Science.gov

Sample records for cell-cycle checkpoint kinase

  1. Ethanol Metabolism Activates Cell Cycle Checkpoint Kinase, Chk2

    PubMed Central

    Clemens, Dahn L.; Mahan Schneider, Katrina J.; Nuss, Robert F.

    2011-01-01

    Chronic ethanol abuse results in hepatocyte injury and impairs hepatocyte replication. We have previously shown that ethanol metabolism results in cell cycle arrest at the G2/M transition, which is partially mediated by inhibitory phosphorylation of the cyclin-dependent kinase, Cdc2. To further delineate the mechanisms by which ethanol metabolism mediates this G2/M arrest, we investigated the involvement of upstream regulators of Cdc2 activity. Cdc2 is activated by the phosphatase Cdc25C. The activity of Cdc25C can, in turn, be regulated by the checkpoint kinase, Chk2, which is regulated by the kinase ataxia telangiectasia mutated (ATM). To investigate the involvement of these regulators of Cdc2 activity, VA-13 cells, which are Hep G2 cells modified to efficiently express alcohol dehydrogenase, were cultured in the presence or absence of 25 mM ethanol. Immunoblots were performed to determine the effects of ethanol metabolism on the activation of Cdc25C, Chk2, and ATM. Ethanol metabolism increased the active forms of ATM, and Chk2, as well as the phosphorylated form of Cdc25C. Additionally, inhibition of ATM resulted in approximately 50% of the cells being rescued from the G2/M cell cycle arrest, and ameliorated the inhibitory phosphorylation of Cdc2. Our findings demonstrate that ethanol metabolism activates ATM. ATM can activate the checkpoint kinase Chk2, resulting in phosphorylation of Cdc25C, and ultimately in the accumulation of inactive Cdc2. This may, in part, explain the ethanol metabolism-mediated impairment in hepatocyte replication, which may be important in the initiation and progression of alcoholic liver injury. PMID:21924579

  2. The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair.

    PubMed

    Sørensen, Claus Storgaard; Hansen, Lasse Tengbjerg; Dziegielewski, Jaroslaw; Syljuåsen, Randi G; Lundin, Cecilia; Bartek, Jiri; Helleday, Thomas

    2005-02-01

    The essential checkpoint kinase Chk1 is required for cell-cycle delays after DNA damage or blocked DNA replication. However, it is unclear whether Chk1 is involved in the repair of damaged DNA. Here we establish that Chk1 is a key regulator of genome maintenance by the homologous recombination repair (HRR) system. Abrogation of Chk1 function with small interfering RNA or chemical antagonists inhibits HRR, leading to persistent unrepaired DNA double-strand breaks (DSBs) and cell death after replication inhibition with hydroxyurea or DNA-damage caused by camptothecin. After hydroxyurea treatment, the essential recombination repair protein RAD51 is recruited to DNA repair foci performing a vital role in correct HRR. We demonstrate that Chk1 interacts with RAD51, and that RAD51 is phosphorylated on Thr 309 in a Chk1-dependent manner. Consistent with a functional interplay between Chk1 and RAD51, Chk1-depleted cells failed to form RAD51 nuclear foci after exposure to hydroxyurea, and cells expressing a phosphorylation-deficient mutant RAD51(T309A) were hypersensitive to hydroxyurea. These results highlight a crucial role for the Chk1 signalling pathway in protecting cells against lethal DNA lesions through regulation of HRR.

  3. Cell Cycle Regulation by Checkpoints

    PubMed Central

    Barnum, Kevin J.; O’Connell, Matthew J.

    2016-01-01

    Cell cycle checkpoints are surveillance mechanisms that monitor the order, integrity, and fidelity of the major events of the cell cycle. These include growth to the appropriate cell size, the replication and integrity of the chromosomes, and their accurate segregation at mitosis. Many of these mechanisms are ancient in origin and highly conserved, and hence have been heavily informed by studies in simple organisms such as the yeasts. Others have evolved in higher organisms, and control alternative cell fates with significant impact on tumor suppression. Here, we consider these different checkpoint pathways and the consequences of their dysfunction on cell fate. PMID:24906307

  4. Cell cycle regulation by checkpoints.

    PubMed

    Barnum, Kevin J; O'Connell, Matthew J

    2014-01-01

    Cell cycle checkpoints are surveillance mechanisms that monitor the order, integrity, and fidelity of the major events of the cell cycle. These include growth to the appropriate cell size, the replication and integrity of the chromosomes, and their accurate segregation at mitosis. Many of these mechanisms are ancient in origin and highly conserved, and hence have been heavily informed by studies in simple organisms such as the yeasts. Others have evolved in higher organisms, and control alternative cell fates with significant impact on tumor suppression. Here, we consider these different checkpoint pathways and the consequences of their dysfunction on cell fate.

  5. Bcl-xL phosphorylation at Ser49 by polo kinase 3 during cell cycle progression and checkpoints

    PubMed Central

    Wang, Jianfang; Beauchemin, Myriam; Bertrand, Richard

    2013-01-01

    Functional analysis of a Bcl-xL phosphorylation mutant series has revealed that cells expressing Bcl-xL(Ser49Ala) mutant are less stable at G2 checkpoint after DNA damage and enter cytokinesis more slowly after microtubule poisoning, than cells expressing wild-type Bcl-xL. These effects of Bcl-xL(Ser49Ala) mutant seem to be separable from Bcl-xL function in apoptosis. Bcl-xL(Ser49) phosphorylation is cell cycle-dependent. In synchronized cells, phospho-Bcl-xL(Ser49) appears during the S phase and G2, whereas it disappears rapidly in early mitosis during prometaphase, metaphase and early anaphase, and re-appears during telophase and cytokinesis. During DNA damage-induced G2 arrest, an important pool of phospho-Bcl-xL(Ser49) accumulates in centrosomes which act as essential decision centers for progression from G2 to mitosis. During telophase/cytokinesis, phospho-Bcl-xL (Ser49) is found with dynein motor protein. In a series of in vitro kinase assays, specific small interfering RNA and pharmacological inhibition experiments, polo kinase 3 (PLK3) was implicated in Bcl-xL(Ser49) phosphorylation. These data indicate that, during G2 checkpoint, phospho-Bcl-xL(Ser49) is another downstream target of PLK3, acting to stabilize G2 arrest. Bcl-xL phosphorylation at Ser49 also correlates with essential PLK3 activity and function, enabling cytokinesis and mitotic exit. PMID:21840391

  6. Targeting checkpoint kinase 1 in cancer therapeutics.

    PubMed

    Tse, Archie N; Carvajal, Richard; Schwartz, Gary K

    2007-04-01

    Progression through the cell cycle is monitored by surveillance mechanisms known as cell cycle checkpoints. Our knowledge of the biochemical nature of checkpoint regulation during an unperturbed cell cycle and following DNA damage has expanded tremendously over the past decade. We now know that dysfunction in cell cycle checkpoints leads to genomic instability and contributes to tumor progression, and most agents used for cancer therapy, such as cytotoxic chemotherapy and ionizing radiation, also activate cell cycle checkpoints. Understanding how checkpoints are regulated is therefore important from the points of view of both tumorigenesis and cancer treatment. In this review, we present an overview of the molecular hierarchy of the checkpoint signaling network and the emerging role of checkpoint targets, especially checkpoint kinase 1, in cancer therapy. Further, we discuss the results of recent clinical trials involving the nonspecific checkpoint kinase 1 inhibitor, UCN-01, and the challenges we face with this new therapeutic approach.

  7. Cell cycle control, checkpoint mechanisms, and genotoxic stress.

    PubMed Central

    Shackelford, R E; Kaufmann, W K; Paules, R S

    1999-01-01

    The ability of cells to maintain genomic integrity is vital for cell survival and proliferation. Lack of fidelity in DNA replication and maintenance can result in deleterious mutations leading to cell death or, in multicellular organisms, cancer. The purpose of this review is to discuss the known signal transduction pathways that regulate cell cycle progression and the mechanisms cells employ to insure DNA stability in the face of genotoxic stress. In particular, we focus on mammalian cell cycle checkpoint functions, their role in maintaining DNA stability during the cell cycle following exposure to genotoxic agents, and the gene products that act in checkpoint function signal transduction cascades. Key transitions in the cell cycle are regulated by the activities of various protein kinase complexes composed of cyclin and cyclin-dependent kinase (Cdk) molecules. Surveillance control mechanisms that check to ensure proper completion of early events and cellular integrity before initiation of subsequent events in cell cycle progression are referred to as cell cycle checkpoints and can generate a transient delay that provides the cell more time to repair damage before progressing to the next phase of the cycle. A variety of cellular responses are elicited that function in checkpoint signaling to inhibit cyclin/Cdk activities. These responses include the p53-dependent and p53-independent induction of Cdk inhibitors and the p53-independent inhibitory phosphorylation of Cdk molecules themselves. Eliciting proper G1, S, and G2 checkpoint responses to double-strand DNA breaks requires the function of the Ataxia telangiectasia mutated gene product. Several human heritable cancer-prone syndromes known to alter DNA stability have been found to have defects in checkpoint surveillance pathways. Exposures to several common sources of genotoxic stress, including oxidative stress, ionizing radiation, UV radiation, and the genotoxic compound benzo[a]pyrene, elicit cell cycle

  8. Genetic instability in cancer cells by impaired cell cycle checkpoints.

    PubMed

    Nakanishi, Makoto; Shimada, Midori; Niida, Hiroyuki

    2006-10-01

    Cells continuously encounter DNA damage caused either by damaging agents, including oxygen radicals and DNA replication errors caused by stalled replication forks, or by extracellular environments such as ultraviolet or ionizing irradiation. Such DNA damage poses a great threat to genome stability, potentially leading to loss or amplification of chromosome activity, which may result in cellular senescence, cancer or apoptosis. The DNA damage checkpoints coordinate an arrest in cell cycle progression with the DNA repair process, suppressing either mitotic catastrophe or proliferation of cells with damaged DNA. Numerous key players have been identified in terms of damage sensor proteins, transducer kinases and effectors, but their coordination and interconnectedness in damage control have only recently become evident. In this review, we discuss changes in chromatin structure, recruitment of mediator proteins and activation of transducer kinases in response to DNA damage. These cellular responses are important for determining the potential effects of current cancer therapies in terms of toxicity and efficacy.

  9. Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways.

    PubMed

    Sanchez, Y; Desany, B A; Jones, W J; Liu, Q; Wang, B; Elledge, S J

    1996-01-19

    Mutants of the Saccharomyces cerevisiae ataxia telangiectasia mutated (ATM) homolog MEC1/SAD3/ESR1 were identified that could live only if the RAD53/SAD1 checkpoint kinase was overproduced. MEC1 and a structurally related gene, TEL1, have overlapping functions in response to DNA damage and replication blocks that in mutants can be provided by overproduction of RAD53. Both MEC1 and TEL1 were found to control phosphorylation of Rad53p in response to DNA damage. These results indicate that RAD53 is a signal transducer in the DNA damage and replication checkpoint pathways and functions downstream of two members of the ATM lipid kinase family. Because several members of this pathway are conserved among eukaryotes, it is likely that a RAD53-related kinase will function downstream of the human ATM gene product and play an important role in the mammalian response to DNA damage.

  10. DNA replication and damage checkpoints and meiotic cell cycle controls in the fission and budding yeasts.

    PubMed Central

    Murakami, H; Nurse, P

    2000-01-01

    The cell cycle checkpoint mechanisms ensure the order of cell cycle events to preserve genomic integrity. Among these, the DNA-replication and DNA-damage checkpoints prevent chromosome segregation when DNA replication is inhibited or DNA is damaged. Recent studies have identified an outline of the regulatory networks for both of these controls, which apparently operate in all eukaryotes. In addition, it appears that these checkpoints have two arrest points, one is just before entry into mitosis and the other is prior to chromosome separation. The former point requires the central cell-cycle regulator Cdc2 kinase, whereas the latter involves several key regulators and substrates of the ubiquitin ligase called the anaphase promoting complex. Linkages between these cell-cycle regulators and several key checkpoint proteins are beginning to emerge. Recent findings on post-translational modifications and protein-protein interactions of the checkpoint proteins provide new insights into the checkpoint responses, although the functional significance of these biochemical properties often remains unclear. We have reviewed the molecular mechanisms acting at the DNA-replication and DNA-damage checkpoints in the fission yeast Schizosaccharomyces pombe, and the modifications of these controls during the meiotic cell cycle. We have made comparisons with the controls in fission yeast and other organisms, mainly the distantly related budding yeast. PMID:10861204

  11. The Dynamical Mechanisms of the Cell Cycle Size Checkpoint

    NASA Astrophysics Data System (ADS)

    Feng, Shi-Fu; Yan, Jie; Liu, Zeng-Rong; Yang, Ling

    2012-10-01

    Cell division must be tightly coupled to cell growth in order to maintain cell size, whereas the mechanisms of how initialization of mitosis is regulated by cell size remain to be elucidated. We develop a mathematical model of the cell cycle, which incorporates cell growth to investigate the dynamical properties of the size checkpoint in embryos of Xenopus laevis. We show that the size checkpoint is naturally raised from a saddle-node bifurcation, and in a mutant case, the cell loses its size control ability due to the loss of this saddle-node point.

  12. A Pleiotropic RNA-Binding Protein Controls Distinct Cell Cycle Checkpoints to Drive Resistance of p53-Defective Tumors to Chemotherapy.

    PubMed

    Cannell, Ian G; Merrick, Karl A; Morandell, Sandra; Zhu, Chang-Qi; Braun, Christian J; Grant, Robert A; Cameron, Eleanor R; Tsao, Ming-Sound; Hemann, Michael T; Yaffe, Michael B

    2015-11-09

    In normal cells, p53 is activated by DNA damage checkpoint kinases to simultaneously control the G1/S and G2/M cell cycle checkpoints through transcriptional induction of p21(cip1) and Gadd45α. In p53-mutant tumors, cell cycle checkpoints are rewired, leading to dependency on the p38/MK2 pathway to survive DNA-damaging chemotherapy. Here we show that the RNA binding protein hnRNPA0 is the "successor" to p53 for checkpoint control. Like p53, hnRNPA0 is activated by a checkpoint kinase (MK2) and simultaneously controls both cell cycle checkpoints through distinct target mRNAs, but unlike p53, this is through the post-transcriptional stabilization of p27(Kip1) and Gadd45α mRNAs. This pathway drives cisplatin resistance in lung cancer, demonstrating the importance of post-transcriptional RNA control to chemotherapy response.

  13. WEE1 inhibition targets cell cycle checkpoints for triple negative breast cancers to overcome cisplatin resistance

    PubMed Central

    Zheng, Hongping; Shao, Fangyuan; Martin, Scots; Xu, Xiaoling; Deng, Chu-Xia

    2017-01-01

    Cisplatin is one of the most commonly used therapeutic drugs for cancer therapy, yet prolonged cisplatin treatment frequently results in drug resistance. To enhance therapeutic effect of cisplatin, we conducted a high throughput screening using a kinase library containing 704 kinases against triple negative breast cancer (TNBC) cells. We demonstrated that cisplatin activates ATR, CHK1 and WEE1, which shut down DNA replication and attenuate cisplatin induced-lethality. WEE1 inhibition sensitizes TNBCs and cisplatin resistant cancer cells to cisplatin-induced lethality, because it not only impairs DNA replication checkpoint more profoundly than inhibition of ATR or CHK1, but also defects G2-M cell cycle checkpoint. Finally, we demonstrated that combined cisplatin treatment and WEE1 inhibition synergistically inhibits xenograft cancer growth accompanied by markedly reduced expression of TNBC signature genes. Thus targeting DNA replication and G2-M cell cycle checkpoint simultaneously by cisplatin and WEE1 inhibition is promising for TNBCs treatment, and for overcoming their cisplatin resistance. PMID:28262781

  14. WEE1 inhibition targets cell cycle checkpoints for triple negative breast cancers to overcome cisplatin resistance.

    PubMed

    Zheng, Hongping; Shao, Fangyuan; Martin, Scots; Xu, Xiaoling; Deng, Chu-Xia

    2017-03-06

    Cisplatin is one of the most commonly used therapeutic drugs for cancer therapy, yet prolonged cisplatin treatment frequently results in drug resistance. To enhance therapeutic effect of cisplatin, we conducted a high throughput screening using a kinase library containing 704 kinases against triple negative breast cancer (TNBC) cells. We demonstrated that cisplatin activates ATR, CHK1 and WEE1, which shut down DNA replication and attenuate cisplatin induced-lethality. WEE1 inhibition sensitizes TNBCs and cisplatin resistant cancer cells to cisplatin-induced lethality, because it not only impairs DNA replication checkpoint more profoundly than inhibition of ATR or CHK1, but also defects G2-M cell cycle checkpoint. Finally, we demonstrated that combined cisplatin treatment and WEE1 inhibition synergistically inhibits xenograft cancer growth accompanied by markedly reduced expression of TNBC signature genes. Thus targeting DNA replication and G2-M cell cycle checkpoint simultaneously by cisplatin and WEE1 inhibition is promising for TNBCs treatment, and for overcoming their cisplatin resistance.

  15. Induction of a caffeine-sensitive S-phase cell cycle checkpoint by psoralen plus ultraviolet A radiation.

    PubMed

    Joerges, Christoph; Kuntze, Inge; Herzinger, Thomas; Herzinge, Thomas

    2003-09-18

    Induction of interstrand crosslinks (ICLs) in chromosomal DNA is considered a major reason for the antiproliferative effect of psoralen plus ultraviolet A (PUVA). It is unclear as to whether PUVA-induced cell cycle arrest is caused by ICLs mechanically stalling replication forks or by triggering cell cycle checkpoints. Cell cycle checkpoints serve to maintain genomic stability by halting cell cycle progression to prevent replication of damaged DNA templates or segregation of broken chromosomes. Here, we show that HaCaT keratinocytes treated with PUVA arrest with S-phase DNA content. Cells that had completed DNA replication were not perturbed by PUVA and passed through mitosis. Cells treated with PUVA during G1-phase continued traversing G1 until arresting in early S-phase. PUVA induced rapid phosphorylation of the Chk1 checkpoint kinase at Ser345 and a concomitant decrease in Cdc25A levels. Chk1 phosphorylation, decrease of Cdc25 A levels and S-phase arrest were abolished by caffeine, demonstrating that active checkpoint signaling rather than passive mechanical blockage by ICLs causes the PUVA-induced replication arrest. Overexpression of Cdc25A only partially overrode the S-phase arrest, suggesting that additional signaling events implement PUVA-induced S-phase arrest.

  16. DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis.

    PubMed

    Schmitt, Estelle; Paquet, Claudie; Beauchemin, Myriam; Bertrand, Richard

    2007-06-01

    Tissue homeostasis requires a carefully-orchestrated balance between cell proliferation, cellular senescence and cell death. Cells proliferate through a cell cycle that is tightly regulated by cyclin-dependent kinase activities. Cellular senescence is a safeguard program limiting the proliferative competence of cells in living organisms. Apoptosis eliminates unwanted cells by the coordinated activity of gene products that regulate and effect cell death. The intimate link between the cell cycle, cellular senescence, apoptosis regulation, cancer development and tumor responses to cancer treatment has become eminently apparent. Extensive research on tumor suppressor genes, oncogenes, the cell cycle and apoptosis regulatory genes has revealed how the DNA damage-sensing and -signaling pathways, referred to as the DNA-damage response network, are tied to cell proliferation, cell-cycle arrest, cellular senescence and apoptosis. DNA-damage responses are complex, involving "sensor" proteins that sense the damage, and transmit signals to "transducer" proteins, which, in turn, convey the signals to numerous "effector" proteins implicated in specific cellular pathways, including DNA repair mechanisms, cell-cycle checkpoints, cellular senescence and apoptosis. The Bcl-2 family of proteins stands among the most crucial regulators of apoptosis and performs vital functions in deciding whether a cell will live or die after cancer chemotherapy and irradiation. In addition, several studies have now revealed that members of the Bcl-2 family also interface with the cell cycle, DNA repair/recombination and cellular senescence, effects that are generally distinct from their function in apoptosis. In this review, we report progress in understanding the molecular networks that regulate cell-cycle checkpoints, cellular senescence and apoptosis after DNA damage, and discuss the influence of some Bcl-2 family members on cell-cycle checkpoint regulation.

  17. The fission yeast meiotic checkpoint kinase Mek1 regulates nuclear localization of Cdc25 by phosphorylation.

    PubMed

    Pérez-Hidalgo, Livia; Moreno, Sergio; San-Segundo, Pedro A

    2008-12-01

    In eukaryotic cells, fidelity in transmission of genetic information during cell division is ensured by the action of cell cycle checkpoints. Checkpoints are surveillance mechanisms that arrest or delay cell cycle progression when critical cellular processes are defective or when the genome is damaged. During meiosis, the so-called meiotic recombination checkpoint blocks entry into meiosis I until recombination has been completed, thus avoiding aberrant chromosome segregation and the formation of aneuploid gametes. One of the key components of the meiotic recombination checkpoint is the meiosis-specific Mek1 kinase, which belongs to the family of Rad53/Cds1/Chk2 checkpoint kinases containing forkhead-associated domains. In fission yeast, several lines of evidence suggest that Mek1 targets the critical cell cycle regulator Cdc25 to delay meiotic cell cycle progression. Here, we investigate in more detail the molecular mechanism of action of the fission yeast Mek1 protein. We demonstrate that Mek1 acts independently of Cds1 to phosphorylate Cdc25, and this phosphorylation is required to trigger cell cycle arrest. Using ectopic overexpression of mek1(+) as a tool to induce in vivo activation of Mek1, we find that Mek1 promotes cytoplasmic accumulation of Cdc25 and results in prolonged phosphorylation of Cdc2 at tyrosine 15. We propose that at least one of the mechanisms contributing to the cell cycle delay when the meiotic recombination checkpoint is activated in fission yeast is the nuclear exclusion of the Cdc25 phosphatase by Mek1-dependent phosphorylation.

  18. The protein phosphatase 2A functions in the spindle position checkpoint by regulating the checkpoint kinase Kin4

    PubMed Central

    Chan, Leon Y.; Amon, Angelika

    2009-01-01

    In budding yeast, a surveillance mechanism known as the spindle position checkpoint (SPOC) ensures accurate genome partitioning. In the event of spindle misposition, the checkpoint delays exit from mitosis by restraining the activity of the mitotic exit network (MEN). To date, the only component of the checkpoint to be identified is the protein kinase Kin4. Furthermore, how the kinase is regulated by spindle position is not known. Here, we identify the protein phosphatase 2A (PP2A) in complex with the regulatory subunit Rts1 as a component of the SPOC. Loss of PP2A-Rts1 function abrogates the SPOC but not other mitotic checkpoints. We further show that the protein phosphatase functions upstream of Kin4, regulating the kinase's phosphorylation and localization during an unperturbed cell cycle and during SPOC activation, thus defining the phosphatase as a key regulator of SPOC function. PMID:19605686

  19. The protein phosphatase 2A functions in the spindle position checkpoint by regulating the checkpoint kinase Kin4.

    PubMed

    Chan, Leon Y; Amon, Angelika

    2009-07-15

    In budding yeast, a surveillance mechanism known as the spindle position checkpoint (SPOC) ensures accurate genome partitioning. In the event of spindle misposition, the checkpoint delays exit from mitosis by restraining the activity of the mitotic exit network (MEN). To date, the only component of the checkpoint to be identified is the protein kinase Kin4. Furthermore, how the kinase is regulated by spindle position is not known. Here, we identify the protein phosphatase 2A (PP2A) in complex with the regulatory subunit Rts1 as a component of the SPOC. Loss of PP2A-Rts1 function abrogates the SPOC but not other mitotic checkpoints. We further show that the protein phosphatase functions upstream of Kin4, regulating the kinase's phosphorylation and localization during an unperturbed cell cycle and during SPOC activation, thus defining the phosphatase as a key regulator of SPOC function.

  20. Cell cycle in the fucus zygote parallels a somatic cell cycle but displays a unique translational regulation of cyclin-dependent kinases.

    PubMed

    Corellou, F; Brownlee, C; Detivaud, L; Kloareg, B; Bouget, F Y

    2001-03-01

    In eukaryotic cells, the basic machinery of cell cycle control is highly conserved. In particular, many cellular events during cell cycle progression are controlled by cyclin-dependent kinases (CDKs). The cell cycle in animal early embryos, however, differs substantially from that of somatic cells or yeasts. For example, cell cycle checkpoints that ensure that the sequence of cell cycle events is correct have been described in somatic cells and yeasts but are largely absent in embryonic cells. Furthermore, the regulation of CDKs is substantially different in the embryonic and somatic cells. In this study, we address the nature of the first cell cycle in the brown alga Fucus, which is evolutionarily distant from the model systems classically used for cell cycle studies in embryos. This cycle consists of well-defined G1, S, G2, and M phases. The purine derivative olomoucine inhibited CDKs activity in vivo and in vitro and induced different cell cycle arrests, including at the G1/S transition, suggesting that, as in somatic cells, CDKs tightly control cell cycle progression. The cell cycle of Fucus zygotes presented the other main features of a somatic cell cycle, such as a functional spindle assembly checkpoint that targets CDKs and the regulation of the early synthesis of two PSTAIRE CDKs, p32 and p34, and the associated histone H1 kinase activity as well as the regulation of CDKs by tyrosine phosphorylation. Surprisingly, the synthesis after fertilization of p32 and p34 was translationally regulated, a regulation not described previously for CDKs. Finally, our results suggest that the activation of mitotic CDKs relies on an autocatalytic amplification mechanism.

  1. DNA Damage activates A Spatially Distinct Late Cytoplasmic Cell Cycle Checkpoint Network Controlled by MK2-mediated RNA Stabilization

    PubMed Central

    Reinhardt, H. Christian; Hasskamp, Pia; Schmedding, Ingolf; Morandell, Sandra; van Vugt, Marcel .A.T.M.; Wang, XiaoZhe; Linding, Rune; Ong, Shao-En; Weaver, David; Carr, Steven A.

    2010-01-01

    Summary Following genotoxic stress, cells activate a complex kinase-based signaling network to arrest the cell cycle and initiate DNA repair. p53-defective tumor cells rewire their checkpoint response and become dependent on the p38/MK2 pathway for survival after DNA damage, despite a functional ATR-Chk1 pathway. We used functional genetics to dissect the contributions of Chk1 and MK2 to checkpoint control. We show that nuclear Chk1 activity is essential to establish a G2/M checkpoint, while cytoplasmic MK2 activity is critical for prolonged checkpoint maintenance through a process of post-transcriptional mRNA stabilization. Following DNA damage, the p38/MK2 complex relocalizes from nucleus to cytoplasm where MK2, phosphorylates hnRNPA0, to stabilize Gadd45α mRNA, while p38 phosphorylates and releases the translational inhibitor TIAR. In addition, MK2 phosphorylates PARN, blocking Gadd45α mRNA degradation. Gadd45α functions within a positive feedback loop, sustaining the MK2-dependent cytoplasmic sequestration of Cdc25B/C to block mitotic entry in the presence of unrepaired DNA damage. Our findings demonstrate a critical role for the MK2 pathway in the post-transcriptional regulation of gene expression as part of the DNA damage response in cancer cells. PMID:20932473

  2. Contribution of Growth and Cell Cycle Checkpoints to Radiation Survival in Drosophila

    PubMed Central

    Jaklevic, Burnley; Uyetake, Lyle; Lemstra, Willy; Chang, Julia; Leary, William; Edwards, Anthony; Vidwans, Smruti; Sibon, Ody; Tin Su, Tin

    2006-01-01

    Cell cycle checkpoints contribute to survival after exposure to ionizing radiation (IR) by arresting the cell cycle and permitting repair. As such, yeast and mammalian cells lacking checkpoints are more sensitive to killing by IR. We reported previously that Drosophila larvae mutant for grp (encoding a homolog of Chk1) survive IR as well as wild type despite being deficient in cell cycle checkpoints. This discrepancy could be due to differences either among species or between unicellular and multicellular systems. Here, we provide evidence that Grapes is needed for survival of Drosophila S2 cells after exposure to similar doses of IR, suggesting that multicellular organisms may utilize checkpoint-independent mechanisms to survive irradiation. The dispensability of checkpoints in multicellular organisms could be due to replacement of damaged cells by regeneration through increased nutritional uptake and compensatory proliferation. In support of this idea, we find that inhibition of nutritional uptake (by starvation or onset of pupariation) or inhibition of growth factor signaling and downstream targets (by mutations in cdk4, chico, or dmyc) reduced the radiation survival of larvae. Further, some of these treatments are more detrimental for grp mutants, suggesting that the need for compensatory proliferation is greater for checkpoint mutants. The difference in survival of grp and wild-type larvae allowed us to screen for small molecules that act as genotype-specific radiation sensitizers in a multicellular context. A pilot screen of a small molecule library from the National Cancer Institute yielded known and approved radio-sensitizing anticancer drugs. Since radiation is a common treatment option for human cancers, we propose that Drosophila may be used as an in vivo screening tool for genotype-specific drugs that enhance the effect of radiation therapy. PMID:17028317

  3. Elm1 kinase activates the spindle position checkpoint kinase Kin4

    PubMed Central

    Caydasi, Ayse Koca; Kurtulmus, Bahtiyar; Orrico, Maria I.L.; Hofmann, Astrid; Ibrahim, Bashar

    2010-01-01

    Budding yeast asymmetric cell division relies upon the precise coordination of spindle orientation and cell cycle progression. The spindle position checkpoint (SPOC) is a surveillance mechanism that prevents cells with misoriented spindles from exiting mitosis. The cortical kinase Kin4 acts near the top of this network. How Kin4 kinase activity is regulated and maintained in respect to spindle positional cues remains to be established. Here, we show that the bud neck–associated kinase Elm1 participates in Kin4 activation and SPOC signaling by phosphorylating a conserved residue within the activation loop of Kin4. Blocking Elm1 function abolishes Kin4 kinase activity in vivo and eliminates the SPOC response to spindle misalignment. These findings establish a novel function for Elm1 in the coordination of spindle positioning with cell cycle progression via its control of Kin4. PMID:20855503

  4. Elm1 kinase activates the spindle position checkpoint kinase Kin4.

    PubMed

    Caydasi, Ayse Koca; Kurtulmus, Bahtiyar; Orrico, Maria I L; Hofmann, Astrid; Ibrahim, Bashar; Pereira, Gislene

    2010-09-20

    Budding yeast asymmetric cell division relies upon the precise coordination of spindle orientation and cell cycle progression. The spindle position checkpoint (SPOC) is a surveillance mechanism that prevents cells with misoriented spindles from exiting mitosis. The cortical kinase Kin4 acts near the top of this network. How Kin4 kinase activity is regulated and maintained in respect to spindle positional cues remains to be established. Here, we show that the bud neck-associated kinase Elm1 participates in Kin4 activation and SPOC signaling by phosphorylating a conserved residue within the activation loop of Kin4. Blocking Elm1 function abolishes Kin4 kinase activity in vivo and eliminates the SPOC response to spindle misalignment. These findings establish a novel function for Elm1 in the coordination of spindle positioning with cell cycle progression via its control of Kin4.

  5. Tumor-suppressor Genes, Cell Cycle Regulatory Checkpoints, and the Skin

    PubMed Central

    Velez, Ana Maria Abreu; Howard, Michael S.

    2015-01-01

    The cell cycle (or cell-division cycle) is a series of events that take place in a cell, leading to its division and duplication. Cell division requires cell cycle checkpoints (CPs) that are used by the cell to both monitor and regulate the progress of the cell cycle. Tumor-suppressor genes (TSGs) or antioncogenes are genes that protect the cell from a single event or multiple events leading to cancer. When these genes mutate, the cell can progress to a cancerous state. We aimed to perform a narrative review, based on evaluation of the manuscripts published in MEDLINE-indexed journals using the Medical Subject Headings (MeSH) terms “tumor suppressor's genes,” “skin,” and “cell cycle regulatory checkpoints.” We aimed to review the current concepts regarding TSGs, CPs, and their association with selected cutaneous diseases. It is important to take into account that in some cell cycle disorders, multiple genetic abnormalities may occur simultaneously. These abnormalities may include intrachromosomal insertions, unbalanced division products, recombinations, reciprocal deletions, and/or duplication of the inserted segments or genes; thus, these presentations usually involve several genes. Due to their complexity, these disorders require specialized expertise for proper diagnosis, counseling, personal and family support, and genetic studies. Alterations in the TSGs or CP regulators may occur in many benign skin proliferative disorders, neoplastic processes, and genodermatoses. PMID:26110128

  6. RNA interference regulates the cell cycle checkpoint through the RNA export factor, Ptr1, in fission yeast

    SciTech Connect

    Iida, Tetsushi; Iida, Naoko; Tsutsui, Yasuhiro; Yamao, Fumiaki; Kobayashi, Takehiko

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer RNAi is linked to the cell cycle checkpoint in fission yeast. Black-Right-Pointing-Pointer Ptr1 co-purifies with Ago1. Black-Right-Pointing-Pointer The ptr1-1 mutation impairs the checkpoint but does not affect gene silencing. Black-Right-Pointing-Pointer ago1{sup +} and ptr1{sup +} regulate the cell cycle checkpoint via the same pathway. Black-Right-Pointing-Pointer Mutations in ago1{sup +} and ptr1{sup +} lead to the nuclear accumulation of poly(A){sup +} RNAs. -- Abstract: Ago1, an effector protein of RNA interference (RNAi), regulates heterochromatin silencing and cell cycle arrest in fission yeast. However, the mechanism by which Ago1 controls cell cycle checkpoint following hydroxyurea (HU) treatment has not been elucidated. In this study, we show that Ago1 and other RNAi factors control cell cycle checkpoint following HU treatment via a mechanism independent of silencing. While silencing requires dcr1{sup +}, the overexpression of ago1{sup +} alleviated the cell cycle defect in dcr1{Delta}. Ago1 interacted with the mRNA export factor, Ptr1. The ptr1-1 mutation impaired cell cycle checkpoint but gene silencing was unaffected. Genetic analysis revealed that the regulation of cell cycle checkpoint by ago1{sup +} is dependent on ptr1{sup +}. Nuclear accumulation of poly(A){sup +} RNAs was detected in mutants of ago1{sup +} and ptr1{sup +}, suggesting there is a functional link between the cell cycle checkpoint and RNAi-mediated RNA quality control.

  7. The human papillomavirus type 58 E7 oncoprotein modulates cell cycle regulatory proteins and abrogates cell cycle checkpoints

    SciTech Connect

    Zhang Weifang; Li Jing; Kanginakudru, Sriramana; Zhao Weiming; Yu Xiuping; Chen, Jason J.

    2010-02-05

    HPV type 58 (HPV-58) is the third most common HPV type in cervical cancer from Eastern Asia, yet little is known about how it promotes carcinogenesis. In this study, we demonstrate that HPV-58 E7 significantly promoted the proliferation and extended the lifespan of primary human keratinocytes (PHKs). HPV-58 E7 abrogated the G1 and the postmitotic checkpoints, although less efficiently than HPV-16 E7. Consistent with these observations, HPV-58 E7 down-regulated the cellular tumor suppressor pRb to a lesser extent than HPV-16 E7. Similar to HPV-16 E7 expressing PHKs, Cdk2 remained active in HPV-58 E7 expressing PHKs despite the presence of elevated levels of p53 and p21. Interestingly, HPV-58 E7 down-regulated p130 more efficiently than HPV-16 E7. Our study demonstrates a correlation between the ability of down-regulating pRb/p130 and abrogating cell cycle checkpoints by HPV-58 E7, which also correlates with the biological risks of cervical cancer progression associated with HPV-58 infection.

  8. Cyclin F suppresses B-Myb activity to promote cell cycle checkpoint control.

    PubMed

    Klein, Ditte Kjærsgaard; Hoffmann, Saskia; Ahlskog, Johanna K; O'Hanlon, Karen; Quaas, Marianne; Larsen, Brian D; Rolland, Baptiste; Rösner, Heike I; Walter, David; Kousholt, Arne Nedergaard; Menzel, Tobias; Lees, Michael; Johansen, Jens Vilstrup; Rappsilber, Juri; Engeland, Kurt; Sørensen, Claus Storgaard

    2015-01-05

    Cells respond to DNA damage by activating cell cycle checkpoints to delay proliferation and facilitate DNA repair. Here, to uncover new checkpoint regulators, we perform RNA interference screening targeting genes involved in ubiquitylation processes. We show that the F-box protein cyclin F plays an important role in checkpoint control following ionizing radiation. Cyclin F-depleted cells initiate checkpoint signalling after ionizing radiation, but fail to maintain G2 phase arrest and progress into mitosis prematurely. Importantly, cyclin F suppresses the B-Myb-driven transcriptional programme that promotes accumulation of crucial mitosis-promoting proteins. Cyclin F interacts with B-Myb via the cyclin box domain. This interaction is important to suppress cyclin A-mediated phosphorylation of B-Myb, a key step in B-Myb activation. In summary, we uncover a regulatory mechanism linking the F-box protein cyclin F with suppression of the B-Myb/cyclin A pathway to ensure a DNA damage-induced checkpoint response in G2.

  9. Greatwall and Polo-like Kinase 1 Coordinate to Promote Checkpoint Recovery*

    PubMed Central

    Peng, Aimin; Wang, Ling; Fisher, Laura A.

    2011-01-01

    Checkpoint recovery upon completion of DNA repair allows the cell to return to normal cell cycle progression and is thus a crucial process that determines cell fate after DNA damage. We previously studied this process in Xenopus egg extracts and established Greatwall (Gwl) as an important regulator. Here we show that preactivated Gwl kinase can promote checkpoint recovery independently of cyclin-dependent kinase 1 (Cdk1) or Plx1 (Xenopus polo-like kinase 1), whereas depletion of Gwl from extracts exhibits no synergy with that of Plx1 in delaying checkpoint recovery, suggesting a distinct but related relationship between Gwl and Plx1. In further revealing their functional relationship, we found mutual dependence for activation of Gwl and Plx1 during checkpoint recovery, as well as their direct association. We characterized the protein association in detail and recapitulated it in vitro with purified proteins, which suggests direct interaction. Interestingly, Gwl interaction with Plx1 and its phosphorylation by Plx1 both increase at the stage of checkpoint recovery. More importantly, Plx1-mediated phosphorylation renders Gwl more efficient in promoting checkpoint recovery, suggesting a functional involvement of such regulation in the recovery process. Finally, we report an indirect regulatory mechanism involving Aurora A that may account for Gwl-dependent regulation of Plx1 during checkpoint recovery. Our results thus reveal novel mechanisms underlying the involvement of Gwl in checkpoint recovery, in particular, its functional relationship with Plx1, a well characterized regulator of checkpoint recovery. Coordinated interplays between Plx1 and Gwl are required for reactivation of these kinases from the G2/M DNA damage checkpoint and efficient checkpoint recovery. PMID:21708943

  10. Tumor suppressor protein C53 antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation.

    PubMed

    Jiang, Hai; Wu, Jianchun; He, Chen; Yang, Wending; Li, Honglin

    2009-04-01

    Cyclin-dependent kinase 1 (Cdk1)/cyclin B1 complex is the driving force for mitotic entry, and its activation is tightly regulated by the G2/M checkpoint. We originally reported that a novel protein C53 (also known as Cdk5rap3 and LZAP) potentiates DNA damage-induced cell death by modulating the G2/M checkpoint. More recently, Wang et al. (2007) found that C53/LZAP may function as a tumor suppressor by way of inhibiting NF-kappaB signaling. We report here the identification of C53 protein as a novel regulator of Cdk1 activation. We found that knockdown of C53 protein causes delayed Cdk1 activation and mitotic entry. During DNA damage response, activation of checkpoint kinase 1 and 2 (Chk1 and Chk2) is partially inhibited by C53 overexpression. Intriguingly, we found that C53 interacts with Chk1 and antagonizes its function. Moreover, a portion of C53 protein is localized at the centrosome, and centrosome-targeting C53 potently promotes local Cdk1 activation. Taken together, our results strongly suggest that C53 is a novel negative regulator of checkpoint response. By counteracting Chk1, C53 promotes Cdk1 activation and mitotic entry in both unperturbed cell-cycle progression and DNA damage response.

  11. Centrosome-Dependent Bypass of the DNA Damage Checkpoint by the Polo Kinase Cdc5.

    PubMed

    Ratsima, Hery; Serrano, Diego; Pascariu, Mirela; D'Amours, Damien

    2016-02-16

    Cell-cycle checkpoints are essential feedback mechanisms that promote genome integrity. However, in the face of unrepairable DNA lesions, bypass mechanisms can suppress checkpoint activity and allow cells to resume proliferation. The molecular mechanisms underlying this biological response are currently not understood. Taking advantage of unique separation-of-function mutants, we show that the Polo-like kinase (PLK) Cdc5 uses a phosphopriming-based interaction mechanism to suppress G2/M checkpoint arrest by targeting Polo kinase activity to centrosomes. We also show that key subunits of the evolutionarily conserved RSC complex are critical downstream effectors of Cdc5 activity in checkpoint suppression. Importantly, the lethality and checkpoint defects associated with loss of Cdc5 Polo box activity can be fully rescued by artificially anchoring Cdc5 kinase domain to yeast centrosomes. Collectively, our results highlight a previously unappreciated role for centrosomes as key signaling centers for the suppression of cell-cycle arrest induced by persistent or unrepairable DNA damage.

  12. Genes involved in cell cycle G1 checkpoint control are frequently mutated in human melanoma metastases.

    PubMed Central

    Platz, A.; Sevigny, P.; Norberg, T.; Ring, P.; Lagerlöf, B.; Ringborg, U.

    1996-01-01

    A common characteristic of cancer cells is unrestrained cell division. This may be caused by mutational changes in genes coding for components of cell cycle-controlling networks. Alterations in genes involved in G1 checkpoint control have been registered in many human tumours, and investigations from several laboratories show that such alterations, taken together, are the most frequent changes detected in cancer cells. The present paper describes mutational analysis by polymerase chain reaction-single-strand conformation polymorphism (PCR/SSCP) and nucleotide sequence analysis of the genes coding for the p15, p53 and N-ras proteins in 26 metastases from 25 melanoma patients. The registered mutation frequencies add together with previously registered mutations in p16 in the same patient samples to a substantial total frequency of 44% of patients with mutation in at least one of the investigated genes. These results show the occurrence of heterogeneous defects among components of the cell cycle controlling machinery in a human melanoma tumour sample collection and demonstrate that the total frequency of detected alterations increases with the number of cell cycle controlling genes included in the screening panel. Images Figure 1 PMID:8826861

  13. Regulated protein kinases and phosphatases in cell cycle decisions.

    PubMed

    Novak, Bela; Kapuy, Orsolya; Domingo-Sananes, Maria Rosa; Tyson, John J

    2010-12-01

    Many aspects of cell physiology are controlled by protein kinases and phosphatases, which together determine the phosphorylation state of targeted substrates. Some of these target proteins are themselves kinases or phosphatases or other components of a regulatory network characterized by feedback and feed-forward loops. In this review we describe some common regulatory motifs involving kinases, phosphatases, and their substrates, focusing particularly on bistable switches involved in cellular decision processes. These general principles are applied to cell cycle transitions, with special emphasis on the roles of regulated phosphatases in orchestrating progression from one phase to the next of the DNA replication-division cycle.

  14. Polycomb proteins control proliferation and transformation independently of cell cycle checkpoints by regulating DNA replication.

    PubMed

    Piunti, Andrea; Rossi, Alessandra; Cerutti, Aurora; Albert, Mareike; Jammula, Sriganesh; Scelfo, Andrea; Cedrone, Laura; Fragola, Giulia; Olsson, Linda; Koseki, Haruhiko; Testa, Giuseppe; Casola, Stefano; Helin, Kristian; d'Adda di Fagagna, Fabrizio; Pasini, Diego

    2014-04-14

    The ability of PRC1 and PRC2 to promote proliferation is a main feature that links polycomb (PcG) activity to cancer. PcGs silence the expression of the tumour suppressor locus Ink4a/Arf, whose products positively regulate pRb and p53 functions. Enhanced PcG activity is a frequent feature of human tumours, and PcG inhibition has been proposed as a strategy for cancer treatment. However, the recurrent inactivation of pRb/p53 responses in human cancers raises a question regarding the ability of PcG proteins to affect cellular proliferation independently from this checkpoint. Here we demonstrate that PRCs regulate cellular proliferation and transformation independently of the Ink4a/Arf-pRb-p53 pathway. We provide evidence that PRCs localize at replication forks, and that loss of their function directly affects the progression and symmetry of DNA replication forks. Thus, we have identified a novel activity by which PcGs can regulate cell proliferation independently of major cell cycle restriction checkpoints.

  15. SNM1A Acts Downstream of ATM to Promote the G1 Cell Cycle Checkpoint

    PubMed Central

    Akhter, Shamima; Legerski, Randy J.

    2008-01-01

    We have shown previously that SNM1A co-localizes with 53BP1 at sites of double-strand breaks (DSBs) induced by IR, and that these proteins interact with or without DNA damage. However, the role of SNM1A in the DNA damage response has not been elucidated. Here, we show that SNM1A is required for an efficient G1 checkpoint arrest after IR exposure. Interestingly, the localization of SNM1A to sites of DSBs does not require either 53BP1 or H2AX, nor does the localization of 53BP1 require SNM1A. However, the localization of SNM1A does require ATM. Furthermore, SNM1A is shown to be a phosphorylation substrate of ATM in vitro, and to interact with ATM in vivo particularly after exposure of cells to IR. In addition, in the absence of SNM1A the activation of the downstream ATM target p53 is reduced. These findings suggest that SNM1A acts with ATM to promote the G1 cell cycle checkpoint. PMID:18848520

  16. The bacterial cell cycle checkpoint protein Obg and its role in programmed cell death

    PubMed Central

    Dewachter, Liselot; Verstraeten, Natalie; Fauvart, Maarten; Michiels, Jan

    2016-01-01

    The phenomenon of programmed cell death (PCD), in which cells initiate their own demise, is not restricted to multicellular organisms. Unicellular organisms, both eukaryotes and prokaryotes, also possess pathways that mediate PCD. We recently identified a PCD mechanism in Escherichia coli that is triggered by a mutant isoform of the essential GTPase ObgE (Obg of E. coli). Importantly, the PCD pathway mediated by mutant Obg (Obg*) differs fundamentally from other previously described bacterial PCD pathways and thus constitutes a new mode of PCD. ObgE was previously proposed to act as a cell cycle checkpoint protein able to halt cell division. The implication of ObgE in the regulation of PCD further increases the similarity between this protein and eukaryotic cell cycle regulators that are capable of doing both. Moreover, since Obg is conserved in eukaryotes, the elucidation of this cell death mechanism might contribute to the understanding of PCD in higher organisms. Additionally, if Obg*-mediated PCD is conserved among different bacterial species, it will be a prime target for the development of innovative antibacterials that artificially induce this pathway.

  17. Changes in Regulatory Phosphorylation of Cdc25C Ser287 and Wee1 Ser549 during Normal Cell Cycle Progression and Checkpoint Arrests

    PubMed Central

    Stanford, Jennifer S.; Ruderman, Joan V.

    2005-01-01

    Entry into mitosis is catalyzed by cdc2 kinase. Previous work identified the cdc2-activating phosphatase cdc25C and the cdc2-inhibitory kinase wee1 as targets of the incomplete replication-induced kinase Chk1. Further work led to the model that checkpoint kinases block mitotic entry by inhibiting cdc25C through phosphorylation on Ser287 and activating wee1 through phosphorylation on Ser549. However, almost all conclusions underlying this idea were drawn from work using recombinant proteins. Here, we report that in the early Xenopus egg cell cycles, phosphorylation of endogenous cdc25C Ser287 is normally high during interphase and shows no obvious increase after checkpoint activation. By contrast, endogenous wee1 Ser549 phosphorylation is low during interphase and increases after activation of either the DNA damage or replication checkpoints; this is accompanied by a slight increase in wee1 kinase activity. Blocking mitotic entry by adding the catalytic subunit of PKA also results in increased wee1 Ser549 phosphorylation and maintenance of cdc25C Ser287 phosphorylation. These results argue that in response to checkpoint activation, endogenous wee1 is indeed a critical responder that functions by repressing the cdc2-cdc25C positive feedback loop. Surprisingly, endogenous wee1 Ser549 phosphorylation is highest during mitosis just after the peak of cdc2 activity. Treatments that block inactivation of cdc2 result in further increases in wee1 Ser549 phosphorylation, suggesting a previously unsuspected role for wee1 in mitosis. PMID:16195348

  18. A tumor suppressor C53 protein antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation

    PubMed Central

    Jiang, Hai; Wu, Jianchun; He, Chen; Yang, Wending; Li, Honglin

    2009-01-01

    Cyclin dependent kinase 1 (Cdk1)/cyclin B1 complex is the driving force for mitotic entry, and its activation is tightly regulated by the G2/M checkpoint. We originally reported that a novel protein C53 (also known as Cdk5rap3 and LZAP) potentiates DNA damage-induced cell death by modulating the G2/M checkpoint (1). More recently, Wang et al (2007) found that C53/LZAP may function as a tumor suppressor via inhibiting NF-κB signaling (2). We report here identification of C53 protein as a novel regulator of Cdk1 activation. We found that knockdown of C53 protein causes delayed Cdk1 activation and mitotic entry. During DNA damage response, activation of checkpoint kinase 1 and 2 (Chk1 and Chk2) is partially inhibited by C53 overexrepsssion. Intriguingly, we found that C53 interacts with checkpoint kinase 1 (Chk1) and antagonizes its function. Moreover, a portion of C53 protein is localized at the centrosome, and centrosome-targeting C53 potently promotes local Cdk1 activation. Taken together, our results strongly suggest that C53 is a novel negative regulator of checkpoint response. By counteracting Chk1, C53 promotes Cdk1 activation and mitotic entry in both unperturbed cell cycle progression and DNA damage response. PMID:19223857

  19. Cell cycle-dependent regulation of Aurora kinase B mRNA by the Microprocessor complex.

    PubMed

    Jung, Eunsun; Seong, Youngmo; Seo, Jae Hong; Kwon, Young-Soo; Song, Hoseok

    2014-03-28

    Aurora kinase B regulates the segregation of chromosomes and the spindle checkpoint during mitosis. In this study, we showed that the Microprocessor complex, which is responsible for the processing of the primary transcripts during the generation of microRNAs, destabilizes the mRNA of Aurora kinase B in human cells. The Microprocessor-mediated cleavage kept Aurora kinase B at a low level and prevented premature entrance into mitosis. The cleavage was reduced during mitosis leading to the accumulation of Aurora kinase B mRNA and protein. In addition to Aurora kinase B mRNA, the processing of other primary transcripts of miRNAs were also decreased during mitosis. We found that the cleavage was dependent on an RNA helicase, DDX5, and the association of DDX5 and DDX17 with the Microprocessor was reduced during mitosis. Thus, we propose a novel mechanism by which the Microprocessor complex regulates stability of Aurora kinase B mRNA and cell cycle progression.

  20. Re-purposing clinical kinase inhibitors to enhance chemosensitivity by overriding checkpoints

    PubMed Central

    Beeharry, Neil; Banina, Eugenia; Hittle, James; Skobeleva, Natalia; Khazak, Vladimir; Deacon, Sean; Andrake, Mark; Egleston, Brian L; Peterson, Jeffrey R; Astsaturov, Igor; Yen, Timothy J

    2014-01-01

    Inhibitors of the DNA damage checkpoint kinase, Chk1, are highly effective as chemo- and radio-sensitizers in preclinical studies but are not well-tolerated by patients. We exploited the promiscuous nature of kinase inhibitors to screen 9 clinically relevant kinase inhibitors for their ability to sensitize pancreatic cancer cells to a sub-lethal concentration of gemcitabine. Bosutinib, dovitinib, and BEZ-235 were identified as sensitizers that abrogated the DNA damage checkpoint. We further characterized bosutinib, an FDA-approved Src/Abl inhibitor approved for chronic myelogenous leukemia. Unbeknownst to us, we used an isomer (Bos-I) that was unknowingly synthesized and sold to the research community as “authentic” bosutinib. In vitro and cell-based assays showed that both the authentic bosutinib and Bos-I inhibited DNA damage checkpoint kinases Chk1 and Wee1, with Bos-I showing greater potency. Imaging data showed that Bos-I forced cells to override gemcitabine-induced DNA damage checkpoint arrest and destabilized stalled replication forks. These inhibitors enhanced sensitivity to the DNA damaging agents’ gemcitabine, cisplatin, and doxorubicin in pancreatic cancer cell lines. The in vivo efficacy of Bos-I was validated using cells derived directly from a pancreatic cancer patient’s tumor. Notably, the xenograft studies showed that the combination of gemcitabine and Bos-I was significantly more effective in suppressing tumor growth than either agent alone. Finally, we show that the gatekeeper residue in Wee1 dictates its sensitivity to the 2 compounds. Our strategy to screen clinically relevant kinase inhibitors for off-target effects on cell cycle checkpoints is a promising approach to re-purpose drugs as chemosensitizers. PMID:24955955

  1. Re-purposing clinical kinase inhibitors to enhance chemosensitivity by overriding checkpoints.

    PubMed

    Beeharry, Neil; Banina, Eugenia; Hittle, James; Skobeleva, Natalia; Khazak, Vladimir; Deacon, Sean; Andrake, Mark; Egleston, Brian L; Peterson, Jeffrey R; Astsaturov, Igor; Yen, Timothy J

    2014-01-01

    Inhibitors of the DNA damage checkpoint kinase, Chk1, are highly effective as chemo- and radio-sensitizers in preclinical studies but are not well-tolerated by patients. We exploited the promiscuous nature of kinase inhibitors to screen 9 clinically relevant kinase inhibitors for their ability to sensitize pancreatic cancer cells to a sub-lethal concentration of gemcitabine. Bosutinib, dovitinib, and BEZ-235 were identified as sensitizers that abrogated the DNA damage checkpoint. We further characterized bosutinib, an FDA-approved Src/Abl inhibitor approved for chronic myelogenous leukemia. Unbeknownst to us, we used an isomer (Bos-I) that was unknowingly synthesized and sold to the research community as "authentic" bosutinib. In vitro and cell-based assays showed that both the authentic bosutinib and Bos-I inhibited DNA damage checkpoint kinases Chk1 and Wee1, with Bos-I showing greater potency. Imaging data showed that Bos-I forced cells to override gemcitabine-induced DNA damage checkpoint arrest and destabilized stalled replication forks. These inhibitors enhanced sensitivity to the DNA damaging agents' gemcitabine, cisplatin, and doxorubicin in pancreatic cancer cell lines. The in vivo efficacy of Bos-I was validated using cells derived directly from a pancreatic cancer patient's tumor. Notably, the xenograft studies showed that the combination of gemcitabine and Bos-I was significantly more effective in suppressing tumor growth than either agent alone. Finally, we show that the gatekeeper residue in Wee1 dictates its sensitivity to the 2 compounds. Our strategy to screen clinically relevant kinase inhibitors for off-target effects on cell cycle checkpoints is a promising approach to re-purpose drugs as chemosensitizers.

  2. Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints

    PubMed Central

    Zhao, Hui; Watkins, Janis L.; Piwnica-Worms, Helen

    2002-01-01

    Checkpoint kinase (Chk)1 is an evolutionarily conserved protein kinase that was first identified in fission yeast as an essential component of the DNA damage checkpoint. In mice, Chk1 provides an essential function in the absence of environmentally imposed genotoxic stress. Here we show that human cells lacking Chk1 exhibit defects in both the ionizing radiation (IR)-induced S and G2 checkpoints. In addition, loss of Chk1 resulted in the accumulation of a hypophosphorylated form of the Cdc25A protein phosphatase, and Chk1-deficient cells failed to degrade Cdc25A after IR. The IR-induced S and G2 checkpoints were partially restored in Chk1-deficient cells when Cdc25A accumulation was interfered with. Finally, Cdc25A was phosphorylated by Chk1 in vitro on similar sites phosphorylated in vivo, including serine-123. These findings indicate that Chk1 directly phosphorylates Cdc25A during an unperturbed cell cycle, and that phosphorylation of Cdc25A by Chk1 is required for cells to delay cell cycle progression in response to double-strand DNA breaks. PMID:12399544

  3. Modulation of cellular response to anticancer treatment by caffeine: inhibition of cell cycle checkpoints, DNA repair and more.

    PubMed

    Sabisz, Michal; Skladanowski, Andrzej

    2008-08-01

    Caffeine and other methylxanthines produce multiple physiologic effects throughout the human body, many of these effects could potentially modulate the activity of anticancer therapy. Caffeine may directly interfere with drug transport to tumor cells by formation of mixed stacking complexes with polyaromatic drugs. If formed in cells, these complexes may also prevent of intercalating drugs from DNA binding and, in this way, lower their antitumor activity. Since many of potent carcinogens are polyaromatic compounds, formation of stacking complexes with carcinogens could be associated with anti-genotoxic activity of caffeine and its use in cancer chemoprevention. Caffeine has also been reported to inhibit ATM and ATR kinases which leads to the disruption of multiple DNA damage-responsive cell cycle checkpoints and greatly sensitizes tumor cells to antitumor agents which induce genotoxic stress. Caffeine may inhibit repair of DNA lesions through a direct interference with DNA-PK activity and other repair enzymes. A number of in vitro and in vivo studies demonstrated that caffeine modulates both innate and adaptive immune responses via inhibition of cyclic adenosine monophosphate (cAMP)-phosphodiesterase. Finally, another group of effects induced by caffeine is mediated through its inhibitory action on adenosine receptors. This may modulate the stability of HIF1 alpha as well as VEGF and interleukin-8 expression in tumor cells, which could have a direct impact on neovascularization of human tumors. In this review, we present different molecular mechanisms by which caffeine and other methylxanthines may directly or indirectly modulate the effect of antitumor treatment in tumor cells and in cancer patients.

  4. Role of Intrinsic and Extrinsic Factors in the Regulation of the Mitotic Checkpoint Kinase Bub1

    PubMed Central

    Breit, Claudia; Bange, Tanja; Petrovic, Arsen; Weir, John R.; Müller, Franziska; Vogt, Doro; Musacchio, Andrea

    2015-01-01

    The spindle assembly checkpoint (SAC) monitors microtubule attachment to kinetochores to ensure accurate sister chromatid segregation during mitosis. The SAC members Bub1 and BubR1 are paralogs that underwent significant functional specializations during evolution. We report an in-depth characterization of the kinase domains of Bub1 and BubR1. BubR1 kinase domain binds nucleotides but is unable to deliver catalytic activity in vitro. Conversely, Bub1 is an active kinase regulated by intra-molecular phosphorylation at the P+1 loop. The crystal structure of the phosphorylated Bub1 kinase domain illustrates a hitherto unknown conformation of the P+1 loop docked into the active site of the Bub1 kinase. Both Bub1 and BubR1 bind Bub3 constitutively. A hydrodynamic characterization of Bub1:Bub3 and BubR1:Bub3 demonstrates both complexes to have 1:1 stoichiometry, with no additional oligomerization. Conversely, Bub1:Bub3 and BubR1:Bub3 combine to form a heterotetramer. Neither BubR1:Bub3 nor Knl1, the kinetochore receptor of Bub1:Bub3, modulate the kinase activity of Bub1 in vitro, suggesting autonomous regulation of the Bub1 kinase domain. We complement our study with an analysis of the Bub1 substrates. Our results contribute to the mechanistic characterization of a crucial cell cycle checkpoint. PMID:26658523

  5. Mitotic Checkpoint Kinase Mps1 Has a Role in Normal Physiology which Impacts Clinical Utility

    PubMed Central

    Martinez, Ricardo; Blasina, Alessandra; Hallin, Jill F.; Hu, Wenyue; Rymer, Isha; Fan, Jeffery; Hoffman, Robert L.; Murphy, Sean; Marx, Matthew; Yanochko, Gina; Trajkovic, Dusko; Dinh, Dac; Timofeevski, Sergei; Zhu, Zhou; Sun, Peiquing; Lappin, Patrick B.; Murray, Brion W.

    2015-01-01

    Cell cycle checkpoint intervention is an effective therapeutic strategy for cancer when applied to patients predisposed to respond and the treatment is well-tolerated. A critical cell cycle process that could be targeted is the mitotic checkpoint (spindle assembly checkpoint) which governs the metaphase-to-anaphase transition and insures proper chromosomal segregation. The mitotic checkpoint kinase Mps1 was selected to explore whether enhancement in genomic instability is a viable therapeutic strategy. The basal-a subset of triple-negative breast cancer was chosen as a model system because it has a higher incidence of chromosomal instability and Mps1 expression is up-regulated. Depletion of Mps1 reduces tumor cell viability relative to normal cells. Highly selective, extremely potent Mps1 kinase inhibitors were created to investigate the roles of Mps1 catalytic activity in tumor cells and normal physiology (PF-7006, PF-3837; Ki<0.5 nM; cellular IC50 2–6 nM). Treatment of tumor cells in vitro with PF-7006 modulates expected Mps1-dependent biology as demonstrated by molecular and phenotypic measures (reduced pHH3-Ser10 levels, shorter duration of mitosis, micro-nucleation, and apoptosis). Tumor-bearing mice treated with PF-7006 exhibit tumor growth inhibition concomitant with pharmacodynamic modulation of a downstream biomarker (pHH3-Ser10). Unfortunately, efficacy only occurs at drug exposures that cause dose-limiting body weight loss, gastrointestinal toxicities, and neutropenia. Mps1 inhibitor toxicities may be mitigated by inducing G1 cell cycle arrest in Rb1-competent cells with the cyclin-dependent kinase-4/6 inhibitor palbociclib. Using an isogenic cellular model system, PF-7006 is shown to be selectively cytotoxic to Rb1-deficient cells relative to Rb1-competent cells (also a measure of kinase selectivity). Human bone marrow cells pretreated with palbociclib have decreased PF-7006-dependent apoptosis relative to cells without palbociclib pretreatment

  6. Cell cycle dependent regulation of deoxycytidine kinase, deoxyguanosine kinase, and cytosolic 5'-nucleotidase I activity in MOLT-4 cells.

    PubMed

    Fyrberg, A; Mirzaee, S; Lotfi, K

    2006-01-01

    Activation of nucleoside analogues is dependent on kinases and 5'-nucleotidases and the balance between the activity of these enzymes. The purpose of this study was to analyze deoxycytidine kinase, deoxyguanosine kinase, and 4 different 5'-nucleotidases during cell cycle progression in MOLT-4 cells. The activity of both kinases was cell cycle dependent and increased during proliferation while the activity of cytosolic 5'-nucleotidase I decreased. We could show that the kinase activity was higher than the total nucleotidase activity, which was unchanged or decreased during cell cycle progression. These data may be important in designing modern combination therapy with nucleoside analogues.

  7. DNA Damage Response Checkpoint Activation Drives KP1019 Dependent Pre-Anaphase Cell Cycle Delay in S. cerevisiae

    PubMed Central

    Bierle, Lindsey A.; Reich, Kira L.; Taylor, Braden E.; Blatt, Eliot B.; Middleton, Sydney M.; Burke, Shawnecca D.; Stultz, Laura K.; Hanson, Pamela K.; Partridge, Janet F.; Miller, Mary E.

    2015-01-01

    Careful regulation of the cell cycle is required for proper replication, cell division, and DNA repair. DNA damage–including that induced by many anticancer drugs–results in cell cycle delay or arrest, which can allow time for repair of DNA lesions. Although its molecular mechanism of action remains a matter of debate, the anticancer ruthenium complex KP1019 has been shown to bind DNA in biophysical assays and to damage DNA of colorectal and ovarian cancer cells in vitro. KP1019 has also been shown to induce mutations and induce cell cycle arrest in Saccharomyces cerevisiae, suggesting that budding yeast can serve as an appropriate model for characterizing the cellular response to the drug. Here we use a transcriptomic approach to verify that KP1019 induces the DNA damage response (DDR) and find that KP1019 dependent expression of HUG1 requires the Dun1 checkpoint; both consistent with KP1019 DDR in budding yeast. We observe a robust KP1019 dependent delay in cell cycle progression as measured by increase in large budded cells, 2C DNA content, and accumulation of Pds1 which functions to inhibit anaphase. Importantly, we also find that deletion of RAD9, a gene required for the DDR, blocks drug-dependent changes in cell cycle progression, thereby establishing a causal link between the DDR and phenotypes induced by KP1019. Interestingly, yeast treated with KP1019 not only delay in G2/M, but also exhibit abnormal nuclear position, wherein the nucleus spans the bud neck. This morphology correlates with short, misaligned spindles and is dependent on the dynein heavy chain gene DYN1. We find that KP1019 creates an environment where cells respond to DNA damage through nuclear (transcriptional changes) and cytoplasmic (motor protein activity) events. PMID:26375390

  8. DNA Damage Response Checkpoint Activation Drives KP1019 Dependent Pre-Anaphase Cell Cycle Delay in S. cerevisiae.

    PubMed

    Bierle, Lindsey A; Reich, Kira L; Taylor, Braden E; Blatt, Eliot B; Middleton, Sydney M; Burke, Shawnecca D; Stultz, Laura K; Hanson, Pamela K; Partridge, Janet F; Miller, Mary E

    2015-01-01

    Careful regulation of the cell cycle is required for proper replication, cell division, and DNA repair. DNA damage--including that induced by many anticancer drugs--results in cell cycle delay or arrest, which can allow time for repair of DNA lesions. Although its molecular mechanism of action remains a matter of debate, the anticancer ruthenium complex KP1019 has been shown to bind DNA in biophysical assays and to damage DNA of colorectal and ovarian cancer cells in vitro. KP1019 has also been shown to induce mutations and induce cell cycle arrest in Saccharomyces cerevisiae, suggesting that budding yeast can serve as an appropriate model for characterizing the cellular response to the drug. Here we use a transcriptomic approach to verify that KP1019 induces the DNA damage response (DDR) and find that KP1019 dependent expression of HUG1 requires the Dun1 checkpoint; both consistent with KP1019 DDR in budding yeast. We observe a robust KP1019 dependent delay in cell cycle progression as measured by increase in large budded cells, 2C DNA content, and accumulation of Pds1 which functions to inhibit anaphase. Importantly, we also find that deletion of RAD9, a gene required for the DDR, blocks drug-dependent changes in cell cycle progression, thereby establishing a causal link between the DDR and phenotypes induced by KP1019. Interestingly, yeast treated with KP1019 not only delay in G2/M, but also exhibit abnormal nuclear position, wherein the nucleus spans the bud neck. This morphology correlates with short, misaligned spindles and is dependent on the dynein heavy chain gene DYN1. We find that KP1019 creates an environment where cells respond to DNA damage through nuclear (transcriptional changes) and cytoplasmic (motor protein activity) events.

  9. A conserved physical and functional interaction between the cell cycle checkpoint clamp loader and DNA ligase I of eukaryotes.

    PubMed

    Song, Wei; Levin, David S; Varkey, Johnson; Post, Sean; Bermudez, Vladimir P; Hurwitz, Jerard; Tomkinson, Alan E

    2007-08-03

    DNA ligase I joins Okazaki fragments during DNA replication and completes certain excision repair pathways. The participation of DNA ligase I in these transactions is directed by physical and functional interactions with proliferating cell nuclear antigen, a DNA sliding clamp, and, replication factor C (RFC), the clamp loader. Here we show that DNA ligase I also interacts with the hRad17 subunit of the hRad17-RFC cell cycle checkpoint clamp loader, and with each of the subunits of its DNA sliding clamp, the heterotrimeric hRad9-hRad1-hHus1 complex. In contrast to the inhibitory effect of RFC, hRad17-RFC stimulates joining by DNA ligase I. Similar results were obtained with the homologous Saccharomyces cerevisiae proteins indicating that the interaction between the replicative DNA ligase and checkpoint clamp is conserved in eukaryotes. Notably, we show that hRad17 preferentially interacts with and specifically stimulates dephosphorylated DNA ligase I. Moreover, there is an increased association between DNA ligase I and hRad17 in S phase following DNA damage and replication blockage that occurs concomitantly with DNA damage-induced dephosphorylation of chromatin-associated DNA ligase I. Thus, our results suggest that the in vivo interaction between DNA ligase I and the checkpoint clamp loader is regulated by post-translational modification of DNA ligase I.

  10. Aristolochic acid-induced apoptosis and G2 cell cycle arrest depends on ROS generation and MAP kinases activation.

    PubMed

    Romanov, Victor; Whyard, Terry C; Waltzer, Wayne C; Grollman, Arthur P; Rosenquist, Thomas

    2015-01-01

    Ingestion of aristolochic acids (AAs) contained in herbal remedies results in a renal disease and, frequently, urothelial malignancy. The genotoxicity of AA in renal cells, including mutagenic DNA adducts formation, is well documented. However, the mechanisms of AA-induced tubular atrophy and renal fibrosis are largely unknown. To better elucidate some aspects of this process, we studied cell cycle distribution and cell survival of renal epithelial cells treated with AAI at low and high doses. A low dose of AA induces cell cycle arrest in G2/M phase via activation of DNA damage checkpoint pathway ATM-Chk2-p53-p21. DNA damage signaling pathway is activated more likely via increased production of reactive oxygen species (ROS) caused by AA treatment then via DNA damage induced directly by AA. Higher AA concentration induced cell death partly via apoptosis. Since mitogen-activated protein kinases play an important role in cell survival, death and cell cycle progression, we assayed their function in AA-treated renal tubular epithelial cells. ERK1/2 and p38 but not JNK were activated in cells treated with AA. In addition, pharmacological inhibition of ERK1/2 and p38 as well as suppression of ROS generation with N-acetyl-L-cysteine resulted in the partial relief of cells from G2/M checkpoint and a decline of apoptosis level. Cell cycle arrest may be a mechanism for DNA repair, cell survival and reprogramming of epithelial cells to the fibroblast type. An apoptosis of renal epithelial cells at higher AA dose might be necessary to provide space for newly reprogrammed fibrotic cells.

  11. The mysterious human epidermal cell cycle, or an oncogene-induced differentiation checkpoint

    PubMed Central

    Gandarillas, Alberto

    2012-01-01

    Fifteen years ago, we reported that proto-oncogene MYC promoted differentiation of human epidermal stem cells, a finding that was surprising to the MYC and the skin research communities. MYC was one of the first human oncogenes identified, and it had been strongly associated with proliferation. However, it was later shown that MYC could induce apoptosis under low survival conditions. Currently, the notion that MYC promotes epidermal differentiation is widely accepted, but the cell cycle mechanisms that elicit this function remain unresolved. We have recently reported that keratinocytes respond to cell cycle deregulation and DNA damage by triggering terminal differentiation. This mechanism might constitute a homeostatic protection face to cell cycle insults. Here, I discuss recent and not-so-recent evidence suggesting the existence of a largely unexplored oncogene-induced differentiation response (OID) analogous to oncogene-induced apoptosis (OIA) or senescence (OIS). In addition, I propose a model for the role of the cell cycle in skin homeostasis maintenance and for the dual role of MYC in differentiation. PMID:23114621

  12. RACH2, a novel human gene that complements a fission yeast cell cycle checkpoint mutation.

    PubMed Central

    Davey, S; Beach, D

    1995-01-01

    We have identified a novel human gene by virtue of its ability to complement the rad1-1 checkpoint mutant of Schizosaccharomyces pombe. This gene, called RACH2, rescues the temperature-sensitive lethality of a rad1-1 wee1-50 double mutant of S. pombe. Expression of RACH2 in S. pombe rad1-1 strains partially restores UV resistance to the rad1-1 mutant strain. Expression of RACH2 in a rad1-1 cdc25-22 double mutant partially restores the dose-dependent delay in mitotic entry after irradiation that is lost in rad1-1 checkpoint-deficient mutants. Overexpression of RACH2 in human tissue culture cells induces apoptosis. Images PMID:8573795

  13. Targeting lung cancer through inhibition of checkpoint kinases

    PubMed Central

    Syljuåsen, Randi G.; Hasvold, Grete; Hauge, Sissel; Helland, Åslaug

    2015-01-01

    Inhibitors of checkpoint kinases ATR, Chk1, and Wee1 are currently being tested in preclinical and clinical trials. Here, we review the basic principles behind the use of such inhibitors as anticancer agents, and particularly discuss their potential for treatment of lung cancer. As lung cancer is one of the most deadly cancers, new treatment strategies are highly needed. We discuss how checkpoint kinase inhibition in principle can lead to selective killing of lung cancer cells while sparing the surrounding normal tissues. Several features of lung cancer may potentially be exploited for targeting through inhibition of checkpoint kinases, including mutated p53, low ERCC1 levels, amplified Myc, tumor hypoxia and presence of lung cancer stem cells. Synergistic effects have also been reported between inhibitors of ATR/Chk1/Wee1 and conventional lung cancer treatments, such as gemcitabine, cisplatin, or radiation. Altogether, inhibitors of ATR, Chk1, and Wee1 are emerging as new cancer treatment agents, likely to be useful in lung cancer treatment. However, as lung tumors are very diverse, the inhibitors are unlikely to be effective in all patients, and more work is needed to determine how such inhibitors can be utilized in the most optimal ways. PMID:25774168

  14. When genome integrity and cell cycle decisions collide: roles of polo kinases in cellular adaptation to DNA damage.

    PubMed

    Serrano, Diego; D'Amours, Damien

    2014-09-01

    The drive to proliferate and the need to maintain genome integrity are two of the most powerful forces acting on biological systems. When these forces enter in conflict, such as in the case of cells experiencing DNA damage, feedback mechanisms are activated to ensure that cellular proliferation is stopped and no further damage is introduced while cells repair their chromosomal lesions. In this circumstance, the DNA damage response dominates over the biological drive to proliferate, and may even result in programmed cell death if the damage cannot be repaired efficiently. Interestingly, the drive to proliferate can under specific conditions overcome the DNA damage response and lead to a reactivation of the proliferative program in checkpoint-arrested cells. This phenomenon is known as adaptation to DNA damage and is observed in all eukaryotic species where the process has been studied, including normal and cancer cells in humans. Polo-like kinases (PLKs) are critical regulators of the adaptation response to DNA damage and they play key roles at the interface of cell cycle and checkpoint-related decisions in cells. Here, we review recent progress in defining the specific roles of PLKs in the adaptation process and how this conserved family of eukaryotic kinases can integrate the fundamental need to preserve genomic integrity with effective cellular proliferation.

  15. Crystal Structure of Checkpoint Kinase 2 in Complex with Nsc 109555, a Potent and Selective Inhibitor

    SciTech Connect

    Lountos, George T.; Tropea, Joseph E.; Zhang, Di; Jobson, Andrew G.; Pommier, Yves; Shoemaker, Robert H.; Waugh, David S.

    2009-03-05

    Checkpoint kinase 2 (Chk2), a ser/thr kinase involved in the ATM-Chk2 checkpoint pathway, is activated by genomic instability and DNA damage and results in either arrest of the cell cycle to allow DNA repair to occur or apoptosis if the DNA damage is severe. Drugs that specifically target Chk2 could be beneficial when administered in combination with current DNA-damaging agents used in cancer therapy. Recently, a novel inhibitor of Chk2, NSC 109555, was identified that exhibited high potency (IC{sub 50} = 240 nM) and selectivity. This compound represents a new chemotype and lead for the development of novel Chk2 inhibitors that could be used as therapeutic agents for the treatment of cancer. To facilitate the discovery of new analogs of NSC 109555 with even greater potency and selectivity, we have solved the crystal structure of this inhibitor in complex with the catalytic domain of Chk2. The structure confirms that the compound is an ATP-competitive inhibitor, as the electron density clearly reveals that it occupies the ATP-binding pocket. However, the mode of inhibition differs from that of the previously studied structure of Chk2 in complex with debromohymenialdisine, a compound that inhibits both Chk1 and Chk2. A unique hydrophobic pocket in Chk2, located very close to the bound inhibitor, presents an opportunity for the rational design of compounds with higher binding affinity and greater selectivity.

  16. The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression.

    PubMed

    Ewald, Jennifer C; Kuehne, Andreas; Zamboni, Nicola; Skotheim, Jan M

    2016-05-19

    Cell division entails a sequence of processes whose specific demands for biosynthetic precursors and energy place dynamic requirements on metabolism. However, little is known about how metabolic fluxes are coordinated with the cell division cycle. Here, we examine budding yeast to show that more than half of all measured metabolites change significantly through the cell division cycle. Cell cycle-dependent changes in central carbon metabolism are controlled by the cyclin-dependent kinase (Cdk1), a major cell cycle regulator, and the metabolic regulator protein kinase A. At the G1/S transition, Cdk1 phosphorylates and activates the enzyme Nth1, which funnels the storage carbohydrate trehalose into central carbon metabolism. Trehalose utilization fuels anabolic processes required to reliably complete cell division. Thus, the cell cycle entrains carbon metabolism to fuel biosynthesis. Because the oscillation of Cdk activity is a conserved feature of the eukaryotic cell cycle, we anticipate its frequent use in dynamically regulating metabolism for efficient proliferation.

  17. Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint

    PubMed Central

    Kitagawa, Mayumi; Caldez, Matias J.; Gunaratne, Jayantha; Lee, Sang Hyun

    2016-01-01

    The Greatwall kinase/Mastl is an essential gene that indirectly inhibits the phosphatase activity toward mitotic Cdk1 substrates. Here we show that although Mastl knockout (MastlNULL) MEFs enter mitosis, they progress through mitosis without completing cytokinesis despite the presence of misaligned chromosomes, which causes chromosome segregation defects. Furthermore, we uncover the requirement of Mastl for robust spindle assembly checkpoint (SAC) maintenance since the duration of mitotic arrest caused by microtubule poisons in MastlNULL MEFs is shortened, which correlates with premature disappearance of the essential SAC protein Mad1 at the kinetochores. Notably, MastlNULL MEFs display reduced phosphorylation of a number of proteins in mitosis, which include the essential SAC kinase MPS1. We further demonstrate that Mastl is required for multi-site phosphorylation of MPS1 as well as robust MPS1 kinase activity in mitosis. In contrast, treatment of MastlNULL cells with the phosphatase inhibitor okadaic acid (OKA) rescues the defects in MPS1 kinase activity, mislocalization of phospho-MPS1 as well as Mad1 at the kinetochore, and premature SAC silencing. Moreover, using in vitro dephosphorylation assays, we demonstrate that Mastl promotes persistent MPS1 phosphorylation by inhibiting PP2A/B55-mediated MPS1 dephosphorylation rather than affecting Cdk1 kinase activity. Our findings establish a key regulatory function of the Greatwall kinase/Mastl->PP2A/B55 pathway in preventing premature SAC silencing. PMID:27631493

  18. The roles of nitric oxide synthase and eIF2alpha kinases in regulation of cell cycle upon UVB-irradiation.

    PubMed

    Wang, Lei; Liu, Yan; Wu, Shiyong

    2010-01-01

    In response to ultraviolet light (UV)-induced damage, cells initiate cellular recovery mechanisms including activation of repair genes and redistribution of cell cycle phases. While most studies have focused on DNA damage-inducible transcriptional regulation of cell cycle checkpoints, translational regulation also plays an important role in control of cell cycle progression upon UV-irradiation. UV-irradiation activates two kinases, PERK and GCN2, which phosphorylate the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) and subsequently inhibit protein synthesis. We recently identified an upstream regulator, nitric oxide synthase (NOS), which controls the activation of both PERK and GCN2 upon UVB-irradiation. Our data suggested that UVB induces NOS activation and NO(.) production, which reacts with superoxide (O(2)(*-)) to form peroxynitrite (ONOO(-)) and activate PERK. The NO(*) production also leads to L-Arg depletion and GCN2 activation. The elevation of nitric oxide and activation of PERK/GCN2 have been shown to play roles in regulation of cell cycle upon UVB irradiation. In the present study, we show that the cell cycle phases were redistributed by inhibition of NOS activation or reduction of oxidative stress upon UVB irradiation, indicating the roles of NO(*) and its oxidative products in regulation of cell cycle. We also demonstrate that both PERK and GCN2 were involved in regulation of cell cycle upon UVB-irradiation, but the regulation is independent of eIF2alpha phosphorylation. While the mechanism for UVB-induced cell cycle control is yet to be unraveled, we here discuss the differential roles of NOS, PERK and GCN2 in regulation of cell cycle upon UVB-irradiation.

  19. MK3 Modulation Affects BMI1-Dependent and Independent Cell Cycle Check-Points

    PubMed Central

    Dahlmans, Vivian E. H.; Spaapen, Frank; Salvaing, Juliette; Vanhove, Jolien; Geijselaers, Claudia; Bartels, Stefanie J. J.; Partouns, Iris; Neumann, Dietbert; Speel, Ernst-Jan; Takihara, Yoshihiro; Wouters, Bradly G.; Voncken, Jan Willem

    2015-01-01

    Although the MK3 gene was originally found deleted in some cancers, it is highly expressed in others. The relevance of MK3 for oncogenesis is currently not clear. We recently reported that MK3 controls ERK activity via a negative feedback mechanism. This prompted us to investigate a potential role for MK3 in cell proliferation. We here show that overexpression of MK3 induces a proliferative arrest in normal diploid human fibroblasts, characterized by enhanced expression of replication stress- and senescence-associated markers. Surprisingly, MK3 depletion evokes similar senescence characteristics in the fibroblast model. We previously identified MK3 as a binding partner of Polycomb Repressive Complex 1 (PRC1) proteins. In the current study we show that MK3 overexpression results in reduced cellular EZH2 levels and concomitant loss of epigenetic H3K27me3-marking and PRC1/chromatin-occupation at the CDKN2A/INK4A locus. In agreement with this, the PRC1 oncoprotein BMI1, but not the PCR2 protein EZH2, bypasses MK3-induced senescence in fibroblasts and suppresses P16INK4A expression. In contrast, BMI1 does not rescue the MK3 loss-of-function phenotype, suggesting the involvement of multiple different checkpoints in gain and loss of MK3 function. Notably, MK3 ablation enhances proliferation in two different cancer cells. Finally, the fibroblast model was used to evaluate the effect of potential tumorigenic MK3 driver-mutations on cell proliferation and M/SAPK signaling imbalance. Taken together, our findings support a role for MK3 in control of proliferation and replicative life-span, in part through concerted action with BMI1, and suggest that the effect of MK3 modulation or mutation on M/SAPK signaling and, ultimately, proliferation, is cell context-dependent. PMID:25853770

  20. Elevated lung cancer risk is associated with deficiencies in cell cycle checkpoints: Genotype and phenotype analyses from a case-control study

    PubMed Central

    Zheng, Yun-Ling; Kosti, Ourania; Loffredo, Christopher; Bowman, Elise; Mechanic, Leah; Perlmutter, Donna; Jones, Raymond; Shields, Peter G.; Harris, Curtis

    2010-01-01

    Cell cycle checkpoints play critical roles in the maintenance of genomic integrity and inactivation of checkpoint genes, and are frequently perturbed in most cancers. In a case-control study of 299 non-small cell lung cancer cases and 550 controls in Maryland, we investigated the association between γ-radiation-induced G2/M arrest in cultured blood lymphocytes and lung cancer risk, and examined genotype-phenotype correlations between genetic polymorphisms of 20 genes involving in DNA repair and cell cycle control and γ-radiation-induced G2/M arrest. The study was specifically designed to examine race and gender differences in risk factors. Our data indicated that a less efficient DNA damage-induced G2/M checkpoint was associated with an increased risk of lung cancer in African American women with an adjusted odds ratio (OR) of 2.63 (95% CI = 1.01 – 7.26); there were no statistically significant associations for Caucasians, or African American men. When the African American women were categorized into quartiles, a significant reverse trend of decreased G2/M checkpoint function and increased lung cancer risk was present, with lowest-vs-highest quartile OR of 13.72 (95% CI = 2.30 – 81.92, Ptrend < 0.01). Genotype-phenotype correlation analysis indicated that polymorphisms in ATM, CDC25C, CDKN1A, BRCA2, ERCC6, TP53, and TP53BP1 genes were significantly associated with the γ-radiation-induced G2/M arrest phenotype. This study provides evidence that a less efficient G2/M checkpoint is significantly associated with lung cancer risk in African American women. The data also suggested that the function of G2/M checkpoint is modulated by genetic polymorphisms in genes involved in DNA repair and cell cycle control. PMID:19626602

  1. Cell Cycle Checkpoint Proteins p21 and Hus1 Regulating Intercellular Signaling Induced By Alpha Particle Irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Lijun; Zhao, Ye; Wang, Jun; Hang, Haiying

    In recent years, the attentions for radiation induced bystander effects (RIBE) have been paid on the intercellular signaling events connecting the irradiated and non-irradiated cells. p21 is a member of the Cip/Kip family and plays essential roles in cell cycle progression arrest after cellular irradiation. DNA damage checkpoint protein Hus1 is a member of the Rad9-Rad1-Hus1 complex and functions as scaffold at the damage sites to facilitate the activation of downstream effectors. Using the medium trasfer method and the cells of MEF, MEF (p21-/-), MEF (p21-/-Hus1-/-) as either medium donor or receptor cells, it was found that with 5cGy alpha particle irradiation, the bystander cells showed a significant induction of -H2AX for normal MEFs (p¡0.05). However, the absence of p21 resulted in deficiency in inducing bystander effects. Further results indicated p21 affected the intercellular DNA damage signaling mainly through disrupting the production or release of the damage signals from irradiated cells. When Hus1 and p21 were both knocked out, an obvious induction of -H2AX recurred in bystander cells and the induction of -H2AX was GJIC (gap junction-mediated intercellular communication) dependent, indicating the interrelationship between p21 and Hus1 regulated the production and relay of DNA damage signals from irradiated cells to non-irradiated bystander cells.

  2. Regulation of Cdc28 Cyclin-Dependent Protein Kinase Activity during the Cell Cycle of the Yeast Saccharomyces cerevisiae

    PubMed Central

    Mendenhall, Michael D.; Hodge, Amy E.

    1998-01-01

    The cyclin-dependent protein kinase (CDK) encoded by CDC28 is the master regulator of cell division in the budding yeast Saccharomyces cerevisiae. By mechanisms that, for the most part, remain to be delineated, Cdc28 activity controls the timing of mitotic commitment, bud initiation, DNA replication, spindle formation, and chromosome separation. Environmental stimuli and progress through the cell cycle are monitored through checkpoint mechanisms that influence Cdc28 activity at key cell cycle stages. A vast body of information concerning how Cdc28 activity is timed and coordinated with various mitotic events has accrued. This article reviews that literature. Following an introduction to the properties of CDKs common to many eukaryotic species, the key influences on Cdc28 activity—cyclin-CKI binding and phosphorylation-dephosphorylation events—are examined. The processes controlling the abundance and activity of key Cdc28 regulators, especially transcriptional and proteolytic mechanisms, are then discussed in detail. Finally, the mechanisms by which environmental stimuli influence Cdc28 activity are summarized. PMID:9841670

  3. Identification of Potential Plk1 Targets in a Cell-Cycle Specific Proteome through Structural Dynamics of Kinase and Polo Box-Mediated Interactions

    PubMed Central

    Bibi, Nousheen; Parveen, Zahida; Rashid, Sajid

    2013-01-01

    Polo like kinase 1 (Plk1) is a key player in orchestrating the wide variety of cell-cycle events ranging from centrosome maturation, mitotic entry, checkpoint recovery, transcriptional control, spindle assembly, mitotic progression, cytokinesis and DNA damage checkpoints recovery. Due to its versatile nature, Plk1 is considered an imperative regulator to tightly control the diverse aspects of the cell cycle network. Interactions among Plk1 polo box domain (PBD) and its putative binding proteins are crucial for the activation of Plk1 kinase domain (KD). To date, only a few substrate candidates have been characterized through the inclusion of both polo box and kinase domain-mediated interactions. Thus it became compelling to explore precise and specific Plk1 substrates through reassessment and extension of the structure-function paradigm. To narrow this apparently wide gap in knowledge, here we employed a thorough sequence search of Plk1 phosphorylation signature containing proteins and explored their structure-based features like conceptual PBD-binding capabilities and subsequent recruitment of KD directed phosphorylation to dissect novel targets of Plk1. Collectively, we identified 4,521 phosphodependent proteins sharing similarity to the consensus phosphorylation and PBD recognition motifs. Subsequent application of filters including similarity index, Gene Ontology enrichment and protein localization resulted in stringent pre-filtering of irrelevant candidates and isolated unique targets with well-defined roles in cell-cycle machinery and carcinogenesis. These candidates were further refined structurally using molecular docking and dynamic simulation assays. Overall, our screening approach enables the identification of several undefined cell-cycle associated functions of Plk1 by uncovering novel phosphorylation targets. PMID:23967120

  4. Part II-mechanism of adaptation: A549 cells adapt to high concentration of nitric oxide through bypass of cell cycle checkpoints.

    PubMed

    Aqil, Madeeha; Deliu, Zane; Elseth, Kim M; Shen, Grace; Xue, Jiaping; Radosevich, James A

    2014-03-01

    Previous work has shown enhanced survival capacity in high nitric oxide (HNO)-adapted tumor cells. In Part I of this series of manuscripts, we have shown that A549-HNO cells demonstrate an improved growth profile under UV and X-ray radiation treatment. These cells exhibit increased expression of proteins involved in DNA damage recognition and repair pathway, both the non-homologous end joining pathway and homologous recombination. These include Ku80, DNA-PK, XLF ligase and MRN complex proteins. Further, the A549-HNO cells show high levels of ATM, ATR, Chk1 and Chk2, and phospho-p53. Activation of these molecules may lead to cell cycle arrest and apoptosis due to DNA damage. This is observed in parent A549 cells in response to NO donor treatment; however, the A549-HNO cells proliferate and inhibit apoptosis. Cell cycle analysis showed slowed progression through S phase which will allow time for DNA repair. Thus, to better understand the increased growth rate in A549-HNO when compared to the parent cell line A549, we studied molecular mechanisms involved in cell cycle regulation in A549-HNO cells. During the initial time period of NO donor treatment, we observe high levels of cyclin/Cdk complexes involved in regulating various stages of the cell cycle. This would lead to bypass of G1-S and G2-M checkpoints. The HNO cells also show much higher expression of Cdc25A. Cdc25A activates Cdk molecules involved in different phases of the cell cycle. In addition, there is enhanced phosphorylation of the Rb protein in HNO cells. This leads to inactivation of Rb/E2F checkpoint regulating G1-S transition. This may lead to faster progression in S phase. Thus, all of these perturbations in HNO cells lead to accelerated cell cycle progression and a higher growth rate. We also assessed expression of cell cycle inhibitors in HNO cells. Interestingly, the HNO cells show a significant decline in p21CIP1 at initial time points, but with prolonged exposure, the levels were much higher

  5. Physiological electric fields control the G1/S phase cell cycle checkpoint to inhibit endothelial cell proliferation.

    PubMed

    Wang, Entong; Yin, Yili; Zhao, Min; Forrester, John V; McCaig, Colin D

    2003-03-01

    Vascular endothelial cell (VEC) proliferation is a key event in angiogenesis and is tightly regulated. Electric potential differences exist around the vascular endothelium and give rise to endogenous electric fields (EFs), whether these EFs influence VEC proliferation is unclear. We exposed cultured VECs to applied EFs of physiological strengths for up to 72 h. EF at 50 or 100 mV/mm did not influence cell proliferation, but at 200 mV/mm, cell density, cell growth rate, and mitosis index decreased significantly. EF-induced reduction in VEC proliferation was not due to increased apoptosis, because caspase apoptosis inhibitor Z-VAD-FMK (20 microM), had no effect on this response. Rather, EF responses were mediated via decreased entry of cells into S phase from G1 phase, as shown by flow cytometry. Western blot showed that EFs decreased G1-specific cyclin E expression and increased cyclin/cyclin-dependent kinase complex inhibitor p27kipl expression. Thus EFs controlled VEC proliferation through induction of cell cycle arrest at G1 by down-regulation of cyclin E expression and up-regulation of p27kipl expression, rather than by promoting apoptosis. If control of the cell cycle by endogenous EFs extends beyond VECs, this would be of widespread biological significance in vivo.

  6. Phosphorylation of Minichromosome Maintenance 3 (MCM3) by Checkpoint Kinase 1 (Chk1) Negatively Regulates DNA Replication and Checkpoint Activation.

    PubMed

    Han, Xiangzi; Mayca Pozo, Franklin; Wisotsky, Jacob N; Wang, Benlian; Jacobberger, James W; Zhang, Youwei

    2015-05-08

    Mechanisms controlling DNA replication and replication checkpoint are critical for the maintenance of genome stability and the prevention or treatment of human cancers. Checkpoint kinase 1 (Chk1) is a key effector protein kinase that regulates the DNA damage response and replication checkpoint. The heterohexameric minichromosome maintenance (MCM) complex is the core component of mammalian DNA helicase and has been implicated in replication checkpoint activation. Here we report that Chk1 phosphorylates the MCM3 subunit of the MCM complex at Ser-205 under normal growth conditions. Mutating the Ser-205 of MCM3 to Ala increased the length of DNA replication track and shortened the S phase duration, indicating that Ser-205 phosphorylation negatively controls normal DNA replication. Upon replicative stress treatment, the inhibitory phosphorylation of MCM3 at Ser-205 was reduced, and this reduction was accompanied with the generation of single strand DNA, the key platform for ataxia telangiectasia mutated and Rad3-related (ATR) activation. As a result, the replication checkpoint is activated. Together, these data provide significant insights into the regulation of both normal DNA replication and replication checkpoint activation through the novel phosphorylation of MCM3 by Chk1.

  7. Retinoblastoma cancer suppressor gene product is a substrate of the cell cycle regulator cdc2 kinase.

    PubMed Central

    Lin, B T; Gruenwald, S; Morla, A O; Lee, W H; Wang, J Y

    1991-01-01

    The retinoblastoma gene product (RB) is a nuclear protein which has been shown to function as a tumor suppressor. It is phosphorylated from S to M phase of the cell cycle and dephosphorylated in G1. This suggests that the function of RB is regulated by its phosphorylation in the cell cycle. Ten phosphotryptic peptides are found in human RB proteins. The pattern of RB phosphorylation does not change from S to M phases of the cell cycle. Hypophosphorylated RB prepared from insect cells infected with an RB-recombinant baculovirus is used as a substrate for in vitro phosphorylation reactions. Of several protein kinases tested, only cdc2 kinase phosphorylates RB efficiently and all 10 peptides can be phosphorylated by cdc2 in vitro. Removal of cdc2 from mitotic cell extracts by immunoprecipitation causes a concomitant depletion of RB kinase activity. These results indicate that cdc2 or a kinase with similar substrate specificity is involved in the cell cycle-dependent phosphorylation of the RB protein. Images PMID:2009861

  8. Cell cycle arrest in cdc20 mutants of Saccharomyces cerevisiae is independent of Ndc10p and kinetochore function but requires a subset of spindle checkpoint genes.

    PubMed Central

    Tavormina, P A; Burke, D J

    1998-01-01

    The spindle checkpoint ensures accurate chromosome segregation by inhibiting anaphase onset in response to altered microtubule function and impaired kinetochore function. In this study, we report that the ability of the anti-microtubule drug nocodazole to inhibit cell cycle progression in Saccharomyces cerevisiae depends on the function of the kinetochore protein encoded by NDC10. We examined the role of the spindle checkpoint in the arrest in cdc20 mutants that arrest prior to anaphase with an aberrant spindle. The arrest in cdc20 defective cells is dependent on the BUB2 checkpoint and independent of the BUB1, BUB3, and MAD spindle checkpoint genes. We show that the lesion recognized by Bub2p is not excess microtubules, and the cdc20 arrest is independent of kinetochore function. We show that Cdc20p is not required for cyclin proteolysis at two points in the cell cycle, suggesting that CDC20 is distinct from genes encoding integral proteins of the anaphase promoting complex. PMID:9560388

  9. A Kinase-Phosphatase Switch Transduces Environmental Information into a Bacterial Cell Cycle Circuit

    PubMed Central

    Heinrich, Kristina; Sobetzko, Patrick; Jonas, Kristina

    2016-01-01

    The bacterial cell cycle has been extensively studied under standard growth conditions. How it is modulated in response to environmental changes remains poorly understood. Here, we demonstrate that the freshwater bacterium Caulobacter crescentus blocks cell division and grows to filamentous cells in response to stress conditions affecting the cell membrane. Our data suggest that stress switches the membrane-bound cell cycle kinase CckA to its phosphatase mode, leading to the rapid dephosphorylation, inactivation and proteolysis of the master cell cycle regulator CtrA. The clearance of CtrA results in downregulation of division and morphogenesis genes and consequently a cell division block. Upon shift to non-stress conditions, cells quickly restart cell division and return to normal cell size. Our data indicate that the temporary inhibition of cell division through the regulated inactivation of CtrA constitutes a growth advantage under stress. Taken together, our work reveals a new mechanism that allows bacteria to alter their mode of proliferation in response to environmental cues by controlling the activity of a master cell cycle transcription factor. Furthermore, our results highlight the role of a bifunctional kinase in this process that integrates the cell cycle with environmental information. PMID:27941972

  10. Phosphate-Activated Cyclin-Dependent Kinase Stabilizes G1 Cyclin To Trigger Cell Cycle Entry

    PubMed Central

    Menoyo, S.; Ricco, N.; Bru, S.; Hernández-Ortega, S.; Escoté, X.; Aldea, M.

    2013-01-01

    G1 cyclins, in association with a cyclin-dependent kinase (CDK), are universal activators of the transcriptional G1-S machinery during entry into the cell cycle. Regulation of cyclin degradation is crucial for coordinating progression through the cell cycle, but the mechanisms that modulate cyclin stability to control cell cycle entry are still unknown. Here, we show that a lack of phosphate downregulates Cln3 cyclin and leads to G1 arrest in Saccharomyces cerevisiae. The stability of Cln3 protein is diminished in strains with low activity of Pho85, a phosphate-sensing CDK. Cln3 is an in vitro substrate of Pho85, and both proteins interact in vivo. More interestingly, cells that carry a CLN3 allele encoding aspartic acid substitutions at the sites of Pho85 phosphorylation maintain high levels of Cln3 independently of Pho85 activity. Moreover, these cells do not properly arrest in G1 in the absence of phosphate and they die prematurely. Finally, the activity of Pho85 is essential for accumulating Cln3 and for reentering the cell cycle after phosphate refeeding. Taken together, our data indicate that Cln3 is a molecular target of the Pho85 kinase that is required to modulate cell cycle entry in response to environmental changes in nutrient availability. PMID:23339867

  11. Design checkpoint kinase 2 inhibitors by pharmacophore modeling and virtual screening techniques.

    PubMed

    Wang, Yen-Ling; Lin, Chun-Yuan; Shih, Kuei-Chung; Huang, Jui-Wen; Tang, Chuan-Yi

    2013-12-01

    Damage to DNA is caused by ionizing radiation, genotoxic chemicals or collapsed replication forks. When DNA is damaged or cells fail to respond, a mutation that is associated with breast or ovarian cancer may occur. Mammalian cells control and stabilize the genome using a cell cycle checkpoint to prevent damage to DNA or to repair damaged DNA. Checkpoint kinase 2 (Chk2) is one of the important kinases, which strongly affects DNA-damage and plays an important role in the response to the breakage of DNA double-strands and related lesions. Therefore, this study concerns Chk2. Its purpose is to find potential inhibitors using the pharmacophore hypotheses (PhModels) and virtual screening techniques. PhModels can identify inhibitors with high biological activities and virtual screening techniques are used to screen the database of the National Cancer Institute (NCI) to retrieve compounds that exhibit all of the pharmacophoric features of potential inhibitors with high interaction energy. Ten PhModels were generated using the HypoGen best algorithm. The established PhModel, Hypo01, was evaluated by performing a cost function analysis of its correlation coefficient (r), root mean square deviation (RMSD), cost difference, and configuration cost, with the values 0.955, 1.28, 192.51, and 16.07, respectively. The result of Fischer's cross-validation test for the Hypo01 model yielded a 95% confidence level, and the correlation coefficient of the testing set (rtest) had a best value of 0.81. The potential inhibitors were then chosen from the NCI database by Hypo01 model screening and molecular docking using the cdocker docking program. Finally, the selected compounds exhibited the identified pharmacophoric features and had a high interaction energy between the ligand and the receptor. Eighty-three potential inhibitors for Chk2 are retrieved for further study.

  12. Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases

    PubMed Central

    Hydbring, Per; Malumbres, Marcos; Sicinski, Piotr

    2016-01-01

    The role of cyclins and their catalytic partners, the cyclin-dependent kinases (CDKs), as core components of the machinery that drives cell cycle progression is well established. Increasing evidence indicates that mammalian cyclins and CDKs also carry out important roles in other cellular processes such as transcription, DNA damage repair, the control of cell death, differentiation, the immune response and metabolism. Some of these non-canonical functions are performed by cyclins or by CDKs, independent of their respective cell cycle partners, suggesting a substantial divergence in the function of these proteins during evolution. PMID:27033256

  13. Surviving the breakup: the DNA damage checkpoint.

    PubMed

    Harrison, Jacob C; Haber, James E

    2006-01-01

    In response to even a single chromosomal double-strand DNA break, cells enact the DNA damage checkpoint. This checkpoint triggers cell cycle arrest, providing time for the cell to repair damaged chromosomes before entering mitosis. This mechanism helps prevent the segregation of damaged or mutated chromosomes and thus promotes genomic stability. Recent work has elucidated the molecular mechanisms underlying several critical steps in checkpoint activation, notably the recruitment of the upstream checkpoint kinases of the ATM and ATR families to different damaged DNA structures and the molecular events through which these kinases activate their effectors. Chromatin modification has emerged as one important component of checkpoint activation and maintenance. Following DNA repair, the checkpoint pathway is inactivated in a process termed recovery. A related but genetically distinct process, adaptation, controls cell cycle re-entry in the face of unrepairable damage.

  14. Mitogen-Activated Protein Kinase Hog1 Mediates Adaptation to G1 Checkpoint Arrest during Arsenite and Hyperosmotic Stress▿

    PubMed Central

    Migdal, Iwona; Ilina, Yulia; Tamás, Markus J.; Wysocki, Robert

    2008-01-01

    Cells slow down cell cycle progression in order to adapt to unfavorable stress conditions. Yeast (Saccharomyces cerevisiae) responds to osmotic stress by triggering G1 and G2 checkpoint delays that are dependent on the mitogen-activated protein kinase (MAPK) Hog1. The high-osmolarity glycerol (HOG) pathway is also activated by arsenite, and the hog1Δ mutant is highly sensitive to arsenite, partly due to increased arsenite influx into hog1Δ cells. Yeast cell cycle regulation in response to arsenite and the role of Hog1 in this process have not yet been analyzed. Here, we found that long-term exposure to arsenite led to transient G1 and G2 delays in wild-type cells, whereas cells that lack the HOG1 gene or are defective in Hog1 kinase activity displayed persistent G1 cell cycle arrest. Elevated levels of intracellular arsenite and “cross talk” between the HOG and pheromone response pathways, observed in arsenite-treated hog1Δ cells, prolonged the G1 delay but did not cause a persistent G1 arrest. In contrast, deletion of the SIC1 gene encoding a cyclin-dependent kinase inhibitor fully suppressed the observed block of G1 exit in hog1Δ cells. Moreover, the Sic1 protein was stabilized in arsenite-treated hog1Δ cells. Interestingly, Sic1-dependent persistent G1 arrest was also observed in hog1Δ cells during hyperosmotic stress. Taken together, our data point to an important role of the Hog1 kinase in adaptation to stress-induced G1 cell cycle arrest. PMID:18552285

  15. Screening of cell cycle fusion proteins to identify kinase signaling networks.

    PubMed

    Trojanowsky, Michelle; Vidovic, Dusica; Simanski, Scott; Penas, Clara; Schurer, Stephan; Ayad, Nagi G

    2015-01-01

    Kinase signaling networks are well-established mediators of cell cycle transitions. However, how kinases interact with the ubiquitin proteasome system (UPS) to elicit protein turnover is not fully understood. We sought a means of identifying kinase-substrate interactions to better understand signaling pathways controlling protein degradation. Our prior studies used a luciferase fusion protein to uncover kinase networks controlling protein turnover. In this study, we utilized a similar approach to identify pathways controlling the cell cycle protein p27(Kip1). We generated a p27(Kip1)-luciferase fusion and expressed it in cells incubated with compounds from a library of pharmacologically active compounds. We then compared the relative effects of the compounds on p27(Kip1)-luciferase fusion stabilization. This was combined with in silico kinome profiling to identify potential kinases inhibited by each compound. This approach effectively uncovered known kinases regulating p27(Kip1) turnover. Collectively, our studies suggest that this parallel screening approach is robust and can be applied to fully understand kinase-ubiquitin pathway interactions.

  16. Aurora B kinase is required for cell cycle progression in silkworm.

    PubMed

    Gang, Xiaoxu; Qian, Wenliang; Zhang, Tianlei; Yang, Xinxin; Xia, Qingyou; Cheng, Daojun

    2017-01-30

    Aurora B kinase, a member of serine/threonine kinase family, is the catalytic subunit of the chromosomal passenger complex and is essential for chromosome alignment, chromosome segregation, and cytokinesis during mitosis. Here, we cloned the full-length cDNA sequence of silkworm Aurora B (BmAurB) gene and predicted that BmAurB protein contains a conserved S_TKc domain. Phylogenetic analysis between BmAurB and other Aurora kinases indicates that Aurora kinases may have evolved after separation between mammalian and insect, and prior to radiation of either mammalian or insects. RT-PCR examination revealed that the expression of the BmAurB gene was high in mitotic cycling gonads, moderate in mitotic cycling brain, and undetectable in endocycling silk gland during silkworm larval development. RNAi or inhibitor-mediated inhibition of the BmAurB gene in silkworm ovary-derived BmN4-SID1 cells disrupted cell cycle progression during mitosis and induced an accumulation of polyploid cells, cell cycle arrest at G2/M phase, chromosome misalignment, chromosome bridge, and bi-nucleation. Taken together, our results suggest that the BmAurB gene is required for cell cycle progression in silkworm.

  17. miR-17 and miR-20a temper an E2F1-induced G1 checkpoint to regulate cell cycle progression.

    PubMed

    Pickering, M T; Stadler, B M; Kowalik, T F

    2009-01-08

    The stringent regulation of cell cycle progression helps to maintain genetic stability in cells. MicroRNAs (miRNAs) are critical regulators of gene expression in diverse cellular pathways, including developmental patterning, hematopoietic differentiation and antiviral defense. Here, we show that two c-Myc-regulated miRNAs, miR-17 and miR-20a, govern the transition through G1 in normal diploid human cells. Inhibition of these miRNAs leads to a G1 checkpoint due to an accumulation of DNA double-strand breaks, resulting from premature temporal accumulation of the E2F1 transcription factor. Surprisingly, gross changes in E2F1 levels were not required to initiate the DNA damage response and checkpoint, as these responses could occur with a less than twofold change in E2F1 protein levels. Instead, our findings indicate that the precise timing of E2F1 expression dictates S-phase entry and that accurate timing of E2F1 accumulation requires converging signals from the Rb/E2F pathway and the c-Myc-regulated miR-17 and miR-20a miRNAs to circumvent a G1 checkpoint arising from the untimely accumulation of E2F1. These data provide a mechanistic view of miRNA-based regulation of E2F1 in the context of the emerging model that miRNAs coordinate the timing of cell cycle progression.

  18. The cell cycle, cyclin-dependent kinases, and viral infections: new horizons and unexpected connections.

    PubMed

    Schang, Luis M

    2003-01-01

    The genomes of small DNA viruses such as papilloma and polyomaviruses code for few or no DNA replication proteins. Consequently, these viruses depend on cellular DNA replication proteins to replicate their genomes and replicate only when the infected cell progresses into S-phase, when these proteins are active. As a consequence of this strict dependence, the relationship between replication of the small DNA viruses and the cell cycle was obvious from the very early studies. The genomes of larger DNA viruses such as adeno- and herpes-viruses, in contrast, encode many of the proteins required for DNA replication. Some of the larger DNA viruses such as adenoviruses, however, also replicate only in S-phase because expression of viral DNA replication proteins is regulated by cellular factors that are activated in S-phase. Other large DNA viruses such as herpes simplex viruses (HSV) can replicate in arrested cells such as neurons, without inducing progression into S-phase. The relationships between cell cycle and replication of these last viruses are, thus, so subtle that their replication was long thought to be independent from cellular proteins whose activities are regulated in a cell cycle dependent manner. In contrast to this hypothesis, recent studies have shown that replication of HSV and other large DNA viruses requires cellular proteins whose activities are normally regulated in a cell cycle dependent manner, such as the cyclin-dependent kinases (cdks). Many excellent reviews on the interactions between cellular proteins involved in cell cycle regulation and smaller DNA viruses (parvo, papilloma, polyoma and adenoviruses) have been published (for example, see (1, 2)). Many reviews on cell cycle regulation also discuss the interactions between the cell cycle and the smaller DNA viruses (for example, see (3-5)). Herein, we will review these relationships only briefly, while focusing on the interactions between cell cycle proteins such as cdks and herpes-, retro

  19. DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds.

    PubMed

    Waterworth, Wanda M; Footitt, Steven; Bray, Clifford M; Finch-Savage, William E; West, Christopher E

    2016-08-23

    Genome integrity is crucial for cellular survival and the faithful transmission of genetic information. The eukaryotic cellular response to DNA damage is orchestrated by the DNA damage checkpoint kinases ATAXIA TELANGIECTASIA MUTATED (ATM) and ATM AND RAD3-RELATED (ATR). Here we identify important physiological roles for these sensor kinases in control of seed germination. We demonstrate that double-strand breaks (DSBs) are rate-limiting for germination. We identify that desiccation tolerant seeds exhibit a striking transcriptional DSB damage response during germination, indicative of high levels of genotoxic stress, which is induced following maturation drying and quiescence. Mutant atr and atm seeds are highly resistant to aging, establishing ATM and ATR as determinants of seed viability. In response to aging, ATM delays germination, whereas atm mutant seeds germinate with extensive chromosomal abnormalities. This identifies ATM as a major factor that controls germination in aged seeds, integrating progression through germination with surveillance of genome integrity. Mechanistically, ATM functions through control of DNA replication in imbibing seeds. ATM signaling is mediated by transcriptional control of the cell cycle inhibitor SIAMESE-RELATED 5, an essential factor required for the aging-induced delay to germination. In the soil seed bank, seeds exhibit increased transcript levels of ATM and ATR, with changes in dormancy and germination potential modulated by environmental signals, including temperature and soil moisture. Collectively, our findings reveal physiological functions for these sensor kinases in linking genome integrity to germination, thereby influencing seed quality, crucial for plant survival in the natural environment and sustainable crop production.

  20. Checkpoint kinase 2 (CHK2) negatively regulates androgen sensitivity and prostate cancer cell growth

    PubMed Central

    Ta, Huy Q; Ivey, Melissa L; Frierson, Henry F; Conaway, Mark R; Dziegielewski, Jaroslaw; Larner, James M; Gioeli, Daniel

    2015-01-01

    Prostate cancer (PCa) is the second leading cause of cancer death in American men, and curing metastatic disease remains a significant challenge. Nearly all patients with disseminated PCa initially respond to androgen deprivation therapy (ADT), but virtually all patient will relapse and develop incurable castration-resistant prostate cancer (CRPC). A high-throughput RNAi screen to identify signaling pathways regulating PCa cell growth led to our discovery that Checkpoint Kinase 2 (CHK2) knockdown dramatically increased PCa growth and hypersensitized cells to low androgen levels. Mechanistic investigations revealed that the effects of CHK2 were dependent on the downstream signaling proteins CDC25C and CDK1. Moreover, CHK2 depletion increased androgen receptor (AR) transcriptional activity on androgen-regulated genes, substantiating the finding that CHK2 affects PCa proliferation, partly, through the AR. Remarkably, we further show that CHK2 is a novel AR-repressed gene, suggestive of a negative feedback loop between CHK2 and AR. Additionally, we provide evidence that CHK2 physically associates with the AR, and that cell cycle inhibition increased this association. Finally, immunohistochemical analysis of CHK2 in prostate cancer patient samples demonstrated a decrease in CHK2 expression in high-grade tumors. In conclusion, we propose that CHK2 is a negative regulator of androgen sensitivity and PCa growth, and that CHK2 signaling is lost during prostate cancer progression to castration resistance. Thus, perturbing CHK2 signaling may offer a new therapeutic approach for sensitizing CRPC to ADT and radiation. PMID:26573794

  1. Kaposi sarcoma herpes virus latency associated nuclear antigen protein release the G2/M cell cycle blocks by modulating ATM/ATR mediated checkpoint pathway.

    PubMed

    Kumar, Amit; Sahu, Sushil Kumar; Mohanty, Suchitra; Chakrabarti, Sudipta; Maji, Santanu; Reddy, R Rajendra; Jha, Asutosh K; Goswami, Chandan; Kundu, Chanakya N; Rajasubramaniam, Shanmugam; Verma, Subhash C; Choudhuri, Tathagata

    2014-01-01

    The Kaposi's sarcoma-associated herpesvirus infects the human population and maintains latency stage of viral life cycle in a variety of cell types including cells of epithelial, mesenchymal and endothelial origin. The establishment of latent infection by KSHV requires the expression of an unique repertoire of genes among which latency associated nuclear antigen (LANA) plays a critical role in the replication of the viral genome. LANA regulates the transcription of a number of viral and cellular genes essential for the survival of the virus in the host cell. The present study demonstrates the disruption of the host G2/M cell cycle checkpoint regulation as an associated function of LANA. DNA profile of LANA expressing human B-cells demonstrated the ability of this nuclear antigen in relieving the drug (Nocodazole) induced G2/M checkpoint arrest. Caffeine suppressed nocodazole induced G2/M arrest indicating involvement of the ATM/ATR. Notably, we have also shown the direct interaction of LANA with Chk2, the ATM/ATR signalling effector and is responsible for the release of the G2/M cell cycle block.

  2. The novel DNA damage checkpoint protein ddc1p is phosphorylated periodically during the cell cycle and in response to DNA damage in budding yeast.

    PubMed Central

    Longhese, M P; Paciotti, V; Fraschini, R; Zaccarini, R; Plevani, P; Lucchini, G

    1997-01-01

    The DDC1 gene was identified, together with MEC3 and other checkpoint genes, during a screening for mutations causing synthetic lethality when combined with a conditional allele altering DNA primase. Deletion of DDC1 causes sensitivity to UV radiation, methyl methanesulfonate (MMS) and hydroxyurea (HU). ddc1Delta mutants are defective in delaying G1-S and G2-M transition and in slowing down the rate of DNA synthesis when DNA is damaged during G1, G2 or S phase, respectively. Therefore, DDC1 is involved in all the known DNA damage checkpoints. Conversely, Ddc1p is not required for delaying entry into mitosis when DNA synthesis is inhibited. ddc1 and mec3 mutants belong to the same epistasis group, and DDC1 overexpression can partially suppress MMS and HU sensitivity of mec3Delta strains, as well as their checkpoint defects. Moreover, Ddc1p is phosphorylated periodically during a normal cell cycle and becomes hyperphosphorylated in response to DNA damage. Both phosphorylation events are at least partially dependent on a functional MEC3 gene. PMID:9311982

  3. The interplay among chromatin dynamics, cell cycle checkpoints and repair mechanisms modulates the cellular response to DNA damage.

    PubMed

    Lazzaro, Federico; Giannattasio, Michele; Muzi-Falconi, Marco; Plevani, Paolo

    2007-06-01

    Cells are continuously under the assault of endogenous and exogenous genotoxic stress that challenges the integrity of DNA. To cope with such a formidable task cells have evolved surveillance mechanisms, known as checkpoints, and a variety of DNA repair systems responding to different types of DNA lesions. These lesions occur in the context of the chromatin structure and, as expected for all DNA transactions, the cellular response to DNA damage is going to be influenced by the chromatin enviroment. In this review, we will discuss recent studies implicating chromatin remodelling factors and histone modifications in the response to DNA double-strand breaks (DSBs) and in checkpoint activation in response to UV lesions.

  4. Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis

    PubMed Central

    Kümper, Sandra; Mardakheh, Faraz K; McCarthy, Afshan; Yeo, Maggie; Stamp, Gordon W; Paul, Angela; Worboys, Jonathan; Sadok, Amine; Jørgensen, Claus; Guichard, Sabrina

    2016-01-01

    Rho-associated kinases 1 and 2 (ROCK1/2) are Rho-GTPase effectors that control key aspects of the actin cytoskeleton, but their role in proliferation and cancer initiation or progression is not known. Here, we provide evidence that ROCK1 and ROCK2 act redundantly to maintain actomyosin contractility and cell proliferation and that their loss leads to cell-cycle arrest and cellular senescence. This phenotype arises from down-regulation of the essential cell-cycle proteins CyclinA, CKS1 and CDK1. Accordingly, while the loss of either Rock1 or Rock2 had no negative impact on tumorigenesis in mouse models of non-small cell lung cancer and melanoma, loss of both blocked tumor formation, as no tumors arise in which both Rock1 and Rock2 have been genetically deleted. Our results reveal an indispensable role for ROCK, yet redundant role for isoforms 1 and 2, in cell cycle progression and tumorigenesis, possibly through the maintenance of cellular contractility. DOI: http://dx.doi.org/10.7554/eLife.12203.001 PMID:26765561

  5. Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis.

    PubMed

    Kümper, Sandra; Mardakheh, Faraz K; McCarthy, Afshan; Yeo, Maggie; Stamp, Gordon W; Paul, Angela; Worboys, Jonathan; Sadok, Amine; Jørgensen, Claus; Guichard, Sabrina; Marshall, Christopher J

    2016-01-14

    Rho-associated kinases 1 and 2 (ROCK1/2) are Rho-GTPase effectors that control key aspects of the actin cytoskeleton, but their role in proliferation and cancer initiation or progression is not known. Here, we provide evidence that ROCK1 and ROCK2 act redundantly to maintain actomyosin contractility and cell proliferation and that their loss leads to cell-cycle arrest and cellular senescence. This phenotype arises from down-regulation of the essential cell-cycle proteins CyclinA, CKS1 and CDK1. Accordingly, while the loss of either Rock1 or Rock2 had no negative impact on tumorigenesis in mouse models of non-small cell lung cancer and melanoma, loss of both blocked tumor formation, as no tumors arise in which both Rock1 and Rock2 have been genetically deleted. Our results reveal an indispensable role for ROCK, yet redundant role for isoforms 1 and 2, in cell cycle progression and tumorigenesis, possibly through the maintenance of cellular contractility.

  6. Valproate inhibits MAP kinase signalling and cell cycle progression in S. cerevisiae

    PubMed Central

    Desfossés-Baron, Kristelle; Hammond-Martel, Ian; Simoneau, Antoine; Sellam, Adnane; Roberts, Stephen; Wurtele, Hugo

    2016-01-01

    The mechanism of action of valproate (VPA), a widely prescribed short chain fatty acid with anticonvulsant and anticancer properties, remains poorly understood. Here, the yeast Saccharomyces cerevisiae was used as model to investigate the biological consequences of VPA exposure. We found that low pH strongly potentiates VPA-induced growth inhibition. Transcriptional profiling revealed that under these conditions, VPA modulates the expression of genes involved in diverse cellular processes including protein folding, cell wall organisation, sexual reproduction, and cell cycle progression. We further investigated the impact of VPA on selected processes and found that this drug: i) activates markers of the unfolded protein stress response such as Hac1 mRNA splicing; ii) modulates the cell wall integrity pathway by inhibiting the activation of the Slt2 MAP kinase, and synergizes with cell wall stressors such as micafungin and calcofluor white in preventing yeast growth; iii) prevents activation of the Kss1 and Fus3 MAP kinases of the mating pheromone pathway, which in turn abolishes cellular responses to alpha factor; and iv) blocks cell cycle progression and DNA replication. Overall, our data identify heretofore unknown biological responses to VPA in budding yeast, and highlight the broad spectrum of cellular pathways influenced by this chemical in eukaryotes. PMID:27782169

  7. Monitoring the cell cycle by multi-kinase-dependent regulation of Swe1/Wee1 in budding yeast.

    PubMed

    Lee, Kyung S; Asano, Satoshi; Park, Jung-Eun; Sakchaisri, Krisada; Erikson, Raymond L

    2005-10-01

    In eukaryotes, G(2)/M transition is induced by the activation of cyclin B-bound Cdk1, which is held in check by the protein kinase, Wee1. Recent advances in our understanding of mitotic entry in budding yeast has revealed that these cells utilize the level of Swe1 (Wee1 ortholog) phosphorylation as a means of monitoring cell cycle progression and of coordinating morphogenetic events with mitotic entry. Swe1 is phosphorylated by at least three distinct kinases at different stages of the cell cycle. This cumulative phosphorylation leads to the hyperphosphorylation and degradation of Swe1 through ubiquitin-mediated proteolysis. Thus, Swe1 functions as an important cell cycle modulator that integrates multiple upstream signals from prior cell cycle events before its ultimate degradation permits passage into mitosis.

  8. snf1lk encodes a protein kinase that may function in cell cycle regulation.

    PubMed

    Stephenson, Angela; Huang, Guo-Ying; Huang, Gui-Yi; Nguyen, Ngoc-Thinh; Reuter, Sean; McBride, Jennifer L; Ruiz, Joseph C

    2004-06-01

    msk, myocardial SNF1-like kinase, was originally isolated in a screen for kinases expressed during early cardiogenesis in the mouse. msk maps to the proximal end of mouse chromosome 17 in a region that is syntenic with human chromosome 21q22.3, where the gene for SNF1LK, a predicted protein that shares 80% identity at the amino acid level with Msk, is located. Accordingly, msk has been redesignated snf1lk. Interestingly, the region encompassing the SNF1LK locus has been implicated in congenital heart defects often observed in patients with Down syndrome. snf1lk is also expressed in skeletal muscle progenitor cells of the somite beginning at 9.5 dpc. These data suggest a more general role for snf1lk in the earliest stages of muscle growth and/or differentiation. Consistent with a role in cell cycling, we observe that Chinese hamster ovary cells that express a tetracycline-inducible SNF1LK kinase domain do not divide, but undergo additional rounds of replication to yield 8N and 16N cells. These data suggest a possible function for SNF1LK in G2/M regulation. We show data that indicate that SNF1LK does not share functional homology with other SNF1-related kinases, but represents a new subclass with novel molecular activities.

  9. A cell cycle kinase with tandem sensory PAS domains integrates cell fate cues

    PubMed Central

    Mann, Thomas H.; Seth Childers, W.; Blair, Jimmy A.; Eckart, Michael R.; Shapiro, Lucy

    2016-01-01

    All cells must integrate sensory information to coordinate developmental events in space and time. The bacterium Caulobacter crescentus uses two-component phospho-signalling to regulate spatially distinct cell cycle events through the master regulator CtrA. Here, we report that CckA, the histidine kinase upstream of CtrA, employs a tandem-PAS domain sensor to integrate two distinct spatiotemporal signals. Using CckA reconstituted on liposomes, we show that one PAS domain modulates kinase activity in a CckA density-dependent manner, mimicking the stimulation of CckA kinase activity that occurs on its transition from diffuse to densely packed at the cell poles. The second PAS domain interacts with the asymmetrically partitioned second messenger cyclic-di-GMP, inhibiting kinase activity while stimulating phosphatase activity, consistent with the selective inactivation of CtrA in the incipient stalked cell compartment. The integration of these spatially and temporally regulated signalling events within a single signalling receptor enables robust orchestration of cell-type-specific gene regulation. PMID:27117914

  10. HTLV-I Tax-Mediated Inactivation of Cell Cycle Checkpoints and DNA Repair Pathways Contribute to Cellular Transformation: “A Random Mutagenesis Model”

    PubMed Central

    Nicot, Christophe

    2015-01-01

    To achieve cellular transformation, most oncogenic retroviruses use transduction by proto-oncogene capture or insertional mutagenesis, whereby provirus integration disrupts expression of tumor suppressors or proto-oncogenes. In contrast, the Human T-cell leukemia virus type 1 (HTLV-I) has been classified in a separate class referred to as “transactivating retroviruses”. Current views suggest that the viral encoded Tax protein transactivates expression of cellular genes leading to deregulated growth and transformation. However, if Tax-mediated transactivation was indeed sufficient for cellular transformation, a fairly high frequency of infected cells would eventually become transformed. In contrast, the frequency of transformation by HTLV-I is very low, likely less than 5%. This review will discuss the current understanding and recent discoveries highlighting critical functions of Tax in cellular transformation. HTLV-I Tax carries out essential functions in order to override cell cycle checkpoints and deregulate cellular division. In addition, Tax expression is associated with increased DNA damage and genome instability. Since Tax can inhibit multiple DNA repair pathways and stimulate unfaithful DNA repair or bypass checkpoints, these processes allow accumulation of genetic mutations in the host genome. Given this, a “Random Mutagenesis” transformation model seems more suitable to characterize the oncogenic activities of HTLV-I. PMID:26835512

  11. Cell cycle regulation of Greatwall kinase nuclear localization facilitates mitotic progression

    PubMed Central

    Wang, Peng; Galan, Jacob A.; Normandin, Karine; Bonneil, Éric; Hickson, Gilles R.; Roux, Philippe P.; Thibault, Pierre

    2013-01-01

    Cell division requires the coordination of critical protein kinases and phosphatases. Greatwall (Gwl) kinase activity inactivates PP2A-B55 at mitotic entry to promote the phosphorylation of cyclin B–Cdk1 substrates, but how Gwl is regulated is poorly understood. We found that the subcellular localization of Gwl changed dramatically during the cell cycle in Drosophila. Gwl translocated from the nucleus to the cytoplasm in prophase. We identified two critical nuclear localization signals in the central, poorly characterized region of Gwl, which are required for its function. The Polo kinase associated with and phosphorylated Gwl in this region, promoting its binding to 14-3-3ε and its localization to the cytoplasm in prophase. Our results suggest that cyclin B–Cdk1 phosphorylation of Gwl is also required for its nuclear exclusion by a distinct mechanism. We show that the nucleo-cytoplasmic regulation of Gwl is essential for its functions in vivo and propose that the spatial regulation of Gwl at mitotic entry contributes to the mitotic switch. PMID:23857770

  12. The Hog1 MAP Kinase Promotes the Recovery from Cell Cycle Arrest Induced by Hydrogen Peroxide in Candida albicans

    PubMed Central

    Correia, Inês; Alonso-Monge, Rebeca; Pla, Jesús

    2017-01-01

    Eukaryotic cell cycle progression in response to environmental conditions is controlled via specific checkpoints. Signal transduction pathways mediated by MAPKs play a crucial role in sensing stress. For example, the canonical MAPKs Mkc1 (of the cell wall integrity pathway), and Hog1 (of the HOG pathway), are activated upon oxidative stress. In this work, we have analyzed the effect of oxidative stress induced by hydrogen peroxide on cell cycle progression in Candida albicans. Hydrogen peroxide was shown to induce a transient arrest at the G1 phase of the cell cycle. Specifically, a G1 arrest was observed, although phosphorylation of Mkc1 and Hog1 MAPKs can take place at all stages of the cell cycle. Interestingly, hog1 (but not mkc1) mutants required a longer time compared to wild type cells to resume growth after hydrogen peroxide challenge. Using GFP-labeled cells and mixed cultures of wild type and hog1 cells we were able to show that hog1 mutants progress faster through the cell cycle under standard growth conditions in the absence of stress (YPD at 37°C). Consequently, hog1 mutants exhibited a smaller cell size. The altered cell cycle progression correlates with altered expression of the G1 cyclins Cln3 and Pcl2 in hog1 cells compared to the wild type strain. In addition, Hgc1 (a hypha-specific G1 cyclin) as well as Cln3 displayed a different kinetics of expression in the presence of hydrogen peroxide in hog1 mutants. Collectively, these results indicate that Hog1 regulates the expression of G1 cyclins not only in response to oxidative stress, but also under standard growth conditions. Hydrogen peroxide treated cells did not show fluctuations in the mRNA levels for SOL1, which are observed in untreated cells during cell cycle progression. In addition, treatment with hydrogen peroxide prevented degradation of Sol1, an effect which was enhanced in hog1 mutants. Therefore, in C. albicans, the MAPK Hog1 mediates cell cycle progression in response to oxidative

  13. The Hog1 MAP Kinase Promotes the Recovery from Cell Cycle Arrest Induced by Hydrogen Peroxide in Candida albicans.

    PubMed

    Correia, Inês; Alonso-Monge, Rebeca; Pla, Jesús

    2016-01-01

    Eukaryotic cell cycle progression in response to environmental conditions is controlled via specific checkpoints. Signal transduction pathways mediated by MAPKs play a crucial role in sensing stress. For example, the canonical MAPKs Mkc1 (of the cell wall integrity pathway), and Hog1 (of the HOG pathway), are activated upon oxidative stress. In this work, we have analyzed the effect of oxidative stress induced by hydrogen peroxide on cell cycle progression in Candida albicans. Hydrogen peroxide was shown to induce a transient arrest at the G1 phase of the cell cycle. Specifically, a G1 arrest was observed, although phosphorylation of Mkc1 and Hog1 MAPKs can take place at all stages of the cell cycle. Interestingly, hog1 (but not mkc1) mutants required a longer time compared to wild type cells to resume growth after hydrogen peroxide challenge. Using GFP-labeled cells and mixed cultures of wild type and hog1 cells we were able to show that hog1 mutants progress faster through the cell cycle under standard growth conditions in the absence of stress (YPD at 37°C). Consequently, hog1 mutants exhibited a smaller cell size. The altered cell cycle progression correlates with altered expression of the G1 cyclins Cln3 and Pcl2 in hog1 cells compared to the wild type strain. In addition, Hgc1 (a hypha-specific G1 cyclin) as well as Cln3 displayed a different kinetics of expression in the presence of hydrogen peroxide in hog1 mutants. Collectively, these results indicate that Hog1 regulates the expression of G1 cyclins not only in response to oxidative stress, but also under standard growth conditions. Hydrogen peroxide treated cells did not show fluctuations in the mRNA levels for SOL1, which are observed in untreated cells during cell cycle progression. In addition, treatment with hydrogen peroxide prevented degradation of Sol1, an effect which was enhanced in hog1 mutants. Therefore, in C. albicans, the MAPK Hog1 mediates cell cycle progression in response to oxidative

  14. The cortical protein Lte1 promotes mitotic exit by inhibiting the spindle position checkpoint kinase Kin4

    PubMed Central

    Bertazzi, Daniela Trinca; Kurtulmus, Bahtiyar

    2011-01-01

    The spindle position checkpoint (SPOC) is an essential surveillance mechanism that allows mitotic exit only when the spindle is correctly oriented along the cell axis. Key SPOC components are the kinase Kin4 and the Bub2–Bfa1 GAP complex that inhibit the mitotic exit–promoting GTPase Tem1. During an unperturbed cell cycle, Kin4 associates with the mother spindle pole body (mSPB), whereas Bub2–Bfa1 is at the daughter SPB (dSPB). When the spindle is mispositioned, Bub2–Bfa1 and Kin4 bind to both SPBs, which enables Kin4 to phosphorylate Bfa1 and thereby block mitotic exit. Here, we show that the daughter cell protein Lte1 physically interacts with Kin4 and inhibits Kin4 kinase activity. Specifically, Lte1 binds to catalytically active Kin4 and promotes Kin4 hyperphosphorylation, which restricts Kin4 binding to the mSPB. This Lte1-mediated exclusion of Kin4 from the dSPB is essential for proper mitotic exit of cells with a correctly aligned spindle. Therefore, Lte1 promotes mitotic exit by inhibiting Kin4 activity at the dSPB. PMID:21670215

  15. The cortical protein Lte1 promotes mitotic exit by inhibiting the spindle position checkpoint kinase Kin4.

    PubMed

    Bertazzi, Daniela Trinca; Kurtulmus, Bahtiyar; Pereira, Gislene

    2011-06-13

    The spindle position checkpoint (SPOC) is an essential surveillance mechanism that allows mitotic exit only when the spindle is correctly oriented along the cell axis. Key SPOC components are the kinase Kin4 and the Bub2-Bfa1 GAP complex that inhibit the mitotic exit-promoting GTPase Tem1. During an unperturbed cell cycle, Kin4 associates with the mother spindle pole body (mSPB), whereas Bub2-Bfa1 is at the daughter SPB (dSPB). When the spindle is mispositioned, Bub2-Bfa1 and Kin4 bind to both SPBs, which enables Kin4 to phosphorylate Bfa1 and thereby block mitotic exit. Here, we show that the daughter cell protein Lte1 physically interacts with Kin4 and inhibits Kin4 kinase activity. Specifically, Lte1 binds to catalytically active Kin4 and promotes Kin4 hyperphosphorylation, which restricts Kin4 binding to the mSPB. This Lte1-mediated exclusion of Kin4 from the dSPB is essential for proper mitotic exit of cells with a correctly aligned spindle. Therefore, Lte1 promotes mitotic exit by inhibiting Kin4 activity at the dSPB.

  16. The Sinorhizobium meliloti sensor histidine kinase CbrA contributes to free-living cell cycle regulation.

    PubMed

    Sadowski, Craig S; Wilson, Daniel; Schallies, Karla B; Walker, Graham; Gibson, Katherine E

    2013-08-01

    Sinorhizobium meliloti is alternately capable of colonizing the soil as a free-living bacterium or establishing a chronic intracellular infection with its legume host for the purpose of nitrogen fixation. We previously identified the S. meliloti two-component sensor histidine kinase CbrA as playing an important role in regulating exopolysaccharide production, flagellar motility and symbiosis. Phylogenetic analysis of CbrA has highlighted its evolutionary relatedness to the Caulobacter crescentus sensor histidine kinases PleC and DivJ, which are involved in CtrA-dependent cell cycle regulation through the shared response regulator DivK. We therefore became interested in testing whether CbrA plays a role in regulating S. meliloti cell cycle processes. We find the loss of cbrA results in filamentous cell growth accompanied by cells that contain an aberrant genome complement, indicating CbrA plays a role in regulating cell division and possibly DNA segregation. S. meliloti DivK localizes to the old cell pole during distinct phases of the cell cycle in a phosphorylation-dependent manner. Loss of cbrA results in a significantly decreased rate of DivK polar localization when compared with the wild-type, suggesting CbrA helps regulate cell cycle processes by modulating DivK phosphorylation status as a kinase. Consistent with a presumptive decrease in DivK phosphorylation and activity, we also find the steady-state level of CtrA increased in cbrA mutants. Our data therefore demonstrate that CbrA contributes to free-living cell cycle regulation, which in light of its requirement for symbiosis, points to the potential importance of cell cycle regulation for establishing an effective host interaction.

  17. A novel quantitative model of cell cycle progression based on cyclin-dependent kinases activity and population balances.

    PubMed

    Pisu, Massimo; Concas, Alessandro; Cao, Giacomo

    2015-04-01

    Cell cycle regulates proliferative cell capacity under normal or pathologic conditions, and in general it governs all in vivo/in vitro cell growth and proliferation processes. Mathematical simulation by means of reliable and predictive models represents an important tool to interpret experiment results, to facilitate the definition of the optimal operating conditions for in vitro cultivation, or to predict the effect of a specific drug in normal/pathologic mammalian cells. Along these lines, a novel model of cell cycle progression is proposed in this work. Specifically, it is based on a population balance (PB) approach that allows one to quantitatively describe cell cycle progression through the different phases experienced by each cell of the entire population during its own life. The transition between two consecutive cell cycle phases is simulated by taking advantage of the biochemical kinetic model developed by Gérard and Goldbeter (2009) which involves cyclin-dependent kinases (CDKs) whose regulation is achieved through a variety of mechanisms that include association with cyclins and protein inhibitors, phosphorylation-dephosphorylation, and cyclin synthesis or degradation. This biochemical model properly describes the entire cell cycle of mammalian cells by maintaining a sufficient level of detail useful to identify check point for transition and to estimate phase duration required by PB. Specific examples are discussed to illustrate the ability of the proposed model to simulate the effect of drugs for in vitro trials of interest in oncology, regenerative medicine and tissue engineering.

  18. Checkpoint kinase 1 expression is an adverse prognostic marker and therapeutic target in MYC-driven medulloblastoma

    PubMed Central

    Shah, Monil; Mulcahy Levy, Jean M.; Griesinger, Andrea M.; Alimova, Irina; Harris, Peter S.; Birks, Diane K.; Donson, Andrew M.; Davidson, Nathan; Remke, Marc; Taylor, Michael D.; Handler, Michael H.; Foreman, Nicholas K.; Venkataraman, Sujatha; Vibhakar, Rajeev

    2016-01-01

    Checkpoint kinase 1 (CHK1) is an integral component of the cell cycle as well as the DNA Damage Response (DDR) pathway. Previous work has demonstrated the effectiveness of inhibiting CHK1 with small-molecule inhibitors, but the role of CHK1 mediated DDR in medulloblastoma is unknown. CHK1, both at the mRNA and protein level, is highly expressed in medulloblastoma and elevated CHK1 expression in Group3 medulloblastoma is an adverse prognostic marker. CHK1 inhibition with the small-molecule drug AZD7762, results in decreased cell growth, increased DNA damage and cell apoptosis. Furthermore, AZD7762 acts in synergy with cisplatin in reducing cell proliferation in medulloblastoma. Similar phenotypic changes were observed with another CHK1 inhibitor, PF477736, as well as genetic knockdown using siRNA against CHK1. Treatments with small-molecule inhibitors of CHK1 profoundly modulated the expression of both upstream and downstream target proteins within the CHK1 signaling pathways. This suggests the presence of a feedback loop in activating CHK1. Overall, our results demonstrate that small-molecule inhibition of CHK1 in combination with, cisplatin, is more advantageous than either treatment alone, especially for Group 3 medulloblastoma, and therefore this combined therapeutic approach serves as an avenue for further investigation. PMID:27449089

  19. Attenuation of G{sub 2} cell cycle checkpoint control in human tumor cells is associated with increased frequencies of unrejoined chromosome breaks but not increased cytotoxicity following radiation exposure

    SciTech Connect

    Schwartz, J.L.; Cowan, J.; Grdina, D.J.

    1997-08-01

    The contribution of G{sub 2} cell cycle checkpoint control to ionizing radiation responses was examined in ten human tumor cell lines. Most of the delay in cell cycle progression seen in the first cell cycle following radiation exposure was due to blocks in G{sub 2} and there were large cell line-to-cell line variations in the length of the G{sub 2} block. Longer delays were seen in cell lines that had mutations in p53. There was a highly significant inverse correlation between the length of G{sub 2} delay and the frequency of unrejoined chromosome breaks seen as chromosome terminal deletions in mitosis, and observation that supports the hypothesis that the signal for G{sub 2} delay in mammalian cells is an unrejoined chromosome break. There were also an inverse correlation between the length of G{sub 2} delay and the level of chromosome aneuploidy in each cell line, suggesting that the G{sub 2} and mitotic spindel checkpoints may be linked to each other. Attenuation in G{sub 2} checkpoint control was not associated with alterations in either the frequency of induced chromosome rearrangements or cell survival following radiation exposure suggesting that chromosome rearrangements, the major radiation-induced lethal lesion in tumor cells, form before cells enters G{sub 2}. Thus, agents that act solely to override G{sub 2} arrest should produce little radiosensitization in human tumor cells.

  20. Coordinate action of distinct sequence elements localizes checkpoint kinase Hsl1 to the septin collar at the bud neck in Saccharomyces cerevisiae.

    PubMed

    Finnigan, Gregory C; Sterling, Sarah M; Duvalyan, Angela; Liao, Elizabeth N; Sargsyan, Aspram; Garcia, Galo; Nogales, Eva; Thorner, Jeremy

    2016-07-15

    Passage through the eukaryotic cell cycle requires processes that are tightly regulated both spatially and temporally. Surveillance mechanisms (checkpoints) exert quality control and impose order on the timing and organization of downstream events by impeding cell cycle progression until the necessary components are available and undamaged and have acted in the proper sequence. In budding yeast, a checkpoint exists that does not allow timely execution of the G2/M transition unless and until a collar of septin filaments has properly assembled at the bud neck, which is the site where subsequent cytokinesis will occur. An essential component of this checkpoint is the large (1518-residue) protein kinase Hsl1, which localizes to the bud neck only if the septin collar has been correctly formed. Hsl1 reportedly interacts with particular septins; however, the precise molecular determinants in Hsl1 responsible for its recruitment to this cellular location during G2 have not been elucidated. We performed a comprehensive mutational dissection and accompanying image analysis to identify the sequence elements within Hsl1 responsible for its localization to the septins at the bud neck. Unexpectedly, we found that this targeting is multipartite. A segment of the central region of Hsl1 (residues 611-950), composed of two tandem, semiredundant but distinct septin-associating elements, is necessary and sufficient for binding to septin filaments both in vitro and in vivo. However, in addition to 611-950, efficient localization of Hsl1 to the septin collar in the cell obligatorily requires generalized targeting to the cytosolic face of the plasma membrane, a function normally provided by the C-terminal phosphatidylserine-binding KA1 domain (residues 1379-1518) in Hsl1 but that can be replaced by other, heterologous phosphatidylserine-binding sequences.

  1. Coordinate action of distinct sequence elements localizes checkpoint kinase Hsl1 to the septin collar at the bud neck in Saccharomyces cerevisiae

    PubMed Central

    Finnigan, Gregory C.; Sterling, Sarah M.; Duvalyan, Angela; Liao, Elizabeth N.; Sargsyan, Aspram; Garcia, Galo; Nogales, Eva; Thorner, Jeremy

    2016-01-01

    Passage through the eukaryotic cell cycle requires processes that are tightly regulated both spatially and temporally. Surveillance mechanisms (checkpoints) exert quality control and impose order on the timing and organization of downstream events by impeding cell cycle progression until the necessary components are available and undamaged and have acted in the proper sequence. In budding yeast, a checkpoint exists that does not allow timely execution of the G2/M transition unless and until a collar of septin filaments has properly assembled at the bud neck, which is the site where subsequent cytokinesis will occur. An essential component of this checkpoint is the large (1518-residue) protein kinase Hsl1, which localizes to the bud neck only if the septin collar has been correctly formed. Hsl1 reportedly interacts with particular septins; however, the precise molecular determinants in Hsl1 responsible for its recruitment to this cellular location during G2 have not been elucidated. We performed a comprehensive mutational dissection and accompanying image analysis to identify the sequence elements within Hsl1 responsible for its localization to the septins at the bud neck. Unexpectedly, we found that this targeting is multipartite. A segment of the central region of Hsl1 (residues 611–950), composed of two tandem, semiredundant but distinct septin-associating elements, is necessary and sufficient for binding to septin filaments both in vitro and in vivo. However, in addition to 611–950, efficient localization of Hsl1 to the septin collar in the cell obligatorily requires generalized targeting to the cytosolic face of the plasma membrane, a function normally provided by the C-terminal phosphatidylserine-binding KA1 domain (residues 1379–1518) in Hsl1 but that can be replaced by other, heterologous phosphatidylserine-binding sequences. PMID:27193302

  2. Sequences contained within the promoter of the human thymidine kinase gene can direct cell-cycle regulation of heterologous fusion genes.

    PubMed Central

    Kim, Y K; Wells, S; Lau, Y F; Lee, A S

    1988-01-01

    Recent evidence on the transcriptional regulation of the human thymidine kinase (TK) gene raises the possibility that cell-cycle regulatory sequences may be localized within its promoter. A hybrid gene that combines the TK 5' flanking sequence and the coding region of the bacterial neomycin-resistance gene (neo) has been constructed. Upon transfection into a hamster fibroblast cell line K12, the hybrid gene exhibits cell-cycle-dependent expression. Deletion analysis reveals that the region important for cell-cycle regulation is within -441 to -63 nucleotides from the transcriptional initiation site. This region (-441 to -63) also confers cell-cycle regulation to the herpes simplex virus thymidine kinase (HSVtk) promoter, which is not expressed in a cell-cycle manner. We conclude that the -441 to -63 sequence within the human TK promoter is important for cell-cycle-dependent expression. Images PMID:3413063

  3. Sequences contained within the promoter of the human thymidine kinase gene can direct cell-cycle regulation of heterologous fusion genes

    SciTech Connect

    Kim, Yongkyu; Wells, S.; Lau, Yunfai Chris; Lee, A.S. )

    1988-08-01

    Recent evidence on the transcriptional regulation of the human thymidine kinase (TK) gene raises the possibility that cell-cycle regulatory sequences may be localized within its promoter. A hybrid gene that combines the TK 5{prime} flanking sequence and the coding region of the bacterial neomycin-resistance gene (neo) has been constructed. Upon transfection into a hamster fibroblast cell line K12, the hybrid gene exhibits cell-cycle-dependent expression. Deletion analysis reveals that the region important for cell-cycle regulation is within {minus}441 to {minus}63 nucleotides from the transcriptional initiation site. This region ({minus}441 to {minus}63) also confers cell-cycle regulation to the herpes simplex virus thymidine kinase (HSVtk) promoter, which is not expressed in a cell-cycle manner. The authors conclude that the {minus}441 to {minus}63 sequence within the human TK promoter is important for cell-cycle-dependent expression.

  4. Fission yeast LAMMER kinase Lkh1 regulates the cell cycle by phosphorylating the CDK-inhibitor Rum1

    SciTech Connect

    Yu, Eun-Young; Lee, Ju-Hee; Kang, Won-Hwa; Park, Yun-Hee; Kim, Lila; Park, Hee-Moon

    2013-03-01

    Highlights: ► Deletion of lkh1{sup +} made cells pass the G1/S phase faster than the wild type. ► Lkh1 can interact with a cyclin-dependent kinase inhibitor (CKI) Rum1. ► Lkh1 can phosphorylate Rum1 to activate its CKI activity. ► Thr110 was confirmed as the Lkh1-dependent phosphorylation site of Rum1. ► Positive acting mechanism for the Rum1 activation is reported for the first time. - Abstract: In eukaryotes, LAMMER kinases are involved in various cellular events, including the cell cycle. However, no attempt has been made to investigate the mechanisms that underlie the involvement of LAMMER kinase. In this study, we performed a functional analysis of LAMMER kinase using the fission yeast, Schizosaccharomyces pombe. FACS analyses revealed that deletion of the gene that encodes the LAMMER kinase Lkh1 made mutant cells pass through the G1/S phase faster than their wild-type counterparts. Co-immunoprecipitation and an in vitro kinase assay also revealed that Lkh1 can interact with and phosphorylate Rum1 to activate this molecule as a cyclin-dependent kinase inhibitor, which blocks cell cycle progression from the G1 phase to the S phase. Peptide mass fingerprinting and kinase assay with Rum1{sup T110A} confirmed T110 as the Lkh1-dependent phosphorylation residue. In this report we present for the first time a positive acting mechanism that is responsible for the CKI activity of Rum1, in which the LAMMER kinase-mediated phosphorylation of Rum1 is involved.

  5. Lyn tyrosine kinase promotes silencing of ATM-dependent checkpoint signaling during recovery from DNA double-strand breaks

    SciTech Connect

    Fukumoto, Yasunori Kuki, Kazumasa; Morii, Mariko; Miura, Takahito; Honda, Takuya; Ishibashi, Kenichi; Hasegawa, Hitomi; Kubota, Sho; Ide, Yudai; Yamaguchi, Noritaka; Nakayama, Yuji; Yamaguchi, Naoto

    2014-09-26

    Highlights: • Inhibition of Src family kinases decreased γ-H2AX signal. • Inhibition of Src family increased ATM-dependent phosphorylation of Chk2 and Kap1. • shRNA-mediated knockdown of Lyn increased phosphorylation of Kap1 by ATM. • Ectopic expression of Src family kinase suppressed ATM-mediated Kap1 phosphorylation. • Src is involved in upstream signaling for inactivation of ATM signaling. - Abstract: DNA damage activates the DNA damage checkpoint and the DNA repair machinery. After initial activation of DNA damage responses, cells recover to their original states through completion of DNA repair and termination of checkpoint signaling. Currently, little is known about the process by which cells recover from the DNA damage checkpoint, a process called checkpoint recovery. Here, we show that Src family kinases promote inactivation of ataxia telangiectasia mutated (ATM)-dependent checkpoint signaling during recovery from DNA double-strand breaks. Inhibition of Src activity increased ATM-dependent phosphorylation of Chk2 and Kap1. Src inhibition increased ATM signaling both in G2 phase and during asynchronous growth. shRNA knockdown of Lyn increased ATM signaling. Src-dependent nuclear tyrosine phosphorylation suppressed ATM-mediated Kap1 phosphorylation. These results suggest that Src family kinases are involved in upstream signaling that leads to inactivation of the ATM-dependent DNA damage checkpoint.

  6. A Feed Forward Loop Involving Protein Kinase C Alpha and MicroRNAs Regulates Tumor Cell Cycle

    PubMed Central

    Cohen, Ezra Eddy Wyssam; Zhu, Hongyan; Lingen, Mark W.; Martin, Leslie E.; Kuo, Wen-Liang; Choi, Eugene A.; Kocherginsky, Masha; Parker, Joel S.; Chung, Christine H.; Rosner, Marsha Rich

    2009-01-01

    Protein Kinase C alpha (PKCα) has been implicated in cancer but the mechanism is largely unknown. Here we show that PKCα promotes head and neck squamous cell carcinoma (SCCHN) by a feed forward network leading to cell cycle deregulation. PKCα inhibitors decrease proliferation in SCCHN cell lines and xenografted tumors. PKCα inhibition or depletion in tumor cells decreases DNA synthesis by suppressing ERK phosphorylation and cyclin E synthesis. Additionally, PKCα down-regulates miR-15a, a microRNA that directly inhibits protein synthesis of cyclin E as well as other cell cycle regulators. Furthermore, both PKCα and cyclin E protein expression are increased in primary tumors, and PKCα inversely correlates with miR15a expression in primary tumors. Finally, PKCα is associated with poor prognosis in SCCHN. These results identify PKCα as a key regulator of HNSCC tumor cell growth by a mechanism involving activation of MAP kinase, an initiator of the cell cycle, and suppression of miR-15a, an inhibitor of DNA synthesis. Although the specific components may be different, this type of feed forward loop network, consisting of a stimulus that activates a positive signal and removes a negative brake, is likely to be a general one that enables induction of DNA synthesis by a variety of growth or oncogenic stimuli. PMID:19117988

  7. The Meiotic Recombination Checkpoint Suppresses NHK-1 Kinase to Prevent Reorganisation of the Oocyte Nucleus in Drosophila

    PubMed Central

    Lancaster, Oscar M.; Breuer, Manuel; Cullen, C. Fiona; Ito, Takashi; Ohkura, Hiroyuki

    2010-01-01

    The meiotic recombination checkpoint is a signalling pathway that blocks meiotic progression when the repair of DNA breaks formed during recombination is delayed. In comparison to the signalling pathway itself, however, the molecular targets of the checkpoint that control meiotic progression are not well understood in metazoans. In Drosophila, activation of the meiotic checkpoint is known to prevent formation of the karyosome, a meiosis-specific organisation of chromosomes, but the molecular pathway by which this occurs remains to be identified. Here we show that the conserved kinase NHK-1 (Drosophila Vrk-1) is a crucial meiotic regulator controlled by the meiotic checkpoint. An nhk-1 mutation, whilst resulting in karyosome defects, does so independent of meiotic checkpoint activation. Rather, we find unrepaired DNA breaks formed during recombination suppress NHK-1 activity (inferred from the phosphorylation level of one of its substrates) through the meiotic checkpoint. Additionally DNA breaks induced by X-rays in cultured cells also suppress NHK-1 kinase activity. Unrepaired DNA breaks in oocytes also delay other NHK-1 dependent nuclear events, such as synaptonemal complex disassembly and condensin loading onto chromosomes. Therefore we propose that NHK-1 is a crucial regulator of meiosis and that the meiotic checkpoint suppresses NHK-1 activity to prevent oocyte nuclear reorganisation until DNA breaks are repaired. PMID:21060809

  8. Inhibition of protein kinase B activity induces cell cycle arrest and apoptosis during early G₁ phase in CHO cells.

    PubMed

    van Opstal, Angélique; Bijvelt, José; van Donselaar, Elly; Humbel, Bruno M; Boonstra, Johannes

    2012-04-01

    Inhibition of PKB (protein kinase B) activity using a highly selective PKB inhibitor resulted in inhibition of cell cycle progression only if cells were in early G1 phase at the time of addition of the inhibitor, as demonstrated by time-lapse cinematography. Addition of the inhibitor during mitosis up to 2 h after mitosis resulted in arrest of the cells in early G1 phase, as deduced from the expression of cyclins D and A and incorporation of thymidine. After 24 h of cell cycle arrest, cells expressed the cleaved caspase-3, a central mediator of apoptosis. These results demonstrate that PKB activity in early G1 phase is required to prevent the induction of apoptosis. Using antibodies, it was demonstrated that active PKB translocates to the nucleus during early G1 phase, while an even distribution of PKB was observed through cytoplasm and nucleus during the end of G1 phase.

  9. ERK1/2 MAP kinases promote cell cycle entry by rapid, kinase-independent disruption of retinoblastoma–lamin A complexes

    PubMed Central

    Rodríguez, Javier; Calvo, Fernando; José; González, M.; Casar, Berta; Andrés, Vicente

    2010-01-01

    As orchestrators of essential cellular processes like proliferation, ERK1/2 mitogen-activated protein kinase signals impact on cell cycle regulation. A-type lamins are major constituents of the nuclear matrix that also control the cell cycle machinery by largely unknown mechanisms. In this paper, we disclose a functional liaison between ERK1/2 and lamin A whereby cell cycle progression is regulated. We demonstrate that lamin A serves as a mutually exclusive dock for ERK1/2 and the retinoblastoma (Rb) protein. Our results reveal that, immediately after their postactivation entrance in the nucleus, ERK1/2 dislodge Rb from its interaction with lamin A, thereby facilitating its rapid phosphorylation and consequently promoting E2F activation and cell cycle entry. Interestingly, these effects are independent of ERK1/2 kinase activity. We also show that cellular transformation and tumor cell proliferation are dependent on the balance between lamin A and nuclear ERK1/2 levels, which determines Rb accessibility for phosphorylation/inactivation. PMID:21115804

  10. ERK1/2 MAP kinases promote cell cycle entry by rapid, kinase-independent disruption of retinoblastoma-lamin A complexes.

    PubMed

    Rodríguez, Javier; Calvo, Fernando; González, José M; Casar, Berta; Andrés, Vicente; Crespo, Piero

    2010-11-29

    As orchestrators of essential cellular processes like proliferation, ERK1/2 mitogen-activated protein kinase signals impact on cell cycle regulation. A-type lamins are major constituents of the nuclear matrix that also control the cell cycle machinery by largely unknown mechanisms. In this paper, we disclose a functional liaison between ERK1/2 and lamin A whereby cell cycle progression is regulated. We demonstrate that lamin A serves as a mutually exclusive dock for ERK1/2 and the retinoblastoma (Rb) protein. Our results reveal that, immediately after their postactivation entrance in the nucleus, ERK1/2 dislodge Rb from its interaction with lamin A, thereby facilitating its rapid phosphorylation and consequently promoting E2F activation and cell cycle entry. Interestingly, these effects are independent of ERK1/2 kinase activity. We also show that cellular transformation and tumor cell proliferation are dependent on the balance between lamin A and nuclear ERK1/2 levels, which determines Rb accessibility for phosphorylation/inactivation.

  11. Efficacy of Combined Histone Deacetylase and Checkpoint Kinase Inhibition in a Preclinical Model of Human Burkitt Lymphoma

    PubMed Central

    Kong, YanGuo; Barisone, Gustavo A; Sidhu, Ranjit S; O’Donnell, Robert T; Tuscano, Joseph M

    2015-01-01

    Checkpoint kinase inhibition has been studied as a way of enhancing the effectiveness of DNA-damaging agents. More recently, histone deacetylase inhibitors have shown efficacy in several cancers, including non-Hodgkin lymphoma. To evaluate the effectiveness of this combination for the treatment of lymphoma, we examined the combination of AR42, a histone deacetylase inhibitor, and checkpoint kinase 2 (CHEK2) inhibitor II in vitro and in vivo. The combination resulted in up to 10-fold increase in potency in five Burkitt lymphoma cell lines when compared with either drug alone. Both drugs inhibited tumor progression in xenograft models, but the combination was more effective than either agent alone, resulting in regression of established tumors. No toxicity was observed. These results suggest that the combination of histone deacetylase inhibition and checkpoint kinase inhibition represent an effective and nontoxic treatment option that should be further explored in preclinical and clinical studies. PMID:26322845

  12. Casein kinase II is required for the spindle assembly checkpoint by regulating Mad2p in fission yeast

    SciTech Connect

    Shimada, Midori; Yamamoto, Ayumu; Murakami-Tonami, Yuko; Nakanishi, Makoto; Yoshida, Takashi; Aiba, Hirofumi; Murakami, Hiroshi

    2009-10-23

    The spindle checkpoint is a surveillance mechanism that ensures the fidelity of chromosome segregation in mitosis. Here we show that fission yeast casein kinase II (CK2) is required for this checkpoint function. In the CK2 mutants mitosis occurs in the presence of a spindle defect, and the spindle checkpoint protein Mad2p fails to localize to unattached kinetochores. The CK2 mutants are sensitive to the microtubule depolymerising drug thiabendazole, which is counteracted by ectopic expression of mad2{sup +}. The level of Mad2p is low in the CK2 mutants. These results suggest that CK2 has a role in the spindle checkpoint by regulating Mad2p.

  13. Cell cycle regulation of breast cancer cells through estrogen-induced activities of ERK and Akt protein kinases.

    PubMed

    Geffroy, Nancy; Guédin, Aurore; Dacquet, Catherine; Lefebvre, Philippe

    2005-06-15

    The proliferative effect of estrogens on breast cancer cell (BCC) is mainly mediated through estrogen receptors (ER). Non-transcriptional effects of estrogens, exerted through activation of several protein kinases, may also contribute to BCC proliferation. However, the relative contribution of these two responses to BCC proliferation is not known. We characterized a novel estrogenic receptor ligand which possess Akt and ERK activating properties distinct from that of 17beta-estradiol. Early and delayed waves of activation of these kinases were detected upon estrogenic challenge of BCC, but only molecules able to promote a significant, delayed activation of ERK-induced BCC proliferation. Estrogen-induced cell cycle progression was not sensitive to the inhibition of ERK-regulating kinases MEK1 and 2. ERalpha was found to be necessary, but not sufficient for kinases activation. Thus, estrogens elicit a distinct pattern of early and delayed activation of ERK and Akt, and early protein kinase activation is probably not involved in BCC proliferation. Structural variations in the estrogen molecule may confer novel biological properties unrelated to estrogen-dependent transcriptional activation.

  14. High density lipoproteins induce cell cycle entry in vascular smooth muscle cells via mitogen activated protein kinase-dependent pathway.

    PubMed

    Nofer, J R; Junker, R; Pulawski, E; Fobker, M; Levkau, B; von Eckardstein, A; Seedorf, U; Assmann, G; Walter, M

    2001-04-01

    In this study we found that HDL acts as a potent and specific mitogen in vascular smooth muscle cells (VSMC) by stimulating entry into S-phase and DNA synthesis in a time- and concentration-dependent manner, induction of cyclins D1, E, and A, as well as activation of cyclin D-dependent kinases as inferred from phosphorylation of the retinoblastoma protein (pRb). Moreover, HDL induced activation of the mitogen-activated protein kinase pathway including Raf-, MEK-1, and ERK1/2, as well as the expression of proto-oncogen c-fos, which is controlled by ERK1/2. PD98059, an inhibitor of MEK-1 blocked the mitogenic activity of HDL and cyclin D1 expression. HDL-induced VSMC proliferation, cell cycle progression, cyclin D1 expression, and activation of the Raf-1/MEK-1/ERK1/2 cascade were blocked by preincubation of cells with pertussis toxin indicating involvement of trimeric G-protein. By contrast, none of these responses was inhibited by the protein kinase C inhibitor, GF109203X. The mitogenic effects of native HDL were not mimicked by apo A-I, reconstituted HDL containing apo A-I, or cholesterol-containing liposomes. In conclusion, HDL possesses an intrinsic property to induce G-protein- and MAP-kinase-dependent proliferation and cell cycle progression in VSMC. The strong and specific mitogenic effect of HDL should be taken into account, when therapeutic strategies to elevate the plasma level of these lipoproteins are developed.

  15. Prevention of DNA Rereplication Through a Meiotic Recombination Checkpoint Response

    PubMed Central

    Najor, Nicole A.; Weatherford, Layne; Brush, George S.

    2016-01-01

    In the budding yeast Saccharomyces cerevisiae, unnatural stabilization of the cyclin-dependent kinase inhibitor Sic1 during meiosis can trigger extra rounds of DNA replication. When programmed DNA double-strand breaks (DSBs) are generated but not repaired due to absence of DMC1, a pathway involving the checkpoint gene RAD17 prevents this DNA rereplication. Further genetic analysis has now revealed that prevention of DNA rereplication also requires MEC1, which encodes a protein kinase that serves as a central checkpoint regulator in several pathways including the meiotic recombination checkpoint response. Downstream of MEC1, MEK1 is required through its function to inhibit repair between sister chromatids. By contrast, meiotic recombination checkpoint effectors that regulate gene expression and cyclin-dependent kinase activity are not necessary. Phosphorylation of histone H2A, which is catalyzed by Mec1 and the related Tel1 protein kinase in response to DSBs, and can help coordinate activation of the Rad53 checkpoint protein kinase in the mitotic cell cycle, is required for the full checkpoint response. Phosphorylation sites that are targeted by Rad53 in a mitotic S phase checkpoint response are also involved, based on the behavior of cells containing mutations in the DBF4 and SLD3 DNA replication genes. However, RAD53 does not appear to be required, nor does RAD9, which encodes a mediator of Rad53, consistent with their lack of function in the recombination checkpoint pathway that prevents meiotic progression. While this response is similar to a checkpoint mechanism that inhibits initiation of DNA replication in the mitotic cell cycle, the evidence points to a new variation on DNA replication control. PMID:27678521

  16. BRCA2 coordinates the activities of cell-cycle kinases to promote genome stability.

    PubMed

    Yata, Keiko; Bleuyard, Jean-Yves; Nakato, Ryuichiro; Ralf, Christine; Katou, Yuki; Schwab, Rebekka A; Niedzwiedz, Wojciech; Shirahige, Katsuhiko; Esashi, Fumiko

    2014-06-12

    Numerous human genome instability syndromes, including cancer, are closely associated with events arising from malfunction of the essential recombinase Rad51. However, little is known about how Rad51 is dynamically regulated in human cells. Here, we show that the breast cancer susceptibility protein BRCA2, a key Rad51 binding partner, coordinates the activity of the central cell-cycle drivers CDKs and Plk1 to promote Rad51-mediated genome stability control. The soluble nuclear fraction of BRCA2 binds Plk1 directly in a cell-cycle- and CDK-dependent manner and acts as a molecular platform to facilitate Plk1-mediated Rad51 phosphorylation. This phosphorylation is important for enhancing the association of Rad51 with stressed replication forks, which in turn protects the genomic integrity of proliferating human cells. This study reveals an elaborate but highly organized molecular interplay between Rad51 regulators and has significant implications for understanding tumorigenesis and therapeutic resistance in patients with BRCA2 deficiency.

  17. Histone H3 K79 methylation states play distinct roles in UV-induced sister chromatid exchange and cell cycle checkpoint arrest in Saccharomyces cerevisiae

    PubMed Central

    Rossodivita, Alyssa A.; Boudoures, Anna L.; Mecoli, Jonathan P.; Steenkiste, Elizabeth M.; Karl, Andrea L.; Vines, Eudora M.; Cole, Arron M.; Ansbro, Megan R.; Thompson, Jeffrey S.

    2014-01-01

    Histone post-translational modifications have been shown to contribute to DNA damage repair. Prior studies have suggested that specific H3K79 methylation states play distinct roles in the response to UV-induced DNA damage. To evaluate these observations, we examined the effect of altered H3K79 methylation patterns on UV-induced G1/S checkpoint response and sister chromatid exchange (SCE). We found that the di- and trimethylated states both contribute to activation of the G1/S checkpoint to varying degrees, depending on the synchronization method, although methylation is not required for checkpoint in response to high levels of UV damage. In contrast, UV-induced SCE is largely a product of the trimethylated state, which influences the usage of gene conversion versus popout mechanisms. Regulation of H3K79 methylation by H2BK123 ubiquitylation is important for both checkpoint function and SCE. H3K79 methylation is not required for the repair of double-stranded breaks caused by transient HO endonuclease expression, but does play a modest role in survival from continuous exposure. The overall results provide evidence for the participation of H3K79 methylation in UV-induced recombination repair and checkpoint activation, and further indicate that the di- and trimethylation states play distinct roles in these DNA damage response pathways. PMID:24748660

  18. The Aurora B Kinase in Chromosome Bi-Orientation and Spindle Checkpoint Signaling

    PubMed Central

    Krenn, Veronica; Musacchio, Andrea

    2015-01-01

    Aurora B, a member of the Aurora family of serine/threonine protein kinases, is a key player in chromosome segregation. As part of a macromolecular complex known as the chromosome passenger complex, Aurora B concentrates early during mitosis in the proximity of centromeres and kinetochores, the sites of attachment of chromosomes to spindle microtubules. There, it contributes to a number of processes that impart fidelity to cell division, including kinetochore stabilization, kinetochore–microtubule attachment, and the regulation of a surveillance mechanism named the spindle assembly checkpoint. In the regulation of these processes, Aurora B is the fulcrum of a remarkably complex network of interactions that feed back on its localization and activation state. In this review, we discuss the multiple roles of Aurora B during mitosis, focusing in particular on its role at centromeres and kinetochores. Many details of the network of interactions at these locations remain poorly understood, and we focus here on several crucial outstanding questions. PMID:26528436

  19. Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6.

    PubMed

    Malumbres, Marcos; Sotillo, Rocío; Santamaría, David; Galán, Javier; Cerezo, Ana; Ortega, Sagrario; Dubus, Pierre; Barbacid, Mariano

    2004-08-20

    Cdk4 and Cdk6 are thought to be essential for initiation of the cell cycle in response to mitogenic stimuli. Previous studies have shown that Cdk4 is dispensable for proliferation in most cell types, an observation attributed to a putative compensatory role by Cdk6. Cdk6-null mice are viable and develop normally although hematopoiesis is slightly impaired. Embryos defective for Cdk4 and Cdk6 die during the late stages of embryonic development due to severe anemia. However, these embryos display normal organogenesis and most cell types proliferate normally. In vitro, embryonic fibroblasts lacking Cdk4 and Cdk6 proliferate and become immortal upon serial passage. Moreover, quiescent Cdk4/Cdk6-null cells respond to serum stimulation and enter S phase with normal kinetics although with lower efficiency. These results indicate that D-type cyclin-dependent kinases are not essential for cell cycle entry and suggest the existence of alternative mechanisms to initiate cell proliferation upon mitogenic stimulation.

  20. M2, a novel anthracenedione, elicits a potent DNA damage response that can be subverted through checkpoint kinase inhibition to generate mitotic catastrophe.

    PubMed

    Evison, Benny J; Pastuovic, Mile; Bilardi, Rebecca A; Forrest, Robert A; Pumuye, Paul P; Sleebs, Brad E; Watson, Keith G; Phillips, Don R; Cutts, Suzanne M

    2011-12-01

    Pixantrone is a promising anti-cancer aza-anthracenedione that has prompted the development of new anthracenediones incorporating symmetrical side-chains of increasing length varying from two to five methylene units in each pair of drug side-chains. A striking relationship has emerged in which anthracenedione-induced growth inhibition and apoptosis was inversely associated with side-chain length, a relationship that was attributable to a differential ability to stabilise the topoisomerase II (TOP2) cleavage complex. Processing of the complex to a DNA double strand break (DSB) flanked by γH2AX in nuclear foci is likely to occur, as the generation of the primary lesion was antecedent to γH2AX induction. M2, bearing the shortest pair of side-chains, induced TOP2-mediated DSBs efficiently and activated cell cycle checkpoints via Chk1 and Chk2 phosphorylation, implicating the involvement of ATM and ATR, and induced a protracted S phase and subsequent G2/M arrest. The inactive analogue M5, containing the longest pair of side-chains, only weakly stimulated any of these responses, suggesting that efficient stabilisation of the TOP2 cleavage complex was crucial for eliciting a strong DNA damage response (DDR). An M2 induced DDR in p53-defective MDA-MB-231 cells was abrogated by UCN-01, a ubiquitous inhibitor of kinases including Chk1, in a response associated with substantial mitotic catastrophe and strong synergy. The rational selection of checkpoint kinase inhibitors may significantly enhance the therapeutic benefit of anthracenediones that efficiently stabilise the TOP2 cleavage complex.

  1. Ipl1/Aurora B kinase coordinates synaptonemal complex disassembly with cell cycle progression and crossover formation in budding yeast meiosis

    PubMed Central

    Jordan, Philip; Copsey, Alice; Newnham, Louise; Kolar, Elizabeth; Lichten, Michael; Hoffmann, Eva

    2009-01-01

    Several protein kinases collaborate to orchestrate and integrate cellular and chromosomal events at the G2/M transition in both mitotic and meiotic cells. During the G2/M transition in meiosis, this includes the completion of crossover recombination, spindle formation, and synaptonemal complex (SC) breakdown. We identified Ipl1/Aurora B kinase as the main regulator of SC disassembly. Mutants lacking Ipl1 or its kinase activity assemble SCs with normal timing, but fail to dissociate the central element component Zip1, as well as its binding partner, Smt3/SUMO, from chromosomes in a timely fashion. Moreover, lack of Ipl1 activity causes delayed SC disassembly in a cdc5 as well as a CDC5-inducible ndt80 mutant. Crossover levels in the ipl1 mutant are similar to those observed in wild type, indicating that full SC disassembly is not a prerequisite for joint molecule resolution and subsequent crossover formation. Moreover, expression of meiosis I and meiosis II-specific B-type cyclins occur normally in ipl1 mutants, despite delayed formation of anaphase I spindles. These observations suggest that Ipl1 coordinates changes to meiotic chromosome structure with resolution of crossovers and cell cycle progression at the end of meiotic prophase. PMID:19759266

  2. Protein kinase CK2 activates the atypical Rio1p kinase and promotes its cell-cycle phase-dependent degradation in yeast.

    PubMed

    Angermayr, Michaela; Hochleitner, Elisabeth; Lottspeich, Friedrich; Bandlow, Wolfhard

    2007-09-01

    Using co-immunoprecipitation combined with MS analysis, we identified the alpha' subunit of casein kinase 2 (CK2) as an interaction partner of the atypical Rio1 protein kinase in yeast. Co-purification of Rio1p with CK2 from Deltacka1 or Deltacka2 mutant extracts shows that Rio1p preferentially interacts with Cka2p in vitro. The C-terminal domain of Rio1p is essential and sufficient for this interaction. Six C-terminally located clustered serines were identified as the only CK2 sites present in Rio1p. Replacement of all six serine residues by aspartate, mimicking constitutive phosphorylation, stimulates Rio1p kinase activity about twofold in vitro compared with wild-type or the corresponding (S > A)(6) mutant proteins. Both mutant alleles (S > A)(6) or (S > D)(6) complement in vivo, however, growth of the RIO1 (S > A)(6) mutant is greatly retarded and shows a cell-cycle phenotype, whereas the behaviour of the RIO1 (S > D)(6) mutant is indistinguishable from wild-type. This suggests that phosphorylation by protein kinase CK2 leads to moderate activation of Rio1p in vivo and promotes cell proliferation. Physiological studies indicate that phosphorylation by CK2 renders the Rio1 protein kinase susceptible to proteolytic degradation at the G(1)/S transition in the cell-division cycle, whereas the non-phosphorylated version is resistant.

  3. Cyclin-Dependent Kinase 7 Controls mRNA Synthesis by Affecting Stability of Preinitiation Complexes, Leading to Altered Gene Expression, Cell Cycle Progression, and Survival of Tumor Cells

    PubMed Central

    Kelso, Timothy W. R.; Baumgart, Karen; Eickhoff, Jan; Albert, Thomas; Antrecht, Claudia; Lemcke, Sarah; Klebl, Bert

    2014-01-01

    Cyclin-dependent kinase 7 (CDK7) activates cell cycle CDKs and is a member of the general transcription factor TFIIH. Although there is substantial evidence for an active role of CDK7 in mRNA synthesis and associated processes, the degree of its influence on global and gene-specific transcription in mammalian species is unclear. In the current study, we utilize two novel inhibitors with high specificity for CDK7 to demonstrate a restricted but robust impact of CDK7 on gene transcription in vivo and in in vitro-reconstituted reactions. We distinguish between relative low- and high-dose responses and relate them to distinct molecular mechanisms and altered physiological responses. Low inhibitor doses cause rapid clearance of paused RNA polymerase II (RNAPII) molecules and sufficed to cause genome-wide alterations in gene expression, delays in cell cycle progression at both the G1/S and G2/M checkpoints, and diminished survival of human tumor cells. Higher doses and prolonged inhibition led to strong reductions in RNAPII carboxyl-terminal domain (CTD) phosphorylation, eventual activation of the p53 program, and increased cell death. Together, our data reason for a quantitative contribution of CDK7 to mRNA synthesis, which is critical for cellular homeostasis. PMID:25047832

  4. Differences in kinase-mediated regulation of cell cycle progression in normal and transformed cells

    SciTech Connect

    Crissman, H.A.; Gadbois, D.M.; Tobey, R.A.; Stevenson, A.P.; Kraemer, P.M.; Bustos, L.D.; Dickson, J.A.; Bradbury, E.M. )

    1993-01-01

    Staurosporine (Stsp), a general protein kinase inhibitor, was used to investigate the role of kinase-mediated mechanisms in regulating mammalian cell proliferation. Low levels of Stsp (1-2nM) prevented nontransformed cells from entering S phase, indicating that protein phosphorylation processes are essential for commitment of DNA replication in normal cells. Cells resumed cycling when Stsp was removed. The period of sensitivity of nontransformed human diploid fibroblasts to low levels of the drug commenced 3 h later than the G0/G1 boundary and extended through the G1/S boundary. The initial block point at 3 h corresponds neither to the serum nor the amino acid restriction point. In contrast, neither low nor high concentrations (100nm) of Stsp affected G1 progression of transformed cells. High drug concentrations blocked normal cells in G1 and G2 but affected only G2-progression in transformed cells. These results indicate that kinase-mediated regulation of DNA replication is lost as a result of neoplastic transformation, but the G2-arrest mechanism remains intact.

  5. Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase

    SciTech Connect

    Filgueira de Azevedo, W. Jr.; Mueller-Dieckmann, H.J.; Schulze-Gahmen, U.

    1996-04-02

    The central role of cyclin-dependent kinases (CDKs) in cell cycle regulation makes them a promising target for studying inhibitory molecules that can modify the degree of cell proliferation. The discovery of specific inhibitors of CDKs such as polyhydroxylated flavones has opened the way to investigation and design of antimitotic compounds. A novel flavone, (-)-cis-5,7-dihydroxyphenyl-8-[4-(3-hydroxy-1-methyl)piperidinyl]-4H-1-benzopyran-4-one hydrochloride hemihydrate (L868276), is a potent inhibitor of CDKs. A chlorinated form, flavopiridol, is currently in phase I clinical trials as a drug against breast tumors. We determined the crystal structure of a complex between CDK2 and L868276 at 2.33-{Angstrom} resolution and refined to an R{sub factor} of 20.3%. The aromatic portion of the inhibitor binds to the adenine-binding pocket of CDK2, and the position of the phenyl group of the inhibitor enables the inhibitor to make contacts with the enzyme not observed in the ATP complex structure. The analysis of the position of this phenyl ring not only explains the great differences of kinase inhibition among the flavonoid inhibitors but also explains the specificity of L868276 to inhibit CDK2 and CDC2. 36 refs., 4 figs., 2 tabs.

  6. SCFFBXW7α modulates the intra-S-phase DNA-damage checkpoint by regulating Polo like kinase-1 stability

    PubMed Central

    Giráldez, Servando; Herrero-Ruiz, Joaquín; Mora-Santos, Mar; Japón, Miguel Á.; Tortolero, Maria; Romero, Francisco

    2014-01-01

    The intra-S-checkpoint is essential to control cell progression through S phase under normal conditions and in response to replication stress. When DNA lesions are detected, replication fork progression is blocked allowing time for repair to avoid genomic instability and the risk of cancer. DNA replication initiates at many origins of replication in eukaryotic cells, where a series of proteins form pre-replicative complexes (pre-RCs) that are activated to become pre-initiation complexes and ensure a single round of replication in each cell cycle. PLK1 plays an important role in the regulation of DNA replication, contributing to the regulation of pre-RCs formation by phosphorylating several proteins, under both normal and stress conditions. Here we report that PLK1 is ubiquitinated and degraded by SCFFBXW7α/proteasome. Moreover, we identified a new Cdc4 phosphodegron in PLK1, conserved from yeast to humans, whose mutation prevents PLK1 destruction. We established that endogenous SCFFBXW7α degrades PLK1 in the G1 and S phases of an unperturbed cell cycle and in S phase following UV irradiation. Furthermore, we showed that FBXW7α overexpression or UV irradiation prevented the loading of proteins onto chromatin to form pre-RCs and, accordingly, reduced cell proliferation. We conclude that PLK1 degradation mediated by SCFFBXW7α modulates the intra-S-phase checkpoint. PMID:24970797

  7. SUMOylation regulates polo-like kinase 1-interacting checkpoint helicase (PICH) during mitosis.

    PubMed

    Sridharan, Vinidhra; Park, Hyewon; Ryu, Hyunju; Azuma, Yoshiaki

    2015-02-06

    Mitotic SUMOylation has an essential role in faithful chromosome segregation in eukaryotes, although its molecular consequences are not yet fully understood. In Xenopus egg extract assays, we showed that poly(ADP-ribose) polymerase 1 (PARP1) is modified by SUMO2/3 at mitotic centromeres and that its enzymatic activity could be regulated by SUMOylation. To determine the molecular consequence of mitotic SUMOylation, we analyzed SUMOylated PARP1-specific binding proteins. We identified Polo-like kinase 1-interacting checkpoint helicase (PICH) as an interaction partner of SUMOylated PARP1 in Xenopus egg extract. Interestingly, PICH also bound to SUMOylated topoisomerase IIα (TopoIIα), a major centromeric small ubiquitin-like modifier (SUMO) substrate. Purified recombinant human PICH interacted with SUMOylated substrates, indicating that PICH directly interacts with SUMO, and this interaction is conserved among species. Further analysis of mitotic chromosomes revealed that PICH localized to the centromere independent of mitotic SUMOylation. Additionally, we found that PICH is modified by SUMO2/3 on mitotic chromosomes and in vitro. PICH SUMOylation is highly dependent on protein inhibitor of activated STAT, PIASy, consistent with other mitotic chromosomal SUMO substrates. Finally, the SUMOylation of PICH significantly reduced its DNA binding capability, indicating that SUMOylation might regulate its DNA-dependent ATPase activity. Collectively, our findings suggest a novel SUMO-mediated regulation of the function of PICH at mitotic centromeres.

  8. X-ray structures of checkpoint kinase 2 in complex with inhibitors that target its gatekeeper-dependent hydrophobic pocket

    SciTech Connect

    Lountos, George T.; Jobson, Andrew G.; Tropea, Joseph E.; Self, Christopher R.; Zhang, Guangtao; Pommier, Yves; Shoemaker, Robert H.; Waugh, David S.

    2012-09-17

    The serine/threonine checkpoint kinase 2 (Chk2) is an attractive molecular target for the development of small molecule inhibitors to treat cancer. Here, we report the rational design of Chk2 inhibitors that target the gatekeeper-dependent hydrophobic pocket located behind the adenine-binding region of the ATP-binding site. These compounds exhibit IC{sub 50} values in the low nanomolar range and are highly selective for Chk2 over Chk1. X-ray crystallography was used to determine the structures of the inhibitors in complex with the catalytic kinase domain of Chk2 to verify their modes of binding.

  9. Mechanisms of sulindac-induced apoptosis and cell cycle arrest.

    PubMed

    Jung, Barbara; Barbier, Valerie; Brickner, Howard; Welsh, John; Fotedar, Arun; McClelland, Michael

    2005-02-28

    The mechanism underlying the chemopreventive effects of the non-steroidal anti-inflammatory drug sulindac remains unclear. Its active metabolite, sulindac sulfide, induces cell cycle arrest as well as apoptosis in mammalian cell lines. We now show that in murine thymocytes, sulindac sulfide-induced cell death is p53, bax, Fas, and FasL independent. In contrast, bcl2 transgenic thymocytes are resistant to sulindac sulfide-induced apoptosis. In addition, we demonstrate that sulindac sulfide-induced cell cycle arrest in mouse embryonic fibroblasts (MEFs) is partly mediated by the retinoblastoma tumor suppressor protein (Rb) and the cyclin kinase inhibitor p21waf1/cip1. Furthermore, MEFs deficient in p21 or Rb are more susceptible to sulindac sulfide-induced cell death. These results suggest that sulindac may selectively target premalignant cells with cell cycle checkpoint deficits.

  10. Cell-cycle-specific interaction of nuclear DNA-binding proteins with a CCAAT sequence from the human thymidine kinase gene.

    PubMed Central

    Knight, G B; Gudas, J M; Pardee, A B

    1987-01-01

    Induction of thymidine kinase parallels the onset of DNA synthesis. To investigate the transcriptional regulation of the thymidine kinase gene, we have examined whether specific nuclear factors interact in a cell-cycle-dependent manner with sequences upstream of this gene. Two inverted CCAAT boxes near the transcriptional initiation sites were observed to form complexes with nuclear DNA-binding proteins. The nature of the complexes changes dramatically as the cells approach DNA synthesis and correlates well with the previously reported transcriptional increase of the thymidine kinase gene. Images PMID:3479796

  11. Cyclin I-like (CCNI2) is a cyclin-dependent kinase 5 (CDK5) activator and is involved in cell cycle regulation

    PubMed Central

    Liu, Chengcheng; Zhai, Xiaoyan; Zhao, Bin; Wang, Yanfei; Xu, Zhigang

    2017-01-01

    In contrast to conventional cyclin-dependent kinases that are important for mitotic cell division, cyclin-dependent kinase 5 (CDK5) is predominantly activated in post-mitotic cells and is involved in various cellular events. The kinase activity of CDK5 is tightly regulated by specific activators including p35, p39, and cyclin I (CCNI). Here we show that cyclin I-like (CCNI2), a homolog of CCNI, interacts with CDK5 and activates the kinase activity of CDK5. Different from CCNI, which colocalizes with CDK5 in the nuclei in transfected cells, CCNI2 mainly retains CDK5 in the cytoplasm as well as on the cell membrane. Furthermore, although the expression level of CCNI2 mRNA and CCNI2 protein do not change significantly during cell cycle, depletion of CCNI2 with siRNA affects cell cycle progression as well as cell proliferation. In conclusion, our data strongly suggest that CCNI2 is a novel CDK5 activator and is involved in cell cycle regulation. PMID:28112194

  12. c-Jun NH(2)-terminal kinase signaling axis regulates diallyl trisulfide-induced generation of reactive oxygen species and cell cycle arrest in human prostate cancer cells.

    PubMed

    Antosiewicz, Jedrzej; Herman-Antosiewicz, Anna; Marynowski, Stanley W; Singh, Shivendra V

    2006-05-15

    We have shown previously that generation of reactive oxygen species (ROS) is a critical event in G(2)-M phase cell cycle arrest caused by diallyl trisulfide (DATS), which is a highly promising anticancer constituent of processed garlic. Using DU145 and PC-3 human prostate cancer cells as a model, we now report a novel mechanism involving c-Jun NH(2)-terminal kinase (JNK) signaling axis, which is known for its role in regulation of cell survival and apoptosis, in DATS-induced ROS production. The DATS-induced ROS generation, G(2)-M phase cell cycle arrest and degradation, and hyperphosphorylation of Cdc25C were significantly attenuated in the presence of EUK134, a combined mimetic of superoxide dismutase and catalase. Interestingly, the DATS-induced ROS generation and G(2)-M phase cell cycle arrest were also inhibited significantly in the presence of desferrioxamine, an iron chelator, but this protection was not observed with iron-saturated desferrioxamine. DATS treatment caused a marked increase in the level of labile iron that was accompanied by degradation of light chain of iron storage protein ferritin. Interestingly, DATS-mediated degradation of ferritin, increase in labile iron pool, ROS generation, and/or cell cycle arrest were significantly attenuated by ectopic expression of a catalytically inactive mutant of JNK kinase 2 and RNA interference of stress-activated protein kinase/extracellular signal-regulated kinase 1 (SEK1), upstream kinases in JNK signal transduction pathway. In conclusion, the present study provides experimental evidence to indicate existence of a novel pathway involving JNK signaling axis in regulation of DATS-induced ROS generation.

  13. A High Throughput, Whole Cell Screen for Small Molecule Inhibitors of the Mitotic Spindle Checkpoint Identifies OM137, a Novel Aurora Kinase Inhibitor

    PubMed Central

    DeMoe, Joanna H.; Santaguida, Stefano; Daum, John R.; Musacchio, Andrea; Gorbsky, Gary J.

    2008-01-01

    In mitosis the kinetochores of chromosomes that lack full microtubule attachments and/or mechanical tension activate a signaling pathway called the mitotic spindle checkpoint that blocks progression into anaphase and prevents premature segregation of the chromatids until chromosomes become aligned at the metaphase plate (1). The spindle checkpoint is responsible for arresting cells in mitosis in response to chemotherapeutic spindle poisons such as paclitaxel or vinblastine. Some cancer cells show a weakened checkpoint signaling system that may contribute to chromosome instability in tumors. Since complete absence of the spindle checkpoint leads to catastrophic cell division, we reasoned that drugs targeting the checkpoint might provide a therapeutic window in which the checkpoint would be eliminated in cancer cells but sufficiently preserved in normal cells. We developed an assay to identify lead compounds that inhibit the spindle checkpoint. Most cells respond to microtubule drugs by activating the spindle checkpoint and arresting in mitosis with a rounded morphology. Our assay depended on the ability of checkpoint inhibitor compounds to drive mitotic exit and cause cells to flatten onto the substrate in the continuous presence of microtubule drugs. In this study we characterize one of the compounds, OM137, as an inhibitor of Aurora kinases. We find that this compound is growth inhibitory to cultured cells when applied at high concentration and potentiates the growth inhibitory effects of subnanomolar concentrations of paclitaxel. PMID:19190331

  14. Cell cycle-dependent control of polarised development by a cyclin-dependent kinase-like protein in the Fucus zygote.

    PubMed

    Corellou, F; Brownlee, C; Kloareg, B; Bouget, F Y

    2001-11-01

    Although iterative development can be uncoupled from morphogenesis in plant organs, the relationship between the cell cycle and developmental events is not well established in embryos. Zygotes of fucoid algae, including Fucus and Pelvetia are particularly well suited for studying the interaction(s) between cell cycle progression and the early morphogenetic events, as the establishment of polarity and its morphogenetic expression, i.e. germination, and the first cell cycle are concomitant. We have previously demonstrated that, in Fucus zygotes, various aspects of cell cycle progression are tightly controlled by cyclin-dependent kinase (CDK)-like proteins, including two PSTAIRE CDK-like proteins, p34 and p32, which are synthesised after fertilisation. We show that specific inhibition of CDK-like proteins, either with purine derivatives such as olomoucine and amino-purvalanol or by microinjection of the CDK inhibitor p21(cip1), prevents germination and cell division. Whereas direct inhibition of DNA replication by aphidicolin did not affect polarised development, olomoucine, which has previously been shown to prevent entry in S phase, and other purine derivatives also inhibited photopolarisation. Early microinjection of a monoclonal anti-PSTAIRE antibody also prevented germination and cell division. Only p34 had affinity for amino-purvalanol, suggesting that among PSTAIRE CDKs, this protein is the main target of purine derivatives. Models to account for the simultaneous control of early cell cycle progression and polarisation are proposed.

  15. The transcription factor YY1 is a novel substrate for Aurora B kinase at G2/M transition of the cell cycle.

    PubMed

    Kassardjian, Ari; Rizkallah, Raed; Riman, Sarah; Renfro, Samuel H; Alexander, Karen E; Hurt, Myra M

    2012-01-01

    Yin Yang 1 (YY1) is a ubiquitously expressed and highly conserved multifunctional transcription factor that is involved in a variety of cellular processes. Many YY1-regulated genes have crucial roles in cell proliferation, differentiation, apoptosis, and cell cycle regulation. Numerous mechanisms have been shown to regulate the function of YY1, such as DNA binding affinity, subcellular localization, and posttranslational modification including phosphorylation. Polo-like kinase 1(Plk1) and Casein kinase 2α (CK2 α) were the first two kinases identified to phosphorylate YY1. In this study, we identify a third kinase. We report that YY1 is a novel substrate of the Aurora B kinase both in vitro and in vivo. Serine 184 phosphorylation of YY1 by Aurora B is cell cycle regulated and peaks at G2/M and is rapidly dephosphorylated, likely by protein phosphatase 1 (PP1) as the cells enter G1. Aurora A and Aurora C can also phosphorylate YY1 in vitro, but at serine/threonine residues other than serine 184. We present evidence that phosphorylation of YY1 in the central glycine/alanine (G/A)-rich region is important for DNA binding activity, with a potential phosphorylation/acetylation interplay regulating YY1 function. Given their importance in mitosis and overexpression in human cancers, Aurora kinases have been identified as promising therapeutic targets. Increasing our understanding of Aurora substrates will add to the understanding of their signaling pathways.

  16. Recovery from the DNA Replication Checkpoint

    PubMed Central

    Chaudhury, Indrajit; Koepp, Deanna M.

    2016-01-01

    Checkpoint recovery is integral to a successful checkpoint response. Checkpoint pathways monitor progress during cell division so that in the event of an error, the checkpoint is activated to block the cell cycle and activate repair pathways. Intrinsic to this process is that once repair has been achieved, the checkpoint signaling pathway is inactivated and cell cycle progression resumes. We use the term “checkpoint recovery” to describe the pathways responsible for the inactivation of checkpoint signaling and cell cycle re-entry after the initial stress has been alleviated. The DNA replication or S-phase checkpoint monitors the integrity of DNA synthesis. When replication stress is encountered, replication forks are stalled, and the checkpoint signaling pathway is activated. Central to recovery from the S-phase checkpoint is the restart of stalled replication forks. If checkpoint recovery fails, stalled forks may become unstable and lead to DNA breaks or unusual DNA structures that are difficult to resolve, causing genomic instability. Alternatively, if cell cycle resumption mechanisms become uncoupled from checkpoint inactivation, cells with under-replicated DNA might proceed through the cell cycle, also diminishing genomic stability. In this review, we discuss the molecular mechanisms that contribute to inactivation of the S-phase checkpoint signaling pathway and the restart of replication forks during recovery from replication stress. PMID:27801838

  17. Differential Roles of Two Homologous Cyclin-Dependent Kinase Inhibitor Genes in Regulating Cell Cycle and Innate Immunity in Arabidopsis1[OPEN

    PubMed Central

    Hamdoun, Safae; Zhang, Chong; Gill, Manroop; Churchman, Michelle; Larkin, John C.

    2016-01-01

    Precise cell-cycle control is critical for plant development and responses to pathogen invasion. Two homologous cyclin-dependent kinase inhibitor genes, SIAMESE (SIM) and SIM-RELATED 1 (SMR1), were recently shown to regulate Arabidopsis (Arabidopsis thaliana) defense based on phenotypes conferred by a sim smr1 double mutant. However, whether these two genes play differential roles in cell-cycle and defense control is unknown. In this report, we show that while acting synergistically to promote endoreplication, SIM and SMR1 play different roles in affecting the ploidy of trichome and leaf cells, respectively. In addition, we found that the smr1-1 mutant, but not sim-1, was more susceptible to a virulent Pseudomonas syringae strain, and this susceptibility could be rescued by activating salicylic acid (SA)-mediated defense. Consistent with these results, smr1-1 partially suppressed the dwarfism, high SA levels, and cell death phenotypes in acd6-1, a mutant used to gauge the change of defense levels. Thus, SMR1 functions partly through SA in defense control. The differential roles of SIM and SMR1 are due to differences in temporal and spatial expression of these two genes in Arabidopsis tissues and in response to P. syringae infection. In addition, flow-cytometry analysis of plants with altered SA signaling revealed that SA is necessary, but not sufficient, to change cell-cycle progression. We further found that a mutant with three CYCD3 genes disrupted also compromised disease resistance to P. syringae. Together, this study reveals differential roles of two homologous cyclin-dependent kinase inhibitors in regulating cell-cycle progression and innate immunity in Arabidopsis and provides insights into the importance of cell-cycle control during host-pathogen interactions. PMID:26561564

  18. Lack of Casein Kinase 1 Delta Promotes Genomic Instability - The Accumulation of DNA Damage and Down-Regulation of Checkpoint Kinase 1

    PubMed Central

    Greer, Yoshimi Endo; Gao, Bo; Yang, Yingzi; Nussenzweig, Andre; Rubin, Jeffrey S.

    2017-01-01

    Casein kinase 1 delta (CK1δ) is a conserved serine/threonine protein kinase that regulates diverse cellular processes. Mice lacking CK1δ have a perinatal lethal phenotype and typically weigh 30% less than their wild type littermates. However, the causes of death and small size are unknown. We observed cells with abnormally large nuclei in tissue from Csnk1d null embryos, and multiple centrosomes in mouse embryo fibroblasts (MEFs) deficient in CK1δ (MEFCsnk1d null). Results from γ-H2AX staining and the comet assay demonstrated significant DNA damage in MEFCsnk1d null cells. These cells often contain micronuclei, an indicator of genomic instability. Similarly, abrogation of CK1δ expression in control MEFs stimulated micronuclei formation after doxorubicin treatment, suggesting that CK1δ loss increases vulnerability to genotoxic stress. Cellular levels of total and activated checkpoint kinase 1 (Chk1), which functions in the DNA damage response and mitotic checkpoints, and its downstream effector, Cdc2/CDK1 kinase, were often decreased in MEFCsnk1d null cells as well as in control MEFs transfected with CK1δ siRNA. Hydroxyurea-induced Chk1 activation, as measured by Ser345 phosphorylation, and nuclear localization also were impaired in MEF cells following siRNA knockdown of CK1δ. Similar results were observed in the MCF7 human breast cancer cell line. The decreases in phosphorylated Chk1 were rescued by concomitant expression of siRNA-resistant CK1δ. Experiments with cycloheximide demonstrated that the stability of Chk1 protein was diminished in cells subjected to CK1δ knockdown. Together, these findings suggest that CK1δ contributes to the efficient repair of DNA damage and the proper functioning of mitotic checkpoints by maintaining appropriate levels of Chk1. PMID:28125685

  19. Phase I Study of LY2606368, a Checkpoint Kinase 1 Inhibitor, in Patients With Advanced Cancer

    PubMed Central

    Infante, Jeffrey; Janku, Filip; Jones, Suzanne; Nguyen, Ly M.; Burris, Howard; Naing, Aung; Bauer, Todd M.; Piha-Paul, Sarina; Johnson, Faye M.; Kurzrock, Razelle; Golden, Lisa; Hynes, Scott; Lin, Ji; Lin, Aimee Bence; Bendell, Johanna

    2016-01-01

    Purpose The primary objective was to determine safety, toxicity, and a recommended phase II dose regimen of LY2606368, an inhibitor of checkpoint kinase 1, as monotherapy. Patients and Methods This phase I, nonrandomized, open-label, dose-escalation trial used a 3 + 3 dose-escalation scheme and included patients with advanced solid tumors. Intravenous LY2606368 was dose escalated from 10 to 50 mg/m2 on schedule 1 (days 1 to 3 every 14 days) or from 40 to 130 mg/m2 on schedule 2 (day 1 every 14 days). Safety measures and pharmacokinetics were assessed, and pharmacodynamics were measured in blood, hair follicles, and circulating tumor cells. Results Forty-five patients were treated; seven experienced dose-limiting toxicities (all hematologic). The maximum-tolerated doses (MTDs) were 40 mg/m2 (schedule 1) and 105 mg/m2 (schedule 2). The most common related grade 3 or 4 treatment-emergent adverse events were neutropenia, leukopenia, anemia, thrombocytopenia, and fatigue. Grade 4 neutropenia occurred in 73.3% of patients and was transient (typically < 5 days). Febrile neutropenia incidence was low (7%). The LY2606368 exposure over the first 72 hours (area under the curve from 0 to 72 hours) at the MTD for each schedule coincided with the exposure in mouse xenografts that resulted in maximal tumor responses. Minor intra- and intercycle accumulation of LY2606368 was observed at the MTDs for both schedules. Two patients (4.4%) had a partial response; one had squamous cell carcinoma (SCC) of the anus and one had SCC of the head and neck. Fifteen patients (33.3%) had a best overall response of stable disease (range, 1.2 to 6.7 months), six of whom had SCC. Conclusion An LY2606368 dose of 105 mg/m2 once every 14 days is being evaluated as the recommended phase II dose in dose-expansion cohorts for patients with SCC. PMID:27044938

  20. 5-Aza-2′-deoxycytidine Sensitizes Busulfan-resistant Myeloid Leukemia Cells By Regulating Expression of Genes Involved in Cell Cycle Checkpoint and Apoptosis

    PubMed Central

    Valdez, Benigno C.; Li, Yang; Murray, David; Corn, Paul; Champlin, Richard E.; Andersson, Borje S.

    2009-01-01

    Busulfan (Bu) is a DNA-alkylating drug used in myeloablative pretransplant conditioning therapy for patients with myeloid leukemia (ML). A major obstacle to successful treatment is cellular Bu-resistance. To investigate the possible contribution of DNA hypermethylation to Bu-resistance, we examined the cytotoxic activity of combined 5-aza-2′-deoxycytidine (DAC) and Bu. Exposure of Bu-resistant B5/Bu2506 ML cells to 0.5 μM DAC resulted in G2-arrest and apoptosis. The observed G2-arrest was associated with hypomethylation and subsequent expression of epigenetically controlled genes including p16INK4A, activation of the p53 pathway, and phosphorylation of CDC2. The DAC-mediated apoptosis was partly due to hypomethylation and up-regulation of XAF1, which resulted in down-regulation of the anti-apoptotic proteins XIAP, cIAP1 and cIAP2. The pro-apoptotic PUMA and BNIP3 proteins were up-regulated while pro-survival STAT3 and c-MYC were suppressed. Combination of 0.05 μM DAC and 5 μg/ml Bu resulted in synergistic cytotoxicity, which was associated with PARP1 cleavage and activation of caspases 3 and 8, suggesting induction of an apoptotic response. P53 inhibition in B5/Bu2506 cells using pifithrin-α alleviated these effects, suggesting a role for p53 therein; this observation was supported by the relative resistance of p53-null K562 cells to [DAC+Bu] combinations and by the effects of an anti-p53 shRNA on the OCI-AML3 cell line. We conclude that the synergistic effects of [DAC+Bu] are p53-dependent and involve cell-cycle arrest, apoptosis induction and down-regulation of pro-survival genes. Our results suggest that, depending on tumor p53 status, incorporation of DAC might synergistically improve the cytoreductive efficacy of Bu-based pre-transplant regimen in patients with ML. PMID:19732952

  1. Lte1 promotes mitotic exit by controlling the localization of the spindle position checkpoint kinase Kin4

    PubMed Central

    Falk, Jill E.; Chan, Leon Y.; Amon, Angelika

    2011-01-01

    For a daughter cell to receive a complete genomic complement, it is essential that the mitotic spindle be positioned accurately within the cell. In budding yeast, a signaling system known as the spindle position checkpoint (SPOC) monitors spindle position and regulates the activity of the mitotic exit network (MEN), a GTPase signaling pathway that promotes exit from mitosis. The protein kinase Kin4 is a central component of the spindle position checkpoint. Kin4 primarily localizes to the mother cell and associates with spindle pole bodies (SPBs) located in the mother cell to inhibit MEN signaling. In contrast, the kinase does not associate with the SPB in the bud. Thus, only when a MEN bearing SPB leaves the mother cell and the spindle is accurately positioned along the mother–bud axis can MEN signaling occur and cell division proceed. Here, we describe a mechanism ensuring that Kin4 only associates with mother cell-located SPBs. The bud-localized MEN regulator Lte1, whose molecular function has long been unclear, prevents Kin4 that escapes into the bud from associating with SPBs in the daughter cell. PMID:21709215

  2. Lte1 promotes mitotic exit by controlling the localization of the spindle position checkpoint kinase Kin4.

    PubMed

    Falk, Jill E; Chan, Leon Y; Amon, Angelika

    2011-08-02

    For a daughter cell to receive a complete genomic complement, it is essential that the mitotic spindle be positioned accurately within the cell. In budding yeast, a signaling system known as the spindle position checkpoint (SPOC) monitors spindle position and regulates the activity of the mitotic exit network (MEN), a GTPase signaling pathway that promotes exit from mitosis. The protein kinase Kin4 is a central component of the spindle position checkpoint. Kin4 primarily localizes to the mother cell and associates with spindle pole bodies (SPBs) located in the mother cell to inhibit MEN signaling. In contrast, the kinase does not associate with the SPB in the bud. Thus, only when a MEN bearing SPB leaves the mother cell and the spindle is accurately positioned along the mother-bud axis can MEN signaling occur and cell division proceed. Here, we describe a mechanism ensuring that Kin4 only associates with mother cell-located SPBs. The bud-localized MEN regulator Lte1, whose molecular function has long been unclear, prevents Kin4 that escapes into the bud from associating with SPBs in the daughter cell.

  3. Effect of positive feedback loops on the robustness of oscillations in the network of cyclin-dependent kinases driving the mammalian cell cycle.

    PubMed

    Gérard, Claude; Gonze, Didier; Goldbeter, Albert

    2012-09-01

    The transitions between the G(1), S, G(2) and M phases of the mammalian cell cycle are driven by a network of cyclin-dependent kinases (Cdks), whose sequential activation is regulated by intertwined negative and positive feedback loops. We previously proposed a detailed computational model for the Cdk network, and showed that this network is capable of temporal self-organization in the form of sustained oscillations, which govern ordered progression through the successive phases of the cell cycle [Gérard and Goldbeter (2009) Proc Natl Acad Sci USA 106, 21643-21648]. We subsequently proposed a skeleton model for the cell cycle that retains the core regulatory mechanisms of the detailed model [Gérard and Goldbeter (2011) Interface Focus 1, 24-35]. Here we extend this skeleton model by incorporating Cdk regulation through phosphorylation/dephosphorylation and by including the positive feedback loops that underlie the dynamics of the G(1)/S and G(2)/M transitions via phosphatase Cdc25 and via phosphatase Cdc25 and kinase Wee1, respectively. We determine the effects of these positive feedback loops and ultrasensitivity in phosphorylation/dephosphorylation on the dynamics of the Cdk network. The multiplicity of positive feedback loops as well as the existence of ultrasensitivity promote the occurrence of bistability and increase the amplitude of the oscillations in the various cyclin/Cdk complexes. By resorting to stochastic simulations, we further show that the presence of multiple, redundant positive feedback loops in the G(2)/M transition of the cell cycle markedly enhances the robustness of the Cdk oscillations with respect to molecular noise.

  4. The Src homology 2 protein Shb promotes cell cycle progression in murine hematopoietic stem cells by regulation of focal adhesion kinase activity

    SciTech Connect

    Gustafsson, Karin; Heffner, Garrett; Wenzel, Pamela L.; Curran, Matthew; Grawé, Jan; McKinney-Freeman, Shannon L.; Daley, George Q.; Welsh, Michael

    2013-07-15

    The widely expressed adaptor protein Shb has previously been reported to contribute to T cell function due to its association with the T cell receptor and furthermore, several of Shb's known interaction partners are established regulators of blood cell development and function. In addition, Shb deficient embryonic stem cells displayed reduced blood cell colony formation upon differentiation in vitro. The aim of the current study was therefore to explore hematopoietic stem and progenitor cell function in the Shb knockout mouse. Shb deficient bone marrow contained reduced relative numbers of long-term hematopoietic stem cells (LT-HSCs) that exhibited lower proliferation rates. Despite this, Shb knockout LT-HSCs responded promptly by entering the cell cycle in response to genotoxic stress by 5-fluorouracil treatment. In competitive LT-HSC transplantations, Shb null cells initially engrafted as well as the wild-type cells but provided less myeloid expansion over time. Moreover, Shb knockout bone marrow cells exhibited elevated basal activities of focal adhesion kinase/Rac1/p21-activated kinase signaling and reduced responsiveness to Stem Cell Factor stimulation. Consequently, treatment with a focal adhesion kinase inhibitor increased Shb knockout LT-HSC proliferation. The altered signaling characteristics thus provide a plausible mechanistic explanation for the changes in LT-HSC proliferation since these signaling intermediates have all been shown to participate in LT-HSC cell cycle control. In summary, the loss of Shb dependent signaling in bone marrow cells, resulting in elevated focal adhesion kinase activity and reduced proliferative responses in LT-HSCs under steady state hematopoiesis, confers a disadvantage to the maintenance of LT-HSCs over time. -- Highlights: • Shb is an adaptor protein operating downstream of tyrosine kinase receptors. • Shb deficiency reduces hematopoietic stem cell proliferation. • The proliferative effect of Shb occurs via increased

  5. The alpha-fetoprotein (AFP) third domain: a search for AFP interaction sites of cell cycle proteins.

    PubMed

    Mizejewski, G J

    2016-09-01

    The carboxy-terminal third domain of alpha-fetoprotein (AFP-3D) is known to harbor binding and/or interaction sites for hydrophobic ligands, receptors, and binding proteins. Such reports have established that AFP-3D consists of amino acid (AA) sequence stretches on the AFP polypeptide that engages in protein-to-protein interactions with various ligands and receptors. Using a computer software program specifically designed for such interactions, the present report identified AA sequence fragments on AFP-3D that could potentially interact with a variety of cell cycle proteins. The cell cycle proteins identified were (1) cyclins, (2) cyclin-dependent kinases, (3) cell cycle-associated proteins (inhibitors, checkpoints, initiators), and (4) ubiquitin ligases. Following detection of the AFP-3D to cell cycle protein interaction sites, the computer-derived AFP localization AA sequences were compared and aligned with previously reported hydrophobic ligand and receptor interaction sites on AFP-3D. A literature survey of the association of cell cycle proteins with AFP showed both positive relationships and correlations. Previous reports of experimental AFP-derived peptides effects on various cell cycle proteins served to confirm and verify the present computer cell cycle protein identifications. Cell cycle protein interactions with AFP-CD peptides have been reported in cultured MCF-7 breast cancer cells subjected to mRNA microarray analysis. After 7 days in culture with MCF-7 cells, the AFP-derived peptides were shown to downregulate cyclin E, SKP2, checkpoint suppressors, cyclin-dependent kinases, and ubiquitin ligases that modulate cyclin E/CdK2 transition from the G1 to the S-phase of the cell cycle. Thus, the experimental data on AFP-CD interaction with cell cycle proteins were consistent with the "in silico" findings.

  6. The Botrytis cinerea PAK kinase BcCla4 mediates morphogenesis, growth and cell cycle regulating processes downstream of BcRac.

    PubMed

    Minz-Dub, Anna; Sharon, Amir

    2017-02-06

    Rac proteins are involved in a variety of cellular processes. Effector proteins that interact with active Rac convey the GTPase-generated signal to downstream developmental cascades and processes. Here we report on the analysis of the main effector and signal cascade downstream of BcRac, the Rac homolog of the grey mold fungus Botrytis cinerea. Several lines of evidence highlighted the p21-activated kinase Cla4 as an important effector of Rac in fungi. Analysis of Δbccla4 strains revealed that the BcCla4 protein was sufficient to mediate all of the examined BcRac-driven processes, including hyphal growth and morphogenesis, conidia production and pathogenicity. In addition, the Δbccla4 strains had altered nuclei content, a phenomenon that was previously observed in Δbcrac isolates, thus connecting the BcRac/BcCla4 module with cell cycle control. Further analyses revealed that BcRac/BcCla4 control mitotic entry through changes in phosphorylation status of the cyclin dependent kinase BcCdk1. The complete cascade includes the kinase BcWee1, which is downstream of BcCla4 and upstream of BcCdk1. These results provide a mechanistic insight on the connection of cell cycle, morphogenesis and pathogenicity in fungi, and position BcCla4 as the most essential effector and central regulator of all of these processes downstream of BcRac.

  7. Combining Immune Checkpoint Inhibitors and Kinase-Inhibiting Supramolecular Therapeutics for Enhanced Anticancer Efficacy.

    PubMed

    Kulkarni, Ashish; Natarajan, Siva Kumar; Chandrasekar, Vineethkrishna; Pandey, Prithvi Raj; Sengupta, Shiladitya

    2016-09-29

    A major limitation of immune checkpoint inhibitors is that only a small subset of patients achieve durable clinical responses. This necessitates the development of combinatorial regimens with immunotherapy. However, some combinations, such as MEK- or PI3K-inhibitors with a PD1-PDL1 checkpoint inhibitor, are pharmacologically challenging to implement. We rationalized that such combinations can be enabled using nanoscale supramolecular targeted therapeutics, which spatially home into tumors and exert temporally sustained inhibition of the target. Here we describe two case studies where nanoscale MEK- and PI3K-targeting supramolecular therapeutics were engineered using a quantum mechanical all-atomistic simulation-based approach. The combinations of nanoscale MEK- and PI3K-targeting supramolecular therapeutics with checkpoint PDL1 and PD1 inhibitors exert enhanced antitumor outcome in melanoma and breast cancers in vivo, respectively. Additionally, the temporal sequence of administration impacts the outcome. The combination of supramolecular therapeutics and immunotherapy could emerge as a paradigm shift in the treatment of cancer.

  8. Cell cycle- and protein kinase C-specific effects of resiniferatoxin and resiniferonol 9,13,14-ortho-phenylacetate in intestinal epithelial cells.

    PubMed

    Frey, Mark R; Clark, Jennifer A; Bateman, Nicholas W; Kazanietz, Marcelo G; Black, Adrian R; Black, Jennifer D

    2004-05-15

    We have previously reported that protein kinase C (PKC) signaling can trigger hallmark events of cell cycle withdrawal in intestinal epithelial cells, including downregulation of cyclin D1, induction of p21(Waf1/Cip1), and activation of the growth suppressor function of pocket proteins. In the current study, we compared the cell cycle- and PKC-specific effects of the vanilloid resiniferatoxin (RTX), its parent diterpene resiniferonol 9,13,14-ortho-phenylacetate (ROPA), and the PKC agonist PMA in the IEC-18 non-transformed intestinal crypt cell line. ROPA and PMA were found to produce strikingly similar alterations in cell cycle progression and PKC activity in IEC-18 cells, although PMA was approximately 1000-fold more potent in producing these effects. Both agents induced a transient PKC-dependent blockade in G1---> S progression associated with transient downregulation of cyclin D1 and induction of p21(Waf1/Cip1). In contrast, RTX produced a prolonged PKC-independent cell cycle arrest in G(0)/G(1) phase which was maintained for longer than 24h. This arrest was vanilloid receptor-independent and associated with prolonged downregulation of cyclin D1 mRNA and protein, with little effect on levels of p21(Waf1/Cip1). Combined exposure to RTX and ROPA produced a sustained and complete cell cycle blockade in IEC-18 cells, associated with depletion of cyclin D1 and sustained enhancement of p21(Waf1/Cip1) levels. PMA, ROPA, RTX and the RTX/ROPA combination were capable of activating ERK1/2 signaling in IEC-18 cells, albeit with different kinetics. In contrast, only PMA and ROPA activated JNK1/2 and p38 in this system. Notably, some preparations of commercially obtained RTX produced effects indistinguishable from those of the RTX/ROPA combination, suggesting that certain batches of the compound may contain significant amounts of ROPA (or another PKC agonist activity). Together, these data demonstrate that structurally related compounds can produce similar cell cycle

  9. Structural analysis reveals features of the spindle checkpoint kinase Bub1–kinetochore subunit Knl1 interaction

    PubMed Central

    Krenn, Veronica; Wehenkel, Annemarie; Santaguida, Stefano

    2012-01-01

    The function of the essential checkpoint kinases Bub1 and BubR1 requires their recruitment to mitotic kinetochores. Kinetochore recruitment of Bub1 and BubR1 is proposed to rely on the interaction of the tetratricopeptide repeats (TPRs) of Bub1 and BubR1 with two KI motifs in the outer kinetochore protein Knl1. We determined the crystal structure of the Bub1 TPRs in complex with the cognate Knl1 KI motif and compared it with the structure of the equivalent BubR1TPR–KI motif complex. The interaction developed along the convex surface of the TPR assembly. Point mutations on this surface impaired the interaction of Bub1 and BubR1 with Knl1 in vitro and in vivo but did not cause significant displacement of Bub1 and BubR1 from kinetochores. Conversely, a 62-residue segment of Bub1 that includes a binding domain for the checkpoint protein Bub3 and is C terminal to the TPRs was necessary and largely sufficient for kinetochore recruitment of Bub1. These results shed light on the determinants of kinetochore recruitment of Bub1. PMID:22331848

  10. Aurora B Kinase Regulates the Postmitotic Endoreduplication Checkpoint via Phosphorylation of the Retinoblastoma Protein at Serine 780

    PubMed Central

    Nair, Jayasree S.; Ho, Alan L.; Tse, Archie N.; Coward, Jesse; Cheema, Haider; Ambrosini, Grazia; Keen, Nicholas

    2009-01-01

    The phenotypic change characteristic of Aurora B inhibition is the induction of polyploidy. Utilizing specific siRNA duplexes and a selective small molecule inhibitor (AZD1152) to inhibit Aurora B activity in tumor cells, we sought to elucidate the mechanism by which Aurora B inhibition results in polyploidy. Cells treated with AZD1152 progressed through mitosis with misaligned chromosomes and exited without cytokinesis and subsequently underwent endoreduplication of DNA despite activation of a p53-dependent pseudo G1 checkpoint. Concomitant with polyploid cell formation, we observed the appearance of Rb hypophosphorylation, an event that occurred independently of cyclin-dependent kinase inhibition. We went on to discover that Aurora B directly phosphorylates Rb at serine 780 both in vitro and in vivo. This novel interaction plays a critical role in regulating the postmitotic checkpoint to prevent endoreduplication after an aberrant mitosis. Thus, we propose for the first time that Aurora B determines cellular fate after an aberrant mitosis by directly regulating the Rb tumor suppressor protein. PMID:19225156

  11. The effect of ataxia-telangiectasia mutated kinase-dependent hyperphosphorylation of checkpoint kinase-2 on oligodeoxynucleotide 7909 containing CpG motifs-enhanced sensitivity to X-rays in human lung adenocarcinoma A549 cells

    PubMed Central

    Liu, Xiaoqun; Liu, Xiangdong; Qiao, Tiankui; Chen, Wei; Yuan, Sujuan

    2015-01-01

    Objective The aim of the study reported here was to further investigate the potential effect of ataxia-telangiectasia mutated (ATM) kinase-dependent hyperphosphorylation of checkpoint kinase-2 (Chk2) on radiosensitivity enhanced by oligodeoxynucleotide 7909 containing CpG motifs (CpG ODN7909) in human lung adenocarcinoma A549 cells. Methods In vitro A549 cells were randomly separated into control, CpG, X-ray, CpG+ X-ray, ATM kinase-small interfering RNA (siRNA)+CpG+X-ray (ATM-siRNA), and Chk2-siRNA+CpG+X-ray (Chk2-siRNA) groups. siRNAs were adopted to silence the ATM and Chk2 genes. Expression and phosphorylation of ATM kinase and Chk2 were detected by Western blot assay. Cell colonies were observed under inverted phase-contrast microscopy. Cellular survival curves were fitted using a multi-target single-hitting model. Cell cycle and apoptosis were analyzed by flow cytometry. Results Expression of ATM kinase and Chk2 was similar among the control, CpG, X-ray, and CpG+X-ray groups. Phosphorylated ATM kinase and Chk2 were significantly increased in the CpG+X-ray group compared with in the X-ray group (t=6.00, P<0.01 and t=3.13, P<0.05, respectively), though these were hardly detected in the control and CpG groups. However, expression of ATM kinase and Chk2 was clearly downregulated in the ATM-siRNA and Chk2-siRNA groups, respectively. Similarly, their phosphorylation levels were also significantly decreased in the ATM-siRNA group (t=14.35, P<0.01 and t=8.46, P<0.01, respectively) and a significant decrease in phosphorylated Chk2 was observed in the Chk2-siRNA group (t=7.28, P<0.01) when compared with the CpG+X-ray group. Further, the number of A549 cells at Gap 2/mitotic phase and the apoptosis rate were clearly increased in the CpG+X-ray group compared with in the other groups (all P<0.05). The multi-target single-hitting model showed that the sensitization enhancement ratio calculated by mean death dose was 1.39 in CpG+X-ray group (vs 1.04 and 1.03 in the ATM

  12. The metabolic checkpoint kinase mTOR is essential for interleukin-15 signaling during NK cell development and activation

    PubMed Central

    Marçais, Antoine; Degouve, Sophie; Viel, Sébastien; Fenis, Aurore; Rabilloud, Jessica; Mayol, Katia; Tavares, Armelle; Bienvenu, Jacques; Gangloff, Yann-Gaël; Gilson, Eric; Vivier, Eric; Walzer, Thierry

    2014-01-01

    Interleukin-15 (IL-15) controls both the homeostasis and the peripheral activation of Natural Killer (NK) cells. The molecular basis for this duality of action remains unknown. Here we report that the metabolic checkpoint kinase mTOR is activated and boosts bioenergetic metabolism upon NK cell exposure to high concentrations of IL-15 whereas low doses of IL-15 only triggers the phosphorylation of the transcription factor STAT5. mTOR stimulates NK cell growth and nutrient uptake and positively feeds back onto the IL-15 receptor. This process is essential to sustain NK cell proliferation during development and acquisition of cytolytic potential upon inflammation or virus infection. The mTORC1 inhibitor rapamycin inhibits NK cell cytotoxicity both in mouse and human, which likely contribute to the immunosuppressant activities of this drug in different clinical settings. PMID:24973821

  13. Targeted disruption of the murine homeodomain-interacting protein kinase-2 causes growth deficiency in vivo and cell cycle arrest in vitro.

    PubMed

    Trapasso, Francesco; Aqeilan, Rami I; Iuliano, Rodolfo; Visone, Rosa; Gaudio, Eugenio; Ciuffini, Laura; Alder, Hansjuerg; Paduano, Francesco; Pierantoni, Giovanna Maria; Soddu, Silvia; Croce, Carlo M; Fusco, Alfredo

    2009-04-01

    The homeodomain-interacting protein kinase 2 (HIPK2) protein is a member of a recently identified family of nuclear protein kinases that are well conserved in various organisms. HIPK2 can bind to several homeotic factors and to a series of proteins involved in the regulation of cell survival and proliferation in response to morphogenetic and genotoxic signals. Here we report Hipk2-targeted disruption in mouse; Hipk2(-/-) mice are viable and fertile but significantly smaller than their wild-type littermates. This feature is present at birth and retained throughout the mouse adulthood. Mouse embryo fibroblasts from Hipk2(-/-) mice show a reduced proliferation rate, compared to the wild-type counterparts, with accumulation in the G0/G1 phase of the cell cycle and altered levels of the cell cycle regulators cyclin D and CDK6. Restoration of wild-type HIPK2 expression in Hipk2(-/-) cells rescues the normal phenotype supporting a role for HIPK2 in the regulation of cell proliferation.

  14. Phospho-Ser383-Elk-1 is localized to the mitotic spindles during cell cycle and interacts with mitotic kinase Aurora-A.

    PubMed

    Demir, Ozlem; Kurnaz, Isil Aksan

    2013-10-01

    Elk-1 is a member of the E-twenty-six (ETS) domain superfamily of transcription factors and has been traditionally associated with mitogen-induced immediate early gene transcription upon phosphorylation by mitogen activated protein kinases (ERK/MAPK). Elk-1 is not only upregulated but also phosphorylated in brain tumour cells. However, in this study, we show for the first time that S383-phosphorylated Elk-1 (P-S383-Elk-1) is associated with mitotic spindle poles from metaphase through telophase and relocates to the spindle midbody during cytokinesis, while Thr417Ala mutation is associated with DNA throughout mitosis. Serine 383 phosphorylation appears to be important for polar localization of Elk-1, since exogenous protein including serine-to-alanine mutation was seen to be distributed throughout the spindle fibres. We further show that Elk-1 interacts with the cell cycle kinase Aurora-A, and when Aurora inhibitors are used, P-S383-Elk-1 fails to localize to the poles and remains associated with DNA. Apart from one transcriptional repressor molecule, Kaiso, this is the first time a transactivator was shown to possess such mitotic localization and interaction. The functional significance and detailed mechanism of this cell cycle-related localization of Elk-1 are yet to be determined.

  15. Decursin inhibits growth of human bladder and colon cancer cells via apoptosis, G1-phase cell cycle arrest and extracellular signal-regulated kinase activation.

    PubMed

    Kim, Wun-Jae; Lee, Se-Jung; Choi, Young Deuk; Moon, Sung-Kwon

    2010-04-01

    Decursin, a pyranocoumarin isolated from the Korean Angelica gigas root, has demonstrated anti-cancer properties. In the present study, we found that decursin inhibited cell viability in cultured human urinary bladder cancer 235J cells and colon cancer HCT116 cells. The inhibited proliferation was due to apoptotic induction, because both cells treated with decursin dose-dependently showed a sub-G1 phase accumulation and an increased cytoplasmic DNA-histone complex. Cell death caused by decursin was also associated with the down-regulation of anti-apoptotic factor Bcl-2 and the up-regulation of pro-apoptotic molecules cytochrome c, caspase 3 and Bax. Treatment of both types of cancer cells with decursin resulted in G1-phase cell cycle arrest, as revealed by FACS analyses. In addition, decursin increased protein levels of p21WAF1 with a decrease in cyclins and cyclin dependent kinases (CDKs). Furthermore, decursin induced the activation of extracellular signal-regulated kinases (ERK) in both cancer cell lines, with the notable exceptions of c-Jun N-terminal kinase (JNK) and p38 mitogen activated protein (MAP) kinase. Finally, pretreatment with ERK-specific inhibitor PD98059 reversed decursin-induced p21WAF1 expression and decursin-inhibited cell growth. Thus, these findings suggest that decursin has potential therapeutic efficacy for the treatment of bladder and colon cancer.

  16. Cellular Inhibition of Checkpoint Kinase 2 (Chk2) and Potentiation of Camptothecins and Radiation by the Novel Chk2 Inhibitor PV1019 [7-Nitro-1H-indole-2-carboxylic acid {4-[1-(guanidinohydrazone)-ethyl]-phenyl}-amide

    PubMed Central

    Jobson, Andrew G.; Lountos, George T.; Lorenzi, Philip L.; Llamas, Jenny; Connelly, John; Cerna, David; Tropea, Joseph E.; Onda, Akikazu; Zoppoli, Gabriele; Kondapaka, Sudhir; Zhang, Guangtao; Caplen, Natasha J.; Cardellina, John H.; Yoo, Stephen S.; Monks, Anne; Self, Christopher; Waugh, David S.; Shoemaker, Robert H.

    2009-01-01

    Chk2 is a checkpoint kinase involved in the ataxia telangiectasia mutated pathway, which is activated by genomic instability and DNA damage, leading to either cell death (apoptosis) or cell cycle arrest. Chk2 provides an unexplored therapeutic target against cancer cells. We recently reported 4,4′-diacetyldiphenylurea-bis(guanylhydrazone) (NSC 109555) as a novel chemotype Chk2 inhibitor. We have now synthesized a derivative of NSC 109555, PV1019 (NSC 744039) [7-nitro-1H-indole-2-carboxylic acid {4-[1-(guanidinohydrazone)-ethyl]-phenyl}-amide], which is a selective submicromolar inhibitor of Chk2 in vitro. The cocrystal structure of PV1019 bound in the ATP binding pocket of Chk2 confirmed enzymatic/biochemical observations that PV1019 acts as a competitive inhibitor of Chk2 with respect to ATP. PV1019 was found to inhibit Chk2 in cells. It inhibits Chk2 autophosphorylation (which represents the cellular kinase activation of Chk2), Cdc25C phosphorylation, and HDMX degradation in response to DNA damage. PV1019 also protects normal mouse thymocytes against ionizing radiation-induced apoptosis, and it shows synergistic antiproliferative activity with topotecan, camptothecin, and radiation in human tumor cell lines. We also show that PV1019 and Chk2 small interfering RNAs can exert antiproliferative activity themselves in the cancer cells with high Chk2 expression in the NCI-60 screen. These data indicate that PV1019 is a potent and selective inhibitor of Chk2 with chemotherapeutic and radiosensitization potential. PMID:19741151

  17. Chronic signaling via the metabolic checkpoint kinase mTORC1 induces macrophage granuloma formation and marks sarcoidosis progression.

    PubMed

    Linke, Monika; Pham, Ha Thi Thanh; Katholnig, Karl; Schnöller, Thomas; Miller, Anne; Demel, Florian; Schütz, Birgit; Rosner, Margit; Kovacic, Boris; Sukhbaatar, Nyamdelger; Niederreiter, Birgit; Blüml, Stephan; Kuess, Peter; Sexl, Veronika; Müller, Mathias; Mikula, Mario; Weckwerth, Wolfram; Haschemi, Arvand; Susani, Martin; Hengstschläger, Markus; Gambello, Michael J; Weichhart, Thomas

    2017-03-01

    The aggregation of hypertrophic macrophages constitutes the basis of all granulomatous diseases, such as tuberculosis or sarcoidosis, and is decisive for disease pathogenesis. However, macrophage-intrinsic pathways driving granuloma initiation and maintenance remain elusive. We found that activation of the metabolic checkpoint kinase mTORC1 in macrophages by deletion of the gene encoding tuberous sclerosis 2 (Tsc2) was sufficient to induce hypertrophy and proliferation, resulting in excessive granuloma formation in vivo. TSC2-deficient macrophages formed mTORC1-dependent granulomatous structures in vitro and showed constitutive proliferation that was mediated by the neo-expression of cyclin-dependent kinase 4 (CDK4). Moreover, mTORC1 promoted metabolic reprogramming via CDK4 toward increased glycolysis while simultaneously inhibiting NF-κB signaling and apoptosis. Inhibition of mTORC1 induced apoptosis and completely resolved granulomas in myeloid TSC2-deficient mice. In human sarcoidosis patients, mTORC1 activation, macrophage proliferation and glycolysis were identified as hallmarks that correlated with clinical disease progression. Collectively, TSC2 maintains macrophage quiescence and prevents mTORC1-dependent granulomatous disease with clinical implications for sarcoidosis.

  18. Checkpoint kinase1 (CHK1) is an important biomarker in breast cancer having a role in chemotherapy response

    PubMed Central

    Al-kaabi, M M; Alshareeda, A T; Jerjees, D A; Muftah, A A; Green, A R; Alsubhi, N H; Nolan, C C; Chan, S; Cornford, E; Madhusudan, S; Ellis, I O; Rakha, E A

    2015-01-01

    Background: Checkpoint kinase1 (CHK1), which is a key component of DNA-damage-activated checkpoint signalling response, may have a role in breast cancer (BC) pathogenesis and influence response to chemotherapy. This study investigated the clinicopathological significance of phosphorylated CHK1 (pCHK1) protein in BC. Method: pCHK1 protein expression was assessed using immunohistochemistry in a large, well-characterized annotated series of early-stage primary operable invasive BC prepared as tissue microarray (n=1200). Result: pCHK1 showed nuclear and/or cytoplasmic expression. Tumours with nuclear expression showed positive associations with favourable prognostic features such as lower grade, lower mitotic activity, expression of hormone receptor and lack of expression of KI67 and PI3K (P<0.001). On the other hand, cytoplasmic expression was associated with features of poor prognosis such as higher grade, triple-negative phenotype and expression of KI67, p53, AKT and PI3K. pCHK1 expression showed an association with DNA damage response (ATM, RAD51, BRCA1, KU70/KU80, DNA-PKCα and BARD1) and sumoylation (UBC9 and PIASγ) biomarkers. Subcellular localisation of pCHK1 was associated with the expression of the nuclear transport protein KPNA2. Positive nuclear expression predicted better survival outcome in patients who did not receive chemotherapy in the whole series and in ER-positive tumours. In ER-negative and triple-negative subgroups, nuclear pCHK1 predicted shorter survival in patients who received cyclophosphamide, methotrexate and 5-florouracil chemotherapy. Conclusions: Our data suggest that pCHK1 may have prognostic and predictive significance in BC. Subcellular localisation of pCHK1 protein is related to its function. PMID:25688741

  19. Checkpointing filesystem

    DOEpatents

    Gara, Alan G.; Giampapa, Mark E.; Steinmacher-Burow, Burkhard D.

    2005-05-17

    The present in invention is directed to a checkpointing filesystem of a distributed-memory parallel supercomputer comprising a node that accesses user data on the filesystem, the filesystem comprising an interface that is associated with a disk for storing the user data. The checkpointing filesystem provides for taking and checkpoint of the filesystem and rolling back to a previously taken checkpoint, as well as for writing user data to and deleting user data from the checkpointing filesystem. The checkpointing filesystem provides a recently written file allocation table (WFAT) for maintaining information regarding the user data written since a previously taken checkpoint and a recently deleted file allocation table (DFAT) for maintaining information regarding user data deleted from since the previously taken checkpoint, both of which are utilized by the checkpointing filesystem to take a checkpoint of the filesystem and rollback the filesystem to a previously taken checkpoint, as well as to write and delete user data from the checkpointing filesystem.

  20. SCF(FBXW7α) modulates the intra-S-phase DNA-damage checkpoint by regulating Polo like kinase-1 stability.

    PubMed

    Giráldez, Servando; Herrero-Ruiz, Joaquín; Mora-Santos, Mar; Japón, Miguel Á; Tortolero, Maria; Romero, Francisco

    2014-06-30

    The intra-S-checkpoint is essential to control cell progression through S phase under normal conditions and in response to replication stress. When DNA lesions are detected, replication fork progression is blocked allowing time for repair to avoid genomic instability and the risk of cancer. DNA replication initiates at many origins of replication in eukaryotic cells, where a series of proteins form pre-replicative complexes (pre-RCs) that are activated to become pre-initiation complexes and ensure a single round of replication in each cell cycle. PLK1 plays an important role in the regulation of DNA replication, contributing to the regulation of pre-RCs formation by phosphorylating several proteins, under both normal and stress conditions. Here we report that PLK1 is ubiquitinated and degraded by SCFFBXW7α/proteasome. Moreover, we identified a new Cdc4 phosphodegron in PLK1, conserved from yeast to humans, whose mutation prevents PLK1 destruction. We established that endogenous SCFFBXW7α degrades PLK1 in the G1 and S phases of an unperturbed cell cycle and in S phase following UV irradiation. Furthermore, we showed that FBXW7α overexpression or UV irradiation prevented the loading of proteins onto chromatin to form pre-RCs and, accordingly, reduced cell proliferation. We conclude that PLK1 degradation mediated by SCFFBXW7α modulates the intra-S-phase checkpoint.

  1. DNA damage checkpoint recovery and cancer development

    SciTech Connect

    Wang, Haiyong; Zhang, Xiaoshan; Teng, Lisong; Legerski, Randy J.

    2015-06-10

    Cell cycle checkpoints were initially presumed to function as a regulator of cell cycle machinery in response to different genotoxic stresses, and later found to play an important role in the process of tumorigenesis by acting as a guard against DNA over-replication. As a counterpart of checkpoint activation, the checkpoint recovery machinery is working in opposition, aiming to reverse the checkpoint activation and resume the normal cell cycle. The DNA damage response (DDR) and oncogene induced senescence (OIS) are frequently found in precancerous lesions, and believed to constitute a barrier to tumorigenesis, however, the DDR and OIS have been observed to be diminished in advanced cancers of most tissue origins. These findings suggest that when progressing from pre-neoplastic lesions to cancer, DNA damage checkpoint barriers are overridden. How the DDR checkpoint is bypassed in this process remains largely unknown. Activated cytokine and growth factor-signaling pathways were very recently shown to suppress the DDR and to promote uncontrolled cell proliferation in the context of oncovirus infection. In recent decades, data from cell line and tumor models showed that a group of checkpoint recovery proteins function in promoting tumor progression; data from patient samples also showed overexpression of checkpoint recovery proteins in human cancer tissues and a correlation with patients' poor prognosis. In this review, the known cell cycle checkpoint recovery proteins and their roles in DNA damage checkpoint recovery are reviewed, as well as their implications in cancer development. This review also provides insight into the mechanism by which the DDR suppresses oncogene-driven tumorigenesis and tumor progression. - Highlights: • DNA damage checkpoint works as a barrier to cancer initiation. • DDR machinary response to genotoxic and oncogenic stress in similar way. • Checkpoint recovery pathways provide active signaling in cell cycle control. • Checkpoint

  2. Inhibition of phosphatidylinositol 3-kinase promotes tumor cell resistance to chemotherapeutic agents via a mechanism involving delay in cell cycle progression

    SciTech Connect

    McDonald, Gail T.; Sullivan, Richard; Pare, Genevieve C.; Graham, Charles H.

    2010-11-15

    Approaches to overcome chemoresistance in cancer cells have involved targeting specific signaling pathways such as the phosphatidylinositol 3-kinase (PI3K) pathway, a stress response pathway known to be involved in the regulation of cell survival, apoptosis and growth. The present study determined the effect of PI3K inhibition on the clonogenic survival of human cancer cells following exposure to various chemotherapeutic agents. Treatment with the PI3K inhibitors LY294002 or Compound 15e resulted in increased survival of MDA-MB-231 breast carcinoma cells after exposure to doxorubicin, etoposide, 5-fluorouracil, and vincristine. Increased survival following PI3K inhibition was also observed in DU-145 prostate, HCT-116 colon and A-549 lung carcinoma cell lines exposed to doxorubicin. Increased cell survival mediated by LY294002 was correlated with a decrease in cell proliferation, which was linked to an increase in the proportion of cells in the G{sub 1} phase of the cell cycle. Inhibition of PI3K signaling also resulted in higher levels of the cyclin-dependent kinase inhibitors p21{sup Waf1/Cip1} and p27{sup Kip1}; and knockdown of p27{sup kip1} with siRNA attenuated resistance to doxorubicin in cells treated with LY294002. Incubation in the presence of LY294002 after exposure to doxorubicin resulted in decreased cell survival. These findings provide evidence that PI3K inhibition leads to chemoresistance in human cancer cells by causing a delay in cell cycle; however, the timing of PI3K inhibition (either before or after exposure to anti-cancer agents) may be a critical determinant of chemosensitivity.

  3. Effects of fucoidan on proliferation, AMP-activated protein kinase, and downstream metabolism- and cell cycle-associated molecules in poorly differentiated human hepatoma HLF cells.

    PubMed

    Kawaguchi, Takumi; Hayakawa, Masako; Koga, Hironori; Torimura, Takuji

    2015-05-01

    Survival rates are low in patients with poorly differentiated hepatocellular carcinoma (HCC). Fucoidan, a sulfated polysaccharide derived from brown seaweed, has anticancer activity; however, the effects of fucoidan on poorly differentiated HCC remain unclear. In this study, we investigated the effects of fucoidan on AMP-activated protein kinase (AMPK), a proliferation regulator, and its downstream metabolism- and cell cycle-related molecules in a poorly differentiated human hepatoma HLF cell line. HLF cells were treated with fucoidan (10, 50, or 100 µg/ml; n=4) or phosphate buffered saline (control; n=4) for 96 h. Proliferation was evaluated by counting cells every 24 h. AMPK, TSC2, mTOR, GSK3β, acetyl-CoA carboxylase (ACC), ATP-citrate lyase, p53, cyclin D1, cyclin-dependent kinase (CDK) 4, and CDK6 expression and/or phosphorylation were examined by immunoblotting 24 h after treatment with 100 µg/ml fucoidan. Cell cycle progression was analyzed by fluorescence-activated cell sorter 48 h after treatment. Treatment with 50 or 100 µg/ml fucoidan significantly and dose- and time-dependently suppressed HLF cell proliferation (P<0.0001). Fucoidan induced AMPK phosphorylation on Ser172 24 h after treatment. Although no differences were seen in expression and phosphorylation levels of TSC2, mTOR, GSK3β, ATP-citrate lyase, and p53 between the control and fucoidan-treated HLF cells, fucoidan induced ACC phosphorylation on Ser79. Moreover, fucoidan decreased cyclin D1, CDK4 and CDK6 expression 24 h after treatment. Furthermore, HLF cells were arrested in the G1/S phase 48 h after fucoidan treatment. We demonstrated that fucoidan suppressed HLF cell proliferation with AMPK phosphorylation. We showed that fucoidan phosphorylated ACC and downregulated cyclin D1, CDK4 and CDK6 expression. Our findings suggest that fucoidan inhibits proliferation through AMPK-associated suppression of fatty acid synthesis and G1/S transition in HLF cells.

  4. Inhibition of checkpoint kinase 1 sensitizes lung cancer brain metastases to radiotherapy

    SciTech Connect

    Yang, Heekyoung; Yoon, Su Jin; Jin, Juyoun; Choi, Seung Ho; Seol, Ho Jun; Lee, Jung-Il; and others

    2011-03-04

    Research highlights: {yields} The most important therapeutic tool in brain metastasis is radiation therapy. {yields} Radiosensitivity of cancer cells was enhanced with treatment of Chk1 inhibitor. {yields} Depletion of Chk1 in cancer cells showed an enhancement of sensitivity to radiation. {yields} Chk1 can be a good target for enhancement of radiosensitivity. -- Abstract: The most important therapeutic tool in brain metastasis is radiation therapy. However, resistance to radiation is a possible cause of recurrence or treatment failure. Recently, signal pathways about DNA damage checkpoints after irradiation have been noticed. We investigated the radiosensitivity can be enhanced with treatment of Chk1 inhibitor, AZD7762 in lung cancer cell lines and xenograft models of lung cancer brain metastasis. Clonogenic survival assays showed enhancement of radiosensitivity with AZD7762 after irradiation of various doses. AZD7762 increased ATR/ATM-mediated Chk1 phosphorylation and stabilized Cdc25A, suppressed cyclin A expression in lung cancer cell lines. In xenograft models of lung cancer (PC14PE6) brain metastasis, AZD7762 significantly prolonged the median survival time in response to radiation. Depletion of Chk1 using shRNA also showed an enhancement of sensitivity to radiation in PC14PE6 cells. The results of this study support that Chk1 can be a good target for enhancement of radiosensitivity.

  5. Phosphorylation of MAP65-1 by Arabidopsis Aurora Kinases Is Required for Efficient Cell Cycle Progression1[OPEN

    PubMed Central

    Weimer, Annika K.; Stoppin-Mellet, Virginie; Kosetsu, Ken; Cedeño, Cesyen; Jaquinod, Michel; Njo, Maria; De Milde, Liesbeth; Tompa, Peter; Inzé, Dirk; Beeckman, Tom; Vantard, Marylin

    2017-01-01

    Aurora kinases are key effectors of mitosis. Plant Auroras are functionally divided into two clades. The alpha Auroras (Aurora1 and Aurora2) associate with the spindle and the cell plate and are implicated in controlling formative divisions throughout plant development. The beta Aurora (Aurora3) localizes to centromeres and likely functions in chromosome separation. In contrast to the wealth of data available on the role of Aurora in other kingdoms, knowledge on their function in plants is merely emerging. This is exemplified by the fact that only histone H3 and the plant homolog of TPX2 have been identified as Aurora substrates in plants. Here we provide biochemical, genetic, and cell biological evidence that the microtubule-bundling protein MAP65-1—a member of the MAP65/Ase1/PRC1 protein family, implicated in central spindle formation and cytokinesis in animals, yeasts, and plants—is a genuine substrate of alpha Aurora kinases. MAP65-1 interacts with Aurora1 in vivo and is phosphorylated on two residues at its unfolded tail domain. Its overexpression and down-regulation antagonistically affect the alpha Aurora double mutant phenotypes. Phospho-mutant analysis shows that Aurora contributes to the microtubule bundling capacity of MAP65-1 in concert with other mitotic kinases. PMID:27879390

  6. Phosphorylation of MAP65-1 by Arabidopsis Aurora Kinases Is Required for Efficient Cell Cycle Progression.

    PubMed

    Boruc, Joanna; Weimer, Annika K; Stoppin-Mellet, Virginie; Mylle, Evelien; Kosetsu, Ken; Cedeño, Cesyen; Jaquinod, Michel; Njo, Maria; De Milde, Liesbeth; Tompa, Peter; Gonzalez, Nathalie; Inzé, Dirk; Beeckman, Tom; Vantard, Marylin; Van Damme, Daniël

    2017-01-01

    Aurora kinases are key effectors of mitosis. Plant Auroras are functionally divided into two clades. The alpha Auroras (Aurora1 and Aurora2) associate with the spindle and the cell plate and are implicated in controlling formative divisions throughout plant development. The beta Aurora (Aurora3) localizes to centromeres and likely functions in chromosome separation. In contrast to the wealth of data available on the role of Aurora in other kingdoms, knowledge on their function in plants is merely emerging. This is exemplified by the fact that only histone H3 and the plant homolog of TPX2 have been identified as Aurora substrates in plants. Here we provide biochemical, genetic, and cell biological evidence that the microtubule-bundling protein MAP65-1-a member of the MAP65/Ase1/PRC1 protein family, implicated in central spindle formation and cytokinesis in animals, yeasts, and plants-is a genuine substrate of alpha Aurora kinases. MAP65-1 interacts with Aurora1 in vivo and is phosphorylated on two residues at its unfolded tail domain. Its overexpression and down-regulation antagonistically affect the alpha Aurora double mutant phenotypes. Phospho-mutant analysis shows that Aurora contributes to the microtubule bundling capacity of MAP65-1 in concert with other mitotic kinases.

  7. Variation in the checkpoint kinase 2 gene is associated with type 2 diabetes in multiple populations

    PubMed Central

    Franceschini, Nora; Avery, Christy L.; Baird, Lisa; Graff, Mariaelisa; Leppert, Mark; Chung, Jay H.; Zhang, Jinghui; Hanis, Craig; Boerwinkle, Eric; Volcik, Kelly A.; Grove, Megan L.; Mosley, Thomas H.; Gu, Charles; Heiss, Gerardo; Pankow, James S.; Couper, David J.; Ballantyne, Christie M.; Linda Kao, W. H.; Weder, Alan B.; Cooper, Richard S.; Ehret, Georg B.; O'Connor, Ashley A.; Chakravarti, Aravinda; Hunt, Steven C.

    2010-01-01

    Identification and characterization of the genetic variants underlying type 2 diabetes susceptibility can provide important understanding of the etiology and pathogenesis of type 2 diabetes. We previously identified strong evidence of linkage for type 2 diabetes on chromosome 22 among 3,383 Hypertension Genetic Epidemiology Network (HyperGEN) participants from 1,124 families. The checkpoint 2 (CHEK2) gene, an important mediator of cellular responses to DNA damage, is located 0.22 Mb from this linkage peak. In this study, we tested the hypothesis that the CHEK2 gene contains one or more polymorphic variants that are associated with type 2 diabetes in HyperGEN individuals. In addition, we replicated our findings in two other Family Blood Pressure Program (FBPP) populations and in the population-based Atherosclerosis Risk in Communities (ARIC) study. We genotyped 1,584 African-American and 1,531 white HyperGEN participants, 1,843 African-American and 1,569 white GENOA participants, 871 African-American and 1,009 white GenNet participants, and 4,266 African-American and 11,478 white ARIC participants for four single nucleotide polymorphisms (SNPs) in CHEK2. Using additive models, we evaluated the association of CHEK2 SNPs with type 2 diabetes in participants within each study population stratified by race, and in a meta-analysis, adjusting for age, age2, sex, sex-by-age interaction, study center, and relatedness. One CHEK2 variant, rs4035540, was associated with an increased risk of type 2 diabetes in HyperGEN participants, two replication samples, and in the meta-analysis. These results may suggest a new pathway in the pathogenesis of type 2 diabetes that involves pancreatic beta-cell damage and apoptosis. PMID:19855918

  8. Kick-starting the cell cycle: From growth-factor stimulation to initiation of DNA replication

    NASA Astrophysics Data System (ADS)

    Aguda, Baltazar D.

    2001-03-01

    The essential genes, proteins and associated regulatory networks involved in the entry into the mammalian cell cycle are identified, from activation of growth-factor receptors to intracellular signal transduction pathways that impinge on the cell cycle machinery and ultimately on the initiation of DNA replication. Signaling pathways mediated by the oncoproteins Ras and Myc induce the activation of cyclin-dependent kinases CDK4 and CDK2, and the assembly and firing of pre-replication complexes require a collaboration among E2F, CDK2, and Cdc7 kinase. A proposed core mechanism of the restriction point, the major checkpoint prior to commitment to DNA synthesis, involves cyclin E/CDK2, the phosphatase Cdc25A, and the CDK inhibitor p27Kip1.

  9. The Cell Cycle Regulator Phosphorylated Retinoblastoma Protein Is Associated with Tau Pathology in Several Tauopathies

    PubMed Central

    Stone, Jeremy G.; Siedlak, Sandra L.; Tabaton, Massimo; Hirano, Asao; Castellani, Rudy J.; Santocanale, Corrado; Perry, George; Smith, Mark A.; Zhu, Xiongwei; Lee, Hyoung-gon

    2011-01-01

    Retinoblastoma protein (pRb) is a ubiquitous 928 amino acid cell cycle regulatory molecule with diverse biological activities. One critical function of pRb is control of the G1-to-S phase checkpoint of the cell cycle. In the hypophosphorylated state, pRb suppresses the activity of E2F transcription factors thereby inhibiting transcription of cell cycle promoting genes. Upon phosphorylation, primarily by cyclin dependent kinases, phosphorylated pRb dissociates from E2F and permits cell cycle progression. We previously found phosphorylated pRb to be intimately associated with hyperphosphorylated tau-containing neurofibrillary tangles of Alzheimer disease (AD), the pathogenesis of which is believed to involve dysregulation of the cell cycle and marked neuronal death. Here, we used immunohistochemistry to investigate the presence of phosphorylated pRb in other distinct neurodegenerative diseases that share the common characteristic of hyperphosphorylated tau pathology and neuronal loss with AD. We found colocalized labeling of tau pathology and phosphorylated pRb in Pick disease and progressive supranuclear palsy (3 cases each), neurodegeneration with brain iron accumulation type 1 (2 cases) and Parkinson-amyotrophic lateral sclerosis of Guam, subacute sclerosing panencephalitis, frontotemporal dementia and Parkinsonism linked to chromosome 17 and dementia pugilistica (1 case each). These observations further implicate aberrant neuronal cell cycle progression in neurodegenerative diseases, particularly tauopathies, and suggest a novel target for therapeutic intervention. PMID:21666500

  10. Genome-Wide Analyses Identify Recurrent Amplifications of Receptor Tyrosine Kinases and Cell-Cycle Regulatory Genes in Diffuse Intrinsic Pontine Glioma

    PubMed Central

    Paugh, Barbara S.; Broniscer, Alberto; Qu, Chunxu; Miller, Claudia P.; Zhang, Junyuan; Tatevossian, Ruth G.; Olson, James M.; Geyer, J. Russell; Chi, Susan N.; da Silva, Nasjla Saba; Onar-Thomas, Arzu; Baker, Justin N.; Gajjar, Amar; Ellison, David W.; Baker, Suzanne J.

    2011-01-01

    Purpose Long-term survival for children with diffuse intrinsic pontine glioma (DIPG) is less than 10%, and new therapeutic targets are urgently required. We evaluated a large cohort of DIPGs to identify recurrent genomic abnormalities and gene expression signatures underlying DIPG. Patients and Methods Single-nucleotide polymorphism arrays were used to compare the frequencies of genomic copy number abnormalities in 43 DIPGs and eight low-grade brainstem gliomas with data from adult and pediatric (non-DIPG) glioblastomas, and expression profiles were evaluated using gene expression arrays for 27 DIPGs, six low-grade brainstem gliomas, and 66 nonbrainstem low-grade gliomas. Results Frequencies of specific large-scale and focal imbalances varied significantly between DIPGs and nonbrainstem pediatric glioblastomas. Focal amplifications of genes within the receptor tyrosine kinase–Ras–phosphoinositide 3-kinase signaling pathway were found in 47% of DIPGs, the most common of which involved PDGFRA and MET. Thirty percent of DIPGs contained focal amplifications of cell-cycle regulatory genes controlling retinoblastoma protein (RB) phosphorylation, and 21% had concurrent amplification of genes from both pathways. Some tumors showed heterogeneity in amplification patterns. DIPGs showed distinct gene expression signatures related to developmental processes compared with nonbrainstem pediatric high-grade gliomas, whereas expression signatures of low-grade brainstem and nonbrainstem gliomas were similar. Conclusion DIPGs comprise a molecularly related but distinct subgroup of pediatric gliomas. Genomic studies suggest that targeted inhibition of receptor tyrosine kinases and RB regulatory proteins may be useful therapies for DIPG. PMID:21931021

  11. Autophosphorylation of the Bacterial Tyrosine-Kinase CpsD Connects Capsule Synthesis with the Cell Cycle in Streptococcus pneumoniae.

    PubMed

    Nourikyan, Julien; Kjos, Morten; Mercy, Chryslène; Cluzel, Caroline; Morlot, Cécile; Noirot-Gros, Marie-Francoise; Guiral, Sébastien; Lavergne, Jean-Pierre; Veening, Jan-Willem; Grangeasse, Christophe

    2015-09-01

    Bacterial capsular polysaccharides (CPS) are produced by a multi-protein membrane complex, in which a particular type of tyrosine-autokinases named BY-kinases, regulate their polymerization and export. However, our understanding of the role of BY-kinases in these processes remains incomplete. In the human pathogen Streptococcus pneumoniae, the BY-kinase CpsD localizes at the division site and participates in the proper assembly of the capsule. In this study, we show that the cytoplasmic C-terminal end of the transmembrane protein CpsC is required for CpsD autophosphorylation and localization at mid-cell. Importantly, we demonstrate that the CpsC/CpsD complex captures the polysaccharide polymerase CpsH at the division site. Together with the finding that capsule is not produced at the division site in cpsD and cpsC mutants, these data show that CPS production occurs exclusively at mid-cell and is tightly dependent on CpsD interaction with CpsC. Next, we have analyzed the impact of CpsD phosphorylation on CPS production. We show that dephosphorylation of CpsD induces defective capsule production at the septum together with aberrant cell elongation and nucleoid defects. We observe that the cell division protein FtsZ assembles and localizes properly although cell constriction is impaired. DAPI staining together with localization of the histone-like protein HlpA further show that chromosome replication and/or segregation is defective suggesting that CpsD autophosphorylation interferes with these processes thus resulting in cell constriction defects and cell elongation. We show that CpsD shares structural homology with ParA-like ATPases and that it interacts with the chromosome partitioning protein ParB. Total internal reflection fluorescence microscopy imaging demonstrates that CpsD phosphorylation modulates the mobility of ParB. These data support a model in which phosphorylation of CpsD acts as a signaling system coordinating CPS synthesis with chromosome segregation

  12. Autophosphorylation of the Bacterial Tyrosine-Kinase CpsD Connects Capsule Synthesis with the Cell Cycle in Streptococcus pneumoniae

    PubMed Central

    Mercy, Chryslène; Cluzel, Caroline; Morlot, Cécile; Noirot-Gros, Marie-Francoise; Guiral, Sébastien; Lavergne, Jean-Pierre; Veening, Jan-Willem; Grangeasse, Christophe

    2015-01-01

    Bacterial capsular polysaccharides (CPS) are produced by a multi-protein membrane complex, in which a particular type of tyrosine-autokinases named BY-kinases, regulate their polymerization and export. However, our understanding of the role of BY-kinases in these processes remains incomplete. In the human pathogen Streptococcus pneumoniae, the BY-kinase CpsD localizes at the division site and participates in the proper assembly of the capsule. In this study, we show that the cytoplasmic C-terminal end of the transmembrane protein CpsC is required for CpsD autophosphorylation and localization at mid-cell. Importantly, we demonstrate that the CpsC/CpsD complex captures the polysaccharide polymerase CpsH at the division site. Together with the finding that capsule is not produced at the division site in cpsD and cpsC mutants, these data show that CPS production occurs exclusively at mid-cell and is tightly dependent on CpsD interaction with CpsC. Next, we have analyzed the impact of CpsD phosphorylation on CPS production. We show that dephosphorylation of CpsD induces defective capsule production at the septum together with aberrant cell elongation and nucleoid defects. We observe that the cell division protein FtsZ assembles and localizes properly although cell constriction is impaired. DAPI staining together with localization of the histone-like protein HlpA further show that chromosome replication and/or segregation is defective suggesting that CpsD autophosphorylation interferes with these processes thus resulting in cell constriction defects and cell elongation. We show that CpsD shares structural homology with ParA-like ATPases and that it interacts with the chromosome partitioning protein ParB. Total internal reflection fluorescence microscopy imaging demonstrates that CpsD phosphorylation modulates the mobility of ParB. These data support a model in which phosphorylation of CpsD acts as a signaling system coordinating CPS synthesis with chromosome segregation

  13. Targeting mixed lineage kinases in ER-positive breast cancer cells leads to G2/M cell cycle arrest and apoptosis.

    PubMed

    Wang, Limin; Gallo, Kathleen A; Conrad, Susan E

    2013-08-01

    Estrogen receptor (ER)-positive tumors represent the most common type of breast cancer, and ER-targeted therapies such as antiestrogens and aromatase inhibitors have therefore been widely used in breast cancer treatment. While many patients have benefited from these therapies, both innate and acquired resistance continue to be causes of treatment failure. Novel targeted therapeutics that could be used alone or in combination with endocrine agents to treat resistant tumors or to prevent their development are therefore needed. In this report, we examined the effects of inhibiting mixed-lineage kinase (MLK) activity on ER-positive breast cancer cells and non-tumorigenic mammary epithelial cells. Inhibition of MLK activity with the pan-MLK inhibitor CEP-1347 blocked cell cycle progression in G2 and early M phase, and induced apoptosis in three ER-positive breast cancer cell lines, including one with acquired antiestrogen resistance. In contrast, it had no effect on the cell cycle or apoptosis in two non-tumorigenic mammary epithelial cell lines. CEP-1347 treatment did not decrease the level of active ERK or p38 in any of the cell lines tested. However, it resulted in decreased JNK and NF-κB activity in the breast cancer cell lines. A JNK inhibitor mimicked the effects of CEP-1347 in breast cancer cells, and overexpression of c-Jun rescued CEP-1347-induced Bax expression. These results indicate that proliferation and survival of ER-positive breast cancer cells are highly dependent on MLK activity, and suggest that MLK inhibitors may have therapeutic efficacy for ER-positive breast tumors, including ones that are resistant to current endocrine therapies.

  14. G1 cell cycle arrest due to the inhibition of erbB family receptor tyrosine kinases does not require the retinoblastoma protein

    SciTech Connect

    Gonzales, Andrea J. . E-mail: Andrea.Gonzales@pfizer.com; Fry, David W.

    2005-02-01

    The erbB receptor family (EGFr, erbB-2, erbB-3, and erbB-4) consists of transmembrane glycoproteins that transduce extracellular signals to the nucleus when activated. erbB family members are widely expressed in epithelial, mesenchymal, and neuronal cells and contribute to the proliferation, differentiation, migration, and survival of these cell types. The present study evaluates the effects of erbB family signaling on cell cycle progression and the role that pRB plays in regulating this process. ErbB family RTK activity was inhibited by PD 158780 in the breast epithelial cell line MCF10A. PD 158780 (0.5 {mu}M) inhibited EGF-stimulated and heregulin-stimulated autophosphorylation and caused a G1 cell cycle arrest within 24 h, which correlated with hypophosporylation of pRB. MCF10A cells lacking functional pRB retained the ability to arrest in G1 when treated with PD 158780. Both cell lines showed induction of p27{sup KIP1} protein when treated with PD 158780 and increased association of p27{sup KIP1} with cyclin E-CDK2. Furthermore, CDK2 kinase activity was dramatically inhibited with drug treatment. Changes in other pRB family members were noted with drug treatment, namely a decrease in p107 and an increase in p130. These findings show that the G1 arrest induced through inhibition of erbB family RTK activity does not require functional pRB.

  15. Confluence of Vascular Endothelial Cells Induces Cell Cycle Exit by Inhibiting p42/p44 Mitogen-Activated Protein Kinase Activity

    PubMed Central

    Viñals, Francesc; Pouysségur, Jacques

    1999-01-01

    Like other cellular models, endothelial cells in cultures stop growing when they reach confluence, even in the presence of growth factors. In this work, we have studied the effect of cellular contact on the activation of p42/p44 mitogen-activated protein kinase (MAPK) by growth factors in mouse vascular endothelial cells. p42/p44 MAPK activation by fetal calf serum or fibroblast growth factor was restrained in confluent cells in comparison with the activity found in sparse cells. Consequently, the induction of c-fos, MAPK phosphatases 1 and 2 (MKP1/2), and cyclin D1 was also restrained in confluent cells. In contrast, the activation of Ras and MEK-1, two upstream activators of the p42/p44 MAPK cascade, was not impaired when cells attained confluence. Sodium orthovanadate, but not okadaic acid, restored p42/p44 MAPK activity in confluent cells. Moreover, lysates from confluent 1G11 cells more effectively inactivated a dually phosphorylated active p42 MAPK than lysates from sparse cells. These results, together with the fact that vanadate-sensitive phosphatase activity was higher in confluent cells, suggest that phosphatases play a role in the down-regulation of p42/p44 MAPK activity. Enforced long-term activation of p42/p44 MAPK by expression of the chimera ΔRaf-1:ER, which activates the p42/p44 MAPK cascade at the level of Raf, enhanced the expression of MKP1/2 and cyclin D1 and, more importantly, restored the reentry of confluent cells into the cell cycle. Therefore, inhibition of p42/p44 MAPK activation by cell-cell contact is a critical step initiating cell cycle exit in vascular endothelial cells. PMID:10082542

  16. Selective inhibitors of aurora kinases inhibit proliferation, reduce cell viability and impair cell cycle progression in papillary thyroid carcinoma cells.

    PubMed

    Baldini, E; Tuccilli, C; Prinzi, N; Sorrenti, S; Antonelli, A; Fallahi, P; Mian, C; Barollo, S; Catania, A; Morrone, S; Tartaglia, F; Mascagni, D; Coccaro, C; Pepe, M; Filippini, A; D'Armiento, M; Ulisse, S

    2015-01-01

    The three members of the Aurora kinase family, Aurora-A, -B and -C, regulate several aspects of the mitotic process, and their aberrant expression and/or function causes mitotic abnormalities leading either to cell death or aneuploidy. They are found overexpressed in several human malignancies, including the papillary thyroid carcinoma (PTC). In the present study, we sought to establish whether Aurora kinase inhibition could be of any therapeutic value in the treatment of aggressive forms of PTC, enduring to radioactive iodide (RAI) ablation. To this end, the effects of selective inhibitors of Aurora-A (MLN8237) and Aurora-B (AZD1152) were analyzed on 3 human PTC cell lines expressing either wild-type (K1 and TPC1) or mutant p53 (BCPAP). The two inhibitors were capable of reducing cell proliferation in a time- and dose-dependent manner, with IC₅₀ comprised between 65.4 and 114.9 nM for MLN8237, and between 26.6 and 484.6 nM for AZD1152. Immunofluorescence experiments confirmed that AZD1152 inhibited Aurora-B phosphorylation of histone H3 on Ser10, however, it did not affect Aurora-A autophosphorylation. MLN8237 inhibited Aurora-A autophosphorylation as expected, but at concentrations required to achieve the maximum antiproliferative effects it also abolished H3 (Ser10) phosphorylation. Time-lapse videomicroscopy evidenced that both inhibitors prevented the completion of cytokinesis, and cytofluorimetric analysis showed accumulation of cells in G2/M phase and/or polyploidy. Apoptosis was induced in all the cells by both inhibitors independently from the p53 status. In conclusion, in the present preclinical study MLN8237 and AZD1152 have emerged as promising drug candidates for RAI-insensitive PTC.

  17. Human cytomegalovirus inhibits a DNA damage response by mislocalizing checkpoint proteins

    NASA Astrophysics Data System (ADS)

    Gaspar, Miguel; Shenk, Thomas

    2006-02-01

    The DNA damage checkpoint pathway responds to DNA damage and induces a cell cycle arrest to allow time for DNA repair. Several viruses are known to activate or modulate this cellular response. Here we show that the ataxia-telangiectasia mutated checkpoint pathway, which responds to double-strand breaks in DNA, is activated in response to human cytomegalovirus DNA replication. However, this activation does not propagate through the pathway; it is blocked at the level of the effector kinase, checkpoint kinase 2 (Chk2). Late after infection, several checkpoint proteins, including ataxia-telangiectasia mutated and Chk2, are mislocalized to a cytoplasmic virus assembly zone, where they are colocalized with virion structural proteins. This colocalization was confirmed by immunoprecipitation of virion proteins with an antibody that recognizes Chk2. Virus replication was resistant to ionizing radiation, which causes double-strand breaks in DNA. We propose that human CMV DNA replication activates the checkpoint response to DNA double-strand breaks, and the virus responds by altering the localization of checkpoint proteins to the cytoplasm and thereby inhibiting the signaling pathway. ionizing radiation | ataxia-telangiectasia mutated pathway

  18. Targeting Focal Adhesion Kinase Renders Pancreatic Cancers Responsive to Checkpoint Immunotherapy

    PubMed Central

    Jiang, Hong; Hegde, Samarth; Knolhoff, Brett L.; Zhu, Yu; Herndon, John M.; Meyer, Melissa A.; Nywening, Timothy M.; Hawkins, William G.; Shapiro, Irina M.; Weaver, David T.; Pachter, Jonathan A.; Wang-Gillam, Andrea; DeNardo, David G.

    2016-01-01

    Single-agent immunotherapy has achieved limited clinical benefit to date in patients suffering from pancreatic ductal adenocarcinoma (PDAC). This may be due to the presence of a uniquely immunosuppressive tumor microenvironment (TME). Critical obstacles to immunotherapy in PDAC tumors include a high number of tumor-associated immunosuppressive cells and a uniquely desmoplastic stroma that acts as a barrier to T-cell infiltration. We have identified hyperactivated focal adhesion kinase (FAK) activity in neoplastic PDAC cells as a significant regulator of the fibrotic and immunosuppressive TME. We found that FAK activity was elevated in human PDAC tissues and correlates with high levels of fibrosis and poor CD8+ cytotoxic T-cell infiltration. Single-agent FAK inhibition using the selective FAK inhibitor VS-4718 significantly limited tumor progression, resulting in a doubling of survival in the p48-Cre/LSL-KrasG12D/p53Flox/+ (KPC) mouse model of human PDAC. This delay in tumor progression was associated with dramatically reduced tumor fibrosis, and decreased numbers of tumor-infiltrating immunosuppressive cells. We also found that FAK inhibition rendered the previously unresponsive KPC mouse model responsive to T cell immunotherapy and PD-1 antagonists. These data suggest that FAK inhibition increases immune surveillance by overcoming the fibrotic and immunosuppressive PDAC TME and renders tumors responsive to immunotherapy. PMID:27376576

  19. Restoration of SHIP activity in a human leukemia cell line downregulates constitutively activated phosphatidylinositol 3-kinase/Akt/GSK-3beta signaling and leads to an increased transit time through the G1 phase of the cell cycle.

    PubMed

    Horn, S; Endl, E; Fehse, B; Weck, M M; Mayr, G W; Jücker, M

    2004-11-01

    The inositol 5-phosphatase SHIP (SHIP-1) is a negative regulator of signal transduction in hematopoietic cells and targeted disruption of SHIP in mice leads to a myeloproliferative disorder. We analyzed the effects of SHIP on the human leukemia cell line Jurkat in which expression of endogenous SHIP protein is not detectable. Restoration of SHIP expression in Jurkat cells with an inducible expression system caused a 69% reduction of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) and a 65% reduction of Akt kinase activity, which was associated with reduced phosphorylation of glycogen synthase kinase 3beta (GSK-3beta) (Ser-9) without changing the phosphorylation of Bad (Ser-136), FKHR (Ser-256) or MAPK (Thr-202/Tyr-204). SHIP-expressing Jurkat cells showed an increased transit time through the G1 phase of the cell cycle, but SHIP did not cause a complete cell cycle arrest or apoptosis. Extension of the G1 phase was associated with an increased stability of the cell cycle inhibitor p27(Kip1) and reduced phosphorylation of the retinoblastoma protein Rb at serine residue 780. Our data indicate that restoration of SHIP activity in a human leukemia cell line, which has lost expression of endogenous SHIP, downregulates constitutively activated phosphatidylinositol 3-kinase/Akt/GSK-3beta signaling and leads to an increased transit time through the G1 phase of the cell cycle.

  20. LRD-22, a novel dual dithiocarbamatic acid ester, inhibits Aurora-A kinase and induces apoptosis and cell cycle arrest in HepG2 cells

    SciTech Connect

    Wang, Huiling; Li, Ridong; Li, Li; Ge, Zemei; Zhou, Rouli; Li, Runtao

    2015-02-27

    In this study we investigated the antitumor activity of the novel dual dithiocarbamatic acid ester LRD-22 in vitro and in vivo. Several cancer cell lines were employed to determine the effect of LRD-22 on cell growth, and the MTT assay showed there was a significant decrease in viable tumor cell numbers in the presence of LRD-22, especially in the HepG2 cell line. Colony formation assay also showed LRD-22 strongly inhibits HepG2 cell growth. Evaluation of the mechanism involved showed that inhibitory effects of LRD-22 on cell growth are due to induction of apoptosis and G2/M arrest. LRD-22 inhibited Aurora-A phosphorylation at Thr{sub 288} and subsequently impaired p53 phosphorylation at Ser{sub 315} which was associated with the proteasome degradation pathway. Tumor suppressor protein p53 is stabilized by this mechanism and accumulates through inhibition of Aurora-A kinase activity via treatment with LRD-22. In vivo study of HepG2 xenograft in nude mice also shows LRD-22 suppresses tumor growth at a concentration of 5 mg/kg without animals suffering loss of body weight. In conclusion, our results demonstrate LRD-22 acts as an Aurora-A kinase inhibitor to induce apoptosis and inhibit proliferation in HepG2 cells, and should be considered as a promising targeting agent for HCC therapy. - Highlights: • LRD-22 significantly inhibits cancer cell growth, especially in the HepG2 cell line. • The inhibitory effect of LRD-22 is due to induction of apoptosis and cell cycle arrest. • LRD-22 inhibits Aurora-A phosphorylation which results in subsequent impairment of the p53 pathway. • LRD-22 suppresses tumor growth in xenograft mice without body weight loss.

  1. Ras/cAMP-dependent Protein Kinase (PKA) Regulates Multiple Aspects of Cellular Events by Phosphorylating the Whi3 Cell Cycle Regulator in Budding Yeast*

    PubMed Central

    Mizunuma, Masaki; Tsubakiyama, Ryohei; Ogawa, Takafumi; Shitamukai, Atsunori; Kobayashi, Yoshifumi; Inai, Tomomi; Kume, Kazunori; Hirata, Dai

    2013-01-01

    The Start/G1 phase in the cell cycle is an important period during which cells determine their developmental fate, onset of mitotic progression, or the switch to developmental stages in response to both external and internal signals. In the budding yeast Saccharomyces cerevisiae, Whi3, a negative regulator of the G1 cyclins, has been identified as a positive regulator of cell size control and is involved in the regulation of Start. However, the regulatory pathway of Whi3 governing the response to multiple signals remains largely unknown. Here, we show that Whi3 is phosphorylated by the Ras/cAMP-dependent protein kinase (PKA) and that phosphorylation of Ser-568 in Whi3 by PKA plays an inhibitory role in Whi3 function. Phosphorylation of Whi3 by PKA led to its decreased interaction with CLN3 G1 cyclin mRNA and was required for the promotion of G1/S progression. Furthermore, we demonstrate that the phosphomimetic S568D mutation of Whi3 prevented the developmental fate switch to sporulation or invasive growth. Thus, PKA modulated the function of Whi3 by phosphorylation, thus implicating PKA-mediated modulation of Whi3 in multiple cellular events. PMID:23471970

  2. Combined Treatment of MCF-7 Cells with AICAR and Methotrexate, Arrests Cell Cycle and Reverses Warburg Metabolism through AMP-Activated Protein Kinase (AMPK) and FOXO1.

    PubMed

    Fodor, Tamás; Szántó, Magdolna; Abdul-Rahman, Omar; Nagy, Lilla; Dér, Ádám; Kiss, Borbála; Bai, Peter

    2016-01-01

    Cancer cells are characterized by metabolic alterations, namely, depressed mitochondrial oxidation, enhanced glycolysis and pentose phosphate shunt flux to support rapid cell growth, which is called the Warburg effect. In our study we assessed the metabolic consequences of a joint treatment of MCF-7 breast cancer cells with AICAR, an inducer of AMP-activated kinase (AMPK) jointly with methotrexate (MTX), a folate-analog antimetabolite that blunts de novo nucleotide synthesis. MCF7 cells, a model of breast cancer cells, were resistant to the individual application of AICAR or MTX, however combined treatment of AICAR and MTX reduced cell proliferation. Prolonged joint application of AICAR and MTX induced AMPK and consequently enhanced mitochondrial oxidation and reduced the rate of glycolysis. These metabolic changes suggest an anti-Warburg rearrangement of metabolism that led to the block of the G1/S and the G2/M transition slowing down cell cycle. The slowdown of cell proliferation was abolished when mitotropic transcription factors, PGC-1α, PGC-1β or FOXO1 were silenced. In human breast cancers higher expression of AMPKα and FOXO1 extended survival. AICAR and MTX exerts similar additive antiproliferative effect on other breast cancer cell lines, such as SKBR and 4T1 cells, too. Our data not only underline the importance of Warburg metabolism in breast cancer cells but nominate the AICAR+MTX combination as a potential cytostatic regime blunting Warburg metabolism. Furthermore, we suggest the targeting of AMPK and FOXO1 to combat breast cancer.

  3. The Late S-Phase Transcription Factor Hcm1 Is Regulated through Phosphorylation by the Cell Wall Integrity Checkpoint

    PubMed Central

    Negishi, Takahiro; Veis, Jiri; Hollenstein, David; Sekiya, Mizuho; Ammerer, Gustav

    2016-01-01

    The cell wall integrity (CWI) checkpoint in the budding yeast Saccharomyces cerevisiae coordinates cell wall construction and cell cycle progression. In this study, we showed that the regulation of Hcm1, a late-S-phase transcription factor, arrests the cell cycle via the cell wall integrity checkpoint. Although the HCM1 mRNA level remained unaffected when the cell wall integrity checkpoint was induced, the protein level decreased. The overproduction of Hcm1 resulted in the failure of the cell wall integrity checkpoint. We identified 39 Hcm1 phosphorylation sites, including 26 novel sites, by tandem mass spectrometry analysis. A mutational analysis revealed that phosphorylation of Hcm1 at S61, S65, and S66 is required for the proper onset of the cell wall integrity checkpoint by regulating the timely decrease in its protein level. Hyperactivation of the CWI mitogen-activated protein kinase (MAPK) signaling pathway significantly reduced the Hcm1 protein level, and the deletion of CWI MAPK Slt2 resulted in a failure to decrease Hcm1 protein levels in response to stress, suggesting that phosphorylation is regulated by CWI MAPK. In conclusion, we suggest that Hcm1 is regulated negatively by the cell wall integrity checkpoint through timely phosphorylation and degradation under stress to properly control budding yeast proliferation. PMID:26729465

  4. Cellular Inhibition of Checkpoint Kinase 2 (Chk2) and Potentiation of Camptothecins and Radiation by the Novel Chk2 Inhibitor PV1019 [7-Nitro-1H-indole-2-carboxylic acid {4-[1-(guanidinohydrazone)-ethyl]-phenyl}-amide

    SciTech Connect

    Jobson, Andrew G.; Lountos, George T.; Lorenzi, Philip L.; Llamas, Jenny; Connelly, John; Cerna, David; Tropea, Joseph E.; Onda, Akikazu; Zoppoli, Gabriele; Kondapaka, Sudhir; Zhang, Guangtao; Caplen, Natasha J.; Cardellina, II, John H.; Yoo, Stephen S.; Monks, Anne; Self, Christopher; Waugh, David S.; Shoemaker, Robert H.; Pommier, Yves

    2010-04-05

    Chk2 is a checkpoint kinase involved in the ataxia telangiectasia mutated pathway, which is activated by genomic instability and DNA damage, leading to either cell death (apoptosis) or cell cycle arrest. Chk2 provides an unexplored therapeutic target against cancer cells. We recently reported 4,4'-diacetyldiphenylurea-bis(guanylhydrazone) (NSC 109555) as a novel chemotype Chk2 inhibitor. We have now synthesized a derivative of NSC 109555, PV1019 (NSC 744039) [7-nitro-1H-indole-2-carboxylic acid {l_brace}4-[1-(guanidinohydrazone)-ethyl]-phenyl{r_brace}-amide], which is a selective submicromolar inhibitor of Chk2 in vitro. The cocrystal structure of PV1019 bound in the ATP binding pocket of Chk2 confirmed enzymatic/biochemical observations that PV1019 acts as a competitive inhibitor of Chk2 with respect to ATP. PV1019 was found to inhibit Chk2 in cells. It inhibits Chk2 autophosphorylation (which represents the cellular kinase activation of Chk2), Cdc25C phosphorylation, and HDMX degradation in response to DNA damage. PV1019 also protects normal mouse thymocytes against ionizing radiation-induced apoptosis, and it shows synergistic antiproliferative activity with topotecan, camptothecin, and radiation in human tumor cell lines. We also show that PV1019 and Chk2 small interfering RNAs can exert antiproliferative activity themselves in the cancer cells with high Chk2 expression in the NCI-60 screen. These data indicate that PV1019 is a potent and selective inhibitor of Chk2 with chemotherapeutic and radiosensitization potential.

  5. Glucose restriction induces transient G2 cell cycle arrest extending cellular chronological lifespan

    PubMed Central

    Masuda, Fumie; Ishii, Mahiro; Mori, Ayaka; Uehara, Lisa; Yanagida, Mitsuhiro; Takeda, Kojiro; Saitoh, Shigeaki

    2016-01-01

    While glucose is the fundamental source of energy in most eukaryotes, it is not always abundantly available in natural environments, including within the human body. Eukaryotic cells are therefore thought to possess adaptive mechanisms to survive glucose-limited conditions, which remain unclear. Here, we report a novel mechanism regulating cell cycle progression in response to abrupt changes in extracellular glucose concentration. Upon reduction of glucose in the medium, wild-type fission yeast cells undergo transient arrest specifically at G2 phase. This cell cycle arrest is dependent on the Wee1 tyrosine kinase inhibiting the key cell cycle regulator, CDK1/Cdc2. Mutant cells lacking Wee1 are not arrested at G2 upon glucose limitation and lose viability faster than the wild-type cells under glucose-depleted quiescent conditions, suggesting that this cell cycle arrest is required for extension of chronological lifespan. Our findings indicate the presence of a novel cell cycle checkpoint monitoring glucose availability, which may be a good molecular target for cancer therapy. PMID:26804466

  6. Skp2 is required for Aurora B activation in cell mitosis and spindle checkpoint.

    PubMed

    Wu, Juan; Huang, Yu-Fan; Zhou, Xin-Ke; Zhang, Wei; Lian, Yi-Fan; Lv, Xiao-Bin; Gao, Xiu-Rong; Lin, Hui-Kuan; Zeng, Yi-Xin; Huang, Jian-Qing

    2015-01-01

    The Aurora B kinase plays a critical role in cell mitosis and spindle checkpoint. Here, we showed that the ubiquitin E3-ligase protein Skp2, also as a cell-cycle regulatory protein, was required for the activation of Aurora B and its downstream protein. When we restored Skp2 knockdown Hela cells with Skp2 and Skp2-LRR E3 ligase dead mutant we found that Skp2 could rescue the defect in the activation of Aurora B, but the mutant failed to do so. Furthermore, we discovered that Skp2 could interact with Aurora B and trigger Aurora B Lysine (K) 63-linked ubiquitination. Finally, we demonstrated the essential role of Skp2 in cell mitosis progression and spindle checkpoint, which was Aurora B dependent. Our results identified a novel ubiquitinated substrate of Skp2, and also indicated that Aurora B ubiquitination might serve as an important event for Aurora B activation in cell mitosis and spindle checkpoint.

  7. Exit from exit: resetting the cell cycle through Amn1 inhibition of G protein signaling.

    PubMed

    Wang, Yanchang; Shirogane, Takahiro; Liu, Dou; Harper, J Wade; Elledge, Stephen J

    2003-03-07

    In S. cerevisiae cells undergoing anaphase, a ras-related GTPase, Tem1, is located on the spindle pole body that enters the daughter cell and activates a signal transduction pathway, MEN, to allow mitotic exit. MEN activation must be reversed after mitotic exit to reset the cell cycle in G1. We find that daughter cells activate an Antagonist of MEN pathway (AMEN) in part through induction of the Amn1 protein that binds directly to Tem1 and prevents its association with its target kinase Cdc15. Failure of Amn1 function results in defects of both the spindle assembly and nuclear orientation checkpoints and delays turning off Cdc14 in G1. Thus, Amn1 is part of a daughter-specific switch that helps cells exit from mitotic exit and reset the cell cycle.

  8. ERK kinases modulate the activation of PI3 kinase related kinases (PIKKs) in DNA damage response.

    PubMed

    Lin, Xiaozeng; Yan, Judy; Tang, Damu

    2013-12-01

    DNA damage response (DDR) is the critical surveillance mechanism in maintaining genome integrity. The mechanism activates checkpoints to prevent cell cycle progression in the presence of DNA lesions, and mediates lesion repair. DDR is coordinated by three apical PI3 kinase related kinases (PIKKs), including ataxia-telangiectasia mutated (ATM), ATM- and Rad3-related (ATR), and DNA-PKcs (the catalytic subunit of the DNA dependent protein kinase). These kinases are activated in response to specific DNA damage or lesions, resulting in checkpoint activation and DNA lesion repair. While it is clear that the pathways of ATM, ATR, and DNA-PK are the core components of DDR, there is accumulating evidence revealing the involvement of other cellular pathways in regulating DDR; this is in line with the concept that in addition to being a nuclear event DDR is also a cellular process. One of these pathways is the extracellular signal-regulated kinase (ERK) MAPK (mitogen-activated protein kinase) pathway. ERK is a converging point of multiple signal transduction pathways involved in cell proliferation, differentiation, and apoptosis. Adding to this list of pathways is the recent development of ERK in DDR. The ERK kinases (ERK1 and ERK2) contribute to the proper execution of DDR in terms of checkpoint activation and the repair of DNA lesions. This review summarizes the contributions of ERK to DDR with emphasis on the relationship of ERK kinases with the activation of ATM, ATR, and DNA-PKcs.

  9. Choreography of the 9-1-1 checkpoint complex: DDK puts a check on the checkpoints.

    PubMed

    Paek, Andrew L; Weinert, Ted

    2010-11-24

    Checkpoint proteins respond to DNA damage by halting the cell cycle until the damage is repaired. In this issue of Molecular Cell, Furuya et al. (2010) provide evidence that checkpoint proteins need to be removed from sites of damage in order to properly repair it.

  10. Combination of ascorbate/epigallocatechin-3-gallate/gemcitabine synergistically induces cell cycle deregulation and apoptosis in mesothelioma cells

    SciTech Connect

    Martinotti, Simona; Ranzato, Elia; Parodi, Monica; Vitale, Massimo; Burlando, Bruno

    2014-01-01

    Malignant mesothelioma (MMe) is a poor-prognosis tumor in need of innovative therapies. In a previous in vivo study, we showed synergistic anti-MMe properties of the ascorbate/epigallocatechin-3-gallate/gemcitabine combination. We have now focused on the mechanism of action, showing the induction of apoptosis and cell cycle arrest through measurements of caspase 3, intracellular Ca{sup 2+}, annexin V, and DNA content. StellArray™ PCR technology and Western immunoblotting revealed DAPK2-dependent apoptosis, upregulation of cell cycle promoters, downregulation of cell cycle checkpoints and repression of NFκB expression. The complex of data indicates that the mixture is synergistic in inducing cell cycle deregulation and non-inflammatory apoptosis, suggesting its possible use in MMe treatment. - Highlights: • Ascorbate/epigallocathechin-gallate/gemcitabine has been tested on mesothelioma cells • A synergistic mechanism has been shown for cell cycle arrest and apoptosis • PCR-array analysis has revealed the de-regulation of apoptosis and cell cycle genes • Maximum upregulation has been found for the Death-Associated Protein Kinase-2 gene • Data suggest that the mixture could be used as a clinical treatment.

  11. Budding yeast dma proteins control septin dynamics and the spindle position checkpoint by promoting the recruitment of the Elm1 kinase to the bud neck.

    PubMed

    Merlini, Laura; Fraschini, Roberta; Boettcher, Barbara; Barral, Yves; Lucchini, Giovanna; Piatti, Simonetta

    2012-01-01

    The first step towards cytokinesis in budding yeast is the assembly of a septin ring at the future site of bud emergence. Integrity of this ring is crucial for cytokinesis, proper spindle positioning, and the spindle position checkpoint (SPOC). This checkpoint delays mitotic exit and cytokinesis as long as the anaphase spindle does not properly align with the division axis. SPOC signalling requires the Kin4 protein kinase and the Kin4-regulating Elm1 kinase, which also controls septin dynamics. Here, we show that the two redundant ubiquitin-ligases Dma1 and Dma2 control septin dynamics and the SPOC by promoting the efficient recruitment of Elm1 to the bud neck. Indeed, dma1 dma2 mutant cells show reduced levels of Elm1 at the bud neck and Elm1-dependent activation of Kin4. Artificial recruitment of Elm1 to the bud neck of the same cells is sufficient to re-establish a normal septin ring, proper spindle positioning, and a proficient SPOC response in dma1 dma2 cells. Altogether, our data indicate that septin dynamics and SPOC function are intimately linked and support the idea that integrity of the bud neck is crucial for SPOC signalling.

  12. Positive regulation of meiotic DNA double-strand break formation by activation of the DNA damage checkpoint kinase Mec1(ATR).

    PubMed

    Gray, Stephen; Allison, Rachal M; Garcia, Valerie; Goldman, Alastair S H; Neale, Matthew J

    2013-07-31

    During meiosis, formation and repair of programmed DNA double-strand breaks (DSBs) create genetic exchange between homologous chromosomes-a process that is critical for reductional meiotic chromosome segregation and the production of genetically diverse sexually reproducing populations. Meiotic DSB formation is a complex process, requiring numerous proteins, of which Spo11 is the evolutionarily conserved catalytic subunit. Precisely how Spo11 and its accessory proteins function or are regulated is unclear. Here, we use Saccharomyces cerevisiae to reveal that meiotic DSB formation is modulated by the Mec1(ATR) branch of the DNA damage signalling cascade, promoting DSB formation when Spo11-mediated catalysis is compromised. Activation of the positive feedback pathway correlates with the formation of single-stranded DNA (ssDNA) recombination intermediates and activation of the downstream kinase, Mek1. We show that the requirement for checkpoint activation can be rescued by prolonging meiotic prophase by deleting the NDT80 transcription factor, and that even transient prophase arrest caused by Ndt80 depletion is sufficient to restore meiotic spore viability in checkpoint mutants. Our observations are unexpected given recent reports that the complementary kinase pathway Tel1(ATM) acts to inhibit DSB formation. We propose that such antagonistic regulation of DSB formation by Mec1 and Tel1 creates a regulatory mechanism, where the absolute frequency of DSBs is maintained at a level optimal for genetic exchange and efficient chromosome segregation.

  13. Fungal Cell Cycle: A Unicellular versus Multicellular Comparison.

    PubMed

    Dörter, Ilkay; Momany, Michelle

    2016-12-01

    All cells must accurately replicate DNA and partition it to daughter cells. The basic cell cycle machinery is highly conserved among eukaryotes. Most of the mechanisms that control the cell cycle were worked out in fungal cells, taking advantage of their powerful genetics and rapid duplication times. Here we describe the cell cycles of the unicellular budding yeast Saccharomyces cerevisiae and the multicellular filamentous fungus Aspergillus nidulans. We compare and contrast morphological landmarks of G1, S, G2, and M phases, molecular mechanisms that drive cell cycle progression, and checkpoints in these model unicellular and multicellular fungal systems.

  14. The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint

    PubMed Central

    1996-01-01

    M-phase checkpoints inhibit cell division when mitotic spindle function is perturbed. Here we show that the Saccharomyces cerevisiae MPS1 gene product, an essential protein kinase required for spindle pole body (SPB) duplication (Winey et al., 1991; Lauze et al., 1995), is also required for M-phase check-point function. In cdc31-2 and mps2-1 mutants, conditional failure of SPB duplication results in cell cycle arrest with high p34CDC28 kinase activity that depends on the presence of the wild-type MAD1 checkpoint gene, consistent with checkpoint arrest of mitosis. In contrast, mps1 mutant cells fail to duplicate their SPBs and do not arrest division at 37 degrees C, exhibiting a normal cycle of p34CDC28 kinase activity despite the presence of a monopolar spindle. Double mutant cdc31-2, mps1-1 cells also fail to arrest mitosis at 37 degrees C, despite having SPB structures similar to cdc31-2 single mutants as determined by EM analysis. Arrest of mitosis upon microtubule depolymerization by nocodazole is also conditionally absent in mps1 strains. This is observed in mps1 cells synchronized in S phase with hydroxyurea before exposure to nocodazole, indicating that failure of checkpoint function in mps1 cells is independent of SPB duplication failure. In contrast, hydroxyurea arrest and a number of other cdc mutant arrest phenotypes are unaffected by mps1 alleles. We propose that the essential MPS1 protein kinase functions both in SPB duplication and in a mitotic checkpoint monitoring spindle integrity. PMID:8567717

  15. G2 cell cycle arrest, down-regulation of cyclin B, and induction of mitotic catastrophe by the flavoprotein inhibitor diphenyleneiodonium.

    PubMed

    Scaife, Robin M

    2004-10-01

    Because proliferation of eukaryotic cells requires cell cycle-regulated chromatid separation by the mitotic spindle, it is subject to regulation by mitotic checkpoints. To determine the mechanism of the antiproliferative activity of the flavoprotein-specific inhibitor diphenyleneiodonium (DPI), I have examined its effect on the cell cycle and mitosis. Similar to paclitaxel, exposure to DPI causes an accumulation of cells with a 4N DNA content. However, unlike the paclitaxel-mediated mitotic block, DPI-treated cells are arrested in the cell cycle prior to mitosis. Although DPI-treated cells can arrest with fully separated centrosomes at opposite sides of the nucleus, these centrosomes fail to assemble mitotic spindle microtubules and they do not accumulate the Thr(288) phosphorylated Aurora-A kinase marker of centrosome maturation. In contrast with paclitaxel-arrested cells, DPI impairs cyclin B1 accumulation. Release from DPI permits an accumulation of cyclin B1 and progression of the cells into mitosis. Conversely, exposure of paclitaxel-arrested mitotic cells to DPI causes a precipitous drop in cyclin B and Thr(288) phosphorylated Aurora-A levels and leads to mitotic catastrophe in a range of cancerous and noncancerous cells. Hence, the antiproliferative activity of DPI reflects a novel inhibitory mechanism of cell cycle progression that can reverse spindle checkpoint-mediated cell cycle arrest.

  16. Full activation of p34CDC28 histone H1 kinase activity is unable to promote entry into mitosis in checkpoint-arrested cells of the yeast Saccharomyces cerevisiae.

    PubMed Central

    Stueland, C S; Lew, D J; Cismowski, M J; Reed, S I

    1993-01-01

    In most cells, mitosis is dependent upon completion of DNA replication. The feedback mechanisms that prevent entry into mitosis by cells with damaged or incompletely replicated DNA have been termed checkpoint controls. Studies with the fission yeast Schizosaccharomyces pombe and Xenopus egg extracts have shown that checkpoint controls prevent activation of the master regulatory protein kinase, p34cdc2, that normally triggers entry into mitosis. This is achieved through inhibitory phosphorylation of the Tyr-15 residue of p34cdc2. However, studies with the budding yeast Saccharomyces cerevisiae have shown that phosphorylation of this residue is not essential for checkpoint controls to prevent mitosis. We have investigated the basis for checkpoint controls in this organism and show that these controls can prevent entry into mitosis even in cells which have fully activated the cyclin B (Clb)-associated forms of the budding yeast homolog of p34cdc2, p34CDC28, as assayed by histone H1 kinase activity. However, the active complexes in checkpoint-arrested cells are smaller than those in cycling cells, suggesting that assembly of mitosis-inducing complexes requires additional steps following histone H1 kinase activation. Images PMID:8388545

  17. A Microbial Avenue to Cell Cycle Control in the Plant Superkingdom[C][W][OPEN

    PubMed Central

    Tulin, Frej; Cross, Frederick R.

    2014-01-01

    Research in yeast and animals has resulted in a well-supported consensus model for eukaryotic cell cycle control. The fit of this model to early diverging eukaryotes, such as the plant kingdom, remains unclear. Using the green alga Chlamydomonas reinhardtii, we developed an efficient pipeline, incorporating robotics, semiautomated image analysis, and deep sequencing, to molecularly identify >50 genes, mostly conserved in higher plants, specifically required for cell division but not cell growth. Mutated genes include the cyclin-dependent kinases CDKA (resembling yeast and animal Cdk1) and the plant-specific CDKB. The Chlamydomonas cell cycle consists of a long G1 during which cells can grow >10-fold, followed by multiple rapid cycles of DNA replication and segregation. CDKA and CDKB execute nonoverlapping functions: CDKA promotes transition between G1 and entry into the division cycle, while CDKB is essential specifically for spindle formation and nuclear division, but not for DNA replication, once CDKA-dependent initiation has occurred. The anaphase-promoting complex is required for similar steps in the Chlamydomonas cell cycle as in Opisthokonts; however, the spindle assembly checkpoint, which targets the APC in Opisthokonts, appears severely attenuated in Chlamydomonas, based on analysis of mutants affecting microtubule function. This approach allows unbiased integration of the consensus cell cycle control model with innovations specific to the plant lineage. PMID:25336509

  18. Topology and Control of the Cell-Cycle-Regulated Transcriptional Circuitry

    PubMed Central

    Haase, Steven B.; Wittenberg, Curt

    2014-01-01

    Nearly 20% of the budding yeast genome is transcribed periodically during the cell division cycle. The precise temporal execution of this large transcriptional program is controlled by a large interacting network of transcriptional regulators, kinases, and ubiquitin ligases. Historically, this network has been viewed as a collection of four coregulated gene clusters that are associated with each phase of the cell cycle. Although the broad outlines of these gene clusters were described nearly 20 years ago, new technologies have enabled major advances in our understanding of the genes comprising those clusters, their regulation, and the complex regulatory interplay between clusters. More recently, advances are being made in understanding the roles of chromatin in the control of the transcriptional program. We are also beginning to discover important regulatory interactions between the cell-cycle transcriptional program and other cell-cycle regulatory mechanisms such as checkpoints and metabolic networks. Here we review recent advances and contemporary models of the transcriptional network and consider these models in the context of eukaryotic cell-cycle controls. PMID:24395825

  19. A microbial avenue to cell cycle control in the plant superkingdom.

    PubMed

    Tulin, Frej; Cross, Frederick R

    2014-10-01

    Research in yeast and animals has resulted in a well-supported consensus model for eukaryotic cell cycle control. The fit of this model to early diverging eukaryotes, such as the plant kingdom, remains unclear. Using the green alga Chlamydomonas reinhardtii, we developed an efficient pipeline, incorporating robotics, semiautomated image analysis, and deep sequencing, to molecularly identify >50 genes, mostly conserved in higher plants, specifically required for cell division but not cell growth. Mutated genes include the cyclin-dependent kinases CDKA (resembling yeast and animal Cdk1) and the plant-specific CDKB. The Chlamydomonas cell cycle consists of a long G1 during which cells can grow >10-fold, followed by multiple rapid cycles of DNA replication and segregation. CDKA and CDKB execute nonoverlapping functions: CDKA promotes transition between G1 and entry into the division cycle, while CDKB is essential specifically for spindle formation and nuclear division, but not for DNA replication, once CDKA-dependent initiation has occurred. The anaphase-promoting complex is required for similar steps in the Chlamydomonas cell cycle as in Opisthokonts; however, the spindle assembly checkpoint, which targets the APC in Opisthokonts, appears severely attenuated in Chlamydomonas, based on analysis of mutants affecting microtubule function. This approach allows unbiased integration of the consensus cell cycle control model with innovations specific to the plant lineage.

  20. p53 controls CDC7 levels to reinforce G1 cell cycle arrest upon genotoxic stress

    PubMed Central

    Tudzarova, Slavica; Dey, Ayona; Stoeber, Kai; Okorokov, Andrei L.; Williams, Gareth H.

    2016-01-01

    ABSTRACT DNA replication initiation is a key event in the cell cycle, which is dependent on 2 kinases - CDK2 and CDC7. Here we report a novel mechanism in which p53 induces G1 checkpoint and cell cycle arrest by downregulating CDC7 kinase in response to genotoxic stress. We demonstrate that p53 controls CDC7 stability post-transcriptionally via miR-192/215 and post-translationally via Fbxw7β E3 ubiquitin ligase. The p53-dependent pathway of CDC7 downregulation is interlinked with the p53-p21-CDK2 pathway, as p21-mediated inhibition of CDK2-dependent phosphorylation of CDC7 on Thr376 is required for GSK3ß-phosphorylation and Fbxw7ß-dependent degradation of CDC7. Notably, sustained oncogenic high levels of active CDC7 exert a negative feedback onto p53, leading to unrestrained S-phase progression and accumulation of DNA damage. Thus, p53-dependent control of CDC7 levels is essential for blocking G1/S cell-cycle transition upon genotoxic stress, thereby safeguarding the genome from instability and thus representing a novel general stress response. PMID:27611229

  1. Current topics of functional links between primary cilia and cell cycle.

    PubMed

    Izawa, Ichiro; Goto, Hidemasa; Kasahara, Kousuke; Inagaki, Masaki

    2015-01-01

    Primary cilia, microtubule-based sensory structures, orchestrate various critical signals during development and tissue homeostasis. In view of the rising interest into the reciprocal link between ciliogenesis and cell cycle, we discuss here several recent advances to understand the molecular link between the individual step of ciliogenesis and cell cycle control. At the onset of ciliogenesis (the transition from centrosome to basal body), distal appendage proteins have been established as components indispensable for the docking of vesicles at the mother centriole. In the initial step of axonemal extension, CP110, Ofd1, and trichoplein, key negative regulators of ciliogenesis, are found to be removed by a kinase-dependent mechanism, autophagy, and ubiquitin-proteasome system, respectively. Of note, their disposal functions as a restriction point to decide that the axonemal nucleation and extension begin. In the elongation step, Nde1, a negative regulator of ciliary length, is revealed to be ubiquitylated and degraded by CDK5-SCF(Fbw7) in a cell cycle-dependent manner. With regard to ciliary length control, it has been uncovered in flagellar shortening of Chlamydomonas that cilia itself transmit a ciliary length signal to cytoplasm. At the ciliary resorption step upon cell cycle re-entry, cilia are found to be disassembled not only by Aurora A-HDAC6 pathway but also by Nek2-Kif24 and Plk1-Kif2A pathways through their microtubule-depolymerizing activity. On the other hand, it is becoming evident that the presence of primary cilia itself functions as a structural checkpoint for cell cycle re-entry. These data suggest that ciliogenesis and cell cycle intimately link each other, and further elucidation of these mechanisms will contribute to understanding the pathology of cilia-related disease including cancer and discovering targets of therapeutic interventions.

  2. The microbial cell cycle

    SciTech Connect

    Nurse, P.; Streiblova, E.

    1984-01-01

    This book concentrates on the major problems of cell cycle control in microorganisms. A wide variety of microorganisms, ranging from bacteria and yeasts to hyphal fungi, algae, and ciliates are analyzed, with emphasis on the basic similarities among the organisms. Different ways of looking at cell cycle control which emphasize aspects of the problem such as circadian rhythms, limit cycle oscillators, and cell size models, are considered. New approaches such as the study of cell cycle mutants, and cloning of cell cycle control genes are also presented.

  3. Non-selective cation channel-mediated Ca2+-entry and activation of Ca2+/calmodulin-dependent kinase II contribute to G2/M cell cycle arrest and survival of irradiated leukemia cells.

    PubMed

    Heise, Nicole; Palme, Daniela; Misovic, Milan; Koka, Saisudha; Rudner, Justine; Lang, Florian; Salih, Helmut R; Huber, Stephan M; Henke, Guido

    2010-01-01

    Genotoxic stress induces cell cycle arrest and DNA repair which may enable tumor cells to survive radiation therapy. Here, we defined the role of Ca(2+) signaling in the cell cycle control and survival of chronic myeloid leukemia (CML) cells subjected to ionizing radiation (IR). To this end, K562 erythroid leukemia cells were irradiated (0-10 Gy). Tumor survival was analyzed by clonogenic survival assay and cell cycle progression via flow cytometry. Plasma membrane cation conductance was assessed by patch-clamp whole-cell recording and the cytosolic free Ca(2+) concentration ([Ca(2+)](i)) was measured by fura-2 Ca(2+) imaging. Nuclear activity of Ca(2+)/calmodulin-dependent kinase II (CaMKII) was defined by Western blotting. In addition, the effect of IR (5 Gy) on the cation conductance of primary CML cells was determined. The results indicated that IR (10 Gy) induced a G(2)/M cell cycle arrest of K562 cells within 24 h post-irradiation (p.i.) and decreased the clonogenic survival to 0.5 % of that of the control cells. In K562 cells, G(2)/M cell cycle arrest was preceded by activation of TRPV5/6-like nonselective cation channels in the plasma membrane 1-5 h p.i., resulting in an elevated Ca(2+) entry as evident from fura-2 Ca(2+) imaging. Similarly, IR stimulated a Ca(2+)-permeable nonselective cation conductance in primary CML cells within 2-4 h p.i.. Ca(2+) entry, into K562 cells was paralleled by an IR-induced activation of nuclear CaMKII. The IR-stimulated accumulation in G(2) phase was delayed upon buffering [Ca(2+)](i) with the Ca(2+) chelator BAPTA-AM or inhibiting CaMKII with KN93 (1 nM). In addition, KN93 decreased the clonogenic survival of irradiated cells but not of control cells. In conclusion, the data suggest that IR-stimulated cation channel activation, Ca(2+) entry and CaMKII activity participate in control of cell cycle progression and survival of irradiated CML cells.

  4. The Dimeric Architecture of Checkpoint Kinases Mec1ATR and Tel1ATM Reveal a Common Structural Organization.

    PubMed

    Sawicka, Marta; Wanrooij, Paulina H; Darbari, Vidya C; Tannous, Elias; Hailemariam, Sarem; Bose, Daniel; Makarova, Alena V; Burgers, Peter M; Zhang, Xiaodong

    2016-06-24

    The phosphatidylinositol 3-kinase-related protein kinases are key regulators controlling a wide range of cellular events. The yeast Tel1 and Mec1·Ddc2 complex (ATM and ATR-ATRIP in humans) play pivotal roles in DNA replication, DNA damage signaling, and repair. Here, we present the first structural insight for dimers of Mec1·Ddc2 and Tel1 using single-particle electron microscopy. Both kinases reveal a head to head dimer with one major dimeric interface through the N-terminal HEAT (named after Huntingtin, elongation factor 3, protein phosphatase 2A, and yeast kinase TOR1) repeat. Their dimeric interface is significantly distinct from the interface of mTOR complex 1 dimer, which oligomerizes through two spatially separate interfaces. We also observe different structural organizations of kinase domains of Mec1 and Tel1. The kinase domains in the Mec1·Ddc2 dimer are located in close proximity to each other. However, in the Tel1 dimer they are fully separated, providing potential access of substrates to this kinase, even in its dimeric form.

  5. The Dimeric Architecture of Checkpoint Kinases Mec1ATR and Tel1ATM Reveal a Common Structural Organization*

    PubMed Central

    Sawicka, Marta; Wanrooij, Paulina H.; Darbari, Vidya C.; Tannous, Elias; Hailemariam, Sarem; Bose, Daniel; Makarova, Alena V.; Burgers, Peter M.; Zhang, Xiaodong

    2016-01-01

    The phosphatidylinositol 3-kinase-related protein kinases are key regulators controlling a wide range of cellular events. The yeast Tel1 and Mec1·Ddc2 complex (ATM and ATR-ATRIP in humans) play pivotal roles in DNA replication, DNA damage signaling, and repair. Here, we present the first structural insight for dimers of Mec1·Ddc2 and Tel1 using single-particle electron microscopy. Both kinases reveal a head to head dimer with one major dimeric interface through the N-terminal HEAT (named after Huntingtin, elongation factor 3, protein phosphatase 2A, and yeast kinase TOR1) repeat. Their dimeric interface is significantly distinct from the interface of mTOR complex 1 dimer, which oligomerizes through two spatially separate interfaces. We also observe different structural organizations of kinase domains of Mec1 and Tel1. The kinase domains in the Mec1·Ddc2 dimer are located in close proximity to each other. However, in the Tel1 dimer they are fully separated, providing potential access of substrates to this kinase, even in its dimeric form. PMID:27129217

  6. In Silico Exploration of 1,7-Diazacarbazole Analogs as Checkpoint Kinase 1 Inhibitors by Using 3D QSAR, Molecular Docking Study, and Molecular Dynamics Simulations.

    PubMed

    Gao, Xiaodong; Han, Liping; Ren, Yujie

    2016-05-05

    Checkpoint kinase 1 (Chk1) is an important serine/threonine kinase with a self-protection function. The combination of Chk1 inhibitors and anti-cancer drugs can enhance the selectivity of tumor therapy. In this work, a set of 1,7-diazacarbazole analogs were identified as potent Chk1 inhibitors through a series of computer-aided drug design processes, including three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling, molecular docking, and molecular dynamics simulations. The optimal QSAR models showed significant cross-validated correlation q² values (0.531, 0.726), fitted correlation r² coefficients (higher than 0.90), and standard error of prediction (less than 0.250). These results suggested that the developed models possess good predictive ability. Moreover, molecular docking and molecular dynamics simulations were applied to highlight the important interactions between the ligand and the Chk1 receptor protein. This study shows that hydrogen bonding and electrostatic forces are key interactions that confer bioactivity.

  7. RAC1 GTPase plays an important role in γ-irradiation induced G2/M checkpoint activation

    PubMed Central

    2012-01-01

    Introduction In response to gamma-irradiation (IR)-induced double-strand DNA breaks, cells undergo cell-cycle arrest, allowing time for DNA repair before reentering the cell cycle. G2/M checkpoint activation involves activation of ataxia telangiectasia mutated (ATM)/ATM- and rad3-related (ATR) kinases and inhibition of Cdc25 phosphatases, resulting in inhibition of Cdc2 kinase and subsequent G2/M cell-cycle arrest. Previous studies from our laboratory showed that the G2/M checkpoint activation after IR exposure of MCF-7 breast cancer cells is dependent on the activation of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) signaling. In the present studies, we investigated the role of Ras-related C3 botulinum toxin substrate 1 (Rac1) guanosine triphosphatase (GTPase) in IR-induced G2/M checkpoint response and ERK1/2 activation, as well as in cell survival after IR. Methods With Rac1-specific inhibitor, dominant negative mutant Rac1 (N17Rac1) and specific small interfering RNA, the effect of Rac1 on IR-induced G2/M checkpoint response and ERK1/2 activation was examined in human breast cancer cells. In addition, the effect of Rac1 on cell survival after irradiation was assessed by using Rac1-specific inhibitor. Results IR exposure of MCF-7 breast cancer cells was associated with a marked activation of Rac1 GTPase. Furthermore, inhibition of Rac1 by using specific inhibitor, dominant-negative Rac1 mutant, or specific siRNA resulted in attenuation of IR-induced G2/M arrest and concomitant diminution of IR-induced activation of ATM, ATR, Chk1, and Chk2 kinases, as well as phosphorylation of Cdc2-Tyr15. Moreover, Rac1 inhibition or decreased Rac1 expression also abrogated IR-induced phosphorylation of mitogen-activated protein kinase kinase 1 and 2 (MEK1/2) and ERK1/2. Ultimately, inhibition of Rac1 markedly increased cellular sensitivity to IR exposure, which involves induction of apoptosis. Conclusion Studies in this report suggest that Rac1 GTPase plays an

  8. Cell cycle gene expression under clinorotation

    NASA Astrophysics Data System (ADS)

    Artemenko, Olga

    2016-07-01

    Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.

  9. PaKRP, a cyclin-dependent kinase inhibitor from avocado, may facilitate exit from the cell cycle during fruit growth.

    PubMed

    Sabag, Michal; Ben Ari, Giora; Zviran, Tali; Biton, Iris; Goren, Moshe; Dahan, Yardena; Sadka, Avi; Irihimovitch, Vered

    2013-12-01

    Previous studies using 'Hass' avocado cultivar showed that its small-fruit (SF) phenotype is limited by cell number. To explore the molecular components affecting avocado cell production, we isolated four cDNAs encoding: an ICK/KRP protein, known to play cell cycle-regulating roles through modulation of CDK function; two CDK proteins and a D-type cyclin, and monitored their expression patterns, comparing NF (normal fruit) versus SF profiles. The accumulation of PaKRP gradually deceased during growth in both fruit populations. Despite these similarities, SF exhibited higher levels of PaKRP accumulation at early stages of growth. Moreover, in NF, augmented PaKRP expression coincided with a decrease in CDK and PaCYCD1 levels, whereas in SF, enhanced PaKPR expression was coupled with an earlier decline of CDK and PaCYCD1 levels. For both NF and SF, enhanced mesocarp PaKRP transcript accumulation, was associated with elevated abscisic acid (ABA) and ABA catabolites content. Nevertheless, the collective ABA levels, including catabolites, were substantially higher in SF tissues, as compared with NF tissues. Finally, additional expression analysis revealed that in cultured cells, PaKRP could be induced by ABA. Together, our data links PaKRP with exit from the fruit cell cycle and suggest a role for ABA in controlling its expression.

  10. Effect of sesamin on apoptosis and cell cycle arrest in human breast cancer mcf-7 cells.

    PubMed

    Siao, An-Ci; Hou, Chien-Wei; Kao, Yung-Hsi; Jeng, Kee-Ching

    2015-01-01

    Dietary prevention has been known to reduce breast cancer risk. Sesamin is one of the major components in sesame seeds and has been widely studied and proven to have anti-proliferation and anti-angiogenic effects on cancer cells. In this study, the influence of sesamin was tested in the human breast cancer MCF-7 cell line for cell viability (MTT assay) and cell cycling (flow cytometry). Results showed that sesamin dose-dependently (1, 10 and 50 μM) reduced the cell viability and increased LDH release and apoptosis (TUNEL assay). In addition, there was a significant increase of sub-G1 phase arrest in the cell cycle after sesamin treatment. Furthermore, sesamin increased the expression of apoptotic markers of Bax, caspase-3, and cell cycle control proteins, p53 and checkpoint kinase 2. Taken together, these results suggested that sesamin might be used as a dietary supplement for prevention of breast cancer by modulating apoptotic signal pathways and inhibiting tumor cell growth.

  11. Chrysin induces G1 phase cell cycle arrest in C6 glioma cells through inducing p21Waf1/Cip1 expression: involvement of p38 mitogen-activated protein kinase.

    PubMed

    Weng, Meng-Shih; Ho, Yuan-Soon; Lin, Jen-Kun

    2005-06-15

    Flavonoids are a broadly distributed class of plant pigments, universally present in plants. They are strong anti-oxidants that can inhibit carcinogenesis in rodents. Chrysin (5,7-dihydroxyflavone) is a natural and biologically active compound extracted from many plants, honey, and propolis. It possesses potent anti-inflammatory, anti-oxidant properties, promotes cell death, and perturbing cell cycle progression. However, the mechanism by which chrysin inhibits cancer cell growth remains poorly understood. Therefore, we developed an interest in the relationship between MAPK signaling pathways and cell growth inhibition after chrysin treatment in rat C6 glioma cells. Cell viability assay and flow cytometric analysis suggested that chrysin exhibited a dose-dependent and time-dependent ability to block rat C6 glioma cell line cell cycle progression at the G1 phase. Western blotting analysis showed that the levels of Rb phosphorylation in C6 glioma cells exposed to 30 microM chrysin for 24h decreased significantly. We demonstrated the expression of cyclin-dependent kinase inhibitor, p21(Waf1/Cip1), to be significantly increased, but the p53 protein level did not change in chrysin-treated cells. Both cyclin-dependent kinase 2 (CDK2) and 4 (CDK4) kinase activities were reduced by chrysin in a dose-dependent manner. Furthermore, chrysin also inhibited proteasome activity. We further showed that chrysin induced p38-MAPK activation, and using a specific p38-MAPK inhibitor, SB203580, attenuated chrysin-induced p21(Waf1/Cip1) expression. These results suggest that chrysin exerts its growth-inhibitory effects either through activating p38-MAPK leading to the accumulation of p21(Waf1/Cip1) protein or mediating the inhibition of proteasome activity.

  12. Molecular Mechanisms of DNA Replication Checkpoint Activation

    PubMed Central

    Recolin, Bénédicte; van der Laan, Siem; Tsanov, Nikolay; Maiorano, Domenico

    2014-01-01

    The major challenge of the cell cycle is to deliver an intact, and fully duplicated, genetic material to the daughter cells. To this end, progression of DNA synthesis is monitored by a feedback mechanism known as replication checkpoint that is untimely linked to DNA replication. This signaling pathway ensures coordination of DNA synthesis with cell cycle progression. Failure to activate this checkpoint in response to perturbation of DNA synthesis (replication stress) results in forced cell division leading to chromosome fragmentation, aneuploidy, and genomic instability. In this review, we will describe current knowledge of the molecular determinants of the DNA replication checkpoint in eukaryotic cells and discuss a model of activation of this signaling pathway crucial for maintenance of genomic stability. PMID:24705291

  13. The Drosophila chk2 gene loki is essential for embryonic DNA double-strand-break checkpoints induced in S phase or G2.

    PubMed

    Masrouha, Nisrine; Yang, Long; Hijal, Sirine; Larochelle, Stéphane; Suter, Beat

    2003-03-01

    Cell cycle checkpoints are signal transduction pathways that control the order and timing of cell cycle transitions, ensuring that critical events are completed before the occurrence of the next cell cycle transition. The Chk2 family of kinases is known to play a central role in mediating the cellular responses to DNA damage or DNA replication blocks in various organisms. Here we show through a phylogenetic study that the Drosophila melanogaster serine/threonine kinase Loki is the homolog of the yeast Mek1p, Rad53p, Dun1p, and Cds1 proteins as well as the human Chk2. Functional analyses allowed us to conclude that, in flies, chk2 is involved in monitoring double-strand breaks (DSBs) caused by irradiation during S and G2 phases. In this process it plays an essential role in inducing a cell cycle arrest in embryonic cells. Our results also show that, in contrast to C. elegans chk2, Drosophila chk2 is not essential for normal meiosis and recombination, and it also appears to be dispensable for the MMS-induced DNA damage checkpoint and the HU-induced DNA replication checkpoint during larval development. In addition, Drosophila chk2 does not act at the same cell cycle phases as its yeast homologs, but seems rather to be involved in a pathway similar to the mammalian one, which involves signaling through the ATM/Chk2 pathway in response to genotoxic insults. As mutations in human chk2 were linked to several cancers, these similarities point to the usefulness of the Drosophila model system.

  14. Transforming growth factor beta-activated kinase 1 (TAK1)-dependent checkpoint in the survival of dendritic cells promotes immune homeostasis and function.

    PubMed

    Wang, Yanyan; Huang, Gonghua; Vogel, Peter; Neale, Geoffrey; Reizis, Boris; Chi, Hongbo

    2012-02-07

    Homeostatic control of dendritic cell (DC) survival is crucial for adaptive immunity, but the molecular mechanism is not well defined. Moreover, how DCs influence immune homeostasis under steady state remains unclear. Combining DC-specific and -inducible deletion systems, we report that transforming growth factor beta-activated kinase 1 (TAK1) is an essential regulator of DC survival and immune system homeostasis and function. Deficiency of TAK1 in CD11c(+) cells induced markedly elevated apoptosis, leading to the depletion of DC populations, especially the CD8(+) and CD103(+) DC subsets in lymphoid and nonlymphoid tissues, respectively. TAK1 also contributed to DC development by promoting the generation of DC precursors. Prosurvival signals from Toll-like receptors, CD40 and receptor activator of nuclear factor-κB (RANK) are integrated by TAK1 in DCs, which in turn mediated activation of downstream NF-κB and AKT-Foxo pathways and established a gene-expression program. TAK1 deficiency in DCs caused a myeloid proliferative disorder characterized by expansion of neutrophils and inflammatory monocytes, disrupted T-cell homeostasis, and prevented effective T-cell priming and generation of regulatory T cells. Moreover, TAK1 signaling in DCs was required to prevent myeloid proliferation even in the absence of lymphocytes, indicating a previously unappreciated regulatory mechanism of DC-mediated control of myeloid cell-dependent inflammation. Therefore, TAK1 orchestrates a prosurvival checkpoint in DCs that affects the homeostasis and function of the immune system.

  15. SUMO-interacting motifs (SIMs) in Polo-like kinase 1-interacting checkpoint helicase (PICH) ensure proper chromosome segregation during mitosis.

    PubMed

    Sridharan, Vinidhra; Azuma, Yoshiaki

    2016-08-17

    Polo-like kinase 1 (Plk1)-interacting checkpoint helicase (PICH) localizes at the centromere and is critical for proper chromosome segregation during mitosis. However, the precise molecular mechanism of PICH's centromeric localization and function at the centromere is not yet fully understood. Recently, using Xenopus egg extract assays, we showed that PICH is a promiscuous SUMO binding protein. To further determine the molecular consequence of PICH/SUMO interaction on PICH function, we identified 3 SUMO-interacting motifs (SIMs) on PICH and generated a SIM-deficient PICH mutant. Using the conditional expression of PICH in cells, we found distinct roles of PICH SIMs during mitosis. Although all SIMs are dispensable for PICH's localization on ultrafine anaphase DNA bridges, only SIM3 (third SIM, close to the C-terminus end of PICH) is critical for its centromeric localization. Intriguingly, the other 2 SIMs function in chromatin bridge prevention. With these results, we propose a novel SUMO-dependent regulation of PICH's function on mitotic centromeres.

  16. Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3'-kinase/Akt signaling pathway

    NASA Technical Reports Server (NTRS)

    Chakravarthy, M. V.; Abraha, T. W.; Schwartz, R. J.; Fiorotto, M. L.; Booth, F. W.

    2000-01-01

    Interest is growing in methods to extend replicative life span of non-immortalized stem cells. Using the insulin-like growth factor I (IGF-I) transgenic mouse in which the IGF-I transgene is expressed during skeletal muscle development and maturation prior to isolation and during culture of satellite cells (the myogenic stem cells of mature skeletal muscle fibers) as a model system, we elucidated the underlying molecular mechanisms of IGF-I-mediated enhancement of proliferative potential of these cells. Satellite cells from IGF-I transgenic muscles achieved at least five additional population doublings above the maximum that was attained by wild type satellite cells. This IGF-I-induced increase in proliferative potential was mediated via activation of the phosphatidylinositol 3'-kinase/Akt pathway, independent of mitogen-activated protein kinase activity, facilitating G(1)/S cell cycle progression via a down-regulation of p27(Kip1). Adenovirally mediated ectopic overexpression of p27(Kip1) in exponentially growing IGF-I transgenic satellite cells reversed the increase in cyclin E-cdk2 kinase activity, pRb phosphorylation, and cyclin A protein abundance, thereby implicating an important role for p27(Kip1) in promoting satellite cell senescence. These observations provide a more complete dissection of molecular events by which increased local expression of a growth factor in mature skeletal muscle fibers extends replicative life span of primary stem cells than previously known.

  17. Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid cells.

    PubMed

    Kuffer, Christian; Kuznetsova, Anastasia Yurievna; Storchová, Zuzana

    2013-08-01

    Erroneously arising tetraploid mammalian cells are chromosomally instable and may facilitate cell transformation. An increasing body of evidence shows that the propagation of mammalian tetraploid cells is limited by a p53-dependent arrest. The trigger of this arrest has not been identified so far. Here we show by live cell imaging of tetraploid cells generated by an induced cytokinesis failure that most tetraploids arrest and die in a p53-dependent manner after the first tetraploid mitosis. Furthermore, we found that the main trigger is a mitotic defect, in particular, chromosome missegregation during bipolar mitosis or spindle multipolarity. Both a transient multipolar spindle followed by efficient clustering in anaphase as well as a multipolar spindle followed by multipolar mitosis inhibited subsequent proliferation to a similar degree. We found that the tetraploid cells did not accumulate double-strand breaks that could cause the cell cycle arrest after tetraploid mitosis. In contrast, tetraploid cells showed increased levels of oxidative DNA damage coinciding with the p53 activation. To further elucidate the pathways involved in the proliferation control of tetraploid cells, we knocked down specific kinases that had been previously linked to the cell cycle arrest and p53 phosphorylation. Our results suggest that the checkpoint kinase ATM phosphorylates p53 in tetraploid cells after abnormal mitosis and thus contributes to proliferation control of human aberrantly arising tetraploids.

  18. Cell cycle-dependent localization of CHK2 at centrosomes during mitosis

    PubMed Central

    2013-01-01

    Background Centrosomes function primarily as microtubule-organizing centres and play a crucial role during mitosis by organizing the bipolar spindle. In addition to this function, centrosomes act as reaction centers where numerous key regulators meet to control cell cycle progression. One of these factors involved in genome stability, the checkpoint kinase CHK2, was shown to localize at centrosomes throughout the cell cycle. Results Here, we show that CHK2 only localizes to centrosomes during mitosis. Using wild-type and CHK2−/− HCT116 human colon cancer cells and human osteosarcoma U2OS cells depleted for CHK2 with small hairpin RNAs we show that several CHK2 antibodies are non-specific and cross-react with an unknown centrosomal protein(s) by immunofluorescence. To characterize the localization of CHK2, we generated cells expressing inducible GFP-CHK2 and Flag-CHK2 fusion proteins. We show that CHK2 localizes to the nucleus in interphase cells but that a fraction of CHK2 associates with the centrosomes in a Polo-like kinase 1-dependent manner during mitosis, from early mitotic stages until cytokinesis. Conclusion Our findings demonstrate that a subpopulation of CHK2 localizes at the centrosomes in mitotic cells but not in interphase. These results are consistent with previous reports supporting a role for CHK2 in the bipolar spindle formation and the timely progression of mitosis. PMID:23680298

  19. Mps1 is SUMO-modified during the cell cycle

    PubMed Central

    Chen, Changyan; Lu, Lou; Dai, Wei

    2016-01-01

    Mps1 is a dual specificity protein kinase that regulates the spindle assembly checkpoint and mediates proper microtubule attachment to chromosomes during mitosis. However, the molecular mechanism that controls Mps1 protein level and its activity during the cell cycle remains unclear. Given that sumoylation plays an important role in mitotic progression, we investigated whether Mps1 was SUMO-modified and whether sumoylation affects its activity in mitosis. Our results showed that Mps1 was sumoylated in both asynchronized and mitotic cell populations. Mps1 was modified by both SUMO-1 and SUMO-2. Our further studies revealed that lysine residues including K71, K287, K367 and K471 were essential for Mps1 sumoylation. Sumoylation appeared to play a role in mediating kinetochore localization of Mps1, thus affecting normal mitotic progression. Furthermore, SUMO-resistant mutants of Mps1 interacted with BubR1 more efficiently than it did with the wild-type control. Combined, our results indicate that Mps1 is SUMO-modified that plays an essential role in regulating Mps1 functions during mitosis. PMID:26675261

  20. Glyphosate-based pesticides affect cell cycle regulation.

    PubMed

    Marc, Julie; Mulner-Lorillon, Odile; Bellé, Robert

    2004-04-01

    Cell-cycle dysregulation is a hallmark of tumor cells and human cancers. Failure in the cell-cycle checkpoints leads to genomic instability and subsequent development of cancers from the initial affected cell. A worldwide used product Roundup 3plus, based on glyphosate as the active herbicide, was suggested to be of human health concern since it induced cell cycle dysfunction as judged from analysis of the first cell division of sea urchin embryos, a recognized model for cell cycle studies. Several glyphosate-based pesticides from different manufacturers were assayed in comparison with Roundup 3plus for their ability to interfere with the cell cycle regulation. All the tested products, Amega, Cargly, Cosmic, and Roundup Biovert induced cell cycle dysfunction. The threshold concentration for induction of cell cycle dysfunction was evaluated for each product and suggests high risk by inhalation for people in the vicinity of the pesticide handling sprayed at 500 to 4000 times higher dose than the cell-cycle adverse concentration.

  1. Genome-wide inhibitory impact of the AMPK activator metformin on [kinesins, tubulins, histones, auroras and polo-like kinases] M-phase cell cycle genes in human breast cancer cells.

    PubMed

    Oliveras-Ferraros, Cristina; Vazquez-Martin, Alejandro; Menendez, Javier A

    2009-05-15

    Prompted by the ever-growing scientific rationale for examining the antidiabetic drug metformin as a potential antitumor agent in breast cancer disease, we recently tested the hypothesis that the assessment of metformin-induced global changes in gene expression-as identified using 44 K (double density) Agilent's whole human genome arrays-could reveal gene-expression signatures that would allow proper selection of breast cancer patients who should be considered for metformin-based clinical trials. Using Database for Annotation, Visualization and Integrated Discovery bioinformatics (DAVID) resources we herein reveal that, at doses that lead to activation of the AMP-activated protein kinase (AMPK), metformin not only downregulates genes coding for ribosomal proteins (i.e., protein and macromolecule biosynthesis) but unexpectedly suppresses numerous mitosis-related gene families including kinesins, tubulins, histones, auroras and polo-like kinases. This is, to our knowledge, the first genome-scale evidence of a mitotic core component in the transcriptional response of human breast cancer cells to metformin. These findings further support a tight relationship between the activation status of AMPK and the chromosomal and cytoskeletal checkpoints of cell mitosis at the transcriptional level.

  2. Regulation of AURORA B function by mitotic checkpoint protein MAD2.

    PubMed

    Shandilya, Jayasha; Medler, Kathryn F; Roberts, Stefan G E

    2016-08-17

    Cell cycle checkpoint signaling stringently regulates chromosome segregation during cell division. MAD2 is one of the key components of the spindle and mitotic checkpoint complex that regulates the fidelity of cell division along with MAD1, CDC20, BUBR1, BUB3 and MAD3. MAD2 ablation leads to erroneous attachment of kinetochore-spindle fibers and defective chromosome separation. A potential role for MAD2 in the regulation of events beyond the spindle and mitotic checkpoints is not clear. Together with active spindle assembly checkpoint signaling, AURORA B kinase activity is essential for chromosome condensation as cells enter mitosis. AURORA B phosphorylates histone H3 at serine 10 and serine 28 to facilitate the formation of condensed metaphase chromosomes. In the absence of functional AURORA B cells escape mitosis despite the presence of misaligned chromosomes. In this study we report that silencing of MAD2 results in a drastic reduction of metaphase-specific histone H3 phosphorylation at serine 10 and serine 28. We demonstrate that this is due to mislocalization of AURORA B in the absence of MAD2. Conversely, overexpression of MAD2 concentrated the localization of AURORA B at the metaphase plate and caused hyper-phosphorylation of histone H3. We find that MAD1 plays a minor role in influencing the MAD2-dependent regulation of AURORA B suggesting that the effects of MAD2 on AURORA B are independent of the spindle checkpoint complex. Our findings reveal that, in addition to its role in checkpoint signaling, MAD2 ensures chromosome stability through the regulation of AURORA B.

  3. Delayed cell cycle progression in selenoprotein W depleted cells is regulated by a mitogen-activated protein kinase kinase 4–p38–p53 pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenoprotein W (SEPW1) is a ubiquitous, highly conserved thioredoxin-like protein whose depletion causes a p53- and p21Cip1-dependent G1-phase cell cycle arrest in breast and prostate epithelial cells. SEPW1 depletion increases phosphorylation of Ser33 in p53, which is associated with decreased p53...

  4. Virus manipulation of cell cycle.

    PubMed

    Nascimento, R; Costa, H; Parkhouse, R M E

    2012-07-01

    Viruses depend on host cell resources for replication and access to those resources may be limited to a particular phase of the cell cycle. Thus manipulation of cell cycle is a commonly employed strategy of viruses for achieving a favorable cellular environment. For example, viruses capable of infecting nondividing cells induce S phase in order to activate the host DNA replication machinery and provide the nucleotide triphosphates necessary for viral DNA replication (Flemington in J Virol 75:4475-4481, 2001; Sullivan and Pipas in Microbiol Mol Biol Rev 66:179-202, 2002). Viruses have developed several strategies to subvert the cell cycle by association with cyclin and cyclin-dependent kinase complexes and molecules that regulate their activity. Viruses tend to act on cellular proteins involved in a network of interactions in a way that minimal protein-protein interactions lead to a major effect. The complex and interactive nature of intracellular signaling pathways controlling cell division affords many opportunities for virus manipulation strategies. Taking the maxim "Set a thief to catch a thief" as a counter strategy, however, provides us with the very same virus evasion strategies as "ready-made tools" for the development of novel antivirus therapeutics. The most obvious are attenuated virus vaccines with critical evasion genes deleted. Similarly, vaccines against viruses causing cancer are now being successfully developed. Finally, as viruses have been playing chess with our cell biology and immune responses for millions of years, the study of their evasion strategies will also undoubtedly reveal new control mechanisms and their corresponding cellular intracellular signaling pathways.

  5. Expression patterns of cyclins D1, E and cyclin-dependent kinase inhibitors p21waf1/cip1, p27kip1 in colorectal carcinoma: correlation with other cell cycle regulators (pRb, p53 and Ki-67 and PCNA) and clinicopathological features.

    PubMed

    Ioachim, E

    2008-11-01

    Aberrations in the cell cycle regulators are common features of many tumours and several have been shown to have prognostic significant in colorectal cancer. The expression patterns of cyclins D1 and E as well as cyclin-dependent kinase (CDK) inhibitors p21waf1/cip1 and p27kip1 and their interrelationship with other cell cycle checkpoint proteins [p53, pRb, Ki-67 and proliferative cell nuclear antigen (PCNA)] were investigated in colorectal cancer in order to ascertain coregulation and influence on tumour behaviour or survival. These molecular markers were localisated immunohistochemically using the monoclonal antibodies anticyclin D1 (DCS-6), anticyclin E (13A3), anti-p21 (4D10), anti-p27 (1B4), anti-p53 (DO7), anti-Rb (AB-5), MIB1 and PC10 in colorectal cancer tissue from 97 patients. Data were analysed statistically using the spss software program. Overexpression of cyclin D1, cyclin E and p21waf1/cip1 proteins (>5% positive neoplastic cells) was observed in 5.9%, 30% and 7.2% of the cases respectively. Increased levels of cyclin D1 (p = 0.0001) and p21waf1/cip1 protein (p = 0.03) in tumours with mucous differentiation were observed. Overexpression of cyclin D1 was correlated with tumour stage (p = 0.03), the lymph node involvement (p = 0.02), as well as p21waf1/cip1 protein expression (p < 0.0001). Cyclin E was positively correlated with p21waf1/cip1 (p = 0.014), as well as with the cell proliferation as measured by PCNA-labelling index (p = 0.011) and Ki-67 score (p = 0.007). A positive relationship of p21waf1/cip1 expression with the proliferative-associated index Ki-67 was noted (p = 0.005). Downregulation of p27kip1 was observed in 47.4% of the cases and was correlated with downregulation of pRb (p = 0.002) and PCNA score (p = 0.004). The prognostic significance of cyclins D1, E and CDK inhibitors p21waf1/cip1, p27kip1 in determining the risk of recurrence and overall survival with both univariate (long-rang test) and multivariate (Cox regression) methods

  6. Characterization of cyclin-dependent kinases and Cdc2/Cdc28 kinase subunits in Trichomonas vaginalis.

    PubMed

    Amador, Erick; López-Pacheco, Karla; Morales, Nataly; Coria, Roberto; López-Villaseñor, Imelda

    2017-04-01

    Cyclin-dependent kinases (CDKs) have important roles in regulating key checkpoints between stages of the cell cycle. Their activity is tightly regulated through a variety of mechanisms, including through binding with cyclin proteins and the Cdc2/Cdc28 kinase subunit (CKS), and their phosphorylation at specific amino acids. Studies of the components involved in cell cycle control in parasitic protozoa are limited. Trichomonas vaginalis is the causative agent of trichomoniasis in humans and is therefore important in public health; however, some of the basic biological processes used by this organism have not been defined. Here, we characterized proteins potentially involved in cell cycle regulation in T. vaginalis. Three genes encoding protein kinases were identified in the T. vaginalis genome, and the corresponding recombinant proteins (TvCRK1, TvCRK2, TvCRK5) were studied. These proteins displayed similar sequence features to CDKs. Two genes encoding CKSs were also identified, and the corresponding recombinant proteins were found to interact with TvCRK1 and TvCRK2 by a yeast two-hybrid system. One putative cyclin B protein from T. vaginalis was found to bind to and activate the kinase activities of TvCRK1 and TvCRK5, but not TvCRK2. This work is the first characterization of proteins involved in cell cycle control in T. vaginalis.

  7. Cell cycle regulated synthesis of stable mouse thymidine kinase mRNA is mediated by a sequence within the cDNA.

    PubMed Central

    Hofbauer, R; Müllner, E; Seiser, C; Wintersberger, E

    1987-01-01

    The cDNA for mouse thymidine kinase (TK) was isolated from a cDNA library in lambda-gt11 and sequenced. It was used as a probe to follow the time course of TK mRNA expression in growth stimulated mouse fibroblasts. Linked to the HSV-TK promoter the cDNA was able to transform LTK-cells to the TK+ phenotype. The transformed cells expressed the TK mRNA and enzyme activity in a growth dependent fashion suggesting that the regulatory element is localized on the cDNA. Images PMID:3822814

  8. A bioinformatics approach identifies signal transducer and activator of transcription-3 and checkpoint kinase 1 as upstream regulators of kidney injury molecule-1 after kidney injury.

    PubMed

    Ajay, Amrendra Kumar; Kim, Tae-Min; Ramirez-Gonzalez, Victoria; Park, Peter J; Frank, David A; Vaidya, Vishal S

    2014-01-01

    Kidney injury molecule-1 (KIM-1)/T cell Ig and mucin domain-containing protein-1 (TIM-1) is upregulated more than other proteins after AKI, and it is highly expressed in renal damage of various etiologies. In this capacity, KIM-1/TIM-1 acts as a phosphatidylserine receptor on the surface of injured proximal tubular epithelial cells, mediating phagocytosis of apoptotic cells, and it may also act as a costimulatory molecule for immune cells. Despite recognition of KIM-1 as an important therapeutic target for kidney disease, the regulators of KIM-1 transcription in the kidney remain unknown. Using a bioinformatics approach, we identified upstream regulators of KIM-1 after AKI. In response to tubular injury in rat and human kidneys or oxidant stress in human proximal tubular epithelial cells (HPTECs), KIM-1 expression increased significantly in a manner that corresponded temporally and regionally with increased phosphorylation of checkpoint kinase 1 (Chk1) and STAT3. Both ischemic and oxidant stress resulted in a dramatic increase in reactive oxygen species that phosphorylated and activated Chk1, which subsequently bound to STAT3, phosphorylating it at S727. Furthermore, STAT3 bound to the KIM-1 promoter after ischemic and oxidant stress, and pharmacological or genetic induction of STAT3 in HPTECs increased KIM-1 mRNA and protein levels. Conversely, inhibition of STAT3 using siRNAs or dominant negative mutants reduced KIM-1 expression in a kidney cancer cell line (769-P) that expresses high basal levels of KIM-1. These observations highlight Chk1 and STAT3 as critical upstream regulators of KIM-1 expression after AKI and may suggest novel approaches for therapeutic intervention.

  9. Artemisinin triggers a G1 cell cycle arrest of human Ishikawa endometrial cancer cells and inhibits cyclin-dependent kinase-4 promoter activity and expression by disrupting nuclear factor-κB transcriptional signaling.

    PubMed

    Tran, Kalvin Q; Tin, Antony S; Firestone, Gary L

    2014-03-01

    Relatively little is known about the antiproliferative effects of artemisinin, a naturally occurring antimalarial compound from Artemisia annua, or sweet wormwood, in human endometrial cancer cells. Artemisinin induced a G1 cell cycle arrest in cultured human Ishikawa endometrial cancer cells and downregulated cyclin-dependent kinase-2 (CDK2) and CDK4 transcript and protein levels. Analysis of CDK4 promoter-luciferase reporter constructs showed that the artemisinin ablation of CDK4 gene expression was accounted for by the loss of CDK4 promoter activity. Chromatin immunoprecipitation demonstrated that artemisinin inhibited nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) subunit p65 and p50 interactions with the endogenous Ishikawa cell CDK4 promoter. Coimmunoprecipitation revealed that artemisinin disrupts endogenous p65 and p50 nuclear translocation through increased protein-protein interactions with IκB-α, an NF-κB inhibitor, and disrupts its interaction with the CDK4 promoter, leading to a loss of CDK4 gene expression. Artemisinin treatment stimulated the cellular levels of IκB-α protein without altering the level of IκB-α transcripts. Finally, expression of exogenous p65 resulted in the accumulation of this NF-κB subunit in the nucleus of artemisinin-treated and artemisinin-untreated cells, reversed the artemisinin downregulation of CDK4 protein expression and promoter activity, and prevented the artemisinin-induced G1 cell cycle arrest. Taken together, our results demonstrate that a key event in the artemisinin antiproliferative effects in endometrial cancer cells is the transcriptional downregulation of CDK4 expression by disruption of NF-κB interactions with the CDK4 promoter.

  10. Neuronal cell cycle: the neuron itself and its circumstances.

    PubMed

    Frade, José M; Ovejero-Benito, María C

    2015-01-01

    Neurons are usually regarded as postmitotic cells that undergo apoptosis in response to cell cycle reactivation. Nevertheless, recent evidence indicates the existence of a defined developmental program that induces DNA replication in specific populations of neurons, which remain in a tetraploid state for the rest of their adult life. Similarly, de novo neuronal tetraploidization has also been described in the adult brain as an early hallmark of neurodegeneration. The aim of this review is to integrate these recent developments in the context of cell cycle regulation and apoptotic cell death in neurons. We conclude that a variety of mechanisms exists in neuronal cells for G1/S and G2/M checkpoint regulation. These mechanisms, which are connected with the apoptotic machinery, can be modulated by environmental signals and the neuronal phenotype itself, thus resulting in a variety of outcomes ranging from cell death at the G1/S checkpoint to full proliferation of differentiated neurons.

  11. Intracellular calcium signals regulate growth of hepatic stellate cells via specific effects on cell cycle progression.

    PubMed

    Soliman, Elwy M; Rodrigues, Michele Angela; Gomes, Dawidson Assis; Sheung, Nina; Yu, Jin; Amaya, Maria Jimina; Nathanson, Michael H; Dranoff, Jonathan A

    2009-03-01

    Hepatic stellate cells (HSC) are important mediators of liver fibrosis. Hormones linked to downstream intracellular Ca(2+) signals upregulate HSC proliferation, but the mechanisms by which this occurs are unknown. Nuclear and cytosolic Ca(2+) signals may have distinct effects on cell proliferation, so we expressed plasmid and adenoviral constructs containing the Ca(2+) chelator parvalbumin (PV) linked to either a nuclear localization sequence (NLS) or a nuclear export sequence (NES) to block Ca(2+) signals in distinct compartments within LX-2 immortalized human HSC and primary rat HSC. PV-NLS and PV-NES constructs each targeted to the appropriate intracellular compartment and blocked Ca(2+) signals only within that compartment. PV-NLS and PV-NES constructs inhibited HSC growth. Furthermore, blockade of nuclear or cytosolic Ca(2+) signals arrested growth at the G2/mitosis (G2/M) cell-cycle interface and prevented the onset of mitosis. Blockade of nuclear or cytosolic Ca(2+) signals downregulated phosphorylation of the G2/M checkpoint phosphatase Cdc25C. Inhibition of calmodulin kinase II (CaMK II) had identical effects on LX-2 growth and Cdc25C phosphorylation. We propose that nuclear and cytosolic Ca(2+) are critical signals that regulate HSC growth at the G2/M checkpoint via CaMK II-mediated regulation of Cdc25C phosphorylation. These data provide a new logical target for pharmacological therapy directed against progression of liver fibrosis.

  12. Nanosecond pulsed electric fields and the cell cycle

    NASA Astrophysics Data System (ADS)

    Mahlke, Megan A.

    Exposure to nanosecond pulsed electrical fields (nsPEFs) can cause poration of external and internal cell membranes, DNA damage, and disassociation of cytoskeletal components, all of which are capable of disrupting a cell's ability to replicate. The phase of the cell cycle at the time of exposure is linked to differential sensitivities to nsPEFs across cell lines, as DNA structure, membrane elasticity, and cytoskeletal structure change dramatically during the cell cycle. Additionally, nsPEFs are capable of activating cell cycle checkpoints, which could lead to apoptosis or slow population growth. NsPEFs are emerging as a method for treating tumors via apoptotic induction; therefore, investigating the relevance of nsPEFs and the cell cycle could translate into improved efficacy in tumor treatment. Populations of Jurkat and Chinese Hamster Ovary (CHO) cells were examined post-exposure (10 ns pulse trains at 150kV/cm) by analysis of DNA content via propidium iodide staining and flow cytometric analysis at various time points (1, 6, and 12h post-exposure) to determine population distribution in cell cycle phases. Additionally, CHO and Jurkat cells were synchronized in G1/S and G2/M phases, pulsed, and analyzed to evaluate the role of cell cycle phase in survival of nsPEFs. CHO populations appeared similar to sham populations post-nsPEFs but exhibited arrest in the G1 phase at 6h after exposure. Jurkat cells exhibited increased cell death after nsPEFs compared to CHO cells but did not exhibit checkpoint arrest at any observed time point. The G1/S phase checkpoint is partially controlled by the action of p53; the lack of an active p53 response in Jurkat cells could contribute to their ability to pass this checkpoint and resist cell cycle arrest. Both cell lines exhibited increased sensitivity to nsPEFs in G2/M phase. Live imaging of CHO cells after nsPEF exposure supports the theory of G1/S phase arrest, as a reduced number of cells undergo mitosis within 24 h when

  13. Transformed and nontransformed cells differ in stability and cell cycle regulation of a binding activity to the murine thymidine kinase promoter.

    PubMed Central

    Bradley, D W; Dou, Q P; Fridovich-Keil, J L; Pardee, A B

    1990-01-01

    A DNA binding activity to an upstream region of the murine thymidine kinase gene is regulated differently in a transformed and nontransformed cell line pair. Differences in regulation were observed (i) after serum levels were reduced, (ii) when serum levels were returned to initial high levels, and (iii) while protein synthesis was inhibited. After reduction of serum levels, the binding activity was unstable in nontransformed BALB/c 3T3 clone A31 cells but was significantly more stable in benzo[a]pyrene-transformed BALB/c 3T3 cells. After serum concentration was returned to high levels, the kinetic pattern of the binding activity differed between nontransformed and transformed cells. While protein synthesis was inhibited, the binding activity was unstable in nontransformed cells and stable in transformed cells. Partial inhibition of protein synthesis--a more stringent condition to test instability--prevented the induction of the binding activity in nontransformed cells. Previously, the labile protein hypothesis set forth the criterion that a protein regulating the onset of DNA synthesis should be unstable in nontransformed cells and stable in transformed cells. The DNA binding activity described here satisfies this criterion. Images PMID:2251273

  14. Polycomb protein SCML2 regulates the cell cycle by binding and modulating CDK/CYCLIN/p21 complexes.

    PubMed

    Lecona, Emilio; Rojas, Luis Alejandro; Bonasio, Roberto; Johnston, Andrew; Fernández-Capetillo, Oscar; Reinberg, Danny

    2013-12-01

    Polycomb group (PcG) proteins are transcriptional repressors of genes involved in development and differentiation, and also maintain repression of key genes involved in the cell cycle, indirectly regulating cell proliferation. The human SCML2 gene, a mammalian homologue of the Drosophila PcG protein SCM, encodes two protein isoforms: SCML2A that is bound to chromatin and SCML2B that is predominantly nucleoplasmic. Here, we purified SCML2B and found that it forms a stable complex with CDK/CYCLIN/p21 and p27, enhancing the inhibitory effect of p21/p27. SCML2B participates in the G1/S checkpoint by stabilizing p21 and favoring its interaction with CDK2/CYCE, resulting in decreased kinase activity and inhibited progression through G1. In turn, CDK/CYCLIN complexes phosphorylate SCML2, and the interaction of SCML2B with CDK2 is regulated through the cell cycle. These findings highlight a direct crosstalk between the Polycomb system of cellular memory and the cell-cycle machinery in mammals.

  15. Heparin selectively inhibits a protein kinase C-dependent mechanism of cell cycle progression in calf aortic smooth muscle cells [published erratum appears in J Cell Biol 1990 Mar;110(3):863

    PubMed Central

    1989-01-01

    The proliferation of arterial smooth muscle cells (SMCs) plays a critical role in the pathogenesis of arteriosclerosis. Previous studies have indicated that the glycosaminoglycan heparin specifically inhibited the growth of vascular SMCs in vivo and in culture, although the precise mechanism(s) of action have not been elucidated. In this study, we have examined the ability of specific mitogens (PDGF, EGF, heparin-binding growth factors, phorbol esters, and insulin) to stimulate SMC proliferation. Our results indicate that SMCs derived from different species and vascular sources respond differently to these growth factors. We next examined the ability of heparin to inhibit the proliferative responses to these mitogens. In calf aortic SMCs, heparin inhibits a protein kinase C-dependent pathway for mitogenesis. Detailed cell cycle analysis revealed several new features of the effects of heparin on SMCs. For example, heparin has two effects on the Go----S transition: it delays entry into S phase and also reduces the number of cells entering the cycle from Go. Using two separate experimental approaches, we found that heparin must be present during the last 4 h before S phase, suggesting a mid-to-late G1 heparin block. In addition, our data indicate that heparin-treated SMCs, while initially blocked in mid-to-late G1, slowly move back into a quiescent growth state in the continued presence of heparin. These results suggest that heparin may have multiple targets for its antiproliferative effect. PMID:2592420

  16. Regulation of cyclin A localization downstream of Par-1 function is critical for the centrosome orientation checkpoint in Drosophila male germline stem cells.

    PubMed

    Yuan, Hebao; Chiang, C-Y Ason; Cheng, Jun; Salzmann, Viktoria; Yamashita, Yukiko M

    2012-01-01

    Male germline stem cells (GSCs) in Drosophila melanogaster divide asymmetrically by orienting the mitotic spindle with respect to the niche, a microenvironment that specifies stem cell identity. The spindle orientation is prepared during interphase through stereotypical positioning of the centrosomes. We recently demonstrated that GSCs possess a checkpoint ("the centrosome orientation checkpoint") that monitors correct centrosome orientation prior to mitosis to ensure an oriented spindle and thus asymmetric outcome of the division. Here, we show that Par-1, a serine/threonine kinase that regulates polarity in many systems, is involved in this checkpoint. Par-1 shows a cell cycle-dependent localization to the spectrosome, a germline-specific, endoplasmic reticulum-like organelle. Furthermore, the localization of cyclin A, which is normally localized to the spectrosome, is perturbed in par-1 mutant GSCs. Interestingly, overexpression of mutant cyclin A that does not localize to the spectrosome and mutation in hts, a core component of the spectrosome, both lead to defects in the centrosome orientation checkpoint. We propose that the regulation of cyclin A localization via Par-1 function plays a critical role in the centrosome orientation checkpoint.

  17. Two independent S-phase checkpoints regulate appressorium-mediated plant infection by the rice blast fungus Magnaporthe oryzae

    PubMed Central

    Osés-Ruiz, Míriam; Sakulkoo, Wasin; Littlejohn, George R.; Martin-Urdiroz, Magdalena

    2017-01-01

    To cause rice blast disease, the fungal pathogen Magnaporthe oryzae develops a specialized infection structure called an appressorium. This dome-shaped, melanin-pigmented cell generates enormous turgor and applies physical force to rupture the rice leaf cuticle using a rigid penetration peg. Appressorium-mediated infection requires septin-dependent reorientation of the F-actin cytoskeleton at the base of the infection cell, which organizes polarity determinants necessary for plant cell invasion. Here, we show that plant infection by M. oryzae requires two independent S-phase cell-cycle checkpoints. Initial formation of appressoria on the rice leaf surface requires an S-phase checkpoint that acts through the DNA damage response (DDR) pathway, involving the Cds1 kinase. By contrast, appressorium repolarization involves a novel, DDR-independent S-phase checkpoint, triggered by appressorium turgor generation and melanization. This second checkpoint specifically regulates septin-dependent, NADPH oxidase-regulated F-actin dynamics to organize the appressorium pore and facilitate entry of the fungus into host tissue. PMID:28028232

  18. Wogonoside induces growth inhibition and cell cycle arrest via promoting the expression and binding activity of GATA-1 in chronic myelogenous leukemia cells.

    PubMed

    Li, Hui; Hui, Hui; Xu, Jingyan; Yang, Hao; Zhang, Xiaoxiao; Liu, Xiao; Zhou, Yuxin; Li, Zhiyu; Guo, Qinglong; Lu, Na

    2016-06-01

    GATA-1, a zinc finger transcription factor, has been demonstrated to play a key role in the progression of leukemia. In this study, we investigate the effects of wogonoside, a naturally bioactive flavonoid derived from Scutellaria baicalensis Georgi, on cell growth and cell cycle in chronic myeloid leukemia (CML) cells, and uncover its underlying mechanisms. The experimental design comprised CML cell lines K562, imatinib-resistant K562 (K562r) cells, and primary CML cells, treated in vitro or in vivo, respectively, with wogonoside; growth and cell cycle were then evaluated. We found that wogonoside could induce growth inhibition and G0/G1 cell cycle arrest in both normal and K562r cells. Wogonoside promotes the expression of GATA-1 and facilitates the binding to methyl ethyl ketone (MEK) and p21 promoter, thus inhibiting MEK/extracellular signal-regulated kinase signaling and cell cycle checkpoint proteins, including CDK2, CDK4, cyclin A, and cyclin D1, and increasing p21 expression. Furthermore, in vivo studies showed that administration of wogonoside decreased CML cells and prolonged survival in NOD/SCID mice with CML cell xenografts. In conclusion, these results clearly revealed the inhibitory effect of wogonoside on the growth in CML cells and suggested that wogonoside may act as a promising drug for the treatment of imatinib-resistant CML.

  19. Interplay between cell growth and cell cycle in plants.

    PubMed

    Sablowski, Robert; Carnier Dornelas, Marcelo

    2014-06-01

    The growth of organs and whole plants depends on both cell growth and cell-cycle progression, but the interaction between both processes is poorly understood. In plants, the balance between growth and cell-cycle progression requires coordinated regulation of four different processes: macromolecular synthesis (cytoplasmic growth), turgor-driven cell-wall extension, mitotic cycle, and endocycle. Potential feedbacks between these processes include a cell-size checkpoint operating before DNA synthesis and a link between DNA contents and maximum cell size. In addition, key intercellular signals and growth regulatory genes appear to target at the same time cell-cycle and cell-growth functions. For example, auxin, gibberellin, and brassinosteroid all have parallel links to cell-cycle progression (through S-phase Cyclin D-CDK and the anaphase-promoting complex) and cell-wall functions (through cell-wall extensibility or microtubule dynamics). Another intercellular signal mediated by microtubule dynamics is the mechanical stress caused by growth of interconnected cells. Superimposed on developmental controls, sugar signalling through the TOR pathway has recently emerged as a central control point linking cytoplasmic growth, cell-cycle and cell-wall functions. Recent progress in quantitative imaging and computational modelling will facilitate analysis of the multiple interconnections between plant cell growth and cell cycle and ultimately will be required for the predictive manipulation of plant growth.

  20. Grow₂: the HIF system, energy homeostasis and the cell cycle.

    PubMed

    Moniz, Sónia; Biddlestone, John; Rocha, Sónia

    2014-05-01

    Cell cycle progression is an energy demanding process and requires fine-tuned metabolic regulation. Cells must overcome an energy restriction checkpoint before becoming committed to progress through the cell cycle. Aerobic organisms need oxygen for the metabolic conversion of nutrients into energy. As such, environmental oxygen is a critical signalling molecule regulating cell fate. The Hypoxia Inducible Factors (HIFs) are a family of transcription factors that respond to changes in environmental oxygen and cell energy and coordinate a transcriptional program which forms an important part of the cellular response to a hostile environment. A significant proportion of HIF-dependent transcriptional target genes, code for proteins that are involved in energy homeostasis. In this review we discuss the role of the HIF system in the regulation of energy homeostasis in response to changes in environmental oxygen and the impact on cell cycle control, and address the implications of the deregulation of this effect in cancer.

  1. Photodynamic therapy results in induction of WAF1/CIP1/P21 leading to cell cycle arrest and apoptosis.

    PubMed

    Ahmad, N; Feyes, D K; Agarwal, R; Mukhtar, H

    1998-06-09

    Photodynamic therapy (PDT) is a promising new modality that utilizes a combination of a photosensitizing chemical and visible light for the management of a variety of solid malignancies. The mechanism of PDT-mediated cell killing is not well defined. We investigated the involvement of cell cycle regulatory events during silicon phthalocyanine (Pc4)-PDT-mediated apoptosis in human epidermoid carcinoma cells A431. PDT resulted in apoptosis, inhibition of cell growth, and G0-G1 phase arrest of the cell cycle, in a time-dependent fashion. Western blot analysis revealed that PDT results in an induction of the cyclin kinase inhibitor WAF1/CIP1/p21, and a down-regulation of cyclin D1 and cyclin E, and their catalytic subunits cyclin-dependent kinase (cdk) 2 and cdk6. The treatment also resulted in a decrease in kinase activities associated with all the cdks and cyclins examined. PDT also resulted in (i) an increase in the binding of cyclin D1 and cdk6 toward WAF1/CIP1/p21, and (ii) a decrease in the binding of cyclin D1 toward cdk2 and cdk6. The binding of cyclin E and cdk2 toward WAF1/CIP1/p21, and of cyclin E toward cdk2 did not change by the treatment. These data suggest that PDT-mediated induction of WAF1/CIP1/p21 results in an imposition of artificial checkpoint at G1 --> S transition thereby resulting in an arrest of cells in G0-G1 phase of the cell cycle through inhibition in the cdk2, cdk6, cyclin D1, and cyclin E. We suggest that this arrest is an irreversible process and the cells, unable to repair the damages, ultimately undergo apoptosis.

  2. Targeting cell cycle regulators in hematologic malignancies

    PubMed Central

    Aleem, Eiman; Arceci, Robert J.

    2015-01-01

    Hematologic malignancies represent the fourth most frequently diagnosed cancer in economically developed countries. In hematologic malignancies normal hematopoiesis is interrupted by uncontrolled growth of a genetically altered stem or progenitor cell (HSPC) that maintains its ability of self-renewal. Cyclin-dependent kinases (CDKs) not only regulate the mammalian cell cycle, but also influence other vital cellular processes, such as stem cell renewal, differentiation, transcription, epigenetic regulation, apoptosis, and DNA repair. Chromosomal translocations, amplification, overexpression and altered CDK activities have been described in different types of human cancer, which have made them attractive targets for pharmacological inhibition. Mouse models deficient for one or more CDKs have significantly contributed to our current understanding of the physiological functions of CDKs, as well as their roles in human cancer. The present review focuses on selected cell cycle kinases with recent emerging key functions in hematopoiesis and in hematopoietic malignancies, such as CDK6 and its role in MLL-rearranged leukemia and acute lymphocytic leukemia, CDK1 and its regulator WEE-1 in acute myeloid leukemia (AML), and cyclin C/CDK8/CDK19 complexes in T-cell acute lymphocytic leukemia. The knowledge gained from gene knockout experiments in mice of these kinases is also summarized. An overview of compounds targeting these kinases, which are currently in clinical development in various solid tumors and hematopoietic malignances, is presented. These include the CDK4/CDK6 inhibitors (palbociclib, LEE011, LY2835219), pan-CDK inhibitors that target CDK1 (dinaciclib, flavopiridol, AT7519, TG02, P276-00, terampeprocol and RGB 286638) as well as the WEE-1 kinase inhibitor, MK-1775. The advantage of combination therapy of cell cycle inhibitors with conventional chemotherapeutic agents used in the treatment of AML, such as cytarabine, is discussed. PMID:25914884

  3. Cell cycle arrest induced by MPPa-PDT in MDA-MB-231 cells

    NASA Astrophysics Data System (ADS)

    Liang, Liming; Bi, Wenxiang; Tian, Yuanyuan

    2016-05-01

    Photodynamic therapy (PDT) is a medical treatment using a photosensitizing agent and light source to treat cancers. Pyropheophorbidea methyl ester (MPPa), a derivative of chlorophyll, is a novel potent photosensitizer. To learn more about this photosensitizer, we examined the cell cycle arrest in MDA-MB-231. Cell cycle and apoptosis were measured by flow cytometer. Checkpoints of the cell cycle were measured by western blot. In this study, we found that the expression of Cyclin D1 was obviously decreased, while the expression of Chk2 and P21 was increased after PDT treatment. This study showed that MPPa-PDT affected the checkpoints of the cell cycle and led the cells to apoptosis.

  4. Enhanced radiation-induced cytotoxic effect by 2-ME in glioma cells is mediated by induction of cell cycle arrest and DNA damage via activation of ATM pathways.

    PubMed

    Zou, Huichao; Zhao, Shiguang; Zhang, Jianhua; Lv, Gongwei; Zhang, Xu; Yu, Hongwei; Wang, Huibo; Wang, Ligang

    2007-12-14

    Glioblastoma multiform is the most common malignant primary brain tumor in adults, but there remains no effective therapeutic approach. 2-methoxyestradiol (2-ME), which is a naturally occurring metabolite of 17beta-estradiol, was shown to enhance radiotherapeutic effect in certain tumors; however, whether 2-ME can also enhance the sensitivity of glioma cells to radiotherapy remains unknown. The present study, therefore, was to address this issue using two human glioma cell lines (T98G and U251MG). These cells were irradiated with and without 2-ME and then clonogenic assay, apoptosis assay, DNA damage, and cell cycle change were examined. Results showed that 2-ME significantly enhances radiation-induced cell death in both glioma cells, shown by decreasing cell viability and increasing apoptotic cell death. No such radiosensitizing effect was observed if cells pre-treated with Estrodiol, suggesting the specifically radiosensitizing effect of 2-ME rather than a general effect of estrodials. The enhanced radio-cytotoxic effect in glioma cells by 2-ME was found to be associated with its enhancement of G(2)/M arrest and DNA damage, and phosphorylated ATM protein kinases as well as cell cycle checkpoint protein Chk2. Furthermore, inhibition of ATM by ATM inhibitor abolished 2-ME-activated Chk2 and enhanced radio-cytotoxic effects. These results suggest that 2-ME enhancement of the sensitivity of glioma cell lines to radiotherapy is mediated by induction of G2/M cell cycle arrest and increased DNA damage via activation of ATM kinases.

  5. Cell cycle control and seed development.

    PubMed

    Dante, Ricardo A; Larkins, Brian A; Sabelli, Paolo A

    2014-01-01

    Seed development is a complex process that requires coordinated integration of many genetic, metabolic, and physiological pathways and environmental cues. Different cell cycle types, such as asymmetric cell division, acytokinetic mitosis, mitotic cell division, and endoreduplication, frequently occur in sequential yet overlapping manner during the development of the embryo and the endosperm, seed structures that are both products of double fertilization. Asymmetric cell divisions in the embryo generate polarized daughter cells with different cell fates. While nuclear and cell division cycles play a key role in determining final seed cell numbers, endoreduplication is often associated with processes such as cell enlargement and accumulation of storage metabolites that underlie cell differentiation and growth of the different seed compartments. This review focuses on recent advances in our understanding of different cell cycle mechanisms operating during seed development and their impact on the growth, development, and function of seed tissues. Particularly, the roles of core cell cycle regulators, such as cyclin-dependent-kinases and their inhibitors, the Retinoblastoma-Related/E2F pathway and the proteasome-ubiquitin system, are discussed in the contexts of different cell cycle types that characterize seed development. The contributions of nuclear and cellular proliferative cycles and endoreduplication to cereal endosperm development are also discussed.

  6. Cell cycle control and seed development

    PubMed Central

    Dante, Ricardo A.; Larkins, Brian A.; Sabelli, Paolo A.

    2014-01-01

    Seed development is a complex process that requires coordinated integration of many genetic, metabolic, and physiological pathways and environmental cues. Different cell cycle types, such as asymmetric cell division, acytokinetic mitosis, mitotic cell division, and endoreduplication, frequently occur in sequential yet overlapping manner during the development of the embryo and the endosperm, seed structures that are both products of double fertilization. Asymmetric cell divisions in the embryo generate polarized daughter cells with different cell fates. While nuclear and cell division cycles play a key role in determining final seed cell numbers, endoreduplication is often associated with processes such as cell enlargement and accumulation of storage metabolites that underlie cell differentiation and growth of the different seed compartments. This review focuses on recent advances in our understanding of different cell cycle mechanisms operating during seed development and their impact on the growth, development, and function of seed tissues. Particularly, the roles of core cell cycle regulators, such as cyclin-dependent-kinases and their inhibitors, the Retinoblastoma-Related/E2F pathway and the proteasome-ubiquitin system, are discussed in the contexts of different cell cycle types that characterize seed development. The contributions of nuclear and cellular proliferative cycles and endoreduplication to cereal endosperm development are also discussed. PMID:25295050

  7. The cell cycle rallies the transcription cycle: Cdc28/Cdk1 is a cell cycle-regulated transcriptional CDK.

    PubMed

    Chymkowitch, Pierre; Enserink, Jorrit M

    2013-01-01

    In the budding yeast Saccharomyces cerevisiae, the cyclin-dependent kinases (CDKs) Kin28, Bur1 and Ctk1 regulate basal transcription by phosphorylating the carboxyl-terminal domain (CTD) of RNA polymerase II. However, very little is known about the involvement of the cell cycle CDK Cdc28 in the transcription process. We have recently shown that, upon cell cycle entry, Cdc28 kinase activity boosts transcription of a subset of genes by directly stimulating the basal transcription machinery. Here, we discuss the biological significance of this finding and give our view of the kinase-dependent role of Cdc28 in regulation of RNA polymerase II.

  8. Cucurbitacin-I inhibits Aurora kinase A, Aurora kinase B and survivin, induces defects in cell cycle progression and promotes ABT-737-induced cell death in a caspase-independent manner in malignant human glioma cells.

    PubMed

    Premkumar, Daniel R; Jane, Esther P; Pollack, Ian F

    2015-01-01

    Because STAT signaling is commonly activated in malignant gliomas as a result of constitutive EGFR activation, strategies for inhibiting the EGFR/JAK/STAT cascade are of significant interest. We, therefore, treated a panel of established glioma cell lines, including EGFR overexpressors, and primary cultures derived from patients diagnosed with glioblastoma with the JAK/STAT inhibitor cucurbitacin-I. Treatment with cucurbitacin-I depleted p-STAT3, p-STAT5, p-JAK1 and p-JAK2 levels, inhibited cell proliferation, and induced G2/M accumulation, DNA endoreduplication, and multipolar mitotic spindles. Longer exposure to cucurbitacin-I significantly reduced the number of viable cells and this decrease in viability was associated with cell death, as confirmed by an increase in the subG1 fraction. Our data also demonstrated that cucurbitacin-I strikingly downregulated Aurora kinase A, Aurora kinase B and survivin. We then searched for agents that exhibited a synergistic effect on cell death in combination with cucurbitacin-I. We found that cotreatment with cucurbitacin-I significantly increased Bcl(-)2/Bcl(-)xL family member antagonist ABT-737-induced cell death regardless of EGFR/PTEN/p53 status of malignant human glioma cell lines. Although >50% of the cucurbitacin-I plus ABT-737 treated cells were annexin V and propidium iodide positive, PARP cleavage or caspase activation was not observed. Pretreatment of z-VAD-fmk, a pan caspase inhibitor did not inhibit cell death, suggesting a caspase-independent mechanism of cell death. Genetic inhibition of Aurora kinase A or Aurora kinase B or survivin by RNA interference also sensitized glioma cells to ABT-737, suggesting a link between STAT activation and Aurora kinases in malignant gliomas.

  9. How do prokaryotic cells cycle?

    PubMed

    Margolin, William; Bernander, Rolf

    2004-09-21

    This issue of Current Biology features five reviews covering various key aspects of the eukaryotic cell cycle. The topics include initiation of chromosome replication, assembly of the mitotic spindle, cytokinesis, the regulation of cell-cycle progression, and cell-cycle modeling, focusing mainly on budding yeast, fission yeast and animal cell model systems. The reviews underscore common themes as well as key differences in the way these processes are carried out and regulated among the different model organisms. Consequently, an important question is how cell-cycle mechanisms and controls have evolved, particularly in the broader perspective of the three domains of life.

  10. HPV16 and 18 genome amplification show different E4-dependence, with 16E4 enhancing E1 nuclear accumulation and replicative efficiency via its cell cycle arrest and kinase activation functions.

    PubMed

    Egawa, Nagayasu; Wang, Qian; Griffin, Heather M; Murakami, Isao; Jackson, Deborah; Mahmood, Radma; Doorbar, John

    2017-03-17

    To clarify E1^E4's role during high-risk HPV infection, the E4 proteins of HPV16 and 18 were compared side by side using an isogenic keratinocyte differentiation model. While no effect on cell proliferation or viral genome copy number was observed during the early phase of either virus life cycle, time-course experiments showed that viral genome amplification and L1 expression were differently affected upon differentiation, with HPV16 showing a much clearer E4 dependency. Although E4 loss never completely abolished genome amplification, its more obvious contribution in HPV16 focused our efforts on 16E4. As previously suggested, in the context of the virus life cycle, 16E4s G2-arrest capability was found to contribute to both genome amplification success and L1 accumulation. Loss of 16E4 also lead to a reduced maintenance of ERK, JNK and p38MAPK activity throughout the genome amplifying cell layers, with 16E4 (but not 18E4) co-localizing precisely with activated cytoplasmic JNK in both wild type raft tissue, and HPV16-induced patient biopsy tissue. When 16E1 was co-expressed with E4, as occurs during genome amplification in vivo, the E1 replication helicase accumulated preferentially in the nucleus, and in transient replication assays, E4 stimulated viral genome amplification. Interestingly, a 16E1 mutant deficient in its regulatory phosphorylation sites no longer accumulated in the nucleus following E4 co-expression. E4-mediated stabilisation of 16E2 was also apparent, with E2 levels declining in organotypic raft culture when 16E4 was absent. These results suggest that 16E4-mediated enhancement of genome amplification involves its cell cycle inhibition and cellular kinase activation functions, with E4 modifying the activity and function of viral replication proteins including E1. These activities of 16E4, and the different kinase patterns seen here with HPV18, 31 and 45, may reflect natural differences in the biology and tropisms of these viruses, as well as

  11. HPV16 and 18 genome amplification show different E4-dependence, with 16E4 enhancing E1 nuclear accumulation and replicative efficiency via its cell cycle arrest and kinase activation functions

    PubMed Central

    Jackson, Deborah; Mahmood, Radma

    2017-01-01

    To clarify E1^E4’s role during high-risk HPV infection, the E4 proteins of HPV16 and 18 were compared side by side using an isogenic keratinocyte differentiation model. While no effect on cell proliferation or viral genome copy number was observed during the early phase of either virus life cycle, time-course experiments showed that viral genome amplification and L1 expression were differently affected upon differentiation, with HPV16 showing a much clearer E4 dependency. Although E4 loss never completely abolished genome amplification, its more obvious contribution in HPV16 focused our efforts on 16E4. As previously suggested, in the context of the virus life cycle, 16E4s G2-arrest capability was found to contribute to both genome amplification success and L1 accumulation. Loss of 16E4 also lead to a reduced maintenance of ERK, JNK and p38MAPK activity throughout the genome amplifying cell layers, with 16E4 (but not 18E4) co-localizing precisely with activated cytoplasmic JNK in both wild type raft tissue, and HPV16-induced patient biopsy tissue. When 16E1 was co-expressed with E4, as occurs during genome amplification in vivo, the E1 replication helicase accumulated preferentially in the nucleus, and in transient replication assays, E4 stimulated viral genome amplification. Interestingly, a 16E1 mutant deficient in its regulatory phosphorylation sites no longer accumulated in the nucleus following E4 co-expression. E4-mediated stabilisation of 16E2 was also apparent, with E2 levels declining in organotypic raft culture when 16E4 was absent. These results suggest that 16E4-mediated enhancement of genome amplification involves its cell cycle inhibition and cellular kinase activation functions, with E4 modifying the activity and function of viral replication proteins including E1. These activities of 16E4, and the different kinase patterns seen here with HPV18, 31 and 45, may reflect natural differences in the biology and tropisms of these viruses, as well as

  12. Specific cell cycle synchronization with butyrate and cell cycle analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synchronized cells have been invaluable for many kinds of cell cycle and cell proliferation studies. Butyrate induces cell cycle arrest and apoptosis in MDBK cells. To explore the possibility of using butyrate-blocked cells to obtain synchronized cells, we investigated the property of the cell cyc...

  13. Cell cycle controls stress response and longevity in C. elegans

    PubMed Central

    Dottermusch, Matthias; Lakner, Theresa; Peyman, Tobias; Klein, Marinella; Walz, Gerd; Neumann-Haefelin, Elke

    2016-01-01

    Recent studies have revealed a variety of genes and mechanisms that influence the rate of aging progression. In this study, we identified cell cycle factors as potent regulators of health and longevity in C. elegans. Focusing on the cyclin-dependent kinase 2 (cdk-2) and cyclin E (cye-1), we show that inhibition of cell cycle genes leads to tolerance towards environmental stress and longevity. The reproductive system is known as a key regulator of longevity in C. elegans. We uncovered the gonad as the central organ mediating the effects of cell cycle inhibition on lifespan. In particular, the proliferating germ cells were essential for conferring longevity. Steroid hormone signaling and the FOXO transcription factor DAF-16 were required for longevity associated with cell cycle inhibition. Furthermore, we discovered that SKN-1 (ortholog of mammalian Nrf proteins) activates protective gene expression and induces longevity when cell cycle genes are inactivated. We conclude that both, germline absence and inhibition through impairment of cell cycle machinery results in longevity through similar pathways. In addition, our studies suggest further roles of cell cycle genes beyond cell cycle progression and support the recently described connection of SKN-1/Nrf to signals deriving from the germline. PMID:27668945

  14. Danusertib, a potent pan-Aurora kinase and ABL kinase inhibitor, induces cell cycle arrest and programmed cell death and inhibits epithelial to mesenchymal transition involving the PI3K/Akt/mTOR-mediated signaling pathway in human gastric cancer AGS and NCI-N78 cells.

    PubMed

    Yuan, Chun-Xiu; Zhou, Zhi-Wei; Yang, Yin-Xue; He, Zhi-Xu; Zhang, Xueji; Wang, Dong; Yang, Tianxing; Pan, Si-Yuan; Chen, Xiao-Wu; Zhou, Shu-Feng

    2015-01-01

    N-cadherin in both cell lines. Taken together, danusertib has potent inducing effects on cell cycle arrest, apoptosis, and autophagy, but has an inhibitory effect on epithelial to mesenchymal transition, with involvement of signaling pathways mediated by PI3K/Akt/mTOR, p38 mitogen-activated protein kinase, and 5' AMP-activated protein kinase in AGS and NCI-N78 cells.

  15. Danusertib, a potent pan-Aurora kinase and ABL kinase inhibitor, induces cell cycle arrest and programmed cell death and inhibits epithelial to mesenchymal transition involving the PI3K/Akt/mTOR-mediated signaling pathway in human gastric cancer AGS and NCI-N78 cells

    PubMed Central

    Yuan, Chun-Xiu; Zhou, Zhi-Wei; Yang, Yin-Xue; He, Zhi-Xu; Zhang, Xueji; Wang, Dong; Yang, Tianxing; Pan, Si-Yuan; Chen, Xiao-Wu; Zhou, Shu-Feng

    2015-01-01

    of N-cadherin in both cell lines. Taken together, danusertib has potent inducing effects on cell cycle arrest, apoptosis, and autophagy, but has an inhibitory effect on epithelial to mesenchymal transition, with involvement of signaling pathways mediated by PI3K/Akt/mTOR, p38 mitogen-activated protein kinase, and 5′ AMP-activated protein kinase in AGS and NCI-N78 cells. PMID:25767376

  16. Cell cycle deregulation by methyl isocyanate: Implications in liver carcinogenesis.

    PubMed

    Panwar, Hariom; Raghuram, Gorantla V; Jain, Deepika; Ahirwar, Alok K; Khan, Saba; Jain, Subodh K; Pathak, Neelam; Banerjee, Smita; Maudar, Kewal K; Mishra, Pradyumna K

    2014-03-01

    Liver is often exposed to plethora of chemical toxins. Owing to its profound physiological role and central function in metabolism and homeostasis, pertinent succession of cell cycle in liver epithelial cells is of prime importance to maintain cellular proliferation. Although recent evidence has displayed a strong association between exposures to methyl isocyanate (MIC), one of the most toxic isocyanates, and neoplastic transformation, molecular characterization of the longitudinal effects of MIC on cell cycle regulation has never been performed. Here, we sequentially delineated the status of different proteins arbitrating the deregulation of cell cycle in liver epithelial cells treated with MIC. Our data reaffirms the oncogenic capability of MIC with elevated DNA damage response proteins pATM and γ-H2AX, deregulation of DNA damage check point genes CHK1 and CHK2, altered expression of p53 and p21 proteins involved in cell cycle arrest with perturbation in GADD-45 expression in the treated cells. Further, alterations in cyclin A, cyclin E, CDK2 levels along with overexpression of mitotic spindle checkpoints proteins Aurora A/B, centrosomal pericentrin protein, chromosomal aberrations, and loss of Pot1a was observed. Thus, MIC impacts key proteins involved in cell cycle regulation to trigger genomic instability as a possible mechanism of developmental basis of liver carcinogenesis.

  17. Post-transcriptional RNA Regulons Affecting Cell Cycle and Proliferation

    PubMed Central

    Blackinton, Jeff G.

    2014-01-01

    The cellular growth cycle is initiated and maintained by punctual, yet agile, regulatory events involving modifications of cell cycle proteins as well as coordinated gene expression to support cyclic checkpoint decisions. Recent evidence indicates that post-transcriptional partitioning of messenger RNA subsets by RNA-binding proteins help physically localize, temporally coordinate, and efficiently translate cell cycle proteins. This dynamic organization of mRNAs encoding cell cycle components contributes to the overall economy of the cell cycle consistent with the post-transcriptional RNA regulon model of gene expression. This review examines several recent studies demonstrating the coordination of mRNA subsets encoding cell cycle proteins during nuclear export and subsequent coupling to protein synthesis, and discusses evidence for mRNA coordination of p53 targets and the DNA damage response pathway. We consider how these observations may connect to upstream and downstream post-transcriptional coordination and coupling of splicing, export, localization, and translation. Published examples from yeast, nematode, insect, and mammalian systems are discussed, and we consider genetic evidence supporting the conclusion that dysregulation of RNA regulons may promote pathogenic states of growth such as carcinogenesis. PMID:24882724

  18. Histone deacetylase inhibitors promote glioma cell death by G2 checkpoint abrogation leading to mitotic catastrophe.

    PubMed

    Cornago, M; Garcia-Alberich, C; Blasco-Angulo, N; Vall-Llaura, N; Nager, M; Herreros, J; Comella, J X; Sanchis, D; Llovera, M

    2014-10-02

    Glioblastoma multiforme is resistant to conventional anti-tumoral treatments due to its infiltrative nature and capability of relapse; therefore, research efforts focus on characterizing gliomagenesis and identifying molecular targets useful on therapy. New therapeutic strategies are being tested in patients, such as Histone deacetylase inhibitors (HDACi) either alone or in combination with other therapies. Here two HDACi included in clinical trials have been tested, suberanilohydroxamic acid (SAHA) and valproic acid (VPA), to characterize their effects on glioma cell growth in vitro and to determine the molecular changes that promote cancer cell death. We found that both HDACi reduce glioma cell viability, proliferation and clonogenicity. They have multiple effects, such as inducing the production of reactive oxygen species (ROS) and activating the mitochondrial apoptotic pathway, nevertheless cell death is not prevented by the pan-caspase inhibitor Q-VD-OPh. Importantly, we found that HDACi alter cell cycle progression by decreasing the expression of G2 checkpoint kinases Wee1 and checkpoint kinase 1 (Chk1). In addition, HDACi reduce the expression of proteins involved in DNA repair (Rad51), mitotic spindle formation (TPX2) and chromosome segregation (Survivin) in glioma cells and in human glioblastoma multiforme primary cultures. Therefore, HDACi treatment causes glioma cell entry into mitosis before DNA damage could be repaired and to the formation of an aberrant mitotic spindle that results in glioma cell death through mitotic catastrophe-induced apoptosis.

  19. Cell cycle effects of drugs

    SciTech Connect

    Dethlefsen, L.A.

    1986-01-01

    This book contains 11 chapters. Some of the chapter titles are: Cell Growth and Division Cycle; Cell Cycle Effects of Alkylating Agents; Biological Effects of Folic Acid Antagonists with Antineoplastic Activity; and Bleomycin-Mode of Action with Particular Reference to the Cell Cycle.

  20. The Schizosaccharomyces pombe rad3 checkpoint gene.

    PubMed Central

    Bentley, N J; Holtzman, D A; Flaggs, G; Keegan, K S; DeMaggio, A; Ford, J C; Hoekstra, M; Carr, A M

    1996-01-01

    The rad3 gene of Schizosaccharomyces pombe is required for checkpoint pathways that respond to DNA damage and replication blocks. We report the complete rad3 gene sequence and show that rad3 is the homologue of Saccharomyces cerevisiae ESR1 (MEC1/SAD3) and Drosophila melanogaster mei-41 checkpoint genes. This establishes Rad3/Mec1 as the only conserved protein which is required for all the DNA structure checkpoints in both yeast model systems. Rad3 is an inessential member of the 'lipid kinase' subclass of kinases which includes the ATM protein defective in ataxia telangiectasia patients. Mutational analysis indicates that the kinase domain is required for Rad3 function, and immunoprecipitation of overexpressed Rad3 demonstrates an associated protein kinase activity. The previous observation that rad3 mutations can be rescued by a truncated clone lacking the kinase domain may be due to intragenic complementation. Consistent with this, biochemical data suggest that Rad3 exists in a complex containing multiple copies of Rad3. We have identified a novel human gene (ATR) whose product is closely related to Rad3/Esr1p/Mei-41. ATR can functionally complement esr1-1 radiation sensitivity in S. cerevisiae. Together, the structural conservation and functional complementation suggest strongly that the mechanisms underlying the DNA structure checkpoints are conserved throughout evolution. Images PMID:8978690

  1. Gleditsia sinensis thorn extract inhibits human colon cancer cells: the role of ERK1/2, G2/M-phase cell cycle arrest and p53 expression.

    PubMed

    Lee, Se-Jung; Park, Keerang; Ha, Sang-Do; Kim, Wun-Jae; Moon, Sung-Kwon

    2010-12-01

    The thorns of Gleditsia sinensis are used as a medicinal herb in China and Korea. However, the mechanisms responsible for the antitumor effects of the water extract of Gleditsia sinensis thorns (WEGS) remain unknown. HCT116 cells treated with the WEGS at a dose of 800 μg/mL (IC₅₀) showed a significant decrease in cell growth and an increase in cell cycle arrest during the G2/M-phase. G2/M-phase arrest was correlated with increased p53 levels and down-regulation of the check-point proteins, cyclinB1, Cdc2 and Cdc25c. In addition, treatment with WEGS induced phosphorylation of extracellular signal-regulated kinase (ERK), p38 MAP kinase and JNK (c-Jun N-terminal kinases). Moreover, inhibition of ERK by treatment of cells with the ERK-specific inhibitor PD98059 blocked WEGS-mediated p53 expression. Similarly, blockage of ERK function in the WEGS-treated cells reversed cell-growth inhibition and decreased cell cycle proteins. Finally, in vivo WEGS treatment significantly inhibited the growth of HCT116 tumor cell xenografts in nude mice with no negative side effects, including loss of body weight. These results describe the molecular mechanisms whereby the WEGS might inhibit proliferation of colon cancer both in vitro and in vivo, suggesting that WEGS has potential as an anticancer agent for the treatment of malignancies.

  2. Optimization of the analogue-sensitive Cdc2/Cdk1 mutant by in vivo selection eliminates physiological limitations to its use in cell cycle analysis.

    PubMed

    Aoi, Yuki; Kawashima, Shigehiro A; Simanis, Viesturs; Yamamoto, Masayuki; Sato, Masamitsu

    2014-07-01

    Analogue-sensitive (as) mutants of kinases are widely used to selectively inhibit a single kinase with few off-target effects. The analogue-sensitive mutant cdc2-as of fission yeast (Schizosaccharomyces pombe) is a powerful tool to study the cell cycle, but the strain displays meiotic defects, and is sensitive to high and low temperature even in the absence of ATP-analogue inhibitors. This has limited the use of the strain for use in these settings. Here, we used in vivo selection for intragenic suppressor mutations of cdc2-as that restore full function in the absence of ATP-analogues. The cdc2-asM17 underwent meiosis and produced viable spores to a similar degree to the wild-type strain. The suppressor mutation also rescued the sensitivity of the cdc2-as strain to high and low temperature, genotoxins and an anti-microtubule drug. We have used cdc2-asM17 to show that Cdc2 activity is required to maintain the activity of the spindle assembly checkpoint. Furthermore, we also demonstrate that maintenance of the Shugoshin Sgo1 at meiotic centromeres does not require Cdc2 activity, whereas localization of the kinase aurora does. The modified cdc2-asM17 allele can be thus used to analyse many aspects of cell-cycle-related events in fission yeast.

  3. Caffeine stabilizes Cdc25 independently of Rad3 in Schizosaccharomyces pombe contributing to checkpoint override.

    PubMed

    Alao, John P; Sjölander, Johanna J; Baar, Juliane; Özbaki-Yagan, Nejla; Kakoschky, Bianca; Sunnerhagen, Per

    2014-05-01

    Cdc25 is required for Cdc2 dephosphorylation and is thus essential for cell cycle progression. Checkpoint activation requires dual inhibition of Cdc25 and Cdc2 in a Rad3-dependent manner. Caffeine is believed to override activation of the replication and DNA damage checkpoints by inhibiting Rad3-related proteins in both Schizosaccharomyces pombe and mammalian cells. In this study, we have investigated the impact of caffeine on Cdc25 stability, cell cycle progression and checkpoint override. Caffeine induced Cdc25 accumulation in S. pombe independently of Rad3. Caffeine delayed cell cycle progression under normal conditions but advanced mitosis in cells treated with replication inhibitors and DNA-damaging agents. In the absence of Cdc25, caffeine inhibited cell cycle progression even in the presence of hydroxyurea or phleomycin. Caffeine induces Cdc25 accumulation in S. pombe by suppressing its degradation independently of Rad3. The induction of Cdc25 accumulation was not associated with accelerated progression through mitosis, but rather with delayed progression through cytokinesis. Caffeine-induced Cdc25 accumulation appears to underlie its ability to override cell cycle checkpoints. The impact of Cdc25 accumulation on cell cycle progression is attenuated by Srk1 and Mad2. Together our findings suggest that caffeine overrides checkpoint enforcement by inducing the inappropriate nuclear localization of Cdc25.

  4. Casein Kinase 1 Functions as both Penultimate and Ultimate Kinase in Regulating Cdc25A Destruction

    PubMed Central

    Honaker, Yuchi; Piwnica-Worms, Helen

    2010-01-01

    The Cdc25A protein phosphatase drives cell cycle transitions by activating cyclin-dependent protein kinases. Failure to regulate Cdc25A leads to deregulated cell cycle progression, bypass of cell cycle checkpoints and genome instability. Ubiquitin-mediated proteolysis plays an important role in balancing Cdc25A levels. Cdc25A contains a DS82G motif whose phosphorylation is targeted by β-TrCP E3 ligase during interphase. Targeting of β-TrCP to Cdc25A requires phosphorylation of serines 79 (S79) and 82 (S82). Here, we report that casein kinase 1 alpha (CK1α) phosphorylates Cdc25A on both S79 and S82 in a hierarchical manner requiring prior phosphorylation of serine 76 by Chk1 or GSK-3β. This facilitates β-TrCP binding and ubiquitin-mediated proteolysis of Cdc25A throughout interphase and following exposure to genotoxic stress. The priming of Cdc25A by at least three kinases (Chk1, GSK-3β, CK1α), some of which also require priming, ensures diverse extra- and intra-cellular signals interface with Cdc25A to precisely control cell division. PMID:20348946

  5. Acanthamoeba induces cell-cycle arrest in host cells.

    PubMed

    Sissons, James; Alsam, Selwa; Jayasekera, Samantha; Kim, Kwang Sik; Stins, Monique; Khan, Naveed Ahmed

    2004-08-01

    Acanthamoeba can cause fatal granulomatous amoebic encephalitis (GAE) and eye keratitis. However, the pathogenesis and pathophysiology of these emerging diseases remain unclear. In this study, the effects of Acanthamoeba on the host cell cycle using human brain microvascular endothelial cells (HBMEC) and human corneal epithelial cells (HCEC) were determined. Two isolates of Acanthamoeba belonging to the T1 genotype (GAE isolate) and T4 genotype (keratitis isolate) were used, which showed severe cytotoxicity on HBMEC and HCEC, respectively. No tissue specificity was observed in their ability to exhibit binding to the host cells. To determine the effects of Acanthamoeba on the host cell cycle, a cell-cycle-specific gene array was used. This screened for 96 genes specific for host cell-cycle regulation. It was observed that Acanthamoeba inhibited expression of genes encoding cyclins F and G1 and cyclin-dependent kinase 6, which are proteins important for cell-cycle progression. Moreover, upregulation was observed of the expression of genes such as GADD45A and p130 Rb, associated with cell-cycle arrest, indicating cell-cycle inhibition. Next, the effect of Acanthamoeba on retinoblastoma protein (pRb) phosphorylation was determined. pRb is a potent inhibitor of G1-to-S cell-cycle progression; however, its function is inhibited upon phosphorylation, allowing progression into S phase. Western blotting revealed that Acanthamoeba abolished pRb phosphorylation leading to cell-cycle arrest at the G1-to-S transition. Taken together, these studies demonstrated for the first time that Acanthamoeba inhibits the host cell cycle at the transcriptional level, as well as by modulating pRb phosphorylation using host cell-signalling mechanisms. A complete understanding of Acanthamoeba-host cell interactions may help in developing novel strategies to treat Acanthamoeba infections.

  6. STK31 Is a Cell-Cycle Regulated Protein That Contributes to the Tumorigenicity of Epithelial Cancer Cells

    PubMed Central

    Kuo, Pao-Lin; Huang, Yung-Ling; Hsieh, Christine Chin-Jung; Lee, Jenq-Chang; Lin, Bo-Wen; Hung, Liang-Yi

    2014-01-01

    Serine/threonine kinase 31 (STK31) is one of the novel cancer/testis antigens for which its biological functions remain largely unclear. Here, we demonstrate that STK31 is overexpressed in many human colorectal cancer cell lines and tissues. STK31 co-localizes with pericentrin in the centrosomal region throughout all phases of the cell cycle. Interestingly, when cells undergo mitosis, STK31 also localizes to the centromeres, central spindle, and midbody. This localization behavior is similar to that of chromosomal passenger proteins, which are known to be the important players of the spindle assembly checkpoint. The expression of STK31 is cell cycle-dependent through the regulation of a putative D-box near its C-terminal region. Ectopically-expressed STK31-GFP increases cell migration and invasive ability without altering the proliferation rate of cancer cells, whereas the knockdown expression of endogenous STK31 by lentivirus-derived shRNA results in microtubule assembly defects that prolong the duration of mitosis and lead to apoptosis. Taken together, our results suggest that the aberrant expression of STK31 contributes to tumorigenicity in somatic cancer cells. STK31 might therefore act as a potential therapeutic target in human somatic cancers. PMID:24667656

  7. Alteration of Cell Cycle Mediated by Zinc in Human Bronchial ...

    EPA Pesticide Factsheets

    Zinc (Zn2+), a ubiquitous ambient air contaminant, presents an oxidant challenge to the human lung and is linked to adverse human health effects. To further elucidate the adaptive and apoptotic cellular responses of human airway cells to Zn2+, we performed pilot studies to examine cell cycle perturbation upon exposure using a normal human bronchial epithelial cell culture (BEAS-2B). BEAS-2B cells were treated with low (0, 1, 2 µM) and apoptotic (3 µM) doses of Zn2+ plus 1 µM pyrithione, a Zn2+-specific ionophore facilitating cellular uptake, for up to 24 h. Fixed cells were then stained with propidium iodine (PI) and cell cycle phase was determined by fluorescent image cytometry. Initial results report the percentage of cells in the S phase after 18 h exposure to 1, 2, and 3 µM Zn2+ were similar (8%, 7%, and 12%, respectively) compared with 7% in controls. Cells exposed to 3 µM Zn2+ increased cell populations in G2/M phase (76% versus 68% in controls). Interestingly, exposure to 1 µM Zn2+ resulted in decreased (59%) cells in G2/M. While preliminary, these pilot studies suggest Zn2+ alters cell cycle in BEAS-2B cells, particularly in the G2/M phase. The G2/M checkpoint maintains DNA integrity by enabling initiation of DNA repair or apoptosis. Our findings suggest that the adaptive and apoptotic responses to Zn2+ exposure may be mediated via perturbation of the cell cycle at the G2/M checkpoint. This work was a collaborative summer student project. The st

  8. NONO couples the circadian clock to the cell cycle.

    PubMed

    Kowalska, Elzbieta; Ripperger, Juergen A; Hoegger, Dominik C; Bruegger, Pascal; Buch, Thorsten; Birchler, Thomas; Mueller, Anke; Albrecht, Urs; Contaldo, Claudio; Brown, Steven A

    2013-01-29

    Mammalian circadian clocks restrict cell proliferation to defined time windows, but the mechanism and consequences of this interrelationship are not fully understood. Previously we identified the multifunctional nuclear protein NONO as a partner of circadian PERIOD (PER) proteins. Here we show that it also conveys circadian gating to the cell cycle, a connection surprisingly important for wound healing in mice. Specifically, although fibroblasts from NONO-deficient mice showed approximately normal circadian cycles, they displayed elevated cell doubling and lower cellular senescence. At a molecular level, NONO bound to the p16-Ink4A cell cycle checkpoint gene and potentiated its circadian activation in a PER protein-dependent fashion. Loss of either NONO or PER abolished this activation and circadian expression of p16-Ink4A and eliminated circadian cell cycle gating. In vivo, lack of NONO resulted in defective wound repair. Because wound healing defects were also seen in multiple circadian clock-deficient mouse lines, our results therefore suggest that coupling of the cell cycle to the circadian clock via NONO may be useful to segregate in temporal fashion cell proliferation from tissue organization.

  9. NONO couples the circadian clock to the cell cycle

    PubMed Central

    Kowalska, Elzbieta; Ripperger, Juergen A.; Hoegger, Dominik C.; Bruegger, Pascal; Buch, Thorsten; Birchler, Thomas; Mueller, Anke; Albrecht, Urs; Contaldo, Claudio; Brown, Steven A.

    2013-01-01

    Mammalian circadian clocks restrict cell proliferation to defined time windows, but the mechanism and consequences of this interrelationship are not fully understood. Previously we identified the multifunctional nuclear protein NONO as a partner of circadian PERIOD (PER) proteins. Here we show that it also conveys circadian gating to the cell cycle, a connection surprisingly important for wound healing in mice. Specifically, although fibroblasts from NONO-deficient mice showed approximately normal circadian cycles, they displayed elevated cell doubling and lower cellular senescence. At a molecular level, NONO bound to the p16-Ink4A cell cycle checkpoint gene and potentiated its circadian activation in a PER protein-dependent fashion. Loss of either NONO or PER abolished this activation and circadian expression of p16-Ink4A and eliminated circadian cell cycle gating. In vivo, lack of NONO resulted in defective wound repair. Because wound healing defects were also seen in multiple circadian clock-deficient mouse lines, our results therefore suggest that coupling of the cell cycle to the circadian clock via NONO may be useful to segregate in temporal fashion cell proliferation from tissue organization. PMID:23267082

  10. RAD001 (everolimus) induces dose-dependent changes to cell cycle regulation and modifies the cell cycle response to vincristine.

    PubMed

    Saunders, P O; Weiss, J; Welschinger, R; Baraz, R; Bradstock, K F; Bendall, L J

    2013-10-01

    More than 50% of adults and ~20% of children with pre-B acute lymphoblastic leukemia (ALL) relapse following treatment. Dismal outcomes for patients with relapsed or refractory disease mandate novel approaches to therapy. We have previously shown that the combination of the mTOR inhibitor RAD001 (everolimus) and the chemotherapeutic agent vincristine increases the survival of non-obese diabetic/severe combined immuno-deficient (NOD/SCID) mice bearing human ALL xenografts. We have also shown that 16 μM RAD001 synergized with agents that cause DNA damage or microtubule disruption in pre-B ALL cells in vitro. Here, we demonstrate that RAD001 has dose-dependent effects on the cell cycle in ALL cells, with 1.5 μM RAD001 inhibiting pRb, Ki67 and PCNA expression and increasing G0/1 cell cycle arrest, whereas 16 μM RAD001 increases pRb, cyclin D1, Ki67 and PCNA, with no evidence of an accumulation of cells in G0/1. Transition from G2 into mitosis was promoted by 16 μM RAD001 with reduced phosphorylation of cdc2 in cells with 4 N DNA content. However, 16 μM RAD001 preferentially induced cell death in cells undergoing mitosis. When combined with vincristine, 16 μM RAD001 reduced the vincristine-induced accumulation of cells in mitosis, probably as a result of increased death in this population. Although 16 μM RAD001 weakly activated Chk1 and Chk2, it suppressed strong vincristine-induced activation of these cell cycle checkpoint regulators. We conclude that RAD001 enhances chemosensitivity at least in part through suppression of cell cycle checkpoint regulation in response to vincristine and increased progression from G2 into mitosis.

  11. High-dose irradiation induces cell cycle arrest, apoptosis, and developmental defects during Drosophila oogenesis.

    PubMed

    Shim, Hee Jin; Lee, Eun-Mi; Nguyen, Long Duy; Shim, Jaekyung; Song, Young-Han

    2014-01-01

    Ionizing radiation (IR) treatment induces a DNA damage response, including cell cycle arrest, DNA repair, and apoptosis in metazoan somatic cells. Because little has been reported in germline cells, we performed a temporal analysis of the DNA damage response utilizing Drosophila oogenesis as a model system. Oogenesis in the adult Drosophila female begins with the generation of 16-cell cyst by four mitotic divisions of a cystoblast derived from the germline stem cells. We found that high-dose irradiation induced S and G2 arrests in these mitotically dividing germline cells in a grp/Chk1- and mnk/Chk2-dependent manner. However, the upstream kinase mei-41, Drosophila ATR ortholog, was required for the S-phase checkpoint but not for the G2 arrest. As in somatic cells, mnk/Chk2 and dp53 were required for the major cell death observed in early oogenesis when oocyte selection and meiotic recombination occurs. Similar to the unscheduled DNA double-strand breaks (DSBs) generated from defective repair during meiotic recombination, IR-induced DSBs produced developmental defects affecting the spherical morphology of meiotic chromosomes and dorsal-ventral patterning. Moreover, various morphological abnormalities in the ovary were detected after irradiation. Most of the IR-induced defects observed in oogenesis were reversible and were restored between 24 and 96 h after irradiation. These defects in oogenesis severely reduced daily egg production and the hatch rate of the embryos of irradiated female. In summary, irradiated germline cells induced DSBs, cell cycle arrest, apoptosis, and developmental defects resulting in reduction of egg production and defective embryogenesis.

  12. Regulation of RNA polymerase II activity by CTD phosphorylation and cell cycle control.

    PubMed

    Oelgeschläger, Thomas

    2002-02-01

    The carboxyl-terminal domain (CTD) of the largest subunit of mammalian RNA polymerase II (RNAP II) consists of 52 repeats of a consensus heptapeptide and is subject to phosphorylation and dephosphorylation events during each round of transcription. RNAP II activity is regulated during the cell cycle and cell cycle-dependend changes in RNAP II activity correlate well with CTD phosphorylation. In addition, global changes in the CTD phosphorylation status are observed in response to mitogenic or cytostatic signals such as growth factors, mitogens and DNA-damaging agents. Several CTD kinases are members of the cyclin-dependent kinase (CDK) superfamily and associate with transcription initiation complexes. Other CTD kinases implicated in cell cycle regulation include the mitogen-activated protein kinases ERK-1/2 and the c-Abl tyrosine kinase. These observations suggest that reversible RNAP II CTD phosphorylation may play a key role in linking cell cycle regulatory events to coordinated changes in transcription.

  13. The Abbreviated Pluripotent Cell Cycle

    PubMed Central

    Kapinas, Kristina; Grandy, Rodrigo; Ghule, Prachi; Medina, Ricardo; Becker, Klaus; Pardee, Arthur; Zaidi, Sayyed K.; Lian, Jane; Stein, Janet; van Wijnen, Andre; Stein, Gary

    2013-01-01

    Human embryonic stem cells and induced pluripotent stem cells proliferate rapidly and divide symmetrically producing equivalent progeny cells. In contrast, lineage committed cells acquire an extended symmetrical cell cycle. Self-renewal of tissue-specific stem cells is sustained by asymmetric cell division where one progeny cell remains a progenitor while the partner progeny cell exits the cell cycle and differentiates. There are three principal contexts for considering the operation and regulation of the pluripotent cell cycle: temporal, regulatory andstructural. The primary temporal context that the pluripotent self-renewal cell cycle of human embryonic stem cells (hESCs) is a short G1 period without reducing periods of time allocated to S phase, G2, and mitosis. The rules that govern proliferation in hESCs remain to be comprehensively established. However, several lines of evidence suggest a key role for the naïve transcriptome of hESCs, which is competent to stringently regulate the ESC cell cycle. This supports the requirements of pluripotent cells to self propagate while suppressing expression of genes that confer lineage commitment and/or tissue specificity. However, for the first time, we consider unique dimensions to the architectural organization and assembly of regulatory machinery for gene expression in nuclear microenviornments that define parameters of pluripotency. From both fundamental biological and clinical perspectives, understanding control of the abbreviated embryonic stem cell cycle can provide options to coordinate control of proliferation versus differentiation. Wound healing, tissue engineering, and cell-based therapy to mitigate developmental aberrations illustrate applications that benefit from knowledge of the biology of the pluripotent cell cycle. PMID:22552993

  14. CHK2 kinase in the DNA damage response and beyond

    PubMed Central

    Zannini, Laura; Delia, Domenico; Buscemi, Giacomo

    2014-01-01

    The serine/threonine kinase CHK2 is a key component of the DNA damage response. In human cells, following genotoxic stress, CHK2 is activated and phosphorylates >20 proteins to induce the appropriate cellular response, which, depending on the extent of damage, the cell type, and other factors, could be cell cycle checkpoint activation, induction of apoptosis or senescence, DNA repair, or tolerance of the damage. Recently, CHK2 has also been found to have cellular functions independent of the presence of nuclear DNA lesions. In particular, CHK2 participates in several molecular processes involved in DNA structure modification and cell cycle progression. In this review, we discuss the activity of CHK2 in response to DNA damage and in the maintenance of the biological functions in unstressed cells. These activities are also considered in relation to a possible role of CHK2 in tumorigenesis and, as a consequence, as a target of cancer therapy. PMID:25404613

  15. ATR- and ATM-Mediated DNA Damage Response Is Dependent on Excision Repair Assembly during G1 but Not in S Phase of Cell Cycle.

    PubMed

    Ray, Alo; Blevins, Chessica; Wani, Gulzar; Wani, Altaf A

    2016-01-01

    Cell cycle checkpoint is mediated by ATR and ATM kinases, as a prompt early response to a variety of DNA insults, and culminates in a highly orchestrated signal transduction cascade. Previously, we defined the regulatory role of nucleotide excision repair (NER) factors, DDB2 and XPC, in checkpoint and ATR/ATM-dependent repair pathway via ATR and ATM phosphorylation and recruitment to ultraviolet radiation (UVR)-induced damage sites. Here, we have dissected the molecular mechanisms of DDB2- and XPC- mediated regulation of ATR and ATM recruitment and activation upon UVR exposures. We show that the ATR and ATM activation and accumulation to UVR-induced damage not only depends on DDB2 and XPC, but also on the NER protein XPA, suggesting that the assembly of an active NER complex is essential for ATR and ATM recruitment. ATR and ATM localization and H2AX phosphorylation at the lesion sites occur as early as ten minutes in asynchronous as well as G1 arrested cells, showing that repair and checkpoint-mediated by ATR and ATM starts early upon UV irradiation. Moreover, our results demonstrated that ATR and ATM recruitment and H2AX phosphorylation are dependent on NER proteins in G1 phase, but not in S phase. We reasoned that in G1 the UVR-induced ssDNA gaps or processed ssDNA, and the bound NER complex promote ATR and ATM recruitment. In S phase, when the UV lesions result in stalled replication forks with long single-stranded DNA, ATR and ATM recruitment to these sites is regulated by different sets of proteins. Taken together, these results provide evidence that UVR-induced ATR and ATM recruitment and activation differ in G1 and S phases due to the existence of distinct types of DNA lesions, which promote assembly of different proteins involved in the process of DNA repair and checkpoint activation.

  16. The cell cycle and pluripotency.

    PubMed

    Hindley, Christopher; Philpott, Anna

    2013-04-15

    PSCs (pluripotent stem cells) possess two key properties that have made them the focus of global research efforts in regenerative medicine: they have unlimited expansion potential under conditions which favour their preservation as PSCs and they have the ability to generate all somatic cell types upon differentiation (pluripotency). Conditions have been defined in vitro in which pluripotency is maintained, or else differentiation is favoured and is directed towards specific somatic cell types. However, an unanswered question is whether or not the core cell cycle machinery directly regulates the pluripotency and differentiation properties of PSCs. If so, then manipulation of the cell cycle may represent an additional tool by which in vitro maintenance or differentiation of PSCs may be controlled in regenerative medicine. The present review aims to summarize our current understanding of links between the core cell cycle machinery and the maintenance of pluripotency in ESCs (embryonic stem cells) and iPSCs (induced PSCs).

  17. The abbreviated pluripotent cell cycle.

    PubMed

    Kapinas, Kristina; Grandy, Rodrigo; Ghule, Prachi; Medina, Ricardo; Becker, Klaus; Pardee, Arthur; Zaidi, Sayyed K; Lian, Jane; Stein, Janet; van Wijnen, Andre; Stein, Gary

    2013-01-01

    Human embryonic stem cells (hESCs) and induced pluripotent stem cells proliferate rapidly and divide symmetrically producing equivalent progeny cells. In contrast, lineage committed cells acquire an extended symmetrical cell cycle. Self-renewal of tissue-specific stem cells is sustained by asymmetric cell division where one progeny cell remains a progenitor while the partner progeny cell exits the cell cycle and differentiates. There are three principal contexts for considering the operation and regulation of the pluripotent cell cycle: temporal, regulatory, and structural. The primary temporal context that the pluripotent self-renewal cell cycle of hESCs is a short G1 period without reducing periods of time allocated to S phase, G2, and mitosis. The rules that govern proliferation in hESCs remain to be comprehensively established. However, several lines of evidence suggest a key role for the naïve transcriptome of hESCs, which is competent to stringently regulate the embryonic stem cell (ESC) cell cycle. This supports the requirements of pluripotent cells to self-propagate while suppressing expression of genes that confer lineage commitment and/or tissue specificity. However, for the first time, we consider unique dimensions to the architectural organization and assembly of regulatory machinery for gene expression in nuclear microenviornments that define parameters of pluripotency. From both fundamental biological and clinical perspectives, understanding control of the abbreviated ESC cycle can provide options to coordinate control of proliferation versus differentiation. Wound healing, tissue engineering, and cell-based therapy to mitigate developmental aberrations illustrate applications that benefit from knowledge of the biology of the pluripotent cell cycle.

  18. High Dub3 expression in mouse ESCs couples the G1/S checkpoint to pluripotency.

    PubMed

    van der Laan, Siem; Tsanov, Nikolay; Crozet, Carole; Maiorano, Domenico

    2013-11-07

    The molecular mechanism underlying G1/S checkpoint bypass in mouse embryonic stem cells (ESCs) remains unknown. DNA damage blocks S phase entry by inhibiting the CDK2 kinase through destruction of its activator, the Cdc25A phosphatase. We observed high Cdc25A levels in G1 that persist even after DNA damage in mouse ESCs. We also found higher expression of Dub3, a deubiquitylase that controls Cdc25A protein abundance. Moreover, we demonstrate that the Dub3 gene is a direct target of Esrrb, a key transcription factor of the self-renewal machinery. We show that Dub3 expression is strongly downregulated during neural conversion and precedes Cdc25A destabilization, while forced Dub3 expression in ESCs becomes lethal upon differentiation, concomitant to cell-cycle remodeling and lineage commitment. Finally, knockdown of either Dub3 or Cdc25A induced spontaneous differentiation of ESCs. Altogether, these findings couple the self-renewal machinery to cell-cycle control through a deubiquitylase in ESCs.

  19. Lin-28 homologue A (LIN28A) promotes cell cycle progression via regulation of cyclin-dependent kinase 2 (CDK2), cyclin D1 (CCND1), and cell division cycle 25 homolog A (CDC25A) expression in cancer.

    PubMed

    Li, Ning; Zhong, Xiaomin; Lin, Xiaojuan; Guo, Jinyi; Zou, Lian; Tanyi, Janos L; Shao, Zhongjun; Liang, Shun; Wang, Li-Ping; Hwang, Wei-Ting; Katsaros, Dionyssios; Montone, Kathleen; Zhao, Xia; Zhang, Lin

    2012-05-18

    The RNA-binding protein LIN28A regulates the translation and stability of a large number of mRNAs as well as the biogenesis of certain miRNAs in embryonic stem cells and developing tissues. Increasing evidence indicates that LIN28A functions as an oncogene promoting cancer cell growth. However, little is known about its molecular mechanism of cell cycle regulation in cancer. Using tissue microarrays, we found that strong LIN28A expression was reactivated in about 10% (7.1-17.1%) of epithelial tumors (six tumor types, n = 369). Both in vitro and in vivo experiments demonstrate that LIN28A promotes cell cycle progression in cancer cells. Genome-wide RNA-IP-chip experiments indicate that LIN28A binds to thousands of mRNAs, including a large group of cell cycle regulatory mRNAs in cancer and embryonic stem cells. Furthermore, the ability of LIN28A to stimulate translation of LIN28A-binding mRNAs, such as CDK2, was validated in vitro and in vivo. Finally, using a combined gene expression microarray and bioinformatics approach, we found that LIN28A also regulates CCND1 and CDC25A expression and that this is mediated by inhibiting the biogenesis of let-7 miRNA. Taken together, these results demonstrate that LIN28A is reactivated in about 10% of epithelial tumors and promotes cell cycle progression by regulation of both mRNA translation (let-7-independent) and miRNA biogenesis (let-7-dependent).

  20. Helicobacter pylori Induced Phosphatidylinositol-3-OH Kinase/mTOR Activation Increases Hypoxia Inducible Factor-1α to Promote Loss of Cyclin D1 and G0/G1 Cell Cycle Arrest in Human Gastric Cells

    PubMed Central

    Canales, Jimena; Valenzuela, Manuel; Bravo, Jimena; Cerda-Opazo, Paulina; Jorquera, Carla; Toledo, Héctor; Bravo, Denisse; Quest, Andrew F. G.

    2017-01-01

    Helicobacter pylori (H. pylori) is a human gastric pathogen that has been linked to the development of several gastric pathologies, such as gastritis, peptic ulcer, and gastric cancer. In the gastric epithelium, the bacterium modifies many signaling pathways, resulting in contradictory responses that favor both proliferation and apoptosis. Consistent with such observations, H. pylori activates routes associated with cell cycle progression and cell cycle arrest. H. pylori infection also induces the hypoxia-induced factor HIF-1α, a transcription factor known to promote expression of genes that permit metabolic adaptation to the hypoxic environment in tumors and angiogenesis. Recently, however, also roles for HIF-1α in the repair of damaged DNA and inhibition of gene expression were described. Here, we investigated signaling pathways induced by H. pylori in gastric cells that favor HIF-1α expression and the consequences thereof in infected cells. Our results revealed that H. pylori promoted PI3K/mTOR-dependent HIF-1α induction, HIF-1α translocation to the nucleus, and activity as a transcription factor as evidenced using a reporter assay. Surprisingly, however, transcription of known HIF-1α effector genes evaluated by qPCR analysis, revealed either no change (LDHA and GAPDH), statistically insignificant increases SLC2A1 (GLUT-1) or greatly enhance transcription (VEGFA), but in an HIF-1α-independent manner, as quantified by PCR analysis in cells with shRNA-mediated silencing of HIF-1α. Instead, HIF-1α knockdown facilitated G1/S progression and increased Cyclin D1 protein half-life, via a post-translational pathway. Taken together, these findings link H. pylori-induced PI3K-mTOR activation to HIF-1α induced G0/G1 cell cycle arrest by a Cyclin D1-dependent mechanism. Thus, HIF-1α is identified here as a mediator between survival and cell cycle arrest signaling activated by H. pylori infection.

  1. Helicobacter pylori Induced Phosphatidylinositol-3-OH Kinase/mTOR Activation Increases Hypoxia Inducible Factor-1α to Promote Loss of Cyclin D1 and G0/G1 Cell Cycle Arrest in Human Gastric Cells.

    PubMed

    Canales, Jimena; Valenzuela, Manuel; Bravo, Jimena; Cerda-Opazo, Paulina; Jorquera, Carla; Toledo, Héctor; Bravo, Denisse; Quest, Andrew F G

    2017-01-01

    Helicobacter pylori (H. pylori) is a human gastric pathogen that has been linked to the development of several gastric pathologies, such as gastritis, peptic ulcer, and gastric cancer. In the gastric epithelium, the bacterium modifies many signaling pathways, resulting in contradictory responses that favor both proliferation and apoptosis. Consistent with such observations, H. pylori activates routes associated with cell cycle progression and cell cycle arrest. H. pylori infection also induces the hypoxia-induced factor HIF-1α, a transcription factor known to promote expression of genes that permit metabolic adaptation to the hypoxic environment in tumors and angiogenesis. Recently, however, also roles for HIF-1α in the repair of damaged DNA and inhibition of gene expression were described. Here, we investigated signaling pathways induced by H. pylori in gastric cells that favor HIF-1α expression and the consequences thereof in infected cells. Our results revealed that H. pylori promoted PI3K/mTOR-dependent HIF-1α induction, HIF-1α translocation to the nucleus, and activity as a transcription factor as evidenced using a reporter assay. Surprisingly, however, transcription of known HIF-1α effector genes evaluated by qPCR analysis, revealed either no change (LDHA and GAPDH), statistically insignificant increases SLC2A1 (GLUT-1) or greatly enhance transcription (VEGFA), but in an HIF-1α-independent manner, as quantified by PCR analysis in cells with shRNA-mediated silencing of HIF-1α. Instead, HIF-1α knockdown facilitated G1/S progression and increased Cyclin D1 protein half-life, via a post-translational pathway. Taken together, these findings link H. pylori-induced PI3K-mTOR activation to HIF-1α induced G0/G1 cell cycle arrest by a Cyclin D1-dependent mechanism. Thus, HIF-1α is identified here as a mediator between survival and cell cycle arrest signaling activated by H. pylori infection.

  2. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response.

    PubMed

    Reinhardt, H Christian; Yaffe, Michael B

    2013-09-01

    Coordinated progression through the cell cycle is a complex challenge for eukaryotic cells. Following genotoxic stress, diverse molecular signals must be integrated to establish checkpoints specific for each cell cycle stage, allowing time for various types of DNA repair. Phospho-Ser/Thr-binding domains have emerged as crucial regulators of cell cycle progression and DNA damage signalling. Such domains include 14-3-3 proteins, WW domains, Polo-box domains (in PLK1), WD40 repeats (including those in the E3 ligase SCF(βTrCP)), BRCT domains (including those in BRCA1) and FHA domains (such as in CHK2 and MDC1). Progress has been made in our understanding of the motif (or motifs) that these phospho-Ser/Thr-binding domains connect with on their targets and how these interactions influence the cell cycle and DNA damage response.

  3. Cell cycle regulation of glucocorticoid receptor function.

    PubMed Central

    Hsu, S C; Qi, M; DeFranco, D B

    1992-01-01

    Glucocorticoid receptor (GR) nuclear translocation, transactivation and phosphorylation were examined during the cell cycle in mouse L cell fibroblasts. Glucocorticoid-dependent transactivation of the mouse mammary tumor virus promoter was observed in G0 and S phase synchronized L cells, but not in G2 synchronized cells. G2 effects were selective on the glucocorticoid hormone signal transduction pathway, since glucocorticoid but not heavy metal induction of the endogenous Metallothionein-1 gene was also impaired in G2 synchronized cells. GRs that translocate to the nucleus of G2 synchronized cells in response to dexamethasone treatment were not efficiently retained there and redistributed to the cytoplasmic compartment. In contrast, GRs bound by the glucocorticoid antagonist RU486 were efficiently retained within nuclei of G2 synchronized cells. Inefficient nuclear retention was observed for both dexamethasone- and RU486-bound GRs in L cells that actively progress through G2 following release from an S phase arrest. Finally, site-specific alterations in GR phosphorylation were observed in G2 synchronized cells suggesting that cell cycle regulation of specific protein kinases and phosphatases could influence nuclear retention, recycling and transactivation activity of the GR. Images PMID:1505524

  4. Autoradiography and the Cell Cycle.

    ERIC Educational Resources Information Center

    Jones, C. Weldon

    1992-01-01

    Outlines the stages of a cell biology "pulse-chase" experiment in which the students apply autoradiography techniques to learn about the concept of the cell cycle. Includes (1) seed germination and plant growth; (2) radioactive labeling and fixation of root tips; (3) feulgen staining of root tips; (4) preparation of autoradiograms; and…

  5. The Cell Cycle Switch Computes Approximate Majority

    NASA Astrophysics Data System (ADS)

    Cardelli, Luca; Csikász-Nagy, Attila

    2012-09-01

    Both computational and biological systems have to make decisions about switching from one state to another. The `Approximate Majority' computational algorithm provides the asymptotically fastest way to reach a common decision by all members of a population between two possible outcomes, where the decision approximately matches the initial relative majority. The network that regulates the mitotic entry of the cell-cycle in eukaryotes also makes a decision before it induces early mitotic processes. Here we show that the switch from inactive to active forms of the mitosis promoting Cyclin Dependent Kinases is driven by a system that is related to both the structure and the dynamics of the Approximate Majority computation. We investigate the behavior of these two switches by deterministic, stochastic and probabilistic methods and show that the steady states and temporal dynamics of the two systems are similar and they are exchangeable as components of oscillatory networks.

  6. Suppressors of cdc25p overexpression identify two pathways that influence the G2/M checkpoint in fission yeast.

    PubMed Central

    Forbes, K C; Humphrey, T; Enoch, T

    1998-01-01

    Checkpoints maintain the order of cell-cycle events. At G2/M, a checkpoint blocks mitosis in response to damaged or unreplicated DNA. There are significant differences in the checkpoint responses to damaged DNA and unreplicated DNA, although many of the same genes are involved in both responses. To identify new genes that function specifically in the DNA replication checkpoint pathway, we searched for high-copy suppressors of overproducer of Cdc25p (OPcdc25(+)), which lacks a DNA replication checkpoint. Two classes of suppressors were isolated. One class includes a new gene encoding a putative DEAD box helicase, suppressor of uncontrolled mitosis (sum3(+)). This gene negatively regulates the cell-cycle response to stress when overexpressed and restores the checkpoint response by a mechanism that is independent of Cdc2p tyrosine phosphorylation. The second class includes chk1(+) and the two Schizosaccharomyces pombe 14-3-3 genes, rad24(+) and rad25(+), which appear to suppress the checkpoint defect by inhibiting Cdc25p. We show that rad24Delta mutants are defective in the checkpoint response to the DNA replication inhibitor hydroxyurea at 37 degrees and that cds1Delta rad24Delta mutants, like cds1Delta chk1Delta mutants, are entirely checkpoint deficient at 29 degrees. These results suggest that chk1(+) and rad24(+) may function redundantly with cds1(+) in the checkpoint response to unreplicated DNA. PMID:9832516

  7. Visualisation of cell cycle modifications by X-ray irradiation of single HeLa cells using fluorescent ubiquitination-based cell cycle indicators.

    PubMed

    Kaminaga, K; Noguchi, M; Narita, A; Sakamoto, Y; Kanari, Y; Yokoya, A

    2015-09-01

    To explore the effects of X-ray irradiation on mammalian cell cycle dynamics, single cells using the fluorescent ubiquitination-based cell cycle indicator (Fucci) technique were tracked. HeLa cells expressing Fucci were used to visualise cell cycle modifications induced by irradiation. After cultured HeLa-Fucci cells were exposed to 5 Gy X-rays, fluorescent cell images were captured every 20 min for 48 h using a fluorescent microscope. Time dependence of the fluorescence intensity of S/G2 cells was analysed to examine the cell cycle dynamics of irradiated and non-irradiated control cells. The results showed that irradiated cells could be divided into two populations: one with similar cell cycle dynamics to that of non-irradiated cells, and another displaying a prolonged G2 phase. Based on these findings, it is proposed in this article that an underlying switch mechanism is involved in cell cycle regulation and the G2/M checkpoint of HeLa cells.

  8. Epigenetics meets immune checkpoints.

    PubMed

    Covre, Alessia; Coral, Sandra; Di Giacomo, Anna Maria; Taverna, Pietro; Azab, Mohammad; Maio, Michele

    2015-06-01

    Epigenetic alterations play a pivotal role in cancer development and progression. Pharmacologic reversion of such alterations is feasible, and second generation "epigenetic drugs" are in development and have been demonstrated to possess significant immunomodulatory properties. This knowledge, together with the availability of new and highly effective immunotherapeutic agents including immune checkpoint(s) blocking monoclonal antibodies, allows us to plan for highly innovative proof-of-principle combination studies that will likely open the path to more effective anticancer therapies.

  9. Analysis of the Functionality of the Mitotic Checkpoints.

    PubMed

    Fraschini, Roberta

    2017-01-01

    During cell division the main goal of the cell is to produce two daughter cells with the same genome as the mother, i.e., maintain its genetic stability. Since this issue is essential to preserve the cell ability to proliferate properly, all eukaryotic cells have developed several pathways, called mitotic checkpoints, that regulate mitotic entry, progression, and exit in response to different cellular signals. Given the evolutive conservation of mechanisms and proteins involved in the cell cycle control from yeast to humans, the budding yeast S. cerevisiae has been very helpful to gain insight in these complex regulations. Here, we describe how the checkpoint can be activated and which cellular phenotypes can be used as markers of checkpoint activation.

  10. Mitochondrial dynamics during cell cycling.

    PubMed

    Horbay, Rostyslav; Bilyy, Rostyslav

    2016-12-01

    Mitochondria are the cell's power plant that must be in a proper functional state in order to produce the energy necessary for basic cellular functions, such as proliferation. Mitochondria are 'dynamic' in that they are constantly undergoing fission and fusion to remain in a functional state throughout the cell cycle, as well as during other vital processes such as energy supply, cellular respiration and programmed cell death. The mitochondrial fission/fusion machinery is involved in generating young mitochondria, while eliminating old, damaged and non-repairable ones. As a result, the organelles change in shape, size and number throughout the cell cycle. Such precise and accurate balance is maintained by the cytoskeletal transporting system via microtubules, which deliver the mitochondrion from one location to another. During the gap phases G1 and G2, mitochondria form an interconnected network, whereas in mitosis and S-phase fragmentation of the mitochondrial network will take place. However, such balance is lost during neoplastic transformation and autoimmune disorders. Several proteins, such as Drp1, Fis1, Kif-family proteins, Opa1, Bax and mitofusins change in activity and might link the mitochondrial fission/fusion events with processes such as alteration of mitochondrial membrane potential, apoptosis, necrosis, cell cycle arrest, and malignant growth. All this indicates how vital proper functioning of mitochondria is in maintaining cell integrity and preventing carcinogenesis.

  11. Cell cycle regulation and regeneration.

    PubMed

    Heber-Katz, Ellen; Zhang, Yong; Bedelbaeva, Khamila; Song, Fengyu; Chen, Xiaoping; Stocum, David L

    2013-01-01

    Regeneration of ear punch holes in the MRL mouse and amputated limbs of the axolotl show a number of similarities. A large proportion of the fibroblasts of the uninjured MRL mouse ear are arrested in G2 of the cell cycle, and enter nerve-dependent mitosis after injury to form a ring-shaped blastema that regenerates the ear tissue. Multiple cell types contribute to the establishment of the regeneration blastema of the urodele limb by dedifferentiation, and there is substantial reason to believe that the cells of this early blastema are also arrested in G2, and enter mitosis under the influence of nerve-dependent factors supplied by the apical epidermal cap. Molecular analysis reveals other parallels, such as; (1) the upregulation of Evi5, a centrosomal protein that prevents mitosis by stabilizing Emi1, a protein that inhibits the degradation of cyclins by the anaphase promoting complex and (2) the expression of sodium channels by the epidermis. A central feature in the entry into the cell cycle by MRL ear fibroblasts is a natural downregulation of p21, and knockout of p21 in wild-type mice confers regenerative capacity on non-regenerating ear tissue. Whether the same is true for entry into the cell cycle in regenerating urodele limbs is presently unknown.

  12. The role of p21(waf1/cip1) and p27(Kip1) in HDACi-mediated tumor cell death and cell cycle arrest in the Eμ-myc model of B-cell lymphoma.

    PubMed

    Newbold, A; Salmon, J M; Martin, B P; Stanley, K; Johnstone, R W

    2014-11-20

    Following the establishment of histone deacetylases (HDACs) as promising therapeutic targets for the reversal of aberrant epigenetic states associated with cancer, the development of HDAC inhibitors (HDACi) and their underlying mechanisms of action has been a significant area of scientific interest. HDACi induce diverse biological responses including the inhibition of cell proliferation by blocking progression through the G1 or G2/M phases of the cell cycle. As a putative tumor-suppressor protein, p21(waf1/cip1) influences cell proliferation by inhibiting the activity of cyclin-cyclin-dependent kinase (CDK) complexes at the G1/S and G2/M cell cycle checkpoints. HDACi transcriptionally activate CDKN1A, and it has been proposed that induction of p21(waf1/cip1) can determine if a cell undergoes apoptosis or cell cycle arrest following HDACi treatment. In the Eμ-myc transgenic mouse model of B-cell lymphoma, knockout of cdkn1a had no effect on disease latency, indicating that p21(waf1/cip1) did not function as a tumor suppressor in this system. Although HDACi robustly induced expression of p21(waf1/cip1) in wild-type Eμ-myc lymphomas, deletion of cdkn1a did not sensitize the lymphoma cells to HDACi-induced apoptosis and HDACi-induced cell cycle arrest still occurred. However, knockdown of cdkn1b in cdkn1a knockout lymphomas resulted in defective vorinostat-mediated arrest at G1/S indicating an essential role of p27(Kip1) in mediating this biological response to vorinostat. These data demonstrate that induction of cdkn1a does not regulate HDACi-mediated tumor cell apoptosis and refute the notion that p21(waf1/cip1) is an obligate mediator of HDACi-induced cell cycle arrest.

  13. Pin1 inhibits PP2A-mediated Rb dephosphorylation in regulation of cell cycle and S-phase DNA damage

    PubMed Central

    Tong, Y; Ying, H; Liu, R; Li, L; Bergholz, J; Xiao, Z-X

    2015-01-01

    Inactivation of the retinoblastoma protein (Rb) has a key role in tumorigenesis. It is well established that Rb function is largely regulated by a dynamic balance of phosphorylation and dephosphorylation. Although much research has been done to understand the mechanisms and function of RB phosphorylation, the regulation of Rb dephosphorylation is still not well understood. In this study, we demonstrate that Pin1 has an important role in the regulation of Rb function in cell cycle progression and S-phase checkpoint upon DNA damage. We show that the Rb C-pocket directly binds to the Pin1 WW domain in vitro and in vivo, and that the phosphorylation of Rb C-pocket by G1/S Cyclin/Cyclin-dependent kinase complexes is critical for mediating this interaction. We further show that Rb-mediated cell cycle arrest and Rb-induced premature cellular senescence are effectively inhibited by Pin1 expression. In addition, DNA damage induces Rb dephosphorylation in a PP2A-dependent manner, and this process is inhibited by Pin1. Furthermore, the overexpression of Pin1 promotes Rb hyperphosphorylation upon S-phase DNA damage. Importantly, both the Pin1 WW domain and isomerase activity are required for its effect on S-phase checkpoint. Moreover, the overexpression of Pin1 is correlated with Rb hyperphosphorylation in breast cancer biopsies. These results indicate that Pin1 has a critical role in the modulation of Rb function by the regulation of Rb dephosphorylation, which may have an important pathological role in cancer development. PMID:25675300

  14. Pin1 inhibits PP2A-mediated Rb dephosphorylation in regulation of cell cycle and S-phase DNA damage.

    PubMed

    Tong, Y; Ying, H; Liu, R; Li, L; Bergholz, J; Xiao, Z-X

    2015-02-12

    Inactivation of the retinoblastoma protein (Rb) has a key role in tumorigenesis. It is well established that Rb function is largely regulated by a dynamic balance of phosphorylation and dephosphorylation. Although much research has been done to understand the mechanisms and function of RB phosphorylation, the regulation of Rb dephosphorylation is still not well understood. In this study, we demonstrate that Pin1 has an important role in the regulation of Rb function in cell cycle progression and S-phase checkpoint upon DNA damage. We show that the Rb C-pocket directly binds to the Pin1 WW domain in vitro and in vivo, and that the phosphorylation of Rb C-pocket by G1/S Cyclin/Cyclin-dependent kinase complexes is critical for mediating this interaction. We further show that Rb-mediated cell cycle arrest and Rb-induced premature cellular senescence are effectively inhibited by Pin1 expression. In addition, DNA damage induces Rb dephosphorylation in a PP2A-dependent manner, and this process is inhibited by Pin1. Furthermore, the overexpression of Pin1 promotes Rb hyperphosphorylation upon S-phase DNA damage. Importantly, both the Pin1 WW domain and isomerase activity are required for its effect on S-phase checkpoint. Moreover, the overexpression of Pin1 is correlated with Rb hyperphosphorylation in breast cancer biopsies. These results indicate that Pin1 has a critical role in the modulation of Rb function by the regulation of Rb dephosphorylation, which may have an important pathological role in cancer development.

  15. The retinoblastoma protein-associated cell cycle arrest in S-phase under moderate hypoxia is disrupted in cells expressing HPV18 E7 oncoprotein.

    PubMed Central

    Amellem, O.; Sandvik, J. A.; Stokke, T.; Pettersen, E. O.

    1998-01-01

    We have studied the role of the oxygen-dependent pyrimidine metabolism in the regulation of cell cycle progression under moderate hypoxia in human cell lines containing functional (T-47D) or non-functional (NHIK 3025, SAOS-2) retinoblastoma gene product (pRB). Under aerobic conditions, pRB exerts its growth-regulatory effects during early G1 phase of the cell cycle, when all pRB present has been assumed to be in the underphosphorylated form and bound in the nucleus. We demonstrate that pRB is dephosphorylated and re-bound in the nucleus in approximately 90% of T-47D cells located in S and G2 phases under moderately hypoxic conditions. Under these conditions, no T-47D cells entered S-phase, and no progression through S-phase was observed. Progression of cells through G2 and mitosis seems independent of their functional pRB status. The p21WAF1/CIP1 protein level was significantly reduced by moderate hypoxia in p53-deficient T-47D cells, whereas p16(INK4a) was not expressed in these cells, suggesting that the hypoxia-induced cell cycle arrest is independent of these cyclin-dependent kinase inhibitors. The addition of pyrimidine deoxynucleosides did not release T-47D cells, containing mainly underphosphorylated pRB, from the cell cycle arrest induced by moderate hypoxia. However, NHIK 3025 cells, in which pRB is abrogated by expression of the HPV18 E7 oncoprotein, and SAOS-2 cells, which lack pRB expression, continued cell cycle progression under moderate hypoxia provided that excess pyrimidine deoxynucleosides were present. NHIK 3025 cells express high levels of p16INK4a under both aerobic and moderately hypoxic conditions, suggesting that the inhibitory function of p16(INK4a) would not be manifested in such pRB-deficient cells. Thus, pRB, a key member of the cell cycle checkpoint network, seems to play a major role by inducing growth arrest under moderate hypoxia, and it gradually overrides hypoxia-induced suppression of pyrimidine metabolism in the regulation of

  16. Transcription factors of M-phase cyclin CLB2 in the yeast cell wall integrity checkpoint.

    PubMed

    Sekiya, Mizuho; Nogami, Satoru; Ohya, Yoshikazu

    2009-08-01

    The cell wall integrity checkpoint coordinates cell wall synthesis and mitosis in the budding yeast, Saccharomyces cerevisiae. It has been reported that this checkpoint arrests the cell cycle at G2/M phase with repression of the M phase cyclin Clb2p at the transcriptional level, under perturbation of cell wall synthesis. We demonstrate that an override of this checkpoint with accumulation of CLB2 mRNA is induced when negative CLB2 transcription factors are deleted or when positive CLB2 transcription factors are overproduced in cell wall-defective cells. Our data imply that transcription factors for CLB2 are involved in the cell wall integrity checkpoint system and suggest that there are multiple regulation pathways of the checkpoint.

  17. Artemisinin blocks prostate cancer growth and cell cycle progression by disrupting Sp1 interactions with the cyclin-dependent kinase-4 (CDK4) promoter and inhibiting CDK4 gene expression.

    PubMed

    Willoughby, Jamin A; Sundar, Shyam N; Cheung, Mark; Tin, Antony S; Modiano, Jaime; Firestone, Gary L

    2009-01-23

    Artemisinin, a naturally occurring component of Artemisia annua, or sweet wormwood, is a potent anti-malaria compound that has recently been shown to have anti-proliferative effects on a number of human cancer cell types, although little is know about the molecular mechanisms of this response. We have observed that artemisinin treatment triggers a stringent G1 cell cycle arrest of LNCaP (lymph node carcinoma of the prostate) human prostate cancer cells that is accompanied by a rapid down-regulation of CDK2 and CDK4 protein and transcript levels. Transient transfection with promoter-linked luciferase reporter plasmids revealed that artemisinin strongly inhibits CDK2 and CDK4 promoter activity. Deletion analysis of the CDK4 promoter revealed a 231-bp artemisinin-responsive region between -1737 and -1506. Site-specific mutations revealed that the Sp1 site at -1531 was necessary for artemisinin responsiveness in the context of the CDK4 promoter. DNA binding assays as well as chromatin immunoprecipitation assays demonstrated that this Sp1-binding site in the CDK4 promoter forms a specific artemisinin-responsive DNA-protein complex that contains the Sp1 transcription factor. Artemisinin reduced phosphorylation of Sp1, and when dephosphorylation of Sp1 was inhibited by treatment of cells with the phosphatase inhibitor okadaic acid, the ability of artemisinin to down-regulate Sp1 interactions with the CDK4 promoter was ablated, rendering the CDK4 promoter unresponsive to artemisinin. Finally, overexpression of Sp1 mostly reversed the artemisinin down-regulation of CDK4 promoter activity and partially reversed the cell cycle arrest. Taken together, our results demonstrate that a key event in the artemisinin anti-proliferative effects in prostate cancer cells is the transcriptional down-regulation of CDK4 expression by disruption of Sp1 interactions with the CDK4 promoter.

  18. Bir1 deletion causes malfunction of the spindle assembly checkpoint and apoptosis in yeast.

    PubMed

    Ren, Qun; Liou, Liang-Chun; Gao, Qiuqiang; Bao, Xiaoming; Zhang, Zhaojie

    2012-01-01

    Cell division in yeast is a highly regulated and well studied event. Various checkpoints are placed throughout the cell cycle to ensure faithful segregation of sister chromatids. Unexpected events, such as DNA damage or oxidative stress, cause the activation of checkpoint(s) and cell cycle arrest. Malfunction of the checkpoints may induce cell death. We previously showed that under oxidative stress, the budding yeast cohesin Mcd1, a homolog of human Rad21, was cleaved by the caspase-like protease Esp1. The cleaved Mcd1 C-terminal fragment was then translocated to mitochondria, causing apoptotic cell death. In the present study, we demonstrated that Bir1 plays an important role in spindle assembly checkpoint and cell death. Similar to H(2)O(2) treatment, deletion of BIR1 using a BIR1-degron strain caused degradation of the securin Pds1, which binds and inactivates Esp1 until metaphase-anaphase transition in a normal cell cycle. BIR1 deletion caused an increase level of ROS and mis-location of Bub1, a major protein for spindle assembly checkpoint. In wild type, Bub1 was located at the kinetochores, but was primarily in the cytoplasm in bir1 deletion strain. When BIR1 was deleted, addition of nocodazole was unable to retain the Bub1 localization on kinetochores, further suggesting that Bir1 is required to activate and maintain the spindle assembly checkpoint. Our study suggests that the BIR1 function in cell cycle regulation works in concert with its anti-apoptosis function.

  19. Targeting the DNA replication checkpoint by pharmacologic inhibition of Chk1 kinase: a strategy to sensitize APC mutant colon cancer cells to 5-fluorouracil chemotherapy.

    PubMed

    Martino-Echarri, Estefania; Henderson, Beric R; Brocardo, Mariana G

    2014-10-30

    5-fluorouracil (5-FU) is the first line component used in colorectal cancer (CRC) therapy however even in combination with other chemotherapeutic drugs recurrence is common. Mutations of the adenomatous polyposis coli (APC) gene are considered as the initiating step of transformation in familial and sporadic CRCs. We have previously shown that APC regulates the cellular response to DNA replication stress and recently hypothesized that APC mutations might therefore influence 5-FU resistance. To test this, we compared CRC cell lines and show that those expressing truncated APC exhibit a limited response to 5-FU and arrest in G1/S-phase without undergoing lethal damage, unlike cells expressing wild-type APC. In SW480 APC-mutant CRC cells, 5-FU-dependent apoptosis was restored after transient expression of full length APC, indicating a direct link between APC and drug response. Furthermore, we could increase sensitivity of APC truncated cells to 5-FU by inactivating the Chk1 kinase using drug treatment or siRNA-mediated knockdown. Our findings identify mutant APC as a potential tumor biomarker of resistance to 5-FU, and importantly we show that APC-mutant CRC cells can be made more sensitive to 5-FU by use of Chk1 inhibitors.

  20. Ral A, via activating the mitotic checkpoint, sensitizes cells lacking a functional Nf1 to apoptosis in the absence of protein kinase C.

    PubMed

    Ganapathy, Suthakar; Fagman, Johan B; Shen, Ling; Yu, Tianqi; Zhou, Xiaodong; Dai, Wei; Makriyannis, Alexandros; Chen, Changyan

    2016-12-20

    Nf1 mutations or deletions are suggested to underlie the tumor predisposition of NF1 (neurofibromatosis type 1) and few treatments are available for treating NF1 patients with advanced malignant tumors. Aberrant activation of Ras in Nf1-deficient conditions is responsible for the promotion of tumorigenesis in NF1. PKC is proven to be an important factor in supporting the viability of Nf1-defected cells, but the molecular mechanisms are not fully understood. In this study, we demonstrate that the inhibition of protein kinase C (PKC) by 1-O-Hexadecyl-2-O-methyl-rac-glycerol (HMG, a PKC inhibitor) preferentially sensitizes Nf1-defected cells to apoptosis, via triggering a persistent mitotic arrest. In this process, Ral A is activated. Subsequently, Chk1 is phosphorylated and translocated to the nucleus. Silencing Ral A significantly blocks Chk1 nuclear translocation and releases HMG-treated Nf1-deficient cells from mitotic arrest, resulting in the reduction of the magnitude of apoptosis. Thus, our study reveals that PKC is able to maintain the homeostasis or viability of Nf1-defected cells and may serve as a potential target for developing new therapeutic strategies.

  1. Variant surface glycoprotein RNA interference triggers a precytokinesis cell cycle arrest in African trypanosomes.

    PubMed

    Sheader, Karen; Vaughan, Sue; Minchin, James; Hughes, Katie; Gull, Keith; Rudenko, Gloria

    2005-06-14

    Trypanosoma brucei is a protozoan parasite that causes African sleeping sickness. T. brucei multiplies extracellularly in the bloodstream, relying on antigenic variation of a dense variant surface glycoprotein (VSG) coat to escape antibody-mediated lysis. We investigated the role of VSG in proliferation and pathogenicity by using inducible RNA interference to ablate VSG transcript down to 1-2% normal levels. Inhibiting VSG synthesis in vitro triggers a rapid and specific cell cycle checkpoint blocking cell division. Parasites arrest at a discrete precytokinesis stage with two full-length flagella and opposing flagellar pockets, without undergoing additional rounds of S phase and mitosis. A subset (<10%) of the stalled cells have internal flagella, indicating that the progenitors of these cells were already committed to cytokinesis when VSG restriction was sensed. Although there was no obvious VSG depletion in vitro after 24-h induction of VSG RNA interference, there was rapid clearance of these cells in vivo. We propose that a stringent block in VSG synthesis produces stalled trypanosomes with a minimally compromised VSG coat, which can be targeted by the immune system. Our data indicate that VSG protein or transcript is monitored during cell cycle progression in bloodstream-form T. brucei and describes precise precytokinesis cell cycle arrest. This checkpoint before cell division provides a link between the protective VSG coat and cell cycle progression and could function as a novel parasite safety mechanism, preventing extensive dilution of the protective VSG coat in the absence of VSG synthesis.

  2. Unconventional Functions of Mitotic Kinases in Kidney Tumorigenesis

    PubMed Central

    Hascoet, Pauline; Chesnel, Franck; Le Goff, Cathy; Le Goff, Xavier; Arlot-Bonnemains, Yannick

    2015-01-01

    Human tumors exhibit a variety of genetic alterations, including point mutations, translocations, gene amplifications and deletions, as well as aneuploid chromosome numbers. For carcinomas, aneuploidy is associated with poor patient outcome for a large variety of tumor types, including breast, colon, and renal cell carcinoma. The Renal cell carcinoma (RCC) is a heterogeneous carcinoma consisting of different histologic types. The clear renal cell carcinoma (ccRCC) is the most common subtype and represents 85% of the RCC. Central to the biology of the ccRCC is the loss of function of the Von Hippel–Lindau gene, but is also associated with genetic instability that could be caused by abrogation of the cell cycle mitotic spindle checkpoint and may involve the Aurora kinases, which regulate centrosome maturation. Aneuploidy can also result from the loss of cell–cell adhesion and apical–basal cell polarity that also may be regulated by the mitotic kinases (polo-like kinase 1, casein kinase 2, doublecortin-like kinase 1, and Aurora kinases). In this review, we describe the “non-mitotic” unconventional functions of these kinases in renal tumorigenesis. PMID:26579493

  3. Cell Cycle and Cell Size Dependent Gene Expression Reveals Distinct Subpopulations at Single-Cell Level

    PubMed Central

    Dolatabadi, Soheila; Candia, Julián; Akrap, Nina; Vannas, Christoffer; Tesan Tomic, Tajana; Losert, Wolfgang; Landberg, Göran; Åman, Pierre; Ståhlberg, Anders

    2017-01-01

    Cell proliferation includes a series of events that is tightly regulated by several checkpoints and layers of control mechanisms. Most studies have been performed on large cell populations, but detailed understanding of cell dynamics and heterogeneity requires single-cell analysis. Here, we used quantitative real-time PCR, profiling the expression of 93 genes in single-cells from three different cell lines. Individual unsynchronized cells from three different cell lines were collected in different cell cycle phases (G0/G1 – S – G2/M) with variable cell sizes. We found that the total transcript level per cell and the expression of most individual genes correlated with progression through the cell cycle, but not with cell size. By applying the random forests algorithm, a supervised machine learning approach, we show how a multi-gene signature that classifies individual cells into their correct cell cycle phase and cell size can be generated. To identify the most predictive genes we used a variable selection strategy. Detailed analysis of cell cycle predictive genes allowed us to define subpopulations with distinct gene expression profiles and to calculate a cell cycle index that illustrates the transition of cells between cell cycle phases. In conclusion, we provide useful experimental approaches and bioinformatics to identify informative and predictive genes at the single-cell level, which opens up new means to describe and understand cell proliferation and subpopulation dynamics. PMID:28179914

  4. The SFP1 gene product of Saccharomyces cerevisiae regulates G2/M transitions during the mitotic cell cycle and DNA-damage response.

    PubMed Central

    Xu, Z; Norris, D

    1998-01-01

    In eukaryotic cells, checkpoint pathways arrest cell-cycle progression if a particular event has failed to complete appropriately or if an important intracellular structure is defective or damaged. Saccharomyces cerevisiae strains that lack the SFP1 gene fail to arrest at the G2 DNA-damage checkpoint in response to genomic injury, but maintain their ability to arrest at the replication and spindle-assembly checkpoints. sfp1Delta mutants are characterized by a premature entrance into mitosis during a normal (undamaged) cell cycle, while strains that overexpress Sfp1p exhibit delays in G2. Sfp1p therefore acts as a repressor of the G2/M transition, both in the normal cell cycle and in the G2 checkpoint pathway. Sfp1 is a nuclear protein with two Cys2His2 zinc-finger domains commonly found in transcription factors. We propose that Sfp1p regulates the expression of gene products involved in the G2/M transition during the mitotic cell cycle and the DNA-damage response. In support of this model, overexpression of Sfp1p induces the expression of the PDS1 gene, which is known to encode a protein that regulates the G2 checkpoint. PMID:9832520

  5. Prognostic Importance of Cell Cycle Regulators Cyclin D1 (CCND1) and Cyclin-Dependent Kinase Inhibitor 1B (CDKN1B/p27) in Sporadic Gastric Cancers

    PubMed Central

    Minarikova, Petra; Halkova, Tereza; Belsanova, Barbora; Tuckova, Inna; Belina, Frantisek; Dusek, Ladislav; Zavoral, Miroslav

    2016-01-01

    Background. Gastric cancer is known for a notable variety in the course of the disease. Clinical factors, such as tumor stage, grade, and localization, are key in patient survival. It is expected that molecular factors such as somatic mutations and gene amplifications are also underlying tumor biological behavior and may serve as factors for prognosis estimation. Aim. The purpose of this study was to examine gene amplifications from a panel of genes to uncover potential prognostic marker candidates. Methods. A panel of gene amplifications including 71 genes was tested by multiplex ligation-dependent probe amplification (MLPA) technique in 76 gastric cancer samples from a Caucasian population. The correlation of gene amplification status with patient survival was determined by the Kaplan-Meier method. Results. The amplification of two cell cycle regulators, CCND1 and CDKN1B, was identified to have a negative prognostic role. The medial survival of patients with gastric cancer displaying amplification compared to patients without amplification was 192 versus 725 days for CCND1 (P = 0.0012) and 165 versus 611 days for CDKN1B (P = 0.0098). Conclusion. Gene amplifications of CCND1 and CDKN1B are potential candidates to serve as prognostic markers for the stratification of patients based on the estimate of survival in the management of gastric cancer patients. PMID:27781065

  6. Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation.

    PubMed

    Chen, Xuefeng; Niu, Hengyao; Chung, Woo-Hyun; Zhu, Zhu; Papusha, Alma; Shim, Eun Yong; Lee, Sang Eun; Sung, Patrick; Ira, Grzegorz

    2011-08-14

    DNA recombination pathways are regulated by the cell cycle to coordinate with replication. Cyclin-dependent kinase (Cdk1) promotes efficient 5' strand resection at DNA double-strand breaks (DSBs), the initial step of homologous recombination and damage checkpoint activation. The Mre11-Rad50-Xrs2 complex with Sae2 initiates resection, whereas two nucleases, Exo1 and Dna2, and the DNA helicase-topoisomerase complex Sgs1-Top3-Rmi1 generate longer ssDNA at DSBs. Using Saccharomyces cerevisiae, we provide evidence for Cdk1-dependent phosphorylation of the resection nuclease Dna2 at Thr4, Ser17 and Ser237 that stimulates its recruitment to DSBs, resection and subsequent Mec1-dependent phosphorylation. Poorly recruited dna2T4A S17A S237A and dna2ΔN248 mutant proteins promote resection only in the presence of Exo1, suggesting cross-talk between Dna2- and Exo1-dependent resection pathways.

  7. Nek9 regulates spindle organization and cell cycle progression during mouse oocyte meiosis and its location in early embryo mitosis

    PubMed Central

    Yang, Shang-Wu; Gao, Chen; Chen, Lei; Song, Ya-Li; Zhu, Jin-Liang; Qi, Shu-Tao; Jiang, Zong-Zhe; Wang, Zhong-Wei; Lin, Fei; Huang, Hao; Xing, Fu-Qi; Sun, Qing-Yuan

    2012-01-01

    Nek9 (also known as Nercc1), a member of the NIMA (never in mitosis A) family of protein kinases, regulates spindle formation, chromosome alignment and segregation in mitosis. Here, we showed that Nek9 protein was expressed from germinal vesicle (GV) to metaphase II (MII) stages in mouse oocytes with no detectable changes. Confocal microscopy identified that Nek9 was localized to the spindle poles at the metaphase stages and associated with the midbody at anaphase or telophase stage in both meiotic oocytes and the first mitotic embyros. Depletion of Nek9 by specific morpholino injection resulted in severely defective spindles and misaligned chromosomes with significant pro-MI/MI arrest and failure of first polar body (PB1) extrusion. Knockdown of Nek9 also impaired the spindle-pole localization of γ-tubulin and resulted in retention of the spindle assembly checkpoint protein Bub3 at the kinetochores even after 10 h of culture. Live-cell imaging analysis also confirmed that knockdown of Nek9 resulted in oocyte arrest at the pro-MI/MI stage with abnormal spindles, misaligned chromosomes and failed polar body emission. Taken together, our results suggest that Nek9 may act as a MTOC-associated protein regulating microtubule nucleation, spindle organization and, thus, cell cycle progression during mouse oocyte meiotic maturation, fertilization and early embryo cleavage. PMID:23159858

  8. Use of a small molecule cell cycle inhibitor to control cell growth and improve specific productivity and product quality of recombinant proteins in CHO cell cultures

    PubMed Central

    Du, Zhimei; Treiber, David; McCarter, John D; Fomina-Yadlin, Dina; Saleem, Ramsey A; McCoy, Rebecca E; Zhang, Yuling; Tharmalingam, Tharmala; Leith, Matthew; Follstad, Brian D; Dell, Brad; Grisim, Brent; Zupke, Craig; Heath, Carole; Morris, Arvia E; Reddy, Pranhitha

    2015-01-01

    The continued need to improve therapeutic recombinant protein productivity has led to ongoing assessment of appropriate strategies in the biopharmaceutical industry to establish robust processes with optimized critical variables, that is, viable cell density (VCD) and specific productivity (product per cell, qP). Even though high VCD is a positive factor for titer, uncontrolled proliferation beyond a certain cell mass is also undesirable. To enable efficient process development to achieve consistent and predictable growth arrest while maintaining VCD, as well as improving qP, without negative impacts on product quality from clone to clone, we identified an approach that directly targets the cell cycle G1-checkpoint by selectively inhibiting the function of cyclin dependent kinases (CDK) 4/6 with a small molecule compound. Results from studies on multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrate that the selective inhibitor can mediate a complete and sustained G0/G1 arrest without impacting G2/M phase. Cell proliferation is consistently and rapidly controlled in all recombinant cell lines at one concentration of this inhibitor throughout the production processes with specific productivities increased up to 110 pg/cell/day. Additionally, the product quality attributes of the mAb, with regard to high molecular weight (HMW) and glycan profile, are not negatively impacted. In fact, high mannose is decreased after treatment, which is in contrast to other established growth control methods such as reducing culture temperature. Microarray analysis showed major differences in expression of regulatory genes of the glycosylation and cell cycle signaling pathways between these different growth control methods. Overall, our observations showed that cell cycle arrest by directly targeting CDK4/6 using selective inhibitor compound can be utilized consistently and rapidly to optimize process parameters, such as cell growth, qP, and glycosylation profile in

  9. Use of a small molecule cell cycle inhibitor to control cell growth and improve specific productivity and product quality of recombinant proteins in CHO cell cultures.

    PubMed

    Du, Zhimei; Treiber, David; McCarter, John D; Fomina-Yadlin, Dina; Saleem, Ramsey A; McCoy, Rebecca E; Zhang, Yuling; Tharmalingam, Tharmala; Leith, Matthew; Follstad, Brian D; Dell, Brad; Grisim, Brent; Zupke, Craig; Heath, Carole; Morris, Arvia E; Reddy, Pranhitha

    2015-01-01

    The continued need to improve therapeutic recombinant protein productivity has led to ongoing assessment of appropriate strategies in the biopharmaceutical industry to establish robust processes with optimized critical variables, that is, viable cell density (VCD) and specific productivity (product per cell, qP). Even though high VCD is a positive factor for titer, uncontrolled proliferation beyond a certain cell mass is also undesirable. To enable efficient process development to achieve consistent and predictable growth arrest while maintaining VCD, as well as improving qP, without negative impacts on product quality from clone to clone, we identified an approach that directly targets the cell cycle G1-checkpoint by selectively inhibiting the function of cyclin dependent kinases (CDK) 4/6 with a small molecule compound. Results from studies on multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrate that the selective inhibitor can mediate a complete and sustained G0/G1 arrest without impacting G2/M phase. Cell proliferation is consistently and rapidly controlled in all recombinant cell lines at one concentration of this inhibitor throughout the production processes with specific productivities increased up to 110 pg/cell/day. Additionally, the product quality attributes of the mAb, with regard to high molecular weight (HMW) and glycan profile, are not negatively impacted. In fact, high mannose is decreased after treatment, which is in contrast to other established growth control methods such as reducing culture temperature. Microarray analysis showed major differences in expression of regulatory genes of the glycosylation and cell cycle signaling pathways between these different growth control methods. Overall, our observations showed that cell cycle arrest by directly targeting CDK4/6 using selective inhibitor compound can be utilized consistently and rapidly to optimize process parameters, such as cell growth, qP, and glycosylation profile in

  10. Cell-cycle synchronisation of bloodstream forms of Trypanosoma brucei using Vybrant DyeCycle Violet-based sorting.

    PubMed

    Kabani, Sarah; Waterfall, Martin; Matthews, Keith R

    2010-01-01

    Studies on the cell-cycle of Trypanosoma brucei have revealed several unusual characteristics that differ from the model eukaryotic organisms. However, the inability to isolate homogenous populations of parasites in distinct cell-cycle stages has limited the analysis of trypanosome cell division and complicated the understanding of mutant phenotypes with possible impact on cell-cycle related events. Although hydroxyurea-induced cell-cycle arrest in procyclic and bloodstream forms has been applied recently with success, such block-release protocols can complicate the analysis of cell-cycle regulated events and have the potential to disrupt important cell-cycle checkpoints. An alternative approach based on flow cytometry of parasites stained with Vybrant DyeCycle Orange circumvents this problem, but is restricted to procyclic form parasites. Here, we apply Vybrant Dyecycle Violet staining coupled with flow cytometry to effectively select different cell-cycle stages of bloodstream form trypanosomes. Moreover, the sorted parasites remain viable, although synchrony is rapidly lost. This method enables cell-cycle enrichment of populations of trypanosomes in their mammal infective stage, particularly at the G1 phase.

  11. The investigational Aurora kinase A inhibitor alisertib (MLN8237) induces cell cycle G2/M arrest, apoptosis, and autophagy via p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells

    PubMed Central

    Li, Jin-Ping; Yang, Yin-Xue; Liu, Qi-Lun; Pan, Shu-Ting; He, Zhi-Xu; Zhang, Xueji; Yang, Tianxin; Chen, Xiao-Wu; Wang, Dong; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Alisertib (ALS) is an investigational potent Aurora A kinase inhibitor currently undergoing clinical trials for the treatment of hematological and non-hematological malignancies. However, its antitumor activity has not been tested in human breast cancer. This study aimed to investigate the effect of ALS on the growth, apoptosis, and autophagy, and the underlying mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. In the current study, we identified that ALS had potent growth-inhibitory, pro-apoptotic, and pro-autophagic effects in MCF7 and MDA-MB-231 cells. ALS arrested the cells in G2/M phase in MCF7 and MDA-MB-231 cells which was accompanied by the downregulation of cyclin-dependent kinase (CDK)1/cell division cycle (CDC) 2, CDK2, and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53, suggesting that ALS induces G2/M arrest through modulation of p53/p21/CDC2/cyclin B1 pathways. ALS induced mitochondria-mediated apoptosis in MCF7 and MDA-MB-231 cells; ALS significantly decreased the expression of B-cell lymphoma 2 (Bcl-2), but increased the expression of B-cell lymphoma 2-associated X protein (Bax) and p53-upregulated modulator of apoptosis (PUMA), and increased the expression of cleaved caspases 3 and 9. ALS significantly increased the expression level of membrane-bound microtubule-associated protein 1 light chain 3 (LC3)-II and beclin 1 and induced inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase (MAPK) pathways in MCF7 and MDA-MB-231 cells as indicated by their altered phosphorylation, contributing to the pro-autophagic activities of ALS. Furthermore, treatment with wortmannin markedly downregulated ALS-induced p38 MAPK activation and LC3 conversion. In addition, knockdown of the p38 MAPK gene by ribonucleic acid interference upregulated Akt activation and resulted in LC3-II accumulation. These findings indicate that ALS promotes cellular

  12. The investigational Aurora kinase A inhibitor alisertib (MLN8237) induces cell cycle G2/M arrest, apoptosis, and autophagy via p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells.

    PubMed

    Li, Jin-Ping; Yang, Yin-Xue; Liu, Qi-Lun; Pan, Shu-Ting; He, Zhi-Xu; Zhang, Xueji; Yang, Tianxin; Chen, Xiao-Wu; Wang, Dong; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Alisertib (ALS) is an investigational potent Aurora A kinase inhibitor currently undergoing clinical trials for the treatment of hematological and non-hematological malignancies. However, its antitumor activity has not been tested in human breast cancer. This study aimed to investigate the effect of ALS on the growth, apoptosis, and autophagy, and the underlying mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. In the current study, we identified that ALS had potent growth-inhibitory, pro-apoptotic, and pro-autophagic effects in MCF7 and MDA-MB-231 cells. ALS arrested the cells in G2/M phase in MCF7 and MDA-MB-231 cells which was accompanied by the downregulation of cyclin-dependent kinase (CDK)1/cell division cycle (CDC) 2, CDK2, and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53, suggesting that ALS induces G2/M arrest through modulation of p53/p21/CDC2/cyclin B1 pathways. ALS induced mitochondria-mediated apoptosis in MCF7 and MDA-MB-231 cells; ALS significantly decreased the expression of B-cell lymphoma 2 (Bcl-2), but increased the expression of B-cell lymphoma 2-associated X protein (Bax) and p53-upregulated modulator of apoptosis (PUMA), and increased the expression of cleaved caspases 3 and 9. ALS significantly increased the expression level of membrane-bound microtubule-associated protein 1 light chain 3 (LC3)-II and beclin 1 and induced inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase (MAPK) pathways in MCF7 and MDA-MB-231 cells as indicated by their altered phosphorylation, contributing to the pro-autophagic activities of ALS. Furthermore, treatment with wortmannin markedly downregulated ALS-induced p38 MAPK activation and LC3 conversion. In addition, knockdown of the p38 MAPK gene by ribonucleic acid interference upregulated Akt activation and resulted in LC3-II accumulation. These findings indicate that ALS promotes cellular

  13. Dynactin is involved in a checkpoint to monitor cell wall synthesis in Saccharomyces cerevisiae.

    PubMed

    Suzuki, Masaya; Igarashi, Ryoji; Sekiya, Mizuho; Utsugi, Takahiko; Morishita, Shinichi; Yukawa, Masashi; Ohya, Yoshikazu

    2004-09-01

    Checkpoint controls ensure the completion of cell cycle events with high fidelity in the correct order. Here we show the existence of a novel checkpoint that ensures coupling of cell wall synthesis and mitosis. In response to a defect in cell wall synthesis, S. cerevisiae cells arrest the cell-cycle before spindle pole body separation. This arrest results from the regulation of the M-phase cyclin Clb2p at the transcriptional level through the transcription factor Fkh2p. Components of the dynactin complex are required to achieve the G2 arrest whilst keeping cells highly viable. Thus, the dynactin complex has a function in a checkpoint that monitors cell wall synthesis.

  14. Modulation of DNA damage checkpoint; patenting and possible application for cancer medicine.

    PubMed

    Ishikawa, Kazuhiro; Ishii, Hideshi; Ichimura, Keiichi

    2008-01-01

    Eukaryote cells survey genomic integrity for DNA damage or incomplete replication. Aberrant structures being detected, checkpoint mechanisms are activated to slow down or arrest cell cycle progression, which allow the DNA damage to be repaired and the replication to be completed. In cancer development, precancerous cells overcome selective pressure to escape from blocked cell cycle progression, induced by checkpoint responses to DNA damage. Medical applications targeting the process of DNA damage would lead to efficient repairs of DNA damage or induction of cell death, which contributes to cancer detection, diagnosis and therapeutic approaches. In this article, the recent progress of our knowledge and patenting in modulation of DNA damage checkpoint especially by Rad9-Chk1 pathway is noted and possible application for cancer medicine is discussed.

  15. Mitochondrial Regulation of Cell Cycle and Proliferation

    PubMed Central

    Antico Arciuch, Valeria Gabriela; Elguero, María Eugenia; Poderoso, Juan José

    2012-01-01

    Abstract Eukaryotic mitochondria resulted from symbiotic incorporation of α-proteobacteria into ancient archaea species. During evolution, mitochondria lost most of the prokaryotic bacterial genes and only conserved a small fraction including those encoding 13 proteins of the respiratory chain. In this process, many functions were transferred to the host cells, but mitochondria gained a central role in the regulation of cell proliferation and apoptosis, and in the modulation of metabolism; accordingly, defective organelles contribute to cell transformation and cancer, diabetes, and neurodegenerative diseases. Most cell and transcriptional effects of mitochondria depend on the modulation of respiratory rate and on the production of hydrogen peroxide released into the cytosol. The mitochondrial oxidative rate has to remain depressed for cell proliferation; even in the presence of O2, energy is preferentially obtained from increased glycolysis (Warburg effect). In response to stress signals, traffic of pro- and antiapoptotic mitochondrial proteins in the intermembrane space (B-cell lymphoma-extra large, Bcl-2-associated death promoter, Bcl-2 associated X-protein and cytochrome c) is modulated by the redox condition determined by mitochondrial O2 utilization and mitochondrial nitric oxide metabolism. In this article, we highlight the traffic of the different canonical signaling pathways to mitochondria and the contributions of organelles to redox regulation of kinases. Finally, we analyze the dynamics of the mitochondrial population in cell cycle and apoptosis. Antioxid. Redox Signal. 16, 1150–1180. PMID:21967640

  16. Cell cycle dysregulation in pituitary oncogenesis.

    PubMed

    Muşat, Madalina; Vax, Vladimir V; Borboli, Ninetta; Gueorguiev, Maria; Bonner, Sarah; Korbonits, Márta; Grossman, Ashley B

    2004-01-01

    The cell cycle is the process by which cells grow, replicate their genome and divide. The cell cycle control system is a cyclically-operating biochemical device constructed from a set of interacting proteins that induce and coordinate proper progression through the cycle, and includes cyclins, cyclin-dependent kinases (CDK) and their inhibitors (CDKI). There are mainly two families of CDKI, the INK family (INK4a/p16; INK4b/p15; INK4c/p18 and INK4d/p19) and the WAF/KIP family (WAF1/p21; KIP1/p27; KIP2/p57). Progression through the cell cycle is mainly dependent on fluctuations in the concentration of cyclins and CDKI achieved through the programmed degradation of these proteins by proteolysis within the ubiquitin-proteasome system. There is also a transcriptional regulation of cyclin expression, probably dependent on CDK phosphorylation. The p53 family--p53, p63 and p73--function as transcription factors that play a major role in regulating the response of mammalian cells to stressors and damage, in part through the transcriptional activation of genes involved in cell cycle control (e.g. p21), DNA repair, senescence, angiogenesis and apoptosis. Essential for the maintenance of euploidy during mitosis is human securin, identical to the product of the pituitary tumour-transforming gene (PTTG). Loss of regulation at the G1/S transition appears to be a common event among virtually all types of human tumours. Aberrations of one or more components of the pRb/p16/cyclin D1/CDK4 pathway seem to be a frequent event (80%) in pituitary tumours. The role of p27 is rather that of a haploinsufficient gene. p27-/- mice show an increased growth rate, due to increased cellularity, testicular and ovarian cell hyperplasia and infertility, and hyperplasia of the pituitary intermediate lobe with nearly 100% mortality caused by such a benign pituitary tumour. Although the p27 gene was not found to be mutated in human pituitary tumours and its mRNA expression was similar in tumour samples

  17. Targeting chk2 kinase: molecular interaction maps and therapeutic rationale.

    PubMed

    Pommier, Yves; Sordet, Olivier; Rao, V Ashutosh; Zhang, Hongliang; Kohn, Kurt W

    2005-01-01

    Most anticancer drugs presently used clinically target genomic DNA. The selectivity of these anticancer drugs for tumor tissues is probably due to tumor-specific defects suppressing cell cycle checkpoints and DNA repair, and enhancing apoptotic response in the tumor. We will review the molecular interactions within the ATM-Chk2 pathway implicating the DNA damage sensor kinases (ATM, ATR and DNA-PK), the adaptor BRCT proteins (Nbs1, Brca1, 53BP1, MDC1) and the effector kinases (Chk2, Chk1, Plk3, JNK, p38). The molecular interaction map convention (MIM) will be used for presenting this molecular network (http://discover.nci.nih.gov/mim/). A characteristic of the ATM-Chk2 pathway is its redundancy. First, ATM and Chk2 phosphorylate common substrates including p53, E2F1, BRCA1, and Chk2 itself, which suggests that Chk2 (also known as CHECK2, Cds1 in fission yeast, and Dmchk2 or Dmnk or Loki in the fruit fly) acts as a relay for ATM and/or as a salvage pathway when ATM is inactivated. Secondly, redundancy is apparent for the substrates, which can be phosphorylated/activated at similar residues by Chk2, Chk1, and the polo kinases (Plk's). Functionally, Chk2 can activate both apoptosis (via p53, E2F1 and PML) and cell cycle checkpoint (via Cdc25A and Cdc25C, p53, and BRCA1). We will review the short list of published Chk2 inhibitors. We will also propose a novel paradigm for screening interfacial inhibitors of Chk2. Chk2 inhibitors might be used to enhance the tumor selectivity of DNA targeted agents in p53-deficient tumors, and for the treatment of tumors whose growth depends on enhanced Chk2 activity.

  18. Ethyl acetate extract from Asparagus cochinchinensis exerts anti‑inflammatory effects in LPS‑stimulated RAW264.7 macrophage cells by regulating COX‑2/iNOS, inflammatory cytokine expression, MAP kinase pathways, the cell cycle and anti-oxidant activity.

    PubMed

    Lee, Hyun Ah; Koh, Eun Kyoung; Sung, Ji Eun; Kim, Ji Eun; Song, Sung Hwa; Kim, Dong Seob; Son, Hong Joo; Lee, Chung Yeoul; Lee, Hee Seob; Bae, Chang Joon; Hwang, Dae Youn

    2017-04-01

    Asparagus cochinchinesis (A. cochinchinesis) is a medicine traditionally used to treat fever, cough, kidney disease, breast cancer, inflammatory disease and brain disease in northeast Asian countries. Although numerous studies of the anti‑inflammatory effects of A. cochinchinesis have been conducted, the underlying mechanisms of such effects in macrophages remain to be demonstrated. To investigate the mechanism of suppressive effects on the inflammatory response in macrophages, alterations of the nitric oxide (NO) level, the cell viability, inducible nitric oxide synthase (iNOS) and cyclooxygenase‑2 (COX‑2) expression levels, inflammatory cytokine expression, the mitogen-activated protein kinase (MAPK) signaling pathway, cell cycle arrest and reactive oxygen species (ROS) levels were measured in lipopolysaccharide (LPS)-activated RAW264.7 cells following treatment with ethyl acetate extract from A. cochinchinesis root (EaEAC). RAW264.7 cells pretreated two different concentrations of EaEAC prior to LPS treatment exhibited no significant toxicity. The concentration of NO was significantly decreased in the EaEAC + LPS treated group compared with the vehicle + LPS treated group. A similar decrease in mRNA transcript level of COX‑2, iNOS, pro-inflammatory cytokines [tumor necrosis factor‑α and interleukin (IL)‑1β] and anti‑inflammatory cytokines (IL‑6 and IL‑10) was detected in the EaEAC + LPS treated group compared with the vehicle + LPS treated group, although the decrease rate varied. Enhancement of the phosphorylation of MAPK family members following LPS treatment was partially rescued in the EaEAC pretreated group, and the cell cycle was arrested at the G2/M phase. Furthermore, the EaEAC pretreated group exhibited a reduced level of ROS generation compared with the vehicle + LPS treated group. Taken together, these results suggest that EaEAC suppresses inflammatory responses through inhibition of NO production, COX‑2 expression

  19. A novel ATM-dependent checkpoint defect distinct from loss of function mutation promotes genomic instability in melanoma.

    PubMed

    Spoerri, Loredana; Brooks, Kelly; Chia, KeeMing; Grossman, Gavriel; Ellis, Jonathan J; Dahmer-Heath, Mareike; Škalamera, Dubravka; Pavey, Sandra; Burmeister, Bryan; Gabrielli, Brian

    2016-05-01

    Melanomas have high levels of genomic instability that can contribute to poor disease prognosis. Here, we report a novel defect of the ATM-dependent cell cycle checkpoint in melanoma cell lines that promotes genomic instability. In defective cells, ATM signalling to CHK2 is intact, but the cells are unable to maintain the cell cycle arrest due to elevated PLK1 driving recovery from the arrest. Reducing PLK1 activity recovered the ATM-dependent checkpoint arrest, and over-expressing PLK1 was sufficient to overcome the checkpoint arrest and increase genomic instability. Loss of the ATM-dependent checkpoint did not affect sensitivity to ionizing radiation demonstrating that this defect is distinct from ATM loss of function mutations. The checkpoint defective melanoma cell lines over-express PLK1, and a significant proportion of melanomas have high levels of PLK1 over-expression suggesting this defect is a common feature of melanomas. The inability of ATM to impose a cell cycle arrest in response to DNA damage increases genomic instability. This work also suggests that the ATM-dependent checkpoint arrest is likely to be defective in a higher proportion of cancers than previously expected.

  20. DUBbing Cancer: Deubiquitylating Enzymes Involved in Epigenetics, DNA Damage and the Cell Cycle As Therapeutic Targets

    PubMed Central

    Pinto-Fernandez, Adan; Kessler, Benedikt M.

    2016-01-01

    Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs), have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors. PMID:27516771

  1. Energy Landscape Reveals That the Budding Yeast Cell Cycle Is a Robust and Adaptive Multi-stage Process

    PubMed Central

    Lv, Cheng; Li, Xiaoguang; Li, Fangting; Li, Tiejun

    2015-01-01

    Quantitatively understanding the robustness, adaptivity and efficiency of cell cycle dynamics under the influence of noise is a fundamental but difficult question to answer for most eukaryotic organisms. Using a simplified budding yeast cell cycle model perturbed by intrinsic noise, we systematically explore these issues from an energy landscape point of view by constructing an energy landscape for the considered system based on large deviation theory. Analysis shows that the cell cycle trajectory is sharply confined by the ambient energy barrier, and the landscape along this trajectory exhibits a generally flat shape. We explain the evolution of the system on this flat path by incorporating its non-gradient nature. Furthermore, we illustrate how this global landscape changes in response to external signals, observing a nice transformation of the landscapes as the excitable system approaches a limit cycle system when nutrients are sufficient, as well as the formation of additional energy wells when the DNA replication checkpoint is activated. By taking into account the finite volume effect, we find additional pits along the flat cycle path in the landscape associated with the checkpoint mechanism of the cell cycle. The difference between the landscapes induced by intrinsic and extrinsic noise is also discussed. In our opinion, this meticulous structure of the energy landscape for our simplified model is of general interest to other cell cycle dynamics, and the proposed methods can be applied to study similar biological systems. PMID:25794282

  2. Distinct patterns of cleavage and translocation of cell cycle control proteins in CD95-induced and p53-induced apoptosis.

    PubMed Central

    Park, Weon Seo; Jung, Kyeong Cheon; Chung, Doo Hyun; Nam, Woo-Dong; Choi, Won Jin; Bae, Youngmee

    2003-01-01

    Apoptotic cell death induced by p53 occurs at a late G1 cell cycle checkpoint termed the restriction (R) point, and it has been proposed that p53-induced apoptosis causes upregulation of CD95. However, as cells with defective in CD95 signaling pathway are still sensitive to p53-induced apoptosis, CD95 cannot be the sole factor resulting in apoptosis. In addition, unlike p53-induced apoptosis, the relationship between CD95-mediated apoptosis and the cell cycle is not clearly understood. It would therefore be worth investigating whether CD95-mediated cell death is pertinent with p53-induced apoptosis in view of cell cycle related molecules. In this report, biochemical analysis showed that etoposide-induced apoptosis caused the induction and the nuclear translocation of effector molecules involved in G1 cell cycle checkpoint. However, there was no such translocation in the case of CD95-mediated death. Thus, although both types of apoptosis involved caspase activation, the cell cycle related proteins responded differently. This argues against the idea that p53-induced apoptosis occurs through the induction of CD95/CD95L expression. PMID:12923319

  3. Securinine from Phyllanthus glaucus Induces Cell Cycle Arrest and Apoptosis in Human Cervical Cancer HeLa Cells

    PubMed Central

    Krauze-Baranowska, Mirosława; Ochocka, J. Renata

    2016-01-01

    Background The Securinega-type alkaloids occur in plants belonging to Euphorbiaceae family. One of the most widely distributed alkaloid of this group is securinine, which was identified next to allosecurinine in Phyllanthus glaucus (leafflower). Recently, some Securinega-type alkaloids have paid attention to its antiproliferative potency towards different cancer cells. However, the cytotoxic properties of allosecurinine have not yet been evaluated. Methods The cytotoxicity of the extract, alkaloid fraction obtained from P. glaucus, isolated securinine and allosecurinine against HeLa cells was evaluated by real-time xCELLigence system and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was detected by annexin V and 7-amino-actinomycin (7-AAD) staining and confirmed with fluorescent Hoechst 33342 dye. The assessment of mitochondrial membrane potential (MMP), reactive oxygen species (ROS) generation, the level of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), caspase-3/7 activity and cell cycle analysis were measured by flow cytometry. The enzymatic activity of caspase-9 was assessed by a luminometric assay. The expression of apoptosis associated genes was analyzed by real-time PCR. Results The experimental data revealed that securinine and the alkaloid fraction were significantly potent on HeLa cells growth inhibition with IC50 values of 7.02 ± 0.52 μg/ml (32.3 μM) and 25.46 ± 1.79 μg/ml, respectively. The activity of allosecurinine and Phyllanthus extract were much lower. Furthermore, our study showed that the most active securinine induced apoptosis in a dose-dependent manner in the tested cells, increased the percentage of ROS positive cells and depolarized cells as well as stimulated the activity of ERK1/2, caspase-9 and -3/7. Securinine also induced cell cycle arrest in S phase. Real-time PCR analysis showed high expression of TNFRSF genes in the cells stimulated with securinine. Conclusions Securinine

  4. "Constructing" the Cell Cycle in 3D

    ERIC Educational Resources Information Center

    Koc, Isil; Turan, Merve

    2012-01-01

    The cycle of duplication and division, known as the "cell cycle," is the essential mechanism by which all living organisms reproduce. This activity allows students to develop an understanding of the main events that occur during the typical eukaryotic cell cycle mostly in the process of mitotic phase that divides the duplicated genetic material…

  5. Cytofluorometric assessment of cell cycle progression.

    PubMed

    Vitale, Ilio; Jemaà, Mohamed; Galluzzi, Lorenzo; Metivier, Didier; Castedo, Maria; Kroemer, Guido

    2013-01-01

    One of the most prominent features of cellular senescence, a stress response that prevents the propagation of cells that have accumulated potentially oncogenic alterations, is a permanent loss of proliferative potential. Thus, at odds with quiescent cells, which resume proliferation when stimulated to do so, senescent cells cannot proceed through the cell cycle even in the presence of mitogenic factors. Here, we describe a set of cytofluorometric techniques for studying how chemical and/or physical stimuli alter the cell cycle in vitro, in both qualitative and quantitative terms. Taken together, these methods allow for the identification of bona fide cytostatic effects as well as for a refined characterization of cell cycle distributions, providing information on proliferation, DNA content as well as on the presence of cell cycle phase-specific markers. At the end of the chapter, a set of guidelines is offered to assist researchers that approach the study of the cell cycle with the interpretation of results.

  6. Effects of seawater acidification on cell cycle control mechanisms in Strongylocentrotus purpuratus embryos.

    PubMed

    Place, Sean P; Smith, Bryan W

    2012-01-01

    Previous studies have shown fertilization and development of marine species can be significantly inhibited when the pH of sea water is artificially lowered. Little mechanistic understanding of these effects exists to date, but previous work has linked developmental inhibition to reduced cleavage rates in embryos. To explore this further, we tested whether common cell cycle checkpoints were involved using three cellular biomarkers of cell cycle progression: (1) the onset of DNA synthesis, (2) production of a mitotic regulator, cyclin B, and (3) formation of the mitotic spindle. We grew embryos of the purple sea urchin, Strongylocentrotus purpuratus, in seawater artifically buffered to a pH of ∼7.0, 7.5, and 8.0 by CO(2) infusion. Our results suggest the reduced rates of mitotic cleavage are likely unrelated to common cell cycle checkpoints. We found no significant differences in the three biomarkers assessed between pH treatments, indicating the embryos progress through the G(1)/S, G(2)/M and metaphase/anaphase transitions at relatively similar rates. These data suggest low pH environments may not impact developmental programs directly, but may act through secondary mechanisms such as cellular energetics.

  7. Listeria monocytogenes induces host DNA damage and delays the host cell cycle to promote infection

    PubMed Central

    Leitão, Elsa; Costa, Ana Catarina; Brito, Cláudia; Costa, Lionel; Pombinho, Rita; Cabanes, Didier; Sousa, Sandra

    2014-01-01

    Listeria monocytogenes (Lm) is a human intracellular pathogen widely used to uncover the mechanisms evolved by pathogens to establish infection. However, its capacity to perturb the host cell cycle was never reported. We show that Lm infection affects the host cell cycle progression, increasing its overall duration but allowing consecutive rounds of division. A complete Lm infectious cycle induces a S-phase delay accompanied by a slower rate of DNA synthesis and increased levels of host DNA strand breaks. Additionally, DNA damage/replication checkpoint responses are triggered in an Lm dose-dependent manner through the phosphorylation of DNA-PK, H2A.X, and CDC25A and independently from ATM/ATR. While host DNA damage induced exogenously favors Lm dissemination, the override of checkpoint pathways limits infection. We propose that host DNA replication disturbed by Lm infection culminates in DNA strand breaks, triggering DNA damage/replication responses, and ensuring a cell cycle delay that favors Lm propagation. PMID:24552813

  8. Cell cycle analysis of fetal germ cells during sex differentiation in mice

    PubMed Central

    Spiller, Cassy; Wilhelm, Dagmar; Koopman, Peter

    2009-01-01

    Background information. Primordial germ cells in developing male and female gonads are responsive to somatic cell cues that direct their sex-specific differentiation into functional gametes. The first divergence of the male and female pathways is a change in cell cycle state observed from 12.5 dpc (days post coitum) in mice. At this time XY and XX germ cells cease mitotic division and enter G1/G0 arrest and meiosis prophase I respectively. Aberrant cell cycle regulation at this time can lead to disrupted ovarian development, germ cell apoptosis, reduced fertility and/or the formation of germ cell tumours. Results. In order to unravel the mechanisms utilized by germ cells to achieve and maintain the correct cell cycle states, we analysed the expression of a large number of cell cycle genes in purified germ cells across the crucial time of sex differentiation. Our results revealed common signalling for both XX and XY germ cell survival involving calcium signalling. A robust mechanism for apoptosis and checkpoint control was observed in XY germ cells, characterized by p53 and Atm (ataxia telangiectasia mutated) expression. Additionally, a member of the retinoblastoma family and p21 were identified, linking these factors to XY germ cell G1/G0 arrest. Lastly, in XX germ cells we observed a down-regulation of genes involved in both G1- and G2-phases of the cell cycle consistent with their entry into meiosis. Conclusion. The present study has provided a detailed analysis of cell cycle gene expression during fetal germ cell development and identified candidate factors warranting further investigation in order to understand cases of aberrant cell cycle control in these specialized cells. PMID:19419345

  9. The Spindle Assembly Checkpoint Safeguards Genomic Integrity of Skeletal Muscle Satellite Cells.

    PubMed

    Kollu, Swapna; Abou-Khalil, Rana; Shen, Carl; Brack, Andrew S

    2015-06-09

    To ensure accurate genomic segregation, cells evolved the spindle assembly checkpoint (SAC), whose role in adult stem cells remains unknown. Inducible perturbation of a SAC kinase, Mps1, and its downstream effector, Mad2, in skeletal muscle stem cells shows the SAC to be critical for normal muscle growth, repair, and self-renewal of the stem cell pool. SAC-deficient muscle stem cells arrest in G1 phase of the cell cycle with elevated aneuploidy, resisting differentiation even under inductive conditions. p21(CIP1) is responsible for these SAC-deficient phenotypes. Despite aneuploidy's correlation with aging, we find that aged proliferating muscle stem cells display robust SAC activity without elevated aneuploidy. Thus, muscle stem cells have a two-step mechanism to safeguard their genomic integrity. The SAC prevents chromosome missegregation and, if it fails, p21(CIP1)-dependent G1 arrest limits cellular propagation and tissue integration. These mechanisms ensure that muscle stem cells with compromised genomes do not contribute to tissue homeostasis.

  10. Functional characterization of CFI-402257, a potent and selective Mps1/TTK kinase inhibitor, for the treatment of cancer.

    PubMed

    Mason, Jacqueline M; Wei, Xin; Fletcher, Graham C; Kiarash, Reza; Brokx, Richard; Hodgson, Richard; Beletskaya, Irina; Bray, Mark R; Mak, Tak W

    2017-03-21

    Loss of cell-cycle control is a hallmark of human cancer. Cell-cycle checkpoints are essential for maintaining genome integrity and balanced growth and division. They are specifically deregulated in cancer cells and contain regulators that represent potential therapeutic targets. Monopolar spindle 1 (Mps1; also known as TTK protein kinase) is a core component of the spindle assembly checkpoint (SAC), a genome-surveillance mechanism that is important for cell survival, and has emerged as a candidate target for anticancer therapy. Here, we report the cellular and antitumor effects of CFI-402257, a potent (Mps1 Ki = 0.09 ± 0.02 nM; cellular Mps1 EC50 = 6.5 ± 0.5 nM), highly selective, and orally active small-molecule inhibitor of Mps1 that was identified through a drug-discovery program. Human cancer cells treated with CFI-402257 exhibit effects consistent with Mps1 kinase inhibition, specifically SAC inactivation, leading to chromosome missegregation, aneuploidy, and ultimately cell death. Oral administration of CFI-402257 in monotherapy or in combination with an anti-programmed cell death 1 (PD-1) antibody in mouse models of human cancer results in inhibition of tumor growth at doses that are well-tolerated. Our findings provide a rationale for the clinical evaluation of CFI-402257 in patients with solid tumors.

  11. Functional characterization of CFI-402257, a potent and selective Mps1/TTK kinase inhibitor, for the treatment of cancer

    PubMed Central

    Mason, Jacqueline M.; Wei, Xin; Fletcher, Graham C.; Kiarash, Reza; Brokx, Richard; Hodgson, Richard; Beletskaya, Irina; Bray, Mark R.; Mak, Tak W.

    2017-01-01

    Loss of cell-cycle control is a hallmark of human cancer. Cell-cycle checkpoints are essential for maintaining genome integrity and balanced growth and division. They are specifically deregulated in cancer cells and contain regulators that represent potential therapeutic targets. Monopolar spindle 1 (Mps1; also known as TTK protein kinase) is a core component of the spindle assembly checkpoint (SAC), a genome-surveillance mechanism that is important for cell survival, and has emerged as a candidate target for anticancer therapy. Here, we report the cellular and antitumor effects of CFI-402257, a potent (Mps1 Ki = 0.09 ± 0.02 nM; cellular Mps1 EC50 = 6.5 ± 0.5 nM), highly selective, and orally active small-molecule inhibitor of Mps1 that was identified through a drug-discovery program. Human cancer cells treated with CFI-402257 exhibit effects consistent with Mps1 kinase inhibition, specifically SAC inactivation, leading to chromosome missegregation, aneuploidy, and ultimately cell death. Oral administration of CFI-402257 in monotherapy or in combination with an anti-programmed cell death 1 (PD-1) antibody in mouse models of human cancer results in inhibition of tumor growth at doses that are well-tolerated. Our findings provide a rationale for the clinical evaluation of CFI-402257 in patients with solid tumors. PMID:28270606

  12. The centrosome orientation checkpoint is germline stem cell specific and operates prior to the spindle assembly checkpoint in Drosophila testis.

    PubMed

    Venkei, Zsolt G; Yamashita, Yukiko M

    2015-01-01

    Asymmetric cell division is utilized by a broad range of cell types to generate two daughter cells with distinct cell fates. In stem cell populations asymmetric cell division is believed to be crucial for maintaining tissue homeostasis, failure of which can lead to tissue degeneration or hyperplasia/tumorigenesis. Asymmetric cell divisions also underlie cell fate diversification during development. Accordingly, the mechanisms by which asymmetric cell division is achieved have been extensively studied, although the check points that are in place to protect against potential perturbation of the process are poorly understood. Drosophila melanogaster male germline stem cells (GSCs) possess a checkpoint, termed the centrosome orientation checkpoint (COC), that monitors correct centrosome orientation with respect to the component cells of the niche to ensure asymmetric stem cell division. To our knowledge, the COC is the only checkpoint mechanism identified to date that specializes in monitoring the orientation of cell division in multicellular organisms. Here, by establishing colcemid-induced microtubule depolymerization as a sensitive assay, we examined the characteristics of COC activity and find that it functions uniquely in GSCs but not in their differentiating progeny. We show that the COC operates in the G2 phase of the cell cycle, independently of the spindle assembly checkpoint. This study may provide a framework for identifying and understanding similar mechanisms that might be in place in other asymmetrically dividing cell types.

  13. Do telomeres ask checkpoint proteins: "gimme shelter-in"?

    PubMed

    Weinert, Ted

    2005-12-01

    Telomeres are complicated structures designed to allow one thing and avoid another. They allow replication of chromosome ends, an issue mostly about telomerase, which we seem to understand (though details of its regulation are works in progress). Telomeres must also avoid being detected as DNA breaks. This is important for two reasons: DNA breaks activate checkpoints that cause arrest of cell division, and DNA breaks engage repair machinery. Clearly, normal telomeres neither activate cell cycle arrest nor allow themselves to be repaired; arrest blocks cell division, and repair fuses chromosomes.

  14. Cdh1 is an antagonist of the spindle assembly checkpoint.

    PubMed

    Nagai, Masayoshi; Ushimaru, Takashi

    2014-10-01

    The spindle assembly checkpoint (SAC) monitors unsatisfied connections of microtubules to kinetochores and prevents anaphase onset by inhibition of the ubiquitin ligase E3 anaphase-promoting complex or cyclosome (APC/C) in association with the activator Cdc20. Another APC/C activator, Cdh1, exists permanently throughout the cell cycle but it becomes active from telophase to G1. Here, we show that Cdh1 is partially active and mediates securin degradation even in SAC-active metaphase cells. Additionally, Cdh1 mediates Cdc20 degradation in metaphase, promoting formation of the APC/C-Cdh1. These results indicate that Cdh1 opposes the SAC and promotes anaphase transition.

  15. Nucleosome architecture throughout the cell cycle.

    PubMed

    Deniz, Özgen; Flores, Oscar; Aldea, Martí; Soler-López, Montserrat; Orozco, Modesto

    2016-01-28

    Nucleosomes provide additional regulatory mechanisms to transcription and DNA replication by mediating the access of proteins to DNA. During the cell cycle chromatin undergoes several conformational changes, however the functional significance of these changes to cellular processes are largely unexplored. Here, we present the first comprehensive genome-wide study of nucleosome plasticity at single base-pair resolution along the cell cycle in Saccharomyces cerevisiae. We determined nucleosome organization with a specific focus on two regulatory regions: transcription start sites (TSSs) and replication origins (ORIs). During the cell cycle, nucleosomes around TSSs display rearrangements in a cyclic manner. In contrast to gap (G1 and G2) phases, nucleosomes have a fuzzier organization during S and M phases, Moreover, the choreography of nucleosome rearrangements correlate with changes in gene expression during the cell cycle, indicating a strong association between nucleosomes and cell cycle-dependent gene functionality. On the other hand, nucleosomes are more dynamic around ORIs along the cell cycle, albeit with tighter regulation in early firing origins, implying the functional role of nucleosomes on replication origins. Our study provides a dynamic picture of nucleosome organization throughout the cell cycle and highlights the subsequent impact on transcription and replication activity.

  16. Nucleosome architecture throughout the cell cycle

    PubMed Central

    Deniz, Özgen; Flores, Oscar; Aldea, Martí; Soler-López, Montserrat; Orozco, Modesto

    2016-01-01

    Nucleosomes provide additional regulatory mechanisms to transcription and DNA replication by mediating the access of proteins to DNA. During the cell cycle chromatin undergoes several conformational changes, however the functional significance of these changes to cellular processes are largely unexplored. Here, we present the first comprehensive genome-wide study of nucleosome plasticity at single base-pair resolution along the cell cycle in Saccharomyces cerevisiae. We determined nucleosome organization with a specific focus on two regulatory regions: transcription start sites (TSSs) and replication origins (ORIs). During the cell cycle, nucleosomes around TSSs display rearrangements in a cyclic manner. In contrast to gap (G1 and G2) phases, nucleosomes have a fuzzier organization during S and M phases, Moreover, the choreography of nucleosome rearrangements correlate with changes in gene expression during the cell cycle, indicating a strong association between nucleosomes and cell cycle-dependent gene functionality. On the other hand, nucleosomes are more dynamic around ORIs along the cell cycle, albeit with tighter regulation in early firing origins, implying the functional role of nucleosomes on replication origins. Our study provides a dynamic picture of nucleosome organization throughout the cell cycle and highlights the subsequent impact on transcription and replication activity. PMID:26818620

  17. ERK1/2 signaling plays an important role in topoisomerase II poison-induced G2/M checkpoint activation.

    PubMed

    Kolb, Ryan H; Greer, Patrick M; Cao, Phu T; Cowan, Kenneth H; Yan, Ying

    2012-01-01

    Topo II poisons, which target topoisomerase II (topo II) to generate enzyme mediated DNA damage, have been commonly used for anti-cancer treatment. While clinical evidence demonstrate a capability of topo II poisons in inducing apoptosis in cancer cells, accumulating evidence also show that topo II poison treatment frequently results in cell cycle arrest in cancer cells, which was associated with subsequent resistance to these treatments. Results in this report indicate that treatment of MCF-7 and T47D breast cancer cells with topo II poisons resulted in an increased phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and an subsequent induction of G2/M cell cycle arrest. Furthermore, inhibition of ERK1/2 activation using specific inhibitors markedly attenuated the topo II poison-induced G2/M arrest and diminished the topo II poison-induced activation of ATR and Chk1 kinases. Moreover, decreased expression of ATR by specific shRNA diminished topo II poison-induced G2/M arrest but had no effect on topo II poison-induced ERK1/2 activation. In contrast, inhibition of ERK1/2 signaling had little, if any, effect on topo II poison-induced ATM activation. In addition, ATM inhibition by either incubation of cells with ATM specific inhibitor or transfection of cells with ATM specific siRNA did not block topo II poison-induced G2/M arrest. Ultimately, inhibition of ERK1/2 signaling greatly enhanced topo II poison-induced apoptosis. These results implicate a critical role for ERK1/2 signaling in the activation of G2/M checkpoint response following topo II poison treatment, which protects cells from topo II poison-induced apoptosis.

  18. Regulation of zygotic genome activation and DNA damage checkpoint acquisition at the mid-blastula transition

    PubMed Central

    Zhang, Maomao; Kothari, Priyanka; Mullins, Mary; Lampson, Michael A.

    2014-01-01

    Following fertilization, oviparous embryos undergo rapid, mostly transcriptionally silent cleavage divisions until the mid-blastula transition (MBT), when large-scale developmental changes occur, including zygotic genome activation (ZGA) and cell cycle remodeling, via lengthening and checkpoint acquisition. Despite their concomitant appearance, whether these changes are co-regulated is unclear. Three models have been proposed to account for the timing of (ZGA). One model implicates a threshold nuclear to cytoplasmic (N:C) ratio, another stresses the importance cell cycle elongation, while the third model invokes a timer mechanism. We show that precocious Chk1 activity in pre-MBT zebrafish embryos elongates cleavage cycles, thereby slowing the increase in the N:C ratio. We find that cell cycle elongation does not lead to transcriptional activation. Rather, ZGA slows in parallel with the N:C ratio. We show further that the DNA damage checkpoint program is maternally supplied and independent of ZGA. Although pre-MBT embryos detect damage and activate Chk2 after induction of DNA double-strand breaks, the Chk1 arm of the DNA damage response is not activated, and the checkpoint is nonfunctional. Our results are consistent with the N:C ratio model for ZGA. Moreover, the ability of precocious Chk1 activity to delay pre-MBT cell cycles indicate that lack of Chk1 activity limits checkpoint function during cleavage cycles. We propose that Chk1 gain-of-function at the MBT underlies cell cycle remodeling, whereas ZGA is regulated independently by the N:C ratio. PMID:25558827

  19. Effects of combined radiofrequency radiation exposure on the cell cycle and its regulatory proteins.

    PubMed

    Lee, Kwan-Yong; Kim, Bong Cho; Han, Na-Kyung; Lee, Yun-Sil; Kim, Taehong; Yun, Jae-Hoon; Kim, Nam; Pack, Jeong-Ki; Lee, Jae-Seon

    2011-04-01

    The aim of this study was to investigate whether single or combined radio frequency (RF) radiation exposure has effects on the cell cycle and its regulatory proteins. Exposure of MCF7 cells to either single (837 MHz) or combined (837 and 1950 MHz) RF radiation was conducted at specific absorption rate values of 4 W/kg for 1 h. During the exposure period, the chamber was made isothermal by circulating water through the cavity. After RF radiation exposure, DNA synthesis rate and cell cycle distribution were assessed. The levels of cell cycle regulatory proteins, p53, p21, cyclins, and cyclin-dependent kinases were also examined. The positive control group was exposed to 0.5 and 4 Gy doses of ionizing radiation (IR) and showed changes in DNA synthesis and cell cycle distribution. The levels of p53, p21, cyclin A, cyclin B1, and cyclin D1 were also affected by IR exposure. In contrast to the IR-exposed group, neither the single RF radiation- nor the combined RF radiation-exposed group elicited alterations in DNA synthesis, cell cycle distribution, and levels of cell cycle regulatory proteins. These results indicate that neither single nor combined RF radiation affect cell cycle progression.

  20. Natural Compounds as Modulators of Cell Cycle Arrest: Application for Anticancer Chemotherapies.

    PubMed

    Bailon-Moscoso, Natalia; Cevallos-Solorzano, Gabriela; Romero-Benavides, Juan Carlos; Orellana, Maria Isabel Ramirez

    2017-04-01

    Natural compounds from various plants, microorganisms and marine species play an important role in the discovery novel components that can be successfully used in numerous biomedical applications, including anticancer therapeutics. Since uncontrolled and rapid cell division is a hallmark of cancer, unraveling the molecular mechanisms underlying mitosis is key to understanding how various natural compounds might function as inhibitors of cell cycle progression. A number of natural compounds that inhibit the cell cycle arrest have proven effective for killing cancer cells in vitro, in vivo and in clinical settings. Significant advances that have been recently made in the understanding of molecular mechanisms underlying the cell cycle regulation using the chemotherapeutic agents is of great importance for improving the efficacy of targeted therapeutics and overcoming resistance to anticancer drugs, especially of natural origin, which inhibit the activities of cyclins and cyclin-dependent kinases, as well as other proteins and enzymes involved in proper regulation of cell cycle leading to controlled cell proliferation.

  1. ATM/ATR-dependent Tyr15 phosphorylation of cyclin-dependent kinases in response to hydroxyurea in Vicia faba root meristem cells.

    PubMed

    Winnicki, Konrad

    2013-10-01

    DNA damage or stalled replication forks activate cell cycle checkpoints. However, the regulation of metabolic pathways that are responsible for maintenance of genome integrity in plants is still largely unknown. Present research on Vicia faba root meristem cells indicates that inhibitory phosphorylation of cyclin-dependent kinases (Cdks) at Tyr15 plays a prominent role during blockage of cell cycle in response to genotoxic stress. Phosphorylation of P-loop in Cdks takes place in ATM/ATR-dependent manner. Although, Tyr15 phosphorylation upon hydroxyurea (HU) treatment was found in most cells classified to G1 and S phase, interestingly, the number of phoshpo-Tyr15-positive cells decreases in G2 phase. Presented data confirm much similarity in regulation of Cdks functions under genotoxic stress between plants and animals; however, they may also substantiate evolutionarily developed differences especially in regulation of G2/M transition between these two kingdoms.

  2. ICSI choreography: fate of sperm structures after monospermic rhesus ICSI and first cell cycle implications.

    PubMed

    Ramalho-Santos, J; Sutovsky, P; Simerly, C; Oko, R; Wessel, G M; Hewitson, L; Schatten, G

    2000-12-01

    We have dissected the initial stages of fertilization by intracytoplasmic sperm injection of single spermatozoa into prime oocytes from fertile rhesus monkeys (Macaca mulatta). DNA decondensation was delayed at the apical portion of the sperm head. It is possible that this asynchronous male DNA decondensation could be related to the persistence of the sperm acrosome and perinuclear theca after injection. However, incomplete male pronuclear formation did not prevent sperm aster formation, microtubule nucleation and pronuclear apposition. In contrast, DNA synthesis was delayed in both pronuclei until the sperm chromatin fully decondensed, indicating that male pronuclear formation constitutes an important checkpoint during the first embryonic cell cycle.

  3. Aurora kinase inhibition overcomes cetuximab resistance in squamous cell cancer of the head and neck.

    PubMed

    Hoellein, Alexander; Pickhard, Anja; von Keitz, Fabienne; Schoeffmann, Stephanie; Piontek, Guido; Rudelius, Martina; Baumgart, Anja; Wagenpfeil, Stefan; Peschel, Christian; Dechow, Tobias; Bier, Henning; Keller, Ulrich

    2011-08-01

    Squamous cell cancer of the head and neck (SCCHN) is the sixth leading cause for cancer deaths worldwide. Despite extense knowledge of risk factors and pathogenesis about 50 percent of all patients and essentially every patient with metastatic SCCHN eventually die from this disease. We analyzed the clinical data and performed immunohistochemistry for Epidermal growth factor receptor (EGFR) and Aurora kinase A (Aurora-A) expression in 180 SCCHN patients. Patients characterized by elevated EGFR and elevated Aurora-A protein expression in tumor tissue represent a risk group with poor disease-free and overall survival (EGFR(low)Aurora-A(low) versus EGFR(high)Aurora-A(high), p = 0.024). Treating SCCHN cell lines with a pan-Aurora kinase inhibitor resulted in defective cytokinesis, polyploidy and apoptosis, which was effective irrespective of the EGFR status. Combined Aurora kinase and EGFR targeting using a monoclonal anti-EGFR antibody was more effective compared to single EGFR and Aurora kinase inhibition. Comparing pan-Aurora kinase and Aurora-A targeting hints towards a strong and clinically relevant biological effect mediated via Aurora kinase B. Taken together, our findings characterize a new poor risk group in SCCHN patients defined by elevated EGFR and Aurora-A protein expression. Our results demonstrate that combined targeting of EGFR and Aurora kinases represents a therapeutic means to activate cell cycle checkpoints and apoptosis in SCCHN.

  4. Stretched cell cycle model for proliferating lymphocytes

    PubMed Central

    Dowling, Mark R.; Kan, Andrey; Heinzel, Susanne; Zhou, Jie H. S.; Marchingo, Julia M.; Wellard, Cameron J.; Markham, John F.; Hodgkin, Philip D.

    2014-01-01

    Stochastic variation in cell cycle time is a consistent feature of otherwise similar cells within a growing population. Classic studies concluded that the bulk of the variation occurs in the G1 phase, and many mathematical models assume a constant time for traversing the S/G2/M phases. By direct observation of transgenic fluorescent fusion proteins that report the onset of S phase, we establish that dividing B and T lymphocytes spend a near-fixed proportion of total division time in S/G2/M phases, and this proportion is correlated between sibling cells. This result is inconsistent with models that assume independent times for consecutive phases. Instead, we propose a stretching model for dividing lymphocytes where all parts of the cell cycle are proportional to total division time. Data fitting based on a stretched cell cycle model can significantly improve estimates of cell cycle parameters drawn from DNA labeling data used to monitor immune cell dynamics. PMID:24733943

  5. The Abscission Checkpoint: Making It to the Final Cut.

    PubMed

    Nähse, Viola; Christ, Liliane; Stenmark, Harald; Campsteijn, Coen

    2017-01-01

    Cytokinesis is the final stage of cell division and is concluded by abscission of the intercellular bridge to physically separate the daughter cells. Timing of cytokinetic abscission is monitored by a molecular machinery termed the abscission checkpoint. This machinery delays abscission in cells with persistent chromatin in the intercellular bridge. Recent work has also uncovered its response to high membrane tension, nuclear pore defects, and DNA replication stress. Although it is known that the abscission checkpoint depends on persistent activity of the Aurora B protein kinase, we have only recently begun to understand its molecular basis. We propose here a molecular framework for abscission checkpoint signaling and we discuss outstanding questions relating to its function and physiological relevance.

  6. The peri-cell-cycle in Arabidopsis.

    PubMed

    Beeckman, T; Burssens, S; Inzé, D

    2001-03-01

    The root systems of plants proliferate via de novo formed meristems originating from differentiated pericycle cells. The identity of putative signals responsible for triggering some of the pericycle cells to re-enter the cell cycle remains unknown. Here, the cell cycle regulation in the pericycle of seedling roots of Arabidopsis thaliana (L.) HEYNH: is studied shortly after germination using various strategies. Based on the detailed analysis of the promoter-beta-glucuronidase activity of four key cell cycle regulatory genes, combined with cell length measurements, microdensitometry of DNA content, and experiments with a cell cycle-blocking agent, a model is proposed for cell cycle regulation in the pericycle at the onset of lateral root initiation. The results clearly show that before the first lateral root is initiated, the pericycle consists of dissimilar cell files in respect of their cell division history. Depending on the distance behind the root tip and on position in relation to the vascular tissue, particular pericycle cells remain in the G(2) phase of the cell cycle and are apparently more susceptible to lateral root initiation than others.

  7. STK16 regulates actin dynamics to control Golgi organization and cell cycle

    PubMed Central

    Liu, Juanjuan; Yang, Xingxing; Li, Binhua; Wang, Junjun; Wang, Wenchao; Liu, Jing; Liu, Qingsong; Zhang, Xin

    2017-01-01

    STK16 is a ubiquitously expressed, myristoylated, and palmitoylated serine/threonine protein kinase with underexplored functions. Recently, it was shown to be involved in cell division but the mechanism remains unclear. Here we found that human STK16 localizes to the Golgi complex throughout the cell cycle and plays important roles in Golgi structure regulation. STK16 knockdown or kinase inhibition disrupts actin polymers and causes fragmented Golgi in cells. In vitro assays show that STK16 directly binds to actin and regulates actin dynamics in a concentration- and kinase activity-dependent way. In addition, STK16 knockdown or kinase inhibition not only delays mitotic entry and prolongs mitosis, but also causes prometaphase and cytokinesis arrest. Therefore, we revealed STK16 as a novel actin binding protein that resides in the Golgi, which regulates actin dynamics to control Golgi structure and participate in cell cycle progression. PMID:28294156

  8. Targeting the cell cycle in esophageal adenocarcinoma: an adjunct to anticancer treatment.

    PubMed

    Dibb, Martyn; Ang, Yeng S

    2011-04-28

    Esophageal adenocarcinoma is a major cause of cancer death in men in the developed world. Continuing poor outcomes with conventional therapies that predominantly target apoptosis pathways have lead to increasing interest in treatments that target the cell cycle. A large international effort has led to the development of a large number of inhibitors, which target cell cycle kinases, including cyclin-dependent kinases, Aurora kinases and polo-like kinase. Initial phase I/II trials in solid tumors have often demonstrated only modest clinical benefits of monotherapy. This may relate in part to a failure to identify the patient populations that will gain the most clinical benefit. Newer compounds lacking the side effect profile of first-generation compounds may show utility as adjunctive treatments targeted to an individual's predicted response to treatment.

  9. Targeting the cell cycle in esophageal adenocarcinoma: An adjunct to anticancer treatment

    PubMed Central

    Dibb, Martyn; Ang, Yeng S

    2011-01-01

    Esophageal adenocarcinoma is a major cause of cancer death in men in the developed world. Continuing poor outcomes with conventional therapies that predominantly target apoptosis pathways have lead to increasing interest in treatments that target the cell cycle. A large international effort has led to the development of a large number of inhibitors, which target cell cycle kinases, including cyclin-dependent kinases, Aurora kinases and polo-like kinase. Initial phase I/II trials in solid tumors have often demonstrated only modest clinical benefits of monotherapy. This may relate in part to a failure to identify the patient populations that will gain the most clinical benefit. Newer compounds lacking the side effect profile of first-generation compounds may show utility as adjunctive treatments targeted to an individual’s predicted response to treatment. PMID:21547123

  10. Phosphorylation of hRad17 by atr is Required for Cell Cycle Checkpoint Activation

    DTIC Science & Technology

    2005-04-01

    Wei Tan CONTRACTING ORGANIZATION: The University of Texas Health Sciences Center at San Antonio San Antonio, TX 78229-3900 REPORT DATE: April 2005 TYPE...AGENCY USE ONLY j 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED April 2005 Annual Summary(l Apr 2002 - 31 Mar 2005) 4. TITLE AND SUBTITLE 5 . FUNDING...ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION The University of Texas Health Sciences REPORT NUMBER Center at San Antonio San Antonio, TX

  11. The stress-activated protein kinases p38α/β and JNK1/2 cooperate with Chk1 to inhibit mitotic entry upon DNA replication arrest.

    PubMed

    Llopis, Alba; Salvador, Noelia; Ercilla, Amaia; Guaita-Esteruelas, Sandra; Barrantes, Ivan del Barco; Gupta, Jalaj; Gaestel, Matthias; Davis, Roger J; Nebreda, Angel R; Agell, Neus

    2012-10-01

    Accurate DNA replication is crucial for the maintenance of genome integrity. To this aim, cells have evolved complex surveillance mechanisms to prevent mitotic entry in the presence of partially replicated DNA. ATR and Chk1 are key elements in the signal transduction pathways of DNA replication checkpoint; however, other kinases also make significant contributions. We show here that the stress kinases p38 and JNK are activated when DNA replication is blocked, and that their activity allows S/M, but not G 2/M, checkpoint maintenance when Chk1 is inhibited. Activation of both kinases by DNA replication inhibition is not mediated by the caffeine-sensitive kinases ATR or ATM. Phosphorylation of MKK3/6 and MKK4, p38 and JNK upstream kinases was also observed upon DNA replication inhibition. Using a genetic approach, we dissected the p38 pathway and showed that both p38α and p38β isoforms collaborate to inhibit mitotic entry. We further defined MKK3/6 and MK2/3 as the key upstream and downstream elements in the p38 signaling cascade after replication arrest. Accordingly, we found that the stress signaling pathways collaborate with Chk1 to keep cyclin B1/Cdk1 complexes inactive when DNA replication is inhibited, thereby preventing cell cycle progression when DNA replication is stalled. Our results show a complex response to replication stress, where multiple pathways are activated and fulfill overlapping roles to prevent mitotic entry with unreplicated DNA.

  12. Abrogation of a mitotic checkpoint by E2 proteins from oncogenic human papillomaviruses correlates with increased turnover of the p53 tumor suppressor protein.

    PubMed Central

    Frattini, M G; Hurst, S D; Lim, H B; Swaminathan, S; Laimins, L A

    1997-01-01

    Human papillomavirus (HPV) E2 and E1 proteins are required for the replication of viral genomes in vivo. We have examined the effects of increasing the level of E2 on viral and cellular replication using recombinant adenoviruses. Infection of cells which maintain HPV 31 DNA episomally with E2 recombinant adenoviruses resulted in a 5-fold increase in genome copy number as well as an S phase arrest allowing for the continued replication of cellular DNA. Similar effects on cell cycle progression were seen following infection of normal human foreskin keratinocytes, the natural host cell. The DNA content of these cells increased beyond 4N indicating that multiple rounds of replication had occurred without an intervening mitotic event. In addition, increased cyclin A and E associated kinase activity was observed, while no change was detected in cyclin B associated kinase activity or in the activation state of cdc2 kinase. Interestingly, the levels of the p53 tumor suppresser protein were dramatically reduced through a post-transcriptional mechanism following infection. These data suggest a role for E2 in regulating viral and cellular replication by abrogation of a mitotic checkpoint, which is, at least in part, controlled by p53. PMID:9029152

  13. Problem-Based Test: Replication of Mitochondrial DNA during the Cell Cycle

    ERIC Educational Resources Information Center

    Setalo, Gyorgy, Jr.

    2013-01-01

    Terms to be familiar with before you start to solve the test: cell cycle, generation time, S-phase, cell culture synchronization, isotopic pulse-chase labeling, density labeling, equilibrium density-gradient centrifugation, buoyant density, rate-zonal centrifugation, nucleoside, nucleotide, kinase enzymes, polymerization of nucleic acids,…

  14. Impact of histone H4K16 acetylation on the meiotic recombination checkpoint in Saccharomyces cerevisiae

    PubMed Central

    Cavero, Santiago; Herruzo, Esther; Ontoso, David; San-Segundo, Pedro A.

    2016-01-01

    In meiotic cells, the pachytene checkpoint or meiotic recombination checkpoint is a surveillance mechanism that monitors critical processes, such as recombination and chromosome synapsis, which are essential for proper distribution of chromosomes to the meiotic progeny. Failures in these processes lead to the formation of aneuploid gametes. Meiotic recombination occurs in the context of chromatin; in fact, the histone methyltransferase Dot1 and the histone deacetylase Sir2 are known regulators of the pachytene checkpoint in Saccharomyces cerevisiae. We report here that Sas2-mediated acetylation of histone H4 at lysine 16 (H4K16ac), one of the Sir2 targets, modulates meiotic checkpoint activity in response to synaptonemal complex defects. We show that, like sir2, the H4-K16Q mutation, mimicking constitutive acetylation of H4K16, eliminates the delay in meiotic cell cycle progression imposed by the checkpoint in the synapsis-defective zip1 mutant. We also demonstrate that, like in dot1, zip1-induced phosphorylation of the Hop1 checkpoint adaptor at threonine 318 and the ensuing Mek1 activation are impaired in H4-K16 mutants. However, in contrast to sir2 and dot1, the H4-K16R and H4-K16Q mutations have only a minor effect in checkpoint activation and localization of the nucleolar Pch2 checkpoint factor in ndt80-prophase-arrested cells. We also provide evidence for a cross-talk between Dot1-dependent H3K79 methylation and H4K16ac and show that Sir2 excludes H4K16ac from the rDNA region on meiotic chromosomes. Our results reveal that proper levels of H4K16ac orchestrate this meiotic quality control mechanism and that Sir2 impinges on additional targets to fully activate the checkpoint. PMID:28357333

  15. Protein tyrosine nitration in the cell cycle

    SciTech Connect

    Jia, Min; Mateoiu, Claudia; Souchelnytskyi, Serhiy

    2011-09-23

    Highlights: {yields} Enrichment of 3-nitrotyrosine containing proteins from cells synchronized in different phases of the cell cycle. {yields} Identification of 76 tyrosine nitrated proteins that change expression during the cell cycle. {yields} Nineteen identified proteins were previously described as regulators of cell proliferation. -- Abstract: Nitration of tyrosine residues in proteins is associated with cell response to oxidative/nitrosative stress. Tyrosine nitration is relatively low abundant post-translational modification that may affect protein functions. Little is known about the extent of protein tyrosine nitration in cells during progression through the cell cycle. Here we report identification of proteins enriched for tyrosine nitration in cells synchronized in G0/G1, S or G2/M phases of the cell cycle. We identified 27 proteins in cells synchronized in G0/G1 phase, 37 proteins in S phase synchronized cells, and 12 proteins related to G2/M phase. Nineteen of the identified proteins were previously described as regulators of cell proliferation. Thus, our data indicate which tyrosine nitrated proteins may affect regulation of the cell cycle.

  16. Rapamycin ameliorates IgA nephropathy via cell cycle-dependent mechanisms.

    PubMed

    Tian, Jihua; Wang, Yanhong; Liu, Xinyan; Zhou, Xiaoshuang; Li, Rongshan

    2015-07-01

    IgA nephropathy is the most frequent type of glomerulonephritis worldwide. The role of cell cycle regulation in the pathogenesis of IgA nephropathy has been studied. The present study was designed to explore whether rapamycin ameliorates IgA nephropathy via cell cycle-dependent mechanisms. After establishing an IgA nephropathy model, rats were randomly divided into four groups. Coomassie Brilliant Blue was used to measure the 24-h urinary protein levels. Renal function was determined using an autoanalyzer. Proliferation was assayed via Proliferating Cell Nuclear Antigen (PCNA) immunohistochemistry. Rat mesangial cells were cultured and divided into the six groups. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) and flow cytometry were used to detect cell proliferation and the cell cycle phase. Western blotting was performed to determine cyclin E, cyclin-dependent kinase 2, p27(Kip1), p70S6K/p-p70S6K, and extracellular signal-regulated kinase 1/2/p- extracellular signal-regulated kinase 1/2 protein expression. A low dose of the mammalian target of rapamycin (mTOR) inhibitor rapamycin prevented an additional increase in proteinuria, protected kidney function, and reduced IgA deposition in a model of IgA nephropathy. Rapamycin inhibited mesangial cell proliferation and arrested the cell cycle in the G1 phase. Rapamycin did not affect the expression of cyclin E and cyclin-dependent kinase 2. However, rapamycin upregulated p27(Kip1) at least in part via AKT (also known as protein kinase B)/mTOR. In conclusion, rapamycin can affect cell cycle regulation to inhibit mesangial cell proliferation, thereby reduce IgA deposition, and slow the progression of IgAN.

  17. Checkpointing in speculative versioning caches

    DOEpatents

    Eichenberger, Alexandre E; Gara, Alan; Gschwind, Michael K; Ohmacht, Martin

    2013-08-27

    Mechanisms for generating checkpoints in a speculative versioning cache of a data processing system are provided. The mechanisms execute code within the data processing system, wherein the code accesses cache lines in the speculative versioning cache. The mechanisms further determine whether a first condition occurs indicating a need to generate a checkpoint in the speculative versioning cache. The checkpoint is a speculative cache line which is made non-speculative in response to a second condition occurring that requires a roll-back of changes to a cache line corresponding to the speculative cache line. The mechanisms also generate the checkpoint in the speculative versioning cache in response to a determination that the first condition has occurred.

  18. Animal Models for Studying the In Vivo Functions of Cell Cycle CDKs.

    PubMed

    Risal, Sanjiv; Adhikari, Deepak; Liu, Kui

    2016-01-01

    Multiple Cdks (Cdk4, Cdk6, and Cdk2) and a mitotic Cdk (Cdk1) are involved in cell cycle progression in mammals. Cyclins, Cdk inhibitors, and phosphorylations (both activating and inhibitory) at different cellular levels tightly modulate the activities of these kinases. Based on the results of biochemical studies, it was long believed that different Cdks functioned at specific stages during cell cycle progression. However, deletion of all three interphase Cdks in mice affected cell cycle entry and progression only in certain specialized cells such as hematopoietic cells, beta cells of the pancreas, pituitary lactotrophs, and cardiomyocytes. These genetic experiments challenged the prevailing biochemical model and established that Cdks function in a cell-specific, but not a stage-specific, manner during cell cycle entry and the progression of mitosis. Recent in vivo studies have further established that Cdk1 is the only Cdk that is both essential and sufficient for driving the resumption of meiosis during mouse oocyte maturation. These genetic studies suggest a minimal-essential cell cycle model in which Cdk1 is the central regulator of cell cycle progression. Cdk1 can compensate for the loss of the interphase Cdks by forming active complexes with A-, B-, E-, and D-type Cyclins in a stepwise manner. Thus, Cdk1 plays an essential role in both mitosis and meiosis in mammals, whereas interphase Cdks are dispensable.

  19. Synchronization of Cell Cycle Oscillator by Multi-pulse Chemical Perturbations

    NASA Astrophysics Data System (ADS)

    Lin, Yihan; Li, Ying; Dinner, Aaron; Scherer, Norbert

    2011-03-01

    Oscillators underlie biological rhythms in various organisms and provide a timekeeping mechanism. Cell cycle oscillator, for example, controls the progression of cell cycle stage and drives cyclic reproduction in both prokaryotes and eukaryotes. The understanding of the underlying nonlinear regulatory network allows experimental design of external perturbations to interact and control cell cycle oscillation. We have previously demonstrated in experiment and in simulation that the cell cycle coherence of a model bacterium can be progressively tuned by the level of a histidine kinase. Here, we present our recent effort to synchronize the division of a population of bacterium cells by external pulsatile chemical perturbations. We were able to synchronize the cell population by phase-locking approach: the external oscillator (i.e. periodic perturbation) entrains the internal cell cycle oscillator which is in analogous to the phase-locking of circadian clock to external light/dark oscillator. We explored the ranges of frequencies for two external oscillators of different amplitudes where phase-locking occurred. To our surprise, non-periodic chemical perturbations could also cause synchronization of a cell population, suggesting a Markovian cell cycle oscillation dynamics.

  20. Aurora kinase family: a new target for anticancer drug.

    PubMed

    Macarulla, Teresa; Ramos, Francisco Javier; Tabernero, Josep

    2008-06-01

    Aurora kinases (AK) are the name given to a family of Serine/threonine (Ser/Thr) protein kinases. These proteins represent a novel family of kinases crucial for cell cycle control. The cell division process is one of the hallmarks of every living organism. Within the complete cell-cycle process, mitosis constitutes one of the most critical steps. The main purpose of mitosis is to segregate sister chromatics into two daughters cells. It is a complex biologic process, and errors in this mechanism can lead to genomic instability, a condition associated with tumorigenesis. This process is tightly regulated by several proteins, some of them acting as check-points that ultimately ensure the correct temporal and spatial coordination of this critical biologic process. Among this network of mitotic regulators, AK play a critical role in cellular division by controlling chromatid segregation. Three AK family members have been identified in mammalian cells: A, B, and C. These proteins are implicated in several vital events in mitosis. In experimental models, overexpression of AK can induce spindle defects, chromosome mis-segregation, and malignant transformation. Conversely, downregulation of AK expression cause mitotic arrest and apoptosis in tumor cell lines. The expression levels of human AK are increased in certain types of cancer including breast, colon, pancreatic, ovarian, and gastric tumors. This observation has lent an interest to this family of kinases as potential drug targets for development of new anticancer therapies. This review focuses in recent progress in the role of AK in tumorogenesis and the development of new anticancer drug against AK proteins. This manuscript also includes some relevant patents as well.

  1. Analysis of cell-cycle regulation following exposure of lung-derived cells to γ-rays

    NASA Astrophysics Data System (ADS)

    Trani, D.; Lucchetti, C.; Cassone, M.; D'Agostino, L.; Caputi, M.; Giordano, A.

    Acute exposure of mammalian cells to ionizing radiation results in a delay of cell-cycle progression and/or augmentation of apoptosis. Following ionizing radiation-induced DNA damage, cell-cycle arrest in the G1- or G2-phase of the cell-cycle prevents or delays DNA replication or mitosis, providing time for the DNA repair machinery to exert its function. Deregulation or failing of cell-cycle checkpoints and/or DNA repair mechanisms may lead normal cells bearing chromosome mutations to acquire neoplastic autonomy, which in turn can trigger the onset of cancer. Existing studies have focused on the impact of p53 status on the radiation response of lung cancer (LC) cell lines in terms of both cell-cycle regulation and apoptosis, while no comparative studies have been performed on the radiation response of lung derived normal and cancerous epithelial cells. To investigate the radiation response in normal and cancerous phenotypes, along with the role and impact of p53 status, and possible correlations with pRb/p105 or other proteins involved in carcinogenesis and cell-cycle regulation, we selected two lung-derived epithelial cell lines, one normal (NL20, p53 wild-type) and one non-small cell lung cancer (NSCLC), H358 (known to be p53-deficient). We compared the levels of γ-induced cell proliferation ability, cell-cycle arrest, apoptotic index, and expression levels of cell-cycle regulating and regulated proteins. The different cell sensitivity, apoptotic response and protein expression profiles resulting from our study for NL20 and H358 cells suggest that still unknown mechanisms involving p53, pRb/p105 and their target molecules might play a pivotal role in determining cell sensitivity and resistance upon exposure to ionizing radiation.

  2. Aberrant modulation of the BRCA1 and G1/S cell cycle pathways in alcoholic hepatitis patients with Mallory Denk Bodies revealed by RNA sequencing

    PubMed Central

    French, Barbara A.; Liao, Guanghong; Li, Jun; Tillman, Brittany; French, Samuel W.

    2015-01-01

    Mallory-Denk Bodies (MDBs) are prevalent in various liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. Liver injury from alcohol administration causes balloon hepatocytes and MDB formation impeding liver regeneration. By comparing AH livers where MDBs had formed with normal liver transcriptomes obtained by RNA sequencing (RNA-Seq), there was significant upregulation of BRCA1-mediated signaling and G1/S cell cycle checkpoint pathways. The transcriptional architecture of differentially expressed genes from AH livers reflected step-wise transcriptional changes progressing to AH. Key molecules such as BRCA1, p15 and p21 were significantly upregulated both in AH livers and in the livers of the DDC re-fed mice model where MDBs had formed. The increase of G1/S cell cycle checkpoint inhibitors p15 and p21 results in cell cycle arrest and inhibition of liver regeneration, implying that p15 and p21 could be exploited for the identification of specific targets for the treatment of liver disease. Provided here for the first time is the RNA-Seq data that represents the fully annotated catalogue of the expression of mRNAs. The most prominent alterations observed were the changes in BRCA1-mediated signaling and G1/S cell cycle checkpoint pathways. These new findings expand previous and related knowledge in the search for gene changes that might be critical in the understanding of the underlying progression to the development of AH. PMID:26623723

  3. A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling

    PubMed Central

    Ji, Zhejian; Gao, Haishan; Jia, Luying; Li, Bing; Yu, Hongtao

    2017-01-01

    The master spindle checkpoint kinase Mps1 senses kinetochore-microtubule attachment and promotes checkpoint signaling to ensure accurate chromosome segregation. The kinetochore scaffold Knl1, when phosphorylated by Mps1, recruits checkpoint complexes Bub1–Bub3 and BubR1–Bub3 to unattached kinetochores. Active checkpoint signaling ultimately enhances the assembly of the mitotic checkpoint complex (MCC) consisting of BubR1–Bub3, Mad2, and Cdc20, which inhibits the anaphase-promoting complex or cyclosome bound to Cdc20 (APC/CCdc20) to delay anaphase onset. Using in vitro reconstitution, we show that Mps1 promotes APC/C inhibition by MCC components through phosphorylating Bub1 and Mad1. Phosphorylated Bub1 binds to Mad1–Mad2. Phosphorylated Mad1 directly interacts with Cdc20. Mutations of Mps1 phosphorylation sites in Bub1 or Mad1 abrogate the spindle checkpoint in human cells. Therefore, Mps1 promotes checkpoint activation through sequentially phosphorylating Knl1, Bub1, and Mad1. This sequential multi-target phosphorylation cascade makes the checkpoint highly responsive to Mps1 and to kinetochore-microtubule attachment. DOI: http://dx.doi.org/10.7554/eLife.22513.001 PMID:28072388

  4. Abscission checkpoint control: stuck in the middle with Aurora B.

    PubMed

    Carmena, Mar

    2012-07-01

    At the end of cell division, the cytoplasmic bridge joining the daughter cells is severed through a process that involves scission of the plasma membrane. The presence of chromatin bridges 'stuck' in the division plane is sensed by the chromosomal passenger complex (CPC) component Aurora B kinase, triggering a checkpoint that delays abscission until the chromatin bridges have been resolved. Recent work has started to shed some light on the molecular mechanism by which the CPC controls the timing of abscission.

  5. Enhancement of cisplatin-induced cytotoxicity by 7-hydroxystaurosporine (UCN-01), a new G2-checkpoint inhibitor.

    PubMed

    Bunch, R T; Eastman, A

    1996-05-01

    DNA-damaging agents arrest cell cycle progression at either G1 or G2. A variety of agents such as caffeine have been shown to abrogate the DNA damage-dependent G2 checkpoint and enhance cytotoxicity. Unfortunately, this strategy has not enhanced therapeutic activity because adequate concentrations of these modulators are not tolerated in vivo. Here, using Chinese hamster ovary cell lines, we show that the potent protein kinase inhibitor 7-hydroxy-staurosporine (UCN-01) abrogates the G2 arrest induced by the DNA-damaging agent cisplatin. UCN-01 not only was effective at inducing mitosis when added to G2-arrested cells but also prevented cells from arresting in G2 when added to S-phase cells. Furthermore, UCN-01 did not cause premature mitosis of S-phase cells; rather, the cells progressed to G2 before undergoing mitosis. These effects were observed at noncytotoxic concentrations of UCN-01 that alone had no effect on cell cycle passage. Furthermore, the same concentrations of UCN-01 that resulted in abrogation of the cisplatin-induced G2 arrest also enhanced cisplatin-induced cytotoxicity, as determined by a colony formation assay. UCN-01 enhanced cisplatin cytotoxicity up to 60-fold and reduced by 3-fold the concentration of cisplatin required to kill 90% of the cells. The concentrations of UCN-01 required for this enhancement have been shown to be well tolerated in animal models, suggesting that this combination may represent an effective strategy for enhancing cisplatin-based chemotherapeutic regimens.

  6. Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana

    PubMed Central

    Åsberg, Signe E.; Bones, Atle M.; Øverby, Anders

    2015-01-01

    Isothiocyanates (ITCs) are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC) has a role in defense responses such as glutathione depletion, ROS generation and stomatal closure. In this study we show that exposure to non-lethal concentrations of AITC causes a shift in the cell cycle distribution of Arabidopsis thaliana leading to accumulation of cells in S-phases and a reduced number of cells in non-replicating phases. Furthermore, transcriptional analysis revealed an AITC-induced up-regulation of the gene encoding cyclin-dependent kinase A while several genes encoding mitotic proteins were down-regulated, suggesting an inhibition of mitotic processes. Interestingly, visualization of DNA synthesis indicated that exposure to AITC reduced the rate of DNA replication. Taken together, these results indicate that non-lethal concentrations of AITC induce cells of A. thaliana to enter the cell cycle and accumulate in S-phases, presumably as a part of a defensive response. Thus, this study suggests that AITC has several roles in plant defense and add evidence to the growing data supporting a multifunctional role of glucosinolates and their degradation products in plants. PMID:26042144

  7. Control of sleep by a network of cell cycle genes.

    PubMed

    Afonso, Dinis J S; Machado, Daniel R; Koh, Kyunghee

    2015-01-01

    Sleep is essential for health and cognition, but the molecular and neural mechanisms of sleep regulation are not well understood. We recently reported the identification of TARANIS (TARA) as a sleep-promoting factor that acts in a previously unknown arousal center in Drosophila. tara mutants exhibit a dose-dependent reduction in sleep amount of up to ∼60%. TARA and its mammalian homologs, the Trip-Br (Transcriptional Regulators Interacting with PHD zinc fingers and/or Bromodomains) family of proteins, are primarily known as transcriptional coregulators involved in cell cycle progression, and contain a conserved Cyclin-A (CycA) binding homology domain. We found that tara and CycA synergistically promote sleep, and CycA levels are reduced in tara mutants. Additional data demonstrated that Cyclin-dependent kinase 1 (Cdk1) antagonizes tara and CycA to promote wakefulness. Moreover, we identified a subset of CycA expressing neurons in the pars lateralis, a brain region proposed to be analogous to the mammalian hypothalamus, as an arousal center. In this Extra View article, we report further characterization of tara mutants and provide an extended discussion of our findings and future directions within the framework of a working model, in which a network of cell cycle genes, tara, CycA, and Cdk1, interact in an arousal center to regulate sleep.

  8. Control of sleep by a network of cell cycle genes

    PubMed Central

    Afonso, Dinis J. S.; Machado, Daniel R.; Koh, Kyunghee

    2015-01-01

    ABSTRACT Sleep is essential for health and cognition, but the molecular and neural mechanisms of sleep regulation are not well understood. We recently reported the identification of TARANIS (TARA) as a sleep-promoting factor that acts in a previously unknown arousal center in Drosophila. tara mutants exhibit a dose-dependent reduction in sleep amount of up to ∼60%. TARA and its mammalian homologs, the Trip-Br (Transcriptional Regulators Interacting with PHD zinc fingers and/or Bromodomains) family of proteins, are primarily known as transcriptional coregulators involved in cell cycle progression, and contain a conserved Cyclin-A (CycA) binding homology domain. We found that tara and CycA synergistically promote sleep, and CycA levels are reduced in tara mutants. Additional data demonstrated that Cyclin-dependent kinase 1 (Cdk1) antagonizes tara and CycA to promote wakefulness. Moreover, we identified a subset of CycA expressing neurons in the pars lateralis, a brain region proposed to be analogous to the mammalian hypothalamus, as an arousal center. In this Extra View article, we report further characterization of tara mutants and provide an extended discussion of our findings and future directions within the framework of a working model, in which a network of cell cycle genes, tara, CycA, and Cdk1, interact in an arousal center to regulate sleep. PMID:26925838

  9. Computational analysis of mammalian cell division gated by a circadian clock: quantized cell cycles and cell size control.

    PubMed

    Zámborszky, Judit; Hong, Christian I; Csikász Nagy, Attila

    2007-12-01

    Cell cycle and circadian rhythms are conserved from cyanobacteria to humans with robust cyclic features. Recently, molecular links between these two cyclic processes have been discovered. Core clock transcription factors, Bmal1 and Clock (Clk), directly regulate Wee1 kinase, which inhibits entry into the mitosis. We investigate the effect of this connection on the timing of mammalian cell cycle processes with computational modeling tools. We connect a minimal model of circadian rhythms, which consists of transcription-translation feedback loops, with a modified mammalian cell cycle model from Novak and Tyson (2004). As we vary the mass doubling time (MDT) of the cell cycle, stochastic simulations reveal quantized cell cycles when the activity of Wee1 is influenced by clock components. The quantized cell cycles disappear in the absence of coupling or when the strength of this link is reduced. More intriguingly, our simulations indicate that the circadian clock triggers critical size control in the mammalian cell cycle. A periodic brake on the cell cycle progress via Wee1 enforces size control when the MDT is quite different from the circadian period. No size control is observed in the absence of coupling. The issue of size control in the mammalian system is debatable, whereas it is well established in yeast. It is possible that the size control is more readily observed in cell lines that contain circadian rhythms, since not all cell types have a circadian clock. This would be analogous to an ultradian clock intertwined with quantized cell cycles (and possibly cell size control) in yeast. We present the first coupled model between the mammalian cell cycle and circadian rhythms that reveals quantized cell cycles and cell size control influenced by the clock.

  10. Mitochondrial dynamics and the cell cycle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nuclear-mitochondrial (NM) communication impacts many aspects of plant development including vigor, sterility and viability. Dynamic changes in mitochondrial number, shape, size, and cellular location takes place during the cell cycle possibly impacting the process itself and leading to distribution...

  11. Phosphoproteomic Profiling Reveals Epstein-Barr Virus Protein Kinase Integration of DNA Damage Response and Mitotic Signaling

    PubMed Central

    Li, Renfeng; Pinto, Sneha M.; Shaw, Patrick G.; Huang, Tai-Chung; Wan, Jun; Qian, Jiang; Gowda, Harsha; Wu, Xinyan; Lv, Dong-Wen; Zhang, Kun; Manda, Srikanth S.; Pandey, Akhilesh; Hayward, S. Diane

    2015-01-01

    Epstein-Barr virus (EBV) is etiologically linked to infectious mononucleosis and several human cancers. EBV encodes a conserved protein kinase BGLF4 that plays a key role in the viral life cycle. To provide new insight into the host proteins regulated by BGLF4, we utilized stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics to compare site-specific phosphorylation in BGLF4-expressing Akata B cells. Our analysis revealed BGLF4-mediated hyperphosphorylation of 3,046 unique sites corresponding to 1,328 proteins. Frequency analysis of these phosphosites revealed a proline-rich motif signature downstream of BGLF4, indicating a broader substrate recognition for BGLF4 than its cellular ortholog cyclin-dependent kinase 1 (CDK1). Further, motif analysis of the hyperphosphorylated sites revealed enrichment in ATM, ATR and Aurora kinase substrates while functional analyses revealed significant enrichment of pathways related to the DNA damage response (DDR), mitosis and cell cycle. Phosphorylation of proteins associated with the mitotic spindle assembly checkpoint (SAC) indicated checkpoint activation, an event that inactivates the anaphase promoting complex/cyclosome, APC/C. Furthermore, we demonstrated that BGLF4 binds to and directly phosphorylates the key cellular proteins PP1, MPS1 and CDC20 that lie upstream of SAC activation and APC/C inhibition. Consistent with APC/C inactivation, we found that BGLF4 stabilizes the expression of many known APC/C substrates. We also noted hyperphosphorylation of 22 proteins associated the nuclear pore complex, which may contribute to nuclear pore disassembly and SAC activation. A drug that inhibits mitotic checkpoint activation also suppressed the accumulation of extracellular EBV virus. Taken together, our data reveal that, in addition to the DDR, manipulation of mitotic kinase signaling and SAC activation are mechanisms associated with lytic EBV replication. All MS data have been deposited in

  12. Cyclins D, phytoregulators and cell cycle onset in germinating maize.

    PubMed

    Vázquez-Ramos, Jorge M; Lara-Nuñez, Aurora

    2008-08-01

    Several different D-type cyclins can be found in plants and in maize, four of these have been characterized: CycD2;1, CycD4;1, CycD5;1 and CycD5;2. These cyclins appear to form complexes with Cdks, with PCNA and also with KRP proteins and in these kinase activity can be measured. The expression of the corresponding genes during maize germination is highly stimulated by phytohormones like auxin and cytokinin, however this is not followed by an equivalent increase in the amount of the corresponding proteins; nonetheless, auxins do stimulate the associated kinase activity, particularly at early germination times. Thus, auxins appear to stimulate the cell cycle during germination at two levels, transcription and kinase activation. Both auxins and cytokinins appear to shorten the G1 phase during germination and stimulate DNA synthesis, but apparently they do it in different ways as the simultaneous addition of both to germinating maize axes eliminates DNA synthesis stimulation. Therefore, similar actions may be achieved by different paths.

  13. Cyclins D, phytoregulators and cell cycle onset in germinating maize

    PubMed Central

    Lara-Nuñez, Aurora

    2008-01-01

    Several different D-type cyclins can be found in plants and in maize, four of these have been characterized: CycD2;1, CycD4;1, CycD5;1 and CycD5;2. These cyclins appear to form complexes with Cdks, with PCNA and also with KRP proteins and in these kinase activity can be measured. The expression of the corresponding genes during maize germination is highly stimulated by phytohormones like auxin and cytokinin, however this is not followed by an equivalent increase in the amount of the corresponding proteins; nonetheless, auxins do stimulate the associated kinase activity, particularly at early germination times. Thus, auxins appear to stimulate the cell cycle during germination at two levels, transcription and kinase activation. Both auxins and cytokinins appear to shorten the G1 phase during germination and stimulate DNA synthesis, but apparently they do it in different ways as the simultaneous addition of both to germinating maize axes eliminates DNA synthesis stimulation. Therefore, similar actions may be achieved by different paths. PMID:19704474

  14. Tem1 localization to the spindle pole bodies is essential for mitotic exit and impairs spindle checkpoint function

    PubMed Central

    Valerio-Santiago, Mauricio

    2011-01-01

    The mitotic exit network (MEN) is a signaling cascade that triggers inactivation of the mitotic cyclin-dependent kinases and exit from mitosis. The GTPase Tem1 localizes on the spindle pole bodies (SPBs) and initiates MEN signaling. Tem1 activity is inhibited until anaphase by Bfa1-Bub2. These proteins are also part of the spindle position checkpoint (SPOC), a surveillance mechanism that restrains mitotic exit until the spindle is correctly positioned. Here, we show that regulation of Tem1 localization is essential for the proper function of the MEN and the SPOC. We demonstrate that the dynamics of Tem1 loading onto SPBs determine the recruitment of other MEN components to this structure, and reevaluate the interdependence in the localization of Tem1, Bfa1, and Bub2. We also find that removal of Tem1 from the SPBs is critical for the SPOC to impede cell cycle progression. Finally, we demonstrate for the first time that localization of Tem1 to the SPBs is a requirement for mitotic exit. PMID:21321099

  15. Spindle assembly checkpoint gene mdf-1 regulates germ cell proliferation in response to nutrition signals in C. elegans.

    PubMed

    Watanabe, Sonoko; Yamamoto, Takaharu G; Kitagawa, Risa

    2008-04-09

    When newly hatched Caenorhabditis elegans larvae are starved, their primordial germ cells (PGCs) arrest in the post-S phase. This starvation-induced PGC arrest is mediated by the DAF-18/PTEN-AKT-1/PKB nutrient-sensing pathway. Here, we report that the conserved spindle assembly checkpoint (SAC) component MDF-1/MAD1 is required for the PGC arrest. We identified 2 Akt kinase phosphorylation sites on MDF-1. Expression of a non-phosphorylatable mutant MDF-1 partially suppressed the defect in the starvation-induced PGC arrest in L1 larvae lacking DAF-18, suggesting that MDF-1 regulates germ cell proliferation as a downstream target of AKT-1, thereby demonstrating a functional link between cell-cycle regulation by the SAC components and nutrient sensing by DAF-18-AKT-1 during post-embryonic development. The phosphorylation status of MDF-1 affects its binding to another SAC component, MDF-2/MAD2. The loss of MDF-2 or another SAC component also caused inappropriate germ cell proliferation, but the defect was less severe than that caused by mdf-1 hemizygosity, suggesting that MDF-1 causes the PGC arrest by two mechanisms, one involving MDF-2 and another that is independent of other SAC components.

  16. Tem1 localization to the spindle pole bodies is essential for mitotic exit and impairs spindle checkpoint function.

    PubMed

    Valerio-Santiago, Mauricio; Monje-Casas, Fernando

    2011-02-21

    The mitotic exit network (MEN) is a signaling cascade that triggers inactivation of the mitotic cyclin-dependent kinases and exit from mitosis. The GTPase Tem1 localizes on the spindle pole bodies (SPBs) and initiates MEN signaling. Tem1 activity is inhibited until anaphase by Bfa1-Bub2. These proteins are also part of the spindle position checkpoint (SPOC), a surveillance mechanism that restrains mitotic exit until the spindle is correctly positioned. Here, we show that regulation of Tem1 localization is essential for the proper function of the MEN and the SPOC. We demonstrate that the dynamics of Tem1 loading onto SPBs determine the recruitment of other MEN components to this structure, and reevaluate the interdependence in the localization of Tem1, Bfa1, and Bub2. We also find that removal of Tem1 from the SPBs is critical for the SPOC to impede cell cycle progression. Finally, we demonstrate for the first time that localization of Tem1 to the SPBs is a requirement for mitotic exit.

  17. Novel DNA damage checkpoint in mitosis: Mitotic DNA damage induces re-replication without cell division in various cancer cells.

    PubMed

    Hyun, Sun-Yi; Rosen, Eliot M; Jang, Young-Joo

    2012-07-06

    DNA damage induces multiple checkpoint pathways to arrest cell cycle progression until damage is repaired. In our previous reports, when DNA damage occurred in prometaphase, cells were accumulated in 4 N-DNA G1 phase, and mitosis-specific kinases were inactivated in dependent on ATM/Chk1 after a short incubation for repair. We investigated whether or not mitotic DNA damage causes cells to skip-over late mitotic periods under prolonged incubation in a time-lapse study. 4 N-DNA-damaged cells re-replicated without cell division and accumulated in 8 N-DNA content, and the activities of apoptotic factors were increased. The inhibition of DNA replication reduced the 8 N-DNA cell population dramatically. Induction of replication without cell division was not observed upon depletion of Chk1 or ATM. Finally, mitotic DNA damage induces mitotic slippage and that cells enter G1 phase with 4 N-DNA content and then DNA replication is occurred to 8 N-DNA content before completion of mitosis in the ATM/Chk1-dependent manner, followed by caspase-dependent apoptosis during long-term repair.

  18. G2/M cell cycle arrest on HT-29 cancer cells and toxicity assessment of triphenylphosphanegold(I) carbonimidothioates, Ph3PAu[SC(OR)=NPh], R=Me, Et, and iPr, during zebrafish development.

    PubMed

    Ooi, Kah Kooi; Yeo, Chien Ing; Mahandaran, Theventhiran; Ang, Kok Pian; Akim, Abdah Md; Cheah, Yoke-Kqueen; Seng, Hoi-Ling; Tiekink, Edward R T

    2017-01-01

    Phosphanegold(I) thiolates, Ph3PAu[SC(OR)=NPh], R=Me (1), Et (2) and iPr (3), were previously shown to be significantly cytotoxic toward HT-29 cancer cells and to induce cell death by both intrinsic and extrinsic apoptotic pathways whereby 1 activated the p73 gene, and each of 2 and 3 activated p53; 2 also caused apoptotic cell death via the c-Jun N-terminal kinase/mitogen-activated protein kinase pathway. Apoptosis pathways have been further evaluated by mitochondrial cytochrome c measurements and annexin V screening, confirming apoptotic pathways of cell death. Cell cycle analysis showed the majority of treated HT-29 cells were arrested at the G2/M checkpoint after 24h; results of both assays were confirmed by changes in populations of relevant genes (PCR array analysis). Cell invasion studies showed inhibition of metastasis through Matrigel™ matrix to 17-22% cf. untreated cells. LC50 values were determined in zebrafish (8.36, 8.17, and 7.64μM for 1-3). Finally, the zebrafish tolerated doses of 1 and 2 up to 0.625μM, and 3 was tolerated at even higher doses of up to 1.25μM.

  19. Compiler-assisted static checkpoint insertion

    NASA Technical Reports Server (NTRS)

    Long, Junsheng; Fuchs, W. K.; Abraham, Jacob A.

    1992-01-01

    This paper describes a compiler-assisted approach for static checkpoint insertion. Instead of fixing the checkpoint location before program execution, a compiler enhanced polling mechanism is utilized to maintain both the desired checkpoint intervals and reproducible checkpoint 1ocations. The technique has been implemented in a GNU CC compiler for Sun 3 and Sun 4 (Sparc) processors. Experiments demonstrate that the approach provides for stable checkpoint intervals and reproducible checkpoint placements with performance overhead comparable to a previously presented compiler assisted dynamic scheme (CATCH) utilizing the system clock.

  20. Mitochondria. Cell cycle-dependent regulation of mitochondrial preprotein translocase.

    PubMed

    Harbauer, Angelika B; Opalińska, Magdalena; Gerbeth, Carolin; Herman, Josip S; Rao, Sanjana; Schönfisch, Birgit; Guiard, Bernard; Schmidt, Oliver; Pfanner, Nikolaus; Meisinger, Chris

    2014-11-28

    Mitochondria play central roles in cellular energy conversion, metabolism, and apoptosis. Mitochondria import more than 1000 different proteins from the cytosol. It is unknown if the mitochondrial protein import machinery is connected to the cell division cycle. We found that the cyclin-dependent kinase Cdk1 stimulated assembly of the main mitochondrial entry gate, the translocase of the outer membrane (TOM), in mitosis. The molecular mechanism involved phosphorylation of the cytosolic precursor of Tom6 by cyclin Clb3-activated Cdk1, leading to enhanced import of Tom6 into mitochondria. Tom6 phosphorylation promoted assembly of the protein import channel Tom40 and import of fusion proteins, thus stimulating the respiratory activity of mitochondria in mitosis. Tom6 phosphorylation provides a direct means for regulating mitochondrial biogenesis and activity in a cell cycle-specific manner.

  1. The Dawn of Aurora Kinase Research: From Fly Genetics to the Clinic.

    PubMed

    Carmena, Mar; Earnshaw, William C; Glover, David M

    2015-01-01

    Aurora kinases comprise a family of highly conserved serine-threonine protein kinases that play a pivotal role in the regulation of cell cycle. Aurora kinases are not only involved in the control of multiple processes during cell division but also coordinate chromosomal and cytoskeletal events, contributing to the regulation of checkpoints and ensuring the smooth progression of the cell cycle. Because of their fundamental contribution to cell cycle regulation, Aurora kinases were originally identified in independent genetic screens designed to find genes involved in the regulation of cell division. The first aurora mutant was part of a collection of mutants isolated in C. Nusslein-Volhard's laboratory. This collection was screened in D. M. Glover's laboratory in search for mutations disrupting the centrosome cycle in embryos derived from homozygous mutant mothers. The mutants identified were given names related to the "polar regions," and included not only aurora but also the equally famous polo. Ipl1, the only Aurora in yeast, was identified in a genetic screen looking for mutations that caused chromosome segregation defects. The discovery of a second Aurora-like kinase in mammals opened a new chapter in the research of Aurora kinases. The rat kinase AIM was found to be highly homologous to the fly and yeast proteins, but localized at the midzone and midbody and was proposed to have a role in cytokinesis. Homologs of the equatorial Aurora (Aurora B) were identified in metazoans ranging from flies to humans. Xenopus Aurora B was found to be in a complex with the chromosomal passenger INCENP, and both proteins were shown to be essential in flies for chromosome structure, segregation, central spindle formation and cytokinesis. Fifteen years on, Aurora kinase research is an active field of research. After the successful introduction of the first anti-mitotic agents in cancer therapy, both Auroras have become the focus of attention as targets for the development of new

  2. The Dawn of Aurora Kinase Research: From Fly Genetics to the Clinic

    PubMed Central

    Carmena, Mar; Earnshaw, William C.; Glover, David M.

    2015-01-01

    Aurora kinases comprise a family of highly conserved serine-threonine protein kinases that play a pivotal role in the regulation of cell cycle. Aurora kinases are not only involved in the control of multiple processes during cell division but also coordinate chromosomal and cytoskeletal events, contributing to the regulation of checkpoints and ensuring the smooth progression of the cell cycle. Because of their fundamental contribution to cell cycle regulation, Aurora kinases were originally identified in independent genetic screens designed to find genes involved in the regulation of cell division. The first aurora mutant was part of a collection of mutants isolated in C. Nusslein-Volhard's laboratory. This collection was screened in D. M. Glover's laboratory in search for mutations disrupting the centrosome cycle in embryos derived from homozygous mutant mothers. The mutants identified were given names related to the “polar regions,” and included not only aurora but also the equally famous polo. Ipl1, the only Aurora in yeast, was identified in a genetic screen looking for mutations that caused chromosome segregation defects. The discovery of a second Aurora-like kinase in mammals opened a new chapter in the research of Aurora kinases. The rat kinase AIM was found to be highly homologous to the fly and yeast proteins, but localized at the midzone and midbody and was proposed to have a role in cytokinesis. Homologs of the equatorial Aurora (Aurora B) were identified in metazoans ranging from flies to humans. Xenopus Aurora B was found to be in a complex with the chromosomal passenger INCENP, and both proteins were shown to be essential in flies for chromosome structure, segregation, central spindle formation and cytokinesis. Fifteen years on, Aurora kinase research is an active field of research. After the successful introduction of the first anti-mitotic agents in cancer therapy, both Auroras have become the focus of attention as targets for the development of

  3. Model scenarios for evolution of the eukaryotic cell cycle.

    PubMed Central

    Novak, B; Csikasz-Nagy, A; Gyorffy, B; Nasmyth, K; Tyson, J J

    1998-01-01

    Progress through the division cycle of present day eukaryotic cells is controlled by a complex network consisting of (i) cyclin-dependent kinases (CDKs) and their associated cyclins, (ii) kinases and phosphatases that regulate CDK activity, and (iii) stoichiometric inhibitors that sequester cyclin-CDK dimers. Presumably regulation of cell division in the earliest ancestors of eukaryotes was a considerably simpler affair. Nasmyth (1995) recently proposed a mechanism for control of a putative, primordial, eukaryotic cell cycle, based on antagonistic interactions between a cyclin-CDK and the anaphase promoting complex (APC) that labels the cyclin subunit for proteolysis. We recast this idea in mathematical form and show that the model exhibits hysteretic behaviour between alternative steady states: a Gl-like state (APC on, CDK activity low, DNA unreplicated and replication complexes assembled) and an S/M-like state (APC off, CDK activity high, DNA replicated and replication complexes disassembled). In our model, the transition from G1 to S/M ('Start') is driven by cell growth, and the reverse transition ('Finish') is driven by completion of DNA synthesis and proper alignment of chromosomes on the metaphase plate. This simple and effective mechanism for coupling growth and division and for accurately copying and partitioning a genome consisting of numerous chromosomes, each with multiple origins of replication, could represent the core of the eukaryotic cell cycle. Furthermore, we show how other controls could be added to this core and speculate on the reasons why stoichiometric inhibitors and CDK inhibitory phosphorylation might have been appended to the primitive alternation between cyclin accumulation and degradation. PMID:10098216

  4. Molecular Imaging of the ATM Kinase Activity

    SciTech Connect

    Williams, Terence M.; Nyati, Shyam; Ross, Brian D.; Rehemtulla, Alnawaz

    2013-08-01

    Purpose: Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase critical to the cellular DNA-damage response, including from DNA double-strand breaks. ATM activation results in the initiation of a complex cascade of events including DNA damage repair, cell cycle checkpoint control, and survival. We sought to create a bioluminescent reporter that dynamically and noninvasively measures ATM kinase activity in living cells and subjects. Methods and Materials: Using the split luciferase technology, we constructed a hybrid cDNA, ATM-reporter (ATMR), coding for a protein that quantitatively reports on changes in ATM kinase activity through changes in bioluminescence. Results: Treatment of ATMR-expressing cells with ATM inhibitors resulted in a dose-dependent increase in bioluminescence activity. In contrast, induction of ATM kinase activity upon irradiation resulted in a decrease in reporter activity that correlated with ATM and Chk2 activation by immunoblotting in a time-dependent fashion. Nuclear targeting improved ATMR sensitivity to both ATM inhibitors and radiation, whereas a mutant ATMR (lacking the target phosphorylation site) displayed a muted response. Treatment with ATM inhibitors and small interfering (si)RNA-targeted knockdown of ATM confirm the specificity of the reporter. Using reporter expressing xenografted tumors demonstrated the ability of ATMR to report in ATM activity in mouse models that correlated in a time-dependent fashion with changes in Chk2 activity. Conclusions: We describe the development and validation of a novel, specific, noninvasive bioluminescent reporter that enables monitoring of ATM activity in real time, in vitro and in vivo. Potential applications of this reporter include the identification and development of novel ATM inhibitors or ATM-interacting partners through high-throughput screens and in vivo pharmacokinetic/pharmacodynamic studies of ATM inhibitors in preclinical models.

  5. Centrosome misorientation mediates slowing of the cell cycle under limited nutrient conditions in Drosophila male germline stem cells.

    PubMed

    Roth, Therese M; Chiang, C-Y Ason; Inaba, Mayu; Yuan, Hebao; Salzmann, Viktoria; Roth, Caitlin E; Yamashita, Yukiko M

    2012-04-01

    Drosophila male germline stem cells (GSCs) divide asymmetrically, balancing self-renewal and differentiation. Although asymmetric stem cell division balances between self-renewal and differentiation, it does not dictate how frequently differentiating cells must be produced. In male GSCs, asymmetric GSC division is achieved by stereotyped positioning of the centrosome with respect to the stem cell niche. Recently we showed that the centrosome orientation checkpoint monitors the correct centrosome orientation to ensure an asymmetric outcome of the GSC division. When GSC centrosomes are not correctly oriented with respect to the niche, GSC cell cycle is arrested/delayed until the correct centrosome orientation is reacquired. Here we show that induction of centrosome misorientation upon culture in poor nutrient conditions mediates slowing of GSC cell proliferation via activation of the centrosome orientation checkpoint. Consistently, inactivation of the centrosome orientation checkpoint leads to lack of cell cycle slowdown even under poor nutrient conditions. We propose that centrosome misorientation serves as a mediator that transduces nutrient information into stem cell proliferation, providing a previously unappreciated mechanism of stem cell regulation in response to nutrient conditions.

  6. The vacuole/lysosome is required for cell-cycle progression

    PubMed Central

    Jin, Yui; Weisman, Lois S

    2015-01-01

    Organelles are distributed to daughter cells, via inheritance pathways. However, it is unclear whether there are mechanisms beyond inheritance, which ensure that organelles are present in all cells. Here we present the unexpected finding that the yeast vacuole plays a positive essential role in initiation of the cell-cycle. When inheritance fails, a new vacuole is generated. We show that this occurs prior to the next cell-cycle, and gain insight into this alternative pathway. Moreover, we find that a combination of a defect in inheritance with an acute block in the vacuole biogenesis results in the loss of a functional vacuole and a specific arrest of cells in early G1 phase. Furthermore, this role for the vacuole in cell-cycle progression requires an intact TORC1-SCH9 pathway that can only signal from a mature vacuole. These mechanisms may serve as a checkpoint for the presence of the vacuole/lysosome. DOI: http://dx.doi.org/10.7554/eLife.08160.001 PMID:26322385

  7. Glucose-ABL1-TOR Signaling Modulates Cell Cycle Tuning to Control Terminal Appressorial Cell Differentiation

    PubMed Central

    2017-01-01

    The conserved target of rapamycin (TOR) pathway integrates growth and development with available nutrients, but how cellular glucose controls TOR function and signaling is poorly understood. Here, we provide functional evidence from the devastating rice blast fungus Magnaporthe oryzae that glucose can mediate TOR activity via the product of a novel carbon-responsive gene, ABL1, in order to tune cell cycle progression during infection-related development. Under nutrient-free conditions, wild type (WT) M. oryzae strains form terminal plant-infecting cells (appressoria) at the tips of germ tubes emerging from three-celled spores (conidia). WT appressorial development is accompanied by one round of mitosis followed by autophagic cell death of the conidium. In contrast, Δabl1 mutant strains undergo multiple rounds of accelerated mitosis in elongated germ tubes, produce few appressoria, and are abolished for autophagy. Treating WT spores with glucose or 2-deoxyglucose phenocopied Δabl1. Inactivating TOR in Δabl1 mutants or glucose-treated WT strains restored appressorium formation by promoting mitotic arrest at G1/G0 via an appressorium- and autophagy-inducing cell cycle delay at G2/M. Collectively, this work uncovers a novel glucose-ABL1-TOR signaling axis and shows it engages two metabolic checkpoints in order to modulate cell cycle tuning and mediate terminal appressorial cell differentiation. We thus provide new molecular insights into TOR regulation and cell development in response to glucose. PMID:28072818

  8. Analysis of radiation effects using a combined cell cycle and multistage carcinogenesis model

    NASA Astrophysics Data System (ADS)

    Hazelton, William D.; Curtis, Stanley B.; Moolgavkar, Suresh H.

    PurposeTo study radiation effects using a combined cell cycle and multistage clonal expansion model that includes processes of damage, repair, apoptosis, and mutation. The model includes endogenous and radiation induced damage causing progression of cells from normal, to damaged, to initiated, to initiated damage, to malignant status. We utilize complementary deterministic and stochastic versions of the model that share the same transition rates. The deterministic version is used to calibrate model rates for cell cycle progression, damage, checkpoint delay, repair, and apoptosis, and to implement tissue homeostasis. The stochastic version is used to predict the cancer hazard and survival. ResultsWe calibrated transition rates in the deterministic version of the model to fit flow cytometry-based clonogenic survival data for Chinese hamster V79 cells and for HeLa × skin fibroblast human hybrid cells exposed to sparsely ionizing radiation during different phases of the cell cycle. We also calibrated repair and malignant transformation rates to fit neoplastic transformation data for HeLa × skin fibroblast human hybrid cells. We found that induced repair in G2 phase explained the low-dose hypersensitivity for survival in both cell lines, and a different induced repair process explained the neoplastic transformation data. ConclusionThe shape of the induced repair curves for G2-phase survival and neoplastic transformation differ significantly, suggesting that these low-dose phenomena differ in regulation and, in fact, may be mechanistically unrelated.

  9. Dux4 induces cell cycle arrest at G1 phase through upregulation of p21 expression

    SciTech Connect

    Xu, Hongliang; Wang, Zhaoxia; Jin, Suqin; Hao, Hongjun; Zheng, Lemin; Zhou, Boda; Zhang, Wei; Lv, He; Yuan, Yun

    2014-03-28

    Highlights: • Dux4 induced TE671 cell proliferation defect and G1 phase arrest. • Dux4 upregulated p21 expression without activating p53. • Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. • Sp1 binding site was required for Dux4-induced p21 promoter activation. - Abstract: It has been implicated that Dux4 plays crucial roles in development of facioscapulohumeral dystrophy. But the underlying myopathic mechanisms and related down-stream events of this retrogene were far from clear. Here, we reported that overexpression of Dux4 in a cell model TE671 reduced cell proliferation rate, and increased G1 phase accumulation. We also determined the impact of Dux4 on p53/p21 signal pathway, which controls the checkpoint in cell cycle progression. Overexpression of Dux4 increased p21 mRNA and protein level, while expression of p53, phospho-p53 remained unchanged. Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. Furthermore, we demonstrated that enhanced Dux4 expression increased p21 promoter activity and elevated expression of Sp1 transcription factor. Mutation of Sp1 binding site decreased dux4 induced p21 promoter activation. Chromatin immunoprecipitation (ChIP) assays confirmed the Dux4-induced binding of Sp1 to p21 promoter in vivo. These results suggest that Dux4 might induce proliferation inhibition and G1 phase arrest through upregulation of p21.

  10. Glucose-ABL1-TOR Signaling Modulates Cell Cycle Tuning to Control Terminal Appressorial Cell Differentiation.

    PubMed

    Marroquin-Guzman, Margarita; Sun, Guangchao; Wilson, Richard A

    2017-01-01

    The conserved target of rapamycin (TOR) pathway integrates growth and development with available nutrients, but how cellular glucose controls TOR function and signaling is poorly understood. Here, we provide functional evidence from the devastating rice blast fungus Magnaporthe oryzae that glucose can mediate TOR activity via the product of a novel carbon-responsive gene, ABL1, in order to tune cell cycle progression during infection-related development. Under nutrient-free conditions, wild type (WT) M. oryzae strains form terminal plant-infecting cells (appressoria) at the tips of germ tubes emerging from three-celled spores (conidia). WT appressorial development is accompanied by one round of mitosis followed by autophagic cell death of the conidium. In contrast, Δabl1 mutant strains undergo multiple rounds of accelerated mitosis in elongated germ tubes, produce few appressoria, and are abolished for autophagy. Treating WT spores with glucose or 2-deoxyglucose phenocopied Δabl1. Inactivating TOR in Δabl1 mutants or glucose-treated WT strains restored appressorium formation by promoting mitotic arrest at G1/G0 via an appressorium- and autophagy-inducing cell cycle delay at G2/M. Collectively, this work uncovers a novel glucose-ABL1-TOR signaling axis and shows it engages two metabolic checkpoints in order to modulate cell cycle tuning and mediate terminal appressorial cell differentiation. We thus provide new molecular insights into TOR regulation and cell development in response to glucose.

  11. [Cell cycle arrest at M phase induced by vinblastine in MOLT-4 cells].

    PubMed

    Zhong, Yi-Sheng; Pan, Chang-Chuan; Jin, Chang-Nan; Li, Jian-Jun; Xiong, Gong-Peng; Zhang, Jian-Xi; Gong, Jian-Ping

    2009-04-01

    This study was purposed to investigate the biological effect of vinblastine (VLS), usually known as inductor of mitotic arrest, on MOLT-4 of ALL cells and to evaluate its significance. The cell arrest in M phase and/or cell apoptosis were induced by treatment of MOLT-4 cells with 0.05 microg/ml VLS for 0 - 12 hours; the DNA histogram was detected by flow cytometry; the morphological changes of cells were observed by confocal microscopy; the cell cycle distribution, cell apoptosis and morphological changes of cells before and after arrest were analyzed by using arrest increasing rate (AIR), arrest efficiency (AE), apoptosis rate (AR) and morphologic parameters respectively. The results indicated that the cell arrest did not accompanied by significant increase of apoptosis rate; the DNA histogram of cell arrest showed dynamic change of cell cycle in time-dependent manner; the arrest efficiency could be quantified. The cell arrest at M phase was accompanied by cell stack in S phase, the cell proliferation rate dropped after cell arrest occurred. The cells arrested at M phase possessed of characteristic morphologic features in cell mitosis. It is concluded that the vinblastine can solely induce arrest of MOLT-4 cells at M phase. This study provides experimental basis for further investigating the relation of cell cycle arrest to apoptosis, mechanism of checkpoint and development of new anticancer drugs.

  12. The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects

    PubMed Central

    Herruzo, Esther; Ontoso, David; González-Arranz, Sara; Cavero, Santiago; Lechuga, Ana; San-Segundo, Pedro A.

    2016-01-01

    Meiotic cells possess surveillance mechanisms that monitor critical events such as recombination and chromosome synapsis. Meiotic defects resulting from the absence of the synaptonemal complex component Zip1 activate a meiosis-specific checkpoint network resulting in delayed or arrested meiotic progression. Pch2 is an evolutionarily conserved AAA+ ATPase required for the checkpoint-induced meiotic block in the zip1 mutant, where Pch2 is only detectable at the ribosomal DNA array (nucleolus). We describe here that high levels of the Hop1 protein, a checkpoint adaptor that localizes to chromosome axes, suppress the checkpoint defect of a zip1 pch2 mutant restoring Mek1 activity and meiotic cell cycle delay. We demonstrate that the critical role of Pch2 in this synapsis checkpoint is to sustain Mec1-dependent phosphorylation of Hop1 at threonine 318. We also show that the ATPase activity of Pch2 is essential for its checkpoint function and that ATP binding to Pch2 is required for its localization. Previous work has shown that Pch2 negatively regulates Hop1 chromosome abundance during unchallenged meiosis. Based on our results, we propose that, under checkpoint-inducing conditions, Pch2 also possesses a positive action on Hop1 promoting its phosphorylation and its proper distribution on unsynapsed chromosome axes. PMID:27257060

  13. New checkpoints in cancer immunotherapy.

    PubMed

    Ni, Ling; Dong, Chen

    2017-03-01

    Immune responses must be fine-tuned to allow effective clearance of invading pathogens, while maintain tolerance to self-antigens. T cells are the major effector cells for fighting and killing tumor cells. Immune checkpoints play a pivotal role in T cell activation, and determine the functional outcome of T cell receptor (TCR) signaling. The blockade of immune checkpoints CTLA-4 and PD-1 has already been one of the most successful cancer immunotherapies. In this review, we will focus on three novel inhibitory B7 family checkpoint molecules, B7-H3, B7S1 and VISTA. The aim of this article is to summarize their expressions in tumors as well as their roles in controlling and suppressing T cell immune responses and anti-tumor immunity. These pathways may be explored in future cancer immunotherapy.

  14. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer

    DOE PAGES

    Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; ...

    2015-03-20

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. In conclusion, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lungmore » cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications.« less

  15. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer

    SciTech Connect

    Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; Dobroff, Andrey S.; Edwards, Julianna K.; Cimino, Daniel F.; Moeller, Benjamin J.; Kelly, Patrick; Nunez, Maria I.; Tang, Ximing; Liu, Diane D.; Lee, J. Jack; Hong, Waun Ki; Ferrara, Fortunato; Bradbury, Andrew R. M.; Lobb, Roy R.; Edelman, Martin J.; Sidman, Richard L.; Wistuba, Ignacio I.; Arap, Wadih; Pasqualini, Renata

    2015-03-20

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. In conclusion, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lung cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications.

  16. Alterations of the spindle checkpoint pathway in clinicopathologically aggressive CpG island methylator phenotype clear cell renal cell carcinomas

    PubMed Central

    Arai, Eri; Gotoh, Masahiro; Tian, Ying; Sakamoto, Hiromi; Ono, Masaya; Matsuda, Akio; Takahashi, Yoriko; Miyata, Sayaka; Totsuka, Hirohiko; Chiku, Suenori; Komiyama, Motokiyo; Fujimoto, Hiroyuki; Matsumoto, Kenji; Yamada, Tesshi; Yoshida, Teruhiko

    2015-01-01

    CpG‐island methylator phenotype (CIMP)‐positive clear cell renal cell carcinomas (RCCs) are characterized by accumulation of DNA hypermethylation of CpG islands, clinicopathological aggressiveness and poor patient outcome. The aim of this study was to clarify the molecular pathways participating in CIMP‐positive renal carcinogenesis. Genome (whole‐exome and copy number), transcriptome and proteome (two‐dimensional image converted analysis of liquid chromatography‐mass spectrometry) analyses were performed using tissue specimens of 87 CIMP‐negative and 14 CIMP‐positive clear cell RCCs and corresponding specimens of non‐cancerous renal cortex. Genes encoding microtubule‐associated proteins, such as DNAH2, DNAH5, DNAH10, RP1 and HAUS8, showed a 10% or higher incidence of genetic aberrations (non‐synonymous single‐nucleotide mutations and insertions/deletions) in CIMP‐positive RCCs, whereas CIMP‐negative RCCs lacked distinct genetic characteristics. MetaCore pathway analysis of CIMP‐positive RCCs revealed that alterations of mRNA or protein expression were significantly accumulated in six pathways, all participating in the spindle checkpoint, including the “The metaphase checkpoint (p = 1.427 × 10−6),” “Role of Anaphase Promoting Complex in cell cycle regulation (p = 7.444 × 10−6)” and “Spindle assembly and chromosome separation (p = 9.260 × 10−6)” pathways. Quantitative RT‐PCR analysis revealed that mRNA expression levels for genes included in such pathways, i.e., AURKA, AURKB, BIRC5, BUB1, CDC20, NEK2 and SPC25, were significantly higher in CIMP‐positive than in CIMP‐negative RCCs. All CIMP‐positive RCCs showed overexpression of Aurora kinases, AURKA and AURKB, and this overexpression was mainly attributable to increased copy number. These data suggest that abnormalities of the spindle checkpoint pathway participate in CIMP‐positive renal carcinogenesis, and that AURKA and AURKB may be potential

  17. Roles of the checkpoint sensor clamp Rad9-Rad1-Hus1 (911)-complex and the clamp loaders Rad17-RFC and Ctf18-RFC in Schizosaccharomyces pombe telomere maintenance.

    PubMed

    Khair, Lyne; Chang, Ya-Ting; Subramanian, Lakxmi; Russell, Paul; Nakamura, Toru M

    2010-06-01

    While telomeres must provide mechanisms to prevent DNA repair and DNA damage checkpoint factors from fusing chromosome ends and causing permanent cell cycle arrest, these factors associate with functional telomeres and play critical roles in the maintenance of telomeres. Previous studies have established that Tel1 (ATM) and Rad3 (ATR) kinases play redundant but essential roles for telomere maintenance in fission yeast. In addition, the Rad9-Rad1-Hus1 (911) and Rad17-RFC complexes work downstream of Rad3 (ATR) in fission yeast telomere maintenance. Here, we investigated how 911, Rad17-RFC and another RFC-like complex Ctf18-RFC contribute to telomere maintenance in fission yeast cells lacking Tel1 and carrying a novel hypomorphic allele of rad3 (DBD-rad3), generated by the fusion between the DNA binding domain (DBD) of the fission yeast telomere capping protein Pot1 and Rad3. Our investigations have uncovered a surprising redundancy for Rad9 and Hus1 in allowing Rad1 to contribute to telomere maintenance in DBD-rad3 tel1 cells. In addition, we found that Rad17-RFC and Ctf18-RFC carry out redundant telomere maintenance functions in DBD-rad3 tel1 cells. Since checkpoint sensor proteins are highly conserved, genetic redundancies uncovered here may be relevant to telomere maintenance and detection of DNA damage in other eukaryotes.

  18. A metabolic thermodynamic theory of cell cycle

    NASA Astrophysics Data System (ADS)

    Kummer, A.; Ocone, R.

    2003-08-01

    Due to its intrinsic complexity, a complete mathematical description of the cell cycle appears a difficult task. Nevertheless, a preliminary analysis, based on molecular biology, can help in clarifying what are the reliable tools for a quantitative approach. In a previous paper [Physica A 321 (3-4) (2003) 587], the steps to be followed to formulate a metabolic statistical thermodynamics have been established. Here we present a simple mathematical model for the interaction of CyclinB and Cdh1 [The Cell Cycle. An Introduction, Oxford University Press, New York, 1993], with the aim of analysing the properties of the system from a thermodynamic viewpoint. The model is shown to define the Gibbs phase integral of the system and the general Gibbs energy function is obtained. This, together with the analogue of the temperature, defines the working tools indispensable for the formulation of a metabolic statistical thermodynamic-like theory.

  19. Network support for system initiated checkpoints

    DOEpatents

    Chen, Dong; Heidelberger, Philip

    2013-01-29

    A system, method and computer program product for supporting system initiated checkpoints in parallel computing systems. The system and method generates selective control signals to perform checkpointing of system related data in presence of messaging activity associated with a user application running at the node. The checkpointing is initiated by the system such that checkpoint data of a plurality of network nodes may be obtained even in the presence of user applications running on highly parallel computers that include ongoing user messaging activity.

  20. Myricetin inhibits proliferation and induces apoptosis and cell cycle arrest in gastric cancer cells.

    PubMed

    Feng, Jianfang; Chen, Xiaonan; Wang, Yuanyuan; Du, Yuwen; Sun, Qianqian; Zang, Wenqiao; Zhao, Guoqiang

    2015-10-01

    Myricetin is a flavonoid that is abundant in fruits and vegetables and has protective effects against cancer and diabetes. However, the mechanism of action of myricetin against gastric cancer (GC) is not fully understood. We researched myricetin on the proliferation, apoptosis, and cell cycle in GC HGC-27 and SGC7901 cells, to explore the underlying mechanism of action. Cell Counting Kit (CCK)-8 assay, Western blotting, cell cycle analysis, and apoptosis assay were used to evaluate the effects of myricetin on cell proliferation, apoptosis, and the cell cycle. To analyze the binding properties of ribosomal S6 kinase 2 (RSK2) with myricetin, surface plasmon resonance (SPR) analysis was performed. CCK8 assay showed that myricetin inhibited GC cell proliferation. Flow cytometry analysis showed that myricetin induces apoptosis and cell cycle arrest in GC cells. Western blotting indicated that myricetin influenced apoptosis and cell cycle arrest of GC cells by regulating related proteins. SPR analysis showed strong binding affinity of RSK2 and myricetin. Myricetin bound to RSK2, leading to increased expression of Mad1, and contributed to inhibition of HGC-27 and SGC7901 cell proliferation. Our results suggest the therapeutic potential of myricetin in GC.

  1. Redundancy or specificity? The role of the CDK Pho85 in cell cycle control

    PubMed Central

    Jiménez, Javier; Ricco, Natalia; Grijota-Martínez, Carmen; Fadó, Rut; Clotet, Josep

    2013-01-01

    It is generally accepted that progression through the eukaryotic cell cycle is driven by cyclin-dependent kinases (CDKs), which are regulated by interaction with oscillatory expressed proteins called cyclins. CDKs may be separated into 2 categories: essential and non-essential. Understandably, more attention has been focused on essential CDKs because they are shown to control cell cycle progression to a greater degree. After clearly determining the basic and “core” mechanisms of essential CDKs, several questions arise. What role do non-essential CDKs play? Are these CDKs functionally redundant and do they serve as a mere backup? Or might they be responsible for some accessory tasks in cell cycle progression or control? In the present review we will try to answer these questions based on recent findings on the involvement of non-essential CDKs in cell cycle progression. We will analyse the most recent information with regard to these questions in the yeast Saccharomyces cerevisiae, a well-established eukaryotic model, and in its unique non-essential CDK involved in the cell cycle, Pho85. We will also briefly extend our discussion to higher eukaryotic systems. PMID:24049669

  2. Changes in microtubule phosphorylation during cell cycle of HeLa cells.

    PubMed Central

    Piras, R; Piras, M M

    1975-01-01

    The phosphorylation in vitro and in vivo of tubulin isolated from HeLa cells has been examined during the cell cylce. The results obtained indicate that: (a) the protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) activity present in the microtubules, and measured in vitro with exogenous casein as substrate, is maximal in M cells, whereas that present in the cytosol is nearly constant during the S, G-2, and M stages, and decreases during G-1; (b) the patterns through the cell cycle of the maximal number of tubulin sites phosphorylated in vitro and of the microtubular protein kinase activity are similar; (c) the degree of tubulin phosphorylation in vivo is 2- to 3-fold higher in the microtubules isolated from the S and M stages of the cell cycle, than those from G-1 and G-2. This variable phosphate content of tubulin through the cell cycle suggests that such covalent modification might be important to enable tubulin to carry over some of its functions during the cell cycle. Images PMID:1055373

  3. Evidence that Aurora B is implicated in spindle checkpoint signalling independently of error correction.

    PubMed

    Santaguida, Stefano; Vernieri, Claudio; Villa, Fabrizio; Ciliberto, Andrea; Musacchio, Andrea

    2011-04-20

    Fidelity of chromosome segregation is ensured by a tension-dependent error correction system that prevents stabilization of incorrect chromosome-microtubule attachments. Unattached or incorrectly attached chromosomes also activate the spindle assembly checkpoint, thus delaying mitotic exit until all chromosomes are bioriented. The Aurora B kinase is widely recognized as a component of error correction. Conversely, its role in the checkpoint is controversial. Here, we report an analysis of the role of Aurora B in the spindle checkpoint under conditions believed to uncouple the effects of Aurora B inhibition on the checkpoint from those on error correction. Partial inhibition of several checkpoint and kinetochore components, including Mps1 and Ndc80, strongly synergizes with inhibition of Aurora B activity and dramatically affects the ability of cells to arrest in mitosis in the presence of spindle poisons. Thus, Aurora B might contribute to spindle checkpoint signalling independently of error correction. Our results support a model in which Aurora B is at the apex of a signalling pyramid whose sensory apparatus promotes the concomitant activation of error correction and checkpoint signalling pathways.

  4. An ATM-independent S-phase checkpoint response involves CHK1 pathway

    NASA Technical Reports Server (NTRS)

    Zhou, Xiang-Yang; Wang, Xiang; Hu, Baocheng; Guan, Jun; Iliakis, George; Wang, Ya

    2002-01-01

    After exposure to genotoxic stress, proliferating cells actively slow down the DNA replication through a S-phase checkpoint to provide time for repair. We report that in addition to the ataxia-telangiectasia mutated (ATM)-dependent pathway that controls the fast response, there is an ATM-independent pathway that controls the slow response to regulate the S-phase checkpoint after ionizing radiation in mammalian cells. The slow response of S-phase checkpoint, which is resistant to wortmannin, sensitive to caffeine and UCN-01, and related to cyclin-dependent kinase phosphorylation, is much stronger in CHK1 overexpressed cells, and it could be abolished by Chk1 antisense oligonucleotides. These results provide evidence that the ATM-independent slow response of S-phase checkpoint involves CHK1 pathway.

  5. Phosphorylation of NDRG1 is temporally and spatially controlled during the cell cycle.

    PubMed

    McCaig, Catherine; Potter, Louisa; Abramczyk, Olga; Murray, James T

    2011-07-29

    The tumour metastasis suppressor, N-myc Downstream Regulated Gene (NDRG) 1, is a by the protein kinases SGK1 and GSK3β, but the relevance of its phosphorylation remains unclear. Analysis of HCT116 cells, either proficient or deficient for p53 revealed NDRG1 protein expression and phosphorylation by SGK1 was increased basally in p53-deficient cells. Treatment with the cell cycle inhibitors, aphidicolin or nocodazole also revealed increased NDRG1 phosphorylation in p53-deficient cells. Finally, phosphorylated NDRG1 was found to co-localise with γ-tubulin on centromeres and also to the cleavage furrow during cytokinesis. Taken together, this work demonstrates that NDRG1 phosphorylation, by the protein kinase SGK1, is temporally and spatially controlled during the cell cycle, suggesting a role for NDRG1 in successful mitosis.

  6. Oct4 resetting by Aurkb–PP1 cell cycle axis determines the identity of mouse embryonic stem cells

    PubMed Central

    Shin, Jihoon; Youn, Hong-Duk

    2016-01-01

    In embryonic stem cells (ESCs), cell cycle regulation is deeply connected to pluripotency. Especially, core transcription factors (CTFs) which are essential to maintaining the pluripotency transcription programs should be reset during M/G1 transition. However, it remains unknown about how CTFs are governed during cell cycle progression. Here, we describe that the regulation of Oct4 by Aurora kinase b (Aurkb)/protein phosphatase 1 (PP1) axis during the cell cycle is important for resetting Oct4 to pluripotency and cell cycle related target genes in determining the identity of ESCs. Aurkb starts to phosphorylate Oct4(S229) at the onset of G2/M phase, inducing the dissociation of Oct4 from chromatin, whereas PP1 binds Oct4 and dephosphorylates Oct4(S229) during M/G1 transition, which resets Oct4-driven transcription for pluripotency and the cell cycle. Furthermore, Aurkb phosphormimetic and PP1 binding-deficient mutations in Oct4 disrupt the pluripotent cell cycle, lead to the loss of pluripotency in ESCs, and decrease the efficiency of somatic cell reprogramming. Based on our findings, we suggest that the cell cycle is directly linked to pluripotency programs in ESCs. [BMB Reports 2016; 49(10): 527-528] PMID:27697110

  7. Oct4 resetting by Aurkb-PP1 cell cycle axis determines the identity of mouse embryonic stem cells.

    PubMed

    Shin, Jihoon; Youn, Hong-Duk

    2016-10-01

    In embryonic stem cells (ESCs), cell cycle regulation is deeply connected to pluripotency. Especially, core transcription factors (CTFs) which are essential to maintaining the pluripotency transcription programs should be reset during M/G1 transition. However, it remains unknown about how CTFs are governed during cell cycle progression. Here, we describe that the regulation of Oct4 by Aurora kinase b (Aurkb)/protein phosphatase 1 (PP1) axis during the cell cycle is important for resetting Oct4 to pluripotency and cell cycle related target genes in determining the identity of ESCs. Aurkb starts to phosphorylate Oct4(S229) at the onset of G2/M phase, inducing the dissociation of Oct4 from chromatin, whereas PP1 binds Oct4 and dephosphorylates Oct4(S229) during M/G1 transition, which resets Oct4-driven transcription for pluripotency and the cell cycle. Furthermore, Aurkb phosphormimetic and PP1 binding-deficient mutations in Oct4 disrupt the pluripotent cell cycle, lead to the loss of pluripotency in ESCs, and decrease the efficiency of somatic cell reprogramming. Based on our findings, we suggest that the cell cycle is directly linked to pluripotency programs in ESCs. [BMB Reports 2016; 49(10): 527-528].

  8. The Effects of G2-Phase Enrichment and Checkpoint Abrogation on Low-Dose Hyper-Radiosensitivity

    SciTech Connect

    Krueger, Sarah A.; Wilson, George D.; Piasentin, Evano; Joiner, Michael C.; Marples, Brian

    2010-08-01

    Purpose: An association between low-dose hyper-radiosensitivity (HRS) and the 'early' G2/M checkpoint has been established. An improved molecular understanding of the temporal dynamics of this relationship is needed before clinical translation can be considered. This study was conducted to characterize the dose response of the early G2/M checkpoint and then determine whether low-dose radiation sensitivity could be increased by synchronization or chemical inhibition of the cell cycle. Methods and Materials: Two related cell lines with disparate HRS status were used (MR4 and 3.7 cells). A double-thymidine block technique was developed to enrich the G2-phase population. Clonogenic cell survival, radiation-induced G2-phase cell cycle arrest, and deoxyribonucleic acid double-strand break repair were measured in the presence and absence of inhibitors to G2-phase checkpoint proteins. Results: For MR4 cells, the dose required to overcome the HRS response (approximately 0.2 Gy) corresponded with that needed for the activation of the early G2/M checkpoint. As hypothesized, enriching the number of G2-phase cells in the population resulted in an enhanced HRS response, because a greater proportion of radiation-damaged cells evaded the early G2/M checkpoint and entered mitosis with unrepaired deoxyribonucleic acid double-strand breaks. Likewise, abrogation of the checkpoint by inhibition of Chk1 and Chk2 also increased low-dose radiosensitivity. These effects were not evident in 3.7 cells. Conclusions: The data confirm that HRS is linked to the early G2/M checkpoint through the damage response of G2-phase cells. Low-dose radiosensitivity could be increased by manipulating the transition of radiation-damaged G2-phase cells into mitosis. This provides a rationale for combining low-dose radiation therapy with chemical synchronization techniques to improve increased radiosensitivity.

  9. Synthetic Physical Interactions Map Kinetochore-Checkpoint Activation Regions

    PubMed Central

    Ólafsson, Guðjón; Thorpe, Peter H.

    2016-01-01

    The spindle assembly checkpoint (SAC) is a key mechanism to regulate the timing of mitosis and ensure that chromosomes are correctly segregated to daughter cells. The recruitment of the Mad1 and Mad2 proteins to the kinetochore is normally necessary for SAC activation. This recruitment is coordinated by the SAC kinase Mps1, which phosphorylates residues at the kinetochore to facilitate binding of Bub1, Bub3, Mad1, and Mad2. There is evidence that the essential function of Mps1 is to direct recruitment of Mad1/2. To test this model, we have systematically recruited Mad1, Mad2, and Mps1 to most proteins in the yeast kinetochore, and find that, while Mps1 is sufficient for checkpoint activation, recruitment of either Mad1 or Mad2 is not. These data indicate an important role for Mps1 phosphorylation in SAC activation, beyond the direct recruitment of Mad1 and Mad2. PMID:27280788

  10. Non-volatile memory for checkpoint storage

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Cipolla, Thomas M.; Coteus, Paul W.; Gara, Alan; Heidelberger, Philip; Jeanson, Mark J.; Kopcsay, Gerard V.; Ohmacht, Martin; Takken, Todd E.

    2014-07-22

    A system, method and computer program product for supporting system initiated checkpoints in high performance parallel computing systems and storing of checkpoint data to a non-volatile memory storage device. The system and method generates selective control signals to perform checkpointing of system related data in presence of messaging activity associated with a user application running at the node. The checkpointing is initiated by the system such that checkpoint data of a plurality of network nodes may be obtained even in the presence of user applications running on highly parallel computers that include ongoing user messaging activity. In one embodiment, the non-volatile memory is a pluggable flash memory card.

  11. Checkpointing for a hybrid computing node

    DOEpatents

    Cher, Chen-Yong

    2016-03-08

    According to an aspect, a method for checkpointing in a hybrid computing node includes executing a task in a processing accelerator of the hybrid computing node. A checkpoint is created in a local memory of the processing accelerator. The checkpoint includes state data to restart execution of the task in the processing accelerator upon a restart operation. Execution of the task is resumed in the processing accelerator after creating the checkpoint. The state data of the checkpoint are transferred from the processing accelerator to a main processor of the hybrid computing node while the processing accelerator is executing the task.

  12. Expression of Exogenous mRNA in Xenopus laevis Embryos for the Study of Cell Cycle Regulation

    NASA Astrophysics Data System (ADS)

    Sible, Jill C.; Wroble, Brian N.

    The microinjection of mRNA that is transcribed and capped in vitro into fertilized eggs and embryos of Xenopus laevis provides a powerful means for discovering the function of proteins during early development. Proteins may be overexpressed for a gain-of-function effect or exogenous protein function may be compromised by the microinjection of mRNA encoding “dominant-negative” proteins. This methodology is particularly suited for the investigation of the regulation of the cell cycle, checkpoints, and apoptosis in early development.

  13. Cell cycle nucleic acids, polypeptides and uses thereof

    DOEpatents

    Gordon-Kamm, William J.; Lowe, Keith S.; Larkins, Brian A.; Dilkes, Brian R.; Sun, Yuejin

    2007-08-14

    The invention provides isolated nucleic acids and their encoded proteins that are involved in cell cycle regulation. The invention further provides recombinant expression cassettes, host cells, transgenic plants, and antibody compositions. The present invention provides methods and compositions relating to altering cell cycle protein content, cell cycle progression, cell number and/or composition of plants.

  14. Immunohistochemical markers of cell cycle control applied to ovarian and primary peritoneal surface epithelial neoplasms: p21(WAF1/CIP1) predicts survival and good response to platinin-based chemotherapy.

    PubMed

    Costa, M J; Hansen, C L; Walls, J E; Scudder, S A

    1999-06-01

    Immunohistochemistry for p53, p21(WAF1/CIP1), and Ki-67 provides insight into the molecular events controlling the cell cycle. We tested the hypothesis that these cell cycle markers will aid in the clinical evaluation of ovarian and primary peritoneal surface epithelial neoplasms (SENs). Paraffin sections from a retrospective surgical series of 117 SENs were immunostained with anti-p53 (clone DO7, Novacastra Laboratories, UK), anti-p21(WAF1/CIP1) (clone EA10, Oncogene Science, Cambridge, MA), and anti-Ki-67 (clone MIB-1, Immunotech, Westbrook, ME). The Ki-67 proliferation index (Ki-67PI) and immunoreactivity were evaluated. One hundred seventeen SENs reacted as follows: p53 50%+ and p21(WAF1/CIP1) 65%+. Ki-67PI ranged from 4% to 88% (mean/median = 44/46%). p53 reactivity associated with transitional cell histology, decreased p21(WAF1/CIP1) staining, increased Ki-67PI, architectural/nuclear grade, and stage (P < .05, 1 x 10(-7), .01, .05/.0001, .001,). p21(WAF1/CIP1) staining was associated with endometrioid/clear cell histology, decreased Ki-67PI, architectural/nuclear grade, and stage (P < 05/.05, .05, .01/1 x 10(-8), 1 x 10(-5)). Ki-67PI associated with increased architectural/nuclear grade but not mucinous histology (P < 1 x 10(-5)/1 x 10(-6), .01). Sixty-seven patients had disease at last follow-up; 53 were dead of disease at 0 to 67 months (mean/median, 21/18), and 14 were alive with disease at 12 to 224 months (mean/median, 56/40). Fifty patients were disease free at 5 to 214 months (mean/median, 59/41). Predictors of survival include decreased Ki-67PI, stage, architectural/nuclear grade (P < 1 x 10(-6), 1 x 10(-10), 1 x 10(-10)/.005) and p21(WAF1/CIP1) IMS (multivariate P < 1 x 10(-6)). p21(WAF1/CIP1), a potent inhibitor of cyclin-dependent kinases necessary for cell cycle progression, functions as a key checkpoint in cell cycle control. Immunoreactivity for p21(WAF1/CIP1) provides prognostic information independent of other histological and clinical

  15. An essential role for the Saccharomyces cerevisiae DEAD-box helicase DHH1 in G1/S DNA-damage checkpoint recovery.

    PubMed Central

    Bergkessel, Megan; Reese, Joseph C

    2004-01-01

    The eukaryotic cell cycle displays a degree of plasticity in its regulation; cell cycle progression can be transiently arrested in response to environmental stresses. While the signaling pathways leading to cell cycle arrest are beginning to be well understood, the regulation of the release from arrest has not been well characterized. Here we show that DHH1, encoding a DEAD-box RNA helicase orthologous to the human putative proto-oncogene p54/RCK, is important in release from DNA-damage-induced cell cycle arrest at the G1/S checkpoint. DHH1 mutants are not defective for DNA repair and recover normally from the G2/M and replication checkpoints, suggesting a specific function for Dhh1p in recovery from G1/S checkpoint arrest. Dhh1p has been suggested to play a role in partitioning mRNAs between translatable and nontranslatable pools, and our results implicate this modulation of mRNA metabolism in the recovery from G1/S cell cycle arrest following DNA damage. Furthermore, the high degree of conservation between DHH1 and its human ortholog suggests that this mechanism is conserved among all eukaryotes and potentially important in human disease. PMID:15166134

  16. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells.

    PubMed

    Yedjou, Clement G; Tchounwou, Hervey M; Tchounwou, Paul B

    2015-12-22

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO₃)₂] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO₃)₂ for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p < 0.05) increase of necrotic cell death in Pb(NO₃)₂-treated cells, indicative of membrane rupture by Pb(NO₃)₂ compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05) in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO₃)₂ exposure significantly (p < 0.05) increased the proportion of caspase-3 positive cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO₃)₂ exposure caused cell cycle arrest at the G₀/G₁ checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO₃)₂ inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G₀/G₁ checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb

  17. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells

    PubMed Central

    Yedjou, Clement G.; Tchounwou, Hervey M.; Tchounwou, Paul B.

    2015-01-01

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO3)2] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO3)2 for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p < 0.05) increase of necrotic cell death in Pb(NO3)2-treated cells, indicative of membrane rupture by Pb(NO3)2 compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05) in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO3)2 exposure significantly (p < 0.05) increased the proportion of caspase-3 positive cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO3)2 exposure caused cell cycle arrest at the G0/G1 checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO3)2 inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G0/G1 checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO3)2 exposure and its associated adverse health

  18. VRK1 regulates Cajal body dynamics and protects coilin from proteasomal degradation in cell cycle.

    PubMed

    Cantarero, Lara; Sanz-García, Marta; Vinograd-Byk, Hadar; Renbaum, Paul; Levy-Lahad, Ephrat; Lazo, Pedro A

    2015-06-12

    Cajal bodies (CBs) are nuclear organelles associated with ribonucleoprotein functions and RNA maturation. CBs are assembled on coilin, its main scaffold protein, in a cell cycle dependent manner. The Ser-Thr VRK1 (vaccinia-related kinase 1) kinase, whose activity is also cell cycle regulated, interacts with and phosphorylates coilin regulating assembly of CBs. Coilin phosphorylation is not necessary for its interaction with VRK1, but it occurs in mitosis and regulates coilin stability. Knockdown of VRK1 or VRK1 inactivation by serum deprivation causes a loss of coilin phosphorylation in Ser184 and of CBs formation, which are rescued with an active VRK1, but not by kinase-dead VRK1. The phosphorylation of coilin in Ser184 occurs during mitosis before assembly of CBs. Loss of coilin phosphorylation results in disintegration of CBs, and of coilin degradation that is prevented by proteasome inhibitors. After depletion of VRK1, coilin is ubiquitinated in nuclei, which is partly mediated by mdm2, but its proteasomal degradation occurs in cytosol and is prevented by blocking its nuclear export. We conclude that VRK1 is a novel regulator of CBs dynamics and stability in cell cycle by protecting coilin from ubiquitination and degradation in the proteasome, and propose a model of CB dynamics.

  19. Transcriptional Control of Cell-Cycle Quiescence During C. elegans Development

    PubMed Central

    Clayton, Joseph E.; van den Heuvel, Sander J.L.; Saito, R. Mako

    2008-01-01

    During the development of the C. elegans reproductive system, cells that give rise to the vulva, the vulval precursor cells (VPCs), remain quiescent for two larval stages before resuming cell division in the third larval stage. We have identified several transcriptional regulators that contribute to this temporary cell-cycle arrest. Mutation of lin-1 or lin-31, two downstream targets of the Receptor Tyrosine kinase (RTK)/Ras/MAP kinase cascade that controls VPC cell fate, disrupts the temporary VPC quiescence. We found that the LIN-1/Ets and LIN-31/FoxB transcription factors promote expression of CKI-1, a member of the p27 family of cyclin-dependent kinase inhibitors (CKIs). LIN-1 and LIN-31 promote cki-1/Kip-1 transcription prior to their inhibition through RTK/Ras/MAPK activation. Another mutation identified in the screen defined the mdt-13 TRAP240 Mediator subunit. Further analysis of the multisubunit Mediator complex revealed that a specific subset of its components act in VPC quiescence. These components substantially overlap with the CDK-8 module implicated in transcriptional repression. Taken together, strict control of cell-cycle quiescence during VPC development involves transcriptional induction of CKI-1 and transcriptional regulation through the Mediator complex. These transcriptional regulators represent potential molecular connections between development and the basic cell-cycle machinery. PMID:18082681

  20. VRK1 regulates Cajal body dynamics and protects coilin from proteasomal degradation in cell cycle

    PubMed Central

    Cantarero, Lara; Sanz-García, Marta; Vinograd-Byk, Hadar; Renbaum, Paul; Levy-Lahad, Ephrat; Lazo, Pedro A.

    2015-01-01

    Cajal bodies (CBs) are nuclear organelles associated with ribonucleoprotein functions and RNA maturation. CBs are assembled on coilin, its main scaffold protein, in a cell cycle dependent manner. The Ser-Thr VRK1 (vaccinia-related kinase 1) kinase, whose activity is also cell cycle regulated, interacts with and phosphorylates coilin regulating assembly of CBs. Coilin phosphorylation is not necessary for its interaction with VRK1, but it occurs in mitosis and regulates coilin stability. Knockdown of VRK1 or VRK1 inactivation by serum deprivation causes a loss of coilin phosphorylation in Ser184 and of CBs formation, which are rescued with an active VRK1, but not by kinase-dead VRK1. The phosphorylation of coilin in Ser184 occurs during mitosis before assembly of CBs. Loss of coilin phosphorylation results in disintegration of CBs, and of coilin degradation that is prevented by proteasome inhibitors. After depletion of VRK1, coilin is ubiquitinated in nuclei, which is partly mediated by mdm2, but its proteasomal degradation occurs in cytosol and is prevented by blocking its nuclear export. We conclude that VRK1 is a novel regulator of CBs dynamics and stability in cell cycle by protecting coilin from ubiquitination and degradation in the proteasome, and propose a model of CB dynamics. PMID:26068304

  1. Control points within the cell cycle

    SciTech Connect

    Van't Hof, J.

    1984-01-01

    Evidence of the temporal order of chromosomal DNA replication argues favorably for the view that the cell cycle is controlled by genes acting in sequence whose time of expression is determined by mitosis and the amount of nuclear DNA (2C vs 4C) in the cell. Gl and G2 appear to be carbohydrate dependent in that cells starved of either carbohydrate of phosphate fail to make these transitions. Cells deprived of nitrate, however, fail only at Gl to S transition indicating that the controls that operate in G1 differ from those that operate in G2. 46 references, 5 figures.

  2. Assessing Cell Cycle Progression of Neural Stem and Progenitor Cells in the Mouse Developing Brain after Genotoxic Stress

    PubMed Central

    Etienne, Olivier; Bery, Amandine; Roque, Telma; Desmaze, Chantal; Boussin, François D.

    2014-01-01

    Neurons of the cerebral cortex are generated during brain development from different types of neural stem and progenitor cells (NSPC), which form a pseudostratified epithelium lining the lateral ventricles of the embryonic brain. Genotoxic stresses, such as ionizing radiation, have highly deleterious effects on the developing brain related to the high sensitivity of NSPC. Elucidation of the cellular and molecular mechanisms involved depends on the characterization of the DNA damage response of these particular types of cells, which requires an accurate method to determine NSPC progression through the cell cycle in the damaged tissue. Here is shown a method based on successive intraperitoneal injections of EdU and BrdU in pregnant mice and further detection of these two thymidine analogues in coronal sections of the embryonic brain. EdU and BrdU are both incorporated in DNA of replicating cells during S phase and are detected by two different techniques (azide or a specific antibody, respectively), which facilitate their simultaneous detection. EdU and BrdU staining are then determined for each NSPC nucleus in function of its distance from the ventricular margin in a standard region of the dorsal telencephalon. Thus this dual labeling technique allows distinguishing cells that progressed through the cell cycle from those that have activated a cell cycle checkpoint leading to cell cycle arrest in response to DNA damage. An example of experiment is presented, in which EdU was injected before irradiation and BrdU immediately after and analyzes performed within the 4 hr following irradiation. This protocol provides an accurate analysis of the acute DNA damage response of NSPC in function of the phase of the cell cycle at which they have been irradiated. This method is easily transposable to many other systems in order to determine the impact of a particular treatment on cell cycle progression in living tissues. PMID:24837791

  3. Assessing cell cycle progression of neural stem and progenitor cells in the mouse developing brain after genotoxic stress.

    PubMed

    Etienne, Olivier; Bery, Amandine; Roque, Telma; Desmaze, Chantal; Boussin, François D

    2014-05-07

    Neurons of the cerebral cortex are generated during brain development from different types of neural stem and progenitor cells (NSPC), which form a pseudostratified epithelium lining the lateral ventricles of the embryonic brain. Genotoxic stresses, such as ionizing radiation, have highly deleterious effects on the developing brain related to the high sensitivity of NSPC. Elucidation of the cellular and molecular mechanisms involved depends on the characterization of the DNA damage response of these particular types of cells, which requires an accurate method to determine NSPC progression through the cell cycle in the damaged tissue. Here is shown a method based on successive intraperitoneal injections of EdU and BrdU in pregnant mice and further detection of these two thymidine analogues in coronal sections of the embryonic brain. EdU and BrdU are both incorporated in DNA of replicating cells during S phase and are detected by two different techniques (azide or a specific antibody, respectively), which facilitate their simultaneous detection. EdU and BrdU staining are then determined for each NSPC nucleus in function of its distance from the ventricular margin in a standard region of the dorsal telencephalon. Thus this dual labeling technique allows distinguishing cells that progressed through the cell cycle from those that have activated a cell cycle checkpoint leading to cell cycle arrest in response to DNA damage. An example of experiment is presented, in which EdU was injected before irradiation and BrdU immediately after and analyzes performed within the 4 hr following irradiation. This protocol provides an accurate analysis of the acute DNA damage response of NSPC in function of the phase of the cell cycle at which they have been irradiated. This method is easily transposable to many other systems in order to determine the impact of a particular treatment on cell cycle progression in living tissues.

  4. K562 cells display different vulnerability to H₂O₂ induced oxidative stress in differing cell cycle phases.

    PubMed

    Akcakaya, Handan; Dal, Fulya; Tok, Sabiha; Cinar, Suzan-Adin; Nurten, Rustem

    2015-02-01

    Oxidative stress can be defined as the increase of oxidizing agents like reactive oxygen and nitrogen species, or the imbalance between the antioxidative defense mechanism and oxidants. Cell cycle checkpoint response can be defined as the arrest of the cell cycle functioning after damaging chemical exposure. This temporary arrest may be a period of time given to the cells to repair the DNA damage before entering the cycle again and completing mitosis. In order to determine the effects of oxidative stress on several cell cycle phases, human erytroleukemia cell line (K562) was synchronized with mimosine and genistein, and cell cycle analysis carried out. Synchronized cells were exposed to oxidative stress with hydrogen peroxide (H2O2) at several concentrations and different times. Changes on mitochondria membrane potential (ΔΨm) of K562 cells were analyzed in G1, S, and G2 /M using Rhodamine 123 (Rho 123). To determine apoptosis and necrosis, stressed cells were stained with Annexin V (AnnV) and propidium iodide (PI) for flow cytometry. Changes were observed in the ΔΨm of synchronized and asynchronized cells that were exposed to oxidative stress. Synchronized cells in S phase proved resistant to the effects of oxidative stress and synchronized cells at G2 /M phase were sensitive to the effects of H2O2 -induced oxidative stress at 500 μM and above.

  5. Structural and Functional Characterization of the Protein Kinase Mps1 in Arabidopsis thaliana

    PubMed Central

    de Oliveira, Eduardo Alves Gamosa; Romeiro, Nelilma Correia; Ribeiro, Elane da Silva; Santa-Catarina, Claudete; Oliveira, Antônia Elenir Amâncio; Silveira, Vanildo; de Souza Filho, Gonçalo Apolinário; Venancio, Thiago Motta; Cruz, Marco Antônio Lopes

    2012-01-01

    In eukaryotes, protein kinases catalyze the transfer of a gamma-phosphate from ATP (or GTP) to specific amino acids in protein targets. In plants, protein kinases have been shown to participate in signaling cascades driving responses to environmental stimuli and developmental processes. Plant meristems are undifferentiated tissues that provide the major source of cells that will form organs throughout development. However, non-dividing specialized cells can also dedifferentiate and re-initiate cell division if exposed to appropriate conditions. Mps1 (Monopolar spindle) is a dual-specificity protein kinase that plays a critical role in monitoring the accuracy of chromosome segregation in the mitotic checkpoint mechanism. Although Mps1 functions have been clearly demonstrated in animals and fungi, its role in plants is so far unclear. Here, using structural and biochemical analyses here we show that Mps1 has highly similar homologs in many plant genomes across distinct lineages (e.g. AtMps1 in Arabidopsis thaliana). Several structural features (i.e. catalytic site, DFG motif and threonine triad) are clearly conserved in plant Mps1 kinases. Structural and sequence analysis also suggest that AtMps1 interact with other cell cycle proteins, such as Mad2 and MAPK1. By using a very specific Mps1 inhibitor (SP600125) we show that compromised AtMps1 activity hampers the development of A. thaliana seedlings in a dose-dependent manner, especially in secondary roots. Moreover, concomitant administration of the auxin IAA neutralizes the AtMps1 inhibition phenotype, allowing secondary root development. These observations let us to hypothesize that AtMps1 might be a downstream regulator of IAA signaling in the formation of secondary roots. Our results indicate that Mps1 might be a universal component of the Spindle Assembly Checkpoint machinery across very distant lineages of eukaryotes. PMID:23049844

  6. Design, Synthesis, and Characterization of a Highly Effective Hog1 Inhibitor: A Powerful Tool for Analyzing MAP Kinase Signaling in Yeast

    PubMed Central

    Migdal, Iwona; Andersson, Terese; Gebbia, Marinella; Giaever, Guri; Nislow, Corey; Hohmann, Stefan; Wysocki, Robert; Tamás, Markus J.; Grøtli, Morten

    2011-01-01

    The Saccharomyces cerevisiae High-Osmolarity Glycerol (HOG) pathway is a conserved mitogen-activated protein kinase (MAPK) signal transduction system that often serves as a model to analyze systems level properties of MAPK signaling. Hog1, the MAPK of the HOG-pathway, can be activated by various environmental cues and it controls transcription, translation, transport, and cell cycle adaptations in response to stress conditions. A powerful means to study signaling in living cells is to use kinase inhibitors; however, no inhibitor targeting wild-type Hog1 exists to date. Herein, we describe the design, synthesis, and biological application of small molecule inhibitors that are cell-permeable, fast-acting, and highly efficient against wild-type Hog1. These compounds are potent inhibitors of Hog1 kinase activity both in vitro and in vivo. Next, we use these novel inhibitors to pinpoint the time of Hog1 action during recovery from G1 checkpoint arrest, providing further evidence for a specific role of Hog1 in regulating cell cycle resumption during arsenite stress. Hence, we describe a novel tool for chemical genetic analysis of MAPK signaling and provide novel insights into Hog1 action. PMID:21655328

  7. The Aspergillus nidulans uvsB gene encodes an ATM-related kinase required for multiple facets of the DNA damage response.

    PubMed Central

    Hofmann, A F; Harris, S D

    2000-01-01

    In Aspergillus nidulans, uvsB and uvsD belong to the same epistasis group of DNA repair mutants. Recent observations suggest that these genes are likely to control cell cycle checkpoint responses to DNA damage and incomplete replication. Consistent with this notion, we show here that UVSB is a member of the conserved family of ATM-related kinases. Phenotypic characterization of uvsB mutants shows that they possess defects in additional aspects of the DNA damage response besides checkpoint control, including inhibition of septum formation, regulation of gene expression, and induced mutagenesis. The musN227 mutation partially suppresses the poor growth and DNA damage sensitivity of uvsB mutants. Although musN227 partially suppresses several uvsB defects, it does not restore checkpoint function to uvsB mutants. Notably, the failure of uvsB mutants to restrain septum formation in the presence of DNA damage is suppressed by the musN227 mutation. We propose that UVSB functions as the central regulator of the A. nidulans DNA damage response, whereas MUSN promotes recovery by modulating a subset of the response. PMID:10747054

  8. Effects of suppressed autophagy on mitochondrial dynamics and cell cycle of N2a cells.

    PubMed

    Gui, Meng-cui; Chen, Bo; Yu, Shan-shan; Bu, Bi-tao

    2014-04-01

    Autophagy dysregulation, mitochondrial dynamic abnormality and cell cycle re-entry are implicated in the vulnerable neurons of patients with Alzheimer's disease. This study was designed to testify the association among autophagy, mitochondrial dynamics and cell cycle in dividing neuroblastoma (N2a) cells. The N2a cells were cultured in vitro and treated with different concentrations of 3-methyladenine (3-MA). The cell viability was detected by methyl thiazolyl tetrazolium (MTT) assay. They were randomly divided into control group (cells cultured in normal culture medium) and 3-MA group (cells treated with 10 mmol/L 3-MA). The cell cycle was analyzed in the two groups 3, 6, 12, and 24 h after treatment by flow cytometry. Western blotting was used to evaluate the expression levels of mitofission 1 (Fis1), mitofusin 2 (Mfn2), microtubule-associated protein 1 light chain 3 (LC3), cell cycle-dependent kinase 4 (CDK4) and cdc2. The flow cytometry revealed that the proportion of cells in G(2)/M was significantly increased, and that in G0/G1 was significantly reduced in the 3-MA group as compared with the control group. Western blotting showed that the expression levels of Fis1, LC3, and CDK4 were significantly up-regulated in the 3-MA group at the four indicated time points as compared with the control group. Mfn2 was initially decreased in the 3-MA group, and then significantly increased at 6 h or 12 h. Cdc2 was significantly increased in the 3-MA group at 3 h and 6 h, and then dropped significantly at 12 h and 24 h. Our data indicated that 3-MA-induced suppressed autophagy may interfere with the cell cycle progression and mitochondrial dynamics, and cause cell death. There are interactions among cell cycle, mitochondrial dynamics and autophagy in neurons.

  9. The molecular chaperone Hsp90 is required for cell cycle exit in Drosophila melanogaster.

    PubMed

    Bandura, Jennifer L; Jiang, Huaqi; Nickerson, Derek W; Edgar, Bruce A

    2013-01-01

    The coordination of cell proliferation and differentiation is crucial for proper development. In particular, robust mechanisms exist to ensure that cells permanently exit the cell cycle upon terminal differentiation, and these include restraining the activities of both the E2F/DP transcription factor and Cyclin/Cdk kinases. However, the full complement of mechanisms necessary to restrain E2F/DP and Cyclin/Cdk activities in differentiating cells are not known. Here, we have performed a genetic screen in Drosophila melanogaster, designed to identify genes required for cell cycle exit. This screen utilized a PCNA-miniwhite(+) reporter that is highly E2F-responsive and results in a darker red eye color when crossed into genetic backgrounds that delay cell cycle exit. Mutation of Hsp83, the Drosophila homolog of mammalian Hsp90, results in increased E2F-dependent transcription and ectopic cell proliferation in pupal tissues at a time when neighboring wild-type cells are postmitotic. Further, these Hsp83 mutant cells have increased Cyclin/Cdk activity and accumulate proteins normally targeted for proteolysis by the anaphase-promoting complex/cyclosome (APC/C), suggesting that APC/C function is inhibited. Indeed, reducing the gene dosage of an inhibitor of Cdh1/Fzr, an activating subunit of the APC/C that is required for timely cell cycle exit, can genetically suppress the Hsp83 cell cycle exit phenotype. Based on these data, we propose that Cdh1/Fzr is a client protein of Hsp83. Our results reveal that Hsp83 plays a heretofore unappreciated role in promoting APC/C function during cell cycle exit and suggest a mechanism by which Hsp90 inhibition could promote genomic instability and carcinogenesis.

  10. A comparative study of the aneugenic and polyploidy-inducing effects of fisetin and two model Aurora kinase inhibitors.

    PubMed

    Gollapudi, P; Hasegawa, L S; Eastmond, D A

    2014-06-01

    Fisetin, a plant flavonol commonly found in fruits, nuts and vegetables, is frequently added to nutritional supplements due to its reported cardioprotective, anti-carcinogenic and antioxidant properties. Earlier reports from our laboratory and others have indicated that fisetin has both aneugenic and clastogenic properties in cultured cells. More recently, fisetin has also been reported to target Aurora B kinase, a Ser/Thr kinase involved in ensuring proper microtubule attachment at the spindle assembly checkpoint, and an enzyme that is overexpressed in several types of cancer. Here we have further characterized the chromosome damage caused by fisetin and compared it with that induced by two known Aurora kinase inhibitors, VX-680 and ZM-447439, in cultured TK6 cells using the micronucleus assay with CREST staining as well as a flow cytometry-based assay that measures multiple types of numerical chromosomal aberrations. The three compounds were highly effective in inducing aneuploidy and polyploidy as evidenced by increases in kinetochore-positive micronuclei, hyperdiploidy, and polyploidy. With fisetin, however, the latter two effects were most significantly observed only after cells were allowed to overcome a cell cycle delay, and occurred at higher concentrations than those induced by the other Aurora kinase inhibitors. Modest increases in kinetochore-negative micronuclei were also seen with the model Aurora kinase inhibitors. These results indicate that fisetin induces multiple types of chromosome abnormalities in human cells, and indicate a need for a thorough investigation of fisetin-augmented dietary supplements.

  11. Cell cycle delay in murine pre-osteoblasts is more pronounced after exposure to high-LET compared to low-LET radiation.

    PubMed

    Hu, Yueyuan; Hellweg, Christine E; Baumstark-Khan, Christa; Reitz, Günther; Lau, Patrick

    2014-03-01

    Space radiation contains a complex mixture of particles comprised primarily of protons and high-energy heavy ions. Radiation risk is considered one of the major health risks for astronauts who embark on both orbital and interplanetary space missions. Ionizing radiation dose-dependently kills cells, damages genetic material, and disturbs cell differentiation and function. The immediate response to ionizing radiation-induced DNA damage is stimulation of DNA repair machinery and activation of cell cycle regulatory checkpoints. To date, little is known about cell cycle regulation after exposure to space-relevant radiation, especially regarding bone-forming osteoblasts. Here, we assessed cell cycle regulation in the osteoblastic cell line OCT-1 after exposure to various types of space-relevant radiation. The relative biological effectiveness (RBE) of ionizing radiation was investigated regarding the biological endpoint of cellular survival ability. Cell cycle progression was examined following radiation exposure resulting in different RBE values calculated for a cellular survival level of 1 %. Our findings indicate that radiation with a linear energy transfer (LET) of 150 keV/μm was most effective in inducing reproductive cell killing by causing cell cycle arrest. Expression analyses indicated that cells exposed to ionizing radiation exhibited significantly up-regulated p21(CDKN1A) gene expression. In conclusion, our findings suggest that cell cycle regulation is more sensitive to high-LET radiation than cell survival, which is not solely regulated through elevated CDKN1A expression.

  12. Phenotypic checkpoints regulate neuronal development.

    PubMed

    Ben-Ari, Yehezkel; Spitzer, Nicholas C

    2010-11-01

    Nervous system development proceeds by sequential gene expression mediated by cascades of transcription factors in parallel with sequences of patterned network activity driven by receptors and ion channels. These sequences are cell type- and developmental stage-dependent and modulated by paracrine actions of substances released by neurons and glia. How and to what extent these sequences interact to enable neuronal network development is not understood. Recent evidence demonstrates that CNS development requires intermediate stages of differentiation providing functional feedback that influences gene expression. We suggest that embryonic neuronal functions constitute a series of phenotypic checkpoint signatures; neurons failing to express these functions are delayed or developmentally arrested. Such checkpoints are likely to be a general feature of neuronal development and constitute presymptomatic signatures of neurological disorders when they go awry.

  13. Affinity-aware checkpoint restart

    SciTech Connect

    Saini, Ajay; Rezaei, Arash; Mueller, Frank; Hargrove, Paul; Roman, Eric

    2014-12-08

    Current checkpointing techniques employed to overcome faults for HPC applications result in inferior application performance after restart from a checkpoint for a number of applications. This is due to a lack of page and core affinity awareness of the checkpoint/restart (C/R) mechanism, i.e., application tasks originally pinned to cores may be restarted on different cores, and in case of non-uniform memory architectures (NUMA), quite common today, memory pages associated with tasks on a NUMA node may be associated with a different NUMA node after restart. Here, this work contributes a novel design technique for C/R mechanisms to preserve task-to-core maps and NUMA node specific page affinities across restarts. Experimental results with BLCR, a C/R mechanism, enhanced with affinity awareness demonstrate significant performance benefits of 37%-73% for the NAS Parallel Benchmark codes and 6-12% for NAMD with negligible overheads instead of up to nearly four times longer an execution times without affinity-aware restarts on 16 cores.

  14. Affinity-aware checkpoint restart

    DOE PAGES

    Saini, Ajay; Rezaei, Arash; Mueller, Frank; ...

    2014-12-08

    Current checkpointing techniques employed to overcome faults for HPC applications result in inferior application performance after restart from a checkpoint for a number of applications. This is due to a lack of page and core affinity awareness of the checkpoint/restart (C/R) mechanism, i.e., application tasks originally pinned to cores may be restarted on different cores, and in case of non-uniform memory architectures (NUMA), quite common today, memory pages associated with tasks on a NUMA node may be associated with a different NUMA node after restart. Here, this work contributes a novel design technique for C/R mechanisms to preserve task-to-core mapsmore » and NUMA node specific page affinities across restarts. Experimental results with BLCR, a C/R mechanism, enhanced with affinity awareness demonstrate significant performance benefits of 37%-73% for the NAS Parallel Benchmark codes and 6-12% for NAMD with negligible overheads instead of up to nearly four times longer an execution times without affinity-aware restarts on 16 cores.« less

  15. Cell cycle kinesis in lymphocytes in the diagnosis of Alzheimer's disease.

    PubMed

    Nagy, Zsuzsanna; Combrinck, Marc; Budge, Marc; McShane, Rupert

    2002-01-11

    The currently available clinical diagnostic tools do not allow an accurate and reliable diagnosis of Alzheimer's disease (AD) in other than demented patients. Furthermore, they do not allow the identification of subjects with pre-clinical AD. Cell cycle regulatory failure in neurones appears to be a very early event in the pathogenesis of AD. Our earlier findings indicate that there is a specific failure of the G1/S transition checkpoint that may not be restricted to neurones alone. We tested the possibility that lymphocytes of AD sufferers may also show signs of G1 regulatory failure. We found that the in vitro responsiveness of lymphocytes to G1 inhibitor treatment was significantly less effective in AD patients than in control subjects. Additionally, in subjects showing neuropsychological signs of pre-clinical AD, the lymphocyte response was similar to that seen in AD patients. We present direct evidence to support the hypothesis that the failure of the G1/S transition control is not restricted to neurones in AD patients, but occurs in peripheral cells, such as lymphocytes, as well. Our findings could provide the basis for new clinical tests that rely on eliciting the activation of the G1/S transition checkpoint in lymphocyte cultures. We propose that the introduction of the test could be useful in identifying people who do not yet fulfil the requirements of the NINCDS criteria for dementia, but who would benefit from the use of preventive measures for AD.

  16. Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle

    NASA Astrophysics Data System (ADS)

    Roa, Wilson; Zhang, Xiaojing; Guo, Linghong; Shaw, Andrew; Hu, Xiuying; Xiong, Yeping; Gulavita, Sunil; Patel, Samir; Sun, Xuejun; Chen, Jie; Moore, Ronald; Xing, James Z.

    2009-09-01

    Glucose-capped gold nanoparticles (Glu-GNPs) have been used to improve cellular targeting and radio-sensitization. In this study, we explored the mechanism of Glu-GNP enhanced radiation sensitivity in radiation-resistant human prostate cancer cells. Cell survival and proliferation were measured using MTT and clonogenic assay. Flow cytometry with staining by propidium iodide (PI) was performed to study the cell cycle changes induced by Glu-GNPs, and western blotting was used to determine the expression of p53 and cyclin proteins that correlated to cell cycle regulation. With 2 Gy of ortho-voltage irradiation, Glu-GNP showed a 1.5-2.0 fold enhancement in growth inhibition when compared to x-rays alone. Comparing the cell cycle change, Glu-GNPs induced acceleration in the G0/G1 phase and accumulation of cells in the G2/M phase at 29.8% versus 18.4% for controls at 24 h. G2/M arrest was accompanied by decreased expression of p53 and cyclin A, and increased expression of cyclin B1 and cyclin E. In conclusion, Glu-GNPs trigger activation of the CDK kinases leading to cell cycle acceleration in the G0/G1 phase and accumulation in the G2/M phase. This activation is accompanied by a striking sensitization to ionizing radiation, which may have clinical implications.

  17. Regulation of DNA damage responses and cell cycle progression by hMOB2

    PubMed Central

    Gomez, Valenti; Gundogdu, Ramazan; Gomez, Marta; Hoa, Lily; Panchal, Neelam; O’Driscoll, Mark; Hergovich, Alexander

    2014-01-01

    Mps one binder proteins (MOBs) are conserved regulators of essential signalling pathways. Biochemically, human MOB2 (hMOB2) can inhibit NDR kinases by competing with hMOB1 for binding to NDRs. However, biological roles of hMOB2 have remained enigmatic. Here, we describe novel functions of hMOB2 in the DNA damage response (DDR) and cell cycle regulation. hMOB2 promotes DDR signalling, cell survival and cell cycle arrest after exogenously induced DNA damage. Under normal growth conditions in the absence of exogenously induced DNA damage hMOB2 plays a role in preventing the accumulation of endogenous DNA damage and a subsequent p53/p21-dependent G1/S cell cycle arrest. Unexpectedly, these molecular and cellular phenotypes are not observed upon NDR manipulations, indicating that hMOB2 performs these functions independent of NDR signalling. Thus, to gain mechanistic insight, we screened for novel binding partners of hMOB2, revealing that hMOB2 interacts with RAD50, facilitating the recruitment of the MRE11-RAD50-NBS1 (MRN) DNA damage sensor complex and activated ATM to DNA damaged chromatin. Taken together, we conclude that hMOB2 supports the DDR and cell cycle progression. PMID:25460043

  18. G1/S control of anchorage-independent growth in the fibroblast cell cycle

    PubMed Central

    1991-01-01

    We have developed methodology to identify the block to anchorage- independent growth and position it within the fibroblast cell cycle. Results with NRK fibroblasts show that mitogen stimulation of the G0/G1 transition and G1-associated increases in cell size are minimally affected by loss of cell anchorage. In contrast, the induction of G1/S cell cycle genes and DNA synthesis is markedly inhibited when anchorage is blocked. Moreover, we demonstrate that the anchorage-dependent transition maps to late G1 and shortly before activation of the G1/S p34cdc2-like kinase. The G1/S block was also detectable in NIH-3T3 cells. Our results: (a) distinguish control of cell cycle progression by growth factors and anchorage; (b) indicate that anchorage mediates G1/S control in fibroblasts; and (c) identify a physiologic circumstance in which the phenotype of mammalian cell cycle arrest would closely resemble Saccharomyces cerevisiae START. The close correlation between anchorage independence in vitro and tumorigenicity in vivo emphasizes the key regulatory role for G1/S control in mammalian cells. PMID:1955482

  19. AP4 is required for mitogen- and c-MYC-induced cell cycle progression

    PubMed Central

    Jackstadt, Rene; Hermeking, Heiko

    2014-01-01

    AP4 represents a c-MYC-inducible bHLH-LZ transcription factor, which displays elevated expression in many types of tumors. We found that serum-starved AP4-deficient mouse embryo fibroblasts (MEFs) were unable to resume proliferation and showed a delayed S-phase entry after restimulation. Furthermore, they accumulated as tetraploid cells due to a cytokinesis defect. In addition, AP4 was required for c-MYC-induced cell cycle re-entry. AP4-deficient MEFs displayed decreased expression of CDK2 (cyclin-dependent kinase 2), which we characterized as a conserved and direct AP4 target. Activation of an AP4 estrogen receptor fusion protein (AP4-ER) enhanced proliferation of human diploid fibroblasts in a CDK2-dependent manner. However, in contrast to c-MYC-ER, AP4-ER activation was not sufficient to induce cell cycle re-entry or apoptosis in serum-starved MEFs. AP4-deficiency was accompanied by increased spontaneous and c-MYC-induced DNA damage in MEFs. Furthermore, c-MYC-induced apoptosis was decreased in AP4-deficient MEFs, suggesting that induction of apoptosis by c-MYC is linked to its ability to activate AP4 and thereby cell cycle progression. Taken together, these results indicate that AP4 is a central mediator and coordinator of cell cycle progression in response to mitogenic signals and c-MYC activation. Therefore, inhibition of AP4 function may represent a therapeutic approach to block tumor cell proliferation. PMID:25261373

  20. 5-Methoxyflavanone induces cell cycle arrest at the G2/M phase, apoptosis and autophagy in HCT116 human colon cancer cells

    SciTech Connect

    Shin, Soon Young; Hyun, Jiye; Yu, Jae-Ran; Lim, Yoongho; Lee, Young Han

    2011-08-01

    Natural flavonoids have diverse pharmacological activities, including anti-oxidative, anti-inflammatory, and anti-cancer activities. In this study, we investigated the molecular mechanism underlying the action of 5-methoxyflavanone (5-MF) which has a strong bioavailability and metabolic stability. Our results show that 5-MF inhibited the growth and clonogenicity of HCT116 human colon cancer cells, and that it activated DNA damage responses, as revealed by the accumulation of p53 and the phosphorylation of DNA damage-sensitive proteins, including ataxia-telangiectasia mutated (ATM) at Ser1981, checkpoint kinase 2 (Chk2) at Thr68, and histone H2AX at Ser139. 5-MF-induced DNA damage was confirmed in a comet tail assay. We also found that 5-MF increased the cleavage of caspase-2 and -7, leading to the induction of apoptosis. Pretreatment with the ATM inhibitor KU55933 enhanced 5-MF-induced {gamma}-H2AX formation and caspase-7 cleavage. HCT116 cells lacking p53 (p53{sup -/-}) or p21 (p21{sup -/-}) exhibited increased sensitivity to 5-MF compared to wild-type cells. 5-MF further induced autophagy via an ERK signaling pathway. Blockage of autophagy with the MEK inhibitor U0126 potentiated 5-MF-induced {gamma}-H2AX formation and caspase-2 activation. These results suggest that a caspase-2 cascade mediates 5-MF-induced anti-tumor activity, while an ATM/Chk2/p53/p21 checkpoint pathway and ERK-mediated autophagy act as a survival program to block caspase-2-mediated apoptosis induced by 5-MF. - Graphical abstract: Display Omitted Highlights: > 5-MF inhibits the proliferation of HCT116 colon cancer cells. > 5-MF inhibits cell cycle progression and induces apoptosis. > Inhibition of autophagy triggers 5-MF-induced apoptosis. > Inhibition of ERK signaling blocks 5-MF-induced autophagy but activates apoptosis. > Treatment with 5-MF in combination with an ERK inhibitor may be a potential therapeutic strategy in human colon cancer.

  1. aPKC Phosphorylates p27Xic1, Providing a Mechanistic Link between Apicobasal Polarity and Cell-Cycle Control

    PubMed Central

    Sabherwal, Nitin; Thuret, Raphael; Lea, Robert; Stanley, Peter; Papalopulu, Nancy

    2014-01-01

    Summary During the development of the nervous system, apicobasally polarized stem cells are characterized by a shorter cell cycle than nonpolar progenitors, leading to a lower differentiation potential of these cells. However, how polarization might be directly linked to the kinetics of the cell cycle is not understood. Here, we report that apicobasally polarized neuroepithelial cells in Xenopus laevis have a shorter cell <