Immunocytochemical staining revealed redistribution of DCN and LUM in PNT2 cells and significant increase of SDC1 at the intercellular contact zones between BjTERT and PNT2 cells, suggesting active involvement of the PGs in cell-cell contacts and contact inhibition of cell proliferation. Unlike to PNT2 cells, PC3 cells did not respond to BjTERT in terms of PGs expression, moderately increased transcriptional activity of junctions-related genes (especially tight junction) and failed to establish PC3-BjTERT contacts. At the same time, PC3 cells significantly down-regulated junctions-related genes (especially focal adhesions and adherens junctions) in BjTERT fibroblasts resulting in visible preference for homotypic PC3-PC3 over heterotypic PC3-BjTERT contacts and autonomous growth of PC3 clones. Taken together, the results demonstrate that an instructing role of fibroblasts to normal prostate epithelial cells is revoked by cancer cells through deregulation of proteoglycans and junction molecules expression and overall disorganization of fibroblast-cancer cell communication.

  9. Molecular dialogues between the ischemic brain and the peripheral immune system: Dualistic roles in injury and repair

    PubMed Central

    An, Chengrui; Shi, Yejie; Li, Peiying; Hu, Xiaoming; Gan, Yu; Stetler, Ruth A.; Leak, Rehana K.; Gao, Yanqin; Sun, Bao-Liang; Zheng, Ping; Chen, Jun

    2014-01-01

    Immune and inflammatory responses actively modulate the pathophysiological processes of acute brain injuries such as stroke. Soon after the onset of stroke, signals such as brain-derived antigens, danger-associated molecular patterns (DAMPs), cytokines, and chemokines are released from the injured brain into the systemic circulation. The injured brain also communicates with peripheral organs through the parasympathetic and sympathetic branches of the autonomic nervous system. Many of these diverse signals not only activate resident immune cells in the brain, but also trigger robust immune responses in the periphery. Peripheral immune cells then migrate toward the site of injury and release additional cytokines, chemokines, and other molecules, causing further disruptive or protective effects in the ischemic brain. Bidirectional communication between the injured brain and the peripheral immune system is now known to regulate the progression of stroke pathology as well as tissue repair. In the end, this exquisitely coordinated crosstalk helps determine the fate of animals after stroke. This article reviews the literature on ischemic brain-derived signals through which peripheral immune responses are triggered, and the potential impact of these peripheral responses on brain injury and repair. Pharmacological strategies and cell-based therapies that target the dialogue between the brain and peripheral immune system show promise as potential novel treatments for stroke. PMID:24374228

  10. The effect of cell phones on human health

    NASA Astrophysics Data System (ADS)

    Abu-Isbeih, Ibrahim N.; Saad, Dina

    2011-10-01

    The effect of cell phone radiation on human health is the subject of recent interest and study, as a result of the enormous increase in cell phone usage throughout the world. Cell phones use electromagnetic radiation in the microwave range, which some believe may be harmful to human health. Other digital wireless systems, such as data communication networks, produce similar radiation. The objective of this survey is to review the effects of cell phones on human health: A large body of research exists, both epidemiological and experimental, in non-human animals and in humans, of which the majority shows no definite causative relationship between exposure to cell phones and harmful biological effects in humans. This is often paraphrased simply as the balance of evidence showing no harm to humans from cell phones, although a significant number of individual studies do suggest such a relationship, or are inconclusive.

  11. SimCell Status Board

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanzman, Edward; Dactelides, John M; Sharp, Robert

    The Virtual SimCell is a method embodied in several software applications based on the Virtual Community Platform (VCP) (ANL-SF-11-049) and its Real-Time Dashboard (RTD) app. The purpose of this method is to more efficiently facilitate emergency preparedness exercises by allowing emergency preparedness exercise Simulation Cells -- SimCells -- to be established and managed through a computer network. SimCells take the place of organizations that would respond to actual emergencies, but are not participants in exercises of emergency preparedness plans. In effect, SimCells serve as actors portraying how those organizations would respond during real emergency events. The SimCell Status Board (SSB)more » is an RTD mini-app for controllers to communicate exercise events to players and each other by entering information into an integrated system of pre-defined data fields, displaying those data effectively, and preserving them for easy access during exercise evaluations.« less

  12. Leaf shape: genetic controls and environmental factors.

    PubMed

    Tsukaya, Hirokazu

    2005-01-01

    In recent years, many genes have been identified that are involved in the developmental processes of leaf morphogenesis. Here, I review the mechanisms of leaf shape control in a model plant, Arabidopsis thaliana, focusing on genes that fulfill special roles in leaf development. The lateral, two-dimensional expansion of leaf blades is highly dependent on the determination of the dorsoventrality of the primordia, a defining characteristic of leaves. Having a determinate fate is also a characteristic feature of leaves and is controlled by many factors. Lateral expansion is not only controlled by general regulators of cell cycling, but also by the multi-level regulation of meristematic activities, e.g., specific control of cell proliferation in the leaf-length direction, in leaf margins and in parenchymatous cells. In collaboration with the polarized control of leaf cell elongation, these redundant and specialized regulating systems for cell cycling in leaf lamina may realize the elegantly smooth, flat structure of leaves. The unified, flat shape of leaves is also dependent on the fine integration of cell proliferation and cell enlargement. Interestingly, while a decrease in the number of cells in leaf primordia can trigger a cell volume increase, an increase in the number of cells does not trigger a cell volume decrease. This phenomenon is termed compensation and suggests the existence of some systems for integration between cell cycling and cell enlargement in leaf primordia via cell-cell communication. The environmental adjustment of leaf expansion to light conditions and gravity is also summarized.

  13. An EAL domain protein and cyclic AMP contribute to the interaction between the two quorum sensing systems in Escherichia coli.

    PubMed

    Zhou, Xianxuan; Meng, Xiaoming; Sun, Baolin

    2008-09-01

    Quorum sensing (QS) is a bacterial cell-cell communication process by which bacteria communicate using extracellular signals called autoinducers. Two QS systems have been identified in Escherichia coli K-12, including an intact QS system 2 that is stimulated by the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex and a partial QS system 1 that consists of SdiA (suppressor of cell division inhibitor) responding to signals generated by other microbial species. The relationship between QS system 1 and system 2 in E. coli, however, remains obscure. Here, we show that an EAL domain protein, encoded by ydiV, and cAMP are involved in the interaction between the two QS systems in E. coli. Expression of sdiA and ydiV is inhibited by glucose. SdiA binds to the ydiV promoter region in a dose-dependent, but nonspecific, manner; extracellular autoinducer 1 from other species stimulates ydiV expression in an sdiA-dependent manner. Furthermore, we discovered that the double sdiA-ydiV mutation, but not the single mutation, causes a 2-fold decrease in intracellular cAMP concentration that leads to the inhibition of QS system 2. These results indicate that signaling pathways that respond to important environmental cues, such as autoinducers and glucose, are linked together for their control in E. coli.

  14. Microfluidic integrated acoustic waving for manipulation of cells and molecules.

    PubMed

    Barani, Alireza; Paktinat, Hossein; Janmaleki, Mohsen; Mohammadi, Aminollah; Mosaddegh, Peiman; Fadaei-Tehrani, Alireza; Sanati-Nezhad, Amir

    2016-11-15

    Acoustophoresis with its simple and low-cost fabrication, rapid and localized fluid actuation, compatibility with microfluidic components, and biocompatibility for cellular studies, has been extensively integrated into microfluidics to provide on-chip microdevices for a variety of applications in biology, bioengineering and chemistry. Among different applications, noninvasive manipulation of cells and biomolecules are significantly important, which are addressed by acoustic-based microfluidics. Here in this paper, we briefly explain the principles and different configurations of acoustic wave and acoustic streaming for the manipulation of cells and molecules and overview its applications for single cell isolation, cell focusing and sorting, cell washing and patterning, cell-cell fusion and communication, and tissue engineering. We further discuss the application of acoustic-based microfluidic systems for the mixing and transport of liquids, manipulation of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) molecules, followed by explanation on the present challenges of acoustic-based microfluidics for the handling of cells and molecules, and highlighting the future directions. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  15. Cell-To-Cell Communication in Bilateral Macronodular Adrenal Hyperplasia Causing Hypercortisolism

    PubMed Central

    Lefebvre, Hervé; Duparc, Céline; Prévost, Gaëtan; Bertherat, Jérôme; Louiset, Estelle

    2015-01-01

    It has been well established that, in the human adrenal gland, cortisol secretion is not only controlled by circulating corticotropin but is also influenced by a wide variety of bioactive signals, including conventional neurotransmitters and neuropeptides, released within the cortex by various cell types such as chromaffin cells, neurons, cells of the immune system, adipocytes, and endothelial cells. These different types of cells are present in bilateral macronodular adrenal hyperplasia (BMAH), a rare etiology of primary adrenal Cushing’s syndrome, where they appear intermingled with adrenocortical cells in the hyperplastic cortex. In addition, the genetic events, which cause the disease, favor abnormal adrenal differentiation that results in illicit expression of paracrine regulatory factors and their receptors in adrenocortical cells. All these defects constitute the molecular basis for aberrant autocrine/paracrine regulatory mechanisms, which are likely to play a role in the pathophysiology of BMAH-associated hypercortisolism. The present review summarizes the current knowledge on this topic as well as the therapeutic perspectives offered by this new pathophysiological concept. PMID:25941513

  16. Xanthomonas campestris cell-cell signalling molecule DSF (diffusible signal factor) elicits innate immunity in plants and is suppressed by the exopolysaccharide xanthan.

    PubMed

    Kakkar, Akanksha; Nizampatnam, Narasimha Rao; Kondreddy, Anil; Pradhan, Binod Bihari; Chatterjee, Subhadeep

    2015-11-01

    Several secreted and surface-associated conserved microbial molecules are recognized by the host to mount the defence response. One such evolutionarily well-conserved bacterial process is the production of cell-cell signalling molecules which regulate production of multiple virulence functions by a process known as quorum sensing. Here it is shown that a bacterial fatty acid cell-cell signalling molecule, DSF (diffusible signal factor), elicits innate immunity in plants. The DSF family of signalling molecules are highly conserved among many phytopathogenic bacteria belonging to the genus Xanthomonas as well as in opportunistic animal pathogens. Using Arabidopsis, Nicotiana benthamiana, and rice as model systems, it is shown that DSF induces a hypersensitivity reaction (HR)-like response, programmed cell death, the accumulation of autofluorescent compounds, hydrogen peroxide production, and the expression of the PATHOGENESIS-RELATED1 (PR-1) gene. Furthermore, production of the DSF signalling molecule in Pseudomonas syringae, a non-DSF-producing plant pathogen, induces the innate immune response in the N. benthamiana host plant and also affects pathogen growth. By pre- and co-inoculation of DSF, it was demonstrated that the DSF-induced plant defence reduces disease severity and pathogen growth in the host plant. In this study, it was further demonstrated that wild-type Xanthomonas campestris suppresses the DSF-induced innate immunity by secreting xanthan, the main component of extracellular polysaccharide. The results indicate that plants have evolved to recognize a widely conserved bacterial communication system and may have played a role in the co-evolution of host recognition of the pathogen and the communication machinery. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. A cell-phone-based brain-computer interface for communication in daily life

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Te; Wang, Yijun; Jung, Tzyy-Ping

    2011-04-01

    Moving a brain-computer interface (BCI) system from a laboratory demonstration to real-life applications still poses severe challenges to the BCI community. This study aims to integrate a mobile and wireless electroencephalogram (EEG) system and a signal-processing platform based on a cell phone into a truly wearable and wireless online BCI. Its practicality and implications in a routine BCI are demonstrated through the realization and testing of a steady-state visual evoked potential (SSVEP)-based BCI. This study implemented and tested online signal processing methods in both time and frequency domains for detecting SSVEPs. The results of this study showed that the performance of the proposed cell-phone-based platform was comparable, in terms of the information transfer rate, with other BCI systems using bulky commercial EEG systems and personal computers. To the best of our knowledge, this study is the first to demonstrate a truly portable, cost-effective and miniature cell-phone-based platform for online BCIs.

  18. A cell-phone-based brain-computer interface for communication in daily life.

    PubMed

    Wang, Yu-Te; Wang, Yijun; Jung, Tzyy-Ping

    2011-04-01

    Moving a brain-computer interface (BCI) system from a laboratory demonstration to real-life applications still poses severe challenges to the BCI community. This study aims to integrate a mobile and wireless electroencephalogram (EEG) system and a signal-processing platform based on a cell phone into a truly wearable and wireless online BCI. Its practicality and implications in a routine BCI are demonstrated through the realization and testing of a steady-state visual evoked potential (SSVEP)-based BCI. This study implemented and tested online signal processing methods in both time and frequency domains for detecting SSVEPs. The results of this study showed that the performance of the proposed cell-phone-based platform was comparable, in terms of the information transfer rate, with other BCI systems using bulky commercial EEG systems and personal computers. To the best of our knowledge, this study is the first to demonstrate a truly portable, cost-effective and miniature cell-phone-based platform for online BCIs.

  19. Proteome-metabolome profiling of ovarian cancer ascites reveals novel components involved in intercellular communication.

    PubMed

    Shender, Victoria O; Pavlyukov, Marat S; Ziganshin, Rustam H; Arapidi, Georgij P; Kovalchuk, Sergey I; Anikanov, Nikolay A; Altukhov, Ilya A; Alexeev, Dmitry G; Butenko, Ivan O; Shavarda, Alexey L; Khomyakova, Elena B; Evtushenko, Evgeniy; Ashrafyan, Lev A; Antonova, Irina B; Kuznetcov, Igor N; Gorbachev, Alexey Yu; Shakhparonov, Mikhail I; Govorun, Vadim M

    2014-12-01

    Ovarian cancer ascites is a native medium for cancer cells that allows investigation of their secretome in a natural environment. This medium is of interest as a promising source of potential biomarkers, and also as a medium for cell-cell communication. The aim of this study was to elucidate specific features of the malignant ascites metabolome and proteome. In order to omit components of the systemic response to ascites formation, we compared malignant ascites with cirrhosis ascites. Metabolome analysis revealed 41 components that differed significantly between malignant and cirrhosis ascites. Most of the identified cancer-specific metabolites are known to be important signaling molecules. Proteomic analysis identified 2096 and 1855 proteins in the ovarian cancer and cirrhosis ascites, respectively; 424 proteins were specific for the malignant ascites. Functional analysis of the proteome demonstrated that the major differences between cirrhosis and malignant ascites were observed for the cluster of spliceosomal proteins. Additionally, we demonstrate that several splicing RNAs were exclusively detected in malignant ascites, where they probably existed within protein complexes. This result was confirmed in vitro using an ovarian cancer cell line. Identification of spliceosomal proteins and RNAs in an extracellular medium is of particular interest; the finding suggests that they might play a role in the communication between cancer cells. In addition, malignant ascites contains a high number of exosomes that are known to play an important role in signal transduction. Thus our study reveals the specific features of malignant ascites that are associated with its function as a medium of intercellular communication. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Simulated microgravity allows to demonstrate cell-to-cell communication in bacteria

    NASA Astrophysics Data System (ADS)

    Mastroleo, Felice; van Houdt, Rob; Mergeay, Max; Hendrickx, Larissa; Wattiez, Ruddy; Leys, Natalie

    Through the MELiSSA project, the European Space Agency aims to develop a closed life support system for oxygen, water and food production to support human life in space in forth-coming long term space exploration missions. This production is based on the recycling of the missions organic waste, including CO2 and minerals. The photosynthetic bacterium Rhodospir-illum rubrum S1H is used in MELiSSA to degrade organics with light energy and is the first MELiSSA organism that has been studied in space related environmental conditions (Mastroleo et al., 2009). It was tested in actual space flight to the International Space Station (ISS) as well as in ground simulations of ISS-like ionizing radiation and microgravity. In the present study, R. rubrum S1H was cultured in liquid medium in 2 devices simulating microgravity conditions, i.e. the Rotating Wall Vessel (RWV) and the Random Positioning Machine (RPM). The re-sponse of the bacterium was evaluated at both the transcriptomic and proteomic levels using respectively a dedicated whole-genome microarray and high-throughput gel-free quantitative proteomics. Both at transcriptomic and proteomic level, the bacterium showed a significant response to cultivation in simulated microgravity. The response to low fluid shear modeled microgravity in RWV was different than to randomized microgravity in RPM. Nevertheless, both tests pointed out a change in and a likely interrelation between cell-to-cell communica-tion (i.e. quorum sensing) and cell pigmentation (i.e. photosynthesis) for R. rubrum S1H in microgravity conditions. A new type of cell-to-cell communication molecule in R. rubrum S1H was discovered and characterized. It is hypothised that the lack of convection currents and the fluid quiescence in (simulated) microgravity limits communications molecules to be spread throughout the medium. Cultivation in this new artificial environment of simulated micro-gravity has showed new properties of this well know bacterium. Understanding how cell-to-cell communication regulates photosynthesis and potentially cell aggregation may be an unique tool to understand, characterize and then optimize biodegradation processes in photobioreactors, in space or on Earth. Mastroleo F., Van Houdt R., Leroy B., Benotmane M. A., Janssen A., Mergeay M., Vanhavere F., Hendrickx L., Wattiez R. and Leys N. Experimental design and environmental parameters affect Rhodospirillum rubrum S1H response to space flight. ISME J 2009;3:1402-1419. The presented work was financially supported by the European Space Agency (ESA-PRODEX), the Belgian Science Policy (Belspo) (PRODEX agreements No C90247 No 90094) and the SCK•CEN PhD AWM grant of F. Mastroleo. We are grateful to C. Lasseur and C. Paillé, both from ESTEC/ESA, for their constant support and advice.

  1. Trail networks formed by populations of immune cells

    NASA Astrophysics Data System (ADS)

    Yang, Taeseok Daniel; Kwon, Tae Goo; Park, Jin-sung; Lee, Kyoung J.

    2014-02-01

    Populations of biological cells that communicate with each other can organize themselves to generate large-scale patterns. Examples can be found in diverse systems, ranging from developing embryos, cardiac tissues, chemotaxing ameba and swirling bacteria. The similarity, often shared by the patterns, suggests the existence of some general governing principle. On the other hand, rich diversity and system-specific properties are exhibited, depending on the type of involved cells and the nature of their interactions. The study on the similarity and the diversity constitutes a rapidly growing field of research. Here, we introduce a new class of self-organized patterns of cell populations that we term as ‘cellular trail networks’. They were observed with populations of rat microglia, the immune cells of the brain and the experimental evidence suggested that haptotaxis is the key element responsible for them. The essential features of the observed patterns are well captured by the mathematical model cells that actively crawl and interact with each other through a decomposing but non-diffusing chemical attractant laid down by the cells. Our finding suggests an unusual mechanism of socially cooperative long-range signaling for the crawling immune cells.

  2. The benefits of convergence.

    PubMed

    Chang, Gee-Kung; Cheng, Lin

    2016-03-06

    A multi-tier radio access network (RAN) combining the strength of fibre-optic and radio access technologies employing adaptive microwave photonics interfaces and radio-over-fibre (RoF) techniques is envisioned for future heterogeneous wireless communications. All-band radio spectrum from 0.1 to 100 GHz will be used to deliver wireless services with high capacity, high link speed and low latency. The multi-tier RAN will improve the cell-edge performance in an integrated heterogeneous environment enabled by fibre-wireless integration and networking for mobile fronthaul/backhaul, resource sharing and all-layer centralization of multiple standards with different frequency bands and modulation formats. In essence, this is a 'no-more-cells' architecture in which carrier aggregation among multiple frequency bands can be easily achieved with seamless handover between cells. In this way, current and future mobile network standards such as 4G and 5G can coexist with optimized and continuous cell coverage using multi-tier RoF regardless of the underlying network topology or protocol. In terms of users' experience, the future-proof approach achieves the goals of system capacity, link speed, latency and continuous heterogeneous cell coverage while overcoming the bandwidth crunch in next-generation communication networks. © 2016 The Author(s).

  3. Engineering of Neuron Growth and Enhancing Cell-Chip Communication via Mixed SAMs.

    PubMed

    Markov, Aleksandr; Maybeck, Vanessa; Wolf, Nikolaus; Mayer, Dirk; Offenhäusser, Andreas; Wördenweber, Roger

    2018-06-06

    The interface between cells and inorganic surfaces represents one of the key elements for bioelectronics experiments and applications ranging from cell cultures and bioelectronics devices to medical implants. In the present paper, we describe a way to tailor the biocompatibility of substrates in terms of cell growth and to significantly improve cell-chip communication, and we also demonstrate the reusability of the substrates for cell experiments. All these improvements are achieved by coating the substrates or chips with a self-assembled monolayer (SAM) consisting of a mixture of organic molecules, (3-aminopropyl)-triethoxysilane and (3-glycidyloxypropyl)-trimethoxysilane. By varying the ratio of these molecules, we are able to tune the cell density and live/dead ratios of rat cortical neurons cultured directly on the mixed SAM as well as neurons cultured on protein-coated SAMs. Furthermore, the use of the SAM leads to a significant improvement in cell-chip communications. Action potential signals of up to 9.4 ± 0.6 mV (signal-to-noise ratio up to 47) are obtained for HL-1 cells on microelectrode arrays. Finally, we demonstrate that the SAMs facilitate a reusability of the samples for all cell experiments with little re-processing.

  4. Role of quorum sensing in bacterial infections

    PubMed Central

    Castillo-Juárez, Israel; Maeda, Toshinari; Mandujano-Tinoco, Edna Ayerim; Tomás, María; Pérez-Eretza, Berenice; García-Contreras, Silvia Julieta; Wood, Thomas K; García-Contreras, Rodolfo

    2015-01-01

    Quorum sensing (QS) is cell communication that is widely used by bacterial pathogens to coordinate the expression of several collective traits, including the production of multiple virulence factors, biofilm formation, and swarming motility once a population threshold is reached. Several lines of evidence indicate that QS enhances virulence of bacterial pathogens in animal models as well as in human infections; however, its relative importance for bacterial pathogenesis is still incomplete. In this review, we discuss the present evidence from in vitro and in vivo experiments in animal models, as well as from clinical studies, that link QS systems with human infections. We focus on two major QS bacterial models, the opportunistic Gram negative bacteria Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus, which are also two of the main agents responsible of nosocomial and wound infections. In addition, QS communication systems in other bacterial, eukaryotic pathogens, and even immune and cancer cells are also reviewed, and finally, the new approaches proposed to combat bacterial infections by the attenuation of their QS communication systems and virulence are also discussed. PMID:26244150

  5. Specificity of gap junction communication among human mammary cells and connexin transfectants in culture

    PubMed Central

    1993-01-01

    In a previous paper (Lee et al., 1992), it was shown that normal human mammary epithelial cells (NMEC) express two connexin genes, Cx26 and Cx43, whereas neither gene is transcribed in a series of mammary tumor cell lines (TMEC). In this paper it is shown that normal human mammary fibroblasts (NMF) communicate and express Cx43 mRNA and protein. Transfection of either Cx26 or Cx43 genes into a tumor line, 21MT-2, induced the expression of the corresponding mRNAs and proteins as well as communication via gap junctions (GJs), although immunofluorescence demonstrated that the majority of Cx26 and Cx43 proteins present in transfected TMEC was largely cytoplasmic. Immunoblotting demonstrated that NMEC, NMF, and transfected TMEC each displayed a unique pattern of posttranslationally modified forms of Cx43 protein. The role of different connexins in regulating gap junction intercellular communication (GJIC) was examined using a novel two-dye method to assess homologous and heterologous communication quantitatively. The recipient cell population was prestained with a permanent non-toxic lipophilic dye that binds to membranes irreversibly (PKH26, Zynaxis); and the donor population is treated with a GJ-permeable dye Calcein, a derivative of fluorescein diacetate (Molecular Probes). After mixing the two cell populations under conditions promoting GJ formation, cells were analyzed by flow cytometry to determine the percentage of cells containing both dyes. It is shown here that Cx26 and Cx43 transfectants display strong homologous communication, as do NMEC and NMF. Furthermore, NMEC mixed with NMF communicate efficiently, Cx26 transfectants communicate with NMEC but not with NMF, and Cx43 transfectants communicate with NMF. Communication between Cx26 TMEC transfectants and NMEC was asymetrical with preferential movement of calcein from TMEC to NMEC. Despite the presence of Cx43 as well as Cx26 encoded proteins in the GJs of NMEC, few Cx43 transfectants communicated with NMEC. No heterologous GJIC was observed between Cx26- and Cx43-transfected TMEC suggesting that heterotypic GJs do not form or that Cx26/Cx43 channels do not permit dye transfer. PMID:8391000

  6. Love and hooking up in the new millennium: communication technology and relationships among urban African American and Puerto Rican young adults.

    PubMed

    Bergdall, Anna R; Kraft, Joan Marie; Andes, Karen; Carter, Marion; Hatfield-Timajchy, Kendra; Hock-Long, Linda

    2012-01-01

    Communication technology is a central feature of young people's lives, but its role in romantic and sexual relationships has not been thoroughly examined. This article describes how young adults use communication technology for partnering across relationship stages (formation, maintenance, and dissolution) and types (serious/casual), and proposes implications of usage in relationships. This study analyzed qualitative data from a five-week, prospective, coital diary method with related debriefing interviews (N = 70) of African American and Puerto Rican men and women aged 18 to 25 years in Hartford and Philadelphia. Cell phones, including calls, text messaging, and mobile Internet, were the most common forms of communication technology used for partnering goals. Participants reported using cell phones to pursue partnering goals across all relationship stages, including formation (meeting, screening, and getting to know new partners), maintaining existing relationships, and breaking up. Cell phone uses depended on the type of relationship (serious/casual) and the participants' intentions and desires. Results indicated that cell phones are an important element of communication among young adults in romantic and sexual relationships. Specific features of cell phone communication shape the process and context of partnering. Future research should explore emerging communication technologies and implications for psychosocial development, dating violence, and sexual behavior.

  7. Hybrid cell adhesive material for instant dielectrophoretic cell trapping and long-term cell function assessment.

    PubMed

    Reyes, Darwin R; Hong, Jennifer S; Elliott, John T; Gaitan, Michael

    2011-08-16

    Dielectrophoresis (DEP) for cell manipulation has focused, for the most part, on approaches for separation/enrichment of cells of interest. Advancements in cell positioning and immobilization onto substrates for cell culture, either as single cells or as cell aggregates, has benefited from the intensified research efforts in DEP (electrokinetic) manipulation. However, there has yet to be a DEP approach that provides the conditions for cell manipulation while promoting cell function processes such as cell differentiation. Here we present the first demonstration of a system that combines DEP with a hybrid cell adhesive material (hCAM) to allow for cell entrapment and cell function, as demonstrated by cell differentiation into neuronlike cells (NLCs). The hCAM, comprised of polyelectrolytes and fibronectin, was engineered to function as an instantaneous cell adhesive surface after DEP manipulation and to support long-term cell function (cell proliferation, induction, and differentiation). Pluripotent P19 mouse embryonal carcinoma cells flowing within a microchannel were attracted to the DEP electrode surface and remained adhered onto the hCAM coating under a fluid flow field after the DEP forces were removed. Cells remained viable after DEP manipulation for up to 8 d, during which time the P19 cells were induced to differentiate into NLCs. This approach could have further applications in areas such as cell-cell communication, three-dimensional cell aggregates to create cell microenvironments, and cell cocultures.

  8. Sensory Flask Cells in Sponge Larvae Regulate Metamorphosis via Calcium Signaling.

    PubMed

    Nakanishi, Nagayasu; Stoupin, Daniel; Degnan, Sandie M; Degnan, Bernard M

    2015-12-01

    The Porifera (sponges) is one of the earliest phyletic lineages to branch off the metazoan tree. Although the body-plan of sponges is among the simplest in the animal kingdom and sponges lack nervous systems that communicate environmental signals to other cells, their larvae have sensory systems that generate coordinated responses to environmental cues. In eumetazoans (Cnidaria and Bilateria), the nervous systems of larvae often regulate metamorphosis through Ca(2+)-dependent signal transduction. In sponges, neither the identity of the receptor system that detects an inductive environmental cue (hereafter "metamorphic cues") nor the signaling system that mediates settlement and metamorphosis are known. Using a combination of behavioral assays and surgical manipulations, we show here that specialized epithelial cells-referred to as flask cells-enriched in the anterior third of the Amphimedon queenslandica larva are most likely to be the sensory cells that detect the metamorphic cues. Surgical removal of the region enriched in flask cells in a larva inhibits the initiation of metamorphosis. The flask cell has an apical sensory apparatus with a cilium surrounded by an apical F-actin-rich protrusion, and numerous vesicles, hallmarks of eumetazoan sensory-neurosecretory cells. We demonstrate that these flask cells respond to metamorphic cues by elevating intracellular Ca(2+) levels, and that this elevation is necessary for the initiation of metamorphosis. Taken together, these analyses suggest that sponge larvae have sensory-secretory epithelial cells capable of converting exogenous cues into internal signals via Ca(2+)-mediated signaling, which is necessary for the initiation of metamorphosis. Similarities in the morphology, physiology, and function of the sensory flask cells in sponge larvae with the sensory/neurosecretory cells in eumetazoan larvae suggest this sensory system predates the divergence of Porifera and Eumetazoa. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  9. High voltage solar cell power generating system for regulated solar array development

    NASA Technical Reports Server (NTRS)

    Levy, E., Jr.; Hoffman, A. C.

    1973-01-01

    A laboratory solar power system regulated by on-panel switches has been delivered for operating high power (3 kw), high voltage (15,000 volt) loads (communication tubes, ion thrusters). The modular system consists of 26 solar arrays, each with an integral light source and cooling system. A typical array contains 2560 series-connected cells. Each light source consists of twenty 500 watt tungsten iodide lamps providing plus or minus 5 per cent uniformity at one solar constant. An array temperature of less than 40 C is achieved using an infrared filter, a water cooled plate, a vacuum hold-down system, and air flushing.

  10. Microorganism and filamentous fungi drive evolution of plant synapses.

    PubMed

    Baluška, František; Mancuso, Stefano

    2013-01-01

    In the course of plant evolution, there is an obvious trend toward an increased complexity of plant bodies, as well as an increased sophistication of plant behavior and communication. Phenotypic plasticity of plants is based on the polar auxin transport machinery that is directly linked with plant sensory systems impinging on plant behavior and adaptive responses. Similar to the emergence and evolution of eukaryotic cells, evolution of land plants was also shaped and driven by infective and symbiotic microorganisms. These microorganisms are the driving force behind the evolution of plant synapses and other neuronal aspects of higher plants; this is especially pronounced in the root apices. Plant synapses allow synaptic cell-cell communication and coordination in plants, as well as sensory-motor integration in root apices searching for water and mineral nutrition. These neuronal aspects of higher plants are closely linked with their unique ability to adapt to environmental changes.

  11. Evaluation of Medicinal Plant Hepatotoxicity in Co-cultures of Hepatocytes and Monocytes

    PubMed Central

    Saad, Bashar; Dakwar, Suha; Said, Omar; Abu-Hijleh, Ghassan; Battah, Feras Al; Kmeel, Abedelsalam; Aziazeh, Hassan

    2006-01-01

    Non-parenchymal cells might play an important role in the modulation of xenobiotic metabolism in liver and its pharmacological and toxicological consequences. Therefore, the role of cell-to-cell interactions in herbal induced liver toxicity was investigated in monocultures of cells from the human hepatocyte cell line (HepG2) and in co-cultures of cells from the HepG2 cell line and cells from the human monocyte cell line (THP1). Cells were treated with various concentrations (1–500 µg ml−1) of extracts of Pistacia palaestina, Juglans regia and Quercus ithaburensis for 24 h. Extracts from Cleome droserifolia, a known toxic plant, were taken as positive control. In the co-culture system, toxic effects were observed after exposure to extracts of Pistacia palestina and C. droserifolia. These two extracts significantly reduced by cell viability as measured the MTT test and the LDH assay. Whereas in hepatocyte cultures, only extracts of C. droserifolia were found to affect the cell viability. The production levels of albumin from hepatocytes were not affected by treatment with plant extracts in both culture systems. It seems that the observed reduction in cell viability after exposure to extracts of P. palestina in co-cultures but not in monocultures is a result of monocyte-derived factors. The use of liver cell co-cultures is therefore a useful approach to investigate the influence of intercellular communication on xenobiotic metabolism in liver. PMID:16550229

  12. Biological properties of extracellular vesicles and their physiological functions

    PubMed Central

    Yáñez-Mó, María; Siljander, Pia R.-M.; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E.; Buzas, Edit I.; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Silva, Anabela Cordeiro-da; Fais, Stefano; Falcon-Perez, Juan M.; Ghobrial, Irene M.; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H. H.; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Hoen, Esther N.M. Nolte-‘t; Nyman, Tuula A.; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; del Portillo, Hernando A.; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N.; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem; Stukelj, Roman; Van der Grein, Susanne G.; Vasconcelos, M. Helena; Wauben, Marca H. M.; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system. PMID:25979354

  13. Biological properties of extracellular vesicles and their physiological functions.

    PubMed

    Yáñez-Mó, María; Siljander, Pia R-M; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E; Buzas, Edit I; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Cordeiro-da Silva, Anabela; Fais, Stefano; Falcon-Perez, Juan M; Ghobrial, Irene M; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H H; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Nolte-'t Hoen, Esther N M; Nyman, Tuula A; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; Del Portillo, Hernando A; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem; Stukelj, Roman; Van der Grein, Susanne G; Vasconcelos, M Helena; Wauben, Marca H M; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.

  14. Learning and Memory... and the Immune System

    ERIC Educational Resources Information Center

    Marin, Ioana; Kipnis, Jonathan

    2013-01-01

    The nervous system and the immune system are two main regulators of homeostasis in the body. Communication between them ensures normal functioning of the organism. Immune cells and molecules are required for sculpting the circuitry and determining the activity of the nervous system. Within the parenchyma of the central nervous system (CNS),…

  15. Communication: phase transitions, criticality, and three-phase coexistence in constrained cell models.

    PubMed

    Nayhouse, Michael; Kwon, Joseph Sang-Il; Orkoulas, G

    2012-05-28

    In simulation studies of fluid-solid transitions, the solid phase is usually modeled as a constrained system in which each particle is confined to move in a single Wigner-Seitz cell. The constrained cell model has been used in the determination of fluid-solid coexistence via thermodynamic integration and other techniques. In the present work, the phase diagram of such a constrained system of Lennard-Jones particles is determined from constant-pressure simulations. The pressure-density isotherms exhibit inflection points which are interpreted as the mechanical stability limit of the solid phase. The phase diagram of the constrained system contains a critical and a triple point. The temperature and pressure at the critical and the triple point are both higher than those of the unconstrained system due to the reduction in the entropy caused by the single occupancy constraint.

  16. Neuroblastoma SH-SY5Y cell-derived exosomes stimulate dendrite-like outgrowths and modify the differentiation of A375 melanoma cells.

    PubMed

    Park, Seyeon; Ahn, Eun Sook; Kim, Yunjoo

    2015-04-01

    The identification of small vesicles released by many cell types as tools of intercellular communication is proposed. Here, we identify SH-SY5Y neuroblastoma-derived exosomes comprised of major histocompatibility complex II (MHC II), Hsp90 and flotillin-1. Our data also suggest that, when applied extracellularly, exosomes released from neuronal cells stimulate dendrite-like outgrowth and melanogenesis of A375 melanoma cells through the mitogen-activated protein kinase (MAP kinase), extracellular signal-regulated kinase 1 (ERK1) activation. These results suggest a modification of differentiation of melanocyte by the treatment of neuronal cell exosomes. Since exosomes from neuronal cells have the capacity to affect melanoma cells, they could be generally implicated in intercellular communication between different types of cells. © 2014 International Federation for Cell Biology.

  17. Gap junctions and other mechanisms of cell-cell communication regulate basal insulin secretion in the pancreatic islet.

    PubMed

    Benninger, R K P; Head, W Steven; Zhang, Min; Satin, Leslie S; Piston, David W

    2011-11-15

    Cell-cell communication in the islet of Langerhans is important for the regulation of insulin secretion. Gap-junctions coordinate oscillations in intracellular free-calcium ([Ca(2+)](i)) and insulin secretion in the islet following elevated glucose. Gap-junctions can also ensure that oscillatory [Ca(2+)](i) ceases when glucose is at a basal levels. We determine the roles of gap-junctions and other cell-cell communication pathways in the suppression of insulin secretion under basal conditions. Metabolic, electrical and insulin secretion levels were measured from islets lacking gap-junction coupling following deletion of connexion36 (Cx36(-/-)), and these results were compared to those obtained using fully isolated β-cells. K(ATP) loss-of-function islets provide a further experimental model to specifically study gap-junction mediated suppression of electrical activity. In isolated β-cells or Cx36(-/-) islets, elevations in [Ca(2+)](i) persisted in a subset of cells even at basal glucose. Isolated β-cells showed elevated insulin secretion at basal glucose; however, insulin secretion from Cx36(-/-) islets was minimally altered. [Ca(2+)](i) was further elevated under basal conditions, but insulin release still suppressed in K(ATP) loss-of-function islets. Forced elevation of cAMP led to PKA-mediated increases in insulin secretion from islets lacking gap-junctions, but not from islets expressing Cx36 gap junctions. We conclude there is a redundancy in how cell-cell communication in the islet suppresses insulin release. Gap junctions suppress cellular heterogeneity and spontaneous [Ca(2+)](i) signals, while other juxtacrine mechanisms, regulated by PKA and glucose, suppress more distal steps in exocytosis. Each mechanism is sufficiently robust to compensate for a loss of the other and still suppress basal insulin secretion.

  18. Talking about killing: Cell Phones, Collective Action, and Insurgent Violence in Iraq

    DTIC Science & Technology

    2011-05-31

    Does improved communication as provided by modern cell phone technology affect the production of violence during insurgencies? Theoretical...counterinsurgents. This paper makes a first attempt to provide a systematic test of the effect of cell phone communication on conflict. Using data on...Iraq’s cell phone network as well as event data on violence, we assess this effect at two levels. First, we analyze how violence at the district level

  19. Cell line specific modulation of connexin43 expression after exposure to ionizing radiation.

    PubMed

    Banaz-Yaşar, Ferya; Tischka, Rabea; Iliakis, George; Winterhager, Elke; Gellhaus, Alexandra

    2005-01-01

    Gap junctional intercellular communication plays a significant role in mediating radiation-induced bystander effects. However, the level of Cx43 itself is influenced by ionizing radiation, which could modify the bystander effect. Here we have investigated several cell lines for the modulation of Cx43 expression 24 h after irradiation with 5 Gy X-rays. The mouse endothelial cell line bEnd3 revealed a significantly elevated level of Cx43 already 15 min after exposure to X-rays, whereas human hybrid endothelial cells (EA.hy926) exhibited a transient downregulation of Cx43 mRNA. No obvious changes in the communication properties of the different cell lines could be observed after irradiation. The communication-deficient malignant human trophoblast cell line Jeg3 stably transfected with Cx43 did not reveal any induction of endogenous nor alteration in the exogenous Cx43 transcript level upon exposure to 5 Gy. Taken together, our data show a cell line specific modulation of Cx43 expression after exposure to X-rays.

  20. Asymmetric homotypic interactions of the atypical cadherin Flamingo mediate intercellular polarity signaling

    PubMed Central

    Chen, Wei-Shen; Antic, Dragana; Matis, Maja; Logan, Catriona Y.; Povelones, Michael; Anderson, Graham; Nusse, Roel; Axelrod, Jeffrey D.

    2008-01-01

    Acquisition of planar cell polarity (PCP) in epithelia involves intercellular communication, during which cells align their polarity with that of their neighbors. The transmembrane proteins Frizzled (Fz) and Van Gogh (Vang) are essential components of the intercellular communication mechanism, as loss of either strongly perturbs the polarity of neighboring cells. How Fz and Vang communicate polarity information between neighboring cells is poorly understood. The atypical cadherin, Flamingo (Fmi), is implicated in this process, yet whether Fmi acts permissively as a scaffold, or instructively as a signal is unclear. Here, we provide evidence that Fmi functions instructively to mediate Fz-Vang intercellular signal relay, recruiting Fz and Vang to opposite sides of cell boundaries. We propose that two functional forms of Fmi, one of which is induced by and physically interacts with Fz, form cadherin homodimers that signal bidirectionally and asymmetrically, instructing unequal responses in adjacent cell membranes to establish molecular asymmetry. PMID:18555784

  1. Small Talk: Cell-to-Cell Communication in Bacteria

    ScienceCinema

    Bassler, Bonnie [Princeton University, Princeton, New Jersey, United States

    2017-12-09

    Cell-cell communication in bacteria involves the production, release, and subsequent detection of chemical signaling molecules called autoinducers. This process, called quorum sensing, allows bacteria to regulate gene expression on a population-wide scale. Processes controlled by quorum sensing are usually ones that are unproductive when undertaken by an individual bacterium but become effective when undertaken by the group. For example, quorum sensing controls bioluminescence, secretion of virulence factors, biofilm formation, sporulation, and the exchange of DNA. Thus, quorum sensing is a mechanism that allows bacteria to function as multi-cellular organisms. Bacteria make, detect, and integrate information from multiple autoinducers, some of which are used exclusively for intra-species communication while others enable communication between species. Research is now focused on the development of therapies that interfere with quorum sensing to control bacterial virulence.

  2. Cell-derived microparticles: new targets in the therapeutic management of disease.

    PubMed

    Roseblade, Ariane; Luk, Frederick; Rawling, Tristan; Ung, Alison; Grau, Georges E R; Bebawy, Mary

    2013-01-01

    Intercellular communication is essential to maintain vital physiological activities and to regulate the organism's phenotype. There are a number of ways in which cells communicate with one another. This can occur via autocrine signaling, endocrine signaling or by the transfer of molecular mediators across gap junctions. More recently communication via microvesicular shedding has gained important recognition as a significant pathway by which cells can coordinate the spread and dominance of selective traits within a population. Through this communication apparatus, cells can now acquire and secure a survival advantage, particularly in the context of malignant disease. This review aims to highlight some of the functions and implications of microparticles in physiology of various disease states, and present a novel therapeutic strategy through the regulation of microparticle production.

  3. Regulated portals of entry into the cell

    NASA Astrophysics Data System (ADS)

    Conner, Sean D.; Schmid, Sandra L.

    2003-03-01

    The plasma membrane is the interface between cells and their harsh environment. Uptake of nutrients and all communication among cells and between cells and their environment occurs through this interface. `Endocytosis' encompasses several diverse mechanisms by which cells internalize macromolecules and particles into transport vesicles derived from the plasma membrane. It controls entry into the cell and has a crucial role in development, the immune response, neurotransmission, intercellular communication, signal transduction, and cellular and organismal homeostasis. As the complexity of molecular interactions governing endocytosis are revealed, it has become increasingly clear that it is tightly coordinated and coupled with overall cell physiology and thus, must be viewed in a broader context than simple vesicular trafficking.

  4. Development of exosome surface display technology in living human cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stickney, Zachary, E-mail: zstickney@scu.edu; Losacco, Joseph, E-mail: jlosacco@scu.edu; McDevitt, Sophie, E-mail: smmcdevitt@scu.edu

    Surface display technology is an emerging key player in presenting functional proteins for targeted drug delivery and therapy. Although a number of technologies exist, a desirable mammalian surface display system is lacking. Exosomes are extracellular vesicles that facilitate cell–cell communication and can be engineered as nano-shuttles for cell-specific delivery. In this study, we report the development of a novel exosome surface display technology by exploiting mammalian cell secreted nano-vesicles and their trans-membrane protein tetraspanins. By constructing a set of fluorescent reporters for both the inner and outer surface display on exosomes at two selected sites of tetraspanins, we demonstrated themore » successful exosomal display via gene transfection and monitoring fluorescence in vivo. We subsequently validated our system by demonstrating the expected intracellular partitioning of reporter protein into sub-cellular compartments and secretion of exosomes from human HEK293 cells. Lastly, we established the stable engineered cells to harness the ability of this robust system for continuous production, secretion, and uptake of displayed exosomes with minimal impact on human cell biology. In sum, our work paved the way for potential applications of exosome, including exosome tracking and imaging, targeted drug delivery, as well as exosome-mediated vaccine and therapy.« less

  5. Mechanically induced intercellular calcium communication in confined endothelial structures.

    PubMed

    Junkin, Michael; Lu, Yi; Long, Juexuan; Deymier, Pierre A; Hoying, James B; Wong, Pak Kin

    2013-03-01

    Calcium signaling in the diverse vascular structures is regulated by a wide range of mechanical and biochemical factors to maintain essential physiological functions of the vasculature. To properly transmit information, the intercellular calcium communication mechanism must be robust against various conditions in the cellular microenvironment. Using plasma lithography geometric confinement, we investigate mechanically induced calcium wave propagation in networks of human umbilical vein endothelial cells organized. Endothelial cell networks with confined architectures were stimulated at the single cell level, including using capacitive force probes. Calcium wave propagation in the network was observed using fluorescence calcium imaging. We show that mechanically induced calcium signaling in the endothelial networks is dynamically regulated against a wide range of probing forces and repeated stimulations. The calcium wave is able to propagate consistently in various dimensions from monolayers to individual cell chains, and in different topologies from linear patterns to cell junctions. Our results reveal that calcium signaling provides a robust mechanism for cell-cell communication in networks of endothelial cells despite the diversity of the microenvironmental inputs and complexity of vascular structures. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Seminar Explores Benefits of Using Solar Power for Disaster Management

    Science.gov Websites

    for emergency communication, water purification, lighting, laptop computers and cell phones. The systems also can replace portable generators in both residential and commercial applications, giving

  7. How connected vehicles work.

    DOT National Transportation Integrated Search

    2011-01-01

    Connected vehicles have the potential to transform the way Americans travel through the creation of a safe, interoperable wireless communications networka system that includes cars, buses, trucks, trains, traffic signals, cell phones, and other de...

  8. Network flexibility of the IRIDIUM (R) Global Mobile Satellite System

    NASA Technical Reports Server (NTRS)

    Hutcheson, Jonathan; Laurin, Mala

    1995-01-01

    The IRIDIUM system is a global personal communications system supported by a constellation of 66 low earth orbit (LEO) satellites and a collection of earth-based 'gateway' switching installations. Like traditional wireless cellular systems, coverage is achieved by a grid of cells in which bandwidth is reused for spectral efficiency. Unlike any cellular system ever built, the moving cells can be shared by multiple switching facilities. Noteworthy features of the IRIDIUM system include inter-satellite links, a GSM-based telephony architecture, and a geographically controlled system access process. These features, working in concert, permit flexible and reliable administration of the worldwide service area by gateway operators. This paper will explore this unique concept.

  9. Systemic T Cells Immunosuppression of Glioma Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells

    PubMed Central

    Domenis, Rossana; Cesselli, Daniela; Toffoletto, Barbara; Bourkoula, Evgenia; Caponnetto, Federica; Manini, Ivana; Beltrami, Antonio Paolo; Ius, Tamara; Skrap, Miran; Di Loreto, Carla

    2017-01-01

    A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC) can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression), proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs). Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression. PMID:28107450

  10. Systemic T Cells Immunosuppression of Glioma Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells.

    PubMed

    Domenis, Rossana; Cesselli, Daniela; Toffoletto, Barbara; Bourkoula, Evgenia; Caponnetto, Federica; Manini, Ivana; Beltrami, Antonio Paolo; Ius, Tamara; Skrap, Miran; Di Loreto, Carla; Gri, Giorgia

    2017-01-01

    A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC) can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression), proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs). Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression.

  11. 46 CFR 112.15-1 - Temporary emergency loads.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... independent batteries separately charged by solar cells). (r) Each general emergency alarm system required by... AND POWER SYSTEMS Emergency Loads § 112.15-1 Temporary emergency loads. On vessels required by § 112... the area of the water where it is to be launched. (h) Electric communication systems that are...

  12. U.S. Army Dugway Proving Ground, UT and the West Desert Test Center

    DTIC Science & Technology

    2001-04-30

    Optic Network •32 Channels of Video •7 Communications Consoles with 20 Radio Nets and Phone Patch •Over 40 Communication Drops & Cell Phones •Centralized... Phone Tower Sites Cell Phone Activation May ‘01 Logistical Support Full Serv ice Com mun ity l Ground Transportation and Maintenance – Vehicle Support...Voice, Data & Video Communications in Mission Control Center •Data Speed: 100 MB/sec •Ethernet Connections •Commercial Power to most Sites Cell

  13. Firing-rate resonances in the peripheral auditory system of the cricket, Gryllus bimaculatus.

    PubMed

    Rau, Florian; Clemens, Jan; Naumov, Victor; Hennig, R Matthias; Schreiber, Susanne

    2015-11-01

    In many communication systems, information is encoded in the temporal pattern of signals. For rhythmic signals that carry information in specific frequency bands, a neuronal system may profit from tuning its inherent filtering properties towards a peak sensitivity in the respective frequency range. The cricket Gryllus bimaculatus evaluates acoustic communication signals of both conspecifics and predators. The song signals of conspecifics exhibit a characteristic pulse pattern that contains only a narrow range of modulation frequencies. We examined individual neurons (AN1, AN2, ON1) in the peripheral auditory system of the cricket for tuning towards specific modulation frequencies by assessing their firing-rate resonance. Acoustic stimuli with a swept-frequency envelope allowed an efficient characterization of the cells' modulation transfer functions. Some of the examined cells exhibited tuned band-pass properties. Using simple computational models, we demonstrate how different, cell-intrinsic or network-based mechanisms such as subthreshold resonances, spike-triggered adaptation, as well as an interplay of excitation and inhibition can account for the experimentally observed firing-rate resonances. Therefore, basic neuronal mechanisms that share negative feedback as a common theme may contribute to selectivity in the peripheral auditory pathway of crickets that is designed towards mate recognition and predator avoidance.

  14. Live Imaging and Laser Disruption Reveal the Dynamics and Cell-Cell Communication During Torenia fournieri Female Gametophyte Development.

    PubMed

    Susaki, Daichi; Takeuchi, Hidenori; Tsutsui, Hiroki; Kurihara, Daisuke; Higashiyama, Tetsuya

    2015-05-01

    The female gametophytes of many flowering plants contain one egg cell, one central cell, two synergid cells and three antipodal cells with respective morphological characteristics and functions. These cells are formed by cellularization of a multinuclear female gametophyte. However, the dynamics and mechanisms of female gametophyte development remain largely unknown due to the lack of a system to visualize directly and manipulate female gametophytes in living material. Here, we established an in vitro ovule culture system to examine female gametophyte development in Torenia fournieri, a unique plant species with a protruding female gametophyte. The four-nucleate female gametophyte became eight nucleate by the final (third) mitosis and successively cellularized and matured to attract a pollen tube. The duration of final mitosis was 28 ± 6.5 min, and cellularization was completed in 54 ± 20 min after the end of the third mitosis. Fusion of polar nuclei in the central cell occurred in 13.1 ± 1.1 h, and onset of expression of LURE2, a pollen tube attractant gene, was visualized by a green fluorescent protein reporter 10.7 ± 2.3 h after cellularization. Laser disruption analysis demonstrated that the egg and central cells were required for synergid cells to acquire the pollen tube attraction function. Moreover, aberrant nuclear positioning and down-regulation of LURE2 were observed in one of the two synergid cells after disrupting an immature egg cell, suggesting that cell specification was affected. Our system provides insights into the precise dynamics and mechanisms of female gametophyte development in T. fournieri. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. ATP-dependent paracrine communication between enteric neurons and glia in a primary cell culture derived from embryonic mice.

    PubMed

    Gomes, P; Chevalier, J; Boesmans, W; Roosen, L; van den Abbeel, V; Neunlist, M; Tack, J; Vanden Berghe, P

    2009-08-01

    The importance of dynamic interactions between glia and neurons is increasingly recognized, both in the central and enteric nervous system. However, apart from their protective role, little is known about enteric neuro-glia interaction. The aim was to investigate neuro-glia intercellular communication in a mouse culture model using optical techniques. Complete embryonic (E13) guts were enzymatically dissociated, seeded on coverslips and studied with immunohistochemistry and Ca(2+)-imaging. Putative progenitor-like cells (expressing both PGP9.5 and S-100) differentiated over approximately 5 days into glia or neurons expressing typical cell-specific markers. The glia-neuron ratio could be manipulated by specific supplements (N2, G5). Neurons and glia were functionally identified both by their Ca(2+)-response to either depolarization (high K(+)) or lysophosphatidic acid and by the expression of typical markers. Neurons responded to ACh, DMPP, 5-HT, ATP and electrical stimulation, while glia responded to ATP and ADPbetas. Inhibition of glial responses by MRS2179 suggests involvement of P2Y1 receptors. Neuronal stimulation also caused delayed glial responses, which were reduced by suramin and by exogenous apyrases that catalyse nucleotide breakdown. Conversely, glial responses were enhanced by ARL-67156, an ecto-ATPase inhibitor. In this mouse enteric co-culture, functional glia and neurons can be easily monitored using optical techniques. Glial cells can be activated directly by ATP or ADPbetas. Activation of neuronal cells (DMPP, K(+)) causes secondary responses in glial cells, which can be modulated by tuning ATP and ADP breakdown. This strongly supports the involvement of paracrine purinergic communication between enteric neurons and glia.

  16. Interest in Use of Technology for Healthcare Among Veterans Receiving Treatment for Mental Health.

    PubMed

    Miller, Christopher J; McInnes, D Keith; Stolzmann, Kelly; Bauer, Mark S

    2016-10-01

    There is great interest in leveraging technology, including cell phones and computers, to improve healthcare. A range of e-health applications pertaining to mental health such as messaging for prescription refill or mobile device videoconferencing are becoming more available, but little is known about the mental health patient's interest in using these newer applications. We mailed a survey to 300 patients seen in the general mental health clinic of a local Veterans Affairs Medical Center. Survey questions focused on interest in use of cell phones, tablets, and other computers in patients' interactions with the healthcare system. A total of 74 patients, primarily treated for depression, post-traumatic stress disorder, or anxiety disorders, returned completed surveys. Nearly all reported having a cell phone (72/74, 97%), but fewer than half reported having a smartphone (35/74, 47%). Overall, a substantial majority (64/74, 86%) had access to an Internet-capable device (smartphone or computer, including tablets). Respondents appeared to prefer computers to cell phones for some health-related communications, but did not express differential interest for other tasks (such as receiving appointment reminders). Interest in use was higher among younger veterans. Most veterans with a mental health diagnosis have access to technology (including cell phones and computers) and are interested in using that technology for some types of healthcare-related communications. While there is capacity to utilize information technology for healthcare purposes in this population, interests vary widely, and a substantial minority does not have access to relevant devices. Although interest in using computers for health-related communication was higher than interest in using cell phones, single-platform technology-based interventions may nonetheless exclude crucial segments of the population.

  17. Functional Stem Cell Integration into Neural Networks Assessed by Organotypic Slice Cultures.

    PubMed

    Forsberg, David; Thonabulsombat, Charoensri; Jäderstad, Johan; Jäderstad, Linda Maria; Olivius, Petri; Herlenius, Eric

    2017-08-14

    Re-formation or preservation of functional, electrically active neural networks has been proffered as one of the goals of stem cell-mediated neural therapeutics. A primary issue for a cell therapy approach is the formation of functional contacts between the implanted cells and the host tissue. Therefore, it is of fundamental interest to establish protocols that allow us to delineate a detailed time course of grafted stem cell survival, migration, differentiation, integration, and functional interaction with the host. One option for in vitro studies is to examine the integration of exogenous stem cells into an existing active neural network in ex vivo organotypic cultures. Organotypic cultures leave the structural integrity essentially intact while still allowing the microenvironment to be carefully controlled. This allows detailed studies over time of cellular responses and cell-cell interactions, which are not readily performed in vivo. This unit describes procedures for using organotypic slice cultures as ex vivo model systems for studying neural stem cell and embryonic stem cell engraftment and communication with CNS host tissue. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  18. Biomechanical cell regulatory networks as complex adaptive systems in relation to cancer.

    PubMed

    Feller, Liviu; Khammissa, Razia Abdool Gafaar; Lemmer, Johan

    2017-01-01

    Physiological structure and function of cells are maintained by ongoing complex dynamic adaptive processes in the intracellular molecular pathways controlling the overall profile of gene expression, and by genes in cellular gene regulatory circuits. Cytogenetic mutations and non-genetic factors such as chronic inflammation or repetitive trauma, intrinsic mechanical stresses within extracellular matrix may induce redirection of gene regulatory circuits with abnormal reactivation of embryonic developmental programmes which can now drive cell transformation and cancer initiation, and later cancer progression and metastasis. Some of the non-genetic factors that may also favour cancerization are dysregulation in epithelial-mesenchymal interactions, in cell-to-cell communication, in extracellular matrix turnover, in extracellular matrix-to-cell interactions and in mechanotransduction pathways. Persistent increase in extracellular matrix stiffness, for whatever reason, has been shown to play an important role in cell transformation, and later in cancer cell invasion. In this article we review certain cell regulatory networks driving carcinogenesis, focussing on the role of mechanical stresses modulating structure and function of cells and their extracellular matrices.

  19. Biomarkers Predict Prognosis of Esophageal Cancer Patients | Center for Cancer Research

    Cancer.gov

    New treatment strategies are needed to improve outcomes for patients with esophageal cancer. With five-year survival rates less than 25 percent, this is one of the deadliest forms of cancer. There are two main types of esophageal cancer—squamous cell carcinoma and adenocarcinoma. Esophageal adenocarcinoma is frequently preceded by Barrett’s esophagus, a chronic inflammatory condition caused by gastroesophageal reflux. It is known that communication between tumor cells and the immune system can alter the behavior of tumor cells, and chronic inflammation has been implicated in several types of human cancers, including cancer of the esophagus.

  20. Simultaneous recording of the action potential and its whole-cell associated ion current on NG108-15 cells cultured over a MWCNT electrode

    NASA Astrophysics Data System (ADS)

    Morales-Reyes, I.; Seseña-Rubfiaro, A.; Acosta-García, M. C.; Batina, N.; Godínez-Fernández, R.

    2016-08-01

    It is well known that, in excitable cells, the dynamics of the ion currents (I i) is extremely important to determine both the magnitude and time course of an action potential (A p). To observe these two processes simultaneously, we cultured NG108-15 cells over a multi-walled carbon nanotubes electrode (MWCNTe) surface and arranged a two independent Patch Clamp system configuration (Bi-Patch Clamp). The first system was used in the voltage or current clamp mode, using a glass micropipette as an electrode. The second system was modified to connect the MWCNTe to virtual ground. While the A p was recorded through the micropipette electrode, the MWCNTe was used to measure the underlying whole-cell current. This configuration allowed us to record both the membrane voltage (V m) and the current changes simultaneously. Images acquired by atomic force microscopy (AFM) and scanning electron microscopy (SEM) indicate that cultured cells developed a complex network of neurites, which served to establish the necessary close contact and strong adhesion to the MWCNTe surface. These features were a key factor to obtain the recording of the whole-cell I i with a high signal to noise ratio (SNR). The experimental results were satisfactorily reproduced by a theoretical model developed to simulate the proposed system. Besides the contribution to a better understanding of the fundamental mechanisms involved in cell communication, the developed method could be useful in cell physiology studies, pharmacology and diseases diagnosis.

  1. Personal communications services: Improving theater deployable communications for the 21st century

    NASA Astrophysics Data System (ADS)

    Cournoyer, Ronald C., Jr.

    1994-06-01

    Personal Communications Services (PCS) may be the key ingredient for vastly improved military communications capabilities at the turn of the century. The Federal Communications Commission (FCC) defines PCS as a family of mobile or portable radio communications services which could provide services to individuals and businesses and be integrated with a variety of competing networks ... the primary focus of PCS will be to meet communications requirements of people on the move. Today's generation of Theater Deployable Communications, which provides joint tactical communications to deployed forces, is the Tri-Service Tactical Communications (TRI-TAC) system. A description of TRITAC's family of equipment, network topology, typical employment, and critical limitations is presented in this thesis. Five commercial Mobile Satellite Services (MSS) are described as viable candidates for augmenting existing communications systems. Cellular design principles such as frequency reuse, cell splitting, channel access methods, and propagation factors are also addressed. Finally, a framework for comparison of the candidate MSS systems is proposed as a baseline for further studies into the most beneficial implementation of PCS into theater deployable communications systems for the future.

  2. Signal percolation through plants and the shape of the calcium signature

    PubMed Central

    2010-01-01

    Plants respond to almost any kind of external stimulus with transients in their cytoplasmic free calcium concentration ([Ca2+]c). A huge variety of kinetics recorded by optical techniques has been reported in the past. This variety has been credited the specificity needed to explain how information about incoming stimuli is evaluated by the organism and turned into the right physiological responses which provide advantages for survival and reproduction. A physiological response often takes place away from the site of stimulation. This requires cell-to-cell communication. Hence, responding cells are not necessarily directly stimulated but rather receive an indirect stimulus via cell-to-cell communication. It appears unlikely that the ‘[Ca2+]c signature’ in the primarily stimulated cell is conveyed over long distances via cell-to-cell communication from the ‘receptor cells’ to the ‘effector cells’. Here, a novel aspect is highlighted to explain the variety of [Ca2+] kinetics seen by integrating methods of [Ca2+]c recording. Plants can generally be seen as cellular automata with specific morphology and capable for cell-to-cell communication. Just a few rules are needed to demonstrate how waves of [Ca2+]c-increases percolate through the organism and thereby deliver a broad variety of ‘signatures’. Modelling intercellular signalling may be a possible way to find explanations for different kinds of signal transmission, signal amplification, wave formation, oscillations and stimulus-response coupling. The basic examples presented here show that care has to be taken when interpreting cellular ‘[Ca2+]c signatures’ recorded by optical techniques which integrate over a big number of cells or even whole plants. PMID:20139732

  3. Neuro-immune dysfunction during brain aging: new insights in microglial cell regulation.

    PubMed

    Matt, Stephanie M; Johnson, Rodney W

    2016-02-01

    Microglia, the resident immune cells of the brain, are at the center of communication between the central nervous system and immune system. While these brain-immune interactions are balanced in healthy adulthood, the ability to maintain homeostasis during aging is impaired. Microglia develop a loss of integrated regulatory networks including aberrant signaling from other brain cells, immune sensors, and epigenetic modifiers. The low-grade chronic neuroinflammation associated with this dysfunctional activity likely contributes to cognitive deficits and susceptibility to age-related pathologies. A better understanding of the underlying mechanisms responsible for neuro-immune dysregulation with age is crucial for providing targeted therapeutic strategies to support brain repair and healthy aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Prominin-1-containing membrane vesicles: origins, formation, and utility.

    PubMed

    Marzesco, Anne-Marie

    2013-01-01

    The stem cell antigen prominin-1 (CD133) is associated with two major types (small and large) of extracellular membrane vesicles in addition to its selective concentration in various kinds of plasma membrane protrusion. During development of the mammalian central nervous system, differentiating neuroepithelial stem cells release these vesicles into the embryonic cerebrospinal fluid. In glioblastoma patients, an increase of such vesicles, particularly the smaller ones, have been also observed in cerebrospinal fluid. Similarly, hematopoietic stem and progenitor cells release small ones concomitantly with their differentiation. Although the functional significance of these prominin-1-containing membrane vesicles is poorly understood, a link between differentiation of stem (and cancer stem) cells and their release is emerging. In this chapter, I will summarize our knowledge about prominin-1-containing membrane vesicles including a potential role in cell-cell communication and highlight their prospective value as a new biomarker for tumorigenesis diagnostics.

  5. Topological quantum computing with a very noisy network and local error rates approaching one percent.

    PubMed

    Nickerson, Naomi H; Li, Ying; Benjamin, Simon C

    2013-01-01

    A scalable quantum computer could be built by networking together many simple processor cells, thus avoiding the need to create a single complex structure. The difficulty is that realistic quantum links are very error prone. A solution is for cells to repeatedly communicate with each other and so purify any imperfections; however prior studies suggest that the cells themselves must then have prohibitively low internal error rates. Here we describe a method by which even error-prone cells can perform purification: groups of cells generate shared resource states, which then enable stabilization of topologically encoded data. Given a realistically noisy network (≥10% error rate) we find that our protocol can succeed provided that intra-cell error rates for initialisation, state manipulation and measurement are below 0.82%. This level of fidelity is already achievable in several laboratory systems.

  6. Plant Lectins and Lectin Receptor-Like Kinases: How Do They Sense the Outside?

    PubMed Central

    Bellande, Kevin; Bono, Jean-Jacques; Savelli, Bruno; Jamet, Elisabeth; Canut, Hervé

    2017-01-01

    Lectins are fundamental to plant life and have important roles in cell-to-cell communication; development and defence strategies. At the cell surface; lectins are present both as soluble proteins (LecPs) and as chimeric proteins: lectins are then the extracellular domains of receptor-like kinases (LecRLKs) and receptor-like proteins (LecRLPs). In this review; we first describe the domain architectures of proteins harbouring G-type; L-type; LysM and malectin carbohydrate-binding domains. We then focus on the functions of LecPs; LecRLKs and LecRLPs referring to the biological processes they are involved in and to the ligands they recognize. Together; LecPs; LecRLKs and LecRLPs constitute versatile recognition systems at the cell surface contributing to the detection of symbionts and pathogens; and/or involved in monitoring of the cell wall structure and cell growth. PMID:28561754

  7. Plant Lectins and Lectin Receptor-Like Kinases: How Do They Sense the Outside?

    PubMed

    Bellande, Kevin; Bono, Jean-Jacques; Savelli, Bruno; Jamet, Elisabeth; Canut, Hervé

    2017-05-31

    Lectins are fundamental to plant life and have important roles in cell-to-cell communication; development and defence strategies. At the cell surface; lectins are present both as soluble proteins (LecPs) and as chimeric proteins: lectins are then the extracellular domains of receptor-like kinases (LecRLKs) and receptor-like proteins (LecRLPs). In this review; we first describe the domain architectures of proteins harbouring G-type; L-type; LysM and malectin carbohydrate-binding domains. We then focus on the functions of LecPs; LecRLKs and LecRLPs referring to the biological processes they are involved in and to the ligands they recognize. Together; LecPs; LecRLKs and LecRLPs constitute versatile recognition systems at the cell surface contributing to the detection of symbionts and pathogens; and/or involved in monitoring of the cell wall structure and cell growth.

  8. Modeling Local Interactions during the Motion of Cyanobacteria

    PubMed Central

    Galante, Amanda; Wisen, Susanne; Bhaya, Devaki; Levy, Doron

    2012-01-01

    Synechocystis sp., a common unicellular freshwater cyanobacterium, has been used as a model organism to study phototaxis, an ability to move in the direction of a light source. This microorganism displays a number of additional characteristics such as delayed motion, surface dependence, and a quasi-random motion, where cells move in a seemingly disordered fashion instead of in the direction of the light source, a global force on the system. These unexplained motions are thought to be modulated by local interactions between cells such as intercellular communication. In this paper, we consider only local interactions of these phototactic cells in order to mathematically model this quasi-random motion. We analyze an experimental data set to illustrate the presence of quasi-random motion and then derive a stochastic dynamic particle system modeling interacting phototactic cells. The simulations of our model are consistent with experimentally observed phototactic motion. PMID:22713858

  9. Space-time dynamics of Stem Cell Niches: a unified approach for Plants.

    PubMed

    Pérez, Maria Del Carmen; López, Alejandro; Padilla, Pablo

    2013-06-01

    Many complex systems cannot be analyzed using traditional mathematical tools, due to their irreducible nature. This makes it necessary to develop models that can be implemented computationally to simulate their evolution. Examples of these models are cellular automata, evolutionary algorithms, complex networks, agent-based models, symbolic dynamics and dynamical systems techniques. We review some representative approaches to model the stem cell niche in Arabidopsis thaliana and the basic biological mechanisms that underlie its formation and maintenance. We propose a mathematical model based on cellular automata for describing the space-time dynamics of the stem cell niche in the root. By making minimal assumptions on the cell communication process documented in experiments, we classify the basic developmental features of the stem-cell niche, including the basic structural architecture, and suggest that they could be understood as the result of generic mechanisms given by short and long range signals. This could be a first step in understanding why different stem cell niches share similar topologies, not only in plants. Also the fact that this organization is a robust consequence of the way information is being processed by the cells and to some extent independent of the detailed features of the signaling mechanism.

  10. Space-time dynamics of stem cell niches: a unified approach for plants.

    PubMed

    Pérez, Maria del Carmen; López, Alejandro; Padilla, Pablo

    2013-04-02

    Many complex systems cannot be analyzed using traditional mathematical tools, due to their irreducible nature. This makes it necessary to develop models that can be implemented computationally to simulate their evolution. Examples of these models are cellular automata, evolutionary algorithms, complex networks, agent-based models, symbolic dynamics and dynamical systems techniques. We review some representative approaches to model the stem cell niche in Arabidopsis thaliana and the basic biological mechanisms that underlie its formation and maintenance. We propose a mathematical model based on cellular automata for describing the space-time dynamics of the stem cell niche in the root. By making minimal assumptions on the cell communication process documented in experiments, we classify the basic developmental features of the stem-cell niche, including the basic structural architecture, and suggest that they could be understood as the result of generic mechanisms given by short and long range signals. This could be a first step in understanding why different stem cell niches share similar topologies, not only in plants. Also the fact that this organization is a robust consequence of the way information is being processed by the cells and to some extent independent of the detailed features of the signaling mechanism.

  11. Implementation of olfactory bulb glomerular-layer computations in a digital neurosynaptic core.

    PubMed

    Imam, Nabil; Cleland, Thomas A; Manohar, Rajit; Merolla, Paul A; Arthur, John V; Akopyan, Filipp; Modha, Dharmendra S

    2012-01-01

    We present a biomimetic system that captures essential functional properties of the glomerular layer of the mammalian olfactory bulb, specifically including its capacity to decorrelate similar odor representations without foreknowledge of the statistical distributions of analyte features. Our system is based on a digital neuromorphic chip consisting of 256 leaky-integrate-and-fire neurons, 1024 × 256 crossbar synapses, and address-event representation communication circuits. The neural circuits configured in the chip reflect established connections among mitral cells, periglomerular cells, external tufted cells, and superficial short-axon cells within the olfactory bulb, and accept input from convergent sets of sensors configured as olfactory sensory neurons. This configuration generates functional transformations comparable to those observed in the glomerular layer of the mammalian olfactory bulb. Our circuits, consuming only 45 pJ of active power per spike with a power supply of 0.85 V, can be used as the first stage of processing in low-power artificial chemical sensing devices inspired by natural olfactory systems.

  12. Overviews of Emerging Research Techniques in Hearing, Bioacoustics, and Biomechanics: Proceedings of the 1981 Meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    These proceedings of the 1981 annual meeting of the Committee on Hearing, Bioacoustics, and Biomechanics cover topics of emerging research in several areas of interest to the Committee. Topics covered include: hair cell function; transduction process of hair cells; speech synthesis; machine recognition of words; neuromagnetic analysis of sensory systems; tinnitus; tactile communication of speech; and biodynamic research at the Air Force Aerospace Medical Research Laboratory.

  13. Re-establishment of gap junctional intercellular communication (GJIC) between human endometrial carcinomas by prostaglandin E(2).

    PubMed

    Schlemmer, Scott R; Kaufman, David G

    2012-12-01

    Reduced intercellular communication via gap junctions is correlated with carcinogenesis. Gap junctional intercellular communication (GJIC), between normal human endometrial epithelial cells is enhanced when endometrial stromal cells were present in culture. This enhancement of GJIC between normal epithelial cells also occurs when they are cultured in medium conditioned by stromal cells. This observation indicated that a soluble compound (or compounds) produced and secreted by stromal cells mediates GJIC in epithelial cells. Previous studies have shown that endometrial stromal cells release prostaglandin E(2) (PGE(2)) and prostaglandin F(2α) (PGF(2α)) under physiological conditions. When we evaluated the response of normal endometrial epithelial cells to various concentrations of PGE(2,) we found enhanced GJIC with 1nM PGE(2). This is a smaller increase in GJIC than that induced by medium conditioned by stromal cells. When the extracellular concentration of PGE(2) was measured after incubation with stromal cells, it was found to be similar to the concentrations showing maximal GJIC between the normal epithelial cells. When indomethacin was used to inhibit prostaglandin synthesis by stromal cells, GJIC was reduced but not eliminated between normal endometrial epithelial cells. These observations suggest that although PGE(2) secreted by stromal cells is an important mediator of GJIC between the epithelial cells, it is not the sole mediator. Transformed endometrial epithelial cells did not demonstrate GJIC even in the presence of stromal cells. However, we were able to re-establish GJIC in transformed epithelial cells when we added PGE(2) to the cells. Our findings show that PGE(2) may serve as an intercellular mediator between stromal and epithelial cells that regulates GJIC in normal and malignant epithelial cells. This suggests that maintenance of GJIC by preserving or replacing PGE(2) secretion by endometrial stromal cells may have the potential to suppress carcinogenesis in endometrial epithelial cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Lovastatin inhibits gap junctional communication in cultured aortic smooth muscle cells.

    PubMed

    Shen, Jing; Wang, Li-Hong; Zheng, Liang-Rong; Zhu, Jian-Hua; Hu, Shen-Jiang

    2010-09-01

    Gap junctions, which serve as intercellular channels that allow the passage of ions and other small molecules between neighboring cells, play an important role in vital functions, including the regulation of cell growth, differentiation, and development. Statins, the 3-hydroxy-3-methylglutaryl-coenzymeA (HMG-CoA) reductase inhibitors, have been shown to inhibit the migration and proliferation of smooth muscle cells (SMCs) leading to an antiproliferative effect. Recent studies have shown that statins can reduce gap junction protein connexin43 (Cx43) expression both in vivo and in vitro. However, little work has been done on the effects of statins on gap junctional intercellular communication (GJIC). We hypothesized in this study that lovastatin inhibits vascular smooth muscle cells (VSMCs) migration through the inhibition of the GJIC. Rat aortic SMCs (RASMCs) were exposed to lovastatin. Vascular smooth muscle cells migration was then assessed with a Transwell migration assay. Gap junctional intercellular communication was determined by using fluorescence recovery after photobleaching (FRAP) analysis, which was performed with a laser-scanning confocal microscope. The migration of the cultured RASMCs were detected by Transwell system. Cell migration was dose-dependently inhibited with lovastatin. Compared with that in the control (110 ± 26), the number of migrated SMCs was significantly reduced to 72 ± 24 (P < .05), 62 ± 18 (P < .01), and 58 ± 19 (P < .01) at the concentration of 0.4, 2, and 10 umol/L, per field. The rate of fluorescence recovery (R) at 5 minutes after photobleaching was adopted as the functional index of GJIC. The R- value of cells exposed to lovastatin 10 umol/L for 48 hours was 24.38% ± 4.84%, whereas the cells in the control group had an R- value of 36.11% ± 10.53%, demonstrating that the GJIC of RASMCs was significantly inhibited by lovastatin (P < .01). Smaller concentrations of lovastatin 0.08 umol/L did not change gap junction coupling (P > .05). These results suggest that lovastatin inhibits migration in a dose-dependent manner by attenuating JIC. Suppression of gap junction function could add another explanation of statin-induced antiproliferative effect.

  15. ANALYSIS: mobile phones integrated into diabetes management: a logical progression.

    PubMed

    Malasanos, Toree

    2008-01-01

    In this issue of Journal of Diabetes Science and Technology, the intervention described by D. Katz, "Novel Interactive Cell-Phone Technology for Health Enhancement," uses cell phones to provide the rapid communication necessary for the support of intensive management of diabetes. Mobile technology is widely accepted in today's society and can be an effective tool for this cause. There have been numerous interventions using various communication tools, including cell phones, to manage chronic disease, which all propose that improved communication and feedback to patients would improve health status. Dr. Katz has taken the next step by giving semiautomated, real-time, immediate feedback on each data point all transmitted by cell phone.

  16. Genetic Control of the Trigger for the G2/M Checkpoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Eric J.; Smilenov, Lubomir B.; Young, Erik F.

    The work undertaken in this project addressed two seminal areas of low dose radiation biology that are poorly understood and controversial. These areas are the challenge to the linear-no-threshold (LNT) paradigm at low doses of radiation and, the fundamental elements of radiation bystander effect biology Genetic contributions to low dose checkpoint engagement: The LNT paradigm is an extrapolation of known, measured cancer induction endpoints. Importantly, data for lower doses is often not available. Debatably, radiation protection standards have been introduced which are prudently contingent on the adherence of cancer risk to the established trend seen at higher doses. Intriguing findingsmore » from other labs have hinted at separate DNA damage response programs that engage at low or high levels of radiation. Individual radiation sensitivity commensurate with hemizygosity for a radiation sensitivity gene has been estimated at 1-2% in the U.S.. Careful interrogation of the DNA damage response at low doses of radiation became important and served as the basis for this grant. Several genes were tested in combinations to determine if combined haploinsufficiency for multiple radiosensitizing genes could render a cell more sensitive to lower levels of acute radiation exposure. We measured a classical radiation response endpoint, cell cycle arrest prior to mitosis. Mouse embryo fibroblasts were used and provided a uniform, rapidly dividing and genetically manipulable population of study. Our system did not report checkpoint engagement at acute doses of gamma rays below 100 mGy. The system did report checkpoint engagement reproducibly at 500 mGy establishing a threshold for activation between 100 and 500 mGy. Engagement of the checkpoint was ablated in cells nullizygous for ATM but was otherwise unperturbed in cells combinatorially haploinsufficient for ATM and Rad9, ATM and PTEN or PTEN and Rad9. Taken together, these experiments tell us that, in a sensitive fibroblast culture system, the engagement of the G2/M checkpoint only occurs at doses where most of the cells are bound for mitotic catastrophe. Further, compound haploinsufficiency of various radiosensitizing genes does not impact the threshold of activation. The experiments confirm a threshold of activation for the G2/M checkpoint, hinting at two separate radiation response programs acting below and above this threshold. Small RNA transfer in bystander effect biology: Small regulatory RNA molecules have now risen in prominence and utility. Specific examples are small interfering RNAs (siRNA) which are employed in cell level expression ablation projects and micro-RNAs (miRNA) which are a pool of short transcription products which serve to modulate the expression of other transcripts emerging from the genome in a meta-regulatory fine tuning of gene expression. The existing tenets of bystander effect radiation biology involve the communication of inflammatory mediators or direct intercellular communication of reactive oxygen/nitrogen species in cell-to-cell communicative organelles called gap junctions. By ablating gap junctions, reducing the ROS/inflammatory cytokine expression one can attenuate bystander effect signaling in cell culture systems. We hypothesized that miRNAs are a competent intercellular communication molecule and therefore a possible component of the bystander response. This view is supported by the observation that miRNA are secreted from cells in exosomes found in the circulation. This circulating pool reports disease type and severity in humans. We proposed use of microbeam irradiation technology at our facilities and enhancement of this capability with a new sorting technology which would allow us to sort irradiated and non-irradiated cells with absolute fidelity. Pursuing direct quantitative transfer assessment, we succeeded in designing and constructing a new add-on sorting appliance which harmonized with our existing instruments. The sorter allowed us to gently sort single fluorescently labeled cells. The plans for this appliance were published and are now available for use in other laboratories for single-cell analyses. Our microfluidic cell sorting modality is being integrated into subsequent microbeam irradiation experiments that are planned and ongoing. We generated and irradiated pools of specially engineered Donor-Recipient cell lines in co-culture that would report a small RNA transfer event by modulation of fluorescent protein expression. Both induction and reciprocal silencing designs were tested. We observed elevation of miRNA/siRNA transfer in response to radiation at doses of 5Gy in experiments to date. The reproducibility of these findings has not been good. Future studies will involve refinement of the reporting systems and a decrease in acute dose of radiation used to determine the lowest dose at which miRNA transfer between cells contributes to radiation bystander effect biology.« less

  17. Role of streams in myxobacteria aggregate formation

    NASA Astrophysics Data System (ADS)

    Kiskowski, Maria A.; Jiang, Yi; Alber, Mark S.

    2004-10-01

    Cell contact, movement and directionality are important factors in biological development (morphogenesis), and myxobacteria are a model system for studying cell-cell interaction and cell organization preceding differentiation. When starved, thousands of myxobacteria cells align, stream and form aggregates which later develop into round, non-motile spores. Canonically, cell aggregation has been attributed to attractive chemotaxis, a long range interaction, but there is growing evidence that myxobacteria organization depends on contact-mediated cell-cell communication. We present a discrete stochastic model based on contact-mediated signaling that suggests an explanation for the initialization of early aggregates, aggregation dynamics and final aggregate distribution. Our model qualitatively reproduces the unique structures of myxobacteria aggregates and detailed stages which occur during myxobacteria aggregation: first, aggregates initialize in random positions and cells join aggregates by random walk; second, cells redistribute by moving within transient streams connecting aggregates. Streams play a critical role in final aggregate size distribution by redistributing cells among fewer, larger aggregates. The mechanism by which streams redistribute cells depends on aggregate sizes and is enhanced by noise. Our model predicts that with increased internal noise, more streams would form and streams would last longer. Simulation results suggest a series of new experiments.

  18. Non-invasive microfluidic gap junction assay.

    PubMed

    Chen, Sisi; Lee, Luke P

    2010-03-01

    Gap junctions are protein channels between cells that allow direct electrical and metabolic coupling via the exchange of biomolecules and ions. Their expression, though ubiquitous in most mammalian cell types, is especially important for the proper functioning of cardiac and neuronal systems. Many existing methods for studying gap junction communication suffer from either unquantifiable data or difficulty of use. Here, we measure the extent of dye spread and effective diffusivities through gap junction connected cells using a quantitative microfluidic cell biology platform. After loading dye by hydrodynamic focusing of calcein/AM, dye transfer dynamics into neighboring, unexposed cells can be monitored via timelapse fluorescent microscopy. By using a selective microfluidic dye loading over a confluent layer of cells, we found that high expression of gap junctions in C6 cells transmits calcein across the monolayer with an effective diffusivity of 3.4 x 10(-13) m(2)/s, which are highly coupled by Cx43. We also found that the gap junction blocker 18alpha-GA works poorly in the presence of serum even at high concentrations (50 microM); however, it is highly effective down to 2.5 microM in the absence of serum. Furthermore, when the drug is washed out, dye spread resumes rapidly within 1 min for all doses, indicating the drug does not affect transcriptional regulation of connexins in these Cx43+ cells, in contrast to previous studies. This integrated microfluidic platform enables the in situ monitoring of gap junction communication, yielding dynamic information about intercellular molecular transfer and pharmacological inhibition and recovery.

  19. Tanshinone IIA Increases the Bystander Effect of Herpes Simplex Virus Thymidine Kinase/Ganciclovir Gene Therapy via Enhanced Gap Junctional Intercellular Communication

    PubMed Central

    Liu, Xijuan; Wu, Yingya; Du, Biaoyan; Li, Jiefen; Zhou, Jing; Li, Jingjing; Tan, Yuhui

    2013-01-01

    The bystander effect is an intriguing phenomenon by which adjacent cells become sensitized to drug treatment during gene therapy with herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV). This effect is reported to be mediated by gap junctional intercellular communication (GJIC), and therefore, we postulated that upregulation of genes that facilitate GJIC may enhance the HSV-tk/GCV bystander effect. Previous findings have shown Tanshinone IIA (Tan IIA), a chemical substance derived from a Chinese medicine herb, promotes the upregulation of the connexins Cx26 and Cx43 in B16 cells. Because gap junctions are formed by connexins, we hypothesized that Tan IIA might increase GJIC. Our results show that Tan IIA increased GJIC in B16 melanoma cells, leading to more efficient GCV-induced bystander killing in cells stably expressing HSV-tk. Additionally, in vivo experiments demonstrated that tumors in mice with 10% HSV-tk positive B16 cells and 90% wild-type B16 cells became smaller following treatment with the combination of GCV and Tan IIA as compared to GCV or Tan IIA alone. These data demonstrate that Tan IIA can augment the bystander effect of HSV-tk/GCV system through increased gap junction coupling, which adds strength to the promising strategy that develops connexins inducer to potentiate the effects of suicide gene therapy. PMID:23861780

  20. Origin and early evolution of neural circuits for the control of ciliary locomotion.

    PubMed

    Jékely, Gáspár

    2011-03-22

    Behaviour evolved before nervous systems. Various single-celled eukaryotes (protists) and the ciliated larvae of sponges devoid of neurons can display sophisticated behaviours, including phototaxis, gravitaxis or chemotaxis. In single-celled eukaryotes, sensory inputs directly influence the motor behaviour of the cell. In swimming sponge larvae, sensory cells influence the activity of cilia on the same cell, thereby steering the multicellular larva. In these organisms, the efficiency of sensory-to-motor transformation (defined as the ratio of sensory cells to total cell number) is low. With the advent of neurons, signal amplification and fast, long-range communication between sensory and motor cells became possible. This may have first occurred in a ciliated swimming stage of the first eumetazoans. The first axons may have had en passant synaptic contacts to several ciliated cells to improve the efficiency of sensory-to-motor transformation, thereby allowing a reduction in the number of sensory cells tuned for the same input. This could have allowed the diversification of sensory modalities and of the behavioural repertoire. I propose that the first nervous systems consisted of combined sensory-motor neurons, directly translating sensory input into motor output on locomotor ciliated cells and steering muscle cells. Neuronal circuitry with low levels of integration has been retained in cnidarians and in the ciliated larvae of some marine invertebrates. This parallel processing stage could have been the starting point for the evolution of more integrated circuits performing the first complex computations such as persistence or coincidence detection. The sensory-motor nervous systems of cnidarians and ciliated larvae of diverse phyla show that brains, like all biological structures, are not irreducibly complex.

  1. Rapid Changes in Connexin-43 in Response to Genotoxic Stress Stabilize Cell–Cell Communication in Corneal Endothelium

    PubMed Central

    Roh, Danny S.

    2011-01-01

    Purpose. To determine how corneal endothelial (CE) cells respond to acute genotoxic stress through changes in connexin-43 (Cx43) and gap junction intercellular communication (GJIC). Methods. Cultured bovine CE cells were exposed to mitomycin C or other DNA-damaging agents. Changes in the levels, stability, binding partners, and trafficking of Cx43 were assessed by Western blot analysis and immunostaining. Live-cell imaging of a Cx43–green fluorescent protein (GFP) fusion protein was used to evaluate internalization of cell surface Cx43. Dye transfer and fluorescent recovery after photobleaching (FRAP) assessed GJIC. Results. After genotoxic stress, Cx43 accumulated in large gap junction plaques, had reduced zonula occludens-1 binding, and displayed increased stability. Live-cell imaging of Cx43–GFP plaques in stressed CE cells revealed reduced gap junction internalization and degradation compared to control cells. Mitomycin C enhanced transport of Cx43 from the endoplasmic reticulum to the cell surface and formation of gap junction plaques. Mitomycin C treatment also protected GJIC from disruption after cytokine treatment. Discussion. These results show a novel CE cell response to genotoxic stress mediated by marked and rapid changes in Cx43 and GJIC. This stabilization of cell–cell communication may be an important early adaptation to acute stressors encountered by CE. PMID:21666237

  2. Use of Social Support during Communication about Sickle Cell Carrier Status

    PubMed Central

    Bradford, Lisa; Roedl, Sara J.; Christopher, Stephanie A.; Farrell, Michael H.

    2012-01-01

    Objective To examine the use of social support behaviors by primary care providers during delivery of positive newborn screening results for Sickle Cell Anemia carrier status. Methods Transcripts from 125 primary care providers who conveyed Sickle Cell Anemia carrier status to standardized parents were content analyzed using categories derived from Cutrona and Suhr’s social support taxonomy. Frequencies and cross-tabulation matrices were calculated to study providers’ social support utilization. Results Results showed most primary care providers (80%) incorporate social support behaviors into delivery of Sickle Cell Anemia carrier results and most frequently employed social network (61.6%) and informational support (38.4%) behaviors. Providers used tangible aid (8%), esteem (1.6%), and emotional support (9.6%) behaviors less frequently. Conclusion Cutrona and Suhr’s taxonomy may be a useful tool for assessing supportive communication during the delivery of Sickle Cell Anemia carrier status and could be incorporated into population scale assessments of communication quality assurance. Practice Implications Primary care providers may need training in how to adapt supportive behaviors to parents’ needs during communication of Sickle Cell Anemia carrier status. They also may benefit from specific training about how to use esteem and emotional support. PMID:22658247

  3. Design and implementation of a CMOS light pulse receiver cell array for spatial optical communications.

    PubMed

    Sarker, Md Shakowat Zaman; Itoh, Shinya; Hamai, Moeta; Takai, Isamu; Andoh, Michinori; Yasutomi, Keita; Kawahito, Shoji

    2011-01-01

    A CMOS light pulse receiver (LPR) cell for spatial optical communications is designed and evaluated by device simulations and a prototype chip implementation. The LPR cell consists of a pinned photodiode and four transistors. It works under sub-threshold region of a MOS transistor and the source terminal voltage which responds to the logarithm of the photo current are read out with a source follower circuit. For finding the position of the light spot on the focal plane, an image pixel array is embedded on the same plane of the LPR cell array. A prototype chip with 640 × 240 image pixels and 640 × 240 LPR cells is implemented with 0.18 μm CMOS technology. A proposed model of the transient response of the LPR cell agrees with the result of the device simulations and measurements. Both imaging at 60 fps and optical communication at the carrier frequency of 1 MHz are successfully performed. The measured signal amplitude and the calculation results of photocurrents show that the spatial optical communication up to 100 m is feasible using a 10 × 10 LED array.

  4. Analysis of gap junctional intercellular communications using a dielectrophoresis-based microchip.

    PubMed

    Tellez-Gabriel, Marta; Charrier, Céline; Brounais-Le Royer, Bénédicte; Mullard, Mathilde; Brown, Hannah K; Verrecchia, Franck; Heymann, Dominique

    2017-03-01

    Gap junctions are transmembrane structures that directly connect the cytoplasm of adjacent cells, making intercellular communications possible. It has been shown that the behaviour of several tumours - such as bone tumours - is related to gap junction intercellular communications (GJIC). Several methodologies are available for studying GJIC, based on measuring different parameters that are useful for multiple applications, such as the study of carcinogenesis for example. These methods nevertheless have several limitations. The present manuscript describes the setting up of a dielectrophoresis (DEP)-based lab-on-a-chip platform for the real-time study of Gap Junctional Intercellular Communication between osteosarcoma cells and the main cells accessible to their microenvironment. We conclude that using the DEParray technology for the GJIC assessment has several advantages comparing to current techniques. This methodology is less harmful for cells integrity; cells can be recovered after interaction to make further molecular analysis; it is possible to study GJIC in real time; we can promote cell interactions using up to five different populations. The setting up of this new methodology overcomes several difficulties to perform experiments for solving questions about GJIC process that we are not able to do with current technics. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Serotonin and Norepinephrine Reuptake Inhibitors (SNRIs)

    MedlinePlus

    ... addition to depression. SNRIs ease depression by impacting chemical messengers (neurotransmitters) used to communicate between brain cells. Like most antidepressants, SNRIs work by ultimately effecting changes in brain chemistry and communication in brain nerve cell circuitry known ...

  6. Ensemble methods for stochastic networks with special reference to the biological clock of Neurospora crassa.

    PubMed

    Caranica, C; Al-Omari, A; Deng, Z; Griffith, J; Nilsen, R; Mao, L; Arnold, J; Schüttler, H-B

    2018-01-01

    A major challenge in systems biology is to infer the parameters of regulatory networks that operate in a noisy environment, such as in a single cell. In a stochastic regime it is hard to distinguish noise from the real signal and to infer the noise contribution to the dynamical behavior. When the genetic network displays oscillatory dynamics, it is even harder to infer the parameters that produce the oscillations. To address this issue we introduce a new estimation method built on a combination of stochastic simulations, mass action kinetics and ensemble network simulations in which we match the average periodogram and phase of the model to that of the data. The method is relatively fast (compared to Metropolis-Hastings Monte Carlo Methods), easy to parallelize, applicable to large oscillatory networks and large (~2000 cells) single cell expression data sets, and it quantifies the noise impact on the observed dynamics. Standard errors of estimated rate coefficients are typically two orders of magnitude smaller than the mean from single cell experiments with on the order of ~1000 cells. We also provide a method to assess the goodness of fit of the stochastic network using the Hilbert phase of single cells. An analysis of phase departures from the null model with no communication between cells is consistent with a hypothesis of Stochastic Resonance describing single cell oscillators. Stochastic Resonance provides a physical mechanism whereby intracellular noise plays a positive role in establishing oscillatory behavior, but may require model parameters, such as rate coefficients, that differ substantially from those extracted at the macroscopic level from measurements on populations of millions of communicating, synchronized cells.

  7. Neutral endopeptidase inhibits neuropeptide-mediated transactivation of the insulin-like growth factor receptor-Akt cell survival pathway.

    PubMed

    Sumitomo, M; Milowsky, M I; Shen, R; Navarro, D; Dai, J; Asano, T; Hayakawa, M; Nanus, D M

    2001-04-15

    G-protein coupled receptor (GPCR) agonists such as neuropeptides activate the insulin-like growth factor-1 receptor (IGF-IR) or the serine-threonine protein kinase Akt, suggesting that neuropeptides-GPCR signaling can cross-communicate with IGF-IR-Akt signaling pathways. Neutral endopeptidase 24.11 (NEP) is a cell-surface peptidase that cleaves and inactivates the neuropeptides endothelin-1 (ET-1) and bombesin, which are implicated in progression to androgen-independent prostate cancer (PC). We investigated the mechanisms of NEP regulation of neuropeptide-mediated cell survival in PC cells, including whether neuropeptide substrates of NEP induce phosphorylations of IGF-IR and Akt in PC cells. Western analyses revealed ET-1 and bombesin treatment induced phosphorylation of IGF-IRbeta and Akt independent of IGF-I in TSU-Pr1, DU145, and PC-3 PC cells, which lack NEP expression, but not in NEP-expressing LNCaP cells. Recombinant NEP and induced NEP expression in TSU-Pr1 cells using a tetracycline-repressive expression system inhibited ET-1-mediated phosphorylation of IGF-IRbeta and Akt, and blocked the protective effects of ET-1 against apoptosis induced by serum starvation. Incubation of TSU-Pr1 cells with specific kinase inhibitors together with ET-1 or bombesin showed that IGF-IR activation is required for neuropeptide-induced Akt phosphorylation, and that neuropeptide-induced Akt activation is predominantly mediated by Src and phosphatidylinositol 3-kinase but not by mitogen-activated protein kinase or protein kinase C. These data show that the neuropeptides ET-1 and bombesin stimulate ligand-independent activation of the IGF-IR, which results in Akt activation, and that this cross-communication between GPCR and IGF-IR signaling is inhibited by NEP.

  8. Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair.

    PubMed

    An, Chengrui; Shi, Yejie; Li, Peiying; Hu, Xiaoming; Gan, Yu; Stetler, Ruth A; Leak, Rehana K; Gao, Yanqin; Sun, Bao-Liang; Zheng, Ping; Chen, Jun

    2014-04-01

    Immune and inflammatory responses actively modulate the pathophysiological processes of acute brain injuries such as stroke. Soon after the onset of stroke, signals such as brain-derived antigens, danger-associated molecular patterns (DAMPs), cytokines, and chemokines are released from the injured brain into the systemic circulation. The injured brain also communicates with peripheral organs through the parasympathetic and sympathetic branches of the autonomic nervous system. Many of these diverse signals not only activate resident immune cells in the brain, but also trigger robust immune responses in the periphery. Peripheral immune cells then migrate toward the site of injury and release additional cytokines, chemokines, and other molecules, causing further disruptive or protective effects in the ischemic brain. Bidirectional communication between the injured brain and the peripheral immune system is now known to regulate the progression of stroke pathology as well as tissue repair. In the end, this exquisitely coordinated crosstalk helps determine the fate of animals after stroke. This article reviews the literature on ischemic brain-derived signals through which peripheral immune responses are triggered, and the potential impact of these peripheral responses on brain injury and repair. Pharmacological strategies and cell-based therapies that target the dialog between the brain and peripheral immune system show promise as potential novel treatments for stroke. Published by Elsevier Ltd.

  9. Can hi-jacking hypoxia inhibit extracellular vesicles in cancer?

    PubMed

    Lowry, Michelle C; O'Driscoll, Lorraine

    2018-06-01

    Increasing evidence indicates that extracellular vesicles (EVs) are key players in undesirable cell-cell communication in cancer. However, the release of EVs is not unique to cancer cells; normal cells release EVs to perform physiological roles. Thus, selective inhibition of EV release from cancer cells is desirable. Hypoxia contributes to tumour development and aggressiveness. EV quantities and thus undesirable communications are substantially increased in hypoxia. Targeting hypoxia could selectively inhibit EV release from tumour cells without disturbing physiologically relevant EVs. The unfavourable association between hypoxia and EV release is evident in multiple tumour types; therefore, targeting hypoxia could have a broad therapeutic benefit. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Cell-to-cell signaling through light: just a ghost of chance?

    PubMed Central

    2013-01-01

    Despite the large number of reports attributing the signaling between detached cell cultures to the electromagnetic phenomena, almost no report so far included a rigorous analysis of the possibility of such signaling. In this paper, we examine the physical feasibility of the electromagnetic communication between cells, especially through light, with regard to the ambient noise illumination. We compare theoretically attainable parameters of communication with experimentally obtained data of the photon emission from cells without a specially pronounced ability of bioluminescence. We show that the weak intensity of the emission together with an unfavorable signal-to-noise ratio, which is typical for natural conditions, represent an important obstacle to the signal detection by cells. PMID:24219796

  11. Modeling of cytometry data in logarithmic space: When is a bimodal distribution not bimodal?

    PubMed

    Erez, Amir; Vogel, Robert; Mugler, Andrew; Belmonte, Andrew; Altan-Bonnet, Grégoire

    2018-02-16

    Recent efforts in systems immunology lead researchers to build quantitative models of cell activation and differentiation. One goal is to account for the distributions of proteins from single-cell measurements by flow cytometry or mass cytometry as readout of biological regulation. In that context, large cell-to-cell variability is often observed in biological quantities. We show here that these readouts, viewed in logarithmic scale may result in two easily-distinguishable modes, while the underlying distribution (in linear scale) is unimodal. We introduce a simple mathematical test to highlight this mismatch. We then dissect the flow of influence of cell-to-cell variability proposing a graphical model which motivates higher-dimensional analysis of the data. Finally we show how acquiring additional biological information can be used to reduce uncertainty introduced by cell-to-cell variability, helping to clarify whether the data is uni- or bimodal. This communication has cautionary implications for manual and automatic gating strategies, as well as clustering and modeling of single-cell measurements. © 2018 International Society for Advancement of Cytometry. © 2018 International Society for Advancement of Cytometry.

  12. Critical issues for engineering cord blood stem cells to produce insulin.

    PubMed

    Denner, Larry; Urban, Randall J

    2008-09-01

    The objectives of using cord blood stem cells for treating type 1 diabetes are simple in principle yet complex in biological and molecular mechanisms. These are defined by the complexity of the insulin-producing unit of the pancreas, the islet. Islets are composed of various cell types that arise from diverse lineages and communicate by hormones, growth factors and small-molecule mediators. These processes are regulated by integration of signal transduction pathways. While advances have been made to engineer umbilical cord blood stem cells to produce insulin, these studies only illuminate the potential of such cells to fulfil a necessary, but not sufficient, requirement for transplantation. The challenges ahead demand detailed understanding of molecular mechanisms to move from an opportunistic, phenotypic approach to transplantation and amelioration of blood glucose, to an orderly and logical approach to a biologically and medically meaningful solution. The issues include expansion to generate large numbers of cells, self-renewal to regulate the destiny of cord blood stem cells to repopulate the hematopoietic system, and multipotency of stem cells to generate the distinct cell types of an islet.

  13. Co-culture of osteocytes and neurons on a unique patterned surface.

    PubMed

    Boggs, Mary E; Thompson, William R; Farach-Carson, Mary C; Duncan, Randall L; Beebe, Thomas P

    2011-12-01

    Neural and skeletal communication is essential for the maintenance of bone mass and transmission of pain, yet the mechanism(s) of signal transduction between these tissues is unknown. The authors established a novel system to co-culture murine long bone osteocyte-like cells (MLO-Y4) and primary murine dorsal root ganglia (DRG) neurons. Assessment of morphology and maturation marker expression on perlecan domain IV peptide (PlnDIV) and collagen type-1 (Col1) demonstrated that PlnDIV was an optimal matrix for MLO-Y4 culture. A novel matrix-specificity competition assay was developed to expose these cells to several extracellular matrix proteins such as PlnDIV, Col1, and laminin (Ln). The competition assay showed that approximately 70% of MLO-Y4 cells preferred either PlnDIV or Col1 to Ln. To co-culture MLO-Y4 and DRG, we developed patterned surfaces using micro-contact printing to create 40 μm × 1 cm alternating stripes of PlnDIV and Ln or PlnDIV and Col1. Co-culture on PlnDIV/Ln surfaces demonstrated that these matrix molecules provided unique cues for each cell type, with MLO-Y4 preferentially attaching to the PlnDIV lanes and DRG neurons to the Ln lanes. Approximately 80% of DRG were localized to Ln. Cellular processes from MLO-Y4 were closely associated with axonal extensions of DRG neurons. Approximately 57% of neuronal processes were in close proximity to nearby MLO-Y4 cells at the PlnDIV-Ln interface. The surfaces in this new assay provided a unique model system with which to study the communication between osteocyte-like cells and neurons in an in vitro environment.

  14. Fungal communication requires the MAK-2 pathway elements STE-20 and RAS-2, the NRC-1 adapter STE-50 and the MAP kinase scaffold HAM-5.

    PubMed

    Dettmann, Anne; Heilig, Yvonne; Valerius, Oliver; Ludwig, Sarah; Seiler, Stephan

    2014-11-01

    Intercellular communication is critical for the survival of unicellular organisms as well as for the development and function of multicellular tissues. Cell-to-cell signaling is also required to develop the interconnected mycelial network characteristic of filamentous fungi and is a prerequisite for symbiotic and pathogenic host colonization achieved by molds. Somatic cell-cell communication and subsequent cell fusion is governed by the MAK-2 mitogen activated protein kinase (MAPK) cascade in the filamentous ascomycete model Neurospora crassa, yet the composition and mode of regulation of the MAK-2 pathway are currently unclear. In order to identify additional components involved in MAK-2 signaling we performed affinity purification experiments coupled to mass spectrometry with strains expressing functional GFP-fusion proteins of the MAPK cascade. This approach identified STE-50 as a regulatory subunit of the Ste11p homolog NRC-1 and HAM-5 as cell-communication-specific scaffold protein of the MAPK cascade. Moreover, we defined a network of proteins consisting of two Ste20-related kinases, the small GTPase RAS-2 and the adenylate cyclase capping protein CAP-1 that function upstream of the MAK-2 pathway and whose signals converge on the NRC-1/STE-50 MAP3K complex and the HAM-5 scaffold. Finally, our data suggest an involvement of the striatin interacting phosphatase and kinase (STRIPAK) complex, the casein kinase 2 heterodimer, the phospholipid flippase modulators YPK-1 and NRC-2 and motor protein-dependent vesicle trafficking in the regulation of MAK-2 pathway activity and function. Taken together, these data will have significant implications for our mechanistic understanding of MAPK signaling and for homotypic cell-cell communication in fungi and higher eukaryotes.

  15. Stability of Intercellular Exchange of Biochemical Substances Affected by Variability of Environmental Parameters

    NASA Astrophysics Data System (ADS)

    Mihailović, Dragutin T.; Budinčević, Mirko; Balaž, Igor; Mihailović, Anja

    Communication between cells is realized by exchange of biochemical substances. Due to internal organization of living systems and variability of external parameters, the exchange is heavily influenced by perturbations of various parameters at almost all stages of the process. Since communication is one of essential processes for functioning of living systems it is of interest to investigate conditions for its stability. Using previously developed simplified model of bacterial communication in a form of coupled difference logistic equations we investigate stability of exchange of signaling molecules under variability of internal and external parameters.

  16. Robust patterning of gene expression based on internal coordinate system of cells.

    PubMed

    Ogawa, Ken-ichiro; Miyake, Yoshihiro

    2015-06-01

    Cell-to-cell communication in multicellular organisms is established through the transmission of various kinds of chemical substances such as proteins. It is well known that gene expression triggered by a chemical substance in individuals has stable spatial patterns despite the individual differences in concentration patterns of the chemical substance. This fact reveals an important property of multicellular organisms called "robustness", which allows the organisms to generate their forms while maintaining proportion. Robustness has been conventionally accounted for by the stability of solutions of dynamical equations that represent a specific interaction network of chemical substances. However, any biological system is composed of autonomous elements. In general, an autonomous element does not merely accept information on the chemical substance from the environment; instead, it accepts the information based on its own criteria for reaction. Therefore, this phenomenon needs to be considered from the viewpoint of cells. Such a viewpoint is expected to allow the consideration of the autonomy of cells in multicellular organisms. This study aims to explain theoretically the robust patterning of gene expression from the viewpoint of cells. For this purpose, we introduced a new operator for transforming a state variable of a chemical substance from an external coordinate system to an internal coordinate system of each cell, which describes the observation of the chemical substance by cells. We then applied this operator to the simplest reaction-diffusion model of the chemical substance to investigate observation effects by cells. Our mathematical analysis of this extended model indicates that the robust patterning of gene expression against individual differences in concentration pattern of the chemical substance can be explained from the viewpoint of cells if there is a regulation field that compensates for the difference between cells seen in the observation results. This result provides a new insight into the investigation of the mechanism of robust patterning in biological systems composed of individual elements. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Non-conventional protrusions: the diversity of cell interactions at short and long distance.

    PubMed

    Caviglia, Sara; Ober, Elke A

    2018-06-08

    Cells use different means to communicate within and between tissues and thereby coordinate their behaviours. Following the initial observations of enigmatic long filopodia unrelated to cell movement, it became clear that the roles of cellular protrusions are not restricted to sensing functions or motility and are much more diverse than previously appreciated. Advances in live-imaging and genetic tools revealed several types of non-conventional cell protrusions and their functions, ranging from tissue patterning, proliferation and differentiation control, tissue matching and cell spacing to more unexpected roles such as priming of cell adhesion as well as bidirectional coordination of tissue movements. Here, we will highlight exciting new insights into highly diverse cell behaviours elicited by protrusions and contact-dependent cell communication, essential for embryonic development across species. Copyright © 2018. Published by Elsevier Ltd.

  18. Structure and function of gap junction proteins: role of gap junction proteins in embryonic heart development.

    PubMed

    Ahir, Bhavesh K; Pratten, Margaret K

    2014-01-01

    Intercellular (cell-to-cell) communication is a crucial and complex mechanism during embryonic heart development. In the cardiovascular system, the beating of the heart is a dynamic and key regulatory process, which is functionally regulated by the coordinated spread of electrical activity through heart muscle cells. Heart tissues are composed of individual cells, each bearing specialized cell surface membrane structures called gap junctions that permit the intercellular exchange of ions and low molecular weight molecules. Gap junction channels are essential in normal heart function and they assist in the mediated spread of electrical impulses that stimulate synchronized contraction (via an electrical syncytium) of cardiac tissues. This present review describes the current knowledge of gap junction biology. In the first part, we summarise some relevant biochemical and physiological properties of gap junction proteins, including their structure and function. In the second part, we review the current evidence demonstrating the role of gap junction proteins in embryonic development with particular reference to those involved in embryonic heart development. Genetics and transgenic animal studies of gap junction protein function in embryonic heart development are considered and the alteration/disruption of gap junction intercellular communication which may lead to abnormal heart development is also discussed.

  19. Chemosensory Information Processing between Keratinocytes and Trigeminal Neurons

    PubMed Central

    Sondersorg, Anna Christina; Busse, Daniela; Kyereme, Jessica; Rothermel, Markus; Neufang, Gitta; Gisselmann, Günter; Hatt, Hanns; Conrad, Heike

    2014-01-01

    Trigeminal fibers terminate within the facial mucosa and skin and transmit tactile, proprioceptive, chemical, and nociceptive sensations. Trigeminal sensations can arise from the direct stimulation of intraepithelial free nerve endings or indirectly through information transmission from adjacent cells at the peripheral innervation area. For mechanical and thermal cues, communication processes between skin cells and somatosensory neurons have already been suggested. High concentrations of most odors typically provoke trigeminal sensations in vivo but surprisingly fail to activate trigeminal neuron monocultures. This fact favors the hypothesis that epithelial cells may participate in chemodetection and subsequently transmit signals to neighboring trigeminal fibers. Keratinocytes, the major cell type of the epidermis, express various receptors that enable reactions to multiple environmental stimuli. Here, using a co-culture approach, we show for the first time that exposure to the odorant chemicals induces a chemical communication between human HaCaT keratinocytes and mouse trigeminal neurons. Moreover, a supernatant analysis of stimulated keratinocytes and subsequent blocking experiments with pyrodoxalphosphate-6-azophenyl-2′,4′-disulfonate revealed that ATP serves as the mediating transmitter molecule released from skin cells after odor stimulation. We show that the ATP release resulting from Javanol® stimulation of keratinocytes was mediated by pannexins. Consequently, keratinocytes act as chemosensors linking the environment and the trigeminal system via ATP signaling. PMID:24790106

  20. Collective Calcium Signaling of Defective Multicellular Networks

    NASA Astrophysics Data System (ADS)

    Potter, Garrett; Sun, Bo

    2015-03-01

    A communicating multicellular network processes environmental cues into collective cellular dynamics. We have previously demonstrated that, when excited by extracellular ATP, fibroblast monolayers generate correlated calcium dynamics modulated by both the stimuli and gap junction communication between the cells. However, just as a well-connected neural network may be compromised by abnormal neurons, a tissue monolayer can also be defective with cancer cells, which typically have down regulated gap junctions. To understand the collective cellular dynamics in a defective multicellular network we have studied the calcium signaling of co-cultured breast cancer cells and fibroblast cells in various concentrations of ATP delivered through microfluidic devices. Our results demonstrate that cancer cells respond faster, generate singular spikes, and are more synchronous across all stimuli concentrations. Additionally, fibroblast cells exhibit persistent calcium oscillations that increase in regularity with greater stimuli. To interpret these results we quantitatively analyzed the immunostaining of purigenic receptors and gap junction channels. The results confirm our hypothesis that collective dynamics are mainly determined by the availability of gap junction communications.

  1. Exosomes carrying immunoinhibitory proteins and their role in cancer.

    PubMed

    Whiteside, T L

    2017-09-01

    Recent emergence of exosomes as information carriers between cells has introduced us to a new previously unknown biological communication system. Multi-directional cross-talk mediated by exosomes carrying proteins, lipids and nucleic acids between normal cells, cells harbouring a pathogen or cancer and immune cells has been instrumental in determining outcomes of physiological as well as pathological conditions. Exosomes play a key role in the broad spectrum of human diseases. In cancer, tumour-derived exosomes carry multiple immunoinhibitory signals, disable anti-tumour immune effector cells and promote tumour escape from immune control. Exosomes delivering negative signals to immune cells in cancer, viral infections, autoimmune or other diseases may interfere with therapy and influence outcome. Exosomes can activate tissue cells to produce inhibitory factors and thus can suppress the host immune responses indirectly. Exosomes also promise to be non-invasive disease biomarkers with a dual capability to provide insights into immune dysfunction as well as disease progression and outcome. © 2017 British Society for Immunology.

  2. The essential role of G protein-coupled receptor (GPCR) signaling in regulating T cell immunity.

    PubMed

    Wang, Dashan

    2018-06-01

    The aim of this paper is to clarify the critical role of GPCR signaling in T cell immunity. The G protein-coupled receptors (GPCRs) are the most common targets in current pharmaceutical industry, and represent the largest and most versatile family of cell surface communicating molecules. GPCRs can be activated by a diverse array of ligands including neurotransmitters, chemokines as well as sensory stimuli. Therefore, GPCRs are involved in many key cellular and physiological processes, such as sense of light, taste and smell, neurotransmission, metabolism, endocrine and exocrine secretion. In recent years, GPCRs have been found to play an important role in immune system. T cell is an important type of immune cell, which plays a central role in cell-mediated immunity. A variety of GPCRs and their signaling mediators (RGS proteins, GRKs and β-arrestin) have been found to express in T cells and involved T cell-mediated immunity. We will summarize the role of GPCR signaling and their regulatory molecules in T cell activation, homeostasis and function in this article. GPCR signaling plays an important role in T cell activation, homeostasis and function. GPCR signaling is critical in regulating T cell immunity.

  3. Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus

    PubMed Central

    Hodgkin, Jonathan; Kaiser, Dale

    1977-01-01

    A large number of nonmotile mutants of the gliding bacterium Myxococcus xanthus have been isolated and partly characterized. About [unk] of these mutants are conditional mutants of a novel kind: mutant cells become transiently motile after contact with nonmutant cells or with cells of a different mutant type. These “stimulatable” mutants fall into five phenotypic classes (types B, C, D, E, and F). Most mutants are nonstimulatable (type A) and never become motile, but type A cells (and wild-type cells) can stimulate cells of any of the other five types. Stimulatable mutants of different types are capable of stimulating each other. For example, in a mixture of B and C cells, both become motile. Linkage analysis using a generalized transducing phage has shown that each of types B, C, D, E, and F corresponds to a single distinct genetic locus. Type A mutants, by contrast, belong to at least 17 different loci. Stimulation depends on close apposition of interacting cells, because stimulation does not occur when contact between cells is prevented. It is possible that the stimulatable mutants are defective in components of the gliding mechanism that can be exchanged between cells. Alternatively, they may be defective in a system of cell communication controlling the coordinated cell movements observed in Myxococcus. Images PMID:16592422

  4. Vectorial signalling mechanism required for cell-cell communication during sporulation in Bacillus subtilis.

    PubMed

    Diez, Veronica; Schujman, Gustavo E; Gueiros-Filho, Frederico J; de Mendoza, Diego

    2012-01-01

    Spore formation in Bacillus subtilis takes place in a sporangium consisting of two chambers, the forespore and the mother cell, which are linked by pathways of cell-cell communication. One pathway, which couples the proteolytic activation of the mother cell transcription factor σ(E) to the action of a forespore synthesized signal molecule, SpoIIR, has remained enigmatic. Signalling by SpoIIR requires the protein to be exported to the intermembrane space between forespore and mother cell, where it will interact with and activate the integral membrane protease SpoIIGA. Here we show that SpoIIR signal activity as well as the cleavage of its N-terminal extension is strictly dependent on the prespore fatty acid biosynthetic machinery. We also report that a conserved threonine residue (T27) in SpoIIR is required for processing, suggesting that signalling of SpoIIR is dependent on fatty acid synthesis probably because of acylation of T27. In addition, SpoIIR localization in the forespore septal membrane depends on the presence of SpoIIGA. The orchestration of σ(E) activation in the intercellular space by an acylated signal protein provides a new paradigm to ensure local transmission of a weak signal across the bilayer to control cell-cell communication during development. © 2011 Blackwell Publishing Ltd.

  5. Chloral hydrate decreases gap junction communications in rat liver epithelial cells

    EPA Science Inventory

    Gap junction communication (GJC) is involved in controlling cell proliferation and differentiation. Alterations in GJC are associated with carcinogenesis, but the mechanisms involvedareunknown.Chloralhydrate(CH), a by-productofchlorinedisinfection ofwater,is carcinogenic in mice,...

  6. Secreting and sensing the same molecule allows cells to achieve versatile social behaviors

    PubMed Central

    Youk, Hyun; Lim, Wendell A.

    2014-01-01

    Cells that secrete and sense the same signaling molecule are ubiquitous. To uncover the functional capabilities of the core ‘secrete-and-sense’ circuit motif shared by these cells, we engineered yeast to secrete and sense the mating pheromone. Perturbing each circuit element revealed parameters that control the degree to which the cell communicated with itself versus with its neighbors. This tunable interplay of self- and neighbor-communication enables cells to span a diverse repertoire of cellular behaviors. These include a cell being asocial by responding only to itself, social through quorum sensing and an isogenic population of cells splitting into social and asocial subpopulations. A mathematical model explained these behaviors. The versatility of the secrete-and-sense circuit motif may explain its recurrence across species. PMID:24503857

  7. Comparison of the uptake of methacrylate-based nanoparticles in static and dynamic in vitro systems as well as in vivo.

    PubMed

    Rinkenauer, Alexandra C; Press, Adrian T; Raasch, Martin; Pietsch, Christian; Schweizer, Simon; Schwörer, Simon; Rudolph, Karl L; Mosig, Alexander; Bauer, Michael; Traeger, Anja; Schubert, Ulrich S

    2015-10-28

    Polymer-based nanoparticles are promising drug delivery systems allowing the development of new drug and treatment strategies with reduced side effects. However, it remains a challenge to screen for new and effective nanoparticle-based systems in vitro. Important factors influencing the behavior of nanoparticles in vivo cannot be simulated in screening assays in vitro, which still represent the main tools in academic research and pharmaceutical industry. These systems have serious drawbacks in the development of nanoparticle-based drug delivery systems, since they do not consider the highly complex processes influencing nanoparticle clearance, distribution, and uptake in vivo. In particular, the transfer of in vitro nanoparticle performance to in vivo models often fails, demonstrating the urgent need for novel in vitro tools that can imitate aspects of the in vivo situation more accurate. Dynamic cell culture, where cells are cultured and incubated in the presence of shear stress has the potential to bridge this gap by mimicking key-features of organs and vessels. Our approach implements and compares a chip-based dynamic cell culture model to the common static cell culture and mouse model to assess its capability to predict the in vivo success more accurately, by using a well-defined poly((methyl methacrylate)-co-(methacrylic acid)) and poly((methyl methacrylate)-co-(2-dimethylamino ethylmethacrylate)) based nanoparticle library. After characterization in static and dynamic in vitro cell culture we were able to show that physiological conditions such as cell-cell communication of co-cultured endothelial cells and macrophages as well as mechanotransductive signaling through shear stress significantly alter cellular nanoparticle uptake. In addition, it could be demonstrated by using dynamic cell cultures that the in vivo situation is simulated more accurately and thereby can be applied as a novel system to investigate the performance of nanoparticle systems in vivo more reliable. Copyright © 2015. Published by Elsevier B.V.

  8. New Horizons in Enhancing the Proliferation and Differentiation of Neural Stem Cells Using Stimulatory Effects of the Short Time Exposure to Radiofrequency Radiation

    PubMed Central

    Eghlidospour, M.; Mortazavi, S. M. J.; Yousefi, F.; Mortazavi, S. A. R.

    2015-01-01

    Mobile phone use and wireless communication technology have grown explosively over the past decades. This rapid growth has caused widespread global concern about the potential detrimental effects of this technology on human health. Stem cells generate specialized cell types of the tissue in which they reside through normal differentiation pathways. Considering the undeniable importance of stem cells in modern medicine, numerous studies have been performed on the effects of ionizing and non-ionizing radiation on cellular processes such as: proliferation, differentiation, cell cycle and DNA repair processes. We have conducted extensive studies on beneficial (stimulatory) or detrimental biological effects of exposure to different sources of electromagnetic fields such as mobile phones, mobile phone base stations, mobile phone jammers, radar systems, magnetic resonance imaging (MRI) systems and dentistry cavitrons over the past years. In this article, recent studies on the biological effects of non-ionizing electromagnetic radiation in the range of radiofrequency (RF) on some important features of stem cells such as their proliferation and differentiation are reviewed. Studies reviewed in this paper indicate that the stimulatory or inhibitory effects of RF radiation on the proliferation and differentiation of stem cells depend on various factors such as the biological systems, experiment conditions, the frequency and intensity of RF and the duration of exposure. PMID:26396965

  9. New Horizons in Enhancing the Proliferation and Differentiation of Neural Stem Cells Using Stimulatory Effects of the Short Time Exposure to Radiofrequency Radiation.

    PubMed

    Eghlidospour, M; Mortazavi, S M J; Yousefi, F; Mortazavi, S A R

    2015-09-01

    Mobile phone use and wireless communication technology have grown explosively over the past decades. This rapid growth has caused widespread global concern about the potential detrimental effects of this technology on human health. Stem cells generate specialized cell types of the tissue in which they reside through normal differentiation pathways. Considering the undeniable importance of stem cells in modern medicine, numerous studies have been performed on the effects of ionizing and non-ionizing radiation on cellular processes such as: proliferation, differentiation, cell cycle and DNA repair processes. We have conducted extensive studies on beneficial (stimulatory) or detrimental biological effects of exposure to different sources of electromagnetic fields such as mobile phones, mobile phone base stations, mobile phone jammers, radar systems, magnetic resonance imaging (MRI) systems and dentistry cavitrons over the past years. In this article, recent studies on the biological effects of non-ionizing electromagnetic radiation in the range of radiofrequency (RF) on some important features of stem cells such as their proliferation and differentiation are reviewed. Studies reviewed in this paper indicate that the stimulatory or inhibitory effects of RF radiation on the proliferation and differentiation of stem cells depend on various factors such as the biological systems, experiment conditions, the frequency and intensity of RF and the duration of exposure.

  10. Plant peptide hormone signalling.

    PubMed

    Motomitsu, Ayane; Sawa, Shinichiro; Ishida, Takashi

    2015-01-01

    The ligand-receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone-receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions. © 2015 Authors; published by Portland Press Limited.

  11. N-Acyl-Homoserine Lactone Primes Plants for Cell Wall Reinforcement and Induces Resistance to Bacterial Pathogens via the Salicylic Acid/Oxylipin Pathway[C][W][OPEN

    PubMed Central

    Schenk, Sebastian T.; Hernández-Reyes, Casandra; Samans, Birgit; Stein, Elke; Neumann, Christina; Schikora, Marek; Reichelt, Michael; Mithöfer, Axel; Becker, Annette; Kogel, Karl-Heinz; Schikora, Adam

    2014-01-01

    The ability of plants to monitor their surroundings, for instance the perception of bacteria, is of crucial importance. The perception of microorganism-derived molecules and their effector proteins is the best understood of these monitoring processes. In addition, plants perceive bacterial quorum sensing (QS) molecules used for cell-to-cell communication between bacteria. Here, we propose a mechanism for how N-acyl-homoserine lactones (AHLs), a group of QS molecules, influence host defense and fortify resistance in Arabidopsis thaliana against bacterial pathogens. N-3-oxo-tetradecanoyl-l-homoserine lactone (oxo-C14-HSL) primed plants for enhanced callose deposition, accumulation of phenolic compounds, and lignification of cell walls. Moreover, increased levels of oxylipins and salicylic acid favored closure of stomata in response to Pseudomonas syringae infection. The AHL-induced resistance seems to differ from the systemic acquired and the induced systemic resistances, providing new insight into inter-kingdom communication. Consistent with the observation that short-chain AHLs, unlike oxo-C14-HSL, promote plant growth, treatments with C6-HSL, oxo-C10-HSL, or oxo-C14-HSL resulted in different transcriptional profiles in Arabidopsis. Understanding the priming induced by bacterial QS molecules augments our knowledge of plant reactions to bacteria and suggests strategies for using beneficial bacteria in plant protection. PMID:24963057

  12. Glia co-culture with neurons in microfluidic platforms promotes the formation and stabilization of synaptic contacts.

    PubMed

    Shi, Mingjian; Majumdar, Devi; Gao, Yandong; Brewer, Bryson M; Goodwin, Cody R; McLean, John A; Li, Deyu; Webb, Donna J

    2013-08-07

    Two novel microfluidic cell culture schemes, a vertically-layered set-up and a four chamber set-up, were developed for co-culturing central nervous system (CNS) neurons and glia. The cell chambers in these devices were separated by pressure-enabled valve barriers, which permitted us to control communication between the two cell types. The unique design of these devices facilitated the co-culture of glia with neurons in close proximity (∼50-100 μm), differential transfection of neuronal populations, and dynamic visualization of neuronal interactions, such as the development of synapses. With these co-culture devices, initial synaptic contact between neurons transfected with different fluorescent markers, such as green fluorescent protein (GFP) and mCherry-synaptophysin, was imaged using high-resolution fluorescence microscopy. The presence of glial cells had a profound influence on synapses by increasing the number and stability of synaptic contacts. Interestingly, as determined by liquid chromatography-ion mobility-mass spectrometry, neuron-glia co-cultures produced elevated levels of soluble factors compared to that secreted by individual neuron or glia cultures, suggesting a potential mechanism by which neuron-glia interactions could modulate synaptic function. Collectively, these results show that communication between neurons and glia is critical for the formation and stability of synapses and point to the importance of developing neuron-glia co-culture systems such as the microfluidic platforms described in this study.

  13. A comparison of communication using the Apple iPad and a picture-based system.

    PubMed

    Flores, Margaret; Musgrove, Kate; Renner, Scott; Hinton, Vanessa; Strozier, Shaunita; Franklin, Susan; Hil, Doris

    2012-06-01

    Augmentative and alternative communication (AAC) interventions have been shown to improve both communication and social skills in children and youth with autism spectrum disorders and other developmental disabilities. AAC applications have become available for personal devices such as cell phones, MP3 Players, and personal computer tablets. It is critical that these new forms of AAC are explored and evaluated. The purpose of this study was to investigate the utility of the Apple iPad™ as a communication device by comparing its use to a communication system using picture cards. Five elementary students with autism spectrum disorders and developmental disabilities who used a picture card system participated in the study. The results were mixed; communication behaviors either increased when using the iPad or remained the same as when using picture cards. The implications of these findings are discussed.

  14. Nanoparticles that Communicate In Vivo to Amplify Tumour Targeting

    PubMed Central

    von Maltzahn, Geoffrey; Park, Ji-Ho; Lin, Kevin Y.; Singh, Neetu; Schwöppe, Christian; Mesters, Rolf; Berdel, Wolfgang E.; Ruoslahti, Erkki; Sailor, Michael J.; Bhatia, Sangeeta N.

    2012-01-01

    Nanomedicines have enormous potential to improve the precision of cancer therapy, yet our ability to efficiently home these materials to regions of disease in vivo remains very limited. Inspired by the ability for communication to improve targeting in biological systems, such inflammatory cell recruitment to sites of disease, we construct systems where synthetic biological and nanotechnological components communicate to amplify disease targeting in vivo. These systems are composed of ‘Signalling’ modules (nanoparticles or engineered proteins) that target tumours and then locally active the coagulation cascade to broadcast tumour location to clot-targeted ‘Receiving’ nanoparticles in circulation that carry a diagnostic or therapeutic cargo, thereby amplifying their delivery. We show that communicating nanoparticle systems can be composed from multiple types of Signalling and Receiving modules, can transmit information via multiple molecular pathways in coagulation, can operate autonomously, and can target over 40-fold higher doses of chemotherapeutics to tumours than non-communicating controls. PMID:21685903

  15. Nanoparticles that communicate in vivo to amplify tumour targeting

    NASA Astrophysics Data System (ADS)

    von Maltzahn, Geoffrey; Park, Ji-Ho; Lin, Kevin Y.; Singh, Neetu; Schwöppe, Christian; Mesters, Rolf; Berdel, Wolfgang E.; Ruoslahti, Erkki; Sailor, Michael J.; Bhatia, Sangeeta N.

    2011-07-01

    Nanomedicines have enormous potential to improve the precision of cancer therapy, yet our ability to efficiently home these materials to regions of disease in vivo remains very limited. Inspired by the ability of communication to improve targeting in biological systems, such as inflammatory-cell recruitment to sites of disease, we construct systems where synthetic biological and nanotechnological components communicate to amplify disease targeting in vivo. These systems are composed of ‘signalling’ modules (nanoparticles or engineered proteins) that target tumours and then locally activate the coagulation cascade to broadcast tumour location to clot-targeted ‘receiving’ nanoparticles in circulation that carry a diagnostic or therapeutic cargo, thereby amplifying their delivery. We show that communicating nanoparticle systems can be composed of multiple types of signalling and receiving modules, can transmit information through multiple molecular pathways in coagulation, can operate autonomously and can target over 40 times higher doses of chemotherapeutics to tumours than non-communicating controls.

  16. Acute Slices of Mice Testis Seminiferous Tubules Unveil Spontaneous and Synchronous Ca2+ Oscillations in Germ Cell Clusters1

    PubMed Central

    Sánchez-Cárdenas, Claudia; Guerrero, Adán; Treviño, Claudia Lydia; Hernández-Cruz, Arturo; Darszon, Alberto

    2012-01-01

    ABSTRACT Spermatogenic cell differentiation involves changes in the concentration of cytoplasmic Ca2+ ([Ca2+]i); however, very few studies exist on [Ca2+]i dynamics in these cells. Other tissues display Ca2+ oscillations involving multicellular functional arrangements. These phenomena have been studied in acute slice preparations that preserve tissue architecture and intercellular communications. Here we report the implementation of intracellular Ca2+ imaging in a sliced seminiferous tubule (SST) preparation to visualize [Ca2+]i changes of living germ cells in situ within the SST preparation. Ca2+ imaging revealed that a subpopulation of male germ cells display spontaneous [Ca2+]i fluctuations resulting from Ca2+ entry possibly throughout CaV3 channels. These [Ca2+]i fluctuation patterns are also present in single acutely dissociated germ cells, but they differ from those recorded from germ cells in the SST preparation. Often, spontaneous Ca2+ fluctuations of spermatogenic cells in the SST occur synchronously, so that clusters of cells can display Ca2+ oscillations for at least 10 min. Synchronous Ca2+ oscillations could be mediated by intercellular communication via gap junctions, although intercellular bridges could also be involved. We also observed an increase in [Ca2+]i after testosterone application, suggesting the presence of functional Sertoli cells in the SST. In summary, we believe that the SST preparation is suitable to explore the physiology of spermatogenic cells in their natural environment, within the seminiferous tubules, in particular Ca2+ signaling phenomena, functional cell-cell communication, and multicellular functional arrangements. PMID:22914313

  17. Tunneling Nanotubes are Novel Cellular Structures That Communicate Signals Between Trabecular Meshwork Cells.

    PubMed

    Keller, Kate E; Bradley, John M; Sun, Ying Ying; Yang, Yong-Feng; Acott, Ted S

    2017-10-01

    The actin cytoskeleton of trabecular meshwork (TM) cells plays a role in regulating aqueous humor outflow. Many studies have investigated stress fibers, but F-actin also assembles into other supramolecular structures including filopodia. Recently, specialized filopodia called tunneling nanotubes (TNTs) have been described, which communicate molecular signals and organelles directly between cells. Here, we investigate TNT formation by TM cells. Human TM cells were labeled separately with the fluorescent dyes, DiO and DiD, or with mitochondrial dye. Fixed or live TM cells were imaged using confocal microscopy. Image analysis software was used to track fluorescent vesicles and count the number and length of filopodia. The number of fluorescently labeled vesicles transferred between cells was counted in response to specific inhibitors of the actin cytoskeleton. Human TM tissue was stained with phalloidin. Live-cell confocal imaging of cultured TM cells showed transfer of fluorescently labeled vesicles and mitochondria via TNTs. In TM tissue, a long (160 μm) actin-rich cell process bridged an intertrabecular space and did not adhere to the substratum. Treatment of TM cells with CK-666, an Arp2/3 inhibitor, significantly decreased the number and length of filopodia, decreased transfer of fluorescently labeled vesicles and induced thick stress fibers compared to vehicle control. Conversely, inhibiting stress fibers using Y27632 increased transfer of vesicles and induced long cell processes. Identification of TNTs provides a means by which TM cells can directly communicate with each other over long distances. This may be particularly important to overcome limitations of diffusion-based signaling in the aqueous humor fluid environment.

  18. A Chemical Biology Approach to Interrogate Quorum Sensing Regulated Behaviors at the Molecular and Cellular Level

    PubMed Central

    Lowery, Colin A.; Matamouros, Susana; Niessen, Sherry; Zhu, Jie; Scolnick, Jonathan A.; Mee, Jenny M.; Cravatt, Benjamin F.; Miller, Samuel I.; Kaufmann, Gunnar F.; Janda, Kim D.

    2013-01-01

    SUMMARY Small molecule probes have been employed extensively to explore biological systems and elucidate cellular signaling pathways. In this study, we utilize an inhibitor of bacterial communication to monitor changes in the proteome of Salmonella enterica serovar Typhimurium with the aim of discovering new processes regulated by AI-2-based quorum sensing (QS), a mechanism of bacterial intracellular communication that allows for the coordination of gene expression in a cell density-dependent manner. In S. typhimurium, this system regulates the uptake and catabolism of intracellular signals and has been implicated in pathogenesis, including the invasion of host epithelial cells. We demonstrate that our QS antagonist is capable of selectively inhibiting the expression of known QS-regulated proteins in S. typhimurium, thus attesting that QS inhibitors may be used to confirm proposed and elucidate previously unidentified QS pathways without relying on genetic manipulation. PMID:23890008

  19. A chemical biology approach to interrogate quorum-sensing regulated behaviors at the molecular and cellular level.

    PubMed

    Lowery, Colin A; Matamouros, Susana; Niessen, Sherry; Zhu, Jie; Scolnick, Jonathan; Lively, Jenny M; Cravatt, Benjamin F; Miller, Samuel I; Kaufmann, Gunnar F; Janda, Kim D

    2013-07-25

    Small molecule probes have been used extensively to explore biologic systems and elucidate cellular signaling pathways. In this study, we use an inhibitor of bacterial communication to monitor changes in the proteome of Salmonella enterica serovar Typhimurium with the aim of discovering unrecognized processes regulated by AI-2-based quorum-sensing (QS), a mechanism of bacterial intercellular communication that allows for the coordination of gene expression in a cell density-dependent manner. In S. typhimurium, this system regulates the uptake and catabolism of intercellular signals and has been implicated in pathogenesis, including the invasion of host epithelial cells. We demonstrate that our QS antagonist is capable of selectively inhibiting the expression of known QS-regulated proteins in S. typhimurium, thus attesting that QS inhibitors may be used to confirm proposed and elucidate previously unidentified QS pathways without relying on genetic manipulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Propagating gene expression fronts in a one-dimensional coupled system of artificial cells

    NASA Astrophysics Data System (ADS)

    Tayar, Alexandra M.; Karzbrun, Eyal; Noireaux, Vincent; Bar-Ziv, Roy H.

    2015-12-01

    Living systems employ front propagation and spatiotemporal patterns encoded in biochemical reactions for communication, self-organization and computation. Emulating such dynamics in minimal systems is important for understanding physical principles in living cells and in vitro. Here, we report a one-dimensional array of DNA compartments in a silicon chip as a coupled system of artificial cells, offering the means to implement reaction-diffusion dynamics by integrated genetic circuits and chip geometry. Using a bistable circuit we programmed a front of protein synthesis propagating in the array as a cascade of signal amplification and short-range diffusion. The front velocity is maximal at a saddle-node bifurcation from a bistable regime with travelling fronts to a monostable regime that is spatially homogeneous. Near the bifurcation the system exhibits large variability between compartments, providing a possible mechanism for population diversity. This demonstrates that on-chip integrated gene circuits are dynamical systems driving spatiotemporal patterns, cellular variability and symmetry breaking.

  1. Modelling emergence of oscillations in communicating bacteria: a structured approach from one to many cells

    PubMed Central

    Mina, Petros; di Bernardo, Mario; Savery, Nigel J.; Tsaneva-Atanasova, Krasimira

    2013-01-01

    Population-level measurements of phenotypic behaviour in biological systems may not necessarily reflect individual cell behaviour. To assess qualitative changes in the behaviour of a single cell, when alone and when part of a community, we developed an agent-based model describing the metabolic states of a population of quorum-coupled cells. The modelling is motivated by published experimental work of a synthetic genetic regulatory network (GRN) used in Escherichia coli cells that exhibit oscillatory behaviour across the population. To decipher the mechanisms underlying oscillations in the system, we investigate the behaviour of the model via numerical simulation and bifurcation analysis. In particular, we study the effect of an increase in population size as well as the spatio-temporal behaviour of the model. Our results demonstrate that oscillations are possible only in the presence of a high concentration of the coupling chemical and are due to a time scale separation in key regulatory components of the system. The model suggests that the population establishes oscillatory behaviour as the system's preferred stable state. This is achieved via an effective increase in coupling across the population. We conclude that population effects in GRN design need to be taken into consideration and be part of the design process. This is important in planning intervention strategies or designing specific cell behaviours. PMID:23135248

  2. Modelling emergence of oscillations in communicating bacteria: a structured approach from one to many cells.

    PubMed

    Mina, Petros; di Bernardo, Mario; Savery, Nigel J; Tsaneva-Atanasova, Krasimira

    2013-01-06

    Population-level measurements of phenotypic behaviour in biological systems may not necessarily reflect individual cell behaviour. To assess qualitative changes in the behaviour of a single cell, when alone and when part of a community, we developed an agent-based model describing the metabolic states of a population of quorum-coupled cells. The modelling is motivated by published experimental work of a synthetic genetic regulatory network (GRN) used in Escherichia coli cells that exhibit oscillatory behaviour across the population. To decipher the mechanisms underlying oscillations in the system, we investigate the behaviour of the model via numerical simulation and bifurcation analysis. In particular, we study the effect of an increase in population size as well as the spatio-temporal behaviour of the model. Our results demonstrate that oscillations are possible only in the presence of a high concentration of the coupling chemical and are due to a time scale separation in key regulatory components of the system. The model suggests that the population establishes oscillatory behaviour as the system's preferred stable state. This is achieved via an effective increase in coupling across the population. We conclude that population effects in GRN design need to be taken into consideration and be part of the design process. This is important in planning intervention strategies or designing specific cell behaviours.

  3. Intercellular Communication of Tumor Cells and Immune Cells after Exposure to Different Ionizing Radiation Qualities.

    PubMed

    Diegeler, Sebastian; Hellweg, Christine E

    2017-01-01

    Ionizing radiation can affect the immune system in many ways. Depending on the situation, the whole body or parts of the body can be acutely or chronically exposed to different radiation qualities. In tumor radiotherapy, a fractionated exposure of the tumor (and surrounding tissues) is applied to kill the tumor cells. Currently, mostly photons, and also electrons, neutrons, protons, and heavier particles such as carbon ions, are used in radiotherapy. Tumor elimination can be supported by an effective immune response. In recent years, much progress has been achieved in the understanding of basic interactions between the irradiated tumor and the immune system. Here, direct and indirect effects of radiation on immune cells have to be considered. Lymphocytes for example are known to be highly radiosensitive. One important factor in indirect interactions is the radiation-induced bystander effect which can be initiated in unexposed cells by expression of cytokines of the irradiated cells and by direct exchange of molecules via gap junctions. In this review, we summarize the current knowledge about the indirect effects observed after exposure to different radiation qualities. The different immune cell populations important for the tumor immune response are natural killer cells, dendritic cells, and CD8+ cytotoxic T-cells. In vitro and in vivo studies have revealed the modulation of their functions due to ionizing radiation exposure of tumor cells. After radiation exposure, cytokines are produced by exposed tumor and immune cells and a modulated expression profile has also been observed in bystander immune cells. Release of damage-associated molecular patterns by irradiated tumor cells is another factor in immune activation. In conclusion, both immune-activating and -suppressing effects can occur. Enhancing or inhibiting these effects, respectively, could contribute to modified tumor cell killing after radiotherapy.

  4. An Inflammation-Centric View of Neurological Disease: Beyond the Neuron

    PubMed Central

    Skaper, Stephen D.; Facci, Laura; Zusso, Morena; Giusti, Pietro

    2018-01-01

    Inflammation is a complex biological response fundamental to how the body deals with injury and infection to eliminate the initial cause of cell injury and effect repair. Unlike a normally beneficial acute inflammatory response, chronic inflammation can lead to tissue damage and ultimately its destruction, and often results from an inappropriate immune response. Inflammation in the nervous system (“neuroinflammation”), especially when prolonged, can be particularly injurious. While inflammation per se may not cause disease, it contributes importantly to disease pathogenesis across both the peripheral (neuropathic pain, fibromyalgia) and central [e.g., Alzheimer disease, Parkinson disease, multiple sclerosis, motor neuron disease, ischemia and traumatic brain injury, depression, and autism spectrum disorder] nervous systems. The existence of extensive lines of communication between the nervous system and immune system represents a fundamental principle underlying neuroinflammation. Immune cell-derived inflammatory molecules are critical for regulation of host responses to inflammation. Although these mediators can originate from various non-neuronal cells, important sources in the above neuropathologies appear to be microglia and mast cells, together with astrocytes and possibly also oligodendrocytes. Understanding neuroinflammation also requires an appreciation that non-neuronal cell—cell interactions, between both glia and mast cells and glia themselves, are an integral part of the inflammation process. Within this context the mast cell occupies a key niche in orchestrating the inflammatory process, from initiation to prolongation. This review will describe the current state of knowledge concerning the biology of neuroinflammation, emphasizing mast cell-glia and glia-glia interactions, then conclude with a consideration of how a cell's endogenous mechanisms might be leveraged to provide a therapeutic strategy to target neuroinflammation. PMID:29618972

  5. The LHRH-astroglial network of signals as a model to study neuroimmune interactions: assessment of messenger systems and transduction mechanisms at cellular and molecular levels.

    PubMed

    Marchetti, B

    1996-01-01

    Neurons and astrocytes have a close anatomic and functional relationship that plays a crucial role during development and in the adult brain. Astrocytes in the central nervous system (CNS) express receptors for a variety of growth factors (GFs), neurotransmitters and/or neuromodulators; in turn, neuronal cells can respond to astrocyte-derived GFs and control astrocyte function via a common set of signaling molecules and intracellular transducing pathways. There is also increasing evidence that soluble factors from lymphoid/mononuclear cells are able to modulate the growth and function of cells found in the CNS, specifically macroglial and microglial cells. Furthermore, glial cells can secrete immunoregulatory molecules that influence immune cells as well as the glial cells themselves. As neuronal and immune cells share common signaling systems, the potential exists for bidirectional communication not only between lymphoid and glial cells, but also between neuronal cells and immune and glial cells. In the present work, interactions of luteinizing-hormone-releasing hormone (LHRH) and the astroglial cell are proposed as a prototype for the study of neuroimmune communication within the CNS in the light of (1) the commonality of signal molecules (hormones, neurotransmitters and cytokines) and transduction mechanisms shared by glia LHRH neurons and lymphoid cells; (2) the central role of glia in the developmental organization and pattern of LHRH neuronal migration during embryogenesis, and (3) the strong modulatory role played by sex steroids in mechanisms involved in synaptic and interneuronal organization, as well as in the sexual dimorphisms of neuroendocrine-immune functions. During their maturation and differentiation in vitro, astroglial cells release factors able to accelerate markedly the LHRH neuronal phenotypic differentiation as well as the acquisition of mature LHRH secretory potential, with a potency depending on both the 'age' and the specific brain localization of the astroglia, as well as the degree of LHRH neuronal differentiation in vitro. Regional differences in astroglial sensitivity to estrogens were also measured. Different experimental paradigms such as coculture and mixed-culture models between the immortalized LHRH (GT1-1) neuronal cell line and astroglial cells in primary culture, disclosed the presence of a bidirectional flow of informational molecules regulating both proliferative and secretory capacities of each cell type. The importance of adhesive mechanisms in such cross-talk is underscored by the complete abolition of GT1-1 LHRH production and cell proliferation following the counteraction of neuronal-neuronal/neuronal-glial interactions through addition of neural-cell adhesion molecule antiserum. Other information came from pharmacological experiments manipulating the astroglia-derived cytokines and/or nitric oxide, which revealed cross-talk between the neuronal and astroglial compartments. From the bulk of this information, it seems likely that interactions between astroglia and LHRH neurons play a major role in the integration of the multiplicity of brain signals converging on the LHRH neurons that govern reproduction. Another important facet of neuronal-glial interactions is that concerning neuron-guided migration, and unraveling astroglial/LHRH-neuronal networks might then constitute an additional effort in the comprehension of defective LHRH-neuronal migration in Kallman's syndrome.

  6. Optimizing neuronal differentiation from induced pluripotent stem cells to model ASD

    PubMed Central

    Kim, Dae-Sung; Ross, P. Joel; Zaslavsky, Kirill; Ellis, James

    2014-01-01

    Autism spectrum disorder (ASD) is an early-onset neurodevelopmental disorder characterized by deficits in social communication, and restricted and repetitive patterns of behavior. Despite its high prevalence, discovery of pathophysiological mechanisms underlying ASD has lagged due to a lack of appropriate model systems. Recent advances in induced pluripotent stem cell (iPSC) technology and neural differentiation techniques allow for detailed functional analyses of neurons generated from living individuals with ASD. Refinement of cortical neuron differentiation methods from iPSCs will enable mechanistic studies of specific neuronal subpopulations that may be preferentially impaired in ASD. In this review, we summarize recent accomplishments in differentiation of cortical neurons from human pluripotent stems cells and efforts to establish in vitro model systems to study ASD using personalized neurons. PMID:24782713

  7. Mesenchymal Stem Cells from Adipose Tissue in Clinical Applications for Dermatological Indications and Skin Aging.

    PubMed

    Gaur, Meenakshi; Dobke, Marek; Lunyak, Victoria V

    2017-01-20

    Operating at multiple levels of control, mesenchymal stem cells from adipose tissue (ADSCs) communicate with organ systems to adjust immune response, provide signals for differentiation, migration, enzymatic reactions, and to equilibrate the regenerative demands of balanced tissue homeostasis. The identification of the mechanisms by which ADSCs accomplish these functions for dermatological rejuvenation and wound healing has great potential to identify novel targets for the treatment of disorders and combat aging. Herein, we review new insights into the role of adipose-derived stem cells in the maintenance of dermal and epidermal homeostasis, and recent advances in clinical applications of ADSCs related to dermatology.

  8. Mesenchymal Stem Cells from Adipose Tissue in Clinical Applications for Dermatological Indications and Skin Aging

    PubMed Central

    Gaur, Meenakshi; Dobke, Marek; Lunyak, Victoria V.

    2017-01-01

    Operating at multiple levels of control, mesenchymal stem cells from adipose tissue (ADSCs) communicate with organ systems to adjust immune response, provide signals for differentiation, migration, enzymatic reactions, and to equilibrate the regenerative demands of balanced tissue homeostasis. The identification of the mechanisms by which ADSCs accomplish these functions for dermatological rejuvenation and wound healing has great potential to identify novel targets for the treatment of disorders and combat aging. Herein, we review new insights into the role of adipose-derived stem cells in the maintenance of dermal and epidermal homeostasis, and recent advances in clinical applications of ADSCs related to dermatology. PMID:28117680

  9. Inter-Cellular Exchange of Cellular Components via VE-Cadherin-Dependent Trans-Endocytosis

    PubMed Central

    Sakurai, Takashi; Woolls, Melissa J.; Jin, Suk-Won

    2014-01-01

    Cell-cell communications typically involve receptor-mediated signaling initiated by soluble or cell-bound ligands. Here, we report a unique mode of endocytosis: proteins originating from cell-cell junctions and cytosolic cellular components from the neighboring cell are internalized, leading to direct exchange of cellular components between two adjacent endothelial cells. VE-cadherins form transcellular bridges between two endothelial cells that are the basis of adherence junctions. At such adherens junction sites, we observed the movement of the entire VE-cadherin molecule from one endothelial cell into the other with junctional and cytoplasmic components. This phenomenon, here termed trans-endocytosis, requires the establishment of a VE-cadherin homodimer in trans with internalization proceeding in a Rac1-, and actomyosin-dependent manner. Importantly, the trans-endocytosis is not dependent on any known endocytic pathway including clathrin-dependent endocytosis, macropinocytosis or phagocytosis. This novel form of cell-cell communications, leading to a direct exchange of cellular components, was observed in 2D and 3D-cultured endothelial cells as well as in the developing zebrafish vasculature. PMID:24603875

  10. Report on Project to Characterize Multi-Junction Solar Cells in the Stratosphere using Low-Cost Balloon and Communication Technologies

    NASA Technical Reports Server (NTRS)

    Mirza, Ali; Sant, David; Woodyard, James R.; Johnston, Richard R.; Brown, William J.

    2002-01-01

    Balloon, control and communication technologies are under development in our laboratory for testing multi-junction solar cells in the stratosphere to achieve near AM0 conditions. One flight, Suntracker I, has been carried out reported earlier. We report on our efforts in preparation for a second flight, Suntracker II, that was aborted due to hardware problems. The package for Suntracker I system has been modified to include separate electronics and battery packs for the 70 centimeter and 2 meter systems. The collimator control system and motor gearboxes have been redesigned to address problems with the virtual stops and backlash. Surface mount technology on a printed circuit board was used in place of the through-hole prototype circuit in efforts to reduce weight and size, and improve reliability. A mobile base station has been constructed that includes a 35' tower with a two axis rotator and multi-element yagi antennas. Modifications in Suntracker I and the factors that lead to aborting Suntracker II are discussed.

  11. Monitoring of Vibrio harveyi quorum sensing activity in real time during infection of brine shrimp larvae.

    PubMed

    Defoirdt, Tom; Sorgeloos, Patrick

    2012-12-01

    Quorum sensing, bacterial cell-to-cell communication, has been linked to the virulence of pathogenic bacteria. Indeed, in vitro experiments have shown that many bacterial pathogens regulate the expression of virulence genes by this cell-to-cell communication process. Moreover, signal molecules have been detected in samples retrieved from infected hosts and quorum sensing disruption has been reported to result in reduced virulence in different host-pathogen systems. However, data on in vivo quorum sensing activity of pathogens during infection of a host are currently lacking. We previously reported that quorum sensing regulates the virulence of Vibrio harveyi in a standardised model system with gnotobiotic brine shrimp (Artemia franciscana) larvae. Here, we monitored quorum sensing activity in Vibrio harveyi during infection of the shrimp, using bioluminescence as a read-out. We found that wild-type Vibrio harveyi shows a strong increase in quorum sensing activity early during infection. In this respect, the bacteria behave remarkably similar in different larvae, despite the fact that only half of them survive the infection. Interestingly, when expressed per bacterial cell, Vibrio harveyi showed around 200-fold higher maximal quorum sensing-regulated bioluminescence when associated with larvae than in the culture water. Finally, the in vivo quorum sensing activity of mutants defective in the production of one of the three signal molecules is consistent with their virulence, with no detectable in vivo quorum sensing activity in AI-2- and CAI-1-deficient mutants. These results indicate that AI-2 and CAI-1 are the dominant signals during infection of brine shrimp.

  12. Monitoring of Vibrio harveyi quorum sensing activity in real time during infection of brine shrimp larvae

    PubMed Central

    Defoirdt, Tom; Sorgeloos, Patrick

    2012-01-01

    Quorum sensing, bacterial cell-to-cell communication, has been linked to the virulence of pathogenic bacteria. Indeed, in vitro experiments have shown that many bacterial pathogens regulate the expression of virulence genes by this cell-to-cell communication process. Moreover, signal molecules have been detected in samples retrieved from infected hosts and quorum sensing disruption has been reported to result in reduced virulence in different host–pathogen systems. However, data on in vivo quorum sensing activity of pathogens during infection of a host are currently lacking. We previously reported that quorum sensing regulates the virulence of Vibrio harveyi in a standardised model system with gnotobiotic brine shrimp (Artemia franciscana) larvae. Here, we monitored quorum sensing activity in Vibrio harveyi during infection of the shrimp, using bioluminescence as a read-out. We found that wild-type Vibrio harveyi shows a strong increase in quorum sensing activity early during infection. In this respect, the bacteria behave remarkably similar in different larvae, despite the fact that only half of them survive the infection. Interestingly, when expressed per bacterial cell, Vibrio harveyi showed around 200-fold higher maximal quorum sensing-regulated bioluminescence when associated with larvae than in the culture water. Finally, the in vivo quorum sensing activity of mutants defective in the production of one of the three signal molecules is consistent with their virulence, with no detectable in vivo quorum sensing activity in AI-2- and CAI-1-deficient mutants. These results indicate that AI-2 and CAI-1 are the dominant signals during infection of brine shrimp. PMID:22673627

  13. The role of microbial signals in plant growth and development

    PubMed Central

    Ortíz-Castro, Randy; Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes

    2009-01-01

    Plant growth and development involves a tight coordination of the spatial and temporal organization of cell division, cell expansion and cell differentiation. Orchestration of these events requires the exchange of signaling molecules between the root and shoot, which can be affected by both biotic and abiotic factors. The interactions that occur between plants and their associated microorganisms have long been of interest, as knowledge of these processes could lead to the development of novel agricultural applications. Plants produce a wide range of organic compounds including sugars, organic acids and vitamins, which can be used as nutrients or signals by microbial populations. On the other hand, microorganisms release phytohormones, small molecules or volatile compounds, which may act directly or indirectly to activate plant immunity or regulate plant growth and morphogenesis. In this review, we focus on recent developments in the identification of signals from free-living bacteria and fungi that interact with plants in a beneficial way. Evidence has accumulated indicating that classic plant signals such as auxins and cytokinins can be produced by microorganisms to efficiently colonize the root and modulate root system architecture. Other classes of signals, including N-acyl-L-homoserine lactones, which are used by bacteria for cell-to-cell communication, can be perceived by plants to modulate gene expression, metabolism and growth. Finally, we discuss the role played by volatile organic compounds released by certain plant growth-promoting rhizobacteria in plant immunity and developmental processes. The picture that emerges is one in which plants and microbes communicate themselves through transkingdom signaling systems involving classic and novel signals. PMID:19820333

  14. Two-Way Chemical Communication between Artificial and Natural Cells

    PubMed Central

    2017-01-01

    Artificial cells capable of both sensing and sending chemical messages to bacteria have yet to be built. Here we show that artificial cells that are able to sense and synthesize quorum signaling molecules can chemically communicate with V. fischeri, V. harveyi, E. coli, and P. aeruginosa. Activity was assessed by fluorescence, luminescence, RT-qPCR, and RNA-seq. Two potential applications for this technology were demonstrated. First, the extent to which artificial cells could imitate natural cells was quantified by a type of cellular Turing test. Artificial cells capable of sensing and in response synthesizing and releasing N-3-(oxohexanoyl)homoserine lactone showed a high degree of likeness to natural V. fischeri under specific test conditions. Second, artificial cells that sensed V. fischeri and in response degraded a quorum signaling molecule of P. aeruginosa (N-(3-oxododecanoyl)homoserine lactone) were constructed, laying the foundation for future technologies that control complex networks of natural cells. PMID:28280778

  15. A novel live cell imaging system reveals a reversible hydrostatic pressure impact on cell cycle progression.

    PubMed

    Brooker, Holly R; Gyamfi, Irene A; Wieckowska, Agnieszka; Brooks, Nicholas J; Mulvihill, Daniel P; Geeves, Michael A

    2018-06-21

    Life is dependent upon the ability of a cell to rapidly respond to changes in environment. Small perturbations in local environments change the ability of molecules to interact and hence communicate. Hydrostatic pressure provides a rapid non-invasive, fully-reversible method for modulating affinities between molecules both in vivo and in vitro We have developed a simple fluorescence imaging chamber that allows intracellular protein dynamics and molecular events to be followed at pressures up to 200 bar in living cells. Using yeast we investigate the impact of hydrostatic pressure upon cell growth and cell cycle progression. While 100 bar has no affect upon viability, it induces a delay in chromosome segregation, resulting in the accumulation of long-undivided-bent cells, consistent with disruption of the cytoskeletons. This delay is independent of stress signalling and induces synchronisation of cell-cycle progression. Equivalent affects were observed in Candida albicans , with pressure inducing a reversible cell-cycle delay and hyphal growth. We present a simple novel non-invasive fluorescence microscopy based approach to transiently impact molecular dynamics to visualise, dissect and study signalling pathways and cellular processes in living cells. © 2018. Published by The Company of Biologists Ltd.

  16. DPSC colonization of functionalized 3D textiles.

    PubMed

    Ortiz, Marine; Rosales-Ibáñez, Raúl; Pozos-Guillén, Amaury; De Bien, Charlotte; Toye, Dominique; Flores, Héctor; Grandfils, Christian

    2017-05-01

    Fiber scaffolds are attractive materials for mimicking, within a 3D in vitro system, any living environment in which animal cells can adhere and proliferate. In three dimensions, cells have the ability to communicate and organize into complex architectures similar to those found in their natural environments. The aim of this study was to evaluate, in terms of cell reactivity, a new in vitro cell model: dental pulp stem cells (DPSCs) in a 3D polymeric textile. Scaffolds were knitted from polyglycolic acid (PGA) or polydioxanone (PDO) fibers differing in surface roughness. To promote cell adhesion, these hydrophobic fabrics were also functionalized with either chitosan or the peptide arginine-glycine-aspartic acid (RGD). Cell behavior was examined 1, 10, and 21 days post-seeding with a LIVE/DEAD ® Kit. Confocal laser scanning microscopy (CLSM) highlighted the biocompatibility of these materials (cell survival rate: 94% to 100%). Fiber roughness was found to influence cell adhesion and viability significantly and favorably. A clear benefit of polymeric textile functionalization with chitosan or RGD was demonstrated in terms of cell adhesion and viability. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 785-794, 2017. © 2016 Wiley Periodicals, Inc.

  17. A cognitive mobile BTS solution with software-defined radioelectric sensing.

    PubMed

    Muñoz, Jorge; Alonso, Javier Vales; García, Francisco Quiñoy; Costas, Sergio; Pillado, Marcos; Castaño, Francisco Javier González; Sánchez, Manuel García; Valcarce, Roberto López; Bravo, Cristina López

    2013-02-05

    Private communications inside large vehicles such as ships may be effectively provided using standard cellular systems. In this paper we propose a new solution based on software-defined radio with electromagnetic sensing support. Software-defined radio allows low-cost developments and, potentially, added-value services not available in commercial cellular networks. The platform of reference, OpenBTS, only supports single-channel cells. Our proposal, however, has the ability of changing BTS channel frequency without disrupting ongoing communications. This ability should be mandatory in vehicular environments, where neighbouring cell configurations may change rapidly, so a moving cell must be reconfigured in real-time to avoid interferences. Full details about frequency occupancy sensing and the channel reselection procedure are provided in this paper. Moreover, a procedure for fast terminal detection is proposed. This may be decisive in emergency situations, e.g., if someone falls overboard. Different tests confirm the feasibility of our proposal and its compatibility with commercial GSM terminals.

  18. A Cognitive Mobile BTS Solution with Software-Defined Radioelectric Sensing

    PubMed Central

    Muñoz, Jorge; Alonso, Javier Vales; García, Francisco Quiñoy; Costas, Secundino; Pillado, Marcos; Castaño, Francisco Javier González; Sánchez, Manuel Garćia; Valcarce, Roberto López; Bravo, Cristina López

    2013-01-01

    Private communications inside large vehicles such as ships may be effectively provided using standard cellular systems. In this paper we propose a new solution based on software-defined radio with electromagnetic sensing support. Software-defined radio allows low-cost developments and, potentially, added-value services not available in commercial cellular networks. The platform of reference, OpenBTS, only supports single-channel cells. Our proposal, however, has the ability of changing BTS channel frequency without disrupting ongoing communications. This ability should be mandatory in vehicular environments, where neighbouring cell configurations may change rapidly, so a moving cell must be reconfigured in real-time to avoid interferences. Full details about frequency occupancy sensing and the channel reselection procedure are provided in this paper. Moreover, a procedure for fast terminal detection is proposed. This may be decisive in emergency situations, e.g., if someone falls overboard. Different tests confirm the feasibility of our proposal and its compatibility with commercial GSM terminals. PMID:23385417

  19. Cancer-derived extracellular vesicles: friend and foe of tumour immunosurveillance.

    PubMed

    Dörsam, Bastian; Reiners, Kathrin S; von Strandmann, Elke Pogge

    2018-01-05

    Extracellular vesicles (EVs) are important players of intercellular signalling mechanisms, including communication with and among immune cells. EVs can affect the surrounding tissue as well as peripheral cells. Recently, EVs have been identified to be involved in the aetiology of several diseases, including cancer. Tumour cell-released EVs or exosomes have been shown to promote a tumour-supporting environment in non-malignant tissue and, thus, benefit metastasis. The underlying mechanisms are numerous: loss of antigen expression, direct suppression of immune effector cells, exchange of nucleic acids, alteration of the recipient cells' transcription and direct suppression of immune cells. Consequently, tumour cells can subvert the host's immune detection as well as suppress the immune system. On the contrary, recent studies reported the existence of EVs able to activate immune cells, thus promoting the tumour-directed immune response. In this article, the immunosuppressive capabilities of EVs, on the one hand, and their potential use in immunoactivation and therapeutic potential, on the other hand, are discussed.This article is part of the discussion meeting issue 'Extracellular vesicles and the tumour microenvironment'. © 2017 The Authors.

  20. Neurokinin 1 Receptor Mediates Membrane Blebbing and Sheer Stress-Induced Microparticle Formation in HEK293 Cells

    PubMed Central

    Chen, Panpan; Douglas, Steven D.; Meshki, John; Tuluc, Florin

    2012-01-01

    Cell-derived microparticles participate in intercellular communication similar to the classical messenger systems of small and macro-molecules that bind to specialized membrane receptors. Microparticles have been implicated in the regulation of a variety of complex physiopathologic processes, such as thrombosis, the control of innate and adaptive immunity, and cancer. The neurokinin 1 receptor (NK1R) is a Gq-coupled receptor present on the membrane of a variety of tissues, including neurons in the central and peripheral nervous system, immune cells, endocrine and exocrine glands, and smooth muscle. The endogenous agonist of NK1R is the undecapeptide substance P (SP). We have previously described intracellular signaling mechanisms that regulate NK1R-mediated rapid cell shape changes in HEK293 cells and U373MG cells. In the present study, we show that the activation of NK1R in HEK293 cells, but not in U373MG cells, leads to formation of sheer-stress induced microparticles that stain positive with the membrane-selective fluorescent dye FM 2–10. SP-induced microparticle formation is independent of elevated intracellular calcium concentrations and activation of NK1R present on HEK293-derived microparticles triggers detectable calcium increase in SP-induced microparticles. The ROCK inhibitor Y27632 and the dynamin inhibitor dynasore inhibited membrane blebbing and microparticle formation in HEK293 cells, strongly suggesting that microparticle formation in this cell type is dependent on membrane blebbing. PMID:23024816

  1. Neurokinin 1 receptor mediates membrane blebbing and sheer stress-induced microparticle formation in HEK293 cells.

    PubMed

    Chen, Panpan; Douglas, Steven D; Meshki, John; Tuluc, Florin

    2012-01-01

    Cell-derived microparticles participate in intercellular communication similar to the classical messenger systems of small and macro-molecules that bind to specialized membrane receptors. Microparticles have been implicated in the regulation of a variety of complex physiopathologic processes, such as thrombosis, the control of innate and adaptive immunity, and cancer. The neurokinin 1 receptor (NK1R) is a Gq-coupled receptor present on the membrane of a variety of tissues, including neurons in the central and peripheral nervous system, immune cells, endocrine and exocrine glands, and smooth muscle. The endogenous agonist of NK1R is the undecapeptide substance P (SP). We have previously described intracellular signaling mechanisms that regulate NK1R-mediated rapid cell shape changes in HEK293 cells and U373MG cells. In the present study, we show that the activation of NK1R in HEK293 cells, but not in U373MG cells, leads to formation of sheer-stress induced microparticles that stain positive with the membrane-selective fluorescent dye FM 2-10. SP-induced microparticle formation is independent of elevated intracellular calcium concentrations and activation of NK1R present on HEK293-derived microparticles triggers detectable calcium increase in SP-induced microparticles. The ROCK inhibitor Y27632 and the dynamin inhibitor dynasore inhibited membrane blebbing and microparticle formation in HEK293 cells, strongly suggesting that microparticle formation in this cell type is dependent on membrane blebbing.

  2. A rapid co-culture stamping device for studying intercellular communication.

    PubMed

    Hassanzadeh-Barforoushi, Amin; Shemesh, Jonathan; Farbehi, Nona; Asadnia, Mohsen; Yeoh, Guan Heng; Harvey, Richard P; Nordon, Robert E; Warkiani, Majid Ebrahimi

    2016-10-18

    Regulation of tissue development and repair depends on communication between neighbouring cells. Recent advances in cell micro-contact printing and microfluidics have facilitated the in-vitro study of homotypic and heterotypic cell-cell interaction. Nonetheless, these techniques are still complicated to perform and as a result, are seldom used by biologists. We report here development of a temporarily sealed microfluidic stamping device which utilizes a novel valve design for patterning two adherent cell lines with well-defined interlacing configurations to study cell-cell interactions. We demonstrate post-stamping cell viability of >95%, the stamping of multiple adherent cell types, and the ability to control the seeded cell density. We also show viability, proliferation and migration of cultured cells, enabling analysis of co-culture boundary conditions on cell fate. We also developed an in-vitro model of endothelial and cardiac stem cell interactions, which are thought to regulate coronary repair after myocardial injury. The stamp is fabricated using microfabrication techniques, is operated with a lab pipettor and uses very low reagent volumes of 20 μl with cell injection efficiency of >70%. This easy-to-use device provides a general strategy for micro-patterning of multiple cell types and will be important for studying cell-cell interactions in a multitude of applications.

  3. A rapid co-culture stamping device for studying intercellular communication

    NASA Astrophysics Data System (ADS)

    Hassanzadeh-Barforoushi, Amin; Shemesh, Jonathan; Farbehi, Nona; Asadnia, Mohsen; Yeoh, Guan Heng; Harvey, Richard P.; Nordon, Robert E.; Warkiani, Majid Ebrahimi

    2016-10-01

    Regulation of tissue development and repair depends on communication between neighbouring cells. Recent advances in cell micro-contact printing and microfluidics have facilitated the in-vitro study of homotypic and heterotypic cell-cell interaction. Nonetheless, these techniques are still complicated to perform and as a result, are seldom used by biologists. We report here development of a temporarily sealed microfluidic stamping device which utilizes a novel valve design for patterning two adherent cell lines with well-defined interlacing configurations to study cell-cell interactions. We demonstrate post-stamping cell viability of >95%, the stamping of multiple adherent cell types, and the ability to control the seeded cell density. We also show viability, proliferation and migration of cultured cells, enabling analysis of co-culture boundary conditions on cell fate. We also developed an in-vitro model of endothelial and cardiac stem cell interactions, which are thought to regulate coronary repair after myocardial injury. The stamp is fabricated using microfabrication techniques, is operated with a lab pipettor and uses very low reagent volumes of 20 μl with cell injection efficiency of >70%. This easy-to-use device provides a general strategy for micro-patterning of multiple cell types and will be important for studying cell-cell interactions in a multitude of applications.

  4. Radiofrequency (RF) effects on blood cells, cardiac, endocrine, and immunological functions.

    PubMed

    Black, David R; Heynick, Louis N

    2003-01-01

    Effects of radiofrequency electromagnetic fields (RFEMF) on the pituitary adrenocortical (ACTH), growth (GH), and thyroid (TSH) hormones have been extensively studied, and there is coherent research on reproductive hormones (FSH and LH). Those effects which have been identified are clearly caused by heating. The exposure thresholds for these effects in living mammals, including primates, have been established. There is limited evidence that indicates no interaction between RFEMF and the pineal gland or an effect on prolactin from the pituitary gland. Studies of RFEMF exposed blood cells have shown that changes or damage do not occur unless the cells are heated. White cells (leukocytes) are much more sensitive than red cells (erythrocytes) but white cell effects remain consistent with normal physiological responses to systemic temperature fluctuation. Lifetime studies of RFEMF exposed animals show no cumulative adverse effects in their endocrine, hematological, or immune systems. Cardiovascular tissue is not directly affected adversely in the absence of significant RFEMF heating or electric currents. The regulation of blood pressure is not influenced by ultra high frequency (UHF) RFEMF at levels commonly encountered in the use of mobile communication devices. Copyright 2003 Wiley-Liss, Inc.

  5. INTEGRIN-MEDIATED CELL ATTACHMENT SHOWS TIME-DEPENDENT UPREGULATION OF GAP JUNCTION COMMUNICATION.

    EPA Science Inventory


    Integrin-mediated Cell Attachment Shows Time-Dependent Upregulation of Gap Junction
    Communication

    Rachel Grindstaff and Carl Blackman, National Health & Environmental Effects Research
    Laboratory, Office of Research and Development, US EPA, Research Triang...

  6. Dissecting Nck/Dock signaling pathways in Drosophila visual system.

    PubMed

    Rao, Yong

    2005-01-01

    The establishment of neuronal connections during embryonic development requires the precise guidance and targeting of the neuronal growth cone, an expanded cellular structure at the leading tip of a growing axon. The growth cone contains sophisticated signaling systems that allow the rapid communication between guidance receptors and the actin cytoskeleton in generating directed motility. Previous studies demonstrated a specific role for the Nck/Dock SH2/SH3 adapter protein in photoreceptor (R cell) axon guidance and target recognition in the Drosophila visual system, suggesting strongly that Nck/Dock is one of the long-sought missing links between cell surface receptors and the actin cytoskeleton. In this review, I discuss the recent progress on dissecting the Nck/Dock signaling pathways in R-cell growth cones. These studies have identified additional key components of the Nck/Dock signaling pathways for linking the receptor signaling to the remodeling of the actin cytoskeleton in controlling growth-cone motility.

  7. Dissecting Nck/Dock Signaling Pathways in Drosophila Visual System

    PubMed Central

    2005-01-01

    The establishment of neuronal connections during embryonic development requires the precise guidance and targeting of the neuronal growth cone, an expanded cellular structure at the leading tip of a growing axon. The growth cone contains sophisticated signaling systems that allow the rapid communication between guidance receptors and the actin cytoskeleton in generating directed motility. Previous studies demonstrated a specific role for the Nck/Dock SH2/SH3 adapter protein in photoreceptor (R cell) axon guidance and target recognition in the Drosophila visual system, suggesting strongly that Nck/Dock is one of the long-sought missing links between cell surface receptors and the actin cytoskeleton. In this review, I discuss the recent progress on dissecting the Nck/Dock signaling pathways in R-cell growth cones. These studies have identified additional key components of the Nck/Dock signaling pathways for linking the receptor signaling to the remodeling of the actin cytoskeleton in controlling growth-cone motility. PMID:15951852

  8. Calcium response and FcepsilonRI expression in bone marrow-derived mast cells co-cultured with SCG neurites.

    PubMed

    Suzuki, Akio; Suzuki, Ryo; Furuno, Tadahide; Teshima, Reiko; Nakanishi, Mamoru

    2005-10-01

    Communication between nerves and mast cells is a prototypic demonstration of neuro-immune interaction. Numerous studies have shown that the stimulation of nerves (or addition of neurotransmitters) can evoke activation of mast cells, and that mast cell-derived mediators can influence neuronal activity. However, it is still unknown whether high affinity IgE receptors (FcepsilonRI) themselves are involved directly in the communication between nerves and mast cells. In the present experiments, we used an in vitro co-culture approach comprising interaction between immune (bone marrow-derived mast cells, BMMCs) and nerve cells (superior cervical ganglia, SCG) to solve the above problem. We found that the intracellular calcium ion concentration ([Ca2+]i) increased much more in BMMCs after antigen (DNP7-BSA) stimulation when they were associated with SCG neurites in the co-culture system. But the [Ca2+]i in BMMCs was less increased when they were not associated with the neurites. Further, the in vitro co-culture approach of BMMCs with SCG neurites for 3 d showed the increases of FcepsilonRI expression occurred on the plasma membranes of BMMCs which were attached to the neurites. On the contrary, N-cadherin molecules which localized on the interface between on the plasma membrane of BMMCs and SCG neurites did not increase with the co-culture for 3 d. All of these results indicated that co-culturing BMMCs with SCG neurites for 3 d promoted not only the calcium response but also the FcepsilonRI expression in BMMCs.

  9. The early transcriptional response of human granulocytes to infection with Candida albicans is not essential for killing but reflects cellular communications.

    PubMed

    Fradin, Chantal; Mavor, Abigail L; Weindl, Günther; Schaller, Martin; Hanke, Karin; Kaufmann, Stefan H E; Mollenkopf, Hans; Hube, Bernhard

    2007-03-01

    Candida albicans is a polymorphic opportunistic fungus that can cause life-threatening systemic infections following hematogenous dissemination in patients susceptible to nosocomial infection. Neutrophils form part of the innate immune response, which is the first line of defense against microbes and is particularly important in C. albicans infections. To compare the transcriptional response of leukocytes exposed to C. albicans, we investigated the expression of key cytokine genes in polymorphonuclear and mononuclear leukocytes after incubation with C. albicans for 1 h. Isolated mononuclear cells expressed high levels of genes encoding proinflammatory signaling molecules, whereas neutrophils exhibited much lower levels, similar to those observed in whole blood. The global transcriptional profile of neutrophils was examined by using an immunology-biased human microarray to determine whether different morphological forms or the viability of C. albicans altered the transcriptome. Hyphal cells appeared to have the broadest effect, although the most strongly induced genes were regulated independently of morphology or viability. These genes were involved in proinflammatory cell-cell signaling, cell signal transduction, and cell growth. Generally, genes encoding known components of neutrophil granules showed no upregulation at this time point; however, lactoferrin, a well-known candidacidal peptide, was secreted by neutrophils. Addition to inhibitors of RNA or protein de novo synthesis did not influence the killing activity within 30 min. These results support the general notion that neutrophils do not require gene transcription to mount an immediate and direct attack against microbes. However, neutrophils exposed to C. albicans express genes involved in communication with other immune cells.

  10. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells

    PubMed Central

    Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antzack, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J.; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco

    2016-01-01

    Abstract The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks in a wide spectrum of biological systems. PMID:27124473

  11. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells.

    PubMed

    Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antczak, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J; Guindani, Michele; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco

    2016-04-01

    The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks in a wide spectrum of biological systems.

  12. Extracellular vesicle communication pathways as regulatory targets of oncogenic transformation.

    PubMed

    Choi, Dongsic; Lee, Tae Hoon; Spinelli, Cristiana; Chennakrishnaiah, Shilpa; D'Asti, Esterina; Rak, Janusz

    2017-07-01

    Pathogenesis of human cancers bridges intracellular oncogenic driver events and their impact on intercellular communication. Among multiple mediators of this 'pathological connectivity' the role of extracellular vesicles (EVs) and their subsets (exosomes, ectosomes, oncosomes) is of particular interest for several reasons. The release of EVs from cancer cells represents a unique mechanism of regulated expulsion of bioactive molecules, a process that also mediates cell-to-cell transfer of lipids, proteins, and nucleic acids. Biological effects of these processes have been implicated in several aspects of cancer-related pathology, including tumour growth, invasion, angiogenesis, metastasis, immunity and thrombosis. Notably, the emerging evidence suggests that oncogenic mutations may impact several aspects of EV-mediated cell-cell communication including: (i) EV release rate and protein content; (ii) molecular composition of cancer EVs; (iii) the inclusion of oncogenic and mutant macromolecules in the EV cargo; (iv) EV-mediated release of genomic DNA; (v) deregulation of mechanisms responsible for EV biogenesis (vesiculome) and (vi) mechanisms of EV uptake by cancer cells. Intriguingly, EV-mediated intercellular transfer of mutant and oncogenic molecules between subpopulations of cancer cells, their indolent counterparts and stroma may exert profound biological effects that often resemble (but are not tantamount to) oncogenic transformation, including changes in cell growth, clonogenicity and angiogenic phenotype, or cause cell stress and death. However, several biological barriers likely curtail a permanent horizontal transformation of normal cells through EV-mediated mechanisms. The ongoing analysis and targeting of EV-mediated intercellular communication pathways can be viewed as a new therapeutic paradigm in cancer, while the analysis of oncogenic cargo contained in EVs released from cancer cells into biofluids is being developed for clinical use as a biomarker and companion diagnostics. Indeed, studies are underway to further explore the multiple links between molecular causality in cancer and various aspects of cellular vesiculation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The fine structure of the terminal segment of the bovine seminiferous tubule.

    PubMed

    Wrobel, K H; Sinowatz, F; Mademann, R

    1982-01-01

    The intratesticular excurrent duct system of the bull is composed of rete testis, tubuli recti, and the terminal segment of the seminiferous tubules. Each terminal segment is surrounded by a vascular plexus and may be subdivided into a transitional region, middle portion, and terminal plug. The modified supporting cells of the middle portion and the terminal plug no longer display the typical Sertoli-Sertoli junctions seen in the transitional region and the seminiferous tubule proper. In the region of the terminal plug a distinct central lumen is generally not observed: spermatozoa and tubular fluid must pass through an intricate system of communicating clefts between the apices of the closely attached modified supporting cells. Vacuoles in the supranuclear region of the cells in the middle portion indicate strong transepithelial fluid transport. In analogy to the epithelium of rete testis and tubuli recti, the supporting cells of the terminal segment are capable of phagocytosing spermatozoa. The vascular plexus investing the terminal segment serves a dual purpose: it is a regulatory device for fluid and sperm transport, as well as an area of increased diapedesis for white blood cells.

  14. Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems.

    PubMed

    Okamoto, Kazuo; Nakashima, Tomoki; Shinohara, Masahiro; Negishi-Koga, Takako; Komatsu, Noriko; Terashima, Asuka; Sawa, Shinichiro; Nitta, Takeshi; Takayanagi, Hiroshi

    2017-10-01

    The immune and skeletal systems share a variety of molecules, including cytokines, chemokines, hormones, receptors, and transcription factors. Bone cells interact with immune cells under physiological and pathological conditions. Osteoimmunology was created as a new interdisciplinary field in large part to highlight the shared molecules and reciprocal interactions between the two systems in both heath and disease. Receptor activator of NF-κB ligand (RANKL) plays an essential role not only in the development of immune organs and bones, but also in autoimmune diseases affecting bone, thus effectively comprising the molecule that links the two systems. Here we review the function, gene regulation, and signal transduction of osteoimmune molecules, including RANKL, in the context of osteoclastogenesis as well as multiple other regulatory functions. Osteoimmunology has become indispensable for understanding the pathogenesis of a number of diseases such as rheumatoid arthritis (RA). We review the various osteoimmune pathologies, including the bone destruction in RA, in which pathogenic helper T cell subsets [such as IL-17-expressing helper T (Th17) cells] induce bone erosion through aberrant RANKL expression. We also focus on cellular interactions and the identification of the communication factors in the bone marrow, discussing the contribution of bone cells to the maintenance and regulation of hematopoietic stem and progenitors cells. Thus the time has come for a basic reappraisal of the framework for understanding both the immune and bone systems. The concept of a unified osteoimmune system will be absolutely indispensable for basic and translational approaches to diseases related to bone and/or the immune system. Copyright © 2017 the American Physiological Society.

  15. Three-dimensional hydrogel cell culture systems for modeling neural tissue

    NASA Astrophysics Data System (ADS)

    Frampton, John

    Two-dimensional (2-D) neural cell culture systems have served as physiological models for understanding the cellular and molecular events that underlie responses to physical and chemical stimuli, control sensory and motor function, and lead to the development of neurological diseases. However, the development of three-dimensional (3-D) cell culture systems will be essential for the advancement of experimental research in a variety of fields including tissue engineering, chemical transport and delivery, cell growth, and cell-cell communication. In 3-D cell culture, cells are provided with an environment similar to tissue, in which they are surrounded on all sides by other cells, structural molecules and adhesion ligands. Cells grown in 3-D culture systems display morphologies and functions more similar to those observed in vivo, and can be cultured in such a way as to recapitulate the structural organization and biological properties of tissue. This thesis describes a hydrogel-based culture system, capable of supporting the growth and function of several neural cell types in 3-D. Alginate hydrogels were characterized in terms of their biomechanical and biochemical properties and were functionalized by covalent attachment of whole proteins and peptide epitopes. Methods were developed for rapid cross-linking of alginate hydrogels, thus permitting the incorporation of cells into 3-D scaffolds without adversely affecting cell viability or function. A variety of neural cell types were tested including astrocytes, microglia, and neurons. Cells remained viable and functional for longer than two weeks in culture and displayed process outgrowth in 3-D. Cell constructs were created that varied in cell density, type and organization, providing experimental flexibility for studying cell interactions and behavior. In one set of experiments, 3-D glial-endothelial cell co-cultures were used to model blood-brain barrier (BBB) structure and function. This co-culture system was designed for use as a tool to predict the transport and processing that occurs prior to drug uptake in the central nervous system (CNS), and to predict BBB permeability. Electrochemical techniques and immunohistochemistry were used to validate this model and provide detailed information about cellular organization and function. Electrochemical impedance spectroscopy (EIS) provided evidence that endothelial cells cultured in the presence of astrocytes formed tight junctions capable of occluding the flow of electrical current. In a second series of experiments, a microglia-astrocyte co-culture system was developed to assess the effects of glial cells on electrode impedance recorded from neural prosthetic devices in vitro. Impedance measurements were compared with confocal images to determine the effects of glial cell density and cell type on electrode performance. The results indicate that EIS data can be used to model components of the reactive cell responses in brain tissue, and that impedance measurements recorded in vitro can be compared to measurements recorded in vivo. Taken together, these results demonstrate that alginate hydrogels can be used for the creation of 3-D neural cell scaffolds, and that such cell scaffolds can be used to model a variety of three-dimensional neural tissues in vitro, that cannot be studied in 2-D cultures.

  16. Holographically generated structured illumination for cell stimulation in optogenetics

    NASA Astrophysics Data System (ADS)

    Schmieder, Felix; Büttner, Lars; Czarske, Jürgen; Torres, Maria Leilani; Heisterkamp, Alexander; Klapper, Simon; Busskamp, Volker

    2017-06-01

    In Optogenetics, cells, e.g. neurons or cardiac cells, are genetically altered to produce for example the lightsensitive protein Channelrhodopsin-2. Illuminating these cells induces action potentials or contractions and therefore allows to control electrical activity. Thus, light-induced cell stimulation can be used to gain insight to various biological processes. Many optogenetics studies, however, use only full field illumination and thus gain no local information about their specimen. But using modern spatial light modulators (SLM) in conjunction with computer-generated holograms (CGH), cells may be stimulated locally, thus enabling the research of the foundations of cell networks and cell communications. In our contribution, we present a digital holographic system for the patterned, spatially resolved stimulation of cell networks. We employ a fast ferroelectric liquid crystal on silicon SLM to display CGH at up to 1.7 kHz. With an effective working distance of 33 mm, we achieve a focus of 10 μm at a positioning accuracy of the individual foci of about 8 μm. We utilized our setup for the optogenetic stimulation of clusters of cardiac cells derived from induced pluripotent stem cells and were able to observe contractions correlated to both temporal frequency and spatial power distribution of the light incident on the cell clusters.

  17. Pseudorabies Virus US3-Induced Tunneling Nanotubes Contain Stabilized Microtubules, Interact with Neighboring Cells via Cadherins, and Allow Intercellular Molecular Communication

    PubMed Central

    Jansens, Robert J. J.; Van den Broeck, Wim; De Pelsmaeker, Steffi; Lamote, Jochen A. S.; Van Waesberghe, Cliff; Couck, Liesbeth

    2017-01-01

    ABSTRACT Tunneling nanotubes (TNTs) are long bridge-like structures that connect eukaryotic cells and mediate intercellular communication. We found earlier that the conserved alphaherpesvirus US3 protein kinase induces long cell projections that contact distant cells and promote intercellular virus spread. In this report, we show that the US3-induced cell projections constitute TNTs. In addition, we report that US3-induced TNTs mediate intercellular transport of information (e.g., green fluorescent protein [GFP]) in the absence of other viral proteins. US3-induced TNTs are remarkably stable compared to most TNTs described in the literature. In line with this, US3-induced TNTs were found to contain stabilized (acetylated and detyrosinated) microtubules. Transmission electron microscopy showed that virus particles are individually transported in membrane-bound vesicles in US3-induced TNTs and are released along the TNT and at the contact area between a TNT and the adjacent cell. Contact between US3-induced TNTs and acceptor cells is very stable, which correlated with a marked enrichment in adherens junction components beta-catenin and E-cadherin at the contact area. These data provide new structural insights into US3-induced TNTs and how they may contribute to intercellular communication and alphaherpesvirus spread. IMPORTANCE Tunneling nanotubes (TNT) represent an important and yet still poorly understood mode of long-distance intercellular communication. We and others reported earlier that the conserved alphaherpesvirus US3 protein kinase induces long cellular protrusions in infected and transfected cells. Here, we show that US3-induced cell projections constitute TNTs, based on structural properties and transport of biomolecules. In addition, we report on different particular characteristics of US3-induced TNTs that help to explain their remarkable stability compared to physiological TNTs. In addition, transmission electron microscopy assays indicate that, in infected cells, virions travel in the US3-induced TNTs in membranous transport vesicles and leave the TNT via exocytosis. These data generate new fundamental insights into the biology of (US3-induced) TNTs and into how they may contribute to intercellular virus spread and communication. PMID:28747498

  18. Imaging extracellular ATP with a genetically-encoded, ratiometric fluorescent sensor

    PubMed Central

    Conley, Jason M.

    2017-01-01

    Extracellular adenosine triphosphate (ATP) is a key purinergic signal that mediates cell-to-cell communication both within and between organ systems. We address the need for a robust and minimally invasive approach to measuring extracellular ATP by re-engineering the ATeam ATP sensor to be expressed on the cell surface. Using this approach, we image real-time changes in extracellular ATP levels with a sensor that is fully genetically-encoded and does not require an exogenous substrate. In addition, the sensor is ratiometric to allow for reliable quantitation of extracellular ATP fluxes. Using live-cell microscopy, we characterize sensor performance when expressed on cultured Neuro2A cells, and we measure both stimulated release of ATP and its clearance by ectonucleotidases. Thus, this proof-of-principle demonstrates a first-generation sensor to report extracellular ATP dynamics that may be useful for studying purinergic signaling in living specimens. PMID:29121644

  19. Impact of a Small Cell on the RF-EMF Exposure in a Train

    PubMed Central

    Aerts, Sam; Plets, David; Thielens, Arno; Martens, Luc; Joseph, Wout

    2015-01-01

    The deployment of a miniature mobile-phone base station or small cell in a train car significantly improves the coverage and the capacity of a mobile network service on the train. However, the impact of the small cell on the passengers’ exposure to radio-frequency electromagnetic fields (RF-EMF) is unknown. In this study, we assessed experimentally the RF-EMF exposure of a mobile-phone user who is either connected to the outdoor macrocell network or to an in-train small cell, while traveling on the train, by means of the absorbed-dose concept, which combines the base station downlink exposure with the mobile-phone uplink exposure. For Global System for Mobile Communications (GSM) technology at 1800 MHz, we found that by connecting to a small cell, the brain exposure of the user could realistically be reduced by a factor 35 and the whole-body exposure by a factor 11. PMID:25734793

  20. Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth

    USDA-ARS?s Scientific Manuscript database

    Reactive stromal cells are an integral part of tumor microenvironment (TME) and interact with cancer cells to regulate their growth. Although targeting stromal cells could be a viable therapy to regulate the communication between TME and cancer cells, identification of stromal targets that make canc...

  1. 3D Printing of Living Responsive Materials and Devices.

    PubMed

    Liu, Xinyue; Yuk, Hyunwoo; Lin, Shaoting; Parada, German Alberto; Tang, Tzu-Chieh; Tham, Eléonore; de la Fuente-Nunez, Cesar; Lu, Timothy K; Zhao, Xuanhe

    2018-01-01

    3D printing has been intensively explored to fabricate customized structures of responsive materials including hydrogels, liquid-crystal elastomers, shape-memory polymers, and aqueous droplets. Herein, a new method and material system capable of 3D-printing hydrogel inks with programed bacterial cells as responsive components into large-scale (3 cm), high-resolution (30 μm) living materials, where the cells can communicate and process signals in a programmable manner, are reported. The design of 3D-printed living materials is guided by quantitative models that account for the responses of programed cells in printed microstructures of hydrogels. Novel living devices are further demonstrated, enabled by 3D printing of programed cells, including logic gates, spatiotemporally responsive patterning, and wearable devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The mammary cellular hierarchy and breast cancer.

    PubMed

    Oakes, Samantha R; Gallego-Ortega, David; Ormandy, Christopher J

    2014-11-01

    Advances in the study of hematopoietic cell maturation have paved the way to a deeper understanding the stem and progenitor cellular hierarchy in the mammary gland. The mammary epithelium, unlike the hematopoietic cellular hierarchy, sits in a complex niche where communication between epithelial cells and signals from the systemic hormonal milieu, as well as from extra-cellular matrix, influence cell fate decisions and contribute to tissue homeostasis. We review the discovery, definition and regulation of the mammary cellular hierarchy and we describe the development of the concepts that have guided our investigations. We outline recent advances in in vivo lineage tracing that is now challenging many of our assumptions regarding the behavior of mammary stem cells, and we show how understanding these cellular lineages has altered our view of breast cancer.

  3. Cell Connections by Tunneling Nanotubes: Effects of Mitochondrial Trafficking on Target Cell Metabolism, Homeostasis, and Response to Therapy

    PubMed Central

    2017-01-01

    Intercellular communications play a major role in tissue homeostasis and responses to external cues. Novel structures for this communication have recently been described. These tunneling nanotubes (TNTs) consist of thin-extended membrane protrusions that connect cells together. TNTs allow the cell-to-cell transfer of various cellular components, including proteins, RNAs, viruses, and organelles, such as mitochondria. Mesenchymal stem cells (MSCs) are both naturally present and recruited to many different tissues where their interaction with resident cells via secreted factors has been largely documented. Their immunosuppressive and repairing capacities constitute the basis for many current clinical trials. MSCs recruited to the tumor microenvironment also play an important role in tumor progression and resistance to therapy. MSCs are now the focus of intense scrutiny due to their capacity to form TNTs and transfer mitochondria to target cells, either in normal physiological or in pathological conditions, leading to changes in cell energy metabolism and functions, as described in this review. PMID:28659978

  4. Neuroimmune Interactions: From the Brain to the Immune System and Vice Versa.

    PubMed

    Dantzer, Robert

    2018-01-01

    Because of the compartmentalization of disciplines that shaped the academic landscape of biology and biomedical sciences in the past, physiological systems have long been studied in isolation from each other. This has particularly been the case for the immune system. As a consequence of its ties with pathology and microbiology, immunology as a discipline has largely grown independently of physiology. Accordingly, it has taken a long time for immunologists to accept the concept that the immune system is not self-regulated but functions in close association with the nervous system. These associations are present at different levels of organization. At the local level, there is clear evidence for the production and use of immune factors by the central nervous system and for the production and use of neuroendocrine mediators by the immune system. Short-range interactions between immune cells and peripheral nerve endings innervating immune organs allow the immune system to recruit local neuronal elements for fine tuning of the immune response. Reciprocally, immune cells and mediators play a regulatory role in the nervous system and participate in the elimination and plasticity of synapses during development as well as in synaptic plasticity at adulthood. At the whole organism level, long-range interactions between immune cells and the central nervous system allow the immune system to engage the rest of the body in the fight against infection from pathogenic microorganisms and permit the nervous system to regulate immune functioning. Alterations in communication pathways between the immune system and the nervous system can account for many pathological conditions that were initially attributed to strict organ dysfunction. This applies in particular to psychiatric disorders and several immune-mediated diseases. This review will show how our understanding of this balance between long-range and short-range interactions between the immune system and the central nervous system has evolved over time, since the first demonstrations of immune influences on brain functions. The necessary complementarity of these two modes of communication will then be discussed. Finally, a few examples will illustrate how dysfunction in these communication pathways results in what was formerly considered in psychiatry and immunology to be strict organ pathologies.

  5. Cell-to-cell diffusion of glucose in the mammalian heart is disrupted by high glucose. Implications for the diabetic heart.

    PubMed

    De Mello, Walmor C

    2015-06-10

    The cell-to-cell diffusion of glucose in heart cell pairs isolated from the left ventricle of adult Wistar Kyoto rats was investigated. For this, fluorescent glucose was dialyzed into one cell of the pair using the whole cell clamp technique, and its diffusion from cell-to-cell was investigated by measuring the fluorescence in the dialyzed as well as in non-dialyzed cell as a function of time. The results indicated that: 1) glucose flows easily from cell-to-cell through gap junctions; 2) high glucose solution (25 mM) disrupted chemical communication between cardiac cells and abolished the intercellular diffusion of glucose; 3) the effect of high glucose solution on the cell-to-cell diffusion of glucose was drastically reduced by Bis-1 (10(-9)M) which is a PKC inhibitor; 4) intracellular dialysis of Ang II (100 nM) or increment of intracellular calcium concentration (10(-8)M) also inhibited the intercellular diffusion of glucose; 5) high glucose enhances oxidative stress in heart cells; 6) calculation of gap junction permeability (Pj) (cm/s) indicated a value of 0.74±0.08×10(-4) cm/s (5 animals) for the controls and 0.4±0.001×10(-5) cm/s; n=35 (5 animals) (P<0.05) for cells incubated with high glucose solution for 24h; 7) measurements of Pj for cell pairs treated with high glucose plus Bis-1 (10(-9)M) revealed no significant change of Pj (P>0.05); 8) increase of intracellular Ca(2+) concentration (10(-8)M) drastically decreased Pj (Pj=0.3±0.003×10(-5) cm/s). Conclusions indicate that: 1) glucose flows from cell-to-cell in the heart through gap junctions; 2) high glucose (25 mM) inhibited the intercellular diffusion of glucose-an effect significantly reduced by PKC inhibition; 3) high intracellular Ca(2+) concentration abolished the cell-to-cell diffusion of glucose; 4) intracellular Ang II (100 nM) inhibited the intercellular diffusion of glucose indicating that intracrine Ang II, in part activated by high glucose, severely impairs the exchange of glucose between cardiac myocytes. These observations support the view that the intracrine renin angiotensin system is a modulator of chemical communication in the heart. The implications of these findings for the diabetic heart were discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Regulation of actin dynamics and protein trafficking during spermatogenesis – insights into a complex process*

    PubMed Central

    Su, Wenhui; Mruk, Dolores; Cheng, C Yan

    2013-01-01

    In the mammalian testis, extensive restructuring takes place across the seminiferous epithelium at the Sertoli-Sertoli and Sertoli-germ cell interface during the epithelial cycle of spermatogenesis, which is important to facilitate changes in the cell shape and morphology of developing germ cells. However, precise communications also take place at the cell junctions to coordinate the discrete events pertinent to spermatogenesis, namely spermatogonial renewal via mitosis, cell cycle progression and meiosis, spermiogenesis, and spermiation. It is obvious that these cellular events are intimately related to the underlying actin-based cytoskeleton which is being used by different cell junctions for their attachment. However, little is known on the biology and regulation of this cytoskeleton, in particular its possible involvement in endocytic vesicle-mediated trafficking during spermatogenesis, which in turn affects cell adhesive function and communication at the cell-cell interface. Studies in other epithelia in recent years have shed insightful information on the intimate involvement of actin dynamics and protein trafficking in regulating cell adhesion and communications. The goal of this critical review is to provide an updated assessment of the latest findings in the field on how these complex processes regulate spermatogenesis. We also provide a working model based on the latest findings in the field to provide our thoughts on an apparent complicated subject, which also serves as the framework for investigators in the field. It is obvious that this model will be rapidly updated when more data are available in future years. PMID:23339542

  7. Bioelectrochemical control of neural cell development on conducting polymers.

    PubMed

    Collazos-Castro, Jorge E; Polo, José L; Hernández-Labrado, Gabriel R; Padial-Cañete, Vanesa; García-Rama, Concepción

    2010-12-01

    Electrically conducting polymers hold promise for developing advanced neuroprostheses, bionic systems and neural repair devices. Among them, poly(3, 4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) exhibits superior physicochemical properties but biocompatibility issues have limited its use. We describe combinations of electrochemical and molecule self-assembling methods to consistently control neural cell development on PEDOT:PSS while maintaining very low interfacial impedance. Electro-adsorbed polylysine enabled long-term neuronal survival and growth on the nanostructured polymer. Neurite extension was strongly inhibited by an additional layer of PSS or heparin, which in turn could be either removed electrically or further coated with spermine to activate cell growth. Binding basic fibroblast growth factor (bFGF) to the heparin layer inhibited neurons but promoted proliferation and migration of precursor cells. This methodology may orchestrate neural cell behavior on electroactive polymers, thus improving cell/electrode communication in prosthetic devices and providing a platform for tissue repair strategies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Better Bet-Hedging with coupled positive and negative feedback loops

    NASA Astrophysics Data System (ADS)

    Narula, Jatin; Igoshin, Oleg

    2011-03-01

    Bacteria use the phenotypic heterogeneity associated with bistable switches to distribute the risk of activating stress response strategies like sporulation and persistence. However bistable switches offer little control over the timing of phenotype switching and first passage times (FPT) for individual cells are found to be exponentially distributed. We show that a genetic circuit consisting of interlinked positive and negative feedback loops allows cells to control the timing of phenotypic switching. Using a mathematical model we find that in this system a stable high expression state and stable low expression limit cycle coexist and the FPT distribution for stochastic transitions between them shows multiple peaks at regular intervals. A multimodal FPT distribution allows cells to detect the persistence of stress and control the rate of phenotype transition of the population. We further show that extracellular signals from cell-cell communication that change the strength of the feedback loops can modulate the FPT distribution and allow cells even greater control in a bet-hedging strategy.

  9. Extracellular small RNAs: what, where, why?

    PubMed Central

    Hoy, Anna M.; Buck, Amy H.

    2012-01-01

    miRNAs (microRNAs) are a class of small RNA that regulate gene expression by binding to mRNAs and modulating the precise amount of proteins that get expressed in a cell at a given time. This form of gene regulation plays an important role in developmental systems and is critical for the proper function of numerous biological pathways. Although miRNAs exert their functions inside the cell, these and other classes of RNA are found in body fluids in a cell-free form that is resistant to degradation by RNases. A broad range of cell types have also been shown to secrete miRNAs in association with components of the RISC (RNA-induced silencing complex) and/or encapsulation within vesicles, which can be taken up by other cells. In the present paper, we provide an overview of the properties of extracellular miRNAs in relation to their capacity as biomarkers, stability against degradation and mediators of cell–cell communication. PMID:22817753

  10. A mother cell-to-forespore channel: current understanding and future challenges.

    PubMed

    Crawshaw, Adam D; Serrano, Mónica; Stanley, Will A; Henriques, Adriano O; Salgado, Paula S

    2014-09-01

    Formation of endospores allows some bacteria to survive extreme nutrient limitation. The resulting dormant cell, the spore, persists in the environment and is highly resistant to physical and chemical stresses. During spore formation, cells divide asymmetrically and the mother cell engulfs the developing spore, encasing it within a double membrane and isolating it from the medium. Communication between mother cell and isolated forespore involves a specialised connection system that allows nurturing of the forespore and continued macromolecular synthesis, required to finalise spore maturation. Here, we review current understanding of this feeding channel formed by a forespore protein, SpoIIQ, and a mother cell protein, SpoIIIAH, in the model organism Bacillus subtilis and the important human pathogen Clostridium difficile. We also analyse the presence of this channel across endospore-forming bacteria and highlight the main questions still remaining. © 2014 The Authors FEMS Microbiology Letters published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  11. Synchronizing stochastic circadian oscillators in single cells of Neurospora crassa

    NASA Astrophysics Data System (ADS)

    Deng, Zhaojie; Arsenault, Sam; Caranica, Cristian; Griffith, James; Zhu, Taotao; Al-Omari, Ahmad; Schüttler, Heinz-Bernd; Arnold, Jonathan; Mao, Leidong

    2016-10-01

    The synchronization of stochastic coupled oscillators is a central problem in physics and an emerging problem in biology, particularly in the context of circadian rhythms. Most measurements on the biological clock are made at the macroscopic level of millions of cells. Here measurements are made on the oscillators in single cells of the model fungal system, Neurospora crassa, with droplet microfluidics and the use of a fluorescent recorder hooked up to a promoter on a clock controlled gene-2 (ccg-2). The oscillators of individual cells are stochastic with a period near 21 hours (h), and using a stochastic clock network ensemble fitted by Markov Chain Monte Carlo implemented on general-purpose graphical processing units (or GPGPUs) we estimated that >94% of the variation in ccg-2 expression was stochastic (as opposed to experimental error). To overcome this stochasticity at the macroscopic level, cells must synchronize their oscillators. Using a classic measure of similarity in cell trajectories within droplets, the intraclass correlation (ICC), the synchronization surface ICC is measured on >25,000 cells as a function of the number of neighboring cells within a droplet and of time. The synchronization surface provides evidence that cells communicate, and synchronization varies with genotype.

  12. Movement of regulatory RNA between animal cells.

    PubMed

    Jose, Antony M

    2015-07-01

    Recent studies suggest that RNA can move from one cell to another and regulate genes through specific base-pairing. Mechanisms that modify or select RNA for secretion from a cell are unclear. Secreted RNA can be stable enough to be detected in the extracellular environment and can enter the cytosol of distant cells to regulate genes. Mechanisms that import RNA into the cytosol of an animal cell can enable uptake of RNA from many sources including other organisms. This role of RNA is akin to that of steroid hormones, which cross cell membranes to regulate genes. The potential diagnostic use of RNA in human extracellular fluids has ignited interest in understanding mechanisms that enable the movement of RNA between animal cells. Genetic model systems will be essential to gain more confidence in proposed mechanisms of RNA transport and to connect an extracellular RNA with a specific biological function. Studies in the worm C. elegans and in other animals have begun to reveal parts of this novel mechanism of cell-to-cell communication. Here, I summarize the current state of this nascent field, highlight the many unknowns, and suggest future directions. © 2015 Wiley Periodicals, Inc.

  13. Caspase-mediated apoptosis induction in zebrafish cerebellar Purkinje neurons.

    PubMed

    Weber, Thomas; Namikawa, Kazuhiko; Winter, Barbara; Müller-Brown, Karina; Kühn, Ralf; Wurst, Wolfgang; Köster, Reinhard W

    2016-11-15

    The zebrafish is a well-established model organism in which to study in vivo mechanisms of cell communication, differentiation and function. Existing cell ablation methods are either invasive or they rely on the cellular expression of prokaryotic enzymes and the use of antibiotic drugs as cell death-inducing compounds. We have recently established a novel inducible genetic cell ablation system based on tamoxifen-inducible Caspase 8 activity, thereby exploiting mechanisms of cell death intrinsic to most cell types. Here, we prove its suitability in vivo by monitoring the ablation of cerebellar Purkinje cells (PCs) in transgenic zebrafish that co-express the inducible caspase and a fluorescent reporter. Incubation of larvae in tamoxifen for 8 h activated endogenous Caspase 3 and cell death, whereas incubation for 16 h led to the near-complete loss of PCs by apoptosis. We observed synchronous cell death autonomous to the PC population and phagocytosing microglia in the cerebellum, reminiscent of developmental apoptosis in the forebrain. Thus, induction of apoptosis through targeted activation of caspase by tamoxifen (ATTAC TM ) further expands the repertoire of genetic tools for conditional interrogation of cellular functions. © 2016. Published by The Company of Biologists Ltd.

  14. Synchronizing stochastic circadian oscillators in single cells of Neurospora crassa

    PubMed Central

    Deng, Zhaojie; Arsenault, Sam; Caranica, Cristian; Griffith, James; Zhu, Taotao; Al-Omari, Ahmad; Schüttler, Heinz-Bernd; Arnold, Jonathan; Mao, Leidong

    2016-01-01

    The synchronization of stochastic coupled oscillators is a central problem in physics and an emerging problem in biology, particularly in the context of circadian rhythms. Most measurements on the biological clock are made at the macroscopic level of millions of cells. Here measurements are made on the oscillators in single cells of the model fungal system, Neurospora crassa, with droplet microfluidics and the use of a fluorescent recorder hooked up to a promoter on a clock controlled gene-2 (ccg-2). The oscillators of individual cells are stochastic with a period near 21 hours (h), and using a stochastic clock network ensemble fitted by Markov Chain Monte Carlo implemented on general-purpose graphical processing units (or GPGPUs) we estimated that >94% of the variation in ccg-2 expression was stochastic (as opposed to experimental error). To overcome this stochasticity at the macroscopic level, cells must synchronize their oscillators. Using a classic measure of similarity in cell trajectories within droplets, the intraclass correlation (ICC), the synchronization surface ICC is measured on >25,000 cells as a function of the number of neighboring cells within a droplet and of time. The synchronization surface provides evidence that cells communicate, and synchronization varies with genotype. PMID:27786253

  15. Effective internalization of U251-MG-secreted exosomes into cancer cells and characterization of their lipid components.

    PubMed

    Toda, Yuki; Takata, Kazuyuki; Nakagawa, Yuko; Kawakami, Hikaru; Fujioka, Shusuke; Kobayashi, Kazuya; Hattori, Yasunao; Kitamura, Yoshihisa; Akaji, Kenichi; Ashihara, Eishi

    2015-01-16

    Exosomes, the natural vehicles of various biological molecules, have been examined in several research fields including drug delivery. Although understanding of the biological functions of exosomes has increased, how exosomes are transported between cells remains unclear. We hypothesized that cell tropism is important for effective exosomal intercellular communication and that parental cells regulate exosome movement by modulating constituent exosomal molecules. Herein, we demonstrated the strong translocation of glioblastoma-derived exosomes (U251exo) into their parental (U251) cells, breast cancer (MDA-MB-231) cells, and fibrosarcoma (HT-1080). Furthermore, disruption of proteins of U251exo by enzymatic treatment did not affect their uptake. Therefore, we focused on lipid molecules of U251exo with the expectation that they are crucial for effective incorporation of U251exo by cancer cells. Phosphatidylethanolamine was identified as a unique lipid component of U251-MG cell-derived extracellular vesicles. From these results, valuable insight is provided into the targeting of U251exo to cancer cells, which will help to develop a cancer-targeted drug delivery system. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Deformable L-shaped microwell array for trapping pairs of heterogeneous cells

    NASA Astrophysics Data System (ADS)

    Lee, Gi-Hun; Kim, Sung-Hwan; Kang, AhRan; Takayama, Shuichi; Lee, Sang-Hoon; Park, Joong Yull

    2015-03-01

    To study cell-to-cell interactions, there has been a continuous demand on developing microsystems for trapping pairs of two different cells in microwell arrays. Here, we propose an L-shaped microwell (L-microwell) array that relies on the elasticity of a polydimethylsiloxane (PDMS) substrate for trapping and pairing heterogeneous cells. We designed an L-microwell suitable for trapping single cell in each branch via stretching/releasing the PDMS substrate, and also performed 3D time-dependent diffusion simulations to visualize how cell-secreted molecules diffuse in the L-microwell and communicate with the partner cell. The computational results showed that the secreted molecule first contacted the partner cell after 35 min, and the secreted molecule fully covered the partner cell in 4 h (when referenced to 10% of the secreted molecular concentration). The molecules that diffused to the outside of the L-microwell were significantly diluted by the bulk solution, which prevented unwanted cellular communication between neighboring L-microwells. We produced over 5000 cell pairs in one 2.25 cm2 array with about 30 000 L-microwells. The proposed L-microwell array offers a versatile and convenient cell pairing method to investigate cell-to-cell interactions in, for example, cell fusion, immune reactions, and cancer metastasis.

  17. Immunity to Cryptococcus neoformans and C. gattii during cryptococcosis

    PubMed Central

    Gibson, Josie F.; Johnston, Simon A.

    2015-01-01

    The vast majority of infection with cryptococcal species occurs with Cryptococcus neoformans in the severely immunocompromised. A significant exception to this is the infections of those with apparently normal immune systems by Cryptococcus gattii. Susceptibility to cryptococcosis can be broadly categorised as a defect in adaptive immune responses, especially in T cell immunity. However, innate immune cells such as macrophages play a key role and are likely the primary effector cell in the killing and ultimate clearance of cryptococcal infection. In this review we discuss the current state of our understanding of how the immune system responds to cryptococcal infection in health and disease, with reference to the work communicated at the 9th International Conference on Cryptococcus and Cryptococcosis (ICCC9). We have focussed on cell mediated responses, particularly early in infection, but with the aim of presenting a broad overview of our understanding of immunity to cryptococcal infection, highlighting some recent advances and offering some perspectives on future directions. PMID:25498576

  18. 3D BREAST TISSUE CO-CULTURES FOR SCREENING MAMMARY CARCINOGENS - PHASE I

    EPA Science Inventory

    Breast cancer is not a disease of individual cells, but principally a failure of cells and tissues to communicate properly. One communication mechanism that is frequently disrupted in breast cancer involves the hormone estrogen. Despite recognition that exposure to compound...

  19. Use of Advanced Solar Cells for Commercial Communication Satellites

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1995-01-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  20. Use of advanced solar cells for commerical communication satellites

    NASA Astrophysics Data System (ADS)

    Landis, Geoffrey A.; Bailey, Sheila G.

    1995-01-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar- and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because of the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from Low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  1. Use of advanced solar cells for commercial communication satellites

    NASA Astrophysics Data System (ADS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1995-03-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  2. Critical role of gap junction communication, calcium and nitric oxide signaling in bystander responses to focal photodynamic injury.

    PubMed

    Calì, Bianca; Ceolin, Stefano; Ceriani, Federico; Bortolozzi, Mario; Agnellini, Andrielly H R; Zorzi, Veronica; Predonzani, Andrea; Bronte, Vincenzo; Molon, Barbara; Mammano, Fabio

    2015-04-30

    Ionizing and nonionizing radiation affect not only directly targeted cells but also surrounding "bystander" cells. The underlying mechanisms and therapeutic role of bystander responses remain incompletely defined. Here we show that photosentizer activation in a single cell triggers apoptosis in bystander cancer cells, which are electrically coupled by gap junction channels and support the propagation of a Ca2+ wave initiated in the irradiated cell. The latter also acts as source of nitric oxide (NO) that diffuses to bystander cells, in which NO levels are further increased by a mechanism compatible with Ca(2+)-dependent enzymatic production. We detected similar signals in tumors grown in dorsal skinfold chambers applied to live mice. Pharmacological blockade of connexin channels significantly reduced the extent of apoptosis in bystander cells, consistent with a critical role played by intercellular communication, Ca2+ and NO in the bystander effects triggered by photodynamic therapy.

  3. Fuel cell electrode interconnect contact material encapsulation and method

    DOEpatents

    Derose, Anthony J.; Haltiner, Jr., Karl J.; Gudyka, Russell A.; Bonadies, Joseph V.; Silvis, Thomas W.

    2016-05-31

    A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.

  4. Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation.

    PubMed

    Fröhlich, Dominik; Kuo, Wen Ping; Frühbeis, Carsten; Sun, Jyh-Jang; Zehendner, Christoph M; Luhmann, Heiko J; Pinto, Sheena; Toedling, Joern; Trotter, Jacqueline; Krämer-Albers, Eva-Maria

    2014-09-26

    Exosomes are small membranous vesicles of endocytic origin that are released by almost every cell type. They exert versatile functions in intercellular communication important for many physiological and pathological processes. Recently, exosomes attracted interest with regard to their role in cell-cell communication in the nervous system. We have shown that exosomes released from oligodendrocytes upon stimulation with the neurotransmitter glutamate are internalized by neurons and enhance the neuronal stress tolerance. Here, we demonstrate that oligodendroglial exosomes also promote neuronal survival during oxygen-glucose deprivation, a model of cerebral ischaemia. We show the transfer from oligodendrocytes to neurons of superoxide dismutase and catalase, enzymes which are known to help cells to resist oxidative stress. Additionally, we identify various effects of oligodendroglial exosomes on neuronal physiology. Electrophysiological analysis using in vitro multi-electrode arrays revealed an increased firing rate of neurons exposed to oligodendroglial exosomes. Moreover, gene expression analysis and phosphorylation arrays uncovered differentially expressed genes and altered signal transduction pathways in neurons after exosome treatment. Our study thus provides new insight into the broad spectrum of action of oligodendroglial exosomes and their effects on neuronal physiology. The exchange of extracellular vesicles between neural cells may exhibit remarkable potential to impact brain performance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. Microenvironment Influences Interaction of Signaling Molecules | Center for Cancer Research

    Cancer.gov

    Tumor progression depends not only on events that occur within cancer cells but also on the interaction of cancer cells with their environment, which can regulate tumor growth and metastasis and modulate the formation of new blood vessels to nourish the tumor. All cells communicate with other cells around them, including endothelial cells (the cells that make up blood

  6. Before the Endless Forms: Embodied Model of Transition from Single Cells to Aggregates to Ecosystem Engineering

    PubMed Central

    Solé, Ricard V.; Valverde, Sergi

    2013-01-01

    The emergence of complex multicellular systems and their associated developmental programs is one of the major problems of evolutionary biology. The advantages of cooperation over individuality seem well known but it is not clear yet how such increase of complexity emerged from unicellular life forms. Current multicellular systems display a complex cell-cell communication machinery, often tied to large-scale controls of body size or tissue homeostasis. Some unicellular life forms are simpler and involve groups of cells cooperating in a tissue-like fashion, as it occurs with biofilms. However, before true gene regulatory interactions were widespread and allowed for controlled changes in cell phenotypes, simple cellular colonies displaying adhesion and interacting with their environments were in place. In this context, models often ignore the physical embedding of evolving cells, thus leaving aside a key component. The potential for evolving pre-developmental patterns is a relevant issue: how far a colony of evolving cells can go? Here we study these pre-conditions for morphogenesis by using CHIMERA, a physically embodied computational model of evolving virtual organisms in a pre-Mendelian world. Starting from a population of identical, independent cells moving in a fluid, the system undergoes a series of changes, from spatial segregation, increased adhesion and the development of generalism. Eventually, a major transition occurs where a change in the flow of nutrients is triggered by a sub-population. This ecosystem engineering phenomenon leads to a subsequent separation of the ecological network into two well defined compartments. The relevance of these results for evodevo and its potential ecological triggers is discussed. PMID:23596506

  7. Directed Neural Differentiation of Mouse Embryonic Stem Cells Is a Sensitive System for the Identification of Novel Hox Gene Effectors

    PubMed Central

    Bami, Myrto; Episkopou, Vasso; Gavalas, Anthony; Gouti, Mina

    2011-01-01

    The evolutionarily conserved Hox family of homeodomain transcription factors plays fundamental roles in regulating cell specification along the anterior posterior axis during development of all bilaterian animals by controlling cell fate choices in a highly localized, extracellular signal and cell context dependent manner. Some studies have established downstream target genes in specific systems but their identification is insufficient to explain either the ability of Hox genes to direct homeotic transformations or the breadth of their patterning potential. To begin delineating Hox gene function in neural development we used a mouse ES cell based system that combines efficient neural differentiation with inducible Hoxb1 expression. Gene expression profiling suggested that Hoxb1 acted as both activator and repressor in the short term but predominantly as a repressor in the long run. Activated and repressed genes segregated in distinct processes suggesting that, in the context examined, Hoxb1 blocked differentiation while activating genes related to early developmental processes, wnt and cell surface receptor linked signal transduction and cell-to-cell communication. To further elucidate aspects of Hoxb1 function we used loss and gain of function approaches in the mouse and chick embryos. We show that Hoxb1 acts as an activator to establish the full expression domain of CRABPI and II in rhombomere 4 and as a repressor to restrict expression of Lhx5 and Lhx9. Thus the Hoxb1 patterning activity includes the regulation of the cellular response to retinoic acid and the delay of the expression of genes that commit cells to neural differentiation. The results of this study show that ES neural differentiation and inducible Hox gene expression can be used as a sensitive model system to systematically identify Hox novel target genes, delineate their interactions with signaling pathways in dictating cell fate and define the extent of functional overlap among different Hox genes. PMID:21637844

  8. Single cell RNA Seq reveals dynamic paracrine control of cellular variation

    PubMed Central

    Shalek, Alex K.; Satija, Rahul; Shuga, Joe; Trombetta, John J.; Gennert, Dave; Lu, Diana; Chen, Peilin; Gertner, Rona S.; Gaublomme, Jellert T.; Yosef, Nir; Schwartz, Schraga; Fowler, Brian; Weaver, Suzanne; Wang, Jing; Wang, Xiaohui; Ding, Ruihua; Raychowdhury, Raktima; Friedman, Nir; Hacohen, Nir; Park, Hongkun; May, Andrew P.; Regev, Aviv

    2014-01-01

    High-throughput single-cell transcriptomics offers an unbiased approach for understanding the extent, basis, and function of gene expression variation between seemingly identical cells. Here, we sequence single-cell RNA-Seq libraries prepared from over 1,700 primary mouse bone marrow derived dendritic cells (DCs) spanning several experimental conditions. We find substantial variation between identically stimulated DCs, in both the fraction of cells detectably expressing a given mRNA and the transcript’s level within expressing cells. Distinct gene modules are characterized by different temporal heterogeneity profiles. In particular, a “core” module of antiviral genes is expressed very early by a few “precocious” cells, but is later activated in all cells. By stimulating cells individually in sealed microfluidic chambers, analyzing DCs from knockout mice, and modulating secretion and extracellular signaling, we show that this response is coordinated via interferon-mediated paracrine signaling. Surprisingly, preventing cell-to-cell communication also substantially reduces variability in the expression of an early-induced “peaked” inflammatory module, suggesting that paracrine signaling additionally represses part of the inflammatory program. Our study highlights the importance of cell-to-cell communication in controlling cellular heterogeneity and reveals general strategies that multicellular populations use to establish complex dynamic responses. PMID:24919153

  9. Large basolateral processes on type II hair cells are novel processing units in mammalian vestibular organs.

    PubMed

    Pujol, Rémy; Pickett, Sarah B; Nguyen, Tot Bui; Stone, Jennifer S

    2014-10-01

    Sensory receptors in the vestibular system (hair cells) encode head movements and drive central motor reflexes that control gaze, body movements, and body orientation. In mammals, type I and II vestibular hair cells are defined by their shape, contacts with vestibular afferent nerves, and membrane conductance. Here we describe unique morphological features of type II vestibular hair cells in mature rodents (mice and gerbils) and bats. These features are cytoplasmic processes that extend laterally from the hair cell base and project under type I hair cells. Closer analysis of adult mouse utricles demonstrated that the basolateral processes of type II hair cells vary in shape, size, and branching, with the longest processes extending three to four hair cell widths. The hair cell basolateral processes synapse upon vestibular afferent nerves and receive inputs from vestibular efferent nerves. Furthermore, some basolateral processes make physical contacts with the processes of other type II hair cells, forming some sort of network among type II hair cells. Basolateral processes are rare in perinatal mice and do not attain their mature form until 3-6 weeks of age. These observations demonstrate that basolateral processes are significant signaling regions of type II vestibular hair cells and suggest that type II hair cells may directly communicate with each other, which has not been described in vertebrates. © 2014 Wiley Periodicals, Inc.

  10. Neuron-Glia Crosstalk in the Autonomic Nervous System and Its Possible Role in the Progression of Metabolic Syndrome: A New Hypothesis

    PubMed Central

    Del Rio, Rodrigo; Quintanilla, Rodrigo A.; Orellana, Juan A.; Retamal, Mauricio A.

    2015-01-01

    Metabolic syndrome (MS) is characterized by the following physiological alterations: increase in abdominal fat, insulin resistance, high concentration of triglycerides, low levels of HDL, high blood pressure, and a generalized inflammatory state. One of the pathophysiological hallmarks of this syndrome is the presence of neurohumoral activation, which involve autonomic imbalance associated to hyperactivation of the sympathetic nervous system. Indeed, enhanced sympathetic drive has been linked to the development of endothelial dysfunction, hypertension, stroke, myocardial infarct, and obstructive sleep apnea. Glial cells, the most abundant cells in the central nervous system, control synaptic transmission, and regulate neuronal function by releasing bioactive molecules called gliotransmitters. Recently, a new family of plasma membrane channels called hemichannels has been described to allow the release of gliotransmitters and modulate neuronal firing rate. Moreover, a growing amount of evidence indicates that uncontrolled hemichannel opening could impair glial cell functions, affecting synaptic transmission and neuronal survival. Given that glial cell functions are disturbed in various metabolic diseases, we hypothesize that progression of MS may relies on hemichannel-dependent impairment of glial-to-neuron communication by a mechanism related to dysfunction of inflammatory response and mitochondrial metabolism of glial cells. In this manuscript, we discuss how glial cells may contribute to the enhanced sympathetic drive observed in MS, and shed light about the possible role of hemichannels in this process. PMID:26648871

  11. Spectral and spatial characterization of perfluorinated graded-index polymer optical fibers for the distribution of optical wireless communication cells.

    PubMed

    Hajjar, Hani Al; Montero, David S; Lallana, Pedro C; Vázquez, Carmen; Fracasso, Bruno

    2015-02-10

    In this paper, the characterization of a perfluorinated graded-index polymer optical fiber (PF-GIPOF) for a high-bitrate indoor optical wireless system is reported. PF-GIPOF is used here to interconnect different optical wireless access points that distribute optical free-space high-bitrate wireless communication cells. The PF-GIPOF channel is first studied in terms of transmission attenuation and frequency response and, in a second step, the spatial power profile distribution at the fiber output is analyzed. Both characterizations are performed under varying restricted mode launch conditions, enabling us to assess the transmission channel performance subject to potential connectorization errors within an environment where the end users may intervene by themselves on the home network infrastructure.

  12. Energy harvesting using TEG and PV cell for low power application

    NASA Astrophysics Data System (ADS)

    Tawil, Siti Nooraya Mohd; Zainal, Mohd Zulkarnain

    2018-02-01

    A thermoelectric generator (TEG) module and photovoltaic cell (PV) were utilized to harvest energy from temperature gradients of heat sources from ambient heat and light of sun. The output of TEG and PV were connected to a power management circuit consist of step-up dc-dc converter in order to increase the output voltage to supply a low power application such as wireless communication module and the photovoltaic cell for charging an energy storage element in order to switch on a fan for cooling system of the thermoelectric generator. A switch is used as a selector to choose the input of source either from photovoltaic cell or thermoelectric generator to switch on DC-DC step-up converter. In order to turn on the DC-DC step-up converter, the input must be greater than 3V. The energy harvesting was designed so that it can be used continuously and portable anywhere. Multiple sources used in this energy harvesting system is to ensure the system can work in whatever condition either in good weather or not good condition of weather. This energy harvesting system has the potential to be used in military operation and environment that require sustainability of energy resources.

  13. INFLUENCE OF SODIUM ARSENITE ON GAP JUNCTION COMMUNICATION IN RAT LIVER EPITHELIAL CELLS

    EPA Science Inventory

    Influence of sodium arsenite on gap junction communication in rat-Iiver epitheiial cells.

    Arsenic is known to cause certain types of cancers, hepatitis, cirrhosis and neurological disorders as well as cardiovascular and reproductive effects and skin lesions. The mechanism...

  14. EMMPRIN Regulates Cytoskeleton Reorganization and Cell Adhesion in Prostate Cancer

    PubMed Central

    Zhu, Haining; Zhao, Jun; Zhu, Beibei; Collazo, Joanne; Gal, Jozsef; Shi, Ping; Liu, Li; Ström, Anna-Lena; Lu, Xiaoning; McCann, Richard O.; Toborek, Michal; Kyprianou, Natasha

    2011-01-01

    Background Proteins on cell surface play important roles during cancer progression and metastasis via their ability to mediate cell-to-cell interactions and navigate the communication between cells and the microenvironment. Methods In this study a targeted proteomic analysis was conducted to identify the differential expression of cell surface proteins in human benign (BPH-1) vs. malignant (LNCaP and PC-3) prostate epithelial cells. We identified EMMPRIN (extracellular matrix metalloproteinase inducer) as a key candidate and shRNA functional approaches were subsequently applied to determine the role of EMMPRIN in prostate cancer cell adhesion, migration, invasion as well as cytoskeleton organization. Results EMMPRIN was found to be highly expressed on the surface of prostate cancer cells compared to BPH-1 cells, consistent with a correlation between elevated EMMPRIN and metastasis found in other tumors. No significant changes in cell proliferation, cell cycle progression or apoptosis were detected in EMMPRIN knockdown cells compared to the scramble controls. Furthermore, EMMPRIN silencing markedly decreased the ability of PC-3 cells to form filopodia, a critical feature of invasive behavior, while it increased expression of cell-cell adhesion and gap junction proteins. Conclusions Our results suggest that EMMPRIN regulates cell adhesion, invasion and cytoskeleton reorganization in prostate cancer cells. This study identifies a new function for EMMPRIN as a contributor to prostate cancer cell-cell communication and cytoskeleton changes towards metastatic spread, and suggests its potential value as a marker of prostate cancer progression to metastasis. PMID:21563192

  15. EMMPRIN regulates cytoskeleton reorganization and cell adhesion in prostate cancer.

    PubMed

    Zhu, Haining; Zhao, Jun; Zhu, Beibei; Collazo, Joanne; Gal, Jozsef; Shi, Ping; Liu, Li; Ström, Anna-Lena; Lu, Xiaoning; McCann, Richard O; Toborek, Michal; Kyprianou, Natasha

    2012-01-01

    Proteins on cell surface play important roles during cancer progression and metastasis via their ability to mediate cell-to-cell interactions and navigate the communication between cells and the microenvironment. In this study a targeted proteomic analysis was conducted to identify the differential expression of cell surface proteins in human benign (BPH-1) versus malignant (LNCaP and PC-3) prostate epithelial cells. We identified EMMPRIN (extracellular matrix metalloproteinase inducer) as a key candidate and shRNA functional approaches were subsequently applied to determine the role of EMMPRIN in prostate cancer cell adhesion, migration, invasion as well as cytoskeleton organization. EMMPRIN was found to be highly expressed on the surface of prostate cancer cells compared to BPH-1 cells, consistent with a correlation between elevated EMMPRIN and metastasis found in other tumors. No significant changes in cell proliferation, cell cycle progression, or apoptosis were detected in EMMPRIN knockdown cells compared to the scramble controls. Furthermore, EMMPRIN silencing markedly decreased the ability of PC-3 cells to form filopodia, a critical feature of invasive behavior, while it increased expression of cell-cell adhesion and gap junction proteins. Our results suggest that EMMPRIN regulates cell adhesion, invasion, and cytoskeleton reorganization in prostate cancer cells. This study identifies a new function for EMMPRIN as a contributor to prostate cancer cell-cell communication and cytoskeleton changes towards metastatic spread, and suggests its potential value as a marker of prostate cancer progression to metastasis. Copyright © 2011 Wiley Periodicals, Inc.

  16. Design and Application of a Field Sensing System for Ground Anchors in Slopes

    PubMed Central

    Choi, Se Woon; Lee, Jihoon; Kim, Jong Moon; Park, Hyo Seon

    2013-01-01

    In a ground anchor system, cables or tendons connected to a bearing plate are used for stabilization of slopes. Then, the stability of a slope is dependent on maintaining the tension levels in the cables. So far, no research on a strain-based field sensing system for ground anchors has been reported. Therefore, in this study, a practical monitoring system for long-term sensing of tension levels in tendons for anchor-reinforced slopes is proposed. The system for anchor-reinforced slopes is composed of: (1) load cells based on vibrating wire strain gauges (VWSGs), (2) wireless sensor nodes which receive and process the signals from load cells and then transmit the result to a master node through local area communication, (3) master nodes which transmit the data sent from sensor nodes to the server through mobile communication, and (4) a server located at the base station. The system was applied to field sensing of ground anchors in the 62 m-long and 26 m-high slope at the side of the highway. Based on the long-term monitoring, the safety of the anchor-reinforced slope can be secured by the timely applications of re-tensioning processes in tendons. PMID:23507820

  17. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation.

    PubMed

    Arpaia, Nicholas; Campbell, Clarissa; Fan, Xiying; Dikiy, Stanislav; van der Veeken, Joris; deRoos, Paul; Liu, Hui; Cross, Justin R; Pfeffer, Klaus; Coffer, Paul J; Rudensky, Alexander Y

    2013-12-19

    Intestinal microbes provide multicellular hosts with nutrients and confer resistance to infection. The delicate balance between pro- and anti-inflammatory mechanisms, essential for gut immune homeostasis, is affected by the composition of the commensal microbial community. Regulatory T cells (Treg cells) expressing transcription factor Foxp3 have a key role in limiting inflammatory responses in the intestine. Although specific members of the commensal microbial community have been found to potentiate the generation of anti-inflammatory Treg or pro-inflammatory T helper 17 (TH17) cells, the molecular cues driving this process remain elusive. Considering the vital metabolic function afforded by commensal microorganisms, we reasoned that their metabolic by-products are sensed by cells of the immune system and affect the balance between pro- and anti-inflammatory cells. We tested this hypothesis by exploring the effect of microbial metabolites on the generation of anti-inflammatory Treg cells. We found that in mice a short-chain fatty acid (SCFA), butyrate, produced by commensal microorganisms during starch fermentation, facilitated extrathymic generation of Treg cells. A boost in Treg-cell numbers after provision of butyrate was due to potentiation of extrathymic differentiation of Treg cells, as the observed phenomenon was dependent on intronic enhancer CNS1 (conserved non-coding sequence 1), essential for extrathymic but dispensable for thymic Treg-cell differentiation. In addition to butyrate, de novo Treg-cell generation in the periphery was potentiated by propionate, another SCFA of microbial origin capable of histone deacetylase (HDAC) inhibition, but not acetate, which lacks this HDAC-inhibitory activity. Our results suggest that bacterial metabolites mediate communication between the commensal microbiota and the immune system, affecting the balance between pro- and anti-inflammatory mechanisms.

  18. Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering.

    PubMed

    Haraguchi, Yuji; Matsuura, Katsuhisa; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2015-12-01

    In this study, a simple three-dimensional (3D) suspension culture method for the expansion and cardiac differentiation of human induced pluripotent stem cells (hiPSCs) is reported. The culture methods were easily adapted from two-dimensional (2D) to 3D culture without any additional manipulations. When hiPSCs were directly applied to 3D culture from 2D in a single-cell suspension, only a few aggregated cells were observed. However, after 3 days, culture of the small hiPSC aggregates in a spinner flask at the optimal agitation rate created aggregates which were capable of cell passages from the single-cell suspension. Cell numbers increased to approximately 10-fold after 12 days of culture. The undifferentiated state of expanded hiPSCs was confirmed by flow cytometry, immunocytochemistry and quantitative RT-PCR, and the hiPSCs differentiated into three germ layers. When the hiPSCs were subsequently cultured in a flask using cardiac differentiation medium, expression of cardiac cell-specific genes and beating cardiomyocytes were observed. Furthermore, the culture of hiPSCs on Matrigel-coated dishes with serum-free medium containing activin A, BMP4 and FGF-2 enabled it to generate robust spontaneous beating cardiomyocytes and these cells expressed several cardiac cell-related genes, including HCN4, MLC-2a and MLC-2v. This suggests that the expanded hiPSCs might maintain the potential to differentiate into several types of cardiomyocytes, including pacemakers. Moreover, when cardiac cell sheets were fabricated using differentiated cardiomyocytes, they beat spontaneously and synchronously, indicating electrically communicative tissue. This simple culture system might enable the generation of sufficient amounts of beating cardiomyocytes for use in cardiac regenerative medicine and tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Effects of exposure to DAMPS and GSM signals on ornithine decarboxylase (ODC) activity: II. SH-SY5Y human neuroblastoma cells.

    PubMed

    Billaudel, Bernard; Taxile, Murielle; Poulletier de Gannes, Florence; Ruffie, Gilles; Lagroye, Isabelle; Veyret, Bernard

    2009-06-01

    An increase in Ornithine Decarboxylase (ODC) activity was reported in L929 murine fibroblast cells after exposure to a digital cellular telephone signal. This result was not confirmed by several other studies, including the one reported in a companion paper. As a partner in the Perform-B programme, we extended this study to human neuroblastoma cells (SH-SY5Y), using well-defined waveguide systems to imitate exposure to radiofrequency radiation (RFR): Digital Advanced Mobile Phone System (DAMPS) or Global System for Mobile communications (GSM) signals emitted by mobile phones. Human neuroblastoma cells (SH-SY5Y) were exposed at various Specific Absorption Rates (SAR) to DAMPS or GSM signals using different set-ups. Cell ODC activities were assayed using 14CO2 generation from 14C-labeled L-ornithine. SH-SY5Y cells were incubated for 20 hours, and were blindly exposed to 50 Hz-modulated DAMPS-835 or 217 Hz-modulated GSM-1800 for 8 or 24 h using Information Technologies in Society (IT'IS) waveguides equipped with fans. After cell lysis, ODC activity was determined using 14C-labeled L-ornithine. ODC activity was estimated by the 14CO2 generated from 14C-labeled L-ornithine, as generated d.p.m. 14CO2/h/mg protein. The results showed that, irrespective of the signal used (835 MHz/DAMPS, or 1800 MHz/GSM) and exposure conditions (duration and SAR), human SH-SY5Y neuroblastoma cells did not exhibit any alteration in ODC enzyme activity. This work did not show a significant effect of mobile phone RFR exposure on ODC activity in neuroblastoma cells (SH-SY5Y).

  20. Smart blood cell and microvesicle-based Trojan horse drug delivery: Merging expertise in blood transfusion and biomedical engineering in the field of nanomedicine.

    PubMed

    Wu, Yu-Wen; Goubran, Hadi; Seghatchian, Jerard; Burnouf, Thierry

    2016-04-01

    Therapeutic and diagnostic applications of nanomedicine are playing increasingly important roles in human health. Various types of synthetic nanoparticles, including liposomes, micelles, and other nanotherapeutic platforms and conjugates, are being engineered to encapsulate or carry drugs for treating diseases such as cancer, cardiovascular disorders, neurodegeneration, and inflammations. Nanocarriers are designed to increase the half-life of drugs, decrease their toxicity and, ideally, target pathological sites. Developing smart carriers with the capacity to deliver drugs specifically to the microenvironment of diseased cells with minimum systemic toxicity is the goal. Blood cells, and potentially also the liposome-like micro- and nano-vesicles they generate, may be regarded as ideally suited to perform such specific targeting with minimum immunogenic risks. Blood cell membranes are "decorated" with complex physiological receptors capable of targeting and communicating with other cells and tissues and delivering their content to the surrounding pathological microenvironment. Blood cells, such as erythrocytes, have been developed as permeable carriers to release drugs to diseased tissues or act as biofactory allowing enzymatic degradation of a pathological substrate. Interestingly, attempts are also being made to improve the targeting capacity of synthetic nanoparticles by "decorating" their surface with blood cell membrane receptor-like biochemical structures. Research is needed to further explore the benefits that blood cell-derived microvesicles, as a Trojan horse delivery systems, can bring to the arsenal of therapeutic micro- and nanotechnologies. This short review focuses on the therapeutic roles that red blood cells and platelets can play as smart drug-delivery systems, and highlights the benefits that blood transfusion expertise can bring to this exciting and novel biomedical engineering field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Physiological and physiopathological aspects of connexins and communicating gap junctions in spermatogenesis

    PubMed Central

    Pointis, Georges; Gilleron, Jérome; Carette, Diane; Segretain, Dominique

    2010-01-01

    Spermatogenesis is a highly regulated process of germ cell proliferation and differentiation, starting from spermatogonia to spermatocytes and giving rise to spermatids, the future spermatozoa. In addition to endocrine regulation, testicular cell–cell interactions are essential for spermatogenesis. This precise control is mediated through paracrine/autocrine pathways, direct intercellular contacts and through intercellular communication channels, consisting of gap junctions and their constitutive proteins, the connexins. Gap junctions are localized between adjacent Leydig cells, between Sertoli cells and between Sertoli cells and specific germ cells. This review focuses on the distribution of connexins within the seminiferous epithelium, their participation in gap junction channel formation, the control of their expression and the physiological relevance of these junctions in both the Sertoli–Sertoli cell functional synchronization and the Sertoli–germ cell dialogue. In this review, we also discuss the potential implication of disrupted connexin in testis cancer, since impaired expression of connexin has been described as a typical feature of tumoral proliferation. PMID:20403873

  2. Efficient massively parallel simulation of dynamic channel assignment schemes for wireless cellular communications

    NASA Technical Reports Server (NTRS)

    Greenberg, Albert G.; Lubachevsky, Boris D.; Nicol, David M.; Wright, Paul E.

    1994-01-01

    Fast, efficient parallel algorithms are presented for discrete event simulations of dynamic channel assignment schemes for wireless cellular communication networks. The driving events are call arrivals and departures, in continuous time, to cells geographically distributed across the service area. A dynamic channel assignment scheme decides which call arrivals to accept, and which channels to allocate to the accepted calls, attempting to minimize call blocking while ensuring co-channel interference is tolerably low. Specifically, the scheme ensures that the same channel is used concurrently at different cells only if the pairwise distances between those cells are sufficiently large. Much of the complexity of the system comes from ensuring this separation. The network is modeled as a system of interacting continuous time automata, each corresponding to a cell. To simulate the model, conservative methods are used; i.e., methods in which no errors occur in the course of the simulation and so no rollback or relaxation is needed. Implemented on a 16K processor MasPar MP-1, an elegant and simple technique provides speedups of about 15 times over an optimized serial simulation running on a high speed workstation. A drawback of this technique, typical of conservative methods, is that processor utilization is rather low. To overcome this, new methods were developed that exploit slackness in event dependencies over short intervals of time, thereby raising the utilization to above 50 percent and the speedup over the optimized serial code to about 120 times.

  3. Regulation of Toxin Production in Clostridium perfringens

    PubMed Central

    Ohtani, Kaori; Shimizu, Tohru

    2016-01-01

    The Gram-positive anaerobic bacterium Clostridium perfringens is widely distributed in nature, especially in soil and the gastrointestinal tracts of humans and animals. C. perfringens causes gas gangrene and food poisoning, and it produces extracellular enzymes and toxins that are thought to act synergistically and contribute to its pathogenesis. A complicated regulatory network of toxin genes has been reported that includes a two-component system for regulatory RNA and cell-cell communication. It is necessary to clarify the global regulatory system of these genes in order to understand and treat the virulence of C. perfringens. We summarize the existing knowledge about the regulatory mechanisms here. PMID:27399773

  4. Identification of symplasmic domains in the embryo and seed of Sedum acre L. (Crassulaceae).

    PubMed

    Wróbel-Marek, Justyna; Kurczyńska, Ewa; Płachno, Bartosz J; Kozieradzka-Kiszkurno, Małgorzata

    2017-03-01

    Our study demonstrated that symplasmic communication between Sedum acre seed compartments and the embryo proper is not uniform. The presence of plasmodesmata (PD) constitutes the structural basis for information exchange between cells, and symplasmic communication is involved in the regulation of cell differentiation and plant development. Most recent studies concerning an analysis of symplasmic communication between seed compartments and the embryo have been predominantly performed on Arabidopsis thaliana. The results presented in this paper describe the analysis of symplasmic communication on the example of Sedum acre seeds, because the ultrastructure of the seed compartments and the embryo proper, including the PD, have already been described, and this species represents an embryonic type of development different to Arabidopsis. Moreover, in this species, an unusual electron-dense dome associated with plasmodesmata on the border between the basal cell/chalazal suspensor cells and the basal cell/the endosperm has been described. This prompted the question as to whether these plasmodesmata are functional. Thus, the aim of this study was to describe the movement of symplasmic transport fluorochromes between different Sedum seed compartments, with particular emphasis on the movement between the basal cell and the embryo proper and endosperm, to answer the following questions: (1) are seeds divided into symplasmic domains; (2) if so, are they stable or do they change with the development? The results have shown that symplasmic tracers movement: (a) from the external integument to internal integument is restricted; (b) from the basal cell to the other part of the embryo proper and from the basal cell to the endosperm is also restricted; (c) the embryo is a single symplasmic domain with respect to molecules of a molecular weight below 0.5 kDa.

  5. Federal Task Force on the Boston Central Artery Tunnel Project. Review of Project Oversight and Costs

    DOT National Transportation Integrated Search

    2012-01-01

    Connected vehicles have the potential to transform the way Americans travel through the creation of a safe, interoperable wireless communications networka system that includes cars, buses, trucks, trains, traffic signals, cell phones, and other de...

  6. A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis.

    PubMed

    Daum, Gabor; Medzihradszky, Anna; Suzaki, Takuya; Lohmann, Jan U

    2014-10-07

    Cell-cell communication is essential for multicellular development and, consequently, evolution has brought about an array of distinct mechanisms serving this purpose. Consistently, induction and maintenance of stem cell fate by noncell autonomous signals is a feature shared by many organisms and may depend on secreted factors, direct cell-cell contact, matrix interactions, or a combination of these mechanisms. Although many basic cellular processes are well conserved between animals and plants, cell-to-cell signaling is one function where substantial diversity has arisen between the two kingdoms of life. One of the most striking differences is the presence of cytoplasmic bridges, called plasmodesmata, which facilitate the exchange of molecules between neighboring plant cells and provide a unique route for cell-cell communication in the plant lineage. Here, we provide evidence that the stem cell inducing transcription factor WUSCHEL (WUS), expressed in the niche, moves to the stem cells via plasmodesmata in a highly regulated fashion and that this movement is required for WUS function and, thus, stem cell activity in Arabidopsis thaliana. We show that cell context-independent mobility is encoded in the WUS protein sequence and mediated by multiple domains. Finally, we demonstrate that parts of the protein that restrict movement are required for WUS homodimerization, suggesting that formation of WUS dimers might contribute to the regulation of apical stem cell activity.

  7. MessageSpace: a messaging system for health research

    NASA Astrophysics Data System (ADS)

    Escobar, Rodrigo D.; Akopian, David; Parra-Medina, Deborah; Esparza, Laura

    2013-03-01

    Mobile Health (mHealth) has emerged as a promising direction for delivery of healthcare services via mobile communication devices such as cell phones. Examples include texting-based interventions for chronic disease monitoring, diabetes management, control of hypertension, smoking cessation, monitoring medication adherence, appointment keeping and medical test result delivery; as well as improving patient-provider communication, health information communication, data collection and access to health records. While existing messaging systems very well support bulk messaging and some polling applications, they are not designed for data collection and processing of health research oriented studies. For that reason known studies based on text-messaging campaigns have been constrained in participant numbers. In order to empower healthcare promotion and education research, this paper presents a system dedicated for healthcare research. It is designed for convenient communication with various study groups, feedback collection and automated processing.

  8. Intercellular Communication by Exosome-Derived microRNAs in Cancer

    PubMed Central

    Hannafon, Bethany N.; Ding, Wei-Qun

    2013-01-01

    The development of human cancers is a multistep process in which normal cells acquire characteristics that ultimately lead to their conversion into cancer cells. Many obstacles must be overcome for this process to occur; of these obstacles, is the ability to survive an inhospitable microenvironment. It is recognized that the intercommunication between tumor cells and their surrounding microenvironment is essential to overcoming this obstacle and for the tumor to progress, metastasize and establish itself at distant sites. Exosomes are membrane-derived vesicles that have recently been recognized as important mediators of intercellular communication, as they carry lipids, proteins, mRNAs and microRNAs that can be transferred to a recipient cell via fusion of the exosome with the target cell membrane. In the context of cancer cells, this process entails the transfer of cancer-promoting cellular contents to surrounding cells within the tumor microenvironment or into the circulation to act at distant sites, thereby enabling cancer progression. In this process, the transfer of exosomal microRNAs to a recipient cell where they can regulate target gene expression is of particular interest, both in understanding the basic biology of cancer progression and for the development of therapeutic approaches. This review discusses the exosome-mediated intercellular communication via microRNAs within the tumor microenvironment in human cancers, with a particular focus on breast cancer exosomes. PMID:23839094

  9. Decoding the Secret of Cancer by Means of Extracellular Vesicles

    PubMed Central

    Kosaka, Nobuyoshi

    2016-01-01

    One of the recent outstanding developments in cancer biology is the emergence of extracellular vesicles (EVs). EVs, which are small membrane vesicles that contain proteins, mRNAs, long non-coding RNAs, and microRNAs (miRNAs), are secreted by a variety of cells and have been revealed to play an important role in intercellular communications. These molecules function in the recipient cells; this has brought new insight into cell-cell communication. Recent reports have shown that EVs contribute to cancer cell development, including tumor initiation, angiogenesis, immune surveillance, drug resistance, invasion, metastasis, maintenance of cancer stem cells, and EMT phenotype. In this review, I will summarize recent studies on EV-mediated miRNA transfer in cancer biology. Furthermore, I will also highlight the possibility of novel diagnostics and therapy using miRNAs in EVs against cancer. PMID:26861408

  10. High Capacity Battery Cell Flight Qualified

    NASA Technical Reports Server (NTRS)

    McKissock, Barbara I.

    1997-01-01

    The High Capacity Battery Cell project is an effort equally funded by the NASA Lewis Research Center and Hughes Space and Communications Company (a unit of Hughes Aircraft Company) to develop and flight qualify a higher capacity nickel hydrogen battery for continuing use on commercial spacecraft. The larger diameter, individual pressure vessel cell will provide approximately twice the power, while occupying the same volume, as the current state-of-the-art nickel hydrogen cell. These cells are also anticipated to reduce battery cost by 20 percent. The battery is currently booked for use on 26 spacecraft, with the first flight scheduled in 1997. A strong requirement for batteries with higher power levels (6 to 12 kW), long life, and reduced cost was identified in studies of the needs of commercial communications spacecraft. With the design developed in this effort, the higher power level was accommodated without having to modify the rest of the existing spacecraft bus. This design scaled-up the existing state-of-the-art nickel hydrogen battery cell from a 3.5-in., 50-Ahr cell to a 5.5-in., 350-Ahr cell. An improvement in cycle life was also achieved by the use of the 26-percent KOH electrolyte design developed by NASA Lewis. The cell design was completed, and flight batteries were built and flight qualified by Hughes Space and Communications Company with input from NASA Lewis. Two batteries were shipped in September 1996 to undergo life cycle testing under the purview of NASA Lewis.

  11. Providing cell phone numbers and email addresses to Patients: the physician's perspective.

    PubMed

    Peleg, Roni; Avdalimov, Angelika; Freud, Tamar

    2011-03-23

    The provision of cell phone numbers and email addresses enhances the accessibility of medical consultations, but can add to the burden of physicians' routine clinical practice and affect their free time. The objective was to assess the attitudes of physicians to providing their telephone number or email address to patients. Primary care physicians in the southern region of Israel completed a structured questionnaire that related to the study objective. The study population included 120 primary care physicians with a mean age of 41.2 ± 8.5, 88 of them women (73.3%). Physicians preferred to provide their cell phone number rather than their email address (P = 0.0007). They preferred to answer their cell phones only during the daytime and at predetermined times, but would answer email most hours of the day, including weekends and holidays (P = 0.001). More physicians (79.7%) would have preferred allotted time for email communication than allotted time for cell phone communication (50%). However, they felt that email communication was more likely to lead to miscommunication than telephone calls (P = 0.0001). There were no differences between male and female physicians on the provision of cell phone numbers or email addresses to patients. Older physicians were more prepared to provide cell phone numbers that younger ones (P = 0.039). The attitude of participating physicians was to provide their cell phone number or email address to some of their patients, but most of them preferred to give out their cell phone number.

  12. Frequency specificity in intercellular communication. Influence of patterns of periodic signaling on target cell responsiveness.

    PubMed Central

    Li, Y; Goldbeter, A

    1989-01-01

    Cells often communicate by means of periodic signals, as exemplified by a large number of hormones and by the aggregation of Dictyostelium discoideum amebas in response to periodic pulses of cyclic AMP. Periodic signaling allows bypassing the phenomenon of desensitization brought about by constant stimuli. To gain further insight into the efficiency of pulsatile signaling, we analyze the effect of periodic stimulation on the dynamic behavior of a receptor system capable of desensitization toward its ligand. We first show that the receptor system adapts to square-wave stimuli, i.e., the response eventually reaches a steady, periodic pattern after a transient phase. By analyzing the dependence of the response on the characteristics of the square-wave stimulation, we show that there exist a waveform and a period of that signal that result in maximum responsiveness of the target system. Similar results are obtained when the signal takes the more realistic form of a periodically repeated stimulation followed by exponential decay of the ligand. The results are discussed with respect to the role of pulsatile secretion of gonadotropin-releasing hormone (GnRH) by the hypothalamus and of periodic signaling by cyclic AMP pulses in Dictyostelium. The analysis accounts for the existence, in both cases, of an optimal frequency and waveform of the periodic stimulus that correspond to maximum target cell responsiveness. PMID:2930817

  13. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis—Masters of Survival and Clonality?

    PubMed Central

    Pleyer, Lisa; Valent, Peter; Greil, Richard

    2016-01-01

    Myelodysplastic syndromes (MDS) are malignant hematopoietic stem cell disorders that have the capacity to progress to acute myeloid leukemia (AML). Accumulating evidence suggests that the altered bone marrow (BM) microenvironment in general, and in particular the components of the stem cell niche, including mesenchymal stem cells (MSCs) and their progeny, play a pivotal role in the evolution and propagation of MDS. We here present an overview of the role of MSCs in the pathogenesis of MDS, with emphasis on cellular interactions in the BM microenvironment and related stem cell niche concepts. MSCs have potent immunomodulatory capacities and communicate with diverse immune cells, but also interact with various other cellular components of the microenvironment as well as with normal and leukemic stem and progenitor cells. Moreover, compared to normal MSCs, MSCs in MDS and AML often exhibit altered gene expression profiles, an aberrant phenotype, and abnormal functional properties. These alterations supposedly contribute to the “reprogramming” of the stem cell niche into a disease-permissive microenvironment where an altered immune system, abnormal stem cell niche interactions, and an impaired growth control lead to disease progression. The current article also reviews molecular targets that play a role in such cellular interactions and possibilities to interfere with abnormal stem cell niche interactions by using specific targeted drugs. PMID:27355944

  14. Multiscale microenvironmental perturbation of pluripotent stem cell fate and self-organization

    NASA Astrophysics Data System (ADS)

    Tabata, Yoji; Lutolf, Matthias P.

    2017-03-01

    The combination of microfluidics with engineered three-dimensional (3D) matrices can bring new insights into the fate regulation of stem cells and their self-organization into organoids. Although there has been progress in 3D stem cell culturing, most existing in vitro methodologies do not allow for mimicking of the spatiotemporal heterogeneity of stimuli that drive morphogenetic processes in vivo. To address this, we present a perfusion-free microchip concept for the in vitro 3D perturbation of stem cell fate. Stem cells are encapsulated in a hydrogel compartment that is flanked by open reservoirs for the diffusion-driven generation of biomolecule gradients. Juxtaposing additional compartments bearing supportive cells enables investigating the influence of long range cell-cell communication. We explore the utility of the microchips in manipulating early fate choices and self-organizing characteristics of 3D-cultured mouse embryonic stem cells (mESCs) under neural differentiation conditions and exposure to gradients of leukemia inhibitory factor (LIF). mESCs respond to LIF gradients in a spatially dependent manner. At higher LIF concentrations, multicellular colonies maintain pluripotency in contrast, at lower concentrations, mESCs develop into apicobasally polarized epithelial cysts. This versatile system can help to systematically explore the role of multifactorial microenvironments in promoting self-patterning of various stem cell types.

  15. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis-Masters of Survival and Clonality?

    PubMed

    Pleyer, Lisa; Valent, Peter; Greil, Richard

    2016-06-27

    Myelodysplastic syndromes (MDS) are malignant hematopoietic stem cell disorders that have the capacity to progress to acute myeloid leukemia (AML). Accumulating evidence suggests that the altered bone marrow (BM) microenvironment in general, and in particular the components of the stem cell niche, including mesenchymal stem cells (MSCs) and their progeny, play a pivotal role in the evolution and propagation of MDS. We here present an overview of the role of MSCs in the pathogenesis of MDS, with emphasis on cellular interactions in the BM microenvironment and related stem cell niche concepts. MSCs have potent immunomodulatory capacities and communicate with diverse immune cells, but also interact with various other cellular components of the microenvironment as well as with normal and leukemic stem and progenitor cells. Moreover, compared to normal MSCs, MSCs in MDS and AML often exhibit altered gene expression profiles, an aberrant phenotype, and abnormal functional properties. These alterations supposedly contribute to the "reprogramming" of the stem cell niche into a disease-permissive microenvironment where an altered immune system, abnormal stem cell niche interactions, and an impaired growth control lead to disease progression. The current article also reviews molecular targets that play a role in such cellular interactions and possibilities to interfere with abnormal stem cell niche interactions by using specific targeted drugs.

  16. Gap junctional intercellular communication is required to maintain embryonic stem cells in a non-differentiated and proliferative state.

    PubMed

    Todorova, Mariana G; Soria, Bernat; Quesada, Ivan

    2008-02-01

    Pluripotent embryonic stem (ES) cells are capable of maintaining a self-renewal state and have the potential to differentiate into derivatives of all three embryonic germ layers. Despite their importance in cell therapy and developmental biology, the mechanisms whereby ES cells remain in a proliferative and pluripotent state are still not fully understood. Here we establish a critical role of gap junctional intercellular communication (GJIC) and connexin43 (Cx43) in both processes. Pharmacological blockers of GJIC and Cx43 down-regulation by small interfering RNA (siRNA) caused a profound inhibitory effect on GJIC, as evidenced by experiments of fluorescence recovery after photobleaching. This deficient intercellular communication in ES cells induced a loss of their pluripotent state, which was manifested in morphological changes, a decrease in alkaline phosphatase activity, Oct-3/4 and Nanog expression, as well as an up-regulation of several differentiation markers. A decrease in the proliferation rate was also detected. Under these conditions, the formation of embryoid bodies from mouse ES cells was impaired, although this inhibition was reversible upon restoration of GJIC. Our findings define a major function of GJIC in the regulation of self-renewal and maintenance of pluripotency in ES cells. (c) 2007 Wiley-Liss, Inc.

  17. NF-κB dynamics show digital activation and analog information processing in cells

    NASA Astrophysics Data System (ADS)

    Tay, Savas; Hughey, Jake; Lee, Timothy; Lipniacki, Tomasz; Covert, Markus; Quake, Stephen

    2010-03-01

    Cells operate in ever changing environments using extraordinary communication capabilities. Cell-to-cell communication is mediated by signaling molecules that form spatiotemporal concentration gradients, which requires cells to respond to a wide range of signal intensities. We used high-throughput microfluidic cell culture, quantitative gene expression analysis and mathematical modeling to investigate how single mammalian cells respond to different concentrations of the signaling molecule TNF-α via the transcription factor NF-κB. We measured NF-κB activity in thousands of live cells under TNF-α doses covering four orders of magnitude. In contrast to population studies, the activation is a stochastic, switch-like process at the single cell level with fewer cells responding at lower doses. The activated cells respond fully and express early genes independent of the TNF-α concentration, while only high dose stimulation results in the expression of late genes. Cells also encode a set of analog parameters such as the NF-κB peak intensity, response time and number of oscillations to modulate the outcome. We developed a stochastic model that reproduces both the digital and analog dynamics as well as the gene expression profiles at all measured conditions, constituting a broadly applicable model for TNF-α induced NF-κB signaling in various types of cells.

  18. Neuropeptide AF Induces Piecemeal Degranulation in Murine Mucosal Mast Cells: A New Mediator in Neuro-Immune Communication in the Intestinal Lamina Propria?

    PubMed

    Abdellah, Nada; van Remoortel, Samuel; Mohey-Elsaeed, Omnia; Mustafa, Mohamed-Nabil; Ahmed, Yasser A; Timmermans, Jean-Pierre; Buckinx, Roeland

    2018-06-01

    Neuropeptides AF (NPAF), FF (NPFF) and SF (NPSF) are RFamide neuropeptides known to be widely expressed in the mammalian central nervous system, where they fulfill a wide range of functions with pain modulation being the most prominent one. Recent evidence indicates that RFamides act as mediators in mast cell-sensory nerve communications related to allergic disease. Previous work by our group has shown that the expression levels of some members of the Mas-related gene receptor (Mrgpr) family in both enteric neurons and mucosal mast cells change during intestinal inflammation. The Mrgpr subtypes C11 and A4 can be activated by NPAF, while A1 and C11 are triggered by NPFF. The aim of the present study was to investigate whether RFamides of the NPFF group are expressed in the gastrointestinal tract and to identify possible targets and receptors that might be involved in RFamide-associated mast cell modulation. To this end, the expression and distribution patterns of NPFF/AF receptors and the NPFF precursor protein were determined in bone marrow-derived mucosal mast cells (BMMCs) by immunocytochemistry and (RT-) PCR. BMMCs were found to express MrgprA4 and A1, and functional analysis of the effects of NPAF by means of a β-hexosaminidase assay, mMCP-1 ELISA, electron microscopy and live cell calcium imaging revealed a piecemeal degranulation induced by NPAF. However, knock-out of MrgprA4 and A1 did not reduce the effect of NPAF, indicating that the BMMC response to NPAF was receptor independent. ProNPFF was expressed in neurons and BMMCs, suggesting that both cell types are potential sources of NPAF in situ. Our results show that the RFamide NPAF can be considered as a novel modulator of BMMC activity in the neuro-immune communication in the gastrointestinal tract, although the exact signaling pathway remains to be elucidated. Anat Rec, 00:000-000, 2018. © 2018 Wiley Periodicals, Inc. Anat Rec, 301:1103-1114, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  19. Engineering Cellular Metabolism.

    PubMed

    Nielsen, Jens; Keasling, Jay D

    2016-03-10

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds, and pharmaceuticals. However, making cells into efficient factories is challenging because cells have evolved robust metabolic networks with hard-wired, tightly regulated lines of communication between molecular pathways that resist efforts to divert resources. Here, we will review the current status and challenges of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Nanostructured Solar Cells.

    PubMed

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-08-09

    We are glad to announce the Special Issue "Nanostructured Solar Cells", published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  1. Large basolateral processes on type II hair cells comprise a novel processing unit in mammalian vestibular organs

    PubMed Central

    Pujol, Rémy; Pickett, Sarah B.; Nguyen, Tot Bui; Stone, Jennifer S.

    2014-01-01

    Sensory receptors in the vestibular system (hair cells) encode head movements and drive central motor reflexes that control gaze, body movements, and body orientation. In mammals, type I and II vestibular hair cells are defined by their shape, contacts with vestibular afferent nerves, and membrane conductance. Here, we describe unique morphological features of type II vestibular hair cells in mature rodents (mice and gerbils) and bats. These features are cytoplasmic processes that extend laterally from the hair cell’s base and project under type I hair cells. Closer analysis of adult mouse utricles demonstrated that the basolateral processes of type II hair cells range in shape, size, and branching, with the longest processes extending 3–4 hair cell widths. The hair cell basolateral processes synapse upon vestibular afferent nerves and receive inputs from vestibular efferent nerves. Further, some basolateral processes make physical contacts with the processes of other type II hair cells, forming some sort of network amongst type II hair cells. Basolateral processes are rare in perinatal mice and do not attain their mature form until 3–6 weeks of age. These observations demonstrate that basolateral processes are significant signaling regions of type II vestibular hair cells, and they suggest type II hair cells may directly communicate with each other, which has not been described in vertebrates. PMID:24825750

  2. Enhanced cryopreservation of MSCs in microfluidic bioreactor by regulated shear flow

    PubMed Central

    Bissoyi, Akalabya; Bit, Arindam; Singh, Bikesh Kumar; Singh, Abhishek Kumar; Patra, Pradeep Kumar

    2016-01-01

    Cell-matrix systems can be stored for longer period of time by means of cryopreservation. Cell-matrix and cell-cell interaction has been found to be critical in a number of basic biological processes. Tissue structure maintenance, cell secretary activity, cellular migration, and cell-cell communication all exist because of the presence of cell interactions. This complex and co-ordinated interaction between cellular constituents, extracellular matrix and adjacent cells has been identified as a significant contributor in the overall co-ordination of tissue. The prime objective of this investigation is to evaluate the effects of shear-stress and cell-substrate interaction in successful recovery of adherent human mesenchymal-stem-cells (hMSCs). A customized microfluidic bioreactor has been used for the purpose. We have measured the changes in focal-point-adhesion (FPAs) by changing induced shear stress inside the bioreactor. The findings indicate that with increase in shear stress, FPAs increases between substrate and MSCs. Further, experimental results show that increased FPAs (4e-3 μbar) enhances the cellular survivability of adherent MSCs. Probably, for the first time involvement of focal point interaction in the outcome of cryopreservation of MSCs has been clarified, and it proved a potentially new approach for modification of cryopreservation protocol by up-regulating focal point of cells to improve its clinical application. PMID:27748463

  3. Bitter triggers acetylcholine release from polymodal urethral chemosensory cells and bladder reflexes.

    PubMed

    Deckmann, Klaus; Filipski, Katharina; Krasteva-Christ, Gabriela; Fronius, Martin; Althaus, Mike; Rafiq, Amir; Papadakis, Tamara; Renno, Liane; Jurastow, Innokentij; Wessels, Lars; Wolff, Miriam; Schütz, Burkhard; Weihe, Eberhard; Chubanov, Vladimir; Gudermann, Thomas; Klein, Jochen; Bschleipfer, Thomas; Kummer, Wolfgang

    2014-06-03

    Chemosensory cells in the mucosal surface of the respiratory tract ("brush cells") use the canonical taste transduction cascade to detect potentially hazardous content and trigger local protective and aversive respiratory reflexes on stimulation. So far, the urogenital tract has been considered to lack this cell type. Here we report the presence of a previously unidentified cholinergic, polymodal chemosensory cell in the mammalian urethra, the potential portal of entry for bacteria and harmful substances into the urogenital system, but not in further centrally located parts of the urinary tract, such as the bladder, ureter, and renal pelvis. Urethral brush cells express bitter and umami taste receptors and downstream components of the taste transduction cascade; respond to stimulation with bitter (denatonium), umami (monosodium glutamate), and uropathogenic Escherichia coli; and release acetylcholine to communicate with other cells. They are approached by sensory nerve fibers expressing nicotinic acetylcholine receptors, and intraurethral application of denatonium reflexively increases activity of the bladder detrusor muscle in anesthetized rats. We propose a concept of urinary bladder control involving a previously unidentified cholinergic chemosensory cell monitoring the chemical composition of the urethral luminal microenvironment for potential hazardous content.

  4. Using pre-distorted PAM-4 signal and parallel resistance circuit to enhance the passive solar cell based visible light communication

    NASA Astrophysics Data System (ADS)

    Wang, Hao-Yu; Wu, Jhao-Ting; Chow, Chi-Wai; Liu, Yang; Yeh, Chien-Hung; Liao, Xin-Lan; Lin, Kun-Hsien; Wu, Wei-Liang; Chen, Yi-Yuan

    2018-01-01

    Using solar cell (or photovoltaic cell) for visible light communication (VLC) is attractive. Apart from acting as a VLC receiver (Rx), the solar cell can provide energy harvesting. This can be used in self-powered smart devices, particularly in the emerging ;Internet of Things (IoT); networks. Here, we propose and demonstrate for the first time using pre-distortion pulse-amplitude-modulation (PAM)-4 signal and parallel resistance circuit to enhance the transmission performance of solar cell Rx based VLC. Pre-distortion is a simple non-adaptive equalization technique that can significantly mitigate the slow charging and discharging of the solar cell. The equivalent circuit model of the solar cell and the operation of using parallel resistance to increase the bandwidth of the solar cell are discussed. By using the proposed schemes, the experimental results show that the data rate of the solar cell Rx based VLC can increase from 20 kbit/s to 1.25 Mbit/s (about 60 times) with the bit error-rate (BER) satisfying the 7% forward error correction (FEC) limit.

  5. Accumulation of specific sterol precursors targets a MAP kinase cascade mediating cell-cell recognition and fusion.

    PubMed

    Weichert, Martin; Lichius, Alexander; Priegnitz, Bert-Ewald; Brandt, Ulrike; Gottschalk, Johannes; Nawrath, Thorben; Groenhagen, Ulrike; Read, Nick D; Schulz, Stefan; Fleißner, André

    2016-10-18

    Sterols are vital components of eukaryotic cell membranes. Defects in sterol biosynthesis, which result in the accumulation of precursor molecules, are commonly associated with cellular disorders and disease. However, the effects of these sterol precursors on the metabolism, signaling, and behavior of cells are only poorly understood. In this study, we show that the accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain specifically disrupts cell-cell communication and fusion in the fungus Neurospora crassa Genetically identical germinating spores of this fungus undergo cell-cell fusion, thereby forming a highly interconnected supracellular network during colony initiation. Before fusion, the cells use an unusual signaling mechanism that involves the coordinated and alternating switching between signal sending and receiving states of the two fusion partners. Accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain disrupts this coordinated cell-cell communication and suppresses cell fusion. These specific sterol precursors target a single ERK-like mitogen-activated protein (MAP) kinase (MAK-1)-signaling cascade, whereas a second MAP kinase pathway (MAK-2), which is also involved in cell fusion, is unaffected. These observations indicate that a minor specific change in sterol structure can exert a strong detrimental effect on a key signaling pathway of the cell, resulting in the absence of cell fusion.

  6. Formic acid fuel cells and catalysts

    DOEpatents

    Masel, Richard I.; Larsen, Robert; Ha, Su Yun

    2010-06-22

    An exemplary fuel cell of the invention includes a formic acid fuel solution in communication with an anode (12, 134), an oxidizer in communication with a cathode (16, 135) electrically linked to the anode, and an anode catalyst that includes Pd. An exemplary formic acid fuel cell membrane electrode assembly (130) includes a proton-conducting membrane (131) having opposing first (132) and second surfaces (133), a cathode catalyst on the second membrane surface, and an anode catalyst including Pd on the first surface.

  7. Extracellular Vesicles in Physiology, Pathology, and Therapy of the Immune and Central Nervous System, with Focus on Extracellular Vesicles Derived from Mesenchymal Stem Cells as Therapeutic Tools

    PubMed Central

    Koniusz, Sylwia; Andrzejewska, Anna; Muraca, Maurizio; Srivastava, Amit K.; Janowski, Miroslaw; Lukomska, Barbara

    2016-01-01

    Extracellular vesicles (EVs) are membrane-surrounded structures released by most cell types. They are characterized by a specific set of proteins, lipids and nucleic acids. EVs have been recognized as potent vehicles of intercellular communication to transmit biological signals between cells. In addition, pathophysiological roles of EVs in conditions like cancer, infectious diseases and neurodegenerative disorders are well established. In recent years focus has been shifted on therapeutic use of stem cell derived-EVs. Use of stem cell derived-EVs present distinct advantage over the whole stem cells as EVs do not replicate and after intravenous administration, they are less likely to trap inside the lungs. From the therapeutic perspective, the most promising cellular sources of EVs are mesenchymal stem cells (MSCs), which are easy to obtain and maintain. Therapeutic activity of MSCs has been shown in numerous animal models and the beneficial paracrine effect of MSCs may be mediated by EVs. The various components of MSC derived-EVs such as proteins, lipids, and RNA might play a specific therapeutic role. In this review, we characterize the role of EVs in immune and central nervous system (CNS); present evidences for defective signaling of these vesicles in neurodegeneration and therapeutic role of EVs in CNS. PMID:27199663

  8. Simulation of Cell Patterning Triggered by Cell Death and Differential Adhesion in Drosophila Wing.

    PubMed

    Nagai, Tatsuzo; Honda, Hisao; Takemura, Masahiko

    2018-02-27

    The Drosophila wing exhibits a well-ordered cell pattern, especially along the posterior margin, where hair cells are arranged in a zigzag pattern in the lateral view. Based on an experimental result observed during metamorphosis of Drosophila, we considered that a pattern of initial cells autonomously develops to the zigzag pattern through cell differentiation, intercellular communication, and cell death (apoptosis) and performed computer simulations of a cell-based model of vertex dynamics for tissues. The model describes the epithelial tissue as a monolayer cell sheet of polyhedral cells. Their vertices move according to equations of motion, minimizing the sum total of the interfacial and elastic energies of cells. The interfacial energy densities between cells are introduced consistently with an ideal zigzag cell pattern, extracted from the experimental result. The apoptosis of cells is modeled by gradually reducing their equilibrium volume to zero and by assuming that the hair cells prohibit neighboring cells from undergoing apoptosis. Based on experimental observations, we also assumed wing elongation along the proximal-distal axis. Starting with an initial cell pattern similar to the micrograph experimentally obtained just before apoptosis, we carried out the simulations according to the model mentioned above and successfully reproduced the ideal zigzag cell pattern. This elucidates a physical mechanism of patterning triggered by cell apoptosis theoretically and exemplifies, to our knowledge, a new framework to study apoptosis-induced patterning. We conclude that the zigzag cell pattern is formed by an autonomous communicative process among the participant cells. Copyright © 2018 Biophysical Society. All rights reserved.

  9. EDITORIAL: Special section on signal transduction Special section on signal transduction

    NASA Astrophysics Data System (ADS)

    Shvartsman, Stanislav

    2012-08-01

    This special section of Physical Biology focuses on multiple aspects of signal transduction, broadly defined as the study of the mechanisms by which cells communicate with their environment. Mechanisms of cell communication involve detection of incoming signals, which can be chemical, mechanical or electromagnetic, relaying these signals to intracellular processes, such as cytoskeletal networks or gene expression systems, and, ultimately, converting these signals to responses such as cell differentiation or death. Given the multiscale nature of signal transduction systems, they must be studied at multiple levels, from the identities and structures of molecules comprising signal detection and interpretation networks, to the systems-level properties of these networks. The 11 papers in this special section illustrate some of the most exciting aspects of signal transduction research. The first two papers, by Marie-Anne Félix [1] and by Efrat Oron and Natalia Ivanova [2], focus on cell-cell interactions in developing tissues, using vulval patterning in worm and cell fate specification in mammalian embryos as prime examples of emergent cell behaviors. Next come two papers from the groups of Julio Saez-Rodriguez [3] and Kevin Janes [4]. These papers discuss how the causal relationships between multiple components of signaling systems can be inferred using multivariable statistical analysis of empirical data. An authoritative review by Zarnitsyna and Zhu [5] presents a detailed discussion of the sequence of signaling events involved in T-cell triggering. Once the structure and components of the signaling systems are determined, they can be modeled using approaches that have been successful in other physical sciences. As two examples of such approaches, reviews by Rubinstein [6] and Kholodenko [7], present reaction-diffusion models of cell polarization and thermodynamics-based models of gene regulation. An important class of models takes the form of enzymatic networks, where a single molecule can participate in multiple types of interactions. Mathematical analysis of these models is discussed in the papers by Del Vecchio [8], Seaton and Krishnan [9], and Hatzimanikatis and colleagues [10]. Finally, all signaling systems are information processing devices. While this point is broadly accepted, there have been only a few attempts to apply information theory to experimental signaling systems. A review by Andre Levchenko and colleagues [11] provides a very clear introduction to information theory and its potential applications to signal transduction in cellular systems. References [1] Félix M-A 2012 Phys. Biol. 9 045001 [2] Oron E and Ivanova N 2012 Phys. Biol. 9 045002 [3] MacNamara A et al 2012 Phys. Biol. 9 045003 [4] Jensen K J and Janes K A 2012 Phys. Biol. 9 045004 [5] Zarnitsyna V and Zhu C 2012 Phys. Biol. 9 045005 [6] Rubinstein B et al 2012 Phys. Biol. 9 045006 [7] Frank T D et al 2012 Phys. Biol. 9 045007 [8] Del Vecchio D et al 2012 Phys. Biol. 9 045008 [9] Seaton D D and Krishnan J 2012 Phys. Biol. 9 045009 [10] Radivojevic A et al 2012 Phys. Biol. 9 045010 [11] Rhee A et al 2012 Phys. Biol. 9 045011

  10. Immune–neural connections: how the immune system’s response to infectious agents influences behavior

    PubMed Central

    McCusker, Robert H.; Kelley, Keith W.

    2013-01-01

    Summary Humans and animals use the classical five senses of sight, sound, touch, smell and taste to monitor their environment. The very survival of feral animals depends on these sensory perception systems, which is a central theme in scholarly research on comparative aspects of anatomy and physiology. But how do all of us sense and respond to an infection? We cannot see, hear, feel, smell or taste bacterial and viral pathogens, but humans and animals alike are fully aware of symptoms of sickness that are caused by these microbes. Pain, fatigue, altered sleep pattern, anorexia and fever are common symptoms in both sick animals and humans. Many of these physiological changes represent adaptive responses that are considered to promote animal survival, and this constellation of events results in sickness behavior. Infectious agents display a variety of pathogen-associated molecular patterns (PAMPs) that are recognized by pattern recognition receptors (PRRs). These PRR are expressed on both the surface [e.g. Toll-like receptor (TLR)-4] and in the cytoplasm [e.g. nucleotide-binding oligomerization domain (Nod)-like receptors] of cells of the innate immune system, primarily macrophages and dendritic cells. These cells initiate and propagate an inflammatory response by stimulating the synthesis and release of a variety of cytokines. Once an infection has occurred in the periphery, both cytokines and bacterial toxins deliver this information to the brain using both humoral and neuronal routes of communication. For example, binding of PRR can lead to activation of the afferent vagus nerve, which communicates neuronal signals via the lower brain stem (nucleus tractus solitarius) to higher brain centers such as the hypothalamus and amygdala. Blood-borne cytokines initiate a cytokine response from vascular endothelial cells that form the blood–brain barrier (BBB). Cytokines can also reach the brain directly by leakage through the BBB via circumventricular organs or by being synthesized within the brain, thus forming a mirror image of the cytokine milieu in the periphery. Although all cells within the brain are capable of initiating cytokine secretion, microglia have an early response to incoming neuronal and humoral stimuli. Inhibition of proinflammatory cytokines that are induced following bacterial infection blocks the appearance of sickness behaviors. Collectively, these data are consistent with the notion that the immune system communicates with the brain to regulate behavior in a way that is consistent with animal survival. PMID:23225871

  11. High acceptability for cell phone text messages to improve communication of laboratory results with HIV-infected patients in rural Uganda: a cross-sectional survey study.

    PubMed

    Siedner, Mark J; Haberer, Jessica E; Bwana, Mwebesa Bosco; Ware, Norma C; Bangsberg, David R

    2012-06-21

    Patient-provider communication is a major challenge in resource-limited settings with large catchment areas. Though mobile phone usership increased 20-fold in Africa over the past decade, little is known about acceptability of, perceptions about disclosure and confidentiality, and preferences for cell phone communication of health information in the region. We performed structured interviews of fifty patients at the Immune Suppression Syndrome clinic in Mbarara, Uganda to assess four domains of health-related communication: a) cell phone use practices and literacy, b) preferences for laboratory results communication, c) privacy and confidentiality, and d) acceptability of and preferences for text messaging to notify patients of abnormal test results. Participants had a median of 38 years, were 56% female, and were residents of a large catchment area throughout southwestern Uganda. All participants expressed interest in a service to receive information about laboratory results by cell phone text message, stating benefits of increased awareness of their health and decreased transportation costs. Ninety percent reported that they would not be concerned for unintended disclosure. A minority additionally expressed concerns about difficulty interpreting messages, discouragement upon learning bad news, and technical issues. Though all respondents expressed interest in password protection of messages, there was also a strong desire for direct messages to limit misinterpretation of information. Cell phone text messaging for communication of abnormal laboratory results is highly acceptable in this cohort of HIV-infected patients in rural Uganda. The feasibility of text messaging, including an optimal balance between privacy and comprehension, should be further studied.

  12. Inhibition of HIV Replication by Cyclic and Hairpin PNAs Targeting the HIV-1 TAR RNA Loop

    PubMed Central

    Upert, Gregory; Di Giorgio, Audrey; Upadhyay, Alok; Manvar, Dinesh; Pandey, Nootan; Pandey, Virendra N.; Patino, Nadia

    2012-01-01

    Human immunodeficiency virus-1 (HIV-1) replication and gene expression entails specific interaction of the viral protein Tat with its transactivation responsive element (TAR), to form a highly stable stem-bulge-loop structure. Previously, we described triphenylphosphonium (TPP) cation-based vectors that efficiently deliver nucleotide analogs (PNAs) into the cytoplasm of cells. In particular, we showed that the TPP conjugate of a linear 16-mer PNA targeting the apical stem-loop region of TAR impedes Tat-mediated transactivation of the HIV-1 LTR in vitro and also in cell culture systems. In this communication, we conjugated TPP to cyclic and hairpin PNAs targeting the loop region of HIV-1 TAR and evaluated their antiviral efficacy in a cell culture system. We found that TPP-cyclic PNAs containing only 8 residues, showed higher antiviral potency compared to hairpin PNAs of 12 or 16 residues. We further noted that the TPP-conjugates of the 8-mer cyclic PNA as well as the 16-mer linear PNA displayed similar antiviral efficacy. However, cyclic PNAs were shown to be highly specific to their target sequences. This communication emphasizes on the importance of small constrained cyclic PNAs over both linear and hairpin structures for targeting biologically relevant RNA hairpins. PMID:23029603

  13. Intercellular diffusion of a fluorescent sucrose analog via the septal junctions in a filamentous cyanobacterium.

    PubMed

    Nürnberg, Dennis J; Mariscal, Vicente; Bornikoel, Jan; Nieves-Morión, Mercedes; Krauß, Norbert; Herrero, Antonia; Maldener, Iris; Flores, Enrique; Mullineaux, Conrad W

    2015-03-17

    Many filamentous cyanobacteria produce specialized nitrogen-fixing cells called heterocysts, which are located at semiregular intervals along the filament with about 10 to 20 photosynthetic vegetative cells in between. Nitrogen fixation in these complex multicellular bacteria depends on metabolite exchange between the two cell types, with the heterocysts supplying combined-nitrogen compounds but dependent on the vegetative cells for photosynthetically produced carbon compounds. Here, we used a fluorescent tracer to probe intercellular metabolite exchange in the filamentous heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. We show that esculin, a fluorescent sucrose analog, is incorporated by a sucrose import system into the cytoplasm of Anabaena cells. The cytoplasmic esculin is rapidly and reversibly exchanged across vegetative-vegetative and vegetative-heterocyst cell junctions. Our measurements reveal the kinetics of esculin exchange and also show that intercellular metabolic communication is lost in a significant fraction of older heterocysts. SepJ, FraC, and FraD are proteins located at the intercellular septa and are suggested to form structures analogous to gap junctions. We show that a ΔsepJ ΔfraC ΔfraD triple mutant shows an altered septum structure with thinner septa but a denser peptidoglycan layer. Intercellular diffusion of esculin and fluorescein derivatives is impaired in this mutant, which also shows a greatly reduced frequency of nanopores in the intercellular septal cross walls. These findings suggest that FraC, FraD, and SepJ are important for the formation of junctional structures that constitute the major pathway for feeding heterocysts with sucrose. Anabaena and its relatives are filamentous cyanobacteria that exhibit a sophisticated form of prokaryotic multicellularity, with the formation of differentiated cell types, including normal photosynthetic cells and specialized nitrogen-fixing cells called heterocysts. The question of how heterocysts communicate and exchange metabolites with other cells in the filament is key to understanding this form of bacterial multicellularity. Here we provide the first information on the intercellular exchange of a physiologically important molecule, sucrose. We show that a fluorescent sucrose analog can be imported into the Anabaena cytoplasm by a sucrose import system. Once in the cytoplasm, it is rapidly and reversibly exchanged among all of the cells in the filament by diffusion across the septal junctions. Photosynthetically produced sucrose likely follows the same route from cytoplasm to cytoplasm. We identify some of the septal proteins involved in sucrose exchange, and our results indicate that these proteins form structures functionally analogous to metazoan gap junctions. Copyright © 2015 Nürnberg et al.

  14. Adaptive Optics: Arroyo Simulation Tool and Deformable Mirror Actuation Using Golay Cells

    NASA Technical Reports Server (NTRS)

    Lint, Adam S.

    2005-01-01

    The Arroyo C++ libraries, written by Caltech post-doc student Matthew Britton, have the ability to simulate optical systems and atmospheric signal interference. This program was chosen for use in an end-to-end simulation model of a laser communication system because it is freely distributed and has the ability to be controlled by a remote system or "smart agent." Proposed operation of this program by a smart agent has been demonstrated, and the results show it to be a suitable simulation tool. Deformable mirrors, as a part of modern adaptive optics systems, may contain thousands of tiny, independently controlled actuators used to modify the shape of the mirror. Each actuator is connected to two wires, creating a cumbersome and expensive device. Recently, an alternative actuation method that uses gas-filled tubes known as Golay cells has been explored. Golay cells, operated by infrared lasers instead of electricity, would replace the actuator system thereby creating a more compact deformable mirror. The operation of Golay cells and their ability to move a deformable mirror in excess of the required 20 microns has been demonstrated. Experimentation has shown them to be extremely sensitive to pressure and temperature, making them ideal for use in a controlled environment.

  15. Overview of battery usage in NASA/GSFC LEO and GEO missions

    NASA Technical Reports Server (NTRS)

    Yi, Thomas

    1989-01-01

    In July, 1989, Cosmic Background Explorer (COBE) will be launched from a Delta rocket to study the big bang theory. The COBE, which is in a LEO/Polar orbit, will have two 20 Ah NiCd batteries, and 18 cells per battery, made by McDonnell Douglas Company. In December, 1989, National Oceanic and Atmospheric Administration (NOAA-D) will be launched from an Atlas rocket for weather observation purposes. NOAA-D, which is in a LEO/Polar morning orbit, will have two 26.5 Ah NiCd batteries, and 17 cells per battery, made by Ge-Astro East Windor. NOAA-I, which is scheduled for May, 1991 launch in a LEO/Polar afternoon orbit, will have three 26.5 Ah NiCd batteries, 17 cells per battery, made by GE-Astro East Windor. In April, 1990, Gamma Ray Observatory (GRO) will be launched from STS37 to study the gamma ray radiation phenomenon. GRO, which is in a LEO orbit, will have two modular power systems (MPS) made by McDonnell Douglas, each MPS consisting of three 50 Ah NiCd batteries, 22 cells per battery. In July, 1990, Geostationary Operational Environmental Satellite (GOES-I) will be launched from an Atlas I rocket for weather observation purposes. GOES-I, which is in a GEO orbit, will have two 12 Ah NiCd batteries, 28 cells per battery, made by Ford Aerospace and Communications Company. In December, 1990, Tracking and Data Relay Satellite (TDRS-E) will be launched from STS43 for communication purposes. TDRS-E, which is in a GEO orbit, will have three 40 Ah NiCd batteries, 24 cells per battery, made by TRW. In August, 1991, Extreme Ultraviolet Explorer (EUVE) will be launched from a Delta rocket. EUVE, which is in a LEO orbit, will have one modular power system (MPS) made by McDonnell Douglas. In December, 1991, Upper Atmosphere Research Satellite (UARS) will be launched from STS50 to study the Earth's ozone layer and other environmental concerns. UARS, which is in a 56 deg inclination LEO orbit, will have one modular power systems (MPS) made by McDonnell Douglas.

  16. Macroglial cells of the teleost central nervous system: a survey of the main types.

    PubMed

    Cuoghi, Barbara; Mola, Lucrezia

    2009-12-01

    Following our previous review of teleost microglia, we focus here on the morphological and histochemical features of the three principal macroglia types in the teleost central nervous system (ependymal cells, astrocyte-like cells/radial glia and oligodendrocytes). This review is concerned with recent literature and not only provides insights into the various individual aspects of the different types of macroglial cells plus a comparison with mammalian glia, but also indicates the several potentials that the neural tissue of teleosts exhibits in neurobiological research. Indeed, some areas of the teleost brain are particularly suitable in terms of the establishment of a "simple" but complete research model (i.e. the visual pathway complex and the supramedullary neuron cluster in puffer fish). The relationships between neurons and glial cells are considered in fish, with the aim of providing an integrated picture of the complex ways in which neurons and glia communicate and collaborate in normal and injured neural tissues. The recent setting up of successful protocols for fish glia and mixed neuron-glia cultures, together with the molecular facilities offered by the knowledge of some teleost genomes, should allow consistent input towards the achievement of this aim.

  17. Thermally assisted acoustofluidic separation of extracellular vesicles from cells

    NASA Astrophysics Data System (ADS)

    Mirtaheri, Elnaz; Dolatmoradi, Ata; Pimentel, Krystine; Bhansali, Shekhar; El-Zahab, Bilal

    2018-02-01

    Extracellular vesicles (EVs) have been gaining increasing attention given their role in communicating information between cells. Composition-based isolation of EVs is particularly of high significance as the proteomic and lipidomic characterization of their cargo could provide valuable clues to the role of EVs in mediating the biology of various conditions. This has, however, proved to be challenging as EVs, despite their abundance, are very small and difficult to be differentiated from the other constituents of host media. In addition, currently available methods like ultracentrifugation and filtration are cumbersome and capable of achieving mostly size-based separations. In this work, we demonstrate the possibility of separating submicron EV-like vesicles from cancer cells using a thermally-assisted acoustophoretic device. In a system composed of MCF-7 breast cancer cells spiked with two different types of same-size vesicles, composition-based isolation of vesicles was shown to be realizable through opposite focusing of the system's components at the node and antinodes of the overlaid ultrasonic standing wave. By proper choice of temperature in the microchannel, we were able to achieve separations with purities exceeding 93%. Furthermore, cells recovered from the channel were shown to be viable after the separation.

  18. Hydra, a fruitful model system for 270 years.

    PubMed

    Galliot, Brigitte

    2012-01-01

    The discovery of Hydra regeneration by Abraham Trembley in 1744 promoted much scientific curiosity thanks to his clever design of experimental strategies away from the natural environment. Since then, this little freshwater cnidarian polyp flourished as a potent and fruitful model system. Here, we review some general biological questions that benefitted from Hydra research, such as the nature of embryogenesis, neurogenesis, induction by organizers, sex reversal, symbiosis, aging, feeding behavior, light regulation, multipotency of somatic stem cells, temperature-induced cell death, neuronal transdifferentiation, to cite only a few. To understand how phenotypes arise, theoricists also chose Hydra to model patterning and morphogenetic events, providing helpful concepts such as reaction-diffusion, positional information, and autocatalysis combined with lateral inhibition. Indeed, throughout these past 270 years, scientists used transplantation and grafting experiments, together with tissue, cell and molecular labelings, as well as biochemical procedures, in order to establish the solid foundations of cell and developmental biology. Nowadays, thanks to transgenic, genomic and proteomic tools, Hydra remains a promising model for these fields, but also for addressing novel questions such as evolutionary mechanisms, maintenance of dynamic homeostasis, regulation of stemness, functions of autophagy, cell death, stress response, innate immunity, bioactive compounds in ecosystems, ecotoxicant sensing and science communication.

  19. Bacterial Outer Membrane Vesicles Induce Plant Immune Responses.

    PubMed

    Bahar, Ofir; Mordukhovich, Gideon; Luu, Dee Dee; Schwessinger, Benjamin; Daudi, Arsalan; Jehle, Anna Kristina; Felix, Georg; Ronald, Pamela C

    2016-05-01

    Gram-negative bacteria continuously pinch off portions of their outer membrane, releasing membrane vesicles. These outer membrane vesicles (OMVs) are involved in multiple processes including cell-to-cell communication, biofilm formation, stress tolerance, horizontal gene transfer, and virulence. OMVs are also known modulators of the mammalian immune response. Despite the well-documented role of OMVs in mammalian-bacterial communication, their interaction with plants is not well studied. To examine whether OMVs of plant pathogens modulate the plant immune response, we purified OMVs from four different plant pathogens and used them to treat Arabidopsis thaliana. OMVs rapidly induced a reactive oxygen species burst, medium alkalinization, and defense gene expression in A. thaliana leaf discs, cell cultures, and seedlings, respectively. Western blot analysis revealed that EF-Tu is present in OMVs and that it serves as an elicitor of the plant immune response in this form. Our results further show that the immune coreceptors BAK1 and SOBIR1 mediate OMV perception and response. Taken together, our results demonstrate that plants can detect and respond to OMV-associated molecules by activation of their immune system, revealing a new facet of plant-bacterial interactions.

  20. Induction of an adaptive response in human blood lymphocytes exposed to radiofrequency fields: influence of the universal mobile telecommunication system (UMTS) signal and the specific absorption rate.

    PubMed

    Zeni, Olga; Sannino, Anna; Romeo, Stefania; Massa, Rita; Sarti, Maurizio; Reddy, Abishek B; Prihoda, Thomas J; Vijayalaxmi; Scarfì, Maria Rosaria

    2012-08-30

    The induction of an adaptive response (AR) was examined in human peripheral blood lymphocytes exposed to non-ionizing radiofrequency fields (RF). Cells from nine healthy human volunteers were stimulated for 24h with phytohaemagglutinin and then exposed for 20h to an adaptive dose (AD) of a 1950MHz RF UMTS (universal mobile telecommunication system) signal used for mobile communications, at different specific absorption rates (SAR) of 1.25, 0.6, 0.3, and 0.15W/kg. This was followed by treatment of the cells at 48h with a challenge dose (CD) of 100ng/ml mitomycin C (MMC). Lymphocytes were collected at the end of the 72h total culture period. The cytokinesis-block method was used to record the frequency of micronuclei (MN) as genotoxicity end-point. When lymphocytes from six donors were pre-exposed to RF at 0.3W/kg SAR and then treated with MMC, these cells showed a significant reduction in the frequency of MN, compared with the cells treated with MMC alone; this result is indicative of induction of AR. The results from our earlier study indicated that lymphocytes that were stimulated for 24h, exposed for 20h to a 900MHz RF GSM (global system for mobile communication) signal at 1.25W/kg SAR and then treated with 100ng/ml MMC, also exhibited AR. These overall data suggest that the induction of AR depends on RF frequency, type of the signal and SAR. Further characterization of RF-induced AR is in progress. Copyright © 2012 Elsevier B.V. All rights reserved.

Top