Science.gov

Sample records for cell-cycle arrest activates

  1. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    SciTech Connect

    Ding, Li; Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang; Tong, Dewen

    2014-03-07

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.

  2. Cell cycle arrest and activation of development in marine invertebrate deuterostomes.

    PubMed

    Costache, Vlad; McDougall, Alex; Dumollard, Rémi

    2014-08-01

    Like most metazoans, eggs of echinoderms and tunicates (marine deuterostomes, there is no data for the cephalochordates) arrest awaiting fertilization due to the activity of the Mos/MEK/MAPK cascade and are released from this cell cycle arrest by sperm-triggered Ca2+ signals. Invertebrate deuterostome eggs display mainly three distinct types of cell cycle arrest before fertilization mediated by potentially different cytostatic factors (CSF): one CSF causes arrest during meiotic metaphase I (MI-CSF in tunicates and some starfishes), another CSF likely causes arrest during meiotic metaphase II (amphioxus), and yet another form of CSF causes arrest to occur after meiotic exit during G1 of the first mitotic cycle (G1-CSF). In tunicates and echinoderms these different CSF activities have been shown to rely on the Mos//MAPK pathway for establishment and on Ca2+ signals for their inactivation. Despite these molecular similarities, release of MI-CSF arrest is caused by APC/C activation (to destroy cyclin B) whereas release from G1-CSF is caused by stimulating S phase and the synthesis of cyclins. Further research is needed to understand how both the Mos//MAPK cascade and Ca2+ achieve these tasks in different marine invertebrate deuterostomes. Another conserved feature of eggs is that protein synthesis of specific mRNAs is necessary to proceed through oocyte maturation and to maintain CSF-induced cell cycle arrest. Then activation of development at fertilization is accompanied by an increase in the rate of protein synthesis but the mechanisms involved are still largely unknown in most of the marine deuterostomes. How the sperm-triggered Ca2+ signals cause an increase in protein synthesis has been studied mainly in sea urchin eggs. Here we review these conserved features of eggs (arrest, activation and protein synthesis) focusing on the non-vertebrate deuterostomes.

  3. Postnatal telomere dysfunction induces cardiomyocyte cell-cycle arrest through p21 activation

    PubMed Central

    Aix, Esther; Gutiérrez-Gutiérrez, Óscar; Sánchez-Ferrer, Carlota; Aguado, Tania

    2016-01-01

    The molecular mechanisms that drive mammalian cardiomyocytes out of the cell cycle soon after birth remain largely unknown. Here, we identify telomere dysfunction as a critical physiological signal for cardiomyocyte cell-cycle arrest. We show that telomerase activity and cardiomyocyte telomere length decrease sharply in wild-type mouse hearts after birth, resulting in cardiomyocytes with dysfunctional telomeres and anaphase bridges and positive for the cell-cycle arrest protein p21. We further show that premature telomere dysfunction pushes cardiomyocytes out of the cell cycle. Cardiomyocytes from telomerase-deficient mice with dysfunctional telomeres (G3 Terc−/−) show precocious development of anaphase-bridge formation, p21 up-regulation, and binucleation. In line with these findings, the cardiomyocyte proliferative response after cardiac injury was lost in G3 Terc−/− newborns but rescued in G3 Terc−/−/p21−/− mice. These results reveal telomere dysfunction as a crucial signal for cardiomyocyte cell-cycle arrest after birth and suggest interventions to augment the regeneration capacity of mammalian hearts. PMID:27241915

  4. AMPK Causes Cell Cycle Arrest in LKB1-deficient Cells via Activation of CAMKK2

    PubMed Central

    Fogarty, Sarah; Ross, Fiona A.; Ciruelos, Diana Vara; Gray, Alexander; Gowans, Graeme J.; Hardie, D. Grahame

    2017-01-01

    The AMP-activated protein kinase (AMPK) is activated by phosphorylation at Thr172, either by the tumor suppressor kinase LKB1 or by an alternate pathway involving the Ca2+/calmodulin-dependent kinase, CAMKK2. Increases in AMP:ATP and ADP:ATP ratios, signifying energy deficit, promote allosteric activation and net Thr172 phosphorylation mediated by LKB1, so that the LKB1-AMPK pathway acts as an energy sensor. Many tumor cells carry loss-of-function mutations in the STK11 gene encoding LKB1, but LKB1 re-expression in these cells causes cell cycle arrest. Therefore, it was investigated as to whether arrest by LKB1 is caused by activation of AMPK or of one of the AMPK-related kinases, which are also dependent on LKB1 but are not activated by CAMKK2. In three LKB1-null tumor cell lines, treatment with the Ca2+ ionophore A23187 caused a G1-arrest that correlated with AMPK activation and Thr172 phosphorylation. In G361 cells, expression of a truncated, CAMKK2 mutant also caused G1-arrest similar to that caused by expression of LKB1, while expression of a dominant negative AMPK mutant, or a double knockout of both AMPK-α subunits, also prevented the cell cycle arrest caused by A23187. These mechanistic findings confirm that AMPK activation triggers cell cycle arrest, and also suggest that the rapid proliferation of LKB1-null tumor cells is due to lack of the restraining influence of AMPK. However, cell cycle arrest can be restored by re-expressing LKB1 or a constitutively active CAMKK2, or by pharmacological agents that increase intracellular Ca2+ and thus activate endogenous CAMKK2. Implications Evidence here reveals that the rapid growth and proliferation of cancer cells lacking the tumor suppressor LKB1 is due to reduced activity of AMPK, and suggests a therapeutic approach by which this block might be circumvented. PMID:27141100

  5. Ibuprofen and apigenin induce apoptosis and cell cycle arrest in activated microglia.

    PubMed

    Elsisi, Nahed S; Darling-Reed, Selina; Lee, Eunsook Y; Oriaku, Ebenezer T; Soliman, Karam F

    2005-02-28

    In case of injury or disease, microglia are recruited to the site of the pathology and become activated as evidenced by morphological changes and expression of pro-inflammatory cytokines. Evidence suggests that microglia proliferate by cell division to create gliosis at the site of pathological conditions such as the amyloid plaques in Alzheimer's disease and the substantia nigra of Parkinson's disease patients. The hyperactivation of microglia contributes to neurotoxicity. In the present study we tested the hypothesis that anti-inflammatory compounds modulate the progression of cell cycle and induce apoptosis of the activated cells. We investigated the effects of ibuprofen (non-steroidal anti-inflammatory drug) and apigenin (a flavonoid with anti-inflammatory and anti-proliferative properties) on the cell cycle of the murine microglial cell line BV-2. The findings indicate that apigenin-induced cell cycle arrest preferentially in the G2/M phase and ibuprofen caused S phase arrest. The binding of annexin V-FITC to the membranes of cells which indicates the apoptotic process were examined, whereas the DNA was stained with propidium iodide. Both apigenin and ibuprofen induced apoptosis significantly in early and late stages. The induction of apoptosis by ibuprofen and apigenin was confirmed using TUNEL assay, revealing that 25 microM apigenin and 250 microM ibuprofen significantly increased apoptosis in BV-2 cells. The results from the present study suggest that anti-inflammatory compounds might inhibit microglial proliferation by modulating the cell cycle progression and apoptosis.

  6. Boletus edulis biologically active biopolymers induce cell cycle arrest in human colon adenocarcinoma cells.

    PubMed

    Lemieszek, Marta Kinga; Cardoso, Claudia; Ferreira Milheiro Nunes, Fernando Hermínio; Ramos Novo Amorim de Barros, Ana Isabel; Marques, Guilhermina; Pożarowski, Piotr; Rzeski, Wojciech

    2013-04-25

    The use of biologically active compounds isolated from edible mushrooms against cancer raises global interest. Anticancer properties are mainly attributed to biopolymers including mainly polysaccharides, polysaccharopeptides, polysaccharide proteins, glycoproteins and proteins. In spite of the fact that Boletus edulis is one of the widely occurring and most consumed edible mushrooms, antitumor biopolymers isolated from it have not been exactly defined and studied so far. The present study is an attempt to extend this knowledge on molecular mechanisms of their anticancer action. The mushroom biopolymers (polysaccharides and glycoproteins) were extracted with hot water and purified by anion-exchange chromatography. The antiproliferative activity in human colon adenocarcinoma cells (LS180) was screened by means of MTT and BrdU assays. At the same time fractions' cytotoxicity was examined on the human colon epithelial cells (CCD 841 CoTr) by means of the LDH assay. Flow cytometry and Western blotting were applied to cell cycle analysis and protein expression involved in anticancer activity of the selected biopolymer fraction. In vitro studies have shown that fractions isolated from Boletus edulis were not toxic against normal colon epithelial cells and in the same concentration range elicited a very prominent antiproliferative effect in colon cancer cells. The best results were obtained in the case of the fraction designated as BE3. The tested compound inhibited cancer cell proliferation which was accompanied by cell cycle arrest in the G0/G1-phase. Growth inhibition was associated with modulation of the p16/cyclin D1/CDK4-6/pRb pathway, an aberration of which is a critical step in the development of many human cancers including colon cancer. Our results indicate that a biopolymer BE3 from Boletus edulis possesses anticancer potential and may provide a new therapeutic/preventive option in colon cancer chemoprevention.

  7. Induction of Apoptosis and Antiproliferative Activity of Naringenin in Human Epidermoid Carcinoma Cell through ROS Generation and Cell Cycle Arrest

    PubMed Central

    Jafri, Asif; Ahmad, Sheeba; Afzal, Mohammad; Arshad, Md

    2014-01-01

    A natural predominant flavanone naringenin, especially abundant in citrus fruits, has a wide range of pharmacological activities. The search for antiproliferative agents that reduce skin carcinoma is a task of great importance. The objective of this study was to analyze the anti-proliferative and apoptotic mechanism of naringenin using MTT assay, DNA fragmentation, nuclear condensation, change in mitochondrial membrane potential, cell cycle kinetics and caspase-3 as biomarkers and to investigate the ability to induce reactive oxygen species (ROS) initiating apoptotic cascade in human epidermoid carcinoma A431 cells. Results showed that naringenin exposure significantly reduced the cell viability of A431 cells (p<0.01) with a concomitant increase in nuclear condensation and DNA fragmentation in a dose dependent manner. The intracellular ROS generation assay showed statistically significant (p<0.001) dose-related increment in ROS production for naringenin. It also caused naringenin-mediated epidermoid carcinoma apoptosis by inducing mitochondrial depolarization. Cell cycle study showed that naringenin induced cell cycle arrest in G0/G1 phase of cell cycle and caspase-3 analysis revealed a dose dependent increment in caspase-3 activity which led to cell apoptosis. This study confirms the efficacy of naringenin that lead to cell death in epidermoid carcinoma cells via inducing ROS generation, mitochondrial depolarization, nuclear condensation, DNA fragmentation, cell cycle arrest in G0/G1 phase and caspase-3 activation. PMID:25330158

  8. Inhibition of protein kinase B activity induces cell cycle arrest and apoptosis during early G₁ phase in CHO cells.

    PubMed

    van Opstal, Angélique; Bijvelt, José; van Donselaar, Elly; Humbel, Bruno M; Boonstra, Johannes

    2012-04-01

    Inhibition of PKB (protein kinase B) activity using a highly selective PKB inhibitor resulted in inhibition of cell cycle progression only if cells were in early G1 phase at the time of addition of the inhibitor, as demonstrated by time-lapse cinematography. Addition of the inhibitor during mitosis up to 2 h after mitosis resulted in arrest of the cells in early G1 phase, as deduced from the expression of cyclins D and A and incorporation of thymidine. After 24 h of cell cycle arrest, cells expressed the cleaved caspase-3, a central mediator of apoptosis. These results demonstrate that PKB activity in early G1 phase is required to prevent the induction of apoptosis. Using antibodies, it was demonstrated that active PKB translocates to the nucleus during early G1 phase, while an even distribution of PKB was observed through cytoplasm and nucleus during the end of G1 phase.

  9. In Vitro Anti-Neuroblastoma Activity of Thymoquinone Against Neuro-2a Cells via Cell-cycle Arrest.

    PubMed

    Paramasivam, Arumugam; Raghunandhakumar, Subramanian; Priyadharsini, Jayaseelan Vijayashree; Jayaraman, Gopalswamy

    2015-01-01

    We have recently shown that thymoquinone (TQ) has a potent cytotoxic effect and induces apoptosis via caspase-3 activation with down-regulation of XIAP in mouse neuroblastoma (Neuro-2a) cells. Interestingly, our results showed that TQ was significantly more cytotoxic towards Neuro-2a cells when compared with primary normal neuronal cells. In this study, the effects of TQ on cell-cycle regulation and the mechanisms that contribute to this effect were investigated using Neuro-2a cells. Cell-cycle analysis performed by flow cytometry revealed cell-cycle arrest at G2/M phase and a significant increase in the accumulation of TQ-treated cells at sub-G1 phase, indicating induction of apoptosis by the compound. Moreover, TQ increased the expression of p53, p21 mRNA and protein levels, whereas it decreased the protein expression of PCNA, cyclin B1 and Cdc2 in a dose- dependent manner. Our finding suggests that TQ could suppress cell growth and cell survival via arresting the cell-cycle in the G2/M phase and inducing apoptosis of neuroblastoma cells.

  10. Aristolochic acid-induced apoptosis and G2 cell cycle arrest depends on ROS generation and MAP kinases activation.

    PubMed

    Romanov, Victor; Whyard, Terry C; Waltzer, Wayne C; Grollman, Arthur P; Rosenquist, Thomas

    2015-01-01

    Ingestion of aristolochic acids (AAs) contained in herbal remedies results in a renal disease and, frequently, urothelial malignancy. The genotoxicity of AA in renal cells, including mutagenic DNA adducts formation, is well documented. However, the mechanisms of AA-induced tubular atrophy and renal fibrosis are largely unknown. To better elucidate some aspects of this process, we studied cell cycle distribution and cell survival of renal epithelial cells treated with AAI at low and high doses. A low dose of AA induces cell cycle arrest in G2/M phase via activation of DNA damage checkpoint pathway ATM-Chk2-p53-p21. DNA damage signaling pathway is activated more likely via increased production of reactive oxygen species (ROS) caused by AA treatment then via DNA damage induced directly by AA. Higher AA concentration induced cell death partly via apoptosis. Since mitogen-activated protein kinases play an important role in cell survival, death and cell cycle progression, we assayed their function in AA-treated renal tubular epithelial cells. ERK1/2 and p38 but not JNK were activated in cells treated with AA. In addition, pharmacological inhibition of ERK1/2 and p38 as well as suppression of ROS generation with N-acetyl-L-cysteine resulted in the partial relief of cells from G2/M checkpoint and a decline of apoptosis level. Cell cycle arrest may be a mechanism for DNA repair, cell survival and reprogramming of epithelial cells to the fibroblast type. An apoptosis of renal epithelial cells at higher AA dose might be necessary to provide space for newly reprogrammed fibrotic cells.

  11. SB225002 Induces Cell Death and Cell Cycle Arrest in Acute Lymphoblastic Leukemia Cells through the Activation of GLIPR1

    PubMed Central

    Leal, Paulo C.; Bhasin, Manoj K.; Zenatti, Priscila Pini; Nunes, Ricardo J.; Yunes, Rosendo A.; Nowill, Alexandre E.; Libermann, Towia A.; Zerbini, Luiz Fernando; Yunes, José Andrés

    2015-01-01

    Acute Lymphoblastic Leukemia (ALL) is the most frequent childhood malignancy. In the effort to find new anti-leukemic agents, we evaluated the small drug SB225002 (N-(2-hydroxy-4-nitrophenyl)-N’-(2-bromophenyl)urea). Although initially described as a selective antagonist of CXCR2, later studies have identified other cellular targets for SB225002, with potential medicinal use in cancer. We found that SB225002 has a significant pro-apoptotic effect against both B- and T-ALL cell lines. Cell cycle analysis demonstrated that treatment with SB225002 induces G2-M cell cycle arrest. Transcriptional profiling revealed that SB225002-mediated apoptosis triggered a transcriptional program typical of tubulin binding agents. Network analysis revealed the activation of genes linked to the JUN and p53 pathways and inhibition of genes linked to the TNF pathway. Early cellular effects activated by SB225002 included the up-regulation of GLIPR1, a p53-target gene shown to have pro-apoptotic activities in prostate and bladder cancer. Silencing of GLIPR1 in B- and T-ALL cell lines resulted in increased resistance to SB225002. Although SB225002 promoted ROS increase in ALL cells, antioxidant N-Acetyl Cysteine pre-treatment only modestly attenuated cell death, implying that the pro-apoptotic effects of SB225002 are not exclusively mediated by ROS. Moreover, GLIPR1 silencing resulted in increased ROS levels both in untreated and SB225002-treated cells. In conclusion, SB225002 induces cell cycle arrest and apoptosis in different B- and T-ALL cell lines. Inhibition of tubulin function with concurrent activation of the p53 pathway, in particular, its downstream target GLIPR1, seems to underlie the anti-leukemic effect of SB225002. PMID:26302043

  12. Antibacterial Activity, in Vitro Cytotoxicity, and Cell Cycle Arrest of Gemini Quaternary Ammonium Surfactants.

    PubMed

    Zhang, Shanshan; Ding, Shiping; Yu, Jing; Chen, Xuerui; Lei, Qunfang; Fang, Wenjun

    2015-11-10

    Twelve gemini quaternary ammonium surfactants have been employed to evaluate the antibacterial activity and in vitro cytotoxicity. The antibacterial effects of the gemini surfactants are performed on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) with minimum inhibitory concentrations (MIC) ranging from 2.8 to 167.7 μM. Scanning electron microscopy (SEM) analysis results show that these surfactants interact with the bacterial cell membrane, disrupt the integrity of the membrane, and consequently kill the bacteria. The data recorded on C6 glioma and HEK293 human kidney cell lines using an MTT assay exhibit low half inhibitory concentrations (IC50). The influences of the gemini surfactants on the cell morphology, the cell migration ability, and the cell cycle are observed through hematoxylin-eosin (HE) staining, cell wound healing assay, and flow cytometric analyses, respectively. Both the values of MIC and IC50 decrease against the growth of the alkyl chain length of the gemini surfactants with the same spacer group. In the case of surfactants 12-s-12, the MICs and IC50s are found to decrease slightly with the spacer chain length changing from 2 to 8 and again to increase at higher spacer length (s = 10-12). All of the gemini surfactants show great antibacterial activity and cytotoxicity, and they might exhibit potential applications in medical fields.

  13. The p53 co-activator Zac1 neither induces cell cycle arrest nor apoptosis in chicken Lim1 horizontal progenitor cells.

    PubMed

    Fard, S Shirazi; Blixt, Mke; Hallböök, F

    2015-01-01

    Chicken horizontal progenitor cells are able to enter their final mitosis even in the presence of DNA damage despite having a functional p53-p21 system. This suggests that they are resistant to DNA damage and that the regulation of the final cell cycle of horizontal progenitor cells is independent of the p53-p21 system. The activity of p53 is regulated by positive and negative modulators, including the zinc finger containing transcription factor Zac1 (zinc finger protein that regulates apoptosis and cell cycle arrest). Zac1 interacts with and enhances the activity of p53, thereby inducing cell cycle arrest and apoptosis. In this work, we use a gain-of-function assay in which mouse Zac1 (mZac1) is overexpressed in chicken retinal progenitor cells to study the effect on the final cell cycle of horizontal progenitor cells. The results showed that overexpression of mZac1 induced expression of p21 in a p53-dependent way and arrested the cell cycle as well as triggered apoptosis in chicken non-horizontal retinal progenitor cells. The negative regulation of the cell cycle by mZac1 is consistent with its proposed role as a tumour-suppressor gene. However, the horizontal cells were not affected by mZac1 overexpression. They progressed into S- and late G2/M-phase despite overexpression of mZac1. The inability of mZac1 to arrest the cell cycle in horizontal progenitor cells support the notion that the horizontal cells are less sensitive to events that triggers the p53 system during their terminal and neurogenic cell cycle, compared with other retinal cells. These properties are associated with a cell that has a propensity to become neoplastic and thus with a cell that may develop retinoblastoma.

  14. Benfluron Induces Cell Cycle Arrest, Apoptosis and Activation of p53 Pathway in MOLT-4 Leukemic Cells.

    PubMed

    Seifrtová, M; Cochlarová, T; Havelek, R; Řezáčová, M

    2015-01-01

    The aim of our study was to determine the effect of potential anti-tumour agent benfluron on human leukemic cells MOLT-4 and elucidate the molecular mechanisms of response of tumour cells to this chemotherapeutic agent. It has been shown that the mechanisms of action of benfluron are complex, but the molecular pathways of the cytostatic effect have remained unknown and the present study contributes to their elucidation. In this work, benfluron reduced viability of the treated cells and induced caspase-mediated apoptosis. The programmed cell death was associated with activation of caspases 8, 9 and 3/7. Moreover, exposure of cells to benfluron resulted in accumulation of the cells primarily in late S and G2/M phases. The changes in the levels of key proteins show that benfluron provoked activation of p53 and induced phosphorylation of p53 on serine 15 and serine 392. The application of benfluron led to phosphorylation of Chk1 on serine 345 and phosphorylation of Chk2 on threonine 68 in the treated cells. Higher doses of benfluron caused phosphorylation of ERK1/2 on threonine 202 and tyrosine 204, whereas JNK and p38 kinases were not activated. In conclusion, benfluron induces apoptosis, cell cycle arrest in late S and G2/M phases, and activates various signalling pathways of the DNA damage response.

  15. Adenovirus-mediated p53 gene transduction inhibits telomerase activity independent of its effects on cell cycle arrest and apoptosis in human pancreatic cancer cells.

    PubMed

    Kusumoto, M; Ogawa, T; Mizumoto, K; Ueno, H; Niiyama, H; Sato, N; Nakamura, M; Tanaka, M

    1999-08-01

    Evidence for a relationship between overexpression of wild-type p53 and telomerase activity remains controversial. We investigated whether p53 gene transduction could cause telomerase inhibition in pancreatic cancer cell lines, focusing on the relation of transduction to growth arrest, cell cycle arrest, and apoptotic cell death. The cells were infected with recombinant adenovirus expressing wild-type p53 or p21WAF1 at a multiplicity of infection of 100 or were continuously exposed to 10 microM VP-16, which is well known to induce apoptosis. Adenovirus-mediated p53 gene transduction caused G1 cell cycle arrest, apoptosis, and resultant growth inhibition in MIA PaCa-2 cells; the cell number 2 days after infection was 50% of preinfection value, and 13% of the cells were dead. Moreover, the transduction resulted in complete depression of telomerase activity through down-regulation of hTERT mRNA expression. In contrast, p21WAF1 gene transduction only arrested cell growth and cell cycle at G1 phase, and VP-16 treatment inhibited cell growth with G2-M arrest and apoptosis; after treatment, the cell number was 73% of pretreatment, and 12% of the cells were dead. Neither p21WAF1 gene transduction nor VP-16 treatment caused telomerase inhibition. Similar results were obtained in two other pancreatic cancer cell lines, SUIT-2 and AsPC-1. Thus, our results demonstrate that the p53 gene transduction directly inhibits telomerase activity, independent of its effects on cell growth arrest, cell cycle arrest, and apoptosis.

  16. Mechanisms of sulindac-induced apoptosis and cell cycle arrest.

    PubMed

    Jung, Barbara; Barbier, Valerie; Brickner, Howard; Welsh, John; Fotedar, Arun; McClelland, Michael

    2005-02-28

    The mechanism underlying the chemopreventive effects of the non-steroidal anti-inflammatory drug sulindac remains unclear. Its active metabolite, sulindac sulfide, induces cell cycle arrest as well as apoptosis in mammalian cell lines. We now show that in murine thymocytes, sulindac sulfide-induced cell death is p53, bax, Fas, and FasL independent. In contrast, bcl2 transgenic thymocytes are resistant to sulindac sulfide-induced apoptosis. In addition, we demonstrate that sulindac sulfide-induced cell cycle arrest in mouse embryonic fibroblasts (MEFs) is partly mediated by the retinoblastoma tumor suppressor protein (Rb) and the cyclin kinase inhibitor p21waf1/cip1. Furthermore, MEFs deficient in p21 or Rb are more susceptible to sulindac sulfide-induced cell death. These results suggest that sulindac may selectively target premalignant cells with cell cycle checkpoint deficits.

  17. Quercetin, a Natural Flavonoid Interacts with DNA, Arrests Cell Cycle and Causes Tumor Regression by Activating Mitochondrial Pathway of Apoptosis

    PubMed Central

    Srivastava, Shikha; Somasagara, Ranganatha R.; Hegde, Mahesh; Nishana, Mayilaadumveettil; Tadi, Satish Kumar; Srivastava, Mrinal; Choudhary, Bibha; Raghavan, Sathees C.

    2016-01-01

    Naturally occurring compounds are considered as attractive candidates for cancer treatment and prevention. Quercetin and ellagic acid are naturally occurring flavonoids abundantly seen in several fruits and vegetables. In the present study, we evaluate and compare antitumor efficacies of quercetin and ellagic acid in animal models and cancer cell lines in a comprehensive manner. We found that quercetin induced cytotoxicity in leukemic cells in a dose-dependent manner, while ellagic acid showed only limited toxicity. Besides leukemic cells, quercetin also induced cytotoxicity in breast cancer cells, however, its effect on normal cells was limited or none. Further, quercetin caused S phase arrest during cell cycle progression in tested cancer cells. Quercetin induced tumor regression in mice at a concentration 3-fold lower than ellagic acid. Importantly, administration of quercetin lead to ~5 fold increase in the life span in tumor bearing mice compared to that of untreated controls. Further, we found that quercetin interacts with DNA directly, and could be one of the mechanisms for inducing apoptosis in both, cancer cell lines and tumor tissues by activating the intrinsic pathway. Thus, our data suggests that quercetin can be further explored for its potential to be used in cancer therapeutics and combination therapy. PMID:27068577

  18. Antiproliferative activity of goniothalamin enantiomers involves DNA damage, cell cycle arrest and apoptosis induction in MCF-7 and HB4a cells.

    PubMed

    Semprebon, Simone Cristine; Marques, Lilian Areal; D'Epiro, Gláucia Fernanda Rocha; de Camargo, Elaine Aparecida; da Silva, Glenda Nicioli; Niwa, Andressa Megumi; Macedo Junior, Fernando; Mantovani, Mário Sérgio

    2015-12-25

    (R)-goniothalamin (R-GNT) is a styryl lactone that exhibits antiproliferative property against several tumor cell lines. (S)-goniothalamin (S-GNT) is the synthetic enantiomer of R-GNT, and their biological properties are poorly understood. The aim of this study was to evaluate the antiproliferative mechanisms of (R)-goniothalamin and (S)-goniothalamin in MCF-7 breast cancer cells and HB4a epithelial mammary cells. To determine the mechanisms of cell growth inhibition, we analyzed the ability of R-GNT and S-GNT to induce DNA damage, cell cycle arrest and apoptosis. Moreover, the gene expression of cell cycle components, including cyclin, CDKs and CKIs, as well as of genes involved in apoptosis and the DNA damage response were evaluated. The natural enantiomer R-GNT proved more effective in both cell lines than did the synthetic enantiomer S-GNT, inhibiting cell proliferation via cell cycle arrest and apoptosis induction, likely in response to DNA damage. The cell cycle inhibition caused by R-GNT was mediated through the upregulation of CIP/KIP cyclin-kinase inhibitors and through the downregulation of cyclins and CDKs. S-GNT, in turn, was able to cause G0/G1 cell cycle arrest and DNA damage in MCF-7 cells and apoptosis induction only in HB4a cells. Therefore, goniothalamin presents potent antiproliferative activity to breast cancer cells MCF-7. However, exposure to goniothalamin brings some undesirable effects to non-tumor cells HB4a, including genotoxicity and apoptosis induction.

  19. Quercetin induces apoptosis and cell cycle arrest in triple-negative breast cancer cells through modulation of Foxo3a activity.

    PubMed

    Nguyen, Lich Thi; Lee, Yeon-Hee; Sharma, Ashish Ranjan; Park, Jong-Bong; Jagga, Supriya; Sharma, Garima; Lee, Sang-Soo; Nam, Ju-Suk

    2017-03-01

    Quercetin, a plant-derived flavonoid found in fruits, vegetables and tea, has been known to possess bioactive properties such as anti-oxidant, anti-inflammatory and anti-cancer. In this study, anti-cancer effect of quercetin and its underlying mechanisms in triple-negative breast cancer cells was investigated. MTT assay showed that quercetin reduced breast cancer cell viability in a time and dose dependent manner. For this, quercetin not only increased cell apoptosis but also inhibited cell cycle progression. Moreover, quercetin increased FasL mRNA expression and p51, p21 and GADD45 signaling activities. We also observed that quercetin induced protein level, transcriptional activity and nuclear translocation of Foxo3a. Knockdown of Foxo3a caused significant reduction in the effect of quercetin on cell apoptosis and cell cycle arrest. In addition, treatment of JNK inhibitor (SP 600125) abolished quercetin-stimulated Foxo3a activity, suggesting JNK as a possible upstream signaling in regulation of Foxo3a activity. Knockdown of Foxo3a and inhibition of JNK activity reduced the signaling activities of p53, p21 and GADD45, triggered by quercetin. Taken together, our study suggests that quercetin induces apoptosis and cell cycle arrest via modification of Foxo3a signaling in triple-negative breast cancer cells.

  20. Quercetin induces apoptosis and cell cycle arrest in triple-negative breast cancer cells through modulation of Foxo3a activity

    PubMed Central

    Nguyen, Lich Thi; Lee, Yeon-Hee; Sharma, Ashish Ranjan; Park, Jong-Bong; Jagga, Supriya; Sharma, Garima

    2017-01-01

    Quercetin, a plant-derived flavonoid found in fruits, vegetables and tea, has been known to possess bioactive properties such as anti-oxidant, anti-inflammatory and anti-cancer. In this study, anti-cancer effect of quercetin and its underlying mechanisms in triple-negative breast cancer cells was investigated. MTT assay showed that quercetin reduced breast cancer cell viability in a time and dose dependent manner. For this, quercetin not only increased cell apoptosis but also inhibited cell cycle progression. Moreover, quercetin increased FasL mRNA expression and p51, p21 and GADD45 signaling activities. We also observed that quercetin induced protein level, transcriptional activity and nuclear translocation of Foxo3a. Knockdown of Foxo3a caused significant reduction in the effect of quercetin on cell apoptosis and cell cycle arrest. In addition, treatment of JNK inhibitor (SP 600125) abolished quercetin-stimulated Foxo3a activity, suggesting JNK as a possible upstream signaling in regulation of Foxo3a activity. Knockdown of Foxo3a and inhibition of JNK activity reduced the signaling activities of p53, p21 and GADD45, triggered by quercetin. Taken together, our study suggests that quercetin induces apoptosis and cell cycle arrest via modification of Foxo3a signaling in triple-negative breast cancer cells. PMID:28280414

  1. Downregulation of telomerase activity by diclofenac and curcumin is associated with cell cycle arrest and induction of apoptosis in colon cancer.

    PubMed

    Rana, Chandan; Piplani, Honit; Vaish, Vivek; Nehru, Bimla; Sanyal, S N

    2015-08-01

    Uncontrolled cell proliferation is the hallmark of cancer, and cancer cells have typically acquired damage to genes that directly regulate their cell cycles. The synthesis of DNA onto the end of chromosome during the replicative phase of cell cycle by telomerase may be necessary for unlimited proliferation of cells. Telomerase, a ribonucleoprotein enzyme is considered as a universal therapeutic target of cancer because of its preferential expression in cancer cells and its presence in 90 % of tumors. We studied the regulation of telomerase and telomerase reverse transcriptase catalytic subunit (TERT) by diclofenac and curcumin, alone and also in combination, in 1, 2-dimethylhydrazine dihydrochloride-induced colorectal cancer in rats. The relationship of telomerase activity with tumors suppressor proteins (p51, Rb, p21), cell cycle machinery, and apoptosis was also studied. Telomerase is highly expressed in DMH group and its high activity is associated with increased TERT expression. However, telomerase is absent or is present at lower levels in normal tissue. CDK4, CDK2, cyclin D1, and cyclin E are highly expressed in DMH as assessed by RT-PCR, qRT-PCR, Western blot, and immunofluorescence analysis. Diclofenac and curcumin overcome these carcinogenic effects by downregulating telomerase activity, diminishing the expression of TERT, CDK4, CDK2, cyclin D1, and cyclin E. The anticarcinogenic effects shown after the inhibition of telomerase activity by diclofenac and curcumin may be associated with upregulation of tumor suppressor proteins p51, Rb, and p21, whose activation induces the cells cycle arrest and apoptosis.

  2. Enhanced radiation-induced cytotoxic effect by 2-ME in glioma cells is mediated by induction of cell cycle arrest and DNA damage via activation of ATM pathways.

    PubMed

    Zou, Huichao; Zhao, Shiguang; Zhang, Jianhua; Lv, Gongwei; Zhang, Xu; Yu, Hongwei; Wang, Huibo; Wang, Ligang

    2007-12-14

    Glioblastoma multiform is the most common malignant primary brain tumor in adults, but there remains no effective therapeutic approach. 2-methoxyestradiol (2-ME), which is a naturally occurring metabolite of 17beta-estradiol, was shown to enhance radiotherapeutic effect in certain tumors; however, whether 2-ME can also enhance the sensitivity of glioma cells to radiotherapy remains unknown. The present study, therefore, was to address this issue using two human glioma cell lines (T98G and U251MG). These cells were irradiated with and without 2-ME and then clonogenic assay, apoptosis assay, DNA damage, and cell cycle change were examined. Results showed that 2-ME significantly enhances radiation-induced cell death in both glioma cells, shown by decreasing cell viability and increasing apoptotic cell death. No such radiosensitizing effect was observed if cells pre-treated with Estrodiol, suggesting the specifically radiosensitizing effect of 2-ME rather than a general effect of estrodials. The enhanced radio-cytotoxic effect in glioma cells by 2-ME was found to be associated with its enhancement of G(2)/M arrest and DNA damage, and phosphorylated ATM protein kinases as well as cell cycle checkpoint protein Chk2. Furthermore, inhibition of ATM by ATM inhibitor abolished 2-ME-activated Chk2 and enhanced radio-cytotoxic effects. These results suggest that 2-ME enhancement of the sensitivity of glioma cell lines to radiotherapy is mediated by induction of G2/M cell cycle arrest and increased DNA damage via activation of ATM kinases.

  3. Sorbus rufopilosa Extract Exhibits Antioxidant and Anticancer Activities by Inducing Cell Cycle Arrest and Apoptosis in Human Colon Adenocarcinoma HT29 Cells

    PubMed Central

    Oh, You Na; Jin, Soojung; Park, Hyun-Jin; Kwon, Hyun Ju; Kim, Byung Woo

    2016-01-01

    Background Sorbus rufopilosa, a tsema rowan, is a species of the small ornamental trees in the genus Sorbus and the family Rosaceae found in East Asia. The bioactivities of S. rufopilosa have not yet been fully determined. The objective of this study is to evaluate the antioxidant and anticancer effects of ethanol extract of S. rufopilosa (EESR) and to determine the molecular mechanism of its anticancer activity in human colon carcinoma HT29 cells. Methods To examine the antioxidant activity of EESR, 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity assay was performed. Inhibitory effect of EESR on cancer cell growth and proliferation was determined by water-soluble tetrazolium salt assay. To investigate the mechanism of EESR-mediated cytotoxicity, HT29 cells were treated with various concentrations of EESR and the induction of cell cycle arrest and apoptosis was analyzed by flow cytometry, 4,6-diamidino-2-phenylindole staining, and Western blot analysis. Results EESR showed significant antioxidant activity and inhibitory effect on HT29 cell growth in a dose-dependent manner. EESR induced cell cycle arrest at G2/M phase in a dose-dependent manner by modulating cyclin B, cyclin-dependent kinase 1 (CDK1), and CDK inhibitor p21 expression. EESR-induced apoptosis was associated with the upregulation of p53, a death receptor Fas, and a pro-apoptotic protein Bax and the activation of caspase 3, 8, and 9, resulting in the degradation of PARP. Conclusions EESR possessing antioxidant activity efficiently inhibits proliferation of HT29 cells by inducing both cell cycle arrest and apoptosis. EESR may be a possible candidate for the anticancer drug development. PMID:28053959

  4. Antitumor Activity of Tenacissoside H on Esophageal Cancer through Arresting Cell Cycle and Regulating PI3K/Akt-NF-κB Transduction Cascade.

    PubMed

    Jia, Yong-Sen; Hu, Xue-Qin; Gabriella, Hegyi; Qin, Li-Juan; Meggyeshazi, Nora

    2015-01-01

    Objective. The purpose of the study was to elucidate the molecular mechanism of tenacissoside H (TDH) inhibiting esophageal carcinoma infiltration and proliferation. Methods. In vitro, EC9706 cells were treated with TDH. Cells proliferation and cell cycle were assayed. PI3K and NF-κB mRNAs expression were determined by real time PCR. In vivo, model of nude mice with tumor was established. Mice were treated with TDH. Inhibition ratio of tumor volume was calculated. PCNA expression was examined. Protein expression in PI3K/Akt-NF-κB signaling pathway was determined. Results. In vitro, TDH significantly inhibited cells proliferation in a time-and-dose-dependent manner. TDH arrested the cell cycle in S phase and significantly inhibited PI3K and NF-κB mRNA expression, compared with blank controlled group (P < 0.05). In vivo, TDH strongly inhibits tumor growth and volume. PCNA expression was significantly decreased after treatment of TDH. TDH downregulated proteins expression in PI3K/Akt-NF-κB transduction cascade (P < 0.05). Conclusion. TDH inhibited esophageal carcinoma infiltration and proliferation both in vitro and in vivo. The anticancer activity has relation to arresting the cell cycle at the S phase, inhibited the PCNA expression of transplanted tumors in nude mice, and regulated the protein expression in the PI3K/Akt-NF-κB transduction cascade.

  5. Antitumoral activity of the mithralog EC-8042 in triple negative breast cancer linked to cell cycle arrest in G2.

    PubMed

    Pandiella, Atanasio; Morís, Francisco; Ocaña, Alberto; Núñez, Luz-Elena; Montero, Juan C

    2015-10-20

    Triple negative breast cancer (TNBC) is an aggressive form of breast cancer. Despite response to chemotherapy, relapses are frequent and resistance to available treatments is often observed in the metastatic setting. Therefore, identification of new therapeutic strategies is required. Here we have investigated the effect of the mithramycin analog EC-8042 (demycarosil-3D-β-D-digitoxosyl mithramycin SK) on TNBC. The drug caused a dose-dependent inhibition of proliferation of a set of TNBC cell lines in vitro, and decreased tumor growth in mice xenografted with TNBC cells. Mechanistically, EC-8042 caused an arrest in the G2 phase of the cell cycle, coincident with an increase in pCDK1 and Wee1 levels in cells treated with the drug. In addition, prolonged treatment with the drug also causes apoptosis, mainly through caspase-independent routes. Importantly, EC-8042 synergized with drugs commonly used in the therapy of TNBC in vitro, and potentiated the antitumoral effect of docetaxel in vivo. Together, these data suggest that the mithralog EC-8042 exerts an antitumoral action on TNBC cells and reinforces the action of standard of care drugs used in the therapy of this disease. These characteristics, together with a better toxicology profile of EC-8042 with respect to mithramycin, open the possibility of its clinical evaluation.

  6. Parvovirus B19 NS1 protein induces cell cycle arrest at G2-phase by activating the ATR-CDC25C-CDK1 pathway

    PubMed Central

    Xu, Peng; Zhou, Zhe; Xiong, Min; Zou, Wei; Deng, Xuefeng; Ganaie, Safder S.; Peng, Jianxin; Liu, Kaiyu; Wang, Shengqi; Ye, Shui Qing

    2017-01-01

    Human parvovirus B19 (B19V) infection of primary human erythroid progenitor cells (EPCs) arrests infected cells at both late S-phase and G2-phase, which contain 4N DNA. B19V infection induces a DNA damage response (DDR) that facilitates viral DNA replication but is dispensable for cell cycle arrest at G2-phase; however, a putative C-terminal transactivation domain (TAD2) within NS1 is responsible for G2-phase arrest. To fully understand the mechanism underlying B19V NS1-induced G2-phase arrest, we established two doxycycline-inducible B19V-permissive UT7/Epo-S1 cell lines that express NS1 or NS1mTAD2, and examined the function of the TAD2 domain during G2-phase arrest. The results confirm that the NS1 TAD2 domain plays a pivotal role in NS1-induced G2-phase arrest. Mechanistically, NS1 transactivated cellular gene expression through the TAD2 domain, which was itself responsible for ATR (ataxia-telangiectasia mutated and Rad3-related) activation. Activated ATR phosphorylated CDC25C at serine 216, which in turn inactivated the cyclin B/CDK1 complex without affecting nuclear import of the complex. Importantly, we found that the ATR-CHK1-CDC25C-CDK1 pathway was activated during B19V infection of EPCs, and that ATR activation played an important role in B19V infection-induced G2-phase arrest. PMID:28264028

  7. Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity.

    PubMed Central

    He, J; Choe, S; Walker, R; Di Marzio, P; Morgan, D O; Landau, N R

    1995-01-01

    The Vpr accessory gene product of human immunodeficiency virus types 1 and 2 and simian immunodeficiency virus is believed to play a role in permitting entry of the viral core into the nucleus of nondividing cells. A second role for Vpr was recently suggested by Rogel et al. (M. E. Rogel, L. I. Wu, and M. Emerman, J. Virol. 69:882-888, 1995), who showed that Vpr prevents the establishment in vitro of chronically infected HIV producer cell lines, apparently by causing infected cells to arrest in the G2/M phase of the cell cycle. In cycling cells, progression from G2 to M phase is driven by activation of the p34cdc2/cyclin B complex, an event caused, in part, by dephosphorylation of two regulatory amino acids of p34cdc2 (Thr-14 and Tyr-15). We show here that Vpr arrests the cell cycle in G2 by preventing the activation of the p34cdc2/cyclin B complex. Vpr expression in cells caused p34cdc2 to remain in the phosphorylated, inactive state, p34cdc2/cyclin B complexes immunoprecipitated from cells expressing Vpr were almost completely inactive in a histone H1 kinase assay. Coexpression of a constitutively active mutant p34cdc2 molecule with Vpr relieved the G2 arrest. These findings strongly suggest that Vpr arrests cells in G2 by preventing the activation of the p34cdc2/cyclin B complex that is required for entry into M phase. In vivo, Vpr might, by preventing p34cdc2 activation, delay or prevent apoptosis of infected cells. This would increase the amount of virus each infected cell produced. PMID:7474080

  8. New betulinic acid derivatives induce potent and selective antiproliferative activity through cell cycle arrest at the S phase and caspase dependent apoptosis in human cancer cells.

    PubMed

    Santos, Rita C; Salvador, Jorge A R; Cortés, Roldán; Pachón, Gisela; Marín, Silvia; Cascante, Marta

    2011-06-01

    New semisynthetic derivatives of betulinic acid (BA) RS01, RS02 and RS03 with 18-45 times improved cytotoxic activity against HepG2 cells, were tested for their ability to induce apoptosis and cell cycle arrest in HepG2, HeLa and Jurkat cells. All the compounds induced significant increase in the population at the S phase more effectively than BA. RS01, RS02 and RS03 were also found to be potent inducers of apoptosis with RS01 being markedly more potent than BA, suggesting that the introduction of the imidazolyl moiety is crucial for enhancing the induction of apoptosis and the cell cycle arrest. The mechanism of apoptosis induction has been studied in HepG2 cells and found to be mediated by activation of the postmitochondrial caspases-9 and -3 cascade and possibly by mitochondrial amplification loop involving caspase-8. These facts were corroborated by detection of mitochondrial cytochrome c release and DNA fragmentation. Because RS01, RS02 and RS03 exhibited significant improved antitumor activity with respect to BA, they may be promising new agents for the treatment of cancer. In particular, RS01 is the most promising compound with an IC(50) value 45 times lower than BA on HepG2 cells and 61 times lower than the one found for the non-tumoral Chang liver cells.

  9. Parvovirus infection-induced cell death and cell cycle arrest

    PubMed Central

    Chen, Aaron Yun; Qiu, Jianming

    2011-01-01

    The cytopathic effects induced during parvovirus infection have been widely documented. Parvovirus infection-induced cell death is often directly associated with disease outcomes (e.g., anemia resulting from loss of erythroid progenitors during parvovirus B19 infection). Apoptosis is the major form of cell death induced by parvovirus infection. However, nonapoptotic cell death, namely necrosis, has also been reported during infection of the minute virus of mice, parvovirus H-1 and bovine parvovirus. Recent studies have revealed multiple mechanisms underlying the cell death during parvovirus infection. These mechanisms vary in different parvoviruses, although the large nonstructural protein (NS)1 and the small NS proteins (e.g., the 11 kDa of parvovirus B19), as well as replication of the viral genome, are responsible for causing infection-induced cell death. Cell cycle arrest is also common, and contributes to the cytopathic effects induced during parvovirus infection. While viral NS proteins have been indicated to induce cell cycle arrest, increasing evidence suggests that a cellular DNA damage response triggered by an invading single-stranded parvoviral genome is the major inducer of cell cycle arrest in parvovirus-infected cells. Apparently, in response to infection, cell death and cell cycle arrest of parvovirus-infected cells are beneficial to the viral cell lifecycle (e.g., viral DNA replication and virus egress). In this article, we will discuss recent advances in the understanding of the mechanisms underlying parvovirus infection-induced cell death and cell cycle arrest. PMID:21331319

  10. Anticancer and apoptotic activities of oleanolic acid are mediated through cell cycle arrest and disruption of mitochondrial membrane potential in HepG2 human hepatocellular carcinoma cells

    PubMed Central

    ZHU, YUE-YONG; HUANG, HONG-YAN; WU, YIN-LIAN

    2015-01-01

    Hepatocellular carcinoma (HCC) is an aggressive form of cancer, with high rates of morbidity and mortality, a poor prognosis and limited therapeutic options. The objective of the present study was to demonstrate the anticancer activity of oleanolic acid in HepG2 human HCC cells. Cell viability was evaluated using an MTT assay, following administration of various doses of oleanolic acid. The effect of oleanolic acid on cell cycle phase distribution and mitochondrial membrane potential was evaluated using flow cytometry with propidium iodide and rhodamine-123 DNA-binding cationic fluorescent dyes. Fluorescence microscopy was employed to detect morphological changes in HepG2 cells following oleanolic acid treatment. The results revealed that oleanolic acid induced a dose-dependent, as well as time-dependent inhibition in the growth of HepG2 cancer cells. Following acridine orange and ethidium bromide staining, treatment with various doses (0, 5, 25 and 50 µM) of oleanolic acid induced typical morphological changes associated with apoptosis, including cell shrinkage, membrane blebbing, nuclear condensation and apoptotic body formation. Cell cycle analysis revealed that oleanolic acid induced cell cycle arrest in HepG2 cells at the sub-G1 (apoptotic) phase of the cell cycle, in a dose-dependent manner. Staining with Annexin V-fluorescein isothiocyanate and propidium iodide revealed that apoptosis occurred early in these cells. Oleanolic acid treatment also resulted in fragmentation of nuclear DNA in a dose-dependent manner, producing the typical features of DNA laddering on an agarose gel. The results also demonstrated that oleanolic acid treatment resulted in a potent loss of mitochondrial membrane potential, which also occurred in a dose-dependent manner. Therefore, oleanolic acid may be used as a therapeutic agent in the treatment of human HCC. PMID:26151733

  11. Acanthamoeba induces cell-cycle arrest in host cells.

    PubMed

    Sissons, James; Alsam, Selwa; Jayasekera, Samantha; Kim, Kwang Sik; Stins, Monique; Khan, Naveed Ahmed

    2004-08-01

    Acanthamoeba can cause fatal granulomatous amoebic encephalitis (GAE) and eye keratitis. However, the pathogenesis and pathophysiology of these emerging diseases remain unclear. In this study, the effects of Acanthamoeba on the host cell cycle using human brain microvascular endothelial cells (HBMEC) and human corneal epithelial cells (HCEC) were determined. Two isolates of Acanthamoeba belonging to the T1 genotype (GAE isolate) and T4 genotype (keratitis isolate) were used, which showed severe cytotoxicity on HBMEC and HCEC, respectively. No tissue specificity was observed in their ability to exhibit binding to the host cells. To determine the effects of Acanthamoeba on the host cell cycle, a cell-cycle-specific gene array was used. This screened for 96 genes specific for host cell-cycle regulation. It was observed that Acanthamoeba inhibited expression of genes encoding cyclins F and G1 and cyclin-dependent kinase 6, which are proteins important for cell-cycle progression. Moreover, upregulation was observed of the expression of genes such as GADD45A and p130 Rb, associated with cell-cycle arrest, indicating cell-cycle inhibition. Next, the effect of Acanthamoeba on retinoblastoma protein (pRb) phosphorylation was determined. pRb is a potent inhibitor of G1-to-S cell-cycle progression; however, its function is inhibited upon phosphorylation, allowing progression into S phase. Western blotting revealed that Acanthamoeba abolished pRb phosphorylation leading to cell-cycle arrest at the G1-to-S transition. Taken together, these studies demonstrated for the first time that Acanthamoeba inhibits the host cell cycle at the transcriptional level, as well as by modulating pRb phosphorylation using host cell-signalling mechanisms. A complete understanding of Acanthamoeba-host cell interactions may help in developing novel strategies to treat Acanthamoeba infections.

  12. Cell cycle-arrested tumor cells exhibit increased sensitivity towards TRAIL-induced apoptosis

    PubMed Central

    Ehrhardt, H; Wachter, F; Grunert, M; Jeremias, I

    2013-01-01

    Resting tumor cells represent a huge challenge during anticancer therapy due to their increased treatment resistance. TNF-related apoptosis-inducing ligand (TRAIL) is a putative future anticancer drug, currently in phases I and II clinical studies. We recently showed that TRAIL is able to target leukemia stem cell surrogates. Here, we tested the ability of TRAIL to target cell cycle-arrested tumor cells. Cell cycle arrest was induced in tumor cell lines and xenografted tumor cells in G0, G1 or G2 using cytotoxic drugs, phase-specific inhibitors or RNA interference against cyclinB and E. Biochemical or molecular arrest at any point of the cell cycle increased TRAIL-induced apoptosis. Accordingly, when cell cycle arrest was disabled by addition of caffeine, the antitumor activity of TRAIL was reduced. Most important for clinical translation, tumor cells from three children with B precursor or T cell acute lymphoblastic leukemia showed increased TRAIL-induced apoptosis upon knockdown of either cyclinB or cyclinE, arresting the cell cycle in G2 or G1, respectively. Taken together and in contrast to most conventional cytotoxic drugs, TRAIL exerts enhanced antitumor activity against cell cycle-arrested tumor cells. Therefore, TRAIL might represent an interesting drug to treat static-tumor disease, for example, during minimal residual disease. PMID:23744361

  13. Preclinical Activity of Simvastatin Induces Cell Cycle Arrest in G1 via Blockade of Cyclin D-Cdk4 Expression in Non-Small Cell Lung Cancer (NSCLC)

    PubMed Central

    Liang, Yu-Wei; Chang, Chi-Chang; Hung, Chao-Ming; Chen, Tzu-Yu; Huang, Tzuu-Yuan; Hsu, Yi-Chiang

    2013-01-01

    Lung cancer is the most common cause of cancer-related death. Nonetheless, a decrease in overall incidence and mortality has been observed in the last 30 years due to prevention strategies and improvements in the use of chemotherapeutic agents. In recent studies, Simvastatin (SIM) has demonstrated anti-tumor activity, as well as potent chemopreventive action. As an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA), SIM has been shown to stimulate apoptotic cell death. In this study, an MTT assay revealed the cytotoxic activity of SIM against human large cell lung cancer (Non-small cell lung cancer; NSCLC) cells (NCI-H460); however, induced apoptosis was not observed in NCI-H460 cells. Protein expression levels of cell cycle regulating proteins Cdk4, Cyclin D1, p16 and p27 were markedly altered by SIM. Collectively, our results indicate that SIM inhibits cell proliferation and arrests NCI-H460 cell cycle progression via inhibition of cyclin-dependent kinases and cyclins and the enhancement of CDK inhibitors p16 and p27. Our findings suggest that, in addition to the known effects on hypercholesterolemia therapy, SIM may also provide antitumor activity in established NSCLC. PMID:23481641

  14. The long non-coding RNA GAS5 differentially regulates cell cycle arrest and apoptosis through activation of BRCA1 and p53 in human neuroblastoma

    PubMed Central

    Mazar, Joseph; Rosado, Amy; Shelley, John; Marchica, John; Westmoreland, Tamarah J

    2017-01-01

    The long non-coding RNA GAS5 has been shown to modulate cancer proliferation in numerous human cancer systems and has been correlated with successful patient outcome. Our examination of GAS5 in neuroblastoma has revealed robust expression in both MYCN-amplified and non-amplified cell lines. Knockdown of GAS5 In vitro resulted in defects in cell proliferation, apoptosis, and induced cell cycle arrest. Further analysis of GAS5 clones revealed multiple novel splice variants, two of which inversely modulated with MYCN status. Complementation studies of the variants post-knockdown of GAS5 indicated alternate phenotypes, with one variant (FL) considerably enhancing cell proliferation by rescuing cell cycle arrest and the other (C2) driving apoptosis, suggesting a unique role for each in neuroblastoma cancer physiology. Global sequencing and ELISA arrays revealed that the loss of GAS5 induced p53, BRCA1, and GADD45A, which appeared to modulate cell cycle arrest in concert. Complementation with only the FL GAS5 clone could rescue cell cycle arrest, stabilizing HDM2, and leading to the loss of p53. Together, these data offer novel therapeutic targets in the form of lncRNA splice variants for separate challenges against cancer growth and cell death. PMID:28035057

  15. Double stranded-RNA-mediated activation of P21 gene induced apoptosis and cell cycle arrest in renal cell carcinoma

    PubMed Central

    Whitson, Jared M; Noonan, Emily J; Pookot, Deepa; Place, Robert F; Dahiya, Rajvir

    2014-01-01

    Small double stranded RNAs (dsRNA) are a new class of molecules which regulate gene expression. Accumulating data suggest that some dsRNA can function as tumor suppressors. Here we report further evidence on the potential of dsRNA mediated p21 induction. Using the human renal cell carcinoma cell line A498, we found that dsRNA targeting the p21 promoter significantly induced the expression of p21 mRNA and protein levels. As a result, dsP21 transfected cells had a significant decrease in cell viability with a concomitant G1 arrest. We also observed a significant increase in apoptosis. These findings were associated with a significant decrease in survivin mRNA and protein levels. This is the first report that demonstrates dsRNA mediated gene activation in renal cell carcinoma and suggests that forced over-expression of p21 may lead to an increase in apoptosis through a survivin dependent mechanism. PMID:19384944

  16. Double stranded-RNA-mediated activation of P21 gene induced apoptosis and cell cycle arrest in renal cell carcinoma.

    PubMed

    Whitson, Jared M; Noonan, Emily J; Pookot, Deepa; Place, Robert F; Dahiya, Rajvir

    2009-07-15

    Small double stranded RNAs (dsRNA) are a new class of molecules which regulate gene expression. Accumulating data suggest that some dsRNA can function as tumor suppressors. Here, we report further evidence on the potential of dsRNA mediated p21 induction. Using the human renal cell carcinoma cell line A498, we found that dsRNA targeting the p21 promoter significantly induced the expression of p21 mRNA and protein levels. As a result, dsP21 transfected cells had a significant decrease in cell viability with a concomitant G1 arrest. We also observed a significant increase in apoptosis. These findings were associated with a significant decrease in survivin mRNA and protein levels. This is the first report that demonstrates dsRNA mediated gene activation in renal cell carcinoma and suggests that forced over-expression of p21 may lead to an increase in apoptosis through a survivin dependent mechanism.

  17. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice

    PubMed Central

    Holland, Eric C.; Hively, Wendy P.; DePinho, Ronald A.; Varmus, Harold E.

    1998-01-01

    The epidermal growth factor receptor (EGFR) gene is amplified or mutated in 30%–50% of human gliobastoma multiforme (GBM). These mutations are associated usually with deletions of the INK4a–ARF locus, which encodes two gene products (p16INK4a and p19ARF) involved in cell-cycle arrest and apoptosis. We have investigated the role of EGFR mutation in gliomagenesis, using avian retroviral vectors to transfer a mutant EGFR gene to glial precursors and astrocytes in transgenic mice expressing tv-a, a gene encoding the retrovirus receptor. TVA, under control of brain cell type-specific promoters. We demonstrate that expression of a constitutively active, mutant form of EGFR in cells in the glial lineage can induce lesions with many similarities to human gliomas. These lesions occur more frequently with gene transfer to mice expressing tv-a from the progenitor-specific nestin promoter than to mice expressing tv-a from the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter, suggesting that tumors arise more efficiently from immature cells in the glial lineage. Furthermore, EGFR-induced gliomagenesis appears to require additional mutations in genes encoding proteins involved in cell-cycle arrest pathways. We have produced these combinations by simultaneously infecting tv-a transgenic mice with vectors carrying cdk4 and EGFR or by infecting tv-a transgenic mice bearing a disrupted INK4a–ARF locus with the EGFR-carrying vector alone. Moreover, EGFR-induced gliomagenesis does not occur in conjunction with p53 deficiency, unless the mice are also infected with a vector carrying cdk4. The gliomagenic combinations of genetic lesions required in mice are similar to those found in human gliomas. PMID:9851974

  18. The ethanol extract of Scutellaria baicalensis and the active compounds induce cell cycle arrest and apoptosis including upregulation of p53 and Bax in human lung cancer cells

    SciTech Connect

    Gao Jiayu; Morgan, Winston A.; Sanchez-Medina, Alberto; Corcoran, Olivia

    2011-08-01

    Despite a lack of scientific authentication, Scutellaria baicalensis is clinically used in Chinese medicine as a traditional adjuvant to chemotherapy of lung cancer. In this study, cytotoxicity assays demonstrated that crude ethanolic extracts of S. baicalensis were selectively toxic to human lung cancer cell lines A549, SK-LU-1 and SK-MES-1 compared with normal human lung fibroblasts. The active compounds baicalin, baicalein and wogonin did not exhibit such selectivity. Following exposure to the crude extracts, cellular protein expression in the cancer cell lines was assessed using 2D gel electrophoresis coupled with MALDI-TOF-MS/Protein Fingerprinting. The altered protein expression indicated that cell growth arrest and apoptosis were potential mechanisms of cytotoxicity. These observations were supported by PI staining cell cycle analysis using flow cytometry and Annexin-V apoptotic analysis by fluorescence microscopy of cancer cells treated with the crude extract and pure active compounds. Moreover, specific immunoblotting identification showed the decreased expression of cyclin A results in the S phase arrest of A549 whereas the G{sub 0}/G{sub 1} phase arrest in SK-MES-1 cells results from the decreased expression of cyclin D1. Following treatment, increased expression in the cancer cells of key proteins related to the enhancement of apoptosis was observed for p53 and Bax. These results provide further insight into the molecular mechanisms underlying the clinical use of this herb as an adjuvant to lung cancer therapy. - Research Highlights: > Scutellaria baicalensis is a clinical adjuvant to lung cancer chemotherapy in China. > Scutellaria ethanol extracts selectively toxic to A549, SK-LU-1 and SK-MES-1. > Baicalin, baicalein and wogonin were toxic to all lung cancer cell lines. > Proteomics identified increased p53 and BAX in response to Scutellaria extracts.

  19. Cell cycle arrest or survival signaling through αv integrins, activation of PKC and ERK1/2 lead to anoikis resistance of ovarian cancer spheroids.

    PubMed

    Carduner, Ludovic; Picot, Cédric R; Leroy-Dudal, Johanne; Blay, Lyvia; Kellouche, Sabrina; Carreiras, Franck

    2014-01-15

    Ovarian cancer is the most lethal gynecologic cancer mainly due to spheroids organization of cancer cells that disseminate within the peritoneal cavity. We have investigated the molecular mechanisms by which ovarian cancer spheroids resist anoikis, choosing as models the 2 well-characterized human ovarian cancer cell lines IGROV1 and SKOV3. These cell lines have the propensity to float as clusters, and were isolated from tumor tissue and ascites, respectively. To form spheroids, IGROV1 and SKOV3 ovarian adenocarcinoma cells were maintained under anchorage-independent culture conditions, in which both lines survive at least a week. A short apoptotic period prior to a survival signaling commitment was observed for IGROV1 cells whereas SKOV3 cells entered G0/G1 phase of the cell cycle. This difference in behavior was due to different signals. With regard to SKOV3 cells, activation of p38 and an increase in p130/Rb occurred once anchorage-independent culture was established. Analyses of the survival signaling pathway switched on by IGROV1 cells showed that activation of ERK1/2 was required to evade apoptosis, an effect partly dependent on PKC activation and αv integrins. αv-integrin expression is essential for survival through activation of ERK1/2 phosphorylation. The above data indicate that ovarian cancer cells can resist anoikis in the spheroid state by arrest in the cell cycle or through activation of αv-integrin-ERK-mediated survival signals. Such signaling might result in the selection of resistant cells within disseminating spheroids, favoring further relapse in ovarian cancers.

  20. Arctigenin anti-tumor activity in bladder cancer T24 cell line through induction of cell-cycle arrest and apoptosis.

    PubMed

    Yang, Shucai; Ma, Jing; Xiao, Jianbing; Lv, Xiaohong; Li, Xinlei; Yang, Huike; Liu, Ying; Feng, Sijia; Zhang, Yafang

    2012-08-01

    Bladder cancer is the most common neoplasm in the urinary system. This study assesses arctigenin anti-tumor activity in human bladder cancer T24 cells in vitro and the underlying molecular events. The flow cytometry analysis was used to detect cell-cycle distribution and apoptosis. Western blotting was used to detect changes in protein expression. The data showed that arctigenin treatment reduced viability of bladder cancer T24 cells in a dose- and time-dependent manner after treatment with arctigenin (10, 20, 40, 80, and 100 μmol/L) for 24 hr and 48 hr. Arctigenin treatment clearly arrested tumor cells in the G1 phase of the cell cycle. Apoptosis was detected by hoechst stain and flow cytometry after Annexin-V-FITC/PI double staining. Early and late apoptotic cells were accounted for 2.32-7.01% and 3.07-7.35%, respectively. At the molecular level, arctigenin treatment decreased cyclin D1 expression, whereas CDK4 and CDK6 expression levels were unaffected. Moreover, arctigenin selectively altered the phosphorylation of members of the MAPK superfamily, decreasing phosphorylation of ERK1/2 and activated phosphorylation of p38 significantly in a dose-dependent manner. These results suggest that arctigenin may inhibit cell viability and induce apoptosis by direct activation of the mitochondrial pathway, and the mitogen-activated protein kinase pathway may play an important role in the anti-tumor effect of arctigenin. The data from the current study demonstrate the usefulness of arctigenin in bladder cancer T24 cells, which should further be evaluated in vivo before translation into clinical trials for the chemoprevention of bladder cancer.

  1. Astaxanthin Inhibits Proliferation and Induces Apoptosis and Cell Cycle Arrest of Mice H22 Hepatoma Cells

    PubMed Central

    Shao, Yiye; Ni, Yanbo; Yang, Jing; Lin, Xutao; Li, Jun; Zhang, Lixia

    2016-01-01

    Background It is widely recognized that astaxanthin (ASX), a member of the carotenoid family, has strong biological activities including antioxidant, anti-inflammation, and immune-modulation activities. Previous studies have confirmed that ASX can effectively inhibit hepatoma cells in vitro. Material/Methods MTT was used to assay proliferation of mice H22 cells, and flow cytometry was used to determine apoptosis and cell cycle arrest of H22 cells in vitro and in vivo. Moreover, anti-tumor activity of ASX was observed in mice. Results ASX inhibited the proliferation of H22 cells, promoted cell necrosis, and induced cell cycle arrest in G2 phase in vitro and in vivo. Conclusions This study indicated that ASX can inhibit proliferation and induce apoptosis and cell cycle arrest in mice H22 hepatoma cells in vitro and in vivo. PMID:27333866

  2. MST-312 induces G2/M cell cycle arrest and apoptosis in APL cells through inhibition of telomerase activity and suppression of NF-κB pathway.

    PubMed

    Fatemi, Ahmad; Safa, Majid; Kazemi, Ahmad

    2015-11-01

    Telomerase-targeted therapy for cancer has received great attention because telomerase is expressed in almost all cancer cells but is inactive in most normal somatic cells. This study was aimed to investigate the effects of telomerase inhibitor MST-312, a chemically modified derivative of epigallocatechin gallate (EGCG), on acute promyelocytic leukemia (APL) cells. Our results showed that MST-312 exerted a dose-dependent short-term cytotoxic effect on APL cells, with G2/M cell cycle arrest. Moreover, MST-312 induced apoptosis of APL cells in caspase-mediated manner. Telomeric repeat amplification protocol (TRAP) assay revealed significant reduction in telomerase activity of APL cells following short-term exposure to MST-312. Interestingly, MST-312-induced telomerase inhibition was coupled with suppression of NF-κB activity as evidenced by inhibition of IκBα phosphorylation and its degradation and decreased NF-κB DNA binding activity. In addition, gene expression analysis showed downregulation of genes regulated by NF-κB, such as antiapoptotic (survivin, Bcl-2, Mcl-1), proliferative (c-Myc), and telomerase-related (hTERT) genes. Importantly, MST-312 did not show any apoptotic effect in normal human peripheral blood mononuclear cells (PBMCs). In conclusion, our data suggest that dual inhibition of telomerase activity and NF-κB pathway by MST-312 represents a novel treatment strategy for APL.

  3. Myricetin and methyl eugenol combination enhances the anticancer activity, cell cycle arrest and apoptosis induction of cis-platin against HeLa cervical cancer cell lines.

    PubMed

    Yi, Jin-Ling; Shi, Song; Shen, Yan-Li; Wang, Ling; Chen, Hai-Yan; Zhu, Jun; Ding, Yan

    2015-01-01

    Drug combination therapies are common practice in the treatment of cancer. In this study, we evaluated the anticancer effects of myricetin (MYR), methyl eugenol (MEG) and cisplatin (CP) both separately as well as in combination against cervical cancer (HeLa) cells. To demonstrate whether MYR and MEG enhance the anticancer activity of CP against cervical cancer cells, we treated HeLa cells with MYR and MEG alone or in combination with cisplatin and evaluated cell growth and apoptosis using MTT (3 (4, 5 dimethyl thiazol 2yl) 2, 5 diphenyltetrazolium bromide) assay, LDH release assay, flow cytometry and fluorescence microscopy. The results revealed that, as compared to single drug treatment, the combination of MYR or MEG with CP resulted in greater effect in inhibiting cancer cell growth and inducing apoptosis. Cell apoptosis induction, Caspase-3 activity, cell cycle arrest and mitochondrial membrane potential loss were systematically studied to reveal the mechanisms of synergy between MYR, MEG and CP. Combination of MYR or MEG with CP resulted in more potent apoptosis induction as revealed by fluorescence microscopy using Hoechst 33258 and AO-ETBR staining. The combination treatment also increased the number of cells in G0/G1 phase dramatically as compared to single drug treatment. Mitochondrial membrane potential loss (ΛΨm) as well as Caspase-3 activity was much higher in combination treatment as compared to single drug treatment. Findings of this investigation suggest that MYR and MEG combined with cisplatin is a potential clinical chemotherapeutic approach in human cervical cancer.

  4. Peroxisome Proliferator-activated Receptor γ Agonists Induce Cell Cycle Arrest through Transcriptional Regulation of Krüppel-like Factor 4 (KLF4)*

    PubMed Central

    Li, Sheng; Zhou, Qibing; He, Huan; Zhao, Yahui; Liu, Zhihua

    2013-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ), a subgroup of ligand-activated nuclear receptors, plays critical roles in cell cycle regulation, differentiation, apoptosis, and invasion. PPARγ is involved in tumorigenesis and is a potent target for cancer therapy. PPARγ transactivation of KLF4 has been demonstrated in various studies; however, how PPARγ regulates KLF4 expression is not clear. In this study, we reveal that PPARγ regulates the expression of KLF4 by binding directly to the PPAR response element (PPRE) within the KLF4 promoter. The PPRE resides at −1657 to −1669 bp upstream of the KLF4 ATG codon, which is essential for the transactivation of troglitazone-induced KLF4 expression. Furthermore, we found that stable silencing of KLF4 obviously suppressed the G1/S arrest and anti-proliferation effects induced by PPARγ ligands. Taken together, our data indicate that up-regulation of KLF4 upon PPARγ activation is mediated through the PPRE in the KLF4 promoter, thus providing further insights into the PPARγ signal transduction pathway as well as a novel cancer therapeutic strategy. PMID:23275339

  5. Antiproliferative activity of Alisol B in MDA-MB-231 cells is mediated by apoptosis, dysregulation of mitochondrial functions, cell cycle arrest and generation of reactive oxygen species.

    PubMed

    Zhang, Aifeng; Sheng, Yuqing; Zou, Mingchang

    2017-03-01

    Previous studies have demonstrated that Alisol B has inhibitory activity in cancer cells. However, the exact mechanism through which inhibition is achieved is still poorly understood. In the present study, the authors examined the effects of Alisol B in human breast cancer cells. Alisol B showed significant anticancer activity in MDA-MB-231 cells. The results demonstrated that the cytotoxicity induced by Alisol B was mediated by induction of apoptosis, decrease in mitochondrial membrane potential, cell cycle arrest, activation of caspases and accumulation of ROS (reactive oxygen species) level. Interestingly, pretreatment of cells with the general caspase inhibitor z-VAD-FMK significantly prevented Alisol B-induced apoptosis. Furthermore, western blot analysis revealed the upregulation of p-p38 and downregulation of p-AKT, p-p65 and p-mTOR. Taken together, the above results suggest that Alisol B suppresses the growth of MDA-MB-231 cells mainly through induction of apoptosis; this outcome may represent the major mechanism of Alisol B-mediated apoptosis.

  6. Ferulago angulata activates intrinsic pathway of apoptosis in MCF-7 cells associated with G1 cell cycle arrest via involvement of p21/p27.

    PubMed

    Karimian, Hamed; Moghadamtousi, Soheil Zorofchian; Fadaeinasab, Mehran; Golbabapour, Shahram; Razavi, Mahboubeh; Hajrezaie, Maryam; Arya, Aditya; Abdulla, Mahmood Ameen; Mohan, Syam; Ali, Hapipah Mohd; Noordin, Mohamad Ibrahim

    2014-01-01

    Ferulago angulata is a medicinal plant that is traditionally known for its anti-inflammatory and antiulcer properties. The present study was aimed to evaluate its anticancer activity and the possible mechanism of action using MCF-7 as an in vitro model. F. angulata leaf extracts were prepared using solvents in the order of increasing polarity. As determined by MTT assay, F. angulata leaves hexane extract (FALHE) revealed the strongest cytotoxicity against MCF-7 cells with the half maximal inhibitory concentration (IC50) value of 5.3 ± 0.82 μg/mL. The acute toxicity study of FALHE provided evidence of the safety of the plant extract. Microscopic and flow cytometric analysis using annexin-V probe showed an induction of apoptosis in MCF-7 by FALHE. Treatment of MCF-7 cells with FALHE encouraged the intrinsic pathway of apoptosis, with cell death transducing signals that reduced the mitochondrial membrane potential with cytochrome c release from mitochondria to cytosol. The released cytochrome c triggered the activation of caspase-9. Meanwhile, the overexpression of caspase-8 suggested the involvement of an extrinsic pathway in the induced apoptosis at the late stage of treatment. Moreover, flow cytometric analysis showed that FALHE treatment significantly arrested MCF-7 cells in the G1 phase, which was associated with upregulation of p21 and p27 assessed by quantitative polymerase chain reaction. Immunofluorescence and the quantitative polymerase chain reaction analysis of MCF-7 cells after treatment with FALHE revealed an upregulation of Bax and a downregulation of Bcl-2 proteins. These findings proposed that FALHE suppressed the proliferation of MCF-7 cells via cell cycle arrest and the induction of apoptosis through intrinsic pathway.

  7. Comparison of the activity of three different HSP70 inhibitors on apoptosis, cell cycle arrest, autophagy inhibition, and HSP90 inhibition.

    PubMed

    Budina-Kolomets, Anna; Balaburski, Gregor M; Bondar, Anastasia; Beeharry, Neil; Yen, Tim; Murphy, Maureen E

    2014-02-01

    The chaperone HSP70 promotes the survival of cells exposed to many different types of stresses, and is also potently anti-apoptotic. The major stress-induced form of this protein, HSP70-1, is overexpressed in a number of human cancers, yet is negligibly expressed in normal cells. Silencing of the gene encoding HSP70-1 (HSPA1A) is cytotoxic to transformed but not normal cells. Therefore, HSP70 is considered to be a promising cancer drug target, and there has been active interest in the identification and characterization of HSP70 inhibitors for cancer therapy. Because HSP70 behaves in a relatively non-specific manner in the control of protein folding, to date there are no reliably-identified "clients" of this protein, nor is there consensus as to what the phenotypic effects of HSP70 inhibitors are on a cancer cell. Here for the first time we compare three recently-identified HSP70 inhibitors, PES-Cl, MKT-077, and Ver-155008, for their ability to impact some of the known and reported functions of this chaperone; specifically, the ability to inhibit autophagy, to influence the level of HSP90 client proteins, to induce cell cycle arrest, and to inhibit the enzymatic activity of the anaphase-promoting complex/cyclosome (APC/C). We report that all three of these compounds can inhibit autophagy and cause reduced levels of HSP90 client proteins; however, only PES-Cl can inhibit the APC/C and induce G 2/M arrest. Possible reasons for these differences, and the implications for the further development of these prototype compounds as anti-cancer agents, are discussed.

  8. Decursin inhibits growth of human bladder and colon cancer cells via apoptosis, G1-phase cell cycle arrest and extracellular signal-regulated kinase activation.

    PubMed

    Kim, Wun-Jae; Lee, Se-Jung; Choi, Young Deuk; Moon, Sung-Kwon

    2010-04-01

    Decursin, a pyranocoumarin isolated from the Korean Angelica gigas root, has demonstrated anti-cancer properties. In the present study, we found that decursin inhibited cell viability in cultured human urinary bladder cancer 235J cells and colon cancer HCT116 cells. The inhibited proliferation was due to apoptotic induction, because both cells treated with decursin dose-dependently showed a sub-G1 phase accumulation and an increased cytoplasmic DNA-histone complex. Cell death caused by decursin was also associated with the down-regulation of anti-apoptotic factor Bcl-2 and the up-regulation of pro-apoptotic molecules cytochrome c, caspase 3 and Bax. Treatment of both types of cancer cells with decursin resulted in G1-phase cell cycle arrest, as revealed by FACS analyses. In addition, decursin increased protein levels of p21WAF1 with a decrease in cyclins and cyclin dependent kinases (CDKs). Furthermore, decursin induced the activation of extracellular signal-regulated kinases (ERK) in both cancer cell lines, with the notable exceptions of c-Jun N-terminal kinase (JNK) and p38 mitogen activated protein (MAP) kinase. Finally, pretreatment with ERK-specific inhibitor PD98059 reversed decursin-induced p21WAF1 expression and decursin-inhibited cell growth. Thus, these findings suggest that decursin has potential therapeutic efficacy for the treatment of bladder and colon cancer.

  9. Computation Molecular Kinetics Model of HZE Induced Cell Cycle Arrest

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Ren, Lei

    2004-01-01

    Cell culture models play an important role in understanding the biological effectiveness of space radiation. High energy and charge (HZE) ions produce prolonged cell cycle arrests at the G1/S and G2/M transition points in the cell cycle. A detailed description of these phenomena is needed to integrate knowledge of the expression of DNA damage in surviving cells, including the determination of relative effectiveness factors between different types of radiation that produce differential types of DNA damage and arrest durations. We have developed a hierarchical kinetics model that tracks the distribution of cells in various cell phase compartments (early G1, late G1, S, G2, and M), however with transition rates that are controlled by rate-limiting steps in the kinetics of cyclin-cdk's interactions with their families of transcription factors and inhibitor molecules. The coupling of damaged DNA molecules to the downstream cyclin-cdk inhibitors is achieved through a description of the DNA-PK and ATM signaling pathways. For HZE irradiations we describe preliminary results, which introduce simulation of the stochastic nature of the number of direct particle traversals per cell in the modulation of cyclin-cdk and cell cycle population kinetics. Comparison of the model to data for fibroblast cells irradiated photons or HZE ions are described.

  10. Wogonoside induces growth inhibition and cell cycle arrest via promoting the expression and binding activity of GATA-1 in chronic myelogenous leukemia cells.

    PubMed

    Li, Hui; Hui, Hui; Xu, Jingyan; Yang, Hao; Zhang, Xiaoxiao; Liu, Xiao; Zhou, Yuxin; Li, Zhiyu; Guo, Qinglong; Lu, Na

    2016-06-01

    GATA-1, a zinc finger transcription factor, has been demonstrated to play a key role in the progression of leukemia. In this study, we investigate the effects of wogonoside, a naturally bioactive flavonoid derived from Scutellaria baicalensis Georgi, on cell growth and cell cycle in chronic myeloid leukemia (CML) cells, and uncover its underlying mechanisms. The experimental design comprised CML cell lines K562, imatinib-resistant K562 (K562r) cells, and primary CML cells, treated in vitro or in vivo, respectively, with wogonoside; growth and cell cycle were then evaluated. We found that wogonoside could induce growth inhibition and G0/G1 cell cycle arrest in both normal and K562r cells. Wogonoside promotes the expression of GATA-1 and facilitates the binding to methyl ethyl ketone (MEK) and p21 promoter, thus inhibiting MEK/extracellular signal-regulated kinase signaling and cell cycle checkpoint proteins, including CDK2, CDK4, cyclin A, and cyclin D1, and increasing p21 expression. Furthermore, in vivo studies showed that administration of wogonoside decreased CML cells and prolonged survival in NOD/SCID mice with CML cell xenografts. In conclusion, these results clearly revealed the inhibitory effect of wogonoside on the growth in CML cells and suggested that wogonoside may act as a promising drug for the treatment of imatinib-resistant CML.

  11. Inhibition of leukemic U937 cell growth by induction of apoptosis, cell cycle arrest and suppression of VEGF, MMP-2 and MMP-9 activities by cytotoxin protein NN-32 purified from Indian spectacled cobra (Naja naja) venom.

    PubMed

    Das, Tanaya; Bhattacharya, Shamik; Biswas, Archita; Gupta, Shubho Das; Gomes, Antony; Gomes, Aparna

    2013-04-01

    A cytotoxin NN-32 (6.7 kDa) from Indian cobra (Naja naja) venom inhibited human leukemic U937 cell growth as observed by Trypan blue dye exclusion method and cytotoxicity was confirmed by MTT assay. NN-32 induced apoptosis of U937 cell and cell cycle arrest of sub-G1 phase were revealed by FACS analysis. Increased Bax/Bcl-2 ratio, increased caspase 3 and 9 activities, cleaved PARP, decreased VEGF, MMP-2 and MMP-9 activities were observed after NN-32 treatment of U937 cell. Antileukemic activity of NN-32 on U937 cell may be due to activation of apoptosis, arresting cell cycle and antiangiogenesis activities.

  12. A platinum(II) complex of liriodenine from traditional Chinese medicine (TCM): Cell cycle arrest, cell apoptosis induction and telomerase inhibition activity via G-quadruplex DNA stabilization.

    PubMed

    Li, Yu-Lan; Qin, Qi-Pin; Liu, Yan-Cheng; Chen, Zhen-Feng; Liang, Hong

    2014-08-01

    Liriodenine (L), an antitumor active ingredient from the traditional Chinese medicine (TCM), Zanthoxylum nitidum, afforded a platinum(II) complex (1) of L, cis-[PtCl2(L)(DMSO)], which previously reported for its in vitro antitumor activity and intercalative binding with DNA. In this study, complex 1 was further discussed for its antitumor mechanism and structure-activity relationship, comparing with L and cisplatin. Towards the most sensitive BEL-7404 human hepatoma cells, complex 1 significantly induced cell cycle arrest at both G2/M phase and S phase. It suggests that double helix DNA is not the simplex intracellular target for 1. On the other hand, the BEL-7404 cells incubated with 1 and stained by Hoechst 33258 and AO/EB showed typical cell apoptosis in dose-dependent manner. The BEL-7404 cells incubated with 1 and stained by JC-1 were also characteristic for cell apoptosis on the loss of mitochondrial membrane potential. Furthermore, the G-quadruplex DNA binding property of complex 1 was also investigated by spectroscopic analyses, fluorescent indicator displacement (FID) assay and fluorescence resonance energy transfer (FRET) assay. The results indicated that 1 stabilized the human telomeric G4-HTG21 DNA better than L. The telomerase inhibition ratio of 1 ((62.50±0.03)%), which was examined by telomerase polymerase chain reaction-enzyme-linked immunosorbent assay (PCR-ELISA), was much higher than L ((21.77±0.01)%). It can be ascribed to the better G4-HTG21 DNA stabilization of 1 than L. The results suggested that the nuclei, mitochondria and telomerase via G-quadruplex DNA stabilization all should be key targets for the antitumor mechanism of 1, in which the central platinum(II) played a key role.

  13. Myricetin and methyl eugenol combination enhances the anticancer activity, cell cycle arrest and apoptosis induction of cis-platin against HeLa cervical cancer cell lines

    PubMed Central

    Yi, Jin-Ling; Shi, Song; Shen, Yan-Li; Wang, Ling; Chen, Hai-Yan; Zhu, Jun; Ding, Yan

    2015-01-01

    Drug combination therapies are common practice in the treatment of cancer. In this study, we evaluated the anticancer effects of myricetin (MYR), methyl eugenol (MEG) and cisplatin (CP) both separately as well as in combination against cervical cancer (HeLa) cells. To demonstrate whether MYR and MEG enhance the anticancer activity of CP against cervical cancer cells, we treated HeLa cells with MYR and MEG alone or in combination with cisplatin and evaluated cell growth and apoptosis using MTT (3 (4, 5 dimethyl thiazol 2yl) 2, 5 diphenyltetrazolium bromide) assay, LDH release assay, flow cytometry and fluorescence microscopy. The results revealed that, as compared to single drug treatment, the combination of MYR or MEG with CP resulted in greater effect in inhibiting cancer cell growth and inducing apoptosis. Cell apoptosis induction, Caspase-3 activity, cell cycle arrest and mitochondrial membrane potential loss were systematically studied to reveal the mechanisms of synergy between MYR, MEG and CP. Combination of MYR or MEG with CP resulted in more potent apoptosis induction as revealed by fluorescence microscopy using Hoechst 33258 and AO-ETBR staining. The combination treatment also increased the number of cells in G0/G1 phase dramatically as compared to single drug treatment. Mitochondrial membrane potential loss (ΛΨm) as well as Caspase-3 activity was much higher in combination treatment as compared to single drug treatment. Findings of this investigation suggest that MYR and MEG combined with cisplatin is a potential clinical chemotherapeutic approach in human cervical cancer. PMID:25972998

  14. Valproic acid induces apoptosis and cell cycle arrest in poorly differentiated thyroid cancer cells.

    PubMed

    Catalano, Maria G; Fortunati, Nicoletta; Pugliese, Mariateresa; Costantino, Lucia; Poli, Roberta; Bosco, Ornella; Boccuzzi, Giuseppe

    2005-03-01

    Poorly differentiated thyroid carcinoma is an aggressive human cancer that is resistant to conventional therapy. Histone deacetylase inhibitors are a promising class of drugs, acting as antiproliferative agents by promoting differentiation, as well as inducing apoptosis and cell cycle arrest. Valproic acid (VPA), a class I selective histone deacetylase inhibitor widely used as an anticonvulsant, promotes differentiation in poorly differentiated thyroid cancer cells by inducing Na(+)/I(-) symporter and increasing iodine uptake. Here, we show that it is also highly effective at suppressing growth in poorly differentiated thyroid cancer cell lines (N-PA and BHT-101). Apoptosis induction and cell cycle arrest are the underlying mechanisms of VPA's effect on cell growth. It induces apoptosis by activating the intrinsic pathway; caspases 3 and 9 are activated but not caspase 8. Cell cycle is selectively arrested in G(1) and is associated with the increased expression of p21 and the reduced expression of cyclin A. Both apoptosis and cell cycle arrest are induced by treatment with 1 mm VPA, a dose that promotes cell redifferentiation and that is slightly above the serum concentration reached in patients treated for epilepsy. These multifaceted properties make VPA of clinical interest as a new approach to treating poorly differentiated thyroid cancer.

  15. Natural Compounds as Modulators of Cell Cycle Arrest: Application for Anticancer Chemotherapies.

    PubMed

    Bailon-Moscoso, Natalia; Cevallos-Solorzano, Gabriela; Romero-Benavides, Juan Carlos; Orellana, Maria Isabel Ramirez

    2017-04-01

    Natural compounds from various plants, microorganisms and marine species play an important role in the discovery novel components that can be successfully used in numerous biomedical applications, including anticancer therapeutics. Since uncontrolled and rapid cell division is a hallmark of cancer, unraveling the molecular mechanisms underlying mitosis is key to understanding how various natural compounds might function as inhibitors of cell cycle progression. A number of natural compounds that inhibit the cell cycle arrest have proven effective for killing cancer cells in vitro, in vivo and in clinical settings. Significant advances that have been recently made in the understanding of molecular mechanisms underlying the cell cycle regulation using the chemotherapeutic agents is of great importance for improving the efficacy of targeted therapeutics and overcoming resistance to anticancer drugs, especially of natural origin, which inhibit the activities of cyclins and cyclin-dependent kinases, as well as other proteins and enzymes involved in proper regulation of cell cycle leading to controlled cell proliferation.

  16. Naphthazarin enhances ionizing radiation-induced cell cycle arrest and apoptosis in human breast cancer cells.

    PubMed

    Kim, Min Young; Park, Seong-Joon; Shim, Jae Woong; Yang, Kwangmo; Kang, Ho Sung; Heo, Kyu

    2015-04-01

    Naphthazarin (Naph, DHNQ, 5,8-dihydroxy-l,4-naphthoquinone) is one of the naturally available 1,4-naphthoquinone derivatives that are well-known for their anti-inflammatory, antioxidant, antibacterial and antitumor cytotoxic effects in cancer cells. Herein, we investigated whether Naph has effects on cell cycle arrest and apoptosis in MCF-7 human breast cancer cells exposed to ionizing radiation (IR). Naph reduced the MCF-7 cell viability in a dose-dependent manner. We also found that Naph and/or IR increased the p53-dependent p21 (CIP/WAF1) promoter activity. Noteworthy, our ChIP assay results showed that Naph and IR combined treatment activated the p21 promoter via inhibition of binding of multi-domain proteins, DNMT1, UHRF1 and HDAC1. Apoptosis and cell cycle analyses demonstrated that Naph and IR combined treatment induced cell cycle arrest and apoptosis in MCF-7 cells. Herein, we showed that Naph treatment enhances IR-induced cell cycle arrest and death in MCF-7 human breast cancer cells through the p53-dependent p21 activation mechanism. These results suggest that Naph might sensitize breast cancer cells to radiotherapy by enhancing the p53-p21 mechanism activity.

  17. Dux4 induces cell cycle arrest at G1 phase through upregulation of p21 expression

    SciTech Connect

    Xu, Hongliang; Wang, Zhaoxia; Jin, Suqin; Hao, Hongjun; Zheng, Lemin; Zhou, Boda; Zhang, Wei; Lv, He; Yuan, Yun

    2014-03-28

    Highlights: • Dux4 induced TE671 cell proliferation defect and G1 phase arrest. • Dux4 upregulated p21 expression without activating p53. • Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. • Sp1 binding site was required for Dux4-induced p21 promoter activation. - Abstract: It has been implicated that Dux4 plays crucial roles in development of facioscapulohumeral dystrophy. But the underlying myopathic mechanisms and related down-stream events of this retrogene were far from clear. Here, we reported that overexpression of Dux4 in a cell model TE671 reduced cell proliferation rate, and increased G1 phase accumulation. We also determined the impact of Dux4 on p53/p21 signal pathway, which controls the checkpoint in cell cycle progression. Overexpression of Dux4 increased p21 mRNA and protein level, while expression of p53, phospho-p53 remained unchanged. Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. Furthermore, we demonstrated that enhanced Dux4 expression increased p21 promoter activity and elevated expression of Sp1 transcription factor. Mutation of Sp1 binding site decreased dux4 induced p21 promoter activation. Chromatin immunoprecipitation (ChIP) assays confirmed the Dux4-induced binding of Sp1 to p21 promoter in vivo. These results suggest that Dux4 might induce proliferation inhibition and G1 phase arrest through upregulation of p21.

  18. Helicobacter pylori Induced Phosphatidylinositol-3-OH Kinase/mTOR Activation Increases Hypoxia Inducible Factor-1α to Promote Loss of Cyclin D1 and G0/G1 Cell Cycle Arrest in Human Gastric Cells

    PubMed Central

    Canales, Jimena; Valenzuela, Manuel; Bravo, Jimena; Cerda-Opazo, Paulina; Jorquera, Carla; Toledo, Héctor; Bravo, Denisse; Quest, Andrew F. G.

    2017-01-01

    Helicobacter pylori (H. pylori) is a human gastric pathogen that has been linked to the development of several gastric pathologies, such as gastritis, peptic ulcer, and gastric cancer. In the gastric epithelium, the bacterium modifies many signaling pathways, resulting in contradictory responses that favor both proliferation and apoptosis. Consistent with such observations, H. pylori activates routes associated with cell cycle progression and cell cycle arrest. H. pylori infection also induces the hypoxia-induced factor HIF-1α, a transcription factor known to promote expression of genes that permit metabolic adaptation to the hypoxic environment in tumors and angiogenesis. Recently, however, also roles for HIF-1α in the repair of damaged DNA and inhibition of gene expression were described. Here, we investigated signaling pathways induced by H. pylori in gastric cells that favor HIF-1α expression and the consequences thereof in infected cells. Our results revealed that H. pylori promoted PI3K/mTOR-dependent HIF-1α induction, HIF-1α translocation to the nucleus, and activity as a transcription factor as evidenced using a reporter assay. Surprisingly, however, transcription of known HIF-1α effector genes evaluated by qPCR analysis, revealed either no change (LDHA and GAPDH), statistically insignificant increases SLC2A1 (GLUT-1) or greatly enhance transcription (VEGFA), but in an HIF-1α-independent manner, as quantified by PCR analysis in cells with shRNA-mediated silencing of HIF-1α. Instead, HIF-1α knockdown facilitated G1/S progression and increased Cyclin D1 protein half-life, via a post-translational pathway. Taken together, these findings link H. pylori-induced PI3K-mTOR activation to HIF-1α induced G0/G1 cell cycle arrest by a Cyclin D1-dependent mechanism. Thus, HIF-1α is identified here as a mediator between survival and cell cycle arrest signaling activated by H. pylori infection.

  19. Helicobacter pylori Induced Phosphatidylinositol-3-OH Kinase/mTOR Activation Increases Hypoxia Inducible Factor-1α to Promote Loss of Cyclin D1 and G0/G1 Cell Cycle Arrest in Human Gastric Cells.

    PubMed

    Canales, Jimena; Valenzuela, Manuel; Bravo, Jimena; Cerda-Opazo, Paulina; Jorquera, Carla; Toledo, Héctor; Bravo, Denisse; Quest, Andrew F G

    2017-01-01

    Helicobacter pylori (H. pylori) is a human gastric pathogen that has been linked to the development of several gastric pathologies, such as gastritis, peptic ulcer, and gastric cancer. In the gastric epithelium, the bacterium modifies many signaling pathways, resulting in contradictory responses that favor both proliferation and apoptosis. Consistent with such observations, H. pylori activates routes associated with cell cycle progression and cell cycle arrest. H. pylori infection also induces the hypoxia-induced factor HIF-1α, a transcription factor known to promote expression of genes that permit metabolic adaptation to the hypoxic environment in tumors and angiogenesis. Recently, however, also roles for HIF-1α in the repair of damaged DNA and inhibition of gene expression were described. Here, we investigated signaling pathways induced by H. pylori in gastric cells that favor HIF-1α expression and the consequences thereof in infected cells. Our results revealed that H. pylori promoted PI3K/mTOR-dependent HIF-1α induction, HIF-1α translocation to the nucleus, and activity as a transcription factor as evidenced using a reporter assay. Surprisingly, however, transcription of known HIF-1α effector genes evaluated by qPCR analysis, revealed either no change (LDHA and GAPDH), statistically insignificant increases SLC2A1 (GLUT-1) or greatly enhance transcription (VEGFA), but in an HIF-1α-independent manner, as quantified by PCR analysis in cells with shRNA-mediated silencing of HIF-1α. Instead, HIF-1α knockdown facilitated G1/S progression and increased Cyclin D1 protein half-life, via a post-translational pathway. Taken together, these findings link H. pylori-induced PI3K-mTOR activation to HIF-1α induced G0/G1 cell cycle arrest by a Cyclin D1-dependent mechanism. Thus, HIF-1α is identified here as a mediator between survival and cell cycle arrest signaling activated by H. pylori infection.

  20. Mefloquine inhibits chondrocytic proliferation by arresting cell cycle in G2/M phase.

    PubMed

    Li, Qiong; Chen, Zeng-Gan; Xia, Qing; Lin, Jian-Ping; Yan, Zuo-Qin; Yao, Zheng-Jun; Dong, Jian

    2015-01-01

    Mefloquine (MQ), an analog of chloroquine, exhibits a promising cytotoxic activity against carcinoma cell lines and for the treatment of glioblastoma patients. The present study demonstrates the effect of mefloquine on proliferation and cell cycle in chondrocytes. MTT assay and propidium iodide staining were used for the analysis of proliferation and cell cycle distribution, respectively. Western blot analysis was used to examine the expression levels of cyclin B1/cdc2, cdc25c, p21WAF1/CIP1 and p53. The results revealed that mefloquine inhibited the proliferation of chondrocytes and caused cell cycle arrests in the G2/M phase. The proliferation of chondrocytes was reduced to 27% at 40 μM concentration of mefloquine after 48 h. The population of chondrocytes in G2/M phase was found to be 15.7 and 48.4%, respectively at 10 and 40 μM concentration of mefloquine at 48 h following treatment. The expression of the cell cycle regulatory proteins including, cyclin B1/cdc2 and cdc25c was inhibited. On the other hand, mefloquine treatment promoted the expression of p21WAF1/CIP1 and p53 at 40 μM concentration after 48 h. Therefore, mefloquine inhibits proliferation and induces cell cycle arrest in chondrocytes.

  1. Nucleolar asymmetry and the importance of septin integrity upon cell cycle arrest

    PubMed Central

    Rai, Urvashi; Najm, Fadi

    2017-01-01

    Cell cycle arrest can be imposed by inactivating the anaphase promoting complex (APC). In S. cerevisiae this arrest has been reported to stabilize a metaphase-like intermediate in which the nuclear envelope spans the bud neck, while chromatin repeatedly translocates between the mother and bud domains. The present investigation was undertaken to learn how other features of nuclear organization are affected upon depletion of the APC activator, Cdc20. We observe that the spindle pole bodies and the spindle repeatedly translocate across the narrow orifice at the level of the neck. Nevertheless, we find that the nucleolus (organized around rDNA repeats on the long right arm of chromosome XII) remains in the mother domain, marking the polarity of the nucleus. Accordingly, chromosome XII is polarized: TelXIIR remains in the mother domain and its centromere is predominantly located in the bud domain. In order to learn why the nucleolus remains in the mother domain, we studied the impact of inhibiting rRNA synthesis in arrested cells. We observed that this fragments the nucleolus and that these fragments entered the bud domain. Taken together with earlier observations, the restriction of the nucleolus to the mother domain therefore can be attributed to its massive structure. We also observed that inactivation of septins allowed arrested cells to complete the cell cycle, that the alternative APC activator, Cdh1, was required for completion of the cell cycle and that induction of Cdh1 itself caused arrested cells to progress to the end of the cell cycle. PMID:28339487

  2. Non-selective cation channel-mediated Ca2+-entry and activation of Ca2+/calmodulin-dependent kinase II contribute to G2/M cell cycle arrest and survival of irradiated leukemia cells.

    PubMed

    Heise, Nicole; Palme, Daniela; Misovic, Milan; Koka, Saisudha; Rudner, Justine; Lang, Florian; Salih, Helmut R; Huber, Stephan M; Henke, Guido

    2010-01-01

    Genotoxic stress induces cell cycle arrest and DNA repair which may enable tumor cells to survive radiation therapy. Here, we defined the role of Ca(2+) signaling in the cell cycle control and survival of chronic myeloid leukemia (CML) cells subjected to ionizing radiation (IR). To this end, K562 erythroid leukemia cells were irradiated (0-10 Gy). Tumor survival was analyzed by clonogenic survival assay and cell cycle progression via flow cytometry. Plasma membrane cation conductance was assessed by patch-clamp whole-cell recording and the cytosolic free Ca(2+) concentration ([Ca(2+)](i)) was measured by fura-2 Ca(2+) imaging. Nuclear activity of Ca(2+)/calmodulin-dependent kinase II (CaMKII) was defined by Western blotting. In addition, the effect of IR (5 Gy) on the cation conductance of primary CML cells was determined. The results indicated that IR (10 Gy) induced a G(2)/M cell cycle arrest of K562 cells within 24 h post-irradiation (p.i.) and decreased the clonogenic survival to 0.5 % of that of the control cells. In K562 cells, G(2)/M cell cycle arrest was preceded by activation of TRPV5/6-like nonselective cation channels in the plasma membrane 1-5 h p.i., resulting in an elevated Ca(2+) entry as evident from fura-2 Ca(2+) imaging. Similarly, IR stimulated a Ca(2+)-permeable nonselective cation conductance in primary CML cells within 2-4 h p.i.. Ca(2+) entry, into K562 cells was paralleled by an IR-induced activation of nuclear CaMKII. The IR-stimulated accumulation in G(2) phase was delayed upon buffering [Ca(2+)](i) with the Ca(2+) chelator BAPTA-AM or inhibiting CaMKII with KN93 (1 nM). In addition, KN93 decreased the clonogenic survival of irradiated cells but not of control cells. In conclusion, the data suggest that IR-stimulated cation channel activation, Ca(2+) entry and CaMKII activity participate in control of cell cycle progression and survival of irradiated CML cells.

  3. Piperlongumine Suppresses Proliferation of Human Oral Squamous Cell Carcinoma through Cell Cycle Arrest, Apoptosis and Senescence.

    PubMed

    Chen, San-Yuan; Liu, Geng-Hung; Chao, Wen-Ying; Shi, Chung-Sheng; Lin, Ching-Yen; Lim, Yun-Ping; Lu, Chieh-Hsiang; Lai, Peng-Yeh; Chen, Hau-Ren; Lee, Ying-Ray

    2016-04-23

    Oral squamous cell carcinoma (OSCC), an aggressive cancer originating in the oral cavity, is one of the leading causes of cancer deaths in males worldwide. This study investigated the antitumor activity and mechanisms of piperlongumine (PL), a natural compound isolated from Piper longum L., in human OSCC cells. The effects of PL on cell proliferation, the cell cycle, apoptosis, senescence and reactive oxygen species (ROS) levels in human OSCC cells were investigated. PL effectively inhibited cell growth, caused cell cycle arrest and induced apoptosis and senescence in OSCC cells. Moreover, PL-mediated anti-human OSCC behavior was inhibited by an ROS scavenger N-acetyl-l-cysteine (NAC) treatment, suggesting that regulation of ROS was involved in the mechanism of the anticancer activity of PL. These findings suggest that PL suppresses tumor growth by regulating the cell cycle and inducing apoptosis and senescence and is a potential chemotherapy agent for human OSCC cells.

  4. Naringin-induced p21WAF1-mediated G(1)-phase cell cycle arrest via activation of the Ras/Raf/ERK signaling pathway in vascular smooth muscle cells.

    PubMed

    Lee, Eo-Jin; Moon, Gi-Seong; Choi, Won-Seok; Kim, Wun-Jae; Moon, Sung-Kwon

    2008-12-01

    The flavonoid naringin has been shown to play a role in preventing the development of cardiovascular disease. However, the exact molecular mechanisms underlying the roles of integrated cell cycle regulation and MAPK signaling pathways in the regulation of naringin-induced inhibition of cell proliferation in vascular smooth muscle cells (VSMCs) remain to be identified. Naringin treatment resulted in significant growth inhibition and G(1)-phase cell cycle arrest mediated by induction of p53-independent p21WAF1 expression; expression of cyclins and CDKs in VSMCs was also down-regulated. In addition, among the pathways examined, blockade of ERK function inhibited naringin-dependent p21WAF1 expression, reversed naringin-mediated inhibition of cell proliferation and decreased cell cycle proteins. Moreover, naringin treatment increased both Ras and Raf activations. Transfection of cells with dominant negative Ras (RasN17) and Raf (RafS621A) mutant genes suppressed naringin-induced ERK activity and p21WAF1 expression. Finally, naringin-induced reduction in cell proliferation and cell cycle protein was abolished in the presence of RasN17 and RafS621A mutant genes. The Ras/Raf/ERK pathway participates in p21WAF1 induction, leading to a decrease in cyclin D1/CDK4 and cyclin E/CDK2 complexes and in naringin-dependent inhibition of cell growth. These novel and unexpected findings provide a theoretical basis for preventive use of flavonoids to the atherosclerosis disease.

  5. Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid cells.

    PubMed

    Kuffer, Christian; Kuznetsova, Anastasia Yurievna; Storchová, Zuzana

    2013-08-01

    Erroneously arising tetraploid mammalian cells are chromosomally instable and may facilitate cell transformation. An increasing body of evidence shows that the propagation of mammalian tetraploid cells is limited by a p53-dependent arrest. The trigger of this arrest has not been identified so far. Here we show by live cell imaging of tetraploid cells generated by an induced cytokinesis failure that most tetraploids arrest and die in a p53-dependent manner after the first tetraploid mitosis. Furthermore, we found that the main trigger is a mitotic defect, in particular, chromosome missegregation during bipolar mitosis or spindle multipolarity. Both a transient multipolar spindle followed by efficient clustering in anaphase as well as a multipolar spindle followed by multipolar mitosis inhibited subsequent proliferation to a similar degree. We found that the tetraploid cells did not accumulate double-strand breaks that could cause the cell cycle arrest after tetraploid mitosis. In contrast, tetraploid cells showed increased levels of oxidative DNA damage coinciding with the p53 activation. To further elucidate the pathways involved in the proliferation control of tetraploid cells, we knocked down specific kinases that had been previously linked to the cell cycle arrest and p53 phosphorylation. Our results suggest that the checkpoint kinase ATM phosphorylates p53 in tetraploid cells after abnormal mitosis and thus contributes to proliferation control of human aberrantly arising tetraploids.

  6. Kelussia odoratissima Mozaff. activates intrinsic pathway of apoptosis in breast cancer cells associated with S phase cell cycle arrest via involvement of p21/p27 in vitro and in vivo

    PubMed Central

    Karimian, Hamed; Arya, Aditya; Fadaeinasab, Mehran; Razavi, Mahboubeh; Hajrezaei, Maryam; Karim Khan, Ataul; Mohd Ali, Hapipah; Abdulla, Mahmood Ameen; Noordin, Mohamad Ibrahim

    2017-01-01

    Background The aim of this study was to evaluate the anticancer potential of Kelussia odoratissima. Several in vitro and in vivo biological assays were applied to explore the direct effect of an extract and bioactive compound of this plant against breast cancer cells and its possible mechanism of action. Materials and methods K. odoratissima methanol extract (KME) was prepared, and MTT assay was used to evaluate the cytotoxicity. To identify the cytotoxic compound, a bioassay-guided investigation was performed on methanol extract. 8-Hydroxy-ar-turmerone was isolated as a bioactive compound. In vivo study was performed in the breast cancer rat model. LA7 cell line was used to induce the breast tumor. Histopathological and expression changes of PCNA, Bcl-2, Bax, p27 and p21 and caspase-3 were examined. The induction of apoptosis was tested using Annexin V-fluorescein isothiocyanate (FITC) assay. To confirm the intrinsic pathway of apoptosis, caspase-7 and caspase-9 assays were utilized. In addition, cell cycle arrest was evaluated. Results Our results demonstrated that K. odoratissima has an obvious effect on the arrest of proliferation of cancer cells. It induced apoptosis, transduced the cell death signals, decreased the threshold of mitochondrial membrane potential (MMP), upregulated Bax and downregulated Bcl-2. Conclusion This study demonstrated that K. odoratissima exhibits antitumor activity against breast cancer cells via cell death and cell cycle arrest. PMID:28203057

  7. Digital Holographic Microscopy for Non-Invasive Monitoring of Cell Cycle Arrest in L929 Cells

    PubMed Central

    Falck Miniotis, Maria; Mukwaya, Anthonny; Gjörloff Wingren, Anette

    2014-01-01

    Digital holographic microscopy (DHM) has emerged as a powerful non-invasive tool for cell analysis. It has the capacity to analyse multiple parameters simultaneously, such as cell- number, confluence and phase volume. This is done while cells are still adhered and growing in their culture flask. The aim of this study was to investigate whether DHM was able to monitor drug-induced cell cycle arrest in cultured cells and thus provide a non-disruptive alternative to flow cytometry. DHM parameters from G1 and G2/M cell cycle arrested L929 mouse fibroblast cells were collected. Cell cycle arrest was verified with flow cytometry. This study shows that DHM is able to monitor phase volume changes corresponding to either a G1 or G2/M cell cycle arrest. G1-phase arrest with staurosporine correlated with a decrease in the average cell phase volume and G2/M-phase arrest with colcemid and etoposide correlated with an increase in the average cell phase volume. Importantly, DHM analysis of average cell phase volume was of comparable accuracy to flow cytometric measurement of cell cycle phase distribution as recorded following dose-dependent treatment with etoposide. Average cell phase volume changes in response to treatment with cell cycle arresting compounds could therefore be used as a DHM marker for monitoring cell cycle arrest in cultured mammalian cells. PMID:25208094

  8. Simvastatin induces cell cycle arrest and inhibits proliferation of bladder cancer cells via PPARγ signalling pathway

    PubMed Central

    Wang, Gang; Cao, Rui; Wang, Yongzhi; Qian, Guofeng; Dan, Han C.; Jiang, Wei; Ju, Lingao; Wu, Min; Xiao, Yu; Wang, Xinghuan

    2016-01-01

    Simvastatin is currently one of the most common drugs for old patients with hyperlipidemia, hypercholesterolemia and atherosclerotic diseases by reducing cholesterol level and anti-lipid properties. Importantly, simvastatin has also been reported to have anti-tumor effect, but the underlying mechanism is largely unknown. We collected several human bladder samples and performed microarray. Data analysis suggested bladder cancer (BCa) was significantly associated with fatty acid/lipid metabolism via PPAR signalling pathway. We observed simvastatin did not trigger BCa cell apoptosis, but reduced cell proliferation in a dose- and time-dependent manner, accompanied by PPARγ-activation. Moreover, flow cytometry analysis indicated that simvastatin induced cell cycle arrest at G0/G1 phase, suggested by downregulation of CDK4/6 and Cyclin D1. Furthermore, simvastatin suppressed BCa cell metastasis by inhibiting EMT and affecting AKT/GSK3β. More importantly, we found that the cell cycle arrest at G0/G1 phase and the alterations of CDK4/6 and Cyclin D1 triggered by simvastatin could be recovered by PPARγ-antagonist (GW9662), whereas the treatment of PPARα-antagonist (GW6471) shown no significant effects on the BCa cells. Taken together, our study for the first time revealed that simvastatin inhibited bladder cancer cell proliferation and induced cell cycle arrest at G1/G0 phase via PPARγ signalling pathway. PMID:27779188

  9. 3,3′-Diindolylmethane Ameliorates Experimental Autoimmune Encephalomyelitis by Promoting Cell Cycle Arrest and Apoptosis in Activated T Cells through MicroRNA Signaling Pathways

    PubMed Central

    Rouse, Michael; Rao, Roshni; Nagarkatti, Mitzi

    2014-01-01

    3,3′-Diindolylmethane (DIM) is a naturally derived indole found in cruciferous vegetables that has great potential as a novel and effective therapeutic agent. In the current study, we investigated the effects of DIM post-treatment on the regulation of activated T cells during the development of experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis. We demonstrated that the administration of DIM 10 days after EAE induction was effective at ameliorating disease parameters, including inflammation and central nervous system cellular infiltration. MicroRNA (miRNA) microarray analysis revealed an altered miRNA profile in brain infiltrating CD4+ T cells following DIM post-treatment of EAE mice. Additionally, bioinformatics analysis suggested the involvement of DIM-induced miRNAs in pathways and processes that halt cell cycle progression and promote apoptosis. Additional studies confirmed that DIM impacted these cellular processes in activated T cells. Further evidence indicated that DIM treatment significantly upregulated several miRNAs (miR-200c, miR-146a, miR-16, miR-93, and miR-22) in brain CD4+ T cells during EAE while suppressing their associated target genes. Similarly, we found that overexpression of miR-16 in primary CD4+ T cells led to significant downregulation of both mRNA and protein levels of cyclin E1 and B-cell lymphoma-2, which play important roles in regulating cell cycle progression and apoptosis. Collectively, these studies demonstrate that DIM post-treatment leads to the amelioration of EAE development by suppressing T-cell responses through the induction of select miRNAs that control cell cycle progression and mediate apoptosis. PMID:24898268

  10. Berberine induces cell cycle arrest and apoptosis in human gastric carcinoma SNU-5 cell line

    PubMed Central

    Lin, Jing-Pin; Yang, Jai-Sing; Lee, Jau-Hong; Hsieh, Wen-Tsong; Chung, Jing-Gung

    2006-01-01

    AIM: To investigate the relationship between the inhibited growth (cytotoxic activity) of berberine and apoptotic pathway with its molecular mechanism of action. METHODS: The in vitro cytotoxic techniques were complemented by cell cycle analysis and determination of sub-G1 for apoptosis in human gastric carcinoma SNU-5 cells. Percentage of viable cells, cell cycle, and sub-G1 group (apoptosis) were examined and determined by the flow cytometric methods. The associated proteins for cell cycle arrest and apoptosis were examined by Western blotting. RESULTS: For SNU-5 cell line, the IC (50) was found to be 48 μmol/L of berberine. In SNU-5 cells treated with 25-200 μmol/L berberine, G2/M cell cycle arrest was observed which was associated with a marked increment of the expression of p53, Wee1 and CDk1 proteins and decreased cyclin B. A concentration-dependent decrease of cells in G0/G1 phase and an increase in G2/M phase were detected. In addition, apoptosis detected as sub-G0 cell population in cell cycle measurement was proved in 25-200 μmol/L berberine-treated cells by monitoring the apoptotic pathway. Apoptosis was identified by sub-G0 cell population, and upregulation of Bax, downregulation of Bcl-2, release of Ca2+, decreased the mitochondrial membrane potential and then led to the release of mitochondrial cytochrome C into the cytoplasm and caused the activation of caspase-3, and finally led to the occurrence of apoptosis. CONCLUSION: Berberine induces p53 expression and leads to the decrease of the mitochondrial membrane potential, Cytochrome C release and activation of caspase-3 for the induction of apoptosis. PMID:16440412

  11. The inhibition of activated hepatic stellate cells proliferation by arctigenin through G0/G1 phase cell cycle arrest: persistent p27(Kip1) induction by interfering with PI3K/Akt/FOXO3a signaling pathway.

    PubMed

    Li, Ao; Wang, Jun; Wu, Mingjun; Zhang, Xiaoxun; Zhang, Hongzhi

    2015-01-15

    Proliferation of hepatic stellate cells (HSCs) is vital for the development of fibrosis during liver injury. In this study, we describe that arctigenin (ATG), a major bioactive component of Fructus Arctii, exhibited selective cytotoxic activity via inhibiting platelet-derived growth factor-BB (PDGF-BB)-activated HSCs proliferation and arrested cell cycle at G0/G1 phase, which could not be observed in normal human hepatocytes in vitro. The cyclin-dependent kinase (CDK) 4/6 activities could be strongly inhibited by ATG through down-regulation of cyclin D1 and CDK4/6 expression in early G1 phase arrest. In the ATG-treated HSCs, the expression level of p27(Kip1) and the formation of CDK2-p27(Kip1) complex were also increased. p27(Kip1) silencing significantly attenuated the effect of ATG, including cell cycle arrest and suppression of proliferation in activated HSCs. We also found that ATG suppressed PDGF-BB-induced phosphorylation of Akt and its downstream transcription factor Forkhead box O 3a (FOXO3a), decreased binding of FOXO3a to 14-3-3 protein, and stimulated nuclear translocation of FOXO3a in activated HSCs. Furthermore, knockdown of FOXO3a expression by FOXO3a siRNA attenuated ATG-induced up-regulation of p27(Kip1) in activated HSCs. All the above findings suggested that ATG could increase the levels of p27(Kip1) protein through inhibition of Akt and improvement of FOXO3a activity, in turn inhibited the CDK2 kinase activity, and eventually caused an overall inhibition of HSCs proliferation.

  12. Galiellalactone induces cell cycle arrest and apoptosis through the ATM/ATR pathway in prostate cancer cells.

    PubMed

    García, Víctor; Lara-Chica, Maribel; Cantarero, Irene; Sterner, Olov; Calzado, Marco A; Muñoz, Eduardo

    2016-01-26

    Galiellalactone (GL) is a fungal metabolite that presents antitumor activities on prostate cancer in vitro and in vivo. In this study we show that GL induced cell cycle arrest in G2/M phase, caspase-dependent apoptosis and also affected the microtubule organization and migration ability in DU145 cells. GL did not induce double strand DNA break but activated the ATR and ATM-mediated DNA damage response (DDR) inducing CHK1, H2AX phosphorylation (fH2AX) and CDC25C downregulation. Inhibition of the ATM/ATR activation with caffeine reverted GL-induced G2/M cell cycle arrest, apoptosis and DNA damage measured by fH2AX. In contrast, UCN-01, a CHK1 inhibitor, prevented GL-induced cell cycle arrest but enhanced apoptosis in DU145 cells. Furthermore, we found that GL did not increase the levels of intracellular ROS, but the antioxidant N-acetylcysteine (NAC) completely prevented the effects of GL on fH2AX, G2/M cell cycle arrest and apoptosis. In contrast to NAC, other antioxidants such as ambroxol and EGCG did not interfere with the activity of GL on cell cycle. GL significantly suppressed DU145 xenograft growth in vivo and induced the expression of fH2AX in the tumors. These findings identify for the first time that GL activates DDR in prostate cancer.

  13. Abnormal integrity of the nucleolus associated with cell cycle arrest owing to the temperature-sensitive ubiquitin-activating enzyme E1.

    PubMed

    Sudha, T; Tsuji, H; Sameshima, M; Matsuda, Y; Kaneda, S; Nagai, Y; Yamao, F; Seno, T

    1995-03-01

    A mouse cell mutant, ts85, containing the temperature-sensitive ubiquitin-activating enzyme was arrested in G2 phase at the non-permissive temperature. In the arrested cells, azure C, a nucleolus-specific stain, revealed a U-shaped or ring-shaped arrangement of nucleolar lobes with an unstained region in the center. Silver staining of the nucleolar organizer region (NOR) and fluorescence in situ hybridization (FISH) with rDNA both gave signals in azure C-positive regions. Electron microscopic examination revealed a cloud of unidentified electron-dense particles (diameter approximately 70 nm) in the azure C-negative center space. When the arrested cells were released into M-phase, we observed the association of NOR-bearing chromosomes with a pulverization-like abnormality. FISH with rDNA and NOR silver staining demonstrated that the pulverization-like abnormality was restricted to NORs. The frequent occurrence of persistent nucleolar material in prophase and prometaphase of the stressed cells after release indicated a delayed dissociation of the nucleolus that brought about the abnormal chromosomes in M-phase. ts85 cells transfected with the mouse E1 cDNA recovered growth at the non-permissive temperature and no longer showed abnormal nucleolar morphology. It seems that the ubiquitin system plays a role in the dissolution of the nucleolus, possibly involving the NOR-bearing chromosomes.

  14. Induction of cell cycle arrest in prostate cancer cells by the dietary compound isoliquiritigenin.

    PubMed

    Lee, Yeo Myeong; Lim, Do Young; Choi, Hyun Ju; Jung, Jae In; Chung, Won-Yoon; Park, Jung Han Yoon

    2009-02-01

    Isoliquiritigenin (ISL), a flavonoid chalcone that is present in licorice, shallot, and bean sprouts, is known to have antitumorigenic activities. The present study examined whether ISL alters prostate cancer cell cycle progression. DU145 human and MatLyLu (MLL) rat prostate cancer cells were cultured with various concentrations of ISL. In both DU145 and MLL cells treated with ISL, the percentage of cells in the G1 phase increased, and the incorporation of [(3)H]thymidine decreased. ISL decreased the protein levels of cyclin D1, cyclin E, and cyclin-dependent kinase (CDK) 4, whereas cyclin A and CDK2 expressions were unaltered in cells treated with ISL. The expression of the CDK inhibitor p27(KIP1) was increased in cells treated with 20 micromol/L ISL. In addition, treatment of cells with 20 micromol/L ISL for 24 hours led to G2/M cell cycle arrest. Cell division control (CDC) 2 protein levels remained unchanged. The protein levels of phospho-CDC2 (Tyr15) and cyclin B1 were increased, and the CDC25C level was decreased by ISL dose-dependently. We demonstrate that ISL promotes cell cycle arrest in DU145 and MLL cells, thereby providing insights into the mechanisms underlying its antitumorigenic activities.

  15. [Cell cycle arrest at M phase induced by vinblastine in MOLT-4 cells].

    PubMed

    Zhong, Yi-Sheng; Pan, Chang-Chuan; Jin, Chang-Nan; Li, Jian-Jun; Xiong, Gong-Peng; Zhang, Jian-Xi; Gong, Jian-Ping

    2009-04-01

    This study was purposed to investigate the biological effect of vinblastine (VLS), usually known as inductor of mitotic arrest, on MOLT-4 of ALL cells and to evaluate its significance. The cell arrest in M phase and/or cell apoptosis were induced by treatment of MOLT-4 cells with 0.05 microg/ml VLS for 0 - 12 hours; the DNA histogram was detected by flow cytometry; the morphological changes of cells were observed by confocal microscopy; the cell cycle distribution, cell apoptosis and morphological changes of cells before and after arrest were analyzed by using arrest increasing rate (AIR), arrest efficiency (AE), apoptosis rate (AR) and morphologic parameters respectively. The results indicated that the cell arrest did not accompanied by significant increase of apoptosis rate; the DNA histogram of cell arrest showed dynamic change of cell cycle in time-dependent manner; the arrest efficiency could be quantified. The cell arrest at M phase was accompanied by cell stack in S phase, the cell proliferation rate dropped after cell arrest occurred. The cells arrested at M phase possessed of characteristic morphologic features in cell mitosis. It is concluded that the vinblastine can solely induce arrest of MOLT-4 cells at M phase. This study provides experimental basis for further investigating the relation of cell cycle arrest to apoptosis, mechanism of checkpoint and development of new anticancer drugs.

  16. SPARC expression induces cell cycle arrest via STAT3 signaling pathway in medulloblastoma cells

    SciTech Connect

    Chetty, Chandramu; Dontula, Ranadheer; Gujrati, Meena; Lakka, Sajani S.

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Ectopic expression of SPARC impaired cell proliferation in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression induces STAT3 mediated cell cycle arrest in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression significantly inhibited pre-established tumor growth in nude-mice. -- Abstract: Dynamic cell interaction with ECM components has profound influence in cancer progression. SPARC is a component of the ECM, impairs the proliferation of different cell types and modulates tumor cell aggressive features. We previously reported that SPARC expression significantly impairs medulloblastoma tumor growth in vivo. In this study, we demonstrate that expression of SPARC inhibits medulloblastoma cell proliferation. MTT assay indicated a dose-dependent reduction in tumor cell proliferation in adenoviral mediated expression of SPARC full length cDNA (Ad-DsRed-SP) in D425 and UW228 cells. Flow cytometric analysis showed that Ad-DsRed-SP-infected cells accumulate in the G2/M phase of cell cycle. Further, immunoblot and immunoprecipitation analyses revealed that SPARC induced G2/M cell cycle arrest was mediated through inhibition of the Cyclin-B-regulated signaling pathway involving p21 and Cdc2 expression. Additionally, expression of SPARC decreased STAT3 phosphorylation at Tyr-705; constitutively active STAT3 expression reversed SPARC induced G2/M arrest. Ad-DsRed-SP significantly inhibited the pre-established orthotopic tumor growth and tumor volume in nude-mice. Immunohistochemical analysis of tumor sections from mice treated with Ad-DsRed-SP showed decreased immunoreactivity for pSTAT3 and increased immunoreactivity for p21 compared to tumor section from mice treated with mock and Ad-DsRed. Taken together our studies further reveal that STAT3 plays a key role in SPARC induced G2/M arrest in medulloblastoma cells. These new findings provide a molecular basis for the mechanistic understanding of the

  17. How Trypanosoma cruzi handles cell cycle arrest promoted by camptothecin, a topoisomerase I inhibitor.

    PubMed

    Zuma, Aline Araujo; Mendes, Isabela Cecília; Reignault, Lissa Catherine; Elias, Maria Carolina; de Souza, Wanderley; Machado, Carlos Renato; Motta, Maria Cristina M

    2014-02-01

    The protozoan Trypanosoma cruzi is the etiological agent of Chagas disease, which affects approximately 8 million people in Latin America. This parasite contains a single nucleus and a kinetoplast, which harbors the mitochondrial DNA (kDNA). DNA topoisomerases act during replication, transcription and repair and modulate DNA topology by reverting supercoiling in the DNA double-strand. In this work, we evaluated the effects promoted by camptothecin, a topoisomerase I inhibitor that promotes protozoan proliferation impairment, cell cycle arrest, ultrastructure alterations and DNA lesions in epimastigotes of T. cruzi. The results showed that inhibition of cell proliferation was reversible only at the lowest drug concentration (1μM) used. The unpacking of nuclear heterochromatin and mitochondrion swelling were the main ultrastructural modifications observed. Inhibition of parasite proliferation also led to cell cycle arrest, which was most likely caused by nuclear DNA lesions. Following camptothecin treatment, some of the cells restored their DNA, whereas others entered early apoptosis but did not progress to late apoptosis, indicating that the protozoa stay alive in a "senescence-like" state. This programmed cell death may be associated with a decrease in mitochondrial membrane potential and an increase in the production of reactive oxygen species. Taken together, these results indicate that the inhibition of T. cruzi proliferation is related to events capable of affecting cell cycle, DNA organization and mitochondrial activity.

  18. Radioprotection and Cell Cycle Arrest of Intestinal Epithelial Cells by Darinaparsin, a Tumor Radiosensitizer

    SciTech Connect

    Tian, Junqiang; Doi, Hiroshi; Saar, Matthias; Santos, Jennifer; Li, Xuejun; Peehl, Donna M.; Knox, Susan J.

    2013-12-01

    Purpose: It was recently reported that the organic arsenic compound darinaparsin (DPS) is a cytotoxin and radiosensitizer of tumor cells in vitro and in subcutaneous xenograft tumors. Surprisingly, it was also found that DPS protects normal intestinal crypt epithelial cells (CECs) from clonogenic death after ionizing radiation (IR). Here we tested the DPS radiosensitizing effect in a clinically relevant model of prostate cancer and explored the radioprotective effect and mechanism of DPS on CECs. Methods and Materials: The radiation modification effect of DPS was tested in a mouse model of orthotopic xenograft prostate cancer and of IR-induced acute gastrointestinal syndrome. The effect of DPS on CEC DNA damage and DNA damage responses was determined by immunohistochemistry. Results: In the mouse model of IR-induced gastrointestinal syndrome, DPS treatment before IR accelerated recovery from body weight loss and increased animal survival. DPS decreased post-IR DNA damage and cell death, suggesting that the radioprotective effect was mediated by enhanced DNA damage repair. Shortly after DPS injection, significant cell cycle arrest was observed in CECs at both G1/S and G2/M checkpoints, which was accompanied by the activation of cell cycle inhibitors p21 and growth arrest and DNA-damage-inducible protein 45 alpha (GADD45A). Further investigation revealed that DPS activated ataxia telangiectasia mutated (ATM), an important inducer of DNA damage repair and cell cycle arrest. Conclusions: DPS selectively radioprotected normal intestinal CECs and sensitized prostate cancer cells in a clinically relevant model. This effect may be, at least in part, mediated by DNA damage response activation and has the potential to significantly increase the therapeutic index of radiation therapy.

  19. Parkin induces G2/M cell cycle arrest in TNF-α-treated HeLa cells.

    PubMed

    Lee, Min Ho; Cho, Yoonjung; Jung, Byung Chul; Kim, Sung Hoon; Kang, Yeo Wool; Pan, Cheol-Ho; Rhee, Ki-Jong; Kim, Yoon Suk

    2015-08-14

    Parkin is a known tumor suppressor. However, the mechanism by which parkin acts as a tumor suppressor remains to be fully elucidated. Previously, we reported that parkin expression induces caspase-dependent apoptotic cell death in TNF-α-treated HeLa cells. However, at that time, we did not consider the involvement of parkin in cell cycle control. In the current study, we investigated whether parkin is involved in cell cycle regulation and suppression of cancer cell growth. In our cell cycle analyses, parkin expression induced G2/M cell cycle arrest in TNF-α-treated HeLa cells. To elucidate the mechanism(s) by which parkin induces this G2/M arrest, we analyzed cell cycle regulatory molecules involved in the G2/M transition. Parkin expression induced CDC2 phosphorylation which is known to inhibit CDC2 activity and cause G2/M arrest. Cyclin B1, which is degraded during the mitotic transition, accumulated in response to parkin expression, thereby indicating parkin-induced G2/M arrest. Next, we established that Myt1, which is known to phosphorylate and inhibit CDC2, increased following parkin expression. In addition, we found that parkin also induces increased Myt1 expression, G2/M arrest, and reduced cell viability in TNF-α-treated HCT15 cells. Furthermore, knockdown of parkin expression by parkin-specific siRNA decreased Myt1 expression and phosphorylation of CDC2 and resulted in recovered cell viability. These results suggest that parkin acts as a crucial molecule causing cell cycle arrest in G2/M, thereby suppressing tumor cell growth.

  20. Purified Lesser weever fish venom (Trachinus vipera) induces eryptosis, apoptosis and cell cycle arrest

    PubMed Central

    Fezai, Myriam; Slaymi, Chaker; Ben-Attia, Mossadok; Lang, Florian; Jemaà, Mohamed

    2016-01-01

    Accidents caused by the sting of Trachinus vipera (known as Lesser weever fish) are relatively common in shallow waters of the Mediterranean. Symptoms after the sting vary from severe pain to edema or even tissue necrosis in some cases. Here we show that purified Lesser weever fish venom induces eryptosis, the suicidal erythrocyte death, and apoptosis of human colon carcinoma cells. The venom leads to erythrocyte shrinkage, phosphatidylserine translocation and increased intracellular Ca2+, events typical for eryptosis. According to mitochondrial staining cancer cells dyed after the activation of the intrinsic apoptotic pathway. Trachinus vipera venom further causes cell cycle arrest. PMID:27995979

  1. Combined Treatment of MCF-7 Cells with AICAR and Methotrexate, Arrests Cell Cycle and Reverses Warburg Metabolism through AMP-Activated Protein Kinase (AMPK) and FOXO1.

    PubMed

    Fodor, Tamás; Szántó, Magdolna; Abdul-Rahman, Omar; Nagy, Lilla; Dér, Ádám; Kiss, Borbála; Bai, Peter

    2016-01-01

    Cancer cells are characterized by metabolic alterations, namely, depressed mitochondrial oxidation, enhanced glycolysis and pentose phosphate shunt flux to support rapid cell growth, which is called the Warburg effect. In our study we assessed the metabolic consequences of a joint treatment of MCF-7 breast cancer cells with AICAR, an inducer of AMP-activated kinase (AMPK) jointly with methotrexate (MTX), a folate-analog antimetabolite that blunts de novo nucleotide synthesis. MCF7 cells, a model of breast cancer cells, were resistant to the individual application of AICAR or MTX, however combined treatment of AICAR and MTX reduced cell proliferation. Prolonged joint application of AICAR and MTX induced AMPK and consequently enhanced mitochondrial oxidation and reduced the rate of glycolysis. These metabolic changes suggest an anti-Warburg rearrangement of metabolism that led to the block of the G1/S and the G2/M transition slowing down cell cycle. The slowdown of cell proliferation was abolished when mitotropic transcription factors, PGC-1α, PGC-1β or FOXO1 were silenced. In human breast cancers higher expression of AMPKα and FOXO1 extended survival. AICAR and MTX exerts similar additive antiproliferative effect on other breast cancer cell lines, such as SKBR and 4T1 cells, too. Our data not only underline the importance of Warburg metabolism in breast cancer cells but nominate the AICAR+MTX combination as a potential cytostatic regime blunting Warburg metabolism. Furthermore, we suggest the targeting of AMPK and FOXO1 to combat breast cancer.

  2. C-Phycocyanin from Oscillatoria tenuis exhibited an antioxidant and in vitro antiproliferative activity through induction of apoptosis and G0/G1 cell cycle arrest.

    PubMed

    Thangam, R; Suresh, V; Asenath Princy, W; Rajkumar, M; Senthilkumar, N; Gunasekaran, P; Rengasamy, R; Anbazhagan, C; Kaveri, K; Kannan, S

    2013-09-01

    This study was undertaken to develop an efficient single step chromatographic method for purification of C-phycocyanin (CPC) from species of Oscillatoria tenuis. Purification of CPC involves a multistep treatment of the crude extract by precipitation with ammonium sulphate, followed by gel filtration chromatography. Pure CPC was finally obtained from O. tenuis with purity ratio (A620/A280) 4.88. SDS-PAGE of pure CPC yielded two bands corresponding to α and β subunits; the molecular weight of α subunit is 17.0 kDa, whereas the molecular weight of β subunit is 19.5 kDa. Fluorescence and phase contrast microscopy revealed characteristic apoptotic features like cell shrinkage, membrane blebbing, nuclear condensation and DNA fragmentation. CPC exhibited antioxidant and antiproliferative activity against human cancer cells through apoptosis; nuclear apoptosis induction was accompanied by G0/G1 phase arrest and DNA fragmentation. CPC is a natural pigment with potential as an anticancer agent.

  3. CDK4/6 inhibition induces epithelial cell cycle arrest and ameliorates acute kidney injury

    PubMed Central

    DiRocco, Derek P.; Bisi, John; Roberts, Patrick; Strum, Jay; Wong, Kwok-Kin; Sharpless, Norman

    2013-01-01

    Acute kidney injury (AKI) is common and urgently requires new preventative therapies. Expression of a cyclin-dependent kinase (CDK) inhibitor transgene protects against AKI, suggesting that manipulating the tubular epithelial cell cycle may be a viable therapeutic strategy. Broad spectrum small molecule CDK inhibitors are protective in some kidney injury models, but these have toxicities and epithelial proliferation is eventually required for renal repair. Here, we tested a well-tolerated, novel and specific small molecule inhibitor of CDK4 and CDK6, PD 0332991, to investigate the effects of transient cell cycle inhibition on epithelial survival in vitro and kidney injury in vivo. We report that CDK4/6 inhibition induced G0/G1 cycle arrest in cultured human renal proximal tubule cells (hRPTC) at baseline and after injury. Induction of transient G0/G1 cycle arrest through CDK4/6 inhibition protected hRPTC from DNA damage and caspase 3/7 activation following exposure to the nephrotoxins cisplatin, etoposide, and antimycin A. In vivo, mice treated with PD 0332991 before ischemia-reperfusion injury (IRI) exhibited dramatically reduced epithelial progression through S phase 24 h after IRI. Despite reduced epithelial proliferation, PD 0332991 ameliorated kidney injury as reflected by improved serum creatinine and blood urea nitrogen levels 24 h after injury. Inflammatory markers and macrophage infiltration were significantly decreased in injured kidneys 3 days following IRI. These results indicate that induction of proximal tubule cell cycle arrest with specific CDK4/6 inhibitors, or “pharmacological quiescence,” represents a novel strategy to prevent AKI. PMID:24338822

  4. Sesamin induces cell cycle arrest and apoptosis through the inhibition of signal transducer and activator of transcription 3 signalling in human hepatocellular carcinoma cell line HepG2.

    PubMed

    Deng, Pengyi; Wang, Chen; Chen, Liulin; Wang, Cheng; Du, Yuhan; Yan, Xu; Chen, Mingjie; Yang, Guangxiao; He, Guangyuan

    2013-01-01

    Sesamin, one of the most abundant lignans in sesame seeds, has been shown to exhibit various pharmacological effects. The aim of this study was to elucidate whether sesamin promotes cell cycle arrest and induces apoptosis in HepG2 cells and further to explore the underlying molecular mechanisms. Here, we found that sesamin inhibited HepG2 cell growth by inducing G2/M phase arrest and apoptosis. Furthermore, sesamin suppressed the constitutive and interleukin (IL)-6-induced signal transducer and activator of transcription 3 (STAT3) signalling pathway in HepG2 cells, leading to regulate the downstream genes, including p53, p21, cyclin proteins and the Bcl-2 protein family. Our studies showed that STAT3 signalling played a key role in sesamin-induced G2/M phase arrest and apoptosis in HepG2 cells. These findings provided a molecular basis for understanding of the effects of sesamin in hepatocellular carcinoma tumour cell proliferation. Therefore, sesamin may thus be a potential chemotherapy drug for liver cancer.

  5. Tumor cell cycle arrest induced by shear stress: Roles of integrins and Smad

    PubMed Central

    Chang, Shun-Fu; Chang, Cheng Allen; Lee, Ding-Yu; Lee, Pei-Ling; Yeh, Yu-Ming; Yeh, Chiuan-Ren; Cheng, Cheng-Kung; Chien, Shu; Chiu, Jeng-Jiann

    2008-01-01

    Interstitial flow in and around tumor tissue affects the mechanical microenvironment to modulate tumor cell growth and metastasis. We investigated the roles of flow-induced shear stress in modulating cell cycle distribution in four tumor cell lines and the underlying mechanisms. In all four cell lines, incubation under static conditions for 24 or 48 h led to G0/G1 arrest; in contrast, shear stress (12 dynes/cm2) induced G2/M arrest. The molecular basis of the shear effect was analyzed, and the presentation on molecular mechanism is focused on human MG63 osteosarcoma cells. Shear stress induced increased expressions of cyclin B1 and p21CIP1 and decreased expressions of cyclins A, D1, and E, cyclin-dependent protein kinases (Cdk)-1, -2, -4, and -6, and p27KIP1 as well as a decrease in Cdk1 activity. Using specific antibodies and small interfering RNA, we found that the shear-induced G2/M arrest and corresponding changes in G2/M regulatory protein expression and activity were mediated by αvβ3 and β1 integrins through bone morphogenetic protein receptor type IA-specific Smad1 and Smad5. Shear stress also down-regulated runt-related transcription factor 2 (Runx2) binding activity and osteocalcin and alkaline phosphatase expressions in MG63 cells; these responses were mediated by αvβ3 and β1 integrins through Smad5. Our findings provide insights into the mechanism by which shear stress induces G2/M arrest in tumor cells and inhibits cell differentiation and demonstrate the importance of mechanical microenvironment in modulating molecular signaling, gene expression, cell cycle, and functions in tumor cells. PMID:18310319

  6. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response.

    PubMed

    Puente, Bao N; Kimura, Wataru; Muralidhar, Shalini A; Moon, Jesung; Amatruda, James F; Phelps, Kate L; Grinsfelder, David; Rothermel, Beverly A; Chen, Rui; Garcia, Joseph A; Santos, Celio X; Thet, SuWannee; Mori, Eiichiro; Kinter, Michael T; Rindler, Paul M; Zacchigna, Serena; Mukherjee, Shibani; Chen, David J; Mahmoud, Ahmed I; Giacca, Mauro; Rabinovitch, Peter S; Aroumougame, Asaithamby; Shah, Ajay M; Szweda, Luke I; Sadek, Hesham A

    2014-04-24

    The mammalian heart has a remarkable regenerative capacity for a short period of time after birth, after which the majority of cardiomyocytes permanently exit cell cycle. We sought to determine the primary postnatal event that results in cardiomyocyte cell-cycle arrest. We hypothesized that transition to the oxygen-rich postnatal environment is the upstream signal that results in cell-cycle arrest of cardiomyocytes. Here, we show that reactive oxygen species (ROS), oxidative DNA damage, and DNA damage response (DDR) markers significantly increase in the heart during the first postnatal week. Intriguingly, postnatal hypoxemia, ROS scavenging, or inhibition of DDR all prolong the postnatal proliferative window of cardiomyocytes, whereas hyperoxemia and ROS generators shorten it. These findings uncover a protective mechanism that mediates cardiomyocyte cell-cycle arrest in exchange for utilization of oxygen-dependent aerobic metabolism. Reduction of mitochondrial-dependent oxidative stress should be an important component of cardiomyocyte proliferation-based therapeutic approaches.

  7. Altered Cell Cycle Arrest by Multifunctional Drug-Loaded Enzymatically-Triggered Nanoparticles.

    PubMed

    Huang, Can; Sun, Ying; Shen, Ming; Zhang, Xiangyu; Gao, Pei; Duan, Yourong

    2016-01-20

    cRGD-targeting matrix metalloproteinase (MMP)-sensitive nanoparticles [PLGA-PEG1K-cRGD/PLGA-peptide-PEG5K (NPs-cRGD)] were successfully developed. Au-Pt(IV) nanoparticles, PTX, and ADR were encapsulated into NPs-RGD separately. The effects of the drug-loaded nanoparticles on the cell cycle were investigated. Here, we showed that higher cytotoxicity of drug-loaded nanoparticles was related to the cell cycle arrest, compared to that of free drugs. The NPs-cRGD studied here did not disrupt cell cycle progression. The cell cycle of Au-Pt(IV)@NPs-cRGD showed a main S phase arrest in all phases of the cell cycle phase, especially in G0/G1 phase. PTX@NPs-cRGD and ADR@NPs-cRGD showed a higher ratio of G2/M and S phase arrest than the free drugs, respectively. Cells in G0/G1 and S phases of the cell cycle had a higher uptake ratio of NPs-cRGD. A nutrient deprivation or an increase in the requirement of nutrients in tumor cells could promote the uptake of nanoparticles from the microenvironments. In vivo, NPs-cRGD could efficiently accumulate at tumor sites. The inhibition of tumor growth coupled with cell cycle arrest is in line with that in vitro. On the basis of our results, we propose that future studies on nanoparticle action mechanism should consider the cell cycle, which could be different from free drugs. Understanding the actions of cell cycle arrest could affect the application of nanomedicine in the clinic.

  8. Brahma is required for cell cycle arrest and late muscle gene expression during skeletal myogenesis

    PubMed Central

    Albini, Sonia; Coutinho Toto, Paula; Dall’Agnese, Alessandra; Malecova, Barbora; Cenciarelli, Carlo; Felsani, Armando; Caruso, Maurizia; Bultman, Scott J; Puri, Pier Lorenzo

    2015-01-01

    Although the two catalytic subunits of the SWI/SNF chromatin-remodeling complex—Brahma (Brm) and Brg1—are almost invariably co-expressed, their mutually exclusive incorporation into distinct SWI/SNF complexes predicts that Brg1- and Brm-based SWI/SNF complexes execute specific functions. Here, we show that Brg1 and Brm have distinct functions at discrete stages of muscle differentiation. While Brg1 is required for the activation of muscle gene transcription at early stages of differentiation, Brm is required for Ccnd1 repression and cell cycle arrest prior to the activation of muscle genes. Ccnd1 knockdown rescues the ability to exit the cell cycle in Brm-deficient myoblasts, but does not recover terminal differentiation, revealing a previously unrecognized role of Brm in the activation of late muscle gene expression independent from the control of cell cycle. Consistently, Brm null mice displayed impaired muscle regeneration after injury, with aberrant proliferation of satellite cells and delayed formation of new myofibers. These data reveal stage-specific roles of Brm during skeletal myogenesis, via formation of repressive and activatory SWI/SNF complexes. PMID:26136374

  9. Artemisinin triggers a G1 cell cycle arrest of human Ishikawa endometrial cancer cells and inhibits cyclin-dependent kinase-4 promoter activity and expression by disrupting nuclear factor-κB transcriptional signaling.

    PubMed

    Tran, Kalvin Q; Tin, Antony S; Firestone, Gary L

    2014-03-01

    Relatively little is known about the antiproliferative effects of artemisinin, a naturally occurring antimalarial compound from Artemisia annua, or sweet wormwood, in human endometrial cancer cells. Artemisinin induced a G1 cell cycle arrest in cultured human Ishikawa endometrial cancer cells and downregulated cyclin-dependent kinase-2 (CDK2) and CDK4 transcript and protein levels. Analysis of CDK4 promoter-luciferase reporter constructs showed that the artemisinin ablation of CDK4 gene expression was accounted for by the loss of CDK4 promoter activity. Chromatin immunoprecipitation demonstrated that artemisinin inhibited nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) subunit p65 and p50 interactions with the endogenous Ishikawa cell CDK4 promoter. Coimmunoprecipitation revealed that artemisinin disrupts endogenous p65 and p50 nuclear translocation through increased protein-protein interactions with IκB-α, an NF-κB inhibitor, and disrupts its interaction with the CDK4 promoter, leading to a loss of CDK4 gene expression. Artemisinin treatment stimulated the cellular levels of IκB-α protein without altering the level of IκB-α transcripts. Finally, expression of exogenous p65 resulted in the accumulation of this NF-κB subunit in the nucleus of artemisinin-treated and artemisinin-untreated cells, reversed the artemisinin downregulation of CDK4 protein expression and promoter activity, and prevented the artemisinin-induced G1 cell cycle arrest. Taken together, our results demonstrate that a key event in the artemisinin antiproliferative effects in endometrial cancer cells is the transcriptional downregulation of CDK4 expression by disruption of NF-κB interactions with the CDK4 promoter.

  10. Caudatin Inhibits Human Glioma Cells Growth Through Triggering DNA Damage-Mediated Cell Cycle Arrest.

    PubMed

    Fu, Xiao-yan; Zhang, Shuai; Wang, Kun; Yang, Ming-feng; Fan, Cun-dong; Sun, Bao-liang

    2015-10-01

    Caudatin, one of the species of C-21 steroidal glycosides mainly isolated from the root of Cynanchum bungei Decne, exhibits potent anticancer activities. However, the mechanism remains poorly defined. In the present study, the growth inhibitory effect and mechanism of caudatin on human glioma cells were evaluated in vitro. The results revealed that caudatin time- and dose-dependently inhibited U251 and U87 cells growth. Flow cytometry analysis indicated that caudatin-induced growth inhibition against U251 and U87 cells was mainly achieved by the induction of G0/G1 and S-phase cell cycle arrest through triggering DNA damage, as convinced by the up-regulation of p53, p21, and histone phosphorylation, as well as the down-regulation of cyclin D1. Moreover, caudatin treatment also triggered the activation of ERK and inactivation of AKT pathway. LY294002 (an AKT inhibitor) addition enhanced caudation-induced AKT inhibition, indicating that caudatin inhibited U251 cells growth in an AKT-dependent manner. Taken together, these results indicate that caudatin may act as a novel cytostatic reagent against human glioma cells through the induction of DNA damage-mediated cell cycle arrest with the involvement of modulating MAPK and AKT pathways.

  11. Isoalantolactone inhibits UM-SCC-10A cell growth via cell cycle arrest and apoptosis induction.

    PubMed

    Wu, Minjun; Zhang, Hua; Hu, Jiehua; Weng, Zhiyong; Li, Chenyuan; Li, Hong; Zhao, Yan; Mei, Xifan; Ren, Fu; Li, Lihua

    2013-01-01

    Isoalantolactone is a sesquiterpene lactone compound isolated from the roots of Inula helenium L. Previous studies have demonstrated that isoalantolactone possesses antifungal, anti-bacterial, anti-helminthic and anti-proliferative properties in a variety of cells, but there are no studies concerning its effects on head and neck squamous cell carcinoma (HNSCC). In the present study, an MTT assay demonstrated that isoalantolactone has anti-proliferative activity against the HNSCC cell line (UM-SCC-10A). Immunostaining identified that this compound induced UM-SCC-10A cell apoptosis but not necrosis. To explain the molecular mechanisms underlying its effects, flow cytometry and western blot analysis showed that the apoptosis was associated with cell cycle arrest during the G1 phase, up-regulation of p53 and p21, and down-regulation of cyclin D. Furthermore, our results revealed that induction of apoptosis through a mitochondrial pathway led to up-regulation of pro-apoptotic protein expression (Bax), down-regulation of anti-apoptotic protein expression (Bcl-2), mitochondrial release of cytochrome c (Cyto c), reduction of mitochondrial membrane potential (MMP) and activation of caspase-3 (Casp-3). Involvement of the caspase apoptosis pathway was confirmed using caspase inhibitor Z-VAD-FMK pretreatment. Together, our findings suggest that isoalantolactone induced caspase-dependent apoptosis via a mitochondrial pathway and was associated with cell cycle arrest in the G1 phase in UM-SCC-10A cells. Therefore, isoalantolactone may become a potential drug for treating HNSCC.

  12. p53 controls CDC7 levels to reinforce G1 cell cycle arrest upon genotoxic stress

    PubMed Central

    Tudzarova, Slavica; Dey, Ayona; Stoeber, Kai; Okorokov, Andrei L.; Williams, Gareth H.

    2016-01-01

    ABSTRACT DNA replication initiation is a key event in the cell cycle, which is dependent on 2 kinases - CDK2 and CDC7. Here we report a novel mechanism in which p53 induces G1 checkpoint and cell cycle arrest by downregulating CDC7 kinase in response to genotoxic stress. We demonstrate that p53 controls CDC7 stability post-transcriptionally via miR-192/215 and post-translationally via Fbxw7β E3 ubiquitin ligase. The p53-dependent pathway of CDC7 downregulation is interlinked with the p53-p21-CDK2 pathway, as p21-mediated inhibition of CDK2-dependent phosphorylation of CDC7 on Thr376 is required for GSK3ß-phosphorylation and Fbxw7ß-dependent degradation of CDC7. Notably, sustained oncogenic high levels of active CDC7 exert a negative feedback onto p53, leading to unrestrained S-phase progression and accumulation of DNA damage. Thus, p53-dependent control of CDC7 levels is essential for blocking G1/S cell-cycle transition upon genotoxic stress, thereby safeguarding the genome from instability and thus representing a novel general stress response. PMID:27611229

  13. α-Mangostin Induces Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell

    PubMed Central

    Kwak, Hyun-Ho; Park, Bong-Soo

    2016-01-01

    Mangosteen has long been used as a traditional medicine and is known to have antibacterial, antioxidant, and anticancer effects. Although the effects of α-mangostin, a natural compound extracted from the pericarp of mangosteen, have been investigated in many studies, there is limited data on the effects of the compound in human oral squamous cell carcinoma (OSCC). In this study, α-mangostin was assessed as a potential anticancer agent against human OSCC cells. α-Mangostin inhibited cell proliferation and induced cell death in OSCC cells in a dose- and time-dependent manner with little to no effect on normal human PDLF cells. α-Mangostin treatment clearly showed apoptotic evidences such as nuclear fragmentation and accumulation of annexin V and PI-positive cells on OSCC cells. α-Mangostin treatment also caused the collapse of mitochondrial membrane potential and the translocation of cytochrome c from the mitochondria into the cytosol. The expressions of the mitochondria-related proteins were activated by α-mangostin. Treatment with α-mangostin also induced G1 phase arrest and downregulated cell cycle-related proteins (CDK/cyclin). Hence, α-mangostin specifically induces cell death and inhibits proliferation in OSCC cells via the intrinsic apoptosis pathway and cell cycle arrest at the G1 phase, suggesting that α-mangostin may be an effective agent for the treatment of OSCC. PMID:27478478

  14. Cimicifuga foetida extract inhibits proliferation of hepatocellular cells via induction of cell cycle arrest and apoptosis.

    PubMed

    Tian, Ze; Pan, Ruile; Chang, Qi; Si, Jianyong; Xiao, Peigen; Wu, Erxi

    2007-11-01

    The purpose of this study is to determine whether the ethyl acetate fraction (EAF) from the aerial part of Cimicifuga foetida Linnaeus possesses the anti-tumor action on hepatoma, and therefore, provide evidence for the traditional use of the plant as a detoxification agent. EAF was extracted and its cytotoxicity was evaluated on a panel of Hepatocytes by MTT assay. The IC(50) values of EAF on HepG2, R-HepG2 and primary cultured normal mouse hepatocytes were 21, 43 and 80 microg/mL, respectively. Morphology observation, Annexin V-FITC/PI staining, cell cycle analysis and western blot were used to further elucidate the cytotoxic mechanism of EAF. EAF induced G(0)/G(1)cell cycle arrest at lower concentration (25 microg/mL), and triggered G(2)/M arrest and apoptosis at higher concentrations (50 and 100 microg/mL, respectively). An increase in the ratio of Bax/Bcl-2, activation of downstream effector Caspase 3, and cleavage of poly-ADP-ribose polymerase (PARP) were implicated in EAF-induced apoptosis. In addition, EAF inhibited the growth of the implanted mouse H(22) tumor in a dose-dependent manner with the growth inhibitory rate of 63.32% at 200 mg/kg. In conclusion, EAF may potentially find use as a new therapy for the treatment of hepatoma.

  15. Mechanism of T-oligo-induced cell cycle arrest in Mia-PaCa pancreatic cancer cells.

    PubMed

    Rankin, Andrew M; Sarkar, Sibaji; Faller, Douglas V

    2012-06-01

    DNA oligonucleotides with sequence homology to human telomeric DNA (T-oligo) induce cell cycle arrest, followed by apoptosis, senescence, or autophagy in a human cancer cell type-specific manner. T-oligo has potential as a new therapeutic strategy in oncology because of its ability to target certain types of tumor cells while sparing normal ones. In the present study, we demonstrate the T-oligo-induced S-phase cell cycle arrest in four pancreatic cancer cell lines. To further contribute to the mechanistic understanding of T-oligo, we also identify cyclin dependent kinase 2 (cdk2) as a functional mediator in the T-oligo-induced cell cycle arrest of pancreatic cancer cells. Ectopic expression of a constitutively active cdk2 mutant abrogates T-oligo-induced cell cycle arrest in these tumor cells while knockdown of cdk2 expression alone recapitulates the T-oligo effect. Finally, we demonstrate the dispensability of T-oligo-induced ATM/ATR-mediated DNA damage response-signaling pathways, which have long been considered functional in the T-oligo signaling mechanism.

  16. Apoptosis and cell-cycle arrest in human and murine tumor cells are initiated by isoprenoids.

    PubMed

    Mo, H; Elson, C E

    1999-04-01

    Diverse classes of phytochemicals initiate biological responses that effectively lower cancer risk. One class of phytochemicals, broadly defined as pure and mixed isoprenoids, encompasses an estimated 22,000 individual components. A representative mixed isoprenoid, gamma-tocotrienol, suppresses the growth of murine B16(F10) melanoma cells, and with greater potency, the growth of human breast adenocarcinoma (MCF-7) and human leukemic (HL-60) cells. beta-Ionone, a pure isoprenoid, suppresses the growth of B16 cells and with greater potency, the growth of MCF-7, HL-60 and human colon adenocarcinoma (Caco-2) cells. Results obtained with diverse cell lines differing in ras and p53 status showed that the isoprenoid-mediated suppression of growth is independent of mutated ras and p53 functions. beta-Ionone suppressed the growth of human colon fibroblasts (CCD-18Co) but only when present at three-fold the concentration required to suppress the growth of Caco-2 cells. The isoprenoids initiated apoptosis and, concomitantly arrested cells in the G1 phase of the cell cycle. Both suppress 3-hydroxy-3-methylglutaryl CoA reductase activity. beta-Ionone and lovastatin interfered with the posttranslational processing of lamin B, an activity essential to assembly of daughter nuclei. This interference, we postulate, renders neosynthesized DNA available to the endonuclease activities leading to apoptotic cell death. Lovastatin-imposed mevalonate starvation suppressed the glycosylation and translocation of growth factor receptors to the cell surface. As a consequence, cells were arrested in the G1 phase of the cell cycle. This rationale may apply to the isoprenoid-mediated G1-phase arrest of tumor cells. The additive and potentially synergistic actions of these isoprenoids in the suppression of tumor cell proliferation and initiation of apoptosis coupled with the mass action of the diverse isoprenoid constituents of plant products may explain, in part, the impact of fruit, vegetable

  17. Specific loss of apoptotic but not cell-cycle arrest function in a human tumor derived p53 mutant.

    PubMed Central

    Rowan, S; Ludwig, R L; Haupt, Y; Bates, S; Lu, X; Oren, M; Vousden, K H

    1996-01-01

    The p53 tumor-suppressor gene product is frequently inactivated in malignancies by point mutation. Although most tumor-derived p53 mutants show loss of sequence specific transcriptional activation, some mutants have been identified which retain this activity. One such mutant, p53175P, is defective for the suppression of transformation in rodent cells, despite retaining the ability to suppress the growth of p53-null human cells. We now demonstrate that p53175P can induce a cell-cycle arrest in appropriate cell types but shows loss of apoptotic function. Our results therefore support a direct role of p53 transcriptional activation in mediating a cell-cycle arrest and demonstrate that such activity is not sufficient for the full apoptotic response. These data suggest that either p53 can induce apoptosis through a transcriptionally independent mechanism, a function lost by p53175P, or that this mutant has specifically lost the ability to activate genes which contribute to cell death, despite activation of genes responsible for the G1 arrest. This dissociation of the cell-cycle arrest and apoptotic activities of p53 indicates that inactivation of p53 apoptotic function without concomitant loss of growth inhibition can suffice to relieve p53-dependent tumor-suppression in vivo and thereby contribute to tumor development. Images PMID:8631304

  18. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells.

    PubMed

    Yedjou, Clement G; Tchounwou, Hervey M; Tchounwou, Paul B

    2015-12-22

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO₃)₂] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO₃)₂ for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p < 0.05) increase of necrotic cell death in Pb(NO₃)₂-treated cells, indicative of membrane rupture by Pb(NO₃)₂ compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05) in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO₃)₂ exposure significantly (p < 0.05) increased the proportion of caspase-3 positive cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO₃)₂ exposure caused cell cycle arrest at the G₀/G₁ checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO₃)₂ inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G₀/G₁ checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb

  19. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells

    PubMed Central

    Yedjou, Clement G.; Tchounwou, Hervey M.; Tchounwou, Paul B.

    2015-01-01

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO3)2] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO3)2 for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p < 0.05) increase of necrotic cell death in Pb(NO3)2-treated cells, indicative of membrane rupture by Pb(NO3)2 compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05) in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO3)2 exposure significantly (p < 0.05) increased the proportion of caspase-3 positive cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO3)2 exposure caused cell cycle arrest at the G0/G1 checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO3)2 inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G0/G1 checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO3)2 exposure and its associated adverse health

  20. Esculetin, a natural coumarin compound, evokes Ca(2+) movement and activation of Ca(2+)-associated mitochondrial apoptotic pathways that involved cell cycle arrest in ZR-75-1 human breast cancer cells.

    PubMed

    Chang, Hong-Tai; Chou, Chiang-Ting; Lin, You-Sheng; Shieh, Pochuen; Kuo, Daih-Huang; Jan, Chung-Ren; Liang, Wei-Zhe

    2016-04-01

    Esculetin (6,7-dihydroxycoumarin), a derivative of coumarin compound, is found in traditional medicinal herbs. It has been shown that esculetin triggers diverse cellular signal transduction pathways leading to regulation of physiology in different models. However, whether esculetin affects Ca(2+) homeostasis in breast cancer cells has not been explored. This study examined the underlying mechanism of cytotoxicity induced by esculetin and established the relationship between Ca(2+) signaling and cytotoxicity in human breast cancer cells. The results showed that esculetin induced concentration-dependent rises in the intracellular Ca(2+) concentration ([Ca(2+)]i) in ZR-75-1 (but not in MCF-7 and MDA-MB-231) human breast cancer cells. In ZR-75-1 cells, this Ca(2+) signal response was reduced by removing extracellular Ca(2+) and was inhibited by the store-operated Ca(2+) channel blocker 2-aminoethoxydiphenyl borate (2-APB). In Ca(2+)-free medium, pre-treatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (TG) abolished esculetin-induced [Ca(2+)]i rises. Conversely, incubation with esculetin abolished TG-induced [Ca(2+)]i rises. Esculetin induced cytotoxicity that involved apoptosis, as supported by the reduction of mitochondrial membrane potential and the release of cytochrome c and the proteolytic activation of caspase-9/caspase-3, which were partially reversed by pre-chelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM). Moreover, esculetin increased the percentage of cells in G2/M phase and regulated the expressions of p53, p21, CDK1, and cyclin B1. Together, in ZR-75-1 cells, esculetin induced [Ca(2+)]i rises by releasing Ca(2+) from the ER and causing Ca(2+) influx through 2-APB-sensitive store-operated Ca(2+) entry. Furthermore, esculetin activated Ca(2+)-associated mitochondrial apoptotic pathways that involved G2/M cell cycle arrest. Graphical abstract The summary of esculetin

  1. Linalool Induces Cell Cycle Arrest and Apoptosis in Leukemia Cells and Cervical Cancer Cells through CDKIs

    PubMed Central

    Chang, Mei-Yin; Shieh, Den-En; Chen, Chung-Chi; Yeh, Ching-Sheng; Dong, Huei-Ping

    2015-01-01

    Plantaginaceae, a popular traditional Chinese medicine, has long been used for treating various diseases from common cold to cancer. Linalool is one of the biologically active compounds that can be isolated from Plantaginaceae. Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible tumor cells. However, the signaling pathway for apoptosis remains undefined. In this study, the cytotoxic effect of linalool on human cancer cell lines was investigated. Water-soluble tetrazolium salts (WST-1) based colorimetric cellular cytotoxicity assay, was used to test the cytotoxic ability of linalool against U937 and HeLa cells, and flow cytometry (FCM) and genechip analysis were used to investigate the possible mechanism of apoptosis. These results demonstrated that linalool exhibited a good cytotoxic effect on U937 and HeLa cells, with the IC50 value of 2.59 and 11.02 μM, respectively, compared with 5-FU with values of 4.86 and 12.31 μM, respectively. After treating U937 cells with linalool for 6 h, we found an increased sub-G1 peak and a dose-dependent phenomenon, whereby these cells were arrested at the G0/G1 phase. Furthermore, by using genechip analysis, we observed that linalool can promote p53, p21, p27, p16, and p18 gene expression. Therefore, this study verified that linalool can arrest the cell cycle of U937 cells at the G0/G1 phase and can arrest the cell cycle of HeLa cells at the G2/M phase. Its mechanism facilitates the expression of the cyclin-dependent kinases inhibitors (CDKIs) p53, p21, p27, p16, and p18, as well as the non-expression of cyclin-dependent kinases (CDKs) activity. PMID:26703569

  2. Glucose restriction induces transient G2 cell cycle arrest extending cellular chronological lifespan

    PubMed Central

    Masuda, Fumie; Ishii, Mahiro; Mori, Ayaka; Uehara, Lisa; Yanagida, Mitsuhiro; Takeda, Kojiro; Saitoh, Shigeaki

    2016-01-01

    While glucose is the fundamental source of energy in most eukaryotes, it is not always abundantly available in natural environments, including within the human body. Eukaryotic cells are therefore thought to possess adaptive mechanisms to survive glucose-limited conditions, which remain unclear. Here, we report a novel mechanism regulating cell cycle progression in response to abrupt changes in extracellular glucose concentration. Upon reduction of glucose in the medium, wild-type fission yeast cells undergo transient arrest specifically at G2 phase. This cell cycle arrest is dependent on the Wee1 tyrosine kinase inhibiting the key cell cycle regulator, CDK1/Cdc2. Mutant cells lacking Wee1 are not arrested at G2 upon glucose limitation and lose viability faster than the wild-type cells under glucose-depleted quiescent conditions, suggesting that this cell cycle arrest is required for extension of chronological lifespan. Our findings indicate the presence of a novel cell cycle checkpoint monitoring glucose availability, which may be a good molecular target for cancer therapy. PMID:26804466

  3. CIL-102-Induced Cell Cycle Arrest and Apoptosis in Colorectal Cancer Cells via Upregulation of p21 and GADD45

    PubMed Central

    Huang, Wen-Shih; Kuo, Yi-Hung; Kuo, Hsing-Chun; Hsieh, Meng-Chiao; Huang, Cheng-Yi; Lee, Ko-Chao; Lee, Kam-Fai; Shen, Chien-Heng; Tung, Shui-Yi; Teng, Chih-Chuan

    2017-01-01

    CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone) is a well-known, major active agent of the alkaloid derivative of Camptotheca acuminata with valuable biological properties, including anti-tumorigenic activity. In this study, we investigated the molecular mechanisms by which CIL-102 mediated the induction of cell death, and we performed cell cycle G2/M arrest to clarify molecular changes in colorectal cancer cells (CRC). Treatment of DLD-1 cells with CIL-102 resulted in triggering the extrinsic apoptosis pathway through the activation of Fas-L, caspase-8 and the induction of Bid cleavage and cytochrome c release in a time-dependent manner. In addition, CIL-102 mediated apoptosis and G2/M arrest by phosphorylation of the Jun N-terminus kinase (JNK1/2) signaling pathway. This resulted in the expression of NFκB p50, p300 and CREB-binding protein (CBP) levels, and in the induction of p21 and GADD45 as well as the decreased association of cdc2/cyclin B. Furthermore, treatment with the JNK1/2 (SP600125), NFκB (PDTI) or the p300/CBP (C646) inhibitors abolished CIL-102-induced cell cycle G2/M arrest and reversed the association of cdc2 with cyclin B. Therefore, we demonstrated that there was an increase in the cellular levels of p21 and GADD45 by CIL-102 reduction in cell viability and cell cycle arrest via the activation of the JNK1/2, NFκB p50, p300 and CBP signaling modules. Collectively, our results demonstrated that CIL-102 induced cell cycle arrest and apoptosis of colon cancer cells by upregulating p21 and GADD45 expression and by activating JNK1/2, NFκB p50 and p300 to provide a new mechanism for CIL-102 treatment. PMID:28068431

  4. Acidic substitution of the activation loop tyrosines in TrkA supports nerve growth factor-dependent, but not nerve growth factor-independent, differentiation and cell cycle arrest in the human neuroblastoma cell line, SY5Y.

    PubMed

    Gryz, Ela A; Meakin, Susan O

    2003-11-27

    TrkA is the receptor tyrosine kinase (RTK) for nerve growth factor (NGF) and stimulates NGF-dependent cell survival and differentiation in primary neurons and also differentiation of neuroblastomas and apoptosis of medulloblastomas. We have previously shown that aspartic acid and glutamic acid substitution (AspGlu and GluAsp) of the activation loop tyrosines in TrkA (Tyr(683) and Tyr(684)) supports NGF-independent neuritogenesis and cell survival in PC12 cell-derived nnr5 cells. In this study, the AspGlu and GluAsp mutant Trks have been analysed for their ability to support NGF-independent and NGF-dependent neuritogenesis, proliferation and cell signalling in the human neuroblastoma cell line, SY5Y. We find that the AspGlu and GluAsp mutant Trks support NGF-dependent, but not NGF-independent, autophosphorylation, neuritogenic responses and/or inhibit cell cycle progression. The NGF-dependent neuritogenic responses are lower for the mutant Trks (approximately 30-60% for AspGlu and 50-60% for GluAsp), relative to wild-type TrkA. While both the AspGlu and GluAsp mutant Trks support NGF-dependent transient phosphorylation of Shc, PLCgamma-1, AKT, FRS2, SH2B as well as prolonged MAP kinase activation, the GluAsp mutant induces stronger NGF-dependent tyrosine phosphorylation of FRS2 and SH2B, as well as a stronger reduction in bromodeoxyuridine (BrdU) incorporation. Collectively, these data suggest that neither absolute levels of receptor autophosphorylation, high levels of TrkA expression nor the activation of a specific signalling pathway is dominant and absolutely essential for neuritogenesis and cell cycle arrest of SY5Y cells.

  5. Clove Extract Inhibits Tumor Growth and Promotes Cell Cycle Arrest and Apoptosis

    PubMed Central

    Liu, Haizhou; Schmitz, John C.; Wei, Jianteng; Cao, Shousong; Beumer, Jan H.; Strychor, Sandra; Cheng, Linyou; Liu, Ming; Wang, Cuicui; Wu, Ning; Zhao, Xiangzhong; Zhang, Yuyan; Liao, Joshua; Chu, Edward; Lin, Xiukun

    2014-01-01

    Cloves (Syzygium aromaticum) have been used as a traditional Chinese medicinal herb for thousands of years. Cloves possess antiseptic, antibacterial, antifungal, and antiviral properties, but their potential anticancer activity remains unknown. In this study, we investigated the in vitro and in vivo antitumor effects and biological mechanisms of ethyl acetate extract of cloves (EAEC) and the potential bioactive components responsible for its antitumor activity. The effects of EAEC on cell growth, cell cycle distribution, and apoptosis were investigated using human cancer cell lines. The molecular changes associated with the effects of EAEC were analyzed by Western blot and (qRT)-PCR analysis. The in vivo effect of EAEC and its bioactive component was investigated using the HT-29 tumor xenograft model. We identified oleanolic acid (OA) as one of the components of EAEC responsible for its antitumor activity. Both EAEC and OA display cytotoxicity against several human cancer cell lines. Interestingly, EAEC was superior to OA and the chemotherapeutic agent 5-fluorouracil at suppressing growth of colon tumor xenografts. EAEC promoted G0/G1 cell cycle arrest and induced apoptosis in a dose-dependent manner. Treatment with EAEC and OA selectively increased protein expression of p21WAF1/Cip1 and γ-H2AX and downregulated expression of cell cycle-regulated proteins. Moreover, many of these changes were at the mRNA level, suggesting transcriptional regulation by EAEC treatment. Our results demonstrate that clove extract may represent a novel therapeutic herb for the treatment of colorectal cancer, and OA appears to be one of the bioactive components. PMID:24854101

  6. Clove extract inhibits tumor growth and promotes cell cycle arrest and apoptosis.

    PubMed

    Liu, Haizhou; Schmitz, John C; Wei, Jianteng; Cao, Shousong; Beumer, Jan H; Strychor, Sandra; Cheng, Linyou; Liu, Ming; Wang, Cuicui; Wu, Ning; Zhao, Xiangzhong; Zhang, Yuyan; Liao, Joshua; Chu, Edward; Lin, Xiukun

    2014-01-01

    Cloves (Syzygium aromaticum) have been used as a traditional Chinese medicinal herb for thousands of years. Cloves possess antiseptic, antibacterial, antifungal, and antiviral properties, but their potential anticancer activity remains unknown. In this study, we investigated the in vitro and in vivo antitumor effects and biological mechanisms of ethyl acetate extract of cloves (EAEC) and the potential bioactive components responsible for its antitumor activity. The effects of EAEC on cell growth, cell cycle distribution, and apoptosis were investigated using human cancer cell lines. The molecular changes associated with the effects of EAEC were analyzed by Western blot and (qRT)-PCR analysis. The in vivo effect of EAEC and its bioactive component was investigated using the HT-29 tumor xenograft model. We identified oleanolic acid (OA) as one of the components of EAEC responsible for its antitumor activity. Both EAEC and OA display cytotoxicity against several human cancer cell lines. Interestingly, EAEC was superior to OA and the chemotherapeutic agent 5-fluorouracil at suppressing growth of colon tumor xenografts. EAEC promoted G0/G1 cell cycle arrest and induced apoptosis in a dose-dependent manner. Treatment with EAEC and OA selectively increased protein expression of p21(WAF1/Cip1) and γ-H2AX and downregulated expression of cell cycle-regulated proteins. Moreover, many of these changes were at the mRNA level, suggesting transcriptional regulation by EAEC treatment. Our results demonstrate that clove extract may represent a novel therapeutic herb for the treatment of colorectal cancer, and OA appears to be one of the bioactive components.

  7. Cell cycle arrest in a model of colistin nephrotoxicity

    PubMed Central

    Hack, Bradley K.; Alexander, Jessy J.; Xu, Chang; Dolan, M. Eileen; Cunningham, Patrick N.

    2013-01-01

    Colistin (polymixin E) is an antibiotic prescribed with resurging frequency for multidrug resistant gram negative bacterial infections. It is associated with nephrotoxicity in humans in up to 55% of cases. Little is known regarding genes involved in colistin nephrotoxicity. A murine model of colistin-mediated kidney injury was developed. C57/BL6 mice were administered saline or colistin at a dose of 16 mg/kg/day in 2 divided intraperitoneal doses and killed after either 3 or 15 days of colistin. After 15 days, mice exposed to colistin had elevated blood urea nitrogen (BUN), creatinine, and pathologic evidence of acute tubular necrosis and apoptosis. After 3 days, mice had neither BUN elevation nor substantial pathologic injury; however, urinary neutrophil gelatinase-associated lipocalin was elevated (P = 0.017). An Illumina gene expression array was performed on kidney RNA harvested 72 h after first colistin dose to identify differentially expressed genes early in drug treatment. Array data revealed 21 differentially expressed genes (false discovery rate < 0.1) between control and colistin-exposed mice, including LGALS3 and CCNB1. The gene signature was significantly enriched for genes involved in cell cycle proliferation. RT-PCR, immunoblot, and immunostaining validated the relevance of key genes and proteins. This murine model offers insights into the potential mechanism of colistin-mediated nephrotoxicity. Further studies will determine whether the identified genes play a causative or protective role in colistin-induced nephrotoxicity. PMID:23922129

  8. Protein-binding, cytotoxicity in vitro and cell cycle arrest of ruthenium(II) polypyridyl complexes

    NASA Astrophysics Data System (ADS)

    Liu, Si-Hong; Zhu, Jian-Wei; Xu, Hui-Hua; Wang, Yan; Liu, Ya-Min; Liang, Jun-Bo; Zhang, Gui-Qiang; Cao, Di-Hua; Lin, Yang-Yang; Wu, Yong; Guo, Qi-Feng

    2016-05-01

    The cytotoxic activity of two Ru(II) complexes against A549, BEL-7402, HeLa, PC-12, SGC-7901 and SiHa cell lines was investigated by MTT method. Complexes 1 and 2 show moderate cytotoxicity toward BEL-7402 cells with an IC50 value of 53.9 ± 3.4 and 39.3 ± 2.1 μM. The effects of the complexes inducing apoptosis, cellular uptake, reactive oxygen species and mitochondrial membrane potential in BEL-7402 cells have been studied by fluorescence microscopy. The percentages of apoptotic and necrotic cells and cell cycle arrest were studied by flow cytometry. The BSA-binding behaviors were investigated by UV/visible and fluorescent spectra.

  9. Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells.

    PubMed

    Lin, Renyu; Zhang, Ziheng; Chen, Lingfeng; Zhou, Yunfang; Zou, Peng; Feng, Chen; Wang, Li; Liang, Guang

    2016-10-10

    Head and neck cancer is the sixth most common cancer worldwide. Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, exhibits a wide range of biological roles including a highly efficient and specific anti-tumor activity. Here, we aimed to examine the effect of DHA on head and neck carcinoma cells and elucidate the potential mechanisms. We used five head and neck carcinoma cell lines and two non-tumorigenic normal epithelial cell lines to achieve our goals. Cells were exposed to DHA and subjected to cellular activity assays including viability, cell cycle analysis, cell death, and angiogenic phenotype. Our results show that DHA causes cell cycle arrest which is mediated through Forkhead box protein M1 (FOXM1). We also demonstrate that DHA induces ferroptosis and apoptosis in head and neck carcinoma cells. Lastly, our results show that DHA alters the angiogenic phenotype of cancer cells by reducing the expression of angiogenic factors and the ability of cancer cells to support endothelial cell tubule formation. Our study suggests that DHA specifically causes head and neck cancer cell death through contribution from both ferroptosis and apoptosis. DHA may represent an effective strategy in head and neck cancer treatment.

  10. RBP-J-interacting and tubulin-associated protein induces apoptosis and cell cycle arrest in human hepatocellular carcinoma by activating the p53–Fbxw7 pathway

    SciTech Connect

    Wang, Haihe; Yang, Zhanchun; Liu, Chunbo; Huang, Shishun; Wang, Hongzhi; Chen, Yingli; Chen, Guofu

    2014-11-07

    Highlights: • RITA overexpression increased protein expression of p53 and Fbxw7 and downregulated the expression of cyclin D1, cyclin E, CDK2, Hes-1 and NF-κB p65. • RITA can significantly inhibit the in vitro growth of SMMC7721 and HepG2 cells. • RITA exerts tumor-suppressive effects in hepatocarcinogenesis through induction of G0/G1 cell cycle arrest and apoptosis and suggest a therapeutic application of RITA in HCC. - Abstract: Aberrant Notch signaling is observed in human hepatocellular carcinoma (HCC) and has been associated with the modulation of cell growth. However, the role of Notch signaling in HCC and its underlying mechanism remain elusive. RBP-J-interacting and tubulin-associated (RITA) mediates the nuclear export of RBP-J to tubulin fibers and downregulates Notch-mediated transcription. In this study, we found that RITA overexpression increased protein expression of p53 and Fbxw7 and downregulated the expression of cyclin D1, cyclin E, CDK2, Hes-1 and NF-κB p65. These changes led to growth inhibition and induced G0/G1 cell cycle arrest and apoptosis in SMMC7721 and HepG2 cells. Our findings indicate that RITA exerts tumor-suppressive effects in hepatocarcinogenesis through induction of G0/G1 cell cycle arrest and apoptosis and suggest a therapeutic application of RITA in HCC.

  11. Cell-cycle arrest and acute kidney injury: the light and the dark sides

    PubMed Central

    Kellum, John A.; Chawla, Lakhmir S.

    2016-01-01

    Acute kidney injury (AKI) is a common consequence of systemic illness or injury and it complicates several forms of major surgery. Two major difficulties have hampered progress in AKI research and clinical management. AKI is difficult to detect early and its pathogenesis is still poorly understood. We recently reported results from multi-center studies where two urinary markers of cell-cycle arrest, tissue inhibitor of metalloproteinases-2 (TIMP-2) and insulin-like growth factor-binding protein 7 (IGFBP7) were validated for development of AKI well ahead of clinical manifestations—azotemia and oliguria. Cell-cycle arrest is known to be involved in the pathogenesis of AKI and this ‘dark side’ may also involve progression to chronic kidney disease. However, cell-cycle arrest has a ‘light side’ as well, since this mechanism can protect cells from the disastrous consequences of entering cell division with damaged DNA or insufficient bioenergetic resources during injury or stress. Whether we can use the light side to help prevent AKI remains to be seen, but there is already evidence that cell-cycle arrest biomarkers are indicators of both sides of this complex physiology. PMID:26044835

  12. Ellagic acid suppresses lipid accumulation by suppressing early adipogenic events and cell cycle arrest.

    PubMed

    Woo, Mi-Seon; Choi, Hyeon-Son; Seo, Min-Jung; Jeon, Hui-Jeon; Lee, Boo-Yong

    2015-03-01

    Ellagic acid (EA) is a natural polyphenol found in various fruits and vegetables. In this study, we examined the inhibitory effect of EA on fat accumulation in 3T3-L1 cells during adipogenesis. Our data showed that EA reduced fat accumulation by down-regulating adipogenic markers such as peroxisome proliferator activated receptor γ (PPARγ) and the CCAAT/enhancer binding protein α (C/EBPα) at the mRNA and protein levels in a dose-dependent manner. We found that the decrease in adipogenic markers resulted from reduced expression of some early adipogenic transcription factors such as KLF4, KLF5, Krox20, and C/EBPβ within 24 h. Also, these inhibitions were correlated with down-regulation of TG synthetic enzymes, causing inhibition of triglyceride (TG) levels in 3T3-L1 cells investigated by ORO staining and in zebrafish investigated by TG assay. Additionally, the cell cycle analysis showed that EA inhibited cell cycle progression by arresting cells at the G0/G1 phase.

  13. Cell cycle arrest induced by MPPa-PDT in MDA-MB-231 cells

    NASA Astrophysics Data System (ADS)

    Liang, Liming; Bi, Wenxiang; Tian, Yuanyuan

    2016-05-01

    Photodynamic therapy (PDT) is a medical treatment using a photosensitizing agent and light source to treat cancers. Pyropheophorbidea methyl ester (MPPa), a derivative of chlorophyll, is a novel potent photosensitizer. To learn more about this photosensitizer, we examined the cell cycle arrest in MDA-MB-231. Cell cycle and apoptosis were measured by flow cytometer. Checkpoints of the cell cycle were measured by western blot. In this study, we found that the expression of Cyclin D1 was obviously decreased, while the expression of Chk2 and P21 was increased after PDT treatment. This study showed that MPPa-PDT affected the checkpoints of the cell cycle and led the cells to apoptosis.

  14. Centchroman induces redox-dependent apoptosis and cell-cycle arrest in human endometrial cancer cells.

    PubMed

    Shyam, Hari; Singh, Neetu; Kaushik, Shweta; Sharma, Ramesh; Balapure, Anil K

    2017-04-01

    Centchroman (CC) or Ormeloxifene has been shown to induce apoptosis and cell cycle arrest in various types of cancer cells. This has, however, not been addressed for endometrial cancer cells where its (CC) mechanism of action remains unclear. This study focuses on the basis of antineoplasticity of CC by blocking the targets involved in the cell cycle, survival and apoptosis in endometrial cancer cells. Ishikawa Human Endometrial Cancer Cells were cultured under estrogen deprived medium, exposed to CC and analyzed for proliferation and apoptosis. Additionally, we also analyzed oxidative stress induced by CC. Cell viability studies confirmed the IC50 of CC in Ishikawa cells to be 20 µM after 48 h treatment. CC arrests the cells in G0/G1 phase through cyclin D1 and cyclin E mediated pathways. Phosphatidylserine externalization, nuclear morphology changes, DNA fragmentation, PARP cleavage, and alteration of Bcl-2 family protein expression clearly suggest ongoing apoptosis in the CC treated cells. Activation of caspase 3 & 9, up-regulation of AIF and inhibition of apoptosis by z-VAD-fmk clearly explains the participation of the intrinsic pathway of programmed cell death. Further, the increase of ROS, loss of MMP, inhibition of antioxidant (MnSOD, Cu/Zn-SOD and GST) and inhibition of apoptosis with L-NAC suggests CC induced oxidative stress leading to apoptosis via mitochondria mediated pathway. Therefore, CC could be a potential therapeutic agent for the treatment of Endometrial Cancer adjunct to its utility as a contraceptive and an anti-breast cancer agent.

  15. Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells

    PubMed Central

    Ly, Tony; Endo, Aki; Lamond, Angus I

    2015-01-01

    Abstract Previously, we analyzed protein abundance changes across a ‘minimally perturbed’ cell cycle by using centrifugal elutriation to differentially enrich distinct cell cycle phases in human NB4 cells (Ly et al., 2014). In this study, we compare data from elutriated cells with NB4 cells arrested at comparable phases using serum starvation, hydroxyurea, or RO-3306. While elutriated and arrested cells have similar patterns of DNA content and cyclin expression, a large fraction of the proteome changes detected in arrested cells are found to reflect arrest-specific responses (i.e., starvation, DNA damage, CDK1 inhibition), rather than physiological cell cycle regulation. For example, we show most cells arrested in G2 by CDK1 inhibition express abnormally high levels of replication and origin licensing factors and are likely poised for genome re-replication. The protein data are available in the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/), an online, searchable resource. DOI: http://dx.doi.org/10.7554/eLife.04534.001 PMID:25555159

  16. Xanthones from the Leaves of Garcinia cowa Induce Cell Cycle Arrest, Apoptosis, and Autophagy in Cancer Cells.

    PubMed

    Xia, Zhengxiang; Zhang, Hong; Xu, Danqing; Lao, Yuanzhi; Fu, Wenwei; Tan, Hongsheng; Cao, Peng; Yang, Ling; Xu, Hongxi

    2015-06-19

    Two new xanthones, cowaxanthones G (1) and H (2), and 23 known analogues were isolated from an acetone extract of the leaves of Garcinia cowa. The isolated compounds were evaluated for cytotoxicity against three cancer cell lines and immortalized HL7702 normal liver cells, whereby compounds 1, 5, 8, and 15-17 exhibited significant cytotoxicity. Cell cycle analysis using flow cytometry showed that 5 induced cell cycle arrest at the S phase in a dose-dependent manner, 1 and 16 at the G2/M phase, and 17 at the G1 phase, while 16 and 17 induced apoptosis. Moreover, autophagy analysis by GFP-LC3 puncta formation and western blotting suggested that 17 induced autophagy. Taken together, our results suggest that these xanthones possess anticancer activities targeting cell cycle, apoptosis, and autophagy signaling pathways.

  17. Ammodytoxin, a secretory phospholipase A2, inhibits G2 cell-cycle arrest in the yeast Saccharomyces cerevisiae.

    PubMed

    Petrovic, Uros; Sribar, Jernej; Matis, Maja; Anderluh, Gregor; Peter-Katalinić, Jasna; Krizaj, Igor; Gubensek, Franc

    2005-10-15

    Ammodytoxin (Atx), an sPLA2 (secretory phospholipase A2), binds to g and e isoforms of porcine 14-3-3 proteins in vitro. 14-3-3 proteins are evolutionarily conserved eukaryotic regulatory proteins involved in a variety of biological processes, including cell-cycle regulation. We have now shown that Atx binds to yeast 14-3-3 proteins with an affinity similar to that for the mammalian isoforms. Thus yeast Saccharomyces cerevisiae can be used as a model eukaryotic cell, which lacks endogenous phospholipases A2, to assess the in vivo relevance of this interaction. Atx was expressed in yeast cells and shown to be biologically active inside the cells. It inhibited G2 cell-cycle arrest in yeast, which is regulated by 14-3-3 proteins. Interference with the cell cycle indicates a possible mechanism by which sPLA2s are able to cause the opposing effects, proliferation and apoptosis, in mammalian cells.

  18. Cypermethrin Induces Macrophages Death through Cell Cycle Arrest and Oxidative Stress-Mediated JNK/ERK Signaling Regulated Apoptosis

    PubMed Central

    Huang, Fang; Liu, Qiaoyun; Xie, Shujun; Xu, Jian; Huang, Bo; Wu, Yihua; Xia, Dajing

    2016-01-01

    Cypermethrin is one of the most highly effective synthetic pyrethroid insecticides. The toxicity of cypermethrin to the reproductive and nervous systems has been well studied. However, little is known about the toxic effect of cypermethrin on immune cells such as macrophages. Here, we investigated the cytotoxicity of cypermethrin on macrophages and the underlying molecular mechanisms. We found that cypermethrin reduced cell viability and induced apoptosis in RAW 264.7 cells. Cypermethrin also increased reactive oxygen species (ROS) production and DNA damage in a dose-dependent manner. Moreover, cypermethrin-induced G1 cell cycle arrest was associated with an enhanced expression of p21, wild-type p53, and down-regulation of cyclin D1, cyclin E and CDK4. In addition, cypermethrin treatment activated MAPK signal pathways by inducing c-Jun N-terminal kinase (JNK) and extracellular regulated protein kinases 1/2 ERK1/2 phosphorylation, and increased the cleaved poly ADP-ribose polymerase (PARP). Further, pretreatment with antioxidant N-acetylcysteine (NAC) effectively abrogated cypermethrin-induced cell cytotoxicity, G1 cell cycle arrest, DNA damage, PARP activity, and JNK and ERK1/2 activation. The specific JNK inhibitor (SP600125) and ERK1/2 inhibitor (PD98059) effectively reversed the phosphorylation level of JNK and ERK1/2, and attenuated the apoptosis. Taken together, these data suggested that cypermethrin caused immune cell death via inducing cell cycle arrest and apoptosis regulated by ROS-mediated JNK/ERK pathway. PMID:27322250

  19. Hydrogen peroxide inhibits transforming growth factor-β1-induced cell cycle arrest by promoting Smad3 linker phosphorylation through activation of Akt-ERK1/2-linked signaling pathway

    SciTech Connect

    Choi, Jiyeon; Park, Seong Ji; Jo, Eun Ji; Lee, Hui-Young; Hong, Suntaek; Kim, Seong-Jin; Kim, Byung-Chul

    2013-06-14

    Highlights: •H{sub 2}O{sub 2} inhibits TGF-β1-induced cell cycle arrest. •H{sub 2}O{sub 2} induces Smad3 linker phosphorylation through Akt-ERK1/2 pathway. •H{sub 2}O{sub 2}-mediated suppression of TGF-β signal requires Smad3 linker phosphorylation. •This is a first report about interplay between H{sub 2}O{sub 2} and growth inhibition pathway. -- Abstract: Hydrogen peroxide (H{sub 2}O{sub 2}) functions as a second messenger in growth factor receptor-mediated intracellular signaling cascade and is tumorigenic by virtue of its ability to promote cell proliferation; however, the mechanisms underlying the growth stimulatory action of H{sub 2}O{sub 2} are less understood. Here we report an important mechanism for antagonistic effects of H{sub 2}O{sub 2} on growth inhibitory response to transforming growth factor-β1 (TGF-β1). In Mv1Lu and HepG2 cells, pretreatment of H{sub 2}O{sub 2} (0.05–0.2 mM) completely blocked TGF-β1-mediated induction of p15{sup INK4B} expression and increase of its promoter activity. Interestingly, H{sub 2}O{sub 2} selectively suppressed the transcriptional activation potential of Smad3, not Smad2, in the absence of effects on TGF-β1-induced phosphorylation of the COOH-tail SSXS motif of Smad3 and its nuclear translocation. Mechanism studies showed that H{sub 2}O{sub 2} increases the phosphorylation of Smad3 at the middle linker region in a concentration- and time-dependent manner and this effect is mediated by activation of extracellular signal-activated kinase 1/2 through Akt. Furthermore, expression of a mutant Smad3 in which linker phosphorylation sites were ablated significantly abrogated the inhibitory effects of H{sub 2}O{sub 2} on TGF-β1-induced increase of p15{sup INK4B}-Luc reporter activity and blockade of cell cycle progression from G1 to S phase. These findings for the first time define H{sub 2}O{sub 2} as a signaling molecule that modulate Smad3 linker phosphorylation and its transcriptional activity, thus providing

  20. Loss of p53-mediated cell-cycle arrest, senescence and apoptosis promotes genomic instability and premature aging.

    PubMed

    Li, Tongyuan; Liu, Xiangyu; Jiang, Le; Manfredi, James; Zha, Shan; Gu, Wei

    2016-03-15

    Although p53-mediated cell cycle arrest, senescence and apoptosis are well accepted as major tumor suppression mechanisms, the loss of these functions does not directly lead to tumorigenesis, suggesting that the precise roles of these canonical activities of p53 need to be redefined. Here, we report that the cells derived from the mutant mice expressing p533KR, an acetylation-defective mutant that fails to induce cell-cycle arrest, senescence and apoptosis, exhibit high levels of aneuploidy upon DNA damage. Moreover, the embryonic lethality caused by the deficiency of XRCC4, a key DNA double strand break repair factor, can be fully rescued in the p533KR/3KR background. Notably, despite high levels of genomic instability, p533KR/3KRXRCC4-/- mice, unlike p53-/- XRCC4-/- mice, are not succumbed to pro-B-cell lymphomas. Nevertheless, p533KR/3KR XRCC4-/- mice display aging-like phenotypes including testicular atrophy, kyphosis, and premature death. Further analyses demonstrate that SLC7A11 is downregulated and that p53-mediated ferroptosis is significantly induced in spleens and testis of p533KR/3KRXRCC4-/- mice. These results demonstrate that the direct role of p53-mediated cell cycle arrest, senescence and apoptosis is to control genomic stability in vivo. Our study not only validates the importance of ferroptosis in p53-mediated tumor suppression in vivo but also reveals that the combination of genomic instability and activation of ferroptosis may promote aging-associated phenotypes.

  1. Myricetin inhibits proliferation and induces apoptosis and cell cycle arrest in gastric cancer cells.

    PubMed

    Feng, Jianfang; Chen, Xiaonan; Wang, Yuanyuan; Du, Yuwen; Sun, Qianqian; Zang, Wenqiao; Zhao, Guoqiang

    2015-10-01

    Myricetin is a flavonoid that is abundant in fruits and vegetables and has protective effects against cancer and diabetes. However, the mechanism of action of myricetin against gastric cancer (GC) is not fully understood. We researched myricetin on the proliferation, apoptosis, and cell cycle in GC HGC-27 and SGC7901 cells, to explore the underlying mechanism of action. Cell Counting Kit (CCK)-8 assay, Western blotting, cell cycle analysis, and apoptosis assay were used to evaluate the effects of myricetin on cell proliferation, apoptosis, and the cell cycle. To analyze the binding properties of ribosomal S6 kinase 2 (RSK2) with myricetin, surface plasmon resonance (SPR) analysis was performed. CCK8 assay showed that myricetin inhibited GC cell proliferation. Flow cytometry analysis showed that myricetin induces apoptosis and cell cycle arrest in GC cells. Western blotting indicated that myricetin influenced apoptosis and cell cycle arrest of GC cells by regulating related proteins. SPR analysis showed strong binding affinity of RSK2 and myricetin. Myricetin bound to RSK2, leading to increased expression of Mad1, and contributed to inhibition of HGC-27 and SGC7901 cell proliferation. Our results suggest the therapeutic potential of myricetin in GC.

  2. Capillarisin Exhibits Anticancer Effects by Inducing Apoptosis, Cell Cycle Arrest and Mitochondrial Membrane Potential Loss in Osteosarcoma Cancer Cells (HOS).

    PubMed

    Chen, N-J; Hao, F-Y; Liu, H; Zhao, H; Li, J-M

    2015-08-01

    The aim of the present study was to assess the anticancer activity of capillarisin against human osteosarcoma (HOS) cancer cells in vitro. Cell viability after capillarisin drug treatment and evaluated by MTT assay. The extent of cell death induced by capillarisin was estimated by using lactate dehydrogenase (LDH) assay. The effect of capillarisin on cell cycle phase distribution and mitochondrial membrane potential (ΛΨm) was demonstrated via flow cytometry using propidium iodide (PI) and rhodamine-123 (Rh-123) DNA-binding fluorescent dyes respectively. Fluorescence microscopy was employed to examine the morphological changes in osteosarcoma cancer cells and presence of apoptotic bodies following capillarisin treatment. The results of this study revealed that capillarisin induced dose-dependent growth inhibition of these cancer cells after 12-h of incubation. Further, capillarisin induced significant release of LDH from these cell cultures and this LDH release was much more noticeable at higher concentrations of capillarisin. Hoechst 33258 staining revealed characteristic morphological features of apoptosis triggered by capillarisin treatment. Cell cycle analysis revealed that capillarisin induced dose-dependent G0/G1-phase cell cycle arrest. Capillarisin also trigerred a progressive and dose-dependent reduction in the mitochondrial membrane potential. In conclusion, capillarisin inhibits cancer cell growth of osteosarcoma cells by inducing apoptosis accompanied with G0/G1-phase cell cycle arrest and loss in mitochondrial membrane potential.

  3. Rhizoma Paridis Saponins Induces Cell Cycle Arrest and Apoptosis in Non-Small Cell Lung Carcinoma A549 Cells

    PubMed Central

    Zhang, Jue; Yang, Yixi; Lei, Lei; Tian, Mengliang

    2015-01-01

    Background As a traditional Chinese medicine herb, Chonglou (Paris polyphylla var. chinensis) has been used as anticancer medicine in China in recent decades, as it can induce cell cycle arrest and apoptosis in numerous cancer cells. The saponins extract from the rhizoma of Chonglou [Rhizoma Paridis saponins (RPS)] is known as the main active component for anticancer treatment. However, the molecular mechanism of the anticancer effect of RPS is unknown. Material/Methods The present study evaluated the effect of RPS in non-small-cell lung cancer (NSCLC) A549 cells using the 3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyl tetrazolium bromide (MTT) assay and flow cytometry. Subsequently, the expression of several genes associated with cell cycle and apoptosis were detected by reverse transcription-quantitative polymerase chain reaction (qRT-PCR) and Western blotting. Results RPS was revealed to inhibit cell growth, causing a number of cells to accumulate in the G 1 phase of the cell cycle, leading to apoptosis. In addition, the effect was dose-dependent. Moreover, the results of qRT-PCR and Western blotting showed that p53 and cyclin-dependent kinase 2 (CDK2) were significantly downregulated, and that BCL2, BAX, and p21 were upregulated, by RPS treatment. Conclusions We speculated that the RPS could act on a pathway, including p53, p21, BCL2, BAX, and CDK2, and results in G1 cell cycle arrest and apoptosis in NSCLC cells. PMID:26311066

  4. Resveratrol inhibits oral squamous cell carcinoma through induction of apoptosis and G2/M phase cell cycle arrest.

    PubMed

    Yu, Xiao-Dong; Yang, Jing-Lei; Zhang, Wan-Lin; Liu, Dong-Xu

    2016-03-01

    The present study was performed to investigate the effect of resveratrol (trans-3,4',5-trihydroxystilbene) present as a natural phytoalexin in grapes, peanuts, and red wine on oral squamous cancer cell lines, SCC-VII, SCC-25, and YD-38. MTS assay and flow cytometry, respectively, were used for the analysis of inhibition of cell proliferation and apoptosis. Western blot analysis was performed to examine the effect of resveratrol on the expression of proteins associated with cell cycle regulation. The results revealed a concentration- and time-dependent inhibition of proliferation in all the three tested cell lines on treatment with resveratrol. The IC50 of resveratrol for SCC-VII, SCC-25, and YD-38 cell lines was found to be 0.5, 0.7, and 1.0 μg/ml, respectively, after 48-h treatment. Examination of the cell cycle analysis showed that resveratrol treatment induced cell cycle arrest in the G2/M phase and enhanced the expression of phospho-cdc2 (Tyr 15), cyclin A2, and cyclin B1 in the oral squamous cell carcinoma (OSCC) cells. It also caused a marked increase in the percentage of apoptotic cells as revealed by the fluorescence-activated cell sorting analysis. Thus, resveratrol exhibits inhibitory effect on the proliferation of OSCC oral cancer cells through the induction of apoptosis and G2/M phase cell cycle arrest.

  5. Two ZNF509 (ZBTB49) isoforms induce cell-cycle arrest by activating transcription of p21/CDKN1A and RB upon exposure to genotoxic stress

    PubMed Central

    Jeon, Bu-Nam; Kim, Min-Kyeong; Yoon, Jae-Hyeon; Kim, Min-Young; An, Haemin; Noh, Hee-Jin; Choi, Won-Il; Koh, Dong-In; Hur, Man-Wook

    2014-01-01

    ZNF509 is unique among POK family proteins in that four isoforms are generated by alternative splicing. Short ZNF509 (ZNF509S1, -S2 and -S3) isoforms contain one or two out of the seven zinc-fingers contained in long ZNF509 (ZNF509L). Here, we investigated the functions of ZNF509 isoforms in response to DNA damage, showing isoforms to be induced by p53. Intriguingly, to inhibit proliferation of HCT116 and HEK293 cells, we found that ZNF509L activates p21/CDKN1A transcription, while ZNF509S1 induces RB. ZNF509L binds to the p21/CDKN1A promoter either alone or by interacting with MIZ-1 to recruit the co-activator p300 to activate p21/CDKN1A transcription. In contrast, ZNF509S1 binds to the distal RB promoter to interact and interfere with the MIZF repressor, resulting in derepression and transcription of RB. Immunohistochemical analysis revealed that ZNF509 is highly expressed in normal epithelial cells, but was completely repressed in tumor tissues of the colon, lung and skin, indicating a possible role as a tumor suppressor. PMID:25245946

  6. In vitro and in vivo anti-tumor activity of CoQ0 against melanoma cells: inhibition of metastasis and induction of cell-cycle arrest and apoptosis through modulation of Wnt/β-catenin signaling pathways

    PubMed Central

    Hseu, You-Cheng; Thiyagarajan, Varadharajan; Tsou, Hsiao-Tung; Lin, Kai-Yuan; Chen, Hui-Jye; Lin, Chung-Ming; Liao, Jiuun-Wang; Yang, Hsin-Ling

    2016-01-01

    Coenzyme Q0 (CoQ0, 2,3-dimethoxy-5-methyl-1,4-benzoquinone), a novel quinone derivative, has been shown to modulate cellular redox balance. However, effect of this compound on melanoma remains unclear. This study examined the in vitro or in vivo anti-tumor, apoptosis, and anti-metastasis activities of CoQ0 (0-20 μM) through inhibition of Wnt/β-catenin signaling pathway. CoQ0 exhibits a significant cytotoxic effect on melanoma cell lines (B16F10, B16F1, and A2058), while causing little toxicity toward normal (HaCaT) cells. The suppression of β-catenin was seen with CoQ0 administration accompanied by a decrease in the expression of Wnt/β-catenin transcriptional target c-myc, cyclin D1, and survivin through GSK3β-independent pathway. We found that CoQ0 treatment caused G1 cell-cycle arrest by reducing the levels of cyclin E and CDK4. Furthermore, CoQ0 treatment induced apoptosis through caspase-9/-3 activation, PARP degradation, Bcl-2/Bax dysregulation, and p53 expression. Notably, non- or sub-cytotoxic concentrations of CoQ0 markedly inhibited migration and invasion, accompanied by the down-regulation of MMP-2 and -9, and up-regulation of TIMP-1 and -2 expressions in highly metastatic B16F10 cells. Furthermore, the in vivo study results revealed that CoQ0 treatment inhibited the tumor growth in B16F10 xenografted nude mice. Histological analysis and western blotting confirmed that CoQ0 significantly decreased the xenografted tumor progression as demonstrated by induction of apoptosis, suppression of β-catenin, and inhibition of cell cycle-, apoptotic-, and metastatic-regulatory proteins. The data suggest that CoQ0 unveils a novel mechanism by down-regulating Wnt/β-catenin pathways and could be used as a potential lead compound for melanoma chemotherapy. PMID:26968952

  7. The p75{sup NTR} tumor suppressor induces cell cycle arrest facilitating caspase mediated apoptosis in prostate tumor cells

    SciTech Connect

    Khwaja, Fatima; Tabassum, Arshia; Allen, Jeff; Djakiew, Daniel . E-mail: djakiewd@georgetown.edu

    2006-03-24

    The p75 neurotrophin receptor (p75{sup NTR}) is a death receptor which belongs to the tumor necrosis factor receptor super-family of membrane proteins. This study shows that p75{sup NTR} retarded cell cycle progression by induced accumulation of cells in G0/G1 and a reduction in the S phase of the cell cycle. The rescue of tumor cells from cell cycle progression by a death domain deleted ({delta}DD) dominant-negative antagonist of p75{sup NTR} showed that the death domain transduced anti-proliferative activity in a ligand-independent manner. Conversely, addition of NGF ligand rescued retardation of cell cycle progression with commensurate changes in components of the cyclin/cdk holoenzyme complex. In the absence of ligand, p75{sup NTR}-dependent cell cycle arrest facilitated an increase in apoptotic nuclear fragmentation of the prostate cancer cells. Apoptosis of p75{sup NTR} expressing cells occurred via the intrinsic mitochondrial pathway leading to a sequential caspase-9 and -7 cascade. Since the death domain deleted dominant-negative antagonist of p75{sup NTR} rescued intrinsic caspase associated apoptosis in PC-3 cells, this shows p75{sup NTR} was integral to ligand independent induction of apoptosis. Moreover, the ability of ligand to ameliorate the p75{sup NTR}-dependent intrinsic apoptotic cascade indicates that NGF functioned as a survival factor for p75{sup NTR} expressing prostate cancer cells.

  8. Crataegus azarolus Leaves Induce Antiproliferative Activity, Cell Cycle Arrest, and Apoptosis in Human HT-29 and HCT-116 Colorectal Cancer Cells.

    PubMed

    Mustapha, Nadia; Pinon, Aline; Limami, Youness; Simon, Alain; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2016-05-01

    Limited success has been achieved in extending the survival of patients with metastatic colorectal cancer (CRC). There is a strong need for novel agents in the treatment and prevention of CRC. Therefore, in the present study we evaluated the antiproliferative and pro-apoptotic potential of Crataegus azarolus ethyl acetate extract in HCT-116 and HT-29 human colorectal cancer cell lines. Moreover, we attempted to investigate the signaling pathways that should be involved in its cytotoxic effect. The Crataegus azarolus ethyl acetate extract-induced growth inhibitory effect was associated with DNA fragmentation, sub-G1 peak, loss of mitochondrial potential, and poly (ADP-ribose) polymerase (PARP) cleavage. In addition, ethyl acetate extract of Crataegus azarolus induced the cleavage of caspase-8. It has no effect on steady-state levels of total Bcl-2 protein. Whereas Bax levels decreased significantly in a dose-dependent manner in both tested cell lines. Taken together, these findings confirm the involvement of the extrinsic pathway of apoptosis. The apoptotic cell death induced by ethyl acetate extract of Crataegus azarolus was accompanied by an enhancement of the p21 expression but not through p53 activation in human colorectal cancer cells. The above-mentioned data provide insight into the molecular mechanisms of Crataegus azarolus ethyl acetate extract-induced apoptosis in CRC. Therefore, this compound should be a potential anticancer agent for the treatment of CRC.

  9. Silymarin induces cell cycle arrest and apoptosis in ovarian cancer cells.

    PubMed

    Fan, Li; Ma, Yalin; Liu, Ying; Zheng, Dongping; Huang, Guangrong

    2014-11-15

    The polyphenolic flavonoid silymarin that is the milk thistle extract has been found to possess an anti-cancer effect against various human epithelial cancers. In this study, to explore the regulative effect of silymarin on human ovarian cancer line A2780s and PA-1 cells, 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide assay and flow cytometry were respectively used to determine the inhibitory effect of silymarin on the both cell lines, and to measure their cell cycle progression. Apoptosis induction and mitochondrial membrane potential damage were separately detected by terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end labeling assay and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide staining. Additionally, western blotting was applied to determine cytochrome C release and expression levels of p53, p21, p27, p16, CDK2, Bax, Bcl-2, procaspase-9, procaspase-3, cleaved caspase-9 and caspase-3 proteins. The activity of caspase-9 and caspase-3 was measured using Caspase-Glo-9 and Caspase-Glo-3 assay. The results indicated that silymarin effectively suppressed cell growth in a dose- and time-dependent manner, and arrested cell cycle progression at G1/S phase in A2780s and PA-1 cells via up-regulation of p53, p21, and p27 protein expression, and down-regulation of CDK2 protein expression. Additionally, silymarin treatment for 24h at 50 and 100µg/ml resulted in a reduction of mitochondrial membrane potential and cytochrome C release, and significantly induced apoptosis in A2780s and PA-1 cells by increasing Bax and decreasing Bcl-2 protein expression, and activation of caspase-9 and caspase-3. Therefore, silymarin is a possible potential candidate for the prevention and treatment of ovarian cancer.

  10. G2 cell cycle arrest, down-regulation of cyclin B, and induction of mitotic catastrophe by the flavoprotein inhibitor diphenyleneiodonium.

    PubMed

    Scaife, Robin M

    2004-10-01

    Because proliferation of eukaryotic cells requires cell cycle-regulated chromatid separation by the mitotic spindle, it is subject to regulation by mitotic checkpoints. To determine the mechanism of the antiproliferative activity of the flavoprotein-specific inhibitor diphenyleneiodonium (DPI), I have examined its effect on the cell cycle and mitosis. Similar to paclitaxel, exposure to DPI causes an accumulation of cells with a 4N DNA content. However, unlike the paclitaxel-mediated mitotic block, DPI-treated cells are arrested in the cell cycle prior to mitosis. Although DPI-treated cells can arrest with fully separated centrosomes at opposite sides of the nucleus, these centrosomes fail to assemble mitotic spindle microtubules and they do not accumulate the Thr(288) phosphorylated Aurora-A kinase marker of centrosome maturation. In contrast with paclitaxel-arrested cells, DPI impairs cyclin B1 accumulation. Release from DPI permits an accumulation of cyclin B1 and progression of the cells into mitosis. Conversely, exposure of paclitaxel-arrested mitotic cells to DPI causes a precipitous drop in cyclin B and Thr(288) phosphorylated Aurora-A levels and leads to mitotic catastrophe in a range of cancerous and noncancerous cells. Hence, the antiproliferative activity of DPI reflects a novel inhibitory mechanism of cell cycle progression that can reverse spindle checkpoint-mediated cell cycle arrest.

  11. Synthesis, characterization, cytotoxicity, a poptosis and cell cycle arrest of dibenzoxanthenes derivatives

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Zhen; Yao, Jun-Hua; Jiang, Guang-Bin; Wang, Ji; Huang, Hong-Liang; Liu, Yun-Jun

    2014-12-01

    Two new dibenzoxanthenes compounds 1 and 2 have been synthesized and characterized by analytical and spectral methods. The crystal structure of compound 2 informs that the five rings of compound are almost planar. The DNA binding properties of two compounds were studied by absorption titration, viscosity measurement and luminescence. These results indicate that two compounds interact with calf thymus DNA through intercalative mode. Agarose gel electrophoresis experiment shows that PBR 322 DNA can be induced to cleave by two compounds under photoactivated condition. Compound 1 exhibits higher cytotoxicity than compound 2 toward MG-63, BEL-7402 and A549 cells. The apoptosis and cellular uptake of MG-63 cells were studied by fluorescence microscopy. Two compounds can also enhance the level of reactive oxygen species (ROS) and decrease the mitochondrial membrane potential. Compound 1 induces cell cycle arrest in G2/M phase and compound 2 induces cell cycle arrest in G0/G1 phase in MG-63.

  12. Variant surface glycoprotein RNA interference triggers a precytokinesis cell cycle arrest in African trypanosomes.

    PubMed

    Sheader, Karen; Vaughan, Sue; Minchin, James; Hughes, Katie; Gull, Keith; Rudenko, Gloria

    2005-06-14

    Trypanosoma brucei is a protozoan parasite that causes African sleeping sickness. T. brucei multiplies extracellularly in the bloodstream, relying on antigenic variation of a dense variant surface glycoprotein (VSG) coat to escape antibody-mediated lysis. We investigated the role of VSG in proliferation and pathogenicity by using inducible RNA interference to ablate VSG transcript down to 1-2% normal levels. Inhibiting VSG synthesis in vitro triggers a rapid and specific cell cycle checkpoint blocking cell division. Parasites arrest at a discrete precytokinesis stage with two full-length flagella and opposing flagellar pockets, without undergoing additional rounds of S phase and mitosis. A subset (<10%) of the stalled cells have internal flagella, indicating that the progenitors of these cells were already committed to cytokinesis when VSG restriction was sensed. Although there was no obvious VSG depletion in vitro after 24-h induction of VSG RNA interference, there was rapid clearance of these cells in vivo. We propose that a stringent block in VSG synthesis produces stalled trypanosomes with a minimally compromised VSG coat, which can be targeted by the immune system. Our data indicate that VSG protein or transcript is monitored during cell cycle progression in bloodstream-form T. brucei and describes precise precytokinesis cell cycle arrest. This checkpoint before cell division provides a link between the protective VSG coat and cell cycle progression and could function as a novel parasite safety mechanism, preventing extensive dilution of the protective VSG coat in the absence of VSG synthesis.

  13. Bacillus thuringiensis parasporal proteins induce cell-cycle arrest and caspase-dependant apoptotic cell death in leukemic cells.

    PubMed

    Chan, Kok-Keong; Wong, Rebecca Shin-Yee; Mohamed, Shar Mariam; Ibrahim, Tengku Azmi Tengku; Abdullah, Maha; Nadarajah, Vishna Devi

    2012-01-01

    Bacillus thuringiensis (Bt) parasporal proteins with selective anticancer activity have recently garnered interest. This study determines the efficacy and mode of cell death of Bt 18 parasporal proteins against 3 leukemic cell lines (CEM-SS, CCRF-SB and CCRF-HSB-2).Cell-based biochemical analysis aimed to determine cell viability and the percentage of apoptotic cell death in treated cell lines; ultrastructural analysis to study apoptotic changes and Western blot to identify the parasporal proteins' binding site were performed. Bt 18 parasporal proteins moderately decreased viability of leukemic cells but not that of normal human T lymphocytes. Further purification of the proteins showed changes in inhibition selectivity. Phosphatidylserine externalization, active caspase-3, cell cycle, and ultrastructural analysis confirmed apoptotic activity and S-phase cell-cycle arrest. Western blot analysis demonstrated glyceraldehyde 3-phosphate dehydrogenase as a binding protein. We suggest that Bt 18 parasporal proteins inhibit leukemic cell viability by cell-cycle arrest and apoptosis and that glyceraldehyde 3-phosphate dehydrogenase binding initiates apoptosis.

  14. The Hog1 MAP Kinase Promotes the Recovery from Cell Cycle Arrest Induced by Hydrogen Peroxide in Candida albicans

    PubMed Central

    Correia, Inês; Alonso-Monge, Rebeca; Pla, Jesús

    2017-01-01

    Eukaryotic cell cycle progression in response to environmental conditions is controlled via specific checkpoints. Signal transduction pathways mediated by MAPKs play a crucial role in sensing stress. For example, the canonical MAPKs Mkc1 (of the cell wall integrity pathway), and Hog1 (of the HOG pathway), are activated upon oxidative stress. In this work, we have analyzed the effect of oxidative stress induced by hydrogen peroxide on cell cycle progression in Candida albicans. Hydrogen peroxide was shown to induce a transient arrest at the G1 phase of the cell cycle. Specifically, a G1 arrest was observed, although phosphorylation of Mkc1 and Hog1 MAPKs can take place at all stages of the cell cycle. Interestingly, hog1 (but not mkc1) mutants required a longer time compared to wild type cells to resume growth after hydrogen peroxide challenge. Using GFP-labeled cells and mixed cultures of wild type and hog1 cells we were able to show that hog1 mutants progress faster through the cell cycle under standard growth conditions in the absence of stress (YPD at 37°C). Consequently, hog1 mutants exhibited a smaller cell size. The altered cell cycle progression correlates with altered expression of the G1 cyclins Cln3 and Pcl2 in hog1 cells compared to the wild type strain. In addition, Hgc1 (a hypha-specific G1 cyclin) as well as Cln3 displayed a different kinetics of expression in the presence of hydrogen peroxide in hog1 mutants. Collectively, these results indicate that Hog1 regulates the expression of G1 cyclins not only in response to oxidative stress, but also under standard growth conditions. Hydrogen peroxide treated cells did not show fluctuations in the mRNA levels for SOL1, which are observed in untreated cells during cell cycle progression. In addition, treatment with hydrogen peroxide prevented degradation of Sol1, an effect which was enhanced in hog1 mutants. Therefore, in C. albicans, the MAPK Hog1 mediates cell cycle progression in response to oxidative

  15. The Hog1 MAP Kinase Promotes the Recovery from Cell Cycle Arrest Induced by Hydrogen Peroxide in Candida albicans.

    PubMed

    Correia, Inês; Alonso-Monge, Rebeca; Pla, Jesús

    2016-01-01

    Eukaryotic cell cycle progression in response to environmental conditions is controlled via specific checkpoints. Signal transduction pathways mediated by MAPKs play a crucial role in sensing stress. For example, the canonical MAPKs Mkc1 (of the cell wall integrity pathway), and Hog1 (of the HOG pathway), are activated upon oxidative stress. In this work, we have analyzed the effect of oxidative stress induced by hydrogen peroxide on cell cycle progression in Candida albicans. Hydrogen peroxide was shown to induce a transient arrest at the G1 phase of the cell cycle. Specifically, a G1 arrest was observed, although phosphorylation of Mkc1 and Hog1 MAPKs can take place at all stages of the cell cycle. Interestingly, hog1 (but not mkc1) mutants required a longer time compared to wild type cells to resume growth after hydrogen peroxide challenge. Using GFP-labeled cells and mixed cultures of wild type and hog1 cells we were able to show that hog1 mutants progress faster through the cell cycle under standard growth conditions in the absence of stress (YPD at 37°C). Consequently, hog1 mutants exhibited a smaller cell size. The altered cell cycle progression correlates with altered expression of the G1 cyclins Cln3 and Pcl2 in hog1 cells compared to the wild type strain. In addition, Hgc1 (a hypha-specific G1 cyclin) as well as Cln3 displayed a different kinetics of expression in the presence of hydrogen peroxide in hog1 mutants. Collectively, these results indicate that Hog1 regulates the expression of G1 cyclins not only in response to oxidative stress, but also under standard growth conditions. Hydrogen peroxide treated cells did not show fluctuations in the mRNA levels for SOL1, which are observed in untreated cells during cell cycle progression. In addition, treatment with hydrogen peroxide prevented degradation of Sol1, an effect which was enhanced in hog1 mutants. Therefore, in C. albicans, the MAPK Hog1 mediates cell cycle progression in response to oxidative

  16. Pterostilbene induces apoptosis and cell cycle arrest in diffuse large B-cell lymphoma cells

    PubMed Central

    Kong, Yuanyuan; Chen, Gege; Xu, Zhijian; Yang, Guang; Li, Bo; Wu, Xiaosong; Xiao, Wenqin; Xie, Bingqian; Hu, Liangning; Sun, Xi; Chang, Gaomei; Gao, Minjie; Gao, Lu; Dai, Bojie; Tao, Yi; Zhu, Weiliang; Shi, Jumei

    2016-01-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma (NHL). Pterostilbene, a natural dimethylated analog of resveratrol, has been shown to possess diverse pharmacological activities, including anti-inflammatory, antioxidant and anticancer properties. However, to the best of our knowledge, there has been no study of the effects of pterostilbene upon hematological malignancies. Herein, we report the antitumor activity and mechanism of pterostilbene against DLBCL cells both in vitro and in vivo. We found that pterostilbene treatment resulted in a dose-dependent inhibition of cell viability. In addition, pterostilbene exhibited a strong cytotoxic effect, as evidenced not only by reductions of mitochondrial membrane potential (MMP) but also by increases in cellular apoptotic index and reactive oxygen species (ROS) levels, leading to arrest in the S-phase of the cell cycle. Furthermore, pterostilbene treatment directly up-regulated p-p38MAPK and down-regulated p-ERK1/2. In vivo, intravenous administration of pterostilbene inhibited tumor development in xenograft mouse models. Overall, the results suggested that pterostilbene is a potential anti-cancer pharmaceutical against human DLBCL by a mechanism involving the suppression of ERK1/2 and activation of p38MAPK signaling pathways. PMID:27869173

  17. Radical intermediate generation and cell cycle arrest by an aqueous extract of Thunbergia Laurifolia Linn. In human breast cancer cells.

    PubMed

    Jetawattana, Suwimol; Boonsirichai, Kanokporn; Charoen, Savapong; Martin, Sean M

    2015-01-01

    Thunbergia Laurifolia Linn. (TL) is one of the most familiar plants in Thai traditional medicine that is used to treat various conditions, including cancer. However, the antitumor activity of TL or its constituents has never been reported at the molecular level to support the folklore claim. The present study was designed to investigate the antitumor effect of an aqueous extract of TL in human breast cancer cells and the possible mechanism(s) of action. An aqueous crude extract was prepared from dried leaves of TL. Folin-Ciocalteu colorimetric assays were used to determine the total phenolic content. Antiproliferative and cell cycle effects were evaluated in human breast adenocarcinoma MCF-7 cells by MTT reduction assay, cell growth inhibition, clonogenic cell survival, and flow cytometric analysis. Free radical generation by the extracts was detected using electron paramagnetic resonance spectroscopy. The exposure of human breast adenocarcinoma MCF-7 cells to a TL aqueous extract resulted in decreases in cell growth, clonogenic cell survival, and cell viability in a concentration-dependent manner with an IC50 value of 843 μg/ml. Treatments with extract for 24 h at 250 μg/ml or higher induced cell cycle arrest as indicated by a significant increase of cell population in the G1 phase and a significant decrease in the S phase of the cell cycle. The capability of the aqueous extract to generate radical intermediates was observed at both high pH and near-neutral pH conditions. The findings suggest the antitumor bioactivities of TL against selected breast cancer cells may be due to induction of a G1 cell cycle arrest. Cytotoxicity and cell cycle perturbation that are associated with a high concentration of the extract could be in part explained by the total phenolic contents in the extract and the capacity to generate radical intermediates to modulate cellular proliferative signals.

  18. Induction of apoptosis and cell cycle arrest in human HCC MHCC97H cells with Chrysanthemum indicum extract

    PubMed Central

    Li, Zong-Fang; Wang, Zhi-Dong; Ji, Yuan-Yuan; Zhang, Shu; Huang, Chen; Li, Jun; Xia, Xian-Ming

    2009-01-01

    AIM: To investigate the effects of Chrysanthemum indicum extract (CIE) on inhibition of proliferation and on apoptosis, and the underlying mechanisms, in a human hepatocellular carcinoma (HCC) MHCC97H cell line. METHODS: Viable rat hepatocytes and human endothelial ECV304 cells were examined by trypan blue exclusion and MTT assay, respectively, as normal controls. The proliferation of MHCC97H cells was determined by MTT assay. The cellular morphology of MHCC97H cells was observed by phase contrast microscopy. Flow cytometry was performed to analyze cell apoptosis with annexin V/propidium iodide (PI), mitochondrial membrane potential with rhodamine 123 and cell cycle with PI in MHCC97H cells. Apoptotic proteins such as cytochrome C, caspase-9, caspase-3 and cell cycle proteins, including P21 and CDK4, were measured by Western blotting. RESULTS: CIE inhibited proliferation of MHCC97H cells in a time- and dose-dependent manner without cytotoxicity in rat hepatocytes and human endothelial cells. CIE induced apoptosis of MHCC97H cells in a concentration-dependent manner, as determined by flow cytometry. The apoptosis was accompanied by a decrease in mitochondrial membrane potential, release of cytochrome C and activation of caspase-9 and caspase-3. CIE arrested the cell cycle in the S phase by increasing P21 and decreasing CDK4 protein expression. CONCLUSION: CIE exerted a significant apoptotic effect through a mitochondrial pathway and arrested the cell cycle by regulation of cell cycle-related proteins in MHCC97H cells without an effect on normal cells. The cancer-specific selectivity shown in this study suggests that the plant extract could be a promising novel treatment for human cancer. PMID:19777612

  19. Kaempferol induces cell cycle arrest and apoptosis in renal cell carcinoma through EGFR/p38 signaling.

    PubMed

    Song, Wenbin; Dang, Qiang; Xu, Defeng; Chen, Yule; Zhu, Guodong; Wu, Kaijie; Zeng, Jin; Long, Qingzhi; Wang, Xinyang; He, Dalin; Li, Lei

    2014-03-01

    Kaempferol has been shown to inhibit cell growth, induce apoptosis and cell cycle arrest in several tumors, but not in renal cell carcinoma (RCC). In the present study, we investigated the effects of kaempferol and the underlying mechanism(s) on the cell growth of RCC cells. MTT assay and colony formation assay were used to study cell growth, and flow cytometry was used to study apoptosis and cell cycles in different RCC cells treated with various doses of kaempferol. A significant inhibition on cell growth, induction of apoptosis and cell cycle arrest were observed in 786-O and 769-P cells after kaempferol treatment compared with the control group. Moreover, the results clearly showed that kaempferol causes a strong inhibition of the activation of the EGFR/p38 signaling pathways, upregulation of p21 expression and downregulation of cyclin B1 expression in human RCC cells, together with activation of PARP cleavages, induction of apoptotic death and inhibition of cell growth. Collectively, our results suggest that kaempferol may serve as a candidate for chemo-preventive or chemotherapeutic agents for RCC.

  20. Pfaffosidic Fraction from Hebanthe paniculata Induces Cell Cycle Arrest and Caspase-3-Induced Apoptosis in HepG2 Cells

    PubMed Central

    da Silva, Tereza Cristina; Cogliati, Bruno; Latorre, Andréia Oliveira; Akisue, Gokithi; Nagamine, Márcia Kazumi; Haraguchi, Mitsue; Hansen, Daiane; Sanches, Daniel Soares; Dagli, Maria Lúcia Zaidan

    2015-01-01

    Hebanthe paniculata roots (formerly Pfaffia paniculata and popularly known as Brazilian ginseng) show antineoplastic, chemopreventive, and antiproliferative properties. Functional properties of these roots and their extracts are usually attributed to the pfaffosidic fraction, which is composed mainly by pfaffosides A–F. However, the therapeutic potential of this fraction in cancer cells is not yet entirely understood. This study aimed to analyze the antitumoral effects of the purified pfaffosidic fraction or saponinic fraction on the human hepatocellular carcinoma HepG2 cell line. Cellular viability, proliferation, and apoptosis were evaluated, respectively, by MTT assay, BrdU incorporation, activated caspase-3 immunocytochemistry, and DNA fragmentation assay. Cell cycle was analyzed by flow cytometry and the cell cycle-related proteins were analyzed by quantitative PCR and Western blot. The cells exposed to pfaffosidic fraction had reduced viability and cellular growth, induced G2/M at 48 h or S at 72 h arrest, and increased sub-G1 cell population via cyclin E downregulation, p27KIP1 overexpression, and caspase-3-induced apoptosis, without affecting the DNA integrity. Antitumoral effects of pfaffosidic fraction from H. paniculata in HepG2 cells originated by multimechanisms of action might be associated with cell cycle arrest in the S phase, by CDK2 and cyclin E downregulation and p27KIP1 overexpression, besides induction of apoptosis through caspase-3 activation. PMID:26075002

  1. Ethanol Metabolism Activates Cell Cycle Checkpoint Kinase, Chk2

    PubMed Central

    Clemens, Dahn L.; Mahan Schneider, Katrina J.; Nuss, Robert F.

    2011-01-01

    Chronic ethanol abuse results in hepatocyte injury and impairs hepatocyte replication. We have previously shown that ethanol metabolism results in cell cycle arrest at the G2/M transition, which is partially mediated by inhibitory phosphorylation of the cyclin-dependent kinase, Cdc2. To further delineate the mechanisms by which ethanol metabolism mediates this G2/M arrest, we investigated the involvement of upstream regulators of Cdc2 activity. Cdc2 is activated by the phosphatase Cdc25C. The activity of Cdc25C can, in turn, be regulated by the checkpoint kinase, Chk2, which is regulated by the kinase ataxia telangiectasia mutated (ATM). To investigate the involvement of these regulators of Cdc2 activity, VA-13 cells, which are Hep G2 cells modified to efficiently express alcohol dehydrogenase, were cultured in the presence or absence of 25 mM ethanol. Immunoblots were performed to determine the effects of ethanol metabolism on the activation of Cdc25C, Chk2, and ATM. Ethanol metabolism increased the active forms of ATM, and Chk2, as well as the phosphorylated form of Cdc25C. Additionally, inhibition of ATM resulted in approximately 50% of the cells being rescued from the G2/M cell cycle arrest, and ameliorated the inhibitory phosphorylation of Cdc2. Our findings demonstrate that ethanol metabolism activates ATM. ATM can activate the checkpoint kinase Chk2, resulting in phosphorylation of Cdc25C, and ultimately in the accumulation of inactive Cdc2. This may, in part, explain the ethanol metabolism-mediated impairment in hepatocyte replication, which may be important in the initiation and progression of alcoholic liver injury. PMID:21924579

  2. Fisetin and hesperetin induced apoptosis and cell cycle arrest in chronic myeloid leukemia cells accompanied by modulation of cellular signaling.

    PubMed

    Adan, Aysun; Baran, Yusuf

    2016-05-01

    Fisetin and hesperetin, naturally occurring flavonoids, have been reported as novel antioxidants with chemopreventive/chemotherapeutic potential against various types of cancer. However, their mechanism of action in CML is still unknown. This particular study aims to evaluate the therapeutic potentials of fisetin and hesperetin and their effects on cell proliferation, apoptosis, and cell cycle progression in human K562 CML cells. The results indicated that fisetin and hesperetin inhibited cell proliferation and triggered programmed cell death in these cells. The latter was confırmed by mitochondrial membrane depolarization and an increase in caspase-3 activation. In addition to that, we have detected S and G2/M cell cycle arrests and G0/G1 arrest upon fisetin and hesperetin treatment, respectively. To identify the altered genes and genetic networks in response to fisetin and hesperetin, whole-genome microarray analysis was performed. The microarray gene profiling analysis revealed some important signaling pathways including JAK/STAT pathway, KIT receptor signaling, and growth hormone receptor signaling that were altered upon fisetin and hesperetin treatment. Moreover, microarray data suggested potential candidate genes for targeted CML therapy. Fisetin and hesperetin significantly modulated the expression of genes involved in cell proliferation and division, apoptosis, cell cycle regulation, and other significant cellular processes such as replication, transcription, and translation. In conclusion, our results suggest that fisetin and hesperetin as potential natural agents for CML therapy.

  3. Cell cycle arrest and biochemical changes accompanying cell death in harmful dinoflagellates following exposure to bacterial algicide IRI-160AA

    PubMed Central

    Pokrzywinski, Kaytee L.; Tilney, Charles L.; Warner, Mark E.; Coyne, Kathryn J.

    2017-01-01

    Bacteria may play a role in regulating harmful algal blooms, but little is known about the biochemical and physiological changes associated with cell death induced by algicidal bacteria. Previous work characterized an algicidal exudate (IRI-160AA) produced by Shewanella sp. IRI-160 that is effective against dinoflagellates, while having little to no effect on other phytoplankton species in laboratory culture experiments. The objective of this study was to evaluate biochemical changes associated with cell death and impacts on the cell cycle in three dinoflagellate species (Prorocentrum minimum, Karlodinium veneficum and Gyrodinium instriatum) after exposure to IRI-160AA. In this study, IRI-160AA induced cell cycle arrest in all dinoflagellates examined. Several indicators for programmed cell death (PCD) that are often observed in phytoplankton in response to a variety of stressors were also evaluated. Cell death was accompanied by significant increases in DNA degradation, intra- and extracellular ROS concentrations and DEVDase (caspase-3 like) protease activity, which have been associated with PCD in other phytoplankton species. Overall, results of this investigation provide strong evidence that treatment with the bacterial algicide, IRI-160AA results in cell cycle arrest and induces biochemical changes consistent with stress-related cell death responses observed in other phytoplankton. PMID:28332589

  4. Toona Sinensis and Moschus Decoction Induced Cell Cycle Arrest in Human Cervical Carcinoma HeLa Cells

    PubMed Central

    Zhen, Hong; Zhang, Yifei; Fang, Zhijia; Huang, Zhiwei; Shi, Ping

    2014-01-01

    Toona sinensis and Moschus are two herb materials used in traditional Chinese medicine, most commonly for their various biological activities. In this study, we investigated the inhibitory effect of three decoctions from Toona sinensis, Moschus, and Toona sinensis and Moschus in combination on cell growth in several normal and cancer cell lines by cell viability assay. The results showed that the combined decoction exhibited the strongest anticancer effects, compared to two single decoctions. The observations indicated that the combined decoction did not induce cell apoptosis and autophagy in HeLa cells by fluorescence microscopy. Flow cytometry analysis revealed that the combined decoction arrested HeLa cell cycle progression in S-phase. After the decoction incubation, among 41 cell cycle related genes, eight were reduced, while five were increased in mRNA levels by real-time PCR assay. Western blotting showed that there were no apparent changes of protein levels of Cyclin E1, while P27 expression significantly declined and the levels of CDC7 and CDK7 obviously increased. The data suggest that the RB pathway is partially responsible for the decoction-induced S-phase cell cycle arrest in HeLa cells. Therefore, the combined decoction may have therapeutic potential as an anticancer formula for certain cancers. PMID:24511319

  5. Cell cycle arrest and biochemical changes accompanying cell death in harmful dinoflagellates following exposure to bacterial algicide IRI-160AA

    NASA Astrophysics Data System (ADS)

    Pokrzywinski, Kaytee L.; Tilney, Charles L.; Warner, Mark E.; Coyne, Kathryn J.

    2017-03-01

    Bacteria may play a role in regulating harmful algal blooms, but little is known about the biochemical and physiological changes associated with cell death induced by algicidal bacteria. Previous work characterized an algicidal exudate (IRI-160AA) produced by Shewanella sp. IRI-160 that is effective against dinoflagellates, while having little to no effect on other phytoplankton species in laboratory culture experiments. The objective of this study was to evaluate biochemical changes associated with cell death and impacts on the cell cycle in three dinoflagellate species (Prorocentrum minimum, Karlodinium veneficum and Gyrodinium instriatum) after exposure to IRI-160AA. In this study, IRI-160AA induced cell cycle arrest in all dinoflagellates examined. Several indicators for programmed cell death (PCD) that are often observed in phytoplankton in response to a variety of stressors were also evaluated. Cell death was accompanied by significant increases in DNA degradation, intra- and extracellular ROS concentrations and DEVDase (caspase-3 like) protease activity, which have been associated with PCD in other phytoplankton species. Overall, results of this investigation provide strong evidence that treatment with the bacterial algicide, IRI-160AA results in cell cycle arrest and induces biochemical changes consistent with stress-related cell death responses observed in other phytoplankton.

  6. Extracts of centipede Scolopendra subspinipes mutilans induce cell cycle arrest and apoptosis in A375 human melanoma cells.

    PubMed

    Ma, Weina; Liu, Rui; Qi, Junpeng; Zhang, Yanmin

    2014-07-01

    Extracts from the centipede Scolopendra genus, have been used in traditional medicine for the treatment of various diseases and have been found to exhibit anticancer activity in tumor cells. To investigate the potential and associated antitumor mechanism of alcohol extracts of the centipede Scolopendra subspinipes mutilans (AECS), cell viability, cell cycle and cell apoptosis were studied and the results revealed that AECS inhibits A375 cell proliferation in a dose- and time-dependent manner. In addition, AECS was found to arrest the cell cycle of A375 cells at the S phase, which was accompanied by a marked increase in the protein levels of cyclin E and a decrease in the protein levels of cyclin D1. In a cell culture system, AECS markedly induced the apoptosis of A375 cells, which was closely associated with the effects on the Bcl-2 family, whereby decreased Bcl-2 and increased Bak, Bax and Bad expression levels were observed. The underlying mechanism of AECS inhibiting A375 cell proliferation was associated with the induction of cell cycle arrest and apoptosis, indicating that AECS may present as a potential therapeutic agent for administration in human melanoma cancer intervention.

  7. Imaging Bone Morphogenetic Protein 7 Induced Cell Cycle Arrest in Experimental Gliomas12

    PubMed Central

    Klose, Anke; Waerzeggers, Yannic; Monfared, Parisa; Vukicevic, Slobodan; Kaijzel, Eric L; Winkeler, Alexandra; Wickenhauser, Claudia; Löwik, Clemens W G M; Jacobs, Andreas H

    2011-01-01

    Bone morphogenetic protein 7 (BMP-7) belongs to the superfamily of transforming growth factor β-like cytokines, which can act either as tumor suppressors or as tumor promoters depending on cell type and differentiation. Our investigations focused on analyzing the effects of BMP-7 during glioma cell proliferation in vitro and in vivo. BMP-7 treatment decreased the proliferation of Gli36ΔEGFR-LITG glioma cells up to 50%through a cell cycle arrest in the G1 phase but not by induction of apoptosis. This effect was mediated by the modulation of the expression and phosphorylation of cyclin-dependent kinase 2, cyclin-dependent kinase inhibitor p21, and downstream retinoblastoma protein. Furthermore, in vivo optical imaging of luciferase activity of Gli36ΔEGFR-LITG cells implanted intracranially into nude mice in the presence or absence of BMP-7 treatment corroborated the antiproliferative effects of this cytokine. This report clearly underlines the tumor-suppressive role of BMP-7 in glioma-derived cells. Taken together, our results indicate that manipulating the BMP/transforming growth factor β signaling cascade may serve as a new strategy for imaging-guided molecular-targeted therapy of malignant gliomas. PMID:21390190

  8. HPV16 and 18 genome amplification show different E4-dependence, with 16E4 enhancing E1 nuclear accumulation and replicative efficiency via its cell cycle arrest and kinase activation functions.

    PubMed

    Egawa, Nagayasu; Wang, Qian; Griffin, Heather M; Murakami, Isao; Jackson, Deborah; Mahmood, Radma; Doorbar, John

    2017-03-17

    To clarify E1^E4's role during high-risk HPV infection, the E4 proteins of HPV16 and 18 were compared side by side using an isogenic keratinocyte differentiation model. While no effect on cell proliferation or viral genome copy number was observed during the early phase of either virus life cycle, time-course experiments showed that viral genome amplification and L1 expression were differently affected upon differentiation, with HPV16 showing a much clearer E4 dependency. Although E4 loss never completely abolished genome amplification, its more obvious contribution in HPV16 focused our efforts on 16E4. As previously suggested, in the context of the virus life cycle, 16E4s G2-arrest capability was found to contribute to both genome amplification success and L1 accumulation. Loss of 16E4 also lead to a reduced maintenance of ERK, JNK and p38MAPK activity throughout the genome amplifying cell layers, with 16E4 (but not 18E4) co-localizing precisely with activated cytoplasmic JNK in both wild type raft tissue, and HPV16-induced patient biopsy tissue. When 16E1 was co-expressed with E4, as occurs during genome amplification in vivo, the E1 replication helicase accumulated preferentially in the nucleus, and in transient replication assays, E4 stimulated viral genome amplification. Interestingly, a 16E1 mutant deficient in its regulatory phosphorylation sites no longer accumulated in the nucleus following E4 co-expression. E4-mediated stabilisation of 16E2 was also apparent, with E2 levels declining in organotypic raft culture when 16E4 was absent. These results suggest that 16E4-mediated enhancement of genome amplification involves its cell cycle inhibition and cellular kinase activation functions, with E4 modifying the activity and function of viral replication proteins including E1. These activities of 16E4, and the different kinase patterns seen here with HPV18, 31 and 45, may reflect natural differences in the biology and tropisms of these viruses, as well as

  9. HPV16 and 18 genome amplification show different E4-dependence, with 16E4 enhancing E1 nuclear accumulation and replicative efficiency via its cell cycle arrest and kinase activation functions

    PubMed Central

    Jackson, Deborah; Mahmood, Radma

    2017-01-01

    To clarify E1^E4’s role during high-risk HPV infection, the E4 proteins of HPV16 and 18 were compared side by side using an isogenic keratinocyte differentiation model. While no effect on cell proliferation or viral genome copy number was observed during the early phase of either virus life cycle, time-course experiments showed that viral genome amplification and L1 expression were differently affected upon differentiation, with HPV16 showing a much clearer E4 dependency. Although E4 loss never completely abolished genome amplification, its more obvious contribution in HPV16 focused our efforts on 16E4. As previously suggested, in the context of the virus life cycle, 16E4s G2-arrest capability was found to contribute to both genome amplification success and L1 accumulation. Loss of 16E4 also lead to a reduced maintenance of ERK, JNK and p38MAPK activity throughout the genome amplifying cell layers, with 16E4 (but not 18E4) co-localizing precisely with activated cytoplasmic JNK in both wild type raft tissue, and HPV16-induced patient biopsy tissue. When 16E1 was co-expressed with E4, as occurs during genome amplification in vivo, the E1 replication helicase accumulated preferentially in the nucleus, and in transient replication assays, E4 stimulated viral genome amplification. Interestingly, a 16E1 mutant deficient in its regulatory phosphorylation sites no longer accumulated in the nucleus following E4 co-expression. E4-mediated stabilisation of 16E2 was also apparent, with E2 levels declining in organotypic raft culture when 16E4 was absent. These results suggest that 16E4-mediated enhancement of genome amplification involves its cell cycle inhibition and cellular kinase activation functions, with E4 modifying the activity and function of viral replication proteins including E1. These activities of 16E4, and the different kinase patterns seen here with HPV18, 31 and 45, may reflect natural differences in the biology and tropisms of these viruses, as well as

  10. Nickel chloride (NiCl2) in hepatic toxicity: apoptosis, G2/M cell cycle arrest and inflammatory response

    PubMed Central

    Guo, Hongrui; Cui, Hengmin; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Zhao, Ling; Chen, Kejie; Deng, Jie

    2016-01-01

    Up to now, the precise mechanism of Ni toxicology is still indistinct. Our aim was to test the apoptosis, cell cycle arrest and inflammatory response mechanism induced by NiCl2 in the liver of broiler chickens. NiCl2 significantly increased hepatic apoptosis. NiCl2 activated mitochondria-mediated apoptotic pathway by decreasing Bcl-2, Bcl-xL, Mcl-1, and increasing Bax, Bak, caspase-3, caspase-9 and PARP mRNA expression. In the Fas-mediated apoptotic pathway, mRNA expression levels of Fas, FasL, caspase-8 were increased. Also, NiCl2 induced ER stress apoptotic pathway by increasing GRP78 and GRP94 mRNA expressions. The ER stress was activated through PERK, IRE1 and ATF6 pathways, which were characterized by increasing eIF2α, ATF4, IRE1, XBP1 and ATF6 mRNA expressions. And, NiCl2 arrested G2/M phase cell cycle by increasing p53, p21 and decreasing cdc2, cyclin B mRNA expressions. Simultaneously, NiCl2 increased TNF-α, IL-1β, IL-6, IL-8 mRNA expressions through NF-κB activation. In conclusion, NiCl2 induces apoptosis through mitochondria, Fas and ER stress-mediated apoptotic pathways and causes cell cycle G2/M phase arrest via p53-dependent pathway and generates inflammatory response by activating NF-κB pathway. PMID:27824316

  11. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells

    SciTech Connect

    Hu, Xiaolan; Zhang, Xianqi; Qiu, Shuifeng; Yu, Daihua; Lin, Shuxin

    2010-07-16

    Research highlights: {yields} Salidroside inhibits the growth of human breast cancer cells. {yields} Salidroside induces cell-cycle arrest of human breast cancer cells. {yields} Salidroside induces apoptosis of human breast cancer cell lines. -- Abstract: Recently, salidroside (p-hydroxyphenethyl-{beta}-D-glucoside) has been identified as one of the most potent compounds isolated from plants of the Rhodiola genus used widely in traditional Chinese medicine, but pharmacokinetic data on the compound are unavailable. We were the first to report the cytotoxic effects of salidroside on cancer cell lines derived from different tissues, and we found that human breast cancer MDA-MB-231 cells (estrogen receptor negative) were sensitive to the inhibitory action of low-concentration salidroside. To further investigate the cytotoxic effects of salidroside on breast cancer cells and reveal possible ER-related differences in response to salidroside, we used MDA-MB-231 cells and MCF-7 cells (estrogen receptor-positive) as models to study possible molecular mechanisms; we evaluated the effects of salidroside on cell growth characteristics, such as proliferation, cell cycle duration, and apoptosis, and on the expression of apoptosis-related molecules. Our results demonstrated for the first time that salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells and may be a promising candidate for breast cancer treatment.

  12. Vitisin A inhibits adipocyte differentiation through cell cycle arrest in 3T3-L1 cells

    SciTech Connect

    Kim, Soon-hee; Park, Hee-Sook; Lee, Myoung-su; Cho, Yong-Jin; Kim, Young-Sup; Hwang, Jin-Taek; Sung, Mi Jeong; Kim, Myung Sunny; Kwon, Dae Young

    2008-07-18

    Inhibition of adipocyte differentiation is one approach among the anti-obesity strategies. This study demonstrates that vitisin A, a resveratrol tetramer, inhibits adipocyte differentiation most effectively of 18 stilbenes tested. Fat accumulation and PPAR{gamma} expression were decreased by vitisin A in a dose-dependent manner. Vitisin A significantly inhibited preadipocyte proliferation and consequent differentiation within the first 2 days of treatment, indicating that the anti-adipogenic effect of vitisin A was derived from anti-proliferation. Based on cell cycle analysis, vitisin A blocked the cell cycle at the G1-S phase transition, causing cells to remain in the preadipocyte state. Vitisin A increased p21 expression, while the Rb phosphorylation level was reduced. Therefore, vitisin A seems to induce G1 arrest through p21- and consequent Rb-dependent suppression of transcription. On the other hand, ERK and Akt signaling pathways were not involved in the anti-mitotic regulation by vitisin A. Taken together, these results suggest that vitisin A inhibits adipocyte differentiation through preadipocyte cell cycle arrest.

  13. Notch3 overexpression causes arrest of cell cycle progression by inducing Cdh1 expression in human breast cancer cells.

    PubMed

    Chen, Chun-Fa; Dou, Xiao-Wei; Liang, Yuan-Ke; Lin, Hao-Yu; Bai, Jing-Wen; Zhang, Xi-Xun; Wei, Xiao-Long; Li, Yao-Chen; Zhang, Guo-Jun

    2016-01-01

    Uncontrolled cell proliferation, genomic instability and cancer are closely related to the abnormal activation of the cell cycle. Therefore, blocking the cell cycle of cancer cells has become one of the key goals for treating malignancies. Unfortunately, the factors affecting cell cycle progression remain largely unknown. In this study, we have explored the effects of Notch3 on the cell cycle in breast cancer cell lines by 3 methods: overexpressing the intra-cellular domain of Notch3 (N3ICD), knocking-down Notch3 by RNA interference, and using X-ray radiation exposure. The results revealed that overexpression of Notch3 arrested the cell cycle at the G0/G1 phase, and inhibited the proliferation and colony-formation rate in the breast cancer cell line, MDA-MB-231. Furthermore, overexpressing N3ICD upregulated Cdh1 expression and resulted in p27(Kip) accumulation by accelerating Skp2 degradation. Conversely, silencing of Notch3 in the breast cancer cell line, MCF-7, caused a decrease in expression levels of Cdh1 and p27(Kip) at both the protein and mRNA levels, while the expression of Skp2 only increased at the protein level. Correspondingly, there was an increase in the percentage of cells in the G0/G1 phase and an elevated proliferative ability and colony-formation rate, which may be caused by alterations of the Cdh1/Skp2/p27 axis. These results were also supported by exposing MDA-MB-231 cells or MCF-7 treated with siN3 to X-irradiation at various doses. Overall, our data showed that overexpression of N3ICD upregulated the expression of Cdh1 and caused p27(Kip) accumulation by accelerating Skp2 degradation, which in turn led to cell cycle arrest at the G0/G1 phase, in the context of proliferating breast cancer cell lines. These findings help to illuminate the precision therapy targeted to cell cycle progression, required for cancer treatment.

  14. Notch3 overexpression causes arrest of cell cycle progression by inducing Cdh1 expression in human breast cancer cells

    PubMed Central

    Chen, Chun-Fa; Dou, Xiao-Wei; Liang, Yuan-Ke; Lin, Hao-Yu; Bai, Jing-Wen; Zhang, Xi-Xun; Wei, Xiao-Long; Li, Yao-Chen; Zhang, Guo-Jun

    2016-01-01

    ABSTRACT Uncontrolled cell proliferation, genomic instability and cancer are closely related to the abnormal activation of the cell cycle. Therefore, blocking the cell cycle of cancer cells has become one of the key goals for treating malignancies. Unfortunately, the factors affecting cell cycle progression remain largely unknown. In this study, we have explored the effects of Notch3 on the cell cycle in breast cancer cell lines by 3 methods: overexpressing the intra-cellular domain of Notch3 (N3ICD), knocking-down Notch3 by RNA interference, and using X-ray radiation exposure. The results revealed that overexpression of Notch3 arrested the cell cycle at the G0/G1 phase, and inhibited the proliferation and colony-formation rate in the breast cancer cell line, MDA-MB-231. Furthermore, overexpressing N3ICD upregulated Cdh1 expression and resulted in p27Kip accumulation by accelerating Skp2 degradation. Conversely, silencing of Notch3 in the breast cancer cell line, MCF-7, caused a decrease in expression levels of Cdh1 and p27Kip at both the protein and mRNA levels, while the expression of Skp2 only increased at the protein level. Correspondingly, there was an increase in the percentage of cells in the G0/G1 phase and an elevated proliferative ability and colony-formation rate, which may be caused by alterations of the Cdh1/Skp2/p27 axis. These results were also supported by exposing MDA-MB-231 cells or MCF-7 treated with siN3 to X-irradiation at various doses. Overall, our data showed that overexpression of N3ICD upregulated the expression of Cdh1 and caused p27Kip accumulation by accelerating Skp2 degradation, which in turn led to cell cycle arrest at the G0/G1 phase, in the context of proliferating breast cancer cell lines. These findings help to illuminate the precision therapy targeted to cell cycle progression, required for cancer treatment. PMID:26694515

  15. Tangeretin induces cell cycle arrest and apoptosis through upregulation of PTEN expression in glioma cells.

    PubMed

    Ma, Li-Li; Wang, Da-Wei; Yu, Xu-Dong; Zhou, Yan-Ling

    2016-07-01

    Tangeretin (TANG), present in peel of citrus fruits, has been shown to various medicinal properties such as chemopreventive and neuroprotective. However, the chemopreventive effect of TANG on glioblastoma cells has not been examined. The present study was designed to explore the anticancer potential of TANG in glioblastoma cells and to investigate the related mechanism. Human glioblastoma U-87MG and LN-18 cells were treated with 45μM concentration of TANG and cell growth was measured by MTT assay. The cell cycle distribution and cell death were measured by flow cytometry. The expression of cell cycle and apoptosis related genes were analyzed by quantitative RT-PCR and western blot. The cells treated with TANG were significantly increased cell growth suppression and cell death effects than vehicle treated cells. Further, TANG treatment increases G2/M arrest and apoptosis by modulating PTEN and cell-cycle regulated genes such as cyclin-D and cdc-2 mRNA and protein expressions. Moreover, the ability of TANG to decrease cell growth and to induce cell death was compromised when PTEN was knockdown by siRNA. Taken together, the chemopreventive effect of TANG is associated with regulation of cell-cycle and apoptosis in glioblastoma, thereby attenuating glioblastoma cell growth. Hence, the present findings suggest that TANG may be a therapeutic agent for glioblastoma treatment.

  16. Aloe-emodin induced in vitro G2/M arrest of cell cycle in human promyelocytic leukemia HL-60 cells.

    PubMed

    Chen, H C; Hsieh, W T; Chang, W C; Chung, J G

    2004-08-01

    In this study, we have evaluated the chemopreventive role of aloe-emodin in human promyelocytic leukemia HL-60 cells in vitro by studying the regulation of proliferation, cell cycle and apoptosis. Aloe-emodin inhibited cell proliferation and induced G2/M arrest and apoptosis in HL-60 cells. Investigation of the levels of cyclins B1, E and A by immunoblot analysis showed that cyclin E level was unaffected, whereas cyclin B1 and A levels increased with aloe-emodin in HL-60 cells. Investigation of the levels of cyclin-dependent kinases, Cdk1 and 2, showed increased levels of Cdk1 but the levels of Cdk2 were not effected with aloe-emodin in HL-60 cells. The levels of p27 were increased after HL-60 cells were cotreated with various concentrations of aloe-emodin. The increase of the levels of p27 may be the major factor for aloe-emodin to cause G2/M arrest in these examined cells. Flow cytometric assays and DNA fragmentation gel electrophoresis also confirmed aloe-emodin induced apoptosis in HL-60 cells. The levels of caspase-3 were increased after HL-60 cells were cotreated with 10 microM aloe-emodin for 12, 24, 48, and 72 hours. Taken together, aloe-emodin therefore appears to exert its anticarcinogenesis properties by inhibiting proliferation and inducing cell cycle arrest and apoptosis underwent activation of caspase-3 in human leukemia HL-60 cells.

  17. Middle infrared radiation induces G2/M cell cycle arrest in A549 lung cancer cells.

    PubMed

    Chang, Hsin-Yi; Shih, Meng-Her; Huang, Hsuan-Cheng; Tsai, Shang-Ru; Juan, Hsueh-Fen; Lee, Si-Chen

    2013-01-01

    There were studies investigating the effects of broadband infrared radiation (IR) on cancer cell, while the influences of middle-infrared radiation (MIR) are still unknown. In this study, a MIR emitter with emission wavelength band in the 3-5 µm region was developed to irradiate A549 lung adenocarcinoma cells. It was found that MIR exposure inhibited cell proliferation and induced morphological changes by altering the cellular distribution of cytoskeletal components. Using quantitative PCR, we found that MIR promoted the expression levels of ATM (ataxia telangiectasia mutated), ATR (ataxia-telangiectasia and Rad3-related and Rad3-related), TP53 (tumor protein p53), p21 (CDKN1A, cyclin-dependent kinase inhibitor 1A) and GADD45 (growth arrest and DNA-damage inducible), but decreased the expression levels of cyclin B coding genes, CCNB1 and CCNB2, as well as CDK1 (Cyclin-dependent kinase 1). The reduction of protein expression levels of CDC25C, cyclin B1 and the phosphorylation of CDK1 at Thr-161 altogether suggest G(2)/M arrest occurred in A549 cells by MIR. DNA repair foci formation of DNA double-strand breaks (DSB) marker γ-H2AX and sensor 53BP1 was induced by MIR treatment, it implies the MIR induced G(2)/M cell cycle arrest resulted from DSB. This study illustrates a potential role for the use of MIR in lung cancer therapy by initiating DSB and blocking cell cycle progression.

  18. Invasive Cell Fate Requires G1 Cell-Cycle Arrest and Histone Deacetylase-Mediated Changes in Gene Expression.

    PubMed

    Matus, David Q; Lohmer, Lauren L; Kelley, Laura C; Schindler, Adam J; Kohrman, Abraham Q; Barkoulas, Michalis; Zhang, Wan; Chi, Qiuyi; Sherwood, David R

    2015-10-26

    Despite critical roles in development and cancer, the mechanisms that specify invasive cellular behavior are poorly understood. Through a screen of transcription factors in Caenorhabditis elegans, we identified G1 cell-cycle arrest as a precisely regulated requirement of the anchor cell (AC) invasion program. We show that the nuclear receptor nhr-67/tlx directs the AC into G1 arrest in part through regulation of the cyclin-dependent kinase inhibitor cki-1. Loss of nhr-67 resulted in non-invasive, mitotic ACs that failed to express matrix metalloproteinases or actin regulators and lack invadopodia, F-actin-rich membrane protrusions that facilitate invasion. We further show that G1 arrest is necessary for the histone deacetylase HDA-1, a key regulator of differentiation, to promote pro-invasive gene expression and invadopodia formation. Together, these results suggest that invasive cell fate requires G1 arrest and that strategies targeting both G1-arrested and actively cycling cells may be needed to halt metastatic cancer.

  19. Benzylidenetetralones, cyclic chalcone analogues, induce cell cycle arrest and apoptosis in HCT116 colorectal cancer cells.

    PubMed

    Drutovic, David; Chripkova, Martina; Pilatova, Martina; Kruzliak, Peter; Perjesi, Pal; Sarissky, Marek; Lupi, Monica; Damia, Giovanna; Broggini, Massimo; Mojzis, Jan

    2014-10-01

    Colorectal cancer is the third most common cancer in the world, with 1.2 million new cancer cases annually. Chalcones are secondary metabolite precursors of flavonoids that exhibit diverse biological activities, including antioxidant and antitumor activities. The aim of this study was to investigate the antiproliferative effect of new synthetic chalcone derivatives on HCT116 cells. (E)-2-(2',4'-dimethoxybenzylidene)-1-tetralone (Q705) was found to be the most active (IC50 = 3.44 ± 0.25 μM). Based on these results, this compound was chosen for further analysis of its biochemical and molecular mechanisms. Our results showed that Q705 inhibited the growth and clonogenicity of HCT116 cells. The results of a flow cytometric analyses suggested that this compound caused a significant cell cycle arrest in G2/M phase and increased the proportion of cells in the subG0/G1 phase, marker of apoptosis. Q705-induced apoptosis was confirmed by TdT-mediated dUTP nick end labelling (TUNEL) assay. Treatment of HCT116 cells with this chalcone significantly increased the caspase-3,-7 activity and resulted in cleavage of poly-ADP-ribose polymerase (PARP). Changes in the nuclear morphology such as chromatin condensation were also observed. These effects were associated with a decreased expression of bcl-xL and increased overall ratio of bax/bcl-xL mRNA levels. Immunofluorescence and qRT-PCR analysis revealed that Q705 induced H2AX histone modifications characteristic of DNA damage, disruption of microtubule organization and downregulation of tubulins. In summary, these results suggest that the cyclic chalcone analogue Q705 has potential as a new compound for colorectal cancer therapy.

  20. Photodynamic therapy results in induction of WAF1/CIP1/P21 leading to cell cycle arrest and apoptosis.

    PubMed

    Ahmad, N; Feyes, D K; Agarwal, R; Mukhtar, H

    1998-06-09

    Photodynamic therapy (PDT) is a promising new modality that utilizes a combination of a photosensitizing chemical and visible light for the management of a variety of solid malignancies. The mechanism of PDT-mediated cell killing is not well defined. We investigated the involvement of cell cycle regulatory events during silicon phthalocyanine (Pc4)-PDT-mediated apoptosis in human epidermoid carcinoma cells A431. PDT resulted in apoptosis, inhibition of cell growth, and G0-G1 phase arrest of the cell cycle, in a time-dependent fashion. Western blot analysis revealed that PDT results in an induction of the cyclin kinase inhibitor WAF1/CIP1/p21, and a down-regulation of cyclin D1 and cyclin E, and their catalytic subunits cyclin-dependent kinase (cdk) 2 and cdk6. The treatment also resulted in a decrease in kinase activities associated with all the cdks and cyclins examined. PDT also resulted in (i) an increase in the binding of cyclin D1 and cdk6 toward WAF1/CIP1/p21, and (ii) a decrease in the binding of cyclin D1 toward cdk2 and cdk6. The binding of cyclin E and cdk2 toward WAF1/CIP1/p21, and of cyclin E toward cdk2 did not change by the treatment. These data suggest that PDT-mediated induction of WAF1/CIP1/p21 results in an imposition of artificial checkpoint at G1 --> S transition thereby resulting in an arrest of cells in G0-G1 phase of the cell cycle through inhibition in the cdk2, cdk6, cyclin D1, and cyclin E. We suggest that this arrest is an irreversible process and the cells, unable to repair the damages, ultimately undergo apoptosis.

  1. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle.

    PubMed

    Zore, Gajanan B; Thakre, Archana D; Jadhav, Sitaram; Karuppayil, S Mohan

    2011-10-15

    Anti-Candida potential of six terpenoids were evaluated in this study against various isolates of Candida albicans (n=39) and non-C. albicans (n=9) that are differentially susceptible to fluconazole. All the six terpenoids tested, showed excellent activity and were equally effective against isolates of Candida sps., tested in this study. Linalool and citral were the most effective ones, inhibiting all the isolates at ≤0.064% (v/v). Five among the six terpenoids tested were fungicidal. Time dependent kill curve assay showed that MFCs of linalool and eugenol were highly toxic to C. albicans, killing 99.9% inoculum within seven min of exposure, while that of citronellal, linalyl acetate and citral required 15min, 1h and 2h, respectively. FIC index values (Linalool - 0.140, benzyl benzoate - 0.156, eugenol - 0.265, citral - 0.281 and 0.312 for linalyl acetate and citronellal) and isobologram obtained by checker board assay showed that all the six terpenoids tested exhibit excellent synergistic activity with fluconazole against a fluconazole resistant strain of C. albicans. Terpenoids tested arrested C. albicans cells at different phases of the cell cycle i.e. linalool and LA at G1, citral and citronellal at S phase and benzyl benzoate at G2-M phase and induced apoptosis. Linalool, citral, citronellal and benzyl benzoate caused more than 50% inhibition of germ tube induction at 0.008%, while eugenol and LA required 0.032 and 0.016% (v/v) concentrations, respectively. MICs of all the terpenoids for the C. albicans growth were non toxic to HeLa cells. Terpenoids tested exhibited excellent activity against C. albicans yeast and hyphal form growth at the concentrations that are non toxic to HeLa cells. Terpenoids tested in this study may find use in antifungal chemotherapy, not only as antifungal agents but also as synergistic agents along with conventional drugs like fluconazole.

  2. Calotropin from Asclepias curasavica induces cell cycle arrest and apoptosis in cisplatin-resistant lung cancer cells.

    PubMed

    Mo, En-Pan; Zhang, Rong-Rong; Xu, Jun; Zhang, Huan; Wang, Xiao-Xiong; Tan, Qiu-Tong; Liu, Fang-Lan; Jiang, Ren-Wang; Cai, Shao-Hui

    2016-09-16

    Calotropin (M11), an active compound isolated from Asclepias curasavica L., was found to exert strong inhibitory and pro-apoptotic activity specifically against cisplatin-induced resistant non-small cell lung cancer (NSCLC) cells (A549/CDDP). Molecular mechanism study revealed that M11 induced cell cycle arrest at the G2/M phase through down-regulating cyclins, CDK1, CDK2 and up-regulating p53 and p21. Furthermore, M11 accelerated apoptosis through the mitochondrial apoptotic pathway which was accompanied by increase Bax/Bcl-2 ratio, decrease in mitochondrial membrane potential, increase in reactive oxygen species production, activations of caspases 3 and 9 as well as cleavage of poly ADP-ribose polymerase (PARP). The activation and phosphorylation of JNK was also found to be involved in M11-induced apoptosis, and SP610025 (specific JNK inhibitor) partially prevented apoptosis induced by M11. In contrast, all of the effects that M11 induce cell cycle arrest and apoptosis in A549/CDDP cells were not significant in A549 cells. Drugs with higher sensitivity against resistant tumor cells than the parent cells are rather rare. Results of this study supported the potential application of M11 on the non-small lung cancer (NSCLC) with cisplatin resistance.

  3. Cell cycle age dependence for radiation-induced G/sub 2/ arrest: evidence for time-dependent repair

    SciTech Connect

    Rowley, R.

    1985-09-01

    Exponentially growing eucaryotic cells, irradiated in interphase, are delayed in progression to mitosis chiefly by arrest in G/sub 2/. The sensitivity of Chinese hamster ovary cells to G/sub 2/ arrest induction by X rays increases through the cell cycle, up to the X-ray transition point (TP) in G/sub 2/. This age response can be explained by cell cycle age-dependent changes in susceptibility of the target(s) for G/sub 2/ arrest and/or by changes in capability for postirradiation recovery from G/sub 2/ arrest damage. Discrimination between sensitivity changes and repair phenomena is possible only if the level of G/sub 2/ arrest-causing damage sustained by a cell at the time of irradiation and the level ultimately expressed as arrest can be determined. The ability of caffeine to ameliorate radiation-induced G/sub 2/ arrest, while inhibiting repair of G/sub 2/ arrest-causing damage makes such an analysis possible. In the presence of caffeine, progression of irradiated cells was relatively unperturbed, but on caffeine removal, G/sub 2/ arrest was expressed. The duration of G/sub 2/ arrest was independent of the length of the prior caffeine exposure. This finding indicates that the target for G/sub 2/ arrest induction is present throughout the cell cycle and that the level of G/sub 2/ arrest damage incurred is initially constant for all cell cycle phases. The data are consistent with the existence of a time-dependent recovery mechanism to explain the age dependence for radiation induction of G/sub 2/ arrest.

  4. Anticancer activity of taraxerol acetate in human glioblastoma cells and a mouse xenograft model via induction of autophagy and apoptotic cell death, cell cycle arrest and inhibition of cell migration.

    PubMed

    Hong, Jing-Fang; Song, Ying-Fang; Liu, Zheng; Zheng, Zhao-Cong; Chen, Hong-Jie; Wang, Shou-Sen

    2016-06-01

    The aim of the present study was to investigate the in vitro and in vivo anticancer and apoptotic effects of taraxerol acetate in U87 human glioblastoma cells. The effects on cell cycle phase distribution, cell cycle-associated proteins, autophagy, DNA fragmentation and cell migration were assessed. Cell viability was determined using the MTT assay, and phase contrast and fluorescence microscopy was utilized to determine the viability and apoptotic morphological features of the U87 cells. Flow cytometry using propidium iodide and Annexin V-fluorescein isothiocyanate demonstrated the effect of taraxerol acetate on the cell cycle phase distribution and apoptosis induction. Western blot analysis was performed to investigate the effect of the taraxerol acetate on cell cycle‑associated proteins and autophagy‑linked LC3B‑II proteins. The results demonstrated that taraxerol acetate induced dose‑ and time‑dependent cytotoxic effects in the U87 cells. Apoptotic induction following taraxerol acetate treatment was observed and the percentage of apoptotic cells increased from 7.3% in the control cells, to 16.1, 44.1 and 76.7% in the 10, 50 and 150 µM taraxerol acetate‑treated cells, respectively. Furthermore, taraxerol acetate treatment led to sub‑G1 cell cycle arrest with a corresponding decrease in the number of S‑phase cells. DNA fragments were observed as a result of the gel electrophoresis experiment following taraxerol acetate treatment. To investigate the inhibitory effects of taraxerol acetate on the migration of U87 cell, a wound healing assay was conducted. The number of cells that migrated to the scratched area decreased significantly following treatment with taraxerol acetate. In addition, taraxerol acetate inhibited tumor growth in a mouse xenograft model. Administration of 0.25 and 0.75 µg/g taraxerol acetate reduced the tumor weight from 1.2 g in the phosphate‑buffered saline (PBS)‑treated group (control) to 0.81 and 0.42

  5. High-dose irradiation induces cell cycle arrest, apoptosis, and developmental defects during Drosophila oogenesis.

    PubMed

    Shim, Hee Jin; Lee, Eun-Mi; Nguyen, Long Duy; Shim, Jaekyung; Song, Young-Han

    2014-01-01

    Ionizing radiation (IR) treatment induces a DNA damage response, including cell cycle arrest, DNA repair, and apoptosis in metazoan somatic cells. Because little has been reported in germline cells, we performed a temporal analysis of the DNA damage response utilizing Drosophila oogenesis as a model system. Oogenesis in the adult Drosophila female begins with the generation of 16-cell cyst by four mitotic divisions of a cystoblast derived from the germline stem cells. We found that high-dose irradiation induced S and G2 arrests in these mitotically dividing germline cells in a grp/Chk1- and mnk/Chk2-dependent manner. However, the upstream kinase mei-41, Drosophila ATR ortholog, was required for the S-phase checkpoint but not for the G2 arrest. As in somatic cells, mnk/Chk2 and dp53 were required for the major cell death observed in early oogenesis when oocyte selection and meiotic recombination occurs. Similar to the unscheduled DNA double-strand breaks (DSBs) generated from defective repair during meiotic recombination, IR-induced DSBs produced developmental defects affecting the spherical morphology of meiotic chromosomes and dorsal-ventral patterning. Moreover, various morphological abnormalities in the ovary were detected after irradiation. Most of the IR-induced defects observed in oogenesis were reversible and were restored between 24 and 96 h after irradiation. These defects in oogenesis severely reduced daily egg production and the hatch rate of the embryos of irradiated female. In summary, irradiated germline cells induced DSBs, cell cycle arrest, apoptosis, and developmental defects resulting in reduction of egg production and defective embryogenesis.

  6. Induction of cell cycle arrest and apoptosis in HT-29 human colon cancer cells by the dietary compound luteolin.

    PubMed

    Lim, Do Y; Jeong, Yoonhwa; Tyner, Angela L; Park, Jung H Y

    2007-01-01

    Luteolin is 3',4',5,7-tetrahydroxyflavone found in celery, green pepper, and perilla leaf that inhibits tumorigenesis in animal models. We examined luteolin-mediated regulation of cell cycle progression and apoptosis in the HT-29 human colon cancer cell line. Luteolin decreased DNA synthesis and viable HT-29 cell numbers in a concentration-dependent manner. It inhibited cyclin-dependent kinase (CDK)4 and CDK2 activity, resulting in G1 arrest with a concomitant decrease of phosphorylation of retinoblastoma protein. Activities of CDK4 and CDK2 decreased within 2 h after luteolin treatment, with a 38% decrease in CDK2 activity (P < 0.05) observed in cells treated with 40 micromol/l luteolin. Luteolin inhibited CDK2 activity in a cell-free system, suggesting that it directly inhibits CDK2. Cyclin D1 levels decreased after luteolin treatment, although no changes in expression of cyclin A, cyclin E, CDK4, or CDK2 were detected. Luteolin also promoted G2/M arrest at 24 h posttreatment by downregulating cyclin B1 expression and inhibiting cell division cycle (CDC)2 activity. Luteolin promoted apoptosis with increased activation of caspases 3, 7, and 9 and enhanced poly(ADP-ribose) polymerase cleavage and decreased expression of p21(CIP1/WAF1), survivin, Mcl-1, Bcl-x(L), and Mdm-2. Decreased expression of these key antiapoptotic proteins could contribute to the increase in p53-independent apoptosis that was observed in HT-29 cells. We demonstrate that luteolin promotes both cell cycle arrest and apoptosis in the HT-29 colon cancer cell line, providing insight about the mechanisms underlying its antitumorigenic activities.

  7. Effect of sesamin on apoptosis and cell cycle arrest in human breast cancer mcf-7 cells.

    PubMed

    Siao, An-Ci; Hou, Chien-Wei; Kao, Yung-Hsi; Jeng, Kee-Ching

    2015-01-01

    Dietary prevention has been known to reduce breast cancer risk. Sesamin is one of the major components in sesame seeds and has been widely studied and proven to have anti-proliferation and anti-angiogenic effects on cancer cells. In this study, the influence of sesamin was tested in the human breast cancer MCF-7 cell line for cell viability (MTT assay) and cell cycling (flow cytometry). Results showed that sesamin dose-dependently (1, 10 and 50 μM) reduced the cell viability and increased LDH release and apoptosis (TUNEL assay). In addition, there was a significant increase of sub-G1 phase arrest in the cell cycle after sesamin treatment. Furthermore, sesamin increased the expression of apoptotic markers of Bax, caspase-3, and cell cycle control proteins, p53 and checkpoint kinase 2. Taken together, these results suggested that sesamin might be used as a dietary supplement for prevention of breast cancer by modulating apoptotic signal pathways and inhibiting tumor cell growth.

  8. Znhit1 causes cell cycle arrest and down-regulates CDK6 expression

    SciTech Connect

    Yang, Zhengmin; Cao, Yonghao; Zhu, Xiaoyan; Huang, Ying; Ding, Yuqiang; Liu, Xiaolong

    2009-08-14

    Cyclin-dependent kinase 6 (CDK6) is the key element of the D-type cyclin holoenzymes which has been found to function in the regulation of G1-phase of the cell cycle and is presumed to play important roles in T cell function. In this study, Znhit1, a member of a new zinc finger protein family defined by a conserved Zf-HIT domain, induced arrest in the G1-phase of the cell cycle in NIH/3T3 cells. Of the G1 cell cycle factors examined, the expression of CDK6 was found to be strongly down-regulated by Znhit1 via transcriptional repression. This effect may have correlations with the decreased acetylation level of histone H4 in the CDK6 promoter region. In addition, considering that CDK6 expression predominates in T cells, the negative regulatory role of Znhit1 in TCR-induced T cell proliferation was validated using transgenic mice. These findings identified Znhit1 as a CDK6 regulator that plays an important role in cell proliferation.

  9. Alisertib Induces Cell Cycle Arrest, Apoptosis, Autophagy and Suppresses EMT in HT29 and Caco-2 Cells

    PubMed Central

    Ren, Bao-Jun; Zhou, Zhi-Wei; Zhu, Da-Jian; Ju, Yong-Le; Wu, Jin-Hao; Ouyang, Man-Zhao; Chen, Xiao-Wu; Zhou, Shu-Feng

    2015-01-01

    Colorectal cancer (CRC) is one of the most common malignancies worldwide with substantial mortality and morbidity. Alisertib (ALS) is a selective Aurora kinase A (AURKA) inhibitor with unclear effect and molecular interactome on CRC. This study aimed to evaluate the molecular interactome and anticancer effect of ALS and explore the underlying mechanisms in HT29 and Caco-2 cells. ALS markedly arrested cells in G2/M phase in both cell lines, accompanied by remarkable alterations in the expression level of key cell cycle regulators. ALS induced apoptosis in HT29 and Caco-2 cells through mitochondrial and death receptor pathways. ALS also induced autophagy in HT29 and Caco-2 cells, with the suppression of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), but activation of 5′ AMP-activated protein kinase (AMPK) signaling pathways. There was a differential modulating effect of ALS on p38 MAPK signaling pathway in both cell lines. Moreover, induction or inhibition of autophagy modulated basal and ALS-induced apoptosis in both cell lines. ALS potently suppressed epithelial to mesenchymal transition (EMT) in HT29 and Caco-2 cells. Collectively, it suggests that induction of cell cycle arrest, promotion of apoptosis and autophagy, and suppression of EMT involving mitochondrial, death receptor, PI3K/Akt/mTOR, p38 MAPK, and AMPK signaling pathways contribute to the cancer cell killing effect of ALS on CRC cells. PMID:26729093

  10. Cell cycle arrest and apoptogenic properties of opium alkaloids noscapine and papaverine on breast cancer stem cells.

    PubMed

    Sajadian, Saharolsadat; Vatankhah, Melody; Majdzadeh, Maryam; Kouhsari, Shide Montaser; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser

    2015-01-01

    Previous report of the vast effectiveness of opium derivatives in cancer therapy is leading us to see possible effects of these derivatives on cancer stem cells in order to find new agent for cancer therapy. In this study, cells were stained for CSC markers and sorted by magnetic beads. CSCs exhibit the characteristic CD44(+)/CD24(-/low)/ESA(+) phenotype. Noscapine and papaverine (alkaloids) showed anti-proliferative activity on MCF-7 and MDA-MB-231 cell lines. It was observed that noscapine has more cytotoxic effect on CSC derived from both cell lines compared with their parental cells. Papaverine has more cytotoxic effect on MCF-7 CSCs in comparison with parental cells, while CSCs population of MDA-MB-231 is more resistant to papaverine compared with MDA-MB-231 cells. Noscapine enhances apoptosis in MDA-MB-231 CSCs more than parent cells, while in MCF-7 CSCs the apoptosis is less than parent cells. Our results show that papverine is less active in terms of apoptotic effect on CSCs in both cell lines. Moreover, noscapine arrests MCF-7 and MDA-MB-231 CSCs cell cycle at G2/M phase, while papverine arrests cell cycle at G0/G1 phase. It was suggested different mechanism for apoptotic cytotoxicity. The results of this study show possible specific effects of noscapine on these breast cell lines CSCs.

  11. AP-2γ Induces p21 Expression, Arrests Cell Cycle, and Inhibits the Tumor Growth of Human Carcinoma Cells1

    PubMed Central

    Li, Hualei; Goswami, Prabhat C; Domann, Frederick E

    2006-01-01

    Abstract Activating enhancer-binding protein 2γ (AP-2γ) is a member of the developmentally regulated AP-2 transcription factor family that regulates the expression of many downstream genes. Whereas the effects of AP-2α overexpression on cell growth are fairly well established, the cellular effects of AP-2γ overexpression are less well studied. Our new findings show that AP-2γ significantly upregulates p21 mRNA and proteins, inhibits cell growth, and decreases clonogenic survival. Cell cycle analysis revealed that forced AP-2γ expression induced G1-phase arrest, decreased DNA synthesis, and decreased the fraction of cells in S phase. AP-2γ expression also led to cyclin D1 repression, decreased Rb phosphorylation, and decreased E2F activity in breast carcinoma cells. AP-2γ binding to the p21 promoter was observed in vivo, and the absence of growth inhibition in response to AP-2γ expression in p21 (-/-) cells demonstrated that p21 caused, at least in part, AP-2-induced cell cycle arrest. Finally, the tumor growth of human breast carcinoma cells in vivo was inhibited by the expression of AP-2γ relative to empty vector-infected cells, suggesting that AP-2γ acts as a tumor suppressor. In summary, expression of either AP-2γ or AP-2α inhibited breast carcinoma cell growth; thus, these genes may be therapeutic targets for breast cancer. PMID:16867219

  12. Glucose capped silver nanoparticles induce cell cycle arrest in HeLa cells.

    PubMed

    Panzarini, Elisa; Mariano, Stefania; Vergallo, Cristian; Carata, Elisabetta; Fimia, Gian Maria; Mura, Francesco; Rossi, Marco; Vergaro, Viviana; Ciccarella, Giuseppe; Corazzari, Marco; Dini, Luciana

    2017-02-20

    This study aims to determine the interaction (uptake and biological effects on cell viability and cell cycle progression) of glucose capped silver nanoparticles (AgNPs-G) on human epithelioid cervix carcinoma (HeLa) cells, in relation to amount, 2×10(3) or 2×10(4) NPs/cell, and exposure time, up to 48h. The spherical and well dispersed AgNPs (30±5nm) were obtained by using glucose as reducing agent in a green synthesis method that ensures to stabilize AgNPs avoiding cytotoxic soluble silver ions Ag(+) release. HeLa cells take up abundantly and rapidly AgNPs-G resulting toxic to cells in amount and incubation time dependent manner. HeLa cells were arrested at S and G2/M phases of the cell cycle and subG1 population increased when incubated with 2×10(4) AgNPs-G/cell. Mitotic index decreased accordingly. The dissolution experiments demonstrated that the observed effects were due only to AgNPs-G since glucose capping prevents Ag(+) release. The AgNPs-G influence on HeLa cells viability and cell cycle progression suggest that AgNPs-G, alone or in combination with chemotherapeutics, may be exploited for the development of novel antiproliferative treatment in cancer therapy. However, the possible influence of the cell cycle on cellular uptake of AgNPs-G and the mechanism of AgNPs entry in cells need further investigation.

  13. Lobaplatin arrests cell cycle progression, induces apoptosis and alters the proteome in human cervical cancer cell Line CaSki.

    PubMed

    Li, Xiaoqin; Ran, Li; Fang, Wen; Wang, Donghong

    2014-04-01

    Cervical cancer is one of the most common gynecologic tumors. There is an upward trend in the incidence. The objective of this research was to explore the effect of lobaplatin on cervical cancer CaSki cells proliferation, cell cycle and apoptosis and analysis of the differential expressed proteins of CaSki cells after exposed to lobaplatin. Our findings have shown that lobaplatin inhibits cell proliferations in human cervical cancer CaSki cells in dose- and time-dependent manner. Flow cytometry assay confirmed that lobaplatin affected cervical cancer cell survival by blocking cell cycle progression in S phase and G0/G1 phase and inducing apoptosis in dose- and time-dependent manner. Lobaplatin treatment reduced polypyrimidine tract-binding protein 2, ribose-phosphate pyrophosphokinase, hypothetical protein, terminal uridylyltransferase 7, ubiquitin specific protease 16 and heterogeneous nuclear ribonucleoprotein A2/B1 expression and increase zinc finger protein 91, zinc finger protein, C-X-C motif chemokine 10 precursor, stromal cell protein and laminin subunit alpha-4 expression. Some of the differentially expressed proteins may be associated with antitumor effect of lobaplatin. Lobaplatin showed a good antitumour activity in in vitro models of human cervical cancer cells. These results indicate that lobaplatin could be an effective chemotherapeutic agent in human cervical cancer treatment by inducing apoptosis, cell cycle arrest and changing many kinds of protein molecule expression level.

  14. p27Kip1 Is Required to Mediate a G1 Cell Cycle Arrest Downstream of ATM following Genotoxic Stress

    PubMed Central

    Cassimere, Erica K.; Mauvais, Claire; Denicourt, Catherine

    2016-01-01

    The DNA damage response (DDR) is a coordinated signaling network that ensures the maintenance of genome stability under DNA damaging stress. In response to DNA lesions, activation of the DDR leads to the establishment of cell cycle checkpoints that delay cell-cycle progression and allow repair of the defects. The tumor suppressor p27Kip1 is a cyclin-CDK inhibitor that plays an important role in regulating quiescence in a variety of tissues. Several studies have suggested that p27Kip1 also plays a role in the maintenance of genomic integrity. Here we demonstrate that p27Kip1 is essential for the establishment of a G1 checkpoint arrest after DNA damage. We also uncovered that ATM phosphorylates p27Kip1 on a previously uncharacterized residue (Ser-140), which leads to its stabilization after induction of DNA double-strand breaks. Inhibition of this stabilization by replacing endogenous p27Kip1 with a Ser-140 phospho-mutant (S140A) significantly sensitized cells to IR treatments. Our findings reveal a novel role for p27Kip1 in the DNA damage response pathway and suggest that part of its tumor suppressing functions relies in its ability to mediate a G1 arrest after the induction of DNA double strand breaks. PMID:27611996

  15. The nonstructural protein NP1 of human bocavirus 1 induces cell cycle arrest and apoptosis in Hela cells

    SciTech Connect

    Sun, Bin; Cai, Yingyue; Li, Yongshu; Li, Jingjing; Liu, Kaiyu; Li, Yi; Yang, Yongbo

    2013-05-25

    Human bocavirus type 1 (HBoV1) is a newly identified pathogen associated with human respiratory tract illnesses. Previous studies demonstrated that proteins of HBoV1 failed to cause cell death, which is considered as a possible common feature of bocaviruses. However, our work showed that the NP1 of HBoV1 induced apoptotic cell death in Hela cells in the absence of viral genome replication and expression of other viral proteins. Mitochondria apoptotic pathway was involved in the NP1-induced apoptosis that was confirmed by apoptotic characteristics including morphological changes, DNA fragmentation and caspase activation. We also demonstrated that the cell cycle of NP1-transfected Hela cells was transiently arrested at G2/M phase followed by rapid appearance of apoptosis and that the N terminal domain of NP1 was critical to its nuclear localization and function in apoptosis induction in Hela cells. These findings might provide alternative information for further study of mechanism of HBoV1 pathogenesis. - Highlights: ► NP1 protein of HBoV1 induced apoptosis in Hela cells was first reported. ► NP1 induced-apoptosis followed the cell cycle arrest at G2/M phase. ► The NP1 induced-apoptosis was mediated by mitochondrion apoptotic pathway. ► N terminal of NP1 was critical for apoptosis induction and nuclear localization.

  16. Induction of apoptosis and cell cycle arrest by polyvinylpyrrolidone K-30 and protective effect of alpha-tocopherol.

    PubMed

    Wang, Yu-Bao; Lou, Yang; Luo, Zhao-Feng; Zhang, Dong-Fang; Wang, Yu-Zhen

    2003-09-05

    Polyvinylpyrrolidone is a macromolecular polymer with widespread use in industry as well as in medicine for various purposes. Its effect on cells cultured in vitro, however, has not been fully investigated. To elucidate this issue, we studied the influence of PVP K-30 on cultured HeLa cells. PVP K-30 treatment produced a dose- and time-dependent toxicity to HeLa cells. Cells exposed to PVP K-30 exhibited several morphological features of apoptosis. Gel electrophoresis of DNA from PVP K-30-treated cells showed typical apoptotic ladder. And flow cytometric analysis demonstrated that PVP K-30 induced cell cycle arrest at G2/M phase and the subsequent appearance of sub-G1 population. In addition, it was shown that procaspase-3 was activated in response to PVP K-30 treatment. We also found that alpha-tocopherol efficiently protected HeLa cells from PVP K-30 cytotoxicity. This is the first demonstration that PVP K-30 could induce apoptosis in HeLa cells and cell cycle arrest at G2/M phase, and that PVP K-30 toxicity could be attenuated by alpha-tocopherol.

  17. Flavonoids from Gynostemma pentaphyllum exhibit differential induction of cell cycle arrest in H460 and A549 cancer cells.

    PubMed

    Tsui, Ko-Chung; Chiang, Tzu-Hsuan; Wang, Jinn-Shyan; Lin, Li-Ju; Chao, Wei-Chih; Chen, Bing-Huei; Lu, Jyh-Feng

    2014-10-31

    Flavonoids, containing mainly kaempferol rhamnohexoside derivatives, were extracted from Gynostemma pentaphyllum (G. pentaphyllum) and their potential growth inhibition effects against H460 non-small cell lung cancer cells was explored and compared to that on A549 cells. The extracted flavonoids were found to exhibit antiproliferation effects against H460 cells (IC50 = 50.2 μg/mL), although the IC50 of H460 is 2.5-fold that of A549 cells (IC50 = 19.8 μg/mL). Further investigation revealed that H460 cells are more susceptible to kaempferol than A549, whereas A549 cell growth is better inhibited by kaempferol rhamnohexoside derivatives as compared with H460. In addition, flavonoids from G. pentaphyllum induced cell cycle arrest at both S and G2/M phases with concurrent modulated expression of the cellular proteins cyclin A, B, p53 and p21 in A549 cells, but not H460. On the contrary, apoptosis and concomitant alteration in balance of BCL-2 and BAX expression as well as activation of caspase-3 were equally affected between both cells by flavonoid treatment. These observations strongly suggest the growth inhibition discrepancy between H460 and A549 following flavonoid treatment can be attributed to the lack of cell cycle arrest in H460 cells and the differences between H460 and A549 cells may serve as contrasting models for further mechanistic investigations.

  18. Polyphenol-rich extract of Salvia chinensis exhibits anticancer activity in different cancer cell lines, and induces cell cycle arrest at the G₀/G₁-phase, apoptosis and loss of mitochondrial membrane potential in pancreatic cancer cells.

    PubMed

    Zhao, Quan; Huo, Xue-Chen; Sun, Fu-Dong; Dong, Rui-Qian

    2015-10-01

    Pancreatic cancer (PC) is one of the most aggressive types of human malignancy, which has an overall 5-year survival rate of <2%. PC is the fourth most common cause of cancer‑associated mortality in the western world. At present, there is almost no effective treatment available for the treatment of PC. The aim of the present study was to evaluate the anticancer potential of a polyphenol enriched extract obtained from Salvia chinensis, a Chinese medicinal plant. An MTT assay was used to evaluate the cell viability of five cancer cell lines and one normal cell line. In addition, the effects of the extract on apoptotic induction, cell cycle phase distribution, DNA damage and loss of mitochondrial membrane potential (ΛΨm) were evaluated in MiapaCa‑2 human PC cells. The effects of the extract on cell cycle phase distribution and ΛΨm were assessed by flow cytometry, using propidium iodide and rhodamine‑123 DNA‑binding fluorescent dyes, respectively. Fluorescence microscopy, using 4',6‑diamidino‑2‑phenylindole as a staining agent, was performed in order to detect the morphological changes of the MiapaCa‑2 cancer cells and the presence of apoptotic bodies following treatment with the extract. The results of the present study demonstrated that the polyphenol‑rich extract from S. chinensis induced potent cytotoxicity in the MCF‑7 human breast cancer cells, A549 human lung cancer cells, HCT‑116 and COLO 205 human colon cancer cells, and MiapaCa‑2 human PC cells. The Colo 205 and MCF‑7 cancer cell lines were the most susceptible to treatment with the extract, which exhibited increased rate of growth inhibition. Fluorescence microscopy revealed characteristic morphological features of apoptosis and detected the appearance of apoptotic bodies following treatment with the extract in the PC cells. Flow cytometric analysis demonstrated that the extract induced G0/G1 cell cycle arrest in a dose‑dependent manner. In addition, treatment with the extract

  19. Polyphenol-rich extract of Salvia chinensis exhibits anticancer activity in different cancer cell lines, and induces cell cycle arrest at the G0/G1-phase, apoptosis and loss of mitochondrial membrane potential in pancreatic cancer cells

    PubMed Central

    ZHAO, QUAN; HUO, XUE-CHEN; SUN, FU-DONG; DONG, RUI-QIAN

    2015-01-01

    Pancreatic cancer (PC) is one of the most aggressive types of human malignancy, which has an overall 5-year survival rate of <2%. PC is the fourth most common cause of cancer-associated mortality in the western world. At present, there is almost no effective treatment available for the treatment of PC. The aim of the present study was to evaluate the anticancer potential of a polyphenol enriched extract obtained from Salvia chinensis, a Chinese medicinal plant. An MTT assay was used to evaluate the cell viability of five cancer cell lines and one normal cell line. In addition, the effects of the extract on apoptotic induction, cell cycle phase distribution, DNA damage and loss of mitochondrial membrane potential (ΛΨm) were evaluated in MiapaCa-2 human PC cells. The effects of the extract on cell cycle phase distribution and ΛΨm were assessed by flow cytometry, using propidium iodide and rhodamine-123 DNA-binding fluorescent dyes, respectively. Fluorescence microscopy, using 4′,6-diamidino-2-phenylindole as a staining agent, was performed in order to detect the morphological changes of the MiapaCa-2 cancer cells and the presence of apoptotic bodies following treatment with the extract. The results of the present study demonstrated that the polyphenol-rich extract from S. chinensis induced potent cytotoxicity in the MCF-7 human breast cancer cells, A549 human lung cancer cells, HCT-116 and COLO 205 human colon cancer cells, and MiapaCa-2 human PC cells. The COLO 205 and MCF-7 cancer cell lines were the most susceptible to treatment with the extract, which exhibited increased rate of growth inhibition. Fluorescence microscopy revealed characteristic morphological features of apoptosis and detected the appearance of apoptotic bodies following treatment with the extract in the PC cells. Flow cytometric analysis demonstrated that the extract induced G0/G1 cell cycle arrest in a dose-dependent manner. In addition, treatment with the extract induced a significant and

  20. The molecular mechanism of G2/M cell cycle arrest induced by AFB1 in the jejunum

    PubMed Central

    Yin, Heng; Jiang, Min; Peng, Xi; Cui, Hengmin; Zhou, Yi; He, Min; Zuo, Zhicai; Ouyang, Ping; Fan, Junde; Fang, Jing

    2016-01-01

    Aflatoxin B1 (AFB1) has potent hepatotoxic, carcinogenic, genotoxic, immunotoxic and other adverse effects in human and animals. The aim of this study was to investigate the molecular mechanism of G2/M cell cycle arrest induced by AFB1 in the jejunum of broilers. Broilers, as experimental animals, were fed 0.6 mg/kg AFB1 diet for 3 weeks. Our results showed that AFB1 reduced the jejunal villus height, villus height/crypt ratio and caused G2/M cell cycle arrest. The G2/M cell cycle was accompanied by the increase of ataxia telangiectasia mutated (ATM), p53, Chk2, p21 protein and mRNA expression, and the decrease of Mdm2, cdc25C, cdc2, cyclin B and proliferating cell nuclear antigen protein and mRNA expression. In conclusion, AFB1 blocked G2/M cell cycle by ATM pathway in the jejunum of broilers. PMID:27232757

  1. Novel mechanism of harmaline on inducing G2/M cell cycle arrest and apoptosis by up-regulating Fas/FasL in SGC-7901 cells.

    PubMed

    Wang, Yihai; Wang, Chunhua; Jiang, Chenguang; Zeng, Hong; He, Xiangjiu

    2015-12-18

    Harmaline (HAR), a natural occurrence β-carboline alkaloid, was isolated from the seeds of Peganum harmala and exhibited potent antitumor effect. In this study, the anti-gastric tumor effects of HAR were firstly investigated in vitro and in vivo. The results strongly showed that HAR could inhibit tumor cell proliferation and induce G2/M cell cycle arrest accompanied by an increase in apoptotic cell death in SGC-7901 cancer cells. HAR could up-regulate the expressions of cell cycle-related proteins of p-Cdc2, p21, p-p53, Cyclin B and down-regulate the expression of p-Cdc25C. In addition, HAR could up-regulate the expressions of Fas/FasL, activated Caspase-8 and Caspase-3. Moreover, blocking Fas/FasL signaling could markedly inhibit the apoptosis caused by HAR, suggesting that Fas/FasL mediated pathways were involved in HAR-induced apoptosis. Interestingly, HAR could also exert on antitumor activity with a dose of 15 mg/kg/day in vivo, which was also related with cell cycle arrest. These new findings provided a framework for further exploration of HAR which possess the potential antitumor activity by inducing cell cycle arrest and apoptosis.

  2. Novel mechanism of harmaline on inducing G2/M cell cycle arrest and apoptosis by up-regulating Fas/FasL in SGC-7901 cells

    PubMed Central

    Wang, Yihai; Wang, Chunhua; Jiang, Chenguang; Zeng, Hong; He, Xiangjiu

    2015-01-01

    Harmaline (HAR), a natural occurrence β-carboline alkaloid, was isolated from the seeds of Peganum harmala and exhibited potent antitumor effect. In this study, the anti-gastric tumor effects of HAR were firstly investigated in vitro and in vivo. The results strongly showed that HAR could inhibit tumor cell proliferation and induce G2/M cell cycle arrest accompanied by an increase in apoptotic cell death in SGC-7901 cancer cells. HAR could up-regulate the expressions of cell cycle-related proteins of p-Cdc2, p21, p-p53, Cyclin B and down-regulate the expression of p-Cdc25C. In addition, HAR could up-regulate the expressions of Fas/FasL, activated Caspase-8 and Caspase-3. Moreover, blocking Fas/FasL signaling could markedly inhibit the apoptosis caused by HAR, suggesting that Fas/FasL mediated pathways were involved in HAR-induced apoptosis. Interestingly, HAR could also exert on antitumor activity with a dose of 15 mg/kg/day in vivo, which was also related with cell cycle arrest. These new findings provided a framework for further exploration of HAR which possess the potential antitumor activity by inducing cell cycle arrest and apoptosis. PMID:26678950

  3. Involvement of the p38 MAPK signaling pathway in S-phase cell-cycle arrest induced by Furazolidone in human hepatoma G2 cells.

    PubMed

    Sun, Yu; Tang, Shusheng; Jin, Xi; Zhang, Chaoming; Zhao, Wenxia; Xiao, Xilong

    2013-12-01

    Given the previously described essential role for the p38 mitogen-activation protein kinase (p38 MAPK) signaling pathway in human hepatoma G2 cells (HepG2), we undertook the present study to investigate the role of the p38 MAPK signaling pathway in cell-cycle arrest induced by Furazolidone (FZD). The aim of this study was to determine the effects of FZD on HepG2 cells by activating and inhibiting the p38 MAPK signaling pathway. The cell cycle and proliferation of HepG2 cells treated with FZD were detected by flow cytometry and MTT assay in the presence or absence of p38 MAPK inhibitors (SB203580), respectively. Cyclin D1, cyclin D3 and CDK6 were detected by quantitative real-time PCR and western blot analysis. Our data showed that p38 MAPK became phosphorylated after stimulation with FZD. Activation of p38 MAPK could arise S-phase cell-cycle arrest and suppress cell proliferation. Simultaneously, inhibition of the p38 MAPK signaling pathway significantly prevented S-phase cell-cycle arrest, increased the percentage of cell viability and decreased the expression of cyclin D1, cyclin D3 and CDK6. These results demonstrated that FZD arose S-phase cell-cycle arrest via activating the p38 MAPK signaling pathway in HepG2 cells. Cyclin D1, cyclin D3 and CDK6 are target genes functioning at the downstream of p38 MAPK in HepG2 cells induced by FZD.

  4. Paris Saponin I Sensitizes Gastric Cancer Cell Lines to Cisplatin via Cell Cycle Arrest and Apoptosis

    PubMed Central

    Song, Shuichuan; Du, Leiwen; Jiang, Hao; Zhu, Xinhai; Li, Jinhui; Xu, Ji

    2016-01-01

    Background Dose-related toxicity is the major restriction of cisplatin and cisplatin-combination chemotherapy, and is a challenge for advanced gastric cancer treatment. We explored the possibility of using Paris saponin I as an agent to sensitize gastric cancer cells to cisplatin, and examined the underlying mechanism. Material/Methods Growth inhibition was detected by MTT assay. The cell cycle and apoptosis were detected using flow cytometry and Annexin V/PI staining. The P21waf1/cip1, Bcl-2, Bax, and caspase-3 protein expression were detected using Western blot analysis. Results The results revealed that PSI sensitized gastric cancer cells to cisplatin, with low toxicity. The IC50 value of cisplatin in SGC-7901 cell lines was decreased when combined with PSI. PSI promoted cisplatin-induced G2/M phase arrest and apoptosis in a cisplatin concentration-dependent manner. Bcl-2 protein expression decreased, but Bax, caspase-3, and P21waf1/cip1 protein expression increased with PSI treatment. Conclusions The underlying mechanism of Paris saponin I may be related to targeting the apoptosis pathway and cell cycle blocking, which suggests that PSI is a potential therapeutic sensitizer for cisplatin in treating gastric cancer. PMID:27755523

  5. Genistein induces G2/M cell cycle arrest and apoptosis via ATM/p53-dependent pathway in human colon cancer cells.

    PubMed

    Zhang, Zhiyu; Wang, Chong-Zhi; Du, Guang-Jian; Qi, Lian-Wen; Calway, Tyler; He, Tong-Chuan; Du, Wei; Yuan, Chun-Su

    2013-07-01

    Soybean isoflavones have been used as a potential preventive agent in anticancer research for many years. Genistein is one of the most active flavonoids in soybeans. Accumulating evidence suggests that genistein alters a variety of biological processes in estrogen-related malignancies, such as breast and prostate cancers. However, the molecular mechanism of genistein in the prevention of human colon cancer remains unclear. Here we attempted to elucidate the anticarcinogenic mechanism of genistein in human colon cancer cells. First we evaluated the growth inhibitory effect of genistein and two other isoflavones, daidzein and biochanin A, on HCT-116 and SW-480 human colon cancer cells. In addition, flow cyto-metry was performed to observe the morphological changes in HCT-116/SW-480 cells undergoing apoptosis or cell cycle arrest, which had been visualized using Annexin V-FITC and/or propidium iodide staining. Real-time PCR and western blot analyses were also employed to study the changes in expression of several important genes associated with cell cycle regulation. Our data showed that genistein, daidzein and biochanin A exhibited growth inhibitory effects on HCT-116/SW-480 colon cancer cells and promoted apoptosis. Genistein showed a significantly greater effect than the other two compounds, in a time- and dose-dependent manner. In addition, genistein caused cell cycle arrest in the G2/M phase, which was accompanied by activation of ATM/p53, p21waf1/cip1 and GADD45α as well as downregulation of cdc2 and cdc25A demonstrated by q-PCR and immunoblotting assay. Interestingly, genistein induced G2/M cell cycle arrest in a p53-dependent manner. These findings exemplify that isoflavones, especially genistein, could promote colon cancer cell growth inhibition and facilitate apoptosis and cell cycle arrest in the G2/M phase. The ATM/p53-p21 cross-regulatory network may play a crucial role in mediating the anticarcinogenic activities of genistein in colon cancer.

  6. Cell cycle arrest by prostaglandin A1 at the G1/S phase interface with up-regulation of oncogenes in S-49 cyc- cells

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.

    1994-01-01

    Our previous studies have implied that prostaglandins inhibit cell growth independent of cAMP. Recent reports, however, have suggested that prostaglandin arrest of the cell cycle may be mediated through protein kinase A. In this report, in order to eliminate the role of c-AMP in prostaglandin mediated cell cycle arrest, we use the -49 lymphoma variant (cyc-) cells that lack adenylate cyclase activity. We demonstrate that dimethyl prostaglandin A1 (dmPGA1) inhibits DNA synthesis and cell growth in cyc- cells. DNA synthesis is inhibited 42% by dmPGA1 (50 microM) despite the fact that this cell line lacks cellular components needed for cAMP generation. The ability to decrease DNA synthesis depends upon the specific prostaglandin structure with the most effective form possessing the alpha, beta unsaturated ketone ring. Dimethyl PGA1 is most effective in inhibiting DNA synthesis in cyc- cells, with prostaglandins PGE1 and PGB1 being less potent inhibitors of DNA synthesis. DmPGE2 caused a significant stimulation of DNA synthesis. S-49 cyc- variant cells exposed to (30-50 microns) dmPGA1, arrested in the G1 phase of the cell cycle within 24 h. This growth arrest was reversed when the prostaglandin was removed from the cultured cells; growth resumed within hours showing that this treatment is not toxic. The S-49 cyc- cells were chosen not only for their lack of adenylate cyclase activity, but also because their cell cycle has been extensively studied and time requirements for G1, S, G2, and M phases are known. Within hours after prostaglandin removal the cells resume active DNA synthesis, and cell number doubles within 15 h suggesting rapid entry into S-phase DNA synthesis from the G1 cell cycle block.(ABSTRACT TRUNCATED AT 250 WORDS).

  7. Downregulation of FOXP1 Inhibits Cell Proliferation in Hepatocellular Carcinoma by Inducing G1/S Phase Cell Cycle Arrest

    PubMed Central

    Wang, Xin; Sun, Ji; Cui, Meiling; Zhao, Fangyu; Ge, Chao; Chen, Taoyang; Yao, Ming; Li, Jinjun

    2016-01-01

    Forkhead box P1 (FOXP1) belongs to a family of winged-helix transcription factors that are involved in the processes of cellular proliferation, differentiation, metabolism, and longevity. FOXP1 can affect cell proliferation and migratory ability in hepatocellular carcinoma (HCC) in vitro. However, little is known about the mechanism of FOXP1 in the proliferation of HCC cells. This study aimed to further explore the function of FOXP1 on the proliferation of HCC cells as well as the relevant mechanism involved. Western blot analysis, tumor xenograft models, and flow cytometry analysis were performed to elucidate the function of FOXP1 in the regulation of cell proliferation in human HCC. We observed that silencing FOXP1 significantly suppressed the growth ability of HCC cells both in vitro and in vivo. In addition, knockdown of FOXP1 induced G1/S phase arrest, and the expression of total and phosphorylated Rb (active type) as well as the levels of E2F1 were markedly decreased at 24 h; however, other proteins, including cyclin-dependent kinase (CDK) 4 and 6 and cyclin D1 did not show noticeable changes. In conclusion, downregulation of FOXP1 inhibits cell proliferation in hepatocellular carcinoma by inducing G1/S phase cell cycle arrest, and the decrease in phosphorylated Rb is the main contributor to this G1/S phase arrest. PMID:27618020

  8. Chikusetsusaponin IVa methyl ester induces cell cycle arrest by the inhibition of nuclear translocation of β-catenin in HCT116 cells

    SciTech Connect

    Lee, Kyung-Mi; Yun, Ji Ho; Lee, Dong Hwa; Park, Young Gyun; Son, Kun Ho; Nho, Chu Won; Kim, Yeong Shik

    2015-04-17

    We demonstrate that chikusetsusaponin IVa methyl ester (CME), a triterpenoid saponin from the root of Achyranthes japonica, has an anticancer activity. We investigate its molecular mechanism in depth in HCT116 cells. CME reduces the amount of β-catenin in nucleus and inhibits the binding of β-catenin to specific DNA sequences (TCF binding elements, TBE) in target gene promoters. Thus, CME appears to decrease the expression of cell cycle regulatory proteins such as Cyclin D1, as a representative target for β-catenin, as well as CDK2 and CDK4. As a result of the decrease of the cell cycle regulatory proteins, CME inhibits cell proliferation by arresting the cell cycle at the G0/G1 phase. Therefore, we suggest that CME as a novel Wnt/β-catenin inhibitor can be a putative agent for the treatment of colorectal cancers. - Highlights: • CME inhibits cell proliferation in HCT116 cells. • CME increases cell cycle arrest at G0/G1 phase and apoptosis. • CME attenuates cyclin D1 and regulates cell cycle regulatory proteins. • CME inhibits β-catenin translocation to nucleus.

  9. Raman spectrum reveals the cell cycle arrest of Triptolide-induced leukemic T-lymphocytes apoptosis

    NASA Astrophysics Data System (ADS)

    Zhang, Daosen; Feng, Yanyan; Zhang, Qinnan; Su, Xin; Lu, Xiaoxu; Liu, Shengde; Zhong, Liyun

    2015-04-01

    Triptolide (TPL), a traditional Chinese medicine extract, possesses anti-inflammatory and anti-tumor properties. Though some research results have implicated that Triptolide (TPL) can be utilized in the treatment of leukemia, it remains controversial about the mechanism of TPL-induced leukemic T-lymphocytes apoptosis. In this study, combining Raman spectroscopic data, principal component analysis (PCA) and atomic force microscopy (AFM) imaging, both the biochemical changes and morphological changes during TPL-induced cell apoptosis were presented. In contrast, the corresponding data during Daunorubicin (DNR)-induced cell apoptosis was also exhibited. The obtained results showed that Raman spectral changes during TPL-induced cell apoptosis were greatly different from DNR-induced cell apoptosis in the early stage of apoptosis but revealed the high similarity in the late stage of apoptosis. Moreover, above Raman spectral changes were respectively consistent with the morphological changes of different stages during TPL-induced apoptosis or DNR-induced apoptosis, including membrane shrinkage and blebbing, chromatin condensation and the formation of apoptotic bodies. Importantly, it was found that Raman spectral changes with TPL-induced apoptosis or DNR-induced apoptosis were respectively related with the cell cycle G1 phase arrest or G1 and S phase arrest.

  10. PVM/MA-shelled selol nanocapsules promote cell cycle arrest in A549 lung adenocarcinoma cells

    PubMed Central

    2014-01-01

    Background Selol is an oily mixture of selenitetriacylglycerides that was obtained as a semi-synthetic compound containing selenite. Selol is effective against cancerous cells and less toxic to normal cells compared with inorganic forms of selenite. However, Selol’s hydrophobicity hinders its administration in vivo. Therefore, the present study aimed to produce a formulation of Selol nanocapsules (SPN) and to test its effectiveness against pulmonary adenocarcinoma cells (A549). Results Nanocapsules were produced through an interfacial nanoprecipitation method. The polymer shell was composed of poly(methyl vinyl ether-co-maleic anhydride) (PVM/MA) copolymer. The obtained nanocapsules were monodisperse and stable. Both free Selol (S) and SPN reduced the viability of A549 cells, whereas S induced a greater reduction in non-tumor cell viability than SPN. The suppressor effect of SPN was primarily associated to the G2/M arrest of the cell cycle, as was corroborated by the down-regulations of the CCNB1 and CDC25C genes. Apoptosis and necrosis were induced by Selol in a discrete percentage of A549 cells. SPN also increased the production of reactive oxygen species, leading to oxidative cellular damage and to the overexpression of the GPX1, CYP1A1, BAX and BCL2 genes. Conclusions This study presents a stable formulation of PVM/MA-shelled Selol nanocapsules and provides the first demonstration that Selol promotes G2/M arrest in cancerous cells. PMID:25149827

  11. Chrysin induces G1 phase cell cycle arrest in C6 glioma cells through inducing p21Waf1/Cip1 expression: involvement of p38 mitogen-activated protein kinase.

    PubMed

    Weng, Meng-Shih; Ho, Yuan-Soon; Lin, Jen-Kun

    2005-06-15

    Flavonoids are a broadly distributed class of plant pigments, universally present in plants. They are strong anti-oxidants that can inhibit carcinogenesis in rodents. Chrysin (5,7-dihydroxyflavone) is a natural and biologically active compound extracted from many plants, honey, and propolis. It possesses potent anti-inflammatory, anti-oxidant properties, promotes cell death, and perturbing cell cycle progression. However, the mechanism by which chrysin inhibits cancer cell growth remains poorly understood. Therefore, we developed an interest in the relationship between MAPK signaling pathways and cell growth inhibition after chrysin treatment in rat C6 glioma cells. Cell viability assay and flow cytometric analysis suggested that chrysin exhibited a dose-dependent and time-dependent ability to block rat C6 glioma cell line cell cycle progression at the G1 phase. Western blotting analysis showed that the levels of Rb phosphorylation in C6 glioma cells exposed to 30 microM chrysin for 24h decreased significantly. We demonstrated the expression of cyclin-dependent kinase inhibitor, p21(Waf1/Cip1), to be significantly increased, but the p53 protein level did not change in chrysin-treated cells. Both cyclin-dependent kinase 2 (CDK2) and 4 (CDK4) kinase activities were reduced by chrysin in a dose-dependent manner. Furthermore, chrysin also inhibited proteasome activity. We further showed that chrysin induced p38-MAPK activation, and using a specific p38-MAPK inhibitor, SB203580, attenuated chrysin-induced p21(Waf1/Cip1) expression. These results suggest that chrysin exerts its growth-inhibitory effects either through activating p38-MAPK leading to the accumulation of p21(Waf1/Cip1) protein or mediating the inhibition of proteasome activity.

  12. AM251 induces apoptosis and G2/M cell cycle arrest in A375 human melanoma cells.

    PubMed

    Carpi, Sara; Fogli, Stefano; Romanini, Antonella; Pellegrino, Mario; Adinolfi, Barbara; Podestà, Adriano; Costa, Barbara; Da Pozzo, Eleonora; Martini, Claudia; Breschi, Maria Cristina; Nieri, Paola

    2015-08-01

    Human cutaneous melanoma is an aggressive and chemotherapy-resistant type of cancer. AM251 is a cannabinoid type 1 (CB1) receptor antagonist/inverse agonist with off-target antitumor activity against pancreatic and colon cancer cells. The current study aimed to characterize the in-vitro antimelanoma activity of AM251. The BRAF V600E mutant melanoma cell line, A375, was used as an in-vitro model system. Characterization tools included a cell viability assay, nuclear morphology assessment, gene expression, western blot, flow cytometry with Annexin V-FITC/7-AAD double staining, cell cycle analyses, and measurements of changes in intracellular cAMP and calcium concentrations. AM251 exerted a marked cytotoxic effect against A375 human melanoma cells with potency comparable with that observed for cisplatin without significant changes in the human dermal fibroblasts viability. AM251, at a concentration that approximates the IC50, downregulated genes encoding antiapoptotic proteins (BCL2 and survivin) and increased transcription levels of proapoptotic BAX, induced alteration of Annexin V reactivity, DNA fragmentation, chromatin condensation in the cell nuclei, and G2/M phase arrest.AM251 also induced a 40% increase in the basal cAMP levels, but it did not affect intracellular calcium concentrations. The involvement of GPR55, TRPA1, and COX-2 in the AM251 mechanism of action was excluded. The combination of AM251 with celecoxib produced a synergistic antitumor activity, although the mechanism underlying this effect remains to be elucidated. This study provides the first evidence of a proapoptotic effect and G2/M cell cycle arrest of AM251 on A375 cells. This compound may be a potential prototype for the development of promising diarylpyrazole derivatives to be evaluated in human cutaneous melanoma.

  13. Targeting HGF/c-MET induces cell cycle arrest, DNA damage, and apoptosis for primary effusion lymphoma.

    PubMed

    Dai, Lu; Trillo-Tinoco, Jimena; Cao, Yueyu; Bonstaff, Karlie; Doyle, Lisa; Del Valle, Luis; Whitby, Denise; Parsons, Chris; Reiss, Krzysztof; Zabaleta, Jovanny; Qin, Zhiqiang

    2015-12-24

    Kaposi sarcoma-associated herpesvirus (KSHV) is a principal causative agent of primary effusion lymphoma (PEL) with a poor prognosis in immunocompromised patients. However, it still lacks effective treatment which urgently requires the identification of novel therapeutic targets for PEL. Here, we report that the hepatocyte growth factor (HGF)/c-MET pathway is highly activated by KSHV in vitro and in vivo. The selective c-MET inhibitor, PF-2341066, can induce PEL apoptosis through cell cycle arrest and DNA damage, and suppress tumor progression in a xenograft murine model. By using microarray analysis, we identify many novel genes that are potentially controlled by HGF/c-MET within PEL cells. One of the downstream candidates, ribonucleoside-diphosphate reductase subunit M2 (RRM2), also displays the promising therapeutic value for PEL treatment. Our findings provide the framework for development of HGF/c-MET-focused therapy and implementation of clinical trials for PEL patients.

  14. Targeting HGF/c-MET induces cell cycle arrest, DNA damage, and apoptosis for primary effusion lymphoma

    PubMed Central

    Dai, Lu; Trillo-Tinoco, Jimena; Cao, Yueyu; Bonstaff, Karlie; Doyle, Lisa; Del Valle, Luis; Whitby, Denise; Parsons, Chris; Reiss, Krzysztof; Zabaleta, Jovanny

    2015-01-01

    Kaposi sarcoma–associated herpesvirus (KSHV) is a principal causative agent of primary effusion lymphoma (PEL) with a poor prognosis in immunocompromised patients. However, it still lacks effective treatment which urgently requires the identification of novel therapeutic targets for PEL. Here, we report that the hepatocyte growth factor (HGF)/c-MET pathway is highly activated by KSHV in vitro and in vivo. The selective c-MET inhibitor, PF-2341066, can induce PEL apoptosis through cell cycle arrest and DNA damage, and suppress tumor progression in a xenograft murine model. By using microarray analysis, we identify many novel genes that are potentially controlled by HGF/c-MET within PEL cells. One of the downstream candidates, ribonucleoside-diphosphate reductase subunit M2 (RRM2), also displays the promising therapeutic value for PEL treatment. Our findings provide the framework for development of HGF/c-MET–focused therapy and implementation of clinical trials for PEL patients. PMID:26531163

  15. The marine-derived fungal metabolite, terrein, inhibits cell proliferation and induces cell cycle arrest in human ovarian cancer cells.

    PubMed

    Chen, Yi-Fei; Wang, Shu-Ying; Shen, Hong; Yao, Xiao-Fen; Zhang, Feng-Li; Lai, Dongmei

    2014-12-01

    The difficulties faced in the effective treatment of ovarian cancer are multifactorial, but are mainly associated with relapse and drug resistance. Cancer stem-like cells have been reported to be an important contributor to these hindering factors. In this study, we aimed to investigate the anticancer activities of a bioactive fungal metabolite, namely terrein, against the human epithelial ovarian cancer cell line, SKOV3, primary human ovarian cancer cells and ovarian cancer stem-like cells. Terrein was separated and purified from the fermentation metabolites of the marine sponge-derived fungus, Aspergillus terreus strain PF26. Its anticancer activities against ovarian cancer cells were investigated by cell proliferation assay, cell migration assay, cell apoptosis and cell cycle assays. The ovarian cancer stem-like cells were enriched and cultured in a serum-free in vitro suspension system. Terrein inhibited the proliferation of the ovarian cancer cells by inducing G2/M phase cell cycle arrest. The underlying mechanisms involved the suppression of the expression of LIN28, an important marker gene of stemness in ovarian cancer stem cells. Of note, our study also demonstrated the ability of terrein to inhibit the proliferation of ovarian cancer stem-like cells, in which the expression of LIN28 was also downregulated. Our findings reveal that terrein (produced by fermention) may prove to be a promising drug candidate for the treatment of ovarian cancer by inhibiting the proliferation of cancer stem-like cells.

  16. Phosphate-Activated Cyclin-Dependent Kinase Stabilizes G1 Cyclin To Trigger Cell Cycle Entry

    PubMed Central

    Menoyo, S.; Ricco, N.; Bru, S.; Hernández-Ortega, S.; Escoté, X.; Aldea, M.

    2013-01-01

    G1 cyclins, in association with a cyclin-dependent kinase (CDK), are universal activators of the transcriptional G1-S machinery during entry into the cell cycle. Regulation of cyclin degradation is crucial for coordinating progression through the cell cycle, but the mechanisms that modulate cyclin stability to control cell cycle entry are still unknown. Here, we show that a lack of phosphate downregulates Cln3 cyclin and leads to G1 arrest in Saccharomyces cerevisiae. The stability of Cln3 protein is diminished in strains with low activity of Pho85, a phosphate-sensing CDK. Cln3 is an in vitro substrate of Pho85, and both proteins interact in vivo. More interestingly, cells that carry a CLN3 allele encoding aspartic acid substitutions at the sites of Pho85 phosphorylation maintain high levels of Cln3 independently of Pho85 activity. Moreover, these cells do not properly arrest in G1 in the absence of phosphate and they die prematurely. Finally, the activity of Pho85 is essential for accumulating Cln3 and for reentering the cell cycle after phosphate refeeding. Taken together, our data indicate that Cln3 is a molecular target of the Pho85 kinase that is required to modulate cell cycle entry in response to environmental changes in nutrient availability. PMID:23339867

  17. δ-Cadinene inhibits the growth of ovarian cancer cells via caspase-dependent apoptosis and cell cycle arrest.

    PubMed

    Hui, Li-Mei; Zhao, Guo-Dong; Zhao, Jian-Jun

    2015-01-01

    Ovarian cancer is one of the most common causes of mortality among all cancers in females and is the primary cause of mortality from gynecological malignancies. The objective of the current research work was to evaluate a naturally occurring sesquiterpene-δ-Cadinene for its antiproliferative and apoptotic effects on human ovary cancer (OVCAR-3) cells. We also demonstrated the effect of δ-Cadinene on cell cycle phase distribution, intracellular damage and caspase activation. Sulforhodamine B (SRB) assay was used to evaluate the antiproliferative effect of δ-cadinene on OVCAR-3 cells. Cellular morphology after δ-cadinene treatment was demonstrated by inverted phase contrast microscopy, fluorescence microscopy and transmission electron microscopy. Flow cytometry was used to analyze the effect of δ-cadinene on cell cycle phase distribution and apoptosis using propidium iodide and Annexin V-fluorescein isothiocyanate (FITC)/PI kit. The results revealed that δ-cadinene induced dose-dependent as well as time-dependent growth inhibitory effects on OVACR-3 cell line. δ-cadinene also induced cell shrinkage, chromatin condensation and nuclear membrane rupture which are characteristic of apoptosis. Treatment with different doses of δ-cadinene also led to cell cycle arrest in sub-G1 phase which showed dose-dependence. Western blotting assay revealed that δ-cadinene led to activation of caspases in OVCAR-3 cancer cells. PARP cleavage was noticed at 50 µM dose of δ-cadinene with the advent of the cleaved 85-kDa fragment after exposure to δ-cadinene. At 100 µM, only the cleaved form of PARP was detectable. Pro-caspase-8 expression remained unaltered until 10 µM dose of δ-cadinene. However, at 50 and 100 µM dose, pro-caspase-8 expression was no longer detectable. There was a significant increase in the caspase-9 expression levels after 50 and 100 µM δ-cadinene treatments.

  18. Arecoline decreases interleukin-6 production and induces apoptosis and cell cycle arrest in human basal cell carcinoma cells.

    PubMed

    Huang, Li-Wen; Hsieh, Bau-Shan; Cheng, Hsiao-Ling; Hu, Yu-Chen; Chang, Wen-Tsan; Chang, Kee-Lung

    2012-01-15

    Arecoline, the most abundant areca alkaloid, has been reported to decrease interleukin-6 (IL-6) levels in epithelial cancer cells. Since IL-6 overexpression contributes to the tumorigenic potency of basal cell carcinoma (BCC), this study was designed to investigate whether arecoline altered IL-6 expression and its downstream regulation of apoptosis and the cell cycle in cultured BCC-1/KMC cells. BCC-1/KMC cells and a human keratinocyte cell line, HaCaT, were treated with arecoline at concentrations ranging from 10 to 100μg/ml, then IL-6 production and expression of apoptosis- and cell cycle progress-related factors were examined. After 24h exposure, arecoline inhibited BCC-1/KMC cell growth and decreased IL-6 production in terms of mRNA expression and protein secretion, but had no effect on HaCaT cells. Analysis of DNA fragmentation and chromatin condensation showed that arecoline induced apoptosis of BCC-1/KMC cells in a dose-dependent manner, activated caspase-3, and decreased expression of the anti-apoptotic protein Bcl-2. In addition, arecoline induced progressive and sustained accumulation of BCC-1/KMC cells in G2/M phase as a result of reducing checkpoint Cdc2 activity by decreasing Cdc25C phosphatase levels and increasing p53 levels. Furthermore, subcutaneous injection of arecoline led to decreased BCC-1/KMC tumor growth in BALB/c mice by inducing apoptosis. This study demonstrates that arecoline has potential for preventing BCC tumorigenesis by reducing levels of the tumor cell survival factor IL-6, increasing levels of the tumor suppressor factor p53, and eliciting cell cycle arrest, followed by apoptosis.

  19. Eriocalyxin B induces apoptosis and cell cycle arrest in pancreatic adenocarcinoma cells through caspase- and p53-dependent pathways

    SciTech Connect

    Li, Lin; Yue, Grace G.L.; Lau, Clara B.S.; Sun, Handong; Fung, Kwok Pui; Leung, Ping Chung; Han, Quanbin; Leung, Po Sing

    2012-07-01

    Pancreatic cancer is difficult to detect early and responds poorly to chemotherapy. A breakthrough in the development of new therapeutic agents is urgently needed. Eriocalyxin B (EriB), isolated from the Isodon eriocalyx plant, is an ent-kaurane diterpenoid with promise as a broad-spectrum anti-cancer agent. The anti-leukemic activity of EriB, including the underlying mechanisms involved, has been particularly well documented. In this study, we demonstrated for the first time EriB's potent cytotoxicity against four pancreatic adenocarcinoma cell lines, namely PANC-1, SW1990, CAPAN-1, and CAPAN-2. The effects were comparable to that of the chemotherapeutic camptothecin (CAM), but with much lower toxicity against normal human liver WRL68 cells. EriB's cytoxicity against CAPAN-2 cells was found to involve caspase-dependent apoptosis and cell cycle arrest at the G2/M phase. Moreover, the p53 pathway was found to be activated by EriB in these cells. Furthermore, in vivo studies showed that EriB inhibited the growth of human pancreatic tumor xenografts in BALB/c nude mice without significant secondary adverse effects. These results suggest that EriB should be considered a candidate for pancreatic cancer treatment. -- Highlights: ► We study Eriocalyxin B (EriB)'s cytotoxic effects on pancreatic cancer cell lines. ► EriB inhibits cell proliferation via mediation of apoptosis and cell cycle arrest. ► The effects are involved in caspase-dependent apoptosis and p53 pathway. ► In vivo study also shows EriB inhibits the growth of human pancreatic tumor. ► EriB can be a good candidate for chemotherapy in pancreatic cancer.

  20. Rosiglitazone inhibits cell proliferation by inducing G1 cell cycle arrest and apoptosis in ADPKD cyst-lining epithelia cells.

    PubMed

    Liu, Yawei; Dai, Bing; Fu, Lili; Jia, Jieshuang; Mei, Changlin

    2010-06-01

    Abnormal proliferation is an important pathological feature of autosomal dominant polycystic kidney disease (ADPKD). Many drugs inhibiting cell proliferation have been proved to be effective in slowing the disease progression in ADPKD. Recent evidence has suggested that peroxisome proliferator-activated receptor gamma (PPARgamma) ligands have anti-neoplasm effects through inhibiting cell growth and inducing cell apoptosis in various cancer cells. In the present study, we examined the expression of PPARgamma in human ADPKD kidney tissues and cyst-lining epithelial cell line, and found that the expression of PPARgamma was greater in ADPKD kidney tissues and cyst-lining epithelial cell line than in normal kidney tissues and human kidney cortex (HKC) cell line. Rosiglitazone inhibited significantly proliferation of cyst-lining epithelial cells in a concentration- and time-dependent manner. These effects were diminished by GW9662, a specific PPARgamma antagonist. Cell cycle analysis showed a G0/G1 arrest in human ADPKD cyst-lining epithelial cells with rosiglitazone treatment. Analysis of cell cycle regulatory proteins revealed that rosiglitazone decreased the protein levels of proliferating cell nuclear antigen, pRb, cyclin D1, cyclin D2 and Cdk4 but increased the levels of p21 and p27 in a dose-dependent manner. Rosiglitazone also induced apoptosis in cyst-lining epithelial cells, which was correlated with increased bax expression and decreased bcl-2 expression. These results suggest PPARgamma agonist might serve as a promising drug for the treatment of ADPKD.

  1. Inhibition of PPARα induces cell cycle arrest and apoptosis, and synergizes with glycolysis inhibition in kidney cancer cells.

    PubMed

    Abu Aboud, Omran; Wettersten, Hiromi I; Weiss, Robert H

    2013-01-01

    Renal cell carcinoma (RCC) is the sixth most common cancer in the US. While RCC is highly metastatic, there are few therapeutics options available for patients with metastatic RCC, and progression-free survival of patients even with the newest targeted therapeutics is only up to two years. Thus, novel therapeutic targets for this disease are desperately needed. Based on our previous metabolomics studies showing alteration of peroxisome proliferator-activated receptor α (PPARα) related events in both RCC patient and xenograft mice materials, this pathway was further examined in the current study in the setting of RCC. PPARα is a nuclear receptor protein that functions as a transcription factor for genes including those encoding enzymes involved in energy metabolism; while PPARα has been reported to regulate tumor growth in several cancers, it has not been evaluated in RCC. A specific PPARα antagonist, GW6471, induced both apoptosis and cell cycle arrest at G0/G1 in VHL(+) and VHL(-) RCC cell lines (786-O and Caki-1) associated with attenuation of the cell cycle regulatory proteins c-Myc, Cyclin D1, and CDK4; this data was confirmed as specific to PPARα antagonism by siRNA methods. Interestingly, when glycolysis was blocked by several methods, the cytotoxicity of GW6471 was synergistically increased, suggesting a switch to fatty acid oxidation from glycolysis and providing an entirely novel therapeutic approach for RCC.

  2. Deoxyelephantopin from Elephantopus scaber L. induces cell-cycle arrest and apoptosis in the human nasopharyngeal cancer CNE cells

    SciTech Connect

    Su, Miaoxian; Chung, Hau Yin; Li, Yaolan

    2011-07-29

    Highlights: {yields} Deoxyelephantopin (ESD) inhibited cell proliferation in the human nasopharyngeal cancer CNE cells. {yields} ESD induced cell cycle arrest in S and G2/M phases via modulation of cell cycle regulatory proteins. {yields} ESD triggered apoptosis by dysfunction of mitochondria and induction of both intrinsic and extrinsic apoptotic signaling pathways. {yields} ESD also triggered Akt, ERK, and JNK signaling pathways. -- Abstract: Deoxyelephantopin (ESD), a naturally occurring sesquiterpene lactone present in the Chinese medicinal herb, Elephantopus scaber L. exerted anticancer effects on various cultured cancer cells. However, the cellular mechanisms by which it controls the development of the cancer cells are unavailable, particularly the human nasopharyngeal cancer CNE cells. In this study, we found that ESD inhibited the CNE cell proliferation. Cell cycle arrest in S and G2/M phases was also found. Western blotting analysis showed that modulation of cell cycle regulatory proteins was responsible for the ESD-induced cell cycle arrest. Besides, ESD also triggered apoptosis in CNE cells. Dysfunction in mitochondria was found to be associated with the ESD-induced apoptosis as evidenced by the loss of mitochondrial membrane potential ({Delta}{Psi}m), the translocation of cytochrome c, and the regulation of Bcl-2 family proteins. Despite the Western blotting analysis showed that both intrinsic and extrinsic apoptotic pathways (cleavage of caspases-3, -7, -8, -9, and -10) were triggered in the ESD-induced apoptosis, additional analysis also showed that the induction of apoptosis could be achieved by the caspase-independent manner. Besides, Akt, ERK and JNK pathways were found to involve in ESD-induced cell death. Overall, our findings provided the first evidence that ESD induced cell cycle arrest, and apoptosis in CNE cells. ESD could be a potential chemotherapeutic agent in the treatment of nasopharyngeal cancer (NPC).

  3. Evaluation of cell cycle arrest in estrogen responsive MCF-7 breast cancer cells: pitfalls of the MTS assay.

    PubMed

    McGowan, Eileen M; Alling, Nikki; Jackson, Elise A; Yagoub, Daniel; Haass, Nikolas K; Allen, John D; Martinello-Wilks, Rosetta

    2011-01-01

    Endocrine resistance is a major problem with anti-estrogen treatments and how to overcome resistance is a major concern in the clinic. Reliable measurement of cell viability, proliferation, growth inhibition and death is important in screening for drug treatment efficacy in vitro. This report describes and compares commonly used proliferation assays for induced estrogen-responsive MCF-7 breast cancer cell cycle arrest including: determination of cell number by direct counting of viable cells; or fluorescence SYBR®Green (SYBR) DNA labeling; determination of mitochondrial metabolic activity by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay; assessment of newly synthesized DNA using 5-ethynyl-2'-deoxyuridine (EdU) nucleoside analog binding and Alexa Fluor® azide visualization by fluorescence microscopy; cell-cycle phase measurement by flow cytometry. Treatment of MCF-7 cells with ICI 182780 (Faslodex), FTY720, serum deprivation or induction of the tumor suppressor p14ARF showed inhibition of cell proliferation determined by the Trypan Blue exclusion assay and SYBR DNA labeling assay. In contrast, the effects of treatment with ICI 182780 or p14ARF-induction were not confirmed using the MTS assay. Cell cycle inhibition by ICI 182780 and p14ARF-induction was further confirmed by flow cytometric analysis and EdU-DNA incorporation. To explore this discrepancy further, we showed that ICI 182780 and p14ARF-induction increased MCF-7 cell mitochondrial activity by MTS assay in individual cells compared to control cells thereby providing a misleading proliferation readout. Interrogation of p14ARF-induction on MCF-7 metabolic activity using TMRE assays and high content image analysis showed that increased mitochondrial activity was concomitant with increased mitochondrial biomass with no loss of mitochondrial membrane potential, or cell death. We conclude that, whilst p14ARF and ICI 182780 stop cell cycle progression, the

  4. Phenylhydroquinone induces loss of thymocytes through cell cycle arrest and apoptosis elevation in p53-dependent pathway.

    PubMed

    Nakata, Yuichiro; Nishi, Kosuke; Nishimoto, Sogo; Sugahara, Takuya

    2013-01-01

    ortho-Phenylphenol has been employed in post-harvest treatment of citrus fruits. Although o-phenylphenol has been reported to cause carcinomas in the urinary tract in rats, toxicity to the immune organs is still unknown. Herein, we report that administration of o-phenylphenol induces thymic atrophy and loss of thymocytes in female BALB/c mice. The influence seems to result from inhibition of the thymocyte development, because increased and decreased populations of the CD4⁻ CD8⁻ double-negative and CD4⁺ CD8⁺ double-positive thymocytes were observed in the o-phenylphenol-administered mice, respectively. ortho-Phenylphenol is metabolized to phenylhydroquinone by cytochrome P450 monooxygenases. Phenylhydroquinone made cell cycle of thymocytes to be arrested through reduced expression of the genes associated with G₂/M phase and through phosphorylation of p53 at Ser15. Phosphorylation of p53 at Ser15 was upregulated by activation of not only ATR but also Erk1/2 and p38, leading to increase of apoptosis. Gene expression of cytochrome P450 1A1 (CYP1A1) was promoted in thymocytes from the o-phenylphenol-administered mice. Overall, our results suggest that o-phenylphenol induces CYP1A1 expression and is metabolized into phenylhydroquinone by the expressed CYP1A1 in thymocytes. The produced phenylhydroquinone in turn induces inhibition of thymocyte development through cell cycle arrest and apoptosis in the p53-dependent pathway.

  5. Effects of curine in HL-60 leukemic cells: cell cycle arrest and apoptosis induction.

    PubMed

    Dantas, Bruna Braga; Faheina-Martins, Gláucia Veríssimo; Coulidiati, Tangbadioa Hervé; Bomfim, Caio César Barbosa; da Silva Dias, Celidarque; Barbosa-Filho, José Maria; Araújo, Demetrius Antônio Machado

    2015-04-01

    Curine is a natural alkaloid isolated from Chondrodendron platyphyllum and it has been reported that this alkaloid has vasodilatory and anti-inflammatory effects. The aim of this study is to analyze the cytotoxic effects of curine in cancer cell lines HL-60, K562, and HT-29, and in primary cultures of peripheral blood mononuclear cells (PBMC). Cells were treated with curine (from 3 to 15 µM) for 24 and 48 h. Cell viability was analyzed by the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and flow cytometry with propidium iodide (PI) assay. To assess the type of cell death induced in HL-60, the cell cycle, morphological, and biochemical alterations were analyzed, which were determined by differential staining with acridine orange/ethidium bromide, and annexin V/PI double-labeling and change in mitochondrial membrane potential assays. Curine demonstrated a potent cytotoxic effect on leukemic cell lines (HL-60 and K562). Its cytotoxic effects in HL-60 cells was related to plasma membrane damage and cell cycle arrest at the G1 phase from 43.4 ± 1.0 to 56.7 ± 1.4 % (p < 0.05). Curine (15 μM) also increased the apoptotic cells number by around 60 % in HL-60 cells and caused phosphatidylserine externalization, inducing about 57 % of apoptosis. Moreover, this alkaloid provoked 20 % of mitochondrial membrane depolarization. We conclude that curine presented a cytotoxic effect and induced apoptosis in HL-60 cells. Thus, it can be considered a promising pharmacological drug.

  6. Arecoline induced cell cycle arrest, apoptosis, and cytotoxicity to human endothelial cells.

    PubMed

    Tseng, Shuei-Kuen; Chang, Mei-Chi; Su, Cheng-Yao; Chi, Lin-Yang; Chang, Jenny Zwei-Ching; Tseng, Wan-Yu; Yeung, Sin-Yuet; Hsu, Ming-Lun; Jeng, Jiiang-Huei

    2012-08-01

    Betel quid (BQ) chewing is a common oral habit in South Asia and Taiwan. BQ consumption may increase the risk of oral squamous cell carcinoma (OSCC), oral submucous fibrosis (OSF), and periodontitis as well as systemic diseases (atherosclerosis, hypertension, etc.). However, little is known about the toxic effect of BQ components on endothelial cells that play important roles for angiogenesis, carcinogenesis, tissue fibrosis, and cardiovascular diseases. EAhy 926 (EAHY) endothelial cells were exposed to arecoline, a major BQ alkaloid, for various time periods. Cytotoxicity was estimated by 3-(4, 5- dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay. The cell cycle distribution of EAHY cells residing in sub-G0/G1, G0/G1, S-, and G2/M phases was analyzed by propidium iodide staining of cellular DNA content and flow cytometry. Some EAHY cells retracted, became round-shaped in appearance, and even detached from the culture plate after exposure to higher concentrations of arecoline (> 0.4 mM). At concentrations of 0.4 and 0.8 mM, arecoline induced significant cytotoxicity to EAHY cells. At similar concentrations, arecoline induced G2/M cell cycle arrest and increased sub-G0/G1 population, a hallmark of apoptosis. Interestingly, prolonged exposure to arecoline (0.1 mM) for 12 and 21 days significantly suppressed the proliferation of EAHY cells, whereas EAHY cells showed adaptation and survived when exposed to 0.05 mM arecoline. These results suggest that BQ components may contribute to the pathogenesis of OSF and BQ chewing-related cardiovascular diseases via toxicity to oral or systemic endothelial cells, leading to impairment of vascular function. During BQ chewing, endothelial damage may be induced by areca nut components and associate with the pathogenesis of OSF, periodontitis, and cardiovascular diseases.

  7. A Flavone Constituent from Myoporum bontioides Induces M-Phase Cell Cycle Arrest of MCF-7 Breast Cancer Cells.

    PubMed

    Weng, Jing-Ru; Bai, Li-Yuan; Lin, Wei-Yu; Chiu, Chang-Fang; Chen, Yu-Chang; Chao, Shi-Wei; Feng, Chia-Hsien

    2017-03-15

    Myoporum bontioides is a traditional medicinal plant in Asia with various biological activities, including anti-inflammatory and anti-bacterial characteristics. To identify the bioactive constituents from M. bontioides, a newly-identified flavone, 3,4'-dimethoxy-3',5,7-trihydroxyflavone (compound 1), along with eight known compounds, were investigated in human MCF-7 breast cancer, SCC4 oral cancer, and THP-1 monocytic leukemia cells. Among these compounds, compound 1 exhibited the strongest antiproliferative activity with half-maximal inhibitory concentration (IC50) values ranging from 3.3 μM (MCF-7) to 8.6 μM (SCC4). Flow cytometric analysis indicated that compound 1 induced G2/M cell cycle arrest in MCF-7 cells. Mechanistic evidence suggests that the G2/M arrest could be attributable to compound 1's modulatory effects on the phosphorylation and expression of numerous key signaling effectors, including cell division cycle 2 (CDC2), CDC25C, and p53. Notably, compound 1 downregulated the expression of histone deacetylase 2 (HDAC2) and HDAC4, leading to increased histone H3 acetylation and p21 upregulation. Together, these findings suggest the translational potential of compound 1 as a breast cancer treatment.

  8. Chikusetsusaponin IVa methyl ester induces cell cycle arrest by the inhibition of nuclear translocation of β-catenin in HCT116 cells.

    PubMed

    Lee, Kyung-Mi; Yun, Ji Ho; Lee, Dong Hwa; Park, Young Gyun; Son, Kun Ho; Nho, Chu Won; Kim, Yeong Shik

    2015-04-17

    We demonstrate that chikusetsusaponin IVa methyl ester (CME), a triterpenoid saponin from the root of Achyranthes japonica, has an anticancer activity. We investigate its molecular mechanism in depth in HCT116 cells. CME reduces the amount of β-catenin in nucleus and inhibits the binding of β-catenin to specific DNA sequences (TCF binding elements, TBE) in target gene promoters. Thus, CME appears to decrease the expression of cell cycle regulatory proteins such as Cyclin D1, as a representative target for β-catenin, as well as CDK2 and CDK4. As a result of the decrease of the cell cycle regulatory proteins, CME inhibits cell proliferation by arresting the cell cycle at the G0/G1 phase. Therefore, we suggest that CME as a novel Wnt/β-catenin inhibitor can be a putative agent for the treatment of colorectal cancers.

  9. Combined treatment of gamma-tocotrienol with statins induce mammary tumor cell cycle arrest in G1.

    PubMed

    Wali, Vikram B; Bachawal, Sunitha V; Sylvester, Paul W

    2009-06-01

    Statins and gamma-tocotrienol (a rare isoform of vitamin E) both inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMGCoA) reductase activity and display anticancer activity. However, clinical application of statins has been limited by high dose toxicity. Previous studies showed that combined statin and gamma-tocotrienol treatment synergistically inhibits growth of highly malignant +SA mammary epithelial cells in culture. To investigate the mechanism mediating this growth inhibition, studies were conducted to determine the effect of combination low dose gamma-tocotrienol and statin treatment on +SA mammary tumor cell cycle progression. Treatment with 0.25 microM simvastatin, lovastatin, mevastatin, 10 microM pravastatin or 2.0 microM gamma-tocotrienol alone had no effect, while combined treatment of individual statins with gamma-tocotrienol significantly inhibited +SA cell proliferation during the 4-day culture period. Flow cytometric analysis demonstrated that combined treatment induced cell cycle arrest in G1. Additional studies showed that treatment with 0.25 microM simvastatin or 2 microM gamma-tocotrienol alone had no effect on the relative intracellular levels of cyclin D1, CDK2, CDK4 and CDK6, but combined treatment caused a large reduction in cyclin D1 and CDK2 levels. Combined treatments also caused a relatively large increase in p27, but had no effect on p21 and p15 levels, and resulted in a large reduction in retinoblastoma (Rb) protein phosphorylation at ser780 and ser807/811. Similar effects were observed following combined treatment of gamma-tocotrienol with low doses of lovastatin, mevastatin and pravastatin. These findings demonstrate that combination low dose statin and gamma-tocotrienol treatment induced mammary tumor cell cycle arrest at G1, resulting from an increase in p27 expression, and a corresponding decrease in cyclin D1, CDK2, and hypophosphorylation of Rb protein. These findings suggest that combined treatment of statins with gamma

  10. Pectenotoxin-2 induces G2/M phase cell cycle arrest in human breast cancer cells via ATM and Chk1/2-mediated phosphorylation of cdc25C.

    PubMed

    Moon, Dong-Oh; Kim, Mun-Ock; Nam, Taek-Jeong; Kim, Se-Kwon; Choi, Yung Hyun; Kim, Gi-Young

    2010-07-01

    Although pectenotoxin-2 (PTX-2) is known to regulate the actin depolymerization and to induce apoptosis through downregulation of telomerase activity, little is known on its effect on the cell cycle regulation. Therefore, we investigated the effects of PTX-2 on G2/M arrest in human breast cancer cells (MDA-MB-231 and MCF-7). Treatment with PTX-2 significantly suppressed cell proliferation and induced G2/M phase arrest through down-regulation of cyclin B1 and cdc2 expression, but also through phosphorylation of cdc25C. We found increased phosphorylation of ATM and Chk1/2 in a PTX-2 dose-dependent manner. Furthermore, treatment with PTX-2 increased H2O2 generation with correlated G2/M arrest. Our results showed that ATM- and Chk1/2-mediated phosphorylation of cdc25C plays a major role in G2/M arrest, but not in H2O2 generation induced by PTX-2 treatment. We also observed that PTX-2-induced cell cycle arrest was not restricted to p53 status in human breast cancer cells.

  11. Lipid-soluble ginseng extract induces apoptosis and G0/G1 cell cycle arrest in NCI-H460 human lung cancer cells.

    PubMed

    Kang, Moo Rim; Kim, Hwan Mook; Kang, Jong Soon; Lee, Kiho; Lee, Sung Dong; Hyun, Dong-Hoon; In, Man-Jin; Park, Song-Kyu; Kim, Dong Chung

    2011-06-01

    This study was performed to elucidate the anticancer mechanism of a lipid-soluble ginseng extract (LSGE) by analyzing induction of apoptosis and arrest of cell cycle progression using the NCI-H460 human lung cancer cell line. Proliferation of NCI-H460 cells was potently inhibited by LSGE in a dose-dependent manner. The cell cycle arrest at the G0/G1 phase in NCI-H460 cells was induced by LSGE. The percentage of G0/G1 phase cells significantly increased, while that of S phase cells decreased after treatment with LSGE. The expression levels of cyclin-dependent kinase2 (CDK2), CDK4, CDK6, cyclin D3 and cyclin E related to G0/G1 cells progression were also altered by LSGE. In addition, LSGE-induced cell death occurred through apoptosis, which was accompanied by increasing the activity of caspases including caspase-8, caspase-9 and caspase-3. Consistent with enhancement of caspase activity, LSGE increased protein levels of cleaved caspase-3, caspase-8, caspase-9, and poly-ADP-ribose polymerase (PARP). These apoptotic effects of LSGE were inhibited by the pan-caspase inhibitor Z-VAD-fmk. These findings indicate that LSGE inhibits NCI-H460 human lung cancer cell growth by cell cycle arrest at the G0/G1 phase and induction of caspase-mediated apoptosis.

  12. Jatamanvaltrate P induces cell cycle arrest, apoptosis and autophagy in human breast cancer cells in vitro and in vivo.

    PubMed

    Yang, Bo; Zhu, Rui; Tian, Shasha; Wang, Yiqi; Lou, Siyue; Zhao, Huajun

    2017-03-10

    Jatamanvaltrate P is a novel iridoid ester isolated from Valeriana jatamansi Jones, a traditional medicine used to treat nervous disorders. In this study, we found that Jatamanvaltrate P possessed notable antitumor properties and therefore evaluated its anticancer effects against human breast cancer cells in vitro and in vivo. Jatamanvaltrate P inhibited the growth and proliferation of MCF-7 and triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, MDA-MB-453 and MDA-MB-468) in a concentration-dependent manner, while displayed relatively low cytotoxicity to human breast epithelial cells (MCF-10A). Treatment with Jatamanvaltrate P induced G2/M-phase arrest in TNBC and G0/G1-phase arrest in MCF-7 cells. Further study of the molecular mechanisms of this cytotoxic compound demonstrated that Jatamanvaltrate P enhanced cleavage of PARP and caspases, while decreased the expression levels of cell cycle-related Cyclin B1, Cyclin D1 and Cdc-2. It also activated autophagy, as indicated by the triggered autophagosome formation and increased LC3-II levels. Autophagy inhibition by 3-MA co-treatment undermined Jatamanvaltrate P-induced cell death. Finally, Jatamanvaltrate P exhibited a potential antitumor effect in MDA-MB-231 xenografts without apparent toxicity. These results suggest that Jatamanvaltrate P is a potential therapeutic agent for breast cancer, providing a basis for development of the compound as a novel chemotherapeutic agent.

  13. Ethanol extract of Innotus obliquus (Chaga mushroom) induces G1 cell cycle arrest in HT-29 human colon cancer cells

    PubMed Central

    Lee, Hyun Sook; Kim, Eun Ji

    2015-01-01

    BACKGROUND/OBJECTIVES Inonotus obliquus (I. obliquus, Chaga mushroom) has long been used as a folk medicine to treat cancer. In the present study, we examined whether or not ethanol extract of I. obliquus (EEIO) inhibits cell cycle progression in HT-29 human colon cancer cells, in addition to its mechanism of action. MATERIALS/METHODS To examine the effects of Inonotus obliquus on the cell cycle progression and the molecular mechanism in colon cancer cells, HT-29 human colon cancer cells were cultured in the presence of 2.5 - 10 µg/mL of EEIO, and analyzed the cell cycle arrest by flow cytometry and the cell cycle controlling protein expression by Western blotting. RESULTS Treatment cells with 2.5 - 10 µg/mL of EEIO reduced viable HT-29 cell numbers and DNA synthesis, increased the percentage of cells in G1 phase, decreased protein expression of CDK2, CDK4, and cyclin D1, increased expression of p21, p27, and p53, and inhibited phosphorylation of Rb and E2F1 expression. Among I. obliquus fractions, fraction 2 (fractionated by dichloromethane from EEIO) showed the same effect as EEIO treatment on cell proliferation and cell cycle-related protein levels. CONCLUSIONS These results demonstrate that fraction 2 is the major fraction that induces G1 arrest and inhibits cell proliferation, suggesting I. obliquus could be used as a natural anti-cancer ingredient in the food and/or pharmaceutical industry. PMID:25861415

  14. Unprecedented inhibition of tubulin polymerization directed by gold nanoparticles inducing cell cycle arrest and apoptosis

    NASA Astrophysics Data System (ADS)

    Choudhury, Diptiman; Xavier, Paulrajpillai Lourdu; Chaudhari, Kamalesh; John, Robin; Dasgupta, Anjan Kumar; Pradeep, Thalappil; Chakrabarti, Gopal

    2013-05-01

    The effect of gold nanoparticles (AuNPs) on the polymerization of tubulin has not been examined till now. We report that interaction of weakly protected AuNPs with microtubules (MTs) could cause inhibition of polymerization and aggregation in the cell free system. We estimate that single citrate capped AuNPs could cause aggregation of ~105 tubulin heterodimers. Investigation of the nature of inhibition of polymerization and aggregation by Raman and Fourier transform-infrared (FTIR) spectroscopies indicated partial conformational changes of tubulin and microtubules, thus revealing that AuNP-induced conformational change is the driving force behind the observed phenomenon. Cell culture experiments were carried out to check whether this can happen inside a cell. Dark field microscopy (DFM) combined with hyperspectral imaging (HSI) along with flow cytometric (FC) and confocal laser scanning microscopic (CLSM) analyses suggested that AuNPs entered the cell, caused aggregation of the MTs of A549 cells, leading to cell cycle arrest at the G0/G1 phase and concomitant apoptosis. Further, Western blot analysis indicated the upregulation of mitochondrial apoptosis proteins such as Bax and p53, down regulation of Bcl-2 and cleavage of poly(ADP-ribose) polymerase (PARP) confirming mitochondrial apoptosis. Western blot run after cold-depolymerization revealed an increase in the aggregated insoluble intracellular tubulin while the control and actin did not aggregate, suggesting microtubule damage induced cell cycle arrest and apoptosis. The observed polymerization inhibition and cytotoxic effects were dependent on the size and concentration of the AuNPs used and also on the incubation time. As microtubules are important cellular structures and target for anti-cancer drugs, this first observation of nanoparticles-induced protein's conformational change-based aggregation of the tubulin-MT system is of high importance, and would be useful in the understanding of cancer therapeutics

  15. Severe NDE1-mediated microcephaly results from neural progenitor cell cycle arrests at multiple specific stages

    PubMed Central

    Doobin, David J.; Kemal, Shahrnaz; Dantas, Tiago J.; Vallee, Richard B.

    2016-01-01

    Microcephaly is a cortical malformation disorder characterized by an abnormally small brain. Recent studies have revealed severe cases of microcephaly resulting from human mutations in the NDE1 gene, which is involved in the regulation of cytoplasmic dynein. Here using in utero electroporation of NDE1 short hairpin RNA (shRNA) in embryonic rat brains, we observe cell cycle arrest of proliferating neural progenitors at three distinct stages: during apical interkinetic nuclear migration, at the G2-to-M transition and in regulation of primary cilia at the G1-to-S transition. RNAi against the NDE1 paralogue NDEL1 has no such effects. However, NDEL1 overexpression can functionally compensate for NDE1, except at the G2-to-M transition, revealing a unique NDE1 role. In contrast, NDE1 and NDEL1 RNAi have comparable effects on postmitotic neuronal migration. These results reveal that the severity of NDE1-associated microcephaly results not from defects in mitosis, but rather the inability of neural progenitors to ever reach this stage. PMID:27553190

  16. Knockdown of USP39 induces cell cycle arrest and apoptosis in melanoma.

    PubMed

    Zhao, Yuan; Zhang, Bo; Lei, Yu; Sun, Jingying; Zhang, Yaohua; Yang, Sen; Zhang, Xuejun

    2016-10-01

    The spliceosome machinery composed of multimeric protein complexes guides precursor messenger RNAs (mRNAs) (pre-mRNAs) splicing in eukaryotic cells. Spliceosome components have been shown to be downregulated in cancer and could be a promising molecular target for anticancer therapy. The ubiquitin-specific protease 39 (USP39) is essential for pre-mRNA splicing, and upregulated USP39 expression is noted in a variety of cancers. However, the role of USP39 in the development and progression of melanoma remains unclear. In the present study, USP39 expression was found to be increased in melanoma tissues compared with that in nevus tissues. USP39 silencing via lentivirus-mediated short hairpin RNA (shRNA) significantly suppressed melanoma cell proliferation, induced G0/G1 cell cycle phase arrest, and increased apoptosis in vitro. Moreover, USP39 knockdown suppressed melanoma tumor growth in a xenograft model. In addition, USP39 silencing was associated with the increased expressions of p21, p27, and Bax. Furthermore, the inhibition of USP39 expression decreased the phosphorylation of extracellular signal-regulated kinase (ERK)1/2, indicating that ERK signaling pathways might be involved in the regulation of melanoma cell proliferation by USP39. Our findings suggest that USP39 may play crucial roles in the development and pathogenesis of melanoma, and it may serve as a potential therapeutic target for melanoma.

  17. Telomere loss in somatic cells of Drosophila causes cell cycle arrest and apoptosis.

    PubMed Central

    Ahmad, K; Golic, K G

    1999-01-01

    Checkpoint mechanisms that respond to DNA damage in the mitotic cell cycle are necessary to maintain the fidelity of chromosome transmission. These mechanisms must be able to distinguish the normal telomeres of linear chromosomes from double-strand break damage. However, on several occasions, Drosophila chromosomes that lack their normal telomeric DNA have been recovered, raising the issue of whether Drosophila is able to distinguish telomeric termini from nontelomeric breaks. We used site-specific recombination on a dispensable chromosome to induce the formation of a dicentric chromosome and an acentric, telomere-bearing, chromosome fragment in somatic cells of Drosophila melanogaster. The acentric fragment is lost when cells divide and the dicentric breaks, transmitting a chromosome that has lost a telomere to each daughter cell. In the eye imaginal disc, cells with a newly broken chromosome initially experience mitotic arrest and then undergo apoptosis when cells are induced to divide as the eye differentiates. Therefore, Drosophila cells can detect and respond to a single broken chromosome. It follows that transmissible chromosomes lacking normal telomeric DNA nonetheless must possess functional telomeres. We conclude that Drosophila telomeres can be established and maintained by a mechanism that does not rely on the terminal DNA sequence. PMID:10049921

  18. Bracken-fern extracts induce cell cycle arrest and apoptosis in certain cancer cell lines.

    PubMed

    Roudsari, Motahhareh Tourchi; Bahrami, Ahmad Reza; Dehghani, Hesam

    2012-01-01

    Bracken fern [Pteridium aquilinem (L.) kuhn (Dennstaedtiaceae)] is one of the most common species on the planet. It has been consumed by humans and animals for centuries. Use by some human groups is because they believe bracken fern is good for health as plant medicine. However, it is also one of the few known plants that can cause tumors in farm animals. Many interested groups have focused their attention on bracken fern because of these interesting features. In order to evaluate the biological effects of exposure to this plant in cellular level, human cancer cell lines were treated with the fern dichloromethane extracts and the genotoxic and cytotoxic effects were studied. Anti-proliferative/cytotoxic effects were evaluated by cell count, MTT assay and flow cytometry methods with three different cancer cell lines, TCC, NTERA2, and MCF-7, and two normal cells, HDF1 and HFF3. Pro-apoptotic effects of the extracts were determined by DAPI staining and comet assay, on TCC cancer cells compared to the normal control cell lines. Cellular morphology was examined by light microscopy. Our present study showed that the extract caused DNA damage and apoptosis at high concentrations (200 μg/mL) and also it may induce cell cycle arrest (G2/M phase) at mild concentrations (50 and 30 μg/mL) depending on the cell type and tumor origin. These results indicate that bracken fern extract is a potent source of anticancer compounds that could be utilized pharmaceutically.

  19. Evidence of an Epigenetic Modification in Cell-cycle Arrest Caused by the Use of Ultra-highly-diluted Gonolobus Condurango Extract

    PubMed Central

    Bishayee, Kausik; Sikdar, Sourav; Khuda-Bukhsh, Anisur Rahman

    2013-01-01

    Objectives: Whether the ultra-highly-diluted remedies used in homeopathy can effectively bring about modulations of gene expressions through acetylation/deacetylation of histones has not been explored. Therefore, in this study, we pointedly checked if the homeopathically-diluted anti-cancer remedy Condurango 30C (ethanolic extract of Gonolobus condurango diluted 10-60 times) was capable of arresting the cell cycles in cervical cancer cells HeLa by triggering an epigenetic modification through modulation of the activity of the key enzyme histone deacetylase 2 vis-a-vis the succussed alcohol (placebo) control. Methods: We checked the activity of different signal proteins (like p21WAF, p53, Akt, STAT3) related to deacetylation, cell growth and differentiation by western blotting and analyzed cell-cycle arrest, if any, by fluorescence activated cell sorting. After viability assays had been performed with Condurango 30C and with a placebo, the activities of histone de-acetylase (HDAC) enzymes 1 and 2 were measured colorimetrically. Results: While Condurango 30C induced cytotoxicity in HeLa cells in vitro and reduced HDAC2 activity quite strikingly, it apparently did not alter the HDAC1 enzyme; the placebo had no or negligible cytotoxicity against HeLa cells and could not alter either the HDAC 1 or 2 activity. Data on p21WAF, p53, Akt, and STAT3 activities and a cell-cycle analysis revealed a reduction in DNA synthesis and G1-phase cell-cycle arrest when Condurango 30C was used at a 2% dose. Conclusion: Condurango 30C appeared to trigger key epigenetic events of gene modulation in effectively combating cancer cells, which the placebo was unable to do. PMID:25780677

  20. MicroRNA-101 targets von Hippel-Lindau tumor suppressor (VHL) to induce HIF1α mediated apoptosis and cell cycle arrest in normoxia condition

    PubMed Central

    Liu, Ning; Xia, Wu-Yan; Liu, Shan-Shan; Chen, Hai-Yan; Sun, Lei; Liu, Meng-Yao; Li, Lin-Feng; Lu, Hong-Min; Fu, Yu-Jie; Wang, Pei; Wu, Hailong; Gao, Jian-Xin

    2016-01-01

    The activation/inactivation of HIF1α is precisely regulated in an oxygen-dependent manner. HIF1α is essential for hypoxia induced apoptosis and cell cycle arrest. Several recent studies indicated that the expression of miRNAs can be modulated by hypoxia. However, the involvement of miRNAs in the regulation of HIF1α induction remains elusive. In present study, we demonstrated that miR-101 was rapidly and transiently induced after hypoxia in breast cancer cells. Over-expression of miR-101 significantly inhibited cell proliferation in breast cancer cells through increased apoptosis and cell cycle arrest in normoxia condition. This inhibitory phenomenon seems due to miR-101-mediated induction of HIF1α, because we identified that VHL, a negative regulator of HIF1α, is a novel target of miR-101 and over-expression of miR-101 decreased VHL levels and subsequently stabilized HIF1α and induced its downstream target VEGFA. Furthermore, we demonstrated that siRNA-mediated knockdown of VHL or HIF1α overexpression could also induce apoptosis and cell cycle arrest whereas enforced expression of VHL, administration of anti-miR-101 oligos or treatment of 2-MeOE2, an inhibitor of HIF1α, could rescue cells from such inhibition. These results reveal a novel regulatory mechanism of HIF1α induction in normoxia and suggest that miR-101 mediated proliferation inhibition may through HIF1α mediated apoptosis and cell cycle arrest. PMID:26841847

  1. MicroRNA-101 targets von Hippel-Lindau tumor suppressor (VHL) to induce HIF1α mediated apoptosis and cell cycle arrest in normoxia condition.

    PubMed

    Liu, Ning; Xia, Wu-Yan; Liu, Shan-Shan; Chen, Hai-Yan; Sun, Lei; Liu, Meng-Yao; Li, Lin-Feng; Lu, Hong-Min; Fu, Yu-Jie; Wang, Pei; Wu, Hailong; Gao, Jian-Xin

    2016-02-04

    The activation/inactivation of HIF1α is precisely regulated in an oxygen-dependent manner. HIF1α is essential for hypoxia induced apoptosis and cell cycle arrest. Several recent studies indicated that the expression of miRNAs can be modulated by hypoxia. However, the involvement of miRNAs in the regulation of HIF1α induction remains elusive. In present study, we demonstrated that miR-101 was rapidly and transiently induced after hypoxia in breast cancer cells. Over-expression of miR-101 significantly inhibited cell proliferation in breast cancer cells through increased apoptosis and cell cycle arrest in normoxia condition. This inhibitory phenomenon seems due to miR-101-mediated induction of HIF1α, because we identified that VHL, a negative regulator of HIF1α, is a novel target of miR-101 and over-expression of miR-101 decreased VHL levels and subsequently stabilized HIF1α and induced its downstream target VEGFA. Furthermore, we demonstrated that siRNA-mediated knockdown of VHL or HIF1α overexpression could also induce apoptosis and cell cycle arrest whereas enforced expression of VHL, administration of anti-miR-101 oligos or treatment of 2-MeOE2, an inhibitor of HIF1α, could rescue cells from such inhibition. These results reveal a novel regulatory mechanism of HIF1α induction in normoxia and suggest that miR-101 mediated proliferation inhibition may through HIF1α mediated apoptosis and cell cycle arrest.

  2. c-Jun NH(2)-terminal kinase signaling axis regulates diallyl trisulfide-induced generation of reactive oxygen species and cell cycle arrest in human prostate cancer cells.

    PubMed

    Antosiewicz, Jedrzej; Herman-Antosiewicz, Anna; Marynowski, Stanley W; Singh, Shivendra V

    2006-05-15

    We have shown previously that generation of reactive oxygen species (ROS) is a critical event in G(2)-M phase cell cycle arrest caused by diallyl trisulfide (DATS), which is a highly promising anticancer constituent of processed garlic. Using DU145 and PC-3 human prostate cancer cells as a model, we now report a novel mechanism involving c-Jun NH(2)-terminal kinase (JNK) signaling axis, which is known for its role in regulation of cell survival and apoptosis, in DATS-induced ROS production. The DATS-induced ROS generation, G(2)-M phase cell cycle arrest and degradation, and hyperphosphorylation of Cdc25C were significantly attenuated in the presence of EUK134, a combined mimetic of superoxide dismutase and catalase. Interestingly, the DATS-induced ROS generation and G(2)-M phase cell cycle arrest were also inhibited significantly in the presence of desferrioxamine, an iron chelator, but this protection was not observed with iron-saturated desferrioxamine. DATS treatment caused a marked increase in the level of labile iron that was accompanied by degradation of light chain of iron storage protein ferritin. Interestingly, DATS-mediated degradation of ferritin, increase in labile iron pool, ROS generation, and/or cell cycle arrest were significantly attenuated by ectopic expression of a catalytically inactive mutant of JNK kinase 2 and RNA interference of stress-activated protein kinase/extracellular signal-regulated kinase 1 (SEK1), upstream kinases in JNK signal transduction pathway. In conclusion, the present study provides experimental evidence to indicate existence of a novel pathway involving JNK signaling axis in regulation of DATS-induced ROS generation.

  3. Role of the retinoblastoma protein in cell cycle arrest mediated by a novel cell surface proliferation inhibitor

    NASA Technical Reports Server (NTRS)

    Enebo, D. J.; Fattaey, H. K.; Moos, P. J.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    A novel cell regulatory sialoglycopeptide (CeReS-18), purified from the cell surface of bovine cerebral cortex cells has been shown to be a potent and reversible inhibitor of proliferation of a wide array of fibroblasts as well as epithelial-like cells and nontransformed and transformed cells. To investigate the possible mechanisms by which CeReS-18 exerts its inhibitory action, the effect of the inhibitor on the posttranslational regulation of the retinoblastoma susceptibility gene product (RB), a tumor suppressor gene, has been examined. It is shown that CeReS-18 mediated cell cycle arrest of both human diploid fibroblasts (HSBP) and mouse fibroblasts (Swiss 3T3) results in the maintenance of the RB protein in the hypophosphorylated state, consistent with a late G1 arrest site. Although their normal nontransformed counterparts are sensitive to cell cycle arrest mediated by CeReS-18, cell lines lacking a functional RB protein, through either genetic mutation or DNA tumor virus oncoprotein interaction, are less sensitive. The refractory nature of these cells is shown to be independent of specific surface receptors for the inhibitor, and another tumor suppressor gene (p53) does not appear to be involved in the CeReS-18 inhibition of cell proliferation. The requirement for a functional RB protein product, in order for CeReS-18 to mediate cell cycle arrest, is discussed in light of regulatory events associated with density-dependent growth inhibition.

  4. Cyclin B2 undergoes cell cycle-dependent nuclear translocation and, when expressed as a non-destructible mutant, causes mitotic arrest in HeLa cells

    PubMed Central

    1992-01-01

    Cyclin proteins form complexes with members of the p34cdc2 kinase family and they are essential components of the cell cycle regulatory machinery. They are thought to determine the timing of activation, the subcellular distribution, and/or the substrate specificity of cdc2- related kinases, but their precise mode of action remains to be elucidated. Here we report the cloning and sequencing of avian cyclin B2. Based on the use of monospecific antibodies raised against bacterially expressed protein, we also describe the subcellular distribution of cyclin B2 in chick embryo fibroblasts and in DU249 hepatoma cells. By indirect immunofluorescence microscopy we show that cyclin B2 is cytoplasmic during interphase of the cell cycle, but undergoes an abrupt translocation to the cell nucleus at the onset of mitotic prophase. Finally, we have examined the phenotypic consequences of expressing wild-type and mutated versions of avian cyclin B2 in HeLa cells. We found that expression of cyclin B2 carrying a mutation at arginine 32 (to serine) caused HeLa cells to arrest in a pseudomitotic state. Many of the arrested cells displayed multiple mitotic spindles, suggesting that the centrosome cycle had continued in spite of the cell cycle arrest. PMID:1532584

  5. LW-213 induces G2/M cell cycle arrest through AKT/GSK3β/β-catenin signaling pathway in human breast cancer cells.

    PubMed

    Zhao, Li; Miao, Han-Chi; Li, Wen-Jun; Sun, Yang; Huang, Shao-Liang; Li, Zhi-Yu; Guo, Qing-Long

    2016-05-01

    LW-213 is a derivative of Wogonin and the anticancer activities of Wogonin have been reported. To study whether LW-213 inhibits cancer cells and explore a possible mechanism, we investigate the compound in several cancer cell lines. We found LW-213 arrests G2/M cycle in breast cancer cells by suppression of Akt/Gsk3β/β-catenin signaling pathway. In compound treated cells, cell cycle-related proteins cyclin A, cyclin B1, p-CDK1, p-Cdc25C, and p-Chk2 (Thr68) were upregulated, and β-catenin nuclear translocation was inhibited. Electrophoretic mobility shift assay revealed LW-213 inhibits binding of β-catenin/LEF complex to DNA. GSK3β inhibitor LiCl and siRNA against GSK3β partially reversed G2/M arrest in breast cancer MCF-7 cells. These results suggest LW-213 triggered G2/M cell cycle arrest through suppression of β-catenin signaling. In BALB/c mice, growth of xenotransplanted MCF-7 tumor was also inhibited after treatment of LW-213. Regulation of cyclin A, cyclin B1, and β-catenin by LW-213 in vivo was the same as in vitro study. In conclusion, we found LW-213 exerts its anticancer effect on cell proliferation and cell cycle through repression of Akt/Gsk3β/β-catenin signaling pathway. LW-213 could be a potential candidate for anticancer drug development.

  6. Hydrogen peroxide inhibits transforming growth factor-β1-induced cell cycle arrest by promoting Smad3 linker phosphorylation through activation of Akt-ERK1/2-linked signaling pathway.

    PubMed

    Choi, Jiyeon; Park, Seong Ji; Jo, Eun Ji; Lee, Hui-Young; Hong, Suntaek; Kim, Seong-Jin; Kim, Byung-Chul

    2013-06-14

    Hydrogen peroxide (H2O2) functions as a second messenger in growth factor receptor-mediated intracellular signaling cascade and is tumorigenic by virtue of its ability to promote cell proliferation; however, the mechanisms underlying the growth stimulatory action of H2O2 are less understood. Here we report an important mechanism for antagonistic effects of H2O2 on growth inhibitory response to transforming growth factor-β1 (TGF-β1). In Mv1Lu and HepG2 cells, pretreatment of H2O2 (0.05-0.2 mM) completely blocked TGF-β1-mediated induction of p15(INK4B) expression and increase of its promoter activity. Interestingly, H2O2 selectively suppressed the transcriptional activation potential of Smad3, not Smad2, in the absence of effects on TGF-β1-induced phosphorylation of the COOH-tail SSXS motif of Smad3 and its nuclear translocation. Mechanism studies showed that H2O2 increases the phosphorylation of Smad3 at the middle linker region in a concentration- and time-dependent manner and this effect is mediated by activation of extracellular signal-activated kinase 1/2 through Akt. Furthermore, expression of a mutant Smad3 in which linker phosphorylation sites were ablated significantly abrogated the inhibitory effects of H2O2 on TGF-β1-induced increase of p15(INK4B)-Luc reporter activity and blockade of cell cycle progression from G1 to S phase. These findings for the first time define H2O2 as a signaling molecule that modulate Smad3 linker phosphorylation and its transcriptional activity, thus providing a potential mechanism whereby H2O2 antagonizes the cytostatic function of TGF-β1.

  7. Securinine from Phyllanthus glaucus Induces Cell Cycle Arrest and Apoptosis in Human Cervical Cancer HeLa Cells

    PubMed Central

    Krauze-Baranowska, Mirosława; Ochocka, J. Renata

    2016-01-01

    Background The Securinega-type alkaloids occur in plants belonging to Euphorbiaceae family. One of the most widely distributed alkaloid of this group is securinine, which was identified next to allosecurinine in Phyllanthus glaucus (leafflower). Recently, some Securinega-type alkaloids have paid attention to its antiproliferative potency towards different cancer cells. However, the cytotoxic properties of allosecurinine have not yet been evaluated. Methods The cytotoxicity of the extract, alkaloid fraction obtained from P. glaucus, isolated securinine and allosecurinine against HeLa cells was evaluated by real-time xCELLigence system and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was detected by annexin V and 7-amino-actinomycin (7-AAD) staining and confirmed with fluorescent Hoechst 33342 dye. The assessment of mitochondrial membrane potential (MMP), reactive oxygen species (ROS) generation, the level of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), caspase-3/7 activity and cell cycle analysis were measured by flow cytometry. The enzymatic activity of caspase-9 was assessed by a luminometric assay. The expression of apoptosis associated genes was analyzed by real-time PCR. Results The experimental data revealed that securinine and the alkaloid fraction were significantly potent on HeLa cells growth inhibition with IC50 values of 7.02 ± 0.52 μg/ml (32.3 μM) and 25.46 ± 1.79 μg/ml, respectively. The activity of allosecurinine and Phyllanthus extract were much lower. Furthermore, our study showed that the most active securinine induced apoptosis in a dose-dependent manner in the tested cells, increased the percentage of ROS positive cells and depolarized cells as well as stimulated the activity of ERK1/2, caspase-9 and -3/7. Securinine also induced cell cycle arrest in S phase. Real-time PCR analysis showed high expression of TNFRSF genes in the cells stimulated with securinine. Conclusions Securinine

  8. S-benzyl-cysteine-mediated cell cycle arrest and apoptosis involving activation of mitochondrial-dependent caspase cascade through the p53 pathway in human gastric cancer SGC-7901 cells.

    PubMed

    Sun, Hua-Jun; Meng, Lin-Yi; Shen, Yang; Zhu, Yi-Zhun; Liu, Hong-Rui

    2013-01-01

    S-benzyl-cysteine (SBC) is a structural analog of S-allylcysteine (SAC), which is one of the major water- soluble compounds in aged garlic extract. In this study, anticancer activities and the underlying mechanisms of SBC action were investigated and compared these with those of SAC using human gastric cancer SGC-7901 cells. SBC significantly suppressed the survival rate of SGC-7901 cells in a concentration- and time-dependent manner, and the inhibitory activities of SBC were stronger than those of SAC. Flow cytometry revealed that SBC induced G2-phase arrest and apoptosis in SGC-7901 cells. Typical apoptotic morphological changes were observed by Hoechst 33258 dye assay. SBC-treatment dramatically induced the dissipation of mitochondrial membrane potential (Δψm), and enhanced the enzymatic activities of caspase-9 and caspase-3 whilst hardly affecting caspase-8 activity. Furthermore, Western blotting indicated that SBC-induced apoptosis was accompanied by up-regulation of the expression of p53, Bax and the down-regulation of Bcl-2. Taken together, this study suggested that SBC exerts cytotoxic activity involving activation of mitochondrial-dependent apoptosis through p53 and Bax/Bcl-2 pathways in human gastric cancer SGC-7901 cells.

  9. Asteraceae Artemisia campestris and Artemisia herba-alba Essential Oils Trigger Apoptosis and Cell Cycle Arrest in Leishmania infantum Promastigotes

    PubMed Central

    Messaoud, Chokri; Haoues, Meriam; Neffati, Noura; Bassoumi Jamoussi, Imen; Essafi-Benkhadir, Khadija; Boussaid, Mohamed; Karoui, Habib

    2016-01-01

    We report the chemical composition and anti-Leishmania and antioxidant activity of Artemisia campestris L. and Artemisia herba-alba Asso. essential oils (EOs). Our results showed that these extracts exhibit different antioxidant activities according to the used assay. The radical scavenging effects determined by DPPH assay were of IC50 = 3.3 mg/mL and IC50 = 9.1 mg/mL for Artemisia campestris and Artemisia herba-alba essential oils, respectively. However, antioxidant effects of both essential oils, determined by ferric-reducing antioxidant power (FRAP) assay, were in the same range (2.3 and 2.97 mg eq EDTA/g EO, resp.), while the Artemisia herba-alba essential oil showed highest chelating activity of Fe2+ ions (27.48 mM Fe2+). Interestingly, we showed that both EOs possess dose-dependent activity against Leishmania infantum promastigotes with IC50 values of 68 μg/mL and 44 μg/mL for A. herba-alba and A. campestris, respectively. We reported, for the first time, that antileishmanial activity of both EOs was mediated by cell apoptosis induction and cell cycle arrest at the sub-G0/G1 phase. All our results showed that EOs from A. herba-alba and A. campestris plants are promising candidates as anti-Leishmania medicinal products. PMID:27807464

  10. Resveratrol Induces Cell Cycle Arrest and Apoptosis in Malignant NK Cells via JAK2/STAT3 Pathway Inhibition

    PubMed Central

    Quoc Trung, Ly; Espinoza, J. Luis; Takami, Akiyoshi; Nakao, Shinji

    2013-01-01

    Natural killer (NK) cell malignancies, particularly aggressive NK cell leukaemias and lymphomas, have poor prognoses. Although recent regimens with L-asparaginase substantially improved outcomes, novel therapeutic approaches are still needed to enhance clinical response. Resveratrol, a naturally occurring polyphenol, has been extensively studied for its anti-inflammatory, cardioprotective and anti-cancer activities. In this study, we investigated the potential anti-tumour activities of resveratrol against the NK cell lines KHYG-1, NKL, NK-92 and NK-YS. Resveratrol induced robust G0/G1 cell cycle arrest, significantly suppressed cell proliferation and induced apoptosis in a dose- and time-dependent manner for all four cell lines. In addition, resveratrol suppressed constitutively active STAT3 in all the cell lines and inhibited JAK2 phosphorylation but had no effect on other upstream mediators of STAT3 activation, such as PTEN, TYK2, and JAK1. Resveratrol also induced downregulation of the anti-apoptotic proteins MCL1 and survivin, two downstream effectors of the STAT3 pathway. Finally, resveratrol induced synergistic effect on the apoptotic and antiproliferative activities of L-asparaginase against KHYG-1, NKL and NK-92 cells. These results suggest that resveratrol may have therapeutic potential against NK cell malignancies. Furthermore, our finding that resveratrol is a bonafide JAK2 inhibitor extends its potential benefits to other diseases with dysregulated JAK2 signaling. PMID:23372833

  11. A novel peptide sansalvamide analogue inhibits pancreatic cancer cell growth through G0/G1 cell-cycle arrest

    SciTech Connect

    Ujiki, Michael B. |; Milam, Ben; Ding Xianzhong |; Roginsky, Alexandra B.; Salabat, M. Reza; Talamonti, Mark S.; Bell, Richard H. |; Gu Wenxin; Silverman, Richard B. ||; Adrian, Thomas E. |. E-mail: tadrian@northwestern.edu

    2006-02-24

    Patients with pancreatic cancer have little hope for cure because no effective therapies are available. Sansalvamide A is a cyclic depsipeptide produced by a marine fungus. We investigated the effect of a novel sansalvamide A analogue on growth, cell-cycle phases, and induction of apoptosis in human pancreatic cancer cells in vitro. The sansalvamide analogue caused marked time- and concentration-dependent inhibition of DNA synthesis and cell proliferation of two human pancreatic cancer cell lines (AsPC-1 and S2-013). The analogue induced G0/G1 phase cell-cycle arrest and morphological changes suggesting induction of apoptosis. Apoptosis was confirmed by annexin V binding. This novel sansalvamide analogue inhibits growth of pancreatic cancer cells through G0/G1 arrest and induces apoptosis. Sansalvamide analogues may be valuable for the treatment of pancreatic cancer.

  12. Ayurvedic medicine constituent withaferin a causes G2 and M phase cell cycle arrest in human breast cancer cells.

    PubMed

    Stan, Silvia D; Zeng, Yan; Singh, Shivendra V

    2008-01-01

    Withaferin A (WA) is derived from the medicinal plant Withania somnifera that has been safely used for centuries in the Indian Ayurvedic medicine for treatment of various ailments. We now demonstrate that WA treatment causes G2 and mitotic arrest in human breast cancer cells. Treatment of MDA-MB-231 (estrogen-independent) and MCF-7 (estrogen-responsive) cell lines with WA resulted in a concentration- and time-dependent increase in G2-M fraction, which correlated with a decrease in levels of cyclin-dependent kinase 1 (Cdk1), cell division cycle 25C (Cdc25C) and/or Cdc25B proteins, leading to accumulation of Tyrosine15 phosphorylated (inactive) Cdk1. Ectopic expression of Cdc25C conferred partial yet significant protection against WA-mediated G2-M phase cell cycle arrest in MDA-MB-231 cells. The WA-treated MDA-MB-231 and MCF-7 cells were also arrested in mitosis as judged by fluorescence microscopy and analysis of Ser10 phosphorylated histone H3. Mitotic arrest resulting from exposure to WA was accompanied by an increase in the protein level of anaphase promoting complex/cyclosome substrate securin. In conclusion, the results of this study suggest that G2-M phase cell cycle arrest may be an important mechanism in antiproliferative effect of WA against human breast cancer cells.

  13. Mechanisms of G1 cell cycle arrest and apoptosis in myeloma cells induced by hybrid-compound histone deacetylase inhibitor

    SciTech Connect

    Fujii, Seiko; Okinaga, Toshinori; Ariyoshi, Wataru; Takahashi, Osamu; Iwanaga, Kenjiro; Nishino, Norikazu; Tominaga, Kazuhiro; Nishihara, Tatsuji

    2013-05-10

    Highlights: •Novel histone deacetylase inhibitor Ky-2, remarkably inhibits myeloma cell growth. •Ky-2 demonstrates no cytotoxicity against normal lymphocytic cells. •Ky-2 induces cell cycle arrest through the cell cycle-associated proteins. •Ky-2 induces Bcl-2-inhibitable apoptosis through a caspase-dependent cascade. -- Abstract: Objectives: Histone deacetylase (HDAC) inhibitors are new therapeutic agents, used to treat various types of malignant cancers. In the present study, we investigated the effects of Ky-2, a hybrid-compound HDAC inhibitor, on the growth of mouse myeloma cells. Materials and methods: Myeloma cells, HS-72, P3U1, and mouse normal cells were used in this study. Effect of HDAC inhibitors on cell viability was determined by WST-assay and trypan blue assay. Cell cycle was analyzed using flow cytometer. The expression of cell cycle regulatory and the apoptosis associated proteins were examined by Western blot analysis. Hoechst’s staining was used to detect apoptotic cells. Results: Our findings showed that Ky-2 decreased the levels of HDACs, while it enhanced acetylation of histone H3. Myeloma cell proliferation was inhibited by Ky-2 treatment. Interestingly, Ky-2 had no cytotoxic effects on mouse normal cells. Ky-2 treatment induced G1-phase cell cycle arrest and accumulation of a sub-G1 phase population, while Western blotting analysis revealed that expressions of the cell cycle-associated proteins were up-regulated. Also, Ky-2 enhanced the cleavage of caspase-9 and -3 in myeloma cells, followed by DNA fragmentation. In addition, Ky-2 was not found to induce apoptosis in bcl-2 overexpressing myeloma cells. Conclusion: These findings suggest that Ky-2 induces apoptosis via a caspase-dependent cascade and Bcl-2-inhibitable mechanism in myeloma cells.

  14. Disease and Carrier Isolates of Neisseria meningitidis Cause G1 Cell Cycle Arrest in Human Epithelial Cells

    PubMed Central

    von Papen, Michael; Oosthuysen, Wilhelm F.; Becam, Jérôme; Claus, Heike

    2016-01-01

    Microbial pathogens have developed several mechanisms to modulate and interfere with host cell cycle progression. In this study, we analyzed the effect of the human pathogen Neisseria meningitidis on the cell cycle of epithelial cells. Two pathogenic isolates, as well as two carrier isolates, were tested for their ability to adhere to and invade into the epithelial cell lines Detroit 562 and NP69 and to modulate the cell cycle. We found that all isolates adhered equally well to both Detroit 562 and NP69 cells, whereas the carrier isolates were significantly less invasive. Using propidium iodide staining and 5-ethynyl-2′-deoxyuridine pulse-labeling, we provide evidence that meningococcal infection arrested cells in the G1 phase of the cell cycle at 24 h postinfection. In parallel, a significant decrease of cells in the S phase was observed. Interestingly, G1-phase arrest was only induced after infection with live bacteria but not with heat-killed bacteria. By Western blotting we demonstrate that bacterial infection resulted in a decreased protein level of the cell cycle regulator cyclin D1, whereas cyclin E expression levels were increased. Furthermore, N. meningitidis infection induced an accumulation of the cyclin-dependent kinase inhibitor (CKI) p21WAF1/CIP1 that was accompanied by a redistribution of this CKI to the cell nucleus, as shown by immunofluorescence analysis. Moreover, the p27CIP1 CKI was redistributed and showed punctate foci in infected cells. In summary, we present data that N. meningitidis can interfere with the processes of host cell cycle regulation. PMID:27430269

  15. Thoc1 inhibits cell growth via induction of cell cycle arrest and apoptosis in lung cancer cells.

    PubMed

    Wan, Jianmei; Zou, Shitao; Hu, Mengshang; Zhu, Ran; Xu, Jiaying; Jiao, Yang; Fan, Saijun

    2014-06-01

    THO complex 1 (Thoc1) is a human nuclear matrix protein that binds to the retinoblastoma tumor suppressor retinoblastoma protein (pRb). While some studies suggest that Thoc1 has characteristics of a tumor suppressor protein, whether Thoc1 can inhibit lung cancer cell growth is not clear. In the present study, we observed that Thoc1 is lowly expressed in the lung cancer cell lines SPC-A1 and NCI-H1975. Then, we investigated the potential effects of Thoc1 on lung cancer cell proliferation, cell cycle and apoptosis after stable transfection of these lines with a Thoc1 expression vector. We found that overexpression of Thoc1 can inhibit cell proliferation, induce G2/M cell cycle arrest and promote apoptosis. Further investigation indicated that overexpression of Thoc1 is involved in the inhibition of cell cycle-related proteins cyclin A1 and B1 and of pro-apoptotic factors Bax and caspase-3. In vivo experiments showed that tumors overexpressing Thoc1 display a slower growth rate than the control xenografts and show reduced expression of the protein Ki-67, which localized on the nuclear membrane. Taken together, our data show that in lung cancer cells, Thoc1 inhibits cell growth through induction of cell cycle arrest and apoptosis. These results indicate that Thoc1 may be used as a novel therapeutic target for human lung cancer treatment.

  16. Lithium increases proliferation of hippocampal neural stem/progenitor cells and rescues irradiation-induced cell cycle arrest in vitro.

    PubMed

    Zanni, Giulia; Di Martino, Elena; Omelyanenko, Anna; Andäng, Michael; Delle, Ulla; Elmroth, Kecke; Blomgren, Klas

    2015-11-10

    Radiotherapy in children causes debilitating cognitive decline, partly linked to impaired neurogenesis. Irradiation targets primarily cancer cells but also endogenous neural stem/progenitor cells (NSPCs) leading to cell death or cell cycle arrest. Here we evaluated the effects of lithium on proliferation, cell cycle and DNA damage after irradiation of young NSPCs in vitro.NSPCs were treated with 1 or 3 mM LiCl and we investigated proliferation capacity (neurosphere volume and bromodeoxyuridine (BrdU) incorporation). Using flow cytometry, we analysed apoptosis (annexin V), cell cycle (propidium iodide) and DNA damage (γH2AX) after irradiation (3.5 Gy) of lithium-treated NSPCs.Lithium increased BrdU incorporation and, dose-dependently, the number of cells in replicative phase as well as neurosphere growth. Irradiation induced cell cycle arrest in G1 and G2/M phases. Treatment with 3 mM LiCl was sufficient to increase NSPCs in S phase, boost neurosphere growth and reduce DNA damage. Lithium did not affect the levels of apoptosis, suggesting that it does not rescue NSPCs committed to apoptosis due to accumulated DNA damage.Lithium is a very promising candidate for protection of the juvenile brain from radiotherapy and for its potential to thereby improve the quality of life for those children who survive their cancer.

  17. Ailanthone Inhibits Huh7 Cancer Cell Growth via Cell Cycle Arrest and Apoptosis In Vitro and In Vivo

    PubMed Central

    Zhuo, Zhenjian; Hu, Jianyang; Yang, Xiaolin; Chen, Minfen; Lei, Xueping; Deng, Lijuan; Yao, Nan; Peng, Qunlong; Chen, Zhesheng; Ye, Wencai; Zhang, Dongmei

    2015-01-01

    While searching for natural anti-hepatocellular carcinoma (HCC) components in Ailanthus altissima, we discovered that ailanthone had potent antineoplastic activity against HCC. However, the molecular mechanisms underlying the antitumor effect of ailanthone on HCC have not been examined. In this study, the antitumor activity and the underlying mechanisms of ailanthone were evaluated in vitro and in vivo. Mechanistic studies showed that ailanthone induced G0/G1-phase cell cycle arrest, as indicated by decreased expression of cyclins and CDKs and increased expression of p21 and p27. Our results demonstrated that ailanthone triggered DNA damage characterized by activation of the ATM/ATR pathway. Moreover, ailanthone-induced cell death was associated with apoptosis, as evidenced by an increased ratio of cells in the subG1 phase and by PARP cleavage and caspase activation. Ailanthone-induced apoptosis was mitochondrion-mediated and involved the PI3K/AKT signaling pathway in Huh7 cells. In vivo studies demonstrated that ailanthone inhibited the growth and angiogenesis of tumor xenografts without significant secondary adverse effects, indicating its safety for treating HCC. In conclusion, our study is the first to report the efficacy of ailanthone against Huh7 cells and to elucidate its underlying molecular mechanisms. These findings suggest that ailanthone is a potential agent for the treatment of liver cancer. PMID:26525771

  18. The ROS/JNK/ATF2 pathway mediates selenite-induced leukemia NB4 cell cycle arrest and apoptosis in vitro and in vivo.

    PubMed

    An, J J; Shi, K J; Wei, W; Hua, F Y; Ci, Y L; Jiang, Q; Li, F; Wu, P; Hui, K Y; Yang, Y; Xu, C M

    2013-12-19

    It has previously been shown that selenite can act as an antitumor agent and inhibit cancer cell growth, although the mechanism responsible for this effect is not well understood. In this study, we have shown that selenite can induce cell cycle arrest and apoptosis in NB4 cells. Selenite treatment of these cells also inhibited the JNK/ATF2 axis. Further experiments demonstrated that selenite-induced production of reactive oxygen species (ROS) worked as an upstream of the JNK/ATF2 axis, cell cycle arrest and apoptosis. Inactivation of ATF2 resulted in decreased affinity of this transcription factor for the promoters of cyclin A, cyclin D3 and CDK4, which led to the arrest of the NB4 cells in the G0/G1 phase. Finally, in vivo experiments confirmed the antitumor activity of selenite and the mechanisms that were described in vitro. Taken together, our results indicate that selenite-induced ROS arrest NB4 cells at G0/G1 phase through inhibiting the JNK/ATF2 axis in vitro and in vivo.

  19. The Cell Cycle: An Activity Using Paper Plates to Represent Time Spent in Phases of the Cell Cycle

    ERIC Educational Resources Information Center

    Scherer, Yvette D.

    2014-01-01

    In this activity, students are given the opportunity to combine skills in math and geometry for a biology lesson in the cell cycle. Students utilize the data they collect and analyze from an online onion-root-tip activity to create a paper-plate time clock representing a 24-hour cell cycle. By dividing the paper plate into appropriate phases of…

  20. The inhibition of PI3K and NFκB promoted curcumin-induced cell cycle arrest at G2/M via altering polyamine metabolism in Bcl-2 overexpressing MCF-7 breast cancer cells.

    PubMed

    Berrak, Özge; Akkoç, Yunus; Arısan, Elif Damla; Çoker-Gürkan, Ajda; Obakan-Yerlikaya, Pınar; Palavan-Ünsal, Narçin

    2016-02-01

    Bcl-2 protein has been contributed with number of genes which are involved in oncogenesis. Among the many targets of Bcl-2, NFκB have potential role in induction of cell cycle arrest. Curcumin has potential therapeutic effects against breast cancer through multiple signaling pathways. In this study, we investigated the role of curcumin in induction of cell cycle arrest via regulating of NFκB and polyamine biosynthesis in wt and Bcl-2+ MCF-7 cells. To examine the effect of curcumin on cell cycle regulatory proteins, PI3K/Akt, NFκB pathways and polyamine catabolism, we performed immunoblotting assay. In addition, cell cycle analysis was performed by flow cytometry. The results indicated that curcumin induced cell cycle arrest at G2/M phase by downregulation of cyclin B1 and Cdc2 and inhibited colony formation in MCF-7wt cells. However, Bcl-2 overexpression prevented the inhibition of cell cycle associated proteins after curcumin treatment. The combination of LY294002, PI3K inhibitor, and curcumin induced cell cycle arrest by decreasing CDK4, CDK2 and cyclin E2 in Bcl-2+ MCF-7 cells. Moreover, LY294002 further inhibited the phosphorylation of Akt in Bcl-2+ MCF-7 cells. Curcumin could suppress the nuclear transport of NFκB through decreasing the interaction of P-IκB-NFκB. The combination of wedelolactone, NFκB inhibitor, and curcumin acted different on SSAT expression in wt MCF-7 and Bcl-2+ MCF-7 cells. NFκB inhibition increased the SSAT after curcumin treatment in Bcl-2 overexpressed MCF-7 cells. Inhibition of NFκB activity as well as suppression of ROS generation with NAC resulted in the partial relief of cells from G2/M checkpoint after curcumin treatment in wt MCF-7 cells. In conclusion, the potential role of curcumin in induction of cell cycle arrest is related with NFκB-regulated polyamine biosynthesis.

  1. 13-Methyl-palmatrubine induces apoptosis and cell cycle arrest in A549 cells in vitro and in vivo

    PubMed Central

    Chen, Jingxian; Lu, Xingang; Lu, Chenghua; Wang, Chunying; Xu, Haizhu; Xu, Xiaoli; Gou, Haixin; Zhu, Bing; Du, Wangchun

    2016-01-01

    Corydalis yanhusuo, a well-known herbaceous plant, is commonly used in the treatment of inflammation, injury and pain. One natural agent isolated from Corydalis yanhusuo, 13-methyl-palmatrubine, was found to have a cytotoxic effect on cancer cells as reported in published studies. In the present study, we synthesized a potential anti-lung tumor agent, 13-methyl-palmatrubine and analyzed its activity. 13-Methyl-palmatrubine exhibited a cytotoxic effect on a panel of cancer cell lines in a time- and concentration-dependent manner. Among all the tested cancer cell lines, lung cancer A549 cells were most sensitive to 13-methyl-palmatrubine treatment. Meanwhile 13-methyl-palmatrubine showed less cytotoxicity in human normal cells. Our investigation revealed that 13-methyl-palmatrubine induced apoptosis and cell cycle arrest in A549 cells in a dose-dependent manner. Furthermore, 13-methyl-palmatrubine treatment caused activation of P38 and JNK pathways and blocked the EGFR pathway. In conclusion, our findings demonstrated that 13-methyl-palmatrubine inhibited the growth of A549 cells mediated by blocking of the EGFR signaling pathway and activation of the MAPK signaling pathway and provides a better understanding of the molecular mechanisms of 13-methyl-palmatrubine. PMID:27633656

  2. Resveratrol oligomers isolated from Carex species inhibit growth of human colon tumorigenic cells mediated by cell cycle arrest.

    PubMed

    González-Sarrías, Antonio; Gromek, Samantha; Niesen, Daniel; Seeram, Navindra P; Henry, Geneive E

    2011-08-24

    Research has shown that members of the Carex genus produce biologically active stilbenoids including resveratrol oligomers. This is of great interest to the nutraceutical industry given that resveratrol, a constituent of grape and red wine, has attracted immense research attention due to its potential human health benefits. In the current study, five resveratrol oligomers (isolated from Carex folliculata and Carex gynandra ), along with resveratrol, were evaluated for antiproliferative effects against human colon cancer (HCT-116, HT-29, Caco-2) and normal human colon (CCD-18Co) cells. The resveratrol oligomers included one dimer, two trimers, and two tetramers: pallidol (1); α-viniferin (2) and trans-miyabenol C (3); and kobophenols A (4) and B (5), respectively. Although not cytotoxic, the resveratrol oligomers (1-5), as well as resveratrol, inhibited growth of the human colon cancer cells. Among the six stilbenoids, α-viniferin (2) was most active against the colon cancer cells with IC(50) values of 6-32 μM (>2-fold compared to normal colon cells). Moreover, α-viniferin (at 20 μM) did not induce apoptosis but arrested cell cycle (in the S-phase) for the colon cancer but not the normal colon cells. This study adds to the growing body of knowledge supporting the anticancer effects of resveratrol and its oligomers. Furthermore, Carex species should be investigated for their nutraceutical potential given that they produce biologically active stilbenoids such as α-viniferin.

  3. G1 cell cycle arrest and apoptosis induction by nuclear Smad4/Dpc4: Phenotypes reversed by a tumorigenic mutation

    PubMed Central

    Dai, Jia Le; Bansal, Ravi K.; Kern, Scott E.

    1999-01-01

    The tumor suppressor Smad4/Dpc4 is a transcription activator that binds specific DNA sequences and whose nuclear localization is induced after exposure to type β transforming growth factor-like cytokines. We explored an inducible system in which Smad4 protein is activated by translocation to the nucleus when cell lines that stably express wild-type or mutant Smad4 proteins fused to a murine estrogen receptor domain are treated with 4-hydroxytamoxifen. This induced Smad4-mediated transcriptional activation and a decrease in growth rate, attributable to a cell cycle arrest at the G1 phase and an induction of apoptosis. A tumor-derived mutation (Arg-100 → Thr) affecting a residue critical for DNA-binding demonstrated an “oncogenic” phenotype, having decreases in both the G1 fraction and apoptosis and, consequently, an augmentation of population growth. This model should be useful in the exploration and control of components that lie further downstream in the Smad4 tumor-suppressor pathway. PMID:9990040

  4. Critical Role of AMPK/FoxO3A Axis in Globular Adiponectin-Induced Cell Cycle Arrest and Apoptosis in Cancer Cells.

    PubMed

    Shrestha, Anup; Nepal, Saroj; Kim, Mi Jin; Chang, Jae Hoon; Kim, Sang-Hyun; Jeong, Gil-Saeng; Jeong, Chul-Ho; Park, Gyu Hwan; Jung, Sunghee; Lim, Jaecheong; Cho, Eunha; Lee, Soyoung; Park, Pil-Hoon

    2016-02-01

    Adiponectin predominantly secreted from adipose tissue has exhibited potent anti-proliferative properties in cancer cells via modulating cell cycle and apoptosis. FoxO3A, a Forkhead box O member of the transcription factor, plays a critical role in modulating expression of genes involved in cell death and/or survival. In this study, we investigated the role of FoxO3A signaling in anti-cancer activities of adiponectin. Herein, we have shown that treatment with globular adiponectin (gAcrp) increases p27 but decreases cyclinD1 expression in human hepatoma (HepG2) and breast (MCF-7) cancer cells. Gene ablation of FoxO3A prevented gAcrp-induced increase in p27 and decreased in cyclin D1 expression, and further ameliorated cell cycle arrest by gAcrp, indicating a critical role of FoxO3A in gAcrp-induced cell cycle arrest of cancer cells. Moreover, treatment with gAcrp also induced caspase-3/7 activation and increased Fas ligand (FasL) expression in both HepG2 and MCF-7 cells. Transfection with FoxO3A siRNA inhibited gAcrp-induced caspase-3/7 activation and FasL expression, suggesting that FoxO3A signaling also plays an important role in gAcrp-induced apoptosis of cancer cells. We also found that gene silencing of AMPK prevented gAcrp-induced nuclear translocation of FoxO3A in HepG2 and MCF-7 cells. In addition, suppression of AMPK also blocked gAcrp-induced cell cycle arrest and further attenuated gAcrp-induced caspase-3/7 activation, indicating that AMPK signaling plays a pivotal role in both gAcrp-induced cell cycle arrest and apoptosis via acting as an upstream signaling of FoxO3A. Taken together, our findings demonstrated that AMPK/FoxO3A axis plays a cardinal role in anti-proliferative effect of adiponectin in cancer cells.

  5. Arctigenin induces cell cycle arrest by blocking the phosphorylation of Rb via the modulation of cell cycle regulatory proteins in human gastric cancer cells.

    PubMed

    Jeong, Jin Boo; Hong, Se Chul; Jeong, Hyung Jin; Koo, Jin Suk

    2011-10-01

    Gastric cancer is a leading cause of cancer-related deaths, worldwide being second only to lung cancer as a cause of death. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms of arctigenin for anti-tumor effect on gastric cancer have not been examined. This study examined the biological effects of arctigenin on the human gastric cancer cell line SNU-1 and AGS. Cell proliferation was determined by MTT assay. In MTT assay, the proliferation of SNU-1 and AGS cells was significantly inhibited by arctigenin in a time and dose dependent manner, as compared with SNU-1 and AGS cells cultured in the absence of arctigenin. Inhibition of cell proliferation by arctigenin was in part associated with apoptotic cell death, as shown by changes in the expression ratio of Bcl-2 to Bax by arctigenin. Also, arctigenin blocked cell cycle arrest from G(1) to S phase by regulating the expression of cell cycle regulatory proteins such as Rb, cyclin D1, cyclin E, CDK4, CDK2, p21Waf1/Cip1 and p15 INK4b. The antiproliferative effect of arctigenin on SNU-1 and AGS gastric cancer cells revealed in this study suggests that arctigenin has intriguing potential as a chemopreventive or chemotherapeutic agent.

  6. Sodium ascorbate inhibits growth via the induction of cell cycle arrest and apoptosis in human malignant melanoma A375.S2 cells.

    PubMed

    Lin, Shuw-Yuan; Lai, Wan-Wen; Chou, Chi-Chung; Kuo, Hsiu-Maan; Li, Te-Mao; Chung, Jing-Gung; Yang, Jen-Hung

    2006-12-01

    Vitamin C has been reported to be useful in the treatment and prevention of cancer. Inconsistent effects from growth stimulation to induction of apoptosis of malignant tumor cells, however, have been reported. Melanoma is an increasingly common and potentially lethal malignancy. It was reported that melanoma cells were more susceptible to ascorbate toxicity than any other tumor cells. The mechanisms accounting for ascorbate-induced apoptosis in human melanoma cells, however, have remained unclear. This study was undertaken to investigate the effect of sodium ascorbate on cytotoxicity and apoptosis in human malignant melanoma A375.S2 cells. A375.S2 cells were incubated with a certain range of concentrations of sodium ascorbate for various time periods. In order to examine the effects of sodium ascorbate on cell proliferation, cell cycle, apoptosis and necrosis, we performed 4,6-diamidino-2-phenylindole dihydrochloride assays and flow cytometry analysis. Polymerase chain reaction was used to examine the mRNA levels of p53, p21, p27, cyclin A, cyclin E, CDK2 and CDK4, which are associated with cell cycle S-phase arrest and apoptosis. Flow cytometric analysis showed that sodium ascorbate significantly induced cell cycle arrest and apoptosis in the A375.S2 cell line in a dose-dependent manner. The increased expressions of p53 and p21, and the decreased expressions of cyclin A, cyclin E, CDK2 and CDK4, indicated the cell cycle arrest at G1/S phase after the cells had been treated with sodium ascorbate. Induction of apoptosis involved an increase in the levels of p53, p21 and cellular Ca, and a decrease in mitochondrial membrane potential and activation of caspase 3 before culminating in apoptosis in sodium ascorbate-treated A375.S2 cells.

  7. MiR-371-373 cluster acts as a tumor-suppressor-miR and promotes cell cycle arrest in unrestricted somatic stem cells.

    PubMed

    Langroudi, Lida; Jamshidi-Adegani, Fatemeh; Shafiee, Abbas; Rad, Seyed Mohammad Ali Hosseini; Keramati, Farid; Azadmanesh, Kayhan; Arefian, Ehsan; Soleimani, Masoud

    2015-09-01

    Recent advances in small RNA research have implicated microRNAs (miRNAs) as important regulators of proliferation and development. The miR-371-373 cluster is prominently expressed in human embryonic stem cells (ESCs) and rapidly decreases after cell differentiation. MiR-371-373 cluster was investigated as one of the key factors of stem cell maintenance and pluripotency in unrestricted somatic stem cells (USSCs) using a lentivirus system. Gene expression showed a dual effect on proliferation, which revealed a transient cell cycle progression and consequent repression in pluripotency factors and cell cycle genes. Cell proliferation analysis with CFU, MTT, and DNA content assays further confirmed the dual effect of cluster after prolonged exposure. Analyzing the course of action, it seems that miR-371-373 cluster acts as an onco/tumor suppressor-miR. MiR371-373 cluster acts by modulating the function of these factors and limiting the excessive cell cycle propagation upon oncogenic stimuli to protect cells from replicative stress, but also activate CDK inhibitors and transcriptional repressors of the retinoblastoma family to cause cell cycle arrest. In contrast to the previous studies, we believe that miR-371-373 cluster functions as a self-renewal miRNA to induce and maintain the pluripotent state but also to potentially inhibit dysregulated proliferation through cell cycle arrest. It seems that miR-371-373 cluster presents with a dual effect in this cellular context which may possess different actions in various cells. This not only expands the basic knowledge of the cluster but may offer a great chance for therapeutic interventions.

  8. SCYL1-BP1 affects cell cycle arrest in human hepatocellular carcinoma cells via Cyclin F and RRM2.

    PubMed

    Wang, Yang; Zhi, Qiaoming; Ye, Qin; Zhou, Chengyuan; Zhang, Lei; Yan, Wei; Wu, Qun; Zhang, Di; Li, Pu; Huo, Keke

    2016-01-01

    The cell cycle is regulated via important biological mechanisms. Controlled expression of cell cycle regulatory proteins is crucial to maintain cell cycle progression. However, unbalanced protein expression leads to many diseases, such as cancer. Previous research suggests that SCYL1-BP1 function might be related to cell cycle progression and SCYL1-BP1 dysfunction to diseases through undefined mechanisms. In this research, an unbiased yeast two-hybrid screen was used to find protein(s) with potential biological relevance to SCYL1-BP1 function, and a novel interaction was recognized between SCYL1-BP1 and Cyclin F. This interaction was chosen as a paradigm to study SCYL1-BP1 function in cell cycle progression and its possible role in tumorigenesis. We found that SCYL1-BP1 binds to Cyclin F both in vivo and in vitro. SCYL1-BP1 overexpression promoted expression of the CCNF gene and simultaneously delayed Cyclin F protein degradation. SCYL1-BP1 knockdown reduced the expression of endogenous Cyclin F. It was also demonstrated in functional assays that SCYL1-BP1 overexpression induces G2/M arrest in cultured liver cells. Furthermore, SCYL1-BP1 sustained RRM2 protein expression by reducing its ubiquitination. Thus, we propose that SCYL1- BP1 affects the cell cycle through increasing steady state levels of Cyclin F and RRM2 proteins, thus constituting a dual regulatory circuit. This study provides a possible mechanism for SCYL1-BP1-mediated cell cycle regulation and related diseases.

  9. Resistance for Genotoxic Damage in Mesenchymal Stromal Cells Is Increased by Hypoxia but Not Generally Dependent on p53-Regulated Cell Cycle Arrest

    PubMed Central

    Wieduwild, Elisabeth; Nerger, Katrin; Lambrecht, Nina; Schmoll, Hans-Joachim; Müller-Tidow, Carsten; Müller, Lutz Peter

    2017-01-01

    Adult stem cells including multipotent mesenchymal stromal cells (MSC) acquire a high amount of DNA-damage due to their prolonged lifespan. MSC may exert specific mechanisms of resistance to avoid loss of functional activity. We have previously shown that resistance of MSC is associated with an induction of p53 and proliferation arrest upon genotoxic damage. Hypoxia may also contribute to resistance in MSC due to the low oxygen tension in the niche. In this study we characterized the role of p53 and contribution of hypoxia in resistance of MSC to genotoxic damage. MSC exhibited increased resistance to cisplatin induced DNA-damage. This resistance was associated with a temporary G2/M cell cycle arrest, induction of p53- and p21-expression and reduced cyclin B / cdk1-levels upon subapoptotic damage. Resistance of MSC to cisplatin was increased at hypoxic conditions i. e. oxygen <0.5%. However, upon hypoxia the cisplatin-induced cell cycle arrest and expression of p53 and p21 were abrogated. MSC with shRNA-mediated p53 knock-down showed a reduced cell cycle arrest and increased cyclin B / cdk1 expression. However, this functional p53 knock down did not alter the resistance to cisplatin. In contrast to cisplatin, functional p53-knock-down increased the resistance of MSC to etoposide. We conclude that resistance of MSC to genotoxic damage is influenced by oxygen tension but is not generally dependent on p53. Thus, p53-dependent and p53-independent mechanisms of resistance are likely to contribute to the life-long functional activity of MSC in vivo. These findings indicate that hypoxia and different resistance pathways contribute to the phenotype that enables the prolonged lifespan of MSC. PMID:28081228

  10. Cell cycle arrest and apoptosis induced by aspidin PB through the p53/p21 and mitochondria-dependent pathways in human osteosarcoma cells.

    PubMed

    Wan, Daqian; Jiang, Chaoyin; Hua, Xin; Wang, Ting; Chai, Yimin

    2015-10-01

    Aspidin PB is a natural product extracted from Dryopteris fragrans (L.) Schott, which has been characterized for its various biological activities. We reported that aspidin PB induced cell cycle arrest and apoptosis through the p53/p21 and mitochondria-dependent pathways in human osteosarcoma cells. Aspidin PB inhibited the proliferation of Saos-2, U2OS, and HOS cells in a dose-dependent and time-dependent manner. Aspidin PB induced changes in the cell cycle regulators (cyclin A, pRb, CDK2, p53, and p21), which caused cell cycle arrest in the S phase. We also explored the role of siRNA targeted to p53; it led to a dose-dependent attenuation of aspidin PB-induced apoptosis signaling. Moreover, after treatment with aspidin PB, the p21-silenced cells decreased significantly at the S phase. Aspidin PB increased the percentage of cells with mitochondrial membrane potential disruption. Western blot analysis showed that aspidin PB inhibited Bcl-2 expression and induced Bax expression to disintegrate the outer mitochondrial membrane and caused cytochrome C release. Mitochondrial cytochrome C release was associated with the activation of caspase-9 and caspase-3 cascades. Furthermore, the double-stranded DNA breaks and reactive oxygen species signaling were both involved in aspidin PB-induced DNA damage. In addition, aspidin PB inhibited tumor growth significantly in U2OS xenografts. Above all, we conclude that aspidin PB represents a valuable natural source and may potentially be applicable in osteosarcoma therapy.

  11. Improvement in antiproliferative activity of Angelica gigas Nakai by solid dispersion formation via hot-melt extrusion and induction of cell cycle arrest and apoptosis in HeLa cells.

    PubMed

    Jiang, Yunyao; Piao, Jingpei; Cho, Hyun-Jong; Kang, Wie-Soo; Kim, Hye-Young

    2015-01-01

    Angelica gigas Nakai (AGN) is one of the most popular herbal medicines and widely used as a functional food product. In this study, AGN was firstly processed by a low-temperature turbo mill and a hot melting extruder to reduce particle size and form solid dispersion (SD). Anticancer activity against HeLa cells was then examined. AGN-SD based on Soluplus was formed via hot-melt extrusion (HME) and showed the strongest cytotoxic effect on HeLa cells. In addition, the possible mechanism of cell death induced by AGN-SD on HeLa cells was also investigated. AGN-SD decreased cell viability, induced apoptosis, increased the production of reactive oxygen species, regulated the expression of Bcl-2 and Bax, and induced G2/M phase arrest in HeLa cells. This study suggested that AGN-SD based on Soluplus and the method to improve antiproliferative effect by SD formation via HME may be suitable for application in the pharmaceutical industry.

  12. Molecular mechanisms underlying mangiferin-induced apoptosis and cell cycle arrest in A549 human lung carcinoma cells

    PubMed Central

    SHI, WEI; DENG, JIAGANG; TONG, RONGSHENG; YANG, YONG; HE, XIA; LV, JIANZHEN; WANG, HAILIAN; DENG, SHAOPING; QI, PING; ZHANG, DINGDING; WANG, YI

    2016-01-01

    Mangiferin, which is a C-glucosylxanthone (1,3,6,7-tetrahydroxyxanthone-C2-β-D-glucoside) purified from plant sources, has recently gained attention due to its various biological activities. The present study aimed to determine the apoptotic effects of mangiferin on A549 human lung adenocarcinoma cells. In vitro studies demonstrated that mangiferin exerted growth-inhibitory and apoptosis-inducing effects against A549 cells. In addition, mangiferin exhibited anti-tumor properties in A549 xenograft mice in vivo. Mangiferin triggered G2/M phase cell cycle arrest via down-regulating the cyclin-dependent kinase 1-cyclin B1 signaling pathway, and induced apoptotic cell death by inhibiting the protein kinase C-nuclear factor-κB pathway. In addition, mangiferin was able to enhance the antiproliferative effects of cisplatin on A549 cells, thus indicating the potential for a combined therapy. Notably, mangiferin exerted anticancer effects in vivo, where it was able to markedly decrease the volume and weight of subcutaneous tumor mass, and expand the lifespan of xenograft mice. The present study clarified the molecular mechanisms underlying mangiferin-induced antitumor activities, and suggested that mangiferin may be considered a potential antineoplastic drug for the future treatment of cancer. PMID:26935347

  13. p27kip1 stabilization is essential for the maintenance of cell cycle arrest in response to DNA damage

    PubMed Central

    Cuadrado, Myriam; Gutierrez-Martinez, Paula; Swat, Aneta; Nebreda, Angel R.; Fernandez-Capetillo, Oscar

    2013-01-01

    One of the current models of cancer proposes that oncogenes activate a DNA damage response (DDR), which would limit the growth of the tumor in its earliest stages. In this context, and in contrast to studies focused on the acute responses to a one-time genotoxic insult, understanding how cells respond to a persistent source of DNA damage might become critical for future studies in the field. We here report the discovery of a novel damage-responsive pathway, which involves p27kip1 and retinoblastoma tumour suppressors (TS), and which is only implemented after a persistent exposure to clastogens. In agreement with its late activation, we show that this pathway is critical for the maintenance –but not the initiation- of the cell cycle arrest triggered by DNA damage. Interestingly, this late response is independent of the canonical ATM- and ATR-dependent DDR, but downstream of p38 MAPK. Our results might help to reconcile the oncogene-induced DNA damage model with the clinical evidence that points to non-DDR members as the most important TSs in human cancer. PMID:19843869

  14. Vapor of Volatile Oils from Litsea cubeba Seed Induces Apoptosis and Causes Cell Cycle Arrest in Lung Cancer Cells

    PubMed Central

    Seal, Soma; Chatterjee, Priyajit; Bhattacharya, Sushmita; Pal, Durba; Dasgupta, Suman; Kundu, Rakesh; Mukherjee, Sandip; Bhattacharya, Shelley; Bhuyan, Mantu; Bhattacharyya, Pranab R.; Baishya, Gakul; Barua, Nabin C.; Baruah, Pranab K.; Rao, Paruchuri G.; Bhattacharya, Samir

    2012-01-01

    Non-small cell lung carcinoma (NSCLC) is a major killer in cancer related human death. Its therapeutic intervention requires superior efficient molecule(s) as it often becomes resistant to present chemotherapy options. Here we report that vapor of volatile oil compounds obtained from Litsea cubeba seeds killed human NSCLC cells, A549, through the induction of apoptosis and cell cycle arrest. Vapor generated from the combined oils (VCO) deactivated Akt, a key player in cancer cell survival and proliferation. Interestingly VCO dephosphorylated Akt at both Ser473 and Thr308; through the suppression of mTOR and pPDK1 respectively. As a consequence of this, diminished phosphorylation of Bad occurred along with the decreased Bcl-xL expression. This subsequently enhanced Bax levels permitting the release of mitochondrial cytochrome c into the cytosol which concomitantly activated caspase 9 and caspase 3 resulting apoptotic cell death. Impairment of Akt activation by VCO also deactivated Mdm2 that effected overexpression of p53 which in turn upregulated p21 expression. This causes enhanced p21 binding to cyclin D1 that halted G1 to S phase progression. Taken together, VCO produces two prong effects on lung cancer cells, it induces apoptosis and blocked cancer cell proliferation, both occurred due to the deactivation of Akt. In addition, it has another crucial advantage: VCO could be directly delivered to lung cancer tissue through inhalation. PMID:23091605

  15. Vapor of volatile oils from Litsea cubeba seed induces apoptosis and causes cell cycle arrest in lung cancer cells.

    PubMed

    Seal, Soma; Chatterjee, Priyajit; Bhattacharya, Sushmita; Pal, Durba; Dasgupta, Suman; Kundu, Rakesh; Mukherjee, Sandip; Bhattacharya, Shelley; Bhuyan, Mantu; Bhattacharyya, Pranab R; Baishya, Gakul; Barua, Nabin C; Baruah, Pranab K; Rao, Paruchuri G; Bhattacharya, Samir

    2012-01-01

    Non-small cell lung carcinoma (NSCLC) is a major killer in cancer related human death. Its therapeutic intervention requires superior efficient molecule(s) as it often becomes resistant to present chemotherapy options. Here we report that vapor of volatile oil compounds obtained from Litsea cubeba seeds killed human NSCLC cells, A549, through the induction of apoptosis and cell cycle arrest. Vapor generated from the combined oils (VCO) deactivated Akt, a key player in cancer cell survival and proliferation. Interestingly VCO dephosphorylated Akt at both Ser(473) and Thr(308); through the suppression of mTOR and pPDK1 respectively. As a consequence of this, diminished phosphorylation of Bad occurred along with the decreased Bcl-xL expression. This subsequently enhanced Bax levels permitting the release of mitochondrial cytochrome c into the cytosol which concomitantly activated caspase 9 and caspase 3 resulting apoptotic cell death. Impairment of Akt activation by VCO also deactivated Mdm2 that effected overexpression of p53 which in turn upregulated p21 expression. This causes enhanced p21 binding to cyclin D1 that halted G1 to S phase progression. Taken together, VCO produces two prong effects on lung cancer cells, it induces apoptosis and blocked cancer cell proliferation, both occurred due to the deactivation of Akt. In addition, it has another crucial advantage: VCO could be directly delivered to lung cancer tissue through inhalation.

  16. Lipopolysaccharide treatment arrests the cell cycle of BV-2 microglial cells in G₁ phase and protects them from UV light-induced apoptosis.

    PubMed

    Kaneko, Yoko S; Ota, Akira; Nakashima, Akira; Nagasaki, Hiroshi; Kodani, Yu; Mori, Keiji; Nagatsu, Toshiharu

    2015-02-01

    We previously reported that an optimal dose of lipopolysaccharide (LPS) markedly extends the lifespan of murine primary-cultured microglia by suppressing cell death pathways. In this study, we investigated the effects of LPS pretreatment on UV light-induced apoptosis of cells from the microglial cell line BV-2. More than half of BV-2 cells were apoptotic, and procaspase-3 was cleaved into its active form at 3 h of UV irradiation. In contrast, in BV-2 cells treated with LPS for 24 h, UV irradiation caused neither apoptosis nor procaspase-3 cleavage. LPS treatment arrested the cell cycle in G1 phase and upregulated cyclin-dependent kinase inhibitor p21(Waf1/Cip1) and growth arrest and DNA damage-inducible (GADD) 45α in BV-2 cells. When p21(Waf1/Cip1) and GADD45α were knocked down by small interfering RNA, procaspase-3 was cleaved into its active form to induce apoptosis. Our findings suggest that LPS inhibits UV-induced apoptosis in BV-2 cells through arrest of the cell cycle in G1 phase by upregulation of p21(Waf1/Cip1) and GADD45α. Excessive activation of microglia may play a critical role in the exacerbation of neurodegeneration, therefore, normalizing the precise regulation of apoptosis may be a new strategy to prevent the deterioration caused by neurodegenerative disorders.

  17. Induction of cell cycle arrest, DNA damage, and apoptosis by nimbolide in human renal cell carcinoma cells.

    PubMed

    Hsieh, Yi-Hsien; Lee, Chien-Hsing; Chen, Hsiao-Yun; Hsieh, Shu-Ching; Lin, Chia-Liang; Tsai, Jen-Pi

    2015-09-01

    Nimbolide is a tetranortriterpenoid isolated from the leaves and flowers of Azadirachta indica which has been shown to exhibit anticancer, antioxidant, anti-inflammatory, and anti-invasive properties in a variety of cancer cells. However, the anti-tumor effect on human renal cell carcinoma (RCC) cells is unknown. In this study, we found that nimbolide treatment had a cytotoxic effect on 786-O and A-498 RCC cells in a dose-dependent manner. According to flow cytometric analysis, nimbolide treatment resulted in G2/M arrest in 786-O and A-498 cells accompanied with an increase in the phosphorylation status of p53, cdc2, cdc25c, and decreased expressions of cyclin A, cyclin B, cdc2, and cdc25c. Nimbolide also caused DNA damage in a dose-dependent manner as determined by comet assay and measurement of γ-H2AX. In addition, apoptotic cells were observed in an Annexin V-FITC/propidium iodide double-stained assay. The activities of caspase-3, -9, and poly ADP-ribose polymerase (PARP) were increased, and the expression of pro-caspase-8 was decreased in nimbolide-treated 786-O and A-498 cells. Western blot analysis revealed that the levels of intrinsic-related apoptotic proteins Bax and extrinsic-related proteins (DR5, CHOP) were significantly increased in nimbolide-treated 786-O and A-498 cells. In addition, the expressions of Bcl-2 and Mcl-1 were decreased in 786-O and A-498 cells after nimbolide treatment. We conclude that nimbolide can inhibit the growth of human RCC cells by inducing G2/M phase arrest by modulating cell cycle-related proteins and cell apoptosis by regulating intrinsic and extrinsic caspase signaling pathways. Nimbolide may be a promising therapeutic strategy for the treatment of RCC.

  18. Strategic Cell-Cycle Regulatory Features That Provide Mammalian Cells with Tunable G1 Length and Reversible G1 Arrest

    PubMed Central

    Pfeuty, Benjamin

    2012-01-01

    Transitions between consecutive phases of the eukaryotic cell cycle are driven by the catalytic activity of selected sets of cyclin-dependent kinases (Cdks). Yet, their occurrence and precise timing is tightly scheduled by a variety of means including Cdk association with inhibitory/adaptor proteins (CKIs). Here we focus on the regulation of G1-phase duration by the end of which cells of multicelled organisms must decide whether to enter S phase or halt, and eventually then, differentiate, senesce or die to obey the homeostatic rules of their host. In mammalian cells, entry in and progression through G1 phase involve sequential phosphorylation and inactivation of the retinoblastoma Rb proteins, first, by cyclin D-Cdk4,6 with the help of CKIs of the Cip/Kip family and, next, by the cyclin E-Cdk2 complexes that are negatively regulated by Cip/Kip proteins. Using a dynamical modeling approach, we show that the very way how the Rb and Cip/Kip regulatory modules interact differentially with cyclin D-Cdk4,6 and cyclin E-Cdk2 provides to mammalian cells a powerful means to achieve an exquisitely-sensitive control of G1-phase duration and fully reversible G1 arrests. Consistently, corruption of either one of these two modules precludes G1 phase elongation and is able to convert G1 arrests from reversible to irreversible. This study unveils fundamental design principles of mammalian G1-phase regulation that are likely to confer to mammalian cells the ability to faithfully control the occurrence and timing of their division process in various conditions. PMID:22558136

  19. Cytotoxicity of atropine to human corneal epithelial cells by inducing cell cycle arrest and mitochondrion-dependent apoptosis.

    PubMed

    Tian, Cheng-Lei; Wen, Qian; Fan, Ting-Jun

    2015-10-01

    Atropine is an anticholinergic drug for mydriasis in eye clinic, and its abuse might be cytotoxic to the cornea and result in blurred vision. However, the cytotoxicity of atropine to the cornea and its cellular and molecular mechanisms remain unknown. In this study, we investigated the cytotoxicity of atropine to corneal epithelium and its underlying mechanisms using an in vitro model of non-transfected human corneal epithelial (HCEP) cells. Our results showed that atropine, above the concentration of 0.3125 g/l (1/32 of its therapeutic dosage in eye clinic), had a dose- and time-dependent toxicity to HCEP cells by inducing morphological abnormality, cytopathic effect, viability decline, and proliferation retardation. Moreover, the proliferation-retarding effect of atropine on the cells was achieved by inducing G1/S phase arrest and downregulation of E-cadherin and β-catenin. Besides, atropine also had an apoptosis-inducing effect on the cells by inducing phosphatidylserine externalization, plasma membrane permeability elevation, DNA fragmentation and apoptotic body formation. Furthermore, atropine could also induce activations of caspase-2, -3 and -9, disruption of mitochondrial transmembrane potential, downregulation of Bcl-2 and Bcl-xL, upregulation of Bax and Bad, and upregulation of cytoplasmic cytochrome c and apoptosis-inducing factor, implying a death receptor-mediated mitochondrion-dependent pathway is most probably involved in the apoptosis of HCEP cells induced by atropine. Taken together, our results suggest that atropine has remarkable cytotoxicity to HCEP cells by inducing cell cycle arrest and death receptor-mediated mitochondrion-dependent apoptosis.

  20. Scorpion (Androctonus bicolor) venom exhibits cytotoxicity and induces cell cycle arrest and apoptosis in breast and colorectal cancer cell lines

    PubMed Central

    Al-Asmari, Abdulrahman K.; Riyasdeen, Anvarbatcha; Abbasmanthiri, Rajamohamed; Arshaduddin, Mohammed; Al-Harthi, Fahad Ali

    2016-01-01

    Objectives: The defective apoptosis is believed to play a major role in the survival and proliferation of neoplastic cells. Hence, the induction of apoptosis in cancer cells is one of the targets for cancer treatment. Researchers are considering scorpion venom as a potent natural source for cancer treatment because it contains many bioactive compounds. The main objective of the current study is to evaluate the anticancer property of Androctonus bicolor scorpion venom on cancer cells. Materials and Methods: Scorpions were milked by electrical stimulation of telsons and lyophilized. The breast (MDA-MB-231) and colorectal (HCT-8) cancer cells were maintained in appropriate condition. The venom cytotoxicity was assessed by 3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay, and the cellular and nuclear changes were studied with propidium iodide and 4’,6-diamidino-2-phenylindole stain, respectively. The cell cycle arrest was examined using muse cell analyzer. Results: The A. bicolor venom exerted cytotoxic effects on MDA-MB-231 and HCT-8 cells in a dose- and duration-dependent manner and induced apoptotic cell death. The treatment with this venom arrests the cancer cells in G0/G1 phase of cell cycle. Conclusions: The venom selectively induces the rate of apoptosis in MDA-MB-231 and HCT-8 cells as reflected by morphological and cell cycle studies. To the best of our knowledge, this is the first scientific evidence demonstrating the induction of apoptosis and cell cycle arrest by A. bicolor scorpion venom. PMID:27721540

  1. Umbilical Cord Tissue-Derived Mesenchymal Stem Cells Induce T Lymphocyte Apoptosis and Cell Cycle Arrest by Expression of Indoleamine 2, 3-Dioxygenase

    PubMed Central

    Li, Xiuying; Xu, Zhuo; Bai, Jinping; Yang, Shuyuan; Zhao, Shuli; Zhang, Yingjie; Chen, Xiaodong

    2016-01-01

    It has been reported that human mesenchymal stem cells are able to inhibit T lymphocyte activation; however, the discrepancy among different sources of MSCs is not well documented. In this study, we have compared the MSCs from bone marrow (BM), adipose tissue (AT), placenta (PL), and umbilical cord (UC) to determine which one displayed the most efficient immunosuppressive effects on phytohemagglutinin-induced T cell proliferation. Among them we found that hUC-MSC has the strongest effects on inhibiting T cell proliferation and is chosen to do the further study. We observed that T lymphocyte spontaneously released abundant IFN-γ. And IFN-γ secreted by T lymphocyte could induce the expression of indoleamine 2, 3-dioxygenase (IDO) in hUC-MSCs. IDO was previously reported to induce T lymphocyte apoptosis and cell cycle arrest in S phase. When cocultured with hUC-MSCs, T lymphocyte expression of caspase 3 was significantly increased, while Bcl2 and CDK4 mRNA expression decreased dramatically. Addition of 1-methyl tryptophan (1-MT), an IDO inhibitor, restored T lymphocyte proliferation, reduced apoptosis, and induced resumption of the cell cycle. In addition, the changes in caspase 3, CDK4, and Bcl2 expression were reversed by 1-MT. These findings demonstrate that hUC-MSCs induce T lymphocyte apoptosis and cell cycle arrest by expressing abundant IDO and provide an explanation for some of the immunomodulatory effects of MSCs. PMID:27418932

  2. The neem limonoids azadirachtin and nimbolide induce cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells.

    PubMed

    Priyadarsini, R Vidya; Murugan, R Senthil; Sripriya, P; Karunagaran, D; Nagini, S

    2010-06-01

    Limonoids from the neem tree (Azadirachta indica) have attracted considerable research attention in recent years owing to their potent antioxidant and anti-proliferative effects. The present study was designed to investigate the cellular and molecular mechanisms by which azadirachtin and nimbolide exert cytotoxic effects in the human cervical cancer (HeLa) cell line. Both azadirachtin and nimbolide significantly suppressed the viability of HeLa cells in a dose-dependent manner by inducing cell cycle arrest at G0/G1 phase accompanied by p53-dependent p21 accumulation and down-regulation of the cell cycle regulatory proteins cyclin B, cyclin D1 and PCNA. Characteristic changes in nuclear morphology, presence of a subdiploid peak and annexin-V staining pointed to apoptosis as the mode of cell death. Increased generation of reactive oxygen species with decline in the mitochondrial transmembrane potential and release of cytochrome c confirmed that the neem limonoids transduced the apoptotic signal via the mitochondrial pathway. Altered expression of the Bcl-2 family of proteins, inhibition of NF-kappaB activation and over-expression of caspases and survivin provide compelling evidence that azadirachtin and nimbolide induce a shift of balance toward a pro-apoptotic phenotype. Antioxidants such as azadirachtin and nimbolide that can simultaneously arrest the cell cycle and target multiple molecules involved in mitochondrial apoptosis offer immense potential as anti-cancer therapeutic drugs.

  3. Achyranthes aspera Root Extracts Induce Human Colon Cancer Cell (COLO-205) Death by Triggering the Mitochondrial Apoptosis Pathway and S Phase Cell Cycle Arrest

    PubMed Central

    Arora, Shagun; Tandon, Simran

    2014-01-01

    Achyranthes aspera (AA) has been used traditionally for the cure of various disorders. However, the action of root extracts of AA as anticancer agent and its cellular mechanism remain unclear. The aim was to screen the antitumor effect of ethanolic (EAA) and aqueous (AAA) root extracts on the growth of colon cancer COLO-205 cells by testing their cytotoxicity, followed by their effect on clonogenicity, migration, and induction of apoptosis. Mechanisms leading to apoptosis and cell cycle arrest were also investigated by expression studies of caspase-9, caspase-3, Bax, Bcl-2, p16, p21, and p27 genes, followed by flow cytometric analysis for cell cycle distribution. Cytotoxicity screening of AA extracts indicated greater cytotoxic activity of AAA extract against COLO-205 cells. A series of events marked by apoptosis revealed loss of cell viability, chromatin condensation, and DNA fragmentation in AAA treated cells to a greater extent. The mRNA expression levels of caspase-9, caspase-3, Bax, p16, p21, and p27 were markedly increased in the AAA treated cells, along with decreased Bcl-2 expression. The cell cycle arrest at S phase was detected by flow cytometric analysis after treatment with AAA. Overall the study signifies the aqueous extracts as a promising therapeutic candidate against cancer. PMID:25401123

  4. Inhibition of NF-kappaB by combination therapy with parthenolide and hyperthermia and kinetics of apoptosis induction and cell cycle arrest in human lung adenocarcinoma cells.

    PubMed

    Hayashi, Sachiko; Sakurai, Hiroaki; Hayashi, Akio; Tanaka, Yukie; Hatashita, Masanori; Shioura, Hiroki

    2010-01-01

    We investigated the mechanisms of thermosensitization related to combination therapy with sesquiterpene lactone parthenolide (PTL), a nuclear factor-kappaB (NF-kappaB) inhibitor, and hyperthermia using human lung adenocarcinoma cells A549. The kinetics of apoptosis induction and cell cycle of cells treated with PTL, heating, and combined treatment were examined by flow cytometric analysis. The flow cytometric distribution was calculated and expressed as a percentage. The ratios of the sub-G1 division, used to determine the induction of apoptosis, increased significantly with the combination therapy. Furthermore, the ratios of G2/M division increased and the ratios of G0/G1 division decreased, indicating cell cycle arrest in G2/M. The cell phase response to PTL by A549 cells synchronized in the G1/S border with hydroxyurea was also analyzed. PTL showed remarkable cytotoxicity at the S phase of the cell cycle in A549 cells at all concentrations as well as with hyperthermia, thus PTL reduced the number of cells in the proliferation phase. Inhibition of intracellular transcription factor NF-kappaB activation in A549 cells with various incubation periods after treatments with PTL, heating and combined treatment was examined by Western blot analysis. Unexpectedly, PTL alone did not inhibit NF-kappaB activation in cells stimulated with TNF-alpha, while heating alone inhibited NF-kappaB early after treatment and that effect faded over time. In contrast, PTL combined with heating completely inhibited NF-kappaB activation. Our results demonstrated that PTL and heating in combination cause significant thermosensitization of A549 cells via induction of apoptosis or cell cycle arrest in G2/M by inhibiting NF-kappaB activation in a synergistic manner.

  5. R-Phycoerythrin Induces SGC-7901 Apoptosis by Arresting Cell Cycle at S Phase.

    PubMed

    Tan, Huixin; Gao, Shiyong; Zhuang, Yan; Dong, Yanhong; Guan, Wenhui; Zhang, Kun; Xu, Jian; Cui, Jingru

    2016-09-12

    R-Phycoerythrin (R-PE), one of the chemical constituents of red algae, could produce singlet oxygen upon excitation with the appropriate radiation and possibly be used in photodynamic therapy (PDT) for cancer. Documents reported that R-PE could inhibit cell proliferation in HepG2 and A549 cells, which was significative for cancer therapy. This is due to the fact that R-PE could kill cancer cells directly as well as by PDT. However, little is known about the cytotoxicity of R-PE to the SGC-7901 cell. In this study, it has been found that R-PE could inhibit SGC-7901 proliferation and induce cell apoptosis, which was achieved by arresting the SGC-7901 cell at S phase. CyclinA, CDK2 and CDC25A are proteins associated with the S phase, and it was found that R-PE could increase the expression of cyclin A protein and decrease the expression of CDK2 and CDC25A proteins. Thus, it was concluded that R-PE reduced the CDK2 protein activated through decreasing the CDC25A factor, which reduced the formation of Cyclin-CDK complex. The reduction of Cyclin-CDK complex made the SGC-7901 cells arrest at the S phase. Therefore, R-PE induced apoptosis by arresting the SGC-7901 cell at S phase was successful, which was achieved by the expression of the CDC25A protein, which reduced the CDK2 protein actived and the formation of Cyclin-CDK complex.

  6. R-Phycoerythrin Induces SGC-7901 Apoptosis by Arresting Cell Cycle at S Phase

    PubMed Central

    Tan, Huixin; Gao, Shiyong; Zhuang, Yan; Dong, Yanhong; Guan, Wenhui; Zhang, Kun; Xu, Jian; Cui, Jingru

    2016-01-01

    R-Phycoerythrin (R-PE), one of the chemical constituents of red algae, could produce singlet oxygen upon excitation with the appropriate radiation and possibly be used in photodynamic therapy (PDT) for cancer. Documents reported that R-PE could inhibit cell proliferation in HepG2 and A549 cells, which was significative for cancer therapy. This is due to the fact that R-PE could kill cancer cells directly as well as by PDT. However, little is known about the cytotoxicity of R-PE to the SGC-7901 cell. In this study, it has been found that R-PE could inhibit SGC-7901 proliferation and induce cell apoptosis, which was achieved by arresting the SGC-7901 cell at S phase. CyclinA, CDK2 and CDC25A are proteins associated with the S phase, and it was found that R-PE could increase the expression of cyclin A protein and decrease the expression of CDK2 and CDC25A proteins. Thus, it was concluded that R-PE reduced the CDK2 protein activated through decreasing the CDC25A factor, which reduced the formation of Cyclin-CDK complex. The reduction of Cyclin-CDK complex made the SGC-7901 cells arrest at the S phase. Therefore, R-PE induced apoptosis by arresting the SGC-7901 cell at S phase was successful, which was achieved by the expression of the CDC25A protein, which reduced the CDK2 protein actived and the formation of Cyclin-CDK complex. PMID:27626431

  7. Silencing of AP-4 inhibits proliferation, induces cell cycle arrest and promotes apoptosis in human lung cancer cells.

    PubMed

    Hu, Xuanyu; Guo, Wei; Chen, Shanshan; Xu, Yizhuo; Li, Ping; Wang, Huaqi; Chu, Heying; Li, Juan; DU, Yuwen; Chen, Xiaonan; Zhang, Guojun; Zhao, Guoqiang

    2016-06-01

    Activating enhancer-binding protein (AP)-4 is a member of the basic helix-loop-helix transcription factors, and is involved in tumor biology. However, the role of AP-4 in human lung cancer remains to be fully elucidated. In the present study, the expression of AP-4 in human lung cancer tissues and cells was investigated by reverse transcription-quantitative polymerase chain reaction, and it was observed that the level of AP-4 was increased in tumor tissues and cells compared with their normal counterparts. AP-4 expression was knocked down by transfection with a specific small interfering RNA (siRNA) in lung cancer cells, and this indicated that siRNA-mediated silencing of AP-4 inhibited cell proliferation, arrested the cell cycle at the G0/G1 phase and induced apoptosis by modulating the expression of p21 and cyclin D1. The results of the present study suggest that AP-4 may be an oncoprotein that has a significant role in lung cancer, and that siRNA-mediated silencing of AP-4 may have therapeutic potential as a strategy for the treatment of lung cancer.

  8. Phytometabolite Dehydroleucodine Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Human Astrocytoma Cells through p73/p53 Regulation

    PubMed Central

    Bailon-Moscoso, Natalia; González-Arévalo, Gabriela; Velásquez-Rojas, Gabriela; Malagon, Omar; Vidari, Giovanni; Zentella-Dehesa, Alejandro; Ratovitski, Edward A.; Ostrosky-Wegman, Patricia

    2015-01-01

    Accumulating evidence supports the idea that secondary metabolites obtained from medicinal plants (phytometabolites) may be important contributors in the development of new chemotherapeutic agents to reduce the occurrence or recurrence of cancer. Our study focused on Dehydroleucodine (DhL), a sesquiterpene found in the provinces of Loja and Zamora-Chinchipe. In this study, we showed that DhL displayed cytostatic and cytotoxic activities on the human cerebral astrocytoma D384 cell line. With lactone isolated from Gynoxys verrucosa Wedd, a medicinal plant from Ecuador, we found that DhL induced cell death in D384 cells by triggering cell cycle arrest and inducing apoptosis and DNA damage. We further found that the cell death resulted in the increased expression of CDKN1A and BAX proteins. A marked induction of the levels of total TP73 and phosphorylated TP53, TP73, and γ-H2AX proteins was observed in D384 cells exposed to DhL, but no increase in total TP53 levels was detected. Overall these studies demonstrated the marked effect of DhL on the diminished survival of human astrocytoma cells through the induced expression of TP73 and phosphorylation of TP73 and TP53, suggesting their key roles in the tumor cell response to DhL treatment. PMID:26309132

  9. Reverting p53 activation after recovery of cellular stress to resume with cell cycle progression.

    PubMed

    Lazo, Pedro A

    2017-05-01

    The activation of p53 in response to different types of cellular stress induces several protective reactions including cell cycle arrest, senescence or cell death. These protective effects are a consequence of the activation of p53 by specific phosphorylation performed by several kinases. The reversion of the cell cycle arrest, induced by p53, is a consequence of the phosphorylated and activated p53, which triggers its own downregulation and that of its positive regulators. The different down-regulatory processes have a sequential and temporal order of events. The mechanisms implicated in p53 down-regulation include phosphatases, deacetylases, and protein degradation by the proteasome or autophagy, which also affect different p53 protein targets and functions. The necessary first step is the dephosphorylation of p53 to make it available for interaction with mdm2 ubiquitin-ligase, which requires the activation of phosphatases targeting both p53 and p53-activating kinases. In addition, deacetylation of p53 is required to make lysine residues accessible to ubiquitin ligases. The combined action of these downregulatory mechanisms brings p53 protein back to its basal levels, and cell cycle progression can resume if cells have overcome the stress or damage situation. The specific targeting of these down-regulatory mechanisms can be exploited for therapeutic purposes in cancers harbouring wild-type p53.

  10. Growth inhibitory effect of KYKZL-1 on Hep G{sub 2} cells via inhibition of AA metabolites and caspase-3 pathway and cell cycle arrest

    SciTech Connect

    Cheng, Jing; Du, Yi-Fang; Xiao, Zhi-Yi; Pan, Li-Li; Li, Wei; Huan, Lin; Gong, Zhu-Nan; Wei, Shao-Hua; Huang, Shi-Qian; Xun, Wei; Zhang, Yi; Chang, Lei-Lei; Xie, Meng-Yu; Ao, Gui-Zhen; Cai, Jie; Qiu, Ting; Wu, Hao; Sun, Ting; Xu, Guang-Lin

    2014-01-01

    KYKZL-1, a newly synthesized compound with COX/5-LOX dual inhibition, was subjected to the inhibitory activity test on Hep G{sub 2} growth. We found that KYKZL-1 inhibited the growth of Hep G{sub 2} cells via inducing apoptosis. Further studies showed that KYKZL-1 activated caspase-3 through cytochrome c release from mitochondria and down regulation of Bcl-2/Bax ratio and reduced the high level of COX-2 and 5-LOX. As shown in its anti-inflammatory effect, KYKZL-1 also exhibited inhibitory effect on the PGE{sub 2} and LTB{sub 4} production in Hep G{sub 2} cells. Accordingly, exogenous addition of PGE{sub 2} or LTB{sub 4} reversed the decreases in cell viability. In addition, KYKZL-1 caused cell cycle arrest at the S–G{sub 2} checkpoint via the activation of p21{sup CIP1} protein and down-regulation of cyclin A expression. These data indicate that the growth inhibitory effect of KYKZL-1 is associated with inhibition of AA metabolites and caspase-3 pathway and cell cycle arrest. Combined with our previous findings, KYKZL-1 exhibiting COX/5-LOX inhibition may be a promising potential agent not only for inflammation control but also for cancer prevention/therapy with an enhanced gastric safety profile. - Highlights: • KYKZL-1 is designed to exhibit COX/5-LOX dual inhibition. • KYKZL-1 resulted in apoptosis of Hep G{sub 2} cells. • KYKZL-1 activated caspase-3 through cytochrome c and bcl-2/bax ratio. • KYKZL-1 caused cell cycle arrest via modulation of p21{sup CIP1} and cyclin A level.

  11. Bone marrow mesenchymal stromal cells affect the cell cycle arrest effect of genotoxic agents on acute lymphocytic leukemia cells via p21 down-regulation.

    PubMed

    Zhang, Yiran; Hu, Kaimin; Hu, Yongxian; Liu, Lizhen; Wang, Binsheng; Huang, He

    2014-09-01

    The effect of bone marrow microenvironment on the cell cycle of acute lymphocytic leukemia (ALL) and the underlying mechanism has not been elucidated. In this study, we found that in normal condition, bone marrow mesenchymal stromal cells (BM-MSCs) had no significant effect on the cell cycle and apoptosis of ALL; in the condition when the cell cycle of ALL was blocked by genotoxic agents, BM-MSCs could increase the S-phase cell ratio and decrease the G2/M phase ratio of ALL. Besides, BM-MSCs could protect ALL cells from drug-induced apoptosis. Then, we proved that BM-MSCs affect the cell cycle arrest effect of genotoxic agents on ALL cells via p21 down-regulation. Moreover, our results indicated that activation of Wnt/β-catenin and Erk pathways might be involved in the BM-MSC-induced down-regulation of p21 in ALL cells. Targeting microenvironment-related signaling pathway may therefore be a potential novel approach for ALL therapy.

  12. Honokiol, a chemopreventive agent against skin cancer, induces cell cycle arrest and apoptosis in human epidermoid A431 cells.

    PubMed

    Chilampalli, Chandeshwari; Guillermo, Ruth; Kaushik, Radhey S; Young, Alan; Chandrasekher, Gudiseva; Fahmy, Hesham; Dwivedi, Chandradhar

    2011-11-01

    Honokiol is a plant lignan isolated from bark and seed cones of Magnolia officinalis. Recent studies from our laboratory indicated that honokiol pretreatment decreased ultraviolet B-induced skin cancer development in SKH-1 mice. The aim of the present investigation was to study the effects of honokiol on human epidermoid squamous carcinoma A431 cells and to elucidate possible mechanisms involved in preventing skin cancer. A431 cells were pretreated with different concentrations of honokiol for a specific time period and investigated for effects on apoptosis and cell cycle analysis. Treatment with honokiol significantly decreased cell viability and cell proliferation in a concentration- and time-dependent manner. Honokiol pretreatment at 50 μmol/L concentration induced G0/G1 cell cycle arrest significantly (P < 0.05) and decreased the percentage of cells in the S and G2/M phase. Honokiol down-regulated the expression of cyclin D1, cyclin D2, Cdk2, Cdk4 and Cdk6 proteins and up-regulated the expression of Cdk's inhibitor proteins p21 and p27. Pretreatment of A431 cells with honokiol leads to induction of apoptosis and DNA fragmentation. These findings indicate that honokiol provides its effects in squamous carcinoma cells by inducing cell cycle arrest at G0/G1 phase and apoptosis.

  13. Gatifloxacin induces S and G2-phase cell cycle arrest in pancreatic cancer cells via p21/p27/p53.

    PubMed

    Yadav, Vikas; Sultana, Sarwat; Yadav, Jyoti; Saini, Neeru

    2012-01-01

    Pancreatic cancer, despite being the most dreadful among gastrointestinal cancers, is poorly diagnosed, and further, the situation has been aggravated owing to acquired drug resistance against the single known drug therapy. While previous studies have highlighted the growth inhibitory effects of older generation fluoroquinolones, the current study aims to evaluate the growth inhibitory effects of newer generation fluoroquinolone, Gatifloxacin, on pancreatic cancer cell lines MIA PaCa-2 and Panc-1 as well as to elucidate the underlying molecular mechanisms. Herein, we report that Gatifloxacin suppresses the proliferation of MIA PaCa-2 and Panc-1 cells by causing S and G(2)-phase cell cycle arrest without induction of apoptosis. Blockade in S-phase of the cell cycle was associated with increased TGF-β1 expression and translocation of Smad3-4 complex to the nucleus with subsequent activation of p21 in MIA PaCa-2 cells, whereas TGF-β signalling attenuated Panc-1 cells showed S-phase arrest by direct activation of p27. However, Gatifloxacin mediated G(2)-phase cell cycle arrest was found to be p53 dependent in both the cell lines. Our study is of interest because fluoroquinolones have the ability to penetrate pancreatic tissue which can be very effective in combating pancreatic cancers that are usually associated with loss or downregulation of CDK inhibitors p21/p27 as well as mutational inactivation of p53. Additionally, Gatifloxacin was also found to synergize the effect of Gemcitabine, the only known drug against pancreatic cancer, as well as the broad spectrum anticancer drug cisplatin. Taken together our results suggest that Gatifloxacin possesses anticancer activities against pancreatic cancer and is a promising candidate to be repositioned from broad spectrum antibiotics to anticancer agent.

  14. Citric acid induces cell-cycle arrest and apoptosis of human immortalized keratinocyte cell line (HaCaT) via caspase- and mitochondrial-dependent signaling pathways.

    PubMed

    Ying, Tsung-Ho; Chen, Chia-Wei; Hsiao, Yu-Ping; Hung, Sung-Jen; Chung, Jing-Gung; Yang, Jen-Hung

    2013-10-01

    Citric acid is an alpha-hydroxyacid (AHA) widely used in cosmetic dermatology and skincare products. However, there is concern regarding its safety for the skin. In this study, we investigated the cytotoxic effects of citric acid on the human keratinocyte cell line HaCaT. HaCaT cells were treated with citric acid at 2.5-12.5 mM for different time periods. Cell-cycle arrest and apoptosis were investigated by 4,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining, flow cytometry, western blot and confocal microscopy. Citric acid not only inhibited proliferation of HaCaT cells in a dose-dependent manner, but also induced apoptosis and cell cycle-arrest at the G2/M phase (before 24 h) and S phase (after 24 h). Citric acid increased the level of Bcl-2-associated X protein (BAX) and reduced the levels of B-cell lymphoma-2 (BCL-2), B-cell lymphoma-extra large (BCL-XL) and activated caspase-9 and caspase-3, which subsequently induced apoptosis via caspase-dependent and caspase-independent pathways. Citric acid also activated death receptors and increased the levels of caspase-8, activated BH3 interacting-domain death agonist (BID) protein, Apoptosis-inducing factor (AIF), and Endonuclease G (EndoG). Therefore, citric acid induces apoptosis through the mitochondrial pathway in the human keratinocyte cell line HaCaT. The study results suggest that citric acid is cytotoxic to HaCaT cells via induction of apoptosis and cell-cycle arrest in vitro.

  15. High fat diet triggers cell cycle arrest and excessive apoptosis of granulosa cells during the follicular development.

    PubMed

    Wu, Yanqing; Zhang, Zhenghong; Liao, Xinghui; Wang, Zhengchao

    2015-10-23

    The regulatory mechanism of granulosa cells (GCs) proliferation during the follicular development is complicated and multifactorial, which is essential for the oocyte growth and normal ovarian functions. To investigate the role of high fat diet (HFD) on the proliferation of GCs, 4-week old female mice were fed with HFD or normal control diet (NC) for 15 weeks or 20 weeks and then detected the expression level of some regulatory molecules of cell cycle and apoptosis. The abnormal ovarian morphology was observed at 20 weeks. Further mechanistic studies indicated that HFD induced-obesity caused elevated apoptotic levels in GCs of the ovaries in a time-dependent manner. Moreover, cell cycle progress was also impacted after HFD fed. The cell cycle inhibitors, p27(Kip1) and p21(Cip1), were significantly induced in the ovaries from the mice in HFD group when compared with that in the ovaries from the mice in NC group. Subsequently, the expression levels of Cyclin D1, D3 and CDK4 were also significantly influenced in the ovaries from the mice fed with HFD in a time-dependent manner. The present results suggested that HFD induced-obesity may trigger cell cycle arrest and excessive apoptosis of GCs, causing the abnormal follicular development and ovarian function failure.

  16. Induction of G1 Cell Cycle Arrest in Human Glioma Cells by Salinomycin Through Triggering ROS-Mediated DNA Damage In Vitro and In Vivo.

    PubMed

    Zhao, Shi-Jun; Wang, Xian-Jun; Wu, Qing-Jian; Liu, Chao; Li, Da-Wei; Fu, Xiao-Ting; Zhang, Hui-Fang; Shao, Lu-Rong; Sun, Jing-Yi; Sun, Bao-Liang; Zhai, Jing; Fan, Cun-Dong

    2016-12-19

    Chemotherapy has always been one of the most effective ways in combating human glioma. However, the high metastatic potential and resistance toward standard chemotherapy severely hindered the chemotherapy outcomes. Hence, searching effective chemotherapy drugs and clarifying its mechanism are of great significance. Salinomycin an antibiotic shows novel anticancer potential against several human tumors, including human glioma, but its mechanism against human glioma cells has not been fully elucidated. In the present study, we demonstrated that salinomycin treatment time- and dose-dependently inhibited U251 and U87 cells growth. Mechanically, salinomycin-induced cell growth inhibition against human glioma was mainly achieved by induction of G1-phase arrest via triggering reactive oxide species (ROS)-mediated DNA damage, as convinced by the activation of histone, p53, p21 and p27. Furthermore, inhibition of ROS accumulation effectively attenuated salinomycin-induced DNA damage and G1 cell cycle arrest, and eventually reversed salinomycin-induced cytotoxicity. Importantly, salinomycin treatment also significantly inhibited the U251 tumor xenograft growth in vivo through triggering DNA damage-mediated cell cycle arrest with involvement of inhibiting cell proliferation and angiogenesis. The results above validated the potential of salinomycin-based chemotherapy against human glioma.

  17. Induction of G2/M phase cell cycle arrest and apoptosis by ginsenoside Rf in human osteosarcoma MG‑63 cells through the mitochondrial pathway.

    PubMed

    Shangguan, Wen-Ji; Li, He; Zhang, Yue-Hui

    2014-01-01

    Ginsenosides, extracted from the traditional Chinese herb ginseng, are a series of novel natural anticancer products known for their favorable safety and efficacy profiles. The present study aimed to investigate the cytotoxicity of ginsenoside Rf to human osteosarcoma cells and to explore the anticancer molecular mechanisms of ginsenoside Rf. Five human osteosarcoma cell lines (MG-63, OS732, U-2OS, HOS and SAOS-2) were employed to investigate the cytotoxicity of ginsenoside Rf by MTT and colony forming assays. After treatment with ginsenoside Rf, MG-63 cells which were the most sensitive to ginsenoside Rf, were subjected to flow cytometry to detect cell cycle distribution and apoptosis, and nuclear morphological changes were visualized by Hoechst 33258 staining. Caspase-3, -8 and -9 activities were also evaluated. The expression of cell cycle markers including cyclin B1 and Cdk1 was detected by RT-PCR and western blotting. The expression of apoptotic genes Bcl-2 and Bax and the release of cytochrome c were also examined by western blotting. Change in the mitochondrial membrane potential was observed by JC-1 staining in situ. Our results demonstrated that the cytotoxicity of ginsenoside Rf to these human osteosarcoma cell lines was dose-dependent, and the MG-63 cells were the most sensitive to exposure to ginsenoside Rf. Additionally, ginsenoside Rf induced G2/M phase cell cycle arrest and apoptosis in MG-63 cells. Furthermore, we observed upregulation of Bax and downregulation of Bcl-2, Cdk1 and cyclin B1, the activation of caspase-3 and -9 and the release of cytochrome c in MG-63 cells following treatment with ginsenoside Rf. Our findings demonstrated that ginsenoside Rf induces G2/M phase cell cycle arrest and apoptosis in human osteosarcoma MG-63 cells through the mitochondrial pathway, suggesting that ginsenoside Rf, as an effective natural product, may have a therapeutic effect on human osteosarcoma.

  18. Involvement of p53 in cell death following cell cycle arrest and mitotic catastrophe induced by rotenone.

    PubMed

    Gonçalves, António Pedro; Máximo, Valdemar; Lima, Jorge; Singh, Keshav K; Soares, Paula; Videira, Arnaldo

    2011-03-01

    In order to investigate the cell death-inducing effects of rotenone, a plant extract commonly used as a mitochondrial complex I inhibitor, we studied cancer cell lines with different genetic backgrounds. Rotenone inhibits cell growth through the induction of cell death and cell cycle arrest, associated with the development of mitotic catastrophe. The cell death inducer staurosporine potentiates the inhibition of cell growth by rotenone in a dose-dependent synergistic manner. The tumor suppressor p53 is involved in rotenone-induced cell death, since the drug treatment results in increased expression, phosphorylation and nuclear localization of the protein. The evaluation of the effects of rotenone on a p53-deficient cell line revealed that although not required for the promotion of mitotic catastrophe, functional p53 appears to be essential for the extensive cell death that occurs afterwards. Our results suggest that mitotic slippage also occurs subsequently to the rotenone-induced mitotic arrest and cells treated with the drug for a longer period become senescent. Treatment of mtDNA-depleted cells with rotenone induces cell death and cell cycle arrest as in cells containing wild-type mtDNA, but not formation of reactive oxygen species. This suggests that the effects of rotenone are not dependent from the production of reactive oxygen species. This work highlights the multiple effects of rotenone in cancer cells related to its action as an anti-mitotic drug.

  19. Low Doses of Cisplatin Induce Gene Alterations, Cell Cycle Arrest, and Apoptosis in Human Promyelocytic Leukemia Cells

    PubMed Central

    Velma, Venkatramreddy; Dasari, Shaloam R.; Tchounwou, Paul B.

    2016-01-01

    Cisplatin is a known antitumor drug, but its mechanisms of action are not fully elucidated. In this research, we studied the anticancer potential of cisplatin at doses of 1, 2, or 3 µM using HL-60 cells as a test model. We investigated cisplatin effects at the molecular level using RNA sequencing, cell cycle analysis, and apoptotic assay after 24, 48, 72, and 96 hours of treatment. The results show that many genes responsible for molecular and cellular functions were significantly altered. Cisplatin treatment also caused the cells to be arrested at the DNA synthesis phase, and as the time increases, the cells gradually accumulated at the sub-G1 phase. Also, as the dose increases, a significant number of cells entered into the apoptotic and necrotic stages. Altogether, the data show that low doses of cisplatin significantly impact the viability of HL-60 cells, through modulation of gene expression, cell cycle, and apoptosis. PMID:27594783

  20. Carboxylation of multiwalled carbon nanotube attenuated the cytotoxicity by limiting the oxidative stress initiated cell membrane integrity damage, cell cycle arrestment, and death receptor mediated apoptotic pathway.

    PubMed

    Liu, Zhenbao; Liu, Yanfei; Peng, Dongming

    2015-08-01

    In this study, the effects of carboxylated multiwalled carbon nanotubes (MWCNTs-COOH) on human normal liver cell line L02 was compared with that of pristine multiwalled carbon nanotubes (p-MWCNTs). It was shown that compared with MWCNTs-COOH, p-MWCNTs induced apoptosis, reduced the level of intracellular antioxidant glutathione more significantly, and caused severer cell membrane damage as demonstrated by lactate dehydrogenase leakage. Cell cycles were arrested by both MWCNTs, while p-MWCNTs induced higher ratio of G0/G1 phase arrestment as compared with MWCNTs-COOH. Caspase-8 was also activated after both MWCNTs exposure, indicating extrinsic apoptotic pathway was involved in the apoptosis induced by MWCNTs exposure, more importantly, MWCNTs-COOH significantly reduced the activation of caspase-8 as compared with p-MWCNTs. All these results suggested that MWCNTs-COOH might be safer for in vivo application as compared with p-MWCNTs.

  1. 2'-Nitroflavone induces cell cycle arrest and apoptosis in HeLa human cervical carcinoma cells.

    PubMed

    Cárdenas, Mariano G; Blank, Viviana C; Marder, Mariel; Roguin, Leonor P

    2008-09-08

    The mechanism of antitumor action of a synthetic nitroflavone derivative, 2'-nitroflavone, was evaluated in vitro in HeLa human cervix adenocarcinoma cells. We showed that the nitroflavone derivative slowed down the cell cycle at the S phase and increase the population of cells at the G2/M phase after 24h of incubation. The treatment with 2'-nitroflavone also induced an apoptotic response, characterized by an increase of the sub-G1 fraction of cells, by cells with chromatin condensation and membrane blebbing, by a typical ladder of DNA fragmentation and by detection of apoptotic cells stained with Annexin V. The observed apoptosis was regulated by caspase-8 and -9, both contributing to the activation of the effector caspase-3. In addition, inhibitors of caspase-8 or -9 partially protected HeLa cells from 2'-nitroflavone-induced cell death. We also found that 2'-nitroflavone did not affect the total amount of Bax and Bcl-2 proteins, although a translocation of Bax from cytosol to mitochondria was evident after 6h of exposure. Furthermore, 2'-nitroflavone decreased the expression of the anti-apoptotic Bcl-XL protein, induced the release of cytochrome C to cytosol and increased the levels of Fas and Fas-L. Our results indicated that both death receptor and mitochondria-dependent pathways are involved in the apoptotic cell death triggered by 2'-nitroflavone and suggest that this derivative could be a potentially useful agent for the treatment of certain malignancies.

  2. Cytoskeleton disorder and cell cycle arrest may be associated with the alteration of protein CEP135 by microgravity

    NASA Astrophysics Data System (ADS)

    Hang, Xiaoming; Sun, Yeqing; Wu, Di; Li, Yixiao; Liu, Zhiyuan

    In the past decades, alterations in the morphology, cytoskeleton and cell cycle have been observed in cells in vitro under microgravity conditions. But the underlying mechanisms are not absolutely identified yet. Our previous study on proteomic and microRNA expression profiles of zebrafish embryos exposed to simulated-microgravity has demonstrated a serial of microgravity-sensitive molecules. Centrosomal protein of 135 kDa (CEP135) was found down-regulated, but the mRNA expression level of it was up-regulated in zebrafish embryos after simulated-microgravity. However, the functional study on CEP135 is very limited and it has not been cloned in zebrafish till now. In this study, we try to determine whether the cytoskeleton disorder and cell cycle arrest is associated with the alteration of CEP135 by microgravity. Full-length cDNA of cep135 gene was firstly cloned from mitosis phase of ZF4. The sequence was analyzed and the phylogenetic tree was constructed based on the similarity to other species. Zebrafish embryonic cell line ZF4 were exposed to simulated microgravity for 24 and 48 hours, using a rotary cell culture system (RCCS) designed by NASA. Quantitative analysis by western blot showed that CEP135 expression level was significantly decreased two times after 24 hour simulated microgravity. Cell cycle detection by flow cytometer indicated ZF4 cells were blocked in G1 phase after 24 and 48 hour simulated microgravity. Moreover, double immunostained ZF4 cells with anti-tubulin and anti-CEP135antibodies demonstrated simulated microgravity could lead to cytoskeleton disorder and CEP135 abnormality. Further investigations are currently being carried out to determine whether knockdown and over-expression of CEP135 will modulate cytoskeleton and cell cycle. In vitro data in combination within vivo results might, at least in part, explain the dramatic effects of microgravity. Key Words: microgravity; CEP135; Cytoskeleton disorder; G1 arrest; ZF4 cell line

  3. A novel curcumin derivative which inhibits P-glycoprotein, arrests cell cycle and induces apoptosis in multidrug resistance cells.

    PubMed

    Lopes-Rodrigues, Vanessa; Oliveira, Ana; Correia-da-Silva, Marta; Pinto, Madalena; Lima, Raquel T; Sousa, Emília; Vasconcelos, M Helena

    2017-01-15

    Cancer multidrug resistance (MDR) is a major limitation to the success of cancer treatment and is highly associated with the overexpression of drug efflux pumps such as P-glycoprotein (P-gp). In order to achieve more effective chemotherapeutic treatments, it is important to develop P-gp inhibitors to block/decrease its activity. Curcumin (1) is a secondary metabolite isolated from the turmeric of Curcuma longa L.. Diverse biological activities have been identified for this compound, particularly, MDR modulation in various cancer cell models. However, curcumin (1) has low chemical stability, which severely limits its application. In order to improve stability and P-gp inhibitory effect, two potential more stable curcumin derivatives were synthesized as building blocks, followed by several curcumin derivatives. These compounds were then analyzed in terms of antitumor and anti-P-gp activity, in two MDR and sensitive tumor lines (from chronic myeloid leukemia and non-small cell lung cancer). We identified from a series of curcumin derivatives a novel curcumin derivative (1,7-bis(3-methoxy-4-(prop-2-yn-1-yloxy)phenyl)hepta-1,6-diene-3,5-dione, 10) with more potent antitumor and anti-P-gp activity than curcumin (1). This compound (10) was shown to promote cell cycle arrest (at the G2/M phase) and induce apoptosis in the MDR chronic myeloid leukemia cell line. Therefore it is a really interesting P-gp inhibitor due to its ability to inhibit both P-gp function and expression.

  4. Cinnamomum cassia essential oil and its major constituent cinnamaldehyde induced cell cycle arrest and apoptosis in human oral squamous cell carcinoma HSC-3 cells.

    PubMed

    Chang, Wen-Lun; Cheng, Fu-Chou; Wang, Shu-Ping; Chou, Su-Tze; Shih, Ying

    2017-02-01

    Cinnamomum cassia essential oil (CC-EO) has various functional properties, such as anti-microbial, hypouricemic, anti-tyrosinase and anti-melanogenesis activities. The present study aimed to evaluate the anti-cancer activities of CC-EO and its major constituent, cinnamaldehyde, in human oral squamous cell carcinoma HSC-3 cells. Determination of the cell viability, apoptotic characteristics, DNA damage, cell cycle analysis, reactive oxygen species (ROS) production, mitochondrial membrane potential, cytosolic Ca(2+) level and intracellular redox status were performed. Our results demonstrated that CC-EO and cinnamaldehyde significantly decreased cell viability and caused morphological changes. The cell cycle analysis revealed that CC-EO and cinnamaldehyde induced G2/M cell cycle arrest in HSC-3 cells. The apoptotic characteristics (DNA laddering and chromatin condensation) and DNA damage were observed in the CC-EO-treated and cinnamaldehyde-treated HSC-3 cells. Moreover, CC-EO and cinnamaldehyde promoted an increase in cytosolic Ca(2+) levels, induced mitochondrial dysfunction and activated cytochrome c release. The results of ROS production and intracellular redox status demonstrated that CC-EO and cinnamaldehyde significantly increased the ROS production and thiobarbituric acid reactive substance levels, and the cellular glutathione content and glutathione peroxidase activity were significantly reduced in HSC-3 cells. Our results suggest that CC-EO and cinnamaldehyde may possess anti-oral cancer activity in HSC-3 cells. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 456-468, 2017.

  5. Ligand modulation of a dinuclear platinum compound leads to mechanistic differences in cell cycle progression and arrest.

    PubMed

    Menon, Vijay R; Peterson, Erica J; Valerie, Kristoffer; Farrell, Nicholas P; Povirk, Lawrence F

    2013-12-15

    Despite similar structures and DNA binding profiles, two recently synthesized dinuclear platinum compounds are shown to elicit highly divergent effects on cell cycle progression. In colorectal HCT116 cells, BBR3610 shows a classical G2/M arrest with initial accumulation in S phase, but the derivative compound BBR3610-DACH, formed by introduction of the 1,2-diaminocyclohexane (DACH) as carrier ligand, results in severe G1/S as well as G2/M phase arrest, with nearly complete S phase depletion. The origin of this unique effect was studied. Cellular interstrand crosslinking as assayed by comet analysis was similar for both compounds, confirming previous in vitro results obtained on plasmid DNA. Immunoblotting revealed a stabilization of p53 and concomitant transient increases in p21 and p27 proteins after treatment with BBR3610-DACH. Cell viability assays and cytometric analysis of p53 and p21 null cells indicated that BBR3610-DACH-induced cell cycle arrest was p21-dependent and partially p53-dependent. However, an increase in the levels of cyclin E was observed with steady state levels of CDK2 and Cdc25A, suggesting that the G1 block occurs downstream of CDK/cyclin complex formation. The G2/M block was corroborated with decreased levels of cyclin A and cyclin B1. Surprisingly, BBR3610-DACH-induced G1 block was independent of ATM and ATR. Finally, both compounds induced apoptosis, with BBR3610-DACH showing a robust PARP-1 cleavage that was not associated with caspase-3/7 cleavage. In summary, BBR3610-DACH is a DNA binding platinum agent with unique inhibitory effects on cell cycle progression that could be further developed as a chemotherapeutic agent complementary to cisplatin and oxaliplatin.

  6. Demethylation and alterations in the expression level of the cell cycle-related genes as possible mechanisms in arsenic trioxide-induced cell cycle arrest in human breast cancer cells.

    PubMed

    Moghaddaskho, Farima; Eyvani, Haniyeh; Ghadami, Mohsen; Tavakkoly-Bazzaz, Javad; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir; Ghaffari, Seyed H

    2017-02-01

    Arsenic trioxide (As2O3) has been used clinically as an anti-tumor agent. Its mechanisms are mostly considered to be the induction of apoptosis and cell cycle arrest. However, the detailed molecular mechanisms of its anti-cancer action through cell cycle arrest are poorly known. Furthermore, As2O3 has been shown to be a potential DNA methylation inhibitor, inducing DNA hypomethylation. We hypothesize that As2O3 may affect the expression of cell cycle regulatory genes by interfering with DNA methylation patterns. To explore this, we examined promoter methylation status of 24 cell cycle genes in breast cancer cell lines and in a normal breast tissue sample by methylation-specific polymerase chain reaction and/or restriction enzyme-based methods. Gene expression level and cell cycle distribution were quantified by real-time polymerase chain reaction and flow cytometric analyses, respectively. Our methylation analysis indicates that only promoters of RBL1 (p107), RASSF1A, and cyclin D2 were aberrantly methylated in studied breast cancer cell lines. As2O3 induced CpG island demethylation in promoter regions of these genes and restores their expression correlated with DNA methyltransferase inhibition. As2O3 also induced alterations in messenger RNA expression of several cell cycle-related genes independent of demethylation. Flow cytometric analysis revealed that the cell cycle arrest induced by As2O3 varied depending on cell lines, MCF-7 at G1 phase and both MDA-MB-231 and MDA-MB-468 cells at G2/M phase. These changes at transcriptional level of the cell cycle genes by the molecular mechanisms dependent and independent of demethylation are likely to represent the mechanisms of cell cycle redistribution in breast cancer cells, in response to As2O3 treatment.

  7. 2-Methoxy-4-vinylphenol can induce cell cycle arrest by blocking the hyper-phosphorylation of retinoblastoma protein in benzo[a]pyrene-treated NIH3T3 cells

    SciTech Connect

    Jeong, Jin Boo; Jeong, Hyung Jin

    2010-10-01

    Research highlights: {yields} 2M4VP activated the expression of p21 and p15 protein, and down-regulated the expression of cyclin D1 and cyclin E. {yields} 2M4VP inhibited hyper-phosphorylation of Rb protein. {yields} 2M4VP induced cell cycle arrest from G1 to S. {yields} 2M4VP inhibited hyper-proliferation of the cells in BaP-treated cells. {yields} 2M4VP induces growth arrest of BaP-treated cells by blocking hyper-phosphorylation of Rb via regulating the expression of cell cycle-related proteins. -- Abstract: Benzo[a]pyrene (BaP) is an environment carcinogen that can enhance cell proliferation by disturbing the signal transduction pathways in cell cycle regulation. In this study, the effects of 2M4VP on cell proliferation, cell cycle and cell cycle regulatory proteins were studied in BaP-treated NIH 3T3 cells to establish the molecular mechanisms of 2M4VP as anti-proliferative agents. 2M4VP exerted a dose-dependent inhibitory effect on cell growth correlated with a G1 arrest. Analysis of G1 cell cycle regulators expression revealed 2M4VP increased expression of CDK inhibitor, p21Waf1/Cip1 and p15 INK4b, decreased expression of cyclin D1 and cyclin E, and inhibited kinase activities of CDK4 and CDK2. However, 2M4VP did not affect the expression of CDK4 and CDK2. Also, 2M4VP inhibited the hyper-phosphorylation of Rb induced by BaP. Our results suggest that 2M4VP induce growth arrest of BaP-treated NIH 3T3 cells by blocking the hyper-phosphorylation of Rb via regulating the expression of cell cycle-related proteins.

  8. Docosahexaenoic acid-induced unfolded protein response, cell cycle arrest, and apoptosis in vascular smooth muscle cells are triggered by Ca2+-dependent induction of oxidative stress

    PubMed Central

    Crnkovic, Slaven; Riederer, Monika; Lechleitner, Margarete; Hallström, Seth; Malli, Roland; Graier, Wolfgang F.; Lindenmann, Jörg; Popper, Helmut; Olschewski, Horst; Olschewski, Andrea; Frank, Saša

    2012-01-01

    Proliferation of vascular smooth muscle cells is a characteristic of pathological vascular remodeling and represents a significant therapeutic challenge in several cardiovascular diseases. Docosahexaenoic acid (DHA), a member of the n-3 polyunsaturated fatty acids, was shown to inhibit proliferation of numerous cell types, implicating several different mechanisms. In this study we examined the molecular events underlying the inhibitory effects of DHA on proliferation of primary human smooth muscle cells isolated from small pulmonary artery (hPASMCs). DHA concentration-dependently inhibited hPASMC proliferation, induced G1 cell cycle arrest, and decreased cyclin D1 protein expression. DHA activated the unfolded protein response (UPR), evidenced by increased mRNA expression of HSPA5, increased phosphorylation of eukaryotic initiation factor 2α, and splicing of X-box binding protein 1. DHA altered cellular lipid composition and led to increased reactive oxygen species (ROS) production. DHA-induced ROS were dependent on both intracellular Ca2+ release and entry of extracellular Ca2+. Overall cellular ROS and mitochondrial ROS were decreased by RU360, a specific inhibitor of mitochondrial Ca2+ uptake. DHA-induced mitochondrial dysfunction was evidenced by decreased mitochondrial membrane potential and decreased cellular ATP content. DHA triggered apoptosis as found by increased numbers of cleaved caspase-3- and TUNEL-positive cells. The free radical scavenger Tempol counteracted DHA-induced ROS, cell cycle arrest, induction of UPR, and apoptosis. We conclude that Ca2+-dependent oxidative stress is the central and initial event responsible for induction of UPR, cell cycle arrest, and apoptosis in DHA-treated hPASMCs. PMID:22391221

  9. Decitabine induces G2/M cell cycle arrest by suppressing p38/NF-κB signaling in human renal clear cell carcinoma

    PubMed Central

    Shang, Donghao; Han, Tiandong; Xu, Xiuhong; Liu, Yuting

    2015-01-01

    Objective: The anti-neoplastic effects of decitabine, an inhibitor of DNA promoter methylation, are beneficial for the treatment of renal cell carcinoma (RCC); however, the mechanism of action of decitabine is unclear. We analyzed gene expression profiling and identified specific pathways altered by decitabine in RCC cells. Methods: Four human RCC cell lines (ACHN, Caki-1, Caki-1, and A498) were used in this study; growth suppression of RCC cells by decitabine was analyzed using the WST-1 assay. Apoptosis and cell cycle arrest were examined using flow cytometric analysis. Gene expression of RCC cells induced by decitabine was evaluated with cDNA microarray, and potential biological pathways were selected using Ingenuity Pathway Analysis. The activity of the p38-NF-κB pathway regulated by decitabine was confirmed by Western blotting. Results: Decitabine suppresses the proliferation of RCC cells in vitro. Although decitabine did not significantly induce apoptosis, decitabine caused cell cycle arrest at G2/M in a dose-dependent manner. Gene expression regulated by decitabine in RCC cells was investigated using microarray analysis. Ubiquitin carboxyl terminal hydrolase 1 (UCHL1), interferon inducible protein 27 (IFI27), and cell division cycle-associated 2 (CDCA2) may be involved in growth suppression of RCC cells by decitabine. The phosphorylation of p38-NF-κB pathway was suppressed by decitabine in RCC cells. Conclusions: We investigated gene expression profiling and pathways modulated by decitabine in RCC cells. Decitabine was shown to suppress the growth of RCC cells via G2/M cell cycle arrest and the p38-NF-κB signaling pathway may play a role in the anti-neoplastic effect of decitabine in RCC cells. PMID:26617834

  10. Jellyfish extract induces apoptotic cell death through the p38 pathway and cell cycle arrest in chronic myelogenous leukemia K562 cells

    PubMed Central

    Kwak, Choong-Hwan; Abekura, Fukushi; Park, Jun-Young; Park, Nam Gyu; Chang, Young-Chae; Lee, Young-Choon; Chung, Tae-Wook; Ha, Ki-Tae; Son, Jong-Keun

    2017-01-01

    Jellyfish species are widely distributed in the world’s oceans, and their population is rapidly increasing. Jellyfish extracts have several biological functions, such as cytotoxic, anti-microbial, and antioxidant activities in cells and organisms. However, the anti-cancer effect of Jellyfish extract has not yet been examined. We used chronic myelogenous leukemia K562 cells to evaluate the mechanisms of anti-cancer activity of hexane extracts from Nomura’s jellyfish in vitro. In this study, jellyfish are subjected to hexane extraction, and the extract is shown to have an anticancer effect on chronic myelogenous leukemia K562 cells. Interestingly, the present results show that jellyfish hexane extract (Jellyfish-HE) induces apoptosis in a dose- and time-dependent manner. To identify the mechanism(s) underlying Jellyfish-HE-induced apoptosis in K562 cells, we examined the effects of Jellyfish-HE on activation of caspase and mitogen-activated protein kinases (MAPKs), which are responsible for cell cycle progression. Induction of apoptosis by Jellyfish-HE occurred through the activation of caspases-3,-8 and -9 and phosphorylation of p38. Jellyfish-HE-induced apoptosis was blocked by a caspase inhibitor, Z-VAD. Moreover, during apoptosis in K562 cells, p38 MAPK was inhibited by pretreatment with SB203580, an inhibitor of p38. SB203580 blocked jellyfish-HE-induced apoptosis. Additionally, Jellyfish-HE markedly arrests the cell cycle in the G0/G1 phase. Therefore, taken together, the results imply that the anti-cancer activity of Jellyfish-HE may be mediated apoptosis by induction of caspases and activation of MAPK, especially phosphorylation of p38, and cell cycle arrest at the Go/G1 phase in K562 cells. PMID:28133573

  11. Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis.

    PubMed

    Qi, Runzi; An, Huazhang; Yu, Yizhi; Zhang, Minghui; Liu, Shuxun; Xu, Hongmei; Guo, Zhenghong; Cheng, Tao; Cao, Xuetao

    2003-12-01

    Notch signaling plays a critical role in maintaining the balance between cell proliferation, differentiation, and apoptosis; hence, perturbed Notch signaling may contribute to tumorigenesis. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in Africa and Asia. The mechanisms that orchestrate the multiple oncogenic insults required for initiation and progression of HCC are not clear. We constitutively overexpressed active Notch1 in human HCC to explore the effects of Notch1 signaling on HCC cell growth and to investigate the underlying molecular mechanisms. We show here that overexpression of Notch1 was able to inhibit the growth of HCC cells in vitro and in vivo. Biochemical analysis revealed the involvement of cell cycle regulated proteins in Notch1-mediated G(0)/G(1) arrest of HCC cells. Compared with green fluorescent protein (GFP) control, transient transfection of Notch1 ICN decreased expression of cyclin A (3.5-fold), cyclin D1 (2-fold), cyclin E (4.5-fold), CDK2 (2.8-fold), and the phosphorylated form of retinoblastoma protein (3-fold). Up-regulation of p21(waf/cip1) protein expression was observed in SMMC7721-ICN cells stably expressing active Notch1 but not in SMMC7721-GFP cells, which only express GFP. Furthermore, a 12-fold increase in p53 expression and an increase (4.8-fold) in Jun-NH(2)-terminal kinase activation were induced in SMMC7721-ICN cells compared with SMMC7721-GFP cells. In contrast, expression of the antiapoptotic Bcl-2 protein could not be detected in SMMC7721-ICN cells. These findings suggest that Notch1 signaling may participate in the development of HCC cells, affecting multiple pathways that control both cell proliferation and apoptosis.

  12. Protein PSMD8 may mediate microgravity-induced cell cycle arrest

    NASA Astrophysics Data System (ADS)

    Hang, Xiaoming; Sun, Yeqing; Xu, Dan; Wu, Di; Chen, Xiaoning

    Microgravity environment of space can induce a serial of changes in cells, such as morphology alterations, cytoskeleton disorder and cell cycle disturbance. Our previous study of simulated-microgravity on zebrafish (Danio rerio) embryos demonstrated 26s proteasome non-ATPase regulatory subunit 8 (PSMD8) might be a microgravity sensitive gene. However, functional study on PSMD8 is very limited and it has not been cloned in zebrafish till now. In this study, we tried to clone PSMD8 gene in zebrafish, quantify its protein expression level in zebrafish embryos after simulated microgravity and identify its possible function in cell cycle regulation. A rotary cell culture system (RCCS) designed by national aeronautics and apace administration (NASA) of America was used to simulate microgravity. The full-length of psmd8 gene in zebrafish was cloned. Preliminary analysis on its sequence and phylogenetic tree construction were carried out subsequently. Quantitative analysis by western blot showed that PSMD8 protein expression levels were significantly increased 1.18 and 1.22 times after 24-48hpf and 24-72hpf simulated microgravity, respectively. Moreover, a significant delay on zebrafish embryo development was found in simulated-microgravity exposed group. Inhibition of PSMD8 protein in zebrafish embryonic cell lines ZF4 could block cell cycle in G1 phase, which indicated that PSMD8 may play a role in cell cycle regulation. Interestingly, simulated-microgravity could also block ZF4 cell in G1 phase. Whether it is PSMD8 mediated cell cycle regulation result in the zebrafish embryo development delay after simulated microgravity exposure still needs further study. Key Words: PSMD8; Simulated-microgravity; Cell cycle; ZF4 cell line

  13. Involvement of miR-15a in G0/G1 Phase Cell Cycle Arrest Induced by Porcine Circovirus Type 2 Replication

    PubMed Central

    Quan, Rong; Wei, Li; Zhu, Shanshan; Wang, Jing; Cao, Yongchang; Xue, Chunyi; Yan, Xu; Liu, Jue

    2016-01-01

    Many viruses exploit the host cell division cycle to favour their own growth. Here we demonstrated that porcine circovirus type 2 (PCV2), which is a major causative agent of an emerging and important swine disease complex, PCV2-associated diseases, caused G0/G1 cell cycle arrest through degradation of cyclin D1 and E followed by reduction of retinoblastoma phosphorylation in synchronized PCV2-infected cells dependent upon virus replication. This induction of G0/G1 cell cycle arrest promoted PCV2 replication as evidenced by increased viral protein expression and progeny virus production in the synchronized PCV2-infected cells. To delineate a mechanism of miRNAs in regulating PCV2-induced G0/G1 cell cycle arrest, we determined expression levels of some relevant miRNAs and found that only miR-15a but not miR-16, miR-21, and miR-34a was significantly changed in the PCV2-infected cells. We further demonstrated that upregulation of miR-15a promoted PCV2-induced G0/G1 cell cycle arrest via mediating cyclins D1 and E degradation, in which involves PCV2 growth. These results reveal that G0/G1 cell cycle arrest induced by PCV2 may provide favourable conditions for viral protein expression and progeny production and that miR-15a is implicated in PCV2-induced cell cycle control, thereby contributing to efficient viral replication. PMID:27302568

  14. Transcriptional profiling of breast cancer cells in response to mevinolin: Evidence of cell cycle arrest, DNA degradation and apoptosis

    PubMed Central

    MAHMOUD, ALI M.; ABOUL-SOUD, MOURAD A.M.; HAN, JUNKYU; AL-SHEIKH, YAZEED A.; AL-ABD, AHMED M.; EL-SHEMY, HANY A.

    2016-01-01

    The merging of high-throughput gene expression techniques, such as microarray, in the screening of natural products as anticancer agents, is considered the optimal solution for gaining a better understanding of the intervention mechanism. Red yeast rice (RYR), a Chinese dietary product, contains a mixture of hypocholesterolemia agents such as statins. Typically, statins have this effect via the inhibition of HMG-CoA reductase, the key enzyme in the biosynthesis of cholesterol. Recently, statins have been shown to exhibit various beneficial antineoplastic properties through the disruption of tumor angiogenesis and metastatic processes. Mevinolin (MVN) is a member of statins and is abundantly present in RYR. Early experimental trials suggested that the mixed apoptotic/necrotic cell death pathway is activated in response to MVN exposure. In the current study, the cytotoxic profile of MVN was evaluated against MCF-7, a breast cancer-derived cell line. The obtained results indicated that MVN-induced cytotoxicity is multi-factorial involving several regulatory pathways in the cytotoxic effects of MVN on breast cancer cell lines. In addition, MVN-induced transcript abundance profiles inferred from microarrays showed significant changes in some key cell processes. The changes were predicted to induce cell cycle arrest and reactive oxygen species generation but inhibit DNA repair and cell proliferation. This MVN-mediated multi-factorial stress triggered specific programmed cell death (apoptosis) and DNA degradation responses in breast cancer cells. Taken together, the observed MVN-induced effects underscore the potential of this ubiquitous natural compound as a selective anticancer activity, with broad safety margins and low cost compared to benchmarked traditional synthetic chemotherapeutic agents. Additionally, the data support further pre-clinical and clinical evaluations of MVN as a novel strategy to combat breast cancer and overcome drug resistance. PMID:26983896

  15. Transcriptional profiling of breast cancer cells in response to mevinolin: Evidence of cell cycle arrest, DNA degradation and apoptosis.

    PubMed

    Mahmoud, Ali M; Aboul-Soud, Mourad A M; Han, Junkyu; Al-Sheikh, Yazeed A; Al-Abd, Ahmed M; El-Shemy, Hany A

    2016-05-01

    The merging of high-throughput gene expression techniques, such as microarray, in the screening of natural products as anticancer agents, is considered the optimal solution for gaining a better understanding of the intervention mechanism. Red yeast rice (RYR), a Chinese dietary product, contains a mixture of hypocholesterolemia agents such as statins. Typically, statins have this effect via the inhibition of HMG‑CoA reductase, the key enzyme in the biosynthesis of cholesterol. Recently, statins have been shown to exhibit various beneficial antineoplastic properties through the disruption of tumor angiogenesis and metastatic processes. Mevinolin (MVN) is a member of statins and is abundantly present in RYR. Early experimental trials suggested that the mixed apoptotic/necrotic cell death pathway is activated in response to MVN exposure. In the current study, the cytotoxic profile of MVN was evaluated against MCF‑7, a breast cancer‑derived cell line. The obtained results indicated that MVN‑induced cytotoxicity is multi‑factorial involving several regulatory pathways in the cytotoxic effects of MVN on breast cancer cell lines. In addition, MVN‑induced transcript abundance profiles inferred from microarrays showed significant changes in some key cell processes. The changes were predicted to induce cell cycle arrest and reactive oxygen species generation but inhibit DNA repair and cell proliferation. This MVN‑mediated multi‑factorial stress triggered specific programmed cell death (apoptosis) and DNA degradation responses in breast cancer cells. Taken together, the observed MVN‑induced effects underscore the potential of this ubiquitous natural compound as a selective anticancer activity, with broad safety margins and low cost compared to benchmarked traditional synthetic chemotherapeutic agents. Additionally, the data support further pre‑clinical and clinical evaluations of MVN as a novel strategy to combat breast cancer and overcome drug resistance.

  16. Crude extract and solvent fractions of Calystegia soldanella induce G1 and S phase arrest of the cell cycle in HepG2 cells

    PubMed Central

    Lee, Jung Im; Kim, In-Hye; Nam, Taek-Jeong

    2017-01-01

    The representative halophyte Calystegia soldanella (L) Roem. et Schult is a perennial vine herb that grows in coastal dunes throughout South Korea as well as in other regions around the world. This plant has long been used as an edible and medicinal herb to cure rheumatic arthritis, sore throat, dropsy, and scurvy. Some studies have also shown that this plant species exhibits various biological activities. However, there are few studies on cytotoxicity induced by C. soldanella treatment in HepG2 human hepatocellular carcinoma cells. In this study, we investigated the viability of HepG2 cells following treatment with crude extracts and four solvent-partitioned fractions of C. soldanella. Of the crude extract and four solvent fractions tested, treatment with the 85% aqueous methanol (aq. MeOH) fraction resulted in the greatest inhibition of HepG2 cell proliferation. Flow cytometry showed that the 85% aq. MeOH fraction induced a G0/G1 and S phase arrest of the cell cycle progression. The 85% aq. MeOH fraction arrested HepG2 cells at the G0/G1 phase in a concentration-dependent manner, and resulted in decreased expression of cyclin D1, cyclin E, cyclin-dependent kinase (CDK)2, CDK4, CDK6, p21, and p27. Additionally, the 85% aq. MeOH fraction treatment also arrested HepG2 cells in the S phase, with decreased expression of cyclin A, CDK2, and CDC25A. Also, treatment with this fraction reduced the expression of retinoblastoma (RB) protein and the transcription factor E2F. These results suggest that the 85% aq. MeOH fraction exhibits potential anticancer activity in HepG2 cells by inducing G0/G1 and S phase arrest of the cell cycle. PMID:28101580

  17. 5-(2-Carboxyethenyl) isatin derivative induces G{sub 2}/M cell cycle arrest and apoptosis in human leukemia K562 cells

    SciTech Connect

    Zhou, Yao; Zhao, Hong-Ye; Han, Kai-Lin; Yang, Yao; Song, Bin-Bin; Guo, Qian-Nan; Fan, Zhen-Chuan; Zhang, Yong-Min; Teng, Yu-Ou; Yu, Peng

    2014-08-08

    Highlights: • 5-(2-Carboxyethenyl) isatin derivative (HKL 2H) inhibited K562’s proliferation. • HKL 2H caused the morphology change of G{sub 2}/M phase arrest and typical apoptosis. • HKL 2H induced G2/M cell cycle phase arrest in K562 cells. • HKL 2H induced apoptosis in K562 cells through the mitochondrial pathway. - Abstract: Our previous study successfully identified that the novel isatin derivative (E)-methyl 3-(1-(4-methoxybenzyl)-2,3-dioxoindolin-5-yl) acrylate (HKL 2H) acts as an anticancer agent at an inhibitory concentration (IC{sub 50}) level of 3 nM. In this study, the molecular mechanism how HKL 2H induces cytotoxic activity in the human chronic myelogenous leukemia K562 cells was investigated. Flow cytometric analysis showed that the cells were arrested in the G{sub 2}/M phase and accumulated subsequently in the sub-G{sub 1} phase in the presence of HKL 2H. HKL 2H treatment down-regulated the expressions of CDK1 and cyclin B but up-regulated the level of phosphorylated CDK1. Annexin-V staining and the classic DNA ladder studies showed that HKL 2H induced the apoptosis of K562 cells. Our study further showed that HKL 2H treatment caused the dissipation of mitochondrial membrane potential, activated caspase-3 and lowered the Bcl-2/Bax ratio in K562 cells, suggesting that the HKL 2H-causing programmed cell death of K562 cells was caused via the mitochondrial apoptotic pathway. Taken together, our data demonstrated that HKL 2H, a 5-(2-carboxyethenyl) isatin derivative, notably induces G{sub 2}/M cell cycle arrest and mitochondrial-mediated apoptosis in K562 cells, indicating that this compound could be a promising anticancer candidate for further investigation.

  18. A molecular understanding of D-homoestrone-induced G2/M cell cycle arrest in HeLa human cervical carcinoma cells.

    PubMed

    Minorics, Renáta; Bózsity, Noémi; Molnár, Judit; Wölfling, János; Mernyák, Erzsébet; Schneider, Gyula; Ocsovszki, Imre; Zupkó, István

    2015-10-01

    2-Methoxyestradiol (ME), one of the most widely investigated A-ring-modified metabolites of estrone, exerts significant anticancer activity on numerous cancer cell lines. Its pharmacological actions, including cell cycle arrest, microtubule disruption and pro-apoptotic activity, have already been described in detail. The currently tested D-ring-modified analogue of estrone, D-homoestrone, selectively inhibits cervical cancer cell proliferation and induces a G2/M phase cell cycle blockade, resulting in the development of apoptosis. The question arose of whether the difference in the chemical structures of these analogues can influence the mechanism of anticancer action. The aim of the present study was therefore to elucidate the molecular contributors of intracellular processes induced by D-homoestrone in HeLa cells. Apoptosis triggered by D-homoestrone develops through activation of the intrinsic pathway, as demonstrated by determination of the activities of caspase-8 and -9. It was revealed that D-homoestrone-treated HeLa cells are not able to enter mitosis because the cyclin-dependent kinase 1-cyclin B complex loses its activity, resulting in the decreased inactivation of stathmin and a concomitant disturbance of microtubule formation. However, unlike 2-ME, D-homoestrone does not exert a direct effect on tubulin polymerization. These results led to the conclusion that the D-homoestrone-triggered intracellular processes resulting in a cell cycle arrest and apoptosis in HeLa cells differ from those in the case of 2-ME. This may be regarded as an alternative mechanism of action among steroidal anticancer compounds.

  19. Effects of 5,6-Dihydroxy-2,4-Dimethoxy-9,10-Dihydrophenanthrene on G2/M Cell Cycle Arrest and Apoptosis in Human Lung Carcinoma Cells.

    PubMed

    Duangprompo, Wipada; Aree, Kalaya; Itharat, Arunporn; Hansakul, Pintusorn

    2016-01-01

    5,6-dihydroxy-2,4-dimethoxy-9,10-dihydrophenanthrene (HMP) is an active compound isolated from the rhizome extracts of Dioscorea membranacea Pierre, a Thai medicinal plant. This study aimed to investigate the growth-inhibitory and apoptosis-inducing effects of HMP in human lung cancer A549 cells. The antiproliferative and cytotoxic effects of HMP were analyzed by a Sulforhodamine B assay. Cell division, cell cycle distribution and membrane asymmetry changes were each performed with different fluorescent dyes and then analyzed by flow cytometry. Real-time PCR and immunoblotting were used to detect cell cycle- and apoptosis-related mRNA levels and proteins, respectively. The nuclear morphology of the cells stained with DAPI and DNA fragmentation were detected by fluorescence microscopy and gel electrophoresis, respectively. The results showed that HMP exerted strong antiproliferative and cytotoxic activities in A549 cells with the highest selectivity index. It halted the cell cycle in [Formula: see text]/M phase via down-regulation of the expression levels of regulatory proteins Cdc25C, Cdk1 and cyclinB1. In addition, HMP induced early apoptotic cells with externalized phosphatidylserine and subsequent apoptotic cells in sub-[Formula: see text] phase. HMP increased caspase-3 activity and levels of the cleaved (active) form of caspase-3 whose actions were supported by the cleavage of its target PARP, nuclear condensation and DNA apoptotic ladder. Moreover, HMP significantly increased the mRNA and protein levels of proapoptotic Bax as well as promoted subsequent caspase-9 activation and BID cleavage, indicating HMP-induced apoptosis via both intrinsic and extrinsic pathways. These data support, for the first time, the potential role of HMP as a cell-cycle arrest and apoptosis-inducing agent for lung cancer treatment.

  20. Crude Garlic Extract Inhibits Cell Proliferation and Induces Cell Cycle Arrest and Apoptosis of Cancer Cells In Vitro.

    PubMed

    Bagul, Mukta; Kakumanu, Srikanth; Wilson, Thomas A

    2015-07-01

    Garlic and its lipid-based extracts have played an important medicinal role in humans for centuries that includes antimicrobial, hypoglycemic, and lipid-lowering properties. The present study was to investigate the effects of crude garlic extract (CGE) on the proliferation of human breast, prostate, hepatic, and colon cancer cell lines and mouse macrophageal cells, not previously studied. The human cancer cell lines, such as hepatic (Hep-G2), colon (Caco-2), prostate (PC-3), and breast (MCF-7), were propagated at 37°C; air/CO2 (95:5 v/v) using the ATCC-formulated RPMI-1640 Medium and 10% fetal bovine serum (FBS), while the mouse macrophage cell line (TIB-71) was propagated at 37°C; air/CO2 (95:5 v/v) using the ATCC-formulated DMEM and 10% FBS. All cells were plated at a density of ∼5000 cells/well. After overnight incubation, the cells were treated with 0.125, 0.25, 0.5, or 1 μg/mL of CGE an additional 72 h. Inhibition of cell proliferation of 80-90% was observed for Hep-G2, MCF-7, TIB-71, and PC-3 cells, but only 40-55% for the Caco-2 cells when treated with 0.25, 0.5, or 1 μg/mL. In a coculture study of Caco-2 and TIB-71 cells, inhibition of cell proliferation of 90% was observed for Caco-2 cells compared to the 40-55% when cultured separately. CGE also induced cell cycle arrest and had a fourfold increase in caspase activity (apoptosis) in PC-3 cells when treated at a dose of 0.5 or 1 μg/mL. This investigation of CGE clearly highlights the fact that the lipid bioactive compounds in CGE have the potential as promising anticancer agents.

  1. Solanum tuberosum lectin inhibits Ehrlich ascites carcinoma cells growth by inducing apoptosis and G2/M cell cycle arrest.

    PubMed

    Kabir, Syed Rashel; Rahman, Md Musfikur; Amin, Ruhul; Karim, Md Rezaul; Mahmud, Zahid Hayat; Hossain, M Tofazzal

    2016-06-01

    Recently, a lectin was purified from the potato cultivated in Bangladesh locally known as Sheel. In the present study cytotoxicity of the lectin against Ehrlich ascites carcinoma (EAC) cells was studied by MTT assay in vitro in RPMI-1640 medium and 8.0-36.0 % cell growth inhibition was observed at the range of 2.5-160 μg/ml protein concentration when incubated for 24 h. The lectin-induced apoptosis in EAC cells was confirmed by fluorescence and optical microscope. The apoptotic cell death was also confirmed by using caspase inhibitors. Cells growth inhibition caused by the lectin (36 %) was remarkably decreased to 7.6 and 22.3 % respectively in the presence of caspase-3 and -8 inhibitors. RT-PCR was used to evaluate the expression of apoptosis-related genes Bcl-X, p53, and Bax. An intensive expression of Bcl-X gene was observed in untreated control EAC cells with the disappeared of the gene in Sheel-treated EAC cells. At the same time, Bax gene expression appeared only in Sheel-treated EAC cells and the expression level of the p53 gene was increased remarkable after the treatment of EAC cells with the lectin. The lectin showed strong agglutination activity against EAC cells. Flow cytometry was used to study the cell cycle phases of EAC cells and it was observed that the lectin arrested the G2/M phase. In conclusion, Sheel lectin inhibited EAC cells growth by inducing apoptosis.

  2. miR-6734 Up-Regulates p21 Gene Expression and Induces Cell Cycle Arrest and Apoptosis in Colon Cancer Cells

    PubMed Central

    Kang, Moo Rim; Park, Ki Hwan; Yang, Jeong-Ook; Lee, Chang Woo; Oh, Soo Jin; Yun, Jieun; Lee, Myeong Youl; Han, Sang-Bae; Kang, Jong Soon

    2016-01-01

    Recently, microRNAs have been implicated in the regulation of gene expression in terms of both gene silencing and gene activation. Here, we investigated the effects of miR-6734, which has a sequence homology with a specific region of p21WAF1/CIP1 (p21) promoter, on cancer cell growth and the mechanisms involved in this effect. miR-6734 up-regulated p21 expression at both mRNA and protein levels and chromatin immunoprecipitation analysis using biotin-labeled miR-6734 confirmed the association of miR-6734 with p21 promoter. Moreover, miR-6734 inhibited cancer cell growth and induced cell cycle arrest and apoptosis in HCT-116 cells, which was abolished by knockdown of p21. The phosphorylation of Rb and the cleavage of caspase 3 and PARP were suppressed by miR-6734 transfection in HCT-116 cells and these effects were also reversed by p21 knockdown. In addition, miR-6734 transfection caused prolonged induction of p21 gene and modification of histones in p21 promoter, which are typical aspects of a phenomenon referred to as RNA activation (RNAa). Collectively, our results demonstrated that miR-6734 inhibits the growth of colon cancer cells by up-regulating p21 gene expression and subsequent induction of cell cycle arrest and apoptosis, suggesting its role as an important endogenous regulator of cancer cell proliferation and survival. PMID:27509128

  3. 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis

    PubMed Central

    Fong, Chii Shyang; Mazo, Gregory; Das, Tuhin; Goodman, Joshua; Kim, Minhee; O'Rourke, Brian P; Izquierdo, Denisse; Tsou, Meng-Fu Bryan

    2016-01-01

    Mitosis occurs efficiently, but when it is disturbed or delayed, p53-dependent cell death or senescence is often triggered after mitotic exit. To characterize this process, we conducted CRISPR-mediated loss-of-function screens using a cell-based assay in which mitosis is consistently disturbed by centrosome loss. We identified 53BP1 and USP28 as essential components acting upstream of p53, evoking p21-dependent cell cycle arrest in response not only to centrosome loss, but also to other distinct defects causing prolonged mitosis. Intriguingly, 53BP1 mediates p53 activation independently of its DNA repair activity, but requiring its interacting protein USP28 that can directly deubiquitinate p53 in vitro and ectopically stabilize p53 in vivo. Moreover, 53BP1 can transduce prolonged mitosis to cell cycle arrest independently of the spindle assembly checkpoint (SAC), suggesting that while SAC protects mitotic accuracy by slowing down mitosis, 53BP1 and USP28 function in parallel to select against disturbed or delayed mitosis, promoting mitotic efficiency. DOI: http://dx.doi.org/10.7554/eLife.16270.001 PMID:27371829

  4. TEAD4-YAP interaction regulates tumoral growth by controlling cell-cycle arrest at the G1 phase.

    PubMed

    Takeuchi, Shin; Kasamatsu, Atsushi; Yamatoji, Masanobu; Nakashima, Dai; Endo-Sakamoto, Yosuke; Koide, Nao; Takahara, Toshikazu; Shimizu, Toshihiro; Iyoda, Manabu; Ogawara, Katsunori; Shiiba, Masashi; Tanzawa, Hideki; Uzawa, Katsuhiro

    2017-04-29

    TEA domain transcription factor 4 (TEAD4), which has critical functions in the process of embryonic development, is expressed in various cancers. However, the important role of TEAD4 in human oral squamous cell carcinomas (OSCCs) remain unclear. Here we investigated the TEAD4 expression level and the functional mechanism in OSCC using quantitative reverse transcriptase-polymerase chain reaction, Western blot analysis, and immunohistochemistry. Furthermore, TEAD4 knockdown model was used to evaluate cellular proliferation, cell-cycle analysis, and the interaction between TEAD4 and Yes-associated protein (YAP) which was reported to be a transcription coactivator of cellular proliferation. In the current study, we found that TEAD4 expression increased significantly in vitro and in vivo and correlated with tumoral size in OSCC patients. TEAD4 knockdown OSCC cells showed decreased cellular proliferation resulting from cell-cycle arrest in the G1 phase by down-regulation of cyclins, cyclin-dependent kinases (CDKs), and up-regulation of CDK inhibitors. We also found that the TEAD4-YAP complex in the nuclei may be related closely to transcriptions of G1 arrest-related genes. Taken together, we concluded that TEAD4 might play an important role in tumoral growth and have potential to be a therapeutic target in OSCCs.

  5. Cloning and sequence analysis of the Saccharomyces cerevisiae RAD9 gene and further evidence that its product is required for cell cycle arrest induced by DNA damage.

    PubMed Central

    Schiestl, R H; Reynolds, P; Prakash, S; Prakash, L

    1989-01-01

    Procaryotic and eucaryotic cells possess mechanisms for arresting cell division in response to DNA damage. Eucaryotic cells arrest division in the G2 stage of the cell cycle, and various observations suggest that this arrest is necessary to ensure the completion of repair of damaged DNA before the entry of cells into mitosis. Here, we provide evidence that the Saccharomyces cerevisiae RAD9 gene, mutations of which confer sensitivity to DNA-damaging agents, is necessary for the cell cycle arrest phenomenon. Our studies with the rad9 delta mutation show that RAD9 plays a role in the cell cycle arrest of methyl methanesulfonate-treated cells and is absolutely required for the cell cycle arrest in the temperature-sensitive cdc9 mutant, which is defective in DNA ligase. At the restrictive temperature, cell cycle progression of cdc9 cells is blocked sometime after the DNA chain elongation step, whereas cdc9 rad9 delta cells do not arrest at this point and undergo one or two additional divisions. Upon transfer from the restrictive to the permissive temperature, a larger proportion of the cdc9 cells than of the cdc9 rad9 delta cells forms viable colonies, indicating that RAD9-mediated cell cycle arrest allows for proper ligation of DNA breaks before the entry of cells into mitosis. The rad9 delta mutation does not affect the frequency of spontaneous or UV-induced mutation and recombination, suggesting that RAD9 is not directly involved in mutagenic or recombinational repair processes. The RAD9 gene encodes a transcript of approximately 4.2 kilobases and a protein of 1,309 amino acids of Mr 148,412. We suggest that RAD9 may be involved in regulating the expression of genes required for the transition from G2 to mitosis. Images PMID:2664461

  6. A novel nucleolar protein, PAPA-1, induces growth arrest as a result of cell cycle arrest at the G1 phase.

    PubMed

    Kuroda, Taruho S; Maita, Hiroshi; Tabata, Takanori; Taira, Takahiro; Kitaura, Hirotake; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M M

    2004-09-29

    We have identified a novel nucleolar protein, PAP-1-associated protein-1 (PAPA-1), after screening the interacting proteins with Pim-1-associated protein-1 (PAP-1), a protein that is a phosphorylation target of Pim-1 kinase. PAPA-1 comprises 345 amino acids with a basic amino-acid cluster. PAPA-1 was found to be localized in the nucleolus in transfected HeLa cells, and the lysine/histidine cluster was essential for nucleolar localization of PAPA-1. PAPA-1 protein and mRNA expression decreased upon serum restimulation of starvation-synchronized cells, which displayed maximum level of PAPA-1 expression at G0 and early G1 phase of the cell cycle. Ectopic expression of PAPA-1 induced growth suppression of cells, and the effect was dependent on its nucleolar localization in established HeLa cell lines that inducibly express PAPA-1 or its deletion mutant under the control of a tetracycline-inducible promoter. Furthermore, when PAPA-1-inducible HeLa cells were synchronized by thymidine, colcemid or mimosine, and then PAPA-1 was expressed, the proportion of cells at the G1 phase was obviously increased. These results suggest that PAPA-1 induces growth and cell cycle arrests at the G1 phase of the cell cycle.

  7. Methamphetamine Alters the Normal Progression by Inducing Cell Cycle Arrest in Astrocytes

    PubMed Central

    Jackson, Austin R.; Shah, Ankit; Kumar, Anil

    2014-01-01

    Methamphetamine (MA) is a potent psychostimulant with a high addictive capacity, which induces many deleterious effects on the brain. Chronic MA abuse leads to cognitive dysfunction and motor impairment. MA affects many cells in the brain, but the effects on astrocytes of repeated MA exposure is not well understood. In this report, we used Gene chip array to analyze the changes in the gene expression profile of primary human astrocytes treated with MA for 3 days. Range of genes were found to be differentially regulated, with a large number of genes significantly downregulated, including NEK2, TTK, TOP2A, and CCNE2. Gene ontology and pathway analysis showed a highly significant clustering of genes involved in cell cycle progression and DNA replication. Further pathway analysis showed that the genes downregulated by multiple MA treatment were critical for G2/M phase progression and G1/S transition. Cell cycle analysis of SVG astrocytes showed a significant reduction in the percentage of cell in the G2/M phase with a concomitant increase in G1 percentage. This was consistent with the gene array and validation data, which showed that repeated MA treatment downregulated the genes associated with cell cycle regulation. This is a novel finding, which explains the effect of MA treatment on astrocytes and has clear implication in neuroinflammation among the drug abusers. PMID:25290377

  8. Telomerase Cajal body protein 1 depletion inhibits telomerase trafficking to telomeres and induces G1 cell cycle arrest in A549 cells.

    PubMed

    Yuan, Ping; Wang, Zhitian; Lv, Wang; Pan, Hui; Yang, Yunhai; Yuan, Xiaoshuai; Hu, Jian

    2014-09-01

    Telomerase Cajal body protein 1 (TCAB1) is a telomerase holoenzyme, which is markedly enriched in Cajal bodies (CBs) and facilitates the recruitment of telomerase to CBs in the S phase of the cell cycle. This recruitment is dependent on TCAB1 binding to a telomerase RNA component. The majority of cancer cells are able to grow indefinitely due to telomerase and its mechanism of trafficking to telomeres. In the present study, a certain level of TCAB1 expression in A549 human lung cells was identified and TCAB1 knockdown exhibited a potent antiproliferative effect on these cells, which was coupled with a decrease in the cell density and activity of the cellular enzymes. In addition, TCAB1-depletion was demonstrated to inhibit telomerase trafficking to telomeres in the A549 cells, leading to subsequent G1 cell cycle arrest without inducing apoptotic cell death. Overall, these observations indicated that TCAB1 may be essential for A549 cell proliferation and cell cycle regulation, and may be a potential candidate for the development of a therapeutic target for lung adenocarcinomas.

  9. G1 cell cycle arrest due to the inhibition of erbB family receptor tyrosine kinases does not require the retinoblastoma protein

    SciTech Connect

    Gonzales, Andrea J. . E-mail: Andrea.Gonzales@pfizer.com; Fry, David W.

    2005-02-01

    The erbB receptor family (EGFr, erbB-2, erbB-3, and erbB-4) consists of transmembrane glycoproteins that transduce extracellular signals to the nucleus when activated. erbB family members are widely expressed in epithelial, mesenchymal, and neuronal cells and contribute to the proliferation, differentiation, migration, and survival of these cell types. The present study evaluates the effects of erbB family signaling on cell cycle progression and the role that pRB plays in regulating this process. ErbB family RTK activity was inhibited by PD 158780 in the breast epithelial cell line MCF10A. PD 158780 (0.5 {mu}M) inhibited EGF-stimulated and heregulin-stimulated autophosphorylation and caused a G1 cell cycle arrest within 24 h, which correlated with hypophosporylation of pRB. MCF10A cells lacking functional pRB retained the ability to arrest in G1 when treated with PD 158780. Both cell lines showed induction of p27{sup KIP1} protein when treated with PD 158780 and increased association of p27{sup KIP1} with cyclin E-CDK2. Furthermore, CDK2 kinase activity was dramatically inhibited with drug treatment. Changes in other pRB family members were noted with drug treatment, namely a decrease in p107 and an increase in p130. These findings show that the G1 arrest induced through inhibition of erbB family RTK activity does not require functional pRB.

  10. Targeting TRPM2 Channels Impairs Radiation-Induced Cell Cycle Arrest and Fosters Cell Death of T Cell Leukemia Cells in a Bcl-2-Dependent Manner

    PubMed Central

    Klumpp, Dominik; Misovic, Milan; Szteyn, Kalina; Shumilina, Ekaterina; Rudner, Justine; Huber, Stephan M.

    2016-01-01

    Messenger RNA data of lymphohematopoietic cancer lines suggest a correlation between expression of the cation channel TRPM2 and the antiapoptotic protein Bcl-2. The latter is overexpressed in various tumor entities and mediates therapy resistance. Here, we analyzed the crosstalk between Bcl-2 and TRPM2 channels in T cell leukemia cells during oxidative stress as conferred by ionizing radiation (IR). To this end, the effects of TRPM2 inhibition or knock-down on plasma membrane currents, Ca2+ signaling, mitochondrial superoxide anion formation, and cell cycle progression were compared between irradiated (0–10 Gy) Bcl-2-overexpressing and empty vector-transfected Jurkat cells. As a result, IR stimulated a TRPM2-mediated Ca2+-entry, which was higher in Bcl-2-overexpressing than in control cells and which contributed to IR-induced G2/M cell cycle arrest. TRPM2 inhibition induced a release from G2/M arrest resulting in cell death. Collectively, this data suggests a pivotal function of TRPM2 in the DNA damage response of T cell leukemia cells. Apoptosis-resistant Bcl-2-overexpressing cells even can afford higher TRPM2 activity without risking a hazardous Ca2+-overload-induced mitochondrial superoxide anion formation. PMID:26839633

  11. Chaetoglobosin K induces apoptosis and G2 cell cycle arrest through p53-dependent pathway in cisplatin-resistant ovarian cancer cells.

    PubMed

    Li, Bo; Gao, Ying; Rankin, Gary O; Rojanasakul, Yon; Cutler, Stephen J; Tu, Youying; Chen, Yi Charlie

    2015-01-28

    Adverse side effects and acquired resistance to conventional platinum based chemotherapy have become major impediments in ovarian cancer treatment, and drive the development of more selective anticancer drugs. Chaetoglobosin K (ChK) was shown to have a more potent growth inhibitory effect than cisplatin on two cisplatin-resistant ovarian cancer cell lines, OVCAR-3 and A2780/CP70, and was less cytotoxic to a normal ovarian cell line, IOSE-364, than to the cancer cell lines. Hoechst 33342 staining and Flow cytometry analysis indicated that ChK induced preferential apoptosis and G2 cell cycle arrest in both ovarian cancer cells with respect to the normal ovarian cells. ChK induced apoptosis through a p53-dependent caspase-8 activation extrinsic pathway, and caused G2 cell cycle arrest via cyclin B1 by increasing p53 expression and p38 phosphorylation in OVCAR-3 and A2780/CP70 cells. DR5 and p21 might play an important role in determining the sensitivity of normal and malignant ovarian cells to ChK. Based on these results, ChK would be a potential compound for treating platinum-resistant ovarian cancer.

  12. Enhanced induction of cell cycle arrest and apoptosis via the mitochondrial membrane potential disruption in human U87 malignant glioma cells by aloe emodin.

    PubMed

    Ismail, Samhani; Haris, Khalilah; Abdul Ghani, Abdul Rahman Izaini; Abdullah, Jafri Malin; Johan, Muhammad Farid; Mohamed Yusoff, Abdul Aziz

    2013-09-01

    Aloe emodin, one of the active compounds found in Aloe vera leaves, plays an important role in the regulation of cell growth and death. It has been reported to promote the anti-cancer effects in various cancer cells by inducing apoptosis. However, the mechanism of inducing apoptosis by this agent is poorly understood in glioma cells. This research is to investigate the apoptosis and cell cycle arrest inducing by aloe emodin on U87 human malignant glioma cells. Aloe emodin showed a time- and dose-dependent inhibition of U87 cells proliferation and decreased the percentage of viable U87 cells via the induction of apoptosis. Characteristic morphological changes, such as the formation of apoptotic bodies, were observed with confocal microscope by Annexin V-FITC/PI staining, supporting our viability study and flow cytometry analysis results. Our data also demonstrated that aloe emodin arrested the cell cycle in the S phase and promoted the loss of mitochondrial membrane potential in U87 cells that indicated the early event of the mitochondria-induced apoptotic pathway.

  13. Physalin A induces G2/M phase cell cycle arrest in human non-small cell lung cancer cells: involvement of the p38 MAPK/ROS pathway.

    PubMed

    Kang, Ning; Jian, Jun-Feng; Cao, Shi-Jie; Zhang, Qiang; Mao, Yi-Wei; Huang, Yi-Yuan; Peng, Yan-Fei; Qiu, Feng; Gao, Xiu-Mei

    2016-04-01

    Physalin A (PA) is an active withanolide isolated from Physalis alkekengi var. franchetii, a traditional Chinese herbal medicine named Jindenglong, which has long been used for the treatment of sore throat, hepatitis, and tumors in China. In the present study, we firstly investigated the effects of PA on proliferation and cell cycle distribution of the human non-small cell lung cancer (NSCLC) A549 cell line, and the potential mechanisms involved. Here, PA inhibited cell growth in dose- and time-dependent manners. Treatment of A549 cells with 28.4 μM PA for 24 h resulted in approximately 50 % cell death. PA increased the amount of intracellular ROS and the proportion of cells in G2/M. G2/M arrest was attenuated by the addition of ROS scavenger NAC. ERK and P38 were triggered by PA through phosphorylation in a time-dependent manner. The phosphorylation of ERK and P38 were not attenuated by the addition of NAC, but the use of the p38 inhibitor could reduce, at least in part, PA-induced ROS and the proportion of cells in G2/M. PA induces G2/M cell cycle arrest in A549 cells involving in the p38 MAPK/ROS pathway. This study suggests that PA might be a promising therapeutic agent against NSCLC.

  14. Green tea polyphenols induce cell death in breast cancer MCF-7 cells through induction of cell cycle arrest and mitochondrial-mediated apoptosis*

    PubMed Central

    Liu, Shu-min; Ou, Shi-yi; Huang, Hui-hua

    2017-01-01

    In order to study the molecular mechanisms of green tea polyphenols (GTPs) in treatment or prevention of breast cancer, the cytotoxic effects of GTPs on five human cell lines (MCF-7, A549, Hela, PC3, and HepG2 cells) were determined and the antitumor mechanisms of GTPs in MCF-7 cells were analyzed. The results showed that GTPs exhibited a broad spectrum of inhibition against the detected cancer cell lines, particularly the MCF-7 cells. Studies on the mechanisms revealed that the main modes of cell death induced by GTPs were cell cycle arrest and mitochondrial-mediated apoptosis. Flow cytometric analysis showed that GTPs mediated cell cycle arrest at both G1/M and G2/M transitions. GTP dose dependently led to apoptosis of MCF-7 cells via the mitochondrial pathways, as evidenced by induction of chromatin condensation, reduction of mitochondrial membrane potential (ΔΨ m), improvement in the generation of reactive oxygen species (ROS), induction of DNA fragmentation, and activations of caspase-3 and caspase-9 in the present paper. PMID:28124838

  15. A dual transcriptional reporter and CDK-activity sensor marks cell cycle entry and progression in C. elegans

    PubMed Central

    van Rijnberk, Lotte M.; van der Horst, Suzanne E. M.; van den Heuvel, Sander; Ruijtenberg, Suzan

    2017-01-01

    Development, tissue homeostasis and tumor suppression depend critically on the correct regulation of cell division. Central in the cell division process is the decision whether to enter the next cell cycle and commit to going through the S and M phases, or to remain temporarily or permanently arrested. Cell cycle studies in genetic model systems could greatly benefit from visualizing cell cycle commitment in individual cells without the need of fixation. Here, we report the development and characterization of a reporter to monitor cell cycle entry in the nematode C. elegans. This reporter combines the mcm-4 promoter, to reveal Rb/E2F-mediated transcriptional control, and a live-cell sensor for CDK-activity. The CDK sensor was recently developed for use in human cells and consists of a DNA Helicase fragment fused to eGFP. Upon phosphorylation by CDKs, this fusion protein changes in localization from the nucleus to the cytoplasm. The combined regulation of transcription and subcellular localization enabled us to visualize the moment of cell cycle entry in dividing seam cells during C. elegans larval development. This reporter is the first to reflect cell cycle commitment in C. elegans and will help further genetic studies of the mechanisms that underlie cell cycle entry and exit. PMID:28158315

  16. Cell cycle regulation and p53 activation by protein phosphatase 2C alpha.

    PubMed

    Ofek, Paula; Ben-Meir, Daniella; Kariv-Inbal, Zehavit; Oren, Moshe; Lavi, Sara

    2003-04-18

    Protein phosphatase 2C (PP2C) dephosphorylates a broad range of substrates, regulating stress response and growth-related pathways in both prokaryotes and eukaryotes. We now demonstrate that PP2C alpha, a major mammalian isoform, inhibits cell growth and activates the p53 pathway. In 293 cell clones, in which PP2C alpha expression is regulated by a tetracycline-inducible promoter, PP2C alpha overexpression led to G(2)/M cell cycle arrest and apoptosis. Furthermore, PP2C alpha induced the expression of endogenous p53 and the p53-responsive gene p21. Activation of the p53 pathway by PP2C alpha took place both in cells harboring endogenous p53, as well as in p53-null cells transfected with exogenous p53. Induction of PP2C alpha resulted in an increase in the overall levels of p53 protein as well as an augmentation of p53 transcription activity. The dephosphorylation activity of PP2C alpha is essential to the described phenomena, as none of these effects was detected when an enzymatically inactive PP2C alpha mutant was overexpressed. p53 plays an important role in PP2C alpha-directed cell cycle arrest and apoptosis because perturbation of p53 expression in human 293 cells by human papillomavirus E6 led to a significant increase in cell survival. The role of PP2C alpha in p53 activation is discussed.

  17. CSN5 silencing inhibits invasion and arrests cell cycle progression in human colorectal cancer SW480 and LS174T cells in vitro.

    PubMed

    Zhong, Gang; Li, Huikai; Shan, Tao; Zhang, Nan

    2015-01-01

    CSN5 has been implicated as a candidate oncogene in human cancers by genetic linkage with activation of the poor-prognosis, wound response gene expression signature. The present study aimed to investigate the effect of silencing CSN5 on invasion and cell cycle progression of human colorectal cancer cells, and to determine the potential molecular mechanisms that are involved. The CSN5 specific small interfering RNA (shRNA) plasmid vector was constructed and then transfected into colorectal cancer cells. The expression of CSN5 mRNA and protein was detected by quantitative polymerase chain reaction and western blot analysis, respectively. Cell adhesion and invasion were analyzed using MTS and Transwell assays, respectively, and cell cycle progression was analyzed using flow cytometry. Adhesion, invasion, and cell cycle distribution were assessed following knockdown of CSN5 by RNA interference (RNAi). Furthermore, knockdown of CSN5 significantly inhibited cell adhesion and reduced the number of invasive cells, while increasing the percentage of cells in the G0/G1 phase (P<0.05). Western blot and real-time PCR analysis were used to identify differentially expressed invasion and cell cycle associated proteins in cells with silenced CSN5. The expression levels of CSN5 in colorectal cancer cells transfected with siRNA were decreased, leading to a significant inhibition of colorectal cancer cell adhesion and invasion. Western blot analysis revealed that silencing of CSN5 may inhibit CD44, matrix metalloproteinase (MMP) 2 and MMP 9 protein expression, significantly promoted cell cycle-related genes P53 and P27 expression. In addition, CSN5 silencing may induce activation PI3K/AKT signal regulated cell invasion. Moreover, CSN5 silencing inhibited the secretion of TGF-β, IL-1β and IL-6 and the transcriptional activity of transcription factor NF-κB and Twist in human colorectal cancer cells. Taken together, down regulation of CSN5 may inhibit invasion and arrests cell cycle

  18. CSN5 silencing inhibits invasion and arrests cell cycle progression in human colorectal cancer SW480 and LS174T cells in vitro

    PubMed Central

    Zhong, Gang; Li, Huikai; Shan, Tao; Zhang, Nan

    2015-01-01

    CSN5 has been implicated as a candidate oncogene in human cancers by genetic linkage with activation of the poor-prognosis, wound response gene expression signature. The present study aimed to investigate the effect of silencing CSN5 on invasion and cell cycle progression of human colorectal cancer cells, and to determine the potential molecular mechanisms that are involved. The CSN5 specific small interfering RNA (shRNA) plasmid vector was constructed and then transfected into colorectal cancer cells. The expression of CSN5 mRNA and protein was detected by quantitative polymerase chain reaction and western blot analysis, respectively. Cell adhesion and invasion were analyzed using MTS and Transwell assays, respectively, and cell cycle progression was analyzed using flow cytometry. Adhesion, invasion, and cell cycle distribution were assessed following knockdown of CSN5 by RNA interference (RNAi). Furthermore, knockdown of CSN5 significantly inhibited cell adhesion and reduced the number of invasive cells, while increasing the percentage of cells in the G0/G1 phase (P < 0.05). Western blot and real-time PCR analysis were used to identify differentially expressed invasion and cell cycle associated proteins in cells with silenced CSN5. The expression levels of CSN5 in colorectal cancer cells transfected with siRNA were decreased, leading to a significant inhibition of colorectal cancer cell adhesion and invasion. Western blot analysis revealed that silencing of CSN5 may inhibit CD44, matrix metalloproteinase (MMP) 2 and MMP 9 protein expression, significantly promoted cell cycle-related genes P53 and P27 expression. In addition, CSN5 silencing may induce activation PI3K/AKT signal regulated cell invasion. Moreover, CSN5 silencing inhibited the secretion of TGF-β, IL-1β and IL-6 and the transcriptional activity of transcription factor NF-κB and Twist in human colorectal cancer cells. Taken together, down regulation of CSN5 may inhibit invasion and arrests cell

  19. Ajwa Date (Phoenix dactylifera L.) Extract Inhibits Human Breast Adenocarcinoma (MCF7) Cells In Vitro by Inducing Apoptosis and Cell Cycle Arrest

    PubMed Central

    Khan, Fazal; Ahmed, Farid; Pushparaj, Peter Natesan; Abuzenadah, Adel; Kumosani, Taha; Barbour, Elie; AlQahtani, Mohammed; Gauthaman, Kalamegam

    2016-01-01

    Introduction Phoenix dactylifera L (Date palm) is a native plant of the Kingdom of Saudi Arabia (KSA) and other Middle Eastern countries. Ajwa date has been described in the traditional and alternative medicine to provide several health benefits including anticholesteremic, antioxidant, hepatoprotective and anticancer effects, but most remains to be scientifically validated. Herein, we evaluated the anticancer effects of the Methanolic Extract of Ajwa Date (MEAD) on human breast adenocarcinoma (MCF7) cells in vitro. Methods MCF7 cells were treated with various concentrations (5, 10, 15, 20 and 25 mg/ml) of MEAD for 24, 48 and 72 h and changes in cell morphology, cell cycle, apoptosis related protein and gene expression were studied. Results Phase contrast microscopy showed various morphological changes such as cell shrinkage, vacuolation, blebbing and fragmentation. MTT (2-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay demonstrated statistically significant dose-dependent inhibitions of MCF7 cell proliferation from 35% to 95%. Annexin V-FITC and TUNEL assays showed positive staining for apoptosis of MCF7 cells treated with MEAD (15 mg and 25 mg for 48 h). Flow cytometric analyses of MCF7 cells with MEAD (15 mg/ml and 20 mg/ml) for 24 h demonstrated cell cycle arrest at 'S' phase; increased p53, Bax protein expression; caspase 3activation and decreased the mitochondrial membrane potential (MMP). Quantitative real time PCR (qRT-PCR) analysis showed up-regulation of p53, Bax, Fas, and FasL and down-regulation of Bcl-2. Conclusions MEAD inhibited MCF7 cells in vitro by the inducing cell cycle arrest and apoptosis. Our results indicate the anticancer effects of Ajwa dates, which therefore may be used as an adjunct therapy with conventional chemotherapeutics to achieve a synergistic effect against breast cancer. PMID:27441372

  20. Ras/ERK1 pathway regulation of p27KIP1-mediated G1-phase cell-cycle arrest in cordycepin-induced inhibition of the proliferation of vascular smooth muscle cells.

    PubMed

    Jung, Su-Mi; Park, Sung-Soo; Kim, Wun-Jae; Moon, Sung-Kwon

    2012-04-15

    Cordycepin, the main constituent of Cordyceps militaris, demonstrated an anti-atherogenic effect in experimental animals. However, the effects of cordycepin on cell-cycle regulation and the signaling pathway in vascular smooth muscle cells (VSMC) remain largely unknown; therefore, unexpected roles of cordycepin-induced inhibition in VSMC growth were investigated. Mechanisms in cordycepin-treated VSMC were examined via an MTT assay, a thymidine uptake experiment, FACS analysis, immunoblot analysis, kinase assay, immunoprecipitation assay, and transient transfection assays. Cordycepin inhibited cell growth, induced G1-phase cell-cycle arrest, down-regulated cyclins and cyclin-dependent kinase (CDK) expression, and up-regulated p27KIP1 expression in VSMC. Cordycepin induced activation of JNK, p38MAPK and ERK1/2. Blocking of the ERK function using either ERK1/2-specific inhibitor U0126 or a small interfering RNA (si-ERK1) reversed p27KIP1 expression, inhibition of cell growth, and decreased cell-cycle proteins in cordycepin-treated VSMC. Ras activation was increased by cordycepin. Transfection of cells with dominant negative Ras (RasN17) mutant genes rescued cordycepin-induced ERK1/2 activity, increased p27KIP1 expression, inhibited cell proliferation, and reduced cell cycle proteins. In conclusion, our findings indicate that Ras/ERK1 pathways participate in p27KIP1-mediated G1-phase cell-cycle arrest induced by cordycepin via a decrease in cyclin/CDK complexes in VSMC.

  1. Kaposi's Sarcoma-Associated Herpesvirus MicroRNAs Target GADD45B To Protect Infected Cells from Cell Cycle Arrest and Apoptosis.

    PubMed

    Liu, Xiaoyan; Happel, Christine; Ziegelbauer, Joseph M

    2017-02-01

    Kaposi's sarcoma is one of the most common malignancies in HIV-infected individuals. The responsible agent, Kaposi's sarcoma-associated herpesvirus (KSHV; HHV8), expresses multiple microRNAs (miRNAs), but the targets and functions of these miRNAs are not completely understood. After infection in primary endothelial cells with KSHV, growth arrest DNA damage-inducible gene 45 beta (GADD45B) is one of the most repressed genes using genomic expression profiling. GADD45B was also repressed in mRNA expression profiling experiments when KSHV miRNAs were introduced to uninfected cells. We hypothesized that KSHV miRNAs target human GADD45B to protect cells from consequences of DNA damage, which can be triggered by viral infection. Expression of GADD45B protein is induced by the p53 activator, Nutlin-3, and KSHV miRNA-K9 inhibits this induction. In addition, Nutlin-3 increased apoptosis and cell cycle arrest based on flow cytometry assays. KSHV miR-K9 protected primary endothelial cells from apoptosis and cell cycle arrest following Nutlin-3 treatment. Similar protective phenotypes were seen for targeting GADD45B with short interfering RNAs (siRNAs), as with miR-K9. KSHV miR-K9 also decreased the protein levels of cleaved caspase-3, cleaved caspase-7, and cleaved poly(ADP-ribose) polymerase (PARP). In B lymphocytes latently infected with KSHV, specific inhibitors of KSHV miR-K9 led to increased GADD45B expression and apoptosis, indicating that miR-K9 is important for reducing apoptosis in infected cells. Furthermore, ectopic expression of GADD45B in KSHV-infected cells promoted apoptosis. Together, these results identify a new miRNA target and demonstrate that KSHV miRNAs are important for protecting infected cells from DNA damage responses.

  2. Andrographis paniculata extracts and major constituent diterpenoids inhibit growth of intrahepatic cholangiocarcinoma cells by inducing cell cycle arrest and apoptosis.

    PubMed

    Suriyo, Tawit; Pholphana, Nanthanit; Rangkadilok, Nuchanart; Thiantanawat, Apinya; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2014-05-01

    Andrographis paniculata is an important herbal medicine widely used in several Asian countries for the treatment of various diseases due to its broad range of pharmacological activities. The present study reports that A. paniculata extracts potently inhibit the growth of liver (HepG2 and SK-Hep1) and bile duct (HuCCA-1 and RMCCA-1) cancer cells. A. paniculata extracts with different contents of major diterpenoids, including andrographolide, 14-deoxy-11,12-didehydroandrographolide, neoandrographolide, and 14-deoxyandrographolide, exhibited a different potency of growth inhibition. The ethanolic extract of A. paniculata at the first true leaf stage, which contained a high amount of 14-deoxyandrographolide but a low amount of andrographolide, showed a cytotoxic effect to cancer cells about 4 times higher than the water extract of A. paniculata at the mature leaf stage, which contained a high amount of andrographolide but a low amount of 14-deoxyandrographolide. Andrographolide, not 14-deoxy-11,12-didehydroandrographolide, neoandrographolide, or 14-deoxyandrographolide, possessed potent cytotoxic activity against the growth of liver and bile duct cancer cells. The cytotoxic effect of the water extract of A. paniculata at the mature leaf stage could be explained by the present amount of andrographolide, while the cytotoxic effect of the ethanolic extract of A. paniculata at the first true leaf stage could not. HuCCA-1 cells showed more sensitivity to A. paniculata extracts and andrographolide than RMCCA-1 cells. Furthermore, the ethanolic extract of A. paniculata at the first true leaf stage increased cell cycle arrest at the G0/G1 and G2/M phases, and induced apoptosis in both HuCCA-1 and RMCCA-1 cells. The expressions of cyclin-D1, Bcl-2, and the inactive proenzyme form of caspase-3 were reduced by the ethanolic extract of A. paniculata in the first true leaf stage treatment, while a proapoptotic protein Bax was increased. The cleavage of poly (ADP

  3. Taxol induces concentration-dependent phosphatidylserine (PS) externalization and cell cycle arrest in ASTC-a-1 cells

    NASA Astrophysics Data System (ADS)

    Guo, Wen-jing; Chen, Tong-sheng

    2010-02-01

    Taxol (Paclitaxel) is an important natural product for the treatment of solid tumors. Different concentrations of taxol can trigger distinct effects on both the cellular microtubule network and biochemical pathways. Apoptosis induced by low concentrations (5-30 nM) of taxol was associated with mitotic arrest, alteration of microtubule dynamics and/or G2/M cell cycle arrest, whereas high concentrations of this drug (0.2-30 μM) caused significant microtubule damage, and was found recently to induce cytoplasm vacuolization in human lung adenocarcinoma (ASTC-a-1) cells. In present study, cell counting kit (CCK-8) assay, confocal microscope, and flow cytometry analysis were used to analyze the cell death form induced by 35 nM and 70 μM of taxol respectively in human lung adenocarcinoma (ASTC-a-1) cells. After treatment of 35 nM taxol for 48 h, the OD450 value was 0.80, and 35 nM taxol was found to induce dominantly cell death in apoptotic pathway such as phosphatidylserine (PS) externalization, G2/M phase arrest after treatment for 24 h, and nuclear fragmentation after treatment for 48 h. After 70 μM taxol treated the cell for 24 h, the OD450 value was 1.01, and 70 μM taxol induced cytoplasm vacuolization programmed cell death (PCD) and G2/M phase as well as the polyploidy phase arrest in paraptotic-like cell death. These findings imply that the regulated signaling pathway of cell death induced by taxol is dependent on taxol concentration in ASTC-a-1 cells.

  4. A sex-inducing pheromone triggers cell cycle arrest and mate attraction in the diatom Seminavis robusta

    PubMed Central

    Moeys, Sara; Frenkel, Johannes; Lembke, Christine; Gillard, Jeroen T. F.; Devos, Valerie; Van den Berge, Koen; Bouillon, Barbara; Huysman, Marie J. J.; De Decker, Sam; Scharf, Julia; Bones, Atle; Brembu, Tore; Winge, Per; Sabbe, Koen; Vuylsteke, Marnik; Clement, Lieven; De Veylder, Lieven; Pohnert, Georg; Vyverman, Wim

    2016-01-01

    Although sexual reproduction is believed to play a major role in the high diversification rates and species richness of diatoms, a mechanistic understanding of diatom life cycle control is virtually lacking. Diatom sexual signalling is controlled by a complex, yet largely unknown, pheromone system. Here, a sex-inducing pheromone (SIP+) of the benthic pennate diatom Seminavis robusta was identified by comparative metabolomics, subsequently purified, and physicochemically characterized. Transcriptome analysis revealed that SIP+ triggers the switch from mitosis-to-meiosis in the opposing mating type, coupled with the transcriptional induction of proline biosynthesis genes, and the release of the proline-derived attraction pheromone. The induction of cell cycle arrest by a pheromone, chemically distinct from the one used to attract the opposite mating type, highlights the existence of a sophisticated mechanism to increase chances of mate finding, while keeping the metabolic losses associated with the release of an attraction pheromone to a minimum. PMID:26786712

  5. TiO2 nanoparticles induce DNA double strand breaks and cell cycle arrest in human alveolar cells.

    PubMed

    Kansara, Krupa; Patel, Pal; Shah, Darshini; Shukla, Ritesh K; Singh, Sanjay; Kumar, Ashutosh; Dhawan, Alok

    2015-03-01

    TiO2 nanoparticles (NPs) have the second highest global annual production (∼3000 tons) among the metal-containing NPs. These NPs are used as photocatalysts for bacterial disinfection, and in various other consumer products including sunscreen, food packaging, therapeutics, biosensors, surface cleaning agents, and others. Humans are exposed to these NPs during synthesis (laboratory), manufacture (industry), and use (consumer products, devices, medicines, etc.), as well as through environmental exposures (disposal). Hence, there is great concern regarding the health effects caused by exposure to NPs and, in particular, to TiO2 NPs. In the present study, the genotoxic potential of TiO2 NPs in A549 cells was examined, focusing on their potential to induce ROS, different types of DNA damage, and cell cycle arrest. We show that TiO2 NPs can induce DNA damage and a corresponding increase in micronucleus frequency, as evident from the comet and cytokinesis-block micronucleus assays. We demonstrate that DNA damage may be attributed to increased oxidative stress and ROS generation. Furthermore, genomic and proteomic analyses showed increased expression of ATM, P53, and CdC-2 and decreased expression of ATR, H2AX, and Cyclin B1 in A549 cells, suggesting induction of DNA double strand breaks. The occurrence of double strand breaks was correlated with cell cycle arrest in G2/M phase. Overall, the results indicate the potential for genotoxicity following exposure to these TiO2 NPs, suggesting that use should be carefully monitored.

  6. Chaetocin-A histone methyltransferase inhibitor-Impairs proliferation, arrests cell cycle and induces nucleolar disassembly in Trypanosoma cruzi.

    PubMed

    Zuma, Aline Araujo; Santos, Jean de Oliveira; Mendes, Isabela; de Souza, Wanderley; Machado, Carlos Renato; Motta, Maria Cristina M

    2017-02-06

    The Trypanosomatidae family includes pathogenic species of medical and veterinary interest. Chagas disease is endemic in Latin America, and about 8 million people are infected worldwide. There is a need for more effective drugs for the acute, undetermined and chronic phases of the disease that, in addition, do not cause side effects, stimulating the search for identification of new drug targets, as well as new chemotherapeutic targets. Trypanosomatids contain characteristic structures, such as the nucleus that undergoes a closed mitosis without chromosome formation and variations of chromatin packing in the different protozoa developmental stages. The nuclear DNA is condensed by histones that suffer post-translational modifications, such as addition of methyl groups by histone methyltransferases (MHT) and addition of acetyl groups by acetyltransferases. These processes modulate gene expression and chromatin organization, which are crucial to transcription, replication, repair and recombination. In the present study, the effects of chaetocin, a HMT inhibitor, on T. cruzi epimastigote proliferation, viability, ultrastructure and cell cycle were investigated. Results indicate that chaetocin promoted irreversible inhibition of protozoa growth, evident unpacking of nuclear heterochromatin and intense nucleolus fragmentation, which is associated with parasite cell cycle arrest and RNA transcription blockage. Taken together, data obtained with chaetocin treatment stimulate the use of histone methyltransferase inhibitors against pathogenic trypanosomatids.

  7. Histological Lesions, Cell Cycle Arrest, Apoptosis and T Cell Subsets Changes of Spleen in Chicken Fed Aflatoxin-contaminated Corn

    PubMed Central

    Peng, Xi; Zhang, Keying; Bai, Shiping; Ding, Xuemei; Zeng, Qiufeng; Yang, Jun; Fang, Jing; Chen, Kejie

    2014-01-01

    The purpose of this study was to evaluate the effects of corn naturally contaminated with aflatoxin B1 and aflatoxin B2 on pathological lesions, apoptosis, cell cycle phases and T lymphocyte subsets of spleen, and to provide an experimental basis for understanding the mechanism of aflatoxin-induced immunosuppression. A total of 900 COBB500 male broilers were randomly allocated into five groups with six replicates per group and 30 birds per replicate. The experiment lasted for 6 weeks and the five dietary treatments consisted of control, 25% contaminated corn, 50% contaminated corn, 75% contaminated corn and 100% contaminated corn groups. The histopathological spleen lesions from the contaminated corn groups was characterized as congestion of red pulp, increased necrotic cells and vacuoles in the splenic corpuscle and periarterial lymphatic sheath. The contaminated corn intake significantly increased relative weight of spleen, percentages of apoptotic splenocytes, induced cell cycle arrest of splenocytes, increased the percentages of CD3+CD8+ T cells and decreased the ratios of CD3+CD4+ to CD3+CD8+. The results suggest that AFB-induced immunosuppression maybe closely related to the lesions of spleen. PMID:25141002

  8. Inhibition of root growth by narciclasine is caused by DNA damage-induced cell cycle arrest in lettuce seedlings.

    PubMed

    Hu, Yanfeng; Li, Jiaolong; Yang, Lijing; Nan, Wenbin; Cao, Xiaoping; Bi, Yurong

    2014-09-01

    Narciclasine (NCS) is an Amaryllidaceae alkaloid isolated from Narcissus tazetta bulbs. Its phytotoxic effects on plant growth were examined in lettuce (Lactuca sativa L.) seedlings. Results showed that high concentrations (0.5-5 μM) of NCS restricted the growth of lettuce roots in a dose-dependent manner. In NCS-treated lettuce seedlings, the following changes were detected: reduction of mitotic cells and cell elongation in the mature region, inhibition of proliferation of meristematic cells, and cell cycle. Moreover, comet assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay indicated that higher levels NCS (0.5-5 μM) induced DNA damage in root cells of lettuce. The decrease in meristematic cells and increase in DNA damage signals in lettuce roots in responses to NCS are in a dose-dependent manner. NCS-induced reactive oxygen species accumulation may explain an increase in DNA damage in lettuce roots. Thus, the restraint of root growth is due to cell cycle arrest which is caused by NCS-induced DNA damage. In addition, it was also found that NCS (0.5-5 μM) inhibited the root hair development of lettuce seedlings. Further investigations on the underlying mechanism revealed that both auxin and ethylene signaling pathways are involved in the response of root hairs to NCS.

  9. Cell cycle arrest of a Caulobacter crescentus secA mutant.

    PubMed Central

    Kang, P J; Shapiro, L

    1994-01-01

    Cell differentiation is an inherent component of the Caulobacter crescentus cell cycle. The transition of a swarmer cell, with a single polar flagellum, into a sessile stalked cell includes several morphogenetic events. These include the release of the flagellum and pili, the proteolysis of chemotaxis proteins, the biogenesis of the polar stalk, and the initiation of DNA replication. We have isolated a group of temperature-sensitive mutants that are unable to complete this process at the restrictive temperature. We show here that one of these strains has a mutation in a homolog of the Escherichia coli secA gene, whose product is involved in protein translocation at the cell membrane. This C. crescentus secA mutant has allowed the identification of morphogenetic events in the swarmer-to-stalked cell transition that require SecA-dependent protein translocation. Upon shift to the nonpermissive temperature, the mutant secA swarmer cell is able to release the polar flagellum, degrade chemoreceptors, and initiate DNA replication, but it is unable to form a stalk, complete DNA replication, or carry out cell division. At the nonpermissive temperature, the cell cycle blocks prior to the de novo synthesis of flagella and chemotaxis proteins that normally occurs in the predivisional cell. Although interactions between the chromosome and the cytoplasmic membrane are believed to be a functional component of the temporal regulation of DNA replication, the ability of this secA mutant to initiate replication at the nonpermissive temperature suggests that SecA-dependent events are not involved in this process. However, both cell division and stalk formation, which is analogous to a polar division event, require SecA function. Images PMID:8051008

  10. Cordyceps cicadae induces G2/M cell cycle arrest in MHCC97H human hepatocellular carcinoma cells: a proteomic study

    PubMed Central

    2014-01-01

    Background Cordyceps cicadae is a medicinal fungus that is often used for treating cancer. However, the anticancer mechanisms of C. cicadae are largely unknown. This study aims to investigate the anticancer mechanisms of C. cicadae against hepatocellular carcinoma cells in vitro using a proteomic approach. Methods Human hepatocellular carcinoma MHCC97H cells were treated with a water extract of C. cicadae (0, 100, 250, 500, and 1000 μg/mL) for 48 h and harvested for cell viability assays. The significant differences in protein expression between control and C. cicadae-treated cells were analyzed by two-dimensional gel-based proteomics coupled with matrix-assisted laser desorption ionization-time of flight mass spectrometry. Flow cytometry analysis was employed to investigate the cell cycle and cell death. The anticancer molecular mechanism was analyzed by whole proteome mapping. Results The water extract of C. cicadae (0, 100, 250, 500, and 1000 μg/mL) inhibited the growth of MHCC97H cells in a dose-dependent manner via G2/M phase cell cycle arrest with no evidence of apoptosis. Among the identified proteins with upregulated expression were dynactin subunit 2, N-myc downstream-regulated gene 1, heat shock protein beta-1, alpha-enolase isoform 1, phosphatidylinositol transfer protein, and WD repeat-containing protein 1. Meanwhile, the proteins with downregulated expression were 14-3-3 gamma, BUB3, microtubule-associated protein RP/EB family member 1, thioredoxin-like protein, chloride intracellular channel protein 1, ectonucleoside triphosphate diphosphohydrolase 5, xaa-Pro dipeptidase, enoyl-CoA delta isomerase 1, protein-disulfide isomerase-related chaperone Erp29, hnRNP 2H9B, peroxiredoxin 1, WD-40 repeat protein, and serine/threonine kinase receptor-associated protein. Conclusion The water extract of C. cicadae reduced the growth of human hepatocellular carcinoma MHCC97H cells via G2/M cell cycle arrest. PMID:24872842

  11. The role of p21(waf1/cip1) and p27(Kip1) in HDACi-mediated tumor cell death and cell cycle arrest in the Eμ-myc model of B-cell lymphoma.

    PubMed

    Newbold, A; Salmon, J M; Martin, B P; Stanley, K; Johnstone, R W

    2014-11-20

    Following the establishment of histone deacetylases (HDACs) as promising therapeutic targets for the reversal of aberrant epigenetic states associated with cancer, the development of HDAC inhibitors (HDACi) and their underlying mechanisms of action has been a significant area of scientific interest. HDACi induce diverse biological responses including the inhibition of cell proliferation by blocking progression through the G1 or G2/M phases of the cell cycle. As a putative tumor-suppressor protein, p21(waf1/cip1) influences cell proliferation by inhibiting the activity of cyclin-cyclin-dependent kinase (CDK) complexes at the G1/S and G2/M cell cycle checkpoints. HDACi transcriptionally activate CDKN1A, and it has been proposed that induction of p21(waf1/cip1) can determine if a cell undergoes apoptosis or cell cycle arrest following HDACi treatment. In the Eμ-myc transgenic mouse model of B-cell lymphoma, knockout of cdkn1a had no effect on disease latency, indicating that p21(waf1/cip1) did not function as a tumor suppressor in this system. Although HDACi robustly induced expression of p21(waf1/cip1) in wild-type Eμ-myc lymphomas, deletion of cdkn1a did not sensitize the lymphoma cells to HDACi-induced apoptosis and HDACi-induced cell cycle arrest still occurred. However, knockdown of cdkn1b in cdkn1a knockout lymphomas resulted in defective vorinostat-mediated arrest at G1/S indicating an essential role of p27(Kip1) in mediating this biological response to vorinostat. These data demonstrate that induction of cdkn1a does not regulate HDACi-mediated tumor cell apoptosis and refute the notion that p21(waf1/cip1) is an obligate mediator of HDACi-induced cell cycle arrest.

  12. Α-MMC and MAP30, two ribosome-inactivating proteins extracted from Momordica charantia, induce cell cycle arrest and apoptosis in A549 human lung carcinoma cells.

    PubMed

    Fan, Xiang; He, Lingli; Meng, Yao; Li, Gangrui; Li, Linli; Meng, Yanfa

    2015-05-01

    α‑Momorcharin (α‑MMC) and momordica anti‑human immunodeficiency virus protein (MAP30), produced by Momordica charantia, are ribosome‑inactivating proteins, which have been reported to exert inhibitory effects on cultured tumor cells. In order to further elucidate the functions of these agents, the present study aimed to investigate the effects of α‑MMC and MAP30 on cell viability, the induction of apoptosis, cell cycle arrest, DNA integrity and superoxide dismutase (SOD) activity. α‑MMC and MAP30 were purified from bitter melon seeds using ammonium sulfate precipitation in combination with sulfopropyl (SP)‑sepharose fast flow, sephacryl S‑100 and macro‑Cap‑SP chromatography. MTT, flow cytometric and DNA fragmentation analyses were then used to determine the effects of α‑MMC and MAP30 on human lung adenocarcinoma epithelial A549 cells. The results revealed that A549 cells were sensitive to α‑MMC and MAP30 cytotoxicity assays in vitro. Cell proliferation was significantly suppressed following α‑MMC and MAP30 treatment in a dose‑ and time‑dependent manner; in addition, the results indicated that MAP30 had a more potent anti‑tumor activity compared with that of α‑MMC. Cell cycle arrest in S phase and a significantly increased apoptotic rate were observed following treatment with α‑MMC and MAP30. Furthermore, DNA integrity analysis revealed that the DNA of A549 cells was degraded following treatment with α‑MMC and MAP30 for 48 h. The pyrogallol autoxidation method and nitrotetrazolium blue chloride staining were used to determine SOD activity, the results of which indicated that α‑MMC and MAP30 did not possess SOD activity. In conclusion, the results of the present study indicated that α‑MMC and MAP30 may have potential as novel therapeutic agents for the prophylaxis and treatment of cancer.

  13. Honokiol, a potential therapeutic agent, induces cell cycle arrest and program cell death in vitro and in vivo in human thyroid cancer cells.

    PubMed

    Lu, Chieh-Hsiang; Chen, Shu-Hsin; Chang, Yi-Sheng; Liu, Yi-Wen; Wu, Jin-Yi; Lim, Yun-Ping; Yu, Hui-I; Lee, Ying-Ray

    2017-01-01

    Thyroid cancer is the most common endocrine malignancy, the global incidence rate of which is rapidly rising. Surgery and radioiodine therapies are common and effective treatments only for nonmetastasized primary tumors. Therefore, effective treatment modalities are imperative for patients with radioiodine-resistant thyroid cancer. Honokiol, a biophenolic compound derived from Magnolia spp., has been shown have diverse biological and pharmacological activities, including anti-inflammatory, antioxidative, antiangiogenic, and anticancer properties. In the present study, three human thyroid cancer cell lines, namely anaplastic, follicular, and poorly differentiated thyroid cancer cells, were used to evaluate the chemotherapeutic activity of honokiol. Cell viability, cell cycle, apoptosis, and autophagy induction were determined through flow cytometry and western blot analysis. We found that honokiol treatment can suppress cell growth, induce cell cycle arrest, and enhance the induction of caspase-dependent apoptosis and autophagy in cancer cells. Moreover, honokiol treatment modulated signaling pathways including Akt/mTOR, ERK, JNK, and p38 in the studied cells. In addition, the antitumorigenic activity of honokiol was also confirmed in vitro and in vivo. Our data provide evidence that honokiol has a unique application in chemotherapy for human thyroid cancers.

  14. Effects of maple (Acer) plant part extracts on proliferation, apoptosis and cell cycle arrest of human tumorigenic and non-tumorigenic colon cells.

    PubMed

    González-Sarrías, Antonio; Li, Liya; Seeram, Navindra P

    2012-07-01

    Phenolic-enriched extracts of maple sap and syrup, obtained from the sugar and red maple species (Acer saccharum Marsh, A. rubrum L., respectively), are reported to show anticancer effects. Despite traditional medicinal uses of various other parts of these plants by Native Americans, they have not been investigated for anticancer activity. Here leaves, stems/twigs, barks and sapwoods of both maple species were evaluated for antiproliferative effects against human colon tumorigenic (HCT-116, HT-29, Caco-2) and non-tumorigenic (CCD-18Co) cells. Extracts were standardized to total phenolic and ginnalin-A (isolated in our laboratory) levels. Overall, the extracts inhibited the growth of the colon cancer more than normal cells (over two-fold), their activities increased with their ginnalin-A levels, with red > sugar maple extracts. The red maple leaf extract, which contained the highest ginnalin-A content, was the most active extract (IC₅₀  = 35 and 16 µg/mL for extract and ginnalin-A, respectively). The extracts were not cytotoxic nor did they induce apoptosis of the colon cancer cells. However, cell cycle analyses revealed that the antiproliferative effects of the extracts were mediated through cell cycle arrest in the S-phase. The results from the current study suggest that these maple plant part extracts may have potential anticolon cancer effects.

  15. Sp1 acetylation is associated with loss of DNA binding at promoters associated with cell cycle arrest and cell death in a colon cell line.

    PubMed

    Waby, Jennifer S; Chirakkal, Haridasan; Yu, ChenWei; Griffiths, Gareth J; Benson, Roderick S P; Bingle, Colin D; Corfe, Bernard M

    2010-10-15

    Butyrate, a known histone deacetylase inhibitor (HDACi) and product of fibre fermentation, is postulated to mediate the protective effect of dietary fibre against colon cancer. The transcription factor Sp1 is a target of acetylation and is known to be associated with class I HDACs, including HDAC1. Sp1 is a ubiquitous transcription factor and Sp1-regulated genes include those involved in cell cycle regulation, apoptosis and lipogenesis: all major pathways in cancer development. The only known acetylated residue of Sp1 is lysine703 which resides in the DNA binding domain. Here we show that acetylated Sp1 loses p21- and bak-promoter -binding function in vitro. Furthermore treatment with a panel of HDAC inhibitors showed clustering of activities for a subset of inhibitors, causing G2 cell cycle arrest, Sp1 acetylation, p21 and Bak over-expression, all with very similar EC50 concentrations. These HDACi activities were not distributed according to the molecular class of compound. In order to mimic loss of binding, an siRNA strategy was used to reduce Sp1 expression. This resulted in altered expression of multiple elements of the p53/p21 pathway. Taken together our data suggest a mechanistic model for the chemopreventive actions of butyrate in colon epithelial cells, and provide new insight into the differential activities some classes of HDAC inhibitors.

  16. Characterization of RAD9 of Saccharomyces cerevisiae and evidence that its function acts posttranslationally in cell cycle arrest after DNA damage.

    PubMed Central

    Weinert, T A; Hartwell, L H

    1990-01-01

    In eucaryotic cells, incompletely replicated or damaged chromosomes induce cell cycle arrest in G2 before mitosis, and in the yeast Saccharomyces cerevisiae the RAD9 gene is essential for the cell cycle arrest (T.A. Weinert and L. H. Hartwell, Science 241:317-322, 1988). In this report, we extend the analysis of RAD9-dependent cell cycle control. We found that both induction of RAD9-dependent arrest in G2 and recovery from arrest could occur in the presence of the protein synthesis inhibitor cycloheximide, showing that the mechanism of RAD9-dependent control involves a posttranslational mechanism(s). We have isolated and determined the DNA sequence of the RAD9 gene, confirming the DNA sequence reported previously (R. H. Schiestl, P. Reynolds, S. Prakash, and L. Prakash, Mol. Cell. Biol. 9:1882-1886, 1989). The predicted protein sequence for the Rad9 protein bears no similarity to sequences of known proteins. We also found that synthesis of the RAD9 transcript in the cell cycle was constitutive and not induced by X-irradiation. We constructed yeast cells containing a complete deletion of the RAD9 gene; the rad9 null mutants were viable, sensitive to X- and UV irradiation, and defective for cell cycle arrest after DNA damage. Although Rad+ and rad9 delta cells had similar growth rates and cell cycle kinetics in unirradiated cells, the spontaneous rate of chromosome loss (in unirradiated cells) was elevated 7- to 21-fold in rad9 delta cells. These studies show that in the presence of induced or endogenous DNA damage, RAD9 is a negative regulator that inhibits progression from G2 in order to preserve cell viability and to maintain the fidelity of chromosome transmission. Images PMID:2247073

  17. Hispolon from Phellinus linteus induces G0/G1 cell cycle arrest and apoptosis in NB4 human leukaemia cells.

    PubMed

    Chen, Yi-Chuan; Chang, Heng-Yuan; Deng, Jeng-Shyan; Chen, Jian-Jung; Huang, Shyh-Shyun; Lin, I-Hsin; Kuo, Wan-Lin; Chao, Wei; Huang, Guan-Jhong

    2013-01-01

    Hispolon (a phenolic compound isolated from Phellinus linteus) has been shown to possess strong antioxidant, anti-inflammatory, anticancer, and antidiabetic properties. In this study, we investigated the antiproliferative effect of hispolon on human hepatocellular carcinoma NB4 cells using the MTT assay, DNA fragmentation, DAPI (4, 6-diamidino-2-phenylindole dihydrochloride) staining, and flow cytometric analysis. Hispolon inhibited the cellular growth of NB4 cells in a dose-dependent manner through the induction of cell cycle arrest at G0/G1 phase measured using flow cytometric analysis and apoptotic cell death, as demonstrated by DNA laddering. Exposure of NB4 cells to hispolon-induced apoptosis-related protein expressions, such as the cleavage form of caspase 3, caspase 8, caspase 9, poly (ADP ribose) polymerase, and the proapoptotic Bax protein. Western blot analysis showed that the protein levels of extrinsic apoptotic proteins (Fas and FasL), intrinsic related proteins (cytochrome c), and the ratio of Bax/Bcl-2 were increased in NB4 cells after hispolon treatment. Hispolon-induced G0/G1-phase arrest was associated with a marked decrease in the protein expression of p53, cyclins D1, and cyclins E, and cyclin-dependent kinases (CDKs) 2, and 4, with concomitant induction of p21waf1/Cip1 and p27Kip1. We conclude that hispolon induces both of extrinsic and intrinsic apoptotic pathways in NB4 human leukemia cells in vitro.

  18. Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis.

    PubMed

    Li, Xiang; Mo, Xiaorong; Shou, Huixia; Wu, Ping

    2006-08-01

    In Arabidopsis, lateral root formation is a post-embryonic developmental event, which is regulated by hormones and environmental signals. In this study, via analyzing the expression of cyclin genes during lateral root (LR) formation, we report that cytokinins (CTKs) inhibit the initiation of LR through blocking the pericycle founder cells cycling at the G(2) to M transition phase, while the promotion by CTK of LR elongation is due to the stimulation of the G(1) to S transition. No significant difference was detected in the inhibitory effect of CTK on LR formation between wild-type plants and mutants defective in auxin response or transport. In addition, exogenously applied auxin at different concentrations could not rescue the CTK-mediated inhibition of LR initiation. Our data suggest that CTK and auxin might control LR initiation through two separate signaling pathways in Arabidopsis. The CTK-mediated repression of LR initiation is transmitted through the two-component signal system and mediated by the receptor CRE1.

  19. Silencing of TBX20 gene expression in rat myocardial and human embryonic kidney cells leads to cell cycle arrest in G2 phase

    PubMed Central

    Liu, Peiyan; Sun, Yueling; Qiu, Guangbin; Jiang, Hongkun; Qiu, Guangrong

    2016-01-01

    Congenital heart diseases (CHDs) are the most common birth defects due to abnormal cardiac development. The T-box 20 (TBX20) gene is a member of the T-box family of transcription factors and encodes TBX20, which is essential for early heart development. In the present study, reduced TBX20 expression was observed in CHD tissue samples compared with normal tissues, and the function of TBX20 in Rattus norvegicus myocardial cells [H9c2(2-1)] and human embryonic kidney cells (HEK293) was investigated. TBX20 was silenced in H9c2 and HEK293 cells via transfection of small interfering RNA and short hairpin RNA duplexes, respectively, and TBX20 mRNA and protein levels were subsequently examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Cell proliferation was assessed using a cell counting kit and proliferating cell nuclear antigen expression was determined by western blotting. Analysis of cell apoptosis was achieved by annexin V-fluorescein isothiocyanate/propidium iodide staining and a fluorometric terminal deoxynucleotidyl transferase dUTP nick-end labeling system. Cell cycle analysis was achieved using fluorescence-activated cell sorting, and, an RT-qPCR array was used to profile the expression of TBX20-related genes. Silencing of TBX20 in H9c2 and HEK293 cells significantly inhibited cell proliferation, induced cell apoptosis and led to G2/M cell cycle arrest. A reduction in cyclin B1 mRNA levels and an increase in cyclin-dependent kinase inhibitor 1B mRNA levels was observed, which indicated that cells were arrested in G2 phase. Concurrently, the mRNA levels of GATA binding protein 4 were increased in both cell lines, which may provide an explanation for the abnormal cardiac hypertrophy observed in patients with congenital heart disease. These results suggest that TBX20 is required for heart morphogenesis, and inhibition of TBX20 expression may lead to the suppression of cell proliferation and cell cycle

  20. Silencing of MAP4K4 by short hairpin RNA suppresses proliferation, induces G1 cell cycle arrest and induces apoptosis in gastric cancer cells

    PubMed Central

    LIU, YUAN-FEI; QU, GUO-QIANG; LU, YUN-MIN; KONG, WU-MING; LIU, YUAN; CHEN, WEI-XIONG; LIAO, XIAO-HONG

    2016-01-01

    Gastric cancer (GC) is the second most common cause of cancer-associated mortality worldwide. Previous studies suggest that mitogen-activated protein kinase kinase kinase kinase isoform 4 (MAP4K4) is involved in cancer cell growth, apoptosis and migration. In the present study, bioinformatics analysis and reverse transcription-quantitative polymerase chain reaction were performed to determine if MAP4K4 was overexpressed in GC. The knockdown of MAP4K4 by RNA interference in GC cells markedly inhibited cell proliferation, which may be mediated by cell cycle arrest in the G1 phase. The silencing of MAP4K4 also induced cell apoptosis by increasing the ratio of Bax/Bcl-2. In addition, Notch signaling was markedly reduced by MAP4K4 silencing. The results of the present study suggested that inhibition of MAP4K4 may be a therapeutic strategy for GC. PMID:26549737

  1. Hydroxytyrosol and the Colonic Metabolites Derived from Virgin Olive Oil Intake Induce Cell Cycle Arrest and Apoptosis in Colon Cancer Cells.

    PubMed

    López de Las Hazas, Maria-Carmen; Piñol, Carme; Macià, Alba; Motilva, Maria-José

    2017-01-19

    After the sustained consumption of virgin olive oil (VOO), the unabsorbed native phenols (mainly hydroxytyrosol (HT)) are transformed into its catabolites in the intestine by microbials. The role of these catabolites in preventing colon cancer has not been sufficiently investigated. This work aims to study the antiproliferative and apoptotic activities in colon (Caco-2; HT-29) cancer cell lines of the main catabolites detected in human feces (phenylacetic, phenylpropionic, hydroxyphenylpropionic, and dihydroxyphenylpropionic acids and catechol), after the sustained VOO intake. Additionally, an assessment of the ability of these colonic cells to metabolize the studied compounds was performed. The results showed that HT and phenylacetic and hydroxyphenylpropionic acids produce cell cycle arrest and promote apoptosis. HT-29 cells were more sensitive to phenol treatments than Caco-2. In synthesis, the results of the present study represent a good starting point for understanding the potential apoptotic and antiproliferative effects of VOO phenolic compounds and their colonic metabolites.

  2. The Ethanolic Extract of Taiwanofungus camphoratus (Antrodia camphorata) Induces Cell Cycle Arrest and Enhances Cytotoxicity of Cisplatin and Doxorubicin on Human Hepatocellular Carcinoma Cells.

    PubMed

    Lin, Liang-Tzung; Tai, Chen-Jei; Su, Ching-Hua; Chang, Fang-Mo; Choong, Chen-Yen; Wang, Chien-Kai; Tai, Cheng-Jeng

    2015-01-01

    Taiwanofungus camphoratus (synonym Antrodia camphorata) is a widely used medicinal fungus in the folk medicine of Taiwan with several pharmacological features such as anti-inflammatory, liver protection, antihypertensive, and antioxidative activities. The ethanolic extract of T. camphoratus (TCEE) which contains abundant bioactive compounds including triterpenoids and polysaccharides also has antitumor effects in various human cancer cell lines. The aims of this study are to clarify the antitumor effects of TCEE on human hepatocellular carcinoma cells and also evaluate the combination drug effects with conventional chemotherapy agents, cisplatin and doxorubicin. In the present study, the TCEE treatment induced cell cycle arrest and suppressed cell growth on both Hep3B and HepJ5 cells. Expression of cell cycle inhibitors, P21 and P27, and activation of apoptosis executer enzyme, caspase-3, were also induced by TCEE. In combination with the chemotherapy agents, TCEE treatment further enhanced the tumor suppression efficiency of cisplatin and doxorubicin. These results together suggested that TCEE is a potential ingredient for developing an integrated chemotherapy for human liver cancer.

  3. The Ethanolic Extract of Taiwanofungus camphoratus (Antrodia camphorata) Induces Cell Cycle Arrest and Enhances Cytotoxicity of Cisplatin and Doxorubicin on Human Hepatocellular Carcinoma Cells

    PubMed Central

    Lin, Liang-Tzung; Tai, Chen-Jei; Su, Ching-Hua; Chang, Fang-Mo; Choong, Chen-Yen; Wang, Chien-Kai; Tai, Cheng-Jeng

    2015-01-01

    Taiwanofungus camphoratus (synonym Antrodia camphorata) is a widely used medicinal fungus in the folk medicine of Taiwan with several pharmacological features such as anti-inflammatory, liver protection, antihypertensive, and antioxidative activities. The ethanolic extract of T. camphoratus (TCEE) which contains abundant bioactive compounds including triterpenoids and polysaccharides also has antitumor effects in various human cancer cell lines. The aims of this study are to clarify the antitumor effects of TCEE on human hepatocellular carcinoma cells and also evaluate the combination drug effects with conventional chemotherapy agents, cisplatin and doxorubicin. In the present study, the TCEE treatment induced cell cycle arrest and suppressed cell growth on both Hep3B and HepJ5 cells. Expression of cell cycle inhibitors, P21 and P27, and activation of apoptosis executer enzyme, caspase-3, were also induced by TCEE. In combination with the chemotherapy agents, TCEE treatment further enhanced the tumor suppression efficiency of cisplatin and doxorubicin. These results together suggested that TCEE is a potential ingredient for developing an integrated chemotherapy for human liver cancer. PMID:26557666

  4. Effects of Hormone Agonists on Sf9 Cells, Proliferation and Cell Cycle Arrest

    PubMed Central

    Giraudo, Maeva; Califano, Jérôme; Hilliou, Frédérique; Tran, Trang; Taquet, Nathalie; Feyereisen, René; Le Goff, Gaëlle

    2011-01-01

    Methoxyfenozide and methoprene are two insecticides that mimic the action of the main hormones involved in the control of insect growth and development, 20-hydroxyecdysone and juvenile hormone. We investigated their effect on the Spodoptera frugiperda Sf9 cell line. Methoxyfenozide was more toxic than methoprene in cell viability tests and more potent in the inhibition of cellular proliferation. Cell growth arrest occurred in the G2/M phase after a methoprene treatment and more modestly in G1 after methoxyfenozide treatment. Microarray experiments and real-time quantitative PCR to follow the expression of nuclear receptors ultraspiracle and ecdysone receptor were performed to understand the molecular action of these hormone agonists. Twenty-six genes were differentially expressed after methoxyfenozide treatment and 55 genes after methoprene treatment with no gene in common between the two treatments. Our results suggest two different signalling pathways in Sf9 cells. PMID:21991338

  5. Effects of hormone agonists on Sf9 cells, proliferation and cell cycle arrest.

    PubMed

    Giraudo, Maeva; Califano, Jérôme; Hilliou, Frédérique; Tran, Trang; Taquet, Nathalie; Feyereisen, René; Le Goff, Gaëlle

    2011-01-01

    Methoxyfenozide and methoprene are two insecticides that mimic the action of the main hormones involved in the control of insect growth and development, 20-hydroxyecdysone and juvenile hormone. We investigated their effect on the Spodoptera frugiperda Sf9 cell line. Methoxyfenozide was more toxic than methoprene in cell viability tests and more potent in the inhibition of cellular proliferation. Cell growth arrest occurred in the G2/M phase after a methoprene treatment and more modestly in G1 after methoxyfenozide treatment. Microarray experiments and real-time quantitative PCR to follow the expression of nuclear receptors ultraspiracle and ecdysone receptor were performed to understand the molecular action of these hormone agonists. Twenty-six genes were differentially expressed after methoxyfenozide treatment and 55 genes after methoprene treatment with no gene in common between the two treatments. Our results suggest two different signalling pathways in Sf9 cells.

  6. Leptospermum flavescens Constituent-LF1 Causes Cell Death through the Induction of Cell Cycle Arrest and Apoptosis in Human Lung Carcinoma Cells

    PubMed Central

    Navanesan, Suerialoasan; Abdul Wahab, Norhanom; Manickam, Sugumaran; Sim, Kae Shin

    2015-01-01

    Leptospermum flavescens Sm. (Myrtaceae), locally known as ‘Senna makki’ is a smallish tree that is widespread and recorded to naturally occur in the montane regions above 900 m a.s.l from Burma to Australia. Although the species is recorded to be used traditionally to treat various ailments, there is limited data on biological and chemical investigations of L. flavescens. The aim of the present study was to investigate and understand the ability of L. flavescens in inducing cell death in lung cancer cells. The cytotoxic potentials of the extraction yields (methanol, hexane, ethyl acetate and water extracts as wells as a semi pure fraction, LF1) were evaluated against two human non-small cell lung carcinoma cell lines (A549 and NCI-H1299) using the MTT assay. LF1 showed the greatest cytotoxic effect against both cell lines with IC50 values of 7.12 ± 0.07 and 9.62 ± 0.50 μg/ml respectively. LF1 treated cells showed a sub-G1 region in the cell cycle analysis and also caused the presence of apoptotic morphologies in cells stained with acridine orange and ethidium bromide. Treatment with LF1 manifested an apoptotic population in cells that were evaluated using the Annexin V/ propidium iodide assay. Increasing dosage of LF1 caused a rise in the presence of activated caspase-3 enzymes in treated cells. Blockage of cell cycle progression was also observed in LF1-treated cells. These findings suggest that LF1 induces apoptosis and cell cycle arrest in treated lung cancer cells. Further studies are being conducted to isolate and identify the active compound as well to better understand the mechanism involved in inducing cell death. PMID:26287817

  7. Plumbagin induces cell cycle arrest and autophagy and suppresses epithelial to mesenchymal transition involving PI3K/Akt/mTOR-mediated pathway in human pancreatic cancer cells.

    PubMed

    Wang, Feng; Wang, Qi; Zhou, Zhi-Wei; Yu, Song-Ning; Pan, Shu-Ting; He, Zhi-Xu; Zhang, Xueji; Wang, Dong; Yang, Yin-Xue; Yang, Tianxing; Sun, Tao; Li, Min; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Plumbagin (PLB), an active naphthoquinone compound, has shown potent anticancer effects in preclinical studies; however, the effect and underlying mechanism of PLB for the treatment of pancreatic cancer is unclear. This study aimed to examine the pancreatic cancer cell killing effect of PLB and investigate the underlying mechanism in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that PLB exhibited potent inducing effects on cell cycle arrest in PANC-1 and BxPC-3 cells via the modulation of cell cycle regulators including CDK1/CDC2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. PLB treatment concentration- and time-dependently increased the percentage of autophagic cells and significantly increased the expression level of phosphatase and tensin homolog, beclin 1, and the ratio of LC3-II over LC3-I in both PANC-1 and BxPC-3 cells. PLB induced inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin and p38 mitogen-activated protein kinase (p38 MAPK) pathways and activation of 5'-AMP-dependent kinase as indicated by their altered phosphorylation, contributing to the proautophagic activities of PLB in both cell lines. Furthermore, SB202190, a selective inhibitor of p38 MAPK, and wortmannin, a potent, irreversible, and selective PI3K inhibitor, remarkably enhanced PLB-induced autophagy in PANC-1 and BxPC-3 cells, indicating the roles of PI3K and p38 MAPK mediated signaling pathways in PLB-induced autophagic cell death in both cell lines. In addition, PLB significantly inhibited epithelial to mesenchymal transition phenotype in both cell lines with an increase in the expression level of E-cadherin and a decrease in N-cadherin. Moreover, PLB treatment significantly suppressed the expression of Sirt1 in both cell lines. These findings show that PLB promotes cell cycle arrest and autophagy but inhibits epithelial to mesenchymal transition phenotype in pancreatic cancer cells with the involvement of PI3

  8. 7-Epiclusianone, a Benzophenone Extracted from Garcinia brasiliensis (Clusiaceae), Induces Cell Cycle Arrest in G1/S Transition in A549 Cells.

    PubMed

    Ionta, Marisa; Ferreira-Silva, Guilherme A; Niero, Evandro L; Costa, Éderson D'Martin; Martens, Adam A; Rosa, Welton; Soares, Marisi G; Machado-Santelli, Gláucia M; Lago, João Henrique G; Santos, Marcelo H

    2015-07-15

    Lung cancer is the leading cause of cancer deaths in the world. Disease stage is the most relevant factor influencing mortality. Unfortunately, most patients are still diagnosed at an advanced stage and their five-year survival rate is only 4%. Thus, it is relevant to identify novel drugs that can improve the treatment options for lung cancer. Natural products have been an important source for the discovery of new compounds with pharmacological potential including antineoplastic agents. We have previously isolated a prenylated benzophenone (7-epiclusianone) from Garcinia brasiliensis (Clusiaceae) that has several biological properties including antiproliferative activity against cancer cell lines. In continuation with our studies, the present work aimed to investigate the mechanisms involved with antiproliferative activity of 7-epiclusianone in A549 cells. Our data showed that 7-epiclusianone reduced the viability of A549 cells in a concentration-dependent manner (IC50 of 16.13 ± 1.12 μM). Cells were arrested in G1/S transition and apoptosis was induced. In addition, we observed morphological changes with cytoskeleton disorganization in consequence of the treatment. Taken together, the results showed that cell cycle arrest in G1/S transition is the main mechanism involved with antiproliferative activity of 7-epiclusianone. Our results are promising and open up the prospect of using this compound in further anticancer in vivo studies.

  9. Cordycepin induces cell cycle arrest and apoptosis by inducing DNA damage and up-regulation of p53 in Leukemia cells

    PubMed Central

    Liao, Yuanhong; Ling, Jianya; Zhang, Guoying; Liu, Fengjun; Tao, Shengce; Han, Zeguang; Chen, Saijuan; Chen, Zhu; Le, Huangying

    2015-01-01

    Cordycepin, an adenosine analog derived from Cordyceps militaris has been shown to exert anti-tumor activity in many ways. However, the mechanisms by which cordycepin contributes to the anti-tumor still obscure. Here our present work showed that cordycepin inhibits cell growth in NB-4 and U937 cells by inducing apoptosis. Further study showed that cordycepin increases the expression of p53 which promotes the release of cytochrome c from mitochondria to the cytosol. The released cytochrome c can then activate caspase-9 and trigger intrinsic apoptosis. Cordycepin also blocks MAPK pathway by inhibiting the phosphorylation of ERK1/2, and thus sensitizes the apoptosis. In addition, our results showed that cordycepin inhibits the expression of cyclin A2, cyclin E, and CDK2, which leads to the accumulation of cells in S-phase. Moreover, our study showed that cordycepin induces DNA damage and causes degradation of Cdc25A, suggesting that cordycepin-induced S-phase arrest involves activation of Chk2-Cdc25A pathway. In conclusion, cordycepin-induced DNA damage initiates cell cycle arrest and apoptosis which leads to the growth inhibition of NB-4 and U937 cells. PMID:25590866

  10. Induction of P3NS1 Myeloma Cell Death and Cell Cycle Arrest by Simvastatin and/or γ-Radiation.

    PubMed

    Abdelrahman, Ibrahim Y; Helwa, Reham; Elkashef, Hausein; Hassan, Nagwa H A

    2015-01-01

    The present study was conducted to investigate the effect of γ-radiation alone or combined with a cytotoxic drug, simvastatin, on viability and cell cycling of a myeloma cell line. P3NS1 myeloma cells were treated with the selected dose of simvastatin (0.1 μM/l) 24 hours prior to γ-irradiation (0.25, 0.5 and 1 Gy). The cell viability, induction of apoptosis, cell death, cell cycling, generation of ROS, and expression of P53, Bax, Bcl2, caspase3, PARP1 and Fas genes were estimated. The results indicated that simvastatin (0.1 μM/l) treatment for 24 hours prior to γ- irradiation increased cell death to 37.5% as compared to 4.81% by radiation (0.5 Gy) alone. It was found that simvastatin treatment before irradiation caused arrest of cells in G0/G1 and G2/M phases as assessed using flow cytometry. Interestingly, simvastatin treatment of P3NS1 cells increased the intracellular ROS production and decreased antioxidant enzyme activity with increased P53, Bax and Caspase3 gene expression while that of Bcl2 was decreased. Consequently, our results indicated that pre-treatment with simvastatin increased radio sensitivity of myeloma tumor cells in addition to apoptotic effects through an intrinsic mitochondrial pathway.

  11. Novel ent-Kaurane Diterpenoid from Rubus corchorifolius L. f. Inhibits Human Colon Cancer Cell Growth via Inducing Cell Cycle Arrest and Apoptosis.

    PubMed

    Chen, Xuexiang; Wu, Xian; Ouyang, Wen; Gu, Min; Gao, Zili; Song, Mingyue; Chen, Yunjiao; Lin, Yanyin; Cao, Yong; Xiao, Hang

    2017-02-13

    The tender leaves of Rubus corchorifolius L. f. have been consumed as tea for drinking in China since ancient times. In this study, a novel ent-kaurane diterpenoid was isolated and identified from R. corchorifolius L. f. leaves as ent-kaur-2-one-16β,17-dihydroxy-acetone-ketal (DEK). DEK suppressed the growth of HCT116 human colon cancer cells with an IC50 value of 40 ± 0.21 μM, while it did not cause significant growth inhibition on CCD-18Co human colonic myofibroblasts at up to100 μM. Moreover, DEK induced extensive apoptosis and S phase cell cycle arrest in the colon cancer cells. Accordingly, DEK caused profound effects on multiple signaling proteins associated with cell proliferation, cell death, and inflammation. DEK significantly upregulated the expression levels of pro-apoptotic proteins such as cleaved caspase-3, cleaved caspase-9, cleaved PARP, p53, Bax, and tumor suppressor p21(Cip1/Waf1), downregulated the levels of cell cycle regulating proteins such as cyclinD1, CDK2, and CDK4 and carcinogenic proteins such as EGFR and COX-2, and suppressed the activation of Akt. Overall, our results provide a basis for using DEK as a potential chemopreventive agent against colon carcinogenesis.

  12. Involvement of Ganglioside GM3 in G2/M Cell Cycle Arrest of Human Monocytic Cells Induced by Actinobacillus actinomycetemcomitans Cytolethal Distending Toxin

    PubMed Central

    Mise, Koji; Akifusa, Sumio; Watarai, Shinobu; Ansai, Toshihiro; Nishihara, Tatsuji; Takehara, Tadamichi

    2005-01-01

    Actinobacillus actinomycetemcomitans produces a toxin called cytolethal distending toxin (CDT), which causes host cell DNA damage leading to the induction of DNA damage checkpoint pathways. CDT consists of three subunits, CdtA, CdtB, and CdtC. CdtB is the active subunit of CDT and exerts its effect as a nuclease that damages nuclear DNA, triggering cell cycle arrest. In the present study, we confirmed that the only combination of toxin proteins causing cell cycle arrest was that of all three recombinant CDT (rCDT) protein subunits. Furthermore, in order for rCDT to demonstrate toxicity, it was necessary for CdtA and CdtC to access the cell before CdtB. The coexistence of CdtA and CdtC was necessary for these subunits to bind to the cell. Cells treated with the glucosylceramide synthesis inhibitor 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol showed resistance to the cytotoxicity induced by rCDT. Furthermore, LY-B cells, which are deficient in the biosynthesis of sphingolipid, also showed resistance to the cytotoxicity induced by rCDT. To evaluate the binding of each subunit for glucosylceramides, we performed thin-layer chromatography immunostaining. The results indicated that each subunit reacted with the glycosphingolipids GM1, GM2, GM3, Gb3, and Gb4. The rCDT mixture incubated with liposomes containing GM3 displayed partially reduced toxicity. These results indicate that GM3 can act as a CDT receptor. PMID:16040998

  13. 1-(2-Hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione Induces G1 Cell Cycle Arrest and Autophagy in HeLa Cervical Cancer Cells

    PubMed Central

    Tsai, Jie-Heng; Hsu, Li-Sung; Huang, Hsiu-Chen; Lin, Chih-Li; Pan, Min-Hsiung; Hong, Hui-Mei; Chen, Wei-Jen

    2016-01-01

    The natural agent, 1-(2-hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione (HMDB), has been reported to have growth inhibitory effects on several human cancer cells. However, the role of HMDB in cervical cancer remains unclear. Herein, we found that HMDB dose- and time-dependently inhibited growth of HeLa cervical cancer cells, accompanied with G1 cell cycle arrest. HMDB decreased protein expression of cyclins D1/D3/E and cyclin-dependent kinases (CDKs) 2/4/6 and reciprocally increased mRNA and protein levels of CDK inhibitors (p15, p16, p21, and p27), thereby leading to the accumulation of hypophosphorylated retinoblastoma (Rb) protein. HMDB also triggered the accumulation of acidic vesicles and formation of microtubule-associated protein-light chain 3 (LC3), followed by increased expression of LC3 and Beclin-1 and decreased expression of p62, suggesting that HMDB triggered autophagy in HeLa cells. Meanwhile, suppression of the expression of survivin and Bcl-2 implied that HMDB-induced autophagy is tightly linked to apoptosis. Exploring the action mechanism, HMDB induced autophagy via the modulation of AMP-activated protein kinase (AMPK) and mTOR signaling pathway rather than the class III phosphatidylinositol 3-kinase pathway. These results suggest that HMDB inhibits HeLa cell growth by eliciting a G1 arrest through modulation of G1 cell cycle regulators and by concomitantly inducing autophagy through the mediation of AMPK-mTOR and Akt-mTOR pathways, and may be a promising antitumor agent against cervical cancer. PMID:27527160

  14. p21WAF1 modulates drug-induced apoptosis and cell cycle arrest in B-cell precursor acute lymphoblastic leukemia

    PubMed Central

    Davies, Carwyn; Hogarth, Linda A; Mackenzie, Karen L; Hall, Andrew G; Lock, Richard B

    2015-01-01

    p21WAF1 is a well-characterized mediator of cell cycle arrest and may also modulate chemotherapy-induced cell death. The role of p21WAF1 in drug-induced cell cycle arrest and apoptosis of acute lymphoblastic leukemia (ALL) cells was investigated using p53-functional patient-derived xenografts (PDXs), in which p21WAF1 was epigenetically silenced in T-cell ALL (T-ALL), but not in B-cell precursor (BCP)-ALL PDXs. Upon exposure to diverse cytotoxic drugs, T-ALL PDX cells exhibited markedly increased caspase-3/7 activity and phosphatidylserine (PS) externalization on the plasma membrane compared with BCP-ALL cells. Despite dramatic differences in apoptotic characteristics between T-ALL and BCP-ALL PDXs, both ALL subtypes exhibited similar cell death kinetics and were equally sensitive to p53-inducing drugs in vitro, although T-ALL PDXs were significantly more sensitive to the histone deacetylase inhibitor vorinostat. Transient siRNA suppression of p21WAF1 in the BCP-ALL 697 cell line resulted in a moderate depletion of the cell fraction in G1 phase and marked increase in PS externalization following exposure to etoposide. Furthermore, stable lentiviral p21WAF1 silencing in the BCP-ALL Nalm-6 cell line accelerated PS externalization and cell death following exposure to etoposide and vorinostat, supporting previous findings. Finally, the Sp1 inhibitor, terameprocol, inhibited p21WAF1 expression in Nalm-6 cells exposed to vorinostat and also partially augmented vorinostat-induced cell death. Taken together, these findings demonstrate that p21WAF1 regulates the early stages of drug-induced apoptosis in ALL cells and significantly modulates their sensitivity to vorinostat. PMID:26506264

  15. DNA damage-induced S and G2/M cell cycle arrest requires mTORC2-dependent regulation of Chk1.

    PubMed

    Selvarajah, Jogitha; Elia, Androulla; Carroll, Veronica A; Moumen, Abdeladim

    2015-01-01

    mTOR signalling is commonly dysregulated in cancer. Concordantly, mTOR inhibitors have demonstrated efficacy in a subset of tumors and are in clinical trials as combination therapies. Although mTOR is associated with promoting cell survival after DNA damage, the exact mechanisms are not well understood. Moreover, since mTOR exists as two complexes, mTORC1 and mTORC2, the role of mTORC2 in cancer and in the DNA damage response is less well explored. Here, we report that mTOR protein levels and kinase activity are transiently increased by DNA damage in an ATM and ATR-dependent manner. We show that inactivation of mTOR with siRNA or pharmacological inhibition of mTORC1/2 kinase prevents etoposide-induced S and G2/M cell cycle arrest. Further results show that Chk1, a key regulator of the cell cycle arrest, is important for this since ablation of mTOR prevents DNA damage-induced Chk1 phosphorylation and decreases Chk1 protein production. Furthermore, mTORC2 was essential and mTORC1 dispensable, for this role. Importantly, we show that mTORC1/2 inhibition sensitizes breast cancer cells to chemotherapy. Taken together, these results suggest that breast cancer cells may rely on mTORC2-Chk1 pathway for survival and provide evidence that mTOR kinase inhibitors may overcome resistance to DNA-damage based therapies in breast cancer.

  16. Downregulation of LAPTM5 suppresses cell proliferation and viability inducing cell cycle arrest at G0/G1 phase of bladder cancer cells.

    PubMed

    Chen, Liang; Wang, Gang; Luo, Yi; Wang, Yongzhi; Xie, Conghua; Jiang, Wei; Xiao, Yu; Qian, Guofeng; Wang, Xinghuan

    2017-01-01

    Our transcriptome analysis revealed in bladder cancer (BCa) tissues a significant induction of lysosomal-associated multispanning membrane protein 5 (LAPTM5), a lysosomal membrane protein preferentially expressing in immune cells and hematopoietic cells. Transportation of LAPTM5 from Golgi to lysosome could be inhibited by deficiency of Nedd4, a key member of E3 ubiquitin ligase family overexpressing in invasive BCa and promoting its progression. Therefore, we hypothesize that LAPTM5 may be closely correlated with BCa tumorigenesis. In human BCa tissues, we observed that LAPTM5 was significantly induced at both mRNA and protein levels, which is consistent with our microarray result. Furthermore, we established a BCa cell model with downregulated LAPTM5, revealing a significantly delayed growth rate in the BCa cells with knockdown of LAPTM5. Moreover, cell cycle arrest at G0/G1 phase was triggered by decreased LAPTM5 as well, which could lead to delayed BCa cell growth. In contrast, no significant alteration of apoptosis in the BCa cells with downregulated LAPTM5 was noticed. Analysis of the changes of migration and invasion, showed significant reduced LAPTM5 suppressed cell metastasis. Furthermore, proteins involved in epithelial-mesenchymal transition (EMT) were strongly altered, which plays a central role in metastasis. In addition, phosphorylated ERK1/2 and p38, key members of mitogen-activated protein kinase (MAPK) family regulating BCa tumorigenesis, were strongly decreased. Taken together, our results suggested that decreased LAPTM5 inhibited proliferation and viability, as well as induced G0/G1 cell cycle arrest possibly via deactivation of ERK1/2 and p38 in BCa cells.

  17. RCC1-dependent activation of Ran accelerates cell cycle and DNA repair, inhibiting DNA damage–induced cell senescence

    PubMed Central

    Cekan, Pavol; Hasegawa, Keisuke; Pan, Yu; Tubman, Emily; Odde, David; Chen, Jin-Qiu; Herrmann, Michelle A.; Kumar, Sheetal; Kalab, Petr

    2016-01-01

    The coordination of cell cycle progression with the repair of DNA damage supports the genomic integrity of dividing cells. The function of many factors involved in DNA damage response (DDR) and the cell cycle depends on their Ran GTPase–regulated nuclear–cytoplasmic transport (NCT). The loading of Ran with GTP, which is mediated by RCC1, the guanine nucleotide exchange factor for Ran, is critical for NCT activity. However, the role of RCC1 or Ran⋅GTP in promoting cell proliferation or DDR is not clear. We show that RCC1 overexpression in normal cells increased cellular Ran⋅GTP levels and accelerated the cell cycle and DNA damage repair. As a result, normal cells overexpressing RCC1 evaded DNA damage–induced cell cycle arrest and senescence, mimicking colorectal carcinoma cells with high endogenous RCC1 levels. The RCC1-induced inhibition of senescence required Ran and exportin 1 and involved the activation of importin β–dependent nuclear import of 53BP1, a large NCT cargo. Our results indicate that changes in the activity of the Ran⋅GTP–regulated NCT modulate the rate of the cell cycle and the efficiency of DNA repair. Through the essential role of RCC1 in regulation of cellular Ran⋅GTP levels and NCT, RCC1 expression enables the proliferation of cells that sustain DNA damage. PMID:26864624

  18. Tocotrienol-rich fraction of palm oil induces cell cycle arrest and apoptosis selectively in human prostate cancer cells

    SciTech Connect

    Srivastava, Janmejai K.; Gupta, Sanjay . E-mail: sanjay.gupta@case.edu

    2006-07-28

    One of the requisite of cancer chemopreventive agent is elimination of damaged or malignant cells through cell cycle inhibition or induction of apoptosis without affecting normal cells. In this study, employing normal human prostate epithelial cells (PrEC), virally transformed normal human prostate epithelial cells (PZ-HPV-7), and human prostate cancer cells (LNCaP, DU145, and PC-3), we evaluated the growth-inhibitory and apoptotic effects of tocotrienol-rich fraction (TRF) extracted from palm oil. TRF treatment to PrEC and PZ-HPV-7 resulted in almost identical growth-inhibitory responses of low magnitude. In sharp contrast, TRF treatment resulted in significant decreases in cell viability and colony formation in all three prostate cancer cell lines. The IC{sub 5} values after 24 h TRF treatment in LNCaP, PC-3, and DU145 cells were in the order 16.5, 17.5, and 22.0 {mu}g/ml. TRF treatment resulted in significant apoptosis in all the cell lines as evident from (i) DNA fragmentation (ii) fluorescence microscopy, and (iii) cell death detection ELISA, whereas the PrEC and PZ-HPV-7 cells did not undergo apoptosis, but showed modestly decreased cell viability only at a high dose of 80 {mu}g/ml. In cell cycle analysis, TRF (10-40 {mu}g/ml) resulted in a dose-dependent G0/G1 phase arrest and sub G1 accumulation in all three cancer cell lines but not in PZ-HPV-7 cells. These results suggest that the palm oil derivative TRF is capable of selectively inhibiting cellular proliferation and accelerating apoptotic events in prostate cancer cells. TRF offers significant promise as a chemopreventive and/or therapeutic agent against prostate cancer.

  19. Radiofrequency radiation (900 MHz)-induced DNA damage and cell cycle arrest in testicular germ cells in swiss albino mice.

    PubMed

    Pandey, Neelam; Giri, Sarbani; Das, Samrat; Upadhaya, Puja

    2016-10-13

    Even though there are contradictory reports regarding the cellular and molecular changes induced by mobile phone emitted radiofrequency radiation (RFR), the possibility of any biological effect cannot be ruled out. In view of a widespread and extensive use of mobile phones, this study evaluates alterations in male germ cell transformation kinetics following RFR exposure and after recovery. Swiss albino mice were exposed to RFR (900 MHz) for 4 h and 8 h duration per day for 35 days. One group of animals was terminated after the exposure period, while others were kept for an additional 35 days post-exposure. RFR exposure caused depolarization of mitochondrial membranes resulting in destabilized cellular redox homeostasis. Statistically significant increases in the damage index in germ cells and sperm head defects were noted in RFR-exposed animals. Flow cytometric estimation of germ cell subtypes in mice testis revealed 2.5-fold increases in spermatogonial populations with significant decreases in spermatids. Almost fourfold reduction in spermatogonia to spermatid turnover (1C:2C) and three times reduction in primary spermatocyte to spermatid turnover (1C:4C) was found indicating arrest in the premeiotic stage of spermatogenesis, which resulted in loss of post-meiotic germ cells apparent from testis histology and low sperm count in RFR-exposed animals. Histological alterations such as sloughing of immature germ cells into the seminiferous tubule lumen, epithelium depletion and maturation arrest were also observed. However, all these changes showed recovery to varied degrees following the post-exposure period indicating that the adverse effects of RFR on mice germ cells are detrimental but reversible. To conclude, RFR exposure-induced oxidative stress causes DNA damage in germ cells, which alters cell cycle progression leading to low sperm count in mice.

  20. Alkylphospholipids deregulate cholesterol metabolism and induce cell-cycle arrest and autophagy in U-87 MG glioblastoma cells.

    PubMed

    Ríos-Marco, Pablo; Martín-Fernández, Mario; Soria-Bretones, Isabel; Ríos, Antonio; Carrasco, María P; Marco, Carmen

    2013-08-01

    Glioblastoma is the most common malignant primary brain tumour in adults and one of the most lethal of all cancers. Growing evidence suggests that human tumours undergo abnormal lipid metabolism, characterised by an alteration in the mechanisms that regulate cholesterol homeostasis. We have investigated the effect that different antitumoural alkylphospholipids (APLs) exert upon cholesterol metabolism in the U-87 MG glioblastoma cell line. APLs altered cholesterol homeostasis by interfering with its transport from the plasma membrane to the endoplasmic reticulum (ER), thus hindering its esterification. At the same time they stimulated the synthesis of cholesterol from radiolabelled acetate and its internalisation from low-density lipoproteins (LDLs), inducing both 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and LDL receptor (LDLR) genes. Fluorescent microscopy revealed that these effects promoted the accumulation of intracellular cholesterol. Filipin staining demonstrated that this accumulation was not confined to the late endosome/lysosome (LE/LY) compartment since it did not colocalise with LAMP2 lysosomal marker. Furthermore, APLs inhibited cell growth, producing arrest at the G2/M phase. We also used transmission electron microscopy (TEM) to investigate ultrastructural alterations induced by APLs and found an abundant presence of autophagic vesicles and autolysosomes in treated cells, indicating the induction of autophagy. Thus our findings clearly demonstrate that antitumoural APLs interfere with the proliferation of the glioblastoma cell line via a complex mechanism involving cholesterol metabolism, cell-cycle arrest or autophagy. Knowledge of the interrelationship between these processes is fundamental to our understanding of tumoural response and may facilitate the development of novel therapeutics to improve treatment of glioblastoma and other types of cancer.

  1. American cranberry (Vaccinium macrocarpon) extract affects human prostate cancer cell growth via cell cycle arrest by modulating expression of cell cycle regulators.

    PubMed

    Déziel, Bob; MacPhee, James; Patel, Kunal; Catalli, Adriana; Kulka, Marianna; Neto, Catherine; Gottschall-Pass, Katherine; Hurta, Robert

    2012-05-01

    Prostate cancer is one of the most common cancers in the world, and its prevalence is expected to increase appreciably in the coming decades. As such, more research is necessary to understand the etiology, progression and possible preventative measures to delay or to stop the development of this disease. Recently, there has been interest in examining the effects of whole extracts from commonly harvested crops on the behaviour and progression of cancer. Here, we describe the effects of whole cranberry extract (WCE) on the behaviour of DU145 human prostate cancer cells in vitro. Following treatment of DU145 human prostate cancer cells with 10, 25 and 50 μg ml⁻¹ of WCE, respectively for 6 h, WCE significantly decreased the cellular viability of DU145 cells. WCE also decreased the proportion of cells in the G2-M phase of the cell cycle and increased the proportion of cells in the G1 phase of the cell cycle following treatment of cells with 25 and 50 μg ml⁻¹ treatment of WCE for 6 h. These alterations in cell cycle were associated with changes in cell cycle regulatory proteins and other cell cycle associated proteins. WCE decreased the expression of CDK4, cyclin A, cyclin B1, cyclin D1 and cyclin E, and increased the expression of p27. Changes in p16(INK4a) and pRBp107 protein expression levels also were evident, however, the changes noted in p16(INK4a) and pRBp107 protein expression levels were not statistically significant. These findings demonstrate that phytochemical extracts from the American cranberry (Vaccinium macrocarpon) can affect the behaviour of human prostate cancer cells in vitro and further support the potential health benefits associated with cranberries.

  2. Superoxide dismutase induces G1-phase cell cycle arrest by down-regulated expression of Cdk-2 and cyclin-E in murine sarcoma S180 tumor cells.

    PubMed

    Liu, Dongyue; Liu, Anjun

    2013-06-01

    As an efficient reactive oxygen species-scavenging enzyme, superoxide dismutase (SOD) has been shown to inhibit tumor growth and interfere with motility and invasiveness of cancer cells. In this study, the molecular mechanisms of cell cycle arrest when S180 tumor cells were exposed to high levels of SOD were investigated. Here, both murine sarcoma S180 tumor cells and NIH-3T3 mouse fibroblasts were respectively treated with varying concentrations of Cu/Zn-SOD for 24, 48 and 72 h to determine optimal dose of SOD, which was a concentration of 800 U/ml SOD for 48 h. It is found that SOD induced S180 cell cycle arrest at G1-phase with decreasing level of superoxide production, whereas SOD had less effect on proliferation of NIH-3T3 cells. Moreover, the expression rate of Proliferating Cell Nuclear Antigen (PCNA) in S180 tumor cells was suppressed after SOD treatment, which indicated the inhibition of DNA synthesis in S180 cells. Besides, there were significant down-regulations of cyclin-E and Cdk-2 in S180 cells after SOD treatment, which contributed to the blockage of G1/S transition in S180 cell cycle. Together, our data confirmed that SOD could notably inhibit proliferation of S180 tumor cell and induce cell cycle arrest at G1-phase by down-regulating expressions of cyclin-E and Cdk-2.

  3. Cannabinoid WIN55, 212-2 induces cell cycle arrest and inhibits the proliferation and migration of human BEL7402 hepatocellular carcinoma cells.

    PubMed

    Xu, Dacai; Wang, Jianglin; Zhou, Zhenkang; He, Zhiwei; Zhao, Qing

    2015-12-01

    Hepatocellular carcinoma (HCC) is the leading cause of cancer-associated mortality worldwide; however, only limited therapeutic treatments are currently available. The present study aimed to investigate the effects of cannabinoids as novel therapeutic targets in HCC. In addition, the mechanism underlying the effects of a synthetic cannabinoid, WIN55, 212‑2, on the BEL7402 HCC cell line was investigated. The results demonstrated that WIN55, 212‑2 induced cell cycle arrest of the BEL7402 cells at the G0/G1 phase via cannabinoid receptor 2 (CB2)‑mediated downregulation of phosphorylated-extracellular signal-regulated kinases (ERK)1/2, upregulation of p27, and downregulation of cyclin D1 and cyclin‑dependent kinase 4. Furthermore, inhibition of CB2 with the CB2 antagonist AM630 abrogated WIN55, 212‑2‑induced cell cycle arrest. Inhibition of ERK1/2 also resulted in cell cycle dysregulation and cell cycle arrest at the G0/G1 phase, which subsequently resulted in cell growth inhibition. In addition, the present study detected a significant reduction in matrix metalloproteinase‑9, retinoblastoma protein and E2F1 expression, and migration inhibition by WIN treatment. These results suggested that cannabinoid receptor agonists, including WIN, may be considered as novel therapeutics for the treatment of HCC.

  4. CRM1 inhibitor S109 suppresses cell proliferation and induces cell cycle arrest in renal cancer cells.

    PubMed

    Liu, Xuejiao; Chong, Yulong; Liu, Huize; Han, Yan; Niu, Mingshan

    2016-03-01

    Abnormal localization of tumor suppressor proteins is a common feature of renal cancer. Nuclear export of these tumor suppressor proteins is mediated by chromosome region maintenance-1 (CRM1). Here, we investigated the antitumor eff ects of a novel reversible inhibitor of CRM1 on renal cancer cells. We found that S109 inhibits the CRM1-mediated nuclear export of RanBP1 and reduces protein levels of CRM1. Furthermore, the inhibitory eff ect of S109 on CRM1 is reversible. Our data demonstrated that S109 signifi cantly inhibits proliferation and colony formation of renal cancer cells. Cell cycle assay showed that S109 induced G1-phase arrest, followed by the reduction of Cyclin D1 and increased expression of p53 and p21. We also found that S109 induces nuclear accumulation of tumor suppressor proteins, Foxo1 and p27. Most importantly, mutation of CRM1 at Cys528 position abolished the eff ects of S109. Taken together, our results indicate that CRM1 is a therapeutic target in renal cancer and the novel reversible CRM1 inhibitor S109 can act as a promising candidate for renal cancer therapy.

  5. Downregulation of HDAC9 inhibits cell proliferation and tumor formation by inducing cell cycle arrest in retinoblastoma.

    PubMed

    Zhang, Yiting; Wu, Dan; Xia, Fengjie; Xian, Hongyu; Zhu, Xinyue; Cui, Hongjuan; Huang, Zhenping

    2016-04-29

    Histone deacetylase 9 (HDAC9) is a member of class II HDACs, which regulates a wide variety of normal and abnormal physiological functions. Recently, HDAC9 has been found to be overexpressed in some types of human cancers. However, the role of HDAC9 in retinoblastoma remains unclear. In this study, we found that HDAC9 was commonly expressed in retinoblastoma tissues and HDAC9 was overexpressed in prognostically poor retinoblastoma patients. Through knocking down HDAC9 in Y79 and WERI-Rb-1 cells, the expression level of HDAC9 was found to be positively related to cell proliferation in vitro. Further investigation indicated that knockdown HDAC9 could significantly induce cell cycle arrest at G1 phase in retinoblastoma cells. Western blot assay showed downregulation of HDAC9 could significantly decrease cyclin E2 and CDK2 expression. Lastly, xenograft study in nude mice showed that downregulation of HDAC9 inhibited tumor growth and development in vivo. Therefore, our results suggest that HDAC9 could serve as a novel potential therapeutic target in the treatment of retinoblastoma.

  6. Abrogation of MUC5AC Expression Contributes to the Apoptosis and Cell Cycle Arrest of Colon Cancer Cells.

    PubMed

    Zhu, Xijia; Long, Xiangkai; Luo, Xishun; Song, Zhike; Li, Shengguo; Wang, Haipeng

    2016-09-01

    Deregulated expressions of mucins have been found in various malignancies and play a pivotal role in carcinogenesis. MUC5AC, as a secreted mucin, is reported to be aberrantly expressed during epithelial cancer progression, including colon cancer. However, the mechanisms of the oncoprotein MUC5AC in the initiation of colon cancer requires further investigation. Here, we collected colon cancer tissues (n = 20) and corresponding paracancerous tissues (n = 20) and found that the expression of MUC5AC was significantly elevated in colon cancer tissues when compared with the corresponding paracancerous tissues. Immunofluorescence indicated that all colon cancer cell lines, including HT29, SW620, and the normal human intestinal epithelial cells FHC, showed the positive expression of MUC5AC, and SW620 exhibited the highest expression. Moreover, knockdown of MUC5AC in SW620 cells remarkably suppressed cell vitality and promoted apoptosis and G1 cell cycle arrest, resulting in the impaired ability of colony formation. Furthermore, the inhibition of MUC5AC in SW620 cells dramatically repressed the cell migration and invasion. These results demonstrated that MUC5AC as an oncogene could be a promising target in the treatment of colon cancer.

  7. UBE2T silencing suppresses proliferation and induces cell cycle arrest and apoptosis in bladder cancer cells

    PubMed Central

    Gong, Yan Qing; Peng, Ding; Ning, Xiang Hui; Yang, Xin Yu; Li, Xue Song; Zhou, Li Qun; Guo, Ying Lu

    2016-01-01

    Ubiquitin-conjugating enzyme E2T (UBE2T), a member of the ubiquitin-conjugating E2 family in the ubiquitin-proteasome pathway, has been reported to be overexpressed in certain tumor types and to have an important role in the Fanconi anemia pathway. In the present study, the expression of UBE2T and its association with bladder cancer were investigated; to the best of our knowledge, this has not been reported previously. Immunohistochemistry and western blot analysis demonstrated that UBE2T was significantly upregulated in bladder cancer tissues and cell lines compared with adjacent normal bladder tissues and a normal human urinary tract epithelial cell line, respectively. UBE2T was detectable in the nuclei and cytoplasm of cancer cells, exhibiting stronger expression in the nuclei. A UBE2T-siRNA-expressing lentivirus was constructed and used to infect human bladder cancer 5637 cells, in order to examine the role of UBE2T in bladder cancer cell growth in vitro. The knockdown of UBE2T significantly decreased bladder cancer cell proliferation and colony formation. Furthermore, UBE2T silencing induced cell cycle arrest at G2/M phase and increased cell apoptosis. Therefore, UBE2T serves an important role in the growth of bladder cancer cells, and may be considered as a potential biomarker and therapeutic target for bladder cancer. PMID:28101210

  8. Stromal interaction molecule 1 (STIM1) silencing inhibits tumor growth and promotes cell cycle arrest and apoptosis in hypopharyngeal carcinoma.

    PubMed

    Sun, Yuanhao; Cui, Xiaobo; Wang, Jun; Wu, Shuai; Bai, Yunfei; Wang, Yaping; Wang, Boqian; Fang, Jugao

    2015-05-01

    As an important pathway maintaining the balance of intracellular calcium (Ca(2+)), store-operated Ca(2+) entry (SOCE) is critical for cellular functions. Stromal interaction molecule 1 (STIM1), a key component of SOCE, plays a dual role as an endoplasmic reticulum Ca(2+) receptor and an SOCE exciter. Aberrant expression of STIM1 could be discovered in several human cancer cells. However, the role of STIM1 in regulating human hypopharyngeal carcinoma still remains unclear. Real-time polymerase chain reaction (PCR) was used to detect expression of STIM1 in human hypopharyngeal carcinoma cell line FaDu. STIM1 on FaDu cells was knocked down by lentiviral transduction method. The biological impacts after knocking down of STIM1 on FaDu cells were investigated in vitro and in vivo. The result of real-time PCR showed that STIM1 was expressed in FaDu cells. Lentiviral transduction efficiently downregulated the expression of STIM1 in FaDu cells at both mRNA and protein levels. Significant downregulation of STIM1 on FaDu cells inhibited cell proliferation, induced cell cycle arrest in G0/G1 phase, promoted cell apoptosis, and restrained cell growth rate. The antigrowth effect of STIM1 silencing was also discovered in FaDu hypopharyngeal tumor model. Our findings indicate that STIM1 is likely to become a new therapeutic target for hypopharyngeal carcinoma treatment.

  9. Antioxidant extracts of African medicinal plants induce cell cycle arrest and differentiation in B16F10 melanoma cells.

    PubMed

    Gismondi, Angelo; Canuti, Lorena; Impei, Stefania; Di Marco, Gabriele; Kenzo, Maurice; Colizzi, Vittorio; Canini, Antonella

    2013-09-01

    African ethnomedicine is essentially based on the traditional use of vegetal extracts. Since these natural drugs have shown health giving properties, in the present study we increased further the scientific basis supporting these data. We investigated the effects, on murine B16F10 melanoma cells, of plant extracts that were directly obtained by a Cameroon 'traditional healer'. After a preliminary study on the antioxidant functions of these compounds, already abundant in literature, Moringa oleifera Lam., Eremomastax speciosa (Hochst.) Cufod and Aframomum melegueta K. Schum extracts were individually analyzed. We performed laboratory assessments on these medicinal preparations in order to clearly demonstrate their antineoplastic features. All the treatments caused in tumor cells a great reduction in growth and proliferation rate, cell cycle arrest, increase of p53, p21WAF1/Cip1 and p27Kip1 protein levels and induction of differentiation. These results, on the bioactivity and the biochemical characteristics of African plant extracts, may increase the comprehension of indigenous therapeutic practices and represent the first step for the individuation of new inexpensive and natural drugs able to prevent and contrast cancer onset.

  10. DNA-damage, cell-cycle arrest and apoptosis induced in BEAS-2B cells by 2-hydroxyethyl methacrylate (HEMA).

    PubMed

    Ansteinsson, V; Solhaug, A; Samuelsen, J T; Holme, J A; Dahl, J E

    2011-08-16

    The methacrylate monomer 2-hydroxyethyl methacrylate (HEMA) is commonly used in resin-based dental restorative materials. These materials are cured in situ and HEMA and other monomers have been identified in ambient air during dental surgery. In vitro studies have demonstrated a toxic potential of methacrylates, and concerns have been raised regarding possible health effects due to inhalation. In this study we have investigated the mechanisms of HEMA-induced toxicity in the human lung epithelial cell line BEAS-2B. Depletion of cellular glutathione (GSH) and an increased level of reactive oxygen species (ROS) were seen after 2h of exposure, but the levels were restored to control levels after 12h. After 24h, inhibited cell proliferation and apoptotic cell death were found. The results of the Comet assay and the observed phosphorylation of DNA-damage-associated signalling proteins including Chk2, H2AX, and p53 suggest that the toxicity of HEMA is mediated by DNA damage. Further, the antioxidant trolox did not counteract the HEMA-induced cell-cycle arrest, which indicates that the DNA damage is of non-oxidative origin.

  11. Common chronic conditions do not affect performance of cell cycle arrest biomarkers for risk stratification of acute kidney injury

    PubMed Central

    Heung, Michael; Ortega, Luis M.; Chawla, Lakhmir S.; Wunderink, Richard G.; Self, Wesley H.; Koyner, Jay L.; Shi, Jing; Kellum, John A.

    2016-01-01

    Background Identification of acute kidney injury (AKI) can be challenging in patients with underlying chronic disease, and biomarkers often perform poorly in this population. In this study we examined the performance characteristics of the novel biomarker panel of urinary tissue inhibitor of metalloproteinases-2 (TIMP2) and insulin-like growth factor-binding protein 7 ([IGFBP7]) in patients with a variety of comorbid conditions. Methods We analyzed data from two multicenter studies of critically ill patients in which [TIMP2]•[IGFBP7] was validated for prediction of Kidney Disease: Improving Global Outcomes (KDIGO) Stage 2 or 3 AKI within 12 h. We constructed receiver operating characteristic (ROC) curves for AKI prediction both overall and by comorbid conditions common among patients with AKI, including diabetes mellitus, congestive heart failure (CHF) and chronic kidney disease (CKD). Results In the overall cohort of 1131 patients, 139 (12.3%) developed KDIGO Stage 2 or 3 AKI. [TIMP2]•[IGFBP7] was significantly higher in AKI versus non-AKI patients, both overall and within each comorbidity subgroup. The AUC for [TIMP2]•[IGFBP7] in predicting AKI was 0.81 overall. Higher AUC was noted in patients with versus without CHF (0.89 versus 0.79; P = 0.026) and CKD (0.91 versus 0.80; P = 0.024). Conclusions We observed no significant impairment in the performance of cell cycle arrest biomarkers due to the presence of chronic comorbid conditions. PMID:27342582

  12. DC-SCRIPT is a novel regulator of the tumor suppressor gene CDKN2B and induces cell cycle arrest in ERα-positive breast cancer cells.

    PubMed

    Ansems, Marleen; Søndergaard, Jonas Nørskov; Sieuwerts, Anieta M; Looman, Maaike W G; Smid, Marcel; de Graaf, Annemarie M A; de Weerd, Vanja; Zuidscherwoude, Malou; Foekens, John A; Martens, John W M; Adema, Gosse J

    2015-02-01

    Breast cancer is one of the most common causes of cancer-related deaths in women. The estrogen receptor (ERα) is well known for having growth promoting effects in breast cancer. Recently, we have identified DC-SCRIPT (ZNF366) as a co-suppressor of ERα and as a strong and independent prognostic marker in ESR1 (ERα gene)-positive breast cancer patients. In this study, we further investigated the molecular mechanism on how DC-SCRIPT inhibits breast cancer cell growth. DC-SCRIPT mRNA levels from 190 primary ESR1-positive breast tumors were related to global gene expression, followed by gene ontology and pathway analysis. The effect of DC-SCRIPT on breast cancer cell growth and cell cycle arrest was investigated using novel DC-SCRIPT-inducible MCF7 breast cancer cell lines. Genome-wide expression profiling of DC-SCRIPT-expressing MCF7 cells was performed to investigate the effect of DC-SCRIPT on cell cycle-related gene expression. Findings were validated by real-time PCR in a cohort of 1,132 ESR1-positive breast cancer patients. In the primary ESR1-positive breast tumors, DC-SCRIPT expression negatively correlated with several cell cycle gene ontologies and pathways. DC-SCRIPT expression strongly reduced breast cancer cell growth in vitro, breast tumor growth in vivo, and induced cell cycle arrest. In addition, in the presence of DC-SCRIPT, multiple cell cycles related genes were differentially expressed including the tumor suppressor gene CDKN2B. Moreover, in 1,132 primary ESR1-positive breast tumors, DC-SCRIPT expression also correlated with CDKN2B expression. Collectively, these data show that DC-SCRIPT acts as a novel regulator of CDKN2B and induces cell cycle arrest in ESR1-positive breast cancer cells.

  13. SKLB70326, a novel small-molecule inhibitor of cell-cycle progression, induces G{sub 0}/G{sub 1} phase arrest and apoptosis in human hepatic carcinoma cells

    SciTech Connect

    Han, Yuanyuan; He, Haiyun; Peng, Feng; Liu, Jiyan; Dai, Xiaoyun; Lin, Hongjun; Xu, Youzhi; Zhou, Tian; Mao, Yongqiu; Xie, Gang; Yang, Shengyong; Yu, Luoting; Yang, Li; Zhao, Yinglan

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer SKLB70326 is a novel compound and has activity of anti-HCC. Black-Right-Pointing-Pointer SKLB70326 induces cell cycle arrest and apoptosis in HepG2 cells. Black-Right-Pointing-Pointer SKLB70326 induces G{sub 0}/G{sub 1} phase arrest via inhibiting the activity of CDK2, CDK4 and CDK6. Black-Right-Pointing-Pointer SKLB70326 induces apoptosis through the intrinsic pathway. -- Abstract: We previously reported the potential of a novel small molecule 3-amino-6-(3-methoxyphenyl)thieno[2.3-b]pyridine-2-carboxamide (SKLB70326) as an anticancer agent. In the present study, we investigated the anticancer effects and possible mechanisms of SKLB70326 in vitro. We found that SKLB70326 treatment significantly inhibited human hepatic carcinoma cell proliferation in vitro, and the HepG2 cell line was the most sensitive to its treatment. The inhibition of cell proliferation correlated with G{sub 0}/G{sub 1} phase arrest, which was followed by apoptotic cell death. The SKLB70326-mediated cell-cycle arrest was associated with the downregulation of cyclin-dependent kinase (CDK) 2, CDK4 and CDK6 but not cyclin D1 or cyclin E. The phosphorylation of the retinoblastoma protein (Rb) was also observed. SKLB70326 treatment induced apoptotic cell death via the activation of PARP, caspase-3, caspase-9 and Bax as well as the downregulation of Bcl-2. The expression levels of p53 and p21 were also induced by SKLB70326 treatment. Moreover, SKLB70326 treatment was well tolerated. In conclusion, SKLB70326, a novel cell-cycle inhibitor, notably inhibits HepG2 cell proliferation through the induction of G{sub 0}/G{sub 1} phase arrest and subsequent apoptosis. Its potential as a candidate anticancer agent warrants further investigation.

  14. Iodine-131 treatment of thyroid cancer cells leads to suppression of cell proliferation followed by induction of cell apoptosis and cell cycle arrest by regulation of B-cell translocation gene 2-mediated JNK/NF-κB pathways

    PubMed Central

    Zhao, L.M.; Pang, A.X.

    2017-01-01

    Iodine-131 (131I) is widely used for the treatment of thyroid-related diseases. This study aimed to investigate the expression of p53 and BTG2 genes following 131I therapy in thyroid cancer cell line SW579 and the possible underlying mechanism. SW579 human thyroid squamous carcinoma cells were cultured and treated with 131I. They were then assessed for 131I uptake, cell viability, apoptosis, cell cycle arrest, p53 expression, and BTG2 gene expression. SW579 cells were transfected with BTG2 siRNA, p53 siRNA and siNC and were then examined for the same aforementioned parameters. When treated with a JNK inhibitor of SP600125 and 131I or with a NF-κB inhibitor of BMS-345541 and 131I, non-transfected SW579 cells were assessed in JNK/NFκB pathways. It was observed that 131I significantly inhibited cell proliferation, promoted cell apoptosis and cell cycle arrest. Both BTG2 and p53 expression were enhanced in a dose-dependent manner. An increase in cell viability by up-regulation in Bcl2 gene, a decrease in apoptosis by enhanced CDK2 gene expression and a decrease in cell cycle arrest at G0/G1 phase were also observed in SW579 cell lines transfected with silenced BTG2 gene. When treated with SP600125 and 131I, the non-transfected SW579 cell lines significantly inhibited JNK pathway, NF-κB pathway and the expression of BTG2. However, when treated with BMS-345541 and 131I, only the NF-κB pathway was suppressed. 131I suppressed cell proliferation, induced cell apoptosis, and promoted cell cycle arrest of thyroid cancer cells by up-regulating B-cell translocation gene 2-mediated activation of JNK/NF-κB pathways. PMID:28099584

  15. The production of reactive oxygen species and the mitochondrial membrane potential are modulated during onion oil-induced cell cycle arrest and apoptosis in A549 cells.

    PubMed

    Wu, Xin-jiang; Stahl, Thorsten; Hu, Ying; Kassie, Fekadu; Mersch-Sundermann, Volker

    2006-03-01

    Protective effects of Allium vegetables against cancers have been shown extensively in experimental animals and epidemiologic studies. We investigated cell proliferation and the induction of apoptosis by onion oil extracted from Allium cepa, a widely consumed Allium vegetable, in human lung cancer A549 cells. GC/MS analysis suggested that propyl sulfides but not allyl sulfides are major sulfur-containing constituents of onion oil. Onion oil at 12.5 mg/L significantly induced apoptosis (13% increase of apoptotic cells) as indicated by sub-G1 DNA content. It also caused cell cycle arrest at the G2/M phase; 25 mg/L onion oil increased the percentage of G2/M cells almost 6-fold compared with the dimethyl sulfoxide control. The action of onion oil may occur via a reactive oxygen species-dependent pathway because cell cycle arrest and apoptosis were blocked by the antioxidants N-acetylcysteine and exogenous glutathione. Marked collapse of the mitochondrial membrane potential suggested that dysfunction of the mitochondria may be involved in the oxidative burst and apoptosis induced by onion oil. Expression of phospho-cdc2 and phospho-cyclin B1 were downregulated by onion oil, perhaps accounting for the G2/M arrest. Overall, these results suggest that onion oil may exert chemopreventive action by inducing cell cycle arrest and apoptosis in tumor cells.

  16. Hyperosmotic stress induces cell cycle arrest in retinal pigmented epithelial cells

    PubMed Central

    Arsenijevic, T; Vujovic, A; Libert, F; Op de Beeck, A; Hébrant, A; Janssens, S; Grégoire, F; Lefort, A; Bolaky, N; Perret, J; Caspers, L; Willermain, F; Delporte, C

    2013-01-01

    Osmotic changes occur in many tissues and profoundly influence cell function. Herein, we investigated the effect of hyperosmotic stress on retinal pigmented epithelial (RPE) cells using a microarray approach. Upon 4-h exposure to 100 mM NaCl or 200 mM sucrose, 79 genes were downregulated and 72 upregulated. Three gene ontology categories were significantly modulated: cell proliferation, transcription from RNA polymerase II promoter and response to abiotic stimulus. Fluorescent-activated cell sorting analysis further demonstrated that owing to hyperosmotic stimulation for 24 h, cell count and cell proliferation, as well as the percentage of cells in G0/G1 and S phases were significantly decreased, whereas the percentage of cells in G2/M phases increased, and apoptosis and necrosis remained unaffected. Accordingly, hyperosmotic conditions induced a decrease of cyclin B1 and D1 expression, and an activation of the p38 mitogen-activated protein kinase. In conclusion, our results demonstrate that hypertonic conditions profoundly affect RPE cell gene transcription regulating cell proliferation by downregulation cyclin D1 and cyclin B1 protein expression. PMID:23744362

  17. Cell cycle arrest promotes trans-hammerhead ribozyme action in yeast.

    PubMed

    Ferbeyre, G; Bratty, J; Chen, H; Cedergren, R

    1996-08-09

    A hammerhead ribozyme designed to cleave the yeast ADE1 mRNA has been expressed in yeast under the control of a galactose-inducible promoter. RNA prepared from the galactose-induced yeast cultures possesses an activity that cleaves ADE1 mRNA in vitro. However, in spite of high expression levels of the ribozyme, no cleavage activity could be demonstrated in vivo. On the other hand, when the yeast cells expressing hammerhead RNA were treated with the alpha-factor mating pheromone, the level of ADE1 mRNA was reduced by 50%. Similar reductions were observed when this strain was cultured in the presence of lithium acetate or in nitrogen-free medium. Moreover, control experiments in which disabled hammerhead genes were expressed showed no such reductions. Extension of the length of the flanking recognition arms of the ribozyme from a total of 10 to 16 or 24 nucleotides diminished the inhibitory effect of the ribozyme. These data suggest that ribozymes are able to cleave a trans-RNA target in yeast.

  18. Anti-proliferative properties of commercial Pelargonium sidoides tincture, with cell-cycle G0/G1 arrest and apoptosis in Jurkat leukaemia cells.

    PubMed

    Pereira, Andreia; Bester, Megan; Soundy, Puffy; Apostolides, Zeno

    2016-09-01

    Context Pelargonium sidoides DC (Geraniaceae) is an important medicinal plant indigenous to South Africa and Lesotho. Previous studies have shown that root extracts are rich in polyphenolic compounds with antibacterial, antiviral and immunomodulatory activities. Little is known regarding the anticancer properties of Pelargonium sidoides extracts. Objective This study evaluates the anti-proliferative effects of a Pelargonium sidoides radix mother tincture (PST). Materials and methods The PST was characterized by LC-MS/MS. Anti-proliferative activity was evaluated in the pre-screen panel of the National Cancer Institute (NCI-H460, MCF-7 and SF-268) and the Jurkat leukaemia cell line at concentrations of 0-150 μg/mL. The effect on cell growth was determined with sulphorhodamine B and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays after 72 h. The effect on cell cycle and apoptosis induction in Jurkat cells was determined by flow cytometry with propidium iodide and Annexin V: fluorescein isothiocyanate staining. Results Dihydroxycoumarin sulphates, gallic acid as well as gallocatechin dimers and trimers were characterized in PST by mass spectrometry. Moderate anti-proliferative effects with GI50 values between 40 and 80 μg/mL were observed in the NCI-pre-screen panel. Strong activity observed with Jurkat cells with a GI50 value of 6.2 μg/mL, significantly better than positive control 5-fluorouracil (GI50 value of 9.7 μg/mL). The PST arrested Jurkat cells at the G0/G1 phase of the cell cycle and increased the apoptotic cells from 9% to 21%, while the dead cells increased from 4% to 17%. Conclusion We present evidence that P. sidoides has cancer cell type-specific anti-proliferative effects and may be a source of novel anticancer molecules.

  19. Xanthohumol induces apoptosis and S phase cell cycle arrest in A549 non-small cell lung cancer cells

    PubMed Central

    Yong, Wai Kuan; Ho, Yen Fong; Malek, Sri Nurestri Abd

    2015-01-01

    Background: Xanthohumol, a major prenylated chalcone found in female hop plant, Humulus lupulus, was reported to have various chemopreventive and anti-cancer properties. However, its apoptotic effect on human alveolar adenocarcinoma cell line (A549) of non-small cell lung cancer (NSCLC) was unknown. Objective: This study aimed to investigate the effects of xanthohumol on apoptosis in A549 human NSCLC cells. Materials and Methods: A549 cell proliferation was determined by sulforhodamine B assay. Morphological changes of the cells were studied via phase contrast and fluorescent microscopy. Induction of apoptosis was assessed by Annexin-V fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining, DNA fragmentation (TUNEL) assay mitochondrial membrane potential assay, cell cycle analysis, and caspase activity studies. Results: Xanthohumol was found to decrease cell proliferation in A549 cells but had relatively low cytotoxicity on normal human lung fibroblast cell line (MRC-5). Typical cellular and nuclear apoptotic features were also observed in A549 cells treated with xanthohumol. Onset of apoptosis in A549 cells was further confirmed by externalization of phosphatidylserine, changes in mitochondrial membrane potential, and DNA fragmentation in the cells after treatment. Xanthohumol induced accumulation of cells in sub G1 and S phase based on cell cycle analysis and also increased the activities of caspase-3, -8, and -9. Conclusion: This work suggests that xanthohumol as an apoptosis inducer, may be a potent therapeutic compound for NSCLC. PMID:26664015

  20. MLN4924 suppresses neddylation and induces cell cycle arrest, senescence, and apoptosis in human osteosarcoma.

    PubMed

    Zhang, Yi; Shi, Cheng-Cheng; Zhang, Hua-Peng; Li, Gong-Quan; Li, Shan-Shan

    2016-07-19

    Neddylation is a post-translational protein modification process associated with carcinogenesis and cancer development. MLN4924, a pharmaceutical neddylation inhibitor, induces potent anti-cancer effects in multiple types of cancers. In this study, we investigated the effects of MLN4924 on human osteosarcoma (OS). Levels of both NEDD8 activating enzyme E1 (NAE1) and ubiquitin-conjugating enzyme E2M (Ube2M), two critical components of the neddylation pathway, were much higher in OS tissues and cells than in normal osseous tissues and cells. MLN4924 treatment led to DNA damage, reduced cell viability, senescence and apoptosis in OS cells. Moreover, MLN4924 inhibited OS xenograft tumor growth in mice. Mechanistically, MLN4924 blocked the neddylation of cullins and induced accumulation of several tumor-suppressive substrates of Cullin-RING E3 ubiquitin ligases (CRLs), including CDT1, Wee1, p21, p27, Noxa, and p16. These results suggest clinical studies investigating the utility of MLN4924 for the treatment of OS are warranted.

  1. Lebein, a snake venom disintegrin, suppresses human colon cancer cells proliferation and tumor-induced angiogenesis through cell cycle arrest, apoptosis induction and inhibition of VEGF expression.

    PubMed

    Zakraoui, Ons; Marcinkiewicz, Cezary; Aloui, Zohra; Othman, Houcemeddine; Grépin, Renaud; Haoues, Meriam; Essafi, Makram; Srairi-Abid, Najet; Gasmi, Ammar; Karoui, Habib; Pagès, Gilles; Essafi-Benkhadir, Khadija

    2017-01-01

    Lebein, is an heterodimeric disintegrin isolated from Macrovipera lebetina snake venom that was previously characterized as an inhibitor of ADP-induced platelet aggregation. In this study, we investigated the effect of Lebein on the p53-dependent growth of human colon adenocarcinoma cell lines. We found that Lebein significantly inhibited LS174 (p53wt), HCT116 (p53wt), and HT29 (p53mut) colon cancer cell viability by inducing cell cycle arrest through the modulation of expression levels of the tumor suppression factor p53, cell cycle regulating proteins cyclin D1, CDK2, CDK4, retinoblastoma (Rb), CDK1, and cyclin-dependent kinase inhibitors p21 and p27. Interestingly, Lebein-induced apoptosis of colon cancer cells was dependent on their p53 status. Thus, in LS174 cells, cell death was associated with PARP cleavage and the activation of caspases 3 and 8 while in HCT116 cells, Lebein induced caspase-independent apoptosis through increased expression of apoptosis inducing factor (AIF). In LS174 cells, Lebein triggers the activation of the MAPK ERK1/2 pathway through induction of reactive oxygen species (ROS). It also decreased cell adhesion and migration to fibronectin through down regulation of α5β1 integrin. Moreover, Lebein significantly reduced the expression of two angiogenesis stimulators, Vascular Endothelial Growth Factor (VEGF) and Neuropilin 1 (NRP1). It inhibited the VEGF-induced neovascularization process in the quail embryonic CAM system and blocked the development of human colon adenocarcinoma in nude mice. Overall, our work indicates that Lebein may be useful to design a new therapy against colon cancer. © 2016 Wiley Periodicals, Inc.

  2. Expression of progesterone receptor B is associated with G0/G1 arrest of the cell cycle and growth inhibition in NIH3T3 cells

    SciTech Connect

    Horiuchi, Shinji; Kato, Kiyoko . E-mail: kkatoh@tsurumi.beppu.kyushu-u.ac.jp; Suga, Shin; Takahashi, Akira; Ueoka, Yousuke; Arima, Takahiro; Nishida, Jun-ichi; Hachisuga, Toru; Kawarabayashi, Tatsuhiko; Wake, Norio

    2005-05-01

    Previously, we found a significant reduction of progesterone receptor B (PR-B) expression levels in the Ras-mediated NIH3T3 cell transformation, and re-expression of exogenous PR-B eliminated the tumorigenic potential. We hypothesized that this reduction is of biological significance in cell transformation. In the present study, we determined the correlation between PR-B expression and cell cycle progression. In synchronized NIH3T3 cells, we found an increase in PR-B protein and p27 CDK inhibitor levels in the G0/G1 phase and a reduction due to redistribution in the S and G2/M phases. The MEK inhibitor or cAMP stimulation arrested NIH3T3 cells in the G0/G1 phase of the cell cycle. The expression of PR-B and p27 CDK inhibitors was up-regulated by treatment with both the MEK inhibitor and cAMP. Treatment of synchronized cells with a PKA inhibitor in the presence of 1% calf serum resulted in a significant reduction in both PR-B and p27 levels. The decrease in the PR-B levels caused by anti-sense oligomers or siRNA corresponded to the reduction in p27 levels. PR-B overexpression by adenovirus infection induced p27 and suppressed cell growth. Finally, we showed that PR-B modulation involved in the regulation of NIH3T3 cell proliferation was independent of nuclear estrogen receptor (ER) activity but dependent on non-genomic ER activity.

  3. DNA Damage Response Checkpoint Activation Drives KP1019 Dependent Pre-Anaphase Cell Cycle Delay in S. cerevisiae

    PubMed Central

    Bierle, Lindsey A.; Reich, Kira L.; Taylor, Braden E.; Blatt, Eliot B.; Middleton, Sydney M.; Burke, Shawnecca D.; Stultz, Laura K.; Hanson, Pamela K.; Partridge, Janet F.; Miller, Mary E.

    2015-01-01

    Careful regulation of the cell cycle is required for proper replication, cell division, and DNA repair. DNA damage–including that induced by many anticancer drugs–results in cell cycle delay or arrest, which can allow time for repair of DNA lesions. Although its molecular mechanism of action remains a matter of debate, the anticancer ruthenium complex KP1019 has been shown to bind DNA in biophysical assays and to damage DNA of colorectal and ovarian cancer cells in vitro. KP1019 has also been shown to induce mutations and induce cell cycle arrest in Saccharomyces cerevisiae, suggesting that budding yeast can serve as an appropriate model for characterizing the cellular response to the drug. Here we use a transcriptomic approach to verify that KP1019 induces the DNA damage response (DDR) and find that KP1019 dependent expression of HUG1 requires the Dun1 checkpoint; both consistent with KP1019 DDR in budding yeast. We observe a robust KP1019 dependent delay in cell cycle progression as measured by increase in large budded cells, 2C DNA content, and accumulation of Pds1 which functions to inhibit anaphase. Importantly, we also find that deletion of RAD9, a gene required for the DDR, blocks drug-dependent changes in cell cycle progression, thereby establishing a causal link between the DDR and phenotypes induced by KP1019. Interestingly, yeast treated with KP1019 not only delay in G2/M, but also exhibit abnormal nuclear position, wherein the nucleus spans the bud neck. This morphology correlates with short, misaligned spindles and is dependent on the dynein heavy chain gene DYN1. We find that KP1019 creates an environment where cells respond to DNA damage through nuclear (transcriptional changes) and cytoplasmic (motor protein activity) events. PMID:26375390

  4. DNA Damage Response Checkpoint Activation Drives KP1019 Dependent Pre-Anaphase Cell Cycle Delay in S. cerevisiae.

    PubMed

    Bierle, Lindsey A; Reich, Kira L; Taylor, Braden E; Blatt, Eliot B; Middleton, Sydney M; Burke, Shawnecca D; Stultz, Laura K; Hanson, Pamela K; Partridge, Janet F; Miller, Mary E

    2015-01-01

    Careful regulation of the cell cycle is required for proper replication, cell division, and DNA repair. DNA damage--including that induced by many anticancer drugs--results in cell cycle delay or arrest, which can allow time for repair of DNA lesions. Although its molecular mechanism of action remains a matter of debate, the anticancer ruthenium complex KP1019 has been shown to bind DNA in biophysical assays and to damage DNA of colorectal and ovarian cancer cells in vitro. KP1019 has also been shown to induce mutations and induce cell cycle arrest in Saccharomyces cerevisiae, suggesting that budding yeast can serve as an appropriate model for characterizing the cellular response to the drug. Here we use a transcriptomic approach to verify that KP1019 induces the DNA damage response (DDR) and find that KP1019 dependent expression of HUG1 requires the Dun1 checkpoint; both consistent with KP1019 DDR in budding yeast. We observe a robust KP1019 dependent delay in cell cycle progression as measured by increase in large budded cells, 2C DNA content, and accumulation of Pds1 which functions to inhibit anaphase. Importantly, we also find that deletion of RAD9, a gene required for the DDR, blocks drug-dependent changes in cell cycle progression, thereby establishing a causal link between the DDR and phenotypes induced by KP1019. Interestingly, yeast treated with KP1019 not only delay in G2/M, but also exhibit abnormal nuclear position, wherein the nucleus spans the bud neck. This morphology correlates with short, misaligned spindles and is dependent on the dynein heavy chain gene DYN1. We find that KP1019 creates an environment where cells respond to DNA damage through nuclear (transcriptional changes) and cytoplasmic (motor protein activity) events.

  5. Effect of radiation on cytotoxicity, apoptosis and cell cycle arrest of human osteosarcoma MG-63 induced by a ruthenium(II) complex.

    PubMed

    Liu, Si-Hong; Zhao, Jian-Hua; Deng, Kun-Kang; Wu, Yong; Zhu, Jian-Wei; Liu, Qing-Hua; Xu, Hui-Hua; Wu, Hai-Feng; Li, Xin-Yan; Wang, Jian-Wei; Guo, Qi-Feng

    2015-04-05

    Radiation has large influence on the cytotoxicity, apoptosis and cell cycle arrest. The bioactivity of ruthenium(II) complex [Ru(dmb)2(DBHIP)](ClO4)2 (Ru1) (DBHIP=2-(3,5-dibromo-4-hydroxylphenyl)imidazo[4,5-f][1,10]phenanthroline) was investigated in the absence and presence of radiation. The cytotoxicity of Ru1 against MG-63 cells was evaluated by CCK-8 method. Ru1 shows high cytotoxicity upon radiation. Radiation can enhance the cytotoxicity of Ru1 on MG-63 cells. The apoptosis was studied by Hoechst 33258 staining method and flow cytometry. The reactive oxygen species, mitochondrial membrane potential, cell cycle arrest and western blot analysis were investigated in detail. The complex induces the apoptosis in MG-63 cells through ROS-mediated mitochondrial dysfunction pathway.

  6. Genetic inactivation of Cdk7 leads to cell cycle arrest and induces premature aging due to adult stem cell exhaustion

    PubMed Central

    Ganuza, Miguel; Sáiz-Ladera, Cristina; Cañamero, Marta; Gómez, Gonzalo; Schneider, Ralph; Blasco, María A; Pisano, David; Paramio, Jesús M; Santamaría, David; Barbacid, Mariano

    2012-01-01

    Cyclin-dependent kinase (Cdk)7, the catalytic subunit of the Cdk-activating kinase (CAK) complex has been implicated in the control of cell cycle progression and of RNA polymerase II (RNA pol II)-mediated transcription. Genetic inactivation of the Cdk7 locus revealed that whereas Cdk7 is completely dispensable for global transcription, is essential for the cell cycle via phosphorylation of Cdk1 and Cdk2. In vivo, Cdk7 is also indispensable for cell proliferation except during the initial stages of embryonic development. Interestingly, widespread elimination of Cdk7 in adult tissues with low proliferative indexes had no phenotypic consequences. However, ablation of conditional Cdk7 alleles in tissues with elevated cellular turnover led to the efficient repopulation of these tissues with Cdk7-expressing cells most likely derived from adult stem cells that may have escaped the inactivation of their targeted Cdk7 alleles. This process, a physiological attempt to maintain tissue homeostasis, led to the attrition of adult stem cell pools and to the appearance of age-related phenotypes, including telomere shortening and early death. PMID:22505032

  7. The depletion of Interleukin-8 causes cell cycle arrest and increases the efficacy of docetaxel in breast cancer cells

    SciTech Connect

    Shao, Nan; Chen, Liu-Hua; Ye, Run-Yi; Lin, Ying; Wang, Shen-Ming

    2013-02-15

    Highlights: ► IL-8 depletion affects cell cycle distribution. ► Intrinsic IL-8 mediates breast cancer cell migration and invasion. ► IL-8 siRNA down regulates key factors that control survival and metastatic pathway. ► IL-8 depletion reduces integrin β3 expression. ► IL-8 depletion increases the chemosensitivity to docetaxel. -- Abstract: IL-8 is a multi-functional pro-inflammatory chemokine, which is highly expressed in cancers, such as ER-negative breast cancer. The present study demonstrates the pervasive role of IL-8 in the malignant progression of ER-negative breast cancer. IL-8 siRNA inhibited proliferation and delayed the G1 to S cell cycle progression in MDA-MB-231 and BT549 cells. IL-8 silencing resulted in the upregulation of the CDK inhibitor p27, the downregulation of cyclin D1, and the reduction of phosphorylated-Akt and NF-κB activities. IL-8 depletion also increased the chemosensitivity to docetaxel. These results indicate a role for IL-8 in promoting tumor cell survival and resistance to docetaxel and highlight the potential therapeutic significance of IL-8 depletion in ER-negative breast cancer patients.

  8. The pleiotropic effects of fisetin and hesperetin on human acute promyelocytic leukemia cells are mediated through apoptosis, cell cycle arrest, and alterations in signaling networks.

    PubMed

    Adan, Aysun; Baran, Yusuf

    2015-11-01

    Fisetin and hesperetin, flavonoids from various plants, have several pharmaceutical activities including antioxidative, anti-inflammatory, and anticancer effects. However, studies elucidating the role and the mechanism(s) of action of fisetin and hesperetin in acute promyelocytic leukemia are absent. In this study, we investigated the mechanism of the antiproliferative and apoptotic actions exerted by fisetin and hesperetin on human HL60 acute promyelocytic leukemia cells. The viability of HL60 cells was evaluated using the MTT assay, apoptosis by annexin V/propidium iodide (PI) staining and cell cycle distribution using flow cytometry, and changes in caspase-3 enzyme activity and mitochondrial transmembrane potential. Moreover, we performed whole-genome microarray gene expression analysis to reveal genes affected by fisetin and hesperetin that can be important for developing of future targeted therapy. Based on data obtained from microarray analysis, we also described biological networks modulated after fisetin and hesperetin treatment by KEGG and IPA analysis. Fisetin and hesperetin treatment showed a concentration- and time-dependent inhibition of proliferation and induced G2/M arrest for both agents and G0/G1 arrest for hesperetin at only the highest concentrations. There was a disruption of mitochondrial membrane potential together with increased caspase-3 activity. Furthermore, fisetin- and hesperetin-triggered apoptosis was confirmed by annexin V/PI analysis. The microarray gene profiling analysis revealed some important biological pathways including mitogen-activated protein kinases (MAPK) and inhibitor of DNA binding (ID) signaling pathways altered by fisetin and hesperetin treatment as well as gave a list of genes modulated ≥2-fold involved in cell proliferation, cell division, and apoptosis. Altogether, data suggested that fisetin and hesperetin have anticancer properties and deserve further investigation.

  9. Cell cycle modulation by Marek's disease virus: the tegument protein VP22 triggers S-phase arrest and DNA damage in proliferating cells.

    PubMed

    Trapp-Fragnet, Laëtitia; Bencherit, Djihad; Chabanne-Vautherot, Danièle; Le Vern, Yves; Remy, Sylvie; Boutet-Robinet, Elisa; Mirey, Gladys; Vautherot, Jean-François; Denesvre, Caroline

    2014-01-01

    Marek's disease is one of the most common viral diseases of poultry affecting chicken flocks worldwide. The disease is caused by an alphaherpesvirus, the Marek's disease virus (MDV), and is characterized by the rapid onset of multifocal aggressive T-cell lymphoma in the chicken host. Although several viral oncogenes have been identified, the detailed mechanisms underlying MDV-induced lymphomagenesis are still poorly understood. Many viruses modulate cell cycle progression to enhance their replication and persistence in the host cell, in the case of some oncogenic viruses ultimately leading to cellular transformation and oncogenesis. In the present study, we found that MDV, like other viruses, is able to subvert the cell cycle progression by triggering the proliferation of low proliferating chicken cells and a subsequent delay of the cell cycle progression into S-phase. We further identified the tegument protein VP22 (pUL49) as a major MDV-encoded cell cycle regulator, as its vector-driven overexpression in cells lead to a dramatic cell cycle arrest in S-phase. This striking functional feature of VP22 appears to depend on its ability to associate with histones in the nucleus. Finally, we established that VP22 expression triggers the induction of massive and severe DNA damages in cells, which might cause the observed intra S-phase arrest. Taken together, our results provide the first evidence for a hitherto unknown function of the VP22 tegument protein in herpesviral reprogramming of the cell cycle of the host cell and its potential implication in the generation of DNA damages.

  10. Cell Cycle Modulation by Marek’s Disease Virus: The Tegument Protein VP22 Triggers S-Phase Arrest and DNA Damage in Proliferating Cells

    PubMed Central

    Trapp-Fragnet, Laëtitia; Bencherit, Djihad; Chabanne-Vautherot, Danièle; Le Vern, Yves; Remy, Sylvie; Boutet-Robinet, Elisa; Mirey, Gladys; Vautherot, Jean-François; Denesvre, Caroline

    2014-01-01

    Marek’s disease is one of the most common viral diseases of poultry affecting chicken flocks worldwide. The disease is caused by an alphaherpesvirus, the Marek’s disease virus (MDV), and is characterized by the rapid onset of multifocal aggressive T-cell lymphoma in the chicken host. Although several viral oncogenes have been identified, the detailed mechanisms underlying MDV-induced lymphomagenesis are still poorly understood. Many viruses modulate cell cycle progression to enhance their replication and persistence in the host cell, in the case of some oncogenic viruses ultimately leading to cellular transformation and oncogenesis. In the present study, we found that MDV, like other viruses, is able to subvert the cell cycle progression by triggering the proliferation of low proliferating chicken cells and a subsequent delay of the cell cycle progression into S-phase. We further identified the tegument protein VP22 (pUL49) as a major MDV-encoded cell cycle regulator, as its vector-driven overexpression in cells lead to a dramatic cell cycle arrest in S-phase. This striking functional feature of VP22 appears to depend on its ability to associate with histones in the nucleus. Finally, we established that VP22 expression triggers the induction of massive and severe DNA damages in cells, which might cause the observed intra S-phase arrest. Taken together, our results provide the first evidence for a hitherto unknown function of the VP22 tegument protein in herpesviral reprogramming of the cell cycle of the host cell and its potential implication in the generation of DNA damages. PMID:24945933

  11. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells

    PubMed Central

    Maimaitili, Aisha; Shu, Zunhua; Cheng, Xiaojiang; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2017-01-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and bromodeoxyuridine incorporation assays. Arctigenin exposure also induced a 60–75% reduction in colony formation compared with vehicle-treated control cells. However, arctigenin was not observed to affect the invasiveness of glioma cells. Arctigenin significantly increased the proportion of cells in the G0/G1 phase and reduced the number of cells in the S phase, as compared with the control group (P<0.05). Western blot analysis demonstrated that arctigenin increased the expression levels of p21, retinoblastoma and p53 proteins, and significantly decreased the expression levels of cyclin D1 and cyclin-dependent kinase 4 proteins. Additionally, arctigenin was able to induce apoptosis in glioma cells, coupled with increased expression levels of cleaved caspase-3 and the pro-apoptotic BCL2-associated X protein. Furthermore, arctigenin-induced apoptosis was significantly suppressed by the pretreatment of cells with Z-DEVD-FMK, a caspase-3 inhibitor. In conclusion, the results suggest that arctigenin is able to inhibit cell proliferation and may induce apoptosis and cell cycle arrest at the G0/G1 phase in glioma cells. These results warrant further investigation of the anticancer effects of arctigenin in animal models of gliomas. PMID:28356992

  12. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells.

    PubMed

    Maimaitili, Aisha; Shu, Zunhua; Cheng, Xiaojiang; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2017-02-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and bromodeoxyuridine incorporation assays. Arctigenin exposure also induced a 60-75% reduction in colony formation compared with vehicle-treated control cells. However, arctigenin was not observed to affect the invasiveness of glioma cells. Arctigenin significantly increased the proportion of cells in the G0/G1 phase and reduced the number of cells in the S phase, as compared with the control group (P<0.05). Western blot analysis demonstrated that arctigenin increased the expression levels of p21, retinoblastoma and p53 proteins, and significantly decreased the expression levels of cyclin D1 and cyclin-dependent kinase 4 proteins. Additionally, arctigenin was able to induce apoptosis in glioma cells, coupled with increased expression levels of cleaved caspase-3 and the pro-apoptotic BCL2-associated X protein. Furthermore, arctigenin-induced apoptosis was significantly suppressed by the pretreatment of cells with Z-DEVD-FMK, a caspase-3 inhibitor. In conclusion, the results suggest that arctigenin is able to inhibit cell proliferation and may induce apoptosis and cell cycle arrest at the G0/G1 phase in glioma cells. These results warrant further investigation of the anticancer effects of arctigenin in animal models of gliomas.

  13. Selective cell cycle arrest and induction of apoptosis in human prostate cancer cells by a polyphenol-rich extract of Solanum nigrum

    PubMed Central

    NAWAB, AKBAR; THAKUR, VIJAY S.; YUNUS, MOHAMMAD; MAHDI, ABBAS ALI; GUPTA, SANJAY

    2012-01-01

    Progression of prostate cancer is associated with escape of tumor cells from cell cycle arrest and apoptosis. Agents capable of selectively eliminating cancer cells by cell cycle arrest and/or induction of apoptosis offer a highly desirable approach. Here we demonstrate that a polyphenolic extract derived from ripe berries of Solanum nigrum (SN) differentially causes cell cycle arrest and apoptosis in various human prostate cancer cells without affecting normal prostate epithelial cells. Virally transformed normal human prostate epithelial PZ-HPV-7 cells and their cancer counterpart CA-HPV-10 cells, were used to evaluate the growth-inhibitory effects of the SN extract. SN treatment (5–20 μg/ml) of PZ-HPV-7 cells resulted in growth inhibitory responses of low magnitude. In sharp contrast, SN treatment of CA-HPV-10 cells increased cytotoxicity, decreased cell viability and induced apoptosis. Similar results were noted in the human prostate cancer LNCaP, 22Rv1, DU145 and PC-3 cell lines, where significant reductions in cell viability and induction of apoptosis was observed in all these cells, an effect independent of disease stage and androgen association. Cell cycle analysis revealed that SN treatment (5–20 μg/ml) resulted in a dose-dependent G2/M phase arrest and subG1 accumulation in the CA-HPV-10 but not in the PZ-HPV-7 cell line. Our results, for the first time, demonstrate that the SN extract is capable of selectively inhibiting cellular proliferation and accelerating apoptotic events in prostate cancer cells. SN may be developed as a promising therapeutic and/or preventive agent against prostate cancer. PMID:22076244

  14. Resveratrol analogue 3,4,4′,5-tetramethoxystilbene inhibits growth, arrests cell cycle and induces apoptosis in ovarian SKOV‐3 and A-2780 cancer cells

    SciTech Connect

    Piotrowska, Hanna; Myszkowski, Krzysztof; Ziółkowska, Alicja; Kulcenty, Katarzyna; Wierzchowski, Marcin; Kaczmarek, Mariusz; Murias, Marek; Kwiatkowska-Borowczyk, Eliza; Jodynis-Liebert, Jadwiga

    2012-08-15

    In the screening studies, cytotoxicity of 12 methylated resveratrol analogues on 11 human cancer cell lines was examined. The most active compound 3,4,4′5-tetramethoxystilbene (DMU-212) and two ovarian cancer cell lines A-2780 (IC{sub 50} = 0.71 μM) and SKOV-3 (IC{sub 50} = 11.51 μM) were selected for further investigation. To determine the mechanism of DMU-212 cytotoxicity, its ability to induce apoptosis was examined. DMU-212 arrested cell cycle in the G2/M or G0/G1 phase which resulted in apoptosis of both cell lines. The expression level of 84 apoptosis-related genes was investigated. In SKOV-3 cells DMU-212 caused up-regulation of pro-apoptotic Bax, Apaf-1 and p53 genes, specific to intrinsic pathway of apoptosis, and a decrease in Bcl-2 and Bcl 2110 mRNA expressions. Conversely, in A-2780 cells an increased expression of pro-apoptotic genes Fas, FasL, TNF, TNFRSF10A, TNFRSF21, TNFRSF16 specific to extracellular mechanism of apoptosis was observed. There are no data published so far regarding the receptor mediated apoptosis induced by DMU-212. The activation of caspase-3/7 was correlated with decreased TRAF-1 and BIRC-2 expression level in A-2780 cells exposed to DMU-212. DMU-212 caused a decrease in CYP1A1 and CYP1B1 mRNA levels in A-2780 by 50% and 75%, and in SKOV-3 cells by 15% and 45%, respectively. The protein expression was also reduced in both cell lines. It is noteworthy that the expression of CYP1B1 protein was entirely inhibited in A-2780 cells treated with DMU-212. It can be suggested that different CYP1B1 expression patterns in either ovarian cell line may affect their sensitivity to cytotoxic activity of DMU-212. -- Highlights: ► DMU-212 was the most cytotoxic among 12 O-methylated resveratrol analogues. ► DMU-212 arrested cell cycle at G2/M and G0/G1phase ► DMU-212 triggered mitochondria- and receptor‐mediated apoptosis. ► DMU-212 entirely inhibited CYP1B1 protein expression in A-2780 cells.

  15. The cranberry flavonoids PAC DP-9 and quercetin aglycone induce cytotoxicity and cell cycle arrest and increase cisplatin sensitivity in ovarian cancer cells.

    PubMed

    Wang, Yifei; Han, Alex; Chen, Eva; Singh, Rakesh K; Chichester, Clinton O; Moore, Richard G; Singh, Ajay P; Vorsa, Nicholi

    2015-05-01

    Cranberry flavonoids (flavonols and flavan-3-ols), in addition to their antioxidant properties, have been shown to possess potential in vitro activity against several cancers. However, the difficulty of isolating cranberry compounds has largely limited anticancer research to crude fractions without well-defined compound composition. In this study, individual cranberry flavonoids were isolated to the highest purity achieved so far using gravity and high performance column chromatography and LC-MS characterization. MTS assay indicated differential cell viability reduction of SKOV-3 and OVCAR-8 ovarian cancer cells treated with individual cranberry flavonoids. Treatment with quercetin aglycone and PAC DP-9, which exhibited the strongest activity, induced apoptosis, led to caspase-3 activation and PARP deactivation, and increased sensitivity to cisplatin. Furthermore, immunofluorescence microscopy and western blot study revealed reduced expression and activation of epidermal growth factor receptor (EGFR) in PAC DP-9 treated SKOV-3 cells. In addition, quercetin aglycone and PAC DP-9 deactivated MAPK-ERK pathway, induced downregulation of cyclin D1, DNA-PK, phospho-histone H3 and upregulation of p21, and arrested cell cycle progression. Overall, this study demonstrates promising in vitro cytotoxic and anti-proliferative properties of two newly characterized cranberry flavonoids, quercetin aglycone and PAC DP-9, against ovarian cancer cells.

  16. Thymoquinone, a bioactive component of black caraway seeds, causes G1 phase cell cycle arrest and apoptosis in triple-negative breast cancer cells with mutant p53.

    PubMed

    Sutton, Kimberly M; Greenshields, Anna L; Hoskin, David W

    2014-01-01

    Thymoquinone (TQ) from black caraway seeds has several anticancer activities; however, its effect on triple-negative breast cancer (TNBC) cells that lack functional tumor suppressor p53 is not known. Here, we explored the growth inhibitory effect of TQ on 2 TNBC cell lines with mutant p53. Cell metabolism assays showed that TQ inhibited TNBC cell growth without affecting normal cell growth. Flow cytometric analyses of TQ-treated TNBC cells showed G1 phase cell cycle arrest and apoptosis characterized by the loss of mitochondrial membrane integrity. Western blots of lysates from TQ-treated TNBC cells showed cytochrome c and apoptosis-inducing factor in the cytoplasm, as well as caspase-9 activation consistent with the mitochondrial pathway of apoptosis. Caspase-8 was also activated in TQ-treated TNBC cells, although the mechanism of activation is not clear at this time. Importantly, TQ-induced apoptosis was only partially inhibited by zVAD-fmk, indicating a role for caspase-independent effector molecules. Poly(ADP-ribose) polymerase cleavage and increased γH2AX, as well as reduced Akt phosphorylation and decreased expression of X-linked inhibitor of apoptosis, were evident in TQ-treated cells. Finally, TQ enhanced cisplatin- and docetaxel-induced cytotoxicity. These findings suggest that TQ could be useful in the management of TNBC, even when functional p53 is absent.

  17. Cytotoxicity, cell cycle arrest, and apoptosis in breast cancer cell lines exposed to an extract of the seed kernel of Mangifera pajang (bambangan).

    PubMed

    Abu Bakar, Mohd Fadzelly; Mohamad, Maryati; Rahmat, Asmah; Burr, Steven A; Fry, Jeffrey R

    2010-06-01

    An extract of Mangifera pajang kernel has been previously found to contain a high content of antioxidant phytochemicals. The present research was conducted to investigate the anticancer potential of this kernel extract. The results showed that the kernel crude extract induced cytotoxicity in MCF-7 (hormone-dependent breast cancer) cells and MDA-MB-231 (non-hormone dependent breast cancer) cells with IC50 values of 23 and 30.5 microg/ml, respectively. The kernel extract induced cell cycle arrest in MCF-7 cells at the sub-G1 (apoptosis) phase of the cell cycle in a time-dependent manner. For MDA-MB-231 cells, the kernel extract induced strong G2-M arrest in cell cycle progression at 24h, resulting in substantial sub-G1 (apoptosis) arrest after 48 and 72 h of incubation. Staining with Annexin V-FITC and propidium iodide revealed that this apoptosis occurred early in both cell types, 36 h for MCF-7 cells and 24 h for MDA-MB-231 cells, with 14.0% and 16.5% of the cells respectively undergoing apoptosis at these times. This apoptosis appeared to be dependent on caspase-2 and -3 in MCF-7 cells, and on caspase-2, -3 and -9 in MDA-MB-231 cells. These findings suggest that M. pajang kernel extract has potential as a potent cytotoxic agent against breast cancer cell lines.

  18. Cell cycle arrest induced by inhibitors of epigenetic modifications in maize (Zea mays) seedling leaves: characterization of the process and possible mechanisms involved.

    PubMed

    Wang, Pu; Zhang, Hao; Hou, Haoli; Wang, Qing; Li, Yingnan; Huang, Yan; Xie, Liangfu; Gao, Fei; He, Shibin; Li, Lijia

    2016-07-01

    Epigenetic modifications play crucial roles in the regulation of chromatin architecture and are involved in cell cycle progression, including mitosis and meiosis. To explore the relationship between epigenetic modifications and the cell cycle, we treated maize (Zea mays) seedlings with six different epigenetic modification-related inhibitors and identified the postsynthetic phase (G2 ) arrest via flow cytometry analysis. Total H4K5ac levels were significantly increased and the distribution of H3S10ph signalling was obviously changed in mitosis under various treatments. Further statistics of the cells in different periods of mitosis confirmed that the cell cycle was arrested at preprophase. Concentrations of hydrogen peroxide were relatively higher in the treated plants and the antioxidant thiourea could negate the influence of the inhibitors. Moreover, all of the treated plants displayed negative results in the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling (TUNEL) and γ-H2AX immunostaining assays after exposure for 3 d. Additionally, the expression level of topoisomerase genes in the treated plants was relatively lower than that in the untreated plants. These results suggest that these inhibitors of epigenetic modifications could cause preprophase arrest via reactive oxygen species formation inhibiting the expression of DNA topoisomerase genes, accompanied by changes in the H4K5ac and H3S10ph histone modifications.

  19. Delphinidin, an anthocyanidin in pigmented fruits and vegetables, induces apoptosis and cell cycle arrest in human colon cancer HCT116 cells.

    PubMed

    Yun, Jung-Mi; Afaq, Farrukh; Khan, Naghma; Mukhtar, Hasan

    2009-03-01

    Because of unsatisfactory treatment options for colon cancer, there is a need to develop novel preventive approaches for this malignancy. One such strategy is through chemoprevention by the use of non-toxic dietary substances and botanical products. Delphinidin, an anthocyanidin in pigmented fruits and vegetables, possesses strong anti-oxidant and anti-inflammatory properties. In the present study, we investigated the antiproliferative and proapoptotic properties of delphinidin in human colon cancer HCT116 cells. We found that treatment of cells with delphinidin (30-240 microM; 48 h) resulted in (i) decrease in cell viability (ii) induction of apoptosis, (iii) cleavage of PARP, (iv) activation of caspases-3, -8, and -9, (v) increase in Bax with a concomitant decrease in Bcl-2 protein, and (vi) G2/M phase cell cycle arrest. NF-kappaB provides a mechanistic link between inflammation and cancer, and is a major factor controlling the ability of both pre-neoplastic and malignant cells to resist apoptosis-based tumor surveillance mechanisms. We therefore, determined the effect of delphinidin on NF-kappaB signaling pathway. The immunoblot, ELISA and EMSA analysis demonstrated that the treatment of HCT116 cells with delphinidin resulted in the inhibition of (i) IKKalpha, (ii) phosphorylation and degradation of IkappaBalpha, (iii) phosphorylation of NF-kappaB/p65 at Ser(536), (iv) nuclear translocation of NF-kappaB/p65, (v) NF-kappaB/p65 DNA binding activity, and (vi) transcriptional activation of NF-kappaB. Our results suggest that delphinidin treatment of HCT116 cells suppressed NF-kappaB pathway, resulting in G2/M phase arrest and apoptosis. We suggest that delphinidin could have potential in inhibiting colon cancer growth.

  20. PPARgamma inhibitors reduce tubulin protein levels by a PPARgamma, PPARdelta and proteasome-independent mechanism, resulting in cell cycle arrest, apoptosis and reduced metastasis of colorectal carcinoma cells.

    PubMed

    Schaefer, Katherine L; Takahashi, Hirokazu; Morales, Victor M; Harris, Gianni; Barton, Susan; Osawa, Emi; Nakajima, Atsushi; Saubermann, Lawrence J

    2007-02-01

    The nuclear transcription factor peroxisome proliferator-activated receptor-gamma (PPARgamma) has been identified as an important therapeutic target in murine models of colorectal cancer (CRC). To examine whether PPARgamma inhibition has therapeutic effects in late-stage CRC, the effects of PPARgamma inhibitors on CRC cell survival were examined in CRC cell lines and a murine CRC model. Low doses (0.1-1 microM) of PPARgamma inhibitors (T0070907, GW9662 and BADGE) did not affect cell survival, while higher doses (10-100 microM) of all 3