Science.gov

Sample records for cell-lineage gene highly

  1. The placental imprintome and imprinted gene function in the trophoblast glycogen cell lineage.

    PubMed

    Lefebvre, Louis

    2012-07-01

    Imprinted genes represent a unique class of autosomal genes expressed from only one of the parental alleles during development. The choice of the expressed allele is not random but rather is determined by the parental origin of the allele. Consequently, the mouse genome contains more than 100 genes expressed preferentially or exclusively from the maternally or the paternally inherited allele. Current research efforts are focused on understanding the molecular mechanism of this epigenetic phenomenon as well as the biological functions of the genes under its regulation. Both theoretical considerations and experimental results support a role for genomic imprinting in the regulation of embryonic growth and placental biology. In this review, recent efforts to establish the complete set of genes showing imprinted expression in the mouse placenta are first discussed. Then, the evidence suggesting that imprinted genes might be implicated in the emergence, maintenance and function of trophoblast glycogen cells is presented. Although the origin and functions of this trophoblast cell lineage are currently unknown, the analysis of mutations in imprinted genes in the mouse are providing new insights into these issues. The implications of this work for placental pathologies in human are also discussed.

  2. Evolutionary relationships and diversification of barhl genes within retinal cell lineages

    PubMed Central

    2011-01-01

    neuronal diversity. Intriguingly, within teleosts, retention of zebrafish barhl1.2 and its medaka ortholog barhl1 appears to correlate with the acquisition of distinct signalling mechanisms by the two genes within distinct retinal cell lineages. Our findings provide a starting point for the study of barhl gene evolution in relation to the generation of cell diversity in the vertebrate retina. PMID:22103894

  3. High level PHGDH expression in breast is predominantly associated with keratin 5-positive cell lineage independently of malignancy.

    PubMed

    Gromova, Irina; Gromov, Pavel; Honma, Naoko; Kumar, Sudha; Rimm, David; Talman, Maj-Lis Møller; Wielenga, Vera Timmermans; Moreira, José M A

    2015-10-01

    We have previously reported the 2D PAGE-based proteomic profiling of a prospective cohort of 78 triple negative breast cancer (TNBC) patients, and the establishment of a cumulative TNBC protein database. Analysis of this database identified a number of proteins as being specifically overexpressed in TNBC samples. One such protein was D-3-phosphoglycerate dehydrogenase (Phgdh), a candidate oncogene. We analysed expression of Phgdh in normal and TNBC mammary tissue samples by 2D gel-based proteomics and immunohistochemistry (IHC), and show here that high-level expression of Phgdh in mammary epithelial cells is primarily associated with cell lineage, as we found that Phgdh expression was predominant in CK5-positive cells, normal as well as malignant, thus identifying an association of this protein with the basal phenotype. Quantitative IHC analysis of Phgdh expression in normal breast tissue showed high-level expression of Phgdh in normal CK5-positive mammary epithelial cells, indicating that expression of this protein was not associated with malignancy, but rather with cell lineage. However, proteomic profiling of Phgdh showed it to be expressed in two major protein forms, and that the ratio of expression between these variants was associated with malignancy. Overexpression of Phgdh in CK5-positive cell lineages, and differential protein isoform expression, was additionally found in other tissues and cancer types, suggesting that overexpression of Phgdh is generally associated with CK5 cells, and that oncogenic function may be determined by isoform expression.

  4. Identification and Characterization of 22 Genes That Affect the Vulval Cell Lineages of the Nematode CAENORHABDITIS ELEGANS

    PubMed Central

    Ferguson, Edwin L.; Horvitz, H. Robert

    1985-01-01

    Ninety-five mutants of the nematode Caenorhabditis elegans altered in the cell lineages of the vulva have been isolated on the basis of their displaying one of two phenotypes, Vulvaless or Multivulva. In Vulvaless mutants, which define 12 genes, no vulva is present. In Multivulva mutants, which define ten genes, one or more supernumerary vulva-like protrusions are located along the ventral side of the animal. A single recessive mutation is responsible for the phenotypes of most, but not all, of these strains. Fifteen of these 22 genes are represented by multiple alleles. We have shown by a variety of genetic criteria that mutations that result in a Vulvaless or Multivulva phenotype in six of the 22 genes most likely eliminate gene function. In addition, Vulvaless or Multivulva mutations in seven of the other genes most likely result in a partial reduction of gene function; the absence of the activity of any of these genes probably results in lethality or sterility. Our results suggest that we may have identified most, or all, genes of these two classes. PMID:3996896

  5. Snai2 and Snai3 transcriptionally regulate cellular fitness and functionality of T cell lineages through distinct gene programs.

    PubMed

    Pioli, Peter D; Whiteside, Sarah K; Weis, Janis J; Weis, John H

    2016-05-01

    T lymphocytes are essential contributors to the adaptive immune system and consist of multiple lineages that serve various effector and regulatory roles. As such, precise control of gene expression is essential to the proper development and function of these cells. Previously, we identified Snai2 and Snai3 as being essential regulators of immune tolerance partly due to the impaired function of CD4(+) regulatory T cells in Snai2/3 conditional double knockout mice. Here we extend those previous findings using a bone marrow transplantation model to provide an environmentally unbiased view of the molecular changes imparted onto various T lymphocyte populations once Snai2 and Snai3 are deleted. The data presented here demonstrate that Snai2 and Snai3 transcriptionally regulate the cellular fitness and functionality of not only CD4(+) regulatory T cells but effector CD8(α+) and CD4(+) conventional T cells as well. This is achieved through the modulation of gene sets unique to each cell type and includes transcriptional targets relevant to the survival and function of each T cell lineage. As such, Snai2 and Snai3 are essential regulators of T cell immunobiology.

  6. Recruitment of Mediator Complex by Cell Type and Stage-Specific Factors Required for Tissue-Specific TAF Dependent Gene Activation in an Adult Stem Cell Lineage.

    PubMed

    Lu, Chenggang; Fuller, Margaret T

    2015-12-01

    Onset of terminal differentiation in adult stem cell lineages is commonly marked by robust activation of new transcriptional programs required to make the appropriate differentiated cell type(s). In the Drosophila male germ line stem cell lineage, the switch from proliferating spermatogonia to spermatocyte is accompanied by one of the most dramatic transcriptional changes in the fly, as over 1000 new transcripts turn on in preparation for meiosis and spermatid differentiation. Here we show that function of the coactivator complex Mediator is required for activation of hundreds of new transcripts in the spermatocyte program. Mediator appears to act in a sequential hierarchy, with the testis activating Complex (tMAC), a cell type specific form of the Mip/dREAM general repressor, required to recruit Mediator subunits to the chromatin, and Mediator function required to recruit the testis TAFs (tTAFs), spermatocyte specific homologs of subunits of TFIID. Mediator, tMAC and the tTAFs co-regulate expression of a major set of spermatid differentiation genes. The Mediator subunit Med22 binds the tMAC component Topi when the two are coexpressed in S2 cells, suggesting direct recruitment. Loss of Med22 function in spermatocytes causes meiosis I maturation arrest male infertility, similar to loss of function of the tMAC subunits or the tTAFs. Our results illuminate how cell type specific versions of the Mip/dREAM complex and the general transcription machinery cooperate to drive selective gene activation during differentiation in stem cell lineages. PMID:26624996

  7. Analysis of GzmbCre as a Model System for Gene Deletion in the Natural Killer Cell Lineage.

    PubMed

    Xu, Yiying; Evaristo, Cesar; Alegre, Maria-Luisa; Gurbuxani, Sandeep; Kee, Barbara L

    2015-01-01

    The analysis of gene function in mature and activated natural killer cells has been hampered by the lack of model systems for Cre-mediated recombination in these cells. Here we have investigated the utility of GzmbCre for recombination of loxp sequences in these cells predicated on the observation that Gzmb mRNA is highly expressed in mature and activated natural killer cells. Using two different reporter strains we determined that gene function could be investigated in mature natural killer cells after GzmbCre mediated recombination in vitro in conditions that lead to natural killer cell activation such as in the cytokine combination of interleukin 2 and interleukin 12. We demonstrated the utility of this model by creating GzmbCre;Rosa26IKKbca mice in which Cre-mediated recombination resulted in expression of constitutively active IKKβ, which results in activation of the NFκB transcription factor. In vivo and in vitro activation of IKKβ in natural killer cells revealed that constitutive activation of this pathway leads to natural killer cell hyper-activation and altered morphology. As a caveat to the use of GzmbCre we found that this transgene can lead to recombination in all hematopoietic cells the extent of which varies with the particular loxp flanked allele under investigation. We conclude that GzmbCre can be used under some conditions to investigate gene function in mature and activated natural killer cells.

  8. BMP Signaling and Its pSMAD1/5 Target Genes Differentially Regulate Hair Follicle Stem Cell Lineages

    PubMed Central

    Genander, Maria; Cook, Peter J.; Ramsköld, Daniel; Keyes, Brice E.; Mertz, Aaron F.; Sandberg, Rickard; Fuchs, Elaine

    2014-01-01

    Hair follicle stem cells (HFSCs) and their transit amplifying cell (TAC) progeny sense BMPs at defined stages of the hair cycle to control their proliferation and differentiation. Here, we exploit the distinct spatial and temporal localizations of these cells to selectively ablate BMP signaling in each compartment and examine its functional role. We find that BMP signaling is required for HFSC quiescence and to promote TAC differentiation along different lineages as the hair cycle progresses. We also combine in vivo genome-wide chromatin immunoprecipitation and deep-sequencing, transcriptional profiling, and loss-of-function genetics to define BMP-regulated genes. We show that some pSMAD1/5 targets, like Gata3, function specifically in TAC lineage-progression. Others, like Id1 and Id3, function in both HFSCs and TACs, but in distinct ways. Our study therefore illustrates the complex differential roles that a key signaling pathway can play in regulation of closely-related stem/progenitor cells within the context of their overall niche. PMID:25312496

  9. Temporal Analysis of Gene Expression in the Murine Schwann Cell Lineage and the Acutely Injured Postnatal Nerve

    PubMed Central

    Touahri, Yacine; Stratton, Jo Anne; Biernaskie, Jeff; Schuurmans, Carol

    2016-01-01

    Schwann cells (SCs) arise from neural crest cells (NCCs) that first give rise to SC precursors (SCPs), followed by immature SCs, pro-myelinating SCs, and finally, non-myelinating or myelinating SCs. After nerve injury, mature SCs ‘de-differentiate’, downregulating their myelination program while transiently re-activating early glial lineage genes. To better understand molecular parallels between developing and de-differentiated SCs, we characterized the expression profiles of a panel of 12 transcription factors from the onset of NCC migration through postnatal stages, as well as after acute nerve injury. Using Sox10 as a pan-glial marker in co-expression studies, the earliest transcription factors expressed in E9.0 Sox10+ NCCs were Sox9, Pax3, AP2α and Nfatc4. E10.5 Sox10+ NCCs coalescing in the dorsal root ganglia differed slightly, expressing Sox9, Pax3, AP2α and Etv5. E12.5 SCPs continued to express Sox10, Sox9, AP2α and Pax3, as well as initiating Sox2 and Egr1 expression. E14.5 immature SCs were similar to SCPs, except that they lost Pax3 expression. By E18.5, AP2α, Sox2 and Egr1 expression was turned off in the nerve, while Jun, Oct6 and Yy1 expression was initiated in pro-myelinating Sox9+/Sox10+ SCs. Early postnatal and adult SCs continued to express Sox9, Jun, Oct6 and Yy1 and initiated Nfatc4 and Egr2 expression. Notably, at all stages, expression of each marker was observed only in a subset of Sox10+ SCs, highlighting the heterogeneity of the SC pool. Following acute nerve injury, Egr1, Jun, Oct6, and Sox2 expression was upregulated, Egr2 expression was downregulated, while Sox9, Yy1, and Nfatc4 expression was maintained at similar frequencies. Notably, de-differentiated SCs in the injured nerve did not display a transcription factor profile corresponding to a specific stage in the SC lineage. Taken together, we demonstrate that uninjured and injured SCs are heterogeneous and distinct from one another, and de-differentiation recapitulates

  10. Temporal Analysis of Gene Expression in the Murine Schwann Cell Lineage and the Acutely Injured Postnatal Nerve.

    PubMed

    Balakrishnan, Anjali; Stykel, Morgan G; Touahri, Yacine; Stratton, Jo Anne; Biernaskie, Jeff; Schuurmans, Carol

    2016-01-01

    Schwann cells (SCs) arise from neural crest cells (NCCs) that first give rise to SC precursors (SCPs), followed by immature SCs, pro-myelinating SCs, and finally, non-myelinating or myelinating SCs. After nerve injury, mature SCs 'de-differentiate', downregulating their myelination program while transiently re-activating early glial lineage genes. To better understand molecular parallels between developing and de-differentiated SCs, we characterized the expression profiles of a panel of 12 transcription factors from the onset of NCC migration through postnatal stages, as well as after acute nerve injury. Using Sox10 as a pan-glial marker in co-expression studies, the earliest transcription factors expressed in E9.0 Sox10+ NCCs were Sox9, Pax3, AP2α and Nfatc4. E10.5 Sox10+ NCCs coalescing in the dorsal root ganglia differed slightly, expressing Sox9, Pax3, AP2α and Etv5. E12.5 SCPs continued to express Sox10, Sox9, AP2α and Pax3, as well as initiating Sox2 and Egr1 expression. E14.5 immature SCs were similar to SCPs, except that they lost Pax3 expression. By E18.5, AP2α, Sox2 and Egr1 expression was turned off in the nerve, while Jun, Oct6 and Yy1 expression was initiated in pro-myelinating Sox9+/Sox10+ SCs. Early postnatal and adult SCs continued to express Sox9, Jun, Oct6 and Yy1 and initiated Nfatc4 and Egr2 expression. Notably, at all stages, expression of each marker was observed only in a subset of Sox10+ SCs, highlighting the heterogeneity of the SC pool. Following acute nerve injury, Egr1, Jun, Oct6, and Sox2 expression was upregulated, Egr2 expression was downregulated, while Sox9, Yy1, and Nfatc4 expression was maintained at similar frequencies. Notably, de-differentiated SCs in the injured nerve did not display a transcription factor profile corresponding to a specific stage in the SC lineage. Taken together, we demonstrate that uninjured and injured SCs are heterogeneous and distinct from one another, and de-differentiation recapitulates

  11. Making sense of cell lineage.

    PubMed

    Price, J

    1993-01-01

    In this article I describe what I see as the sources of confusion in the description and interpretation of cell lineage data. I concentrate on lineage in the nervous system, since that is my interest, but most of the arguments are broadly applicable. Since there are these differences between workers in the field, all will not agree with my perspective, but perhaps a consensus can evolve from the discussion. I see the problem as having two facets: First, there is a confusion surrounding terminology, which leads to too many different types of studies to be considered as studies of cell lineage; and second, there is some confusion about what can validly be concluded from a study of cell lineage.

  12. Differential protein network analysis of the immune cell lineage.

    PubMed

    Clancy, Trevor; Hovig, Eivind

    2014-01-01

    Recently, the Immunological Genome Project (ImmGen) completed the first phase of the goal to understand the molecular circuitry underlying the immune cell lineage in mice. That milestone resulted in the creation of the most comprehensive collection of gene expression profiles in the immune cell lineage in any model organism of human disease. There is now a requisite to examine this resource using bioinformatics integration with other molecular information, with the aim of gaining deeper insights into the underlying processes that characterize this immune cell lineage. We present here a bioinformatics approach to study differential protein interaction mechanisms across the entire immune cell lineage, achieved using affinity propagation applied to a protein interaction network similarity matrix. We demonstrate that the integration of protein interaction networks with the most comprehensive database of gene expression profiles of the immune cells can be used to generate hypotheses into the underlying mechanisms governing the differentiation and the differential functional activity across the immune cell lineage. This approach may not only serve as a hypothesis engine to derive understanding of differentiation and mechanisms across the immune cell lineage, but also help identify possible immune lineage specific and common lineage mechanism in the cells protein networks. PMID:25309909

  13. The Production and Characteristics of a Mouse's Embryonic Stem Cell Lineage, Transfected by the Glia Neurotrophic Factor and Gene Fused with the Green Fluorescent Protein Gene

    PubMed Central

    Arsenieva, E. L.; Kuzmin, I. V.; Manuilova, E. S.; Novosadova, E. V.; Murkin, E. V.; Pavlova, G. V.; Tarantul, V. Z.

    2009-01-01

    The influence that the expression of the human (glial-derived neurotrophic factor (GDNF)) neurotrophic factor has on the morphology and proliferative activity of embryonic stem cells (SC) of a mouse with R1 lineage, as well as their ability to form embroid bodies (EB), has been studied. Before that, using a PCR (polymerase chain reaction) coupled with reverse transcription, it was shown that, in this very lineage of the embryonic SC, the expression of the receptors' genes is being fulfilled for the neurotropfic RET and GFRα1 glia factor. The mouse's embryonic SC lineage has been obtained, transfected by the human GDNF gene, and has been fused with the "green" fluorescent protein (GFP) gene. The presence of the expression of the human GDNF gene in the cells was shown by northern hybridization and the synthesis of its albuminous product by immunocitochemical coloration with the use of specific antibodies. The reliable slowing-down of the embriod-body formation by the embryonic SC transfected by the GDNF gene has been shown. No significant influence of the expression of the GDNF gene on the morphology and the proliferative activity of the transfected embryonic SCs has been found when compared with the control ones. PMID:22649595

  14. Single-cell analysis defines the divergence between the innate lymphoid cell lineage and lymphoid tissue-inducer cell lineage.

    PubMed

    Ishizuka, Isabel E; Chea, Sylvestre; Gudjonson, Herman; Constantinides, Michael G; Dinner, Aaron R; Bendelac, Albert; Golub, Rachel

    2016-03-01

    The precise lineage relationship between innate lymphoid cells (ILCs) and lymphoid tissue-inducer (LTi) cells is poorly understood. Using single-cell multiplex transcriptional analysis of 100 lymphoid genes and single-cell cultures of fetal liver precursor cells, we identified the common proximal precursor to these lineages and found that its bifurcation was marked by differential induction of the transcription factors PLZF and TCF1. Acquisition of individual effector programs specific to the ILC subsets ILC1, ILC2 and ILC3 was initiated later, at the common ILC precursor stage, by transient expression of mixed ILC1, ILC2 and ILC3 transcriptional patterns, whereas, in contrast, the development of LTi cells did not go through multilineage priming. Our findings provide insight into the divergent mechanisms of the differentiation of the ILC lineage and LTi cell lineage and establish a high-resolution 'blueprint' of their development.

  15. Xenopus Pax-2/5/8 orthologues: novel insights into Pax gene evolution and identification of Pax-8 as the earliest marker for otic and pronephric cell lineages.

    PubMed

    Heller, N; Brändli, A W

    1999-01-01

    Pax genes are a family of transcription factors playing fundamental roles during organogenesis. We have recently demonstrated the expression of Pax-2 during Xenopus embryogenesis [Heller N, Brändli AW (1997): Mech Dev 69: 83-104]. Here we report the cloning and characterization of Xenopus Pax-5 and Pax-8, two orthologues of the Pax-2/5/8 gene family. Molecular phylogenetic analysis indicates that the amphibian Pax-2/5/8 genes are close relatives of their mammalian counterparts and that all vertebrate Pax-2/5/8 genes are derived from a single ancestral gene. Xenopus Pax-2/5/8 genes are expressed in spatially and temporally overlapping patterns during development of at least seven distinct tissues. Most strikingly, Xenopus Pax-8 was identified as the earliest marker of the prospective otic placode and of the intermediate mesoderm, indicating that Pax-8 may play a central role in auditory and excretory system development. Comparison of the expression patterns of fish, amphibian, and mammalian Pax-2/5/8 genes revealed that the tissue specificity of Pax-2/5/8 gene family expression is overall evolutionarily conserved. The expression domains of individual orthologues can however vary in a species-specific manner. For example, the thyroid glands of mammals express Pax-8, while in Xenopus Pax-2 is expressed instead. Our findings indicate that differential silencing of Pax-2/5/8 gene expression may have occurred after the different classes of vertebrates began to evolve separately. PMID:10322629

  16. Alternative splicing regulation and cell lineage differentiation.

    PubMed

    Liu, Huan; He, Ling; Tang, Liling

    2012-11-01

    The alternative splicing of precursor mRNA is an essential mechanism for protein diversity. It plays important biological roles, such as proliferation, differentiation and development of cells. Furthermore, alternative splicing participates in the pathogenesis of diseases, including cancer. Thus, in-depth understanding of splicing regulation is of great significance. Regulation of alternative splicing is an extraordinary complicated process in which several signal molecules are at work. Besides the cis-elements and trans-factors, several lines of evidences suggest that other molecules, structures or process also regulate splicing, such as RNA structures, transcription and transcription factors, chromatin and protein. Meanwhile, increasing body of evidence shows that alternative splicing correlated closely to stem cell lineage differentiation. It means that there is a fundamental role for splicing in controlling regulatory program required for cell lineage differentiation. This review systematically sums up the regulation of alternative splicing and summarizes the splicing events during cell lineage differentiation of stem cells.

  17. The Regulatory T Cell Lineage Factor Foxp3 Regulates Gene Expression through Several Distinct Mechanisms Mostly Independent of Direct DNA Binding

    PubMed Central

    Andersen, Kristian G.; Hebenstreit, Daniel; Teichmann, Sarah A.; Betz, Alexander G.

    2015-01-01

    The lineage factor Foxp3 is essential for the development and maintenance of regulatory T cells, but little is known about the mechanisms involved. Here, we demonstrate that an N-terminal proline-rich interaction region is crucial for Foxp3’s function. Subdomains within this key region link Foxp3 to several independent mechanisms of transcriptional regulation. Our study suggests that Foxp3, even in the absence of its DNA-binding forkhead domain, acts as a bridge between DNA-binding interaction partners and proteins with effector function permitting it to regulate a large number of genes. We show that, in one such mechanism, Foxp3 recruits class I histone deacetylases to the promoters of target genes, counteracting activation-induced histone acetylation and thereby suppressing their expression. PMID:26107960

  18. Expression of Genes Related to Germ Cell Lineage and Pluripotency in Single Cells and Colonies of Human Adult Germ Stem Cells

    PubMed Central

    Conrad, Sabine; Azizi, Hossein; Hatami, Maryam; Kubista, Mikael; Bonin, Michael; Hennenlotter, Jörg; Sievert, Karl-Dietrich; Skutella, Thomas

    2016-01-01

    The aim of this study was to elucidate the molecular status of single human adult germ stem cells (haGSCs) and haGSC colonies, which spontaneously developed from the CD49f MACS and matrix- (collagen−/laminin+ binding-) selected fraction of enriched spermatogonia. Single-cell transcriptional profiling by Fluidigm BioMark system of a long-term cultured haGSCs cluster in comparison to human embryonic stem cells (hESCs) and human fibroblasts (hFibs) revealed that haGSCs showed a characteristic germ- and pluripotency-associated gene expression profile with some similarities to hESCs and with a significant distinction from somatic hFibs. Genome-wide comparisons with microarray analysis confirmed that different haGSC colonies exhibited gene expression heterogeneity with more or less pluripotency. The results of this study confirm that haGSCs are adult stem cells with a specific molecular gene expression profile in vitro, related but not identical to true pluripotent stem cells. Under ES-cell conditions haGSC colonies could be selected and maintained in a partial pluripotent state at the molecular level, which may be related to their cell plasticity and potential to differentiate into cells of all germ layers. PMID:26649052

  19. Generation of enteroendocrine cell diversity in midgut stem cell lineages

    PubMed Central

    Beehler-Evans, Ryan; Micchelli, Craig A.

    2015-01-01

    The endocrine system mediates long-range peptide hormone signaling to broadcast changes in metabolic status to distant target tissues via the circulatory system. In many animals, the diffuse endocrine system of the gut is the largest endocrine tissue, with the full spectrum of endocrine cell subtypes not yet fully characterized. Here, we combine molecular mapping, lineage tracing and genetic analysis in the adult fruit fly to gain new insight into the cellular and molecular mechanisms governing enteroendocrine cell diversity. Neuropeptide hormone distribution was used as a basis to generate a high-resolution cellular map of the diffuse endocrine system. Our studies show that cell diversity is seen at two distinct levels: regional and local. We find that class I and class II enteroendocrine cells can be distinguished locally by combinatorial expression of secreted neuropeptide hormones. Cell lineage tracing studies demonstrate that class I and class II cells arise from a common stem cell lineage and that peptide profiles are a stable feature of enteroendocrine cell identity during homeostasis and following challenge with the enteric pathogen Pseudomonas entomophila. Genetic analysis shows that Notch signaling controls the establishment of class II cells in the lineage, but is insufficient to reprogram extant class I cells into class II enteroendocrine cells. Thus, one mechanism by which secretory cell diversity is achieved in the diffuse endocrine system is through cell-cell signaling interactions within individual adult stem cell lineages. PMID:25670792

  20. Cell lineage analysis in human brain using endogenous retroelements.

    PubMed

    Evrony, Gilad D; Lee, Eunjung; Mehta, Bhaven K; Benjamini, Yuval; Johnson, Robert M; Cai, Xuyu; Yang, Lixing; Haseley, Psalm; Lehmann, Hillel S; Park, Peter J; Walsh, Christopher A

    2015-01-01

    Somatic mutations occur during brain development and are increasingly implicated as a cause of neurogenetic disease. However, the patterns in which somatic mutations distribute in the human brain are unknown. We used high-coverage whole-genome sequencing of single neurons from a normal individual to identify spontaneous somatic mutations as clonal marks to track cell lineages in human brain. Somatic mutation analyses in >30 locations throughout the nervous system identified multiple lineages and sublineages of cells marked by different LINE-1 (L1) retrotransposition events and subsequent mutation of poly-A microsatellites within L1. One clone contained thousands of cells limited to the left middle frontal gyrus, whereas a second distinct clone contained millions of cells distributed over the entire left hemisphere. These patterns mirror known somatic mutation disorders of brain development and suggest that focally distributed mutations are also prevalent in normal brains. Single-cell analysis of somatic mutation enables tracing of cell lineage clones in human brain.

  1. Hierarchy of Notch-Delta interactions promoting T cell lineage commitment and maturation.

    PubMed

    Besseyrias, Valerie; Fiorini, Emma; Strobl, Lothar J; Zimber-Strobl, Ursula; Dumortier, Alexis; Koch, Ute; Arcangeli, Marie-Laure; Ezine, Sophie; Macdonald, H Robson; Radtke, Freddy

    2007-02-19

    Notch1 (N1) receptor signaling is essential and sufficient for T cell development, and recently developed in vitro culture systems point to members of the Delta family as being the physiological N1 ligands. We explored the ability of Delta1 (DL1) and DL4 to induce T cell lineage commitment and/or maturation in vitro and in vivo from bone marrow (BM) precursors conditionally gene targeted for N1 and/or N2. In vitro DL1 can trigger T cell lineage commitment via either N1 or N2. N1- or N2-mediated T cell lineage commitment can also occur in the spleen after short-term BM transplantation. However, N2-DL1-mediated signaling does not allow further T cell maturation beyond the CD25(+) stage due to a lack of T cell receptor beta expression. In contrast to DL1, DL4 induces and supports T cell commitment and maturation in vitro and in vivo exclusively via specific interaction with N1. Moreover, comparative binding studies show preferential interaction of DL4 with N1, whereas binding of DL1 to N1 is weak. Interestingly, preferential N1-DL4 binding reflects reduced dependence of this interaction on Lunatic fringe, a glycosyl transferase that generally enhances the avidity of Notch receptors for Delta ligands. Collectively, our results establish a hierarchy of Notch-Delta interactions in which N1-DL4 exhibits the greatest capacity to induce and support T cell development.

  2. Cell Lineage of the Ilyanassa Embryo: Evolutionary Acceleration of Regional Differentiation during Early Development

    PubMed Central

    Goulding, Morgan Q.

    2009-01-01

    Cell lineage studies in mollusk embryos have documented numerous variations on the lophotrochozoan theme of spiral cleavage. In the experimentally tractable embryo of the mud snail Ilyanassa, cell lineage has previously been described only up to the 29-cell stage. Here I provide a chronology of cell divisions in Ilyanassa to the stage of 84 cells (about 16 hours after first cleavage at 23°C), and show spatial arrangements of identified nuclei at stages ranging from 27 to 84 cells. During this period the spiral cleavage pattern gives way to a bilaterally symmetric, dorsoventrally polarized pattern of mitotic timing and geometry. At the same time, the mesentoblast cell 4d rapidly proliferates to form twelve cells lying deep to the dorsal ectoderm. The onset of epiboly coincides with a period of mitotic quiescence throughout the ectoderm. As in other gastropod embryos, cell cycle lengths vary widely and predictably according to cell identity, and many of the longest cell cycles occur in small daughters of highly asymmetric divisions. While Ilyanassa shares many features of embryonic cell lineage with two other caenogastropod genera, Crepidula and Bithynia, it is distinguished by a general tendency toward earlier and more pronounced diversification of cell division pattern along axes of later differential growth. PMID:19430530

  3. Thymic anlage is colonized by progenitors restricted to T, NK, and dendritic cell lineages.

    PubMed

    Masuda, Kyoko; Itoi, Manami; Amagai, Takashi; Minato, Nagahiro; Katsura, Yoshimoto; Kawamoto, Hiroshi

    2005-03-01

    It remains controversial whether the thymus-colonizing progenitors are committed to the T cell lineage. A major problem that has impeded the characterization of thymic immigrants has been that the earliest intrathymic progenitors thus far identified do not necessarily represent the genuine thymic immigrants, because their developmental potential should have been influenced by contact with the thymic microenvironment. In the present study, we examined the developmental potential of the ontogenically earliest thymic progenitors of day 11 murine fetus. These cells reside in the surrounding mesenchymal region and have not encountered thymic epithelial components. Flow cytometric and immunohistochemical analyses demonstrated that these cells are exclusively Lin(-)c-kit(+)IL-7R(+). Limiting dilution analyses disclosed that the progenitors with T cell potential were abundant, while those with B cell potential were virtually absent in the region of day 11 thymic anlage. Clonal analyses reveled that they are restricted to T, NK, and dendritic cell lineages. Each progenitor was capable of forming a large number of precursors that may clonally accommodate highly diverse TCRbeta chains. These results provide direct evidence that the progenitors restricted to the T/NK/dendritic cell lineage selectively immigrate into the thymus.

  4. Cell lineage analysis of the mammalian female germline.

    PubMed

    Reizel, Yitzhak; Itzkovitz, Shalev; Adar, Rivka; Elbaz, Judith; Jinich, Adrian; Chapal-Ilani, Noa; Maruvka, Yosef E; Nevo, Nava; Marx, Zipora; Horovitz, Inna; Wasserstrom, Adam; Mayo, Avi; Shur, Irena; Benayahu, Dafna; Skorecki, Karl; Segal, Eran; Dekel, Nava; Shapiro, Ehud

    2012-01-01

    Fundamental aspects of embryonic and post-natal development, including maintenance of the mammalian female germline, are largely unknown. Here we employ a retrospective, phylogenetic-based method for reconstructing cell lineage trees utilizing somatic mutations accumulated in microsatellites, to study female germline dynamics in mice. Reconstructed cell lineage trees can be used to estimate lineage relationships between different cell types, as well as cell depth (number of cell divisions since the zygote). We show that, in the reconstructed mouse cell lineage trees, oocytes form clusters that are separate from hematopoietic and mesenchymal stem cells, both in young and old mice, indicating that these populations belong to distinct lineages. Furthermore, while cumulus cells sampled from different ovarian follicles are distinctly clustered on the reconstructed trees, oocytes from the left and right ovaries are not, suggesting a mixing of their progenitor pools. We also observed an increase in oocyte depth with mouse age, which can be explained either by depth-guided selection of oocytes for ovulation or by post-natal renewal. Overall, our study sheds light on substantial novel aspects of female germline preservation and development.

  5. Cell Lineage Analysis of the Mammalian Female Germline

    PubMed Central

    Elbaz, Judith; Jinich, Adrian; Chapal-Ilani, Noa; Maruvka, Yosef E.; Nevo, Nava; Marx, Zipora; Horovitz, Inna; Wasserstrom, Adam; Mayo, Avi; Shur, Irena; Benayahu, Dafna; Skorecki, Karl; Segal, Eran; Dekel, Nava; Shapiro, Ehud

    2012-01-01

    Fundamental aspects of embryonic and post-natal development, including maintenance of the mammalian female germline, are largely unknown. Here we employ a retrospective, phylogenetic-based method for reconstructing cell lineage trees utilizing somatic mutations accumulated in microsatellites, to study female germline dynamics in mice. Reconstructed cell lineage trees can be used to estimate lineage relationships between different cell types, as well as cell depth (number of cell divisions since the zygote). We show that, in the reconstructed mouse cell lineage trees, oocytes form clusters that are separate from hematopoietic and mesenchymal stem cells, both in young and old mice, indicating that these populations belong to distinct lineages. Furthermore, while cumulus cells sampled from different ovarian follicles are distinctly clustered on the reconstructed trees, oocytes from the left and right ovaries are not, suggesting a mixing of their progenitor pools. We also observed an increase in oocyte depth with mouse age, which can be explained either by depth-guided selection of oocytes for ovulation or by post-natal renewal. Overall, our study sheds light on substantial novel aspects of female germline preservation and development. PMID:22383887

  6. Identification and characterization of Xenopus tropicalis common progenitors of Sertoli and peritubular myoid cell lineages

    PubMed Central

    Tlapakova, Tereza; Nguyen, Thi Minh Xuan; Vegrichtova, Marketa; Sidova, Monika; Strnadova, Karolina; Blahova, Monika

    2016-01-01

    ABSTRACT The origin of somatic cell lineages during testicular development is controversial in mammals. Employing basal amphibian tetrapod Xenopus tropicalis we established a cell culture derived from testes of juvenile male. Expression analysis showed transcription of some pluripotency genes and Sertoli cell, peritubular myoid cell and mesenchymal cell markers. Transcription of germline-specific genes was downregulated. Immunocytochemistry revealed that a majority of cells express vimentin and co-express Sox9 and smooth muscle α-actin (Sma), indicating the existence of a common progenitor of Sertoli and peritubular myoid cell lineages. Microinjection of transgenic, red fluorescent protein (RFP)-positive somatic testicular cells into the peritoneal cavity of X. tropicalis tadpoles resulted in cell deposits in heart, pronephros and intestine, and later in a strong proliferation and formation of cell-to-cell net growing through the tadpole body. Immunohistochemistry analysis of transplanted tadpoles showed a strong expression of vimentin in RFP-positive cells. No co-localization of Sox9 and Sma signals was observed during the first three weeks indicating their dedifferentiation to migratory-active mesenchymal cells recently described in human testicular biopsies. PMID:27464670

  7. Fate of retinoic acid-activated embryonic cell lineages.

    PubMed

    Dollé, Pascal; Fraulob, Valérie; Gallego-Llamas, Jabier; Vermot, Julien; Niederreither, Karen

    2010-12-01

    Retinoic acid (RA), a vitamin A derivative, is synthesized by specific cell populations and acts as a diffusible embryonic signal activating ligand-inducible transcription factors, the RA receptors (RARs). RA-activatable transgenic systems have revealed many discrete, transient sites of RA action during development. However, there has been no attempt to permanently label the RA-activated cell lineages during mouse ontogenesis. We describe the characterization of a RA-activatable Cre transgene, which through crosses with a conditional reporter strain (the ROSA26R lacZ reporter), leads to a stable labeling of the cell populations experiencing RA signaling during embryogenesis. RA response-element (RARE)-driven Cre activity mimics at early stages the known activity of the corresponding RARE-lacZ transgene (Rossant et al.,1991). Stable labeling of the Cre-excised cell populations allows to trace the distribution of the RA-activated cell lineages at later stages. These are described in relationship with current models of RA activity in various developmental systems, including the embryonic caudal region, limb buds, hindbrain, sensory organs, and heart. PMID:21046629

  8. Does Cell Lineage in the Developing Cerebral Cortex Contribute to its Columnar Organization?

    PubMed Central

    Costa, Marcos R.; Hedin-Pereira, Cecilia

    2010-01-01

    Since the pioneer work of Lorente de Nó, Ramón y Cajal, Brodmann, Mountcastle, Hubel and Wiesel and others, the cerebral cortex has been seen as a jigsaw of anatomic and functional modules involved in the processing of different sets of information. In fact, a columnar distribution of neurons displaying similar functional properties throughout the cerebral cortex has been observed by many researchers. Although it has been suggested that much of the anatomical substrate for such organization would be already specified at early developmental stages, before activity-dependent mechanisms could take place, it is still unclear whether gene expression in the ventricular zone (VZ) could play a role in the development of discrete functional units, such as minicolumns or columns. Cell lineage experiments using replication-incompetent retroviral vectors have shown that the progeny of a single neuroepithelial/radial glial cell in the dorsal telencephalon is organized into discrete radial clusters of sibling excitatory neurons, which have a higher propensity for developing chemical synapses with each other rather than with neighboring non-siblings. Here, we will discuss the possibility that the cell lineage of single neuroepithelial/radial glia cells could contribute for the columnar organization of the neocortex by generating radial columns of sibling, interconnected neurons. Borrowing some concepts from the studies on cell–cell recognition and transcription factor networks, we will also touch upon the potential molecular mechanisms involved in the establishment of sibling-neuron circuits. PMID:20676384

  9. Scleraxis is required for cell lineage differentiation and extracellular matrix remodeling during murine heart valve formation in vivo.

    PubMed

    Levay, Agata K; Peacock, Jacqueline D; Lu, Yinhui; Koch, Manuel; Hinton, Robert B; Kadler, Karl E; Lincoln, Joy

    2008-10-24

    Heart valve structures, derived from mesenchyme precursor cells, are composed of differentiated cell types and extracellular matrix arranged to facilitate valve function. Scleraxis (scx) is a transcription factor required for tendon cell differentiation and matrix organization. This study identified high levels of scx expression in remodeling heart valve structures at embryonic day 15.5 through postnatal stages using scx-GFP reporter mice and determined the in vivo function using mice null for scx. Scx(-/-) mice display significantly thickened heart valve structures from embryonic day 17.5, and valves from mutant mice show alterations in valve precursor cell differentiation and matrix organization. This is indicated by decreased expression of the tendon-related collagen type XIV, increased expression of cartilage-associated genes including sox9, as well as persistent expression of mesenchyme cell markers including msx1 and snai1. In addition, ultrastructure analysis reveals disarray of extracellular matrix and collagen fiber organization within the valve leaflet. Thickened valve structures and increased expression of matrix remodeling genes characteristic of human heart valve disease are observed in juvenile scx(-/-) mice. In addition, excessive collagen deposition in annular structures within the atrioventricular junction is observed. Collectively, our studies have identified an in vivo requirement for scx during valvulogenesis and demonstrate its role in cell lineage differentiation and matrix distribution in remodeling valve structures.

  10. Two subpopulations of stem cells for T cell lineage

    SciTech Connect

    Katsura, Y.; Amagai, T.; Kina, T.; Sado, T.; Nishikawa, S.

    1985-11-01

    An assay system for the stem cell that colonizes the thymus and differentiates into T cells was developed, and by using this assay system the existence of two subpopulations of stem cells for T cell lineage was clarified. Part-body-shielded and 900-R-irradiated C57BL/6 (H-2b, Thy-1.2) recipient mice, which do not require the transfer of pluripotent stem cells for their survival, were transferred with cells from B10 X Thy-1.1 (H-2b, Thy-1.1) donor mice. The reconstitution of the recipient's thymus lymphocytes was accomplished by stem cells in the donor cells and those spared in the shielded portion of the recipient that competitively colonize the thymus. Thus, the stem cell activity of donor cells can be evaluated by determining the proportion of donor-type (Thy-1.1+) cells in the recipient's thymus. Bone marrow cells were the most potent source of stem cells. By contrast, when the stem cell activity was compared between spleen and bone marrow cells of whole-body-irradiated (800 R) C57BL/6 mice reconstituted with B10 X Thy-1.1 bone marrow cells by assaying in part-body-shielded and irradiated C57BL/6 mice, the activity of these two organs showed quite a different time course of development. The results strongly suggest that the stem cells for T cell lineage in the bone marrow comprise at least two subpopulations, spleen-seeking and bone marrow-seeking cells.

  11. Clonal analysis of the cell lineages in the male flower of maize

    SciTech Connect

    Dawe, R.K.; Freeling, M. )

    1990-11-01

    The cell lineages in the male flower of maize were characterized using X-rays and transposable elements to produce clonal sectors differing in anthocyanin pigmentation. Less than 50% of the somatic tassel mutations (caused by reversion of unstable color mutations) that were visible on the anther wall were sexually transmitted by the male gametes, unless the sectors were larger than half the tassel circumference. This result is explained by showing that: (a) both the outer (LI) and inner (LII) lineages of the shoot apical meristem form a cell layer in the bilayered anther wall, and that anther pigmentation can be derived from either cell layer; and that (b) the male germ cells are derived almost exclusively from the LII. Therefore, while reversion events in either the LI or LII are visible on the anther, only the LII events are heritable. Reversion events that occur prior to the organization of the shoot apical meristem however, produce large (usually more than one-half tassel) sectors that include both the outer and inner lineages. In contrast to the high level of cell layer invasion previously reported during leaf development, during anther development less than 10(-3) cells in the LI invade the LII to form male gametes. The strong correlation between cell lineage and cell fate in the maize anther has implications for studies on plant evolution and the genetic improvement of cereals by DNA transformation.

  12. Cell Lineages and the Logic of Proliferative Control

    PubMed Central

    Wan, Frederic Y. M; Nie, Qing; Calof, Anne L

    2009-01-01

    It is widely accepted that the growth and regeneration of tissues and organs is tightly controlled. Although experimental studies are beginning to reveal molecular mechanisms underlying such control, there is still very little known about the control strategies themselves. Here, we consider how secreted negative feedback factors (“chalones”) may be used to control the output of multistage cell lineages, as exemplified by the actions of GDF11 and activin in a self-renewing neural tissue, the mammalian olfactory epithelium (OE). We begin by specifying performance objectives—what, precisely, is being controlled, and to what degree—and go on to calculate how well different types of feedback configurations, feedback sensitivities, and tissue architectures achieve control. Ultimately, we show that many features of the OE—the number of feedback loops, the cellular processes targeted by feedback, even the location of progenitor cells within the tissue—fit with expectations for the best possible control. In so doing, we also show that certain distinctions that are commonly drawn among cells and molecules—such as whether a cell is a stem cell or transit-amplifying cell, or whether a molecule is a growth inhibitor or stimulator—may be the consequences of control, and not a reflection of intrinsic differences in cellular or molecular character. PMID:19166268

  13. Characterization of discrete equine intestinal epithelial cell lineages

    PubMed Central

    Gonzalez, Liara M.; Kinnin, Leslie A.; Blikslager, Anthony T.

    2015-01-01

    OBJECTIVE To characterize epithelial cells of the small intestine and colon in horses without clinical gastrointestinal abnormalities with an emphasis on the stem cell niche constituents. SAMPLE Mucosal biopsy specimens from small and large intestines obtained from 12 horses euthanized for reasons unrelated to gastrointestinal disease or systemic disease. PROCEDURES Intestinal biopsy specimens were collected by sharp dissection immediately following euthanasia. Specimens were prepared for immunohistochemical, immunofluorescence, and transmission electron microscopic imaging to detect and characterize each epithelial cell type. Antibodies against protein biomarkers for cellular identification were selected on the basis of expression in other mammalian species. RESULTS Intestinal epithelial cell types were identified by means of immunostaining and morphological characterization with transmission electron microscopy. Some differences in biomarker expression and antibody cross-reactivity were identified in equine tissue, compared with other species. However, each known type of mucosal epithelial cell was identified in equine tissue. CONCLUSIONS AND CLINICAL RELEVANCE The methodology used can enhance detection of stem cells and progenitor cells as well as postmitotic cell lineages in equine intestinal tissues. Results may have relevance to regenerative potential of intestinal mucosa and survival in horses with colic. PMID:25815577

  14. Cell lineage analysis demonstrates an endodermal origin of the distal urethra and perineum

    PubMed Central

    Seifert, Ashley W.; Harfe, Brian D.; Cohn, Martin J.

    2009-01-01

    Congenital malformations of anorectal and genitourinary (collectively, anogenital) organs occur at a high frequency in humans, however the lineage of cells that gives rise to anogenital organs remains poorly understood. The penile urethra has been reported to develop from two cell populations, with the proximal urethra developing from endoderm and the distal urethra forming from an apical ectodermal invagination, however this has never been tested by direct analysis of cell lineage. During gut development, endodermal cells express Sonic hedgehog (Shh), which is required for normal patterning of digestive and genitourinary organs. We have taken advantage of the properties of Shh expression to genetically label and follow the fate of posterior gut endoderm during anogenital development. We report that the entire urethra, including the distal (glandar) region, is derived from endoderm. Cloacal endoderm also gives rise to the epithelial linings of the bladder, rectum and anterior region of the anus. Surprisingly, the lineage map also revealed an endodermal origin of the perineum, which is the first demonstration that endoderm differentiates into skin. In addition, we fate-mapped genital tubercle ectoderm and show that it makes no detectable contribution to the urethra. In males, formation of the urethral tube involves septation of the urethral plate by continued growth of the urorectal septum. Analysis of cell lineage following disruption of androgen signaling revealed that the urethral plate of flutamide-treated males does not undergo this septation event. Instead, urethral plate cells persist to the ventral margin of the tubercle, mimicking the pattern seen in females. Based on these spatial and temporal fate maps, we present a new model for anogenital development and suggest that disruptions at specific developmental time points can account for the association between anorectal and genitourinary defects. PMID:18439576

  15. The Maternal Transcriptome of the Crustacean Parhyale hawaiensis Is Inherited Asymmetrically to Invariant Cell Lineages of the Ectoderm and Mesoderm

    PubMed Central

    Levesque, Mitchell P.; Gerberding, Matthias

    2013-01-01

    Background The embryo of the crustacean Parhyale hawaiensis has a total, unequal and invariant early cleavage pattern. It specifies cell fates earlier than other arthropods, including Drosophila, as individual blastomeres of the 8-cell stage are allocated to the germ layers and the germline. Furthermore, the 8-cell stage is amenable to embryological manipulations. These unique features make Parhyale a suitable system for elucidating germ layer specification in arthropods. Since asymmetric localization of maternally provided RNA is a widespread mechanism to specify early cell fates, we asked whether this is also true for Parhyale. A candidate gene approach did not find RNAs that are asymmetrically distributed at the 8-cell stage. Therefore, we designed a high-density microarray from 9400 recently sequenced ESTs (1) to identify maternally provided RNAs and (2) to find RNAs that are differentially distributed among cells of the 8-cell stage. Results Maternal-zygotic transition takes place around the 32-cell stage, i.e. after the specification of germ layers. By comparing a pool of RNAs from early embryos without zygotic transcription to zygotic RNAs of the germband, we found that more than 10% of the targets on the array were enriched in the maternal transcript pool. A screen for asymmetrically distributed RNAs at the 8-cell stage revealed 129 transcripts, from which 50% are predominantly expressed in the early embryonic stages. Finally, we performed knockdown experiments for two of these genes and observed cell-fate-related defects of embryonic development. Conclusions In contrast to Drosophila, the four primary germ layer cell lineages in Parhyale are specified during the maternal control phase of the embryo. A key step in this process is the asymmetric distribution of a large number of maternal RNAs to the germ layer progenitor cells. PMID:23418507

  16. Regulation of GATA Factor Expression Is Distinct between Erythroid and Mast Cell Lineages

    PubMed Central

    Ohmori, Shin'ya; Takai, Jun; Ishijima, Yasushi; Suzuki, Mikiko; Moriguchi, Takashi; Philipsen, Sjaak; Yamamoto, Masayuki

    2012-01-01

    The zinc finger transcription factors GATA1 and GATA2 participate in mast cell development. Although the expression of these factors is regulated in a cell lineage-specific and differentiation stage-specific manner, their regulation during mast cell development has not been clarified. Here, we show that the GATA2 mRNA level was significantly increased while GATA1 was maintained at low levels during the differentiation of mast cells derived from mouse bone marrow (BMMCs). Unlike in erythroid cells, forced expression or small interfering RNA (siRNA)-mediated knockdown of GATA1 rarely affected GATA2 expression, and vice versa, in mast cells, indicating the absence of cross-regulation between Gata1 and Gata2 genes. Chromatin immunoprecipitation assays revealed that both GATA factors bound to most of the conserved GATA sites of Gata1 and Gata2 loci in BMMCs. However, the GATA1 hematopoietic enhancer (G1HE) of the Gata1 gene, which is essential for GATA1 expression in erythroid and megakaryocytic lineages, was bound only weakly by both GATA factors in BMMCs. Furthermore, transgenic-mouse reporter assays revealed that the G1HE is not essential for reporter expression in BMMCs and peritoneal mast cells. Collectively, these results demonstrate that the expression of GATA factors in mast cells is regulated in a manner quite distinct from that in erythroid cells. PMID:22988301

  17. Altered subcellular localization of transcription factor TEAD4 regulates first mammalian cell lineage commitment.

    PubMed

    Home, Pratik; Saha, Biswarup; Ray, Soma; Dutta, Debasree; Gunewardena, Sumedha; Yoo, Byunggil; Pal, Arindam; Vivian, Jay L; Larson, Melissa; Petroff, Margaret; Gallagher, Patrick G; Schulz, Vincent P; White, Kenneth L; Golos, Thaddeus G; Behr, Barry; Paul, Soumen

    2012-05-01

    In the preimplantation mouse embryo, TEAD4 is critical to establishing the trophectoderm (TE)-specific transcriptional program and segregating TE from the inner cell mass (ICM). However, TEAD4 is expressed in the TE and the ICM. Thus, differential function of TEAD4 rather than expression itself regulates specification of the first two cell lineages. We used ChIP sequencing to define genomewide TEAD4 target genes and asked how transcription of TEAD4 target genes is specifically maintained in the TE. Our analyses revealed an evolutionarily conserved mechanism, in which lack of nuclear localization of TEAD4 impairs the TE-specific transcriptional program in inner blastomeres, thereby allowing their maturation toward the ICM lineage. Restoration of TEAD4 nuclear localization maintains the TE-specific transcriptional program in the inner blastomeres and prevents segregation of the TE and ICM lineages and blastocyst formation. We propose that altered subcellular localization of TEAD4 in blastomeres dictates first mammalian cell fate specification.

  18. Enobosarm (GTx-024) Modulates Adult Skeletal Muscle Mass Independently of the Androgen Receptor in the Satellite Cell Lineage.

    PubMed

    Dubois, Vanessa; Simitsidellis, Ioannis; Laurent, Michaël R; Jardi, Ferran; Saunders, Philippa T K; Vanderschueren, Dirk; Claessens, Frank

    2015-12-01

    Androgens increase skeletal muscle mass, but their clinical use is hampered by a lack of tissue selectivity and subsequent side effects. Selective androgen receptor modulators elicit muscle-anabolic effects while only sparingly affecting reproductive tissues. The selective androgen receptor modulator, GTx-024 (enobosarm), is being investigated for cancer cachexia, sarcopenia, and muscle wasting diseases. Here we investigate the role of muscle androgen receptor (AR) in the anabolic effect of GTx-024. In mice lacking AR in the satellite cell lineage (satARKO), the weight of the androgen-sensitive levator ani muscle was lower but was decreased further upon orchidectomy. GTx-024 was as effective as DHT in restoring levator ani weights to sham levels. Expression of the muscle-specific, androgen-responsive genes S-adenosylmethionine decarboxylase and myostatin was decreased by orchidectomy and restored by GTx-024 and DHT in control mice, whereas the expression was low and unaffected by androgen status in satARKO. In contrast, insulin-like growth factor 1Ea expression was not different between satARKO and control muscle, decreased upon castration, and was restored by DHT and GTx-024 in both genotypes. These data indicate that GTx-024 does not selectively modulate AR in the satellite cell lineage and that cells outside this lineage remain androgen responsive in satARKO muscle. Indeed, residual AR-positive cells were present in satARKO muscle, coexpressing the fibroblast-lineage marker vimentin. AR positive, muscle-resident fibroblasts could therefore be involved in the indirect effects of androgens on muscle. In conclusion, both DHT and GTx-024 target AR pathways in the satellite cell lineage, but cells outside this lineage also contribute to the anabolic effects of androgens.

  19. Enobosarm (GTx-024) Modulates Adult Skeletal Muscle Mass Independently of the Androgen Receptor in the Satellite Cell Lineage.

    PubMed

    Dubois, Vanessa; Simitsidellis, Ioannis; Laurent, Michaël R; Jardi, Ferran; Saunders, Philippa T K; Vanderschueren, Dirk; Claessens, Frank

    2015-12-01

    Androgens increase skeletal muscle mass, but their clinical use is hampered by a lack of tissue selectivity and subsequent side effects. Selective androgen receptor modulators elicit muscle-anabolic effects while only sparingly affecting reproductive tissues. The selective androgen receptor modulator, GTx-024 (enobosarm), is being investigated for cancer cachexia, sarcopenia, and muscle wasting diseases. Here we investigate the role of muscle androgen receptor (AR) in the anabolic effect of GTx-024. In mice lacking AR in the satellite cell lineage (satARKO), the weight of the androgen-sensitive levator ani muscle was lower but was decreased further upon orchidectomy. GTx-024 was as effective as DHT in restoring levator ani weights to sham levels. Expression of the muscle-specific, androgen-responsive genes S-adenosylmethionine decarboxylase and myostatin was decreased by orchidectomy and restored by GTx-024 and DHT in control mice, whereas the expression was low and unaffected by androgen status in satARKO. In contrast, insulin-like growth factor 1Ea expression was not different between satARKO and control muscle, decreased upon castration, and was restored by DHT and GTx-024 in both genotypes. These data indicate that GTx-024 does not selectively modulate AR in the satellite cell lineage and that cells outside this lineage remain androgen responsive in satARKO muscle. Indeed, residual AR-positive cells were present in satARKO muscle, coexpressing the fibroblast-lineage marker vimentin. AR positive, muscle-resident fibroblasts could therefore be involved in the indirect effects of androgens on muscle. In conclusion, both DHT and GTx-024 target AR pathways in the satellite cell lineage, but cells outside this lineage also contribute to the anabolic effects of androgens. PMID:26393303

  20. Thymopentin enhances the generation of T-cell lineage derived from human embryonic stem cells in vitro.

    PubMed

    Zhu, Ming-Xia; Wan, Wen-Li; Li, Hai-Shen; Wang, Jing; Chen, Gui-An; Ke, Xiao-Yan

    2015-02-15

    Thymopentin is a group of biologically active peptide secreted mainly by the epithelial cells of thymic cortex and medulla. Whether it promotes T cells production from human embryonic stem cells(hESCs) in vitro remains an elusive issue. In the present study, we develop a novel strategy that enhances T-cell lineage differentiation of hESCs in collagen matrix culture by sequential cytokine cocktails treatment combined with thymopentin stimulation. We observed that approximately 30.75% cells expressed CD34 on day 14 of the cultures and expressed the surface markers of erythroid, lymphoid and myeloid lineages. The results of colony assays and gene expressions by RT-PCR analysis also demonstrated that hematopoietic progenitor cells (HPCs) derived from hESCs were capable of multi-lineage differentiation. Further study revealed that culturing with thymopentin treatment, the CD34(+)CD45RA(+)CD7(+) cells sorted from HPCs expressed T-cell-related genes, IKAROS, DNTT, TCRγ and TCRβ, and T-cell surface markers, CD3, cytoplasmic CD3, CD5, CD27, TCRγδ, CD4 and CD8. The differentiated cells produced the cytokines including IFN-γ, IL-2 and TNF-α in response to stimulation, providing the evidence for T-cell function of these cells. In conclusion, thymopentin enhances T-cell lineage differentiation from hESCs in vitro by mimicking thymus peptide environment in vivo.

  1. Temporally controlled site-specific mutagenesis in the germ cell lineage of the mouse testis.

    PubMed

    Weber, Philipp; Schuler, Michael; Gérard, Christelle; Mark, Manuel; Metzger, Daniel; Chambon, Pierre

    2003-02-01

    We have obtained a PrP-Cre-ER(T) transgenic mouse line (28.8) that selectively expresses in testis the tamoxifen-inducible Cre-ER(T) recombinase under the control of a mouse Prion protein (PrP) promoter-containing genomic fragment. Cre-ER(T) is expressed in spermatogonia and spermatocytes, but not in Sertoli and Leydig cells. We also established reporter PrP-L-EGFP-L transgenic mice harboring a LoxP-flanked enhanced green fluorescent protein (EGFP) Cre reporter cassette under the control of the same PrP promoter-containing genomic fragment that exhibits prominent EGFP expression in brain and testis. Using the PrP-L-EGFP-L as well as other Cre-reporter mice, we demonstrate that tamoxifen administration efficiently and selectively induces Cre-mediated recombination in the germ cell lineage. The established PrP-Cre-ER(T) line should provide a valuable tool for studying functions of germ cell-expressed genes involved in spermatogenesis. PMID:12533419

  2. Pox neuro control of cell lineages that give rise to larval poly-innervated external sensory organs in Drosophila.

    PubMed

    Jiang, Yanrui; Boll, Werner; Noll, Markus

    2015-01-15

    The Pox neuro (Poxn) gene of Drosophila plays a crucial role in the development of poly-innervated external sensory (p-es) organs. However, how Poxn exerts this role has remained elusive. In this study, we have analyzed the cell lineages of all larval p-es organs, namely of the kölbchen, papilla 6, and hair 3. Surprisingly, these lineages are distinct from any previously reported cell lineages of sensory organs. Unlike the well-established lineage of mono-innervated external sensory (m-es) organs and a previously proposed model of the p-es lineage, we demonstrate that all wild-type p-es lineages exhibit the following features: the secondary precursor, pIIa, gives rise to all three support cells-socket, shaft, and sheath, whereas the other secondary precursor, pIIb, is neuronal and gives rise to all neurons. We further show that in one of the p-es lineages, that of papilla 6, one cell undergoes apoptosis. By contrast in Poxn null mutants, all p-es lineages have a reduced number of cells and their pattern of cell divisions is changed to that of an m-es organ, with the exception of a lineage in a minority of mutant kölbchen that retains a second bipolar neuron. Indeed, the role of Poxn in p-es lineages is consistent with the specification of the developmental potential of secondary precursors and the regulation of cell division but not apoptosis.

  3. Cell lineage allocation in equine blastocysts produced in vitro under varying glucose concentrations.

    PubMed

    Choi, Young-Ho; Ross, Pablo; Velez, Isabel C; Macías-García, B; Riera, Fernando L; Hinrichs, Katrin

    2015-07-01

    Equine embryos develop in vitro in the presence of high glucose concentrations, but little is known about their requirements for development. We evaluated the effect of glucose concentrations in medium on blastocyst development after ICSI. In experiment 1, there were no significant differences in rates of blastocyst formation among embryos cultured in our standard medium (DMEM/F-12), which contained >16 mM glucose, and those cultured in a minimal-glucose embryo culture medium (<1 mM; Global medium, GB), with either 0 added glucose for the first 5 days, then 20 mM (0-20) or 20 mM for the entire culture period (20-20). In experiment 2, there were no significant differences in the rates of blastocyst development (31-46%) for embryos cultured in four glucose treatments in GB (0-10, 0-20, 5-10, or 5-20). Blastocysts were evaluated by immunofluorescence for lineage-specific markers. All cells stained positively for POU5F1. An inner cluster of cells was identified that included presumptive primitive endoderm cells (GATA6-positive) and presumptive epiblast (EPI) cells. The 5-20 treatment resulted in a significantly lower number of presumptive EPI-lineage cells than the 0-20 treatment did. GATA6-positive cells appeared to be allocated to the primitive endoderm independent of the formation of an inner cell mass, as was previously hypothesized for equine embryos. These data demonstrate that equine blastocyst development is not dependent on high glucose concentrations during early culture; rather, environmental glucose may affect cell allocation. They also present the first analysis of cell lineage allocation in in vitro-fertilized equine blastocysts. These findings expand our understanding of the factors that affect embryo development in the horse.

  4. Cell lineage tracing in human epithelial tissues using mitochondrial DNA mutations as clonal markers.

    PubMed

    Walther, Viola; Alison, Malcolm R

    2016-01-01

    The study of cell lineages through heritable genetic lineage tracing is well established in experimental animals, particularly mice. While such techniques are not feasible in humans, we have taken advantage of the fact that the mitochondrial genome is highly prone to nonpathogenic mutations and such mutations can be used as clonal markers to identify stem cell derived clonal populations in human tissue sections. A mitochondrial DNA (mtDNA) mutation can spread by a stochastic process through the several copies of the circular genome in a single mitochondrion, and then through the many mitochondria in a single cell, a process called 'genetic drift.' This process takes many years and so is likely to occur only in stem cells, but once established, the fate of stem cell progeny can be followed. A cell having at least 80% of its mtDNA genomes bearing the mutation results in a demonstrable deficiency in mtDNA-encoded cytochrome c oxidase (CCO), optimally detected in frozen tissue sections by dual-color histochemistry, whereby CCO activity stains brown and CCO deficiency is highlighted by subsequent succinate dehydrogenase activity, staining the CCO-deficient areas blue. Cells with CCO deficiency can be laser captured and subsequent mtDNA sequencing can ascertain the nature of the mutation. If all cells in a CCO-deficient area have an identical mutation, then a clonal population has been identified; the chances of the same mutation initially arising in separate cells are highly improbable. The technique lends itself to the study of both normal epithelia and can answer several questions in tumor biology. WIREs Dev Biol 2016, 5:103-117. doi: 10.1002/wdev.203 For further resources related to this article, please visit the WIREs website. PMID:26302049

  5. Down-Regulation of Human Enteric Antimicrobial Peptides by NOD2 during Differentiation of the Paneth Cell Lineage

    PubMed Central

    Tan, Gao; Li, Run-hua; Li, Chen; Wu, Fang; Zhao, Xin-mei; Ma, Jia-yi; Lei, Shan; Zhang, Wen-di; Zhi, Fa-chao

    2015-01-01

    Ileal Crohn's disease (CD) arising from the alteration of intestinal homeostasis is characterized by two features, namely a decrease in Paneth cell-produced antimicrobial peptides that play a key role in maintaining this balance and an increase in NOD2, an intracellular sensor. Although mutations in NOD2 are highly correlated with the incidence of CD, the physiological role of NOD2 in intestinal immunity remains elusive. Here, we show that NOD2 can down-regulate the expression of human enteric antimicrobial peptides during differentiation of the Paneth cell lineage. This finding, which links the decrease of human enteric antimicrobial peptides to increased NOD2 in ileal CD patients, provides a new view into the pathogenesis of ileal CD. PMID:25670499

  6. Regulatory effects on the population dynamics and wave propagation in a cell lineage model.

    PubMed

    Wang, Mao-Xiang; Ma, Yu-Qiang; Lai, Pik-Yin

    2016-03-21

    We consider the interplay of cell proliferation, cell differentiation (and de-differentiation), cell movement, and the effect of feedback regulations on the population and propagation dynamics of different cell types in a cell lineage model. Cells are assumed to secrete and respond to negative feedback molecules which act as a control on the cell lineage. The cell densities are described by coupled reaction-diffusion partial differential equations, and the propagating wave front solutions in one dimension are investigated analytically and by numerical solutions. In particular, wavefront propagation speeds are obtained analytically and verified by numerical solutions of the equations. The emphasis is on the effects of the feedback regulations on different stages in the cell lineage. It is found that when the progenitor cell is negatively regulated, the populations of the cell lineage are strongly down-regulated with the steady growth rate of the progenitor cell being driven to zero beyond a critical regulatory strength. An analytic expression for the critical regulation strength in terms of the model parameters is derived and verified by numerical solutions. On the other hand, if the inhibition is acting on the differentiated cells, the change in the population dynamics and wave propagation speed is small. In addition, it is found that only the propagating speed of the progenitor cells is affected by the regulation when the diffusion of the differentiated cells is large. In the presence of de-differentiation, the effect on down-regulating the progenitor population is weakened and there is no effect on the propagation speed due to regulation, suggesting that the effect of regulatory control is diminished by de-differentiation pathways.

  7. Interplay between the TH17 and TReg cell lineages: a (co-)evolutionary perspective.

    PubMed

    Weaver, Casey T; Hatton, Robin D

    2009-12-01

    The origins of the adaptive immune system and the basis for its unique association with vertebrate species have been a source of considerable speculation. In light of recent advances in our understanding of the developmental and functional links between the induced regulatory T cell and T helper 17 cell lineages, and their specialized relationship to the gut, we speculate that the co-evolution of these adaptive immune pathways might have given primitive vertebrates a means to benefit from the diversification of their commensal microbiota.

  8. White spotting phenotype induced by targeted REST disruption during neural crest specification to a melanocyte cell lineage.

    PubMed

    Aoki, Hitomi; Hara, Akira; Kunisada, Takahiro

    2015-05-01

    Neural crest cells (NCCs) emerge from the dorsal region of the neural tube of vertebrate embryos and have the pluripotency to differentiate into both neuronal and non-neuronal lineages including melanocytes. Rest, also known as NRSF (neuro-restrictive silencer factor), is a regulator of neuronal development and function and suggested to be involved in the lineage specification of NCCs. However, further investigations of Rest gene functions in vivo have been hampered by the fact that Rest null mice show early embryonic lethality. To investigate the function of Rest in NCC development, we recently established NCC-specific Rest conditional knockout (CKO) mice and observed their neonatal death. Here, we have established viable heterozygous NCC-specific Rest CKO mice to analyze the function of Rest in an NCC-derived melanocyte cell lineage and found that the white spotting phenotype was associated with the reduction in the number of melanoblasts in the embryonic skin. The Rest deletion induced after the specification to melanocytes did not reduce the number of melanoblasts; therefore, the expression of REST during the early neural crest specification stage was necessary for the normal development of melanoblasts to cover all of the skin. PMID:25818501

  9. Evolutionary modification of cell lineage in the direct-developing sea urchin Heliocidaris erythrogramma.

    PubMed

    Wray, G A; Raff, R A

    1989-04-01

    The sea urchin Heliocidaris erythrogramma undergoes direct development, bypassing the usual echinoid pluteus larva. We present an analysis of cell lineage in H. erythrogramma as part of a definition of the mechanistic basis for this evolutionary change in developmental mode. Microinjection of fluoresceinated tracer dye and surface marking with vital dye are used to follow larval fates of 2-cell, 8-cell, and 16-cell blastomeres, and to examine axial specification. The animal-vegetal axis and adult dorsoventral axis are basically unmodified in H. erythrogramma. Animal cell fates are very similar to those of typically developing species; however, vegetal cell fates in H. erythrogramma are substantially altered. Radial differences exist among vegetal blastomere fates in the 8-cell embryo: dorsal vegetal blastomeres contribute proportionately more descendants to ectodermal and fewer to mesodermal fates, while ventral vegetal blastomeres have a complementary bias in fates. In addition, vegetal cell fates are more variable than in typical developers. There are no cells in H. erythrogramma with fates comparable to those of the micromeres and macromeres of typically developing echinoids. Instead, all vegetal cells in the 16-cell embryo can contribute progeny to ectoderm and gut. Alterations have thus arisen in cleavage patterns and timing of cell lineage partitioning during the evolution of direct development in H. erythrogramma.

  10. Early cell lineage specification in a marsupial: a case for diverse mechanisms among mammals.

    PubMed

    Frankenberg, Stephen; Shaw, Geoff; Freyer, Claudia; Pask, Andrew J; Renfree, Marilyn B

    2013-03-01

    Early cell lineage specification in eutherian mammals results in the formation of a pluripotent inner cell mass (ICM) and trophoblast. By contrast, marsupials have no ICM. Here, we present the first molecular analysis of mechanisms of early cell lineage specification in a marsupial, the tammar wallaby. There was no overt differential localisation of key lineage-specific transcription factors in cleavage and early unilaminar blastocyst stages. Pluriblast cells (equivalent to the ICM) became distinguishable from trophoblast cells by differential expression of POU5F1 and, to a greater extent, POU2, a paralogue of POU5F1. Unlike in the mouse, pluriblast-trophoblast differentiation coincided with a global nuclear-to-cytoplasmic transition of CDX2 localisation. Also unlike in the mouse, Hippo pathway factors YAP and WWTR1 showed mutually distinct localisation patterns that suggest non-redundant roles. NANOG and GATA6 were conserved as markers of epiblast and hypoblast, respectively, but some differences to the mouse were found in their mode of differentiation. Our results suggest that there is considerable evolutionary plasticity in the mechanisms regulating early lineage specification in mammals. PMID:23344710

  11. The cell lineage of a polyclad turbellarian embryo reveals close similarity to coelomate spiralians.

    PubMed

    Boyer, B C; Henry, J J; Martindale, M Q

    1998-12-01

    Recent molecular evidence suggests the turbellarian Platyhelminthes may represent the extant basal members of the Spiralia and therefore probably exhibit ancient features of the spiralian developmental program. The stereotypic quartet spiral cleavage pattern of the polyclad turbellarian embryo, among other features, indicates that this group may be closely related to the ancestral flatworm; however, polyclad embryos have been the subject of few experimental studies. Here we report the results of a cell lineage analysis of the embryo of the polyclad Hoploplana inquilina based on microinjection of DiI into cleavage-stage blastomeres following formation of each of the four quartets of micromeres. The first quartet gives rise to most of the lateral and anterior ectoderm of the Müller's larva; the second quartet forms largely dorsal and ventral ectoderm as well as the circular muscles; the third quartet forms only small clones of ectoderm; and only the 4d cell of the fourth quartet contributes to larval structure, forming the longitudinal muscles, mesenchyme, and probably endoderm. Our results demonstrate a striking similarity between the cell lineages of polyclad and higher spiralian embryos, in which the four quadrants also bear the same relationships to the larval axes and give rise to comparable larval structures, including derivation of mesoderm from both ectodermal (2b) and endodermal precursors (4d).

  12. Early cell lineage specification in a marsupial: a case for diverse mechanisms among mammals.

    PubMed

    Frankenberg, Stephen; Shaw, Geoff; Freyer, Claudia; Pask, Andrew J; Renfree, Marilyn B

    2013-03-01

    Early cell lineage specification in eutherian mammals results in the formation of a pluripotent inner cell mass (ICM) and trophoblast. By contrast, marsupials have no ICM. Here, we present the first molecular analysis of mechanisms of early cell lineage specification in a marsupial, the tammar wallaby. There was no overt differential localisation of key lineage-specific transcription factors in cleavage and early unilaminar blastocyst stages. Pluriblast cells (equivalent to the ICM) became distinguishable from trophoblast cells by differential expression of POU5F1 and, to a greater extent, POU2, a paralogue of POU5F1. Unlike in the mouse, pluriblast-trophoblast differentiation coincided with a global nuclear-to-cytoplasmic transition of CDX2 localisation. Also unlike in the mouse, Hippo pathway factors YAP and WWTR1 showed mutually distinct localisation patterns that suggest non-redundant roles. NANOG and GATA6 were conserved as markers of epiblast and hypoblast, respectively, but some differences to the mouse were found in their mode of differentiation. Our results suggest that there is considerable evolutionary plasticity in the mechanisms regulating early lineage specification in mammals.

  13. IRF8 regulates B-cell lineage specification, commitment, and differentiation

    PubMed Central

    Lee, Chang Hoon; Qi, Chenfeng; Tailor, Prafullakumar; Feng, Jianxun; Abbasi, Sadia; Atsumi, Toru

    2008-01-01

    PU.1, IKAROS, E2A, EBF, and PAX5 comprise a transcriptional network that orchestrates B-cell lineage specification, commitment, and differentiation. Here we identify interferon regulatory factor 8 (IRF8) as another component of this complex, and show that it also modulates lineage choice by hematopoietic stem cells (HSCs). IRF8 binds directly to an IRF8/Ets consensus sequence located in promoter regions of Sfpi1 and Ebf1, which encode PU.1 and EBF, respectively, and is associated with transcriptional repression of Sfpi1 and transcriptional activation of Ebf1. Bone marrows of IRF8 knockout mice (IRF8−/−) had significantly reduced numbers of pre-pro-B cells and increased numbers of myeloid cells. Although HSCs of IRF8−/− mice failed to differentiate to B220+ B-lineage cells in vitro, the defect could be rescued by transfecting HSCs with wild-type but not with a signaling-deficient IRF8 mutant. In contrast, overexpression of IRF8 in HSC-differentiated progenitor cells resulted in growth inhibition and apoptosis. We also found that IRF8 was expressed at higher levels in pre-pro-B cells than more mature B cells in wild-type mice. Together, these results indicate that IRF8 modulates lineage choice by HSCs and is part of the transcriptional network governing B-cell lineage specification, commitment, and differentiation. PMID:18799728

  14. Osteogenic cell lineage analysis is facilitated by organ cultures of embryonic chick periosteum.

    PubMed

    Bruder, S P; Caplan, A I

    1990-10-01

    Monoclonal antibodies against the surface of embryonic osteogenic cells (SB-1, SB-2, SB-3, and SB-5) have been used to characterize the sequence of transitions involved in the osteogenic cell lineage. In the present study, immunohistochemical analyses of the expression of osteogenic cell surface antigens in organ cultures of folded chick periosteum were performed. Unlike traditional culture methods using isolated osteoblastic cells, periosteal explants form a mineralized bone tissue in 4 to 6 days which is virtually identical to the in vivo counterpart. Examination of fresh explants confirm that no mature osteoblastic cells were present, although a discontinuous layer of preosteoblasts was evident. As the wave of osteodifferentiation swept through the cultured tissue, antibody SB-1 reacted with the surface of a large family of cells associated with the developing bone. Antibodies SB-3 and SB-2 reacted with progressively smaller subsets of cells, namely those in successively closer physical association with the newly formed and mineralizing bone. Cells recently encased in bone matrix were stained by both SB-2 and SB-5 antibodies, while those cells deep within the matrix reacted only with antibody SB-5. Analysis of this culture model allows dissection of the discrete cellular transition steps of osteogenesis, and reveals that osteogenic precursor cells proceed through the unique lineage stages which have been documented for in vivo osteogenesis. This culture system has furthermore provided evidence which is used to refine our understanding of the osteogenic cell lineage.

  15. Accuracy of Answers to Cell Lineage Questions Depends on Single-Cell Genomics Data Quality and Quantity.

    PubMed

    Spiro, Adam; Shapiro, Ehud

    2016-06-01

    Advances in single-cell (SC) genomics enable commensurate improvements in methods for uncovering lineage relations among individual cells, as determined by phylogenetic analysis of the somatic mutations harbored by each cell. Theoretically, complete and accurate knowledge of the genome of each cell of an individual can produce an extremely accurate cell lineage tree of that individual. However, the reality of SC genomics is that such complete and accurate knowledge would be wanting, in quality and in quantity, for the foreseeable future. In this paper we offer a framework for systematically exploring the feasibility of answering cell lineage questions based on SC somatic mutational analysis, as a function of SC genomics data quality and quantity. We take into consideration the current limitations of SC genomics in terms of mutation data quality, most notably amplification bias and allele dropouts (ADO), as well as cost, which puts practical limits on mutation data quantity obtained from each cell as well as on cell sample density. We do so by generating in silico cell lineage trees using a dedicated formal language, eSTG, and show how the ability to answer correctly a cell lineage question depends on the quality and quantity of the SC mutation data. The presented framework can serve as a baseline for the potential of current SC genomics to unravel cell lineage dynamics, as well as the potential contributions of future advancement, both biochemical and computational, for the task. PMID:27295404

  16. Accuracy of Answers to Cell Lineage Questions Depends on Single-Cell Genomics Data Quality and Quantity

    PubMed Central

    Spiro, Adam; Shapiro, Ehud

    2016-01-01

    Advances in single-cell (SC) genomics enable commensurate improvements in methods for uncovering lineage relations among individual cells, as determined by phylogenetic analysis of the somatic mutations harbored by each cell. Theoretically, complete and accurate knowledge of the genome of each cell of an individual can produce an extremely accurate cell lineage tree of that individual. However, the reality of SC genomics is that such complete and accurate knowledge would be wanting, in quality and in quantity, for the foreseeable future. In this paper we offer a framework for systematically exploring the feasibility of answering cell lineage questions based on SC somatic mutational analysis, as a function of SC genomics data quality and quantity. We take into consideration the current limitations of SC genomics in terms of mutation data quality, most notably amplification bias and allele dropouts (ADO), as well as cost, which puts practical limits on mutation data quantity obtained from each cell as well as on cell sample density. We do so by generating in silico cell lineage trees using a dedicated formal language, eSTG, and show how the ability to answer correctly a cell lineage question depends on the quality and quantity of the SC mutation data. The presented framework can serve as a baseline for the potential of current SC genomics to unravel cell lineage dynamics, as well as the potential contributions of future advancement, both biochemical and computational, for the task. PMID:27295404

  17. Slit/Robo signaling regulates cell fate decisions in the intestinal stem cell lineage of Drosophila

    PubMed Central

    Biteau, Benoît; Jasper, Heinrich

    2014-01-01

    To maintain tissue homeostasis, cell fate decisions within stem cell lineages have to respond to the needs of the tissue. This coordination of lineage choices with regenerative demand remains poorly characterized. Here we identify a signal from enteroendocrine cells (EEs) that controls lineage specification in the Drosophila intestine. We find that EEs secrete Slit, a ligand for the Robo2 receptor in stem cells (ISCs) that limits ISC commitment to the endocrine lineage, establishing negative feedback control of EE regeneration. We further show that this lineage decision is made within ISCs and requires induction of the transcription factor Prospero in ISCs. Our work identifies a new function for the conserved Slit/Robo pathway in the regulation of adult stem cells, establishing negative feedback control of ISC lineage specification as a critical strategy to preserve tissue homeostasis. Our results further amend the current understanding of cell fate commitment within the Drosophila ISC lineage. PMID:24931602

  18. Origins of adult pigmentation: diversity in pigment stem cell lineages and implications for pattern evolution

    PubMed Central

    Spiewak, Jessica E.

    2014-01-01

    Summary Teleosts comprise about half of all vertebrate species and exhibit an extraordinary diversity of adult pigment patterns that function in shoaling, camouflage and mate choice and have played important roles in speciation. Here, we review recent studies that have identified several distinct neural crest lineages, with distinct genetic requirements, that give rise to adult pigment cells in fishes. These lineages include post-embryonic, peripheral nerve associated stem cells that generate black melanophores and iridescent iridophores, cells derived directly from embryonic neural crest cells that generate yellow-orange xanthophores, and bipotent stem cells that generate both melanophores and xanthophores. This complexity in adult chromatophore lineages has implications for our understanding of adult traits, melanoma, and the evolutionary diversification of pigment cell lineages and patterns. PMID:25421288

  19. Primordial germ cells: the first cell lineage or the last cells standing?

    PubMed Central

    Johnson, Andrew D.; Alberio, Ramiro

    2015-01-01

    Embryos of many animal models express germ line determinants that suppress transcription and mediate early germ line commitment, which occurs before the somatic cell lineages are established. However, not all animals segregate their germ line in this manner. The ‘last cell standing’ model describes primordial germ cell (PGC) development in axolotls, in which PGCs are maintained by an extracellular signalling niche, and germ line commitment occurs after gastrulation. Here, we propose that this ‘stochastic’ mode of PGC specification is conserved in vertebrates, including non-rodent mammals. We postulate that early germ line segregation liberates genetic regulatory networks for somatic development to evolve, and that it therefore emerged repeatedly in the animal kingdom in response to natural selection. PMID:26286941

  20. Slit/Robo signaling regulates cell fate decisions in the intestinal stem cell lineage of Drosophila.

    PubMed

    Biteau, Benoît; Jasper, Heinrich

    2014-06-26

    In order to maintain tissue homeostasis, cell fate decisions within stem cell lineages have to respond to the needs of the tissue. This coordination of lineage choices with regenerative demand remains poorly characterized. Here, we identify a signal from enteroendocrine cells (EEs) that controls lineage specification in the Drosophila intestine. We find that EEs secrete Slit, a ligand for the Robo2 receptor in intestinal stem cells (ISCs) that limits ISC commitment to the endocrine lineage, establishing negative feedback control of EE regeneration. Furthermore, we show that this lineage decision is made within ISCs and requires induction of the transcription factor Prospero in ISCs. Our work identifies a function for the conserved Slit/Robo pathway in the regulation of adult stem cells, establishing negative feedback control of ISC lineage specification as a critical strategy to preserve tissue homeostasis. Our results further amend the current understanding of cell fate commitment within the Drosophila ISC lineage. PMID:24931602

  1. Origins of adult pigmentation: diversity in pigment stem cell lineages and implications for pattern evolution.

    PubMed

    Parichy, David M; Spiewak, Jessica E

    2015-01-01

    Teleosts comprise about half of all vertebrate species and exhibit an extraordinary diversity of adult pigment patterns that function in shoaling, camouflage, and mate choice and have played important roles in speciation. Here, we review studies that have identified several distinct neural crest lineages, with distinct genetic requirements, that give rise to adult pigment cells in fishes. These lineages include post-embryonic, peripheral nerve-associated stem cells that generate black melanophores and iridescent iridophores, cells derived directly from embryonic neural crest cells that generate yellow-orange xanthophores, and bipotent stem cells that generate both melanophores and xanthophores. This complexity in adult chromatophore lineages has implications for our understanding of adult traits, melanoma, and the evolutionary diversification of pigment cell lineages and patterns.

  2. Aire Enforces Immune Tolerance by Directing Autoreactive T Cells into the Regulatory T Cell Lineage.

    PubMed

    Malchow, Sven; Leventhal, Daniel S; Lee, Victoria; Nishi, Saki; Socci, Nicholas D; Savage, Peter A

    2016-05-17

    The promiscuous expression of tissue-restricted antigens in the thymus, driven in part by autoimmune regulator (Aire), is critical for the protection of peripheral tissues from autoimmune attack. Aire-dependent processes are thought to promote both clonal deletion and the development of Foxp3(+) regulatory T (Treg) cells, suggesting that autoimmunity associated with Aire deficiency results from two failed tolerance mechanisms. Here, examination of autoimmune lesions in Aire(-/-) mice revealed an unexpected third possibility. We found that the predominant conventional T cell clonotypes infiltrating target lesions express antigen receptors that were preferentially expressed by Foxp3(+) Treg cells in Aire(+/+) mice. Thus, Aire enforces immune tolerance by ensuring that distinct autoreactive T cell specificities differentiate into the Treg cell lineage; dysregulation of this process results in the diversion of Treg cell-biased clonotypes into pathogenic conventional T cells.

  3. Slit/Robo signaling regulates cell fate decisions in the intestinal stem cell lineage of Drosophila.

    PubMed

    Biteau, Benoît; Jasper, Heinrich

    2014-06-26

    In order to maintain tissue homeostasis, cell fate decisions within stem cell lineages have to respond to the needs of the tissue. This coordination of lineage choices with regenerative demand remains poorly characterized. Here, we identify a signal from enteroendocrine cells (EEs) that controls lineage specification in the Drosophila intestine. We find that EEs secrete Slit, a ligand for the Robo2 receptor in intestinal stem cells (ISCs) that limits ISC commitment to the endocrine lineage, establishing negative feedback control of EE regeneration. Furthermore, we show that this lineage decision is made within ISCs and requires induction of the transcription factor Prospero in ISCs. Our work identifies a function for the conserved Slit/Robo pathway in the regulation of adult stem cells, establishing negative feedback control of ISC lineage specification as a critical strategy to preserve tissue homeostasis. Our results further amend the current understanding of cell fate commitment within the Drosophila ISC lineage.

  4. FGF signaling regulates Wnt ligand expression to control vulval cell lineage polarity in C. elegans

    PubMed Central

    Minor, Paul J.; He, Ting-Fang; Sohn, Chang Ho; Asthagiri, Anand R.; Sternberg, Paul W.

    2013-01-01

    The interpretation of extracellular cues leading to the polarization of intracellular components and asymmetric cell divisions is a fundamental part of metazoan organogenesis. The Caenorhabditis elegans vulva, with its invariant cell lineage and interaction of multiple cell signaling pathways, provides an excellent model for the study of cell polarity within an organized epithelial tissue. Here, we show that the fibroblast growth factor (FGF) pathway acts in concert with the Frizzled homolog LIN-17 to influence the localization of SYS-1, a component of the Wnt/β-catenin asymmetry pathway, indirectly through the regulation of cwn-1. The source of the FGF ligand is the primary vulval precursor cell (VPC) P6.p, which controls the orientation of the neighboring secondary VPC P7.p by signaling through the sex myoblasts (SMs), activating the FGF pathway. The Wnt CWN-1 is expressed in the posterior body wall muscle of the worm as well as in the SMs, making it the only Wnt expressed on the posterior and anterior sides of P7.p at the time of the polarity decision. Both sources of cwn-1 act instructively to influence P7.p polarity in the direction of the highest Wnt signal. Using single molecule fluorescence in situ hybridization, we show that the FGF pathway regulates the expression of cwn-1 in the SMs. These results demonstrate an interaction between FGF and Wnt in C. elegans development and vulval cell lineage polarity, and highlight the promiscuous nature of Wnts and the importance of Wnt gradient directionality within C. elegans. PMID:23946444

  5. Mechanical modulation of nascent stem cell lineage commitment in tissue engineering scaffolds.

    PubMed

    Song, Min Jae; Dean, David; Knothe Tate, Melissa L

    2013-07-01

    Taking inspiration from tissue morphogenesis in utero, this study tests the concept of using tissue engineering scaffolds as delivery devices to modulate emergent structure-function relationships at early stages of tissue genesis. We report on the use of a combined computational fluid dynamics (CFD) modeling, advanced manufacturing methods, and experimental fluid mechanics (micro-piv and strain mapping) for the prospective design of tissue engineering scaffold geometries that deliver spatially resolved mechanical cues to stem cells seeded within. When subjected to a constant magnitude global flow regime, the local scaffold geometry dictates the magnitudes of mechanical stresses and strains experienced by a given cell, and in a spatially resolved fashion, similar to patterning during morphogenesis. In addition, early markers of mesenchymal stem cell lineage commitment relate significantly to the local mechanical environment of the cell. Finally, by plotting the range of stress-strain states for all data corresponding to nascent cell lineage commitment (95% CI), we begin to "map the mechanome", defining stress-strain states most conducive to targeted cell fates. In sum, we provide a library of reference mechanical cues that can be delivered to cells seeded on tissue engineering scaffolds to guide target tissue phenotypes in a temporally and spatially resolved manner. Knowledge of these effects allows for prospective scaffold design optimization using virtual models prior to prototyping and clinical implementation. Finally, this approach enables the development of next generation scaffolds cum delivery devices for genesis of complex tissues with heterogenous properties, e.g., organs, joints or interface tissues such as growth plates.

  6. Cell lineage patterns in the shoot meristem of the sunflower embryo in the dry seed

    SciTech Connect

    Jegla, D.E.; Sussex, I.M.

    1989-01-01

    We mapped the fate of cells in the shoot meristem of the dry-seed embryo of sunflower, Helianthus annuus L. cv. Peredovic, using irradiation-induced somatic sectors. We analyzed 249 chlorophyll-deficient or glabrous (hairless) sectors generated in 236 plants. Most sectors observed in the inflorescence extended into vegetative nodes. Thus cell lineages that ultimately gave rise to reproductive structures also contributed to vegetative structures. No single sector extended the entire length of the shoot. Thus the shoot is not derived from one or a few apical initials. Rather, the position, vertical extent, and width of the sectors at different levels of the shoot suggest that the shoot is derived from three to four circumferential populations of cells in each of three cell layers of the embryo meristem. Sectors had no common boundaries even in plants with two or three independent sectors, but varied in extent and overlapped along the length of the shoot. Thus individual cells in a single circumferential population behaved independently to contribute lineages of different vertical extents to the growing shoot. The predicted number of circumferential populations of cells as well as the apparent cell number in each population was consistent with the actual number of cells in the embryo meristem observed in histological sections.

  7. Comparison between Culture Conditions Improving Growth and Differentiation of Blood and Bone Marrow Cells Committed to the Endothelial Cell Lineage.

    PubMed

    Muscari, Claudio; Gamberini, Chiara; Basile, Ilaria; Bonafé, Francesca; Valgimigli, Simond; Capitani, Ombretta; Guarnieri, Carlo; Caldarera, Claudio Marcello

    2010-02-06

    The aim of this study was to compare different cell sources and culture conditions to obtain endothelial progenitor cells (EPCs) with predictable antigen pattern, proliferation potential and in vitro vasculogenesis. Pig mononuclear cells were isolated from blood (PBMCs) and bone marrow (BMMCs). Mesenchymal stem cells (MSCs) were also derived from pig bone marrow. Cells were cultured on fibronectin in the presence of a high concentration of VEGF and low IGF-1 and FGF-2 levels, or on gelatin with a lower amount of VEGF and higher IGF-1 and FGF-2 concentrations. Endothelial commitment was relieved in almost all PBMCs and BMMCs irrespective of the protocol used, whilst MSCs did not express a reliable pattern of EPC markers under these conditions. BMMCs were more prone to expand on gelatin and showed a better viability than PBMCs. Moreover, about 90% of the BMMCs pre-cultured on gelatin could adhere to a hyaluronan-based scaffold and proliferate on it up to 3 days. Pre-treatment of BMMCs on fibronectin generated well-shaped tubular structures on Matrigel, whilst BMMCs exposed to the gelatin culture condition were less prone to form vessel-like structures. MSCs formed rough tubule-like structures, irrespective of the differentiating condition used. In a relative short time, pig BMMCs could be expanded on gelatin better than PBMCs, in the presence of a low amount of VEGF. BMMCs could better specialize for capillary formation in the presence of fibronectin and an elevated concentration of VEGF, whilst pig MSCs anyway showed a limited capability to differentiate into the endothelial cell lineage.

  8. Multispecies model of cell lineages and feedback control in solid tumors

    PubMed Central

    Youssefpour, H.; Li, X.; Lander, A.D.; Lowengrub, J.S.

    2012-01-01

    We develop a multispecies continuum model to simulate the spatiotemporal dynamics of cell lineages in solid tumors. The model accounts for protein signaling factors produced by cells in lineages, and nutrients supplied by the microenvironment. Together, these regulate the rates of proliferation, self-renewal and differentiation of cells within the lineages, and control cell population sizes and distributions. Terminally differentiated cells release proteins (e.g., from the TGFβ superfamily) that feedback upon less differentiated cells in the lineage both to promote differentiation and decrease rates of proliferation (and self-renewal). Stem cells release a short-range factor that promotes self-renewal (e.g., representative of Wnt signaling factors), as well as a long-range inhibitor of this factor (e.g., representative of Wnt inhibitors such as Dkk and SFRPs). We find that the progression of the tumors and their response to treatment is controlled by the spatiotemporal dynamics of the signaling processes. The model predicts the development of spatiotemporal heterogeneous distributions of the feedback factors (Wnt, Dkk and TGFβ) and tumor cell populations with clusters of stem cells appearing at the tumor boundary, consistent with recent experiments. The nonlinear coupling between the heterogeneous expressions of growth factors and the heterogeneous distributions of cell populations at different lineage stages tends to create asymmetry in tumor shape that may sufficiently alter otherwise homeostatic feedback so as to favor escape from growth control. This occurs in a setting of invasive fingering, and enhanced aggressiveness after standard therapeutic interventions. We find, however, that combination therapy involving differentiation promoters and radiotherapy is very effective in eradicating such a tumor. PMID:22554945

  9. Selectively increased expression and functions of chemokine receptor CCR9 on CD4+ T cells from patients with T-cell lineage acute lymphocytic leukemia.

    PubMed

    Qiuping, Zhang; Qun, Li; Chunsong, Hu; Xiaolian, Zhang; Baojun, Huang; Mingzhen, Yang; Chengming, Lao; Jinshen, He; Qingping, Gao; Kejian, Zhang; Zhimin, Sun; Xuejun, Zhang; Junyan, Liu; Jinquan, Tan

    2003-10-01

    In a total of 38 typical T-cell lineage acute lymphocytic leukemia (T-ALL) and T-cell lineage chronic lymphocytic leukemia (T-CLL) cases investigated, we found that CC chemokine receptor CCR9 was selectively and frequently expressed on T-ALL CD4+ T cells, was moderately expressed on T-CLL CD4+ T cells, and was rarely expressed on normal CD4+ T cells. These findings were demonstrated at protein and mRNA levels using flow cytometry and real-time quantitative reverse transcription-PCR technique and were verified by digital confocal microscopy and Northern blotting. Thymus-expressed chemokine, a ligand for CCR9, selectively induced T-ALL CD4+ T-cell chemotaxis and adhesion. Interleukin (IL)-2 and IL-4, together, down-regulated the expression and functions of CCR9 in T-ALL CD4+ T cells including chemotaxis and adhesion. It was also demonstrated that IL-2 and IL-4, together, internalized CCR9 on T-ALL CD4+ T cells and subsequently inhibited functions of CCR9 in these cells. Thymus-expressed chemokine mRNA was highly expressed in CD4+ T cells, involving lymph node and skin in T-ALL patients, and was expressed at moderate levels in lymph node and skin tissues in T-CLL patients. Our findings may provide new clues to understanding various aspects of T-ALL CD4+ T cells, such as functional expression of CCR9-thymus-expressed chemokine receptor-ligand pairs as well as the effects of IL-2 and IL-4, which may be especially important in cytokine/chemokine environment for the pathophysiological events of T-ALL CD4+ T-cell trafficking. PMID:14559839

  10. Cell lineage-specific and differentiation-dependent patterns of CCAAT/enhancer binding protein alpha expression in the gut epithelium of normal and transgenic mice.

    PubMed Central

    Chandrasekaran, C; Gordon, J I

    1993-01-01

    The proliferation and differentiation programs of gut epithelial cells are expressed rapidly and perpetually along an anatomically well defined pathway. The mouse intestine thus provides an excellent in vivo model system to define the contributions of CCAAT enhancer binding protein alpha (C/EBP alpha) and related bZIP proteins to these processes. Immunocytochemical studies revealed that C/EBP alpha is produced in villus-associated enterocytes located in the duodenum and jejunum of adult mice. The protein is located in the cytoplasmic and nuclear compartments of these cells. C/EBP alpha is not detectable in proliferating and nonproliferating epithelial cells situated in small intestinal crypts nor is it evident in any gut epithelial cell lineage located in the ileum and colon. The related C/EBP beta and C/EBP delta proteins are not detectable by sensitive immunocytochemical methods in epithelial cells distributed along the duodenal-to-colonic axis. Developmental surveys indicate that C/EBP alpha is confined to postmitotic, villus-associated epithelial cells during conversion of the polyclonal intervillus epithelium to monoclonal crypts. Analyses of intestinal isografts reveal that these developmental stage-specific, lineage-specific, differentiation-dependent, and regional patterns of C/EBP alpha expression can be established and maintained in the absence of exposure to luminal contents. Transgenic mice containing nucleotides -1178 to +28 of the rat intestinal fatty acid binding protein gene (I-FABP-1178 to +28) linked to the simian virus 40 large tumor antigen (T antigen) gene express T antigen in villus-associated enterocytes. This results in reentry of enterocytes into the cell cycle and a silencing of C/EBP alpha expression without an apparent effect on the accumulation of several markers of this lineage's terminal differentiation program or on gut morphogenesis. These findings indicate that there is a relationship between expression of C/EBP alpha in

  11. The cell lineage of the polyplacophoran, Chaetopleura apiculata: variation in the spiralian program and implications for molluscan evolution.

    PubMed

    Henry, Jonathan Q; Okusu, Akiko; Martindale, Mark Q

    2004-08-01

    Polyplacophorans, or chitons, are an important group of molluscs, which are argued to have retained many plesiomorphic features of the molluscan body plan. Polyplacophoran trochophore larvae posses several features that are distinctly different from those of their sister trochozoan taxa, including modifications of the ciliated prototrochal cells, the postrochal position of the larval eyes or ocelli, epidermal calcareous spicules, and a collection of serially reiterated epidermal shell plates. Despite these differences, chitons demonstrate a canonical pattern of equal spiral cleavage shared by other spiralian phyla that permits the identification of homologous cells across this animal clade. Cell lineage analysis using intracellular labeling on one chiton species, Chaetopleura apiculata, shows that the ocelli are generated from different lineal precursors (second-quartet micromeres: 2a, 2c) compared to those in all other spiralians studied to date (first-quartet micromeres: 1a, 1c). This situation implies that significant changes have also occurred in terms of the inductive interactions that control eye development in the spiralians. Although radical departures from the spiralian developmental program are seen in some molluscs (i.e., cephalopods), the findings presented here indicate that important changes can occur even within the highly constrained framework of the spiral cleavage program. Among spiralians, variation has been reported for the origin of the anterior, sensory, apical organ, which arises from the 1c and 1d micromeres in C. apiculata. The prototroch of C. apiculata consists of two to three irregular rows of ciliated cells but arise from 1q and 2q daughters, similar to that of Ischnochiton rissoi, as well as the gastropod, Patella vulgata. Despite certain early claims, there is no supporting evidence that any of the shell plates arise pretrochally in C. apiculata. The first seven of eight definitive shell plates that arise in the larva originate from

  12. Identification of a negative regulatory role for spi-C in the murine B cell lineage.

    PubMed

    Li, Stephen K H; Solomon, Lauren A; Fulkerson, Patricia C; DeKoter, Rodney P

    2015-04-15

    Spi-C is an E26 transformation-specific family transcription factor that is highly related to PU.1 and Spi-B. Spi-C is expressed in developing B cells, but its function in B cell development and function is not well characterized. To determine whether Spi-C functions as a negative regulator of Spi-B (encoded by Spib), mice were generated that were germline knockout for Spib and heterozygous for Spic (Spib(-/-)Spic(+/-)). Interestingly, loss of one Spic allele substantially rescued B cell frequencies and absolute numbers in Spib(-/-) mouse spleens. Spib(-/-)Spic(+/-) B cells had restored proliferation compared with Spib(-/-) B cells in response to anti-IgM or LPS stimulation. Investigation of a potential mechanism for the Spib(-/-)Spic(+/-) phenotype revealed that steady-state levels of Nfkb1, encoding p50, were elevated in Spib(-/-)Spic(+/-) B cells compared with Spib(-/-) B cells. Spi-B was shown to directly activate the Nfkb1 gene, whereas Spi-C was shown to repress this gene. These results indicate a novel role for Spi-C as a negative regulator of B cell development and function.

  13. Analysis of the Hand1 cell lineage reveals novel contributions to cardiovascular, neural crest, extra-embryonic, and lateral mesoderm derivatives.

    PubMed

    Barnes, Ralston M; Firulli, Beth A; Conway, Simon J; Vincentz, Joshua W; Firulli, Anthony B

    2010-11-01

    The basic Helix-Loop-Helix (bHLH) transcription factors Hand1 and Hand2 play critical roles in the development of multiple organ systems during embryogenesis. The dynamic expression patterns of these two factors within developing tissues obfuscate their respective unique and redundant organogenic functions. To define cell lineages potentially dependent upon Hand gene expression, we generated a mutant allele in which the coding region of Hand1 is replaced by Cre recombinase. Subsequent Cre-mediated activation of β-galactosidase or eYFP reporter alleles enabled lineage trace analyses that clearly define the fate of Hand1-expressing cells. Hand1-driven Cre marks specific lineages within the extra embryonic tissues, placenta, sympathetic nervous system, limbs, jaw, and several cell types within the cardiovascular system. Comparisons between Hand1 expression and Hand1-lineage greatly refine our understanding of its dynamic spatial-temporal expression domains and raise the possibility of novel Hand1 functions in structures not thought to be Hand1-dependent.

  14. Cyanobacterial Cell Lineage Analysis of the Spatiotemporal hetR Expression Profile during Heterocyst Pattern Formation in Anabaena sp. PCC 7120

    PubMed Central

    Kawai, Kentaro; Ehira, Shigeki; Ishihara, Jun-ichi; Aihara, Kazuyuki; Shoji, Shuichi

    2009-01-01

    Diazotrophic heterocyst formation in the filamentous cyanobacterium, Anabaena sp. PCC 7120, is one of the simplest pattern formations known to occur in cell differentiation. Most previous studies on heterocyst patterning were based on statistical analysis using cells collected or observed at different times from a liquid culture, which would mask stochastic fluctuations affecting the process of pattern formation dynamics in a single bacterial filament. In order to analyze the spatiotemporal dynamics of heterocyst formation at the single filament level, here we developed a culture system to monitor simultaneously bacterial development, gene expression, and phycobilisome fluorescence. We also developed micro-liquid chamber arrays to analyze multiple Anabaena filaments at the same time. Cell lineage analyses demonstrated that the initial distributions of hetR::gfp and phycobilisome fluorescence signals at nitrogen step-down were not correlated with the resulting distribution of developed heterocysts. Time-lapse observations also revealed a dynamic hetR expression profile at the single-filament level, including transient upregulation accompanying cell division, which did not always lead to heterocyst development. In addition, some cells differentiated into heterocysts without cell division after nitrogen step-down, suggesting that cell division in the mother cells is not an essential requirement for heterocyst differentiation. PMID:19823574

  15. Transcriptional repressor Tbx3 is required for the hormone-sensing cell lineage in mammary epithelium.

    PubMed

    Kunasegaran, Kamini; Ho, Victor; Chang, Ted H-T; De Silva, Duvini; Bakker, Martijn L; Christoffels, Vincent M; Pietersen, Alexandra M

    2014-01-01

    The transcriptional repressor Tbx3 is involved in lineage specification in several tissues during embryonic development. Germ-line mutations in the Tbx3 gene give rise to Ulnar-Mammary Syndrome (comprising reduced breast development) and Tbx3 is required for mammary epithelial cell identity in the embryo. Notably Tbx3 has been implicated in breast cancer, which develops in adult mammary epithelium, but the role of Tbx3 in distinct cell types of the adult mammary gland has not yet been characterized. Using a fluorescent reporter knock-in mouse, we show that in adult virgin mice Tbx3 is highly expressed in luminal cells that express hormone receptors, and not in luminal cells of the alveolar lineage (cells primed for milk production). Flow cytometry identified Tbx3 expression already in progenitor cells of the hormone-sensing lineage and co-immunofluorescence confirmed a strict correlation between estrogen receptor (ER) and Tbx3 expression in situ. Using in vivo reconstitution assays we demonstrate that Tbx3 is functionally relevant for this lineage because knockdown of Tbx3 in primary mammary epithelial cells prevented the formation of ER+ cells, but not luminal ER- or basal cells. Interestingly, genes that are repressed by Tbx3 in other cell types, such as E-cadherin, are not repressed in hormone-sensing cells, highlighting that transcriptional targets of Tbx3 are cell type specific. In summary, we provide the first analysis of Tbx3 expression in the adult mammary gland at a single cell level and show that Tbx3 is important for the generation of hormone-sensing cells.

  16. Transcriptional Repressor Tbx3 Is Required for the Hormone-Sensing Cell Lineage in Mammary Epithelium

    PubMed Central

    Kunasegaran, Kamini; Ho, Victor; Chang, Ted H-. T.; De Silva, Duvini; Bakker, Martijn L.; Christoffels, Vincent M.; Pietersen, Alexandra M.

    2014-01-01

    The transcriptional repressor Tbx3 is involved in lineage specification in several tissues during embryonic development. Germ-line mutations in the Tbx3 gene give rise to Ulnar-Mammary Syndrome (comprising reduced breast development) and Tbx3 is required for mammary epithelial cell identity in the embryo. Notably Tbx3 has been implicated in breast cancer, which develops in adult mammary epithelium, but the role of Tbx3 in distinct cell types of the adult mammary gland has not yet been characterized. Using a fluorescent reporter knock-in mouse, we show that in adult virgin mice Tbx3 is highly expressed in luminal cells that express hormone receptors, and not in luminal cells of the alveolar lineage (cells primed for milk production). Flow cytometry identified Tbx3 expression already in progenitor cells of the hormone-sensing lineage and co-immunofluorescence confirmed a strict correlation between estrogen receptor (ER) and Tbx3 expression in situ. Using in vivo reconstitution assays we demonstrate that Tbx3 is functionally relevant for this lineage because knockdown of Tbx3 in primary mammary epithelial cells prevented the formation of ER+ cells, but not luminal ER- or basal cells. Interestingly, genes that are repressed by Tbx3 in other cell types, such as E-cadherin, are not repressed in hormone-sensing cells, highlighting that transcriptional targets of Tbx3 are cell type specific. In summary, we provide the first analysis of Tbx3 expression in the adult mammary gland at a single cell level and show that Tbx3 is important for the generation of hormone-sensing cells. PMID:25343378

  17. Genetic Ablation of Parietal Cells in Transgenic Mice: A New Model for Analyzing Cell Lineage Relationships in the Gastric Mucosa

    NASA Astrophysics Data System (ADS)

    Canfield, Victor; West, A. Brian; Goldenring, James R.; Levenson, Robert

    1996-03-01

    The gastric mucosa of mammalian stomach contains several differentiated cell types specialized for the secretion of acid, digestive enzymes, mucus, and hormones. Understanding whether each of these cell lineages is derived from a common stem cell has been a challenging problem. We have used a genetic approach to analyze the ontogeny of progenitor cells within mouse stomach. Herpes simplex virus 1 thymidine kinase was targeted to parietal cells within the gastric mucosa of transgenic mice, and parietal cells were ablated by treatment of animals with the antiherpetic drug ganciclovir. Ganciclovir treatment produced complete ablation of parietal cells, dissolution of gastric glands, and loss of chief and mucus-producing cells. Termination of drug treatment led to the reemergence of all major gastric epithelial cell types and restoration of glandular architecture. Our results imply the existence of a pluripotent stem cell for the gastric mucosa. Parietal cell ablation should provide a model for analyzing cell lineage relationships within the stomach as well as mechanisms underlying gastric injury and repair.

  18. Evolutionary origins of germline segregation in Metazoa: evidence for a germ stem cell lineage in the coral Orbicella faveolata (Cnidaria, Anthozoa).

    PubMed

    Barfield, Sarah; Aglyamova, Galina V; Matz, Mikhail V

    2016-01-13

    The ability to segregate a committed germ stem cell (GSC) lineage distinct from somatic cell lineages is a characteristic of bilaterian Metazoans. However, the occurrence of GSC lineage specification in basally branching Metazoan phyla, such as Cnidaria, is uncertain. Without an independently segregated GSC lineage, germ cells and their precursors must be specified throughout adulthood from continuously dividing somatic stem cells, generating the risk of propagating somatic mutations within the individual and its gametes. To address the potential for existence of a GSC lineage in Anthozoa, the sister-group to all remaining Cnidaria, we identified moderate- to high-frequency somatic mutations and their potential for gametic transfer in the long-lived coral Orbicella faveolata (Anthozoa, Cnidaria) using a 2b-RAD sequencing approach. Our results demonstrate that somatic mutations can drift to high frequencies (up to 50%) and can also generate substantial intracolonial genetic diversity. However, these somatic mutations are not transferable to gametes, signifying the potential for an independently segregated GSC lineage in O. faveolata. In conjunction with previous research on germ cell development in other basally branching Metazoan species, our results suggest that the GSC system may be a Eumetazoan characteristic that evolved in association with the emergence of greater complexity in animal body plan organization and greater specificity of stem cell functions.

  19. β8 Integrin Expression and Activation of TGF-β by Intestinal Dendritic Cells Are Determined by Both Tissue Microenvironment and Cell Lineage.

    PubMed

    Boucard-Jourdin, Mathilde; Kugler, David; Endale Ahanda, Marie-Laure; This, Sébastien; De Calisto, Jaime; Zhang, Ailiang; Mora, J Rodrigo; Stuart, Lynda M; Savill, John; Lacy-Hulbert, Adam; Paidassi, Helena

    2016-09-01

    Activation of TGF-β by dendritic cells (DCs) expressing αvβ8 integrin is essential for the generation of intestinal regulatory T cells (Tregs) that in turn promote tolerance to intestinal Ags. We have recently shown that αvβ8 integrin is preferentially expressed by CD103(+) DCs and confers their ability to activate TGF-β and generate Tregs. However, how these DCs become specialized for this vital function is unknown. In this study, we show that β8 expression is controlled by a combination of factors that include DC lineage and signals derived from the tissue microenvironment and microbiota. Specifically, our data demonstrate that TGF-β itself, along with retinoic acid and TLR signaling, drives expression of αvβ8 in DCs. However, these signals only result in high levels of β8 expression in cells of the cDC1 lineage, CD8α(+), or CD103(+)CD11b(-) DCs, and this is associated with epigenetic changes in the Itgb8 locus. Together, these data provide a key illustrative example of how microenvironmental factors and cell lineage drive the generation of regulatory αvβ8-expressing DCs specialized for activation of TGF-β to facilitate Treg generation. PMID:27481847

  20. Generation of priming mesenchymal stem cells with enhanced potential to differentiate into specific cell lineages using extracellular matrix proteins.

    PubMed

    Han, Na Rae; Yun, Jung Im; Park, Young Hyun; Ahn, Ji Yeon; Kim, Choonghyo; Choi, Jung Hoon; Lee, Eunsong; Lim, Jeong Mook; Lee, Seung Tae

    2013-07-01

    Poor understanding of the differentiation of mesenchymal stem cells (MSCs) has resulted in a low differentiation yield, and has hindered their application in medicine. As a solution, priming MSCs sensitive to signaling, thus stimulating differentiation into a specific cell lineage, may improve the differentiation yield. To demonstrate this, priming MSCs were produced by using a gelatin matrix for the isolation of primary MSCs from bone-marrow-derived primary cells. Subsequently, cellular characteristics and sensitivity to specific differentiation signals were analyzed at passage five. Compared to non-priming MSCs, priming MSCs showed no significant differences in cellular characteristics, but demonstrated a significant increase in sensitivity to neurogenic differentiation signals. These results demonstrate that generation of priming MSCs by specific extracellular signaling increases the rate of differentiation into a cell-specific lineage.

  1. Transcription factor KLF7 regulates differentiation of neuroectodermal and mesodermal cell lineages

    SciTech Connect

    Caiazzo, Massimiliano; Colucci-D'Amato, Luca; Esposito, Maria T.; Parisi, Silvia; Stifani, Stefano; Ramirez, Francesco; Porzio, Umberto di

    2010-08-15

    Previous gene targeting studies in mice have implicated the nuclear protein Krueppel-like factor 7 (KLF7) in nervous system development while cell culture assays have documented its involvement in cell cycle regulation. By employing short hairpin RNA (shRNA)-mediated gene silencing, here we demonstrate that murine Klf7 gene expression is required for in vitro differentiation of neuroectodermal and mesodermal cells. Specifically, we show a correlation of Klf7 silencing with down-regulation of the neuronal marker microtubule-associated protein 2 (Map2) and the nerve growth factor (NGF) tyrosine kinase receptor A (TrkA) using the PC12 neuronal cell line. Similarly, KLF7 inactivation in Klf7-null mice decreases the expression of the neurogenic marker brain lipid-binding protein/fatty acid-binding protein 7 (BLBP/FABP7) in neural stem cells (NSCs). We also report that Klf7 silencing is detrimental to neuronal and cardiomyocytic differentiation of embryonic stem cells (ESCs), in addition to altering the adipogenic and osteogenic potential of mouse embryonic fibroblasts (MEFs). Finally, our results suggest that genes that are key for self-renewal of undifferentiated ESCs repress Klf7 expression in ESCs. Together with previous findings, these results provide evidence that KLF7 has a broad spectrum of regulatory functions, which reflect the discrete cellular and molecular contexts in which this transcription factor operates.

  2. Whole-brain neural network analysis (connectomics) using cell lineage-based neuron-labeling method.

    PubMed

    Ito, Kei; Ito, Masayoshi

    2014-11-01

    The brain is a computing machine that receives input signals from sensory neurons, calculates best responses to changing environments, and sends output signals to motor muscles. How such computation is materialized remains largely unknown. Understanding the entire wiring network of neural connections in the brain, which is recently called the connectomics (connection + omics), should provide indispensable insights on this problem.To resolve the circuit diagram from the tangled thickets of neural fibers, only a small subset of neurons should be visualized at one time. Previous studies visualized such selective cells by injecting dyes or by detecting specific molecules or gene expression patterns using antibodies and expression driver strains. These approaches were unfortunately not efficient enough for identifying all the brain cells in a comprehensive and systematic manner.Neurons are generated by neural stem cells. The entire neural population can therefore be divided into a finite number of families - or clones - of the cells that are the progeny of each single stem cell. The central brain of the fruit fly Drosophila melanogaster consists of about 15,000 neurons per side and is made by utmost 100 stem cells. By genetically labeling one of such stem cells and tracing the projection patterns of its progeny in the adult brain, we were able to identify the neural projections of almost all the clonal cell groups.To visualize these neural projections, we made serial optical sections of the fly brain using laser confocal microscopy. Because of its relatively small size (0.6-mm wide and less than 0.3-mm thick), the entire fly brain can be imaged using high-resolution objectives with n.a. 1.2. Neuronal fibers are visualized by ectopically expressed cytoplasmic and membrane-bound fluorescent proteins, and the output synaptic sites are visualized with ectopically expressed tag proteins that are fused with the proteins associated with synaptic vesicles. In addition, density

  3. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq

    PubMed Central

    Blakeley, Paul; Fogarty, Norah M. E.; del Valle, Ignacio; Wamaitha, Sissy E.; Hu, Tim Xiaoming; Elder, Kay; Snell, Philip; Christie, Leila; Robson, Paul; Niakan, Kathy K.

    2015-01-01

    Here, we provide fundamental insights into early human development by single-cell RNA-sequencing of human and mouse preimplantation embryos. We elucidate conserved transcriptional programs along with those that are human specific. Importantly, we validate our RNA-sequencing findings at the protein level, which further reveals differences in human and mouse embryo gene expression. For example, we identify several genes exclusively expressed in the human pluripotent epiblast, including the transcription factor KLF17. Key components of the TGF-β signalling pathway, including NODAL, GDF3, TGFBR1/ALK5, LEFTY1, SMAD2, SMAD4 and TDGF1, are also enriched in the human epiblast. Intriguingly, inhibition of TGF-β signalling abrogates NANOG expression in human epiblast cells, consistent with a requirement for this pathway in pluripotency. Although the key trophectoderm factors Id2, Elf5 and Eomes are exclusively localized to this lineage in the mouse, the human orthologues are either absent or expressed in alternative lineages. Importantly, we also identify genes with conserved expression dynamics, including Foxa2/FOXA2, which we show is restricted to the primitive endoderm in both human and mouse embryos. Comparison of the human epiblast to existing embryonic stem cells (hESCs) reveals conservation of pluripotency but also additional pathways more enriched in hESCs. Our analysis highlights significant differences in human preimplantation development compared with mouse and provides a molecular blueprint to understand human embryogenesis and its relationship to stem cells. PMID:26293300

  4. MiR-124 is differentially expressed in derivatives of the sympathoadrenal cell lineage and promotes neurite elongation in chromaffin cells.

    PubMed

    Shtukmaster, Stella; Narasimhan, Priyanka; El Faitwri, Tehani; Stubbusch, Jutta; Ernsberger, Uwe; Rohrer, Hermann; Unsicker, Klaus; Huber, Katrin

    2016-08-01

    The neural-crest-derived sympathoadrenal cell lineage gives rise to sympathetic neurons and to endocrine chromaffin cells of the adrenal medulla. Both cell types express a largely overlapping set of genes, including those coding for the molecular machinery related to the synthesis and exocytotic release of catecholamines. During their early development, sympathetic neurons and chromaffin cells rely on a shared transcription factor network that controls the establishment of these common features. Despite many similarities, mature sympathetic neurons and chromaffin cells significantly differ regarding their morphology and function. Most prominently, sympathetic neurons possess axons that are absent in mammalian adrenal chromaffin cells. The molecular mechanism underlying the divergent development of sympathoadrenal cells into neuronal and endocrine cells remains elusive. Mutational inactivation of the ribonuclease dicer hints at the importance of microRNAs in this diversification. We show here that miR-124 is detectable in developing sympathetic neurons but absent in chromaffin cell precursors. We further demonstrate that miR-124 promotes neurite elongation when transfected into cultured chromaffin cells indicating its capability to support the establishment of a neuronal morphology in non-neuronal sympathoadrenal cells. Our results also show that treatment of PC12 cells with the neurotrophin nerve growth factor leads to an upregulation of miR-124 expression and that inhibition of miR-124 reduces nerve-growth-factor-induced neurite outgrowth in PC12 cells. Thus, our data indicate that miR-124 contributes to the establishment of specific neuronal features in developing sympathoadrenal cells. PMID:27094431

  5. A mex3 homolog is required for differentiation during planarian stem cell lineage development

    PubMed Central

    Zhu, Shu Jun; Hallows, Stephanie E; Currie, Ko W; Xu, ChangJiang; Pearson, Bret J

    2015-01-01

    Neoblasts are adult stem cells (ASCs) in planarians that sustain cell replacement during homeostasis and regeneration of any missing tissue. While numerous studies have examined genes underlying neoblast pluripotency, molecular pathways driving postmitotic fates remain poorly defined. In this study, we used transcriptional profiling of irradiation-sensitive and irradiation-insensitive cell populations and RNA interference (RNAi) functional screening to uncover markers and regulators of postmitotic progeny. We identified 32 new markers distinguishing two main epithelial progenitor populations and a planarian homolog to the MEX3 RNA-binding protein (Smed-mex3-1) as a key regulator of lineage progression. mex3-1 was required for generating differentiated cells of multiple lineages, while restricting the size of the stem cell compartment. We also demonstrated the utility of using mex3-1(RNAi) animals to identify additional progenitor markers. These results identified mex3-1 as a cell fate regulator, broadly required for differentiation, and suggest that mex3-1 helps to mediate the balance between ASC self-renewal and commitment. DOI: http://dx.doi.org/10.7554/eLife.07025.001 PMID:26114597

  6. A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages

    PubMed Central

    Pearson, Bret J.; Alvarado, Alejandro Sánchez

    2010-01-01

    The functions of adult stem cells and tumor suppressor genes are known to intersect. However, when and how tumor suppressors function in the lineages produced by adult stem cells is unknown. With a large population of stem cells that can be manipulated and studied in vivo, the freshwater planarian is an ideal system with which to investigate these questions. Here, we focus on the tumor suppressor p53, homologs of which have no known role in stem cell biology in any invertebrate examined thus far. Planaria have a single p53 family member, Smed-p53, which is predominantly expressed in newly made stem cell progeny. When Smed-p53 is targeted by RNAi, the stem cell population increases at the expense of progeny, resulting in hyper-proliferation. However, ultimately the stem cell population fails to self-renew. Our results suggest that prior to the vertebrates, an ancestral p53-like molecule already had functions in stem cell proliferation control and self-renewal. PMID:20040488

  7. Gene therapy for high-grade glioma

    PubMed Central

    Natsume, Atsushi

    2008-01-01

    The treatment of high-grade gliomas remains difficult despite recent advances in surgery, radiotherapy and chemotherapy. True advances may emerge from the increasing understanding in molecular biology and discovery of novel mechanisms for the delivery of tumoricidal agents. In an attempt to overcome this formidable neoplasm, molecular approaches using gene therapy have been investigated clinically since 1992. The clinical trials have mainly been classified into three approaches: suicide gene therapy, immune gene therapy and oncolytic viral therapy. In this article, we review these approaches, which have been studied in previous and ongoing clinical trials. PMID:19262115

  8. Concise Review: Primary Cilia: Control Centers for Stem Cell Lineage Specification and Potential Targets for Cell-Based Therapies.

    PubMed

    Bodle, Josephine C; Loboa, Elizabeth G

    2016-06-01

    Directing stem cell lineage commitment prevails as the holy grail of translational stem cell research, particularly to those interested in the application of mesenchymal stem cells and adipose-derived stem cells in tissue engineering. However, elucidating the mechanisms underlying their phenotypic specification persists as an active area of research. In recent studies, the primary cilium structure has been intimately associated with defining cell phenotype, maintaining stemness, as well as functioning in a chemo, electro, and mechanosensory capacity in progenitor and committed cell types. Many hypothesize that the primary cilium may indeed be another important player in defining and controlling cell phenotype, concomitant with lineage-dictated cytoskeletal dynamics. Many of the studies on the primary cilium have emerged from disparate areas of biological research, and crosstalk amongst these areas of research is just beginning. To date, there has not been a thorough review of how primary cilia fit into the current paradigm of stem cell differentiation and this review aims to summarize the current cilia work in this context. The goal of this review is to highlight the cilium's function and integrate this knowledge into the working knowledge of stem cell biologists and tissue engineers developing regenerative medicine technologies. Stem Cells 2016;34:1445-1454.

  9. Fibroblast growth factor receptor-3 regulates Paneth cell lineage allocation and accrual of epithelial stem cells during murine intestinal development.

    PubMed

    Vidrich, Alda; Buzan, Jenny M; Brodrick, Brooks; Ilo, Chibuzo; Bradley, Leigh; Fendig, Kirstin Skaar; Sturgill, Thomas; Cohn, Steven M

    2009-07-01

    Fibroblast growth factor receptor 3 (FGFR-3) is expressed in the lower crypt epithelium, where stem cells of the intestine reside. The role of FGFR-3 signaling in regulating features of intestinal morphogenesis was examined in FGFR-3-null (FGFR-3(-/-)) mice. FGFR-3(-/-) mice had only about half the number of intestinal crypts and a marked decrease in the number of functional clonogenic stem cells, as assessed by an in vivo microcolony-forming assay, compared with wild-type littermates. A marked deficit in allocation of progenitor cells to Paneth cell differentiation was noted, although all the principal epithelial lineages were represented in FGFR-3(-/-) mice. The total cellular content and nuclear localization of beta-catenin protein were reduced in FGFR-3(-/-) mice, as was expression of cyclin D1 and matrix metalloproteinase-7, major downstream targets of beta-catenin/T cell factor-4 (Tcf-4) signaling. Activation of FGFR-3 in Caco-2 cells, an intestinal epithelial cell line, abrogated the fall in beta-catenin/Tcf-4 signaling activity that is normally observed in these cells as cultures become progressively more confluent. These findings are consistent with the hypothesis that, during intestinal development, FGFR-3 signaling regulates crypt epithelial stem cell expansion and crypt morphogenesis, as well as Paneth cell lineage specification, through beta-catenin/Tcf-4-dependent and -independent pathways. PMID:19407216

  10. A workflow to process 3D+time microscopy images of developing organisms and reconstruct their cell lineage.

    PubMed

    Faure, Emmanuel; Savy, Thierry; Rizzi, Barbara; Melani, Camilo; Stašová, Olga; Fabrèges, Dimitri; Špir, Róbert; Hammons, Mark; Čúnderlík, Róbert; Recher, Gaëlle; Lombardot, Benoît; Duloquin, Louise; Colin, Ingrid; Kollár, Jozef; Desnoulez, Sophie; Affaticati, Pierre; Maury, Benoît; Boyreau, Adeline; Nief, Jean-Yves; Calvat, Pascal; Vernier, Philippe; Frain, Monique; Lutfalla, Georges; Kergosien, Yannick; Suret, Pierre; Remešíková, Mariana; Doursat, René; Sarti, Alessandro; Mikula, Karol; Peyriéras, Nadine; Bourgine, Paul

    2016-01-01

    The quantitative and systematic analysis of embryonic cell dynamics from in vivo 3D+time image data sets is a major challenge at the forefront of developmental biology. Despite recent breakthroughs in the microscopy imaging of living systems, producing an accurate cell lineage tree for any developing organism remains a difficult task. We present here the BioEmergences workflow integrating all reconstruction steps from image acquisition and processing to the interactive visualization of reconstructed data. Original mathematical methods and algorithms underlie image filtering, nucleus centre detection, nucleus and membrane segmentation, and cell tracking. They are demonstrated on zebrafish, ascidian and sea urchin embryos with stained nuclei and membranes. Subsequent validation and annotations are carried out using Mov-IT, a custom-made graphical interface. Compared with eight other software tools, our workflow achieved the best lineage score. Delivered in standalone or web service mode, BioEmergences and Mov-IT offer a unique set of tools for in silico experimental embryology. PMID:26912388

  11. Commitment to the regulatory T cell lineage requires CARMA1 in the thymus but not in the periphery.

    PubMed

    Barnes, Michael J; Krebs, Philippe; Harris, Nathaniel; Eidenschenk, Celine; Gonzalez-Quintial, Rosana; Arnold, Carrie N; Crozat, Karine; Sovath, Sosathya; Moresco, Eva Marie; Theofilopoulos, Argyrios N; Beutler, Bruce; Hoebe, Kasper

    2009-03-01

    Regulatory T (T(reg)) cells expressing forkhead box P3 (Foxp3) arise during thymic selection among thymocytes with modestly self-reactive T cell receptors. In vitro studies suggest Foxp3 can also be induced among peripheral CD4(+) T cells in a cytokine dependent manner. T(reg) cells of thymic or peripheral origin may serve different functions in vivo, but both populations are phenotypically indistinguishable in wild-type mice. Here we show that mice with a Carma1 point mutation lack thymic CD4(+)Foxp3(+) T(reg) cells and demonstrate a cell-intrinsic requirement for CARMA1 in thymic Foxp3 induction. However, peripheral Carma1-deficient T(reg) cells could be generated and expanded in vitro in response to the cytokines transforming growth factor beta (TGFbeta) and interleukin-2 (IL-2). In vivo, a small peripheral T(reg) pool existed that was enriched at mucosal sites and could expand systemically after infection with mouse cytomegalovirus (MCMV). Our data provide genetic evidence for two distinct mechanisms controlling regulatory T cell lineage commitment. Furthermore, we show that peripheral T(reg) cells are a dynamic population that may expand to limit immunopathology or promote chronic infection.

  12. A workflow to process 3D+time microscopy images of developing organisms and reconstruct their cell lineage

    PubMed Central

    Faure, Emmanuel; Savy, Thierry; Rizzi, Barbara; Melani, Camilo; Stašová, Olga; Fabrèges, Dimitri; Špir, Róbert; Hammons, Mark; Čúnderlík, Róbert; Recher, Gaëlle; Lombardot, Benoît; Duloquin, Louise; Colin, Ingrid; Kollár, Jozef; Desnoulez, Sophie; Affaticati, Pierre; Maury, Benoît; Boyreau, Adeline; Nief, Jean-Yves; Calvat, Pascal; Vernier, Philippe; Frain, Monique; Lutfalla, Georges; Kergosien, Yannick; Suret, Pierre; Remešíková, Mariana; Doursat, René; Sarti, Alessandro; Mikula, Karol; Peyriéras, Nadine; Bourgine, Paul

    2016-01-01

    The quantitative and systematic analysis of embryonic cell dynamics from in vivo 3D+time image data sets is a major challenge at the forefront of developmental biology. Despite recent breakthroughs in the microscopy imaging of living systems, producing an accurate cell lineage tree for any developing organism remains a difficult task. We present here the BioEmergences workflow integrating all reconstruction steps from image acquisition and processing to the interactive visualization of reconstructed data. Original mathematical methods and algorithms underlie image filtering, nucleus centre detection, nucleus and membrane segmentation, and cell tracking. They are demonstrated on zebrafish, ascidian and sea urchin embryos with stained nuclei and membranes. Subsequent validation and annotations are carried out using Mov-IT, a custom-made graphical interface. Compared with eight other software tools, our workflow achieved the best lineage score. Delivered in standalone or web service mode, BioEmergences and Mov-IT offer a unique set of tools for in silico experimental embryology. PMID:26912388

  13. Extranodal lymphoblastic lymphoma of suspected B-cell lineage in the gingiva of a racehorse, accompanied by mandibular osteolysis.

    PubMed

    Oikawa, M; Ohishi, H; Katayama, Y; Kushiro, A; Yoshikawa, H; Yoshikawa, T

    2003-04-01

    A mass developed in the mandibular gingiva of a thoroughbred racehorse. When the horse could no longer eat unassisted, it was killed and immediately autopsied. Macroscopically, the mandible exhibited extensive osteolysis, with only a small amount of bone remaining around the tooth roots. The cut surface of the mass around the mandible consisted of neoplastic medullary tissue, in which osteogenesis was observed. The medullary tissue was composed of pleomorphic medium-sized to large cells, interlaced by collagen bundles. These cells had large, pale, round or ovoid, sometimes cleaved nuclei, with one or two prominent nucleoli. Mitoses were numerous. Electron microscopy showed that the cells in the medullary tissues were similar in shape to undifferentiated lymphocytes. Immunohistochemically, these cells were positive for B-cell associated antigen in the pre-B-cell stage. Our findings suggest that the horse had extranodal lymphoblastic lymphoma of suspected B-cell lineage, possibly originating from the lymphatic system of the gingiva. We consider that the osteolysis resulted from activation of osteoclasts by proliferation of the tumour cells.

  14. Distinct mechanisms define murine B cell lineage immunoglobulin heavy chain (IgH) repertoires

    PubMed Central

    Yang, Yang; Wang, Chunlin; Yang, Qunying; Kantor, Aaron B; Chu, Hiutung; Ghosn, Eliver EB; Qin, Guang; Mazmanian, Sarkis K; Han, Jian; Herzenberg, Leonore A

    2015-01-01

    Processes that define immunoglobulin repertoires are commonly presumed to be the same for all murine B cells. However, studies here that couple high-dimensional FACS sorting with large-scale quantitative IgH deep-sequencing demonstrate that B-1a IgH repertoire differs dramatically from the follicular and marginal zone B cells repertoires and is defined by distinct mechanisms. We track B-1a cells from their early appearance in neonatal spleen to their long-term residence in adult peritoneum and spleen. We show that de novo B-1a IgH rearrangement mainly occurs during the first few weeks of life, after which their repertoire continues to evolve profoundly, including convergent selection of certain V(D)J rearrangements encoding specific CDR3 peptides in all adults and progressive introduction of hypermutation and class-switching as animals age. This V(D)J selection and AID-mediated diversification operate comparably in germ-free and conventional mice, indicating these unique B-1a repertoire-defining mechanisms are driven by antigens that are not derived from microbiota. DOI: http://dx.doi.org/10.7554/eLife.09083.001 PMID:26422511

  15. Distinct mechanisms define murine B cell lineage immunoglobulin heavy chain (IgH) repertoires.

    PubMed

    Yang, Yang; Wang, Chunlin; Yang, Qunying; Kantor, Aaron B; Chu, Hiutung; Ghosn, Eliver Eb; Qin, Guang; Mazmanian, Sarkis K; Han, Jian; Herzenberg, Leonore A

    2015-09-30

    Processes that define immunoglobulin repertoires are commonly presumed to be the same for all murine B cells. However, studies here that couple high-dimensional FACS sorting with large-scale quantitative IgH deep-sequencing demonstrate that B-1a IgH repertoire differs dramatically from the follicular and marginal zone B cells repertoires and is defined by distinct mechanisms. We track B-1a cells from their early appearance in neonatal spleen to their long-term residence in adult peritoneum and spleen. We show that de novo B-1a IgH rearrangement mainly occurs during the first few weeks of life, after which their repertoire continues to evolve profoundly, including convergent selection of certain V(D)J rearrangements encoding specific CDR3 peptides in all adults and progressive introduction of hypermutation and class-switching as animals age. This V(D)J selection and AID-mediated diversification operate comparably in germ-free and conventional mice, indicating these unique B-1a repertoire-defining mechanisms are driven by antigens that are not derived from microbiota.

  16. A zebrafish screen for craniofacial mutants identifies wdr68 as a highly conserved gene required for endothelin-1 expression

    PubMed Central

    Nissen, Robert M; Amsterdam, Adam; Hopkins, Nancy

    2006-01-01

    Background Craniofacial birth defects result from defects in cranial neural crest (NC) patterning and morphogenesis. The vertebrate craniofacial skeleton is derived from cranial NC cells and the patterning of these cells occurs within the pharyngeal arches. Substantial efforts have led to the identification of several genes required for craniofacial skeletal development such as the endothelin-1 (edn1) signaling pathway that is required for lower jaw formation. However, many essential genes required for craniofacial development remain to be identified. Results Through screening a collection of insertional zebrafish mutants containing approximately 25% of the genes essential for embryonic development, we present the identification of 15 essential genes that are required for craniofacial development. We identified 3 genes required for hyomandibular development. We also identified zebrafish models for Campomelic Dysplasia and Ehlers-Danlos syndrome. To further demonstrate the utility of this method, we include a characterization of the wdr68 gene. We show that wdr68 acts upstream of the edn1 pathway and is also required for formation of the upper jaw equivalent, the palatoquadrate. We also present evidence that the level of wdr68 activity required for edn1 pathway function differs between the 1st and 2nd arches. Wdr68 interacts with two minibrain-related kinases, Dyrk1a and Dyrk1b, required for embryonic growth and myotube differentiation, respectively. We show that a GFP-Wdr68 fusion protein localizes to the nucleus with Dyrk1a in contrast to an engineered loss of function mutation Wdr68-T284F that no longer accumulated in the cell nucleus and failed to rescue wdr68 mutant animals. Wdr68 homologs appear to exist in all eukaryotic genomes. Notably, we found that the Drosophila wdr68 homolog CG14614 could substitute for the vertebrate wdr68 gene even though insects lack the NC cell lineage. Conclusion This work represents a systematic identification of approximately 25

  17. Mating-type gene switching in Saccharomyces cerevisiae.

    PubMed

    Haber, J E

    1998-01-01

    Saccharomyces cerevisiae can change its mating type as often as every generation by a highly choreographed, site-specific recombination event that replaces one MAT allele with different DNA sequences encoding the opposite allele. The study of this process has yielded important insights into the control of cell lineage, the silencing of gene expression, and the formation of heterochromatin, as well as the molecular events of double-strand break-induced recombination. In addition, MAT switching provides a remarkable example of a small locus control region--the Recombination Enhancer--that controls recombination along an entire chromosome arm.

  18. Immunohistochemical study of melanocyte-melanocyte stem cell lineage in vitiligo; a clue to interfollicular melanocyte stem cell reservoir.

    PubMed

    Seleit, Iman; Bakry, Ola Ahmed; Abdou, Asmaa Gaber; Dawoud, Noha Mohammed

    2014-05-01

    There has been a long lasting controversy over whether melanocytes (MCs) in vitiligo are actually lost or still present but functionally inactive. We aimed to evaluate the MC cell lineage in follicular and interfollicular vitiliginous epidermis through immunohistochemical localization of Human Melanoma Black-45 (HMB-45) and Tyrosinase Related Protein 2 (TRP2) and to correlate it with clinicopathologic parameters. Using immunohistochemical techniques, skin biopsies from 50 vitiligo patients and 20 age- and gender-matched healthy subjects were examined. Differentiated active MCs were detected in 44% of interfollicular epidermis (IFE) and 46.7% of follicular epidermis (FE) in lesional skin. Melanocyte precursors/stem cells were detected in 54% of IFE and 63.3% of FE in lesional skin. Melanocyte precursors/stem cells of IFE were significantly associated with residual melanin pigment (p = 0.007) and with absence of angiogenesis (p = 0.05). HMB-45 percentage of expression in IFE was positively correlated with MC precursors/stem cells percentage in FE (r = +0.65, p < 0.001) and IFE (r = +0.33, p = 0.01). Melanocyte precursors/stem cells positivity (p < 0.001) was progressively decreasing with advanced histopathologic grading. There was no significant association between interfollicular or follicular expression of HMB-45, TRP2 or MC precursors/stem cells and the clinical type of vitiligo or its duration. In conclusion, functioning MCs may exist in vitiligo. The presence of MC precursors/stem cells in IFE may provide an additional reservoir needed for repigmentation.

  19. PAX8 expression in sporadic hemangioblastoma of the kidney supports a primary renal cell lineage: implications for differential diagnosis.

    PubMed

    Zhao, Ming; Williamson, Sean R; Yu, Jingjing; Xia, Wenping; Li, Changshui; Zheng, Jiangjiang; Zhu, Yin; Sun, Ke; Wang, Zhaoming; Cheng, Liang

    2013-10-01

    Hemangioblastoma is a benign, morphologically distinctive neoplasm of disputed histogenesis that typically occurs in the central nervous system either in the setting of von Hippel-Lindau disease or more often sporadically. Extraneural hemangioblastoma is exceptional and raises a challenging differential diagnosis. Herein, we report a primary renal hemangioblastoma occurring in 51-year-old woman without stigmata of von Hippel-Lindau disease. Histologically, the tumor was composed of sheets of polygonal epithelioid stromal cells with ample pale or eosinophilic, vacuolated cytoplasm in an arborizing capillary network. Tumor cells showed variable nuclear pleomorphism, intranuclear cytoplasmic invaginations, scattered hyaline globules, and psammoma-like calcifications. Some areas showed branching hemangiopericytoma-like vessels with tumor cells radiating from the wall, while other areas were edematous and hyalinized with sparse stromal cells and abundant reticular vessels. Immunohistochemically, the tumor cells reacted strongly and diffusely with antibodies to PAX8, CD10, α-inhibin, S100 protein, neuron-specific enolase, and vimentin, and they showed focal positivity with antibodies to epithelial membrane antigen and AE1/AE3. Tumor cells were negative for CK7, CK8/18, RCC antigen, synaptophysin, chromogranin, c-kit, D2-40, HMB45, melan-A, cathepsin K, SMA, desmin, CD31, CD34, and estrogen and progesterone receptors. Positive immunoreactivity for PAX8 is unexpected and contrasts to central nervous system (CNS) hemangioblastomas, which are essentially always negative for PAX8. This novel finding adds support to the hypothesis that the immunoprofile of extraneural hemangioblastoma varies with site of origin, perhaps as a result of tumor cell lineage and retention of organ-specific markers or acquisition of site-specific antigens due to local factors. PMID:23849894

  20. Clustering of High Throughput Gene Expression Data

    PubMed Central

    Pirim, Harun; Ekşioğlu, Burak; Perkins, Andy; Yüceer, Çetin

    2012-01-01

    High throughput biological data need to be processed, analyzed, and interpreted to address problems in life sciences. Bioinformatics, computational biology, and systems biology deal with biological problems using computational methods. Clustering is one of the methods used to gain insight into biological processes, particularly at the genomics level. Clearly, clustering can be used in many areas of biological data analysis. However, this paper presents a review of the current clustering algorithms designed especially for analyzing gene expression data. It is also intended to introduce one of the main problems in bioinformatics - clustering gene expression data - to the operations research community. PMID:23144527

  1. Phosphorylations of Serines 21/9 in Glycogen Synthase Kinase 3α/β Are Not Required for Cell Lineage Commitment or WNT Signaling in the Normal Mouse Intestine

    PubMed Central

    Hey, Fiona; Giblett, Susan; Forrest, Stephanie; Herbert, Chelsea; Pritchard, Catrin

    2016-01-01

    The WNT signalling pathway controls many developmental processes and plays a key role in maintenance of intestine renewal and homeostasis. Glycogen Synthase Kinase 3 (GSK3) is an important component of the WNT pathway and is involved in regulating β-catenin stability and expression of WNT target genes. The mechanisms underpinning GSK3 regulation in this context are not completely understood, with some evidence suggesting this occurs through inhibitory N-terminal serine phosphorylation in a similar way to GSK3 inactivation in insulin signaling. To investigate this in a physiologically relevant context, we have analysed the intestinal phenotype of GSK3 knockin mice in which N-terminal serines 21/9 of GSK3α/β have been mutated to non-phosphorylatable alanine residues. We show that these knockin mutations have very little effect on overall intestinal integrity, cell lineage commitment, β-catenin localization or WNT target gene expression although a small increase in apoptosis at villi tips is observed. Our results provide in vivo evidence that GSK3 is regulated through mechanisms independent of N-terminal serine phosphorylation in order for β-catenin to be stabilised. PMID:27284979

  2. Visualisation of chicken macrophages using transgenic reporter genes: insights into the development of the avian macrophage lineage

    PubMed Central

    Balic, Adam; Garcia-Morales, Carla; Vervelde, Lonneke; Gilhooley, Hazel; Sherman, Adrian; Garceau, Valerie; Gutowska, Maria W.; Burt, David W.; Kaiser, Pete; Hume, David A.; Sang, Helen M.

    2014-01-01

    We have generated the first transgenic chickens in which reporter genes are expressed in a specific immune cell lineage, based upon control elements of the colony stimulating factor 1 receptor (CSF1R) locus. The Fms intronic regulatory element (FIRE) within CSF1R is shown to be highly conserved in amniotes and absolutely required for myeloid-restricted expression of fluorescent reporter genes. As in mammals, CSF1R-reporter genes were specifically expressed at high levels in cells of the macrophage lineage and at a much lower level in granulocytes. The cell lineage specificity of reporter gene expression was confirmed by demonstration of coincident expression with the endogenous CSF1R protein. In transgenic birds, expression of the reporter gene provided a defined marker for macrophage-lineage cells, identifying the earliest stages in the yolk sac, throughout embryonic development and in all adult tissues. The reporter genes permit detailed and dynamic visualisation of embryonic chicken macrophages. Chicken embryonic macrophages are not recruited to incisional wounds, but are able to recognise and phagocytose microbial antigens. PMID:25063453

  3. The Molecular Signature of HIV-1-Associated Lipomatosis Reveals Differential Involvement of Brown and Beige/Brite Adipocyte Cell Lineages.

    PubMed

    Cereijo, Rubén; Gallego-Escuredo, José Miguel; Moure, Ricardo; Villarroya, Joan; Domingo, Joan Carles; Fontdevila, Joan; Martínez, Esteban; Gutiérrez, Maria del Mar; Mateo, María Gracia; Giralt, Marta; Domingo, Pere; Villarroya, Francesc

    2015-01-01

    Highly active antiretroviral therapy has remarkably improved quality of life of HIV-1-infected patients. However, this treatment has been associated with the so-called lipodystrophic syndrome, which conveys a number of adverse metabolic effects and morphological alterations. Among them, lipoatrophy of subcutaneous fat in certain anatomical areas and hypertrophy of visceral depots are the most common. Less frequently, lipomatous enlargements of subcutaneous fat at distinct anatomic areas occur. Lipomatous adipose tissue in the dorso-cervical area ("buffalo hump") has been associated with a partial white-to-brown phenotype transition and with increased cell proliferation, but, to date, lipomatous enlargements arising in other parts of the body have not been characterized. In order to establish the main molecular events associated with the appearance of lipomatosis in HIV-1 patients, we analyzed biopsies of lipomatous tissue from "buffalo hump" and from other anatomical areas in patients, in comparison with healthy subcutaneous adipose tissue, using a marker gene expression approach. Both buffalo-hump and non-buffalo-hump lipomatous adipose tissues exhibited similar patterns of non-compromised adipogenesis, unaltered inflammation, non-fibrotic phenotype and proliferative activity. Shorter telomere length, prelamin A accumulation and SA-β-Gal induction, reminiscent of adipocyte senescence, were also common to both types of lipomatous tissues. Buffalo hump biopsies showed expression of marker genes of brown adipose tissue (e.g. UCP1) and, specifically, of "classical" brown adipocytes (e.g. ZIC1) but not of beige/brite adipocytes. No such brown fat-related gene expression occurred in lipomatous tissues at other anatomical sites. In conclusion, buffalo hump and other subcutaneous adipose tissue enlargements from HIV-1-infected patients share a similar lipomatous character. However, a distorted induction of white-to-"classical brown adipocyte" phenotype appears unique of

  4. The Molecular Signature of HIV-1-Associated Lipomatosis Reveals Differential Involvement of Brown and Beige/Brite Adipocyte Cell Lineages

    PubMed Central

    Cereijo, Rubén; Gallego-Escuredo, José Miguel; Moure, Ricardo; Villarroya, Joan; Domingo, Joan Carles; Fontdevila, Joan; Martínez, Esteban; Gutiérrez, Maria del Mar; Mateo, María Gracia; Giralt, Marta; Domingo, Pere; Villarroya, Francesc

    2015-01-01

    Highly active antiretroviral therapy has remarkably improved quality of life of HIV-1-infected patients. However, this treatment has been associated with the so-called lipodystrophic syndrome, which conveys a number of adverse metabolic effects and morphological alterations. Among them, lipoatrophy of subcutaneous fat in certain anatomical areas and hypertrophy of visceral depots are the most common. Less frequently, lipomatous enlargements of subcutaneous fat at distinct anatomic areas occur. Lipomatous adipose tissue in the dorso-cervical area (“buffalo hump”) has been associated with a partial white-to-brown phenotype transition and with increased cell proliferation, but, to date, lipomatous enlargements arising in other parts of the body have not been characterized. In order to establish the main molecular events associated with the appearance of lipomatosis in HIV-1 patients, we analyzed biopsies of lipomatous tissue from “buffalo hump” and from other anatomical areas in patients, in comparison with healthy subcutaneous adipose tissue, using a marker gene expression approach. Both buffalo-hump and non-buffalo-hump lipomatous adipose tissues exhibited similar patterns of non-compromised adipogenesis, unaltered inflammation, non-fibrotic phenotype and proliferative activity. Shorter telomere length, prelamin A accumulation and SA-β-Gal induction, reminiscent of adipocyte senescence, were also common to both types of lipomatous tissues. Buffalo hump biopsies showed expression of marker genes of brown adipose tissue (e.g. UCP1) and, specifically, of “classical” brown adipocytes (e.g. ZIC1) but not of beige/brite adipocytes. No such brown fat-related gene expression occurred in lipomatous tissues at other anatomical sites. In conclusion, buffalo hump and other subcutaneous adipose tissue enlargements from HIV-1-infected patients share a similar lipomatous character. However, a distorted induction of white-to-“classical brown adipocyte” phenotype

  5. Regulation of DNA methylation dictates Cd4 expression during the development of helper and cytotoxic T cell lineages.

    PubMed

    Sellars, MacLean; Huh, Jun R; Day, Kenneth; Issuree, Priya D; Galan, Carolina; Gobeil, Stephane; Absher, Devin; Green, Michael R; Littman, Dan R

    2015-07-01

    During development, progenitor cells with binary potential give rise to daughter cells that have distinct functions. Heritable epigenetic mechanisms then lock in gene-expression programs that define lineage identity. Regulation of the gene encoding the T cell-specific coreceptor CD4 in helper and cytotoxic T cells exemplifies this process, with enhancer- and silencer-regulated establishment of epigenetic memory for stable gene expression and repression, respectively. Using a genetic screen, we identified the DNA-methylation machinery as essential for maintaining silencing of Cd4 in the cytotoxic lineage. Furthermore, we found a requirement for the proximal enhancer in mediating the removal of DNA-methylation marks from Cd4, which allowed stable expression of Cd4 in helper T cells. Our findings suggest that stage-specific methylation and demethylation events in Cd4 regulate its heritable expression in response to the distinct signals that dictate lineage 'choice' during T cell development. PMID:26030024

  6. FOG-1-mediated recruitment of NuRD is required for cell lineage re-enforcement during haematopoiesis.

    PubMed

    Gao, Zhiguang; Huang, Zan; Olivey, Harold E; Gurbuxani, Sandeep; Crispino, John D; Svensson, Eric C

    2010-01-20

    The transcriptional co-factor Friend of GATA1 (FOG-1) has been shown to interact with subunits of the nucleosome remodelling and histone deacetylase (NuRD) complex through a specific motif located at its N-terminus. To test the importance of FOG-1/NuRD interaction for haematopoiesis in vivo, we generated mice with a mutation that specifically disrupts FOG-1/NuRD interaction (FOG-1(R3K5A)). Homozygous FOG-1(R3K5A) mice were found to have splenomegaly, extramedullary erythropoiesis, granulocytosis and thrombocytopaenia secondary to a block in megakaryocyte maturation. FOG-1(R3K5A/R3K5A) megakaryocytes and erythroid progenitors expressed increased levels of GATA2, showing that FOG-1/NuRD interaction is required for the earlier described 'GATA Switch'. In addition, ablation of FOG-1/NuRD interaction led to inappropriate expression of mast cell and eosinophil-specific genes in the megakaryocyte and erythroid lineages. Chromatin immunoprecipitation experiments revealed that the NuRD complex was not properly recruited to a mast cell gene promoter in FOG-1(R3K5A/R3K5A) megakaryocytes, suggesting that FOG-1/NuRD interaction is required for the direct suppression of mast cell gene expression. Taken together, these results underscore the importance of the FOG-1/NuRD interaction for the re-enforcement of lineage commitment during erythropoiesis and megakaryopoiesis in vivo.

  7. Ttk69 acts as a master repressor of enteroendocrine cell specification in Drosophila intestinal stem cell lineages.

    PubMed

    Wang, Chenhui; Guo, Xingting; Dou, Kun; Chen, Hongyan; Xi, Rongwen

    2015-10-01

    In adult Drosophila midgut, intestinal stem cells (ISCs) periodically produce progenitor cells that undergo a binary fate choice determined primarily by the levels of Notch activity that they receive, before terminally differentiating into enterocytes (ECs) or enteroendocrine (EE) cells. Here we identified Ttk69, a BTB domain-containing transcriptional repressor, as a master repressor of EE cell specification in the ISC lineages. Depletion of ttk69 in progenitor cells induced ISC proliferation and caused all committed progenitor cells to adopt EE fate, leading to the production of supernumerary EE cells in the intestinal epithelium. Conversely, forced expression of Ttk69 in progenitor cells was sufficient to prevent EE cell specification. The expression of Ttk69 was not regulated by Notch signaling, and forced activation of Notch, which is sufficient to induce EC specification of normal progenitor cells, failed to prevent EE cell specification of Ttk69-depleted progenitors. Loss of Ttk69 led to derepression of the acheate-scute complex (AS-C) genes scute and asense, which then induced prospero expression to promote EE cell specification. These studies suggest that Ttk69 functions in parallel with Notch signaling and acts as a master repressor of EE cell specification in Drosophila ISC lineages primarily by suppressing AS-C genes.

  8. High diversity of polyketide synthase genes and the melanin biosynthesis gene cluster in Penicillium marneffei.

    PubMed

    Woo, Patrick C Y; Tam, Emily W T; Chong, Ken T K; Cai, James J; Tung, Edward T K; Ngan, Antonio H Y; Lau, Susanna K P; Yuen, Kwok-Yung

    2010-09-01

    Despite the unique phenotypic properties and clinical importance of Penicillium marneffei, the polyketide synthase genes in its genome have never been characterized. Twenty-three putative polyketide synthase genes and two putative polyketide synthase nonribosomal peptide-synthase hybrid genes were identified in the P. marneffei genome, a diversity much higher than found in other pathogenic thermal dimorphic fungi, such as Histoplasma capsulatum (one polyketide synthase gene) and Coccidioides immitis (10 polyketide synthase genes). These genes were evenly distributed on the phylogenetic tree with polyketide synthase genes of Aspergillus and other fungi, indicating that the high diversity was not a result of lineage-specific gene expansion through recent gene duplication. The melanin-biosynthesis gene cluster had gene order and orientations identical to those in the Talaromyces stipitatus (a teleomorph of Penicillium emmonsii) genome. Phylogenetically, all six genes of the melanin-biosynthesis gene cluster in P. marneffei were also most closely related to those in T. stipitatus, with high bootstrap supports. The polyketide synthase gene of the melanin-biosynthesis gene cluster (alb1) in P. marneffei was knocked down, which was accompanied by loss of melanin pigment production and reduced ornamentation in conidia. The survival of mice challenged with the alb1 knockdown mutant was significantly better than those challenged with wild-type P. marneffei (P < 0.005). The sterilizing doses of hydrogen peroxide, leading to a 50% reduction in survival of conidia, were 11 min for wild-type P. marneffei and 6 min for the alb1 knockdown mutant of P. marneffei, implying that the melanin-biosynthesis gene cluster contributed to virulence through decreased susceptibility to killing by hydrogen peroxide. PMID:20718860

  9. Genetic ablation of androgen receptor signaling in fetal Leydig cell lineage affects Leydig cell functions in adult testis.

    PubMed

    Kaftanovskaya, Elena M; Lopez, Carolina; Ferguson, Lydia; Myhr, Courtney; Agoulnik, Alexander I

    2015-06-01

    It is commonly accepted that androgen-producing fetal Leydig cells (FLC) are substituted by adult Leydig cells (ALC) during perinatal testis development. The mechanisms influencing this process are unclear. We used mice with a retinoid acid receptor 2 promoter-Cre recombinase transgene (Rarb-cre) expressed in embryonic FLC precursors, but not in postnatal testis, and a dual fluorescent Cre recombinase reporter to label FLC and ALC in vivo. All FLC in newborn testis had the recombinant, whereas the majority of LC in adult testis had the nonrecombinant reporter. Primary LC cultures from adult testis had either recombinant (20%) or nonrecombinant (80%) cells, demonstrating that the FLC survive in adult testis and their ontogeny is distinct from ALC. Conditional inactivation of androgen receptor (AR) allele using the Rarb-cre transgene resulted in a 50% increase of AR-negative LC in adult testis. The mutant males became infertile with age, with all LC in older testis showing signs of incomplete differentiation, such as a large number of big lipid droplets, an increase of finger-like protrusions, and a misexpression of steroidogenic or FLC- and ALC-specific genes. We propose that the antiandrogenic exposure during early development may similarly result in an increase of FLC in adult testis, leading to abnormal LC differentiation.

  10. Gene regulation: hacking the network on a sugar high.

    PubMed

    Ellis, Tom; Wang, Xiao; Collins, James J

    2008-04-11

    In a recent issue of Molecular Cell, Kaplan et al. (2008) determine the input functions for 19 E. coli sugar-utilization genes by using a two-dimensional high-throughput approach. The resulting input-function map reveals that gene network regulation follows non-Boolean, and often nonmonotonic, logic.

  11. Dicer Regulates the Balance of Short-Lived Effector and Long-Lived Memory CD8 T Cell Lineages

    PubMed Central

    Baumann, Florian M.; Yuzefpolskiy, Yevgeniy; Sarkar, Surojit; Kalia, Vandana

    2016-01-01

    MicroRNAs constitute a major post-transcriptional mechanism for controlling protein expression, and are emerging as key regulators during T cell development and function. Recent reports of augmented CD8 T cell activation and effector differentiation, and aberrant migratory properties upon ablation of Dicer/miRNAs in naïve cells have established a regulatory role of miRNAs during priming. Whether miRNAs continue to exert similar functions or are dispensable during later stages of CD8 T cell expansion and memory differentiation remains unclear. Here, we report a critical role of Dicer/miRNAs in regulating the balance of long-lived memory and short-lived terminal effector fates during the post-priming stages when CD8 T cells undergo clonal expansion to generate a large cytotoxic T lymphocyte (CTL) pool and subsequently differentiate into a quiescent memory state. Conditional ablation of Dicer/miRNAs in early effector CD8 T cells following optimal activation and expression of granzyme B, using unique dicerfl/fl gzmb-cre mice, led to a strikingly diminished peak effector size relative to wild-type antigen-specific cells in the same infectious milieu. Diminished expansion of Dicer-ablated CD8 T cells was associated with lack of sustained antigen-driven proliferation and reduced accumulation of short-lived effector cells. Additionally, Dicer-ablated CD8 T cells exhibited more pronounced contraction after pathogen clearance and comprised a significantly smaller proportion of the memory pool, despite significantly higher proportions of CD127Hi memory precursors at the effector peak. Combined with previous reports of dynamic changes in miRNA expression as CD8 T cells differentiate from naïve to effector and memory states, these findings support distinct stage-specific roles of miRNA-dependent gene regulation during CD8 T cell differentiation. PMID:27627450

  12. Dicer Regulates the Balance of Short-Lived Effector and Long-Lived Memory CD8 T Cell Lineages.

    PubMed

    Baumann, Florian M; Yuzefpolskiy, Yevgeniy; Sarkar, Surojit; Kalia, Vandana

    2016-01-01

    MicroRNAs constitute a major post-transcriptional mechanism for controlling protein expression, and are emerging as key regulators during T cell development and function. Recent reports of augmented CD8 T cell activation and effector differentiation, and aberrant migratory properties upon ablation of Dicer/miRNAs in naïve cells have established a regulatory role of miRNAs during priming. Whether miRNAs continue to exert similar functions or are dispensable during later stages of CD8 T cell expansion and memory differentiation remains unclear. Here, we report a critical role of Dicer/miRNAs in regulating the balance of long-lived memory and short-lived terminal effector fates during the post-priming stages when CD8 T cells undergo clonal expansion to generate a large cytotoxic T lymphocyte (CTL) pool and subsequently differentiate into a quiescent memory state. Conditional ablation of Dicer/miRNAs in early effector CD8 T cells following optimal activation and expression of granzyme B, using unique dicerfl/fl gzmb-cre mice, led to a strikingly diminished peak effector size relative to wild-type antigen-specific cells in the same infectious milieu. Diminished expansion of Dicer-ablated CD8 T cells was associated with lack of sustained antigen-driven proliferation and reduced accumulation of short-lived effector cells. Additionally, Dicer-ablated CD8 T cells exhibited more pronounced contraction after pathogen clearance and comprised a significantly smaller proportion of the memory pool, despite significantly higher proportions of CD127Hi memory precursors at the effector peak. Combined with previous reports of dynamic changes in miRNA expression as CD8 T cells differentiate from naïve to effector and memory states, these findings support distinct stage-specific roles of miRNA-dependent gene regulation during CD8 T cell differentiation. PMID:27627450

  13. Long non-coding RNA profiling of human lymphoid progenitor cells reveals transcriptional divergence of B cell and T cell lineages.

    PubMed

    Casero, David; Sandoval, Salemiz; Seet, Christopher S; Scholes, Jessica; Zhu, Yuhua; Ha, Vi Luan; Luong, Annie; Parekh, Chintan; Crooks, Gay M

    2015-12-01

    To elucidate the transcriptional 'landscape' that regulates human lymphoid commitment during postnatal life, we used RNA sequencing to assemble the long non-coding transcriptome across human bone marrow and thymic progenitor cells spanning the earliest stages of B lymphoid and T lymphoid specification. Over 3,000 genes encoding previously unknown long non-coding RNAs (lncRNAs) were revealed through the analysis of these rare populations. Lymphoid commitment was characterized by lncRNA expression patterns that were highly stage specific and were more lineage specific than those of protein-coding genes. Protein-coding genes co-expressed with neighboring lncRNA genes showed enrichment for ontologies related to lymphoid differentiation. The exquisite cell-type specificity of global lncRNA expression patterns independently revealed new developmental relationships among the earliest progenitor cells in the human bone marrow and thymus.

  14. A Luciferase Reporter Gene System for High-Throughput Screening of γ-Globin Gene Activators.

    PubMed

    Xie, Wensheng; Silvers, Robert; Ouellette, Michael; Wu, Zining; Lu, Quinn; Li, Hu; Gallagher, Kathleen; Johnson, Kathy; Montoute, Monica

    2016-01-01

    Luciferase reporter gene assays have long been used for drug discovery due to their high sensitivity and robust signal. A dual reporter gene system contains a gene of interest and a control gene to monitor non-specific effects on gene expression. In our dual luciferase reporter gene system, a synthetic promoter of γ-globin gene was constructed immediately upstream of the firefly luciferase gene, followed downstream by a synthetic β-globin gene promoter in front of the Renilla luciferase gene. A stable cell line with the dual reporter gene was cloned and used for all assay development and HTS work. Due to the low activity of the control Renilla luciferase, only the firefly luciferase activity was further optimized for HTS. Several critical factors, such as cell density, serum concentration, and miniaturization, were optimized using tool compounds to achieve maximum robustness and sensitivity. Using the optimized reporter assay, the HTS campaign was successfully completed and approximately 1000 hits were identified. In this chapter, we also describe strategies to triage hits that non-specifically interfere with firefly luciferase. PMID:27316998

  15. Gene activation and cell fate control in plants: a chromatin perspective.

    PubMed

    Engelhorn, Julia; Blanvillain, Robert; Carles, Cristel C

    2014-08-01

    In plants, environment-adaptable organogenesis extends throughout the lifespan, and iterative development requires repetitive rounds of activation and repression of several sets of genes. Eukaryotic genome compaction into chromatin forms a physical barrier for transcription; therefore, induction of gene expression requires alteration in chromatin structure. One of the present great challenges in molecular and developmental biology is to understand how chromatin is brought from a repressive to permissive state on specific loci and in a very specific cluster of cells, as well as how this state is further maintained and propagated through time and cell division in a cell lineage. In this review, we report recent discoveries implementing our knowledge on chromatin dynamics that modulate developmental gene expression. We also discuss how new data sets highlight plant specificities, likely reflecting requirement for a highly dynamic chromatin.

  16. Elucidating the origins of the vascular system: a fate map of the vascular endothelial and red blood cell lineages in Xenopus laevis.

    PubMed

    Mills, K R; Kruep, D; Saha, M S

    1999-05-15

    Required to supply nutrients and oxygen to the growing embryo, the vascular system is the first functional organ system to develop during vertebrate embryogenesis. Although there has been substantial progress in identifying the genetic cascade regulating vascular development, the initial stages of vasculogenesis, namely, the origin of vascular endothelial cells within the early embryo, remain unclear. To address this issue we constructed a fate map for specific vascular structures, including the aortic arches, endocardium, dorsal aorta, cardinal veins, and lateral abdominal veins, as well as for the red blood cells at the 16-cell stage and the 32-cell stage of Xenopus laevis. Using genetic markers to identify these cell types, our results suggest that vascular endothelial cells can arise from virtually every blastomere of the 16-cell-stage and the 32-cell-stage embryo, with different blastomeres preferentially, though not exclusively, giving rise to specific vascular structures. Similarly, but more surprisingly, every blastomere in the 16-cell-stage embryo and all but those in the most animal tier of the 32-cell-stage embryo serve as progenitors for red blood cells. Taken together, our results suggest that during normal development, both dorsal and ventral blastomeres contribute significantly to the vascular endothelial and red blood cell lineages.

  17. Thymic and Postthymic Regulation of Naïve CD4+ T-Cell Lineage Fates in Humans and Mice Models

    PubMed Central

    Belizário, José E.; Brandão, Wesley; Rossato, Cristiano; Peron, Jean Pierre

    2016-01-01

    Our understanding of how thymocytes differentiate into many subtypes has been increased progressively in its complexity. At early life, the thymus provides a suitable microenvironment with specific combination of stromal cells, growth factors, cytokines, and chemokines to induce the bone marrow lymphoid progenitor T-cell precursors into single-positive CD4+ and CD8+ T effectors and CD4+CD25+ T-regulatory cells (Tregs). At postthymic compartments, the CD4+ T-cells acquire distinct phenotypes which include the classical T-helper 1 (Th1), T-helper 2 (Th2), T-helper 9 (Th9), T-helper 17 (Th17), follicular helper T-cell (Tfh), and induced T-regulatory cells (iTregs), such as the regulatory type 1 cells (Tr1) and transforming growth factor-β- (TGF-β-) producing CD4+ T-cells (Th3). Tregs represent only a small fraction, 5–10% in mice and 1-2% in humans, of the overall CD4+ T-cells in lymphoid tissues but are essential for immunoregulatory circuits mediating the inhibition and expansion of all lineages of T-cells. In this paper, we first provide an overview of the major cell-intrinsic developmental programs that regulate T-cell lineage fates in thymus and periphery. Next, we introduce the SV40 immortomouse as a relevant mice model for implementation of new approaches to investigate thymus organogenesis, CD4 and CD8 development, and thymus cells tumorogenesis. PMID:27313405

  18. Cytolethal distending toxin: a conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages

    PubMed Central

    Jinadasa, Rasika N.; Bloom, Stephen E.; Weiss, Robert S.

    2011-01-01

    Cytolethal distending toxin (CDT) is a heterotrimeric AB-type genotoxin produced by several clinically important Gram-negative mucocutaneous bacterial pathogens. Irrespective of the bacterial species of origin, CDT causes characteristic and irreversible cell cycle arrest and apoptosis in a broad range of cultured mammalian cell lineages. The active subunit CdtB has structural homology with the phosphodiesterase family of enzymes including mammalian DNase I, and alone is necessary and sufficient to account for cellular toxicity. Indeed, mammalian cells treated with CDT initiate a DNA damage response similar to that elicited by ionizing radiation-induced DNA double strand breaks resulting in cell cycle arrest and apoptosis. The mechanism of CDT-induced apoptosis remains incompletely understood, but appears to involve both p53-dependent and -independent pathways. While epithelial, endothelial and fibroblast cell lines respond to CDT by undergoing arrest of cell cycle progression resulting in nuclear and cytoplasmic distension that precedes apoptotic cell death, cells of haematopoietic origin display rapid apoptosis following a brief period of cell cycle arrest. In this review, the ecology of pathogens producing CDT, the molecular biology of bacterial CDT and the molecular mechanisms of CDT-induced cytotoxicity are critically appraised. Understanding the contribution of a broadly conserved bacterial genotoxin that blocks progression of the mammalian cell cycle, ultimately causing cell death, should assist with elucidating disease mechanisms for these important pathogens. PMID:21565933

  19. Intermittent electrical stimuli for guidance of human mesenchymal stem cell lineage commitment towards neural-like cells on electroconductive substrates.

    PubMed

    Thrivikraman, Greeshma; Madras, Giridhar; Basu, Bikramjit

    2014-08-01

    In the context of the role of multiple physical factors in dictating stem cell fate, the present paper demonstrates the effectiveness of the intermittently delivered external electric field stimulation towards switching the stem cell fate to specific lineage, when cultured in the absence of biochemical growth factors. In particular, our findings present the ability of human mesenchymal stem cells (hMSCs) to respond to the electric stimuli by adopting extended neural-like morphology on conducting polymeric substrates. Polyaniline (PANI) is selected as the model system to demonstrate this effect, as the electrical conductivity of the polymeric substrates can be systematically tailored over a broad range (10(-9) to 10 S/cm) from highly insulating to conducting by doping with varying concentrations (10(-5) to 1 m) of HCl. On the basis of the culture protocol involving the systematic delivery of intermittent electric field (dc) stimulation, the parametric window of substrate conductivity and electric field strength was established to promote significant morphological extensions, with minimal cellular damage. A time dependent morphological change in hMSCs with significant filopodial elongation was observed after 7 days of electrically stimulated culture. Concomitant with morphological changes, a commensurate increase in the expression of neural lineage commitment markers such as nestin and βIII tubulin was recorded from hMSCs grown on highly conducting substrates, as revealed from the mRNA expression analysis using Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) as well as by immune-fluorescence imaging. Therefore, the present work establishes the key role of intermittent and systematic delivery of electric stimuli as guidance cues in promoting neural-like differentiation of hMSCs, when grown on electroconductive substrates. PMID:24816362

  20. The 3'UTR of nanos2 directs enrichment in the germ cell lineage of the sea urchin.

    PubMed

    Oulhen, Nathalie; Yoshida, Takaya; Yajima, Mamiko; Song, Jia L; Sakuma, Tetsushi; Sakamoto, Naoaki; Yamamoto, Takashi; Wessel, Gary M

    2013-05-01

    Nanos is a translational regulator required for the survival and maintenance of primordial germ cells during embryogenesis. Three nanos homologs are present in the genome of the sea urchin Strongylocentrotus purpuratus (Sp), and each nanos mRNA accumulates specifically in the small micromere (sMic) lineage. We found that a highly conserved element in the 3' UTR of nanos2 is sufficient for reporter expression selectively in the sMic lineage: microinjection into a Sp fertilized egg of an RNA that contains the GFP open reading frame followed by Sp nanos2 3'UTR leads to selective reporter enrichment in the small micromeres in blastulae. The same result was seen with nanos2 from the sea urchin Hemicentrotus pulcherrimus (Hp). In both species, the 5'UTR alone is not sufficient for the sMic localization but it always increased the sMic reporter enrichment when present with the 3'UTR. We defined an element conserved between Hp and Sp in the nanos2 3'UTR which is necessary and sufficient for protein enrichment in the sMic, and refer to it as GNARLE (Global Nanos Associated RNA Lability Element). We also found that the nanos2 3'UTR is essential for the selective RNA retention in the small micromeres; GNARLE is required but not sufficient for this process. These results show that a combination of selective RNA retention and translational control mechanisms instills nanos accumulation uniquely in the sMic lineage.

  1. Transgenic mice overexpressing arginase 1 in monocytic cell lineage are affected by lympho-myeloproliferative disorders and disseminated intravascular coagulation.

    PubMed

    Astigiano, Simonetta; Morini, Monica; Damonte, Patrizia; Fraternali Orcioni, Giulio; Cassanello, Michela; Puglisi, Andrea; Noonan, Douglas M; Bronte, Vincenzo; Barbieri, Ottavia

    2015-11-01

    Arginase (ARG) is a metabolic enzyme present in two isoforms that hydrolyze l-arginine to urea and ornithine. In humans, ARG isoform 1 is also expressed in cells of the myeloid lineage. ARG activity promotes tumour growth and inhibits T lymphocyte activation. However, the two ARG transgenic mouse lines produced so far failed to show such effects. We have generated, in two different genetic backgrounds, transgenic mice constitutively expressing ARG1 under the control of the CD68 promoter in macrophages and monocytes. Both heterozygous and homozygous transgenic mice showed a relevant increase in mortality at early age, compared with wild-type siblings (67/267 and 48/181 versus 8/149, respectively, both P < 0.005). This increase was due to high incidence of haematologic malignancies, in particular myeloid leukaemia, myeloid dysplasia, lymphomas and disseminated intravascular coagulation (DIC), diseases that were absent in wild-type mice. Atrophy of lymphoid organs due to reduction in T-cell compartment was also detected. Our results indicate that ARG activity may participate in the pathogenesis of lymphoproliferative and myeloproliferative disorders, suggest the involvement of alterations of L-arginine metabolism in the onset of DIC and confirm a role for the enzyme in regulating T-cell homeostasis.

  2. High magnetic field induced changes of gene expression in arabidopsis

    PubMed Central

    Paul, Anna-Lisa; Ferl, Robert J; Meisel, Mark W

    2006-01-01

    Background High magnetic fields are becoming increasingly prevalent components of non-invasive, biomedical imaging tools (such as MRI), thus, an understanding of the molecular impacts associated with these field strengths in biological systems is of central importance. The biological impact of magnetic field strengths up to 30 Tesla were investigated in this study through the use of transgenic Arabidopsis plants engineered with a stress response gene consisting of the alcohol dehydrogenase (Adh) gene promoter driving the β-glucuronidase (GUS) gene reporter. Methods Magnetic field induced Adh/GUS activity was evaluated with histochemical staining to assess tissue specific expression and distribution, and with quantitative, spectrofluometric assays to measure degree of activation. The evaluation of global changes in the Arabidopsis genome in response to exposure to high magnetic fields was facilitated with Affymetrix Gene Chip microarrays. Quantitative analyses of gene expression were performed with quantitative real-time polymerase-chain-reaction (qRT-PCR). Results Field strengths in excess of about 15 Tesla induce expression of the Adh/GUS transgene in the roots and leaves. From the microarray analyses that surveyed 8000 genes, 114 genes were differentially expressed to a degree greater than 2.5 fold over the control. These results were quantitatively corroborated by qRT-PCR examination of 4 of the 114 genes. Conclusion The data suggest that magnetic fields in excess of 15 Tesla have far-reaching effect on the genome. The wide-spread induction of stress-related genes and transcription factors, and a depression of genes associated with cell wall metabolism, are prominent examples. The roles of magnetic field orientation of macromolecules and magnetophoretic effects are discussed as possible factors that contribute to the mounting of this response. PMID:17187667

  3. [Distribution of abnormal cell clone with deletion of chromosome 20q in marrow cell lineages and apoptosis cells in myelodysplastic syndrome].

    PubMed

    Qin, Ling; Wang, Chun; Qin, You-Wen; Xie, Kuang-Cheng; Yan, Shi-Ke; Gao, Yan-Rong; Wang, Xiao-Rui; Zhao, Chu-Xian

    2008-06-01

    This study was aimed to investigate the distribution of abnormal clone in marrow cell lineages and apoptosis cells in myelodysplastic syndrome (MDS) with deletion of chromosome 20q. Monoclonal antibodies recognizing myeloid precursors (CD15), erythroid precursors (GPA), T cells (CD3(+)CD56(-)CD16(-)), B cells (CD19), NK cells (CD3(-)CD56(+)CD16(+)) were used to sort bone marrow cells in a MDS patient with del (20q) by fluorescence activated cell sorting (FACS). Annexin V-FITC and PI were used to sort bone marrow Annexin V(+)PI(-) and Annexin V(-)PI(-) cells by FACS. The sorted positive cells were detected by interphase dual-color fluorescence in situ hybridization (D-FISH) using a LSI D20S108 probe (Spectrum Orange) and a Telvysion TM 20p probe (Spectrum Green). FACS and FISH analysis were also performed on the samples from 4 cases with normal karyotype. The results showed that the proportions of MDS clone in the myeloid and erythroid precursors were 70.50% and 93.33% respectively, in the RAEB-1 patient with del (20q) and were obviously higher than that in control group (5.39% and 6.17%). The proportions of abnormal clone in T, B and NK cells were 3.23%, 4.32% and 5.77% respectively and were less than that in control group (5.76%, 4.85%, 6.36%). The percentage of apoptotic cells in the bone marrow nucleated cells was 16.09%. The proportions of MDS clone in Annexin V(+)PI(-) and Annexin V(-)PI(-) cells were 32.48% and 70.11%, respectively. It is concluded that most myeloid and erythroid precursors are originated from the abnormal clone in MDS with del (20q). A little part of apoptotic cells are derived from the abnormal clone.

  4. Regional and Stage-Specific Effects of Prospectively Purified Vascular Cells on the Adult V-SVZ Neural Stem Cell Lineage

    PubMed Central

    Crouch, Elizabeth E.; Liu, Chang; Silva-Vargas, Violeta

    2015-01-01

    Adult neural stem cells reside in specialized niches. In the ventricular-subventricular zone (V-SVZ), quiescent neural stem cells (qNSCs) become activated (aNSCs), and generate transit amplifying cells (TACs), which give rise to neuroblasts that migrate to the olfactory bulb. The vasculature is an important component of the adult neural stem cell niche, but whether vascular cells in neurogenic areas are intrinsically different from those elsewhere in the brain is unknown. Moreover, the contribution of pericytes to the neural stem cell niche has not been defined. Here, we describe a rapid FACS purification strategy to simultaneously isolate primary endothelial cells and pericytes from brain microregions of nontransgenic mice using CD31 and CD13 as surface markers. We compared the effect of purified vascular cells from a neurogenic (V-SVZ) and non-neurogenic brain region (cortex) on the V-SVZ stem cell lineage in vitro. Endothelial and pericyte diffusible signals from both regions differentially promote the proliferation and neuronal differentiation of qNSCs, aNSCs, and TACs. Unexpectedly, diffusible cortical signals had the most potent effects on V-SVZ proliferation and neurogenesis, highlighting the intrinsic capacity of non-neurogenic vasculature to support stem cell behavior. Finally, we identify PlGF-2 as an endothelial-derived mitogen that promotes V-SVZ cell proliferation. This purification strategy provides a platform to define the functional and molecular contribution of vascular cells to stem cell niches and other brain regions under different physiological and pathological states. PMID:25788671

  5. OxyR-dependent formation of DNA methylation patterns in OpvABOFF and OpvABON cell lineages of Salmonella enterica

    PubMed Central

    Cota, Ignacio; Bunk, Boyke; Spröer, Cathrin; Overmann, Jörg; König, Christoph; Casadesús, Josep

    2016-01-01

    Phase variation of the Salmonella enterica opvAB operon generates a bacterial lineage with standard lipopolysaccharide structure (OpvABOFF) and a lineage with shorter O-antigen chains (OpvABON). Regulation of OpvAB lineage formation is transcriptional, and is controlled by the LysR-type factor OxyR and by DNA adenine methylation. The opvAB regulatory region contains four sites for OxyR binding (OBSA-D), and four methylatable GATC motifs (GATC1–4). OpvABOFF and OpvABON cell lineages display opposite DNA methylation patterns in the opvAB regulatory region: (i) in the OpvABOFF state, GATC1 and GATC3 are non-methylated, whereas GATC2 and GATC4 are methylated; (ii) in the OpvABON state, GATC2 and GATC4 are non-methylated, whereas GATC1 and GATC3 are methylated. We provide evidence that such DNA methylation patterns are generated by OxyR binding. The higher stability of the OpvABOFF lineage may be caused by binding of OxyR to sites that are identical to the consensus (OBSA and OBSc), while the sites bound by OxyR in OpvABON cells (OBSB and OBSD) are not. In support of this view, amelioration of either OBSB or OBSD locks the system in the ON state. We also show that the GATC-binding protein SeqA and the nucleoid protein HU are ancillary factors in opvAB control. PMID:26687718

  6. Gene expression profiling in peanut using high density oligonucleotide microarrays

    PubMed Central

    Payton, Paxton; Kottapalli, Kameswara Rao; Rowland, Diane; Faircloth, Wilson; Guo, Baozhu; Burow, Mark; Puppala, Naveen; Gallo, Maria

    2009-01-01

    Background Transcriptome expression analysis in peanut to date has been limited to a relatively small set of genes and only recently has a significant number of ESTs been released into the public domain. Utilization of these ESTs for oligonucleotide microarrays provides a means to investigate large-scale transcript responses to a variety of developmental and environmental signals, ultimately improving our understanding of plant biology. Results We have developed a high-density oligonucleotide microarray for peanut using 49,205 publicly available ESTs and tested the utility of this array for expression profiling in a variety of peanut tissues. To identify putatively tissue-specific genes and demonstrate the utility of this array for expression profiling in a variety of peanut tissues, we compared transcript levels in pod, peg, leaf, stem, and root tissues. Results from this experiment showed 108 putatively pod-specific/abundant genes, as well as transcripts whose expression was low or undetected in pod compared to peg, leaf, stem, or root. The transcripts significantly over-represented in pod include genes responsible for seed storage proteins and desiccation (e.g., late-embryogenesis abundant proteins, aquaporins, legumin B), oil production, and cellular defense. Additionally, almost half of the pod-abundant genes represent unknown genes allowing for the possibility of associating putative function to these previously uncharacterized genes. Conclusion The peanut oligonucleotide array represents the majority of publicly available peanut ESTs and can be used as a tool for expression profiling studies in diverse tissues. PMID:19523230

  7. Gene expression in papillary thyroid carcinoma reveals highly consistent profiles

    PubMed Central

    Huang, Ying; Prasad, Manju; Lemon, William J.; Hampel, Heather; Wright, Fred A.; Kornacker, Karl; LiVolsi, Virginia; Frankel, Wendy; Kloos, Richard T.; Eng, Charis; Pellegata, Natalia S.; de la Chapelle, Albert

    2001-01-01

    Papillary thyroid carcinoma (PTC) is clinically heterogeneous. Apart from an association with ionizing radiation, the etiology and molecular biology of PTC is poorly understood. We used oligo-based DNA arrays to study the expression profiles of eight matched pairs of normal thyroid and PTC tissues. Additional PTC tumors and other tissues were studied by reverse transcriptase–PCR and immunohistochemistry. The PTCs showed concordant expression of many genes and distinct clustered profiles. Genes with increased expression in PTC included many encoding adhesion and extracellular matrix proteins. Expression was increased in 8/8 tumors for 24 genes and in 7/8 tumors for 22 genes. Among these genes were several previously known to be overexpressed in PTC, such as MET, LGALS3, KRT19, DPP4, MDK, TIMP1, and FN1. The numerous additional genes include CITED1, CHI3L1, ODZ1, N33, SFTPB, and SCEL. Reverse transcriptase–PCR showed high expression of CITED1, CHI3L1, ODZ1, and SCEL in 6/6 additional PTCs. Immunohistochemical analysis detected CITED1 and SFTPB in 49/52 and 39/52 PTCs, respectively, but not in follicular thyroid carcinoma and normal thyroid tissue. Genes underexpressed in PTC included tumor suppressors, thyroid function-related proteins, and fatty acid binding proteins. Expression was decreased in 7/8 tumors for eight genes and decreased in 6/8 tumors for 19 genes. We conclude that, despite its clinical heterogeneity, PTC is characterized by consistent and specific molecular changes. These findings reveal clues to the molecular pathways involved in PTC and may provide biomarkers for clinical use. PMID:11752453

  8. High Intensity Focused Ultrasound induced Gene Activation in Solid Tumors

    NASA Astrophysics Data System (ADS)

    Liu, Yunbo; Kon, Takashi; Li, Chuanyuan; Zhong, Pei

    2006-05-01

    In this work, the feasibility of using high intensity focused ultrasound (HIFU) to activate trans-gene expression in a mouse tumor model was investigated. 4T1 cancer cells were implanted subcutaneously in the hind limbs of Balb/C mice and adenovirus luciferase gene vectors under the control of heat shock protein 70B promoter (Adeno-hsp70B-Luc) were injected intratumoraly for gene transfection. One day following the virus injection, the transfected tumors were heated to a peak temperature of 55, 65, 75, and 85°C, respectively, in 10s at multiple sites around the center of the tumor using a HIFU transducer operated at either 1.1-MHz (fundamental) or 3.3-MHz (3rd harmonic) frequency. Inducible luciferase gene expression was found to vary from 15-fold to 120-fold of the control group following 1.1-MHz HIFU exposure. The maximum gene activation was produced at a peak temperature of 65˜75°C one day following HIFU exposure and decayed gradually to baseline level within 7 days. The inducible gene activation produced by 3.3-MHz HIFU exposure (75°C-10s) was found to be comparable to that produced by hyperthermia (42°C-30min). Altogether, these results demonstrate the feasibility of using HIFU as a simple and versatile physical means to regulate trans-gene expression in vivo. This unique feature may be explored in the future for a synergistic combination of HIFU-induced thermal ablation with heat-induced gene therapy for improved cancer therapy.

  9. High pressure-sensitive gene expression in Lactobacillus sanfranciscensis.

    PubMed

    Vogel, R F; Pavlovic, M; Hörmann, S; Ehrmann, M A

    2005-08-01

    Lactobacillus sanfranciscensis is a Gram-positive lactic acid bacterium used in food biotechnology. It is necessary to investigate many aspects of a model organism to elucidate mechanisms of stress response, to facilitate preparation, application and performance in food fermentation, to understand mechanisms of inactivation, and to identify novel tools for high pressure biotechnology. To investigate the mechanisms of the complex bacterial response to high pressure we have analyzed changes in the proteome and transcriptome by 2-D electrophoresis, and by microarrays and real time PCR, respectively. More than 16 proteins were found to be differentially expressed upon high pressure stress and were compared to those sensitive to other stresses. Except for one apparently high pressure-specific stress protein, no pressure-specific stress proteins were found, and the proteome response to pressure was found to differ from that induced by other stresses. Selected pressure-sensitive proteins were partially sequenced and their genes were identified by reverse genetics. In a transcriptome analysis of a redundancy cleared shot gun library, about 7% of the genes investigated were found to be affected. Most of them appeared to be up-regulated 2- to 4-fold and these results were confirmed by real time PCR. Gene induction was shown for some genes up-regulated at the proteome level (clpL/groEL/rbsK), while the response of others to high hydrostatic pressure at the transcriptome level seemed to differ from that observed at the proteome level. The up-regulation of selected genes supports the view that the cell tries to compensate for pressure-induced impairment of translation and membrane transport. PMID:16082466

  10. MYRIAD VOICES AGAINST GENE PATENTS IN THE HIGH COURT.

    PubMed

    McCallum, Lucas; Faunce, Thomas

    2015-12-01

    The Australian High Court's recent landmark decision in D'Arcy v Myriad Genetics Inc overturned the decision by the Federal Court in Cancer Voices Australia v Myriad Genetics Inc regarding patenting of genetic material. The Federal Court had found that isolated DNA and RNA can constitute a patentable invention under s 18(1)(a) of the Patents Act 1990 (Cth). The decision by the High Court unanimously reversed this and declared it was appropriate to look to the policy implications at the heart of the legal question: are genes a category of things that can be patented? This column critically examines the implications of the High Court decision for both research and public health in Australia.

  11. Immunoinformatics study on highly expressed Mycobacterium tuberculosis genes during infection.

    PubMed

    Nguyen Thi, Le Thuy; Sarmiento, Maria Elena; Calero, Romel; Camacho, Frank; Reyes, Fatima; Hossain, Md Murad; Gonzalez, Gustavo Sierra; Norazmi, Mohd Nor; Acosta, Armando

    2014-09-01

    The most important targets for vaccine development are the proteins that are highly expressed by the microorganisms during infection in-vivo. A number of Mycobacterium tuberculosis (Mtb) proteins are also reported to be expressed in-vivo at different phases of infection. In the present study, we analyzed multiple published databases of gene expression profiles of Mtb in-vivo at different phases of infection in animals and humans and selected 38 proteins that are highly expressed in the active, latent and reactivation phases. We predicted T- and B-cell epitopes from the selected proteins using HLAPred for T-cell epitope prediction and BCEPred combined with ABCPred for B-cell epitope prediction. For each selected proteins, regions containing both T- and B-cell epitopes were identified which might be considered as important candidates for vaccine design against tuberculosis.

  12. Statistically invalid classification of high throughput gene expression data.

    PubMed

    Barbash, Shahar; Soreq, Hermona

    2013-01-01

    Classification analysis based on high throughput data is a common feature in neuroscience and other fields of science, with a rapidly increasing impact on both basic biology and disease-related studies. The outcome of such classifications often serves to delineate novel biochemical mechanisms in health and disease states, identify new targets for therapeutic interference, and develop innovative diagnostic approaches. Given the importance of this type of studies, we screened 111 recently-published high-impact manuscripts involving classification analysis of gene expression, and found that 58 of them (53%) based their conclusions on a statistically invalid method which can lead to bias in a statistical sense (lower true classification accuracy then the reported classification accuracy). In this report we characterize the potential methodological error and its scope, investigate how it is influenced by different experimental parameters, and describe statistically valid methods for avoiding such classification mistakes.

  13. Efficient conditional gene expression following transplantation of retrovirally transduced bone marrow stem cells.

    PubMed

    Chung, Jie-Yu; Mackay, Fabienne; Alderuccio, Frank

    2015-01-01

    Retroviral gene therapy combined with bone marrow stem cell transplantation can be used to generate mice with ectopic gene expression in the bone marrow compartment in a quick and cost effective manner when compared to generating and maintaining transgenic mouse lines. However a limitation of this procedure is the lack of cell specificity in gene expression that is associated with the use of endogenous retroviral promoters. Restricting gene expression to specific cell subsets utilising tissue-specific promoter driven retroviral vectors is a challenge. Here we describe the generation of conditional expression of retrovirally encoded genes in specific bone marrow derived cell lineages utilising a Cre-dependent retroviral vector. By utilising Lck and CD19 restricted Cre transgenic bone marrow stem cells, we generate chimeric animals with T or B lymphocyte restricted gene expression respectively. The design of the Cre-dependent retroviral vector enables expression of encoded MOG and GFP genes only in association with Cre mediated DNA inversion. Importantly this strategy does not significantly increase the size of the retroviral vector; as such we are able to generate bone marrow chimeric animals with significantly higher chimerism levels than previous studies utilising Cre-dependent retroviral vectors and Cre transgenic bone marrow stem cells. This demonstrates that the use of Cre-dependent retroviral vectors is able to yield high chimerism levels for experimental use and represent a viable alternative to generating transgenic animals.

  14. High-Dimensional Gene Expression Profiling Studies in High and Low Responders to Primary Smallpox Vaccination

    PubMed Central

    Haralambieva, Iana H.; Oberg, Ann L.; Dhiman, Neelam; Ovsyannikova, Inna G.; Kennedy, Richard B.; Grill, Diane E.; Jacobson, Robert M.; Poland, Gregory A.

    2012-01-01

    Background. The mechanisms underlying smallpox vaccine-induced variations in immune responses are not well understood, but are of considerable interest to a deeper understanding of poxvirus immunity and correlates of protection. Methods. We assessed transcriptional messenger RNA expression changes in 197 recipients of primary smallpox vaccination representing the extremes of humoral and cellular immune responses. Results. The 20 most significant differentially expressed genes include a tumor necrosis factor–receptor superfamily member, an interferon (IFN) gene, a chemokine gene, zinc finger protein genes, nuclear factors, and histones (P ≤ 1.06E−20, q ≤ 2.64E−17). A pathway analysis identified 4 enriched pathways with cytokine production by the T-helper 17 subset of CD4+ T cells being the most significant pathway (P = 3.42E−05). Two pathways (antiviral actions of IFNs, P = 8.95E−05; and IFN-α/β signaling pathway, P = 2.92E−04), integral to innate immunity, were enriched when comparing high with low antibody responders (false discovery rate, < 0.05). Genes related to immune function and transcription (TLR8, P = .0002; DAPP1, P = .0003; LAMP3, P = 9.96E−05; NR4A2, P ≤ .0002; EGR3, P = 4.52E−05), and other genes with a possible impact on immunity (LNPEP, P = 3.72E−05; CAPRIN1, P = .0001; XRN1, P = .0001), were found to be expressed differentially in high versus low antibody responders. Conclusion. We identified novel and known immunity-related genes and pathways that may account for differences in immune response to smallpox vaccination. PMID:22949304

  15. Deciphering the onychophoran 'segmentation gene cascade': Gene expression reveals limited involvement of pair rule gene orthologs in segmentation, but a highly conserved segment polarity gene network.

    PubMed

    Janssen, Ralf; Budd, Graham E

    2013-10-01

    The hallmark of the arthropods is their segmented body, although origin of segmentation, however, is unresolved. In order to shed light on the origin of segmentation we investigated orthologs of pair rule genes (PRGs) and segment polarity genes (SPGs) in a member of the closest related sister-group to the arthropods, the onychophorans. Our gene expression data analysis suggests that most of the onychophoran PRGs do not play a role in segmentation. One possible exception is the even-skipped (eve) gene that is expressed in the posterior end of the onychophoran where new segments are likely patterned, and is also expressed in segmentation-gene typical transverse stripes in at least a number of newly formed segments. Other onychophoran PRGs such as runt (run), hairy/Hes (h/Hes) and odd-skipped (odd) do not appear to have a function in segmentation at all. Onychophoran PRGs that act low in the segmentation gene cascade in insects, however, are potentially involved in segment-patterning. Most obvious is that from the expression of the pairberry (pby) gene ortholog that is expressed in a typical SPG-pattern. Since this result suggested possible conservation of the SPG-network we further investigated SPGs (and associated factors) such as Notum in the onychophoran. We find that the expression patterns of SPGs in arthropods and the onychophoran are highly conserved, suggesting a conserved SPG-network in these two clades, and indeed also in an annelid. This may suggest that the common ancestor of lophotrochozoans and ecdysozoans was already segmented utilising the same SPG-network, or that the SPG-network was recruited independently in annelids and onychophorans/arthropods. PMID:23880430

  16. Deciphering the onychophoran 'segmentation gene cascade': Gene expression reveals limited involvement of pair rule gene orthologs in segmentation, but a highly conserved segment polarity gene network.

    PubMed

    Janssen, Ralf; Budd, Graham E

    2013-10-01

    The hallmark of the arthropods is their segmented body, although origin of segmentation, however, is unresolved. In order to shed light on the origin of segmentation we investigated orthologs of pair rule genes (PRGs) and segment polarity genes (SPGs) in a member of the closest related sister-group to the arthropods, the onychophorans. Our gene expression data analysis suggests that most of the onychophoran PRGs do not play a role in segmentation. One possible exception is the even-skipped (eve) gene that is expressed in the posterior end of the onychophoran where new segments are likely patterned, and is also expressed in segmentation-gene typical transverse stripes in at least a number of newly formed segments. Other onychophoran PRGs such as runt (run), hairy/Hes (h/Hes) and odd-skipped (odd) do not appear to have a function in segmentation at all. Onychophoran PRGs that act low in the segmentation gene cascade in insects, however, are potentially involved in segment-patterning. Most obvious is that from the expression of the pairberry (pby) gene ortholog that is expressed in a typical SPG-pattern. Since this result suggested possible conservation of the SPG-network we further investigated SPGs (and associated factors) such as Notum in the onychophoran. We find that the expression patterns of SPGs in arthropods and the onychophoran are highly conserved, suggesting a conserved SPG-network in these two clades, and indeed also in an annelid. This may suggest that the common ancestor of lophotrochozoans and ecdysozoans was already segmented utilising the same SPG-network, or that the SPG-network was recruited independently in annelids and onychophorans/arthropods.

  17. Sources of Variability in a Synthetic Gene Oscillator

    PubMed Central

    Veliz-Cuba, Alan; Hirning, Andrew J.; Atanas, Adam A.; Hussain, Faiza; Vancia, Flavia; Josić, Krešimir; Bennett, Matthew R.

    2015-01-01

    Synthetic gene oscillators are small, engineered genetic circuits that produce periodic variations in target protein expression. Like other gene circuits, synthetic gene oscillators are noisy and exhibit fluctuations in amplitude and period. Understanding the origins of such variability is key to building predictive models that can guide the rational design of synthetic circuits. Here, we developed a method for determining the impact of different sources of noise in genetic oscillators by measuring the variability in oscillation amplitude and correlations between sister cells. We first used a combination of microfluidic devices and time-lapse fluorescence microscopy to track oscillations in cell lineages across many generations. We found that oscillation amplitude exhibited high cell-to-cell variability, while sister cells remained strongly correlated for many minutes after cell division. To understand how such variability arises, we constructed a computational model that identified the impact of various noise sources across the lineage of an initial cell. When each source of noise was appropriately tuned the model reproduced the experimentally observed amplitude variability and correlations, and accurately predicted outcomes under novel experimental conditions. Our combination of computational modeling and time-lapse data analysis provides a general way to examine the sources of variability in dynamic gene circuits. PMID:26693906

  18. Gene Duplicability of Core Genes Is Highly Consistent across All Angiosperms.

    PubMed

    Li, Zhen; Defoort, Jonas; Tasdighian, Setareh; Maere, Steven; Van de Peer, Yves; De Smet, Riet

    2016-02-01

    Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo duplication and are preserved following duplication is an important question. It has been observed that gene duplicability, or the ability of genes to be retained following duplication, is a nonrandom process, with certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality and the type of duplication (small-scale versus large-scale) have been shown in different species to influence the (long-term) survival of novel genes. However, an overarching view of "gene duplicability" is lacking, mainly due to the fact that previous studies usually focused on individual species and did not account for the influence of genomic context and the time of duplication. Here, we present a large-scale study in which we investigated duplicate retention for 9178 gene families shared between 37 flowering plant species, referred to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of gene duplicability across species, with gene families being either primarily single-copy or multicopy in all species. An intermediate class contains gene families that are often retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage balance sensitive. The distinction between single-copy and multicopy gene families is reflected in their functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability and organelle function and multicopy genes in signaling, transport, and metabolism. The intermediate class was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance-sensitive genes.

  19. Gene Duplicability of Core Genes Is Highly Consistent across All Angiosperms[OPEN

    PubMed Central

    Li, Zhen; Van de Peer, Yves; De Smet, Riet

    2016-01-01

    Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo duplication and are preserved following duplication is an important question. It has been observed that gene duplicability, or the ability of genes to be retained following duplication, is a nonrandom process, with certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality and the type of duplication (small-scale versus large-scale) have been shown in different species to influence the (long-term) survival of novel genes. However, an overarching view of “gene duplicability” is lacking, mainly due to the fact that previous studies usually focused on individual species and did not account for the influence of genomic context and the time of duplication. Here, we present a large-scale study in which we investigated duplicate retention for 9178 gene families shared between 37 flowering plant species, referred to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of gene duplicability across species, with gene families being either primarily single-copy or multicopy in all species. An intermediate class contains gene families that are often retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage balance sensitive. The distinction between single-copy and multicopy gene families is reflected in their functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability and organelle function and multicopy genes in signaling, transport, and metabolism. The intermediate class was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance-sensitive genes. PMID:26744215

  20. High intensity ultrasound transducer used in gene transfection

    NASA Astrophysics Data System (ADS)

    Morrison, Kyle P.; Keilman, George W.; Noble, Misty L.; Brayman, Andrew A.; Miao, Carol H.

    2012-11-01

    This paper describes a novel therapeutic high intensity non-focused ultrasound (HIU) transducer designed with uniform pressure distribution to aid in accelerated gene transfer in large animal liver tissues in vivo. The underlying HIU transducer was used to initiate homogeneous cavitation throughout the tissue while delivering up to 2.7 MPa at 1.1 MHz across its radiating surface. The HIU transducer was built into a 6 cm diameter x 1.3 cm tall housing ergonomically designed to avoid collateral damage to the surrounding anatomy during dynamic motion. The ultrasound (US) radiation was applied in a 'paintbrush-like' manner to the surface of the liver. The layers and geometry of the transducer were carefully selected to maximize the active diameter (5.74 cm), maximize the electrical to acoustic conversion efficiency (85%) to achieve 2.7 MPa of peak negative pressure, maximize the frequency operating band at the fundamental resonance to within a power transfer delta of 1 dB, and reduce the pressure delta to within 2 dB across the radiating surface. For maximum peak voltage into the transducer, a high performance piezoceramic was chosen and a DC bias circuit was built integral to the system. An apodized two element annular pattern was made from a single piezoceramic element, resulting in significant pressure uniformity enhancement. In addition to using apodization for pressure uniformity, a proprietary multi-layered structure was used to improve efficiency while sustaining an operating band from 900 kHz to 1.3 MHz. The resultant operating band allowed for dithering techniques using frequency modulation. The underlying HIU transducer for use in large animals enhances gene expression up to 6300-fold.

  1. A Combination of CRISPR/Cas9 and Standardized RNAi as a Versatile Platform for the Characterization of Gene Function

    PubMed Central

    Wissel, Sebastian; Kieser, Anja; Yasugi, Tetsuo; Duchek, Peter; Roitinger, Elisabeth; Gokcezade, Joseph; Steinmann, Victoria; Gaul, Ulrike; Mechtler, Karl; Förstemann, Klaus; Knoblich, Jürgen A.; Neumüller, Ralph A.

    2016-01-01

    Traditional loss-of-function studies in Drosophila suffer from a number of shortcomings, including off-target effects in the case of RNA interference (RNAi) or the stochastic nature of mosaic clonal analysis. Here, we describe minimal in vivo GFP interference (miGFPi) as a versatile strategy to characterize gene function and to conduct highly stringent, cell type-specific loss-of-function experiments in Drosophila. miGFPi combines CRISPR/Cas9-mediated tagging of genes at their endogenous locus with an immunotag and an exogenous 21 nucleotide RNAi effector sequence with the use of a single reagent, highly validated RNAi line targeting this sequence. We demonstrate the utility and time effectiveness of this method by characterizing the function of the Polymerase I (Pol I)-associated transcription factor Tif-1a, and the previously uncharacterized gene MESR4, in the Drosophila female germline stem cell lineage. In addition, we show that miGFPi serves as a powerful technique to functionally characterize individual isoforms of a gene. We exemplify this aspect of miGFPi by studying isoform-specific loss-of-function phenotypes of the longitudinals lacking (lola) gene in neural stem cells. Altogether, the miGFPi strategy constitutes a generalized loss-of-function approach that is amenable to the study of the function of all genes in the genome in a stringent and highly time effective manner. PMID:27280787

  2. High-throughput approaches to understanding gene function and mapping network architecture in bacteria.

    PubMed

    Brochado, Ana Rita; Typas, Athanasios

    2013-04-01

    Advances in sequencing technology have provided an unprecedented view of bacterial diversity, along with a daunting number of novel genes. Within this new reality lies the challenge of developing large-scale approaches to assign function to the new genes and place them in pathways. Here, we highlight recent advances on this front, focusing on how high-throughput gene-gene, gene-drug and drug-drug interactions can yield functional and mechanistic inferences in bacteria. PMID:23403119

  3. High Gene Family Turnover Rates and Gene Space Adaptation in the Compact Genome of the Carnivorous Plant Utricularia gibba.

    PubMed

    Carretero-Paulet, Lorenzo; Librado, Pablo; Chang, Tien-Hao; Ibarra-Laclette, Enrique; Herrera-Estrella, Luis; Rozas, Julio; Albert, Victor A

    2015-05-01

    Utricularia gibba is an aquatic carnivorous plant with highly specialized morphology, featuring fibrous floating networks of branches and leaf-like organs, no recognizable roots, and bladder traps that capture and digest prey. We recently described the compressed genome of U. gibba as sufficient to control the development and reproduction of a complex organism. We hypothesized intense deletion pressure as a mechanism whereby most noncoding DNA was deleted, despite evidence for three independent whole-genome duplications (WGDs). Here, we explore the impact of intense genome fractionation in the evolutionary dynamics of U. gibba's functional gene space. We analyze U. gibba gene family turnover by modeling gene gain/death rates under a maximum-likelihood statistical framework. In accord with our deletion pressure hypothesis, we show that the U. gibba gene death rate is significantly higher than those of four other eudicot species. Interestingly, the gene gain rate is also significantly higher, likely reflecting the occurrence of multiple WGDs and possibly also small-scale genome duplications. Gene ontology enrichment analyses of U. gibba-specific two-gene orthogroups, multigene orthogroups, and singletons highlight functions that may represent adaptations in an aquatic carnivorous plant. We further discuss two homeodomain transcription factor gene families (WOX and HDG/HDZIP-IV) showing conspicuous differential expansions and contractions in U. gibba. Our results 1) reconcile the compactness of the U. gibba genome with its accommodation of a typical number of genes for a plant genome, and 2) highlight the role of high gene family turnover in the evolutionary diversification of U. gibba's functional gene space and adaptations to its unique lifestyle and highly specialized body plan.

  4. High Gene Family Turnover Rates and Gene Space Adaptation in the Compact Genome of the Carnivorous Plant Utricularia gibba.

    PubMed

    Carretero-Paulet, Lorenzo; Librado, Pablo; Chang, Tien-Hao; Ibarra-Laclette, Enrique; Herrera-Estrella, Luis; Rozas, Julio; Albert, Victor A

    2015-05-01

    Utricularia gibba is an aquatic carnivorous plant with highly specialized morphology, featuring fibrous floating networks of branches and leaf-like organs, no recognizable roots, and bladder traps that capture and digest prey. We recently described the compressed genome of U. gibba as sufficient to control the development and reproduction of a complex organism. We hypothesized intense deletion pressure as a mechanism whereby most noncoding DNA was deleted, despite evidence for three independent whole-genome duplications (WGDs). Here, we explore the impact of intense genome fractionation in the evolutionary dynamics of U. gibba's functional gene space. We analyze U. gibba gene family turnover by modeling gene gain/death rates under a maximum-likelihood statistical framework. In accord with our deletion pressure hypothesis, we show that the U. gibba gene death rate is significantly higher than those of four other eudicot species. Interestingly, the gene gain rate is also significantly higher, likely reflecting the occurrence of multiple WGDs and possibly also small-scale genome duplications. Gene ontology enrichment analyses of U. gibba-specific two-gene orthogroups, multigene orthogroups, and singletons highlight functions that may represent adaptations in an aquatic carnivorous plant. We further discuss two homeodomain transcription factor gene families (WOX and HDG/HDZIP-IV) showing conspicuous differential expansions and contractions in U. gibba. Our results 1) reconcile the compactness of the U. gibba genome with its accommodation of a typical number of genes for a plant genome, and 2) highlight the role of high gene family turnover in the evolutionary diversification of U. gibba's functional gene space and adaptations to its unique lifestyle and highly specialized body plan. PMID:25637935

  5. Cell types differ in global coordination of splicing and proportion of highly expressed genes.

    PubMed

    Trakhtenberg, Ephraim F; Pho, Nam; Holton, Kristina M; Chittenden, Thomas W; Goldberg, Jeffrey L; Dong, Lingsheng

    2016-01-01

    Balance in the transcriptome is regulated by coordinated synthesis and degradation of RNA molecules. Here we investigated whether mammalian cell types intrinsically differ in global coordination of gene splicing and expression levels. We analyzed RNA-seq transcriptome profiles of 8 different purified mouse cell types. We found that different cell types vary in proportion of highly expressed genes and the number of alternatively spliced transcripts expressed per gene, and that the cell types that express more variants of alternatively spliced transcripts per gene are those that have higher proportion of highly expressed genes. Cell types segregated into two clusters based on high or low proportion of highly expressed genes. Biological functions involved in negative regulation of gene expression were enriched in the group of cell types with low proportion of highly expressed genes, and biological functions involved in regulation of transcription and RNA splicing were enriched in the group of cell types with high proportion of highly expressed genes. Our findings show that cell types differ in proportion of highly expressed genes and the number of alternatively spliced transcripts expressed per gene, which represent distinct properties of the transcriptome and may reflect intrinsic differences in global coordination of synthesis, splicing, and degradation of RNA molecules. PMID:27577089

  6. Cell types differ in global coordination of splicing and proportion of highly expressed genes

    PubMed Central

    Trakhtenberg, Ephraim F.; Pho, Nam; Holton, Kristina M.; Chittenden, Thomas W.; Goldberg, Jeffrey L.; Dong, Lingsheng

    2016-01-01

    Balance in the transcriptome is regulated by coordinated synthesis and degradation of RNA molecules. Here we investigated whether mammalian cell types intrinsically differ in global coordination of gene splicing and expression levels. We analyzed RNA-seq transcriptome profiles of 8 different purified mouse cell types. We found that different cell types vary in proportion of highly expressed genes and the number of alternatively spliced transcripts expressed per gene, and that the cell types that express more variants of alternatively spliced transcripts per gene are those that have higher proportion of highly expressed genes. Cell types segregated into two clusters based on high or low proportion of highly expressed genes. Biological functions involved in negative regulation of gene expression were enriched in the group of cell types with low proportion of highly expressed genes, and biological functions involved in regulation of transcription and RNA splicing were enriched in the group of cell types with high proportion of highly expressed genes. Our findings show that cell types differ in proportion of highly expressed genes and the number of alternatively spliced transcripts expressed per gene, which represent distinct properties of the transcriptome and may reflect intrinsic differences in global coordination of synthesis, splicing, and degradation of RNA molecules. PMID:27577089

  7. Application of local gene induction by infrared laser-mediated microscope and temperature stimulator to amphibian regeneration study.

    PubMed

    Kawasumi-Kita, Aiko; Hayashi, Toshinori; Kobayashi, Takuya; Nagayama, Chikashi; Hayashi, Shinichi; Kamei, Yasuhiro; Morishita, Yoshihiro; Takeuchi, Takashi; Tamura, Koji; Yokoyama, Hitoshi

    2015-12-01

    Urodele amphibians (newts and salamanders) and anuran amphibians (frogs) are excellent research models to reveal mechanisms of three-dimensional organ regeneration since they have exceptionally high regenerative capacity among tetrapods. However, the difficulty in manipulating gene expression in cells in a spatially restricted manner has so far hindered elucidation of the molecular mechanisms of organ regeneration in amphibians. Recently, local heat shock by laser irradiation has enabled local gene induction even at the single-cell level in teleost fishes, nematodes, fruit flies and plants. In this study, local heat shock was made with infrared laser irradiation (IR-LEGO) by using a gene expression inducible system in transgenic animals containing a heat shock promoter, and gene expression was successfully induced only in the target region of two amphibian species, Xenopus laevis and Pleurodeles waltl (a newt), at postembryonic stages. Furthermore, we induced spatially restricted but wider gene expression in Xenopus laevis tadpoles and froglets by applying local heat shock by a temperature-controlled metal probe (temperature stimulator). The local gene manipulation systems, the IR-LEGO and the temperature stimulator, enable us to do a rigorous cell lineage trace with the combination of the Cre-LoxP system as well as to analyze gene function in a target region or cells with less off-target effects in the study of amphibian regeneration.

  8. Application of local gene induction by infrared laser-mediated microscope and temperature stimulator to amphibian regeneration study.

    PubMed

    Kawasumi-Kita, Aiko; Hayashi, Toshinori; Kobayashi, Takuya; Nagayama, Chikashi; Hayashi, Shinichi; Kamei, Yasuhiro; Morishita, Yoshihiro; Takeuchi, Takashi; Tamura, Koji; Yokoyama, Hitoshi

    2015-12-01

    Urodele amphibians (newts and salamanders) and anuran amphibians (frogs) are excellent research models to reveal mechanisms of three-dimensional organ regeneration since they have exceptionally high regenerative capacity among tetrapods. However, the difficulty in manipulating gene expression in cells in a spatially restricted manner has so far hindered elucidation of the molecular mechanisms of organ regeneration in amphibians. Recently, local heat shock by laser irradiation has enabled local gene induction even at the single-cell level in teleost fishes, nematodes, fruit flies and plants. In this study, local heat shock was made with infrared laser irradiation (IR-LEGO) by using a gene expression inducible system in transgenic animals containing a heat shock promoter, and gene expression was successfully induced only in the target region of two amphibian species, Xenopus laevis and Pleurodeles waltl (a newt), at postembryonic stages. Furthermore, we induced spatially restricted but wider gene expression in Xenopus laevis tadpoles and froglets by applying local heat shock by a temperature-controlled metal probe (temperature stimulator). The local gene manipulation systems, the IR-LEGO and the temperature stimulator, enable us to do a rigorous cell lineage trace with the combination of the Cre-LoxP system as well as to analyze gene function in a target region or cells with less off-target effects in the study of amphibian regeneration. PMID:26510480

  9. Complete TCR-α gene locus control region activity in T cells derived in vitro from embryonic stem cells.

    PubMed

    Lahiji, Armin; Kucerová-Levisohn, Martina; Lovett, Jordana; Holmes, Roxanne; Zúñiga-Pflücker, Juan Carlos; Ortiz, Benjamin D

    2013-07-01

    Locus control regions (LCRs) are cis-acting gene regulatory elements with the unique, integration site-independent ability to transfer the characteristics of their locus-of-origin's gene expression pattern to a linked transgene in mice. LCR activities have been discovered in numerous T cell lineage-expressed gene loci. These elements can be adapted to the design of stem cell gene therapy vectors that direct robust therapeutic gene expression to the T cell progeny of engineered stem cells. Currently, transgenic mice provide the only experimental approach that wholly supports all the critical aspects of LCR activity. In this study, we report the manifestation of all key features of mouse TCR-α gene LCR function in T cells derived in vitro from mouse embryonic stem cells. High-level, copy number-related TCR-α LCR-linked reporter gene expression levels are cell type restricted in this system, and upregulated during the expected stage transition of T cell development. We also report that de novo introduction of TCR-α LCR-linked transgenes into existing T cell lines yields incomplete LCR activity. These data indicate that establishing full TCR-α LCR activity requires critical molecular events occurring prior to final T lineage determination. This study also validates a novel, tractable, and more rapid approach for the study of LCR activity in T cells, and its translation to therapeutic genetic engineering.

  10. Double-filter identification of vascular-expressed genes using Arabidopsis plants with vascular hypertrophy and hypotrophy.

    PubMed

    Ckurshumova, Wenzislava; Scarpella, Enrico; Goldstein, Rochelle S; Berleth, Thomas

    2011-08-01

    Genes expressed in vascular tissues have been identified by several strategies, usually with a focus on mature vascular cells. In this study, we explored the possibility of using two opposite types of altered tissue compositions in combination with a double-filter selection to identify genes with a high probability of vascular expression in early organ primordia. Specifically, we generated full-transcriptome microarray profiles of plants with (a) genetically strongly reduced and (b) pharmacologically vastly increased vascular tissues and identified a reproducible cohort of 158 transcripts that fulfilled the dual requirement of being underrepresented in (a) and overrepresented in (b). In order to assess the predictive value of our identification scheme for vascular gene expression, we determined the expression patterns of genes in two unbiased subsamples. First, we assessed the expression patterns of all twenty annotated transcription factor genes from the cohort of 158 genes and found that seventeen of the twenty genes were preferentially expressed in leaf vascular cells. Remarkably, fifteen of these seventeen vascular genes were clearly expressed already very early in leaf vein development. Twelve genes with published leaf expression patterns served as a second subsample to monitor the representation of vascular genes in our cohort. Of those twelve genes, eleven were preferentially expressed in leaf vascular tissues. Based on these results we propose that our compendium of 158 genes represents a sample that is highly enriched for genes expressed in vascular tissues and that our approach is particularly suited to detect genes expressed in vascular cell lineages at early stages of their inception.

  11. DNA/RNA heteroduplex oligonucleotide for highly efficient gene silencing

    PubMed Central

    Nishina, Kazutaka; Piao, Wenying; Yoshida-Tanaka, Kie; Sujino, Yumiko; Nishina, Tomoko; Yamamoto, Tsuyoshi; Nitta, Keiko; Yoshioka, Kotaro; Kuwahara, Hiroya; Yasuhara, Hidenori; Baba, Takeshi; Ono, Fumiko; Miyata, Kanjiro; Miyake, Koichi; Seth, Punit P.; Low, Audrey; Yoshida, Masayuki; Bennett, C. Frank; Kataoka, Kazunori; Mizusawa, Hidehiro; Obika, Satoshi; Yokota, Takanori

    2015-01-01

    Antisense oligonucleotides (ASOs) are recognized therapeutic agents for the modulation of specific genes at the post-transcriptional level. Similar to any medical drugs, there are opportunities to improve their efficacy and safety. Here we develop a short DNA/RNA heteroduplex oligonucleotide (HDO) with a structure different from double-stranded RNA used for short interfering RNA and single-stranded DNA used for ASO. A DNA/locked nucleotide acid gapmer duplex with an α-tocopherol-conjugated complementary RNA (Toc-HDO) is significantly more potent at reducing the expression of the targeted mRNA in liver compared with the parent single-stranded gapmer ASO. Toc-HDO also improves the phenotype in disease models more effectively. In addition, the high potency of Toc-HDO results in a reduction of liver dysfunction observed in the parent ASO at a similar silencing effect. HDO technology offers a novel concept of therapeutic oligonucleotides, and the development of this molecular design opens a new therapeutic field. PMID:26258894

  12. Rates of Lateral Gene Transfer in Prokaryotes: High but Why?

    PubMed

    Vos, Michiel; Hesselman, Matthijn C; te Beek, Tim A; van Passel, Mark W J; Eyre-Walker, Adam

    2015-10-01

    Lateral gene transfer is of fundamental importance to the evolution of prokaryote genomes and has important practical consequences, as evidenced by the rapid dissemination of antibiotic resistance and virulence determinants. Relatively little effort has so far been devoted to explicitly quantifying the rate at which accessory genes are taken up and lost, but it is possible that the combined rate of lateral gene transfer and gene loss is higher than that of point mutation. What evolutionary forces underlie the rate of lateral gene transfer are not well understood. We here use theory developed to explain the evolution of mutation rates to address this question and explore its consequences for the study of prokaryote evolution.

  13. A delta T-cell receptor deleting element transgenic reporter construct is rearranged in alpha beta but not gamma delta T-cell lineages.

    PubMed Central

    Shutter, J; Cain, J A; Ledbetter, S; Rogers, M D; Hockett, R D

    1995-01-01

    T cells can be divided into two groups on the basis of the expression of either alpha beta or gamma delta T-cell receptors (TCRs). Because the TCR delta chain locus lies within the larger TCR alpha chain locus, control of the utilization of these two receptors is important in T-cell development, specifically for determination of T-cell type: rearrangement of the alpha locus results in deletion of the delta coding segments and commitment to the alpha beta lineage. In the developing thymus, a relative site-specific recombination occurs by which the TCR delta chain gene segments are deleted. This deletion removes all D delta, J delta, and C delta genes and occurs on both alleles. This delta deletional mechanism is evolutionarily conserved between mice and humans. Transgenic mice which contain the human delta deleting elements and as much internal TCR delta chain coding sequence as possible without allowing the formation of a complete delta chain gene were developed. Several transgenic lines showing recombinations between deleting elements within the transgene were developed. These lines demonstrate that utilization of the delta deleting elements occurs in alpha beta T cells of the spleen and thymus. These recombinations are rare in the gamma delta population, indicating that the machinery for utilization of delta deleting elements is functional in alpha beta T cells but absent in gamma delta T cells. Furthermore, a discrete population of early thymocytes containing delta deleting element recombinations but not V alpha-to-J alpha rearrangements has been identified. These data are consistent with a model in which delta deletion contributes to the implementation of a signal by which the TCR alpha chain locus is rearranged and expressed and thus becomes an alpha beta T cell. PMID:8524269

  14. High-throughput analysis of candidate imprinted genes and allele-specific gene expression in the human term placenta

    PubMed Central

    2010-01-01

    Background Imprinted genes show expression from one parental allele only and are important for development and behaviour. This extreme mode of allelic imbalance has been described for approximately 56 human genes. Imprinting status is often disrupted in cancer and dysmorphic syndromes. More subtle variation of gene expression, that is not parent-of-origin specific, termed 'allele-specific gene expression' (ASE) is more common and may give rise to milder phenotypic differences. Using two allele-specific high-throughput technologies alongside bioinformatics predictions, normal term human placenta was screened to find new imprinted genes and to ascertain the extent of ASE in this tissue. Results Twenty-three family trios of placental cDNA, placental genomic DNA (gDNA) and gDNA from both parents were tested for 130 candidate genes with the Sequenom MassArray system. Six genes were found differentially expressed but none imprinted. The Illumina ASE BeadArray platform was then used to test 1536 SNPs in 932 genes. The array was enriched for the human orthologues of 124 mouse candidate genes from bioinformatics predictions and 10 human candidate imprinted genes from EST database mining. After quality control pruning, a total of 261 informative SNPs (214 genes) remained for analysis. Imprinting with maternal expression was demonstrated for the lymphocyte imprinted gene ZNF331 in human placenta. Two potential differentially methylated regions (DMRs) were found in the vicinity of ZNF331. None of the bioinformatically predicted candidates tested showed imprinting except for a skewed allelic expression in a parent-specific manner observed for PHACTR2, a neighbour of the imprinted PLAGL1 gene. ASE was detected for two or more individuals in 39 candidate genes (18%). Conclusions Both Sequenom and Illumina assays were sensitive enough to study imprinting and strong allelic bias. Previous bioinformatics approaches were not predictive of new imprinted genes in the human term

  15. Evaluation of high efficiency gene knockout strategies for Trypanosoma cruzi

    PubMed Central

    2009-01-01

    Background Trypanosoma cruzi, a kinetoplastid protozoan parasite that causes Chagas disease, infects approximately 15 million people in Central and South America. In contrast to the substantial in silico studies of the T. cruzi genome, transcriptome, and proteome, only a few genes have been experimentally characterized and validated, mainly due to the lack of facile methods for gene manipulation needed for reverse genetic studies. Current strategies for gene disruption in T. cruzi are tedious and time consuming. In this study we have compared the conventional multi-step cloning technique with two knockout strategies that have been proven to work in other organisms, one-step-PCR- and Multisite Gateway-based systems. Results While the one-step-PCR strategy was found to be the fastest method for production of knockout constructs, it does not efficiently target genes of interest using gene-specific sequences of less than 80 nucleotides. Alternatively, the Multisite Gateway based approach is less time-consuming than conventional methods and is able to efficiently and reproducibly delete target genes. Conclusion Using the Multisite Gateway strategy, we have rapidly produced constructs that successfully produce specific gene deletions in epimastigotes of T. cruzi. This methodology should greatly facilitate reverse genetic studies in T. cruzi. PMID:19432966

  16. Cell type-selective disease-association of genes under high regulatory load

    PubMed Central

    Galhardo, Mafalda; Berninger, Philipp; Nguyen, Thanh-Phuong; Sauter, Thomas; Sinkkonen, Lasse

    2015-01-01

    We previously showed that disease-linked metabolic genes are often under combinatorial regulation. Using the genome-wide ChIP-Seq binding profiles for 93 transcription factors in nine different cell lines, we show that genes under high regulatory load are significantly enriched for disease-association across cell types. We find that transcription factor load correlates with the enhancer load of the genes and thereby allows the identification of genes under high regulatory load by epigenomic mapping of active enhancers. Identification of the high enhancer load genes across 139 samples from 96 different cell and tissue types reveals a consistent enrichment for disease-associated genes in a cell type-selective manner. The underlying genes are not limited to super-enhancer genes and show several types of disease-association evidence beyond genetic variation (such as biomarkers). Interestingly, the high regulatory load genes are involved in more KEGG pathways than expected by chance, exhibit increased betweenness centrality in the interaction network of liver disease genes, and carry longer 3′ UTRs with more microRNA (miRNA) binding sites than genes on average, suggesting a role as hubs integrating signals within regulatory networks. In summary, epigenetic mapping of active enhancers presents a promising and unbiased approach for identification of novel disease genes in a cell type-selective manner. PMID:26338775

  17. Cell type-selective disease-association of genes under high regulatory load.

    PubMed

    Galhardo, Mafalda; Berninger, Philipp; Nguyen, Thanh-Phuong; Sauter, Thomas; Sinkkonen, Lasse

    2015-10-15

    We previously showed that disease-linked metabolic genes are often under combinatorial regulation. Using the genome-wide ChIP-Seq binding profiles for 93 transcription factors in nine different cell lines, we show that genes under high regulatory load are significantly enriched for disease-association across cell types. We find that transcription factor load correlates with the enhancer load of the genes and thereby allows the identification of genes under high regulatory load by epigenomic mapping of active enhancers. Identification of the high enhancer load genes across 139 samples from 96 different cell and tissue types reveals a consistent enrichment for disease-associated genes in a cell type-selective manner. The underlying genes are not limited to super-enhancer genes and show several types of disease-association evidence beyond genetic variation (such as biomarkers). Interestingly, the high regulatory load genes are involved in more KEGG pathways than expected by chance, exhibit increased betweenness centrality in the interaction network of liver disease genes, and carry longer 3' UTRs with more microRNA (miRNA) binding sites than genes on average, suggesting a role as hubs integrating signals within regulatory networks. In summary, epigenetic mapping of active enhancers presents a promising and unbiased approach for identification of novel disease genes in a cell type-selective manner.

  18. Tay-Sachs disease: high gene frequency in a non-Jewish population.

    PubMed

    Kelly, T E; Chase, G A; Kaback, M M; Kumor, K; McKusick, V A

    1975-05-01

    A non-Amish "Pennsylvania Dutch" semi-isolate was found to have a high frequency of Tay-Sachs gene. This high frequency could be ascribed to founder effect and may represent, in microcosm, how this mechanism could have produced the high gene frequency among Ashkenazi Jews. PMID:803011

  19. High presence/absence gene variability in defense-related gene clusters of Cucumis melo

    PubMed Central

    2013-01-01

    Background Changes in the copy number of DNA sequences are one of the main mechanisms generating genome variability in eukaryotes. These changes are often related to phenotypic effects such as genetic disorders or novel pathogen resistance. The increasing availability of genome sequences through the application of next-generation massive sequencing technologies has allowed the study of genomic polymorphisms at both the interspecific and intraspecific levels, thus helping to understand how species adapt to changing environments through genome variability. Results Data on gene presence/absence variation (PAV) in melon was obtained by resequencing a cultivated accession and an old-relative melon variety, and using previously obtained resequencing data from three other melon cultivars, among them DHL92, on which the current draft melon genome sequence is based. A total of 1,697 PAV events were detected, involving 4.4% of the predicted melon gene complement. In all, an average 1.5% of genes were absent from each analyzed cultivar as compared to the DHL92 reference genome. The most populated functional category among the 304 PAV genes of known function was that of stress response proteins (30% of all classified PAVs). Our results suggest that genes from multi-copy families are five times more likely to be affected by PAV than singleton genes. Also, the chance of genes present in the genome in tandem arrays being affected by PAV is double that of isolated genes, with PAV genes tending to be in longer clusters. The highest concentration of PAV events detected in the melon genome was found in a 1.1 Mb region of linkage group V, which also shows the highest density of melon stress-response genes. In particular, this region contains the longest continuous gene-containing PAV sequence so far identified in melon. Conclusions The first genome-wide report of PAV variation among several melon cultivars is presented here. Multi-copy and clustered genes, especially those with

  20. Highly Fluorescent Gene Carrier Based on Ag-Au Alloy Nanoclusters.

    PubMed

    Wang, Ping; Lin, Lin; Guo, Zhaopei; Chen, Jie; Tian, Huayu; Chen, Xuesi; Yang, Hua

    2016-01-01

    For systemic delivery of gene, gold nanoparticles (GNPs) have been exploited as novel gene carriers because of the excellent characteristics for "visible" in intracellular trafficking. Herein, a highly fluorescent gene carrier was prepared by conjugating polyethylenimines on Ag-Au alloy nanoclusters. This carrier exhibited remarkable high gene transfection efficiencies and relatively low cytotoxicity toward B16F10, HeLa, and CHO cells. More interestingly, the high fluorescent Ag-Au-PEI conjugates showed high quantum yield of 14.56%, which is much higher than most of the reported gold nanocluster-based quantum dots and Ag-Au-PEI possessed bioimaging capacity both in vitro and in vivo.

  1. New methods for tightly regulated gene expression and highly efficient chromosomal integration of cloned genes for Methanosarcina species

    DOE PAGES

    Guss, Adam M.; Rother, Michael; Zhang, Jun Kai; Kulkkarni, Gargi; Metcalf, William W.

    2008-01-01

    A highly efficient method for chromosomal integration of cloned DNA into Methanosarcina spp. was developed utilizing the site-specific recombination system from the Streptomyces phage φC31. Host strains expressing the φC31 integrase gene and carrying an appropriate recombination site can be transformed with non-replicating plasmids carrying the complementary recombination site at efficiencies similar to those obtained with self-replicating vectors. We have also constructed a series of hybrid promoters that combine the highly expressed M. barkeri P mcrB promoter with binding sites for the tetracycline-responsive, bacterial TetR protein. These promoters are tightly regulated by the presence or absence of tetracycline inmore » strains that express the tetR gene. The hybrid promoters can be used in genetic experiments to test gene essentiality by placing a gene of interest under their control. Thus, growth of strains with tetR -regulated essential genes becomes tetracycline-dependent. A series of plasmid vectors that utilize the site-specific recombination system for construction of reporter gene fusions and for tetracycline regulated expression of cloned genes are reported. These vectors were used to test the efficiency of translation at a variety of start codons. Fusions using an ATG start site were the most active, whereas those using GTG and TTG were approximately one half or one fourth as active, respectively. The CTG fusion was 95% less active than the ATG fusion.« less

  2. New methods for tightly regulated gene expression and highly efficient chromosomal integration of cloned genes for Methanosarcina species

    PubMed Central

    Guss, Adam M.; Rother, Michael; Zhang, Jun Kai; Kulkkarni, Gargi; Metcalf, William W.

    2008-01-01

    A highly efficient method for chromosomal integration of cloned DNA into Methanosarcina spp. was developed utilizing the site-specific recombination system from the Streptomyces phage φC31. Host strains expressing the φC31 integrase gene and carrying an appropriate recombination site can be transformed with non-replicating plasmids carrying the complementary recombination site at efficiencies similar to those obtained with self-replicating vectors. We have also constructed a series of hybrid promoters that combine the highly expressed M. barkeri PmcrB promoter with binding sites for the tetracycline-responsive, bacterial TetR protein. These promoters are tightly regulated by the presence or absence of tetracycline in strains that express the tetR gene. The hybrid promoters can be used in genetic experiments to test gene essentiality by placing a gene of interest under their control. Thus, growth of strains with tetR-regulated essential genes becomes tetracycline-dependent. A series of plasmid vectors that utilize the site-specific recombination system for construction of reporter gene fusions and for tetracycline regulated expression of cloned genes are reported. These vectors were used to test the efficiency of translation at a variety of start codons. Fusions using an ATG start site were the most active, whereas those using GTG and TTG were approximately one half or one fourth as active, respectively. The CTG fusion was 95% less active than the ATG fusion. PMID:19054746

  3. High levels of gene expression explain the strong evolutionary constraint of mitochondrial protein-coding genes.

    PubMed

    Nabholz, Benoit; Ellegren, Hans; Wolf, Jochen B W

    2013-02-01

    The nearly neutral theory of molecular evolution has been widely accepted as the guiding principle for understanding how selection affects gene sequence evolution. One of its central predictions is that the rate at which proteins evolve should negatively scale with effective population size (N(e)). In contrast to the expectation of reduced selective constraint in the mitochondrial genome following from its lower N(e), we observe what can be interpreted as the opposite: for a taxonomically diverse set of organisms (birds, mammals, insects, and nematodes), mitochondrially encoded protein-coding genes from the oxidative phosphorylation pathway (mtOXPHOS; n = 12-13) show markedly stronger signatures of purifying selection (illustrated by low d(N)/d(S)) than their nuclear counterparts interacting in the same pathway (nuOXPHOS; n: ∼75). To understand these unexpected evolutionary dynamics, we consider a number of structural and functional parameters including gene expression, hydrophobicity, transmembrane position, gene ontology, GC content, substitution rate, proportion of amino acids in transmembrane helices, and protein-protein interaction. Across all taxa, unexpectedly large differences in gene expression levels (RNA-seq) between nuclear and mitochondrially encoded genes, and to a lower extent hydrophobicity, explained most of the variation in d(N)/d(S). Similarly, differences in d(N)/d(S) between functional OXPHOS protein complexes could largely be explained by gene expression differences. Overall, by including gene expression and other functional parameters, the unexpected mitochondrial evolutionary dynamics can be understood. Our results not only reaffirm the link between gene expression and protein evolution but also open new questions about the functional role of expression level variation between mitochondrial genes. PMID:23071102

  4. High levels of gene expression explain the strong evolutionary constraint of mitochondrial protein-coding genes.

    PubMed

    Nabholz, Benoit; Ellegren, Hans; Wolf, Jochen B W

    2013-02-01

    The nearly neutral theory of molecular evolution has been widely accepted as the guiding principle for understanding how selection affects gene sequence evolution. One of its central predictions is that the rate at which proteins evolve should negatively scale with effective population size (N(e)). In contrast to the expectation of reduced selective constraint in the mitochondrial genome following from its lower N(e), we observe what can be interpreted as the opposite: for a taxonomically diverse set of organisms (birds, mammals, insects, and nematodes), mitochondrially encoded protein-coding genes from the oxidative phosphorylation pathway (mtOXPHOS; n = 12-13) show markedly stronger signatures of purifying selection (illustrated by low d(N)/d(S)) than their nuclear counterparts interacting in the same pathway (nuOXPHOS; n: ∼75). To understand these unexpected evolutionary dynamics, we consider a number of structural and functional parameters including gene expression, hydrophobicity, transmembrane position, gene ontology, GC content, substitution rate, proportion of amino acids in transmembrane helices, and protein-protein interaction. Across all taxa, unexpectedly large differences in gene expression levels (RNA-seq) between nuclear and mitochondrially encoded genes, and to a lower extent hydrophobicity, explained most of the variation in d(N)/d(S). Similarly, differences in d(N)/d(S) between functional OXPHOS protein complexes could largely be explained by gene expression differences. Overall, by including gene expression and other functional parameters, the unexpected mitochondrial evolutionary dynamics can be understood. Our results not only reaffirm the link between gene expression and protein evolution but also open new questions about the functional role of expression level variation between mitochondrial genes.

  5. Ebf1-mediated down-regulation of Id2 and Id3 is essential for specification of the B cell lineage

    PubMed Central

    Thal, Melissa A.; Carvalho, Thiago L.; He, Ti; Kim, Hyung-Gyoon; Gao, Hua; Hagman, James; Klug, Christopher A.

    2009-01-01

    Gene knockout experiments in mice have suggested a hierarchical model of early B cell commitment wherein E2A proteins (E47 and E12) activate early B cell factor (Ebf1), which in turn activates expression of the B cell commitment factor, Pax5. In IL-7 receptor alpha (IL-7Rα) knockout mice, B cell development is blocked before B-lineage commitment at the prepro-B cell stage in adult animals. In IL-7Rα−/− prepro-B cells, E47 is expressed and yet is insufficient to transcriptionally activate the putative downstream target gene, Ebf1. In this study, we show that further increases of E47 expression in IL-7Rα−/− prepro-B cells fails to activate Ebf1, but rather leads to a dramatic induction of the E2A inhibitory factors, Id2 and Id3. In contrast, enforced expression of Ebf1 in IL-7Rα−/− bone marrow potently down-regulates Id2 and Id3 mRNA expression and restores B cell differentiation in vivo. Down-regulation of both Id2 and Id3 during B cell specification is essential in that overexpression of either Id2 or Id3 in wild-type bone marrow blocks B cell specification at the prepro-B cell stage. Collectively, these studies suggest a model where Ebf1 induction specifies the B cell fate by dramatically increasing activity of E47 at the posttranslational level. PMID:19122139

  6. Altered Gene Expression in Mice Selected for High Maternal Aggression

    PubMed Central

    Gammie, Stephen C.; Auger, Anthony P.; Jessen, Heather M.; Vanzo, Rena J.; Awad, Tarif A.; Stevenson, Sharon A.

    2007-01-01

    We previously applied selective breeding on outbred mice to increase maternal aggression (maternal defense). In this study, we compared gene expression within a continuous region of the CNS involved in maternal aggression (hypothalamus and preoptic regions) between lactating selected (S) and non-selected control (C) mice (n = 6 per group). Using microarrays representing over 40,000 genes or expressed sequence tags, two statistical algorithms were used to identify significant differences in gene expression: robust multi array and the probe logarithmic intensity error method. ∼ 200 genes were identified as significant using an intersection from both techniques. A subset of genes were examined for confirmation by real-time PCR. Significant decreases were found in S mice for neurotensin and neuropeptide Y receptor Y2 (both confirmed by PCR). Significant increases were found in S mice for neuronal nitric oxide synthase (confirmed by PCR), the K+ channel subunit, Kcna1 (confirmed by PCR), corticotrophin releasing factor binding protein (just above significance using PCR; p = 0.051), and GABA A receptor subunit 1A (not confirmed by PCR, but similar direction). S mice also exhibited significantly higher levels of the neurotransmitter receptor, adenosine A1 receptor, and the transcription factors, c-Fos, and Egr-1. Interestingly, for 24 genes related to metabolism, all were significantly elevated in S mice, suggesting altered metabolism in these mice. Together, this study provides a list of candidate genes (some previously implicated in maternal aggression and some novel) that may play an important role in the production of this behavior. PMID:16939635

  7. A misexpression screen reveals effects of bag-of-marbles and TGF beta class signaling on the Drosophila male germ-line stem cell lineage.

    PubMed Central

    Schulz, Cordula; Kiger, Amy A; Tazuke, Salli I; Yamashita, Yukiko M; Pantalena-Filho, Luiz C; Jones, D Leanne; Wood, Cricket G; Fuller, Margaret T

    2004-01-01

    Male gametes are produced throughout reproductive life by a classic stem cell mechanism. However, little is known about the molecular mechanisms for lineage production that maintain male germ-line stem cell (GSC) populations, regulate mitotic amplification divisions, and ensure germ cell differentiation. Here we utilize the Drosophila system to identify genes that cause defects in the male GSC lineage when forcibly expressed. We conducted a gain-of-function screen using a collection of 2050 EP lines and found 55 EP lines that caused defects at early stages of spermatogenesis upon forced expression either in germ cells or in surrounding somatic support cells. Most strikingly, our analysis of forced expression indicated that repression of bag-of-marbles (bam) expression in male GSC is important for male GSC survival, while activity of the TGF beta signal transduction pathway may play a permissive role in maintenance of GSCs in Drosophila testes. In addition, forced activation of the TGF beta signal transduction pathway in germ cells inhibits the transition from the spermatogonial mitotic amplification program to spermatocyte differentiation. PMID:15238523

  8. Conditional Gene Expression/Deletion Systems for Marchantia polymorpha Using its Own Heat-Shock Promoter and Cre/loxP-Mediated Site-Specific Recombination.

    PubMed

    Nishihama, Ryuichi; Ishida, Sakiko; Urawa, Hiroko; Kamei, Yasuhiro; Kohchi, Takayuki

    2016-02-01

    The liverwort Marchantia polymorpha is an emerging model plant suitable for addressing, using genetic approaches, various evolutionary questions in the land plant lineage. Haploid dominancy in its life cycle facilitates genetic analyses, but conversely limits the ability to isolate mutants of essential genes. To overcome this issue and to be employed in cell lineage, mosaic and cell autonomy analyses, we developed a system that allows conditional gene expression and deletion using a promoter of a heat-shock protein (HSP) gene and the Cre/loxP site-specific recombination system. Because the widely used promoter of the Arabidopsis HSP18.2 gene did not operate in M. polymorpha, we identified a promoter of an endogenous HSP gene, MpHSP17.8A1, which exhibited a highly inducible transient expression level upon heat shock with a low basal activity level. Reporter genes fused to this promoter were induced globally in thalli under whole-plant heat treatment and also locally using a laser-assisted targeted heating technique. By expressing Cre fused to the glucocorticoid receptor under the control of the MpHSP17.8A1 promoter, a low background, sufficiently inducible control for loxP-mediated recombination could be achieved in M. polymorpha. Based on these findings, we developed a Gateway technology-based binary vector for the conditional induction of gene deletions. PMID:26148498

  9. Locally adapted traits maintained in the face of high gene flow.

    PubMed

    Fitzpatrick, S W; Gerberich, J C; Kronenberger, J A; Angeloni, L M; Funk, W C

    2015-01-01

    Gene flow between phenotypically divergent populations can disrupt local adaptation or, alternatively, may stimulate adaptive evolution by increasing genetic variation. We capitalised on historical Trinidadian guppy transplant experiments to test the phenotypic effects of increased gene flow caused by replicated introductions of adaptively divergent guppies, which were translocated from high- to low-predation environments. We sampled two native populations prior to the onset of gene flow, six historic introduction sites, introduction sources and multiple downstream points in each basin. Extensive gene flow from introductions occurred in all streams, yet adaptive phenotypic divergence across a gradient in predation level was maintained. Descendants of guppies from a high-predation source site showed high phenotypic similarity with native low-predation guppies in as few as ~12 generations after gene flow, likely through a combination of adaptive evolution and phenotypic plasticity. Our results demonstrate that locally adapted phenotypes can be maintained despite extensive gene flow from divergent populations. PMID:25363522

  10. Pangenome Analysis of Burkholderia pseudomallei: Genome Evolution Preserves Gene Order despite High Recombination Rates.

    PubMed

    Spring-Pearson, Senanu M; Stone, Joshua K; Doyle, Adina; Allender, Christopher J; Okinaka, Richard T; Mayo, Mark; Broomall, Stacey M; Hill, Jessica M; Karavis, Mark A; Hubbard, Kyle S; Insalaco, Joseph M; McNew, Lauren A; Rosenzweig, C Nicole; Gibbons, Henry S; Currie, Bart J; Wagner, David M; Keim, Paul; Tuanyok, Apichai

    2015-01-01

    The pangenomic diversity in Burkholderia pseudomallei is high, with approximately 5.8% of the genome consisting of genomic islands. Genomic islands are known hotspots for recombination driven primarily by site-specific recombination associated with tRNAs. However, recombination rates in other portions of the genome are also high, a feature we expected to disrupt gene order. We analyzed the pangenome of 37 isolates of B. pseudomallei and demonstrate that the pangenome is 'open', with approximately 136 new genes identified with each new genome sequenced, and that the global core genome consists of 4568±16 homologs. Genes associated with metabolism were statistically overrepresented in the core genome, and genes associated with mobile elements, disease, and motility were primarily associated with accessory portions of the pangenome. The frequency distribution of genes present in between 1 and 37 of the genomes analyzed matches well with a model of genome evolution in which 96% of the genome has very low recombination rates but 4% of the genome recombines readily. Using homologous genes among pairs of genomes, we found that gene order was highly conserved among strains, despite the high recombination rates previously observed. High rates of gene transfer and recombination are incompatible with retaining gene order unless these processes are either highly localized to specific sites within the genome, or are characterized by symmetrical gene gain and loss. Our results demonstrate that both processes occur: localized recombination introduces many new genes at relatively few sites, and recombination throughout the genome generates the novel multi-locus sequence types previously observed while preserving gene order.

  11. Pangenome Analysis of Burkholderia pseudomallei: Genome Evolution Preserves Gene Order despite High Recombination Rates

    PubMed Central

    Spring-Pearson, Senanu M.; Stone, Joshua K.; Doyle, Adina; Allender, Christopher J.; Okinaka, Richard T.; Mayo, Mark; Broomall, Stacey M.; Hill, Jessica M.; Karavis, Mark A.; Hubbard, Kyle S.; Insalaco, Joseph M.; McNew, Lauren A.; Rosenzweig, C. Nicole; Gibbons, Henry S.; Currie, Bart J.; Wagner, David M.; Keim, Paul; Tuanyok, Apichai

    2015-01-01

    The pangenomic diversity in Burkholderia pseudomallei is high, with approximately 5.8% of the genome consisting of genomic islands. Genomic islands are known hotspots for recombination driven primarily by site-specific recombination associated with tRNAs. However, recombination rates in other portions of the genome are also high, a feature we expected to disrupt gene order. We analyzed the pangenome of 37 isolates of B. pseudomallei and demonstrate that the pangenome is ‘open’, with approximately 136 new genes identified with each new genome sequenced, and that the global core genome consists of 4568±16 homologs. Genes associated with metabolism were statistically overrepresented in the core genome, and genes associated with mobile elements, disease, and motility were primarily associated with accessory portions of the pangenome. The frequency distribution of genes present in between 1 and 37 of the genomes analyzed matches well with a model of genome evolution in which 96% of the genome has very low recombination rates but 4% of the genome recombines readily. Using homologous genes among pairs of genomes, we found that gene order was highly conserved among strains, despite the high recombination rates previously observed. High rates of gene transfer and recombination are incompatible with retaining gene order unless these processes are either highly localized to specific sites within the genome, or are characterized by symmetrical gene gain and loss. Our results demonstrate that both processes occur: localized recombination introduces many new genes at relatively few sites, and recombination throughout the genome generates the novel multi-locus sequence types previously observed while preserving gene order. PMID:26484663

  12. Single-cell lineage tracking analysis reveals that an established cell line comprises putative cancer stem cells and their heterogeneous progeny

    PubMed Central

    Sato, Sachiko; Rancourt, Ann; Sato, Yukiko; Satoh, Masahiko S.

    2016-01-01

    Mammalian cell culture has been used in many biological studies on the assumption that a cell line comprises putatively homogeneous clonal cells, thereby sharing similar phenotypic features. This fundamental assumption has not yet been fully tested; therefore, we developed a method for the chronological analysis of individual HeLa cells. The analysis was performed by live cell imaging, tracking of every single cell recorded on imaging videos, and determining the fates of individual cells. We found that cell fate varied significantly, indicating that, in contrast to the assumption, the HeLa cell line is composed of highly heterogeneous cells. Furthermore, our results reveal that only a limited number of cells are immortal and renew themselves, giving rise to the remaining cells. These cells have reduced reproductive ability, creating a functionally heterogeneous cell population. Hence, the HeLa cell line is maintained by the limited number of immortal cells, which could be putative cancer stem cells. PMID:27003384

  13. High-throughput Gene Tagging in Trypanosoma brucei.

    PubMed

    Dyer, Philip; Dean, Samuel; Sunter, Jack

    2016-01-01

    Improvements in mass spectrometry, sequencing and bioinformatics have generated large datasets of potentially interesting genes. Tagging these proteins can give insights into their function by determining their localization within the cell and enabling interaction partner identification. We recently published a fast and scalable method to generate Trypanosoma brucei cell lines that express a tagged protein from the endogenous locus. The method was based on a plasmid we generated that, when coupled with long primer PCR, can be used to modify a gene to encode a protein tagged at either terminus. This allows the tagging of dozens of trypanosome proteins in parallel, facilitating the large-scale validation of candidate genes of interest. This system can be used to tag proteins for localization (using a fluorescent protein, epitope tag or electron microscopy tag) or biochemistry (using tags for purification, such as the TAP (tandem affinity purification) tag). Here, we describe a protocol to perform the long primer PCR and the electroporation in 96-well plates, with the recovery and selection of transgenic trypanosomes occurring in 24-well plates. With this workflow, hundreds of proteins can be tagged in parallel; this is an order of magnitude improvement to our previous protocol and genome scale tagging is now possible. PMID:27584862

  14. Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips.

    PubMed

    Kosuri, Sriram; Eroshenko, Nikolai; Leproust, Emily M; Super, Michael; Way, Jeffrey; Li, Jin Billy; Church, George M

    2010-12-01

    Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology. Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis. Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude, yet efforts to scale their use have been largely unsuccessful owing to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols and enzymatic error correction to develop a method for highly parallel gene synthesis. We tested our approach by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ∼35 kilobase pairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ∼2.5 megabases of DNA, which is at least 50 times larger than in previously published attempts.

  15. Polymorphism in two genes for B2 high sulfur proteins of wool.

    PubMed

    Rogers, G R; Hickford, J G; Bickerstaffe, R

    1994-12-01

    Variation in the nucleotide sequence of the B2 high-sulfur protein genes has not been reported previously. This paper reports 15 nucleotide substitutions in each of the genes for the B2A and B2C proteins and a length of polymorphism in the B2A gene which translates to the insertion/deletion of one 30-nucleotide repeat sequence. Evidence is presented for gene conversion occurring within the B2 high-sulfur multigene family. These DNA polymorphisms may account for some of the microheterogeneity observed in the B2 high-sulfur proteins and may also be useful genetic markers of the B2 high-sulfur protein gene loci for future use in analysing wool fibre characteristics.

  16. Early recipient chimerism testing in the T- and NK-cell lineages for risk assessment of graft rejection in pediatric patients undergoing allogeneic stem cell transplantation.

    PubMed

    Breuer, S; Preuner, S; Fritsch, G; Daxberger, H; Koenig, M; Poetschger, U; Lawitschka, A; Peters, C; Mann, G; Lion, T; Matthes-Martin, S

    2012-03-01

    Timely diagnosis of impending graft rejection is crucial for effective therapeutic intervention after allogeneic hematopoietic stem cell transplantation (SCT). We have investigated the predictive potential of early leukocyte subset-specific chimerism for graft loss in children undergoing SCT. In total, 192 pediatric patients transplanted for the treatment of malignant and non-malignant diseases after reduced-intensity or myeloablative conditioning were investigated. Surveillance of lineage-specific chimerism was initiated upon first appearance of leukocyte counts amenable to cell sorting. Graft rejection occurred in 23 patients between 24 and 492 days post-transplant (median 63 days). The first chimerism analysis of T and NK cells performed at a median of 20 days after SCT identified three different risk groups that were independent from the conditioning regimen: recipient chimerism (RC) levels in T cells below 50% indicated a very low risk of rejection (1.4%), whereas high levels of RC (>90%) both in T and NK cells heralded graft loss in the majority of patients (90%) despite therapeutic interventions. RC >50% in T cells and ≤90% in NK cells defined an intermediate-risk group in which timely immunotherapy frequently prevented rejection. Early assessment of T- and NK-cell chimerism can therefore be instrumental in the risk assessment and therapeutic management of imminent graft rejection.

  17. Gene interaction network analysis suggests differences between high and low doses of acetaminophen

    SciTech Connect

    Toyoshiba, Hiroyoshi . E-mail: toyoshiba.hiroyoshi@nies.go.jp; Sone, Hideko; Yamanaka, Takeharu; Parham, Frederick M.; Irwin, Richard D.; Boorman, Gary A.; Portier, Christopher J.

    2006-09-15

    Bayesian networks for quantifying linkages between genes were applied to detect differences in gene expression interaction networks between multiple doses of acetaminophen at multiple time points. Seventeen (17) genes were selected from the gene expression profiles from livers of rats orally exposed to 50, 150 and 1500 mg/kg acetaminophen (APAP) at 6, 24 and 48 h after exposure using a variety of statistical and bioinformatics approaches. The selected genes are related to three biological categories: apoptosis, oxidative stress and other. Gene interaction networks between all 17 genes were identified for the nine dose-time observation points by the TAO-Gen algorithm. Using k-means clustering analysis, the estimated nine networks could be clustered into two consensus networks, the first consisting of the low and middle dose groups, and the second consisting of the high dose. The analysis suggests that the networks could be segregated by doses and were consistent in structure over time of observation within grouped doses. The consensus networks were quantified to calculate the probability distribution for the strength of the linkage between genes connected in the networks. The quantifying analysis showed that, at lower doses, the genes related to the oxidative stress signaling pathway did not interact with the apoptosis-related genes. In contrast, the high-dose network demonstrated significant interactions between the oxidative stress genes and the apoptosis genes and also demonstrated a different network between genes in the oxidative stress pathway. The approaches shown here could provide predictive information to understand high- versus low-dose mechanisms of toxicity.

  18. Gene Model Annotations for Drosophila melanogaster: Impact of High-Throughput Data

    PubMed Central

    Matthews, Beverley B.; dos Santos, Gilberto; Crosby, Madeline A.; Emmert, David B.; St. Pierre, Susan E.; Gramates, L. Sian; Zhou, Pinglei; Schroeder, Andrew J.; Falls, Kathleen; Strelets, Victor; Russo, Susan M.; Gelbart, William M.

    2015-01-01

    We report the current status of the FlyBase annotated gene set for Drosophila melanogaster and highlight improvements based on high-throughput data. The FlyBase annotated gene set consists entirely of manually annotated gene models, with the exception of some classes of small non-coding RNAs. All gene models have been reviewed using evidence from high-throughput datasets, primarily from the modENCODE project. These datasets include RNA-Seq coverage data, RNA-Seq junction data, transcription start site profiles, and translation stop-codon read-through predictions. New annotation guidelines were developed to take into account the use of the high-throughput data. We describe how this flood of new data was incorporated into thousands of new and revised annotations. FlyBase has adopted a philosophy of excluding low-confidence and low-frequency data from gene model annotations; we also do not attempt to represent all possible permutations for complex and modularly organized genes. This has allowed us to produce a high-confidence, manageable gene annotation dataset that is available at FlyBase (http://flybase.org). Interesting aspects of new annotations include new genes (coding, non-coding, and antisense), many genes with alternative transcripts with very long 3′ UTRs (up to 15–18 kb), and a stunning mismatch in the number of male-specific genes (approximately 13% of all annotated gene models) vs. female-specific genes (less than 1%). The number of identified pseudogenes and mutations in the sequenced strain also increased significantly. We discuss remaining challenges, for instance, identification of functional small polypeptides and detection of alternative translation starts. PMID:26109357

  19. A general strategy to achieve ultra-high gene transfection efficiency using lipid-nanoparticle composites.

    PubMed

    Vankayala, Raviraj; Chiang, Chi-Shiun; Chao, Jui-I; Yuan, Chiun-Jye; Lin, Shyr-Yeu; Hwang, Kuo Chu

    2014-09-01

    Gene therapy provides a new hope for previously "incurable" diseases. Low gene transfection efficiency, however, is the bottle-neck to the success of gene therapy. It is very challenging to develop non-viral nanocarriers to achieve ultra-high gene transfection efficiencies. Herein, we report a novel design of "tight binding-but-detachable" lipid-nanoparticle composite to achieve ultrahigh gene transfection efficiencies of 60∼82%, approaching the best value (∼90%) obtained using viral vectors. We show that Fe@CNPs nanoparticles coated with LP-2000 lipid molecules can be used as gene carriers to achieve ultra-high (60-80%) gene transfection efficiencies in HeLa, U-87MG, and TRAMP-C1 cells. In contrast, Fe@CNPs having surface-covalently bound N,N,N-trimethyl-N-2-methacryloxyethyl ammonium chloride (TMAEA) oligomers can only achieve low (23-28%) gene transfection efficiencies. Similarly ultrahigh gene transfection/expression was also observed in zebrafish model using lipid-coated Fe@CNPs as gene carriers. Evidences for tight binding and detachability of DNA from lipid-nanoparticle nanocarriers will be presented. PMID:24973297

  20. Evaluating evolutionary history in the face of high gene tree discordance in Australian Gehyra (Reptilia: Gekkonidae).

    PubMed

    Sistrom, M; Hutchinson, M; Bertozzi, T; Donnellan, S

    2014-07-01

    Species tree methods have provided improvements for estimating species relationships and the timing of diversification in recent radiations by allowing for gene tree discordance. Although gene tree discordance is often observed, most discordance is attributed to incomplete lineage sorting rather than other biological phenomena, and the causes of discordance are rarely investigated. We use species trees from multi-locus data to estimate the species relationships, evolutionary history and timing of diversification among Australian Gehyra-a group renowned for taxonomic uncertainty and showing a large degree of gene tree discordance. We find support for a recent Asian origin and two major clades: a tropically adapted clade and an arid adapted clade, with some exceptions, but no support for allopatric speciation driven by chromosomal rearrangement in the group. Bayesian concordance analysis revealed high gene tree discordance and comparisons of Robinson-Foulds distances showed that discordance between gene trees was significantly higher than that generated by topological uncertainty within each gene. Analysis of gene tree discordance and incomplete taxon sampling revealed that gene tree discordance was high whether terminal taxon or gene sampling was maximized, indicating discordance is due to biological processes, which may be important in contributing to gene tree discordance in many recently diversified organisms.

  1. Evaluating evolutionary history in the face of high gene tree discordance in Australian Gehyra (Reptilia: Gekkonidae)

    PubMed Central

    Sistrom, M; Hutchinson, M; Bertozzi, T; Donnellan, S

    2014-01-01

    Species tree methods have provided improvements for estimating species relationships and the timing of diversification in recent radiations by allowing for gene tree discordance. Although gene tree discordance is often observed, most discordance is attributed to incomplete lineage sorting rather than other biological phenomena, and the causes of discordance are rarely investigated. We use species trees from multi-locus data to estimate the species relationships, evolutionary history and timing of diversification among Australian Gehyra—a group renowned for taxonomic uncertainty and showing a large degree of gene tree discordance. We find support for a recent Asian origin and two major clades: a tropically adapted clade and an arid adapted clade, with some exceptions, but no support for allopatric speciation driven by chromosomal rearrangement in the group. Bayesian concordance analysis revealed high gene tree discordance and comparisons of Robinson–Foulds distances showed that discordance between gene trees was significantly higher than that generated by topological uncertainty within each gene. Analysis of gene tree discordance and incomplete taxon sampling revealed that gene tree discordance was high whether terminal taxon or gene sampling was maximized, indicating discordance is due to biological processes, which may be important in contributing to gene tree discordance in many recently diversified organisms. PMID:24642886

  2. A general strategy to achieve ultra-high gene transfection efficiency using lipid-nanoparticle composites.

    PubMed

    Vankayala, Raviraj; Chiang, Chi-Shiun; Chao, Jui-I; Yuan, Chiun-Jye; Lin, Shyr-Yeu; Hwang, Kuo Chu

    2014-09-01

    Gene therapy provides a new hope for previously "incurable" diseases. Low gene transfection efficiency, however, is the bottle-neck to the success of gene therapy. It is very challenging to develop non-viral nanocarriers to achieve ultra-high gene transfection efficiencies. Herein, we report a novel design of "tight binding-but-detachable" lipid-nanoparticle composite to achieve ultrahigh gene transfection efficiencies of 60∼82%, approaching the best value (∼90%) obtained using viral vectors. We show that Fe@CNPs nanoparticles coated with LP-2000 lipid molecules can be used as gene carriers to achieve ultra-high (60-80%) gene transfection efficiencies in HeLa, U-87MG, and TRAMP-C1 cells. In contrast, Fe@CNPs having surface-covalently bound N,N,N-trimethyl-N-2-methacryloxyethyl ammonium chloride (TMAEA) oligomers can only achieve low (23-28%) gene transfection efficiencies. Similarly ultrahigh gene transfection/expression was also observed in zebrafish model using lipid-coated Fe@CNPs as gene carriers. Evidences for tight binding and detachability of DNA from lipid-nanoparticle nanocarriers will be presented.

  3. Integron associated mobile genes

    PubMed Central

    Labbate, Maurizio; Boucher, Yan; Luu, Ivan; Chowdhury, Piklu Roy; Stokes, H.W.

    2012-01-01

    Lateral gene transfer (LGT) impacts on the evolution of prokaryotes in both the short and long-term. The short-term impacts of mobilized genes are a concern to humans since LGT explains the global rise of multi drug resistant pathogens seen in the past 70 years. However, LGT has been a feature of prokaryotes from the earliest days of their existence and the concept of a bifurcating tree of life is not entirely applicable to prokaryotes since most genes in extant prokaryotic genomes have probably been acquired from other lineages. Successful transfer and maintenance of a gene in a new host is understandable if it acts independently of cell networks and confers an advantage. Antibiotic resistance provides an example of this whereby a gene can be advantageous in virtually any cell across broad species backgrounds. In a longer evolutionary context however laterally transferred genes can be assimilated into even essential cell networks. How this happens is not well understood and we discuss recent work that identifies a mobile gene, unique to a cell lineage, which is detrimental to the cell when lost. We also present some additional data and believe our emerging model will be helpful in understanding how mobile genes integrate into cell networks. PMID:22754748

  4. Gene expression profiling in undifferentiated thyroid carcinoma induced by high-dose radiation

    PubMed Central

    Bang, Hyun Soon; Choi, Moo Hyun; Kim, Cha Soon; Choi, Seung Jin

    2016-01-01

    Published gene expression studies for radiation-induced thyroid carcinogenesis have used various methodologies. In this study, we identified differential gene expression in a human thyroid epithelial cell line after exposure to high-dose γ-radiation. HTori-3 cells were exposed to 5 or 10 Gy of ionizing radiation using two dose rates (high-dose rate: 4.68 Gy/min, and low-dose rate: 40 mGy/h) and then implanted into the backs of BALB/c nude mice after 4 (10 Gy) or 5 weeks (5 Gy). Decreases in cell viability, increases in giant cell frequency, anchorage-independent growth in vitro, and tumorigenicity in vivo were observed. Particularly, the cells irradiated with 5 Gy at the high-dose rate or 10 Gy at the low-dose rate demonstrated more prominent tumorigenicity. Gene expression profiling was analyzed via microarray. Numerous genes that were significantly altered by a fold-change of >50% following irradiation were identified in each group. Gene expression analysis identified six commonly misregulated genes, including CRYAB, IL-18, ZNF845, CYP24A1, OR4N4 and VN1R4, at all doses. These genes involve apoptosis, the immune response, regulation of transcription, and receptor signaling pathways. Overall, the altered genes in high-dose rate (HDR) 5 Gy and low-dose rate (LDR) 10 Gy were more than those of LDR 5 Gy and HDR 10 Gy. Thus, we investigated genes associated with aggressive tumor development using the two dosage treatments. In this study, the identified gene expression profiles reflect the molecular response following high doses of external radiation exposure and may provide helpful information about radiation-induced thyroid tumors in the high-dose range. PMID:27006382

  5. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    1998-01-01

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  6. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2000-08-22

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  7. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, L.O.; Ohta, Kazuyoshi; Wood, B.E.

    1998-10-13

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol. 13 figs.

  8. Recombinant cells that highly express chromosomally-integrated heterologous gene

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2007-03-20

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  9. FOLLICULAR HELPER T CELLS: LINEAGE AND LOCATION

    PubMed Central

    Fazilleau, Nicolas; Mark, Linda; McHeyzer-Williams, Louise J.; McHeyzer-Williams, Michael G.

    2009-01-01

    Follicular helper T (TFH) cells are the class of effector TH cells that regulates the stepwise development of antigen-specific B cell immunity in vivo. Deployment of CXCR5+ TFH cells to B cell zones of lymphoid tissues and stable cognate interactions with B cells are central to the delivery of antigen-specific TFH function. Recent advances help to unravel distinctive elements of developmental programming for TFH cells and unique effector TFH functions focused on antigen-primed B cells. Understanding the regulatory functions of TFH cells in the germinal center and the subsequent regulation of memory B cell responses to antigen recall represent the frontiers of this research area with the potential to alter fundamentally the design of future vaccines. PMID:19303387

  10. Electronic Sorting of Immune Cell Subpopulations Based on Highly Plastic Genes.

    PubMed

    Wang, Pingzhang; Han, Wenling; Ma, Dalong

    2016-07-15

    Immune cells are highly heterogeneous and plastic with regard to gene expression and cell phenotype. In this study, we categorized genes into those with low and high gene plasticity, and those categories revealed different functions and applications. We proposed that highly plastic genes could be suited for the labeling of immune cell subpopulations; thus, novel immune cell subpopulations could be identified by gene plasticity analysis. For this purpose, we systematically analyzed highly plastic genes in human and mouse immune cells. In total, 1,379 human and 883 mouse genes were identified as being extremely plastic. We also expanded our previous immunoinformatic method, electronic sorting, which surveys big data to perform virtual analysis. This approach used correlation analysis and took dosage changes into account, which allowed us to identify the differentially expressed genes. A test with human CD4(+) T cells supported the method's feasibility, effectiveness, and predictability. For example, with the use of human nonregulatory T cells, we found that FOXP3(hi)CD4(+) T cells were highly expressive of certain known molecules, such as CD25 and CTLA4, and that this process of investigation did not require isolating or inducing these immune cells in vitro. Therefore, the sorting process helped us to discover the potential signature genes or marker molecules and to conduct functional evaluations for immune cell subpopulations. Finally, in human CD4(+) T cells, 747 potential immune cell subpopulations and their candidate signature genes were identified, which provides a useful resource for big data-driven knowledge discoveries. PMID:27288532

  11. Genetic control of eosinophilia in mice: gene(s) expressed in bone marrow-derived cells control high responsiveness

    SciTech Connect

    Vadas, M.A.

    1982-02-01

    A heterogeneity in the capacity of strains of mice to mount eosinophilia is described. BALB/c and C3H are eosinophil high responder strains (EO-HR) and CBA and A/J are eosinophil low responder strains (EO-LR), judged by the response of blood eosinophils to Ascaris suum, and the response of blood, bone marrow, and spleen eosinophils to keyhole limpet hemocyanin given 2 days after 150 mg/kg cyclophosphamide. Some of the gene(s) for high responsiveness appear to be dominant because (EO-HR x EO-LR)F/sub 1/ mice were intermediate to high responders. This gene is expressed in bone marrow-derived cells because radiation chimeras of the type EO-HR..-->..F/sub 1/ were high responders and EO-LR..-->..F/sub 1/ were low responders. This description of a genetic control of eosinophilia in mice may be useful in understanding the role of this cell in parasite immunity and allergy.

  12. High-Copy Overexpression Screening Reveals PDR5 as the Main Doxorubicin Resistance Gene in Yeast

    PubMed Central

    Demir, Ayse Banu; Koc, Ahmet

    2015-01-01

    Doxorubicin is one of the most potent anticancer drugs used in the treatment of various cancer types. The efficacy of doxorubicin is influenced by the drug resistance mechanisms and its cytotoxicity. In this study, we performed a high-copy screening analysis to find genes that play a role in doxorubicin resistance and found several genes (CUE5, AKL1, CAN1, YHR177W and PDR5) that provide resistance. Among these genes, overexpression of PDR5 provided a remarkable resistance, and deletion of it significantly rendered the tolerance level for the drug. Q-PCR analyses suggested that transcriptional regulation of these genes was not dependent on doxorubicin treatment. Additionally, we profiled the global expression pattern of cells in response to doxorubicin treatment and highlighted the genes and pathways that are important in doxorubicin tolerance/toxicity. Our results suggest that many efflux pumps and DNA metabolism genes are upregulated by the drug and required for doxorubicin tolerance. PMID:26690737

  13. High-resolution chromosome ideogram representation of currently recognized genes for autism spectrum disorders.

    PubMed

    Butler, Merlin G; Rafi, Syed K; Manzardo, Ann M

    2015-03-20

    Recently, autism-related research has focused on the identification of various genes and disturbed pathways causing the genetically heterogeneous group of autism spectrum disorders (ASD). The list of autism-related genes has significantly increased due to better awareness with advances in genetic technology and expanding searchable genomic databases. We compiled a master list of known and clinically relevant autism spectrum disorder genes identified with supporting evidence from peer-reviewed medical literature sources by searching key words related to autism and genetics and from authoritative autism-related public access websites, such as the Simons Foundation Autism Research Institute autism genomic database dedicated to gene discovery and characterization. Our list consists of 792 genes arranged in alphabetical order in tabular form with gene symbols placed on high-resolution human chromosome ideograms, thereby enabling clinical and laboratory geneticists and genetic counsellors to access convenient visual images of the location and distribution of ASD genes. Meaningful correlations of the observed phenotype in patients with suspected/confirmed ASD gene(s) at the chromosome region or breakpoint band site can be made to inform diagnosis and gene-based personalized care and provide genetic counselling for families.

  14. High-quality gene assembly directly from unpurified mixtures of microarray-synthesized oligonucleotides

    PubMed Central

    Borovkov, Alex Y.; Loskutov, Andrey V.; Robida, Mark D.; Day, Kristen M.; Cano, Jose A.; Le Olson, Tien; Patel, Hetal; Brown, Kevin; Hunter, Preston D.; Sykes, Kathryn F.

    2010-01-01

    To meet the growing demand for synthetic genes more robust, scalable and inexpensive gene assembly technologies must be developed. Here, we present a protocol for high-quality gene assembly directly from low-cost marginal-quality microarray-synthesized oligonucleotides. Significantly, we eliminated the time- and money-consuming oligonucleotide purification steps through the use of hybridization-based selection embedded in the assembly process. The protocol was tested on mixtures of up to 2000 oligonucleotides eluted directly from microarrays obtained from three different chip manufacturers. These mixtures containing <5% perfect oligos, and were used directly for assembly of 27 test genes of different sizes. Gene quality was assessed by sequencing, and their activity was tested in coupled in vitro transcription/translation reactions. Genes assembled from the microarray-eluted material using the new protocol matched the quality of the genes assembled from >95% pure column-synthesized oligonucleotides by the standard protocol. Both averaged only 2.7 errors/kb, and genes assembled from microarray-eluted material without clonal selection produced only 30% less protein than sequence-confirmed clones. This report represents the first demonstration of cost-efficient gene assembly from microarray-synthesized oligonucleotides. The overall cost of assembly by this method approaches 5¢ per base, making gene synthesis more affordable than traditional cloning. PMID:20693531

  15. High-Resolution Chromosome Ideogram Representation of Currently Recognized Genes for Autism Spectrum Disorders

    PubMed Central

    Butler, Merlin G.; Rafi, Syed K.; Manzardo, Ann M.

    2015-01-01

    Recently, autism-related research has focused on the identification of various genes and disturbed pathways causing the genetically heterogeneous group of autism spectrum disorders (ASD). The list of autism-related genes has significantly increased due to better awareness with advances in genetic technology and expanding searchable genomic databases. We compiled a master list of known and clinically relevant autism spectrum disorder genes identified with supporting evidence from peer-reviewed medical literature sources by searching key words related to autism and genetics and from authoritative autism-related public access websites, such as the Simons Foundation Autism Research Institute autism genomic database dedicated to gene discovery and characterization. Our list consists of 792 genes arranged in alphabetical order in tabular form with gene symbols placed on high-resolution human chromosome ideograms, thereby enabling clinical and laboratory geneticists and genetic counsellors to access convenient visual images of the location and distribution of ASD genes. Meaningful correlations of the observed phenotype in patients with suspected/confirmed ASD gene(s) at the chromosome region or breakpoint band site can be made to inform diagnosis and gene-based personalized care and provide genetic counselling for families. PMID:25803107

  16. Searching for the Genes of Unconventional High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Hu, Jiangping

    In the past, both curates and iron-based superconductors were discovered accidentally. Lacking of successful predictions on new high Tc materials is one of major obstacles to reach a consensus on the high Tc mechanism. In this talk, we discuss two emergent principles, which are called as the correspondence principle and the selective magnetic pairing rule, to unify the understanding of both cuprates and iron-based superconductors. These two principles provide an unified explanation why the d-wave pairing symmetry and the s-wave pairing symmetry are robust respectively in cuprates and iron-based superconductors. In the meanwhile, the above two principles explain the rareness of unconventional high Tc superconductivity, identify necessary electronic environments required for high Tc superconductivity and finally serve as direct guiding rules to search new high Tc materials. We predict that the third family of unconventional high Tc superconductors exist in the compounds which carry two dimensional hexagonal lattices formed by cation-anion trigonal bipyramidal complexes with a d filling configuration on the cation ions. Their superconducting states are expected to be dominated by the d+id pairing symmetry and their maximum Tc should be higher than those of iron-based superconductors. Verifying the prediction can convincingly establish the high Tc superconducting mechanism and pave a way to design new high Tc superconductors

  17. Identifying reproducible cancer-associated highly expressed genes with important functional significances using multiple datasets

    PubMed Central

    Huang, Haiyan; Li, Xiangyu; Guo, You; Zhang, Yuncong; Deng, Xusheng; Chen, Lufei; Zhang, Jiahui; Guo, Zheng; Ao, Lu

    2016-01-01

    Identifying differentially expressed (DE) genes between cancer and normal tissues is of basic importance for studying cancer mechanisms. However, current methods, such as the commonly used Significance Analysis of Microarrays (SAM), are biased to genes with low expression levels. Recently, we proposed an algorithm, named the pairwise difference (PD) algorithm, to identify highly expressed DE genes based on reproducibility evaluation of top-ranked expression differences between paired technical replicates of cells under two experimental conditions. In this study, we extended the application of the algorithm to the identification of DE genes between two types of tissue samples (biological replicates) based on several independent datasets or sub-datasets of a dataset, by constructing multiple paired average gene expression profiles for the two types of samples. Using multiple datasets for lung and esophageal cancers, we demonstrated that PD could identify many DE genes highly expressed in both cancer and normal tissues that tended to be missed by the commonly used SAM. These highly expressed DE genes, including many housekeeping genes, were significantly enriched in many conservative pathways, such as ribosome, proteasome, phagosome and TNF signaling pathways with important functional significances in oncogenesis. PMID:27796338

  18. High-performance web services for querying gene and variant annotation.

    PubMed

    Xin, Jiwen; Mark, Adam; Afrasiabi, Cyrus; Tsueng, Ginger; Juchler, Moritz; Gopal, Nikhil; Stupp, Gregory S; Putman, Timothy E; Ainscough, Benjamin J; Griffith, Obi L; Torkamani, Ali; Whetzel, Patricia L; Mungall, Christopher J; Mooney, Sean D; Su, Andrew I; Wu, Chunlei

    2016-01-01

    Efficient tools for data management and integration are essential for many aspects of high-throughput biology. In particular, annotations of genes and human genetic variants are commonly used but highly fragmented across many resources. Here, we describe MyGene.info and MyVariant.info, high-performance web services for querying gene and variant annotation information. These web services are currently accessed more than three million times permonth. They also demonstrate a generalizable cloud-based model for organizing and querying biological annotation information. MyGene.info and MyVariant.info are provided as high-performance web services, accessible at http://mygene.info and http://myvariant.info . Both are offered free of charge to the research community. PMID:27154141

  19. Highly Fluorescent Gene Carrier Based on Ag-Au Alloy Nanoclusters.

    PubMed

    Wang, Ping; Lin, Lin; Guo, Zhaopei; Chen, Jie; Tian, Huayu; Chen, Xuesi; Yang, Hua

    2016-01-01

    For systemic delivery of gene, gold nanoparticles (GNPs) have been exploited as novel gene carriers because of the excellent characteristics for "visible" in intracellular trafficking. Herein, a highly fluorescent gene carrier was prepared by conjugating polyethylenimines on Ag-Au alloy nanoclusters. This carrier exhibited remarkable high gene transfection efficiencies and relatively low cytotoxicity toward B16F10, HeLa, and CHO cells. More interestingly, the high fluorescent Ag-Au-PEI conjugates showed high quantum yield of 14.56%, which is much higher than most of the reported gold nanocluster-based quantum dots and Ag-Au-PEI possessed bioimaging capacity both in vitro and in vivo. PMID:26287567

  20. An integrated probabilistic approach for gene function prediction using multiple sources of high-throughput data.

    PubMed

    Zhang, Chao; Joshi, Trupti; Lin, Guan Ning; Xu, Dong

    2008-01-01

    Characterising gene function is one of the major challenging tasks in the post-genomic era. Various approaches have been developed to integrate multiple sources of high-throughput data to predict gene function. Most of those approaches are just used for research purpose and have not been implemented as publicly available tools. Even for those implemented applications, almost all of them are still web-based 'prediction servers' that have to be managed by specialists. This paper introduces a systematic method for integrating various sources of high-throughput data to predict gene function and analyse our prediction results and evaluates its performances based on the competition for mouse gene function prediction (MouseFunc). A stand-alone Java-based software package 'GeneFAS' is freely available at http://digbio. missouri.eduigenefas.

  1. High Prevalence and Clinical Relevance of Genes Affected by Chromosomal Breaks in Colorectal Cancer

    PubMed Central

    van den Broek, Evert; Dijkstra, Maurits J. J.; Krijgsman, Oscar; Sie, Daoud; Haan, Josien C.; Traets, Joleen J. H.; van de Wiel, Mark A.; Nagtegaal, Iris D.; Punt, Cornelis J. A.; Carvalho, Beatriz; Ylstra, Bauke; Abeln, Sanne; Meijer, Gerrit A.; Fijneman, Remond J. A.

    2015-01-01

    Background Cancer is caused by somatic DNA alterations such as gene point mutations, DNA copy number aberrations (CNA) and structural variants (SVs). Genome-wide analyses of SVs in large sample series with well-documented clinical information are still scarce. Consequently, the impact of SVs on carcinogenesis and patient outcome remains poorly understood. This study aimed to perform a systematic analysis of genes that are affected by CNA-associated chromosomal breaks in colorectal cancer (CRC) and to determine the clinical relevance of recurrent breakpoint genes. Methods Primary CRC samples of patients with metastatic disease from CAIRO and CAIRO2 clinical trials were previously characterized by array-comparative genomic hybridization. These data were now used to determine the prevalence of CNA-associated chromosomal breaks within genes across 352 CRC samples. In addition, mutation status of the commonly affected APC, TP53, KRAS, PIK3CA, FBXW7, SMAD4, BRAF and NRAS genes was determined for 204 CRC samples by targeted massive parallel sequencing. Clinical relevance was assessed upon stratification of patients based on gene mutations and gene breakpoints that were observed in >3% of CRC cases. Results In total, 748 genes were identified that were recurrently affected by chromosomal breaks (FDR <0.1). MACROD2 was affected in 41% of CRC samples and another 169 genes showed breakpoints in >3% of cases, indicating that prevalence of gene breakpoints is comparable to the prevalence of well-known gene point mutations. Patient stratification based on gene breakpoints and point mutations revealed one CRC subtype with very poor prognosis. Conclusions We conclude that CNA-associated chromosomal breaks within genes represent a highly prevalent and clinically relevant subset of SVs in CRC. PMID:26375816

  2. Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening

    PubMed Central

    2012-01-01

    Background Pine wilt disease (PWD), caused by the pinewood nematode (PWN; Bursaphelenchus xylophilus), damages and kills pine trees and is causing serious economic damage worldwide. Although the ecological mechanism of infestation is well described, the plant’s molecular response to the pathogen is not well known. This is due mainly to the lack of genomic information and the complexity of the disease. High throughput sequencing is now an efficient approach for detecting the expression of genes in non-model organisms, thus providing valuable information in spite of the lack of the genome sequence. In an attempt to unravel genes potentially involved in the pine defense against the pathogen, we hereby report the high throughput comparative sequence analysis of infested and non-infested stems of Pinus pinaster (very susceptible to PWN) and Pinus pinea (less susceptible to PWN). Results Four cDNA libraries from infested and non-infested stems of P. pinaster and P. pinea were sequenced in a full 454 GS FLX run, producing a total of 2,083,698 reads. The putative amino acid sequences encoded by the assembled transcripts were annotated according to Gene Ontology, to assign Pinus contigs into Biological Processes, Cellular Components and Molecular Functions categories. Most of the annotated transcripts corresponded to Picea genes-25.4-39.7%, whereas a smaller percentage, matched Pinus genes, 1.8-12.8%, probably a consequence of more public genomic information available for Picea than for Pinus. The comparative transcriptome analysis showed that when P. pinaster was infested with PWN, the genes malate dehydrogenase, ABA, water deficit stress related genes and PAR1 were highly expressed, while in PWN-infested P. pinea, the highly expressed genes were ricin B-related lectin, and genes belonging to the SNARE and high mobility group families. Quantitative PCR experiments confirmed the differential gene expression between the two pine species. Conclusions Defense-related genes

  3. A highly conserved gene island of three genes on chromosome 3B of hexaploid wheat: diverse gene function and genomic structure maintained in a tightly linked block

    PubMed Central

    2010-01-01

    Background The complexity of the wheat genome has resulted from waves of retrotransposable element insertions. Gene deletions and disruptions generated by the fast replacement of repetitive elements in wheat have resulted in disruption of colinearity at a micro (sub-megabase) level among the cereals. In view of genomic changes that are possible within a given time span, conservation of genes between species tends to imply an important functional or regional constraint that does not permit a change in genomic structure. The ctg1034 contig completed in this paper was initially studied because it was assigned to the Sr2 resistance locus region, but detailed mapping studies subsequently assigned it to the long arm of 3B and revealed its unusual features. Results BAC shotgun sequencing of the hexaploid wheat (Triticum aestivum cv. Chinese Spring) genome has been used to assemble a group of 15 wheat BACs from the chromosome 3B physical map FPC contig ctg1034 into a 783,553 bp genomic sequence. This ctg1034 sequence was annotated for biological features such as genes and transposable elements. A three-gene island was identified among >80% repetitive DNA sequence. Using bioinformatics analysis there were no observable similarity in their gene functions. The ctg1034 gene island also displayed complete conservation of gene order and orientation with syntenic gene islands found in publicly available genome sequences of Brachypodium distachyon, Oryza sativa, Sorghum bicolor and Zea mays, even though the intergenic space and introns were divergent. Conclusion We propose that ctg1034 is located within the heterochromatic C-band region of deletion bin 3BL7 based on the identification of heterochromatic tandem repeats and presence of significant matches to chromodomain-containing gypsy LTR retrotransposable elements. We also speculate that this location, among other highly repetitive sequences, may account for the relative stability in gene order and orientation within the gene

  4. Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae

    PubMed Central

    Azvolinsky, Anna; Giresi, Paul G.; Lieb, Jason D.; Zakian, Virginia A.

    2009-01-01

    SUMMARY Replication forks face multiple obstacles that slow their progression. By two-dimensional gel analysis, yeast forks pause at stable DNA protein complexes, and this pausing is greatly increased in the absence of the Rrm3 helicase. We used a genome wide approach to identify 96 sites of very high DNA polymerase binding in wild type cells. Most of these binding sites were not previously identified pause sites. Rather, the most highly represented genomic category among high DNA polymerase binding sites was the open reading frames (ORFs) of highly transcribed RNA polymerase II genes. Twice as many pause sites were identified in rrm3 compared to wild type cells as pausing in this strain occurred at both highly transcribed RNA polymerase II genes and the previously identified protein DNA complexes. ORFs of highly transcribed RNA polymerase II genes are the first class of natural pause sites that are not exacerbated in rrm3 cells. PMID:19560424

  5. High prevalence of DUOX2 gene mutations among children with congenital hypothyroidism in central China.

    PubMed

    Jiang, Hong; Wu, Jinhua; Ke, Shengzhong; Hu, Yue; Fei, Anxing; Zhen, Yan; Yu, Jin; Zhu, Kuichun

    2016-10-01

    Congenial hypothyroidism (CH) is the most common congenital endocrine disease and is treatable when recognized early enough. We investigated the genetic variants in 12 children diagnosed with CH by newborn screening in Huangshi area central China. Twelve genes commonly involved in CH development were studied. Genomic DNA from peripheral blood was used to amplify all exons of the selected genes, and the constructed sequencing libraries were subjected to next generation high throughput DNA sequencing (NGS). Analysis of the sequencing results identified rare genetic variants in 11 of the 12 patients (91.7%), and two novel rare variants were found in DUOX2 gene and two in TPO gene. Mutations in DUOX2 gene were identified in 10 patients (83.3%), and all these patients were found to carry bi-allelic, tri-allelic mutations or compound mutations with other genes. Recurrent DUOX2 mutations include K530X, R683L, R1110Q, and L1343F. Truncating, splicing, and proven deleterious DUOX2 missense mutations were detected in 50% of the patients. Mutations in TG gene were identified in four patients, and mutations in TPO, THSR, SLC26A4 genes were identified, one in each patient, respectively. The high prevalence of DUOX2 mutations in this cohort of children with CH appears striking and surprising. The clinical implications were discussed. PMID:27498126

  6. High prevalence of DUOX2 gene mutations among children with congenital hypothyroidism in central China.

    PubMed

    Jiang, Hong; Wu, Jinhua; Ke, Shengzhong; Hu, Yue; Fei, Anxing; Zhen, Yan; Yu, Jin; Zhu, Kuichun

    2016-10-01

    Congenial hypothyroidism (CH) is the most common congenital endocrine disease and is treatable when recognized early enough. We investigated the genetic variants in 12 children diagnosed with CH by newborn screening in Huangshi area central China. Twelve genes commonly involved in CH development were studied. Genomic DNA from peripheral blood was used to amplify all exons of the selected genes, and the constructed sequencing libraries were subjected to next generation high throughput DNA sequencing (NGS). Analysis of the sequencing results identified rare genetic variants in 11 of the 12 patients (91.7%), and two novel rare variants were found in DUOX2 gene and two in TPO gene. Mutations in DUOX2 gene were identified in 10 patients (83.3%), and all these patients were found to carry bi-allelic, tri-allelic mutations or compound mutations with other genes. Recurrent DUOX2 mutations include K530X, R683L, R1110Q, and L1343F. Truncating, splicing, and proven deleterious DUOX2 missense mutations were detected in 50% of the patients. Mutations in TG gene were identified in four patients, and mutations in TPO, THSR, SLC26A4 genes were identified, one in each patient, respectively. The high prevalence of DUOX2 mutations in this cohort of children with CH appears striking and surprising. The clinical implications were discussed.

  7. High-throughput screening of mouse gene knockouts identifies established and novel skeletal phenotypes

    PubMed Central

    Brommage, Robert; Liu, Jeff; Hansen, Gwenn M; Kirkpatrick, Laura L; Potter, David G; Sands, Arthur T; Zambrowicz, Brian; Powell, David R; Vogel, Peter

    2014-01-01

    Screening gene function in vivo is a powerful approach to discover novel drug targets. We present high-throughput screening (HTS) data for 3 762 distinct global gene knockout (KO) mouse lines with viable adult homozygous mice generated using either gene-trap or homologous recombination technologies. Bone mass was determined from DEXA scans of male and female mice at 14 weeks of age and by microCT analyses of bones from male mice at 16 weeks of age. Wild-type (WT) cagemates/littermates were examined for each gene KO. Lethality was observed in an additional 850 KO lines. Since primary HTS are susceptible to false positive findings, additional cohorts of mice from KO lines with intriguing HTS bone data were examined. Aging, ovariectomy, histomorphometry and bone strength studies were performed and possible non-skeletal phenotypes were explored. Together, these screens identified multiple genes affecting bone mass: 23 previously reported genes (Calcr, Cebpb, Crtap, Dcstamp, Dkk1, Duoxa2, Enpp1, Fgf23, Kiss1/Kiss1r, Kl (Klotho), Lrp5, Mstn, Neo1, Npr2, Ostm1, Postn, Sfrp4, Slc30a5, Slc39a13, Sost, Sumf1, Src, Wnt10b), five novel genes extensively characterized (Cldn18, Fam20c, Lrrk1, Sgpl1, Wnt16), five novel genes with preliminary characterization (Agpat2, Rassf5, Slc10a7, Slc26a7, Slc30a10) and three novel undisclosed genes coding for potential osteoporosis drug targets. PMID:26273529

  8. A novel highly differentially expressed gene in wheat endosperm associated with bread quality

    PubMed Central

    Furtado, A.; Bundock, P. C.; Banks, P. M.; Fox, G.; Yin, X.; Henry, R. J.

    2015-01-01

    Analysis of gene expression in developing wheat seeds was used to identify a gene, wheat bread making (wbm), with highly differential expression (~1000 fold) in the starchy endosperm of genotypes varying in bread making quality. Several alleles differing in the 5’-upstream region (promoter) of this gene were identified, with one present only in genotypes with high levels of wbm expression. RNA-Seq analysis revealed low or no wbm expression in most genotypes but high expression (0.2-0.4% of total gene expression) in genotypes that had good bread loaf volume. The wbm gene is predicted to encode a mature protein of 48 amino acids (including four cysteine residues) not previously identified in association with wheat quality, possibly because of its small size and low frequency in the wheat gene pool. Genotypes with high wbm expression all had good bread making quality but not always good physical dough qualities. The predicted protein was sulphur rich suggesting the possibility of a contribution to bread loaf volume by supporting the crossing linking of proteins in gluten. Improved understanding of the molecular basis of differences in bread making quality may allow more rapid development of high performing genotypes with acceptable end-use properties and facilitate increased wheat production. PMID:26011437

  9. Gene expression signatures defining fundamental biological processes in pluripotent, early, and late differentiated embryonic stem cells.

    PubMed

    Gaspar, John Antonydas; Doss, Michael Xavier; Winkler, Johannes; Wagh, Vilas; Hescheler, Jürgen; Kolde, Raivo; Vilo, Jaak; Schulz, Herbert; Sachinidis, Agapios

    2012-09-01

    Investigating the molecular mechanisms controlling the in vivo developmental program postembryogenesis is challenging and time consuming. However, the developmental program can be partly recapitulated in vitro by the use of cultured embryonic stem cells (ESCs). Similar to the totipotent cells of the inner cell mass, gene expression and morphological changes in cultured ESCs occur hierarchically during their differentiation, with epiblast cells developing first, followed by germ layers and finally somatic cells. Combination of high throughput -omics technologies with murine ESCs offers an alternative approach for studying developmental processes toward organ-specific cell phenotypes. We have made an attempt to understand differentiation networks controlling embryogenesis in vivo using a time kinetic, by identifying molecules defining fundamental biological processes in the pluripotent state as well as in early and the late differentiation stages of ESCs. Our microarray data of the differentiation of the ESCs clearly demonstrate that the most critical early differentiation processes occur at days 2 and 3 of differentiation. Besides monitoring well-annotated markers pertinent to both self-renewal and potency (capacity to differentiate to different cell lineage), we have identified candidate molecules for relevant signaling pathways. These molecules can be further investigated in gain and loss-of-function studies to elucidate their role for pluripotency and differentiation. As an example, siRNA knockdown of MageB16, a gene highly expressed in the pluripotent state, has proven its influence in inducing differentiation when its function is repressed.

  10. Cytokeratin gene expression in hepatoma hybrid cells: evidence for regulation in cis.

    PubMed

    Gourdeau, H; Fournier, R E

    1989-07-01

    The genes encoding intermediate filament (IF) proteins are expressed in a cell-lineage restricted fashion. To analyze the regulation of such genes, we studied cytokeratin and vimentin expression in hepatoma x fibroblast hybrids. These hybrids continued to express both hepatoma cell-derived cytokeratins and fibroblast-specific vimentin. Furthermore, the cytokeratin subunits that were produced were exclusively of rat hepatoma origin. Thus, IF protein genes were neither extinguished nor activated in cell hybrids, providing evidence for regulation in cis. This behavior contrasts sharply with that of most tissue-specific genes, which tend to be regulated in trans in hybrid cells.

  11. Mating-Type Genes and MAT Switching in Saccharomyces cerevisiae

    PubMed Central

    Haber, James E.

    2012-01-01

    Mating type in Saccharomyces cerevisiae is determined by two nonhomologous alleles, MATa and MATα. These sequences encode regulators of the two different haploid mating types and of the diploids formed by their conjugation. Analysis of the MATa1, MATα1, and MATα2 alleles provided one of the earliest models of cell-type specification by transcriptional activators and repressors. Remarkably, homothallic yeast cells can switch their mating type as often as every generation by a highly choreographed, site-specific homologous recombination event that replaces one MAT allele with different DNA sequences encoding the opposite MAT allele. This replacement process involves the participation of two intact but unexpressed copies of mating-type information at the heterochromatic loci, HMLα and HMRa, which are located at opposite ends of the same chromosome-encoding MAT. The study of MAT switching has yielded important insights into the control of cell lineage, the silencing of gene expression, the formation of heterochromatin, and the regulation of accessibility of the donor sequences. Real-time analysis of MAT switching has provided the most detailed description of the molecular events that occur during the homologous recombinational repair of a programmed double-strand chromosome break. PMID:22555442

  12. Mating-type genes and MAT switching in Saccharomyces cerevisiae.

    PubMed

    Haber, James E

    2012-05-01

    Mating type in Saccharomyces cerevisiae is determined by two nonhomologous alleles, MATa and MATα. These sequences encode regulators of the two different haploid mating types and of the diploids formed by their conjugation. Analysis of the MATa1, MATα1, and MATα2 alleles provided one of the earliest models of cell-type specification by transcriptional activators and repressors. Remarkably, homothallic yeast cells can switch their mating type as often as every generation by a highly choreographed, site-specific homologous recombination event that replaces one MAT allele with different DNA sequences encoding the opposite MAT allele. This replacement process involves the participation of two intact but unexpressed copies of mating-type information at the heterochromatic loci, HMLα and HMRa, which are located at opposite ends of the same chromosome-encoding MAT. The study of MAT switching has yielded important insights into the control of cell lineage, the silencing of gene expression, the formation of heterochromatin, and the regulation of accessibility of the donor sequences. Real-time analysis of MAT switching has provided the most detailed description of the molecular events that occur during the homologous recombinational repair of a programmed double-strand chromosome break.

  13. Biocleavable Polycationic Micelles as Highly Efficient Gene Delivery Vectors

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Xue, Ya-Nan; Liu, Min; Zhuo, Ren-Xi; Huang, Shi-Wen

    2010-11-01

    An amphiphilic disulfide-containing polyamidoamine was synthesized by Michael-type polyaddition reaction of piperazine to equimolar N, N'-bis(acryloyl)cystamine with 90% yield. The polycationic micelles (198 nm, 32.5 mV), prepared from the amphiphilic polyamidoamine by dialysis method, can condense foreign plasmid DNA to form nanosized polycationic micelles/DNA polyelectrolyte complexes with positive charges, which transfected 293T cells with high efficiency. Under optimized conditions, the transfection efficiencies of polycationic micelles/DNA complexes are comparable to, or even higher than that of commercially available branched PEI (Mw 25 kDa).

  14. Sclera-related gene polymorphisms in high myopia

    PubMed Central

    Lin, Hui-Ju; Tsai, Yuhsin; Liu, Su-Ching; Chen, Wen-Chi; Tsai, Shih-Wei; Tsai, Fuu-Jen

    2009-01-01

    Purpose Transforming growth factor-β2 (TGF-β2), basic fibroblast growth factor (bFGF), and fibromodulin (FMOD) are important extracellular matrix components of the sclera and have been shown to be associated with the development of high myopia. Our aim was to examine the association between myopia and the polymorphisms within TGF-β2, bFGF, and FMOD. Methods The study group comprised of patients (n=195; age range: 17−24 years) with a spherical equivalent of −6.5 diopters (D) or a more negative refractive error. The control group comprised of individuals (n=94; age range: 17−25 years) with a spherical equivalent ranging from −0.5 D to +1.0 D. The subjects with astigmatism over –0.75 D were excluded from the study. High resolution melting (HRM) genotyping and restriction fragment length polymorphism (RFLP) genotyping were used to detect single nucleotide polymorphisms (SNPs). The polymorphisms detected were TGF-β2 (rs7550232 and rs991967), bFGF (rs308395 and rs41348645), and FMOD (rs7543418). Moreover, a stepwise logistic regression procedure was used to detect which of the significant SNPs contributed to the main effects of myopia development. Results There were significant differences in the frequency of the A allele and A/A genotype in TGF-β2 (rs7550232; p=0.0178 and 0.03, respectively). Moreover, the haplotype distribution of haplotype 2 (Ht2; A/A) of TGF-β2 differed significantly between the two groups (p=0.014). The results of the stepwise logistic regression procedure revealed that TGF-β2 (rs7550232) contributed significantly to the development of high myopia. Conclusions TGF-β2 is an important structure of sclera and might contribute to the formation of myopia. TGF-β2 (rs7550232) polymorphisms, A allele and A/A genotype, had a protective role against the development of high myopia. PMID:19710942

  15. Identification of candidate genes related to rice grain weight under high-temperature stress.

    PubMed

    Liao, Jiang-Lin; Zhang, Hong-Yu; Liu, Jun-Bao; Zhong, Ping-An; Huang, Ying-Jin

    2012-11-01

    The rise of global warming presents a problem for all living organisms, including rice and other staple plants. High temperatures impair rice grain weight by inhibiting the filling of the caryopses during the milky stage. The molecular mechanism behind this process, however, is poorly understood. Identifying candidate genes involved in responses to high-temperature stress may provide a basis for the improvement of heat tolerance in rice. Using paired, genetically similar heat-tolerant and heat-sensitive rice lines as plant materials, cDNA-AFLP analysis revealed a total of 54 transcript derived fragments (TDFs), mainly from the heat-tolerant lines. This clearly indicated variations in gene expression between the two rice lines. BLAST results showed that 28 of the 54 TDFs were homologous sequences. These homologous genes were found to encode proteins involved in signal transduction, oxidation, transcriptional regulation, transport, and metabolism. The functions and differential expression patterns of some important genes are further discussed. High temperature stress may trigger a wide range of changes in gene expression in rice caryopses, in turn affecting functions ranging from signal transduction to cellular metabolism. Forty-five of the 54 TDFs were mapped to rice chromosomes. The genes identified in the present study would make good candidates for further study into the molecular mechanisms underlying rice adaptation to high-temperature stress.

  16. Epigenetic priming of inflammatory response genes by high glucose in adipose progenitor cells.

    PubMed

    Rønningen, Torunn; Shah, Akshay; Reiner, Andrew H; Collas, Philippe; Moskaug, Jan Øivind

    2015-11-27

    Cellular metabolism confers wide-spread epigenetic modifications required for regulation of transcriptional networks that determine cellular states. Mesenchymal stromal cells are responsive to metabolic cues including circulating glucose levels and modulate inflammatory responses. We show here that long term exposure of undifferentiated human adipose tissue stromal cells (ASCs) to high glucose upregulates a subset of inflammation response (IR) genes and alters their promoter histone methylation patterns in a manner consistent with transcriptional de-repression. Modeling of chromatin states from combinations of histone modifications in nearly 500 IR genes unveil three overarching chromatin configurations reflecting repressive, active, and potentially active states in promoter and enhancer elements. Accordingly, we show that adipogenic differentiation in high glucose predominantly upregulates IR genes. Our results indicate that elevated extracellular glucose levels sensitize in ASCs an IR gene expression program which is exacerbated during adipocyte differentiation. We propose that high glucose exposure conveys an epigenetic 'priming' of IR genes, favoring a transcriptional inflammatory response upon adipogenic stimulation. Chromatin alterations at IR genes by high glucose exposure may play a role in the etiology of metabolic diseases.

  17. Contribution of nonohnologous duplicated genes to high habitat variability in mammals.

    PubMed

    Tamate, Satoshi C; Kawata, Masakado; Makino, Takashi

    2014-07-01

    The mechanism by which genetic systems affect environmental adaptation is a focus of considerable attention in the fields of ecology, evolution, and conservation. However, the genomic characteristics that constrain adaptive evolution have remained unknown. A recent study showed that the proportion of duplicated genes in whole Drosophila genomes correlated with environmental variability within habitat, but it remains unclear whether the correlation is observed even in vertebrates whose genomes including a large number of duplicated genes generated by whole-genome duplication (WGD). Here, we focus on fully sequenced mammalian genomes that experienced WGD in early vertebrate lineages and show that the proportion of small-scale duplication (SSD) genes in the genome, but not that of WGD genes, is significantly correlated with habitat variability. Moreover, species with low habitat variability have a higher proportion of lost duplicated genes, particularly SSD genes, than those with high habitat variability. These results indicate that species that inhabit variable environments may maintain more SSD genes in their genomes and suggest that SSD genes are important for adapting to novel environments and surviving environmental changes. These insights may be applied to predicting invasive and endangered species. PMID:24714078

  18. Phylogenetic Resolution of Deep Eukaryotic and Fungal Relationships Using Highly Conserved Low-Copy Nuclear Genes.

    PubMed

    Ren, Ren; Sun, Yazhou; Zhao, Yue; Geiser, David; Ma, Hong; Zhou, Xiaofan

    2016-09-11

    A comprehensive and reliable eukaryotic tree of life is important for many aspects of biological studies from comparative developmental and physiological analyses to translational medicine and agriculture. Both gene-rich and taxon-rich approaches are effective strategies to improve phylogenetic accuracy and are greatly facilitated by marker genes that are universally distributed, well conserved, and orthologous among divergent eukaryotes. In this article, we report the identification of 943 low-copy eukaryotic genes and we show that many of these genes are promising tools in resolving eukaryotic phylogenies, despite the challenges of determining deep eukaryotic relationships. As a case study, we demonstrate that smaller subsets of ∼20 and 52 genes could resolve controversial relationships among widely divergent taxa and provide strong support for deep relationships such as the monophyly and branching order of several eukaryotic supergroups. In addition, the use of these genes resulted in fungal phylogenies that are congruent with previous phylogenomic studies that used much larger datasets, and successfully resolved several difficult relationships (e.g., forming a highly supported clade with Microsporidia, Mitosporidium and Rozella sister to other fungi). We propose that these genes are excellent for both gene-rich and taxon-rich analyses and can be applied at multiple taxonomic levels and facilitate a more complete understanding of the eukaryotic tree of life.

  19. Phylogenetic Resolution of Deep Eukaryotic and Fungal Relationships Using Highly Conserved Low-Copy Nuclear Genes.

    PubMed

    Ren, Ren; Sun, Yazhou; Zhao, Yue; Geiser, David; Ma, Hong; Zhou, Xiaofan

    2016-01-01

    A comprehensive and reliable eukaryotic tree of life is important for many aspects of biological studies from comparative developmental and physiological analyses to translational medicine and agriculture. Both gene-rich and taxon-rich approaches are effective strategies to improve phylogenetic accuracy and are greatly facilitated by marker genes that are universally distributed, well conserved, and orthologous among divergent eukaryotes. In this article, we report the identification of 943 low-copy eukaryotic genes and we show that many of these genes are promising tools in resolving eukaryotic phylogenies, despite the challenges of determining deep eukaryotic relationships. As a case study, we demonstrate that smaller subsets of ∼20 and 52 genes could resolve controversial relationships among widely divergent taxa and provide strong support for deep relationships such as the monophyly and branching order of several eukaryotic supergroups. In addition, the use of these genes resulted in fungal phylogenies that are congruent with previous phylogenomic studies that used much larger datasets, and successfully resolved several difficult relationships (e.g., forming a highly supported clade with Microsporidia, Mitosporidium and Rozella sister to other fungi). We propose that these genes are excellent for both gene-rich and taxon-rich analyses and can be applied at multiple taxonomic levels and facilitate a more complete understanding of the eukaryotic tree of life. PMID:27604879

  20. High-Content Analysis of CRISPR-Cas9 Gene-Edited Human Embryonic Stem Cells.

    PubMed

    Carlson-Stevermer, Jared; Goedland, Madelyn; Steyer, Benjamin; Movaghar, Arezoo; Lou, Meng; Kohlenberg, Lucille; Prestil, Ryan; Saha, Krishanu

    2016-01-12

    CRISPR-Cas9 gene editing of human cells and tissues holds much promise to advance medicine and biology, but standard editing methods require weeks to months of reagent preparation and selection where much or all of the initial edited samples are destroyed during analysis. ArrayEdit, a simple approach utilizing surface-modified multiwell plates containing one-pot transcribed single-guide RNAs, separates thousands of edited cell populations for automated, live, high-content imaging and analysis. The approach lowers the time and cost of gene editing and produces edited human embryonic stem cells at high efficiencies. Edited genes can be expressed in both pluripotent stem cells and differentiated cells. This preclinical platform adds important capabilities to observe editing and selection in situ within complex structures generated by human cells, ultimately enabling optical and other molecular perturbations in the editing workflow that could refine the specificity and versatility of gene editing.

  1. High-Content Analysis of CRISPR-Cas9 Gene-Edited Human Embryonic Stem Cells

    PubMed Central

    Carlson-Stevermer, Jared; Goedland, Madelyn; Steyer, Benjamin; Movaghar, Arezoo; Lou, Meng; Kohlenberg, Lucille; Prestil, Ryan; Saha, Krishanu

    2016-01-01

    Summary CRISPR-Cas9 gene editing of human cells and tissues holds much promise to advance medicine and biology, but standard editing methods require weeks to months of reagent preparation and selection where much or all of the initial edited samples are destroyed during analysis. ArrayEdit, a simple approach utilizing surface-modified multiwell plates containing one-pot transcribed single-guide RNAs, separates thousands of edited cell populations for automated, live, high-content imaging and analysis. The approach lowers the time and cost of gene editing and produces edited human embryonic stem cells at high efficiencies. Edited genes can be expressed in both pluripotent stem cells and differentiated cells. This preclinical platform adds important capabilities to observe editing and selection in situ within complex structures generated by human cells, ultimately enabling optical and other molecular perturbations in the editing workflow that could refine the specificity and versatility of gene editing. PMID:26771356

  2. High-throughput quantification of antibiotic resistance genes from an urban wastewater treatment plant.

    PubMed

    Karkman, Antti; Johnson, Timothy A; Lyra, Christina; Stedtfeld, Robert D; Tamminen, Manu; Tiedje, James M; Virta, Marko

    2016-03-01

    Antibiotic resistance among bacteria is a growing problem worldwide, and wastewater treatment plants have been considered as one of the major contributors to the dissemination of antibiotic resistance to the environment. There is a lack of comprehensive quantitative molecular data on extensive numbers of antibiotic resistance genes (ARGs) in different seasons with a sampling strategy that would cover both incoming and outgoing water together with the excess sludge that is removed from the process. In order to fill that gap we present a highly parallel quantitative analysis of ARGs and horizontal gene transfer potential over four seasons at an urban wastewater treatment plant using a high-throughput qPCR array. All analysed transposases and two-thirds of primer sets targeting ARGs were detected in the wastewater. The relative abundance of most of the genes was highest in influent and lower in effluent water and sludge. The resistance profiles of the samples cluster by sample location with a shift from raw influent through the final effluents and dried sludge to the sediments. Wastewater discharge enriched only a few genes, namely Tn25 type transposase gene and clinical class 1 integrons, in the sediment near the discharge pipe, but those enriched genes may indicate a potential for horizontal gene transfer.

  3. High-resolution prediction of mouse brain connectivity using gene expression patterns.

    PubMed

    Fakhry, Ahmed; Ji, Shuiwang

    2015-02-01

    The brain is a multi-level system in which the high-level functions are generated by low-level genetic mechanisms. Thus, elucidating the relationship among multiple brain levels via correlative and predictive analytics is an important area in brain research. Currently, studies in multiple species have indicated that the spatiotemporal gene expression patterns are predictive of brain wiring. Specifically, results on the worm Caenorhabditis elegans have shown that the prediction of neuronal connectivity using gene expression signatures yielded statistically significant results. Recent studies on the mammalian brain produced similar results at the coarse regional level. In this study, we provide the first high-resolution, large-scale integrative analysis of the transcriptome and connectome in a single mammalian brain at a fine voxel level. By using the Allen Brain Atlas data, we predict voxel-level brain connectivity based on the gene expressions in the adult mouse brain. We employ regularized models to show that gene expression is predictive of connectivity at the voxel-level with an accuracy of 93%. We also identify a set of genes playing the most important role in connectivity prediction. We use only this small number of genes to predict the brain wiring with an accuracy over 80%. We discover that these important genes are enriched in neurons as compared to glia, and they perform connectivity-related functions. We perform several interesting correlative studies to further elucidate the transcriptome-connectome relationship.

  4. High throughput functional genomics: identification of novel genes with tumor suppressor phenotypes.

    PubMed

    Koenig-Hoffmann, Kerstin; Bonin-Debs, Angelika L; Boche, Irene; Gawin, Beate; Gnirke, Andrea; Hergersberg, Christoph; Madeo, Frank; Kazinski, Michael; Klein, Matthias; Korherr, Christian; Link, Dieter; Röhrig, Sascha; Schäfer, Rolf; Brinkmann, Ulrich

    2005-01-20

    We have used a combination of high throughput functional genomics, computerized database mining and expression analyses to discover novel human tumor suppressor genes (TSGs). A genome-wide high throughput cDNA phenotype screen was established to identify genes that induce apoptosis or reduce cell viability. TSGs are expressed in normal tissue and frequently act by reduction of growth of transformed cells or induce apoptosis. In agreement with that and thus serving as platform validation, our pro-apoptotic hits included genes for which tumor suppressing activities were known, such as kangai1 and CD81 antigen. Additional genes that so far have been claimed as putative TSGs or associated with tumor inhibitory activities (prostate differentiation factor, hRAS-like suppressor 3, DPH2L1-like and the metastasis inhibitor Kiss1) were confirmed in their proposed TSG-like phenotype by functionally defining their growth inhibitory or pro-apoptotic function towards cancer cells. Finally, novel genes were identified for which neither association with cell growth nor with apoptosis were previously described. A subset of these genes show characteristics of TSGs because they (i) reduce the growth or induce apoptosis in tumor cells; (ii) show reduced expression in tumor vs. normal tissue; and (iii) are located on chromosomal (LOH-) loci for which cancer-associated deletions are described. The pro-apoptotic phenotype and differential expression of these genes in normal and malignant tissue make them promising target candidates for the diagnosis and therapy of various tumors.

  5. High Throughput Gene Expression Measurement with Real Time PCR in a Microfluidic Dynamic Array

    PubMed Central

    Spurgeon, Sandra L.; Jones, Robert C.; Ramakrishnan, Ramesh

    2008-01-01

    We describe a high throughput gene expression platform based on microfluidic dynamic arrays. This system allows 2,304 simultaneous real time PCR gene expression measurements in a single chip, while requiring less pipetting than is required to set up a 96 well plate. We show that one can measure the expression of 45 different genes in 18 tissues with replicates in a single chip. The data have excellent concordance with conventional real time PCR and the microfluidic dynamic arrays show better reproducibility than commercial DNA microarrays. PMID:18301740

  6. Transfection microarrays for high-throughput phenotypic screening of genes involved in cell migration.

    PubMed

    Onuki-Nagasaki, Reiko; Nagasaki, Akira; Hakamada, Kazumi; Uyeda, Taro Q P; Fujita, Satoshi; Miyake, Masato; Miyake, Jun

    2010-01-01

    Cell migration is important in several biological phenomena, such as cancer metastasis. Therefore, the identification of genes involved in cell migration might facilitate the discovery of antimetastatic drugs. However, screening of genes by the current methods can be complicated by factors related to cell stimulation, for example, abolition of contact inhibition and the release inflammatory cytokines from wounded cells during examinations of wound healing in vitro. To overcome these problems and identify genes involved in cell migration, in this chapter we describe the use of transfection microarrays for high-throughput phenotypic screening. PMID:20387151

  7. High-Throughput Screening of Tyrosine Kinase Inhibitor Resistant Genes in CML.

    PubMed

    Ma, Leyuan; Roderick, Justine; Kelliher, Michelle A; Green, Michael R

    2016-01-01

    Genome-wide RNA interference (RNAi) screening in mammalian cells has proven to be a powerful tool for identifying new genes and molecular pathways relevant to many cellular processes and diseases. For example, screening for genes that, when inactivated, lead to resistance to cancer therapeutic drugs can reveal new mechanisms for how resistance develops and identify potential targetable strategies to overcome drug resistance. Here, we describe a detailed procedure for performing a high-throughput RNAi screen using a genome-wide human short hairpin RNA (shRNA) library for identifying tyrosine kinase inhibitor (TKI)-resistance genes in a human CML cell line model. PMID:27581147

  8. High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis.

    PubMed

    Fujita, Masaya; González-Pastor, José Eduardo; Losick, Richard

    2005-02-01

    The master regulator for entry into sporulation in Bacillus subtilis is the response regulator Spo0A, which directly governs the expression of about 121 genes. Using cells in which the synthesis of Spo0A was under the control of an inducible promoter or in which production of the regulatory protein was impaired by a promoter mutation, we found that sporulation required a high (threshold) level of Spo0A and that many genes in the regulon differentially responded to high and low doses of the regulator. We distinguished four categories of genes, as follows: (i) those that required a high level of Spo0A to be activated, (ii) those that required a high level of Spo0A to be repressed, (iii) those that were activated at a low level of the regulator, and (iv) those that were repressed at a low dose of the regulator. Genes that required a high dose of Spo0A to be activated were found to have low binding constants for the DNA-binding protein. Some genes that were turned on at a low dose of Spo0A either had a high binding constant for the regulatory protein or were activated by an indirect mechanism involving Spo0A-mediated relief of repression by the repressor protein AbrB. We propose that progressive increases in the level of Spo0A leads to an early phase of transcription in which genes that play auxiliary roles in development, such as cannibalism and biofilm formation, are turned on and a later phase in which genes that play a direct role in sporulation are activated. PMID:15687200

  9. A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes.

    PubMed

    Herbold, Craig W; Pelikan, Claus; Kuzyk, Orest; Hausmann, Bela; Angel, Roey; Berry, David; Loy, Alexander

    2015-01-01

    High throughput sequencing of phylogenetic and functional gene amplicons provides tremendous insight into the structure and functional potential of complex microbial communities. Here, we introduce a highly adaptable and economical PCR approach to barcoding and pooling libraries of numerous target genes. In this approach, we replace gene- and sequencing platform-specific fusion primers with general, interchangeable barcoding primers, enabling nearly limitless customized barcode-primer combinations. Compared to barcoding with long fusion primers, our multiple-target gene approach is more economical because it overall requires lower number of primers and is based on short primers with generally lower synthesis and purification costs. To highlight our approach, we pooled over 900 different small-subunit rRNA and functional gene amplicon libraries obtained from various environmental or host-associated microbial community samples into a single, paired-end Illumina MiSeq run. Although the amplicon regions ranged in size from approximately 290 to 720 bp, we found no significant systematic sequencing bias related to amplicon length or gene target. Our results indicate that this flexible multiplexing approach produces large, diverse, and high quality sets of amplicon sequence data for modern studies in microbial ecology. PMID:26236305

  10. Highly compacted biodegradable DNA nanoparticles capable of overcoming the mucus barrier for inhaled lung gene therapy.

    PubMed

    Mastorakos, Panagiotis; da Silva, Adriana L; Chisholm, Jane; Song, Eric; Choi, Won Kyu; Boyle, Michael P; Morales, Marcelo M; Hanes, Justin; Suk, Jung Soo

    2015-07-14

    Gene therapy has emerged as an alternative for the treatment of diseases refractory to conventional therapeutics. Synthetic nanoparticle-based gene delivery systems offer highly tunable platforms for the delivery of therapeutic genes. However, the inability to achieve sustained, high-level transgene expression in vivo presents a significant hurdle. The respiratory system, although readily accessible, remains a challenging target, as effective gene therapy mandates colloidal stability in physiological fluids and the ability to overcome biological barriers found in the lung. We formulated highly stable DNA nanoparticles based on state-of-the-art biodegradable polymers, poly(β-amino esters) (PBAEs), possessing a dense corona of polyethylene glycol. We found that these nanoparticles efficiently penetrated the nanoporous and highly adhesive human mucus gel layer that constitutes a primary barrier to reaching the underlying epithelium. We also discovered that these PBAE-based mucus-penetrating DNA nanoparticles (PBAE-MPPs) provided uniform and high-level transgene expression throughout the mouse lungs, superior to several gold standard gene delivery systems. PBAE-MPPs achieved robust transgene expression over at least 4 mo following a single administration, and their transfection efficiency was not attenuated by repeated administrations, underscoring their clinical relevance. Importantly, PBAE-MPPs demonstrated a favorable safety profile with no signs of toxicity following intratracheal administration.

  11. High divergence in primate-specific duplicated regions: Human and chimpanzee Chorionic Gonadotropin Beta genes

    PubMed Central

    2008-01-01

    Background Low nucleotide divergence between human and chimpanzee does not sufficiently explain the species-specific morphological, physiological and behavioral traits. As gene duplication is a major prerequisite for the emergence of new genes and novel biological processes, comparative studies of human and chimpanzee duplicated genes may assist in understanding the mechanisms behind primate evolution. We addressed the divergence between human and chimpanzee duplicated genomic regions by using Luteinizing Hormone Beta (LHB)/Chorionic Gonadotropin Beta (CGB) gene cluster as a model. The placental CGB genes that are essential for implantation have evolved from an ancestral pituitary LHB gene by duplications in the primate lineage. Results We shotgun sequenced and compared the human (45,165 bp) and chimpanzee (39,876 bp) LHB/CGB regions and hereby present evidence for structural variation resulting in discordant number of CGB genes (6 in human, 5 in chimpanzee). The scenario of species-specific parallel duplications was supported (i) as the most parsimonious solution requiring the least rearrangement events to explain the interspecies structural differences; (ii) by the phylogenetic trees constructed with fragments of intergenic regions; (iii) by the sequence similarity calculations. Across the orthologous regions of LHB/CGB cluster, substitutions and indels contributed approximately equally to the interspecies divergence and the distribution of nucleotide identity was correlated with the regional repeat content. Intraspecies gene conversion may have shaped the LHB/CGB gene cluster. The substitution divergence (1.8–2.59%) exceeded two-three fold the estimates for single-copy loci and the fraction of transversional mutations was increased compared to the unique sequences (43% versus ~30%). Despite the high sequence identity among LHB/CGB genes, there are signs of functional differentiation among the gene copies. Estimates for dn/ds rate ratio suggested a purifying

  12. Identification of gene mutation in patients with osteogenesis imperfect using high resolution melting analysis

    PubMed Central

    Wang, Jianhai; Ren, Xiuzhi; Bai, Xue; Zhang, Tianke; Wang, Yi; Li, Keqiu; Li, Guang

    2015-01-01

    Osteogenesis imperfecta (OI), a congenital bone disorder, is caused by mutations in COL1A1 and COL1A2 genes, leading to deficiency of type I collagen. The high resolution melting (HRM) analysis has been used for detecting mutations, polymorphisms and epigenetic alteration in double-stranded DNAs. This study was to evaluate the potential application of HRM analysis for identifying gene mutations in patients with OI. This study included four children with OI and their parents and fifty normal people as controls. Blood samples were collected for HRM analysis of PCR-amplified exons and flanking DNA sequences of COL1A1 and COL1A2 genes. Direct gene sequencing was performed to validate HRM-identified gene mutations. As compared to controls, HRM analysis of samples form children with OI showed abnormal melting curves in exons 11 and 33–34 of the COL1A1 gene and exons 19 and 48 of the COL1A2 gene, which indicates the presence of heterozygous mutations in COL1A1 and COL1A2 genes. In addition to two known mutations in the COL1A2 gene, c.982G > A and c.3197G > T, sequencing analysis identified two novel mutations in the COL1A1 gene, c.2321delC and c.768dupC mutations, which function as premature stop codons. These results support future studies of applying HRM analysis as a diagnostic approach for OI. PMID:26307460

  13. Identification of gene mutation in patients with osteogenesis imperfect using high resolution melting analysis.

    PubMed

    Wang, Jianhai; Ren, Xiuzhi; Bai, Xue; Zhang, Tianke; Wang, Yi; Li, Keqiu; Li, Guang

    2015-01-01

    Osteogenesis imperfecta (OI), a congenital bone disorder, is caused by mutations in COL1A1 and COL1A2 genes, leading to deficiency of type I collagen. The high resolution melting (HRM) analysis has been used for detecting mutations, polymorphisms and epigenetic alteration in double-stranded DNAs. This study was to evaluate the potential application of HRM analysis for identifying gene mutations in patients with OI. This study included four children with OI and their parents and fifty normal people as controls. Blood samples were collected for HRM analysis of PCR-amplified exons and flanking DNA sequences of COL1A1 and COL1A2 genes. Direct gene sequencing was performed to validate HRM-identified gene mutations. As compared to controls, HRM analysis of samples form children with OI showed abnormal melting curves in exons 11 and 33-34 of the COL1A1 gene and exons 19 and 48 of the COL1A2 gene, which indicates the presence of heterozygous mutations in COL1A1 and COL1A2 genes. In addition to two known mutations in the COL1A2 gene, c.982G > A and c.3197G > T, sequencing analysis identified two novel mutations in the COL1A1 gene, c.2321delC and c.768dupC mutations, which function as premature stop codons. These results support future studies of applying HRM analysis as a diagnostic approach for OI. PMID:26307460

  14. Currently recognized genes for schizophrenia: High-resolution chromosome ideogram representation.

    PubMed

    Butler, Merlin G; McGuire, Austen B; Masoud, Humaira; Manzardo, Ann M

    2016-03-01

    A large body of genetic data from schizophrenia-related research has identified an assortment of genes and disturbed pathways supporting involvement of complex genetic components for schizophrenia spectrum and other psychotic disorders. Advances in genetic technology and expanding studies with searchable genomic databases have led to multiple published reports, allowing us to compile a master list of known, clinically relevant, or susceptibility genes contributing to schizophrenia. We searched key words related to schizophrenia and genetics from peer-reviewed medical literature sources, authoritative public access psychiatric websites and genomic databases dedicated to gene discovery and characterization of schizophrenia. Our list of 560 genes were arranged in alphabetical order in tabular form with gene symbols placed on high-resolution human chromosome ideograms. Genome wide pathway analysis using GeneAnalytics was carried out on the resulting list of genes to assess the underlying genetic architecture for schizophrenia. Recognized genes of clinical relevance, susceptibility or causation impact a broad range of biological pathways and mechanisms including ion channels (e.g., CACNA1B, CACNA1C, CACNA1H), metabolism (e.g., CYP1A2, CYP2C19, CYP2D6), multiple targets of neurotransmitter pathways impacting dopamine, GABA, glutamate, and serotonin function, brain development (e.g., NRG1, RELN), signaling peptides (e.g., PIK3CA, PIK4CA) and immune function (e.g., HLA-DRB1, HLA-DQA1) and interleukins (e.g., IL1A, IL10, IL6). This summary will enable clinical and laboratory geneticists, genetic counselors, and other clinicians to access convenient pictorial images of the distribution and location of contributing genes to inform diagnosis and gene-based treatment as well as provide risk estimates for genetic counseling of families with affected relatives. PMID:26462458

  15. Currently recognized genes for schizophrenia: High-resolution chromosome ideogram representation.

    PubMed

    Butler, Merlin G; McGuire, Austen B; Masoud, Humaira; Manzardo, Ann M

    2016-03-01

    A large body of genetic data from schizophrenia-related research has identified an assortment of genes and disturbed pathways supporting involvement of complex genetic components for schizophrenia spectrum and other psychotic disorders. Advances in genetic technology and expanding studies with searchable genomic databases have led to multiple published reports, allowing us to compile a master list of known, clinically relevant, or susceptibility genes contributing to schizophrenia. We searched key words related to schizophrenia and genetics from peer-reviewed medical literature sources, authoritative public access psychiatric websites and genomic databases dedicated to gene discovery and characterization of schizophrenia. Our list of 560 genes were arranged in alphabetical order in tabular form with gene symbols placed on high-resolution human chromosome ideograms. Genome wide pathway analysis using GeneAnalytics was carried out on the resulting list of genes to assess the underlying genetic architecture for schizophrenia. Recognized genes of clinical relevance, susceptibility or causation impact a broad range of biological pathways and mechanisms including ion channels (e.g., CACNA1B, CACNA1C, CACNA1H), metabolism (e.g., CYP1A2, CYP2C19, CYP2D6), multiple targets of neurotransmitter pathways impacting dopamine, GABA, glutamate, and serotonin function, brain development (e.g., NRG1, RELN), signaling peptides (e.g., PIK3CA, PIK4CA) and immune function (e.g., HLA-DRB1, HLA-DQA1) and interleukins (e.g., IL1A, IL10, IL6). This summary will enable clinical and laboratory geneticists, genetic counselors, and other clinicians to access convenient pictorial images of the distribution and location of contributing genes to inform diagnosis and gene-based treatment as well as provide risk estimates for genetic counseling of families with affected relatives.

  16. High-resolution genome-wide scan of genes, gene-networks and cellular systems impacting the yeast ionome

    PubMed Central

    2012-01-01

    Background To balance the demand for uptake of essential elements with their potential toxicity living cells have complex regulatory mechanisms. Here, we describe a genome-wide screen to identify genes that impact the elemental composition (‘ionome’) of yeast Saccharomyces cerevisiae. Using inductively coupled plasma – mass spectrometry (ICP-MS) we quantify Ca, Cd, Co, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, S and Zn in 11890 mutant strains, including 4940 haploid and 1127 diploid deletion strains, and 5798 over expression strains. Results We identified 1065 strains with an altered ionome, including 584 haploid and 35 diploid deletion strains, and 446 over expression strains. Disruption of protein metabolism or trafficking has the highest likelihood of causing large ionomic changes, with gene dosage also being important. Gene over expression produced more extreme ionomic changes, but over expression and loss of function phenotypes are generally not related. Ionomic clustering revealed the existence of only a small number of possible ionomic profiles suggesting fitness tradeoffs that constrain the ionome. Clustering also identified important roles for the mitochondria, vacuole and ESCRT pathway in regulation of the ionome. Network analysis identified hub genes such as PMR1 in Mn homeostasis, novel members of ionomic networks such as SMF3 in vacuolar retrieval of Mn, and cross-talk between the mitochondria and the vacuole. All yeast ionomic data can be searched and downloaded at http://www.ionomicshub.org. Conclusions Here, we demonstrate the power of high-throughput ICP-MS analysis to functionally dissect the ionome on a genome-wide scale. The information this reveals has the potential to benefit both human health and agriculture. PMID:23151179

  17. Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco.

    PubMed

    Ye, G N; Hajdukiewicz, P T; Broyles, D; Rodriguez, D; Xu, C W; Nehra, N; Staub, J M

    2001-02-01

    Plastid transformation (transplastomic) technology has several potential advantages for biotechnological applications including the use of unmodified prokaryotic genes for engineering, potential high-level gene expression and gene containment due to maternal inheritance in most crop plants. However, the efficacy of a plastid-encoded trait may change depending on plastid number and tissue type. We report a feasibility study in tobacco plastids to achieve high-level herbicide resistance in both vegetative tissues and reproductive organs. We chose to test glyphosate resistance via over-expression in plastids of tolerant forms of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Immunological, enzymatic and whole-plant assays were used to prove the efficacy of three different prokaryotic (Achromobacter, Agrobacterium and Bacillus) EPSPS genes. Using the Agrobacterium strain CP4 EPSPS as a model we identified translational control sequences that direct a 10,000-fold range of protein accumulation (to >10% total soluble protein in leaves). Plastid-expressed EPSPS could provide very high levels of glyphosate resistance, although levels of resistance in vegetative and reproductive tissues differed depending on EPSPS accumulation levels, and correlated to the plastid abundance in these tissues. Paradoxically, higher levels of plastid-expressed EPSPS protein accumulation were apparently required for efficacy than from a similar nuclear-encoded gene. Nevertheless, the demonstration of high-level glyphosate tolerance in vegetative and reproductive organs using transplastomic technology provides a necessary step for transfer of this technology to other crop species.

  18. Parallel Gene Expression Differences between Low and High Latitude Populations of Drosophila melanogaster and D. simulans.

    PubMed

    Zhao, Li; Wit, Janneke; Svetec, Nicolas; Begun, David J

    2015-05-01

    Gene expression variation within species is relatively common, however, the role of natural selection in the maintenance of this variation is poorly understood. Here we investigate low and high latitude populations of Drosophila melanogaster and its sister species, D. simulans, to determine whether the two species show similar patterns of population differentiation, consistent with a role for spatially varying selection in maintaining gene expression variation. We compared at two temperatures the whole male transcriptome of D. melanogaster and D. simulans sampled from Panama City (Panama) and Maine (USA). We observed a significant excess of genes exhibiting differential expression in both species, consistent with parallel adaptation to heterogeneous environments. Moreover, the majority of genes showing parallel expression differentiation showed the same direction of differential expression in the two species and the magnitudes of expression differences between high and low latitude populations were correlated across species, further bolstering the conclusion that parallelism for expression phenotypes results from spatially varying selection. However, the species also exhibited important differences in expression phenotypes. For example, the genomic extent of genotype × environment interaction was much more common in D. melanogaster. Highly differentiated SNPs between low and high latitudes were enriched in the 3' UTRs and CDS of the geographically differently expressed genes in both species, consistent with an important role for cis-acting variants in driving local adaptation for expression-related phenotypes.

  19. Regularized logistic regression with adjusted adaptive elastic net for gene selection in high dimensional cancer classification.

    PubMed

    Algamal, Zakariya Yahya; Lee, Muhammad Hisyam

    2015-12-01

    Cancer classification and gene selection in high-dimensional data have been popular research topics in genetics and molecular biology. Recently, adaptive regularized logistic regression using the elastic net regularization, which is called the adaptive elastic net, has been successfully applied in high-dimensional cancer classification to tackle both estimating the gene coefficients and performing gene selection simultaneously. The adaptive elastic net originally used elastic net estimates as the initial weight, however, using this weight may not be preferable for certain reasons: First, the elastic net estimator is biased in selecting genes. Second, it does not perform well when the pairwise correlations between variables are not high. Adjusted adaptive regularized logistic regression (AAElastic) is proposed to address these issues and encourage grouping effects simultaneously. The real data results indicate that AAElastic is significantly consistent in selecting genes compared to the other three competitor regularization methods. Additionally, the classification performance of AAElastic is comparable to the adaptive elastic net and better than other regularization methods. Thus, we can conclude that AAElastic is a reliable adaptive regularized logistic regression method in the field of high-dimensional cancer classification.

  20. Parallel Gene Expression Differences between Low and High Latitude Populations of Drosophila melanogaster and D. simulans

    PubMed Central

    Zhao, Li; Wit, Janneke; Svetec, Nicolas; Begun, David J.

    2015-01-01

    Gene expression variation within species is relatively common, however, the role of natural selection in the maintenance of this variation is poorly understood. Here we investigate low and high latitude populations of Drosophila melanogaster and its sister species, D. simulans, to determine whether the two species show similar patterns of population differentiation, consistent with a role for spatially varying selection in maintaining gene expression variation. We compared at two temperatures the whole male transcriptome of D. melanogaster and D. simulans sampled from Panama City (Panama) and Maine (USA). We observed a significant excess of genes exhibiting differential expression in both species, consistent with parallel adaptation to heterogeneous environments. Moreover, the majority of genes showing parallel expression differentiation showed the same direction of differential expression in the two species and the magnitudes of expression differences between high and low latitude populations were correlated across species, further bolstering the conclusion that parallelism for expression phenotypes results from spatially varying selection. However, the species also exhibited important differences in expression phenotypes. For example, the genomic extent of genotype × environment interaction was much more common in D. melanogaster. Highly differentiated SNPs between low and high latitudes were enriched in the 3’ UTRs and CDS of the geographically differently expressed genes in both species, consistent with an important role for cis-acting variants in driving local adaptation for expression-related phenotypes. PMID:25950438

  1. Comparative gene expression profiles for highly similar aggressive phenotypes in male and female cichlid fishes (Julidochromis)

    PubMed Central

    Schumer, Molly; Krishnakant, Kavita; Renn, Suzy C. P.

    2011-01-01

    SUMMARY Julidochromis marlieri and Julidochromis transcriptus are two closely related Tanganyikan cichlids that have evolved different behavior and mating strategies since they diverged from their common ancestor. While J. transcriptus follows the ancestral pattern of male dominance, male-biased sexual size dimorphism and territoriality, the pattern is reversed in J. marlieri. In J. marlieri, females show all of these behavioral and morphological characteristics. This raises the question of whether female J. marlieri achieve the dominant phenotype by expressing the same genes as J. transcriptus males or whether novel brain gene expression patterns have evolved to produce a similar behavioral phenotype in the females of J. marlieri. This study used cDNA microarrays to investigate whether female J. marlieri and male J. transcriptus show conserved or divergent patterns of brain gene expression. Analysis of microarray data in both species showed certain gene expression patterns associated with sex role independent of gonadal sex and, to a lesser extent, gene expression patterns associated with sex independent of sex role. In general, these data suggest that while there has been substantial divergence in gene expression patterns between J. transcriptus and J. marlieri, we can detect a highly significant overlap for a core set of genes related to aggression in both species. These results suggest that the proximate mechanisms regulating aggressive behavior in J. transcriptus and J. marlieri may be shared. PMID:21900474

  2. Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs

    PubMed Central

    Cade, Lindsay; Reyon, Deepak; Hwang, Woong Y.; Tsai, Shengdar Q.; Patel, Samir; Khayter, Cyd; Joung, J. Keith; Sander, Jeffry D.; Peterson, Randall T.; Yeh, Jing-Ruey Joanna

    2012-01-01

    Transcription activator-like effector nucleases (TALENs) are powerful new research tools that enable targeted gene disruption in a wide variety of model organisms. Recent work has shown that TALENs can induce mutations in endogenous zebrafish genes, but to date only four genes have been altered, and larger-scale tests of the success rate, mutation efficiencies and germline transmission rates have not been described. Here, we constructed homodimeric TALENs to 10 different targets in various endogenous zebrafish genes and found that 7 nuclease pairs induced targeted indel mutations with high efficiencies ranging from 2 to 76%. We also tested obligate heterodimeric TALENs and found that these nucleases induce mutations with comparable or higher frequencies and have better toxicity profiles than their homodimeric counterparts. Importantly, mutations induced by both homodimeric and heterodimeric TALENs are passed efficiently through the germline, in some cases reaching 100% transmission. For one target gene sequence, we observed substantially reduced mutagenesis efficiency for a variant site bearing two mismatched nucleotides, raising the possibility that TALENs might be used to perform allele-specific gene disruption. Our results suggest that construction of one to two heterodimeric TALEN pairs for any given gene will, in most cases, enable researchers to rapidly generate knockout zebrafish. PMID:22684503

  3. Transfer RNA gene numbers may not be completely responsible for the codon usage bias in asparagine, isoleucine, phenylalanine, and tyrosine in the high expression genes in bacteria.

    PubMed

    Satapathy, Siddhartha Sankar; Dutta, Malay; Buragohain, Alak Kumar; Ray, Suvendra Kumar

    2012-08-01

    It is generally believed that the effect of translational selection on codon usage bias is related to the number of transfer RNA genes in bacteria, which is more with respect to the high expression genes than the whole genome. Keeping this in the background, we analyzed codon usage bias with respect to asparagine, isoleucine, phenylalanine, and tyrosine amino acids. Analysis was done in seventeen bacteria with the available gene expression data and information about the tRNA gene number. In most of the bacteria, it was observed that codon usage bias and tRNA gene number were not in agreement, which was unexpected. We extended the study further to 199 bacteria, limiting to the codon usage bias in the two highly expressed genes rpoB and rpoC which encode the RNA polymerase subunits β and β', respectively. In concordance with the result in the high expression genes, codon usage bias in rpoB and rpoC genes was also found to not be in agreement with tRNA gene number in many of these bacteria. Our study indicates that tRNA gene numbers may not be the sole determining factor for translational selection of codon usage bias in bacterial genomes.

  4. Evolution of High Cellulolytic Activity in Symbiotic Streptomyces through Selection of Expanded Gene Content and Coordinated Gene Expression.

    PubMed

    Book, Adam J; Lewin, Gina R; McDonald, Bradon R; Takasuka, Taichi E; Wendt-Pienkowski, Evelyn; Doering, Drew T; Suh, Steven; Raffa, Kenneth F; Fox, Brian G; Currie, Cameron R

    2016-06-01

    The evolution of cellulose degradation was a defining event in the history of life. Without efficient decomposition and recycling, dead plant biomass would quickly accumulate and become inaccessible to terrestrial food webs and the global carbon cycle. On land, the primary drivers of plant biomass deconstruction are fungi and bacteria in the soil or associated with herbivorous eukaryotes. While the ecological importance of plant-decomposing microbes is well established, little is known about the distribution or evolution of cellulolytic activity in any bacterial genus. Here we show that in Streptomyces, a genus of Actinobacteria abundant in soil and symbiotic niches, the ability to rapidly degrade cellulose is largely restricted to two clades of host-associated strains and is not a conserved characteristic of the Streptomyces genus or host-associated strains. Our comparative genomics identify that while plant biomass degrading genes (CAZy) are widespread in Streptomyces, key enzyme families are enriched in highly cellulolytic strains. Transcriptomic analyses demonstrate that cellulolytic strains express a suite of multi-domain CAZy enzymes that are coregulated by the CebR transcriptional regulator. Using targeted gene deletions, we verify the importance of a highly expressed cellulase (GH6 family cellobiohydrolase) and the CebR transcriptional repressor to the cellulolytic phenotype. Evolutionary analyses identify complex genomic modifications that drive plant biomass deconstruction in Streptomyces, including acquisition and selective retention of CAZy genes and transcriptional regulators. Our results suggest that host-associated niches have selected some symbiotic Streptomyces for increased cellulose degrading activity and that symbiotic bacteria are a rich biochemical and enzymatic resource for biotechnology.

  5. Evolution of high cellulolytic activity in symbiotic Streptomyces through selection of expanded gene content and coordinated gene expression

    DOE PAGES

    Book, Adam J.; Lewin, Gina R.; McDonald, Bradon R.; Takasuka, Taichi E.; Wendt-Pienkowski, Evelyn; Doering, Drew T.; Suh, Steven; Raffa, Kenneth F.; Fox, Brian G.; Currie, Cameron R.

    2016-06-08

    In this study, the evolution of cellulose degradation was a defining event in the history of life. Without efficient decomposition and recycling, dead plant biomass would quickly accumulate and become inaccessible to terrestrial food webs and the global carbon cycle. On land, the primary drivers of plant biomass deconstruction are fungi and bacteria in the soil or associated with herbivorous eukaryotes. While the ecological importance of plant-decomposing microbes is well established, little is known about the distribution or evolution of cellulolytic activity in any bacterial genus. Here we show that in Streptomyces, a genus of Actinobacteria abundant in soil andmore » symbiotic niches, the ability to rapidly degrade cellulose is largely restricted to two clades of host-associated strains and is not a conserved characteristic of the Streptomyces genus or host-associated strains. Our comparative genomics identify that while plant biomass degrading genes (CAZy) are widespread in Streptomyces, key enzyme families are enriched in highly cellulolytic strains. Transcriptomic analyses demonstrate that cellulolytic strains express a suite of multi-domain CAZy enzymes that are coregulated by the CebR transcriptional regulator. Using targeted gene deletions, we verify the importance of a highly expressed cellulase (GH6 family cellobiohydrolase) and the CebR transcriptional repressor to the cellulolytic phenotype. Evolutionary analyses identify complex genomic modifications that drive plant biomass deconstruction in Streptomyces, including acquisition and selective retention of CAZy genes and transcriptional regulators. Our results suggest that host-associated niches have selected some symbiotic Streptomyces for increased cellulose degrading activity and that symbiotic bacteria are a rich biochemical and enzymatic resource for biotechnology.« less

  6. Evolution of High Cellulolytic Activity in Symbiotic Streptomyces through Selection of Expanded Gene Content and Coordinated Gene Expression.

    PubMed

    Book, Adam J; Lewin, Gina R; McDonald, Bradon R; Takasuka, Taichi E; Wendt-Pienkowski, Evelyn; Doering, Drew T; Suh, Steven; Raffa, Kenneth F; Fox, Brian G; Currie, Cameron R

    2016-06-01

    The evolution of cellulose degradation was a defining event in the history of life. Without efficient decomposition and recycling, dead plant biomass would quickly accumulate and become inaccessible to terrestrial food webs and the global carbon cycle. On land, the primary drivers of plant biomass deconstruction are fungi and bacteria in the soil or associated with herbivorous eukaryotes. While the ecological importance of plant-decomposing microbes is well established, little is known about the distribution or evolution of cellulolytic activity in any bacterial genus. Here we show that in Streptomyces, a genus of Actinobacteria abundant in soil and symbiotic niches, the ability to rapidly degrade cellulose is largely restricted to two clades of host-associated strains and is not a conserved characteristic of the Streptomyces genus or host-associated strains. Our comparative genomics identify that while plant biomass degrading genes (CAZy) are widespread in Streptomyces, key enzyme families are enriched in highly cellulolytic strains. Transcriptomic analyses demonstrate that cellulolytic strains express a suite of multi-domain CAZy enzymes that are coregulated by the CebR transcriptional regulator. Using targeted gene deletions, we verify the importance of a highly expressed cellulase (GH6 family cellobiohydrolase) and the CebR transcriptional repressor to the cellulolytic phenotype. Evolutionary analyses identify complex genomic modifications that drive plant biomass deconstruction in Streptomyces, including acquisition and selective retention of CAZy genes and transcriptional regulators. Our results suggest that host-associated niches have selected some symbiotic Streptomyces for increased cellulose degrading activity and that symbiotic bacteria are a rich biochemical and enzymatic resource for biotechnology. PMID:27276034

  7. Evolution of High Cellulolytic Activity in Symbiotic Streptomyces through Selection of Expanded Gene Content and Coordinated Gene Expression

    PubMed Central

    McDonald, Bradon R.; Takasuka, Taichi E.; Wendt-Pienkowski, Evelyn; Doering, Drew T.; Raffa, Kenneth F.; Fox, Brian G.; Currie, Cameron R.

    2016-01-01

    The evolution of cellulose degradation was a defining event in the history of life. Without efficient decomposition and recycling, dead plant biomass would quickly accumulate and become inaccessible to terrestrial food webs and the global carbon cycle. On land, the primary drivers of plant biomass deconstruction are fungi and bacteria in the soil or associated with herbivorous eukaryotes. While the ecological importance of plant-decomposing microbes is well established, little is known about the distribution or evolution of cellulolytic activity in any bacterial genus. Here we show that in Streptomyces, a genus of Actinobacteria abundant in soil and symbiotic niches, the ability to rapidly degrade cellulose is largely restricted to two clades of host-associated strains and is not a conserved characteristic of the Streptomyces genus or host-associated strains. Our comparative genomics identify that while plant biomass degrading genes (CAZy) are widespread in Streptomyces, key enzyme families are enriched in highly cellulolytic strains. Transcriptomic analyses demonstrate that cellulolytic strains express a suite of multi-domain CAZy enzymes that are coregulated by the CebR transcriptional regulator. Using targeted gene deletions, we verify the importance of a highly expressed cellulase (GH6 family cellobiohydrolase) and the CebR transcriptional repressor to the cellulolytic phenotype. Evolutionary analyses identify complex genomic modifications that drive plant biomass deconstruction in Streptomyces, including acquisition and selective retention of CAZy genes and transcriptional regulators. Our results suggest that host-associated niches have selected some symbiotic Streptomyces for increased cellulose degrading activity and that symbiotic bacteria are a rich biochemical and enzymatic resource for biotechnology. PMID:27276034

  8. High-throughput platform for the discovery of elicitors of silent bacterial gene clusters.

    PubMed

    Seyedsayamdost, Mohammad R

    2014-05-20

    Over the past decade, bacterial genome sequences have revealed an immense reservoir of biosynthetic gene clusters, sets of contiguous genes that have the potential to produce drugs or drug-like molecules. However, the majority of these gene clusters appear to be inactive for unknown reasons prompting terms such as "cryptic" or "silent" to describe them. Because natural products have been a major source of therapeutic molecules, methods that rationally activate these silent clusters would have a profound impact on drug discovery. Herein, a new strategy is outlined for awakening silent gene clusters using small molecule elicitors. In this method, a genetic reporter construct affords a facile read-out for activation of the silent cluster of interest, while high-throughput screening of small molecule libraries provides potential inducers. This approach was applied to two cryptic gene clusters in the pathogenic model Burkholderia thailandensis. The results not only demonstrate a prominent activation of these two clusters, but also reveal that the majority of elicitors are themselves antibiotics, most in common clinical use. Antibiotics, which kill B. thailandensis at high concentrations, act as inducers of secondary metabolism at low concentrations. One of these antibiotics, trimethoprim, served as a global activator of secondary metabolism by inducing at least five biosynthetic pathways. Further application of this strategy promises to uncover the regulatory networks that activate silent gene clusters while at the same time providing access to the vast array of cryptic molecules found in bacteria.

  9. A fast and high performance multiple data integration algorithm for identifying human disease genes

    PubMed Central

    2015-01-01

    Background Integrating multiple data sources is indispensable in improving disease gene identification. It is not only due to the fact that disease genes associated with similar genetic diseases tend to lie close with each other in various biological networks, but also due to the fact that gene-disease associations are complex. Although various algorithms have been proposed to identify disease genes, their prediction performances and the computational time still should be further improved. Results In this study, we propose a fast and high performance multiple data integration algorithm for identifying human disease genes. A posterior probability of each candidate gene associated with individual diseases is calculated by using a Bayesian analysis method and a binary logistic regression model. Two prior probability estimation strategies and two feature vector construction methods are developed to test the performance of the proposed algorithm. Conclusions The proposed algorithm is not only generated predictions with high AUC scores, but also runs very fast. When only a single PPI network is employed, the AUC score is 0.769 by using F2 as feature vectors. The average running time for each leave-one-out experiment is only around 1.5 seconds. When three biological networks are integrated, the AUC score using F3 as feature vectors increases to 0.830, and the average running time for each leave-one-out experiment takes only about 12.54 seconds. It is better than many existing algorithms. PMID:26399620

  10. Suppression of α-amylase genes improves quality of rice grain ripened under high temperature.

    PubMed

    Hakata, Makoto; Kuroda, Masaharu; Miyashita, Tomomi; Yamaguchi, Takeshi; Kojima, Mikiko; Sakakibara, Hitoshi; Mitsui, Toshiaki; Yamakawa, Hiromoto

    2012-12-01

    High temperature impairs rice (Oryza sativa) grain filling by inhibiting the deposition of storage materials such as starch, resulting in mature grains with a chalky appearance, currently a major problem for rice farming in Asian countries. Such deterioration of grain quality is accompanied by the altered expression of starch metabolism-related genes. Here we report the involvement of a starch-hydrolyzing enzyme, α-amylase, in high temperature-triggered grain chalkiness. In developing seeds, high temperature induced the expression of α-amylase genes, namely Amy1A, Amy1C, Amy3A, Amy3D and Amy3E, as well as α-amylase activity, while it decreased an α-amylase-repressing plant hormone, ABA, suggesting starch to be degraded by α-amylase in developing grains under elevated temperature. Furthermore, RNAi-mediated suppression of α-amylase genes in ripening seeds resulted in fewer chalky grains under high-temperature conditions. As the extent of the decrease in chalky grains was highly correlated to decreases in the expression of Amy1A, Amy1C, Amy3A and Amy3B, these genes would be involved in the chalkiness through degradation of starch accumulating in the developing grains. The results show that activation of α-amylase by high temperature is a crucial trigger for grain chalkiness and that its suppression is a potential strategy for ameliorating grain damage from global warming.

  11. Highly Expressed Genes within Hippocampal Sector CA1: Implications for the Physiology of Memory.

    PubMed

    Meyer, Michael A

    2014-04-22

    As the CA1 sector has been implicated to play a key role in memory formation, a dedicated search for highly expressed genes within this region was made from an on-line atlas of gene expression within the mouse brain (GENSAT). From a data base of 1013 genes, 16 were identified that had selective localization of gene expression within the CA1 region, and included Angpt2, ARHGEF6, CCK, Cntnap1, DRD3, EMP1, Epha2, Itm2b, Lrrtm2, Mdk, PNMT, Ppm1e, Ppp2r2d, RASGRP1, Slitrk5, and Sstr4. Of the 16 identified, the most selective and intense localization for both adult and post-natal day 7 was noted for ARHGEF6, which is known to be linked to non-syndromic mental retardation, and has also been localized to dendritic spines. Further research on the role played by ARHGEF6 in memory formation is strongly advocated. PMID:24987507

  12. Highly Expressed Genes within Hippocampal Sector CA1: Implications for the Physiology of Memory

    PubMed Central

    Meyer, Michael A.

    2014-01-01

    As the CA1 sector has been implicated to play a key role in memory formation, a dedicated search for highly expressed genes within this region was made from an on-line atlas of gene expression within the mouse brain (GENSAT). From a data base of 1013 genes, 16 were identified that had selective localization of gene expression within the CA1 region, and included Angpt2, ARHGEF6, CCK, Cntnap1, DRD3, EMP1, Epha2, Itm2b, Lrrtm2, Mdk, PNMT, Ppm1e, Ppp2r2d, RASGRP1, Slitrk5, and Sstr4. Of the 16 identified, the most selective and intense localization for both adult and post-natal day 7 was noted for ARHGEF6, which is known to be linked to non-syndromic mental retardation, and has also been localized to dendritic spines. Further research on the role played by ARHGEF6 in memory formation is strongly advocated PMID:24987507

  13. Meta-analysis of clinical data using human meiotic genes identifies a novel cohort of highly restricted cancer-specific marker genes

    PubMed Central

    Feichtinger, Julia; Almutairi, Mikhlid; Almatrafi, Ahmed; Alsiwiehri, Naif; Griffiths, Keith; Stuart, Nicholas; Wakeman, Jane A.; Larcombe, Lee; McFarlane, Ramsay J.

    2012-01-01

    Identifying cancer-specific biomarkers represents an ongoing challenge to the development of novel cancer diagnostic, prognostic and therapeutic strategies. Cancer/testis (CT) genes are an important gene family with expression tightly restricted to the testis in normal individuals but which can also be activated in cancers. Here we develop a pipeline to identify new CT genes. We analysed and validated expression profiles of human meiotic genes in normal and cancerous tissue followed by meta-analyses of clinical data sets from a range of tumour types resulting in the identification of a large cohort of highly specific cancer biomarker genes, including the recombination hot spot activator PRDM9 and the meiotic cohesin genes SMC1beta and RAD21L. These genes not only provide excellent cancer biomarkers for diagnostics and prognostics, but may serve as oncogenes and have excellent drug targeting potential. PMID:22918178

  14. Dicyema Pax6 and Zic: tool-kit genes in a highly simplified bilaterian

    PubMed Central

    Aruga, Jun; Odaka, Yuri S; Kamiya, Akiko; Furuya, Hidetaka

    2007-01-01

    Background Dicyemid mesozoans (Phylum Dicyemida) are simple (8–40-cell) cephalopod endoparasites. They have neither body cavities nor differentiated organs, such as nervous and gastrointestinal systems. Whether dicyemids are intermediate between Protozoa and Metazoa (as represented by their "Mesozoa" classification) or degenerate species of more complex metazoans is controversial. Recent molecular phylogenetic studies suggested that they are simplified bilaterians belonging to the Lophotrochozoa. We cloned two genes developmentally critical in bilaterian animals (Pax6 and Zic), together with housekeeping genes (actin, fructose-bisphosphate aldolase, and ATP synthase beta subunit) from a dicyemid to reveal whether their molecular phylogeny supported the "simplification" hypothesis, and to clarify evolutionary changes in dicyemid gene structure and expression profiles. Results Genomic/cDNA sequence analysis showed that 1) the Pax6 molecular phylogeny and Zic intron positions supported the idea of dicyemids as reduced bilaterians; 2) the aa sequences deduced from the five genes were highly divergent; and 3) Dicyema genes contained very short introns of uniform length. In situ hybridization analyses revealed that Zic genes were expressed in hermaphroditic gonads, and Pax6 was expressed weakly throughout the developmental stages of the 2 types of embryo and in the hermaphroditic gonads. Conclusion The accelerated evolutionary rates and very short and uniform intron may represent a part of Dicyema genomic features. The presence and expression of the two tool-kit genes (Pax6 and Zic) in Dicyema suggests that they can be very versatile genes even required for the highly reduced bilaterian like Dicyema. Dicyemids may be useful models of evolutionary body plan simplification. PMID:17961212

  15. High-resolution chromosome ideogram representation of recognized genes for bipolar disorder.

    PubMed

    Douglas, Lindsay N; McGuire, Austen B; Manzardo, Ann M; Butler, Merlin G

    2016-07-15

    Bipolar disorder (BPD) is genetically heterogeneous with a growing list of BPD associated genes reported in recent years resulting from increased genetic testing using advanced genetic technology, expanded genomic databases, and better awareness of the disorder. We compiled a master list of recognized susceptibility and genes associated with BPD identified from peer-reviewed medical literature sources using PubMed and by searching online databases, such as OMIM. Searched keywords were related to bipolar disorder and genetics. Our compiled list consisted of 290 genes with gene names arranged in alphabetical order in tabular form with source documents and their chromosome location and gene symbols plotted on high-resolution human chromosome ideograms. The identified genes impacted a broad range of biological pathways and processes including cellular signaling pathways particularly cAMP and calcium (e.g., CACNA1C, CAMK2A, CAMK2D, ADCY1, ADCY2); glutamatergic (e.g., GRIK1, GRM3, GRM7), dopaminergic (e.g., DRD2, DRD4, COMT, MAOA) and serotonergic (e.g., HTR1A, HTR2A, HTR3B) neurotransmission; molecular transporters (e.g., SLC39A3, SLC6A3, SLC8A1); and neuronal growth (e.g., BDNF, IGFBP1, NRG1, NRG3). The increasing prevalence of BPD calls for better understanding of the genetic etiology of this disorder and associations between the observed BPD phenotype and genes. Visual representation of genes for bipolar disorder becomes a tool enabling clinical and laboratory geneticists, genetic counselors, and other health care providers and researchers easy access to the location and distribution of currently recognized BPD associated genes. Our study may also help inform diagnosis and advance treatment developments for those affected with this disorder and improve genetic counseling for families. PMID:27063557

  16. High-resolution chromosome ideogram representation of recognized genes for bipolar disorder.

    PubMed

    Douglas, Lindsay N; McGuire, Austen B; Manzardo, Ann M; Butler, Merlin G

    2016-07-15

    Bipolar disorder (BPD) is genetically heterogeneous with a growing list of BPD associated genes reported in recent years resulting from increased genetic testing using advanced genetic technology, expanded genomic databases, and better awareness of the disorder. We compiled a master list of recognized susceptibility and genes associated with BPD identified from peer-reviewed medical literature sources using PubMed and by searching online databases, such as OMIM. Searched keywords were related to bipolar disorder and genetics. Our compiled list consisted of 290 genes with gene names arranged in alphabetical order in tabular form with source documents and their chromosome location and gene symbols plotted on high-resolution human chromosome ideograms. The identified genes impacted a broad range of biological pathways and processes including cellular signaling pathways particularly cAMP and calcium (e.g., CACNA1C, CAMK2A, CAMK2D, ADCY1, ADCY2); glutamatergic (e.g., GRIK1, GRM3, GRM7), dopaminergic (e.g., DRD2, DRD4, COMT, MAOA) and serotonergic (e.g., HTR1A, HTR2A, HTR3B) neurotransmission; molecular transporters (e.g., SLC39A3, SLC6A3, SLC8A1); and neuronal growth (e.g., BDNF, IGFBP1, NRG1, NRG3). The increasing prevalence of BPD calls for better understanding of the genetic etiology of this disorder and associations between the observed BPD phenotype and genes. Visual representation of genes for bipolar disorder becomes a tool enabling clinical and laboratory geneticists, genetic counselors, and other health care providers and researchers easy access to the location and distribution of currently recognized BPD associated genes. Our study may also help inform diagnosis and advance treatment developments for those affected with this disorder and improve genetic counseling for families.

  17. A Comprehensive Analysis of the Combined Effects of High Light and High Temperature Stresses on Gene Expression in Sunflower

    PubMed Central

    Hewezi, Tarek; Léger, Mathieu; Gentzbittel, Laurent

    2008-01-01

    Background and Aims Although high light (HL) and high temperature (HT) stresses have been extensively investigated, a global analysis of their combined effects on the transcriptome of any plant species has not yet been described. Sunflower is an agronomically important oil crop frequently subjected to these stress factors. Because results in model plants may not always translate well to crop plants, responses of sunflower (Helianthus annuus) to HL, HT and a combination of both stresses were analysed by profiling gene expression in leaves and immature seeds. Methods Plants were grown in HL (600 µE m−2 s−1), HT (35 °C) and a combination of HL and HT (HL + HT), and gene expression in leaves and immature seeds was profiled using cDNA microarrays containing more than 8000 putative unigenes. Key Results Using two-way analysis of variance, 105, 55 and 129 cDNA clones were identified showing significant changes in steady-state transcript levels, across the two tissues, in response to HL, HT and HL + HT, respectively. A significant number of these transcripts were found to be specific to each stress. Comparing gene expression profiles between leaves and immature seeds revealed that 89, 113 and 186 cDNA clones can be considered as differentially expressed in response to HL, HT and HL + HT, respectively. More than half of the cDNA clones showing significant differences between embryo and leaf tissues in response to HL + HT were specific to this stress. Significant differences between leaves and seeds shared by all three stress treatments were observed for only eight genes. Conclusions Taken together, these results indicate that vegetative and reproductive tissues employ different transcriptome responses to these stress treatments. Careful examination of the putative functions of these genes revealed novel and specific responses. The potential roles of many of the differentially expressed genes in stress tolerance are mentioned and discussed. PMID:18477560

  18. Modulation of gene expression in endothelial cells in response to high LET nickel ion irradiation.

    PubMed

    Beck, Michaël; Rombouts, Charlotte; Moreels, Marjan; Aerts, An; Quintens, Roel; Tabury, Kevin; Michaux, Arlette; Janssen, Ann; Neefs, Mieke; Ernst, Eric; Dieriks, Birger; Lee, Ryonfa; De Vos, Winnok H; Lambert, Charles; Van Oostveldt, Patrick; Baatout, Sarah

    2014-10-01

    Ionizing radiation can elicit harmful effects on the cardiovascular system at high doses. Endothelial cells are critical targets in radiation-induced cardiovascular damage. Astronauts performing a long-term deep space mission are exposed to consistently higher fluences of ionizing radiation that may accumulate to reach high effective doses. In addition, cosmic radiation contains high linear energy transfer (LET) radiation that is known to produce high values of relative biological effectiveness (RBE). The aim of this study was to broaden the understanding of the molecular response to high LET radiation by investigating the changes in gene expression in endothelial cells. For this purpose, a human endothelial cell line (EA.hy926) was irradiated with accelerated nickel ions (Ni) (LET, 183 keV/µm) at doses of 0.5, 2 and 5 Gy. DNA damage was measured 2 and 24 h following irradiation by γ-H2AX foci detection by fluorescence microscopy and gene expression changes were measured by microarrays at 8 and 24 h following irradiation. We found that exposure to accelerated nickel particles induced a persistent DNA damage response up to 24 h after treatment. This was accompanied by a downregulation in the expression of a multitude of genes involved in the regulation of the cell cycle and an upregulation in the expression of genes involved in cell cycle checkpoints. In addition, genes involved in DNA damage response, oxidative stress, apoptosis and cell-cell signaling (cytokines) were found to be upregulated. An in silico analysis of the involved genes suggested that the transcription factors, E2F and nuclear factor (NF)-κB, may be involved in these cellular responses. PMID:25118949

  19. Blueprint for a High-Performance Biomaterial: Full-Length Spider Dragline Silk Genes

    PubMed Central

    Ayoub, Nadia A.; Garb, Jessica E.; Tinghitella, Robin M.; Collin, Matthew A.; Hayashi, Cheryl Y.

    2007-01-01

    Spider dragline (major ampullate) silk outperforms virtually all other natural and manmade materials in terms of tensile strength and toughness. For this reason, the mass-production of artificial spider silks through transgenic technologies has been a major goal of biomimetics research. Although all known arthropod silk proteins are extremely large (>200 kiloDaltons), recombinant spider silks have been designed from short and incomplete cDNAs, the only available sequences. Here we describe the first full-length spider silk gene sequences and their flanking regions. These genes encode the MaSp1 and MaSp2 proteins that compose the black widow's high-performance dragline silk. Each gene includes a single enormous exon (>9000 base pairs) that translates into a highly repetitive polypeptide. Patterns of variation among sequence repeats at the amino acid and nucleotide levels indicate that the interaction of selection, intergenic recombination, and intragenic recombination governs the evolution of these highly unusual, modular proteins. Phylogenetic footprinting revealed putative regulatory elements in non-coding flanking sequences. Conservation of both upstream and downstream flanking sequences was especially striking between the two paralogous black widow major ampullate silk genes. Because these genes are co-expressed within the same silk gland, there may have been selection for similarity in regulatory regions. Our new data provide complete templates for synthesis of recombinant silk proteins that significantly improve the degree to which artificial silks mimic natural spider dragline fibers. PMID:17565367

  20. Four genes predict high risk of progression from smoldering to symptomatic multiple myeloma (SWOG S0120)

    PubMed Central

    Khan, Rashid; Dhodapkar, Madhav; Rosenthal, Adam; Heuck, Christoph; Papanikolaou, Xenofon; Qu, Pingping; van Rhee, Frits; Zangari, Maurizio; Jethava, Yogesh; Epstein, Joshua; Yaccoby, Shmuel; Hoering, Antje; Crowley, John; Petty, Nathan; Bailey, Clyde; Morgan, Gareth; Barlogie, Bart

    2015-01-01

    Multiple myeloma is preceded by an asymptomatic phase, comprising monoclonal gammopathy of uncertain significance and smoldering myeloma. Compared to the former, smoldering myeloma has a higher and non-uniform rate of progression to clinical myeloma, reflecting a subset of patients with higher risk. We evaluated the gene expression profile of smoldering myeloma plasma cells among 105 patients enrolled in a prospective observational trial at our institution, with a view to identifying a high-risk signature. Baseline clinical, bone marrow, cytogenetic and radiologic data were evaluated for their potential to predict time to therapy for symptomatic myeloma. A gene signature derived from four genes, at an optimal binary cut-point of 9.28, identified 14 patients (13%) with a 2-year therapy risk of 85.7%. Conversely, a low four-gene score (<9.28) combined with baseline monoclonal protein <3 g/dL and albumin ≥3.5 g/dL identified 61 patients with low-risk smoldering myeloma with a 5.0% chance of progression at 2 years. The top 40 probe sets showed concordance with indices of chromosome instability. These data demonstrate high discriminatory power of a gene-based assay and suggest a role for dysregulation of mitotic checkpoints in the context of genomic instability as a hallmark of high-risk smoldering myeloma. PMID:26022710

  1. Insm1 promotes endocrine cell differentiation by modulating the expression of a network of genes that includes Neurog3 and Ripply3

    PubMed Central

    Osipovich, Anna B.; Long, Qiaoming; Manduchi, Elisabetta; Gangula, Rama; Hipkens, Susan B.; Schneider, Judsen; Okubo, Tadashi; Stoeckert, Christian J.; Takada, Shinji; Magnuson, Mark A.

    2014-01-01

    Insulinoma associated 1 (Insm1) plays an important role in regulating the development of cells in the central and peripheral nervous systems, olfactory epithelium and endocrine pancreas. To better define the role of Insm1 in pancreatic endocrine cell development we generated mice with an Insm1GFPCre reporter allele and used them to study Insm1-expressing and null populations. Endocrine progenitor cells lacking Insm1 were less differentiated and exhibited broad defects in hormone production, cell proliferation and cell migration. Embryos lacking Insm1 contained greater amounts of a non-coding Neurog3 mRNA splice variant and had fewer Neurog3/Insm1 co-expressing progenitor cells, suggesting that Insm1 positively regulates Neurog3. Moreover, endocrine progenitor cells that express either high or low levels of Pdx1, and thus may be biased towards the formation of specific cell lineages, exhibited cell type-specific differences in the genes regulated by Insm1. Analysis of the function of Ripply3, an Insm1-regulated gene enriched in the Pdx1-high cell population, revealed that it negatively regulates the proliferation of early endocrine cells. Taken together, these findings indicate that in developing pancreatic endocrine cells Insm1 promotes the transition from a ductal progenitor to a committed endocrine cell by repressing a progenitor cell program and activating genes essential for RNA splicing, cell migration, controlled cellular proliferation, vasculogenesis, extracellular matrix and hormone secretion. PMID:25053427

  2. Prolonged Application of High Fluid Shear to Chondrocytes Recapitulates Gene Expression Profiles Associated with Osteoarthritis

    PubMed Central

    Zhu, Fei; Wang, Pu; Lee, Norman H.; Goldring, Mary B.; Konstantopoulos, Konstantinos

    2010-01-01

    Background Excessive mechanical loading of articular cartilage producing hydrostatic stress, tensile strain and fluid flow leads to irreversible cartilage erosion and osteoarthritic (OA) disease. Since application of high fluid shear to chondrocytes recapitulates some of the earmarks of OA, we aimed to screen the gene expression profiles of shear-activated chondrocytes and assess potential similarities with OA chondrocytes. Methodology/Principal Findings Using a cDNA microarray technology, we screened the differentially-regulated genes in human T/C-28a2 chondrocytes subjected to high fluid shear (20 dyn/cm2) for 48 h and 72 h relative to static controls. Confirmation of the expression patterns of select genes was obtained by qRT-PCR. Using significance analysis of microarrays with a 5% false discovery rate, 71 and 60 non-redundant transcripts were identified to be ≥2-fold up-regulated and ≤0.6-fold down-regulated, respectively, in sheared chondrocytes. Published data sets indicate that 42 of these genes, which are related to extracellular matrix/degradation, cell proliferation/differentiation, inflammation and cell survival/death, are differentially-regulated in OA chondrocytes. In view of the pivotal role of cyclooxygenase-2 (COX-2) in the pathogenesis and/or progression of OA in vivo and regulation of shear-induced inflammation and apoptosis in vitro, we identified a collection of genes that are either up- or down-regulated by shear-induced COX-2. COX-2 and L-prostaglandin D synthase (L-PGDS) induce reactive oxygen species production, and negatively regulate genes of the histone and cell cycle families, which may play a critical role in chondrocyte death. Conclusions/Significance Prolonged application of high fluid shear stress to chondrocytes recapitulates gene expression profiles associated with osteoarthritis. Our data suggest a potential link between exposure of chondrocytes/cartilage to abnormal mechanical loading and the pathogenesis/progression of OA

  3. High-throughput genomic mapping of vector integration sites in gene therapy studies.

    PubMed

    Beard, Brian C; Adair, Jennifer E; Trobridge, Grant D; Kiem, Hans-Peter

    2014-01-01

    Gene therapy has enormous potential to treat a variety of infectious and genetic diseases. To date hundreds of patients worldwide have received hematopoietic cell products that have been gene-modified with retrovirus vectors carrying therapeutic transgenes, and many patients have been cured or demonstrated disease stabilization as a result (Adair et al., Sci Transl Med 4:133ra57, 2012; Biffi et al., Science 341:1233158, 2013; Aiuti et al., Science 341:1233151, 2013; Fischer et al., Gene 525:170-173, 2013). Unfortunately, for some patients the provirus integration dysregulated the expression of nearby genes leading to clonal outgrowth and, in some cases, cancer. Thus, the unwanted side effect of insertional mutagenesis has become a major concern for retrovirus gene therapy. The careful study of retrovirus integration sites (RIS) and the contribution of individual gene-modified clones to hematopoietic repopulating cells is of crucial importance for all gene therapy studies. Supporting this, the US Food and Drug Administration (FDA) has mandated the careful monitoring of RIS in all clinical trials of gene therapy. An invaluable method was developed: linear amplification mediated-polymerase chain reaction (LAM-PCR) capable of analyzing in vitro and complex in vivo samples, capturing valuable genomic information directly flanking the site of provirus integration. Linking this method and similar methods to high-throughput sequencing has now made possible an unprecedented understanding of the integration profile of various retrovirus vectors, and allows for sensitive monitoring of their safety. It also allows for a detailed comparison of improved safety-enhanced gene therapy vectors. An important readout of safety is the relative contribution of individual gene-modified repopulating clones. One limitation of LAM-PCR is that the ability to capture the relative contribution of individual clones is compromised because of the initial linear PCR common to all current methods

  4. A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors

    PubMed Central

    Colot, Hildur V.; Park, Gyungsoon; Turner, Gloria E.; Ringelberg, Carol; Crew, Christopher M.; Litvinkova, Liubov; Weiss, Richard L.; Borkovich, Katherine A.; Dunlap, Jay C.

    2006-01-01

    The low rate of homologous recombination exhibited by wild-type strains of filamentous fungi has hindered development of high-throughput gene knockout procedures for this group of organisms. In this study, we describe a method for rapidly creating knockout mutants in which we make use of yeast recombinational cloning, Neurospora mutant strains deficient in nonhomologous end-joining DNA repair, custom-written software tools, and robotics. To illustrate our approach, we have created strains bearing deletions of 103 Neurospora genes encoding transcription factors. Characterization of strains during growth and both asexual and sexual development revealed phenotypes for 43% of the deletion mutants, with more than half of these strains possessing multiple defects. Overall, the methodology, which achieves high-throughput gene disruption at an efficiency >90% in this filamentous fungus, promises to be applicable to other eukaryotic organisms that have a low frequency of homologous recombination. PMID:16801547

  5. Photosynthetic Genes and Genes Associated with the C4 Trait in Maize Are Characterized by a Unique Class of Highly Regulated Histone Acetylation Peaks on Upstream Promoters.

    PubMed

    Perduns, Renke; Horst-Niessen, Ina; Peterhansel, Christoph

    2015-08-01

    Histone modifications contribute to gene regulation in eukaryotes. We analyzed genome-wide histone H3 Lysine (Lys) 4 trimethylation and histone H3 Lys 9 acetylation (two modifications typically associated with active genes) in meristematic cells at the base and expanded cells in the blade of the maize (Zea mays) leaf. These data were compared with transcript levels of associated genes. For individual genes, regulations (fold changes) of histone modifications and transcript levels were much better correlated than absolute intensities. When focusing on regulated histone modification sites, we identified highly regulated secondary H3 Lys 9 acetylation peaks on upstream promoters (regulated secondary upstream peaks [R-SUPs]) on 10% of all genes. R-SUPs were more often found on genes that were up-regulated toward the blade than on down-regulated genes and specifically, photosynthetic genes. Among those genes, we identified six genes encoding enzymes of the C4 cycle and a significant enrichment of genes associated with the C4 trait derived from transcriptomic studies. On the DNA level, R-SUPs are frequently associated with ethylene-responsive elements. Based on these data, we suggest coevolution of epigenetic promoter elements during the establishment of C4 photosynthesis.

  6. Gene expression profiles in testis of pigs with extreme high and low levels of androstenone

    PubMed Central

    Moe, Maren; Meuwissen, Theo; Lien, Sigbjørn; Bendixen, Christian; Wang, Xuefei; Conley, Lene Nagstrup; Berget, Ingunn; Tajet, Håvard; Grindflek, Eli

    2007-01-01

    Background: Boar taint is a major obstacle when using uncastrated male pigs for swine production. One of the main compounds causing this taint is androstenone, a pheromone produced in porcine testis. Here we use microarrays to study the expression of thousands of genes simultaneously in testis of high and low androstenone boars. The study allows identification of genes and pathways associated with elevated androstenone levels, which is essential for recognising potential molecular markers for breeding purposes. Results: Testicular tissue was collected from 60 boars, 30 with extreme high and 30 with extreme low levels of androstenone, from each of the two breeds Duroc and Norwegian Landrace. The samples were hybridised to porcine arrays containing 26,877 cDNA clones, detecting 563 and 160 genes that were differentially expressed (p < 0.01) in Duroc and Norwegian Landrace, respectively. Of these significantly up- and down-regulated clones, 72 were found to be common for the two breeds, suggesting the possibility of both general and breed specific mechanisms in regulation of, or response to androstenone levels in boars. Ten genes were chosen for verification of expression patterns by quantitative real competitive PCR and real-time PCR. As expected, our results point towards steroid hormone metabolism and biosynthesis as important biological processes for the androstenone levels, but other potential pathways were identified as well. Among these were oxidoreductase activity, ferric iron binding, iron ion binding and electron transport activities. Genes belonging to the cytochrome P450 and hydroxysteroid dehydrogenase families were highly up-regulated, in addition to several genes encoding different families of conjugation enzymes. Furthermore, a number of genes encoding transcription factors were found both up- and down-regulated. The high number of clones belonging to ferric iron and iron ion binding suggests an importance of these genes, and the association between

  7. Mammalian ets-1 and ets-2 genes encode highly conserved proteins

    SciTech Connect

    Watson, D.K.; McWilliams, M.J.; Lapis, P.; Lautenberger, J.A.; Schweinfest, C.W.; Papas, T.S. )

    1988-11-01

    Cellular ets sequences homologous to v-ets of the avian leukemia virus E26 are highly conserved. In mammals the ets sequences are dispersed on two separate chromosomal loci, called ets-1 and ets-2. To determine the structure of these two genes and identify the open reading frames that code for the putative proteins, the authors have sequenced human ets-1 cDNAs and ets-2 cDNA clones obtained from both human and mouse. The human ETS1 gene is capable of encoding a protein of 441 amino acids. This protein is >95% identical to the chicken c-ets-1 gene product. Thus, the human ETS1 gene is homologous to the chicken c-ets-1 gene, the protooncogene that the E26 virus transduced. Human and mouse ets-2 cDNA clones are closely related and contain open reading frames capable of encoding proteins of 469 and 468 residues, respectively. Direct comparison of these data with previously published finding indicates that ets is a family of genes whose members share distinct domains.

  8. The Neurospora crassa carotenoid biosynthetic gene (albino 3) reveals highly conserved regions among prenyltransferases.

    PubMed

    Carattoli, A; Romano, N; Ballario, P; Morelli, G; Macino, G

    1991-03-25

    In the filamentous fungus Neurospora crassa the biosynthesis of carotenoids is regulated by blue light. Here we report the characterization of the albino-3 (al-3) gene of N. crassa, which encodes the carotenoid biosynthetic enzyme geranylgeranyl-pyrophosphate synthetase. This is the first geranylgeranyl-pyrophosphate synthetase gene isolated. Nucleotide sequence comparison of al-3 genomic and cDNA clones revealed that the al-3 gene is not interrupted by introns. Transcription of the al-3 gene has been examined in dark-grown and light-induced mycelia. The analysis revealed that the al-3 gene is not expressed in the dark and that its transcription is induced by blue light (Nelson, M. A., Morelli, G., Carattoli, A., Romano, N., and Macino, G. (1989) Mol. Cell. Biol. 9, 1271-1276). The al-3 gene encodes a polypeptide of 428 amino acids. Comparison of the deduced amino acid sequence of al-3 with the sequences of prenyltransferases of other species, from bacteria to humans, showed three highly conserved homologous regions. These homologous regions may be involved in the formation of the catalytic site of the prenyltransferases.

  9. Preventing High Fat Diet-induced Obesity and Improving Insulin Sensitivity through Neuregulin 4 Gene Transfer.

    PubMed

    Ma, Yongjie; Gao, Mingming; Liu, Dexi

    2016-01-01

    Neuregulin 4 (NRG4), an epidermal growth factor-like signaling molecule, plays an important role in cell-to-cell communication during tissue development. Its function to regulate energy metabolism has recently been reported. This current study was designed to assess the preventive and therapeutic effects of NRG4 overexpression on high fat diet (HFD)-induced obesity. Using the hydrodynamic gene transfer method, we demonstrate that Nrg4 gene transfer in mice suppressed the development of diet-induced obesity, but did not affect pre-existing adiposity and body weight in obese mice. Nrg4 gene transfer curbed HFD-induced hepatic steatosis by inhibiting lipogenesis and PPARγ-mediated lipid storage. Concurrently, overexpression of NRG4 reduced chronic inflammation in both preventive and treatment studies, evidenced by lower mRNA levels of macrophage marker genes including F4/80, Cd68, Cd11b, Cd11c, and macrophage chemokine Mcp1, resulting in improved insulin sensitivity. Collectively, these results demonstrate that overexpression of the Nrg4 gene by hydrodynamic gene delivery prevents HFD-induced weight gain and fatty liver, alleviates obesity-induced chronic inflammation and insulin resistance, and supports the health benefits of NRG4 in managing obesity and obesity-associated metabolic disorders. PMID:27184920

  10. Preventing High Fat Diet-induced Obesity and Improving Insulin Sensitivity through Neuregulin 4 Gene Transfer

    PubMed Central

    Ma, Yongjie; Gao, Mingming; Liu, Dexi

    2016-01-01

    Neuregulin 4 (NRG4), an epidermal growth factor-like signaling molecule, plays an important role in cell-to-cell communication during tissue development. Its function to regulate energy metabolism has recently been reported. This current study was designed to assess the preventive and therapeutic effects of NRG4 overexpression on high fat diet (HFD)-induced obesity. Using the hydrodynamic gene transfer method, we demonstrate that Nrg4 gene transfer in mice suppressed the development of diet-induced obesity, but did not affect pre-existing adiposity and body weight in obese mice. Nrg4 gene transfer curbed HFD-induced hepatic steatosis by inhibiting lipogenesis and PPARγ-mediated lipid storage. Concurrently, overexpression of NRG4 reduced chronic inflammation in both preventive and treatment studies, evidenced by lower mRNA levels of macrophage marker genes including F4/80, Cd68, Cd11b, Cd11c, and macrophage chemokine Mcp1, resulting in improved insulin sensitivity. Collectively, these results demonstrate that overexpression of the Nrg4 gene by hydrodynamic gene delivery prevents HFD-induced weight gain and fatty liver, alleviates obesity-induced chronic inflammation and insulin resistance, and supports the health benefits of NRG4 in managing obesity and obesity-associated metabolic disorders. PMID:27184920

  11. High levels of variation in Salix lignocellulose genes revealed using poplar genomic resources

    PubMed Central

    2013-01-01

    Background Little is known about the levels of variation in lignin or other wood related genes in Salix, a genus that is being increasingly used for biomass and biofuel production. The lignin biosynthesis pathway is well characterized in a number of species, including the model tree Populus. We aimed to transfer the genomic resources already available in Populus to its sister genus Salix to assess levels of variation within genes involved in wood formation. Results Amplification trials for 27 gene regions were undertaken in 40 Salix taxa. Twelve of these regions were sequenced. Alignment searches of the resulting sequences against reference databases, combined with phylogenetic analyses, showed the close similarity of these Salix sequences to Populus, confirming homology of the primer regions and indicating a high level of conservation within the wood formation genes. However, all sequences were found to vary considerably among Salix species, mainly as SNPs with a smaller number of insertions-deletions. Between 25 and 176 SNPs per kbp per gene region (in predicted exons) were discovered within Salix. Conclusions The variation found is sizeable but not unexpected as it is based on interspecific and not intraspecific comparison; it is comparable to interspecific variation in Populus. The characterisation of genetic variation is a key process in pre-breeding and for the conservation and exploitation of genetic resources in Salix. This study characterises the variation in several lignocellulose gene markers for such purposes. PMID:23924375

  12. High School Students' Understanding of Chromosome/Gene Behavior during Meiosis.

    ERIC Educational Resources Information Center

    Stewart, Jim; Dale, Michael

    1989-01-01

    Investigates high school students' understanding of the physical relationship of chromosomes and genes as expressed in their conceptual models and in their ability to manipulate the models to explain solutions to dihybrid cross problems. Describes three typical models and three students' reasoning processes. Discusses four implications. (YP)

  13. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1.

    PubMed

    Shaughnessy, John D; Zhan, Fenghuang; Burington, Bart E; Huang, Yongsheng; Colla, Simona; Hanamura, Ichiro; Stewart, James P; Kordsmeier, Bob; Randolph, Christopher; Williams, David R; Xiao, Yan; Xu, Hongwei; Epstein, Joshua; Anaissie, Elias; Krishna, Somashekar G; Cottler-Fox, Michele; Hollmig, Klaus; Mohiuddin, Abid; Pineda-Roman, Mauricio; Tricot, Guido; van Rhee, Frits; Sawyer, Jeffrey; Alsayed, Yazan; Walker, Ronald; Zangari, Maurizio; Crowley, John; Barlogie, Bart

    2007-03-15

    To molecularly define high-risk disease, we performed microarray analysis on tumor cells from 532 newly diagnosed patients with multiple myeloma (MM) treated on 2 separate protocols. Using log-rank tests of expression quartiles, 70 genes, 30% mapping to chromosome 1 (P < .001), were linked to early disease-related death. Importantly, most up-regulated genes mapped to chromosome 1q, and down-regulated genes mapped to chromosome 1p. The ratio of mean expression levels of up-regulated to down-regulated genes defined a high-risk score present in 13% of patients with shorter durations of complete remission, event-free survival, and overall survival (training set: hazard ratio [HR], 5.16; P < .001; test cohort: HR, 4.75; P < .001). The high-risk score also was an independent predictor of outcome endpoints in multivariate analysis (P < .001) that included the International Staging System and high-risk translocations. In a comparison of paired baseline and relapse samples, the high-risk score frequency rose to 76% at relapse and predicted short postrelapse survival (P < .05). Multivariate discriminant analysis revealed that a 17-gene subset could predict outcome as well as the 70-gene model. Our data suggest that altered transcriptional regulation of genes mapping to chromosome 1 may contribute to disease progression, and that expression profiling can be used to identify high-risk disease and guide therapeutic interventions. PMID:17105813

  14. Clostridium difficile Isolates with High Linezolid MICs Harbor the Multiresistance Gene cfr

    PubMed Central

    Martín, Adoración; Alcalá, Luis; Cercenado, Emilia; Iglesias, Cristina; Reigadas, Elena; Bouza, Emilio

    2014-01-01

    We studied the molecular mechanisms of linezolid resistance in 9 isolates of toxigenic Clostridium difficile with high linezolid MICs. The activity of linezolid was determined against 891 clinical isolates of toxigenic C. difficile. The MIC50 and MIC90 of linezolid were 0.75 μg/ml and 1.5 μg/ml, respectively. Nine strains (1%) showed high linezolid MICs (6 μg/ml to 16 μg/ml) and also were resistant to clindamycin, erythromycin, and chloramphenicol. These strains were selected for molecular studies: sequencing of domain V of the 23 rRNA gene, detection of the cfr methyltransferase gene, and sequencing of the ribosomal protein genes rplC and rplD. Molecular relatedness between strains was assessed using PCR ribotyping and MLVA (multilocus variable-number tandem-repeat analysis) typing. The strains belonged to ribotypes 001 (2/9), 017 (6/9), and 078 (1/9). MLVA showed that strains of ribotype 001 and 017 belonged to the same clonal complex in each ribotype. We did not detect mutations in the 23S rRNA gene. The cfr gene was detected in 7 of 9 strains. Sequencing of cfr amplicons revealed a similarity of 100% to a fragment of transposon Tn6218 of C. difficile, which was annotated as a putative chloramphenicol/florfenicol resistance protein. We were unable to detect mechanisms of resistance to linezolid in the 2 strains belonging to ribotype 001. While the relevance of our results lies in the detection of the cfr gene as a possible mechanism of resistance to linezolid in C. difficile, our findings should be assessed by further investigations to characterize these possible cfr genes and their contribution to linezolid resistance. PMID:25385106

  15. Different gene expressions between cattle and yak provide insights into high-altitude adaptation.

    PubMed

    Wang, K; Yang, Y; Wang, L; Ma, T; Shang, H; Ding, L; Han, J; Qiu, Q

    2016-02-01

    DNA sequence variation has been widely reported as the genetic basis for adaptation, in both humans and other animals, to the hypoxic environment experienced at high altitudes. However, little is known about the patterns of gene expression underlying such hypoxic adaptations. In this study, we examined the differences in the transcriptomes of four organs (heart, kidney, liver and lung) between yak and cattle, a pair of closely related species distributed at high and low altitudes respectively. Of the four organs examined, heart shows the greatest differentiation between the two species in terms of gene expression profiles. Detailed analyses demonstrated that some genes associated with the oxygen supply system and the defense systems that respond to threats of hypoxia are differentially expressed. In addition, genes with significantly differentiated patterns of expression in all organs exhibited an unexpected uniformity of regulation along with an elevated frequency of nonsynonymous substitutions. This co-evolution of protein sequences and gene expression patterns is likely to be correlated with the optimization of the yak metabolic system to resist hypoxia.

  16. Reverse engineering and analysis of genome-wide gene regulatory networks from gene expression profiles using high-performance computing.

    PubMed

    Belcastro, Vincenzo; Gregoretti, Francesco; Siciliano, Velia; Santoro, Michele; D'Angelo, Giovanni; Oliva, Gennaro; di Bernardo, Diego

    2012-01-01

    Regulation of gene expression is a carefully regulated phenomenon in the cell. “Reverse-engineering” algorithms try to reconstruct the regulatory interactions among genes from genome-scale measurements of gene expression profiles (microarrays). Mammalian cells express tens of thousands of genes; hence, hundreds of gene expression profiles are necessary in order to have acceptable statistical evidence of interactions between genes. As the number of profiles to be analyzed increases, so do computational costs and memory requirements. In this work, we designed and developed a parallel computing algorithm to reverse-engineer genome-scale gene regulatory networks from thousands of gene expression profiles. The algorithm is based on computing pairwise Mutual Information between each gene-pair. We successfully tested it to reverse engineer the Mus Musculus (mouse) gene regulatory network in liver from gene expression profiles collected from a public repository. A parallel hierarchical clustering algorithm was implemented to discover “communities” within the gene network. Network communities are enriched for genes involved in the same biological functions. The inferred network was used to identify two mitochondrial proteins.

  17. Gene expression profiles in liver of pigs with extreme high and low levels of androstenone

    PubMed Central

    Moe, Maren; Lien, Sigbjørn; Bendixen, Christian; Hedegaard, Jakob; Hornshøj, Henrik; Berget, Ingunn; Meuwissen, Theo HE; Grindflek, Eli

    2008-01-01

    Background Boar taint is the unpleasant odour and flavour of the meat of uncastrated male pigs that is primarily caused by high levels of androstenone and skatole in adipose tissue. Androstenone is a steroid and its levels are mainly genetically determined. Studies on androstenone metabolism have, however, focused on a limited number of genes. Identification of additional genes influencing levels of androstenone may facilitate implementation of marker assisted breeding practices. In this study, microarrays were used to identify differentially expressed genes and pathways related to androstenone metabolism in the liver from boars with extreme levels of androstenone in adipose tissue. Results Liver tissue samples from 58 boars of the two breeds Duroc and Norwegian Landrace, 29 with extreme high and 29 with extreme low levels of androstenone, were selected from more than 2500 individuals. The samples were hybridised to porcine cDNA microarrays and the 1% most significant differentially expressed genes were considered significant. Among the differentially expressed genes were metabolic phase I related genes belonging to the cytochrome P450 family and the flavin-containing monooxygenase FMO1. Additionally, phase II conjugation genes including UDP-glucuronosyltransferases UGT1A5, UGT2A1 and UGT2B15, sulfotransferase STE, N-acetyltransferase NAT12 and glutathione S-transferase were identified. Phase I and phase II metabolic reactions increase the water solubility of steroids and play a key role in their elimination. Differential expression was also found for genes encoding 17beta-hydroxysteroid dehydrogenases (HSD17B2, HSD17B4, HSD17B11 and HSD17B13) and plasma proteins alpha-1-acid glycoprotein (AGP) and orosomucoid (ORM1). 17beta-hydroxysteroid dehydrogenases and plasma proteins regulate the availability of steroids by controlling the amount of active steroids accessible to receptors and available for metabolism. Differences in the expression of FMO1, NAT12, HSD17B2 and

  18. Two Drosophila melanogaster tropomyosin genes: structural and functional aspects.

    PubMed Central

    Karlik, C C; Fyrberg, E A

    1986-01-01

    We compared the structure and function of the two Drosophila melanogaster tropomyosin genes. The most striking structural aspect was their size disparity. Codons 1 through 257 of gene 2 occupied 833 nucleotides and contained only one intron, whereas the corresponding region of gene 1 occupied 17.5 kilobases and was interrupted by eight introns. The intron-exon arrangement of gene 1 reflected evolutionary expansion of tropomyosin via 42- and 49-residue duplications, which are probably actin-binding domains. Functionally, gene 1 was considerably more complex than gene 2; it was active in both muscle and nonmuscle cell lineages, had at least five variable exons, and specified a minimum of five developmentally regulated isoforms. Two of these isoforms, which accumulated only in flight muscles, were unprecedented fusion proteins in which the tropomyosin sequence was joined to a carboxy-terminal proline-rich domain. Images PMID:3097506

  19. SNP-based high density genetic map and mapping of btwd1 dwarfing gene in barley

    PubMed Central

    Ren, Xifeng; Wang, Jibin; Liu, Lipan; Sun, Genlou; Li, Chengdao; Luo, Hong; Sun, Dongfa

    2016-01-01

    A high-density linkage map is a valuable tool for functional genomics and breeding. A newly developed sequence-based marker technology, restriction site associated DNA (RAD) sequencing, has been proven to be powerful for the rapid discovery and genotyping of genome-wide single nucleotide polymorphism (SNP) markers and for the high-density genetic map construction. The objective of this research was to construct a high-density genetic map of barley using RAD sequencing. 1894 high-quality SNP markers were developed and mapped onto all seven chromosomes together with 68 SSR markers. These 1962 markers constituted a total genetic length of 1375.8 cM and an average of 0.7 cM between adjacent loci. The number of markers within each linkage group ranged from 209 to 396. The new recessive dwarfing gene btwd1 in Huaai 11 was mapped onto the high density linkage maps. The result showed that the btwd1 is positioned between SNP marks 7HL_6335336 and 7_249275418 with a genetic distance of 0.9 cM and 0.7 cM on chromosome 7H, respectively. The SNP-based high-density genetic map developed and the dwarfing gene btwd1 mapped in this study provide critical information for position cloning of the btwd1 gene and molecular breeding of barley. PMID:27530597

  20. SNP-based high density genetic map and mapping of btwd1 dwarfing gene in barley.

    PubMed

    Ren, Xifeng; Wang, Jibin; Liu, Lipan; Sun, Genlou; Li, Chengdao; Luo, Hong; Sun, Dongfa

    2016-01-01

    A high-density linkage map is a valuable tool for functional genomics and breeding. A newly developed sequence-based marker technology, restriction site associated DNA (RAD) sequencing, has been proven to be powerful for the rapid discovery and genotyping of genome-wide single nucleotide polymorphism (SNP) markers and for the high-density genetic map construction. The objective of this research was to construct a high-density genetic map of barley using RAD sequencing. 1894 high-quality SNP markers were developed and mapped onto all seven chromosomes together with 68 SSR markers. These 1962 markers constituted a total genetic length of 1375.8 cM and an average of 0.7 cM between adjacent loci. The number of markers within each linkage group ranged from 209 to 396. The new recessive dwarfing gene btwd1 in Huaai 11 was mapped onto the high density linkage maps. The result showed that the btwd1 is positioned between SNP marks 7HL_6335336 and 7_249275418 with a genetic distance of 0.9 cM and 0.7 cM on chromosome 7H, respectively. The SNP-based high-density genetic map developed and the dwarfing gene btwd1 mapped in this study provide critical information for position cloning of the btwd1 gene and molecular breeding of barley.

  1. A single nucleotide polymorphism analysis of the LAMA1 gene in Japanese patients with high myopia

    PubMed Central

    Sasaki, Sayaka; Ota, Masao; Meguro, Akira; Nishizaki, Ritsuko; Okada, Eiichi; Mok, Jeewon; Kimura, Tetusya; Oka, Akira; Katsuyama, Yoshihiko; Ohno, Shigeaki; Inoko, Hidetoshi; Mizuki, Nobuhisa

    2007-01-01

    Although a myopia susceptibility gene has not yet been elucidated, ten candidate regions (MYP1–MYP10) have been associated with myopia by linkage analysis employing large pedigrees. We report herein on the results of our analysis pertaining to polymorphisms of LAMA1 (alpha subunit of laminin), a promising candidate gene for high myopia present in the MYP2 region of Japanese subjects with high myopia. Three hundred and thirty Japanese subjects with high myopia at a level of greater than −9.25 D and ethnically and sex matched 330 normal controls without high myopia was enrolled in this study. The thirteen SNPs located on the LAMA1 gene were analyzed using PCR and SNP-specific fluorogenic probes. Two of the SNPs were monomorphic and none of the 11 SNPs showed statistically significant association with high myopia in the Japanese population. There is no convincing evidence to prove a connection between nucleotide sequence variations in LAMA1 and high myopia. The pairwise linkage disequilibrium (LD) mapping disclosed a strong value (D' > 0.8) and narrow ranged block within these SNPs. PMID:19668483

  2. SNP-based high density genetic map and mapping of btwd1 dwarfing gene in barley.

    PubMed

    Ren, Xifeng; Wang, Jibin; Liu, Lipan; Sun, Genlou; Li, Chengdao; Luo, Hong; Sun, Dongfa

    2016-01-01

    A high-density linkage map is a valuable tool for functional genomics and breeding. A newly developed sequence-based marker technology, restriction site associated DNA (RAD) sequencing, has been proven to be powerful for the rapid discovery and genotyping of genome-wide single nucleotide polymorphism (SNP) markers and for the high-density genetic map construction. The objective of this research was to construct a high-density genetic map of barley using RAD sequencing. 1894 high-quality SNP markers were developed and mapped onto all seven chromosomes together with 68 SSR markers. These 1962 markers constituted a total genetic length of 1375.8 cM and an average of 0.7 cM between adjacent loci. The number of markers within each linkage group ranged from 209 to 396. The new recessive dwarfing gene btwd1 in Huaai 11 was mapped onto the high density linkage maps. The result showed that the btwd1 is positioned between SNP marks 7HL_6335336 and 7_249275418 with a genetic distance of 0.9 cM and 0.7 cM on chromosome 7H, respectively. The SNP-based high-density genetic map developed and the dwarfing gene btwd1 mapped in this study provide critical information for position cloning of the btwd1 gene and molecular breeding of barley. PMID:27530597

  3. Highly repetitive tRNA(Pro)-tRNA(His) gene cluster from Photobacterium phosphoreum.

    PubMed Central

    Giroux, S; Beaudet, J; Cedergren, R

    1988-01-01

    A DNA fragment comprising the four tRNA gene sequences of the Escherichia coli argT locus hybridized with two Sau3A-generated DNA fragments from the vibrio Photobacterium phosphoreum (ATCC 11040). Detailed sequence analysis of the longer fragment shows the following gene organization: 5'-promoter-tRNA(Pro)-tRNAPro-tRNA(Pro)-tRNA(His)-tRNA(Pro)-tRNA(Pro)- tRNA(His)-tRNA(Pro)-five pseudogenes derived from the upstream tRNAPro interspersed by putative Rho-independent terminators. This sequence demonstrates the presence of highly repetitive, tandem tRNA genes in a bacterial genome. Furthermore, a stretch of 304 nucleotides from this cluster was found virtually unchanged in the other (shorter) fragment which was previously sequenced. The two clusters together contain eight tRNA(Pro) pseudogenes and eight fully intact tRNA(Pro) genes, an unusually high number for a single eubacterial isoacceptor tRNA. These results show that the organization of some tRNA operons is highly variable in eubacteria. Images PMID:3056906

  4. Microarray analysis of the AHR system: Tissue-specific flexibility in signal and target genes

    SciTech Connect

    Frericks, Markus; Meissner, Marc; Esser, Charlotte . E-mail: chesser@uni-duesseldorf.de

    2007-05-01

    Data mining published microarray experiments require that expression profiles are directly comparable. We performed linear global normalization on the data of 1967 Affymetrix U74av2 microarrays, i.e. the transcriptomes of > 100 murine tissues or cell types. The mathematical transformation effectively nullifies inter-experimental or inter-laboratory differences between microarrays. The correctness of expression values was validated by quantitative RT-PCR. Using the database we analyze components of the aryl hydrocarbon receptor (AHR) signaling pathway in various tissues. We identified lineage and differentiation specific variant expression of AHR, ARNT, and HIF1{alpha} in the T-cell lineage and high expression of CYP1A1 in immature B cells and dendritic cells. Performing co-expression analysis we found unorthodox expression of the AHR in the absence of ARNT, particularly in stem cell populations, and can reject the hypothesis that ARNT2 takes over and is highly expressed when ARNT expression is low or absent. Furthermore the AHR shows no co-expression with any other transcript present on the chip. Analysis of differential gene expression under 308 conditions revealed 53 conditions under which the AHR is regulated, numerous conditions under which an intrinsic AHR action is modified as well as conditions activating the AHR even in the absence of known AHR ligands. Thus meta-analysis of published expression profiles is a powerful tool to gain novel insights into known and unknown systems.

  5. Gene Signature of High White Blood Cell Count in B-Precursor Acute Lymphoblastic Leukemia

    PubMed Central

    Dombkowski, Alan A.; Caldwell, J. Timothy; Chu, Roland; Xavier, Ana C.; Thummel, Ryan; Neely, Melody; Matherly, Larry H.; Ge, Yubin; Taub, Jeffrey W.

    2016-01-01

    In this study we sought to identify genetic factors associated with the presenting white blood cell (WBC) count in B-precursor acute lymphoblastic leukemia (BP-ALL). Using ETV6-RUNX1-positive BP-ALL patient samples, a homogeneous subtype, we identified 16 differentially expressed genes based on the presenting WBC count (< 50,000/cumm vs > 50,000). We further confirmed that IL1R1, BCAR3, KCNH2, PIR, and ZDHHC23 were differentially expressed in a larger cohort of ETV6-RUNX1-negative BP-ALL patient samples. Statistical analysis demonstrated that expression levels of these genes could accurately categorize high and low WBC count subjects using two independent patient sets, representing positive and negative ETV6-RUNX1 cases. Further studies in leukemia cell line models will better delineate the role of these genes in regulating the white blood cell count and potentially identify new therapeutic targets. PMID:27536776

  6. Diet-dependent gene expression in honey bees: honey vs. sucrose or high fructose corn syrup

    PubMed Central

    Wheeler, Marsha M.; Robinson, Gene E.

    2014-01-01

    Severe declines in honey bee populations have made it imperative to understand key factors impacting honey bee health. Of major concern is nutrition, as malnutrition in honey bees is associated with immune system impairment and increased pesticide susceptibility. Beekeepers often feed high fructose corn syrup (HFCS) or sucrose after harvesting honey or during periods of nectar dearth. We report that, relative to honey, chronic feeding of either of these two alternative carbohydrate sources elicited hundreds of differences in gene expression in the fat body, a peripheral nutrient-sensing tissue analogous to vertebrate liver and adipose tissues. These expression differences included genes involved in protein metabolism and oxidation-reduction, including some involved in tyrosine and phenylalanine metabolism. Differences between HFCS and sucrose diets were much more subtle and included a few genes involved in carbohydrate and lipid metabolism. Our results suggest that bees receive nutritional components from honey that are not provided by alternative food sources widely used in apiculture. PMID:25034029

  7. High initiation rates at the ribosomal gene promoter do not depend upon spacer transcription

    SciTech Connect

    Labhart, P.; Reeder, R.H. )

    1989-05-01

    We report experiments that test the model that in Xenopus laevis, RNA polymerase I is handed over in a conservative fashion from the T3 terminator to the adjacent gene promoter. We have introduced transcription-terminating lesions into the ribosomal DNA repeat by irradiating cultured cells with ultraviolet light. We used isolated nuclei to measure the effect of such lesions on transcription. UV damage sufficient to prevent all elongating RNA polymerase from reaching T3 from upstream had no adverse effect on the density of RNA polymerase at the very 5' end of the gene. We conclude that high rates of transcription initiation at the gene promoter do not depend upon polymerase passing from one repeat to the next or on polymerase initiating at the spacer promoters.

  8. High-Throughput Fluorescent Tagging of Full-Length Arabidopsis Gene Products in Planta1

    PubMed Central

    Tian, Guo-Wei; Mohanty, Amitabh; Chary, S. Narasimha; Li, Shijun; Paap, Brigitte; Drakakaki, Georgia; Kopec, Charles D.; Li, Jianxiong; Ehrhardt, David; Jackson, David; Rhee, Seung Y.; Raikhel, Natasha V.; Citovsky, Vitaly

    2004-01-01

    We developed a high-throughput methodology, termed fluorescent tagging of full-length proteins (FTFLP), to analyze expression patterns and subcellular localization of Arabidopsis gene products in planta. Determination of these parameters is a logical first step in functional characterization of the approximately one-third of all known Arabidopsis genes that encode novel proteins of unknown function. Our FTFLP-based approach offers two significant advantages: first, it produces internally-tagged full-length proteins that are likely to exhibit native intracellular localization, and second, it yields information about the tissue specificity of gene expression by the use of native promoters. To demonstrate how FTFLP may be used for characterization of the Arabidopsis proteome, we tagged a series of known proteins with diverse subcellular targeting patterns as well as several proteins with unknown function and unassigned subcellular localization. PMID:15141064

  9. Diet-dependent gene expression in honey bees: honey vs. sucrose or high fructose corn syrup.

    PubMed

    Wheeler, Marsha M; Robinson, Gene E

    2014-07-17

    Severe declines in honey bee populations have made it imperative to understand key factors impacting honey bee health. Of major concern is nutrition, as malnutrition in honey bees is associated with immune system impairment and increased pesticide susceptibility. Beekeepers often feed high fructose corn syrup (HFCS) or sucrose after harvesting honey or during periods of nectar dearth. We report that, relative to honey, chronic feeding of either of these two alternative carbohydrate sources elicited hundreds of differences in gene expression in the fat body, a peripheral nutrient-sensing tissue analogous to vertebrate liver and adipose tissues. These expression differences included genes involved in protein metabolism and oxidation-reduction, including some involved in tyrosine and phenylalanine metabolism. Differences between HFCS and sucrose diets were much more subtle and included a few genes involved in carbohydrate and lipid metabolism. Our results suggest that bees receive nutritional components from honey that are not provided by alternative food sources widely used in apiculture.

  10. Gene Signature of High White Blood Cell Count in B-Precursor Acute Lymphoblastic Leukemia.

    PubMed

    Edwards, Holly; Rubenstein, Mara; Dombkowski, Alan A; Caldwell, J Timothy; Chu, Roland; Xavier, Ana C; Thummel, Ryan; Neely, Melody; Matherly, Larry H; Ge, Yubin; Taub, Jeffrey W

    2016-01-01

    In this study we sought to identify genetic factors associated with the presenting white blood cell (WBC) count in B-precursor acute lymphoblastic leukemia (BP-ALL). Using ETV6-RUNX1-positive BP-ALL patient samples, a homogeneous subtype, we identified 16 differentially expressed genes based on the presenting WBC count (< 50,000/cumm vs > 50,000). We further confirmed that IL1R1, BCAR3, KCNH2, PIR, and ZDHHC23 were differentially expressed in a larger cohort of ETV6-RUNX1-negative BP-ALL patient samples. Statistical analysis demonstrated that expression levels of these genes could accurately categorize high and low WBC count subjects using two independent patient sets, representing positive and negative ETV6-RUNX1 cases. Further studies in leukemia cell line models will better delineate the role of these genes in regulating the white blood cell count and potentially identify new therapeutic targets.

  11. Diet-dependent gene expression in honey bees: honey vs. sucrose or high fructose corn syrup.

    PubMed

    Wheeler, Marsha M; Robinson, Gene E

    2014-01-01

    Severe declines in honey bee populations have made it imperative to understand key factors impacting honey bee health. Of major concern is nutrition, as malnutrition in honey bees is associated with immune system impairment and increased pesticide susceptibility. Beekeepers often feed high fructose corn syrup (HFCS) or sucrose after harvesting honey or during periods of nectar dearth. We report that, relative to honey, chronic feeding of either of these two alternative carbohydrate sources elicited hundreds of differences in gene expression in the fat body, a peripheral nutrient-sensing tissue analogous to vertebrate liver and adipose tissues. These expression differences included genes involved in protein metabolism and oxidation-reduction, including some involved in tyrosine and phenylalanine metabolism. Differences between HFCS and sucrose diets were much more subtle and included a few genes involved in carbohydrate and lipid metabolism. Our results suggest that bees receive nutritional components from honey that are not provided by alternative food sources widely used in apiculture. PMID:25034029

  12. High accuracy mutation detection in leukemia on a selected panel of cancer genes.

    PubMed

    Kalender Atak, Zeynep; De Keersmaecker, Kim; Gianfelici, Valentina; Geerdens, Ellen; Vandepoel, Roel; Pauwels, Daphnie; Porcu, Michaël; Lahortiga, Idoya; Brys, Vanessa; Dirks, Willy G; Quentmeier, Hilmar; Cloos, Jacqueline; Cuppens, Harry; Uyttebroeck, Anne; Vandenberghe, Peter; Cools, Jan; Aerts, Stein

    2012-01-01

    With the advent of whole-genome and whole-exome sequencing, high-quality catalogs of recurrently mutated cancer genes are becoming available for many cancer types. Increasing access to sequencing technology, including bench-top sequencers, provide the opportunity to re-sequence a limited set of cancer genes across a patient cohort with limited processing time. Here, we re-sequenced a set of cancer genes in T-cell acute lymphoblastic leukemia (T-ALL) using Nimblegen sequence capture coupled with Roche/454 technology. First, we investigated how a maximal sensitivity and specificity of mutation detection can be achieved through a benchmark study. We tested nine combinations of different mapping and variant-calling methods, varied the variant calling parameters, and compared the predicted mutations with a large independent validation set obtained by capillary re-sequencing. We found that the combination of two mapping algorithms, namely BWA-SW and SSAHA2, coupled with the variant calling algorithm Atlas-SNP2 yields the highest sensitivity (95%) and the highest specificity (93%). Next, we applied this analysis pipeline to identify mutations in a set of 58 cancer genes, in a panel of 18 T-ALL cell lines and 15 T-ALL patient samples. We confirmed mutations in known T-ALL drivers, including PHF6, NF1, FBXW7, NOTCH1, KRAS, NRAS, PIK3CA, and PTEN. Interestingly, we also found mutations in several cancer genes that had not been linked to T-ALL before, including JAK3. Finally, we re-sequenced a small set of 39 candidate genes and identified recurrent mutations in TET1, SPRY3 and SPRY4. In conclusion, we established an optimized analysis pipeline for Roche/454 data that can be applied to accurately detect gene mutations in cancer, which led to the identification of several new candidate T-ALL driver mutations.

  13. High-resolution gene expression atlases for adult and developing mouse brain and spinal cord.

    PubMed

    Henry, Alex M; Hohmann, John G

    2012-10-01

    Knowledge of the structure, genetics, circuits, and physiological properties of the mammalian brain in both normal and pathological states is ever increasing as research labs worldwide probe the various aspects of brain function. Until recently, however, comprehensive cataloging of gene expression across the central nervous system has been lacking. The Allen Institute for Brain Science, as part of its mission to propel neuroscience research, has completed several large gene-mapping projects in mouse, nonhuman primate, and human brain, producing informative online public resources and tools. Here we present the Allen Mouse Brain Atlas, covering ~20,000 genes throughout the adult mouse brain; the Allen Developing Mouse Brain Atlas, detailing expression of approximately 2,000 important developmental genes across seven embryonic and postnatal stages of brain growth; and the Allen Spinal Cord Atlas, revealing expression for ~20,000 genes in the adult and neonatal mouse spinal cords. Integrated data-mining tools, including reference atlases, informatics analyses, and 3-D viewers, are described. For these massive-scale projects, high-throughput industrial techniques were developed to standardize and reliably repeat experimental goals. To verify consistency and accuracy, a detailed analysis of the 1,000 most viewed genes for the adult mouse brain (according to website page views) was performed by comparing our data with peer-reviewed literature and other databases. We show that our data are highly consistent with independent sources and provide a comprehensive compendium of information and tools used by thousands of researchers each month. All data and tools are freely available via the Allen Brain Atlas portal (www.brain-map.org).

  14. High-resolution gene expression atlases for adult and developing mouse brain and spinal cord.

    PubMed

    Henry, Alex M; Hohmann, John G

    2012-10-01

    Knowledge of the structure, genetics, circuits, and physiological properties of the mammalian brain in both normal and pathological states is ever increasing as research labs worldwide probe the various aspects of brain function. Until recently, however, comprehensive cataloging of gene expression across the central nervous system has been lacking. The Allen Institute for Brain Science, as part of its mission to propel neuroscience research, has completed several large gene-mapping projects in mouse, nonhuman primate, and human brain, producing informative online public resources and tools. Here we present the Allen Mouse Brain Atlas, covering ~20,000 genes throughout the adult mouse brain; the Allen Developing Mouse Brain Atlas, detailing expression of approximately 2,000 important developmental genes across seven embryonic and postnatal stages of brain growth; and the Allen Spinal Cord Atlas, revealing expression for ~20,000 genes in the adult and neonatal mouse spinal cords. Integrated data-mining tools, including reference atlases, informatics analyses, and 3-D viewers, are described. For these massive-scale projects, high-throughput industrial techniques were developed to standardize and reliably repeat experimental goals. To verify consistency and accuracy, a detailed analysis of the 1,000 most viewed genes for the adult mouse brain (according to website page views) was performed by comparing our data with peer-reviewed literature and other databases. We show that our data are highly consistent with independent sources and provide a comprehensive compendium of information and tools used by thousands of researchers each month. All data and tools are freely available via the Allen Brain Atlas portal (www.brain-map.org). PMID:22832508

  15. Reduced Set of Virulence Genes Allows High Accuracy Prediction of Bacterial Pathogenicity in Humans

    PubMed Central

    Iraola, Gregorio; Vazquez, Gustavo; Spangenberg, Lucía; Naya, Hugo

    2012-01-01

    Although there have been great advances in understanding bacterial pathogenesis, there is still a lack of integrative information about what makes a bacterium a human pathogen. The advent of high-throughput sequencing technologies has dramatically increased the amount of completed bacterial genomes, for both known human pathogenic and non-pathogenic strains; this information is now available to investigate genetic features that determine pathogenic phenotypes in bacteria. In this work we determined presence/absence patterns of different virulence-related genes among more than finished bacterial genomes from both human pathogenic and non-pathogenic strains, belonging to different taxonomic groups (i.e: Actinobacteria, Gammaproteobacteria, Firmicutes, etc.). An accuracy of 95% using a cross-fold validation scheme with in-fold feature selection is obtained when classifying human pathogens and non-pathogens. A reduced subset of highly informative genes () is presented and applied to an external validation set. The statistical model was implemented in the BacFier v1.0 software (freely available at ), that displays not only the prediction (pathogen/non-pathogen) and an associated probability for pathogenicity, but also the presence/absence vector for the analyzed genes, so it is possible to decipher the subset of virulence genes responsible for the classification on the analyzed genome. Furthermore, we discuss the biological relevance for bacterial pathogenesis of the core set of genes, corresponding to eight functional categories, all with evident and documented association with the phenotypes of interest. Also, we analyze which functional categories of virulence genes were more distinctive for pathogenicity in each taxonomic group, which seems to be a completely new kind of information and could lead to important evolutionary conclusions. PMID:22916122

  16. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing.

    PubMed

    Vannette, Rachel L; Mohamed, Abbas; Johnson, Brian R

    2015-11-09

    Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging.

  17. High Rates of Antimicrobial Drug Resistance Gene Acquisition after International Travel, the Netherlands

    PubMed Central

    von Wintersdorff, Christian J.H.; Penders, John; Stobberingh, Ellen E.; Lashof, Astrid M.L. Oude; Hoebe, Christian J.P.A.; Savelkoul, Paul H.M.

    2014-01-01

    We investigated the effect of international travel on the gut resistome of 122 healthy travelers from the Netherlands by using a targeted metagenomic approach. Our results confirm high acquisition rates of the extended-spectrum β-lactamase encoding gene blaCTX-M, documenting a rise in prevalence from 9.0% before travel to 33.6% after travel (p<0.001). The prevalence of quinolone resistance encoding genes qnrB and qnrS increased from 6.6% and 8.2% before travel to 36.9% and 55.7% after travel, respectively (both p<0.001). Travel to Southeast Asia and the Indian subcontinent was associated with the highest acquisition rates of qnrS and both blaCTX-M and qnrS, respectively. Investigation of the associations between the acquisitions of the blaCTX-M and qnr genes showed that acquisition of a blaCTX-M gene was not associated with that of a qnrB (p = 0.305) or qnrS (p = 0.080) gene. These findings support the increasing evidence that travelers contribute to the spread of antimicrobial drug resistance. PMID:24655888

  18. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing

    PubMed Central

    Vannette, Rachel L.; Mohamed, Abbas; Johnson, Brian R.

    2015-01-01

    Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging. PMID:26549293

  19. Putative extremely high rate of proteome innovation in lancelets might be explained by high rate of gene prediction errors.

    PubMed

    Bányai, László; Patthy, László

    2016-08-01

    A recent analysis of the genomes of Chinese and Florida lancelets has concluded that the rate of creation of novel protein domain combinations is orders of magnitude greater in lancelets than in other metazoa and it was suggested that continuous activity of transposable elements in lancelets is responsible for this increased rate of protein innovation. Since morphologically Chinese and Florida lancelets are highly conserved, this finding would contradict the observation that high rates of protein innovation are usually associated with major evolutionary innovations. Here we show that the conclusion that the rate of proteome innovation is exceptionally high in lancelets may be unjustified: the differences observed in domain architectures of orthologous proteins of different amphioxus species probably reflect high rates of gene prediction errors rather than true innovation.

  20. Putative extremely high rate of proteome innovation in lancelets might be explained by high rate of gene prediction errors

    PubMed Central

    Bányai, László; Patthy, László

    2016-01-01

    A recent analysis of the genomes of Chinese and Florida lancelets has concluded that the rate of creation of novel protein domain combinations is orders of magnitude greater in lancelets than in other metazoa and it was suggested that continuous activity of transposable elements in lancelets is responsible for this increased rate of protein innovation. Since morphologically Chinese and Florida lancelets are highly conserved, this finding would contradict the observation that high rates of protein innovation are usually associated with major evolutionary innovations. Here we show that the conclusion that the rate of proteome innovation is exceptionally high in lancelets may be unjustified: the differences observed in domain architectures of orthologous proteins of different amphioxus species probably reflect high rates of gene prediction errors rather than true innovation. PMID:27476717

  1. Putative extremely high rate of proteome innovation in lancelets might be explained by high rate of gene prediction errors.

    PubMed

    Bányai, László; Patthy, László

    2016-01-01

    A recent analysis of the genomes of Chinese and Florida lancelets has concluded that the rate of creation of novel protein domain combinations is orders of magnitude greater in lancelets than in other metazoa and it was suggested that continuous activity of transposable elements in lancelets is responsible for this increased rate of protein innovation. Since morphologically Chinese and Florida lancelets are highly conserved, this finding would contradict the observation that high rates of protein innovation are usually associated with major evolutionary innovations. Here we show that the conclusion that the rate of proteome innovation is exceptionally high in lancelets may be unjustified: the differences observed in domain architectures of orthologous proteins of different amphioxus species probably reflect high rates of gene prediction errors rather than true innovation. PMID:27476717

  2. A stationary-phase gene in Saccharomyces cerevisiae is a member of a novel, highly conserved gene family.

    PubMed Central

    Braun, E L; Fuge, E K; Padilla, P A; Werner-Washburne, M

    1996-01-01

    The regulation of cellular growth and proliferation in response to environmental cues is critical for development and the maintenance of viability in all organisms. In unicellular organisms, such as the budding yeast Saccharomyces cerevisiae, growth and proliferation are regulated by nutrient availability. We have described changes in the pattern of protein synthesis during the growth of S. cerevisiae cells to stationary phase (E. K. Fuge, E. L. Braun, and M. Werner-Washburne, J. Bacteriol. 176:5802-5813, 1994) and noted a protein, which we designated Snz1p (p35), that shows increased synthesis after entry into stationary phase. We report here the identification of the SNZ1 gene, which encodes this protein. We detected increased SNZ1 mRNA accumulation almost 2 days after glucose exhaustion, significantly later than that of mRNAs encoded by other postexponential genes. SNZ1-related sequences were detected in phylogenetically diverse organisms by sequence comparisons and low-stringency hybridization. Multiple SNZ1-related sequences were detected in some organisms, including S. cerevisiae. Snz1p was found to be among the most evolutionarily conserved proteins currently identified, indicating that we have identified a novel, highly conserved protein involved in growth arrest in S. cerevisiae. The broad phylogenetic distribution, the regulation of the SNZ1 mRNA and protein in S. cerevisiae, and identification of a Snz protein modified during sporulation in the gram-positive bacterium Bacillus subtilis support the hypothesis that Snz proteins are part of an ancient response that occurs during nutrient limitation and growth arrest. PMID:8955308

  3. Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer

    USGS Publications Warehouse

    Pearson, T.; Giffard, P.; Beckstrom-Sternberg, S.; Auerbach, R.; Hornstra, H.; Tuanyok, A.; Price, E.P.; Glass, M.B.; Leadem, B.; Beckstrom-Sternberg, J. S.; Allan, G.J.; Foster, J.T.; Wagner, D.M.; Okinaka, R.T.; Sim, S.H.; Pearson, O.; Wu, Z.; Chang, J.; Kaul, R.; Hoffmaster, A.R.; Brettin, T.S.; Robison, R.A.; Mayo, M.; Gee, J.E.; Tan, P.; Currie, B.J.; Keim, P.

    2009-01-01

    Background: Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results: Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia. Conclusion: We describe an

  4. A highly conserved sequence is a novel gene involved in de novo vitamin B6 biosynthesis

    PubMed Central

    Ehrenshaft, Marilyn; Bilski, Piotr; Li, Ming Y.; Chignell, Colin F.; Daub, Margaret E.

    1999-01-01

    The Cercospora nicotianae SOR1 (singlet oxygen resistance) gene was identified previously as a gene involved in resistance of this fungus to singlet-oxygen-generating phototoxins. Although homologues to SOR1 occur in organisms in four kingdoms and encode one of the most highly conserved proteins yet identified, the precise function of this protein has, until now, remained unknown. We show that SOR1 is essential in pyridoxine (vitamin B6) synthesis in C. nicotianae and Aspergillus flavus, although it shows no homology to previously identified pyridoxine synthesis genes identified in Escherichia coli. Sequence database analysis demonstrated that organisms encode either SOR1 or E. coli pyridoxine biosynthesis genes, but not both, suggesting that there are two divergent pathways for de novo pyridoxine biosynthesis in nature. Pathway divergence appears to have occurred during the evolution of the eubacteria. We also present data showing that pyridoxine quenches singlet oxygen at a rate comparable to that of vitamins C and E, two of the most highly efficient biological antioxidants, suggesting a previously unknown role for pyridoxine in active oxygen resistance. PMID:10430950

  5. High-density polymorphisms analysis of 23 candidate genes for association with bone mineral density.

    PubMed

    Giroux, Sylvie; Elfassihi, Latifa; Clément, Valérie; Bussières, Johanne; Bureau, Alexandre; Cole, David E C; Rousseau, François

    2010-11-01

    Osteoporosis is a bone disease characterized by low bone mineral density (BMD), a highly heritable and polygenic trait. Women are more prone than men to develop osteoporosis due to a lower peak bone mass and accelerated bone loss at menopause. Peak bone mass has been convincingly shown to be due to genetic factors with heritability up to 80%. Menopausal bone loss has been shown to have around 38% to 49% heritability depending on the site studied. To have more statistical power to detect small genetic effects we focused on premenopausal women. We studied 23 candidate genes, some involved in calcium and vitamin-D regulation and others because estrogens strongly induced their gene expression in mice where it was correlated with humerus trabecular bone density. High-density polymorphisms were selected to cover the entire gene variability and 231 polymorphisms were genotyped in a first sample of 709 premenopausal women. Positive associations were retested in a second, independent, sample of 673 premenopausal women. Ten polymorphisms remained associated with BMD in the combined samples and one was further associated in a large sample of postmenopausal women (1401 women). This associated polymorphism was located in the gene CSF3R (granulocyte colony stimulating factor receptor) that had never been associated with BMD before. The results reported in this study suggest a role for CSF3R in the determination of bone density in women.

  6. Identification of cis-elements conferring high levels of gene expression in non-green plastids.

    PubMed

    Zhang, Jiang; Ruf, Stephanie; Hasse, Claudia; Childs, Liam; Scharff, Lars B; Bock, Ralph

    2012-10-01

    Although our knowledge about the mechanisms of gene expression in chloroplasts has increased substantially over the past decades, next to nothing is known about the signals and factors that govern expression of the plastid genome in non-green tissues. Here we report the development of a quantitative method suitable for determining the activity of cis-acting elements for gene expression in non-green plastids. The in vivo assay is based on stable transformation of the plastid genome and the discovery that root length upon seedling growth in the presence of the plastid translational inhibitor kanamycin is directly proportional to the expression strength of the resistance gene nptII in transgenic tobacco plastids. By testing various combinations of promoters and translation initiation signals, we have used this experimental system to identify cis-elements that are highly active in non-green plastids. Surprisingly, heterologous expression elements from maize plastids were significantly more efficient in conferring high expression levels in root plastids than homologous expression elements from tobacco. Our work has established a quantitative method for characterization of gene expression in non-green plastid types, and has led to identification of cis-elements for efficient plastid transgene expression in non-green tissues, which are valuable tools for future transplastomic studies in basic and applied research.

  7. High rates of gene flow by pollen and seed in oak populations across Europe.

    PubMed

    Gerber, Sophie; Chadœuf, Joël; Gugerli, Felix; Lascoux, Martin; Buiteveld, Joukje; Cottrell, Joan; Dounavi, Aikaterini; Fineschi, Silvia; Forrest, Laura L; Fogelqvist, Johan; Goicoechea, Pablo G; Jensen, Jan Svejgaard; Salvini, Daniela; Vendramin, Giovanni G; Kremer, Antoine

    2014-01-01

    Gene flow is a key factor in the evolution of species, influencing effective population size, hybridisation and local adaptation. We analysed local gene flow in eight stands of white oak (mostly Quercus petraea and Q. robur, but also Q. pubescens and Q. faginea) distributed across Europe. Adult trees within a given area in each stand were exhaustively sampled (range [239, 754], mean 423), mapped, and acorns were collected ([17,147], 51) from several mother trees ([3], [47], 23). Seedlings ([65,387], 178) were harvested and geo-referenced in six of the eight stands. Genetic information was obtained from screening distinct molecular markers spread across the genome, genotyping each tree, acorn or seedling. All samples were thus genotyped at 5-8 nuclear microsatellite loci. Fathers/parents were assigned to acorns and seedlings using likelihood methods. Mating success of male and female parents, pollen and seed dispersal curves, and also hybridisation rates were estimated in each stand and compared on a continental scale. On average, the percentage of the wind-borne pollen from outside the stand was 60%, with large variation among stands (21-88%). Mean seed immigration into the stand was 40%, a high value for oaks that are generally considered to have limited seed dispersal. However, this estimate varied greatly among stands (20-66%). Gene flow was mostly intraspecific, with large variation, as some trees and stands showed particularly high rates of hybridisation. Our results show that mating success was unevenly distributed among trees. The high levels of gene flow suggest that geographically remote oak stands are unlikely to be genetically isolated, questioning the static definition of gene reserves and seed stands. PMID:24454802

  8. High Rates of Gene Flow by Pollen and Seed in Oak Populations across Europe

    PubMed Central

    Gerber, Sophie; Chadœuf, Joël; Gugerli, Felix; Lascoux, Martin; Buiteveld, Joukje; Cottrell, Joan; Dounavi, Aikaterini; Fineschi, Silvia; Forrest, Laura L.; Fogelqvist, Johan; Goicoechea, Pablo G.; Jensen, Jan Svejgaard; Salvini, Daniela; Vendramin, Giovanni G.; Kremer, Antoine

    2014-01-01

    Gene flow is a key factor in the evolution of species, influencing effective population size, hybridisation and local adaptation. We analysed local gene flow in eight stands of white oak (mostly Quercus petraea and Q. robur, but also Q. pubescens and Q. faginea) distributed across Europe. Adult trees within a given area in each stand were exhaustively sampled (range [239, 754], mean 423), mapped, and acorns were collected ([17,147], 51) from several mother trees ([3], [47], 23). Seedlings ([65,387], 178) were harvested and geo-referenced in six of the eight stands. Genetic information was obtained from screening distinct molecular markers spread across the genome, genotyping each tree, acorn or seedling. All samples were thus genotyped at 5–8 nuclear microsatellite loci. Fathers/parents were assigned to acorns and seedlings using likelihood methods. Mating success of male and female parents, pollen and seed dispersal curves, and also hybridisation rates were estimated in each stand and compared on a continental scale. On average, the percentage of the wind-borne pollen from outside the stand was 60%, with large variation among stands (21–88%). Mean seed immigration into the stand was 40%, a high value for oaks that are generally considered to have limited seed dispersal. However, this estimate varied greatly among stands (20–66%). Gene flow was mostly intraspecific, with large variation, as some trees and stands showed particularly high rates of hybridisation. Our results show that mating success was unevenly distributed among trees. The high levels of gene flow suggest that geographically remote oak stands are unlikely to be genetically isolated, questioning the static definition of gene reserves and seed stands. PMID:24454802

  9. Testing candidate genes for attention-deficit/hyperactivity disorder in fruit flies using a high throughput assay for complex behavior.

    PubMed

    Rohde, Palle Duun; Madsen, Lisbeth Strøm; Neumann Arvidson, Sandra Marie; Loeschcke, Volker; Demontis, Ditte; Kristensen, Torsten Nygaard

    2016-01-01

    Fruit flies are important model organisms for functional testing of candidate genes in multiple disciplines, including the study of human diseases. Here we use a high-throughput locomotor activity assay to test the response on activity behavior of gene disruption in Drosophila melanogaster. The aim was to investigate the impact of disruption of 14 candidate genes for human attention-deficit/hyperactivity disorder (ADHD) on fly behavior. By obtaining a range of correlated measures describing the space of variables for behavioral activity we show, that some mutants display similar phenotypic responses, and furthermore, that the genes disrupted in those mutants had common molecular functions; namely processes related to cGMP activity, cation channels and serotonin receptors. All but one of the candidate genes resulted in aberrant behavioral activity, suggesting involvement of these genes in behavioral activity in fruit flies. Results provide additional support for the investigated genes being risk candidate genes for ADHD in humans.

  10. Testing candidate genes for attention-deficit/hyperactivity disorder in fruit flies using a high throughput assay for complex behavior.

    PubMed

    Rohde, Palle Duun; Madsen, Lisbeth Strøm; Neumann Arvidson, Sandra Marie; Loeschcke, Volker; Demontis, Ditte; Kristensen, Torsten Nygaard

    2016-01-01

    Fruit flies are important model organisms for functional testing of candidate genes in multiple disciplines, including the study of human diseases. Here we use a high-throughput locomotor activity assay to test the response on activity behavior of gene disruption in Drosophila melanogaster. The aim was to investigate the impact of disruption of 14 candidate genes for human attention-deficit/hyperactivity disorder (ADHD) on fly behavior. By obtaining a range of correlated measures describing the space of variables for behavioral activity we show, that some mutants display similar phenotypic responses, and furthermore, that the genes disrupted in those mutants had common molecular functions; namely processes related to cGMP activity, cation channels and serotonin receptors. All but one of the candidate genes resulted in aberrant behavioral activity, suggesting involvement of these genes in behavioral activity in fruit flies. Results provide additional support for the investigated genes being risk candidate genes for ADHD in humans. PMID:26954609

  11. High-throughput genome sequencing of lichenizing fungi to assess gene loss in the ammonium transporter/ammonia permease gene family

    PubMed Central

    2013-01-01

    Background Horizontal gene transfer has shaped the evolution of the ammonium transporter/ammonia permease gene family. Horizontal transfers of ammonium transporter/ammonia permease genes into the fungi include one transfer from archaea to the filamentous ascomycetes associated with the adaptive radiation of the leotiomyceta. The horizontally transferred gene has subsequently been lost in most of the group but has been selectively retained in lichenizing fungi. However, some groups of lichens appear to have secondarily lost the archaeal ammonium transporter. Definitive assessment of gene loss can only be made via whole genome sequencing. Results Ammonium transporter/ammonia permease gene sequences were recovered from the assembled genomes of eight lichenizing fungi in key clades including the Caliciales, the Peltigerales, the Ostropomycetidae, the Acarosporomycetidae, the Verrucariales, the Arthoniomycetidae and the Lichinales. The genes recovered were included in a refined phylogenetic analysis. The hypothesis that lichens symbiotic with a nitrogen-fixing cyanobacterium as a primary photobiont or lichens living in high nitrogen environments lose the plant-like ammonium transporters was upheld, but did not account for additional losses of ammonium transporters/ammonia permeases in the lichens from the Acarosporomycetidae, Chaetotheriomycetes and Arthoniomycetes. In addition, the four ammonium transporter/ammonia permease genes from Cladonia grayi were shown to be functional by expressing the lichen genes in a strain of Saccharomyces cerevisiae in which all three native ammonium transporters were deleted, and assaying for growth on limiting ammonia as a sole nitrogen source. Conclusions Given sufficient coverage, next-generation sequencing technology can definitively address the loss of a gene in a genome when using environmental DNA isolated from lichen thalli collected from their natural habitats. Lichen-forming fungi have been losing ammonium transporters

  12. The prion-related protein (testis-specific) gene (PRNT) is highly polymorphic in Portuguese sheep.

    PubMed

    Mesquita, P; Garcia, V; Marques, M R; Santos Silva, F; Oliveira Sousa, M C; Carolino, I; Pimenta, J; Fontes, C M G A; Horta, A E M; Prates, J A M; Pereira, R M

    2016-02-01

    The objective of this study was to search for polymorphisms in the ovine prion-related protein (testis-specific) gene (PRNT). Sampling included 567 sheep from eight Portuguese breeds. The PRNT gene-coding region was analyzed by single-strand conformation polymorphism and sequencing, allowing the identification of the first ovine PRNT polymorphisms, in codons 6, 38, 43 and 48: c.17C>T (p.Ser6Phe, which disrupts a consensus arginine-X-X-serine/threonine motif); c.112G>C (p.Gly38>Arg); c.129T>C and c.144A>G (synonymous) respectively. Polymorphisms in codons 6, 38 and 48 occur simultaneously in 50.6% of the animals, 38.8% presenting as heterozygous. To study the distribution of the polymorphism in codon 43, a restriction fragment length polymorphism analysis was performed. Polymorphic variant c.129C, identified in 89.8% of the animals with 32.8% presented as heterozygous, was considered the wild genotype in Portuguese sheep. Eight different haplotypes which have comparable distribution in all breeds were identified for the PRNT gene. In conclusion, the PRNT coding region is highly polymorphic in sheep, unlike the prion protein 2 dublet gene (PRND), in which we previously found only one synonymous substitution (c.78G>A), in codon 26. The absence or reduced number of PRND heterozygotes (c.78G>A) was significantly associated with three PRNT haplotypes (17C-112G-129T-144A,17CT-112GC-129CT-144AG and 17T-112C-129C-144G), and the only three animals found homozygous at c.78A had the 17C-112G-129C-144A PRNT haplotype. These results constitute evidence of an association between polymorphic variation in PRND and PRNT genes, as has already been observed for PRND and prion protein gene (PRNP).

  13. Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic.

    PubMed

    Varin, Thibault; Lovejoy, Connie; Jungblut, Anne D; Vincent, Warwick F; Corbeil, Jacques

    2012-01-01

    Polar and alpine microbial communities experience a variety of environmental stresses, including perennial cold and freezing; however, knowledge of genomic responses to such conditions is still rudimentary. We analyzed the metagenomes of cyanobacterial mats from Arctic and Antarctic ice shelves, using high-throughput pyrosequencing to test the hypotheses that consortia from these extreme polar habitats were similar in terms of major phyla and subphyla and consequently in their potential responses to environmental stresses. Statistical comparisons of the protein-coding genes showed similarities between the mats from the two poles, with the majority of genes derived from Proteobacteria and Cyanobacteria; however, the relative proportions differed, with cyanobacterial genes more prevalent in the Antarctic mat metagenome. Other differences included a higher representation of Actinobacteria and Alphaproteobacteria in the Arctic metagenomes, which may reflect the greater access to diasporas from both adjacent ice-free lands and the open ocean. Genes coding for functional responses to environmental stress (exopolysaccharides, cold shock proteins, and membrane modifications) were found in all of the metagenomes. However, in keeping with the greater exposure of the Arctic to long-range pollutants, sequences assigned to copper homeostasis genes were statistically (30%) more abundant in the Arctic samples. In contrast, more reads matching the sigma B genes were identified in the Antarctic mat, likely reflecting the more severe osmotic stress during freeze-up of the Antarctic ponds. This study underscores the presence of diverse mechanisms of adaptation to cold and other stresses in polar mats, consistent with the proportional representation of major bacterial groups. PMID:22081564

  14. Impact of high predation risk on genome-wide hippocampal gene expression in snowshoe hares.

    PubMed

    Lavergne, Sophia G; McGowan, Patrick O; Krebs, Charles J; Boonstra, Rudy

    2014-11-01

    The population dynamics of snowshoe hares (Lepus americanus) are fundamental to the ecosystem dynamics of Canada's boreal forest. During the 8- to 11-year population cycle, hare densities can fluctuate up to 40-fold. Predators in this system (lynx, coyotes, great-horned owls) affect population numbers not only through direct mortality but also through sublethal effects. The chronic stress hypothesis posits that high predation risk during the decline severely stresses hares, leading to greater stress responses, heightened ability to mobilize cortisol and energy, and a poorer body condition. These effects may result in, or be mediated by, differential gene expression. We used an oligonucleotide microarray designed for a closely-related species, the European rabbit (Oryctolagus cuniculus), to characterize differences in genome-wide hippocampal RNA transcript abundance in wild hares from the Yukon during peak and decline phases of a single cycle. A total of 106 genes were differentially regulated between phases. Array results were validated with quantitative real-time PCR, and mammalian protein sequence similarity was used to infer gene function. In comparison to hares from the peak, decline phase hares showed increased expression of genes involved in metabolic processes and hormone response, and decreased expression of immune response and blood cell formation genes. We found evidence for predation risk effects on the expression of genes whose putative functions correspond with physiological impacts known to be induced by predation risk in snowshoe hares. This study shows, for the first time, a link between changes in demography and alterations in neural RNA transcript abundance in a natural population.

  15. High capacity nanoporous silicon carrier for systemic delivery of gene silencing therapeutics.

    PubMed

    Shen, Jianliang; Xu, Rong; Mai, Junhua; Kim, Han-Cheon; Guo, Xiaojing; Qin, Guoting; Yang, Yong; Wolfram, Joy; Mu, Chaofeng; Xia, Xiaojun; Gu, Jianhua; Liu, Xuewu; Mao, Zong-Wan; Ferrari, Mauro; Shen, Haifa

    2013-11-26

    Gene silencing agents such as small interfering RNA (siRNA) and microRNA offer the promise to modulate expression of almost every gene for the treatment of human diseases including cancer. However, lack of vehicles for effective systemic delivery to the disease organs has greatly limited their in vivo applications. In this study, we developed a high capacity polycation-functionalized nanoporous silicon (PCPS) platform comprised of nanoporous silicon microparticles functionalized with arginine-polyethyleneimine inside the nanopores for effective delivery of gene silencing agents. Incubation of MDA-MB-231 human breast cancer cells with PCPS loaded with STAT3 siRNA (PCPS/STAT3) or GRP78 siRNA (PCPS/GRP78) resulted in 91 and 83% reduction of STAT3 and GRP78 gene expression in vitro. Treatment of cells with a microRNA-18a mimic in PCPS (PCPS/miR-18) knocked down 90% expression of the microRNA-18a target gene ATM. Systemic delivery of PCPS/STAT3 siRNA in murine model of MDA-MB-231 breast cancer enriched particles in tumor tissues and reduced STAT3 expression in cancer cells, causing significant reduction of cancer stem cells in the residual tumor tissue. At the therapeutic dosage, PCPS/STAT3 siRNA did not trigger acute immune response in FVB mice, including changes in serum cytokines, chemokines, and colony-stimulating factors. In addition, weekly dosing of PCPS/STAT3 siRNA for four weeks did not cause signs of subacute toxicity based on changes in body weight, hematology, blood chemistry, and major organ histology. Collectively, the results suggest that we have developed a safe vehicle for effective delivery of gene silencing agents.

  16. The prion-related protein (testis-specific) gene (PRNT) is highly polymorphic in Portuguese sheep.

    PubMed

    Mesquita, P; Garcia, V; Marques, M R; Santos Silva, F; Oliveira Sousa, M C; Carolino, I; Pimenta, J; Fontes, C M G A; Horta, A E M; Prates, J A M; Pereira, R M

    2016-02-01

    The objective of this study was to search for polymorphisms in the ovine prion-related protein (testis-specific) gene (PRNT). Sampling included 567 sheep from eight Portuguese breeds. The PRNT gene-coding region was analyzed by single-strand conformation polymorphism and sequencing, allowing the identification of the first ovine PRNT polymorphisms, in codons 6, 38, 43 and 48: c.17C>T (p.Ser6Phe, which disrupts a consensus arginine-X-X-serine/threonine motif); c.112G>C (p.Gly38>Arg); c.129T>C and c.144A>G (synonymous) respectively. Polymorphisms in codons 6, 38 and 48 occur simultaneously in 50.6% of the animals, 38.8% presenting as heterozygous. To study the distribution of the polymorphism in codon 43, a restriction fragment length polymorphism analysis was performed. Polymorphic variant c.129C, identified in 89.8% of the animals with 32.8% presented as heterozygous, was considered the wild genotype in Portuguese sheep. Eight different haplotypes which have comparable distribution in all breeds were identified for the PRNT gene. In conclusion, the PRNT coding region is highly polymorphic in sheep, unlike the prion protein 2 dublet gene (PRND), in which we previously found only one synonymous substitution (c.78G>A), in codon 26. The absence or reduced number of PRND heterozygotes (c.78G>A) was significantly associated with three PRNT haplotypes (17C-112G-129T-144A,17CT-112GC-129CT-144AG and 17T-112C-129C-144G), and the only three animals found homozygous at c.78A had the 17C-112G-129C-144A PRNT haplotype. These results constitute evidence of an association between polymorphic variation in PRND and PRNT genes, as has already been observed for PRND and prion protein gene (PRNP). PMID:26538093

  17. Impact of high predation risk on genome-wide hippocampal gene expression in snowshoe hares.

    PubMed

    Lavergne, Sophia G; McGowan, Patrick O; Krebs, Charles J; Boonstra, Rudy

    2014-11-01

    The population dynamics of snowshoe hares (Lepus americanus) are fundamental to the ecosystem dynamics of Canada's boreal forest. During the 8- to 11-year population cycle, hare densities can fluctuate up to 40-fold. Predators in this system (lynx, coyotes, great-horned owls) affect population numbers not only through direct mortality but also through sublethal effects. The chronic stress hypothesis posits that high predation risk during the decline severely stresses hares, leading to greater stress responses, heightened ability to mobilize cortisol and energy, and a poorer body condition. These effects may result in, or be mediated by, differential gene expression. We used an oligonucleotide microarray designed for a closely-related species, the European rabbit (Oryctolagus cuniculus), to characterize differences in genome-wide hippocampal RNA transcript abundance in wild hares from the Yukon during peak and decline phases of a single cycle. A total of 106 genes were differentially regulated between phases. Array results were validated with quantitative real-time PCR, and mammalian protein sequence similarity was used to infer gene function. In comparison to hares from the peak, decline phase hares showed increased expression of genes involved in metabolic processes and hormone response, and decreased expression of immune response and blood cell formation genes. We found evidence for predation risk effects on the expression of genes whose putative functions correspond with physiological impacts known to be induced by predation risk in snowshoe hares. This study shows, for the first time, a link between changes in demography and alterations in neural RNA transcript abundance in a natural population. PMID:25234370

  18. Knockin of Cre Gene at Ins2 Locus Reveals No Cre Activity in Mouse Hypothalamic Neurons

    PubMed Central

    Li, Ling; Gao, Lin; Wang, Kejia; Ma, Xianhua; Chang, Xusheng; Shi, Jian-Hui; Zhang, Ye; Yin, Kai; Liu, Zhimin; Shi, Yuguang; Xie, Zhifang; Zhang, Weiping J.

    2016-01-01

    The recombination efficiency and cell specificity of Cre driver lines are critical for exploring pancreatic β cell biology with the Cre/LoxP approach. Some commonly used Cre lines are based on the short Ins2 promoter fragment and show recombination activity in hypothalamic neurons; however, whether this stems from endogenous Ins2 promoter activity remains controversial. In this study, we generated Ins2-Cre knockin mice with a targeted insertion of IRES-Cre at the Ins2 locus and demonstrated with a cell lineage tracing study that the Ins2 gene is not transcriptionally active in the hypothalamus. The Ins2-Cre driver line displayed robust Cre expression and activity in pancreatic β cells without significant alterations in insulin expression. In the brain, Cre activity was mainly restricted to the choroid plexus, without significant recombination detected in the hippocampus or hypothalamus by the LacZ or fluorescent tdTomato reporters. Furthermore, Ins2-Cre mice exhibited normal glucose tolerance and insulin secretion upon glucose stimulation in vivo. In conclusion, this Ins2-Cre driver line allowed high-fidelity detection of endogenous Ins2 promoter activity in vivo, and the negative activity in the hypothalamus demonstrated that this system is a promising alternative tool for studying β cell biology. PMID:26830324

  19. Symbiotic Burkholderia Species Show Diverse Arrangements of nif/fix and nod Genes and Lack Typical High-Affinity Cytochrome cbb3 Oxidase Genes.

    PubMed

    De Meyer, Sofie E; Briscoe, Leah; Martínez-Hidalgo, Pilar; Agapakis, Christina M; de-Los Santos, Paulina Estrada; Seshadri, Rekha; Reeve, Wayne; Weinstock, George; O'Hara, Graham; Howieson, John G; Hirsch, Ann M

    2016-08-01

    Genome analysis of fourteen mimosoid and four papilionoid beta-rhizobia together with fourteen reference alpha-rhizobia for both nodulation (nod) and nitrogen-fixing (nif/fix) genes has shown phylogenetic congruence between 16S rRNA/MLSA (combined 16S rRNA gene sequencing and multilocus sequence analysis) and nif/fix genes, indicating a free-living diazotrophic ancestry of the beta-rhizobia. However, deeper genomic analysis revealed a complex symbiosis acquisition history in the beta-rhizobia that clearly separates the mimosoid and papilionoid nodulating groups. Mimosoid-nodulating beta-rhizobia have nod genes tightly clustered in the nodBCIJHASU operon, whereas papilionoid-nodulating Burkholderia have nodUSDABC and nodIJ genes, although their arrangement is not canonical because the nod genes are subdivided by the insertion of nif and other genes. Furthermore, the papilionoid Burkholderia spp. contain duplications of several nod and nif genes. The Burkholderia nifHDKEN and fixABC genes are very closely related to those found in free-living diazotrophs. In contrast, nifA is highly divergent between both groups, but the papilionoid species nifA is more similar to alpha-rhizobia nifA than to other groups. Surprisingly, for all Burkholderia, the fixNOQP and fixGHIS genes required for cbb3 cytochrome oxidase production and assembly are missing. In contrast, symbiotic Cupriavidus strains have fixNOQPGHIS genes, revealing a divergence in the evolution of two distinct electron transport chains required for nitrogen fixation within the beta-rhizobia. PMID:27269511

  20. Symbiotic Burkholderia Species Show Diverse Arrangements of nif/fix and nod Genes and Lack Typical High-Affinity Cytochrome cbb3 Oxidase Genes.

    PubMed

    De Meyer, Sofie E; Briscoe, Leah; Martínez-Hidalgo, Pilar; Agapakis, Christina M; de-Los Santos, Paulina Estrada; Seshadri, Rekha; Reeve, Wayne; Weinstock, George; O'Hara, Graham; Howieson, John G; Hirsch, Ann M

    2016-08-01

    Genome analysis of fourteen mimosoid and four papilionoid beta-rhizobia together with fourteen reference alpha-rhizobia for both nodulation (nod) and nitrogen-fixing (nif/fix) genes has shown phylogenetic congruence between 16S rRNA/MLSA (combined 16S rRNA gene sequencing and multilocus sequence analysis) and nif/fix genes, indicating a free-living diazotrophic ancestry of the beta-rhizobia. However, deeper genomic analysis revealed a complex symbiosis acquisition history in the beta-rhizobia that clearly separates the mimosoid and papilionoid nodulating groups. Mimosoid-nodulating beta-rhizobia have nod genes tightly clustered in the nodBCIJHASU operon, whereas papilionoid-nodulating Burkholderia have nodUSDABC and nodIJ genes, although their arrangement is not canonical because the nod genes are subdivided by the insertion of nif and other genes. Furthermore, the papilionoid Burkholderia spp. contain duplications of several nod and nif genes. The Burkholderia nifHDKEN and fixABC genes are very closely related to those found in free-living diazotrophs. In contrast, nifA is highly divergent between both groups, but the papilionoid species nifA is more similar to alpha-rhizobia nifA than to other groups. Surprisingly, for all Burkholderia, the fixNOQP and fixGHIS genes required for cbb3 cytochrome oxidase production and assembly are missing. In contrast, symbiotic Cupriavidus strains have fixNOQPGHIS genes, revealing a divergence in the evolution of two distinct electron transport chains required for nitrogen fixation within the beta-rhizobia.

  1. High gene flow on a continental scale in the polyandrous Kentish plover Charadrius alexandrinus.

    PubMed

    Küpper, Clemens; Edwards, Scott V; Kosztolányi, András; Alrashidi, Monif; Burke, Terry; Herrmann, Philipp; Argüelles-Tico, Araceli; Amat, Juan A; Amezian, Mohamed; Rocha, Afonso; Hötker, Hermann; Ivanov, Anton; Chernicko, Joseph; Székely, Tamás

    2012-12-01

    Gene flow promotes genetic homogeneity of species in time and space. Gene flow can be modulated by sex-biased dispersal that links population genetics to mating systems. We investigated the phylogeography of the widely distributed Kentish plover Charadrius alexandrinus. This small shorebird has a large breeding range spanning from Western Europe to Japan and exhibits an unusually flexible mating system with high female breeding dispersal. We analysed genetic structure and gene flow using a 427-bp fragment of the mitochondrial (mtDNA) control region, 21 autosomal microsatellite markers and a Z microsatellite marker in 397 unrelated individuals from 21 locations. We found no structure or isolation-by-distance over the continental range. However, island populations had low genetic diversity and were moderately differentiated from mainland locations. Genetic differentiation based on autosomal markers was positively correlated with distance between mainland and each island. Comparisons of uniparentally and biparentally inherited markers were consistent with female-biased gene flow. Maternally inherited mtDNA was less structured, whereas the Z-chromosomal marker was more structured than autosomal microsatellites. Adult males were more related than females within genetic clusters. Taken together, our results suggest a prominent role for polyandrous females in maintaining genetic homogeneity across large geographic distances.

  2. Minimum entropy decomposition: Unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences

    PubMed Central

    Eren, A Murat; Morrison, Hilary G; Lescault, Pamela J; Reveillaud, Julie; Vineis, Joseph H; Sogin, Mitchell L

    2015-01-01

    Molecular microbial ecology investigations often employ large marker gene datasets, for example, ribosomal RNAs, to represent the occurrence of single-cell genomes in microbial communities. Massively parallel DNA sequencing technologies enable extensive surveys of marker gene libraries that sometimes include nearly identical sequences. Computational approaches that rely on pairwise sequence alignments for similarity assessment and de novo clustering with de facto similarity thresholds to partition high-throughput sequencing datasets constrain fine-scale resolution descriptions of microbial communities. Minimum Entropy Decomposition (MED) provides a computationally efficient means to partition marker gene datasets into ‘MED nodes', which represent homogeneous operational taxonomic units. By employing Shannon entropy, MED uses only the information-rich nucleotide positions across reads and iteratively partitions large datasets while omitting stochastic variation. When applied to analyses of microbiomes from two deep-sea cryptic sponges Hexadella dedritifera and Hexadella cf. dedritifera, MED resolved a key Gammaproteobacteria cluster into multiple MED nodes that are specific to different sponges, and revealed that these closely related sympatric sponge species maintain distinct microbial communities. MED analysis of a previously published human oral microbiome dataset also revealed that taxa separated by less than 1% sequence variation distributed to distinct niches in the oral cavity. The information theory-guided decomposition process behind the MED algorithm enables sensitive discrimination of closely related organisms in marker gene amplicon datasets without relying on extensive computational heuristics and user supervision. PMID:25325381

  3. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation

    PubMed Central

    Doench, John G.; Hartenian, Ella; Graham, Daniel B.; Tothova, Zuzana; Hegde, Mudra; Smith, Ian; Sullender, Meagan; Ebert, Benjamin L.; Xavier, Ramnik J.; Root, David E.

    2014-01-01

    Components of the prokaryotic clustered regularly interspersed palindromic repeat (CRISPR) loci have recently been repurposed for use in mammalian cells1–6. The Cas9 protein can be programmed with a single guide RNA (sgRNA) to generate site-specific DNA breaks, but there are few known rules governing on-target efficacy of this system7,8. We created a pool of sgRNAs, tiling across all possible target sites of a panel of six endogenous mouse and three endogenous human genes and quantitatively assessed their ability to produce null alleles of their target gene by antibody staining and flow cytometry. We discovered sequence features that improved activity, including a further optimization of the proto-spacer adjacent motif (PAM) of Streptococcus pyogenes Cas9. The results from 1,841 sgRNAs were used to construct a predictive model of sgRNA activity to improve sgRNA design for gene editing and genetic screens. We provide an online tool for the design of highly active sgRNAs for any gene of interest. PMID:25184501

  4. High variability and non-neutral evolution of the mammalian avpr1a gene

    PubMed Central

    Fink, Sabine; Excoffier, Laurent; Heckel, Gerald

    2007-01-01

    Background The arginine-vasopressin 1a receptor has been identified as a key determinant for social behaviour in Microtus voles, humans and other mammals. Nevertheless, the genetic bases of complex phenotypic traits like differences in social and mating behaviour among species and individuals remain largely unknown. Contrary to previous studies focusing on differences in the promotor region of the gene, we investigate here the level of functional variation in the coding region (exon 1) of this locus. Results We detected high sequence diversity between higher mammalian taxa as well as between species of the genus Microtus. This includes length variation and radical amino acid changes, as well as the presence of distinct protein variants within individuals. Additionally, negative selection prevails on most parts of the first exon of the arginine-vasopressin receptor 1a (avpr1a) gene but it contains regions with higher rates of change that harbour positively selected sites. Synonymous and non-synonymous substitution rates in the avpr1a gene are not exceptional compared to other genes, but they exceed those found in related hormone receptors with similar functions. Discussion These results stress the importance of considering variation in the coding sequence of avpr1a in regards to associations with life history traits (e.g. social behaviour, mating system, habitat requirements) of voles, other mammals and humans in particular. PMID:17900345

  5. GeneChip expression profiling reveals the alterations of energy metabolism related genes in osteocytes under large gradient high magnetic fields.

    PubMed

    Wang, Yang; Chen, Zhi-Hao; Yin, Chun; Ma, Jian-Hua; Li, Di-Jie; Zhao, Fan; Sun, Yu-Long; Hu, Li-Fang; Shang, Peng; Qian, Ai-Rong

    2015-01-01

    The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has recently been applied in life science research. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. Osteocyte, as the most important mechanosensor in bone, takes a pivotal position in mediating the mechano-induced bone remodeling. In this study, the effects of LG-HMF on gene expression profiling of osteocyte-like cell line MLO-Y4 were investigated by Affymetrix DNA microarray. LG-HMF affected osteocyte gene expression profiling. Differentially expressed genes (DEGs) and data mining were further analyzed by using bioinfomatic tools, such as DAVID, iReport. 12 energy metabolism related genes (PFKL, AK4, ALDOC, COX7A1, STC1, ADM, CA9, CA12, P4HA1, APLN, GPR35 and GPR84) were further confirmed by real-time PCR. An integrated gene interaction network of 12 DEGs was constructed. Bio-data mining showed that genes involved in glucose metabolic process and apoptosis changed notablly. Our results demostrated that LG-HMF affected the expression of energy metabolism related genes in osteocyte. The identification of sensitive genes to special environments may provide some potential targets for preventing and treating bone loss or osteoporosis. PMID:25635858

  6. Differential gene expression in ovaries of pregnant pigs with high and low prolificacy levels and identification of candidate genes for litter size.

    PubMed

    Fernandez-Rodriguez, Amanda; Munoz, Maria; Fernandez, Almudena; Pena, Ramona N; Tomas, Anna; Noguera, Jose L; Ovilo, Cristina; Fernandez, Ana I

    2011-02-01

    Previous results from a genome scan in an F(2) Iberian × Meishan pig intercross showed several chromosome regions associated with litter size traits in this species. In order to identify candidate genes underlying these quantitative trait loci (QTL), we performed an ovary gene expression analysis during the sow's pregnancy. F(2) sows were ranked by their estimated breeding values for prolificacy: six sows with the highest estimated breeding value (EBV) (i.e., high prolificacy) and six sows with the lowest EBV (low prolificacy) were selected. Samples were hybridized using an Affymetrix GeneChip porcine genome array. Statistical analysis with a mixed model approach identified 221 differentially expressed probes, representing 189 genes. These genes were functionally annotated in order to identify genetic pathways overrepresented in this list. Among the functional groups most represented was, in first position, immune system response activation against external stimulus. The second group consisted of integrated genes that regulate maternal homeostasis by complement and coagulation cascades. A third group was involved in lipid and fatty acid enzymes of metabolic processes, which participate in the steroidogenesis pathway. In order to identify powerful candidate genes for prolificacy, the second approach of this study was to merge microarray data with the QTL positional information affecting litter size, previously detected in the same experimental cross. As a result, we have identified 27 differentially expressed genes colocalizing with QTL for litter size traits, which fulfill the biological, positional, and functional criteria. PMID:20926806

  7. GeneChip Expression Profiling Reveals the Alterations of Energy Metabolism Related Genes in Osteocytes under Large Gradient High Magnetic Fields

    PubMed Central

    Wang, Yang; Chen, Zhi-Hao; Yin, Chun; Ma, Jian-Hua; Li, Di-Jie; Zhao, Fan; Sun, Yu-Long; Hu, Li-Fang; Shang, Peng; Qian, Ai-Rong

    2015-01-01

    The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has recently been applied in life science research. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. Osteocyte, as the most important mechanosensor in bone, takes a pivotal position in mediating the mechano-induced bone remodeling. In this study, the effects of LG-HMF on gene expression profiling of osteocyte-like cell line MLO-Y4 were investigated by Affymetrix DNA microarray. LG-HMF affected osteocyte gene expression profiling. Differentially expressed genes (DEGs) and data mining were further analyzed by using bioinfomatic tools, such as DAVID, iReport. 12 energy metabolism related genes (PFKL, AK4, ALDOC, COX7A1, STC1, ADM, CA9, CA12, P4HA1, APLN, GPR35 and GPR84) were further confirmed by real-time PCR. An integrated gene interaction network of 12 DEGs was constructed. Bio-data mining showed that genes involved in glucose metabolic process and apoptosis changed notablly. Our results demostrated that LG-HMF affected the expression of energy metabolism related genes in osteocyte. The identification of sensitive genes to special environments may provide some potential targets for preventing and treating bone loss or osteoporosis. PMID:25635858

  8. Highly expressed amino acid biosynthesis genes revealed by global gene expression analysis of Salmonella enterica serovar Enteritidis during growth in whole egg are not essential for this growth.

    PubMed

    Jakočiūnė, Džiuginta; Herrero-Fresno, Ana; Jelsbak, Lotte; Olsen, John Elmerdahl

    2016-05-01

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is the most common cause of egg borne salmonellosis in many parts of the world. This study analyzed gene expression of this bacterium during growth in whole egg, and whether highly expressed genes were essential for the growth. High quality RNA was extracted from S. Enteritidis using a modified RNA-extraction protocol. Global gene expression during growth in whole egg was compared to growth in LB-medium using DNA array method. Twenty-six genes were significantly upregulated during growth in egg; these belonged to amino acid biosynthesis, di/oligopeptide transport system, biotin synthesis, ferrous iron transport system, and type III secretion system. Significant downregulation of 15 genes related to formate hydrogenlyase (FHL) and trehalose metabolism was observed. The results suggested that S. Enteritidis is starved for amino-acids, biotin and iron when growing in egg. However, site specific mutation of amino acid biosynthesis genes asnA (17.3 fold upregulated), asnB (18.6 fold upregulated), asnA/asnB and, serA (12.0 fold upregulated) and gdhA (3.7 fold upregulated), did not result in growth attenuation, suggesting that biosynthesis using the enzymes encoded from these genes may represent the first choice for S. Enteritidis when growing in egg, but when absent, the bacterium could use alternative ways to obtain the amino acids. PMID:26945769

  9. Highly expressed amino acid biosynthesis genes revealed by global gene expression analysis of Salmonella enterica serovar Enteritidis during growth in whole egg are not essential for this growth.

    PubMed

    Jakočiūnė, Džiuginta; Herrero-Fresno, Ana; Jelsbak, Lotte; Olsen, John Elmerdahl

    2016-05-01

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is the most common cause of egg borne salmonellosis in many parts of the world. This study analyzed gene expression of this bacterium during growth in whole egg, and whether highly expressed genes were essential for the growth. High quality RNA was extracted from S. Enteritidis using a modified RNA-extraction protocol. Global gene expression during growth in whole egg was compared to growth in LB-medium using DNA array method. Twenty-six genes were significantly upregulated during growth in egg; these belonged to amino acid biosynthesis, di/oligopeptide transport system, biotin synthesis, ferrous iron transport system, and type III secretion system. Significant downregulation of 15 genes related to formate hydrogenlyase (FHL) and trehalose metabolism was observed. The results suggested that S. Enteritidis is starved for amino-acids, biotin and iron when growing in egg. However, site specific mutation of amino acid biosynthesis genes asnA (17.3 fold upregulated), asnB (18.6 fold upregulated), asnA/asnB and, serA (12.0 fold upregulated) and gdhA (3.7 fold upregulated), did not result in growth attenuation, suggesting that biosynthesis using the enzymes encoded from these genes may represent the first choice for S. Enteritidis when growing in egg, but when absent, the bacterium could use alternative ways to obtain the amino acids.

  10. Restricted isotype, distinct variable gene usage, and high rate of gp120 specificity of HIV-1 envelope-specific B cells in colostrum compared with those in blood of HIV-1-infected, lactating African women.

    PubMed

    Sacha, C R; Vandergrift, N; Jeffries, T L; McGuire, E; Fouda, G G; Liebl, B; Marshall, D J; Gurley, T C; Stiegel, L; Whitesides, J F; Friedman, J; Badiabo, A; Foulger, A; Yates, N L; Tomaras, G D; Kepler, T B; Liao, H X; Haynes, B F; Moody, M A; Permar, S R

    2015-03-01

    A successful HIV-1 vaccine must elicit immune responses that impede mucosal virus transmission, though functional roles of protective HIV-1 Envelope (Env)-specific mucosal antibodies remain unclear. Colostrum is a rich source of readily accessible mucosal B cells that may help define the mucosal antibody response contributing to prevention of postnatal HIV-1 transmission. To examine the HIV-1 Env-specific colostrum B-cell repertoire, single B cells were isolated from 17 chronically HIV-infected, lactating women, producing 51 blood and 39 colostrum HIV-1 Env-specific B-cell antibodies. All HIV-1 Env-specific colostrum-derived antibodies were immunoglobulin (Ig)G1 isotype and had mean heavy chain complementarity-determining region 3 (CDR3) lengths and mutation frequencies similar to those isolated from blood. However, variable heavy chain (VH) gene subfamily 1(∼)69 usage was higher among colostrum than blood HIV-1 Env-reactive antibodies (49% vs. 20%, P=0.006, Fisher's exact test). Additionally, more HIV-1 Env-specific colostrum antibodies were gp120 specific than those isolated from blood (44% vs. 16%, P=0.005, Fisher's exact test). One cross-compartment HIV-1 Env-specific clonal B-cell lineage was identified. These unique characteristics of colostrum B-cell antibodies suggest selective homing of HIV-1-specific IgG1-secreting memory B cells to the mammary gland and have implications for targeting mucosal B-cell populations by vaccination. PMID:25100291

  11. Metagenomic approach reveals variation of microbes with arsenic and antimony metabolism genes from highly contaminated soil.

    PubMed

    Luo, Jinming; Bai, Yaohui; Liang, Jinsong; Qu, Jiuhui

    2014-01-01

    Microbes have great potential for arsenic (As) and antimony (Sb) bioremediation in heavily contaminated soil because they have the ability to biotransform As and Sb to species that have less toxicity or are more easily removed. In this study, we integrated a metagenomic method with physicochemical characterization to elucidate the composition of microbial community and functional genes (related to As and Sb) in a high As (range from 34.11 to 821.23 mg kg-1) and Sb (range from 226.67 to 3923.07 mg kg-1) contaminated mine field. Metagenomic analysis revealed that microbes from 18 phyla were present in the 5 samples of soil contaminated with high As and Sb. Moreover, redundancy analysis (RDA) of the relationship between the 18 phyla and the concentration of As and Sb demonstrated that 5 phyla of microbes, i.e. Actinobacteria, Firmicutes, Nitrospirae, Tenericutes and Gemmatimonadetes were positively correlated with As and Sb concentration. The distribution, diversity and abundance of functional genes (including arsC, arrA, aioA, arsB and ACR3) were much higher for the samples containing higher As and Sb concentrations. Based on correlation analysis, the results showed a positive relationship between arsC-like (R2 = 0.871) and aioA-like (R2 = 0.675) gene abundance and As concentration, and indicated that intracellular As(V) reduction and As(III) oxidation could be the dominant As detoxification mechanism enabling the microbes to survive in the environment. This study provides a direct and reliable reference on the diversity of microbial community and functional genes in an extremely high concentration As- and Sb-contaminated environment. PMID:25299175

  12. Metagenomic Approach Reveals Variation of Microbes with Arsenic and Antimony Metabolism Genes from Highly Contaminated Soil

    PubMed Central

    Luo, Jinming; Bai, Yaohui; Liang, Jinsong; Qu, Jiuhui

    2014-01-01

    Microbes have great potential for arsenic (As) and antimony (Sb) bioremediation in heavily contaminated soil because they have the ability to biotransform As and Sb to species that have less toxicity or are more easily removed. In this study, we integrated a metagenomic method with physicochemical characterization to elucidate the composition of microbial community and functional genes (related to As and Sb) in a high As (range from 34.11 to 821.23 mg kg−1) and Sb (range from 226.67 to 3923.07 mg kg−1) contaminated mine field. Metagenomic analysis revealed that microbes from 18 phyla were present in the 5 samples of soil contaminated with high As and Sb. Moreover, redundancy analysis (RDA) of the relationship between the 18 phyla and the concentration of As and Sb demonstrated that 5 phyla of microbes, i.e. Actinobacteria, Firmicutes, Nitrospirae, Tenericutes and Gemmatimonadetes were positively correlated with As and Sb concentration. The distribution, diversity and abundance of functional genes (including arsC, arrA, aioA, arsB and ACR3) were much higher for the samples containing higher As and Sb concentrations. Based on correlation analysis, the results showed a positive relationship between arsC-like (R2 = 0.871) and aioA-like (R2 = 0.675) gene abundance and As concentration, and indicated that intracellular As(V) reduction and As(III) oxidation could be the dominant As detoxification mechanism enabling the microbes to survive in the environment. This study provides a direct and reliable reference on the diversity of microbial community and functional genes in an extremely high concentration As- and Sb-contaminated environment. PMID:25299175

  13. Comparison of low and high dose ionising radiation using topological analysis of gene coexpression networks

    PubMed Central

    2012-01-01

    Background The growing use of imaging procedures in medicine has raised concerns about exposure to low-dose ionising radiation (LDIR). While the disastrous effects of high dose ionising radiation (HDIR) is well documented, the detrimental effects of LDIR is not well understood and has been a topic of much debate. Since little is known about the effects of LDIR, various kinds of wet-lab and computational analyses are required to advance knowledge in this domain. In this paper we carry out an “upside-down pyramid” form of systems biology analysis of microarray data. We characterised the global genomic response following 10 cGy (low dose) and 100 cGy (high dose) doses of X-ray ionising radiation at four time points by analysing the topology of gene coexpression networks. This study includes a rich experimental design and state-of-the-art computational systems biology methods of analysis to study the differences in the transcriptional response of skin cells exposed to low and high doses of radiation. Results Using this method we found important genes that have been linked to immune response, cell survival and apoptosis. Furthermore, we also were able to identify genes such as BRCA1, ABCA1, TNFRSF1B, MLLT11 that have been associated with various types of cancers. We were also able to detect many genes known to be associated with various medical conditions. Conclusions Our method of applying network topological differences can aid in identifying the differences among similar (eg: radiation effect) yet very different biological conditions (eg: different dose and time) to generate testable hypotheses. This is the first study where a network level analysis was performed across two different radiation doses at various time points, thereby illustrating changes in the cellular response over time. PMID:22594378

  14. Pre-thymic somatic mutation leads to high mutant frequency at hypoxanthine-guanine phosphoribosyltransferase gene

    SciTech Connect

    Jett, J.

    1994-12-01

    While characterizing the background mutation spectrum of the Hypoxathine-guanine phosphoribosyltransferase (HPRT) gene in a healthy population, an outlier with a high mutant frequency of thioguanine resistant lymphocytes was found. When studied at the age of 46, this individual had been smoking 60 cigarettes per day for 38 years. His mutant frequency was calculated at 3.6 and 4.2x10{sup {minus}4} for two sampling periods eight months apart. Sequencing analysis of the HPRT gene in his mutant thioguanine resistant T lymphocytes was done to find whether the cells had a high rate of mutation, or if the mutation was due to a single occurrence of mutation and, if so, when in the T lymphocyte development the mutation occurred. By T-cell receptor analysis it has been found that out of 35 thioguanine resistant clones there was no dominant gamma T cell receptor gene rearrangement. During my appointment in the Science & Engineering Research Semester, I found that 34 of those clones have the same base substitution of G{yields}T at cDNA position 197. Due to the consistent mutant frequency from both sampling periods and the varying T cell receptors, the high mutant frequency cannot be due to recent proliferation of a mature mutant T lymphocyte. From the TCR and DNA sequence analysis we conclude that the G{yields}T mutation must have occurred in a T lymphocyte precursor before thymic differentiation so that the thioguanine resistant clones share the same base substitution but not the same gamma T cell receptor gene.

  15. A new genetic method for isolating functionally interacting genes: high plo1(+)-dependent mutants and their suppressors define genes in mitotic and septation pathways in fission yeast.

    PubMed Central

    Cullen, C F; May, K M; Hagan, I M; Glover, D M; Ohkura, H

    2000-01-01

    We describe a general genetic method to identify genes encoding proteins that functionally interact with and/or are good candidates for downstream targets of a particular gene product. The screen identifies mutants whose growth depends on high levels of expression of that gene. We apply this to the plo1(+) gene that encodes a fission yeast homologue of the polo-like kinases. plo1(+) regulates both spindle formation and septation. We have isolated 17 high plo1(+)-dependent (pld) mutants that show defects in mitosis or septation. Three mutants show a mitotic arrest phenotype. Among the 14 pld mutants with septation defects, 12 mapped to known loci: cdc7, cdc15, cdc11 spg1, and sid2. One of the pld mutants, cdc7-PD1, was selected for suppressor analysis. As multicopy suppressors, we isolated four known genes involved in septation in fission yeast: spg1(+), sce3(+), cdc8(+), and rho1(+), and two previously uncharacterized genes, mpd1(+) and mpd2(+). mpd1(+) exhibits high homology to phosphatidylinositol 4-phosphate 5-kinase, while mpd2(+) resembles Saccharomyces cerevisiae SMY2; both proteins are involved in the regulation of actin-mediated processes. As chromosomal suppressors of cdc7-PD1, we isolated mutations of cdc16 that resulted in multiseptation without nuclear division. cdc16(+), dma1(+), byr3(+), byr4(+) and a truncated form of the cdc7 gene were isolated by complementation of one of these cdc16 mutations. These results demonstrate that screening for high dose-dependent mutants and their suppressors is an effective approach to identify functionally interacting genes. PMID:10924454

  16. Neural crest and mesoderm lineage-dependent gene expression in orofacial development.

    PubMed

    Bhattacherjee, Vasker; Mukhopadhyay, Partha; Singh, Saurabh; Johnson, Charles; Philipose, John T; Warner, Courtney P; Greene, Robert M; Pisano, M Michele

    2007-06-01

    profiles of neural crest- and mesoderm-derived mesenchymal cells from the first branchial arch revealed over 140 genes that exhibited statistically significant differential levels of expression. The gene products of many of these differentially expressed genes have previously been linked to the development of mesoderm- or neural crest-derived tissues in the embryo. Interestingly, however, hitherto uncharacterized coding sequences with highly significant differences in expression between the two embryonic progenitor cell types were also identified. These lineage-dependent mesenchymal cell molecular fingerprints offer the opportunity to elucidate additional mechanisms governing cellular growth, differentiation, and morphogenesis of the embryonic orofacial region. The chemokine stromal cell-derived factor 1, (SDF-1), was found to exhibit greater expression in mesoderm-derived mesenchyme in the branchial arch when compared with neurectoderm, suggesting a possible chemotactic role for SDF-1 in guiding the migratory neural crest cells to their destination. The novel combination of genetic labeling of the neural crest cell population by EGFP coupled with isolation of cells by LCM for gene expression analysis has enabled, for the first time, the generation of gene expression profiles of distinct embryonic cell lineages.

  17. Characterization of upregulated genes associated with high phosphorus accumulation in cucumber.

    PubMed

    Padmanabhan, Priya; Venkatachalam, Perumal; Sahi, Shivendra V

    2011-12-01

    Excessive application of phosphorus (P)-rich manures to agricultural lands often results in P-accumulation in soils leading to water pollution through runoffs and leaching. Use of suitable plant species that can extract and sequester excess P from soil into their biomass is an effective method of remediation of P-contaminated soils. Knowledge on the molecular responses of plants to high P-accumulation and tolerance is lacking. Therefore, a suppression subtractive hybridization (SSH) strategy was employed to identify and elucidate the pattern of gene expression related to P-tolerance and accumulation in cucumber (Cucumis sativus L.), a P-accumulator plant. RNA isolated from cucumber grown in high P was used for 'tester' cDNA synthesis and SSH library preparation. A total of 63 cDNAs were identified as showing upregulated expression in this plant in response to high P. No putative function could be assigned to 7 (11%) of the 63 upregulated high P-modulated genes and 11 expressed sequence tags (ESTs) (17%) did not match database entries. The remaining 45 ESTs were grouped into five functional classes. The majority of these ESTs belonged to three groups: 'metabolism', 'protein synthesis/degradation and signaling' and 'cell structure/cell wall'. Only six 'stress/defense'-related ESTs were identified from this library. The results of reverse northern blot analysis was further confirmed and validated through semi-quantitative RT-PCR carried out with representative ESTs identified in this study. The research reported here may contribute to a preliminary understanding of the high P-related gene expression in this P-accumulating plant. PMID:21883253

  18. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation

    PubMed Central

    Horlbeck, Max A; Gilbert, Luke A; Villalta, Jacqueline E; Adamson, Britt; Pak, Ryan A; Chen, Yuwen; Fields, Alexander P; Park, Chong Yon; Corn, Jacob E; Kampmann, Martin; Weissman, Jonathan S

    2016-01-01

    We recently found that nucleosomes directly block access of CRISPR/Cas9 to DNA (Horlbeck et al., 2016). Here, we build on this observation with a comprehensive algorithm that incorporates chromatin, position, and sequence features to accurately predict highly effective single guide RNAs (sgRNAs) for targeting nuclease-dead Cas9-mediated transcriptional repression (CRISPRi) and activation (CRISPRa). We use this algorithm to design next-generation genome-scale CRISPRi and CRISPRa libraries targeting human and mouse genomes. A CRISPRi screen for essential genes in K562 cells demonstrates that the large majority of sgRNAs are highly active. We also find CRISPRi does not exhibit any detectable non-specific toxicity recently observed with CRISPR nuclease approaches. Precision-recall analysis shows that we detect over 90% of essential genes with minimal false positives using a compact 5 sgRNA/gene library. Our results establish CRISPRi and CRISPRa as premier tools for loss- or gain-of-function studies and provide a general strategy for identifying Cas9 target sites. DOI: http://dx.doi.org/10.7554/eLife.19760.001 PMID:27661255

  19. Reconciling extremely strong barriers with high levels of gene exchange in annual sunflowers.

    PubMed

    Sambatti, Julianno B M; Strasburg, Jared L; Ortiz-Barrientos, Daniel; Baack, Eric J; Rieseberg, Loren H

    2012-05-01

    In several cases, estimates of gene flow between species appear to be higher than we might predict given the strength of interspecific barriers separating these species pairs. However, as far as we are aware, detailed measurements of reproductive isolation have not previously been compared with a coalescent-based assessment of gene flow. Here, we contrast these two measures in two species of sunflower, Helianthus annuus and H. petiolaris. We quantified the total reproductive barrier strength between these species by compounding the contributions of the following prezygotic and postzygotic barriers: ecogeographic isolation, reproductive asynchrony, niche differentiation, pollen competition, hybrid seed formation, hybrid seed germination, hybrid fertility, and extrinsic postzygotic isolation. From this estimate, we calculated the probability that a reproductively successful hybrid is produced: estimates of P(hyb) range from 10(-4) to 10(-6) depending on the direction of the cross and the degree of independence among reproductive barriers. We then compared this probability with population genetic estimates of the per generation migration rate (m). We showed that the relatively high levels of gene flow estimated between these sunflower species (N(e) m= 0.34-0.76) are mainly due to their large effective population sizes (N(e) > 10(6)). The interspecific migration rate (m) is very small (<10(-7)) and an order of magnitude lower than that expected based on our reproductive barrier strength estimates. Thus, even high levels of reproductive isolation (>0.999) may produce genomic mosaics.

  20. Tailor-made TALEN system for highly efficient targeted gene replacement in the rice blast fungus.

    PubMed

    Arazoe, Takayuki; Ogawa, Tetsuo; Miyoshi, Kennosuke; Yamato, Tohru; Ohsato, Shuichi; Sakuma, Tetsushi; Yamamoto, Takashi; Arie, Tsutomu; Kuwata, Shigeru

    2015-07-01

    Genetic manipulation is key to unraveling gene functions and creating genetically modified strains of microbial organisms. Recently, engineered nucleases that can generate DNA double-strand breaks (DSBs) at a specific site in the desired locus within genome are utilized in a rapidly developing genome editing technology via DSBs repair. However, the use of engineered nucleases in filamentous fungi has not been validated. In this study, we demonstrated that tailor-made transcriptional activator-like effector nucleases (TALENs) system, Platinum-Fungal TALENs (PtFg TALENs), could improve the efficiency of homologous recombination-mediated targeted gene replacement by up to 100% in the rice blast fungus Pyricularia oryzae. This high-efficiency PtFg TALEN has great potential for basic and applied biological applications in filamentous fungi. PMID:25683503

  1. Redundant or separate entities?—roles of Twist1 and Twist2 as molecular switches during gene transcription

    PubMed Central

    Franco, Hector L.; Casasnovas, José; Rodríguez-Medina, José R.; Cadilla, Carmen L.

    2011-01-01

    Twist1 and Twist2 are highly conserved members of the Twist subfamily of bHLH proteins responsible for the transcriptional regulation of the developmental programs in mesenchymal cell lineages. The regulation of such processes requires that Twist1 and Twist2 function as molecular switches to activate and repress target genes by employing several direct and indirect mechanisms. Modes of action by these proteins include direct DNA binding to conserved E-box sequences and recruitment of coactivators or repressors, sequestration of E-protein modulators, and interruption of proper activator/repressor function through protein–protein interactions. Regulatory outcomes of Twist1 and Twist2 are themselves controlled by spatial-temporal expression, phosphoregulation, dimer choice and cellular localization. Although these two proteins are highly conserved and exhibit similar functions in vitro, emerging literature have demonstrated different roles in vivo. The involvement of Twist1 and Twist2 in a broad spectrum of regulatory pathways highlights the importance of understanding their roles in normal development, homeostasis and disease. Here we focus on the mechanistic models of transcriptional regulation and summarize the similarities and differences between Twist1 and Twist2 in the context of myogenesis, osteogenesis, immune system development and cancer. PMID:20935057

  2. Differential gene expression profiling of mouse skin after sulfur mustard exposure: Extended time response and inhibitor effect

    SciTech Connect

    Gerecke, Donald R. Chen Minjun; Isukapalli, Sastry S.; Gordon, Marion K.; Chang, Y.-C.; Tong Weida; Androulakis, Ioannis P.; Georgopoulos, Panos G.

    2009-01-15

    Sulfur mustard (HD, SM), is a chemical warfare agent that within hours causes extensive blistering at the dermal-epidermal junction of skin. To better understand the progression of SM-induced blistering, gene expression profiling for mouse skin was performed after a single high dose of SM exposure. Punch biopsies of mouse ears were collected at both early and late time periods following SM exposure (previous studies only considered early time periods). The biopsies were examined for pathological disturbances and the samples further assayed for gene expression profiling using the Affymetrix microarray analysis system. Principal component analysis and hierarchical cluster analysis of the differently expressed genes, performed with ArrayTrack showed clear separation of the various groups. Pathway analysis employing the KEGG library and Ingenuity Pathway Analysis (IPA) indicated that cytokine-cytokine receptor interaction, cell adhesion molecules (CAMs), and hematopoietic cell lineage are common pathways affected at different time points. Gene ontology analysis identified the most significantly altered biological processes as the immune response, inflammatory response, and chemotaxis; these findings are consistent with other reported results for shorter time periods. Selected genes were chosen for RT-PCR verification and showed correlations in the general trends for the microarrays. Interleukin 1 beta was checked for biological analysis to confirm the presence of protein correlated to the corresponding microarray data. The impact of a matrix metalloproteinase inhibitor, MMP-2/MMP-9 inhibitor I, against SM exposure was assessed. These results can help in understanding the molecular mechanism of SM-induced blistering, as well as to test the efficacy of different inhibitors.

  3. Differential gene expression profiling of mouse skin after sulfur mustard exposure: Extended time response and inhibitor effect

    PubMed Central

    Gerecke, Donald R.; Chen, Minjun; Isukapalli, Sastry S.; Gordon, Marion K.; Chang, Yoke-Chen; Tong, Weida; Androulakis, Ioannis P.; Georgopoulos, Panos G.

    2011-01-01

    Sulfur mustard (HD, SM), is a chemical warfare agent that within hours causes extensive blistering at the dermal–epidermal junction of skin. To better understand the progression of SM-induced blistering, gene expression profiling for mouse skin was performed after a single high dose of SM exposure. Punch biopsies of mouse ears were collected at both early and late time periods following SM exposure (previous studies only considered early time periods). The biopsies were examined for pathological disturbances and the samples further assayed for gene expression profiling using the Affymetrix microarray analysis system. Principal component analysis and hierarchical cluster analysis of the differently expressed genes, performed with ArrayTrack showed clear separation of the various groups. Pathway analysis employing the KEGG library and Ingenuity Pathway Analysis (IPA) indicated that cytokine–cytokine receptor interaction, cell adhesion molecules (CAMs), and hematopoietic cell lineage are common pathways affected at different time points. Gene ontology analysis identified the most significantly altered biological processes as the immune response, inflammatory response, and chemotaxis; these findings are consistent with other reported results for shorter time periods. Selected genes were chosen for RT-PCR verification and showed correlations in the general trends for the microarrays. Interleukin 1 beta was checked for biological analysis to confirm the presence of protein correlated to the corresponding microarray data. The impact of a matrix metalloproteinase inhibitor, MMP-2/MMP-9 inhibitor I, against SM exposure was assessed. These results can help in understanding the molecular mechanism of SM-induced blistering, as well as to test the efficacy of different inhibitors. PMID:18955075

  4. High glucose driven expression of pro-inflammatory cytokine and chemokine genes in lymphocytes: molecular mechanisms of IL-17 family gene expression.

    PubMed

    Kumar, Prabhakaran; Natarajan, Kartiga; Shanmugam, Narkunaraja

    2014-03-01

    High glucose is an independent risk factor that alters the expression pattern of cytokines/chemokine leading to leukocyte activation in diabetes. Fluctuation of cytokine milieu in lymphocytes may lead to differentiation into a particular subset. Our objectives were to profile high glucose induced inflammatory gene expression in lymphocytes, to examine in vivo relevance in diabetes and to identify the key transcription factors and signaling pathways involved. Cytokine gene arrays and T-helper (Th1/Th2/Th17) cytokine profiler RT(2)-PCR arrays used for cytokine expression profiling followed by validation using Real Time-qPCR and relative RT-PCR in Jurkat T-lymphocytes, peripheral blood lymphocytes (PBLCs) from normal and diabetes subjects. Luciferase reporter plasmid, pharmacological inhibitors and mutant plasmids were used for promoter activation and signaling pathway studies. High glucose induced gene profiling in Jurkat T-lymphocytes showed significantly increased expression of 64 proinflammatory genes including IL-6 and IL-17A and most of these genes were Nuclear Factor (NF)-κB and AP-1 regulated. RT(2)-PCR array results suggested the transcriptional activation of IL-17 and its downstream signaling in Jurkat T-lymphocytes upon high glucose treatment. Candidate genes like Interleukin (IL)-17A, IL-17E IL-17F and IL-6 were up-regulated in both Jurkat T-lymphocytes and PBLCs from normal and diabetes subjects. This high glucose induced cytokine expression was due to promoter activation. Pharmacology inhibitor studies showed the involvement of NF-κB, protein kinase-C, p38 Mitogen activated protein kinase; Janus activated kinase-signal transducer and activator of transcription and extracellular regulated kinase signaling pathways. Further, high glucose treatment increased the adhesion of lymphocytes to human umbilical vein endothelial cells. These results show that IL-17 cytokines are induced by high glucose via key signaling pathways leading to lymphocyte activation

  5. High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems.

    PubMed

    Xu, Like; Ouyang, Weiying; Qian, Yanyun; Su, Chao; Su, Jianqiang; Chen, Hong

    2016-06-01

    Antibiotic resistance genes (ARGs) are present in surface water and often cannot be completely eliminated by drinking water treatment plants (DWTPs). Improper elimination of the ARG-harboring microorganisms contaminates the water supply and would lead to animal and human disease. Therefore, it is of utmost importance to determine the most effective ways by which DWTPs can eliminate ARGs. Here, we tested water samples from two DWTPs and distribution systems and detected the presence of 285 ARGs, 8 transposases, and intI-1 by utilizing high-throughput qPCR. The prevalence of ARGs differed in the two DWTPs, one of which employed conventional water treatments while the other had advanced treatment processes. The relative abundance of ARGs increased significantly after the treatment with biological activated carbon (BAC), raising the number of detected ARGs from 76 to 150. Furthermore, the final chlorination step enhanced the relative abundance of ARGs in the finished water generated from both DWTPs. The total enrichment of ARGs varied from 6.4-to 109.2-fold in tap water compared to finished water, among which beta-lactam resistance genes displayed the highest enrichment. Six transposase genes were detected in tap water samples, with the transposase gene TnpA-04 showing the greatest enrichment (up to 124.9-fold). We observed significant positive correlations between ARGs and mobile genetic elements (MGEs) during the distribution systems, indicating that transposases and intI-1 may contribute to antibiotic resistance in drinking water. To our knowledge, this is the first study to investigate the diversity and abundance of ARGs in drinking water treatment systems utilizing high-throughput qPCR techniques in China.

  6. High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems.

    PubMed

    Xu, Like; Ouyang, Weiying; Qian, Yanyun; Su, Chao; Su, Jianqiang; Chen, Hong

    2016-06-01

    Antibiotic resistance genes (ARGs) are present in surface water and often cannot be completely eliminated by drinking water treatment plants (DWTPs). Improper elimination of the ARG-harboring microorganisms contaminates the water supply and would lead to animal and human disease. Therefore, it is of utmost importance to determine the most effective ways by which DWTPs can eliminate ARGs. Here, we tested water samples from two DWTPs and distribution systems and detected the presence of 285 ARGs, 8 transposases, and intI-1 by utilizing high-throughput qPCR. The prevalence of ARGs differed in the two DWTPs, one of which employed conventional water treatments while the other had advanced treatment processes. The relative abundance of ARGs increased significantly after the treatment with biological activated carbon (BAC), raising the number of detected ARGs from 76 to 150. Furthermore, the final chlorination step enhanced the relative abundance of ARGs in the finished water generated from both DWTPs. The total enrichment of ARGs varied from 6.4-to 109.2-fold in tap water compared to finished water, among which beta-lactam resistance genes displayed the highest enrichment. Six transposase genes were detected in tap water samples, with the transposase gene TnpA-04 showing the greatest enrichment (up to 124.9-fold). We observed significant positive correlations between ARGs and mobile genetic elements (MGEs) during the distribution systems, indicating that transposases and intI-1 may contribute to antibiotic resistance in drinking water. To our knowledge, this is the first study to investigate the diversity and abundance of ARGs in drinking water treatment systems utilizing high-throughput qPCR techniques in China. PMID:26890482

  7. Strategies for achieving high-level expression of genes in Escherichia coli.

    PubMed Central

    Makrides, S C

    1996-01-01

    Progress in our understanding of several biological processes promises to broaden the usefulness of Escherichia coli as a tool for gene expression. There is an expanding choice of tightly regulated prokaryotic promoters suitable for achieving high-level gene expression. New host strains facilitate the formation of disulfide bonds in the reducing environment of the cytoplasm and offer higher protein yields by minimizing proteolytic degradation. Insights into the process of protein translocation across the bacterial membranes may eventually make it possible to achieve robust secretion of specific proteins into the culture medium. Studies involving molecular chaperones have shown that in specific cases, chaperones can be very effective for improved protein folding, solubility, and membrane transport. Negative results derived from such studies are also instructive in formulating different strategies. The remarkable increase in the availability of fusion partners offers a wide range of tools for improved protein folding, solubility, protection from proteases, yield, and secretion into the culture medium, as well as for detection and purification of recombinant proteins. Codon usage is known to present a potential impediment to high-level gene expression in E. coli. Although we still do not understand all the rules governing this phenomenon, it is apparent that "rare" codons, depending on their frequency and context, can have an adverse effect on protein levels. Usually, this problem can be alleviated by modification of the relevant codons or by coexpression of the cognate tRNA genes. Finally, the elucidation of specific determinants of protein degradation, a plethora of protease-deficient host strains, and methods to stabilize proteins afford new strategies to minimize proteolytic susceptibility of recombinant proteins in E. coli. PMID:8840785

  8. Effects of high fat diet on GPR109A and GPR81 gene expression.

    PubMed

    Wanders, Desiree; Graff, Emily C; Judd, Robert L

    2012-08-24

    GPR109A (PUMA-G, NIACR1, HCA(2)) and GPR81 (HCA(1)) are G protein-coupled receptors located predominantly on adipocytes that mediate anti-lipolytic effects. These cell surface receptors give the adipocyte the ability to "sense" metabolic changes in the environment and respond through lipolytic regulation and release of products including free fatty acids and pro- or anti-inflammatory adipokines. The endogenous ligands for GPR109A and GPR81 are β-hydroxybutyrate and lactate, respectively, both of which are hydroxycarboxylic acids and intermediates of energy metabolism. Circulating β-hydroxybutyrate levels are increased during a 2-3 day fast and prolonged starvation, while lactate levels are elevated during times of intense exercise. Therefore, regulation of expression of these receptors is crucial for the metabolic sensing ability of the adipocyte and ultimately whole body energy homeostasis. We investigated the effects of high fat diet-induced obesity on expression of GPR109A and GPR81. Sixteen male C57BL/6 mice were placed on a control (10% kcal fat; n=8) or a high fat (60% kcal fat; n=8) diet for 11 weeks. Diet-induced obesity significantly reduced GPR109A and GPR81 gene expression in epididymal fat pads. This decrease in GPR109A and GPR81 gene expression was positively correlated with a decrease in adipose tissue PPARγ gene expression. In contrast, acute treatment of both 3T3-L1 adipocytes and RAW 264.7 macrophages with lipopolysaccharide significantly increased GPR109A gene expression, but had no effect on GPR81 expression in 3T3-L1 adipocytes. In conclusion, chronic obesity reduces GPR109A and GPR81 expression in the adipose tissue, while acute in vitro LPS treatment increases expression of GPR109A in adipocytes and macrophages.

  9. High time for a roll call: gene duplication and phylogenetic relationships of TCP-like genes in monocots

    PubMed Central

    Mondragón-Palomino, Mariana; Trontin, Charlotte

    2011-01-01

    Background and Aims The TCP family is an ancient group of plant developmental transcription factors that regulate cell division in vegetative and reproductive structures and are essential in the establishment of flower zygomorphy. In-depth research on eudicot TCPs has documented their evolutionary and developmental role. This has not happened to the same extent in monocots, although zygomorphy has been critical for the diversification of Orchidaceae and Poaceae, the largest families of this group. Investigating the evolution and function of TCP-like genes in a wider group of monocots requires a detailed phylogenetic analysis of all available sequence information and a system that facilitates comparing genetic and functional information. Methods The phylogenetic relationships of TCP-like genes in monocots were investigated by analysing sequences from the genomes of Zea mays, Brachypodium distachyon, Oryza sativa and Sorghum bicolor, as well as EST data from several other monocot species. Key Results All available monocot TCP-like sequences are associated in 20 major groups with an average identity ≥64 % and most correspond to well-supported clades of the phylogeny. Their sequence motifs and relationships of orthology were documented and it was found that 67 % of the TCP-like genes of Sorghum, Oryza, Zea and Brachypodium are in microsyntenic regions. This analysis suggests that two rounds of whole genome duplication drove the expansion of TCP-like genes in these species. Conclusions A system of classification is proposed where putative or recognized monocot TCP-like genes are assigned to a specific clade of PCF-, CIN- or CYC/tb1-like genes. Specific biases in sequence data of this family that must be tackled when studying its molecular evolution and phylogeny are documented. Finally, the significant retention of duplicated TCP genes from Zea mays is considered in the context of balanced gene drive. PMID:21444336

  10. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge.

    PubMed

    Zhang, Tong; Zhang, Xu-Xiang; Ye, Lin

    2011-01-01

    The overuse or misuse of antibiotics has accelerated antibiotic resistance, creating a major challenge for the public health in the world. Sewage treatment plants (STPs) are considered as important reservoirs for antibiotic resistance genes (ARGs) and activated sludge characterized with high microbial density and diversity facilitates ARG horizontal gene transfer (HGT) via mobile genetic elements (MGEs). However, little is known regarding the pool of ARGs and MGEs in sludge microbiome. In this study, the transposon aided capture (TRACA) system was employed to isolate novel plasmids from activated sludge of one STP in Hong Kong, China. We also used Illumina Hiseq 2000 high-throughput sequencing and metagenomics analysis to investigate the plasmid metagenome. Two novel plasmids were acquired from the sludge microbiome by using TRACA system and one novel plasmid was identified through metagenomics analysis. Our results revealed high levels of various ARGs as well as MGEs for HGT, including integrons, transposons and plasmids. The application of the TRACA system to isolate novel plasmids from the environmental metagenome, coupled with subsequent high-throughput sequencing and metagenomic analysis, highlighted the prevalence of ARGs and MGEs in microbial community of STPs.

  11. Fish oil decreases hepatic lipogenic genes in rats fasted and refed on a high fructose diet.

    PubMed

    de Castro, Gabriela S; Cardoso, João Felipe R; Calder, Philip C; Jordão, Alceu A; Vannucchi, Helio

    2015-03-01

    Fasting and then refeeding on a high-carbohydrate diet increases serum and hepatic triacylglycerol (TAG) concentrations compared to standard diets. Fructose is a lipogenic monosaccharide which stimulates de novo fatty acid synthesis. Omega-3 (n-3) fatty acids stimulate hepatic β-oxidation, partitioning fatty acids away from TAG synthesis. This study investigated whether dietary n-3 fatty acids from fish oil (FO) improve the hepatic lipid metabolic response seen in rats fasted and then refed on a high-fructose diet. During the post-prandial (fed) period, rats fed a FO rich diet showed an increase in hepatic peroxisome proliferator-activated receptor α (PPAR-α) gene expression and decreased expression of carbohydrate responsive element binding protein (ChREBP), fatty acid synthase (FAS) and microsomal triglyceride transfer protein (MTTP). Feeding a FO rich diet for 7 days prior to 48 h of fasting resulted in lower hepatic TAG, lower PPAR-α expression and maintenance of hepatic n-3 fatty acid content. Refeeding on a high fructose diet promoted an increase in hepatic and serum TAG and in hepatic PPAR-α, ChREBP and MTTP expression. FO did not prevent the increase in serum and hepatic TAG after fructose refeeding, but did decrease hepatic expression of lipogenic genes and increased the n-3 fatty acid content of the liver. n-3 Fatty acids can modify some components of the hepatic lipid metabolic response to later feeding with a high fructose diet.

  12. Self-assembled supramolecular nano vesicles for safe and highly efficient gene delivery to solid tumors

    PubMed Central

    Li, Wei; Li, Huafei; Li, Jinfeng; Wang, Huajing; Zhao, He; Zhang, Li; Xia, Yu; Ye, Zengwei; Gao, Jie; Dai, Jianxin; Wang, Hao; Guo, Yajun

    2012-01-01

    The main obstacles for cationic polyplexes in gene delivery are in vivo instability and low solid-tumor accumulation. Safe vectors with high transfection efficiency and in vivo tumor accumulation are therefore highly desirable. In this study, the amphiphilic block copolymer poly(n-butyl methacrylate)-b-poly(N-acryloylmorpholine) was synthesized by reversible addition–fragmentation chain-transfer (RAFT) radical polymerization. The corresponding well-defined vesicles with narrow size distribution were tailored by finely regulating the packing parameter (β) of copolymer (1/2 < β < 1). Compared with traditional “gold-standard” polycation (polyethylenimine, 25 kDa), plasmid DNA condensing efficiency, DNase I degradation protection, and cellular uptake were improved by the supramolecular nano vesicles. In addition, the plasmid DNA transferring efficiency in 10% fetal bovine serum medium was enlarged five times to that of polyethylenimine in renal tubular epithelial and human hepatocellular carcinoma cell lines. This improved in vitro transfection was mainly attributed to the densely packed bilayer. This stealth polyplex showed high serum stability via entropic repulsion, which further protected the polyplex from being destroyed during sterilization. As indicated by the IVIS® Lumina II Imaging System (Caliper Life Sciences, Hopkinton, MA) 24 hours post-intravenous administration, intra-tumor accumulation of the stealth polyplex was clearly promoted. This study successfully circumvented the traditional dilemma of efficient gene transfection at a high nitrogen-from-polyethylenimine to phosphate-from-DNA ratio that is accompanied with site cytotoxicity and low stability. As such, these simply tailored noncytotoxic nano vesicles show significant potential for use in practical gene therapy. PMID:22977303

  13. In situ Expression of Functional Genes Reveals Nitrogen Cycling at High Temperatures in Terrestrial Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Loiacono, S. T.; Meyer-Dombard, D. R.

    2011-12-01

    An essential element for life, nitrogen occurs in all living organisms and is critical for the synthesis of amino acids, proteins, nucleic acids, and other forms of biomass. Thus, nitrogen cycling likely plays a vital role in microbial metabolic processes as well as nutrient availability. For microorganisms in "extreme" environments, this means developing adaptations that allow them to survive in harsh conditions and still perform the metabolisms essential to sustain life. Recent studies have screened biofilms and thermal sediments of Yellowstone National Park (YNP) thermal features for the presence of nifH genes, which code for a key enzyme in the nitrogen fixation process [1-4]. Furthermore, analysis of nitrogen isotopes in biofilms across a temperature and chemical gradient revealed that nitrogen fixation likely varies across the chemosynthetic/photosynthetic ecotone [5]. Although research has evaluated and confirmed the presence of nifH genes in various thermophilic microbial communities, the existence of a gene in the DNA of an organism does not verify its use. Instead, other methods, such as culturing, isotope tracer assays, and gene expression studies are required to provide direct evidence of biological nitrogen fixation. Culturing and isotope tracer approaches have successfully revealed high-temperature biological nitrogen fixation in both marine hydrothermal vent microbial communities [6] and in acidic, terrestrial hydrothermal sediment [3]. Transcriptomics-based techniques (using mRNA extracted from samples to confirm in situ expression of targeted genes) have been much more limited in number, and only a few studies have, to date, investigated in situ expression of the nifH gene in thermophilic microbial communities [2, 7]. This study explores the presence and expression of nifH genes in several features of the Lower Geyser Basin (LGB) of YNP. Nucleic acids from chemosynthetic and photosynthetic microbial communities were extracted and then amplified

  14. Detection of T-cell receptor gamma chain V gene rearrangements using the polymerase chain reaction: application to the study of clonal disease cells in acute lymphoblastic leukemia.

    PubMed

    Taylor, J J; Rowe, D; Williamson, I K; Christmas, S E; Proctor, S J; Middleton, P G

    1991-05-01

    This report describes the development and characterization of a method for the amplification of rearranged V-J segments of the human T-cell receptor gamma chain (TCRG) locus using an adaptation of the polymerase chain reaction (PCR) technique. The technique uses a single pair of 'consensus' primers to amplify rearrangements involving the V gamma I subgroup genes, which are common in malignant cells from acute lymphoblastic leukemia (ALL) patients. Using this method we were able to detect rearrangements in the TCRG locus in disease cells from patients with T-cell ALL (12 of 12), common ALL (10 of 14), and Null cell ALL (2 of 2) at presentation. Monoallelic and biallelic rearrangements involving V gamma I subgroup genes were identified by restriction analysis of PCR products from DNA samples from a T-cell leukemic cell line, T-cell clones, and disease cells from patients with ALL of T-and B-cell lineage at presentation. These results confirmed the presence of cell clones within the presentation samples and, in one case, confirmed the persistence of the original malignant cell clone at relapse. This is a rapid and specific method for the detection and characterization of rearrangements of the TCRG locus without recourse to Southern blotting. Therefore, the PCR technique described herein can provide the basis for the study of clonal evolution and minimal residual disease on a high proportion of patients with ALL.

  15. Purification of an oligo(dG).oligo(dC)-binding sea urchin nuclear protein, suGF1: a family of G-string factors involved in gene regulation during development.

    PubMed

    Hapgood, J; Patterton, D

    1994-02-01

    Contiguous deoxyguanosine residues (G strings) have been implicated in regulation of gene expression in several organisms via the binding of G-string factors. Regulation of expression of the chicken adult beta-globin gene may involve the interplay between binding of an erythrocyte-specific G-string factor, BGP1, and the stability of a positioned nucleosome (C. D. Lewis, S. P. Clark, G. Felsenfeld, and H. Gould, Genes Dev. 2:863-873, 1988). We have purified a 59.5-kDa nuclear protein (suGF1) from sea urchin embryos by DNA affinity chromatography. suGF1 has high binding affinity and specificity for oligo(dG).oligo(dC). The identity of the purified protein was confirmed by renaturation of sequence-specific DNA-binding activity from a sodium dodecyl sulfate-polyacrylamide gel slice and by Southwestern (DNA-protein) blotting. suGF1 binds in vitro to a G11 string present in the H1-H4 intergenic region of a sea urchin early histone gene battery. This suGF1 DNA recognition site occurs within a homopurine-homopyrimidine stretch previously shown to be incorporated into a positioned nucleosome core in vitro. DNase I footprinting shows that suGF1 protects the same base pairs on the promoter of the chicken beta A-globin gene as does BGP1. We show that a G-string cis-regulatory element of a sea urchin cell lineage-specific gene LpS1 (M. Xiang, S.-Y. Lu, M. Musso, G. Karsenty, and W. H. Klein, Development 113:1345-1355, 1991) also represents a high-affinity recognition site for suGF1. suGF1 may be a member of a family of G-string factors involved in the regulation of expression of unrelated genes during development of a number of different organisms.

  16. Genes that are involved in high hydrostatic pressure treatments in a Listeria monocytogenes Scott A ctsR deletion mutant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Listeria monocytogenes is a food-borne pathogen of significant threat to public health. High Hydrostatic Pressure (HHP) treatment can be used to control L. monocytogenes in food. The CtsR (class three stress gene repressor) protein negatively regulates the expression of class III heat shock genes....

  17. Predicted highly expressed genes in Nocardia farcinica and the implication to its primary metabolism and nocardial virulence

    SciTech Connect

    Wu, Gang; Nie, Lei; Zhang, Weiwen

    2006-02-23

    Nocardia farcinica is a gram positive, filamentous bacterium, and is considered an opportunistic pathogen. In this study, the highly expressed genes in N. farcinica were predicted using the codon adaptation index (CAI) as a numerical estimator of gene expressivity. Using ribosomal protein (RP) genes as references, the top {approx}10% of the genes were predicted to be the predicted highly expressed (PHX) genes in N. farcinica using a CAI cutoff of greater than 0.73. Consistent with early analysis in Streptomyces genomes, most of the PHX genes in N. farcinica were involved in various ''house-keeping'' functions important for cell growth. However, fifteen genes putatively involved in no cardial virulence were predicted as PHX in N. farcinica, which included genes encoding four Mce virulence proteins, cyclopropane fatty acid synthase which is involved in the modification of cell wall important for nocardia virulence, polyketide synthase PKS13 for mycolic acid synthesis and non-ribosomal peptide synthetase involved in biosynthesis of a mycobactin-related siderophore. In addition, multiple genes involved in defense against reactive oxygen species (ROS) produced by the phagocyte were predicted with high expressivity, which included alkylhydroperoxide reductase (ahpC), catalase (katG), superoxide dismutase (sodF), thioredoxin, thioredoxin reductase, glutathione peroxidase, and peptide methionine sulfoxide reductase, suggesting that combating against ROS was essential for survival of N. farcinica in host cells. The study also showed that the distribution of PHX genes in the N. farcinica circular chromosome was uneven, with more PHX genes located in the regions close to replication initiation site. The results provided the first approximates of global gene expression patterns in N. farcinica, which will be useful in guiding experimental design for further investigation.

  18. Comparative Analysis of Mycobacterium tuberculosis pe and ppe Genes Reveals High Sequence Variation and an Apparent Absence of Selective Constraints

    PubMed Central

    McEvoy, Christopher R. E.; Cloete, Ruben; Müller, Borna; Schürch, Anita C.; van Helden, Paul D.; Gagneux, Sebastien; Warren, Robin M.; Gey van Pittius, Nicolaas C.

    2012-01-01

    Mycobacterium tuberculosis complex (MTBC) genomes contain 2 large gene families termed pe and ppe. The function of pe/ppe proteins remains enigmatic but studies suggest that they are secreted or cell surface associated and are involved in bacterial virulence. Previous studies have also shown that some pe/ppe genes are polymorphic, a finding that suggests involvement in antigenic variation. Using comparative sequence analysis of 18 publicly available MTBC whole genome sequences, we have performed alignments of 33 pe (excluding pe_pgrs) and 66 ppe genes in order to detect the frequency and nature of genetic variation. This work has been supplemented by whole gene sequencing of 14 pe/ppe (including 5 pe_pgrs) genes in a cohort of 40 diverse and well defined clinical isolates covering all the main lineages of the M. tuberculosis phylogenetic tree. We show that nsSNP's in pe (excluding pgrs) and ppe genes are 3.0 and 3.3 times higher than in non-pe/ppe genes respectively and that numerous other mutation types are also present at a high frequency. It has previously been shown that non-pe/ppe M. tuberculosis genes display a remarkably low level of purifying selection. Here, we also show that compared to these genes those of the pe/ppe families show a further reduction of selection pressure that suggests neutral evolution. This is inconsistent with the positive selection pressure of “classical” antigenic variation. Finally, by analyzing such a large number of genes we were able to detect large differences in mutation type and frequency between both individual genes and gene sub-families. The high variation rates and absence of selective constraints provides valuable insights into potential pe/ppe function. Since pe/ppe proteins are highly antigenic and have been studied as potential vaccine components these results should also prove informative for aspects of M. tuberculosis vaccine design. PMID:22496726

  19. Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression.

    PubMed

    Scorer, C A; Clare, J J; McCombie, W R; Romanos, M A; Sreekrishna, K

    1994-02-01

    Pichia pastoris is a methylotrophic yeast increasingly important in the production of therapeutic proteins. Expression vectors are based on the methanol-inducible AOX1 promoter and are integrated into the host chromosome. In most cases high copy number integration has been shown to be important for high-level expression. Since this occurs at low frequency during transformation, we previously used DNA dot blot screens to identify suitable clones. In this paper we report the use of vectors containing the Tn903 kanr gene conferring G418-resistance. Initial experiments demonstrated that copy number showed a tight correlation with drug-resistance. Using a G418 growth inhibition screen, we readily isolated a series of transformants, containing progressively increasing numbers (1 to 12) of a vector expressing HIV-1 ENV, which we used to examine the relationship between copy number and foreign mRNA levels. Northern blot analysis indicated that ENV mRNA levels from a single-copy clone were nearly as high as AOX1 mRNA, and increased progressively with increasing copy number so as to greatly exceed AOX1 mRNA. We have also developed protocols for the selection, using G418, of high copy number transformants following spheroplast transformation or electroporation. We anticipate that these protocols will simplify the use of Pichia as a biotechnological tool.

  20. Heterogeneous high throughput scientific computing with APM X-Gene and Intel Xeon Phi

    DOE PAGES

    Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; Eulisse, Giulio; Knight, Robert; Muzaffar, Shahzad

    2015-01-01

    Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. As a result, we report our experience on software porting, performance and energy efficiency and evaluatemore » the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).« less

  1. Heterogeneous high throughput scientific computing with APM X-Gene and Intel Xeon Phi

    SciTech Connect

    Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; Eulisse, Giulio; Knight, Robert; Muzaffar, Shahzad

    2015-01-01

    Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. As a result, we report our experience on software porting, performance and energy efficiency and evaluate the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).

  2. A quantitative high-throughput screen identifies potential epigenetic modulators of gene expression.

    PubMed

    Johnson, Ronald L; Huang, Wenwei; Jadhav, Ajit; Austin, Christopher P; Inglese, James; Martinez, Elisabeth D

    2008-04-15

    Epigenetic regulation of gene expression is essential in embryonic development and contributes to cancer pathology. We used a cell-based imaging assay that measures derepression of a silenced green fluorescent protein (GFP) reporter to identify novel classes of compounds involved in epigenetic regulation. This locus derepression (LDR) assay was screened against a 69,137-member chemical library using quantitative high-throughput screening (qHTS), a titration-response method that assays compounds at multiple concentrations. From structure-activity relationships of the 411 actives recovered from the qHTS, 6 distinct chemical series were chosen for further study. A total of 48 qHTS actives and analogs were counterscreened using the parental line of the LDR cells, which lack the GFP reporter. Three series-8-hydroxy quinoline, quinoline-8-thiol, and 1,3,5-thiadiazinane-2-thione-were not fluorescent and reconfirmed activity in the LDR cells. The three active series did not inhibit histone deacetylase activity in nuclear extracts or reactivate the expression of the densely methylated p16 gene in cancer cells. However, one series induced expression of the methylated CDH13 gene and inhibited the viability of several lung cancer lines at submicromolar concentrations. These results suggest that the identified small molecules act on epigenetic or transcriptional components and validate our approach of using a cell-based imaging assay in conjunction with qHTS.

  3. A Quantitative High-Throughput Screen Identifies Potential Epigenetic Modulators of Gene Expression

    PubMed Central

    Johnson, Ronald L.; Huang, Wenwei; Jadhav, Ajit; Austin, Christopher P.; Inglese, James; Martinez, Elisabeth D.

    2008-01-01

    Epigenetic regulation of gene expression is essential in embryonic development and contributes to cancer pathology. We used a cell-based imaging assay that measures derepression of a silenced GFP reporter to identify novel classes of compounds involved in epigenetic regulation. This Locus Derepression (LDR) assay was screened against a 69,137-member chemical library using quantitative high-throughput screening (qHTS), a titration-response method that assays compounds at multiple concentrations. From structure-activity relationships of the 411 actives recovered from the qHTS, six distinct chemical series were chosen for further study. Forty-eight qHTS actives and analogs were counter screened using the parental line of the LDR cells, which lack the GFP reporter. Three series, 8-hydroxy quinoline, quinoline-8-thiol and 1,3,5-thiadiazinane-2-thione, were not fluorescent and re-confirmed activity in the LDR cells. The three active series did not inhibit histone deacetylase activity in nuclear extracts or reactivate the expression of the densely methylated p16 gene in cancer cells. However, one series induced expression of the methylated CDH13 gene and inhibited the viability of several lung cancer lines at submicromolar concentrations. These results suggest that the identified small molecules act on epigenetic or transcriptional components and validate our approach of using a cell-based imaging assay in conjunction with qHTS. PMID:18211814

  4. High-Throughput and Combinatorial Gene Expression on a Chip for Metabolism-Induced Toxicology Screening

    PubMed Central

    Kwon, Seok Joon; Lee, Dong Woo; Shah, Dhiral A.; Ku, Bosung; Jeon, Sang Youl; Solanki, Kusum; Ryan, Jessica D.; Clark, Douglas S.; Dordick, Jonathan S.; Lee, Moo-Yeal

    2014-01-01

    Differential expression of various drug-metabolizing enzymes in the human liver may cause deviations of pharmacokinetic profiles, resulting in inter-individual variability of drug toxicity and/or efficacy. Here we present the “Transfected Enzyme and Metabolism Chip” (TeamChip), which predicts potential metabolism-induced drug or drug-candidate toxicity. The TeamChip is prepared by delivering genes into miniaturized three-dimensional cellular microarrays on a micropillar chip using recombinant adenoviruses in a complementary microwell chip. The device enables users to manipulate the expression of individual and multiple human metabolizing-enzyme genes (such as CYP3A4, CYP2D6, CYP2C9, CYP1A2, CYP2E1, and UGT1A4) in THLE-2 cell microarrays. To identify specific enzymes involved in drug detoxification, we created 84 combinations of metabolic-gene expressions in a combinatorial fashion on a single microarray. Thus, the TeamChip platform can provide critical information necessary for evaluating metabolism-induced toxicity in a high-throughput manner. PMID:24799042

  5. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation.

    PubMed

    Wang, Feng-Hua; Qiao, Min; Su, Jian-Qiang; Chen, Zheng; Zhou, Xue; Zhu, Yong-Guan

    2014-08-19

    Reclaimed water irrigation (RWI) in urban environments is becoming popular, due to rapid urbanization and water shortage. The continuous release of residual antibiotics and antibiotic resistance genes (ARGs) from reclaimed water could result in the dissemination of ARGs in the downstream environment. This study provides a comprehensive profile of ARGs in park soils exposed to RWI through a high-throughput quantitative PCR approach. 147 ARGs encoding for resistance to a broad-spectrum of antibiotics were detected among all park soil samples. Aminoglycoside and beta-lactam were the two most dominant types of ARGs, and antibiotic deactivation and efflux pump were the two most dominant mechanisms in these RWI samples. The total enrichment of ARGs varied from 99.3-fold to 8655.3-fold compared to respective controls. Six to 60 ARGs were statistically enriched among these RWI samples. Four transposase genes were detected in RWI samples. TnpA-04 was the most enriched transposase gene with an enrichment was up to 2501.3-fold in Urumqi RWI samples compared with control soil samples. Furthermore, significantly positive correlation was found between ARGs and transposase abundances, indicating that transposase might be involved in the propagation of ARGs. This study demonstrated that RWI resulted in the enrichment of ARGs in urban park soils. PMID:25057898

  6. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation.

    PubMed

    Wang, Feng-Hua; Qiao, Min; Su, Jian-Qiang; Chen, Zheng; Zhou, Xue; Zhu, Yong-Guan

    2014-08-19

    Reclaimed water irrigation (RWI) in urban environments is becoming popular, due to rapid urbanization and water shortage. The continuous release of residual antibiotics and antibiotic resistance genes (ARGs) from reclaimed water could result in the dissemination of ARGs in the downstream environment. This study provides a comprehensive profile of ARGs in park soils exposed to RWI through a high-throughput quantitative PCR approach. 147 ARGs encoding for resistance to a broad-spectrum of antibiotics were detected among all park soil samples. Aminoglycoside and beta-lactam were the two most dominant types of ARGs, and antibiotic deactivation and efflux pump were the two most dominant mechanisms in these RWI samples. The total enrichment of ARGs varied from 99.3-fold to 8655.3-fold compared to respective controls. Six to 60 ARGs were statistically enriched among these RWI samples. Four transposase genes were detected in RWI samples. TnpA-04 was the most enriched transposase gene with an enrichment was up to 2501.3-fold in Urumqi RWI samples compared with control soil samples. Furthermore, significantly positive correlation was found between ARGs and transposase abundances, indicating that transposase might be involved in the propagation of ARGs. This study demonstrated that RWI resulted in the enrichment of ARGs in urban park soils.

  7. High-Affinity PEGylated Polyacridine Peptide Polyplexes Mediate Potent In Vivo Gene Expression

    PubMed Central

    Kizzire, Koby; Khargharia, Sanjib; Rice, Kevin G.

    2012-01-01

    PEGylated polyacridine peptides bind to plasmid DNA with high affinity to form unique polyplexes that possess a long circulatory half-life and are hydrodynamically (HD)-stimulated to produce efficient gene expression in the liver of mice. We previously demonstrated that (Acr-Lys)6-Cys-PEG5kDa stabilizes a 1 μg pGL3 dose for up to 1 hr in the circulation, resulting in HD-stimulated (saline only) gene expression in the liver, equivalent in magnitude to direct-HD dosing of 1 μg of pGL3 (Fernandez C.A. et al. Gene Therapy 2011). In the present study we report that increasing the spacing of Acr with either 4 or 5 Lys residues, dramatically increases the stability of PEGylated polyacridine peptide polyplexes in the circulation allowing maximal HD-stimulated expression for up to 5 hrs post-DNA administration. Co-administration of a decoy dose of 9 μg of non-expressing DNA polyplex with 1 μg of pGL3 polyplex further extended the HD-stimulated expression to 9 hrs. This structure-activity relationship study defines the PEGylated polyacridine peptide requirements for maintaining fully transfection competent plasmid DNA in the circulation for 5 hrs and provides an understanding as to why polyplexes or lipoplexes prepared with PEI, chitosan or Lipofectamine are inactive within 5 min following i.v. dosing. PMID:22786534

  8. Highly efficient method for gene delivery into mouse dorsal root ganglia neurons.

    PubMed

    Yu, Lingli; Reynaud, Florie; Falk, Julien; Spencer, Ambre; Ding, Yin-Di; Baumlé, Véronique; Lu, Ruisheng; Castellani, Valérie; Yuan, Chonggang; Rudkin, Brian B

    2015-01-01

    The development of gene transfection technologies has greatly advanced our understanding of life sciences. While use of viral vectors has clear efficacy, it requires specific expertise and biological containment conditions. Electroporation has become an effective and commonly used method for introducing DNA into neurons and in intact brain tissue. The present study describes the use of the Neon® electroporation system to transfect genes into dorsal root ganglia neurons isolated from embryonic mouse Day 13.5-16. This cell type has been particularly recalcitrant and refractory to physical or chemical methods for introduction of DNA. By optimizing the culture condition and parameters including voltage and duration for this specific electroporation system, high efficiency (60-80%) and low toxicity (>60% survival) were achieved with robust differentiation in response to Nerve growth factor (NGF). Moreover, 3-50 times fewer cells are needed (6 × 10(4)) compared with other traditional electroporation methods. This approach underlines the efficacy of this type of electroporation, particularly when only limited amount of cells can be obtained, and is expected to greatly facilitate the study of gene function in dorsal root ganglia neuron cultures. PMID:25698920

  9. High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool.

    PubMed

    Winfield, Mark O; Allen, Alexandra M; Burridge, Amanda J; Barker, Gary L A; Benbow, Harriet R; Wilkinson, Paul A; Coghill, Jane; Waterfall, Christy; Davassi, Alessandro; Scopes, Geoff; Pirani, Ali; Webster, Teresa; Brew, Fiona; Bloor, Claire; King, Julie; West, Claire; Griffiths, Simon; King, Ian; Bentley, Alison R; Edwards, Keith J

    2016-05-01

    In wheat, a lack of genetic diversity between breeding lines has been recognized as a significant block to future yield increases. Species belonging to bread wheat's secondary and tertiary gene pools harbour a much greater level of genetic variability, and are an important source of genes to broaden its genetic base. Introgression of novel genes from progenitors and related species has been widely employed to improve the agronomic characteristics of hexaploid wheat, but this approach has been hampered by a lack of markers that can be used to track introduced chromosome segments. Here, we describe the identification of a large number of single nucleotide polymorphisms that can be used to genotype hexaploid wheat and to identify and track introgressions from a variety of sources. We have validated these markers using an ultra-high-density Axiom(®) genotyping array to characterize a range of diploid, tetraploid and hexaploid wheat accessions and wheat relatives. To facilitate the use of these, both the markers and the associated sequence and genotype information have been made available through an interactive web site. PMID:26466852

  10. Recharging cationic DNA complexes with highly charged polyanions for in vitro and in vivo gene delivery.

    PubMed

    Trubetskoy, V S; Wong, S C; Subbotin, V; Budker, V G; Loomis, A; Hagstrom, J E; Wolff, J A

    2003-02-01

    The intravenous delivery of plasmid DNA complexed with either cationic lipids (CL) or polyethyleneimine (PEI) enables high levels of foreign gene expression in lung. However, these cationic DNA complexes cause substantial toxicity. The present study found that the inclusion of polyacrylic acid (pAA) with DNA/polycation and DNA/CL complexes prevented the serum inhibition of the transfection complexes in cultured cells. The mechanism mediating this increase seems to involve both particle size enlargement due to flocculation and electrostatic shielding from opsonizing serum proteins. The use of pAA also increased the levels of lung expression in mice in vivo substantially above the levels achieved with just binary complexes of DNA and linear PEI (lPEI) or CL and reduced their toxicity. Also, the use of a "chaser" injection of pAA 30 min after injection of the ternary DNA/lPEI/pAA complexes further aided this effort to reduce toxicity while not affecting foreign gene expression. By optimizing the amount of pAA, lPEI, and DNA within the ternary complexes and using the "chaser" injection, substantial levels of lung expression were obtained while avoiding adverse effects in lung or liver. These developments will aid the use of cationic DNA complexes in animals and for eventual human gene therapy.

  11. [Recent progress in gene mapping through high-throughput sequencing technology and forward genetic approaches].

    PubMed

    Lu, Cairui; Zou, Changsong; Song, Guoli

    2015-08-01

    Traditional gene mapping using forward genetic approaches is conducted primarily through construction of a genetic linkage map, the process of which is tedious and time-consuming, and often results in low accuracy of mapping and large mapping intervals. With the rapid development of high-throughput sequencing technology and decreasing cost of sequencing, a variety of simple and quick methods of gene mapping through sequencing have been developed, including direct sequencing of the mutant genome, sequencing of selective mutant DNA pooling, genetic map construction through sequencing of individuals in population, as well as sequencing of transcriptome and partial genome. These methods can be used to identify mutations at the nucleotide level and has been applied in complex genetic background. Recent reports have shown that sequencing mapping could be even done without the reference of genome sequence, hybridization, and genetic linkage information, which made it possible to perform forward genetic study in many non-model species. In this review, we summarized these new technologies and their application in gene mapping.

  12. High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool.

    PubMed

    Winfield, Mark O; Allen, Alexandra M; Burridge, Amanda J; Barker, Gary L A; Benbow, Harriet R; Wilkinson, Paul A; Coghill, Jane; Waterfall, Christy; Davassi, Alessandro; Scopes, Geoff; Pirani, Ali; Webster, Teresa; Brew, Fiona; Bloor, Claire; King, Julie; West, Claire; Griffiths, Simon; King, Ian; Bentley, Alison R; Edwards, Keith J

    2016-05-01

    In wheat, a lack of genetic diversity between breeding lines has been recognized as a significant block to future yield increases. Species belonging to bread wheat's secondary and tertiary gene pools harbour a much greater level of genetic variability, and are an important source of genes to broaden its genetic base. Introgression of novel genes from progenitors and related species has been widely employed to improve the agronomic characteristics of hexaploid wheat, but this approach has been hampered by a lack of markers that can be used to track introduced chromosome segments. Here, we describe the identification of a large number of single nucleotide polymorphisms that can be used to genotype hexaploid wheat and to identify and track introgressions from a variety of sources. We have validated these markers using an ultra-high-density Axiom(®) genotyping array to characterize a range of diploid, tetraploid and hexaploid wheat accessions and wheat relatives. To facilitate the use of these, both the markers and the associated sequence and genotype information have been made available through an interactive web site.

  13. High Expression of Endogenous Retroviral Envelope Gene in the Equine Fetal Part of the Placenta.

    PubMed

    Stefanetti, Valentina; Marenzoni, Maria Luisa; Passamonti, Fabrizio; Cappelli, Katia; Garcia-Etxebarria, Koldo; Coletti, Mauro; Capomaccio, Stefano

    2016-01-01

    Endogenous retroviruses (ERVs) are proviral phases of exogenous retroviruses that have co-evolved with vertebrate genomes for millions of years. Previous studies have identified the envelope (env) protein genes of retroviral origin preferentially expressed in the placenta which suggests a role in placentation based on their membrane fusogenic capacity and therefore they have been named syncytins. Until now, all the characterized syncytins have been associated with three invasive placentation types: the endotheliochorial (Carnivora), the synepitheliochorial (Ruminantia), and the hemochorial placentation (human, mouse) where they play a role in the syncytiotrophoblast formation. The purpose of the present study was to evaluate whether EqERV env RNA is expressed in horse tissues as well and investigate if the horse, possessing an epitheliochorial placenta, has "captured" a common retroviral env gene with syncytin-like properties in placental tissues. Interestingly, although in the equine placenta there is no syncytiotrophoblast layer at the maternal-fetal interface, our results showed that EqERV env RNA is highly expressed at that level, as expected for a candidate syncytin-like gene but with reduced abundance in the other somatic tissues (nearly 30-fold lower) thus suggesting a possible role in the placental tissue. Although the horse is one of the few domestic animals with a sequenced genome, few studies have been conducted about the EqERV and their expression in placental tissue has never been investigated. PMID:27176223

  14. Aspergillus glaucus Aquaglyceroporin Gene glpF Confers High Osmosis Tolerance in Heterologous Organisms.

    PubMed

    Liu, Xiao-Dan; Wei, Yi; Zhou, Xiao-Yang; Pei, Xue; Zhang, Shi-Hong

    2015-10-01

    Aquaglyceroporins (GlpFs) that transport glycerol along with water and other uncharged solutes are involved in osmoregulation in myriad species. Fungal species form a large group of eukaryotic organisms, and their GlpFs may be diverse, exhibiting various activities. However, few filamentous fungal GlpFs have been biologically investigated. Here, a glpF gene from the halophilic fungus Aspergillus glaucus (AgglpF) was verified to be a channel of water or glycerol in Xenopus laevis oocytes and was further functionally analyzed in three heterologous systems. In Saccharomyces cerevisiae, cells overexpressing AgglpF possessed significant tolerance of drought, salt, and certain metal ions. AgglpF was then characterized in the filamentous fungus of Neurospora crassa. Based on the N. crassa aquaporin gene (NcAQP) disruption mutant (the Δaqp mutant), a series of complementary strains carrying NcAQP and AgglpF and three asparagine-proline-alanine-gene (NPA)-deleted AgglpF fragments were created. As revealed by salt resistance analysis, the AgglpF complementary strain possessed the highest salt resistance among the tested strains. In addition, the intracellular glycerol content in the AgglpF complementary strain was markedly higher than that in the other strains. The AgGlpF-green fluorescent protein (GFP) fusion protein was subcellularly localized in the plasma membrane of onion epidermal cells, suggesting that AgglpF functions in plants. Indeed, when AgglpF was expressed in Arabidopsis thaliana, transgenic lines survived under conditions of high osmotic stress and under conditions of drought stress in particular. Overall, our results revealed that AgGlpF as a water/glycerol transporter is required for survival of both fungi and plants under conditions of high osmotic stress and may have value in applications in genetic engineering for generating high salt and drought resistance.

  15. Aspergillus glaucus Aquaglyceroporin Gene glpF Confers High Osmosis Tolerance in Heterologous Organisms.

    PubMed

    Liu, Xiao-Dan; Wei, Yi; Zhou, Xiao-Yang; Pei, Xue; Zhang, Shi-Hong

    2015-10-01

    Aquaglyceroporins (GlpFs) that transport glycerol along with water and other uncharged solutes are involved in osmoregulation in myriad species. Fungal species form a large group of eukaryotic organisms, and their GlpFs may be diverse, exhibiting various activities. However, few filamentous fungal GlpFs have been biologically investigated. Here, a glpF gene from the halophilic fungus Aspergillus glaucus (AgglpF) was verified to be a channel of water or glycerol in Xenopus laevis oocytes and was further functionally analyzed in three heterologous systems. In Saccharomyces cerevisiae, cells overexpressing AgglpF possessed significant tolerance of drought, salt, and certain metal ions. AgglpF was then characterized in the filamentous fungus of Neurospora crassa. Based on the N. crassa aquaporin gene (NcAQP) disruption mutant (the Δaqp mutant), a series of complementary strains carrying NcAQP and AgglpF and three asparagine-proline-alanine-gene (NPA)-deleted AgglpF fragments were created. As revealed by salt resistance analysis, the AgglpF complementary strain possessed the highest salt resistance among the tested strains. In addition, the intracellular glycerol content in the AgglpF complementary strain was markedly higher than that in the other strains. The AgGlpF-green fluorescent protein (GFP) fusion protein was subcellularly localized in the plasma membrane of onion epidermal cells, suggesting that AgglpF functions in plants. Indeed, when AgglpF was expressed in Arabidopsis thaliana, transgenic lines survived under conditions of high osmotic stress and under conditions of drought stress in particular. Overall, our results revealed that AgGlpF as a water/glycerol transporter is required for survival of both fungi and plants under conditions of high osmotic stress and may have value in applications in genetic engineering for generating high salt and drought resistance. PMID:26209670

  16. Aspergillus glaucus Aquaglyceroporin Gene glpF Confers High Osmosis Tolerance in Heterologous Organisms

    PubMed Central

    Liu, Xiao-Dan; Wei, Yi; Zhou, Xiao-Yang; Pei, Xue

    2015-01-01

    Aquaglyceroporins (GlpFs) that transport glycerol along with water and other uncharged solutes are involved in osmoregulation in myriad species. Fungal species form a large group of eukaryotic organisms, and their GlpFs may be diverse, exhibiting various activities. However, few filamentous fungal GlpFs have been biologically investigated. Here, a glpF gene from the halophilic fungus Aspergillus glaucus (AgglpF) was verified to be a channel of water or glycerol in Xenopus laevis oocytes and was further functionally analyzed in three heterologous systems. In Saccharomyces cerevisiae, cells overexpressing AgglpF possessed significant tolerance of drought, salt, and certain metal ions. AgglpF was then characterized in the filamentous fungus of Neurospora crassa. Based on the N. crassa aquaporin gene (NcAQP) disruption mutant (the Δaqp mutant), a series of complementary strains carrying NcAQP and AgglpF and three asparagine-proline-alanine-gene (NPA)-deleted AgglpF fragments were created. As revealed by salt resistance analysis, the AgglpF complementary strain possessed the highest salt resistance among the tested strains. In addition, the intracellular glycerol content in the AgglpF complementary strain was markedly higher than that in the other strains. The AgGlpF-green fluorescent protein (GFP) fusion protein was subcellularly localized in the plasma membrane of onion epidermal cells, suggesting that AgglpF functions in plants. Indeed, when AgglpF was expressed in Arabidopsis thaliana, transgenic lines survived under conditions of high osmotic stress and under conditions of drought stress in particular. Overall, our results revealed that AgGlpF as a water/glycerol transporter is required for survival of both fungi and plants under conditions of high osmotic stress and may have value in applications in genetic engineering for generating high salt and drought resistance. PMID:26209670

  17. Gene expression profiling defines a high-risk entity of multiple myeloma.

    PubMed

    Zhan, Feng-Huang; Barlogie, Bart; John D, Shaughnessy

    2007-04-01

    Multiple myeloma (MM) is the second most common hematological malignancy and remains incurable. The marked variation in survival of patients with symptomatic myeloma ranging from few months to more than 15 years can be explained by differences in tumor mass, proliferative activity and, more recently, by cytogenetic and molecular genetic characteristics of the myeloma clone. Oligonucleotide microarray-based gene expression analysis was applied to CD138-enriched plasma cells from newly diagnosed patients with symptomatic or progressive multiple myeloma treated with melphalan-based high-dose therapy. Here we discuss recent progress made in the development of molecular-based diagnostics and prognostics for MM from Myeloma Institute for Research and Therapy of University Arkansas for Medical Sciences, where we treat more patients with myeloma than anywhere else in the world. Seven distinct entities of myeloma were elucidated by genomic profiling. Expression extremes of 70 genes from a high-risk signature profile,30% of which were derived from chromosome 1, were strongly linked to disease-related survival. CKS1B located on chromosome 1q21, responsible for promoting cell cycle progression by inducing the degradation of p27Kip1, represented a strong candidate gene related to rapid patient death and was studied in detail. The data suggest that CKS1B influences myeloma cell growth and survival through SKP2j and P27(Kip1) -dependent and independent mechanisms and that therapeutic strategies aimed at abolishing CKS1B function may hold promise for the treatment of high-risk disease for which effective therapies are currently lacking.

  18. Effects of High Fat Feeding on Adipose Tissue Gene Expression in Diabetic Goto-Kakizaki Rats

    PubMed Central

    Xue, Bai; Nie, Jing; Wang, Xi; DuBois, Debra C; Jusko, William J; Almon, Richard R

    2015-01-01

    Development and progression of type 2 diabetes is a complex interaction between genetics and environmental influences. High dietary fat is one environmental factor that is conducive to the development of insulin-resistant diabetes. In the present report, we compare the responses of lean poly-genic, diabetic Goto-Kakizaki (GK) rats to those of control Wistar-Kyoto (WKY) rats fed a high fat diet from weaning to 20 weeks of age. This comparison included a wide array of physiological measurements along with gene expression profiling of abdominal adipose tissue using Affymetrix gene array chips. Animals of both strains fed a high fat diet or a normal diet were sacrificed at 4, 8, 12, 16, and 20 weeks for this comparison. The microarray analysis revealed that the two strains developed different adaptations to increased dietary fat. WKY rats decrease fatty acid synthesis and lipogenic processes whereas GK rats increase lipid elimination. However, on both diets the major differences between the two strains remained essentially the same. Specifically relative to the WKY strain, the GK strain showed lipoatrophy, chronic inflammation, and insulin resistance. PMID:26309393

  19. Finding differentially expressed genes in high dimensional data: Rank based test statistic via a distance measure.

    PubMed

    Mathur, Sunil; Sadana, Ajit

    2015-12-01

    We present a rank-based test statistic for the identification of differentially expressed genes using a distance measure. The proposed test statistic is highly robust against extreme values and does not assume the distribution of parent population. Simulation studies show that the proposed test is more powerful than some of the commonly used methods, such as paired t-test, Wilcoxon signed rank test, and significance analysis of microarray (SAM) under certain non-normal distributions. The asymptotic distribution of the test statistic, and the p-value function are discussed. The application of proposed method is shown using a real-life data set.

  20. A visible, targeted high-efficiency gene delivery and transfection strategy

    PubMed Central

    2011-01-01

    Background To enhance myocardial angiogenic gene expression, a novel gene delivery strategy was tested. Direct intramyocardial injection of an angiogenic gene with microbubbles and insonation were applied in a dog animal model. Dogs received one of the four different treatments in conjunction with either the enhanced green fluorescence protein (EGFP) gene or the hepatocyte growth factor (HGF) gene: gene with microbubbles (MB) and ultrasound (US); gene with US; gene with MB; or the gene alone. Results Distribution of MB and the gene in the myocardium was visualized during the experiment. Compared with the EGFP gene group, an average 14.7-fold enhancement in gene expression was achieved in the EGFP+MB/US group (P < 0.01). Compared with the HGF gene group, an average 10.7-fold enhancement in gene expression was achieved in the HGF+MB/US group (P < 0.01). In addition, capillary density increased from 20.8 ± 3.4/mm2 in the HGF gene group to 146.7 ± 31.4/mm2 in HGF+MB/US group (P < 0.01). Conclusions Thus, direct intramyocardial injection of an angiogenic gene in conjunction with microbubbles plus insonation synergistically enhances angiogenesis. This method offers an observable gene delivery procedure with enhanced expression efficiency of the delivered gene. PMID:21600027

  1. Evaluation of polymeric gene delivery nanoparticles by nanoparticle tracking analysis and high-throughput flow cytometry.

    PubMed

    Shmueli, Ron B; Bhise, Nupura S; Green, Jordan J

    2013-03-01

    Non-viral gene delivery using polymeric nanoparticles has emerged as an attractive approach for gene therapy to treat genetic diseases(1) and as a technology for regenerative medicine(2). Unlike viruses, which have significant safety issues, polymeric nanoparticles can be designed to be non-toxic, non-immunogenic, non-mutagenic, easier to synthesize, chemically versatile, capable of carrying larger nucleic acid cargo and biodegradable and/or environmentally responsive. Cationic polymers self-assemble with negatively charged DNA via electrostatic interaction to form complexes on the order of 100 nm that are commonly termed polymeric nanoparticles. Examples of biomaterials used to form nanoscale polycationic gene delivery nanoparticles include polylysine, polyphosphoesters, poly(amidoamines)s and polyethylenimine (PEI), which is a non-degradable off-the-shelf cationic polymer commonly used for nucleic acid delivery(1,3) . Poly(beta-amino ester)s (PBAEs) are a newer class of cationic polymers(4) that are hydrolytically degradable(5,6) and have been shown to be effective at gene delivery to hard-to-transfect cell types such as human retinal endothelial cells (HRECs)(7), mouse mammary epithelial cells(8), human brain cancer cells(9) and macrovascular (human umbilical vein, HUVECs) endothelial cells(10). A new protocol to characterize polymeric nanoparticles utilizing nanoparticle tracking analysis (NTA) is described. In this approach, both the particle size distribution and the distribution of the number of plasmids per particle are obtained(11). In addition, a high-throughput 96-well plate transfection assay for rapid screening of the transfection efficacy of polymeric nanoparticles is presented. In this protocol, poly(beta-amino ester)s (PBAEs) are used as model polymers and human retinal endothelial cells (HRECs) are used as model human cells. This protocol can be easily adapted to evaluate any polymeric nanoparticle and any cell type of interest in a multi

  2. Selection of reference genes for qRT-PCR in high fat diet-induced hepatic steatosis mice model.

    PubMed

    Xu, Lingyan; Ma, Xinran; Cui, Bin; Li, Xiaoying; Ning, Guang; Wang, Shu

    2011-07-01

    With the epidemic proportions of obesity worldwide and the concurrent prevalence of hepatic steatosis, there is an urgent need for better understanding the intrinsic mechanism of hepatic steatosis, especially the changes of gene expression underlying the development of hepatic steatosis and its associated abnormal liver function. Quantitative real-time PCR (qRT-PCR) is a sensitive and highly reproducible technique of gene expression analysis. However, for accurate and reliable gene expression results, it is vital to have an internal control gene expressed at constant levels under all the experimental conditions being analyzed for. In this study, the authors validated candidate reference genes suitable for qRT-PCR profiling experiments using livers from control mice and high fat diet-induced obese mice. Cross-validation of expression stability of ten selected reference genes using three popular algorithms, GeNorm, NormFinder, and BestKeeper found HPRT1 and GAPDH as most stable reference genes. Thus, HPRT1 and GAPDH are recommended as stable reference genes most suitable for gene expression studies in the development of hepatic steatosis.

  3. Highly specific expression of luciferase gene in lungs of naive nude mice directed by prostate-specific antigen promoter

    SciTech Connect

    Li Hongwei; Li Jinzhong; Helm, Gregory A.; Pan Dongfeng . E-mail: Dongfeng_pan@yahoo.com

    2005-09-09

    PSA promoter has been demonstrated the utility for tissue-specific toxic gene therapy in prostate cancer models. Characterization of foreign gene overexpression in normal animals elicited by PSA promoter should help evaluate therapy safety. Here we constructed an adenovirus vector (AdPSA-Luc), containing firefly luciferase gene under the control of the 5837 bp long prostate-specific antigen promoter. A charge coupled device video camera was used to non-invasively image expression of firefly luciferase in nude mice on days 3, 7, 11 after injection of 2 x 10{sup 9} PFU of AdPSA-Luc virus via tail vein. The result showed highly specific expression of the luciferase gene in lungs of mice from day 7. The finding indicates the potential limitations of the suicide gene therapy of prostate cancer based on selectivity of PSA promoter. By contrary, it has encouraging implications for further development of vectors via PSA promoter to enable gene therapy for pulmonary diseases.

  4. Targeted and highly efficient gene transfer into CD4+ cells by a recombinant human immunodeficiency virus retroviral vector.

    PubMed Central

    Shimada, T; Fujii, H; Mitsuya, H; Nienhuis, A W

    1991-01-01

    We have established a recombinant HIV gene transfer system based on transient expression of the HIV packaging functions and a recombinant vector genome in monkey kidney Cos cells. The recombinant HIV retroviral vector introduced the neoR gene into CD4+ cells with high efficiency, comparable to that achieved with the highest titer amphotropic murine recombinant retrovirus. Vector preparations were devoid of replication competent, infectious HIV. Gene transfer was dependent on CD4 expression, as shown by expression of the CD4 gene in HeLa cells, and could be inhibited by soluble CD4. This specific and efficient gene transfer system may be useful for development of gene therapy for which T cells are the desired targets. Images PMID:1885765

  5. Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents.

    PubMed

    Xiao, Ke-Qing; Li, Li-Guan; Ma, Li-Ping; Zhang, Si-Yu; Bao, Peng; Zhang, Tong; Zhu, Yong-Guan

    2016-04-01

    Microbe-mediated arsenic (As) metabolism plays a critical role in global As cycle, and As metabolism involves different types of genes encoding proteins facilitating its biotransformation and transportation processes. Here, we used metagenomic analysis based on high-throughput sequencing and constructed As metabolism protein databases to analyze As metabolism genes in five paddy soils with low-As contents. The results showed that highly diverse As metabolism genes were present in these paddy soils, with varied abundances and distribution for different types and subtypes of these genes. Arsenate reduction genes (ars) dominated in all soil samples, and significant correlation existed between the abundance of arr (arsenate respiration), aio (arsenite oxidation), and arsM (arsenite methylation) genes, indicating the co-existence and close-relation of different As resistance systems of microbes in wetland environments similar to these paddy soils after long-term evolution. Among all soil parameters, pH was an important factor controlling the distribution of As metabolism gene in five paddy soils (p = 0.018). To the best of our knowledge, this is the first study using high-throughput sequencing and metagenomics approach in characterizing As metabolism genes in the five paddy soil, showing their great potential in As biotransformation, and therefore in mitigating arsenic risk to humans. PMID:26736050

  6. Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents.

    PubMed

    Xiao, Ke-Qing; Li, Li-Guan; Ma, Li-Ping; Zhang, Si-Yu; Bao, Peng; Zhang, Tong; Zhu, Yong-Guan

    2016-04-01

    Microbe-mediated arsenic (As) metabolism plays a critical role in global As cycle, and As metabolism involves different types of genes encoding proteins facilitating its biotransformation and transportation processes. Here, we used metagenomic analysis based on high-throughput sequencing and constructed As metabolism protein databases to analyze As metabolism genes in five paddy soils with low-As contents. The results showed that highly diverse As metabolism genes were present in these paddy soils, with varied abundances and distribution for different types and subtypes of these genes. Arsenate reduction genes (ars) dominated in all soil samples, and significant correlation existed between the abundance of arr (arsenate respiration), aio (arsenite oxidation), and arsM (arsenite methylation) genes, indicating the co-existence and close-relation of different As resistance systems of microbes in wetland environments similar to these paddy soils after long-term evolution. Among all soil parameters, pH was an important factor controlling the distribution of As metabolism gene in five paddy soils (p = 0.018). To the best of our knowledge, this is the first study using high-throughput sequencing and metagenomics approach in characterizing As metabolism genes in the five paddy soil, showing their great potential in As biotransformation, and therefore in mitigating arsenic risk to humans.

  7. Toward an ultra-high resolution community climate system model for the BlueGene platform

    NASA Astrophysics Data System (ADS)

    Dennis, John M.; Jacob, Robert; Vertenstein, Mariana; Craig, Tony; Loy, Raymond

    2007-07-01

    Global climate models need to simulate several small, regional-scale processes which affect the global circulation in order to accurately simulate the climate. This is particularly important in the ocean where small scale features such as oceanic eddies are currently represented with adhoc parameterizations. There is also a need for higher resolution to provide climate predictions at small, regional scales. New high-performance computing platforms such as the IBM BlueGene can provide the necessary computational power to perform ultra-high resolution climate model integrations. We have begun to investigate the scaling of the individual components of the Community Climate System Model to prepare it for integrations on BlueGene and similar platforms. Our investigations show that it is possible to successfully utilize Script O(32K) processors. We describe the scalability of five models: the Parallel Ocean Program (POP), the Community Ice CodE (CICE), the Community Land Model (CLM), and the new CCSM sequential coupler (CPL7) which are components of the next generation Community Climate System Model (CCSM); as well as the High-Order Method Modeling Environment (HOMME) which is a dynamical core currently being evaluated within the Community Atmospheric Model. For our studies we concentrate on 1/10° resolution for CICE, POP, and CLM models and 1/4° resolution for HOMME. The ability to simulate high resolutions on the massively parallel petascale systems that will dominate high-performance computing for the foreseeable future is essential to the advancement of climate science.

  8. Conserved cis-regulatory modules in promoters of genes encoding wheat high-molecular-weight glutenin subunits

    PubMed Central

    Ravel, Catherine; Fiquet, Samuel; Boudet, Julie; Dardevet, Mireille; Vincent, Jonathan; Merlino, Marielle; Michard, Robin; Martre, Pierre

    2014-01-01

    The concentration and composition of the gliadin and glutenin seed storage proteins (SSPs) in wheat flour are the most important determinants of its end-use value. In cereals, the synthesis of SSPs is predominantly regulated at the transcriptional level by a complex network involving at least five cis-elements in gene promoters. The high-molecular-weight glutenin subunits (HMW-GS) are encoded by two tightly linked genes located on the long arms of group 1 chromosomes. Here, we sequenced and annotated the HMW-GS gene promoters of 22 electrophoretic wheat alleles to identify putative cis-regulatory motifs. We focused on 24 motifs known to be involved in SSP gene regulation. Most of them were identified in at least one HMW-GS gene promoter sequence. A common regulatory framework was observed in all the HMW-GS gene promoters, as they shared conserved cis-regulatory modules (CCRMs) including all the five motifs known to regulate the transcription of SSP genes. This common regulatory framework comprises a composite box made of the GATA motifs and GCN4-like Motifs (GLMs) and was shown to be functional as the GLMs are able to bind a bZIP transcriptional factor SPA (Storage Protein Activator). In addition to this regulatory framework, each HMW-GS gene promoter had additional motifs organized differently. The promoters of most highly expressed x-type HMW-GS genes contain an additional box predicted to bind R2R3-MYB transcriptional factors. However, the differences in annotation between promoter alleles could not be related to their level of expression. In summary, we identified a common modular organization of HMW-GS gene promoters but the lack of correlation between the cis-motifs of each HMW-GS gene promoter and their level of expression suggests that other cis-elements or other mechanisms regulate HMW-GS gene expression. PMID:25429295

  9. Lineage-Specific Regulation of Epigenetic Modifier Genes in Human Liver and Brain

    PubMed Central

    Weng, Matthias K.; Natarajan, Karthick; Scholz, Diana; Ivanova, Violeta N.; Sachinidis, Agapios; Hengstler, Jan G.; Waldmann, Tanja; Leist, Marcel

    2014-01-01

    Despite an abundance of studies on chromatin states and dynamics, there is an astonishing dearth of information on the expression of genes responsible for regulating histone and DNA modifications. We used here a set of 156 defined epigenetic modifier genes (EMG) and profiled their expression pattern in cells of different lineages. As reference value, expression data from human embryonic stem cells (hESC) were used. Hepatocyte-like cells were generated from hESC, and their EMG expression was compared to primary human liver cells. In parallel, we generated postmitotic human neurons (Lu d6), and compared their relative EMG expression to human cortex (Ctx). Clustering analysis of all cell types showed that neuronal lineage samples grouped together (94 similarly regulated EMG), as did liver cells (61 similarly-regulated), while the two lineages were clearly distinct. The general classification was followed by detailed comparison of the major EMG groups; genes that were higher expressed in differentiated cells than in hESC included the acetyltransferase KAT2B and the methyltransferase SETD7. Neuro-specific EMGs were the histone deacetylases HDAC5 and HDAC7, and the arginine-methyltransferase PRMT8. Comparison of young (Lu d6) and more aged (Ctx) neuronal samples suggested a maturation-dependent switch in the expression of functionally homologous proteins. For instance, the ratio of the histone H3 K27 methyltransfereases, EZH1 to EZH2, was high in Ctx and low in Lu d6. The same was observed for the polycomb repressive complex 1 (PRC1) subunits CBX7 and CBX8. A large proportion of EMGs in differentiated cells was very differently expressed than in hESC, and absolute levels were significantly higher in neuronal samples than in hepatic cells. Thus, there seem to be distinct qualitative and quantitative differences in EMG expression between cell lineages. PMID:25054330

  10. Expression of nitric oxide synthase (NOS) genes in channel catfish is highly regulated and time dependent after bacterial challenges.

    PubMed

    Yao, Jun; Li, Chao; Zhang, Jiaren; Liu, Shikai; Feng, Jianbin; Wang, Ruijia; Li, Yun; Jiang, Chen; Song, Lin; Chen, Ailu; Liu, Zhanjiang

    2014-07-01

    Nitric oxide is well known for its roles in immune responses. As such, its synthesizing enzymes have been extensively studied from various species including some teleost fish species. However, the NOS genes have not been characterized in channel catfish (Ictalurus punctatus). In this study, we identified and characterized three NOS genes including one NOS1 and two NOS2 genes in channel catfish. Comparing with the NOS genes from other fish species, the catfish NOS genes are highly conserved in their structural features. Phylogenetic and syntenic analyses allowed determination of NOS1 and NOS2 genes of channel catfish and their orthology relationships. Syntenic analysis, as well as the phylogenetic analysis, indicated that the two NOS2 genes of catfish were lineage-specific duplication. The NOS genes were broadly expressed in most tested tissues, with NOS1 being expressed at the highest levels in the brain, NOS2b1 highly expressed in the skin and gill, and NOS2b2 lowly expressed in most of the tested tissues. The most striking findings of this study was that the expression of the NOS genes are highly regulated after bacterial infection, with time-dependent expression patterns that parallel the migration of macrophages. After Edwardsiella ictaluri challenge, dramatically different responses among the three NOS genes were observed. NOS1 was only significantly in the skin early after infection, while NOS2b1 was rapidly upregulated in gill, but more up-regulated in trunk kidney with the progression of the disease, suggesting such differences in gene expression may be reflective of the migration of macrophages among various tissues of the infected fish. In contrast to NOS1 and NOS2b1, NOS2b2 was normally expressed at very low levels, but it is induced in the brain and liver while significantly down-regulated in most other tissues.

  11. High-throughput screen for genes predominantly expressed in the ICM of mouse blastocysts by whole mount in situ hybridization

    PubMed Central

    Yoshikawa, Toshiyuki; Piao, Yulan; Zhong, Jinhui; Matoba, Ryo; Carter, Mark G.; Wang, Yuxia; Goldberg, Ilya; Ko, Minoru S.H.

    2006-01-01

    Mammalian preimplantation embryos provide an excellent opportunity to study temporal and spatial gene expression in whole mount in situ hybridization (WISH). However, large-scale studies are made difficult by the size of the embryos (∼60 μm diameter) and their fragility. We have developed a chamber system that allows parallel processing of embryos without the aid of a microscope. We first selected 91 candidate genes that were transcription factors highly expressed in blastocysts, and more highly expressed in embryonic (ES) than in trophoblast (TS) stem cells. We then used the WISH to identify 48 genes expressed predominantly in the ICM and to follow several of these genes in all seven preimplantation stages. The ICM-predominant expressions of these genes suggest their involvement in the pluripotency of embryonic cells. This system provides a useful tool to a systematic genome-scale analysis of preimplantation embryos. PMID:16325481

  12. Identifier (ID) elements are not preferentially located to brain-specific genes: high ID element representation in other tissue-specific- and housekeeping genes of the rat.

    PubMed

    Goldman, Andrés; Capoano, Carlos A; González-López, Evangelina; Geisinger, Adriana

    2014-01-01

    BC1 is a short non-coding RNA from rodents, which is transcribed by RNA pol III. Its RNA is highly abundant in the brain, where it exerts a post-transcriptional regulatory role in dendrites. Upon transcription, retroposition and insertion, BC1 gives rise to a subclass of short interspersed repetitive sequences (SINEs) named identifier (ID) elements. IDs can become integrated inside non-coding regions of RNA pol II transcription units, and - although challenged by a couple of reports - their preferential location to brain-specific genes has been long proposed. Furthermore, an additional, cis-regulatory role in the control of brain-specific pol II-directed transcripts has been suggested for these sequences. In this work we used Northern blot and in silico analyses to examine IDs' location among pol II transcription units in different tissues, and in housekeeping genes. ID sequences appeared distributed in a similar fashion within tissue-specific hnRNA populations of the brain, testis and liver, and within housekeeping primary transcripts as well. Moreover, when the lengths of the unprocessed transcripts were considered, ID representation was higher in housekeeping ones. On the other hand, ID elements appeared similarly distributed among the different gene regions, with the obvious exclusion of those sequences where strict constraints for proper gene expression exist. Altogether, the widespread distribution of ID elements in all the analyzed genes - including housekeeping - and in all gene regions, suggests a random location, raising questions about the specific cis-regulatory role of those sequences.

  13. Effects of curcumin on global gene expression profiles in the highly invasive human breast carcinoma cell line MDA-MB 231: A gene network-based microarray analysis.

    PubMed

    Cine, Naci; Limtrakul, Pornngarm; Sunnetci, Deniz; Nagy, Balint; Savli, Hakan

    2013-01-01

    Curcumin, or diferuloylmethane, is a major chemical component of turmeric (Curcuma longa Linn.) that has been consumed as a dietary spice through the ages. This yellow-colored polyphenol has a notably wide range of beneficial properties, including anti-inflammatory, antioxidant, antitumoral, anti-invasive and anti-metastatic activity. In the present study, microarray gene expression analysis was applied to identify the curcumin-regulated genes in a highly invasive human breast carcinoma cell line (MDA-MB 231). Cells were cultured with curcumin (20 μM) for 24 h; total RNA was isolated and hybridized to Whole Human Genome Microarray slides. Gene set enrichment analyses on our whole genome expression data revealed downregulation of the EGF pathway elements following curcumin treatment. Furthermore, gene network analysis identified a significantly relevant network among the differentially expressed genes, centered on the EGR1 and FOS genes. The members of these pathways and networks play an essential role in the regulation of cancer cell growth and development; the majority exhibited decreased expression levels following treatment with curcumin. These observations suggest that curcumin is an excellent candidate for the prevention and treatment of breast cancer. PMID:23251236

  14. High-Throughput, Motility-Based Sorter for Microswimmers and Gene Discovery Platform

    NASA Astrophysics Data System (ADS)

    Yuan, Jinzhou; Raizen, David; Bau, Haim

    2015-11-01

    Animal motility varies with genotype, disease progression, aging, and environmental conditions. In many studies, it is desirable to carry out high throughput motility-based sorting to isolate rare animals for, among other things, forward genetic screens to identify genetic pathways that regulate phenotypes of interest. Many commonly used screening processes are labor-intensive, lack sensitivity, and require extensive investigator training. Here, we describe a sensitive, high throughput, automated, motility-based method for sorting nematodes. Our method was implemented in a simple microfluidic device capable of sorting many thousands of animals per hour per module, and is amenable to parallelism. The device successfully enriched for known C. elegans motility mutants. Furthermore, using this device, we isolated low-abundance mutants capable of suppressing the somnogenic effects of the flp-13 gene, which regulates sleep-like quiescence in C. elegans. Subsequent genomic sequencing led to the identification of a flp-13-suppressor gene. This research was supported, in part, by NIH NIA Grant 5R03AG042690-02.

  15. High-resolution mapping of the gene for cystinosis, using combined biochemical and linkage analysis

    SciTech Connect

    Jean, G.; Fuchshuber, A.; Gribouval, O.

    1996-03-01

    Infantile nephropathic cystinosis is an autosomal recessive disorder characterized biochemically by an abnormally high intracellular content of free cystine in different organs and tissues due to a transport defect of cystine through the lysosomal membrane. Affected children present with the Fanconi syndrome and usually develop progressive renal failure within the 1st decade of life. Measurement of free cystine in purified polymorphonuclear leukocytes provides an accurate method for diagnosis and detection of heterozygous carriers previously determined by their leukocyte cystine content in the linkage analysis. This approach allowed us to obtain highly significant results, confirming the localization of the cystinosis gene locus recently mapped to the short arm of chromosome 17 by the Cystinosis Collaborative Research Group. Crucial recombination events allowed us to refine the interval of the cystinosis gene to a genetic distance of 1 cM. No evidence of genetic heterogeneity was found. Our results demonstrate that the use of the previously determined phenotypes of heterozygous carriers in linkage analysis provides a reliable method for the investigation of simplex families in autosomal recessive traits. 25 refs., 4 figs., 1 tab.

  16. High-throughput mapping of the promoters of the mouse olfactory receptor genes reveals a new type of mammalian promoter and provides insight into olfactory receptor gene regulation

    PubMed Central

    Clowney, E. Josephine; Magklara, Angeliki; Colquitt, Bradley M.; Pathak, Nidhi; Lane, Robert P.; Lomvardas, Stavros

    2011-01-01

    The olfactory receptor (OR) genes are the largest mammalian gene family and are expressed in a monogenic and monoallelic fashion in olfactory neurons. Using a high-throughput approach, we mapped the transcription start sites of 1085 of the 1400 murine OR genes and performed computational analysis that revealed potential transcription factor binding sites shared by the majority of these promoters. Our analysis produced a hierarchical model for OR promoter recognition in which unusually high AT content, a unique epigenetic signature, and a stereotypically positioned O/E site distinguish OR promoters from the rest of the murine promoters. Our computations revealed an intriguing correlation between promoter AT content and evolutionary plasticity, as the most AT-rich promoters regulate rapidly evolving gene families. Within the AT-rich promoter category the position of the TATA-box does not correlate with the transcription start site. Instead, a spike in GC composition might define the exact location of the TSS, introducing the concept of “genomic contrast” in transcriptional regulation. Finally, our experiments show that genomic neighborhood rather than promoter sequence correlates with the probability of different OR genes to be expressed in the same olfactory cell. PMID:21705439

  17. Improve carbon metabolic flux in Saccharomyces cerevisiae at high temperature by overexpressed TSL1 gene.

    PubMed

    Ge, Xiang-Yang; Xu, Yan; Chen, Xiang

    2013-04-01

    This study describes a novel strategy to improve the glycolysis flux of Saccharomyces cerevisiae at high temperature. The TSL1 gene-encoding regulatory subunit of the trehalose synthase complex was overexpressed in S. cerevisiae Z-06, which increased levels of trehalose synthase activity in extracts, enhanced stress tolerance and glucose consuming rate of the yeast cells. As a consequence, the final ethanol concentration of 185.5 g/L was obtained at 38 °C for 36 h (with productivity up to 5.2 g/L/h) in 7-L fermentor, and the ethanol productivity was 92.7 % higher than that of the parent strain. The results presented here provide a novel way to enhance the carbon metabolic flux at high temperature, which will be available for the purposes of producing other primary metabolites of commercial interest using S. cerevisiae as a host.

  18. Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes

    NASA Astrophysics Data System (ADS)

    Lee, Yun Jung; Yi, Hyunjung; Kim, Woo-Jae; Kang, Kisuk; Yun, Dong Soo; Strano, Michael S.; Ceder, Gerbrand; Belcher, Angela M.

    2009-05-01

    Development of materials that deliver more energy at high rates is important for high-power applications, including portable electronic devices and hybrid electric vehicles. For lithium-ion (Li+) batteries, reducing material dimensions can boost Li+ ion and electron transfer in nanostructured electrodes. By manipulating two genes, we equipped viruses with peptide groups having affinity for single-walled carbon nanotubes (SWNTs) on one end and peptides capable of nucleating amorphous iron phosphate(a-FePO4) fused to the viral major coat protein. The virus clone with the greatest affinity toward SWNTs enabled power performance of a-FePO4 comparable to that of crystalline lithium iron phosphate (c-LiFePO4) and showed excellent capacity retention upon cycling at 1C. This environmentally benign low-temperature biological scaffold could facilitate fabrication of electrodes from materials previously excluded because of extremely low electronic conductivity.

  19. Identification of Transcription Factor Genes and Their Correlation with the High Diversity of Stramenopiles

    PubMed Central

    Buitrago-Flórez, Francisco Javier; Restrepo, Silvia; Riaño-Pachón, Diego Mauricio

    2014-01-01

    The biological diversity among Stramenopiles is striking; they range from large multicellular seaweeds to tiny unicellular species, they embrace many ecologically important autothrophic (e.g., diatoms, brown algae), and heterotrophic (e.g., oomycetes) groups. Transcription factors (TFs) and other transcription regulators (TRs) regulate spatial and temporal gene expression. A plethora of transcriptional regulatory proteins have been identified and classified into families on the basis of sequence similarity. The purpose of this work is to identify the TF and TR complement in diverse species belonging to Stramenopiles in order to understand how these regulators may contribute to their observed diversity. We identified and classified 63 TF and TR families in 11 species of Stramenopiles. In some species we found gene families with high relative importance. Taking into account the 63 TF and TR families identified, 28 TF and TR families were established to be positively correlated with specific traits like number of predicted proteins, number of flagella and number of cell types during the life cycle. Additionally, we found gains and losses in TF and TR families specific to some species and clades, as well as, two families with high abundance specific to the autotrophic species and three families with high abundance specific to the heterotropic species. For the first time, there is a systematic search of TF and TR families in Stramenopiles. The attempts to uncover relationships between these families and the complexity of this group may be of great impact, considering that there are several important pathogens of plants and animals, as well as, important species involved in carbon cycling. Specific TF and TR families identified in this work appear to be correlated with particular traits in the Stramenopiles group and may be correlated with the high complexity and diversity in Stramenopiles. PMID:25375671

  20. High-Stearic and High-Oleic Cottonseed Oils Produced by Hairpin RNA-Mediated Post-Transcriptional Gene Silencing1

    PubMed Central

    Liu, Qing; Singh, Surinder P.; Green, Allan G.

    2002-01-01

    We have genetically modified the fatty acid composition of cottonseed oil using the recently developed technique of hairpin RNA-mediated gene silencing to down-regulate the seed expression of two key fatty acid desaturase genes, ghSAD-1-encoding stearoyl-acyl-carrier protein Δ9-desaturase and ghFAD2-1-encoding oleoyl-phosphatidylcholine ω6-desaturase. Hairpin RNA-encoding gene constructs (HP) targeted against either ghSAD-1 or ghFAD2-1 were transformed into cotton (Gossypium hirsutum cv Coker 315). The resulting down-regulation of the ghSAD-1 gene substantially increased stearic acid from the normal levels of 2% to 3% up to as high as 40%, and silencing of the ghFAD2-1 gene resulted in greatly elevated oleic acid content, up to 77% compared with about 15% in seeds of untransformed plants. In addition, palmitic acid was significantly lowered in both high-stearic and high-oleic lines. Similar fatty acid composition phenotypes were also achieved by transformation with conventional antisense constructs targeted against the same genes, but at much lower frequencies than were achieved with the HP constructs. By intercrossing the high-stearic and high-oleic genotypes, it was possible to simultaneously down-regulate both ghSAD-1 and ghFAD2-1 to the same degree as observed in the individually silenced parental lines, demonstrating for the first time, to our knowledge, that duplex RNA-induced posttranslational gene silencing in independent genes can be stacked without any diminution in the degree of silencing. The silencing of ghSAD-1 and/or ghFAD2-1 to various degrees enables the development of cottonseed oils having novel combinations of palmitic, stearic, oleic, and linoleic contents that can be used in margarines and deep frying without hydrogenation and also potentially in high-value confectionery applications. PMID:12177486

  1. Aberrant host immune response induced by highly virulent PRRSV identified by digital gene expression tag profiling

    PubMed Central

    2010-01-01

    Background There was a large scale outbreak of the highly pathogenic porcine reproductive and respiratory syndrome (PRRS) in China and Vietnam during 2006 and 2007 that resulted in unusually high morbidity and mortality among pigs of all ages. The mechanisms underlying the molecular pathogenesis of the highly virulent PRRS virus (H-PRRSV) remains unknown. Therefore, the relationship between pulmonary gene expression profiles after H-PRRSV infection and infection pathology were analyzed in this study using high-throughput deep sequencing and histopathology. Results H-PRRSV infection resulted in severe lung pathology. The results indicate that aberrant host innate immune responses to H-PRRSV and induction of an anti-apoptotic state could be responsible for the aggressive replication and dissemination of H-PRRSV. Prolific rapid replication of H-PRRSV could have triggered aberrant sustained expression of pro-inflammatory cytokines and chemokines leading to a markedly robust inflammatory response compounded by significant cell death and increased oxidative damage. The end result was severe tissue damage and high pathogenicity. Conclusions The systems analysis utilized in this study provides a comprehensive basis for better understanding the pathogenesis of H-PRRSV. Furthermore, it allows the genetic components involved in H-PRRSV resistance/susceptibility in swine populations to be identified. PMID:20929578

  2. Targeted gene enrichment and high-throughput sequencing for environmental biomonitoring: a case study using freshwater macroinvertebrates.

    PubMed

    Dowle, Eddy J; Pochon, Xavier; C Banks, Jonathan; Shearer, Karen; Wood, Susanna A

    2016-09-01

    Recent studies have advocated biomonitoring using DNA techniques. In this study, two high-throughput sequencing (HTS)-based methods were evaluated: amplicon metabarcoding of the cytochrome C oxidase subunit I (COI) mitochondrial gene and gene enrichment using MYbaits (targeting nine different genes including COI). The gene-enrichment method does not require PCR amplification and thus avoids biases associated with universal primers. Macroinvertebrate samples were collected from 12 New Zealand rivers. Macroinvertebrates were morphologically identified and enumerated, and their biomass determined. DNA was extracted from all macroinvertebrate samples and HTS undertaken using the illumina miseq platform. Macroinvertebrate communities were characterized from sequence data using either six genes (three of the original nine were not used) or just the COI gene in isolation. The gene-enrichment method (all genes) detected the highest number of taxa and obtained the strongest Spearman rank correlations between the number of sequence reads, abundance and biomass in 67% of the samples. Median detection rates across rare (<1% of the total abundance or biomass), moderately abundant (1-5%) and highly abundant (>5%) taxa were highest using the gene-enrichment method (all genes). Our data indicated primer biases occurred during amplicon metabarcoding with greater than 80% of sequence reads originating from one taxon in several samples. The accuracy and sensitivity of both HTS methods would be improved with more comprehensive reference sequence databases. The data from this study illustrate the challenges of using PCR amplification-based methods for biomonitoring and highlight the potential benefits of using approaches, such as gene enrichment, which circumvent the need for an initial PCR step. PMID:26583904

  3. Targeted gene enrichment and high-throughput sequencing for environmental biomonitoring: a case study using freshwater macroinvertebrates.

    PubMed

    Dowle, Eddy J; Pochon, Xavier; C Banks, Jonathan; Shearer, Karen; Wood, Susanna A

    2016-09-01

    Recent studies have advocated biomonitoring using DNA techniques. In this study, two high-throughput sequencing (HTS)-based methods were evaluated: amplicon metabarcoding of the cytochrome C oxidase subunit I (COI) mitochondrial gene and gene enrichment using MYbaits (targeting nine different genes including COI). The gene-enrichment method does not require PCR amplification and thus avoids biases associated with universal primers. Macroinvertebrate samples were collected from 12 New Zealand rivers. Macroinvertebrates were morphologically identified and enumerated, and their biomass determined. DNA was extracted from all macroinvertebrate samples and HTS undertaken using the illumina miseq platform. Macroinvertebrate communities were characterized from sequence data using either six genes (three of the original nine were not used) or just the COI gene in isolation. The gene-enrichment method (all genes) detected the highest number of taxa and obtained the strongest Spearman rank correlations between the number of sequence reads, abundance and biomass in 67% of the samples. Median detection rates across rare (<1% of the total abundance or biomass), moderately abundant (1-5%) and highly abundant (>5%) taxa were highest using the gene-enrichment method (all genes). Our data indicated primer biases occurred during amplicon metabarcoding with greater than 80% of sequence reads originating from one taxon in several samples. The accuracy and sensitivity of both HTS methods would be improved with more comprehensive reference sequence databases. The data from this study illustrate the challenges of using PCR amplification-based methods for biomonitoring and highlight the potential benefits of using approaches, such as gene enrichment, which circumvent the need for an initial PCR step.

  4. Expression of Selenoprotein Genes Is Affected by Obesity of Pigs Fed a High-Fat Diet123

    PubMed Central

    Zhao, Hua; Li, Ke; Tang, Jia-Yong; Zhou, Ji-Chang; Wang, Kang-Ning; Xia, Xin-Jie; Lei, Xin Gen

    2015-01-01

    Background: Relations of the 25 mammalian selenoprotein genes with obesity and the associated inflammation remain unclear. Objective: This study explored impacts of high-fat diet-induced obesity on inflammation and expressions of selenoprotein and obesity-related genes in 10 tissues of pigs. Methods: Plasma and 10 tissues were collected from pigs (n = 10) fed a corn-soy–based control diet or that diet containing 3–7% lard from weanling to finishing (180 d). Plasma concentrations (n = 8) of cytokines and thyroid hormones and tissue mRNA abundance (n = 4) of 25 selenoprotein genes and 16 obesity-related genes were compared between the pigs fed the control and high-fat diets. Stepwise regression was applied to analyze correlations among all these measures, including the previously reported body physical and plasma biochemical variables. Results: The high-fat diet elevated (P < 0.05) plasma concentrations of tumor necrosis factor α, interleukin-6, leptin, and leptin receptor by 29–42% and affected (P < 0.05–0.1) tissue mRNA levels of the selenoprotein and obesity-related genes in 3 patterns. Specifically, the high-fat diet up-regulated 12 selenoprotein genes in 6 tissues, down-regulated 13 selenoprotein genes in 7 tissues, and exerted no effect on 5 genes in any tissue. Body weights and plasma triglyceride concentrations of pigs showed the strongest regressions to tissue mRNA abundances of selenoprotein and obesity-related genes. Among the selenoprotein genes, selenoprotein V and I were ranked as the strongest independent variables for the regression of phenotypic and plasma measures. Meanwhile, agouti signaling protein, adiponectin, and resistin genes represented the strongest independent variables of the obesity-related genes for the regression of tissue selenoprotein mRNA. Conclusions: The high-fat diet induced inflammation in pigs and affected their gene expression of selenoproteins associated with thioredoxin and oxidoreductase systems, local tissue

  5. Lipoic acid modified low molecular weight polyethylenimine mediates nontoxic and highly potent in vitro gene transfection.

    PubMed

    Zheng, Meng; Zhong, Yinan; Meng, Fenghua; Peng, Rui; Zhong, Zhiyuan

    2011-12-01

    The clinical success of gene therapy intimately relies on the development of safe and efficient gene carrier systems. We found here that 1.8 kDa polyethylenimine (PEI) following hydrophobic modification with lipoic acid (LA) mediated nontoxic and highly potent in vitro gene transfection in both HeLa and 293T cells. 1.8 kDa PEI-LA conjugates were prepared with controlled degree of substitution (DS) by coupling LA to PEI using carbodiimide chemistry. Gel electrophoresis measurements showed that the DNA binding ability of 1.8 kDa PEI was impaired by lipoylation, in which an N/P ratio of 2/1 and 4-6/1 was required for 1.8 kDa PEI and 1.8 kDa PEI-LA conjugates, respectively, to completely inhibit DNA migration. Interestingly, dynamic light scattering measurements (DLS) revealed that PEI-LA conjugates condensed DNA into much smaller sizes (183-84 nm) than unmodified 1.8 kDa PEI (444-139 nm) at N/P ratios ranging from 20/1 to 60/1. These polyplexes revealed similar surface charges of ca. +22 to +30 mV. 1.8 kDa PEI-LA(2) polyplexes formed at an N/P ratio of 10/1 were stable against exchange with 12-fold excess of negatively charged dextran sodium sulfate (DSS) relative to DNA phosphate groups while 1.8 kDa PEI controls dissociated at 6-fold excess of DSS, indicating that lipoylation of 1.8 kDa PEI resulted in stronger binding with DNA. Importantly, DNA was released from 1.8 kDa PEI-LA(2) polyplexes upon addition of 10 mM dithiothreitol (DTT). Reduction-triggered unpacking of 1.8 kDa PEI-LA(2) polyplexes was also confirmed by DLS. MTT assays demonstrated that all PEI-LA conjugates and polyplexes were essentially nontoxic to HeLa and 293T cells up to a tested concentration of 50 μg/mL and an N/P ratio of 80/1, respectively. The in vitro gene transfection studies in HeLa and 293T cells showed that lipoylation of 1.8 kDa PEI markedly boosted its transfection activity. For example, 1.8 kDa PEI-LA(2) polyplexes displayed 400-fold and 500-fold higher levels of gene expression

  6. Applications of myeloid-specific promoters in transgenic mice support in vivo imaging and functional genomics but do not support the concept of distinct macrophage and dendritic cell lineages or roles in immunity.

    PubMed

    Hume, David A

    2011-04-01

    Myeloid lineage cells contribute to innate and acquired immunity, homeostasis, wound repair, and inflammation. There is considerable interest in manipulation of their function in transgenic mice using myeloid-specific promoters. This review considers the applications and specificity of some of the most widely studied transgenes, driven by promoter elements of the lysM, csf1r, CD11c, CD68, macrophage SRA, and CD11b genes, as well as several others. Transgenes have been used in mice to generate myeloid lineage-specific cell ablation, expression of genes of interest, including fluorescent reporters, or deletion via recombination. In general, the specificity of such transgenes has been overinterpreted, and none of them provide well-documented, reliable, differential expression in any specific myeloid cell subset, macrophages, granulocytes, or myeloid DCs. Nevertheless, they have proved valuable in cell isolation, functional genomics, and live imaging of myeloid cell behavior in many different pathologies.

  7. Phylogenetic analysis of bacterial isolates from man-made high-pH, high-salt environments and identification of gene-cassette-associated open reading frames.

    PubMed

    Ghauri, Muhammad A; Khalid, Ahmad M; Grant, Susan; Grant, William D; Heaphy, Shaun

    2006-06-01

    Environmental samples were collected from high-pH sites in Pakistan, including a uranium heap set up for carbonate leaching, the lime unit of a tannery, and the Khewra salt mine. Another sample was collected from a hot spring on the shore of the soda lake, Magadi, in Kenya. Microbial cultures were enriched from Pakistani samples. Phylogenetic analysis of isolates was carried out by sequencing 16S rRNA genes. Genomic DNA was amplified by polymerase chain reaction using integron gene-cassette-specific primers. Different gene-cassette-linked genes were recovered from the cultured strains related to Halomonas magadiensis, Virgibacillus halodenitrificans, and Yania flava and from the uncultured environmental DNA sample. The usefulness of this technique as a tool for gene mining is indicated. PMID:16732461

  8. The Novel Gene CRNDE Encodes a Nuclear Peptide (CRNDEP) Which Is Overexpressed in Highly Proliferating Tissues.

    PubMed

    Szafron, Lukasz Michal; Balcerak, Anna; Grzybowska, Ewa Anna; Pienkowska-Grela, Barbara; Felisiak-Golabek, Anna; Podgorska, Agnieszka; Kulesza, Magdalena; Nowak, Natalia; Pomorski, Pawel; Wysocki, Juliusz; Rubel, Tymon; Dansonka-Mieszkowska, Agnieszka; Konopka, Bozena; Lukasik, Martyna; Kupryjanczyk, Jolanta

    2015-01-01

    CRNDE, recently described as the lncRNA-coding gene, is overexpressed at RNA level in human malignancies. Its role in gametogenesis, cellular differentiation and pluripotency has been suggested as well. Herein, we aimed to verify our hypothesis that the CRNDE gene may encode a protein product, CRNDEP. By using bioinformatics methods, we identified the 84-amino acid ORF encoded by one of two CRNDE transcripts, previously described by our research team. This ORF was cloned into two expression vectors, subsequently utilized in localization studies in HeLa cells. We also developed a polyclonal antibody against CRNDEP. Its specificity was confirmed in immunohistochemical, cellular localization, Western blot and immunoprecipitation experiments, as well as by showing a statistically significant decrease of endogenous CRNDEP expression in the cells with transient shRNA-mediated knockdown of CRNDE. Endogenous CRNDEP localizes predominantly to the nucleus and its expression seems to be elevated in highly proliferating tissues, like the parabasal layer of the squamous epithelium, intestinal crypts or spermatocytes. After its artificial overexpression in HeLa cells, in a fusion with either the EGFP or DsRed Monomer fluorescent tag, CRNDEP seems to stimulate the formation of stress granules and localize to them. Although the exact role of CRNDEP is unknown, our preliminary results suggest that it may be involved in the regulation of the cell proliferation. Possibly, CRNDEP also participates in oxygen metabolism, considering our in silico results, and the correlation between its enforced overexpression and the formation of stress granules. This is the first report showing the existence of a peptide encoded by the CRNDE gene.

  9. The Novel Gene CRNDE Encodes a Nuclear Peptide (CRNDEP) Which Is Overexpressed in Highly Proliferating Tissues

    PubMed Central

    Szafron, Lukasz Michal; Balcerak, Anna; Grzybowska, Ewa Anna; Pienkowska-Grela, Barbara; Felisiak-Golabek, Anna; Podgorska, Agnieszka; Kulesza, Magdalena; Nowak, Natalia; Pomorski, Pawel; Wysocki, Juliusz; Rubel, Tymon; Dansonka-Mieszkowska, Agnieszka; Konopka, Bozena; Lukasik, Martyna; Kupryjanczyk, Jolanta

    2015-01-01

    CRNDE, recently described as the lncRNA-coding gene, is overexpressed at RNA level in human malignancies. Its role in gametogenesis, cellular differentiation and pluripotency has been suggested as well. Herein, we aimed to verify our hypothesis that the CRNDE gene may encode a protein product, CRNDEP. By using bioinformatics methods, we identified the 84-amino acid ORF encoded by one of two CRNDE transcripts, previously described by our research team. This ORF was cloned into two expression vectors, subsequently utilized in localization studies in HeLa cells. We also developed a polyclonal antibody against CRNDEP. Its specificity was confirmed in immunohistochemical, cellular localization, Western blot and immunoprecipitation experiments, as well as by showing a statistically significant decrease of endogenous CRNDEP expression in the cells with transient shRNA-mediated knockdown of CRNDE. Endogenous CRNDEP localizes predominantly to the nucleus and its expression seems to be elevated in highly proliferating tissues, like the parabasal layer of the squamous epithelium, intestinal crypts or spermatocytes. After its artificial overexpression in HeLa cells, in a fusion with either the EGFP or DsRed Monomer fluorescent tag, CRNDEP seems to stimulate the formation of stress granules and localize to them. Although the exact role of CRNDEP is unknown, our preliminary results suggest that it may be involved in the regulation of the cell proliferation. Possibly, CRNDEP also participates in oxygen metabolism, considering our in silico results, and the correlation between its enforced overexpression and the formation of stress granules. This is the first report showing the existence of a peptide encoded by the CRNDE gene. PMID:25978564

  10. Highly restricted gene flow and deep evolutionary lineages in the giant clam Tridacna maxima

    NASA Astrophysics Data System (ADS)

    Nuryanto, A.; Kochzius, M.

    2009-09-01

    The tropical Indo-West Pacific is the biogeographic region with the highest diversity of marine shallow water species, with its centre in the Indo-Malay Archipelago. However, due to its high endemism, the Red Sea is also considered as an important centre of evolution. Currently, not much is known about exchange among the Red Sea, Indian Ocean and West Pacific, as well as connectivity within the Indo-Malay Archipelago, even though such information is important to illuminate ecological and evolutionary processes that shape marine biodiversity in these regions. In addition, the inference of connectivity among populations is important for conservation. This study aims to test the hypothesis that the Indo-Malay Archipelago and the Red Sea are important centres of evolution by studying the genetic population structure of the giant clam Tridacna maxima. This study is based on a 484-bp fragment of the cytochrome c oxidase I gene from 211 individuals collected at 14 localities in the Indo-West Pacific to infer lineage diversification and gene flow as a measure for connectivity. The analysis showed a significant genetic differentiation among sample sites in the Indo-West Pacific (Φst = 0.74, P < 0.001) and across the Indo-Malay Archipelago (Φst = 0.72, P < 0.001), indicating restricted gene flow. Hierarchical AMOVA revealed the highest fixation index (Φct = 0.8, P < 0.001) when sample sites were assigned to the following regions: (1) Red Sea, (2) Indian Ocean and Java Sea, (3) Indonesian throughflow and seas in the East of Sulawesi, and (4) Western Pacific. Geological history as well as oceanography are important factors that shape the genetic structure of T. maxima in the Indo-Malay Archipelago and Red Sea. The observed deep evolutionary lineages might include cryptic species and this result supports the notion that the Indo-Malay Archipelago and the Red Sea are important centres of evolution.

  11. High Producing Tumor Necrosis Factor Alpha Gene Alleles in Protection against Severe Manifestations of Dengue

    PubMed Central

    Sam, Sing-Sin; Teoh, Boon-Teong; Chinna, Karuthan; AbuBakar, Sazaly

    2015-01-01

    Dengue virus (DENV) infection usually presents with mild self-limiting dengue fever (DF). Few however, would present with the more severe form of the disease, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). In the present study, the association between IL-12B, IL-10 and TNF-α gene polymorphisms and dengue severity was investigated. Methods: A case-control study was performed on a total of 120 unrelated controls, 86 DF patients and 196 DHF/DSS patients. The polymorphisms in IL-12B, IL-10 and TNF-α genes were genotyped using PCR-RFLP and PCR-sequencing methods. Results: A protective association of TNF-α -308A allele and -308GA genotype against DHF/DSS was observed, while TNF-α -238A allele and -238GA genotype were associated with DHF/DSS. A combination of TNF-α -308GA+AA genotype and IL-10 non-GCC haplotypes, IL-12B pro homozygotes (pro1/pro1, pro2/pro2) and IL-12B 3'UTR AC were significantly correlated with protective effects against DHF/DSS. An association between the cytokine gene polymorphisms and protection against the clinical features of severe dengue including thrombocytopenia and increased liver enzymes was observed in this study. Conclusion: The overall findings of the study support the correlation of high-producer TNF-α genotypes combined with low-producer IL-10 haplotypes and IL-12B genotypes in reduced risk of DHF/DSS. PMID:25589894

  12. The implication of life style on codon usage patterns and predicted highly expressed genes for three Frankia genomes.

    PubMed

    Sen, Arnab; Sur, Saubashya; Bothra, Asim K; Benson, David R; Normand, Philippe; Tisa, Louis S

    2008-05-01

    Frankia are nitrogen-fixing actinomycetes that form a symbiotic association with over 200 species of woody dicotyledonous plants. Recently, three Frankia genomes were completely sequenced. In this study, the synonymous codon usage patterns of three Frankia genomes (strains CcI3, ACN14a, and EAN1pec) were determined and compared to each other and to other actinobacteria. As expected for a high G+C organism, codon usage by Frankia was highly biased, but differences were observed among the three strains. Using the codon adaptation index (CAI) as a numerical estimator of gene expression level, highly expressed genes in Frankia were predicted with ribosomal protein genes as a reference. The analysis of the predicted highly expressed genes showed that Frankia strain CcI3 had a different profile from the other two strains. Strain CcI3 had fewer predicted highly expressed genes in several COG categories including lipid transport and metabolism, secondary metabolites biosynthesis, inorganic ion transport and metabolism, and general function prediction only than Frankia strains EAN1pec and ACN14a. Interestingly, Frankia EAN1pec had more predicted highly expressed genes in transcription and signal transduction mechanisms than the other two strains. These differences were not just a reflection in total gene numbers, but also based on percentage of genes within a category. These results support the hypothesis that strain CcI3 is becoming a symbiotic specialist and the other two facultative symbiotic strains are maintaining their capacity to exist as free-living soil dwellers.

  13. Cellular Effect of High Doses of Silica-Coated Quantum Dot Profiled with High Throughput Gene Expression Analysis and High Content Cellomics Measurements

    PubMed Central

    Zhang, Tingting; Stilwell, Jackie L.; Gerion, Daniele; Ding, Lianghao; Elboudwarej, Omeed; Cooke, Patrick A.; Gray, Joe W.; Alivisatos, A. Paul; Chen, Fanqing Frank

    2009-01-01

    Quantum dots (Qdots) are now used extensively for labeling in biomedical research, and this use is predicted to grow because of their many advantages over alternative labeling methods. Uncoated Qdots made of core/shell CdSe/ZnS are toxic to cells because of the release of Cd2+ ions into the cellular environment. This problem has been partially overcome by coating Qdots with polymers, poly(ethylene glycol) (PEG), or other inert molecules. The most promising coating to date, for reducing toxicity, appears to be PEG. When PEG-coated silanized Qdots (PEG-silane-Qdots) are used to treat cells, toxicity is not observed, even at dosages above 10–20 nM, a concentration inducing death when cells are treated with polymer or mercaptoacid coated Qdots. Because of the importance of Qdots in current and future biomedical and clinical applications, we believe it is essential to more completely understand and verify this negative global response from cells treated with PEG-silane-Qdots. Consequently, we examined the molecular and cellular response of cells treated with two different dosages of PEG-silane-Qdots. Human fibroblasts were exposed to 8 and 80 nM of these Qdots, and both phenotypic as well as whole genome expression measurements were made. PEG-silane-Qdots did not induce any statistically significant cell cycle changes and minimal apoptosis/necrosis in lung fibroblasts (IMR-90) as measured by high content image analysis, regardless of the treatment dosage. A slight increase in apoptosis/necrosis was observed in treated human skin fibroblasts (HSF-42) at both the low and the high dosages. We performed genome-wide expression array analysis of HSF-42 exposed to doses 8 and 80 nM to link the global cell response to a molecular and genetic phenotype. We used a gene array containing ~22,000 total probe sets, containing 18,400 probe sets from known genes. Only ~50 genes (~0.2% of all the genes tested) exhibited a statistically significant change in expression level of greater

  14. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes

    PubMed Central

    Pruesse, Elmar; Peplies, Jörg; Glöckner, Frank Oliver

    2012-01-01

    Motivation: In the analysis of homologous sequences, computation of multiple sequence alignments (MSAs) has become a bottleneck. This is especially troublesome for marker genes like the ribosomal RNA (rRNA) where already millions of sequences are publicly available and individual studies can easily produce hundreds of thousands of new sequences. Methods have been developed to cope with such numbers, but further improvements are needed to meet accuracy requirements. Results: In this study, we present the SILVA Incremental Aligner (SINA) used to align the rRNA gene databases provided by the SILVA ribosomal RNA project. SINA uses a combination of k-mer searching and partial order alignment (POA) to maintain very high alignment accuracy while satisfying high throughput performance demands. SINA was evaluated in comparison with the commonly used high throughput MSA programs PyNAST and mothur. The three BRAliBase III benchmark MSAs could be reproduced with 99.3, 97.6 and 96.1 accuracy. A larger benchmark MSA comprising 38 772 sequences could be reproduced with 98.9 and 99.3% accuracy using reference MSAs comprising 1000 and 5000 sequences. SINA was able to achieve higher accuracy than PyNAST and mothur in all performed benchmarks. Availability: Alignment of up to 500 sequences using the latest SILVA SSU/LSU Ref datasets as reference MSA is offered at http://www.arb-silva.de/aligner. This page also links to Linux binaries, user manual and tutorial. SINA is made available under a personal use license. Contact: epruesse@mpi-bremen.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22556368

  15. Down-regulation of EPHX2 gene transcription by Sp1 under high-glucose conditions.

    PubMed

    Oguro, Ami; Oida, Shoko; Imaoka, Susumu

    2015-09-15

    sEH (soluble epoxide hydrolase), which is encoded by the EPHX2 gene, regulates the actions of bioactive lipids, EETs (epoxyeicosatrienoic acids). Previously, we found that high-glucose-induced oxidative stress suppressed sEH levels in a hepatocarcinoma cell line (Hep3B) and sEH was decreased in streptozotocin-induced diabetic mice in vivo. In the present study, we investigated the regulatory mechanisms underlying EPHX2 transcriptional suppression under high-glucose conditions. The decrease in sEH was prevented by an Sp1 (specificity protein 1) inhibitor, mithramycin A, and overexpression or knockdown of Sp1 revealed that Sp1 suppressively regulated sEH expression, in contrast with the general role of Sp1 on transcriptional activation. In addition, we found that AP2α (activating protein 2α) promoted EPHX2 transcription. The nuclear transport of Sp1, but not that of AP2α, was increased under high glucose concomitantly with the decrease in sEH. Within the EPHX2 promoter -56/+32, five Sp1-binding sites were identified, and the mutation of each of these sites showed that the first one (SP1_1) was important in both suppression by Sp1 and activation by AP2α. Furthermore, overexpression of Sp1 diminished the binding of AP2α by DNA-affinity precipitation assay and ChIP, suggesting competition between Sp1 and AP2α on the EPHX2 promoter. These findings provide novel insights into the role of Sp1 in transcriptional suppression, which may be applicable to the transcriptional regulation of other genes.

  16. Diagnosis of canine leptospirosis by a highly sensitive FRET-PCR targeting the lig genes.

    PubMed

    Xu, Chuanling; Loftis, Amanda; Ahluwalia, Sudhir K; Gao, Dongya; Verma, Ashutosh; Wang, Chengming; Kaltenboeck, Bernhard

    2014-01-01

    Canine leptospirosis is underdiagnosed due to its wide spectrum of clinical presentations and the lack of a rapid and sensitive test for the accurate diagnosis of acute and chronic infections. In this study, we developed a highly sensitive and specific fluorescence resonance energy transfer (FRET)-PCR to detect common pathogenic leptospires in dogs, including Leptospira interrogans serovars Autumnalis, Canicola, Copenhageni (Icterohaemorrhagiae serogroup) and Pomona, and Leptospira kirschneri serovar Grippotyphosa. This PCR targets the lig genes, exclusively found in the pathogenic Leptospira species but not in saprophytic species (L. biflexa). A robust, high-stringency step-down real-time platform was coupled to the highly specific detection of leptospiral DNA by fluorescently labeled FRET probes. This enabled the detection of a single copy of the lig gene in a PCR containing DNA from up to 50 µL canine blood or 400 µL urine. Sensitivity determination by use of limiting serial dilutions of extracted leptospiral DNA indicated that the lig FRET-PCR we established was almost 100-fold more sensitive than the widely accepted lipL32 SYBR assay and 10-fold more sensitive than a 16S rRNA TaqMan assay. Application of this method to 207 dogs with potential leptospiral infection enabled us to diagnose three cases of canine leptospirosis characterized by low amounts of leptospiral DNA in body fluids. Detection of canine leptospirosis with the lig FRET-PCR was more sensitive with the lig FRET-PCR than with the 16S rRNA TaqMan PCR, which detected only 2 of the 3 cases, and the lipL32 SYBR PCR, which detected none of the 3 dogs with leptospirosis. PMID:24586833

  17. Locus heterogeneity disease genes encode proteins with high interconnectivity in the human protein interaction network.

    PubMed

    Keith, Benjamin P; Robertson, David L; Hentges, Kathryn E

    2014-01-01

    Mutations in genes potentially lead to a number of genetic diseases with differing severity. These disease genes have been the focus of research in recent years showing that the disease gene population as a whole is not homogeneous, and can be categorized according to their interactions. Locus heterogeneity describes a single disorder caused by mutations in different genes each acting individually to cause the same disease. Using datasets of experimentally derived human disease genes and protein interactions, we created a protein interaction network to investigate the relationships between the products of genes associated with a disease displaying locus heterogeneity, and use network parameters to suggest properties that distinguish these disease genes from the overall disease gene population. Through the manual curation of known causative genes of 100 diseases displaying locus heterogeneity and 397 single-gene Mendelian disorders, we use network parameters to show that our locus heterogeneity network displays distinct properties from the global disease network and a Mendelian network. Using the global human proteome, through random simulation of the network we show that heterogeneous genes display significant interconnectivity. Further topological analysis of this network revealed clustering of locus heterogeneity genes that cause identical disorders, indicating that these disease genes are involved in similar biological processes. We then use this information to suggest additional genes that may contribute to diseases with locus heterogeneity.

  18. Suppression of Ripening-Associated Gene Expression in Tomato Fruits Subjected to a High CO2 Concentration.

    PubMed Central

    Rothan, C.; Duret, S.; Chevalier, C.; Raymond, P.

    1997-01-01

    High concentrations of CO2 block or delay the ripening of fruits. In this study we investigated the effects of high CO2 on ripening and on the expression of stress- and ripening-inducible genes in cherry tomato (Lycopersicon esculentum Mill.) fruit. Mature-green tomato fruits were submitted to a high CO2 concentration (20%) for 3 d and then transferred to air. These conditions effectively inhibited ripening-associated color changes and ethylene production, and reduced the protein content. No clear-cut effect was observed on the expression of two proteolysis-related genes, encoding polyubiquitin and ubiquitin-conjugating enzyme E2, respectively. Exposure of fruit to high CO2 also resulted in the strong induction of two genes encoding stress-related proteins: a ripening-regulated heat-shock protein and glutamate decarboxylase. Induction of these two genes indicated that high CO2 had a stress effect, most likely through cytosolic acidification. In addition, high CO2 blocked the accumulation of mRNAs for genes involved in the main ripening-related changes: ethylene synthesis (1-aminocyclopropane-1-carboxylic acid synthase and 1-aminocyclopropane-1-carboxylic acid oxidase), color (phytoene synthase), firmness (polygalacturonase), and sugar accumulation (acid invertase). The expression of ripening-specific genes was affected by CO2 regardless of whether their induction was ethylene- or development-dependent. It is proposed that the inhibition of tomato fruit ripening by high CO2 is due, in part, to the suppression of the expression of ripening-associated genes, which is probably related to the stress effect exerted by high CO2. PMID:12223703

  19. A Novel Tryptophanyl-tRNA Synthetase Gene Confers High-Level Resistance to Indolmycin▿ †

    PubMed Central

    Vecchione, James J.; Sello, Jason K.

    2009-01-01

    Indolmycin, a potential antibacterial drug, competitively inhibits bacterial tryptophanyl-tRNA synthetases. An effort to identify indolmycin resistance genes led to the discovery of a gene encoding an indolmycin-resistant isoform of tryptophanyl-tRNA synthetase. Overexpression of this gene in an indolmycin-sensitive strain increased the indolmycin MIC 60-fold. Its transcription and distribution in various bacterial genera were assessed. The level of resistance conferred by this gene was compared to that of a known indolmycin resistance gene and to those of genes with resistance-conferring point mutations. PMID:19546369

  20. Molecular evolutionary analysis of the high-affinity K+ transporter gene family in angiosperms.

    PubMed

    Yang, P; Hua, C; Zhou, F; Zhang, B-J; Cai, X-N; Chen, Q-Z; Wang, R-L

    2016-07-15

    The high-affinity K(+) transporter (HKT) family comprises a group of multifunctional cation transporters widely distributed in organisms ranging from Bacteria to Eukarya. In angiosperms, the HKT family consists primarily of nine types, whose evolutionary relationships are not fully understood. The available sequences from 31 plant species were used to perform a comprehensive evolutionary analysis, including an examination of selection pressure and estimating phylogenetic tree and gene duplication events. Our results show that a gene duplication in the HKT1;5/HKT1;4 cluster might have led to the divergence of the HKT1;5 and HKT1;4 subfamilies. Additionally, maximum likelihood analysis revealed that the HKT family has undergone a strong purifying selection. An analysis of the amino acids provided strong statistical evidence for a functional divergence between subfamilies 1 and 2. Our study was the first to provide evidence of this functional divergence between these two subfamilies. Analysis of co-evolution in HKT identified 25 co-evolved groups. These findings expanded our understanding of the evolutionary mechanisms driving functional diversification of HKT proteins.

  1. The human archain gene, ARCN1, has highly conserved homologs in rice and drosophila

    SciTech Connect

    Radice, P.; Jones, C.; Perry, H.

    1995-03-01

    A novel human gene, ARCN1, has been identified in chromosome band 11q23.3. It maps approximately 50 kb telomeric to MLL, a gene that is disrupted in a number of leukemia-associated translocation chromosomes. cDNA clones representing ARCN1 hybridize to 4-kb mRNA species present in all tissues tested. Sequencing of cDNAs suggests that at least two forms of mRNA with alternative 5 {prime} ends are present within the cell. The mRNA with the longest open reading frame gives rise to a protein of 57 kDa. Although the sequence reported is novel, remarkable similarity is observed with two predicted protein sequences from partial DNA sequences generated by rice (Oryza sativa) and fruit fly (Drosophila melanogaster) genome projects. The degree of sequence conservation is comparable to that observed for highly conserved structural proteins, such as heat shock protein HSP70, and is greater than that of {gamma}-gubulin and heat shock protein HSP60. A more distant relationship to the group of clathrin-associated proteins suggests a possible role in vesicle structure or trafficking. In view of its ancient pedigree and a potential involvement in cellular architecture, the authors propose that the ARCN1 protein be named archain. 20 refs., 5 figs.

  2. Genetic analysis of axial length genes in high grade myopia from Indian population☆

    PubMed Central

    Sharmila, Ferdinamarie; Abinayapriya; Ramprabhu, Karthikeyan; Kumaramanickavel, Govindasamy; R.R.Sudhir; Sripriya, Sarangapani

    2014-01-01

    Purpose To study the putative association of Membrane frizzled related protein (MFRP) and Visual system homeobox protein (VSX2) gene variants with axial length (AL) in myopia. Method A total of 189 samples with (N = 98) and without (N = 91) myopia were genotyped for the MRFP and VSX2 variations in ABI Prism 3100 AVANT genetic analyzer. Genotype/haplotype analysis was performed using PLINK, Haploview and THESIAS softwares. Results Fifteen variations were observed in the MFRP gene of which, rs36015759 (c.492C > T, T164T) in exon 5 was distributed at a high frequency in the controls and significantly associated with a low risk for myopia (P = 4.10 ∗ e− 07 OR < 1.0). An increased frequency for the coding haplotype block [CGTCGG] harboring rs36015759 was observed in controls (31%) than cases (8%) that also correlated with a decreased mean AL (− 1.35085; P = 0.000444) by THESIAS analysis. The ‘T’ allele of rs36015759 was predicted to abolish the binding site for splicing enhancer (SRp40) by FASTSNP analysis. Conclusion Myopia is a complex disorder influenced by genetic and environmental factors. Our work shows evidence of association of a specific MFRP haplotype which was more prevalent in controls with decreased AL. However, replication and functional studies are warranted to confirm these findings. PMID:25606400

  3. High transcript levels of heat-shock genes are associated with shorter lifespan of Caenorhabditis elegans.

    PubMed

    Manière, X; Krisko, A; Pellay, F X; Di Meglio, J-M; Hersen, P; Matic, I

    2014-12-01

    Individual lifespans of isogenic organisms, such as Caenorhabditis elegans nematodes, fruit flies, and mice, vary greatly even under identical environmental conditions. To study the molecular mechanisms responsible for such variability, we used an assay based on the measurement of post-reproductive nematode movements stimulated by a moderate electric field. This assay allows for the separation of individual nematodes based on their speed. We show that this phenotype could be used as a biomarker for aging because it is a better predictor of lifespan than chronological age. Fast nematodes have longer lifespans, fewer protein carbonyls, higher heat-shock resistance, and higher transcript levels of the daf-16 and hsf-1 genes, which code for the stress response transcription factors, than slow nematodes. High transcript levels of the genes coding for heat-shock proteins observed in slow nematodes correlate with lower heat-shock resistance, more protein carbonyls, and shorter lifespan. Taken together, our data suggests that shorter lifespan results from early-life damage accumulation that causes subsequent faster age-related deterioration.

  4. Molecular evolutionary analysis of the high-affinity K+ transporter gene family in angiosperms.

    PubMed

    Yang, P; Hua, C; Zhou, F; Zhang, B-J; Cai, X-N; Chen, Q-Z; Wang, R-L

    2016-01-01

    The high-affinity K(+) transporter (HKT) family comprises a group of multifunctional cation transporters widely distributed in organisms ranging from Bacteria to Eukarya. In angiosperms, the HKT family consists primarily of nine types, whose evolutionary relationships are not fully understood. The available sequences from 31 plant species were used to perform a comprehensive evolutionary analysis, including an examination of selection pressure and estimating phylogenetic tree and gene duplication events. Our results show that a gene duplication in the HKT1;5/HKT1;4 cluster might have led to the divergence of the HKT1;5 and HKT1;4 subfamilies. Additionally, maximum likelihood analysis revealed that the HKT family has undergone a strong purifying selection. An analysis of the amino acids provided strong statistical evidence for a functional divergence between subfamilies 1 and 2. Our study was the first to provide evidence of this functional divergence between these two subfamilies. Analysis of co-evolution in HKT identified 25 co-evolved groups. These findings expanded our understanding of the evolutionary mechanisms driving functional diversification of HKT proteins. PMID:27525850

  5. Zebrafish Cx35: cloning and characterization of a gap junction gene highly expressed in the retina.

    PubMed

    McLachlan, Elizabeth; White, Thomas W; Ugonabo, Chioma; Olson, Carl; Nagy, James I; Valdimarsson, Gunnar

    2003-09-15

    The vertebrate connexin gene family encodes protein subunits of gap junction channels, which provide a route for direct intercellular communication. Consequently, gap junctions play a vital role in many developmental and homeostatic processes. Aberrant functioning of gap junctions is implicated in many human diseases. Zebrafish are an ideal vertebrate model to study development of the visual system as they produce transparent embryos that develop rapidly, thereby facilitating morphological and behavioral testing. In this study, zebrafish connexin35 has been cloned from a P1 artificial chromosome (PAC) library. Sequence analysis shows a high degree of similarity to the Cx35/36 orthologous group, which are expressed primarily in nervous tissue, including the retina. The gene encodes a 304-amino acid protein with a predicted molecular weight of approximately 35 kDa. Injection of zebrafish Cx35 RNA into paired Xenopus oocytes elicited intercellular electrical coupling with weak voltage sensitivity. In development, Cx35 is first detectable by Northern analysis and RT-PCR, at 2 days post-fertilization (2 dpf), and in the adult it is expressed in the brain and retina. Immunohistochemical analysis revealed that the Cx35 protein is expressed in two sublaminae of the inner plexiform layer of the adult retina. A similar pattern was seen in the 4 and 5 dpf retina, but no labeling was detected in the retina of earlier embryos.

  6. Association between PKA gene polymorphism and NTDs in high risk Chinese population in Shanxi

    PubMed Central

    Wu, Jian; Lu, Xiaolin; Wang, Zhen; Shangguan, Shaofang; Chang, Shaoyan; Li, Rui; Wu, Lihua; Bao, Yihua; Niu, Bo; Wang, Li; Zhang, Ting

    2013-01-01

    Objective: This study aimed to investigate the single nucleotide polymorphisms (SNPs) of PKA and neural tube defects (NTDs) in Chinese population. Method: A total of 183 NTDs cases and 200 healthy controls were used in this study. 7 selected single nucleotide polymorphism (SNP) sites in the PKA gene were analyzed with MassArray high-throughput DNA analyzer with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. A series of statistical methods were carried out to investigate the correlation between the SNPs and the patient susceptibility to NTDs. Results: Statistical analysis showed a significant correlation between the SNP sites rs12132032 in PRKACB and NTDs. The AA genotype, A-allele and dominant AA in rs12132032 significantly increased the incidence of NTDs especially anencephaly (OR=3.87, 95% CI: 1.80-8.34 with genotype; OR=2.08, 95% CI: 1.43-3.04 with allele; OR=3.10, 95% CI: 1.53-6.26 with dominant). The T-allele of rs594631 in PRKACB was correlative with NTDs in male but not in female. Conclusions: The gene polymorphism loci rs12132032 in PRKACB maybe a potential risk factor for anencephaly in Chinese population from Shanxi, while gender susceptibility may influence the correlation. PMID:24294386

  7. High-molecular-weight polyethyleneimine conjuncted pluronic for gene transfer agents.

    PubMed

    Liang, Wenqing; Gong, Haiyang; Yin, Dongfeng; Lu, Shiyong; Fu, Qiang

    2011-01-01

    In order to enhance the gene delivery efficiency and decrease cytotoxicity of polyplexes, copolymers consisting of branched polyethyleneimine (PEI) 25 kDa grafted with Pluronic (F127, F68, P105) were successfully synthesized using a simple two-step procedure. The copolymers were tested for cytotoxicity and DNA condensation and complexation properties. Their polyplexes with plasmid DNA were characterized in terms of DNA size and surface charge and transfection efficiency. The complex sizes were below 300 nm, which implicated their potential for intracellular delivery. The Pluronic-g-PEI exhibited better condensation and complexation properties than PEI 25 kDa. The cytotoxicity of PEI was strongly reduced after copolymerization. The Pluronic-g-PEI showed lower cytotoxicity in three different cell lines (Hela, MCF-7, and HepG2) than PEI 25 kDa. pGL3-lus was used as a reporter gene, and the transfection efficiency was in vitro measured in HeLa cells. Compared with unmodified PEI 25 kDa Pluronic-g-PEI showed much higher transfection efficiency. These results demonstrate that polyplexes prepared using a combined strategy of surface crosslinking and grafted with Pluronic seem to provide promising properties as stable, high transfection efficiency vectors.

  8. A high frequency of distinct ATM gene mutations in ataxia-telangiectasia

    SciTech Connect

    Wright, J.; Teraoka, S.; Concannon, P.

    1996-10-01

    The clinical features of the autosomal recessive disorder ataxia-telangiectasia (AT) include a progressive cerebellar ataxia, hypersensitivity to ionizing radiation, and an increased susceptibility to malignancies. Epidemiological studies have suggested that AT heterozygotes may also be at increased risk for malignancy, possibly as a consequence of radiation exposure. A gene mutated in AT patients (ATM) has recently been isolated, making mutation screening in both patients and the general population possible. Because of the relatively large size of the ATM gene, the design of screening programs will depend on the types and distribution of mutations in the general population. In this report, we describe 30 mutations identified in a panel of unrelated AT patients and controls. Twenty-five of the 30 were distinct, and most patients were compound heterozygotes. The most frequently detected mutation was found in three different families and had previously been reported in five others. This corresponds to a frequency of 8% of all reported ATM mutations. Twenty-two of the alterations observed would be predicted to lead to protein truncation at sites scattered throughout the molecule. Two fibroblast cell lines, which displayed normal responses to ionizing radiation, also proved to be heterozygous for truncation mutations of ATM. These observations suggest that the carrier frequency of ATM mutations may be sufficiently high to make population screening practical. However, such screening may need to be done prospectively, that is, by searching for new mutations rather than by screening for just those already identified in AT families. 33 refs., 1 fig., 1 tab.

  9. Highly Efficient Gene Suppression by Chemically Modified 27 Nucleotide Double-Stranded RNAs

    NASA Astrophysics Data System (ADS)

    Kubo, Takanori; Zhelev, Zhivko; Bakalova, Rumiana; Ohba, Hideki

    2008-02-01

    RNA interference (RNAi) technology, described by Fire and Mello in 1998, is a powerful tool for the suppression of gene expression in mammalian cells. RNAi technology has several advantages over other chemical and genetic drugs. However, several problems in RNAi technology, such as cellular delivery, nuclease stability, and side effects, should be solved before applying it in the clinic. In this study, we focused on the development of novel chemically modified 27 nucleotide (nt) double-stranded RNAs (dsRNAs) with improved biological properties. Our chemically modified 27 nt dsRNAs exhibited an enhanced RNAi activity and a markedly increased stability in cell culture medium (containing 10% serum) in comparison with widely used 21 nt siRNAs and recently reported nonmodified 27 nt dsRNAs. The chemically modified 27 nt dsRNAs also exhibited a strong high long-term gene silencing effect after the 7 d treatment of viable cells. The chemically modified 27 nt dsRNAs in specific positions could be processed to 21 nt siRNAs by a recombinant Dicer enzyme. We suggested that the chemically modified 27 nt dsRNAs could be used for therapeutic applications (as genetic drugs) and bioanalyses.

  10. Genome-scale gene function prediction using multiple sources of high-throughput data in yeast Saccharomyces cerevisiae.

    PubMed

    Joshi, Trupti; Chen, Yu; Becker, Jeffrey M; Alexandrov, Nickolai; Xu, Dong

    2004-01-01

    Characterizing gene function is one of the major challenging tasks in the post-genomic era. To address this challenge, we have developed GeneFAS (Gene Function Annotation System), a new integrated probabilistic method for cellular function prediction by combining information from protein-protein interactions, protein complexes, microarray gene expression profiles, and annotations of known proteins through an integrative statistical model. Our approach is based on a novel assessment for the relationship between (1) the interaction/correlation of two proteins' high-throughput data and (2) their functional relationship in terms of their Gene Ontology (GO) hierarchy. We have developed a Web server for the predictions. We have applied our method to yeast Saccharomyces cerevisiae and predicted functions for 1548 out of 2472 unannotated proteins.

  11. Total beta-globin gene deletion has high frequency in Filipinos

    SciTech Connect

    Patrick, N.; Miyakawa, F.; Hunt, J.A.

    1994-09-01

    The distribution of {beta}-thalassemia [{beta}{sup Th}] mutations is unique to each ethnic group. Most mutations affect one or a few bases; large deletions have been rare. Among families screened in Hawaii, [{beta}{sup Th}] heterozygotes were diagnosed by microcytosis, absence of abnormal hemoglobins on isoelectric focusing, and raised Hb A{sub 2} by chromatography. Gene frequency for {beta}{sup Th} was 0.02 in Filipinos. In Filipinos, polymerase chain reaction [PCR] with denaturing gradient gel electrophoresis for {beta}{sup Th} mutations detected a mutation in only 6 of 42 {beta}{sup Th} heterozygotes; an IVS2-666 C/T polymorphism showed non-heterozygosity in 37 and heterozygosity in only 5 of these {beta}{sup Th} heterozygotes. One {beta}{sup Th}/{beta}{sup Th} major patient and his mother had no mutation detected by allele-specific oligomer hybridization; PCR failed to amplify any DNA from his {beta}-globin gene. After a total {beta}-globin gene deletion [{beta}{sup Del}] was found in a Filipino family in Ontario, specific PCR amplification for {beta}{sup Del} detected this in 43 of 53 {beta}{sup Th} Filipino samples tested; the above {beta}{sup Th}/{beta}{sup Th} patient was a ({beta}{sup Del}/{beta}{sup Del}) homozygote. The {beta}{sup Del} may account for over 60% of all {beta}{sup Th} alleles in Filipinos; this is the highest proportion of a deletion {beta}{sup Th} mutation reported from any population. Most but not all {beta}{sup Del} heterozygotes had high Hb F [5.13 {plus_minus} 3.94 mean {plus_minus} 1 s.d.] compared to the codon 41/42 four base deletion common in Chinese [2.30 {plus_minus} 0.86], or to {beta}{sup Th} heterozygotes with normal {alpha}-globin genes [2.23 {plus_minus} 0.80].

  12. Long QT Interval in Turner Syndrome – A High Prevalence of LQTS Gene Mutations

    PubMed Central

    Trolle, Christian; Mortensen, Kristian H.; Pedersen, Lisbeth N.; Berglund, Agnethe; Jensen, Henrik K.; Andersen, Niels H.; Gravholt, Claus H.

    2013-01-01

    Objectives QT-interval prolongation of unknown aetiology is common in Turner syndrome. This study set out to explore the presence of known long QT mutations in Turner syndrome and to examine the corrected QT-interval (QTc) over time and relate the findings to the Turner syndrome phenotype. Methods Adult women with Turner syndrome (n = 88) were examined thrice and 68 age-matched healthy controls were examined once. QTc was measured by one blinded reader (intra-reader variability: 0.7%), and adjusted for influence of heart rate by Bazett’s (bQTc) and Hodges’s formula (hQTc). The prevalence of mutations in genes related to Long QT syndrome was determined in women with Turner syndrome and a QTc >432.0 milliseconds (ms). Echocardiographic assessment of aortic valve morphology, 24-hour blood pressures and blood samples were done. Results The mean hQTc in women with Turner syndrome (414.0±25.5 ms) compared to controls (390.4±17.8 ms) was prolonged (p<0.001) and did not change over time (416.9±22.6 vs. 415.6±25.5 ms; p = 0.4). 45,X karyotype was associated with increased hQTc prolongation compared to other Turner syndrome karyotypes (418.2±24.8 vs. 407.6±25.5 ms; p = 0.055). In women with Turner syndrome and a bQTc >432 ms, 7 had mutations in major Long QT syndrome genes (SCN5A and KCNH2) and one in a minor Long QT syndrome gene (KCNE2). Conclusion There is a high prevalence of mutations in the major LQTS genes in women with TS and prolonged QTc. It remains to be settled, whether these findings are related to the unexplained excess mortality in Turner women. Clinical Trial Registration NCT00624949. https://register.clinicaltrials.gov/prs/app/action/SelectProtocol/sid/S0001FLI/selectaction/View/ts/3/uid/U000099E. PMID:23936059

  13. The SKP1-Like Gene Family of Arabidopsis Exhibits a High Degree of Differential Gene Expression and Gene Product Interaction during Development

    PubMed Central

    Dezfulian, Mohammad H.; Soulliere, Danielle M.; Dhaliwal, Rajdeep K.; Sareen, Madhulika; Crosby, William L.

    2012-01-01

    The Arabidopsis thaliana genome encodes several families of polypeptides that are known or predicted to participate in the formation of the SCF-class of E3-ubiquitin ligase complexes. One such gene family encodes the Skp1-like class of polypeptide subunits, where 21 genes have been identified and are known to be expressed in Arabidopsis. Phylogenetic analysis based on deduced polypeptide sequence organizes the family of ASK proteins into 7 clades. The complexity of the ASK gene family, together with the close structural similarity among its members raises the prospect of significant functional redundancy among select paralogs. We have assessed the potential for functional redundancy within the ASK gene family by analyzing an expanded set of criteria that define redundancy with higher resolution. The criteria used include quantitative expression of locus-specific transcripts using qRT-PCR, assessment of the sub-cellular localization of individual ASK:YFP auto-fluorescent fusion proteins expressed in vivo as well as the in planta assessment of individual ASK-F-Box protein interactions using bimolecular fluorescent complementation techniques in combination with confocal imagery in live cells. The results indicate significant functional divergence of steady state transcript abundance and protein-protein interaction specificity involving ASK proteins in a pattern that is poorly predicted by sequence-based phylogeny. The information emerging from this and related studies will prove important for defining the functional intersection of expression, localization and gene product interaction that better predicts the formation of discrete SCF complexes, as a prelude to investigating their molecular mode of action. PMID:23226441

  14. A highly efficient molecular cloning platform that utilises a small bacterial toxin gene.

    PubMed

    Mok, Wendy W K; Li, Yingfu

    2013-04-15

    Molecular cloning technologies that have emerged in recent years are more efficient and simpler to use than traditional strategies, but many have the disadvantages of requiring multiple steps and expensive proprietary enzymes. We have engineered cloning vectors containing variants of IbsC, a 19-residue toxin from Escherichia coli K-12. These toxic peptides offer selectivity to minimise the background, labour, and cost associated with conventional molecular cloning. As demonstrated with the cloning of reporter genes, this "detox cloning" system consistently produced over 95 % positive clones. Purification steps between digestion and ligation are not necessary, and the total time between digestion and plating of transformants can be as little as three hours. Thus, these IbsC-based cloning vectors are as reliable and amenable to high-throughput cloning as commercially available systems, and have the advantage of being more time-efficient and cost-effective. PMID:23512843

  15. Phenotype MicroArrays for High-Throughput Phenotypic Testing and Assay of Gene Function

    PubMed Central

    Bochner, Barry R.; Gadzinski, Peter; Panomitros, Eugenia

    2001-01-01

    The bacterium Escherichia coli is used as a model cellular system to test and validate a new technology called Phenotype MicroArrays (PMs). PM technology is a high-throughput technology for simultaneous testing of a large number of cellular phenotypes. It consists of preconfigured well arrays in which each well tests a different cellular phenotype and an automated instrument that continuously monitors and records the response of the cells in all wells of the arrays. For example, nearly 700 phenotypes of E. coli can be assayed by merely pipetting a cell suspension into seven microplate arrays. PMs can be used to directly assay the effects of genetic changes on cells, especially gene knock-outs. Here, we provide data on phenotypic analysis of six strains and show that we can detect expected phenotypes as well as, in some cases, unexpected phenotypes. PMID:11435407

  16. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi.

    PubMed

    Gantz, Valentino M; Jasinskiene, Nijole; Tatarenkova, Olga; Fazekas, Aniko; Macias, Vanessa M; Bier, Ethan; James, Anthony A

    2015-12-01

    Genetic engineering technologies can be used both to create transgenic mosquitoes carrying antipathogen effector genes targeting human malaria parasites and to generate gene-drive systems capable of introgressing the genes throughout wild vector populations. We developed a highly effective autonomous Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9)-mediated gene-drive system in the Asian malaria vector Anopheles stephensi, adapted from the mutagenic chain reaction (MCR). This specific system results in progeny of males and females derived from transgenic males exhibiting a high frequency of germ-line gene conversion consistent with homology-directed repair (HDR). This system copies an ∼ 17-kb construct from its site of insertion to its homologous chromosome in a faithful, site-specific manner. Dual anti-Plasmodium falciparum effector genes, a marker gene, and the autonomous gene-drive components are introgressed into ∼ 99.5% of the progeny following outcrosses of transgenic lines to wild-type mosquitoes. The effector genes remain transcriptionally inducible upon blood feeding. In contrast to the efficient conversion in individuals expressing Cas9 only in the germ line, males and females derived from transgenic females, which are expected to have drive component molecules in the egg, produce progeny with a high frequency of mutations in the targeted genome sequence, resulting in near-Mendelian inheritance ratios of the transgene. Such mutant alleles result presumably from nonhomologous end-joining (NHEJ) events before the segregation of somatic and germ-line lineages early in development. These data support the design of this system to be active strictly within the germ line. Strains based on this technology could sustain control and elimination as part of the malaria eradication agenda. PMID:26598698

  17. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi.

    PubMed

    Gantz, Valentino M; Jasinskiene, Nijole; Tatarenkova, Olga; Fazekas, Aniko; Macias, Vanessa M; Bier, Ethan; James, Anthony A

    2015-12-01

    Genetic engineering technologies can be used both to create transgenic mosquitoes carrying antipathogen effector genes targeting human malaria parasites and to generate gene-drive systems capable of introgressing the genes throughout wild vector populations. We developed a highly effective autonomous Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9)-mediated gene-drive system in the Asian malaria vector Anopheles stephensi, adapted from the mutagenic chain reaction (MCR). This specific system results in progeny of males and females derived from transgenic males exhibiting a high frequency of germ-line gene conversion consistent with homology-directed repair (HDR). This system copies an ∼ 17-kb construct from its site of insertion to its homologous chromosome in a faithful, site-specific manner. Dual anti-Plasmodium falciparum effector genes, a marker gene, and the autonomous gene-drive components are introgressed into ∼ 99.5% of the progeny following outcrosses of transgenic lines to wild-type mosquitoes. The effector genes remain transcriptionally inducible upon blood feeding. In contrast to the efficient conversion in individuals expressing Cas9 only in the germ line, males and females derived from transgenic females, which are expected to have drive component molecules in the egg, produce progeny with a high frequency of mutations in the targeted genome sequence, resulting in near-Mendelian inheritance ratios of the transgene. Such mutant alleles result presumably from nonhomologous end-joining (NHEJ) events before the segregation of somatic and germ-line lineages early in development. These data support the design of this system to be active strictly within the germ line. Strains based on this technology could sustain control and elimination as part of the malaria eradication agenda.

  18. High-throughput transcriptomic analysis nominates proteasomal genes as age-specific biomarkers and therapeutic targets in prostate cancer

    PubMed Central

    Zhao, S G; Jackson, W C; Kothari, V; Schipper, M J; Erho, N; Evans, J R; Speers, C; Hamstra, D A; Niknafs, Y S; Nguyen, P L; Schaeffer, E M; Ross, A E; Den, R B; Klein, E A; Jenkins, R B; Davicioni, E; Feng, F Y

    2015-01-01

    Background: Although prostate cancer (PCa) is hypothesized to differ in nature between younger versus older patients, the underlying molecular distinctions are poorly understood. We hypothesized that high-throughput transcriptomic analysis would elucidate biological differences in PCas arising in younger versus older men, and would nominate potential age-specific biomarkers and therapeutic targets. Methods: The high-density Affymetrix GeneChip platform, encompassing >1 million genomic loci, was utilized to assess gene expression in 1090 radical prostatectomy samples from patients with long-term follow-up. We identified genes associated with metastatic progression by 10 years post-treatment in younger (age<65) versus older (age⩾65) patients, and ranked these genes by their prognostic value. We performed Gene Set Enrichment Analysis (GSEA) to nominate biological concepts that demonstrated age-specific effects, and validated a target by treating with a clinically available drug in three PCa cell lines derived from younger men. Results: Over 80% of the top 1000 prognostic genes in younger and older men were specific to that age group. GSEA nominated the proteasome pathway as the most differentially prognostic in younger versus older patients. High expression of proteasomal genes conferred worse prognosis in younger but not older men on univariate and multivariate analysis. Bortezomib, a Food and Drug Administration approved proteasome inhibitor, decreased proliferation in three PCa cell lines derived from younger patients. Conclusions: Our data show significant global differences in prognostic genes between older versus younger men. We nominate proteasomeal gene expression as an age-specific biomarker and potential therapeutic target specifically in younger men. Limitations of our study include clinical differences between cohorts, and increased comorbidities and lower survival in older patients. These intriguing findings suggest that current models of PCa biology do

  19. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi

    PubMed Central

    Gantz, Valentino M.; Tatarenkova, Olga; Fazekas, Aniko; Macias, Vanessa M.; Bier, Ethan; James, Anthony A.

    2015-01-01

    Genetic engineering technologies can be used both to create transgenic mosquitoes carrying antipathogen effector genes targeting human malaria parasites and to generate gene-drive systems capable of introgressing the genes throughout wild vector populations. We developed a highly effective autonomous Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9)-mediated gene-drive system in the Asian malaria vector Anopheles stephensi, adapted from the mutagenic chain reaction (MCR). This specific system results in progeny of males and females derived from transgenic males exhibiting a high frequency of germ-line gene conversion consistent with homology-directed repair (HDR). This system copies an ∼17-kb construct from its site of insertion to its homologous chromosome in a faithful, site-specific manner. Dual anti-Plasmodium falciparum effector genes, a marker gene, and the autonomous gene-drive components are introgressed into ∼99.5% of the progeny following outcrosses of transgenic lines to wild-type mosquitoes. The effector genes remain transcriptionally inducible upon blood feeding. In contrast to the efficient conversion in individuals expressing Cas9 only in the germ line, males and females derived from transgenic females, which are expected to have drive component molecules in the egg, produce progeny with a high frequency of mutations in the targeted genome sequence, resulting in near-Mendelian inheritance ratios of the transgene. Such mutant alleles result presumably from nonhomologous end-joining (NHEJ) events before the segregation of somatic and germ-line lineages early in development. These data support the design of this system to be active strictly within the germ line. Strains based on this technology could sustain control and elimination as part of the malaria eradication agenda. PMID:26598698

  20. Cross-species hybridisation of human and bovine orthologous genes on high density cDNA microarrays

    PubMed Central

    Adjaye, James; Herwig, Ralf; Herrmann, Doris; Wruck, Wasco; BenKahla, Alia; Brink, Thore C; Nowak, Monika; Carnwath, Joseph W; Hultschig, Claus; Niemann, Heiner; Lehrach, Hans

    2004-01-01

    Background Cross-species gene-expression comparison is a powerful tool for the discovery of evolutionarily conserved mechanisms and pathways of expression control. The usefulness of cDNA microarrays in this context is that broad areas of homology are compared and hybridization probes are sufficiently large that small inter-species differences in nucleotide sequence would not affect the analytical results. This comparative genomics approach would allow a common set of genes within a specific developmental, metabolic, or disease-related gene pathway to be evaluated in experimental models of human diseases. The objective of this study was to investigate the feasibility and reproducibility of cross-species analysis employing a human cDNA microarray as probe. Results As a proof of principle, total RNA derived from human and bovine fetal brains was used as a source of labelled targets for hybridisation onto a human cDNA microarray composed of 349 characterised genes. Each gene was spotted 20 times representing 6,980 data points thus enabling highly reproducible spot quantification. Employing high stringency hybridisation and washing conditions, followed by data analysis, revealed slight differences in the expression levels and reproducibility of the signals between the two species. We also assigned each of the genes into three expression level categories- i.e. high, medium and low. The correlation co-efficient of cross hybridisation between the orthologous genes was 0.94. Verification of the array data by semi-quantitative RT-PCR using common primer sequences enabled co-amplification of both human and bovine transcripts. Finally, we were able to assign gene names to previously uncharacterised bovine ESTs. Conclusions Results of our study demonstrate the harnessing and utilisation power of comparative genomics and prove the feasibility of using human microarrays to facilitate the identification of co-expressed orthologous genes in common tissues derived from different

  1. Does global gene expression analysis in type 2 diabetes provide an opportunity to identify highly promising drug targets?

    PubMed

    Buechler, C; Schäffler, A

    2007-12-01

    The recent technological advances in high-throughput gene expression analysis allow the simultaneous investigation of thousands of genes. These technologies represent promising tools for the identification of new drug targets and considerable progress has been achieved in cancer research where microarray data provide a basis to design new drugs and to predict adverse reactions and the efficacy of chemotherapy. The metabolic syndrome represents a cluster of disorders including high blood pressure, insulin resistance/type 2 diabetes mellitus, visceral obesity and dyslipidaemia with fatty liver disease being a common associated complication. High-throughput gene expression analyses using GeneChips, microarrays and serial analysis of gene expression (SAGE) have been applied to study global gene expression in insulin resistance/type 2 diabetes mellitus. Type 2 diabetes mellitus is a multifactorial and polygenic disease by which several organs are affected. Therefore, the identification of both, disease causing and therapeutically relevant target genes is an ambitious challenge. In the present review we focus on genomic approaches that used biopsies from human skeletal muscle, liver and adipose tissue, the main organs affected by insulin resistance. Members of the PPARgamma coactivator-1 (PGC-1) family of transcriptional coactivators are decreased in skeletal muscle in insulin resistance accounting for the reduced expression of genes involved in mitochondrial oxidative phosphorylation. Hepatic steatosis is also linked to alterations in mitochondrial phosphorylation and oxidative metabolism. An up regulation of pro-inflammatory genes can be detected in early stages of fatty liver disease without histological signs of inflammation. Impaired adipogenesis, intra-adipose accumulation of macrophages and a sustained release of inflammatory and acute phase proteins are characteristic features of adipose tissue in obesity and may aggravate systemic insulin resistance.

  2. Microfluidic droplet-based PCR instrumentation for high-throughput gene expression profiling and biomarker discovery.

    PubMed

    Hayes, Christopher J; Dalton, Tara M

    2015-06-01

    PCR is a common and often indispensable technique used in medical and biological research labs for a variety of applications. Real-time quantitative PCR (RT-qPCR) has become a definitive technique for quantitating differences in gene expression levels between samples. Yet, in spite of this importance, reliable methods to quantitate nucleic acid amounts in a higher throughput remain elusive. In the following paper, a unique design to quantify gene expression levels at the nanoscale in a continuous flow system is presented. Fully automated, high-throughput, low volume amplification of deoxynucleotides (DNA) in a droplet based microfluidic system is described. Unlike some conventional qPCR instrumentation that use integrated fluidic circuits or plate arrays, the instrument performs qPCR in a continuous, micro-droplet flowing process with droplet generation, distinctive reagent mixing, thermal cycling and optical detection platforms all combined on one complete instrument. Detailed experimental profiling of reactions of less than 300 nl total volume is achieved using the platform demonstrating the dynamic range to be 4 order logs and consistent instrument sensitivity. Furthermore, reduced pipetting steps by as much as 90% and a unique degree of hands-free automation makes the analytical possibilities for this instrumentation far reaching. In conclusion, a discussion of the first demonstrations of this approach to perform novel, continuous high-throughput biological screens is presented. The results generated from the instrument, when compared with commercial instrumentation, demonstrate the instrument reliability and robustness to carry out further studies of clinical significance with added throughput and economic benefits. PMID:27077035

  3. Microfluidic droplet-based PCR instrumentation for high-throughput gene expression profiling and biomarker discovery

    PubMed Central

    Hayes, Christopher J.; Dalton, Tara M.

    2015-01-01

    PCR is a common and often indispensable technique used in medical and biological research labs for a variety of applications. Real-time quantitative PCR (RT-qPCR) has become a definitive technique for quantitating differences in gene expression levels between samples. Yet, in spite of this importance, reliable methods to quantitate nucleic acid amounts in a higher throughput remain elusive. In the following paper, a unique design to quantify gene expression levels at the nanoscale in a continuous flow system is presented. Fully automated, high-throughput, low volume amplification of deoxynucleotides (DNA) in a droplet based microfluidic system is described. Unlike some conventional qPCR instrumentation that use integrated fluidic circuits or plate arrays, the instrument performs qPCR in a continuous, micro-droplet flowing process with droplet generation, distinctive reagent mixing, thermal cycling and optical detection platforms all combined on one complete instrument. Detailed experimental profiling of reactions of less than 300 nl total volume is achieved using the platform demonstrating the dynamic range to be 4 order logs and consistent instrument sensitivity. Furthermore, reduced pipetting steps by as much as 90% and a unique degree of hands-free automation makes the analytical possibilities for this instrumentation far reaching. In conclusion, a discussion of the first demonstrations of this approach to perform novel, continuous high-throughput biological screens is presented. The results generated from the instrument, when compared with commercial instrumentation, demonstrate the instrument reliability and robustness to carry out further studies of clinical significance with added throughput and economic benefits. PMID:27077035

  4. High-Frequency Variation of Purine Biosynthesis Genes Is a Mechanism of Success in Campylobacter jejuni

    PubMed Central

    Cameron, Andrew; Huynh, Steven; Scott, Nichollas E.; Frirdich, Emilisa; Apel, Dmitry; Foster, Leonard J.; Parker, Craig T.

    2015-01-01

    ABSTRACT Phenotypic variation is prevalent in the zoonotic pathogen Campylobacter jejuni, the leading agent of enterocolitis in the developed world. Heterogeneity enhances the survival and adaptive malleability of bacterial populations because variable phenotypes may allow some cells to be protected against future stress. Exposure to hyperosmotic stress previously revealed prevalent differences in growth between C. jejuni strain 81-176 colonies due to resistant or sensitive phenotypes, and these isolated colonies continued to produce progeny with differential phenotypes. In this study, whole-genome sequencing of isolated colonies identified allelic variants of two purine biosynthesis genes, purF and apt, encoding phosphoribosyltransferases that utilize a shared substrate. Genetic analyses determined that purF was essential for fitness, while apt was critical. Traditional and high-depth amplicon-sequencing analyses confirmed extensive intrapopulation genetic variation of purF and apt that resulted in viable strains bearing alleles with in-frame insertion duplications, deletions, or missense polymorphisms. Different purF and apt alleles were associated with various stress survival capabilities under several niche-relevant conditions and contributed to differential intracellular survival in an epithelial cell infection model. Amplicon sequencing revealed that intracellular survival selected for stress-fit purF and apt alleles, as did exposure to oxygen and hyperosmotic stress. Putative protein recognition direct repeat sequences were identified in purF and apt, and a DNA-protein affinity screen captured a predicted exonuclease that promoted the global spontaneous mutation rate. This work illustrates the adaptive properties of high-frequency genetic variation in two housekeeping genes, which influences C. jejuni survival under stress and promotes its success as a pathogen. PMID:26419875