Targeting Selectins and Their Ligands in Cancer.
Natoni, Alessandro; Macauley, Matthew S; O'Dwyer, Michael E
2016-01-01
Aberrant glycosylation is a hallmark of cancer cells with increased evidence pointing to a role in tumor progression. In particular, aberrant sialylation of glycoproteins and glycolipids has been linked to increased immune cell evasion, drug evasion, drug resistance, tumor invasiveness, and vascular dissemination, leading to metastases. Hypersialylation of cancer cells is largely the result of overexpression of sialyltransferases (STs). Differentially, humans express twenty different STs in a tissue-specific manner, each of which catalyzes the attachment of sialic acids via different glycosidic linkages (α2-3, α2-6, or α2-8) to the underlying glycan chain. One important mechanism whereby overexpression of STs contributes to an enhanced metastatic phenotype is via the generation of selectin ligands. Selectin ligand function requires the expression of sialyl-Lewis X and its structural isomer sialyl-Lewis A, which are synthesized by the combined action of alpha α1-3-fucosyltransferases, α2-3-sialyltransferases, β1-4-galactosyltranferases, and N-acetyl-β-glucosaminyltransferases. The α2-3-sialyltransferases ST3Gal4 and ST3Gal6 are critical to the generation of functional E- and P-selectin ligands and overexpression of these STs have been linked to increased risk of metastatic disease in solid tumors and poor outcome in multiple myeloma. Thus, targeting selectins and their ligands as well as the enzymes involved in their generation, in particular STs, could be beneficial to many cancer patients. Potential strategies include ST inhibition and the use of selectin antagonists, such as glycomimetic drugs and antibodies. Here, we review ongoing efforts to optimize the potency and selectivity of ST inhibitors, including the potential for targeted delivery approaches, as well as evaluate the potential utility of selectin inhibitors, which are now in early clinical development.
Targeting Selectins and Their Ligands in Cancer
Natoni, Alessandro; Macauley, Matthew S.; O’Dwyer, Michael E.
2016-01-01
Aberrant glycosylation is a hallmark of cancer cells with increased evidence pointing to a role in tumor progression. In particular, aberrant sialylation of glycoproteins and glycolipids has been linked to increased immune cell evasion, drug evasion, drug resistance, tumor invasiveness, and vascular dissemination, leading to metastases. Hypersialylation of cancer cells is largely the result of overexpression of sialyltransferases (STs). Differentially, humans express twenty different STs in a tissue-specific manner, each of which catalyzes the attachment of sialic acids via different glycosidic linkages (α2-3, α2-6, or α2-8) to the underlying glycan chain. One important mechanism whereby overexpression of STs contributes to an enhanced metastatic phenotype is via the generation of selectin ligands. Selectin ligand function requires the expression of sialyl-Lewis X and its structural isomer sialyl-Lewis A, which are synthesized by the combined action of alpha α1-3-fucosyltransferases, α2-3-sialyltransferases, β1-4-galactosyltranferases, and N-acetyl-β-glucosaminyltransferases. The α2-3-sialyltransferases ST3Gal4 and ST3Gal6 are critical to the generation of functional E- and P-selectin ligands and overexpression of these STs have been linked to increased risk of metastatic disease in solid tumors and poor outcome in multiple myeloma. Thus, targeting selectins and their ligands as well as the enzymes involved in their generation, in particular STs, could be beneficial to many cancer patients. Potential strategies include ST inhibition and the use of selectin antagonists, such as glycomimetic drugs and antibodies. Here, we review ongoing efforts to optimize the potency and selectivity of ST inhibitors, including the potential for targeted delivery approaches, as well as evaluate the potential utility of selectin inhibitors, which are now in early clinical development. PMID:27148485
Mitchell, Michael J.; Castellanos, Carlos A.; King, Michael R.
2015-01-01
The metastatic spread of cancer cells from the primary tumor to distant sites leads to a poor prognosis in cancers originating from multiple organs. Increasing evidence has linked selectin-based adhesion between circulating tumor cells (CTCs) and endothelial cells of the microvasculature to metastatic dissemination, in a manner similar to leukocyte adhesion during inflammation. Functionalized biomaterial surfaces hold promise as a diagnostic tool to separate CTCs and potentially treat metastasis, utilizing antibody and selectin-mediated interactions for cell capture under flow. However, capture at high purity levels is challenged by the fact that CTCs and leukocytes both possess selectin ligands. Here, a straightforward technique to functionalize and alter the charge of naturally occurring halloysite nanotubes using surfactants is reported to induce robust, differential adhesion of tumor cells and blood cells to nanotube-coated surfaces under flow. Negatively charged sodium dodecanoate-functionalized nanotubes simultaneously enhanced tumor cell capture while negating leukocyte adhesion, both in the presence and absence of adhesion proteins, and can be utilized to isolate circulating tumor cells regardless of biomarker expression. Conversely, diminishing nanotube charge via functionalization with decyltrimethylammonium bromide both abolished tumor cell capture while promoting leukocyte adhesion. PMID:25934290
Modderman, P W; von dem Borne, A E; Sonnenberg, A
1994-01-01
P-selectin is a 140 kDa membrane glycoprotein found in secretory granules of platelets and endothelial cells where it is rapidly translocated to the plasma membrane upon cell activation. It then functions as a receptor for various types of leucocytes. Metabolic labelling of resting platelets with 32Pi showed that P-selectin is primarily phosphorylated on serine residues, although some tyrosine phosphorylation was observed as well. However, tyrosine phosphorylation of P-selectin was greatly stimulated by treatment with the permeating phosphatase inhibitor, pervanadate. When P-selectin immunoprecipitates were incubated with [gamma-32P]ATP (in vitro kinase assay), a fraction of P-selectin was phosphorylated on its tyrosine residues by a co-precipitated kinase. P-selectin phosphorylated in vitro co-migrated with 140 kDa surface-labelled 125I-P-selectin during SDS/PAGE under reducing conditions. Under non-reducing conditions, however, phosphorylated P-selectin was disulphide-linked to unknown protein(s) in a 205 kDa complex. In vitro kinase assays of the most abundant platelet tyrosine kinase, pp60c-src, demonstrated the presence of similar 140 and 205 kDa phosphorylated proteins in SDS/PAGE under reducing and non-reducing conditions respectively. Extraction and reprecipitation studies with proteins phosphorylated in vitro indicated that P-selectin and pp60c-src form a 205 kDa 1:1 disulphide-linked complex. In the complex, pp60c-src autophosphorylation is inhibited and P-selectin is phosphorylated on tyrosine residues. As protein disulphides in the cytoplasm of intact cells are extremely rare, our results suggest that P-selectin and pp60c-src, which co-localize in platelet dense granules, may be non-covalently associated and spontaneously form disulphide bridges during lysis. In addition, the observed tyrosine phosphorylation of P-selectin in intact platelets suggests that its function might be regulated by phosphorylation by pp60c-src. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7514867
Aigner, S; Ruppert, M; Hubbe, M; Sammar, M; Sthoeger, Z; Butcher, E C; Vestweber, D; Altevogt, P
1995-10-01
P-selectin is a Ca(2+)-dependent lectin that participates in leukocyte adhesion to vascular endothelium and platelets. Myeloid cells and a subset of T lymphocytes express carbohydrate ligands at the cell surface. Previously, we suggested that heat stable antigen (HSA/mouse CD24), an extensively glycosylated cell surface molecule on many mouse cells, is a ligand for P-selectin. Here we show that HSA mediates the binding of monocytic cells and neutrophils to P-selectin. The monocytic cell lines ESb-MP and J774, peritoneal exudate cells, and bone marrow neutrophils could bind to lipopolysaccharide-activated bend3 endothelioma cells under rotation-induced shear forces and this binding was inhibited by mAb to P-selectin and HSA. Blocking was weak at room temperature but more efficient at 4 degrees C when integrin-mediated binding was decreased. Also the adhesion of neutrophils to stimulated platelets expressing P-selectin was blocked by HSA- and P-selectin-specific mAb. Latex beads coated with purified HSA from myeloid cells bound to activated endothelioma cells or platelets, and the binding was similarly blocked by mAb to P-selectin and HSA respectively. The HSA-coated beads were stained with P-selectin-IgG, very weakly with L-selectin-IgG but not with E-selectin-IgG. The staining was dependent on divalent cations and treatment with endoglycosidase F or neuraminidase indicated that sialylated N-linked glycans were recognized. The presence of these glycans was confirmed by biosynthetic labeling studies. Our data suggest that HSA, in addition to the recently identified 160 kDa glycoprotein ligand on mouse neutrophils, belongs to a group of monospecific P-selectin ligands on myeloid cells.
Mitchell, Michael J; Castellanos, Carlos A; King, Michael R
2015-07-01
The metastatic spread of cancer cells from the primary tumor to distant sites leads to a poor prognosis in cancers originating from multiple organs. Increasing evidence has linked selectin-based adhesion between circulating tumor cells (CTCs) and endothelial cells of the microvasculature to metastatic dissemination, in a manner similar to leukocyte adhesion during inflammation. Functionalized biomaterial surfaces hold promise as a diagnostic tool to separate CTCs and potentially treat metastasis, utilizing antibody and selectin-mediated interactions for cell capture under flow. However, capture at high purity levels is challenged by the fact that CTCs and leukocytes both possess selectin ligands. Here, a straightforward technique to functionalize and alter the charge of naturally occurring halloysite nanotubes using surfactants is reported to induce robust, differential adhesion of tumor cells and blood cells to nanotube-coated surfaces under flow. Negatively charged sodium dodecanoate-functionalized nanotubes simultaneously enhanced tumor cell capture while negating leukocyte adhesion, both in the presence and absence of adhesion proteins, and can be utilized to isolate circulating tumor cells regardless of biomarker expression. Conversely, diminishing nanotube charge via functionalization with decyltrimethylammonium bromide both abolished tumor cell capture while promoting leukocyte adhesion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Polymorphisms and linkage analysis for ICAM-1 and the selectin gene cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vora, D.K.; Rosenbloom, C.L.; Cottingham, R.W.
1994-06-01
Genetic polymorphisms in leukocyte and endothelial cell adhesion molecules may be important variables with regard to susceptibility to multifactorial disease processes that include an inflammatory component. For this reason, polymorphisms were sought for intercellular adhesion molecule-1 (ICAM-1; gene symbol ICAM1) and for the three genes in the selectin cluster, P-selectin, L-selectin, and E-selectin (gene symbols SELP, SELL, and SELE, respectively). Two amino acid polymorphisms were identified for ICAM-1; Gly or Arg at codon 241 and Lys or Glu at codon 469. Dinucleotide repeat polymorphisms were identified in the 3{prime}-untranslated region for ICAM-1 and in intron 9 for P-selectin. Restriction fragmentmore » length polymorphisms were found using cDNAs for each of the three selectin genes as probes; E-selectin with BglII, P-selectin with ScaI, and L-selectin with HincII. Linkage analysis was performed for the selectin gene cluster and for ICAM-1 using the CEPH families; ICAM-1 is very tightly linked to the LDL receptor on chromosome 19, and the selectin cluster is linked to markers at chromosome 1q23. 41 refs., 2 tabs.« less
P-selectin deficiency attenuates tumor growth and metastasis
Kim, Young J.; Borsig, Lubor; Varki, Nissi M.; Varki, Ajit
1998-01-01
Selectins are adhesion receptors that normally recognize certain vascular mucin-type glycoproteins bearing the carbohydrate structure sialyl-Lewisx. The clinical prognosis and metastatic progression of many epithelial carcinomas has been correlated independently with production of tumor mucins and with enhanced expression of sialyl-Lewisx. Metastasis is thought to involve the formation of tumor-platelet-leukocyte emboli and their interactions with the endothelium of distant organs. We provide a link between these observations by showing that P-selectin, which normally binds leukocyte ligands, can promote tumor growth and facilitate the metastatic seeding of a mucin-producing carcinoma. P-selectin-deficient mice showed significantly slower growth of subcutaneously implanted human colon carcinoma cells and generated fewer lung metastases from intravenously injected cells. Three potential pathophysiological mechanisms are demonstrated: first, intravenously injected tumor cells home to the lungs of P-selectin deficient mice at a lower rate; second, P-selectin-deficient mouse platelets fail to adhere to tumor cell-surface mucins; and third, tumor cells lodged in lung vasculature after intravenous injection often are decorated with platelet clumps, and these are markedly diminished in P-selectin-deficient animals. PMID:9689079
Sulfated Hexasaccharides Attenuate Metastasis by Inhibition of P-selectin and Heparanase1
Borsig, Lubor; Vlodavsky, Israel; Ishai-Michaeli, Rivka; Torri, Giangiacomo; Vismara, Elena
2011-01-01
Development of compounds that target both heparanase and selectins is emerging as a promising approach for cancer therapy. Selectins are vascular cell adhesion molecules that mediate tumor cell interactions with platelets, leukocytes, and the vascular endothelium. Heparanase is an endoglycosidase that degrades heparan sulfate in the tumor microenvironment, cell surfaces, and vessel wall. Acting together, these molecules facilitate tumor cell arrest, extravasation, and metastasis. Here, we report the preparation of novel semisynthetic sulfated tri mannose C-C-linked dimers (STMCs) endowed with heparanase and selectin inhibitory activity. The P-selectin specificity of the STMC was defined by the anomeric linkage of the C-C bond. This STMC hexasaccharide is an effective inhibitor of P-selectin in vivo. We show that selective inhibition of heparanase attenuates metastasis in B16-BL6 melanoma cells, expressing high levels of this endoglycosidase, but has no effect on the metastasis of MC-38 carcinoma cells that express little or no heparanase activity. P-selectin-specific STMC attenuated metastasis in both animal models, indicating that inhibition of tumor cell interaction with the vascular endothelium is critical for cancer dissemination. Thus, the small size, the stability of the C-C bond, and the chemically defined structure of the newly generated STMCs make them superior to heparin derivatives and signify STMCs as valuable candidates for further evaluation. PMID:21532885
Zhang, Pu; Goodrich, Chris; Fu, Changliang; Dong, Cheng
2014-01-01
Cancer metastasis involves multistep adhesive interactions between tumor cells (TCs) and endothelial cells (ECs), but the molecular mechanisms of intercellular communication in the tumor microenvironment remain elusive. Using static and flow coculture systems in conjunction with flow cytometry, we discovered that certain receptors on the ECs are upregulated on melanoma cell adhesion. Direct contact but not separate coculture between human umbilical endothelial cells (HUVECs) and a human melanoma cell line (Lu1205) increased intercellular adhesion molecule 1 (ICAM-1) and E-selectin expression on HUVECs by 3- and 1.5-fold, respectively, compared with HUVECs alone. The nonmetastatic cell line WM35 failed to promote ICAM-1 expression changes in HUVECs on contact. Enzyme-linked immunosorbent assay (ELISA) revealed that EC–TC contact has a synergistic effect on the expression of the cytokines interleukin (IL)-8, IL-6, and growth-related oncogene α (Gro-α). By using E-selectin cross-linking and beads coated with CD44 immunopurified from Lu1205 cells, we showed that CD44/selectin ligation was responsible for the ICAM-1 up-regulation on HUVECs. Protein kinase Cα (PKC-α) activation was found to be the downstream target of the CD44/selectin-initiated signaling, as ICAM-1 elevation was inhibited by siRNA targeting PKCα or a dominant negative form of PKCα (PKCα DN). Western blot analysis and electrophoretic mobility shift assays (EMSAs) showed that TC–EC contact mediated p38 phosphorylation and binding of the transcription factor SP-1 to its regulation site. In conclusion, CD44/selectin binding signals ICAM-1 up-regulation on the EC surface through a PKCα–p38–SP-1 pathway, which further enhances melanoma cell adhesion to ECs during metastasis.—Zhang, P., Goodrich, C., Fu, C., Dong, C. Melanoma upregulates ICAM-1 expression on ECs through engagement of tumor CD44 with endothelial E-selectin and activation of a PKCα–p38–SP-1 pathway. PMID:25138157
John, Alison E.; Lukacs, Nicholas W.; Berlin, Aaron A.; Palecanda, Aiyappa; Bargatze, Robert F.; Stoolman, Lloyd M.; Nagy, Jon O.
2010-01-01
The severity of allergic asthma is dependent, in part, on the intensity of peribronchial inflammation. P-selectin is known to play a role in the development of allergen-induced peribronchial inflammation and airway hyperreactivity. Selective inhibitors of P-selectin-mediated leukocyte endothelial-cell interactions may therefore attenuate the inflammatory processes associated with allergic airway disease. Novel P-selectin inhibitors were created using a polyvalent polymer nanoparticle capable of displaying multiple synthetic, low molecular weight ligands. By assembling a particle that presents an array of groups, which as monomers interact with only low affinity, we created a construct that binds extremely efficiently to P-selectin. The ligands acted as mimetics of the key binding elements responsible for the high-avidity adhesion of P-selectin to the physiologic ligand, PSGL-1. The inhibitors were initially evaluated using an in vitro shear assay system in which interactions between circulating cells and P-selectin-coated capillary tubes were measured. The nanoparticles were shown to preferentially bind to selectins expressed on activated endothelial cells. We subsequently demonstrated that nanoparticles displaying P-selectin blocking arrays were functionally active in vivo, significantly reducing allergen-induced airway hyperreactivity and peribronchial eosinophilic inflammation in a murine model of asthma. PMID:14563683
Rai, Srijana; Nejadhamzeeigilani, Zaynab; Gutowski, Nicholas J; Whatmore, Jacqueline L
2015-09-25
Arrest of metastasising lung cancer cells to the brain microvasculature maybe mediated by interactions between ligands on circulating tumour cells and endothelial E-selectin adhesion molecules; a process likely to be regulated by the endothelial glycocalyx. Using human cerebral microvascular endothelial cells and non-small cell lung cancer (NSCLC) cell lines, we describe how factors secreted by NSCLC cells i.e. cystatin C, cathepsin L, insulin-like growth factor-binding protein 7 (IGFBP7), vascular endothelial growth factor (VEGF) and tumour necrosis factor-alpha (TNF-α), damage the glycocalyx and enhance initial contacts between lung tumour and cerebral endothelial cells. Endothelial cells were treated with tumour secreted-proteins or lung tumour conditioned medium (CM). Surface levels of E-selectin were quantified by ELISA. Adhesion of A549 and SK-MES-1 cells was examined under flow conditions (1 dyne/cm(2)). Alterations in the endothelial glycocalyx were quantified by binding of fluorescein isothiocyanate-linked wheat germ agglutinin (WGA-FITC). A549 and SK-MES-1 CM and secreted-proteins significantly enhanced endothelial surface E-selectin levels after 30 min and 4 h and tumour cell adhesion after 30 min, 4 and 24 h. Both coincided with significant glycocalyx degradation; A549 and SK-MES-1 CM removing 55 ± 12 % and 58 ± 18.7 % of WGA-FITC binding, respectively. Inhibition of E-selectin binding by monoclonal anti-E-selectin antibody completely attenuated tumour cell adhesion. These data suggest that metastasising lung cancer cells facilitate their own adhesion to the brain endothelium by secreting factors that damage the endothelial glycocalyx, resulting in exposure of the previously shielded adhesion molecules and engagement of the E-selectin-mediated adhesion axis.
Heat-stable antigen (CD24) as ligand for mouse P-selectin.
Sammar, M; Aigner, S; Hubbe, M; Schirrmacher, V; Schachner, M; Vestweber, D; Altevogt, P
1994-07-01
Heat-stable antigen (HSA)/CD24 is a cell surface molecule expressed by many cell types in the mouse. The molecule has an unusual structure because of its small protein core and extensive glycosylation. In order to study the functional role of the HSA-associated glycoconjugates we have isolated different forms of HSA. Using lectin analysis we provide evidence for extensive heterogeneity in carbohydrate composition and sialic acid linkage. Several HSA forms were recognized by mouse P-selectin-IgG but not E-selectin-IgG in ELISA. As expected, P-selectin-IgG also bound to L2/HNK-1-positive neural glycoproteins (L2-glycoproteins) and sulfatides but not to gangliosides and other control glycoproteins. The binding of P-selectin-IgG to L2-glycoproteins and HSA required bivalent cations. The reactivity to HSA was sensitive to sialidase treatment whereas the binding to L2-glycoproteins was not. Studies with alpha 2-6 sialytransferase indicated that alpha 2-6 linked sialic acid was not involved in the P-selectin binding to HSA. Surprisingly, an L2/HNK-1 specific antibody was found to cross-react with some HSA glycoforms and its binding correlated with P-selectin-IgG reactivity. L2/HNK-1-positive or L2/HNK-1-negative HSA glycoforms were also analyzed after coating to polystyrene beads. Only the L2/HNK-1-positive HSA coated beads were reactive with P-selectin-IgG and could bind to activated bend3 endothelioma cells expressing P-selectin whereas the L2/HNK-1-negative HSA beads did not. It is suggested that in its L2/HNK-1 modified form the HSA molecule on leukocytes could represent a ligand for P-selectin on endothelial cells or platelets.
Paris, D H; Jenjaroen, K; Blacksell, S D; Phetsouvanh, R; Wuthiekanun, V; Newton, P N; Day, N P J; Turner, G D H
2008-01-01
Scrub typhus is responsible for a large proportion of undifferentiated fevers in south-east Asia. The cellular tropism and pathophysiology of the causative agent, Orientia tsutsugamushi, remain poorly understood. We measured endothelial and leucocyte activation by soluble cell adhesion molecule enzyme-linked immunosorbent assays in 242 Lao and Thai patients with scrub or murine typhus, leptospirosis, dengue, typhoid and uncomplicated falciparum malaria on admission to hospital. Soluble E-selectin (sE-selectin) levels were lowest in dengue, sL-selectin highest in scrub typhus with a high sE-selectin to sL-selectin ratio in leptospirosis patients. In scrub typhus patients elevated sL-selectin levels correlated with the duration of skin rash (P = 0·03) and the presence of eschar (P = 0·03), elevated white blood cell (WBC) count (P = 0·007), elevated lymphocyte (P = 0·007) and neutrophil counts (P = 0·015) and elevated levels of sE-selectin correlated with the duration of illness before admission (P = 0·03), the presence of lymphadenopathy (P = 0·033) and eschar (P = 0·03), elevated WBC (P = 0·005) and neutrophil counts (P = 0·0003). In comparison, soluble selectin levels in murine typhus patients correlated only with elevated WBC counts (P = 0·03 for sE-selectin and sL-selectin). Soluble intercellular adhesion molecule-1 and soluble vascular adhesion molecule-1 levels were not associated significantly with any clinical parameters in scrub or murine typhus patients. The data presented suggest mononuclear cell activation in scrub typhus. As adhesion molecules direct leucocyte migration and induce inflammatory and immune responses, this may represent O. tsutsugamushi tropism during early dissemination, or local immune activation within the eschar. PMID:18505434
Paris, D H; Jenjaroen, K; Blacksell, S D; Phetsouvanh, R; Wuthiekanun, V; Newton, P N; Day, N P J; Turner, G D H
2008-07-01
Scrub typhus is responsible for a large proportion of undifferentiated fevers in south-east Asia. The cellular tropism and pathophysiology of the causative agent, Orientia tsutsugamushi, remain poorly understood. We measured endothelial and leucocyte activation by soluble cell adhesion molecule enzyme-linked immunosorbent assays in 242 Lao and Thai patients with scrub or murine typhus, leptospirosis, dengue, typhoid and uncomplicated falciparum malaria on admission to hospital. Soluble E-selectin (sE-selectin) levels were lowest in dengue, sL-selectin highest in scrub typhus with a high sE-selectin to sL-selectin ratio in leptospirosis patients. In scrub typhus patients elevated sL-selectin levels correlated with the duration of skin rash (P = 0.03) and the presence of eschar (P = 0.03), elevated white blood cell (WBC) count (P = 0.007), elevated lymphocyte (P = 0.007) and neutrophil counts (P = 0.015) and elevated levels of sE-selectin correlated with the duration of illness before admission (P = 0.03), the presence of lymphadenopathy (P = 0.033) and eschar (P = 0.03), elevated WBC (P = 0.005) and neutrophil counts (P = 0.0003). In comparison, soluble selectin levels in murine typhus patients correlated only with elevated WBC counts (P = 0.03 for sE-selectin and sL-selectin). Soluble intercellular adhesion molecule-1 and soluble vascular adhesion molecule-1 levels were not associated significantly with any clinical parameters in scrub or murine typhus patients. The data presented suggest mononuclear cell activation in scrub typhus. As adhesion molecules direct leucocyte migration and induce inflammatory and immune responses, this may represent O. tsutsugamushi tropism during early dissemination, or local immune activation within the eschar.
de Bruijne-Admiraal, L G; Modderman, P W; Von dem Borne, A E; Sonnenberg, A
1992-07-01
Previous studies have shown that thrombin-activated platelets interact through the P-selectin with neutrophils and monocytes. To identify other types of leukocytes capable of such an interaction, eosinophils, basophils, and lymphocytes were isolated from whole blood. Binding of these cells to activated platelets was examined in a double immunofluorescence assay and the results show that activated platelets not only bind to neutrophils and monocytes, but also to eosinophils, basophils, and subpopulations of T lymphocytes. Using monoclonal antibodies (MoAbs) specific for subsets of T cells, we could further demonstrate that the T cells which bind activated platelets are natural killer (NK) cells and an undefined subpopulation of CD4+ and CD8+ cells. All these interactions were dependent on divalent cations and were completely inhibited by an MoAb against P-selectin. Thus, P-selectin mediates the binding of activated platelets to many different types of leukocytes. Studies with leukocytes treated with proteases or neuraminidase have shown that the structures recognized by P-selectin are glycoproteins carrying sialic acid residues. Because the loss of binding of activated platelets to neuraminidase-treated neutrophils was almost complete, but only partial to treated eosinophils, basophils, and monocytes, the latter cell types may have different P-selectin ligands in addition to those present on neutrophils. We found that two previously identified ligands for P-selectin, the oligosaccharides Le(x) and sialyl-Le(x), had little or no inhibitory effect on adhesion of activated platelets to leukocytes and that binding was not inhibited by MoAbs against these oligosaccharides. In addition, there was no correlation between the expression of Le(x) on several cell types and their capacity to bind activated platelets. In contrast, the expression of sialyl-Le(x) on cells was almost perfectly correlated with their ability to bind activated platelets. Thus, while Le(x) cannot be a major ligand for P-selectin, a possible role for sialyl-Le(x) in P-selectin-mediated adhesion processes cannot be dismissed. Finally, activated platelets were found to bind normally to monocytes and neutrophils of patients with paroxysmal nocturnal hemoglobulinuria (PNH) and to neutrophils from which phosphatidyl inositol (PI)-linked proteins had been removed by glycosylphosphatidyl inositol-specific phospholipase C (GPI-PLC) digestion. This suggests that at least part of the P-selectin ligands on these cells are not GPI-anchored.
Moog, Kai E; Barz, Matthias; Bartneck, Matthias; Beceren-Braun, Figen; Mohr, Nicole; Wu, Zhuojun; Braun, Lydia; Dernedde, Jens; Liehn, Elisa A; Tacke, Frank; Lammers, Twan; Kunz, Horst; Zentel, Rudolf
2017-01-24
Novel polymeric cell adhesion inhibitors were developed in which the selectin tetrasaccharide sialyl-Lewis X (SLe X ) is multivalently presented on a biocompatible poly(2-hydroxypropyl)methacrylamide (PHPMA) backbone either alone (P1) or in combination with O-sulfated tyramine side chains (P2). For comparison, corresponding polymeric glycomimetics were prepared in which the crucial "single carbohydrate" substructures fucose, galactose, and sialic acid side chains were randomly linked to the PHPMA backbone (P3 or P4 (O-sulfated tyramine)). All polymers have an identical degree of polymerization, as they are derived from the same precursor polymer. Binding assays to selectins, to activated endothelial cells, and to macrophages show that polyHPMA with SLe X is an excellent binder to E-, L-, and P-selectins. However, mimetic P4 can also achieve close to comparable binding affinities in in vitro measurements and surprisingly, it also significantly inhibits the migration of macrophages; this provides new perspectives for the therapy of severe inflammatory diseases. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Silvescu, Cristina I.; Sackstein, Robert
2014-01-01
The host defense response critically depends on the production of leukocytes by the marrow and the controlled delivery of these cells to relevant sites of inflammation/infection. The cytokine granulocyte-colony stimulating factor (G-CSF) is commonly used therapeutically to augment neutrophil recovery following chemo/radiation therapy for malignancy, thereby decreasing infection risk. Although best known as a potent inducer of myelopoiesis, we previously reported that G-CSF also promotes the delivery of leukocytes to sites of inflammation by stimulating expression of potent E-selectin ligands, including an uncharacterized ∼65-kDa glycoprotein. To identify this ligand, we performed integrated biochemical analysis and mass spectrometry studies of G-CSF–treated primary human myeloid cells. Our studies show that this novel E-selectin ligand is a glycoform of the heavy chain component of the enzyme myeloperoxidase (MPO), a well-known lysosomal peroxidase. This specialized MPO glycovariant, referred to as “MPO–E-selectin ligand” (MPO–EL), is expressed on circulating G-CSF–mobilized leukocytes and is naturally expressed on blood myeloid cells in patients with febrile leukocytosis. In vitro biochemical studies show that G-CSF programs MPO–EL expression on human blood leukocytes and marrow myeloid cells via induction of N-linked sialofucosylations on MPO, with concomitant cell surface display of the molecule. MPO–EL is catalytically active and mediates angiotoxicity on human endothelial cells that express E-selectin. These findings thus define a G-CSF effect on MPO chemical biology that endows unsuspected functional versatility upon this enzyme, unveiling new perspectives on the biology of G-CSF and MPO, and on the role of E-selectin receptor/ligand interactions in leukocyte migration and vascular pathology. PMID:25002508
VCAM-1 expression is upregulated by CD34+/CD133+-stem cells derived from septic patients
Remmé, Christoph; Betzen, Christian; Tönshoff, Burkhard; Yard, Benito A.; Beck, Grietje; Rafat, Neysan
2018-01-01
CD34+/CD133+- cells are a bone marrow derived stem cell population, which presumably contain vascular progenitor cells and are associated with improved vascular repair. In this study, we investigated whether the adhesion molecules ICAM-1 (intercellular adhesion molecule-1), VCAM-1 (vascular adhesion molecule-1), E-selectin und L-selectin, which are involved in homing of vascular stem cells, are upregulated by CD34+/CD133+-stem cells from septic patients and would be associated with improved clinical outcome. Peripheral blood mononuclear cells from intensive care unit (ICU) patients with (n = 30) and without sepsis (n = 10), and healthy volunteers (n = 15) were isolated using Ficoll density gradient centrifugation. The expression of VCAM-1, ICAM-1, E-selectin and L-selectin was detected on CD34+/CD133+-stem cells by flow cytometry. The severity of disease was assessed by the Simplified Acute Physiology Score (SAPS) II. Serum concentrations of vascular endothelial growth factor (VEGF) and angiopoietin (Ang)-2 were determined by Enzyme-linked immunosorbent assay. The expression of VCAM-1, ICAM-1, E-selectin and L-selectin by CD34+/CD133+-stem cells was significantly upregulated in septic patients, and correlated with sepsis severity. Furthermore, high expression of VCAM-1 by CD34+/CD133+-stem cells revealed a positive association with mortalitiy (p<0.05). Furthermore, significantly higher serum concentrations of VEGF and Ang-2 were found in septic patients, however none showed a strong association with survival. Our data suggest, that VCAM-1 upregulation on CD34+/CD133+-stem cells could play a crucial role in their homing in the course of sepsis. An increase in sepsis severity resulted in both and increase in CD34+/CD133+-stem cells and VCAM-1-expression by those cells, which might reflect an increase in need for vascular repair. PMID:29601599
Cytoskeletal regulation of CD44 membrane organization and interactions with E-selectin.
Wang, Ying; Yago, Tadayuki; Zhang, Nan; Abdisalaam, Salim; Alexandrakis, George; Rodgers, William; McEver, Rodger P
2014-12-19
Interactions of CD44 on neutrophils with E-selectin on activated endothelial cells mediate rolling under flow, a prerequisite for neutrophil arrest and migration into perivascular tissues. How CD44 functions as a rolling ligand despite its weak affinity for E-selectin is unknown. We examined the nanometer scale organization of CD44 on intact cells. CD44 on leukocytes and transfected K562 cells was cross-linked within a 1.14-nm spacer. Depolymerizing actin with latrunculin B reduced cross-linking. Fluorescence resonance energy transfer (FRET) revealed tight co-clustering between CD44 fused to yellow fluorescent protein (YFP) and CD44 fused to cyan fluorescent protein on K562 cells. Latrunculin B reduced FRET-reported co-clustering. Number and brightness analysis confirmed actin-dependent CD44-YFP clusters on living cells. CD44 lacking binding sites for ankyrin and for ezrin/radixin/moesin (ERM) proteins on its cytoplasmic domain (ΔANKΔERM) did not cluster. Unexpectedly, CD44 lacking only the ankyrin-binding site (ΔANK) formed larger but looser clusters. Fluorescence recovery after photobleaching demonstrated increased CD44 mobility by latrunculin B treatment or by deleting the cytoplasmic domain. ΔANKΔERM mobility increased only modestly, suggesting that the cytoplasmic domain engages the cytoskeleton by an additional mechanism. Ex vivo differentiated CD44-deficient neutrophils expressing exogenous CD44 rolled on E-selectin and activated Src kinases after binding anti-CD44 antibody. In contrast, differentiated neutrophils expressing ΔANK had impaired rolling and kinase activation. These data demonstrate that spectrin and actin networks regulate CD44 clustering and suggest that ankyrin enhances CD44-mediated neutrophil rolling and signaling. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Cytoskeletal Regulation of CD44 Membrane Organization and Interactions with E-selectin*
Wang, Ying; Yago, Tadayuki; Zhang, Nan; Abdisalaam, Salim; Alexandrakis, George; Rodgers, William; McEver, Rodger P.
2014-01-01
Interactions of CD44 on neutrophils with E-selectin on activated endothelial cells mediate rolling under flow, a prerequisite for neutrophil arrest and migration into perivascular tissues. How CD44 functions as a rolling ligand despite its weak affinity for E-selectin is unknown. We examined the nanometer scale organization of CD44 on intact cells. CD44 on leukocytes and transfected K562 cells was cross-linked within a 1.14-nm spacer. Depolymerizing actin with latrunculin B reduced cross-linking. Fluorescence resonance energy transfer (FRET) revealed tight co-clustering between CD44 fused to yellow fluorescent protein (YFP) and CD44 fused to cyan fluorescent protein on K562 cells. Latrunculin B reduced FRET-reported co-clustering. Number and brightness analysis confirmed actin-dependent CD44-YFP clusters on living cells. CD44 lacking binding sites for ankyrin and for ezrin/radixin/moesin (ERM) proteins on its cytoplasmic domain (ΔANKΔERM) did not cluster. Unexpectedly, CD44 lacking only the ankyrin-binding site (ΔANK) formed larger but looser clusters. Fluorescence recovery after photobleaching demonstrated increased CD44 mobility by latrunculin B treatment or by deleting the cytoplasmic domain. ΔANKΔERM mobility increased only modestly, suggesting that the cytoplasmic domain engages the cytoskeleton by an additional mechanism. Ex vivo differentiated CD44-deficient neutrophils expressing exogenous CD44 rolled on E-selectin and activated Src kinases after binding anti-CD44 antibody. In contrast, differentiated neutrophils expressing ΔANK had impaired rolling and kinase activation. These data demonstrate that spectrin and actin networks regulate CD44 clustering and suggest that ankyrin enhances CD44-mediated neutrophil rolling and signaling. PMID:25359776
Gutsaeva, Diana R.; Parkerson, James B.; Yerigenahally, Shobha D.; Kurz, Jeffrey C.; Schaub, Robert G.; Ikuta, Tohru
2011-01-01
Adhesive interactions between circulating sickle red blood cells (RBCs), leukocytes, and endothelial cells are major pathophysiologic events in sickle cell disease (SCD). To develop new therapeutics that efficiently inhibit adhesive interactions, we generated an anti–P-selectin aptamer and examined its effects on cell adhesion using knockout-transgenic SCD model mice. Aptamers, single-stranded oligonucleotides that bind molecular targets with high affinity and specificity, are emerging as new therapeutics for cardiovascular and hematologic disorders. In vitro studies found that the anti–P-selectin aptamer exhibits high specificity to mouse P-selectin but not other selectins. SCD mice were injected with the anti–P-selectin aptamer, and cell adhesion was observed under hypoxia. The anti–P-selectin aptamer inhibited the adhesion of sickle RBCs and leukocytes to endothelial cells by 90% and 80%, respectively. The anti–P-selectin aptamer also increased microvascular flow velocities and reduced the leukocyte rolling flux. SCD mice treated with the anti–P-selectin aptamer demonstrated a reduced mortality rate associated with the experimental procedures compared with control mice. These results demonstrate that anti–P-selectin aptamer efficiently inhibits the adhesion of both sickle RBCs and leukocytes to endothelial cells in SCD model mice, suggesting a critical role for P-selectin in cell adhesion. Anti–P-selectin aptamer may be useful as a novel therapeutic agent for SCD. PMID:20926770
Hailer, N P; Oppermann, E; Leckel, K; Cinatl, J; Markus, B H; Blaheta, R A
2000-07-15
Interaction of endothelial P-selectin with sialyl Lewis(x)-glycoprotein or P-selectin glycoprotein ligand (PSGL)-1 on leukocytes represents an early step in leukocyte recruitment. Redistribution of P-selectin to the endothelial cell surface occurs rapidly after challenge with several proinflammatory agents, for example, histamine, leucopterins, or lipopolysaccharide. We present evidence that prostaglandin E2 (PGE2) is an efficient inductor of surface P-selectin on cultured human umbilical vein endothelial cells (HUVEC). The increase in P-selectin-immunoreactivity coincided with redistribution of cytoplasmic P-selectin-reactive granulae to the endothelial cell surface, as visualized by confocal laser microscopic examination. CD4-T-cell adhesion to PGE2-stimulated HUVEC was also enhanced by a factor of 4, and blocking mAb directed against the binding site of P-selectin almost completely abrogated this increase in CD4-T-cell adhesion. In summary, our findings show that liberation of PGE2 is an important inductor of P-selectin surface expression on endothelial cells, resulting in enhanced recruitment of inflammatory cells.
Mueller, Helena; Stadtmann, Anika; Van Aken, Hugo; Hirsch, Emilio; Wang, Demin; Ley, Klaus; Zarbock, Alexander
2010-04-15
Selectins mediate leukocyte rolling, trigger beta(2)-integrin activation, and promote leukocyte recruitment into inflamed tissue. E-selectin binding to P-selectin glycoprotein ligand 1 (PSGL-1) leads to activation of an immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway, which in turn activates the spleen tyrosine kinase (Syk). However, the signaling pathway linking Syk to integrin activation after E-selectin engagement is unknown. To identify the pathway, we used different gene-deficient mice in autoperfused flow chamber, intravital microscopy, peritonitis, and biochemical studies. We report here that the signaling pathway downstream of Syk divides into a phospholipase C (PLC) gamma2- and phosphoinositide 3-kinase (PI3K) gamma-dependent pathway. The Tec family kinase Bruton tyrosine kinase (Btk) is required for activating both pathways, generating inositol-3,4,5-trisphosphate (IP(3)), and inducing E-selectin-mediated slow rolling. Inhibition of this signal-transduction pathway diminished Galpha(i)-independent leukocyte adhesion to and transmigration through endothelial cells in inflamed postcapillary venules of the cremaster. Galpha(i)-independent neutrophil recruitment into the inflamed peritoneal cavity was reduced in Btk(-/-) and Plcg2(-/-) mice. Our data demonstrate the functional importance of this newly identified signaling pathway mediated by E-selectin engagement.
Silva, Mariana; Fung, Ronald Kam Fai; Donnelly, Conor Brian; Videira, Paula Alexandra; Sackstein, Robert
2017-01-01
Both host defense and immunopathology are shaped by the ordered recruitment of circulating leukocytes to affected sites, a process initiated by binding of blood-borne cells to E-selectin displayed at target endothelial beds. Accordingly, knowledge of the expression and function of leukocyte E-selectin ligands is key to understanding the tempo and specificity of immunoreactivity. Here, we performed E-selectin adherence assays under hemodynamic flow conditions coupled with flow cytometry and western blot analysis to elucidate the function and structural biology of glycoprotein E-selectin ligands expressed on human peripheral blood mononuclear cells (PBMCs). Circulating monocytes uniformly express high levels of the canonical E-selectin binding determinant sLeX and display markedly greater adhesive interactions with E-selectin than do circulating lymphocytes, which exhibit variable E-selectin binding among CD4+ and CD8+ T-cells but no binding by B-cells. Monocytes prominently present sLeX decorations on an array of protein scaffolds including PSGL-1, CD43, and CD44 (rendering the E-selectin ligands CLA, CD43E, and HCELL, respectively), and B-cells altogether lack E-selectin ligands. Quantitative PCR gene expression studies of glycosyltransferases that regulate display of sLeX reveal high transcript levels among circulating monocytes and low levels among circulating B-cells, and, commensurately, cell surface α(1,3)-fucosylation reveals that acceptor sialyllactosaminyl glycans convertible into sLeX are abundantly expressed on human monocytes yet are relatively deficient on B-cells. Collectively, these findings unveil distinct cell-specific patterns of E-selectin ligand expression among human PBMCs, indicating that circulating monocytes are specialized to engage E-selectin and providing key insights into the molecular effectors mediating recruitment of these cells at inflammatory sites. PMID:28330896
Role of ROS in Aβ42 Mediated Activation of Cerebral Endothelial Cells.
Tsoy, Andrey; Umbayev, Bauyrzhan; Shalakhmetova, Tamara; Askarova, Sholpan
2014-01-01
There is substantial evidence that the deposition of aggregated amyloid-beta peptide (Aβ) in brain parenchyma and brain vessels is the main cause of neuronal dysfunction and death in Alzheimer's disease (AD). Aβ exhibits multiple cytotoxic effects on neurons and glial cells and causes dysfunction of the blood brain barrier (BBB). In AD brains, an increased deposition of Aβ in the cerebral vasculature has been found to be correlated with increased transmigration of blood-borne inflammatory cells and neurovascular inflammation. However, regulatory mediators of these processes remain to be elucidated. In this study, we examined the role of ROS in actin polymerization and expression of adhesion molecules (P-selectin) on the surface of the cerebral endothelial cells (CECs) that are activated by Aβ42. Mouse BEnd3 line (ATCC) was used in this research. BEnd3 cells respond to Aβ treatment similarly to human primary CECs and are a common model to investigate CECs' function. We used immortalized bEnd3 cells as the following: controls; cells incubated with Aβ42 for 10, 30, and 60 minutes; cells incubated with 30 mM of antioxidant N-acetylcysteine (NAC) for 1 hr; and, cells pre-treated with NAC followed by Aβ42 exposure. We measured DHE fluorescence to investigate intracellular ROS production. Immunofluorescent microscopy of anti-P-selectin and oregon green phalloidin was used to quantify the surface P-selectin expression and actin polymerization, and Western blot analysis was used to analyze total P-selectin expression. The results of this study have demonstrated a significant time-dependent ROS accumulation after 10 minutes, 30 minutes, and 60 minutes of Aβ42 treatment, while Aβ42 stimulated ROS production in CECs was attenuated by pre-treatment with the NAC antioxidant. We also found that Aβ42 increased P-selectin fluorescence at the surface of bEnd3 cells in a time dependent manner in parallel to ROS elevation. However, total expression levels of P-selectin were not changed following exposure to Aβ42. Pretreatment with NAC attenuated Aβ42 induced P-selectin localization, while NAC alone did not significantly affect P selectin localization. As a positive control, H 2 O 2 also increased P-selectin expression on the cell surface, which peaked after 30 minutes of H 2 O 2 treatment. Exposure of CECs with Aβ42 promoted actin polymerization, which peaked after 10 minutes of Aβ42 treatment, while no significant increase of F-actin intensity was observed when cells were pre-treated with NAC. H 2 O 2 was able to mimic Aβ42 induced oxidative stress, causing increased actin polymerization with similar timing. The results of our study have indicated that Aβ42 induced accumulation of P-selectin on the surface of bEnd3 cells and promoted actin polymerization, and all these events were correlated with ROS generation. The rapid post-translational cell signaling response mediated by ROS may well represent an important physiological trigger of the microvascular inflammatory responses in AD and requires further investigations.
Gossens, Klaus; Naus, Silvia; Corbel, Stephane Y; Lin, Shujun; Rossi, Fabio M V; Kast, Jürgen; Ziltener, Hermann J
2009-04-13
Thymic T cell progenitor (TCP) importation is a periodic, gated event that is dependent on the expression of functional P-selectin ligands on TCPs. Occupancy of intrathymic TCP niches is believed to negatively regulate TCP importation, but the nature of this feedback mechanism is not yet resolved. We show that P-selectin and CCL25 are periodically expressed in the thymus and are essential parts of the thymic gate-keeping mechanism. Periodicity of thymic TCP receptivity and the size of the earliest intrathymic TCP pool were dependent on the presence of functional P-selectin ligand on TCPs. Furthermore, we show that the numbers of peripheral blood lymphocytes directly affected thymic P-selectin expression and TCP receptivity. We identified sphingosine-1-phosphate (S1P) as one feedback signal that could mediate influence of the peripheral lymphocyte pool on thymic TCP receptivity. Our findings suggest a model whereby thymic TCP importation is controlled by both early thymic niche occupancy and the peripheral lymphocyte pool via S1P.
Human Synovial Lubricin Expresses Sialyl Lewis x Determinant and Has L-selectin Ligand Activity*
Jin, Chunsheng; Ekwall, Anna-Karin Hultgård; Bylund, Johan; Björkman, Lena; Estrella, Ruby P.; Whitelock, John M.; Eisler, Thomas; Bokarewa, Maria; Karlsson, Niclas G.
2012-01-01
Lubricin (or proteoglycan 4 (PRG4)) is an abundant mucin-like glycoprotein in synovial fluid (SF) and a major component responsible for joint lubrication. In this study, it was shown that O-linked core 2 oligosaccharides (Galβ1–3(GlcNAcβ1–6)GalNAcα1-Thr/Ser) on lubricin isolated from rheumatoid arthritis SF contained both sulfate and fucose residues, and SF lubricin was capable of binding to recombinant L-selectin in a glycosylation-dependent manner. Using resting human polymorphonuclear granulocytes (PMN) from peripheral blood, confocal microscopy showed that lubricin coated circulating PMN and that it partly co-localized with L-selectin expressed by these cells. In agreement with this, activation-induced shedding of L-selectin also mediated decreased lubricin binding to PMN. It was also found that PMN recruited to inflamed synovial area and fluid in rheumatoid arthritis patients kept a coat of lubricin. These observations suggest that lubricin is able to bind to PMN via an L-selectin-dependent and -independent manner and may play a role in PMN-mediated inflammation. PMID:22930755
Biophysics of selectin-ligand interactions in inflammation and cancer
NASA Astrophysics Data System (ADS)
Siu-Lun Cheung, Luthur; Raman, Phrabha S.; Balzer, Eric M.; Wirtz, Denis; Konstantopoulos, Konstantinos
2011-02-01
Selectins (l-, e- and p-selectin) are calcium-dependent transmembrane glycoproteins that are expressed on the surface of circulating leukocytes, activated platelets, and inflamed endothelial cells. Selectins bind predominantly to sialofucosylated glycoproteins and glycolipids (e-selectin only) present on the surface of apposing cells, and mediate transient adhesive interactions pertinent to inflammation and cancer metastasis. The rapid turnover of selectin-ligand bonds, due to their fast on- and off-rates along with their remarkably high tensile strengths, enables them to mediate cell tethering and rolling in shear flow. This paper presents the current body of knowledge regarding the role of selectins in inflammation and cancer metastasis, and discusses experimental methodologies and mathematical models used to resolve the biophysics of selectin-mediated cell adhesion. Understanding the biochemistry and biomechanics of selectin-ligand interactions pertinent to inflammatory disorders and cancer metastasis may provide insights for developing promising therapies and/or diagnostic tools to combat these disorders.
Merzaban, Jasmeen S; Imitola, Jaime; Starossom, Sarah C; Zhu, Bing; Wang, Yue; Lee, Jack; Ali, Amal J; Olah, Marta; Abuelela, Ayman F; Khoury, Samia J; Sackstein, Robert
2015-01-01
Neural stem cell (NSC)-based therapies offer potential for neural repair in central nervous system (CNS) inflammatory and degenerative disorders. Typically, these conditions present with multifocal CNS lesions making it impractical to inject NSCs locally, thus mandating optimization of vascular delivery of the cells to involved sites. Here, we analyzed NSCs for expression of molecular effectors of cell migration and found that these cells are natively devoid of E-selectin ligands. Using glycosyltransferase-programmed stereosubstitution (GPS), we glycan engineered the cell surface of NSCs (“GPS-NSCs”) with resultant enforced expression of the potent E-selectin ligand HCELL (hematopoietic cell E-/L-selectin ligand) and of an E-selectin-binding glycoform of neural cell adhesion molecule (“NCAM-E”). Following intravenous (i.v.) injection, short-term homing studies demonstrated that, compared with buffer-treated (control) NSCs, GPS-NSCs showed greater neurotropism. Administration of GPS-NSC significantly attenuated the clinical course of experimental autoimmune encephalomyelitis (EAE), with markedly decreased inflammation and improved oligodendroglial and axonal integrity, but without evidence of long-term stem cell engraftment. Notably, this effect of NSC is not a universal property of adult stem cells, as administration of GPS-engineered mouse hematopoietic stem/progenitor cells did not improve EAE clinical course. These findings highlight the utility of cell surface glycan engineering to boost stem cell delivery in neuroinflammatory conditions and indicate that, despite the use of a neural tissue-specific progenitor cell population, neural repair in EAE results from endogenous repair and not from direct, NSC-derived cell replacement. PMID:26153105
Robinson, Stephen D.; Frenette, Paul S.; Rayburn, Helen; Cummiskey, Marge; Ullman-Culleré, Mollie; Wagner, Denisa D.; Hynes, Richard O.
1999-01-01
We extend our previous analyses of mice deficient in selectins by describing the generation and comparative phenotype of mice lacking one, two, or three selectins after sequential ablation of the murine genes encoding P-, E-, and L-selectins. All mice deficient in selectins are viable and fertile as homozygotes. However, mice missing both P- and E-selectins (PE−/−), and mice missing all three selectins (ELP−/−) develop mucocutaneous infections that eventually lead to death. Mice deficient in multiple selectins display varying degrees of leukocytosis, resulting in part from alterations in leukocyte rolling and recruitment. PE−/− mice, ELP−/− mice, and mice missing both P- and L-selectins (PL−/−) show drastic reductions in leukocyte rolling and in extravasation of neutrophils in thioglycollate-induced peritonitis. In a separate inflammatory model (ragweed-induced peritoneal eosinophilia), we demonstrate P-selectin to be both necessary and sufficient for the recruitment of eosinophils. The phenotype of mice missing both E- and L-selectins (EL−/−) is less severe than those seen in the other double knockouts. Comparisons among the double knockouts suggest that P-selectin normally cooperates with both E- and L-selectins. Our results indicate a preeminent role for P-selectin in regulating leukocyte behavior in mice. Data from the ELP−/− mice indicate, however, that all three selectins are important to leukocyte homeostasis and efficient neutrophil recruitment. PMID:10500197
P-selectin- and heparanase-dependent antimetastatic activity of non-anticoagulant heparins.
Hostettler, Nina; Naggi, Annamaria; Torri, Giangiacomo; Ishai-Michaeli, Riva; Casu, Benito; Vlodavsky, Israel; Borsig, Lubor
2007-11-01
Vascular cell adhesion molecules, P- and L-selectins, facilitate metastasis of cancer cells in mice by mediating interactions with platelets, endothelium, and leukocytes. Heparanase is an endoglycosidase that degrades heparan sulfate of extracellular matrix, thereby promoting tumor invasion and metastasis. Heparin is known to efficiently attenuate metastasis in different tumor models. Here we identified modified, nonanticoagulant species of heparin that specifically inhibit selectin-mediated cell-cell interactions, heparanase enzymatic activity, or both. We show that selective inhibition of selectin interactions or heparanase with specific heparin derivatives in mouse models of MC-38 colon carcinoma and B16-BL6 melanoma attenuates metastasis. Selectin-specific heparin derivatives attenuated metastasis of MC-38 carcinoma, but heparanase-specific derivatives had no effect, in accordance with the virtual absence of heparanase activity in these cells. Heparin derivatives had no further effect on metastasis in mice deficient in P- and L-selectin, indicating that selectins are the primary targets of heparin antimetastatic activity. Selectin-specific and heparanase-specific derivatives attenuated metastasis of B16-BL6 melanomas to a similar extent. When mice were injected with a derivative containing both heparanase and selectin inhibitory activity, no additional attenuation of metastasis could be observed. Thus, selectin-specific heparin derivatives efficiently attenuated metastasis of both tumor cell types whereas inhibition of heparanase led to reduction of metastasis only in tumor cells producing heparanase.
Gakhar, Gunjan; Navarro, Vicente N.; Jurish, Madelyn; Lee, Guang Yu.; Tagawa, Scott T.; Akhtar, Naveed H.; Seandel, Marco; Geng, Yue; Liu, He; Bander, Neil H.; Giannakakou, Paraskevi; Christos, Paul J.; King, Michael R.; Nanus, David M.
2013-01-01
Hematogenous metastasis accounts for the majority of cancer-related deaths, yet the mechanism remains unclear. Circulating tumor cells (CTCs) in blood may employ different pathways to cross blood endothelial barrier and establish a metastatic niche. Several studies provide evidence that prostate cancer (PCa) cell tethering and rolling on microvascular endothelium via E-selectin/E-selectin ligand interactions under shear flow theoretically promote extravasation and contribute to the development of metastases. However, it is unknown if CTCs from PCa patients interact with E-selectin expressed on endothelium, initiating a route for tumor metastases. Here we report that CTCs derived from PCa patients showed interactions with E-selectin and E-selectin expressing endothelial cells. To examine E-selectin-mediated interactions of PCa cell lines and CTCs derived from metastatic PCa patients, we used fluorescently-labeled anti-prostate specific membrane antigen (PSMA) monoclonal antibody J591-488 which is internalized following cell-surface binding. We employed a microscale flow device consisting of E-selectin-coated microtubes and human umbilical vein endothelial cells (HUVECs) on parallel-plate flow chamber simulating vascular endothelium. We observed that J591-488 did not significantly alter the rolling behavior in PCa cells at shear stresses below 3 dyn/cm2. CTCs obtained from 31 PCa patient samples showed that CTCs tether and stably interact with E-selectin and E-selectin expressing HUVECs at physiological shear stress. Interestingly, samples collected during disease progression demonstrated significantly more CTC/E-selectin interactions than samples during times of therapeutic response (p=0.016). Analysis of the expression of sialyl Lewis X (sLex) in patient samples showed that a small subset comprising 1.9-18.8% of CTCs possess high sLex expression. Furthermore, E-selectin-mediated interactions between prostate CTCs and HUVECs were diminished in the presence of anti-E-selectin neutralizing antibody. CTC-Endothelial interactions provide a novel insight into potential adhesive mechanisms of prostate CTCs as a means to initiate metastasis. PMID:24386459
Snapp, Karen R.; Craig, Ron; Herron, Michael; Nelson, Robert D.; Stoolman, Lloyd M.; Kansas, Geoffrey S.
1998-01-01
Interactions between P-selectin, expressed on endothelial cells and activated platelets, and its leukocyte ligand, a homodimer termed P-selectin glycoprotein ligand-1 (PSGL-1), mediate the earliest adhesive events during an inflammatory response. To investigate whether dimerization of PSGL-1 is essential for functional interactions with P-selectin, a mutant form of PSGL-1 was generated in which the conserved membrane proximal cysteine was mutated to alanine (designated C320A). Western blotting under both denaturing and native conditions of the C320A PSGL-1 mutant isolated from stably transfected cells revealed expression of only a monomeric form of PSGL-1. In contrast to cells cotransfected with α1-3 fucosyltransferase-VII (FucT-VII) plus PSGL-1, K562 cells expressing FucT-VII plus C320A failed to bind COS cells transfected with P-selectin in a low shear adhesion assay, or to roll on CHO cells transfected with P-selectin under conditions of physiologic flow. In addition, C320A transfectants failed to bind chimeric P-selectin fusion proteins. Both PSGL-1 and C320A were uniformly distributed on the surface of transfected K562 cells. Thus, dimerization of PSGL-1 through the single, conserved, extracellular cysteine is essential for functional recognition of P-selectin. PMID:9660879
Merzaban, Jasmeen S; Imitola, Jaime; Starossom, Sarah C; Zhu, Bing; Wang, Yue; Lee, Jack; Ali, Amal J; Olah, Marta; Abuelela, Ayman F; Khoury, Samia J; Sackstein, Robert
2015-12-01
Neural stem cell (NSC)-based therapies offer potential for neural repair in central nervous system (CNS) inflammatory and degenerative disorders. Typically, these conditions present with multifocal CNS lesions making it impractical to inject NSCs locally, thus mandating optimization of vascular delivery of the cells to involved sites. Here, we analyzed NSCs for expression of molecular effectors of cell migration and found that these cells are natively devoid of E-selectin ligands. Using glycosyltransferase-programmed stereosubstitution (GPS), we glycan engineered the cell surface of NSCs ("GPS-NSCs") with resultant enforced expression of the potent E-selectin ligand HCELL (hematopoietic cell E-/L-selectin ligand) and of an E-selectin-binding glycoform of neural cell adhesion molecule ("NCAM-E"). Following intravenous (i.v.) injection, short-term homing studies demonstrated that, compared with buffer-treated (control) NSCs, GPS-NSCs showed greater neurotropism. Administration of GPS-NSC significantly attenuated the clinical course of experimental autoimmune encephalomyelitis (EAE), with markedly decreased inflammation and improved oligodendroglial and axonal integrity, but without evidence of long-term stem cell engraftment. Notably, this effect of NSC is not a universal property of adult stem cells, as administration of GPS-engineered mouse hematopoietic stem/progenitor cells did not improve EAE clinical course. These findings highlight the utility of cell surface glycan engineering to boost stem cell delivery in neuroinflammatory conditions and indicate that, despite the use of a neural tissue-specific progenitor cell population, neural repair in EAE results from endogenous repair and not from direct, NSC-derived cell replacement. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Mohammed, Rebar N.; Watson, H. Angharad; Vigar, Miriam; Ohme, Julia; Thomson, Amanda; Humphreys, Ian R.; Ager, Ann
2016-01-01
Summary Cytotoxic CD8+ T lymphocytes play a critical role in the host response to infection by viruses. The ability to secrete cytotoxic chemicals and cytokines is considered pivotal for eliminating virus. Of equal importance is how effector CD8+ T cells home to virus-infected tissues. L-selectin has not been considered important for effector T cell homing, because levels are low on activated T cells. We report here that, although L-selectin expression is downregulated following T cell priming in lymph nodes, L-selectin is re-expressed on activated CD8+ T cells entering the bloodstream, and recruitment of activated CD8+ T cells from the bloodstream into virus-infected tissues is L-selectin dependent. Furthermore, L-selectin on effector CD8+ T cells confers protective immunity to two evolutionally distinct viruses, vaccinia and influenza, which infect mucosal and visceral organs, respectively. These results connect homing and a function of virus-specific CD8+ T cells to a single molecule, L-selectin. PMID:26804910
Investigating the feasibility of stem cell enrichment mediated by immobilized selectins.
Charles, Nichola; Liesveld, Jane L; King, Michael R
2007-01-01
Hematopoietic stem cell therapy is used to treat both malignant and non-malignant diseases, and enrichment of the hematopoietic stem and progenitor cells (HSPCs) has the potential to reduce the likelihood of graft vs host disease or relapse, potentially fatal complications associated with the therapy. Current commercial HSPC isolation technologies rely solely on the CD34 surface marker, and while they have proven to be invaluable, they can be time-consuming with variable recoveries reported. We propose that selectin-mediated enrichment could prove to be a quick and effective method for recovering HSPCs from adult bone marrow (ABM) on the basis of differences in rolling velocities and independently of CD34 expression. Purified CD34+ ABM cells and the unselected CD34- ABM cells were perfused over immobilized P-, E-, and L-selectin-IgG at physiologic wall shear stresses, and rolling velocities and cell retention data were collected. CD34+ ABM cells generally exhibited lower rolling velocities and higher retention than the unselected CD34- ABM cells on all three selectins. For initial CD34+ ABM cell concentrations ranging from 1% to 5%, we predict an increase in purity ranging from 5.2% to 36.1%, depending on the selectin used. Additionally, selectin-mediated cell enrichment is not limited to subsets of cells with inherent differences in rolling velocities. CD34+ KG1a cells and CD34- HL60 cells exhibited nearly identical rolling velocities on immobilized P-selectin-IgG over the entire range of shear stresses studied. However, when anti-CD34 antibody was co-immobilized with the P-selectin-IgG, the rolling velocity of the CD34+ KG1a cells was significantly reduced, making selectin-mediated cell enrichment a feasible option. Optimal cell enrichment in immobilized selectin surfaces can be achieved within 10 min, much faster than most current commercially available systems.
Smadja, David M; Mulliken, John B; Bischoff, Joyce
2012-12-01
Hemangioma stem cells (HemSCs) are multipotent cells isolated from infantile hemangioma (IH), which form hemangioma-like lesions when injected subcutaneously into immune-deficient mice. In this murine model, HemSCs are the primary target of corticosteroid, a mainstay therapy for problematic IH. The relationship between HemSCs and endothelial cells that reside in IH is not clearly understood. Adhesive interactions might be critical for the preferential accumulation of HemSCs and/or endothelial cells in the tumor. Therefore, we studied the interactions between HemSCs and endothelial cells (HemECs) isolated from IH surgical specimens. We found that HemECs isolated from proliferating phase IH, but not involuting phase, constitutively express E-selectin, a cell adhesion molecule not present in quiescent endothelial cells. E-selectin was further increased when HemECs were exposed to vascular endothelial growth factor-A or tumor necrosis factor-α. In vitro, HemSC migration and adhesion was enhanced by recombinant E-selectin but not P-selectin; both processes were neutralized by E-selectin-blocking antibodies. E-selectin-positive HemECs also stimulated migration and adhesion of HemSCs. In vivo, neutralizing antibodies to E-selectin strongly inhibited formation of blood vessels when HemSCs and HemECs were co-implanted in Matrigel. These data suggest that endothelial E-selectin could be a major ligand for HemSCs and thereby promote cellular interactions and vasculogenesis in IH. We propose that constitutively expressed E-selectin on endothelial cells in the proliferating phase is one mediator of the stem cell tropism in IH. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Bandyopadhyay, Smarajit; Harris, Daniel P.; Adams, Gregory N.; Lause, Gregory E.; McHugh, Anne; Tillmaand, Emily G.; Money, Angela; Willard, Belinda; Fox, Paul L.
2012-01-01
The induction of proinflammatory proteins in stimulated endothelial cells (EC) requires activation of multiple transcription programs. The homeobox transcription factor HOXA9 has an important regulatory role in cytokine induction of the EC-leukocyte adhesion molecules (ELAM) E-selectin and vascular cell adhesion molecule 1 (VCAM-1). However, the mechanism underlying stimulus-dependent activation of HOXA9 is completely unknown. Here, we elucidate the molecular mechanism of HOXA9 activation by tumor necrosis factor alpha (TNF-α) and show an unexpected requirement for arginine methylation by protein arginine methyltransferase 5 (PRMT5). PRMT5 was identified as a TNF-α-dependent binding partner of HOXA9 by mass spectrometry. Small interfering RNA (siRNA)-mediated depletion of PRMT5 abrogated stimulus-dependent HOXA9 methylation with concomitant loss in E-selectin or VCAM-1 induction. Chromatin immunoprecipitation analysis revealed that PRMT5 is recruited to the E-selectin promoter following transient HOXA9 binding to its cognate recognition sequence. PRMT5 induces symmetric dimethylation of Arg140 on HOXA9, an event essential for E-selectin induction. In summary, PRMT5 is a critical coactivator component in a newly defined, HOXA9-containing transcription complex. Moreover, stimulus-dependent methylation of HOXA9 is essential for ELAM expression during the EC inflammatory response. PMID:22269951
Angiari, Stefano; Donnarumma, Tiziano; Rossi, Barbara; Dusi, Silvia; Pietronigro, Enrica; Zenaro, Elena; Della Bianca, Vittorina; Toffali, Lara; Piacentino, Gennj; Budui, Simona; Rennert, Paul; Xiao, Sheng; Laudanna, Carlo; Casasnovas, Jose M.; Kuchroo, Vijay K.; Constantin, Gabriela
2014-01-01
SUMMARY Selectins play a central role in leukocyte trafficking by mediating tethering and rolling on vascular surfaces. Here we have reported that T cell immunoglobulin and mucin domain 1 (TIM-1) is a P-selectin ligand. We have shown that human and murine TIM-1 binds to P-selectin, and that TIM-1 mediates tethering and rolling of T helper-1 (Th1) and Th17, but not Th2 and regulatory T cells on P-selectin. Th1 and Th17 cells lacking the TIM-1 mucin domain showed reduced rolling in thrombin-activated mesenteric venules and inflamed brain microcirculation. Inhibition of TIM-1 had no effect on naive T cell homing, but reduced T cell recruitment in a skin hypersensitivity model and blocked experimental autoimmune encephalomyelitis. Uniquely, the TIM-1 IgV domain was also required for P-selectin binding. Our data demonstrate that TIM-1 is a major P-selectin ligand with a specialized role in T cell trafficking during inflammatory responses and the induction of autoimmune disease. PMID:24703780
Al Najjar, Salwa; Adam, Soheir; Ahmed, Nessar; Qari, Mohamed
2017-01-01
Sickle cell disease (SCD) is an autosomal recessive inherited hemoglobinopathy, characterized by chronic hemolysis and recurrent vaso-occlusive crisis (VOC). This study investigates changes in leucocyte subsets and the relationship between cell adhesion molecule expression and disease manifestations in patients during steady state and acute VOC. We compared soluble E-selectin and P-selectin levels in 84 SCD patients, in steady state and during VOC to 84 healthy controls. Using immunophenotyping, we also compared lymphocyte subsets in these three groups. Further, we compared E-selectin and P-selectin levels in patients of Saudi ethnicity to non-Saudi patients, in all three groups. Lymphocyte subsets showed high percentages of total T lymphocytes, T helper and suppressor lymphocytes, B lymphocytes as well as NK cells in patients with SCD during steady state, while B lymphocytes and NK cells were significantly higher during acute VOC crisis. High levels of both soluble E-selectin (sE-selectin) and soluble P-selectin (sP-selectin) markers were demonstrated in the serum of patients with SCD during both steady state and acute VOC. Levels of selectins were significantly higher in acute VOC. The immunophenotypic expression of L-selectin, on leucocytes, was high in SCD both during steady state and during acute VOC in comparison to normal control subjects. There was no significant difference in all three study groups between Saudi and non-Saudi patients. These findings suggest that patients with SCD have increased expression of adhesion molecules: E-selectin and P-selectin, which play an important role in the pathogenesis of VOC. Despite the distinct phenotype of Saudi patients with SCD, there was no significant difference in levels of soluble E-selectin and soluble P-selectin between Saudi and non-Saudi patients in all three groups. While sickle cell disease is a well-recognized state of chronic inflammation, the role of specific adhesion molecules is steadily unraveling. Studies are underway to investigate the potential role of selectin antagonists, for prevention and reversal of acute vascular occlusions in SCD patients.
P-selectin mediates neutrophil adhesion to endothelial cell borders.
Burns, A R; Bowden, R A; Abe, Y; Walker, D C; Simon, S I; Entman, M L; Smith, C W
1999-03-01
During an acute inflammatory response, endothelial P-selectin (CD62P) can mediate the initial capture of neutrophils from the free flowing bloodstream. P-selectin is stored in secretory granules (Weibel-Palade bodies) and is rapidly expressed on the endothelial surface after stimulation with histamine or thrombin. Because neutrophil transmigration occurs preferentially at endothelial borders, we wished to determine whether P-selectin-dependent neutrophil capture (adhesion) occurs at endothelial cell borders. Under static or hydrodynamic flow (2 dyn/cm2) conditions, histamine (10(-4) M) or thrombin (0.2 U/mL) treatment induced preferential (> or = 75%) neutrophil adhesion to the cell borders of endothelial monolayers. Blocking antibody studies established that neutrophil adhesion was completely P-selectin dependent. P-selectin surface expression increased significantly after histamine treatment and P-selectin immunostaining was concentrated along endothelial borders. We conclude that preferential P-selectin expression along endothelial borders may be an important mechanism for targeting neutrophil migration at endothelial borders.
Johnson-Tidey, R. R.; McGregor, J. L.; Taylor, P. R.; Poston, R. N.
1994-01-01
P-selectin (GMP-140) is an adhesion molecule present within endothelial cells that is rapidly translocated to the cell membrane upon activation, where it mediates endothelial-leukocyte interactions. Immunohistochemical analysis of human atherosclerotic plaques has shown strong expression of P-selectin by the endothelium overlying active atherosclerotic plaques. P-selectin is not, however, detected in normal arterial endothelium or in endothelium overlying inactive fibrous plaques. Color image analysis was used to quantitate the degree of P-selectin expression in the endothelium and demonstrates a statistically significant increase in P-selectin expression by atherosclerotic endothelial cells. Double immunofluorescence shows that some of this P-selectin is expressed on the luminal surface of the endothelial cells. Previous work has demonstrated a significant up-regulation in the expression of the intercellular adhesion molecule-1 in atherosclerotic endothelium and a study on the expression of intercellular adhesion molecule-1 and P-selectin in atherosclerosis shows a highly positive correlation. These results suggest that the selective and cooperative expression of P-selectin and intercellular adhesion molecule-1 may be involved in the recruitment of monocytes into sites of atherosclerosis. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:7513951
Finger, E B; Bruehl, R E; Bainton, D F; Springer, T A
1996-12-01
We investigated the role of neutrophil microvilli in interactions with E-selectin and P-selectin in hydrodynamic shear flow by disruption with cytochalasin B, hypotonic swelling, and chilling. Cytochalasin B only marginally reduced microvilli numbers (from 30 +/- 6 to 16 +/- 6 per cell perimeter, p < 0.005) as shown by electron microscopy, completely disrupted tethering in shear flow to E-selectin and P-selectin, increased the strength of rolling adhesions on E-selectin and P-selectin, and increased cell deformability in shear flow with a likely increase in the area of cell:substrate contact. Hypoosmotic swelling markedly reduced microvilli number (to 6 +/- 5 per perimeter, p < 0.005), almost completely inhibited tethering on E- and P-selectin, and increased the strength of rolling adhesions on P-selectin but not on E-selectin. Chilling almost completely abolished microvilli (to 3 +/- 3 per perimeter, p < 0.005), but pseudopod-like structures were present, and had little effect on tethering in flow. Immunogold labeling of L-selectin, which is normally clustered on tips of microvilli, showed that in the absence of microvilli it remained in small clusters. Our studies show that alterations in cell morphology and viscoelasticity can have opposing effects on tethering and rolling, showing that they are independently regulatable. Furthermore, our results suggest that the association of molecules that mediate rolling with microvilli tips may be important not just to enhance presentation, but for other functions such as to promote resistance to extraction from the membrane or cooperative interactions among clustered receptors.
Chantarasrivong, Chanikarn; Ueki, Akiharu; Ohyama, Ryutaro; Unga, Johan; Nakamura, Shinya; Nakanishi, Isao; Higuchi, Yuriko; Kawakami, Shigeru; Ando, Hiromune; Imamura, Akihiro; Ishida, Hideharu; Yamashita, Fumiyoshi; Kiso, Makoto; Hashida, Mitsuru
2017-05-01
Sialyl LewisX (sLeX) is a natural ligand of E-selectin that is overexpressed by inflamed and tumor endothelium. Although sLeX is a potential ligand for drug targeting, synthesis of the tetrasaccharide is complicated with many reaction steps. In this study, structurally simplified novel sLeX analogues were designed and linked with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol-2000 (DSPE-PEG) for E-selectin-mediated liposomal delivery. The sLeX structural simplification strategies include (1) replacement of the Gal-GlcNAc disaccharide unit with lactose to reduce many initial steps and (2) substitution of neuraminic acid with a negatively charged group, i.e., 3'-sulfo, 3'-carboxymethyl (3'-CM), or 3'-(1-carboxy)ethyl (3'-CE). While all the liposomes developed were similar in particle size and charge, the 3'-CE sLeX mimic liposome demonstrated the highest uptake in inflammatory cytokine-treated human umbilical vein endothelial cells (HUVECs), being even more potent than native sLeX-decorated liposomes. Inhibition studies using antiselectin antibodies revealed that their uptake was mediated primarily by overexpressed E-selectin on inflamed HUVECs. Molecular dynamics simulations were performed to gain mechanistic insight into the E-selectin binding differences among native and mimic sLeX. The terminally branched methyl group of the 3'-CE sLeX mimic oriented and faced the bulk hydrophilic solution during E-selectin binding. Since this state is entropically unfavorable, the 3'-CE sLeX mimic molecule might be pushed toward the binding pocket of E-selectin by a hydrophobic effect, leading to a higher probability of hydrogen-bond formation than native sLeX and the 3'-CM sLeX mimic. This corresponded with the fact that the 3'-CE sLeX mimic liposome exhibited much greater uptake than the 3'-CM sLeX mimic liposome.
Transport governs flow-enhanced cell tethering through L-selectin at threshold shear.
Yago, Tadayuki; Zarnitsyna, Veronika I; Klopocki, Arkadiusz G; McEver, Rodger P; Zhu, Cheng
2007-01-01
Flow-enhanced cell adhesion is a counterintuitive phenomenon that has been observed in several biological systems. Flow augments L-selectin-dependent adhesion by increasing the initial tethering of leukocytes to vascular surfaces and by strengthening their subsequent rolling interactions. Tethering or rolling might be influenced by physical factors that affect the formation or dissociation of selectin-ligand bonds. We recently demonstrated that flow enhanced rolling of L-selectin-bearing microspheres or neutrophils on P-selectin glycoprotein ligand-1 by force decreased bond dissociation. Here, we show that flow augmented tethering of these microspheres or cells to P-selectin glycoprotein ligand-1 by three transport mechanisms that increased bond formation: sliding of the sphere bottom on the surface, Brownian motion, and molecular diffusion. These results elucidate the mechanisms for flow-enhanced tethering through L-selectin.
The profiles of soluble adhesion molecules in the "great obstetrical syndromes".
Docheva, Nikolina; Romero, Roberto; Chaemsaithong, Piya; Tarca, Adi L; Bhatti, Gaurav; Pacora, Percy; Panaitescu, Bogdan; Chaiyasit, Noppadol; Chaiworapongsa, Tinnakorn; Maymon, Eli; Hassan, Sonia S; Erez, Offer
2018-02-01
The objective of this study was to determine the profiles of maternal plasma soluble adhesion molecules in patients with preeclampsia, small-for-gestational-age (SGA) fetuses, acute pyelonephritis, preterm labor with intact membranes (PTL), preterm prelabor rupture of the membranes (preterm PROM), and fetal death. A cross-sectional study was conducted to determine maternal plasma concentrations of sE-selectin, sL-selectin, and sP-selectin as well as sICAM-1, sVCAM-1, and sPECAM-1 in patients with (1) an uncomplicated pregnancy (control, n = 100); (2) preeclampsia (n = 94); (3) SGA fetuses (in women without preeclampsia/hypertension, n = 45); (4) acute pyelonephritis (n = 25); (5) PTL (n = 53); (6) preterm PROM (n = 24); and (7) fetal death (n = 34). Concentrations of soluble adhesion molecules and inflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-8) were determined with sensitive and specific enzyme-linked immunoassays. In comparison to women with a normal pregnancy, (1) women with preeclampsia had higher median concentrations of sE-selectin, sP-selectin, and sVCAM-1, and a lower concentration of sL-selectin (all p values < .001); (2) patients with SGA fetuses had higher median concentrations of sE-selectin, sP-selectin, and sVCAM-1 (all p values < .05); (3) patients with a fetal death had higher median concentrations of sE-selectin and sP-selectin (all p values < .05); (4) patients with acute pyelonephritis had higher median plasma concentrations of sE-selectin, sICAM-1, and sVCAM-1 (all p values < .001); (5) patients with preeclampsia and acute pyelonephritis, plasma concentrations of sVCAM-1, sE-selectin, and sP-selectin correlated with those of the proinflammatory cytokines TNF-α and interleukin (IL)-8 (all p values < .05); (6) patients with PTL had a higher median concentration of sP-selectin and a lower median concentration of VCAM-1 (all p values < .05); and (7) women with preterm PROM had lower median concentrations of sL-selectin and sVCAM-1 (all p values < .05). The results of this study show that endothelial cell activation/dysfunction reflected by the plasma concentration of sE-selectin is not specific to preeclampsia but is present in pregnancies complicated by SGA fetuses, acute pyelonephritis, and fetal death. Collectively, we report that each obstetrical syndrome appears to have a stereotypical profile of soluble adhesion molecules in the peripheral circulation.
Smadja, David M.; Mulliken, John B.; Bischoff, Joyce
2013-01-01
Hemangioma stem cells (HemSCs) are multipotent cells isolated from infantile hemangioma (IH), which form hemangioma-like lesions when injected subcutaneously into immune-deficient mice. In this murine model, HemSCs are the primary target of corticosteroid, a mainstay therapy for problematic IH. The relationship between HemSCs and endothelial cells that reside in IH is not clearly understood. Adhesive interactions might be critical for the preferential accumulation of HemSCs and/or endothelial cells in the tumor. Therefore, we studied the interactions between HemSCs and endothelial cells (HemECs) isolated from IH surgical specimens. We found that HemECs isolated from proliferating phase IH, but not involuting phase, constitutively express E-selectin, a cell adhesion molecule not present in quiescent endothelial cells. E-selectin was further increased when HemECs were exposed to vascular endothelial growth factor–A or tumor necrosis factor–α. In vitro, HemSC migration and adhesion was enhanced by recombinant E-selectin but not P-selectin; both processes were neutralized by E-selectin–blocking antibodies. E-selectin–positive HemECs also stimulated migration and adhesion of HemSCs. In vivo, neutralizing antibodies to E-selectin strongly inhibited formation of blood vessels when HemSCs and HemECs were co-implanted in Matrigel. These data suggest that endothelial E-selectin could be a major ligand for HemSCs and thereby promote cellular interactions and vasculogenesis in IH. We propose that constitutively expressed E-selectin on endothelial cells in the proliferating phase is one mediator of the stem cell tropism in IH. PMID:23041613
Antoine, Marianne; Tag, Carmen G; Gressner, Axel M; Hellerbrand, Claus; Kiefer, Paul
2009-02-01
Leukocytes and tumor cells use E-selectin binding ligands to attach to activated endothelial cells expressing E-selectin during inflammation or metastasis. The cysteine-rich fibroblast growth factor receptor (CFR) represents the main E-selectin ligand (ESL-1) on granulocytes and its expression is exclusively modified by alpha(1,3)-fucosyltransferases IV or VII (FucT4 and FucT7). Hepatic stellate cells (HSC) are pericytes of liver sinusoidal endothelial cells. The activation of HSC and transdifferentiation into a myofibroblastic phenotype is involved in the repair of liver tissue injury, liver regeneration and angiogenesis of liver metastases. In the present study, we demonstrated that HSC expressed CFR together with FucT7 and exhibited a functional E-selectin binding activity on their cell surface. Since HSC appear to be oxygen-sensing cells, the expression of E-selectin binding activity was analyzed in HSC under a hypoxic atmosphere. While the expression of the glycoprotein CFR was unaffected by hypoxia, the cell-associated E-selectin binding activity decreased. However, under the same conditions, mRNA expression of the modifying enzyme FucT7 increased. The loss of E-selectin binding activity, therefore, appears to be neither the result of a reduced expression of the modifying transferase nor the expression of the backbone glycoprotein. After the transient transfection of HSC with CFR cDNA, the E-selectin binding activity (ESL-1) was efficiently released into the supernatant. Therefore, we hypothesize that under hypoxia, ESL-1 is shed from activated HSC. Our findings provide a novel perspective on the function of HSC in liver metastasis and inflammatory liver diseases.
de Coupade, Catherine; Solito, Egle; Levine, Jon D
2003-09-01
(1) L-selectin, constitutively expressed by leukocytes, is involved in the initial binding of leukocytes to activated endothelium. Anti-inflammatory drugs like glucocorticoids can induce shedding of L-selectin, but the mechanism is still unknown. Annexin 1, a protein whose synthesis and externalization/secretion are induced during the inflammatory response, has been proposed as a mediator of the anti-inflammatory actions of glucocorticoids. (2) The monocytic cell line U-937 strongly expresses Annexin 1 after 24 h of phorbol 12-myristate 13-acetate (PMA, 1 nm) treatment and externalizes/releases the protein after additional 16 h of dexamethasone (1 microm) treatment. (3) This study investigated the possible regulation of cell surface L-selectin shedding by endogenous Annexin 1, and its role in glucocorticoid-induced L-selectin shedding in the U-937 cell line. (4) PMA- and dexamethasone treatment-induced L-selectin shedding was potentially mediated by Annexin 1, since neutralizing antibodies against Annexin 1 reduced dexamethasone- and Annexin 1-induced shedding. (5) Immunoprecipitation and binding assays provided support for the suggestion that this effect could be mediated by an interaction between externalized Annexin 1 and L-selectin. Such interaction involved the N-terminal domain of Annexin 1 and was calcium-dependent. Confocal microscopy studies demonstrated increased colocalization of Annexin 1 and L-selectin on the cell surface. (6) Overall, our study provides new insights into the potential role of endogenous ANXA1 as a mediator of dexamethasone-induced L-selectin shedding, which may contribute to the anti-inflammatory activity of glucocorticoids.
Staining of E-selectin ligands on paraffin-embedded sections of tumor tissue.
Carrascal, Mylène A; Talina, Catarina; Borralho, Paula; Gonçalo Mineiro, A; Henriques, Ana Raquel; Pen, Cláudia; Martins, Manuela; Braga, Sofia; Sackstein, Robert; Videira, Paula A
2018-05-02
The E-selectin ligands expressed by cancer cells mediate adhesion of circulating cancer cells to endothelial cells, as well as within tissue microenvironments important for tumor progression and metastasis. The identification of E-selectin ligands within cancer tissue could yield new biomarkers for patient stratification and aid in identifying novel therapeutic targets. The determinants of selectin ligands consist of sialylated tetrasaccharides, the sialyl Lewis X and A (sLe X and sLe A ), displayed on protein or lipid scaffolds. Standardized procedures for immunohistochemistry make use of the antibodies against sLe X and/or sLe A . However, antibody binding does not define E-selectin binding activity. In this study, we developed an immunohistochemical staining technique, using E-selectin-human Ig Fc chimera (E-Ig) to characterize the expression and localization of E-selectin binding sites on paraffin-embedded sections of different cancer tissue. E-Ig successfully stained cancer cells with high specificity. The E-Ig staining show high reactivity scores in colon and lung adenocarcinoma and moderate reactivity in triple negative breast cancer. Compared with reactivity of antibody against sLe X/A , the E-Ig staining presented higher specificity to cancer tissue with better defined borders and less background. The E-Ig staining technique allows the qualitative and semi-quantitative analysis of E-selectin binding activity on cancer cells. The development of accurate techniques for detection of selectin ligands may contribute to better diagnostic and better understanding of the molecular basis of tumor progression and metastasis.
Core 1-derived O-glycans are essential E-selectin ligands on neutrophils.
Yago, Tadayuki; Fu, Jianxin; McDaniel, J Michael; Miner, Jonathan J; McEver, Rodger P; Xia, Lijun
2010-05-18
Neutrophils roll on E-selectin in inflamed venules through interactions with cell-surface glycoconjugates. The identification of physiologic E-selectin ligands on neutrophils has been elusive. Current evidence suggests that P-selectin glycoprotein ligand-1 (PSGL-1), E-selectin ligand-1 (ESL-1), and CD44 encompass all glycoprotein ligands for E-selectin; that ESL-1 and CD44 use N-glycans to bind to E-selectin; and that neutrophils lacking core 2 O-glycans have partially defective interactions with E-selectin. These data imply that N-glycans on ESL-1 and CD44 and O-glycans on PSGL-1 constitute all E-selectin ligands, with neither glycan subset having a dominant role. The enzyme T-synthase transfers Gal to GalNAcalpha1-Ser/Thr to form the core 1 structure Galbeta1-3GalNAcalpha1-Ser/Thr, a precursor for core 2 and extended core 1 O-glycans that might serve as selectin ligands. Here, using mice lacking T-synthase in endothelial and hematopoietic cells, we found that E-selectin bound to CD44 and ESL-1 in lysates of T-synthase-deficient neutrophils. However, the cells exhibited markedly impaired rolling on E-selectin in vitro and in vivo, failed to activate beta2 integrins while rolling, and did not emigrate into inflamed tissues. These defects were more severe than those of neutrophils lacking PSGL-1, CD44, and the mucin CD43. Our results demonstrate that core 1-derived O-glycans are essential E-selectin ligands; that some of these O-glycans are on protein(s) other than PSGL-1, CD44, and CD43; and that PSGL-1, CD44, and ESL-1 do not constitute all glycoprotein ligands for E-selectin.
Carroll, Molly J; Fogg, Kaitlin C; Patel, Harin A; Krause, Harris B; Mancha, Anne-Sophie; Patankar, Manish S; Weisman, Paul S; Barroilhet, Lisa; Kreeger, Pamela K
2018-05-08
Peritoneal metastasis of high-grade serous ovarian cancer (HGSOC) occurs when tumor cells suspended in ascites adhere to mesothelial cells. Despite the strong relationship between metastatic burden and prognosis in HGSOC, there are currently no therapies specifically targeting the metastatic process. We utilized a co-culture model and multivariate analysis to examine how interactions between tumor cells, mesothelial cells, and alternatively-activated macrophages (AAMs) influence the adhesion of tumor cells to mesothelial cells. We found that AAM-secreted MIP-1β activates CCR5/PI3K signaling in mesothelial cells, resulting in expression of P-selectin on the mesothelial cell surface. Tumor cells attached to this de novo P-selectin through CD24, resulting in increased tumor cell adhesion in static conditions and rolling under flow. C57/BL6 mice treated with MIP-1β exhibited increased P-selectin expression on mesothelial cells lining peritoneal tissues, which enhanced CaOV3 adhesion ex vivo and ID8 adhesion in vivo. Analysis of samples from HGSOC patients confirmed increased MIP-1β and P-selectin, suggesting that this novel multi-cellular mechanism could be targeted to slow or stop metastasis in HGSOC by repurposing anti- CCR5 and P-selectin therapies developed for other indications. Copyright ©2018, American Association for Cancer Research.
Massaguer, A; Engel, P; Pérez-del-Pulgar, S; Bosch, J; Pizcueta, P
2000-08-01
P-selectin (CD62P) is an adhesion molecule expressed on the activated endothelium and activated platelets that is involved in the initial attachment of leukocytes to inflamed vascular endothelium. Blocking monoclonal antibodies (mAbs) and P-selectin-deficient mice have shown that P-selectin is a potential target in anti-inflammatory therapy. Most mAbs against P-selectin do not bind to conserved epitopes, including the ligand-binding region, since P-selectin from mammalian species shares high amino acid sequence homology. The aim of this study was to generate a novel panel of anti-P-selectin mAbs against the conserved epitopes present in several animal species. To produce these mAbs, P-selectin-deficient mice were immunized with a pre-B-cell line transfected with human P-selectin cDNA. Twelve mouse mAbs that recognize human P-selectin were obtained. Individual mAbs that bound to human, rat, mouse, rabbit and pig activated platelets were characterized by flow-cytometry, immunohistochemistry, adhesion assays and immunoprecipitation. Four of these mAbs (P-sel.KO.2.3, P-sel.KO.2.4, P-sel.KO.2.7 and P-sel.KO.2.12) cross-reacted with human, rat and mouse P-selectin. Another three mAbs (P-sel.KO.2.2, P-sel.KO.2.11 and P-sel.KO.2.12) blocked the attachment of HL60 cells to P-selectin-transfected COS cells, demonstrating that these mAbs inhibit P-selectin-mediated adhesion. MAb cross-blocking experiments showed that these three mAbs bind to very close and overlapping epitopes. An ELISA assay using mAbs P-sel.KO.2.3 and P-sel.KO.2.12 was designed to measure soluble rat, mouse and human P-selectin. These anti-P-selectin mAbs are unique since they recognize common epitopes conserved during mammalian evolution and they may be useful for studying P-selectin function in inflammatory models in various species.
Kułdo, J M; Ásgeirsdóttir, S A; Zwiers, P J; Bellu, A R; Rots, M G; Schalk, J A C; Ogawara, K I; Trautwein, C; Banas, B; Haisma, H J; Molema, G; Kamps, J A A M
2013-02-28
In chronic inflammatory diseases the endothelium expresses mediators responsible for harmful leukocyte infiltration. We investigated whether targeted delivery of a therapeutic transgene that inhibits nuclear factor κB signal transduction could silence the proinflammatory activation status of endothelial cells. For this, an adenovirus encoding dominant-negative IκB (dnIκB) as a therapeutic transgene was employed. Selectivity for the endothelial cells was achieved by introduction of antibodies specific for inflammatory endothelial adhesion molecules E-selectin or VCAM-1 chemically linked to the virus via polyethylene glycol. In vitro, the retargeted adenoviruses selectively infected cytokine-activated endothelial cells to express functional transgene. The comparison of transductional capacity of both retargeted viruses revealed that E-selectin based transgene delivery exerted superior pharmacological effects. Targeted delivery mediated dnIκB transgene expression in endothelial cells inhibited the induced expression of several inflammatory genes, including adhesion molecules, cytokines, and chemokines. In vivo, in mice suffering from glomerulonephritis, E-selectin-retargeted adenovirus selectively homed in the kidney to microvascular glomerular endothelium. Subsequent downregulation of endothelial adhesion molecule expression 2 days after induction of inflammation demonstrated the pharmacological potential of this gene therapy approach. The data justify further studies towards therapeutic virus design and optimization of treatment schedules to investigate their capacity to interfere with inflammatory disease progression. Copyright © 2012 Elsevier B.V. All rights reserved.
NF-kB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yi, E-mail: wangyi2004a@126.com; Wang, Xiang; Sun, Minghui
Highlights: {yields} Ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. {yields} Ox-LDL induced expression of P-selectin through degradation of IkBa and augment of NF-kB activity and protein level during macrophage-derived foam cell formation. {yields} P-selectin and NF-kB may be identified as pivotal regulators of ox-LDL-induced foam cell formation. {yields} Therapy based on the inhibition of P-selectin and NF-kB may complement conventional treatments to prevent atherosclerosis. -- Abstract: Oxidized low-density lipoprotein (ox-LDL) plays a critical role in regulation of atherosclerosis. However, little is known about the role of Nuclear factor kBmore » (NF-kB) activity-dependent P-selectin in ox-LDL-induced foam cell formation during atherosclerosis. In this study, we first investigated ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. Treatment of U937 cells with ox-LDL increased lipid accumulation as well as intracellular cholesterol content. Next, a comparative analysis of gene expression profiling using cDNA microarray and Real-time-PCR indicated that ox-LDL exposure induced, in three treated groups, an extremely marked increase in the mRNA level of P-selectin. Protein levels of P-selectin and its upstream regulators IkBa and NF-kB showed that NF-kB pathway is involved in the ox-LDL-induced foam cell formation. Finally, overexpression of NF-kB significantly accelerated, whereas, inhibition of NF-kB with siRNA remarkably attenuated ox-LDL-induced macrophage-derived foam cell formation. It was concluded that the activity of NF-kB is augmented during macrophage-derived foam cell formation. Activation of NF-kB increased, whereas, inhibition of NF-kB decreased ox-LDL-induced P-selectin expression and lipid accumulation in macrophages, suggesting ox-LDL induced expression of P-selectin through degradation of IkBa and activation of NF-kB in the regulation of foam cell formation.« less
Distinct molecular and cellular contributions to stabilizing selectin-mediated rolling under flow
Yago, Tadayuki; Leppänen, Anne; Qiu, Haiying; Marcus, Warren D.; Nollert, Matthias U.; Zhu, Cheng; Cummings, Richard D.; McEver, Rodger P.
2002-01-01
Leukocytes roll on selectins at nearly constant velocities over a wide range of wall shear stresses. Ligand-coupled microspheres roll faster on selectins and detach quickly as wall shear stress is increased. To examine whether the superior performance of leukocytes reflects molecular features of native ligands or cellular properties that favor selectin-mediated rolling, we coupled structurally defined selectin ligands to microspheres or K562 cells and compared their rolling on P-selectin. Microspheres bearing soluble P-selectin glycoprotein ligand (sPSGL)-1 or 2-glycosulfopeptide (GSP)-6, a GSP modeled after the NH2-terminal P-selectin–binding region of PSGL-1, rolled equivalently but unstably on P-selectin. K562 cells displaying randomly coupled 2-GSP-6 also rolled unstably. In contrast, K562 cells bearing randomly coupled sPSGL-1 or 2-GSP-6 targeted to a membrane-distal region of the presumed glycocalyx rolled more like leukocytes: rolling steps were more uniform and shear resistant, and rolling velocities tended to plateau as wall shear stress was increased. K562 cells treated with paraformaldehyde or methyl-β-cyclodextrin before ligand coupling were less deformable and rolled unstably like microspheres. Cells treated with cytochalasin D were more deformable, further resisted detachment, and rolled slowly despite increases in wall shear stress. Thus, stable, shear-resistant rolling requires cellular properties that optimize selectin–ligand interactions. PMID:12177042
Blocking the Adhesion Cascade at the Premetastatic Niche for Prevention of Breast Cancer Metastasis
Kang, Shin-Ae; Hasan, Nafis; Mann, Aman P; Zheng, Wei; Zhao, Lichao; Morris, Lynsie; Zhu, Weizhu; Zhao, Yan D; Suh, K Stephen; Dooley, William C; Volk, David; Gorenstein, David G; Cristofanilli, Massimo; Rui, Hallgeir; Tanaka, Takemi
2015-01-01
Shear-resistant adhesion and extravasation of disseminated cancer cells at the target organ is a crucial step in hematogenous metastasis. We found that the vascular adhesion molecule E-selectin preferentially promoted the shear-resistant adhesion and transendothelial migration of the estrogen receptor (ER)–/CD44+ hormone-independent breast cancer cells, but not of the ER+/CD44-/low hormone-dependent breast cancer cells. Coincidentally, CD44+ breast cancer cells were abundant in metastatic lung and brain lesions in ER– breast cancer, suggesting that E-selectin supports hematogenous metastasis of ER–/CD44+ breast cancer. In an attempt to prevent hematogenous metastasis through the inhibition of a shear-resistant adhesion of CD44+ cancer cells to E-selectin-expressing blood vessels on the premetastatic niche, an E-selectin targeted aptamer (ESTA) was developed. We demonstrated that a single intravenous injection of ESTA reduced metastases to a baseline level in both syngeneic and xenogeneic forced breast cancer metastasis models without relocating the site of metastasis. The effect of ESTA was absent in E-selectin knockout mice, suggesting that E-selectin is a molecular target of ESTA. Our data highlight the potential application of an E-selectin antagonist for the prevention of hematogenous metastasis of ER–/CD44+ breast cancer. PMID:25815697
Blocking the adhesion cascade at the premetastatic niche for prevention of breast cancer metastasis.
Kang, Shin-Ae; Hasan, Nafis; Mann, Aman P; Zheng, Wei; Zhao, Lichao; Morris, Lynsie; Zhu, Weizhu; Zhao, Yan D; Suh, K Stephen; Dooley, William C; Volk, David; Gorenstein, David G; Cristofanilli, Massimo; Rui, Hallgeir; Tanaka, Takemi
2015-06-01
Shear-resistant adhesion and extravasation of disseminated cancer cells at the target organ is a crucial step in hematogenous metastasis. We found that the vascular adhesion molecule E-selectin preferentially promoted the shear-resistant adhesion and transendothelial migration of the estrogen receptor (ER)(-)/CD44(+) hormone-independent breast cancer cells, but not of the ER(+)/CD44(-/low) hormone-dependent breast cancer cells. Coincidentally, CD44(+) breast cancer cells were abundant in metastatic lung and brain lesions in ER(-) breast cancer, suggesting that E-selectin supports hematogenous metastasis of ER(-)/CD44(+) breast cancer. In an attempt to prevent hematogenous metastasis through the inhibition of a shear-resistant adhesion of CD44(+) cancer cells to E-selectin-expressing blood vessels on the premetastatic niche, an E-selectin targeted aptamer (ESTA) was developed. We demonstrated that a single intravenous injection of ESTA reduced metastases to a baseline level in both syngeneic and xenogeneic forced breast cancer metastasis models without relocating the site of metastasis. The effect of ESTA was absent in E-selectin knockout mice, suggesting that E-selectin is a molecular target of ESTA. Our data highlight the potential application of an E-selectin antagonist for the prevention of hematogenous metastasis of ER(-)/CD44(+) breast cancer.
Triple selectin knockout (ELP-/-) mice fail to develop OVA-induced acute asthma phenotype
2011-01-01
Objective The recruitment of leukocytes from circulation to sites of inflammation requires several families of adhesion molecules among which are selectins expressed on a variety of cells. In addition, they have also been shown to play key roles in the activation of cells in inflammation. Methods To explore the collective role of E-, L-, and P- selectins in OVA-induced Th2 mediated response in acute asthma pathophysiology, ELP-/- mice were used and compared with age-matched wildtype (WT). Results Asthma phenotype was assessed by measuring pulmonary function, inflammation and OVA-specific serum IgE, which were completely abrogated in ELP-/- mice. Adoptive transfer of sensitized L selectin+CD4+ T cells into naïve ELP-/- mice which post-OVA challenge, developed asthma, suggesting that L-selectin may be critically involved in the onset of Th2 response in asthma. Tissue resident ELP-deficient cells were otherwise functionally competent as proved by normal proliferative response. Conclusions: Comparative studies between ELP-/- and WT mice uncovered functional roles of these three integrins in inflammatory response in allergic asthma. All three selectins seem to impede inflammatory migration while only L-selectin also possibly regulates activation of specific T cell subsets in lung and airways. PMID:21835035
Ku, Amy W; Muhitch, Jason B; Powers, Colin A; Diehl, Michael; Kim, Minhyung; Fisher, Daniel T; Sharda, Anand P; Clements, Virginia K; O'Loughlin, Kieran; Minderman, Hans; Messmer, Michelle N; Ma, Jing; Skitzki, Joseph J; Steeber, Douglas A; Walcheck, Bruce; Ostrand-Rosenberg, Suzanne; Abrams, Scott I; Evans, Sharon S
2016-01-01
Myeloid-derived suppressor cells (MDSC) contribute to an immunosuppressive network that drives cancer escape by disabling T cell adaptive immunity. The prevailing view is that MDSC-mediated immunosuppression is restricted to tissues where MDSC co-mingle with T cells. Here we show that splenic or, unexpectedly, blood-borne MDSC execute far-reaching immune suppression by reducing expression of the L-selectin lymph node (LN) homing receptor on naïve T and B cells. MDSC-induced L-selectin loss occurs through a contact-dependent, post-transcriptional mechanism that is independent of the major L-selectin sheddase, ADAM17, but results in significant elevation of circulating L-selectin in tumor-bearing mice. Even moderate deficits in L-selectin expression disrupt T cell trafficking to distant LN. Furthermore, T cells preconditioned by MDSC have diminished responses to subsequent antigen exposure, which in conjunction with reduced trafficking, severely restricts antigen-driven expansion in widely-dispersed LN. These results establish novel mechanisms for MDSC-mediated immunosuppression that have unanticipated implications for systemic cancer immunity. DOI: http://dx.doi.org/10.7554/eLife.17375.001 PMID:27929373
Böggemeyer, E; Stehle, T; Schaible, U E; Hahne, M; Vestweber, D; Simon, M M
1994-06-01
In order to obtain more information on processes leading to Borrelia burgdorferi-induced inflammation in the host, we have developed an in vitro model to study the upregulation of cell surface expression of adhesion molecules on endothelial cells by spirochetes. A mouse endothelioma cell line, derived from brain capillaries, bEnd3, was used as indicator population. bEnd3 cells were incubated with preparations of viable, inactivated or sonicated spirochetes and the expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 was monitored by immunocytochemistry and quantified by cell surface ELISA. We show that all three spirochetal preparations are able to upregulate cell surface expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 on bEnd 3 cells in a dose-dependent manner. The kinetics of cell surface expression of the individual adhesion molecules in the presence of Borrelia burgdorferi showed maxima at about 50 h of incubation or later; this was distinct from results obtained with sonicated-preparations of Escherichia coli bacteria or with enterobacterial LPS where peak expression was observed between 4 h and 16 h. The fact that Borrelia burgdorferi does not contain conventional LPS suggests that the mode of induction of adhesion molecules on endothelial cells is influenced by the phenotype of bacteria. At the peak of spirochete-induced cell surface expression of adhesion molecules (approximately 50 h), bEnd3 cells were found to bind cells of a VLA-4+ B lymphoma line (L1-2) much more efficiently than untreated control cells. The binding of L1-2 cells to presensitized bEnd3 cells was significantly inhibited (more than 75%) in the presence of monoclonal antibodies to both VLA-4 and its endothelial counterreceptor VCAM-1. These findings demonstrate that Borrelia burgdorferi organisms are able to induce functionally active adhesion molecules on endothelial cells in vitro and suggest that E-selectin, P-selectin, ICAM-1 and VCAM-1 play an important role in the pathogenesis of spirochetal infection.
T Cells Prevent Hemorrhagic Transformation in Ischemic Stroke by P-Selectin Binding.
Salas-Perdomo, Angélica; Miró-Mur, Francesc; Urra, Xabier; Justicia, Carles; Gallizioli, Mattia; Zhao, Yashu; Brait, Vanessa H; Laredo, Carlos; Tudela, Raúl; Hidalgo, Andrés; Chamorro, Ángel; Planas, Anna M
2018-06-14
Hemorrhagic transformation is a serious complication of ischemic stroke after recanalization therapies. This study aims to identify mechanisms underlying hemorrhagic transformation after cerebral ischemia/reperfusion. We used wild-type mice and Selplg -/- and Fut7 -/- mice defective in P-selectin binding and lymphopenic Rag2 -/- mice. We induced 30-minute or 45-minute ischemia by intraluminal occlusion of the middle cerebral artery and assessed hemorrhagic transformation at 48 hours with a hemorrhage grading score, histological means, brain hemoglobin content, or magnetic resonance imaging. We depleted platelets and adoptively transferred T cells of the different genotypes to lymphopenic mice. Interactions of T cells with platelets in blood were studied by flow cytometry and image stream technology. We show that platelet depletion increased the bleeding risk only after large infarcts. Lymphopenia predisposed to hemorrhagic transformation after severe stroke, and adoptive transfer of T cells prevented hemorrhagic transformation in lymphopenic mice. CD4 + memory T cells were the subset of T cells binding P-selectin and platelets through functional P-selectin glycoprotein ligand-1. Mice defective in P-selectin binding had a higher hemorrhagic score than wild-type mice. Adoptive transfer of T cells defective in P-selectin binding into lymphopenic mice did not prevent hemorrhagic transformation. The study identifies lymphopenia as a previously unrecognized risk factor for secondary hemorrhagic transformation in mice after severe ischemic stroke. T cells prevent hemorrhagic transformation by their capacity to bind platelets through P-selectin. The results highlight the role of T cells in bridging immunity and hemostasis in ischemic stroke. © 2018 American Heart Association, Inc.
Ciołkiewicz, Mariusz; Kuryliszyn-Moskal, Anna; Klimiuk, Piotr Adrian
2010-02-01
The aim of the study was to evaluate the correlation between selected serum endothelial cell activation markers such as vascular endothelial growth factor (VEGF), endothelin-1 (ET-1), soluble thrombomodulin (sTM), soluble E-selectin (sE-selectin), disease activity, and microvascular changes determined by nailfold capillaroscopy in patients with systemic lupus erythematosus (SLE). Serum levels of VEGF, ET-1, sTM, and sE-selectin were determined by an enzyme-linked immunosorbent assay in 80 SLE patients. The disease activity was measured with Systemic Lupus Erythematosus Disease Activity Index score. Nailfold capillaroscopy was performed in all patients. Positive correlation was found between VEGF and both ET-1 (r = 0.294, p < 0.01) and sE-selectin (r = 0.274, p < 0.05) serum levels as well as between sTM and ET-1 (r = 0.273, p < 0.05) serum concentrations. We noticed also positive correlation between VEGF (r = 0.224, p < 0.05) and ET-1 (r = 0.471, p < 0.001) serum levels and disease activity, and also between VEGF serum concentration and grade of morphological changes observed by nailfold capillaroscopy (r = 0.458, p < 0.001). There was also positive correlation between capillaroscopic score and disease activity (r = 0.339, p < 0.01). Our data suggest that correlation between VEGF and both ET-1 and E-selectin serum levels as well as between sTM and ET-1 serum concentrations may reflect their participation in the pathogenesis of SLE. VEGF seems to reflect changes in microcirculation in the course of SLE, visualised by nailfold capillaroscopy. The relationship between changes in nailfold capillaroscopy, endothelial cell activation markers, and the clinical activity of SLE points to an important role of microvascular abnormalities in the clinical manifestation of the disease.
Woollard, Kevin J; Suhartoyo, Andreas; Harris, Emma E; Eisenhardt, Steffen U; Jackson, Shaun P; Peter, Karlheinz; Dart, Anthony M; Hickey, Michael J; Chin-Dusting, Jaye P F
2008-11-07
Plasma soluble P-selectin (sP-selectin) levels are increased in pathologies associated with atherosclerosis, including peripheral arterial occlusive disease (PAOD). However, the role of sP-selectin in regulating leukocyte-endothelial adhesion is unclear. The aim of this study was to assess the ability of exogenous and endogenous sP-selectin to induce leukocyte responses that promote their adhesion to various forms of endothelium. In flow chamber assays, sP-selectin dose-dependently increased neutrophil adhesion to resting human iliac artery endothelial cells. Similarly, sP-selectin induced neutrophil adhesion to the endothelial surface of murine aortae and human radial venous segments in ex vivo flow chamber experiments. Using intravital microscopy to examine postcapillary venules in the mouse cremaster muscle, in vivo administration of sP-selectin was also found to significantly increase leukocyte rolling and adhesion in unstimulated postcapillary venules. Using a Mac-1-specific antibody and P-selectin knockout mouse, it was demonstrated that this finding was dependent on a contribution of Mac-1 to leukocyte rolling and endothelial P-selectin expression. This was confirmed in an ex vivo perfusion model using viable mouse aorta and human radial vessels. In contrast, with tumor necrosis factor-alpha-activated endothelial cells and intact endothelium, where neutrophil adhesion was already elevated, sP-selectin failed to further increase adhesion. Plasma samples from PAOD patients containing pathologically elevated concentrations of sP-selectin also increased neutrophil adhesion to the endothelium in a sP-selectin-dependent manner, as demonstrated by immunodepletion of sP-selectin. These studies demonstrate that raised plasma sP-selectin may influence the early progression of vascular disease by promoting leukocyte adhesion to the endothelium in PAOD, through Mac-1-mediated rolling and dependent on endothelial P-selectin expression.
E-selectin ligand-1 controls circulating prostate cancer cell rolling/adhesion and metastasis
Yasmin-Karim, Sayeda; King, Michael R.; Messing, Edward M.; Lee, Yi-Fen
2014-01-01
Circulating prostate cancer (PCa) cells preferentially roll and adhere on bone marrow vascular endothelial cells, where abundant E-selectin and stromal cell-derived factor 1 (SDF-1) are expressed, subsequently initiating a cascade of activation events that eventually lead to the development of metastases. To elucidate the roles of circulating PCa cells' rolling and adhesion behaviors in cancer metastases, we applied a dynamic cylindrical flow-based microchannel device that is coated with E-selectin and SDF-1, mimicking capillary endothelium. Using this device we captured a small fraction of rolling PCa cells. These rolling cells display higher static adhesion ability, more aggressive cancer phenotypes and stem-like properties. Importantly, mice received rolling PCa cells, but not floating PCa cells, developed cancer metastases. Genes coding for E-selectin ligands and genes associated with cancer stem cells and metastasis were elevated in rolling PCa cells. Knock down of E-selectin ligand 1(ESL-1), significantly impaired PCa cells' rolling capacity and reduced cancer aggressiveness. Moreover, ESL-1 activates RAS and MAP kinase signal cascade, consequently inducing the downstream targets. In summary, circulating PCa cells' rolling capacity contributes to PCa metastasis, and that is in part controlled by ESL-1. PMID:25301730
Oh, Jaeho; Edwards, Erin E.; McClatchey, P. Mason; Thomas, Susan N.
2015-01-01
ABSTRACT Selectins facilitate the recruitment of circulating cells from the bloodstream by mediating rolling adhesion, which initiates the cell–cell signaling that directs extravasation into surrounding tissues. To measure the relative efficiency of cell adhesion in shear flow for in vitro drug screening, we designed and implemented a microfluidic-based analytical cell adhesion chromatography system. The juxtaposition of instantaneous rolling velocities with elution times revealed that human metastatic cancer cells, but not human leukocytes, had a reduced capacity to sustain rolling adhesion with P-selectin. We define a new parameter, termed adhesion persistence, which is conceptually similar to migration persistence in the context of chemotaxis, but instead describes the capacity of cells to resist the influence of shear flow and sustain rolling interactions with an adhesive substrate that might modulate the probability of extravasation. Among cell types assayed, adhesion persistence to P-selectin was specifically reduced in metastatic but not leukocyte-like cells in response to a low dose of heparin. In conclusion, we demonstrate this as an effective methodology to identify selectin adhesion antagonist doses that modulate homing cell adhesion and engraftment in a cell-subtype-selective manner. PMID:26349809
Fuentes, Eduardo; Palomo, Iván
2013-01-01
Platelets are no longer considered simply as cells participating in thrombosis. In atherosclerosis, platelets are regulators of multiple processes, with the recruitment of inflammatory cells towards the lesion sites, inflammatory mediators release, and regulation of endothelial function. The antiplatelet therapy has been used for a long time in an effort to prevent and treat cardiovascular diseases. However, limited efficacy in some patients, drug resistance, and side effects are limitations of current antiplatelet therapy. In this context, a large number of natural products (polyphenols, terpenoids, alkaloids, and fatty acids) have been reported with antiplatelet activity. In this sense, the present paper describes mechanisms of antiplatelet action of natural products on platelet P-selectin expression through cAMP levels and its role as peroxisome proliferator-activated receptors agonists.
Zuchtriegel, Gabriele; Uhl, Bernd; Hessenauer, Maximilian E T; Kurz, Angela R M; Rehberg, Markus; Lauber, Kirsten; Krombach, Fritz; Reichel, Christoph A
2015-04-01
Leukocyte recruitment to the site of inflammation is a key event in a variety of cardiovascular pathologies. Infiltrating neutrophils constitute the first line of defense that precedes a second wave of emigrating monocytes reinforcing the inflammatory reaction. The mechanisms initiating this sequential process remained largely obscure. Using advanced in vivo microscopy and in vitro/ex vivo techniques, we identified individual spatiotemporal expression patterns of selectins and their principal interaction partners on neutrophils, resident/inflammatory monocytes, and endothelial cells. Coordinating the intraluminal trafficking of neutrophils and inflammatory monocytes to common sites of extravasation, selectins assign different sites to these immune cells for their initial interactions with the microvascular endothelium. Whereas constitutively expressed leukocyte L-selectin/CD62L and endothelial P-selectin/CD62P together with CD44 and P-selectin glycoprotein ligand-1/CD162 initiate the emigration of neutrophils, de novo synthesis of endothelial E-selectin/CD62E launches the delayed secondary recruitment of inflammatory monocytes. In this context, P-selectin/CD62P and L-selectin/CD62L together with P-selectin glycoprotein ligand-1/CD162 and CD44 were found to regulate the flux of rolling neutrophils and inflammatory monocytes, whereas E-selectin/CD62E selectively adjusts the rolling velocity of inflammatory monocytes. Moreover, selectins and their interaction partners P-selectin glycoprotein ligand-1/CD162 and CD44 differentially control the intraluminal crawling behavior of neutrophils and inflammatory monocytes collectively enabling the sequential extravasation of these immune cells to inflamed tissue. Our findings provide novel insights into the mechanisms initiating the sequential infiltration of the perivascular tissue by neutrophils and monocytes in the acute inflammatory response and might thereby contribute to the development of targeted therapeutic strategies for prevention and treatment of cardiovascular diseases. © 2015 American Heart Association, Inc.
Yu, Y; Wang, W N; Han, H Z; Xie, K L; Wang, G L; Yu, Y H
2015-06-11
We observed the effect of hydrogen-rich medium on lipopolysaccharide (LPS)-induced human umbilical vein endothelial cells (HUVECs), hyaline leukocyte conglutination, and permeability of the endothelium. Endotheliocytes were inoculated on 6-well plates and randomly divided into 4 groups: control, H2, LPS, LPS+H2, H2, and LPS+H2 in saturated hydrogen-rich medium. We applied Wright's stain-ing to observe conglutination of hyaline leukocytes and HUVECs, flow cytometry to determine the content of vascular cell adhesion protein 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1), enzyme-linked immunosorbent assay to measure the E-selectin concentration in the cell liquor, the transendothelial electrical resistance (TEER) to test the permeability of endothelial cells, and Western blot and immunofluorescence to test the expression and distribution of vascular endothelial (VE)-cadherin. Compared with control cells, there was an increase in endothelium-hyaline leukocyte conglutination, a reduction in VCAM-1, ICAM-1, and E-selectin, and the TEER value increased obviously. Compared with LPS, there was an obvious reduction in the conglutination of LPS+H2 cells, a reduction in VCAM-1, ICAM-1, and E-selectin levels, and a reduction in the TEER-resistance value, while the expression of VE-cadherin increased. Fluorescence results showed that, compared with control cells, the VE-cadherin in LPS cells was in-complete at the cell joints. Compared with LPS cells, the VE-cadherin in LPS+H2 cells was even and complete at the cell joints. Liquid rich in hydrogen could reduce LPS-induced production of adhesion molecules and endothelium-hyaline leukocyte conglutination, and influence the expression and distribution of VE-cadherin to regulate the permeability of the endothelium.
Thankamony, Sai P; Sackstein, Robert
2011-02-08
According to the multistep model of cell migration, chemokine receptor engagement (step 2) triggers conversion of rolling interactions (step 1) into firm adhesion (step 3), yielding transendothelial migration. We recently reported that glycosyltransferase-programmed stereosubstitution (GPS) of CD44 on human mesenchymal stem cells (hMSCs) creates the E-selectin ligand HCELL (hematopoietic cell E-selectin/L-selectin ligand) and, despite absence of CXCR4, systemically administered HCELL(+)hMSCs display robust osteotropism visualized by intravital microscopy. Here we performed studies to define the molecular effectors of this process. We observed that engagement of hMSC HCELL with E-selectin triggers VLA-4 adhesiveness, resulting in shear-resistant adhesion to ligand VCAM-1. This VLA-4 activation is mediated via a Rac1/Rap1 GTPase signaling pathway, resulting in transendothelial migration on stimulated human umbilical vein endothelial cells without chemokine input. These findings indicate that hMSCs coordinately integrate CD44 ligation and integrin activation, circumventing chemokine-mediated signaling, yielding a step 2-bypass pathway of the canonical multistep paradigm of cell migration.
Srinivas, U; Påhlsson, P; Lundblad, A
1996-09-01
Recent studies have demonstrated that selectins, a new family of cell-adhesion molecules with similar domain structures, mediate the adhesion of peripheral blood cells to interleukin-1 (IL-1)-activated endothelium. In the present study the authors evaluated the role of E-selectin-Sialyl Lewis x (SLe(x))/ Sialyl Lewis a (SLe(a)) interaction in mediating in vitro adhesion of two colon cancer cell lines, HT-29 and COLO 201, to human umbilical cord endothelial cells (HUVEC). Colon cancer cell lines had a strong expression of blood group-related carbohydrate epitopes as evaluated by fluorescence-activated cell sorter (FACS) analysis. It was established that adhesion of HT-29 and COLO 201 cells to IL-1 stimulated HUVEC was calcium dependent and could be inhibited by a monoclonal antibody directed against E-selectin. Prior incubation of cells with two different antibodies directed against SLe(x) and antibodies directed against related Lewis epitopes, Le(x) and Le(a), had no significant effect on adhesion. Three antibodies directed against SLe(a) differed in their capacity to inhibit the adhesion of HT-29 and COLO 201 cells to HUVEC. Only one antibody directed against the SLe(a) structure was effective in inhibiting adhesion of both COLO 201 and HT-29 cells. The difference could not be attributed to titre, the type or number of glycoproteins, or to a difference in the amount of SLe(a) present on individual proteins, suggesting that presence and right presentation of SLe(a) epitope might be important for adhesion of colon cancer cells. Finally, in the in vitro system used, adhesion of HT-29 and COLO 201 cells to activated HUVEC is mediated predominantly by E-selectin/SLe(a) interaction. SLe(x) and related epitopes, Le(x) and Le(a), seem to have limited relevance for colon cancer cell recognition of E-selectin.
André, Pascale; Spertini, Olivier; Guia, Sophie; Rihet, Pascal; Dignat-George, Françoise; Brailly, Hervé; Sampol, José; Anderson, Paul J.; Vivier, Eric
2000-01-01
Natural killer (NK) cells are components of the innate immune system that can recognize and kill virally infected cells, tumor cells, and allogeneic cells without prior sensitization. NK cells also elaborate cytokines (e.g., interferon-γ and tumor necrosis factor-α) and chemokines (e.g., macrophage inflammatory protein-1α) that promote the acquisition of antigen-specific immunity. NK cell differentiation is accompanied by the cell surface expression of a mucin-like glycoprotein bearing an NK cell-restricted keratan sulfate-related lactosamine carbohydrate, the PEN5 epitope. Here, we report that PEN5 is a post-translational modification of P-selectin glycoprotein ligand-1 (PSGL-1). The PEN5 epitope creates on PSGL-1 a unique binding site for L-selectin, which is independent of PSGL-1 tyrosine sulfation. On the surface of NK cells, the expression of PEN5 is coordinated with the disappearance of L-selectin and the up-regulation of Killer cell Ig-like Receptors (KIR). These results indicate that NK cell differentiation is accompanied by the acquisition of a unique carbohydrate, PEN5, that can serve as part of a combination code to deliver KIR+ NK cells to specific tissues. PMID:10725346
E-selectin liposomal and nanotube-targeted delivery of doxorubicin to circulating tumor cells
Mitchell, Michael J.; Chen, Christina S.; Ponmudi, Varun; Hughes, Andrew D.; King, Michael R.
2012-01-01
The presence of circulating tumor cells (CTCs) is believed to lead to the formation of secondary tumors via an adhesion cascade involving interaction between adhesion receptors of endothelial cells and ligands on CTCs. Many CTCs express sialylated carbohydrate ligands on their surfaces that adhere to selectin protein found on inflamed endothelial cells. We have investigated the feasibility of using immobilized selectin proteins as a targeting mechanism for CTCs under flow. Herein, targeted liposomal doxorubicin (L-DXR) was functionalized with recombinant human E-selectin (ES) and polyethylene glycol (PEG) to target and kill cancer cells under shear flow, both when immobilized along a microtube device or sheared in a cone-and-plate viscometer in a dilute suspension. Healthy circulating cells such as red blood cells were not targeted by this mechanism and were left to freely circulate, and minimal leukocyte death was observed. Halloysite nanotube (HNT)-coated microtube devices immobilized with nanoscale liposomes significantly enhanced the targeting, capture, and killing of cancer cells. This work demonstrates that E-selectin functionalized L-DXR, sheared in suspension or immobilized onto microtube devices, provides a novel approach to selectively target and deliver chemotherapeutics to CTCs in the bloodstream. PMID:22421423
Silva, Mariana; Videira, Paula A; Sackstein, Robert
2017-01-01
The mononuclear phagocyte system comprises a network of circulating monocytes and dendritic cells (DCs), and "histiocytes" (tissue-resident macrophages and DCs) that are derived in part from blood-borne monocytes and DCs. The capacity of circulating monocytes and DCs to function as the body's first-line defense against offending pathogens greatly depends on their ability to egress the bloodstream and infiltrate inflammatory sites. Extravasation involves a sequence of coordinated molecular events and is initiated by E-selectin-mediated deceleration of the circulating leukocytes onto microvascular endothelial cells of the target tissue. E-selectin is inducibly expressed by cytokines (tumor necrosis factor-α and IL-1β) on inflamed endothelium, and binds to sialofucosylated glycan determinants displayed on protein and lipid scaffolds of blood cells. Efficient extravasation of circulating monocytes and DCs to inflamed tissues is crucial in facilitating an effective immune response, but also fuels the immunopathology of several inflammatory disorders. Thus, insights into the structural and functional properties of the E-selectin ligands expressed by different monocyte and DC populations is key to understanding the biology of protective immunity and the pathobiology of several acute and chronic inflammatory diseases. This review will address the role of E-selectin in recruitment of human circulating monocytes and DCs to sites of tissue injury/inflammation, the structural biology of the E-selectin ligands expressed by these cells, and the molecular effectors that shape E-selectin ligand cell-specific display. In addition, therapeutic approaches targeting E-selectin receptor/ligand interactions, which can be used to boost host defense or, conversely, to dampen pathological inflammatory conditions, will also be discussed.
P-selectin expressed by a human SELP transgene is atherogenic in apolipoprotein E-deficient mice
Zhang, Nan; Liu, Zhenghui; Yao, Longbiao; Mehta-D’souza, Padmaja; McEver, Rodger P.
2016-01-01
Objective During inflammation, P-selectin expressed on activated endothelial cells and platelets mediates rolling adhesion of leukocytes. Atherosclerosis-prone mice crossed with P-selectin-deficient (Selp−/−) mice develop smaller lesions. Cytokines such as tumor necrosis factor-α increase Selp transcripts and augment atherosclerosis in mice. However, they decrease SELP transcripts in humans, challenging assumptions that human P-selectin is atherogenic. We used mice expressing a human SELP transgene to examine the atherogenic role of P-selectin. Approach and results We crossed apolipoprotein E-deficient (Apoe−/−) mice with Selp−/− mice and/or transgenic mice expressing the entire human SELP gene (TgSELP+/−). Aortas developed larger, macrophage-rich atheromas in Apoe−/−Selp−/−TgSELP+/− mice than in Apoe−/−Selp−/− mice after 8 or 16 weeks on a Western diet. Confocal microscopy of Apoe−/−Selp−/−TgSELP+/− aortas revealed staining for human P-selectin in endothelial cells overlying atheromas, but not in lesional macrophages. We also observed staining for human P-selectin in aortic endothelial cells of 3–4-week-old Apoe−/−Selp−/−TgSELP+/− weanlings before atheromas developed. Furthermore, human SELP transcripts were ~3-fold higher in aortas of Apoe−/−Selp+/−TgSELP+/− weanlings than in Selp+/−TgSELP+/− weanlings, whereas murine Selp and Sele transcripts were equivalent in weanlings of both genotypes. Human SELP transcripts in aortas of Apoe−/−Selp+/−TgSELP+/− mice remained nearly constant during 16 weeks on a Western diet, whereas murine Selp and Sele transcripts progressively increased. Bone marrow transplantation in Apoe−/−Selp−/− and Apoe−/−Selp−/−TgSELP+/− mice demonstrated that both platelets and endothelial cells must express human P-selectin to promote atherogenesis. Conclusions P-selectin expressed by human SELP is atherogenic in Apoe−/− mice, suggesting that P-selectin contributes to atherogenesis in humans. PMID:27102967
Fuentes, Eduardo; Palomo, Iván
2013-01-01
Platelets are no longer considered simply as cells participating in thrombosis. In atherosclerosis, platelets are regulators of multiple processes, with the recruitment of inflammatory cells towards the lesion sites, inflammatory mediators release, and regulation of endothelial function. The antiplatelet therapy has been used for a long time in an effort to prevent and treat cardiovascular diseases. However, limited efficacy in some patients, drug resistance, and side effects are limitations of current antiplatelet therapy. In this context, a large number of natural products (polyphenols, terpenoids, alkaloids, and fatty acids) have been reported with antiplatelet activity. In this sense, the present paper describes mechanisms of antiplatelet action of natural products on platelet P-selectin expression through cAMP levels and its role as peroxisome proliferator-activated receptors agonists. PMID:24324520
Microvascular Channel Device to Study Aggressiveness in Prostate Cancer Metastasis
2014-08-01
contributes to PCa’s distant metastasis, which is mediated via an E- selectin ligand, ESL -1. Consequently, the interaction of E-selectin/ ESL -1 transduces...cancer cell, E-selectin, ESL -1. OVERALL PROJECT SUMMARY A. Major goals of the project: 3 Task 1: Correlation of cancers’ aggressiveness with...Determination of the aggressive/metastatic related gene I. 1. ESL -1 expression is high in rolling cells and tissue When PCa cells come in contact with
Biomechanics of P-selectin PSGL-1 bonds: Shear threshold and integrin-independent cell adhesion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Zhihua; Goldsmith, Harry L.; MacIntosh, Fiona A.
2006-03-01
Platelet-leukocyte adhesion may contribute to thrombosis and inflammation. We examined the heterotypic interaction between unactivated neutrophils and either thrombin receptor activating peptide (TRAP) stimulated platelets or P-selectin bearing beads (Ps-beads) in suspension. Cone-plate viscometers were used to apply controlled shear rates from 14-3000/s. Platelet-neutrophil and bead-neutrophil adhesion analysis was performed using both flow cytometry and high-speed videomicroscopy. We observed that while blocking antibodies against either P-selectin or P-selectin glycoprotein ligand-1 (PSGL-1) alone inhibited platelet-neutrophil adhesion by ~60% at 140/s, these reagents completely blocked adhesion at 3000/s. Anti-Mac-1 alone did not alter platelet-neutrophil adhesion rates at any shear rate, though inmore » synergy with selectin antagonists it abrogated cell binding. Unstimulated neutrophils avidly bound Ps-beads and activated platelets in an integrin-independent manner, suggesting that purely selectin-dependent cell adhesion is possible. In support of this, antagonists against P-selectin or PSGL-1 dissociated previously formed platelet-neutrophil and Ps-bead neutrophil aggregates under shear in a variety of experimental systems, including in assays performed with whole blood. In studies where medium viscosity and shear rate were varied, a subtle shear threshold for P-selectin PSGL-1 binding was also noted at shear rates<100/s and at force loading rates of ~300pN/sec. Results are discussed in light of biophysical computations that characterize the collision between unequal size particles in linear shear flow. Overall, our studies reveal an integrin-independent regime for cell adhesion that may be physiologically relevant.« less
[Behavior of soluble L-selectin in HIV infected children].
Gaddi, E; Balbaryski, J; Cantisano, C; Barboni, G; Candi, M; Quiroz, H; Giraudi, V
2001-01-01
L-selectin is an adhesion molecule that is responsible for the initial attachment of leukocytes to endothelium. After leukocyte activation L-selectin is endoproteolytically released from the cell surface. In order to analyze the relationship between soluble L-selectin (sL-selectin) and parameters of immune activation and disease progression, 51 HIV infected children and 15 healthy controls were studied. Serum L-selectin concentrations were significantly higher in HIV infected children than in the control group. Levels of sL-selectin were higher in HIV infected patients with severe immunologic suppression than in those with moderate or no evidence of suppression. A positive correlation between sL-selectin levels and LTCD8 counts, sL-selectin and soluble intercellular adhesion molecule-1 (sICAM-1) and immunogobulin A (IgA) levels was detected. On the contrary sL-selectin concentration did not correlate with plasmatic viral load. The correlation with parameters of immune activation may implicate involvement of sL-selectin in the immunopathogenesis of HIV infection.
Catch bonds govern adhesion through L-selectin at threshold shear.
Yago, Tadayuki; Wu, Jianhua; Wey, C Diana; Klopocki, Arkadiusz G; Zhu, Cheng; McEver, Rodger P
2004-09-13
Flow-enhanced cell adhesion is an unexplained phenomenon that might result from a transport-dependent increase in on-rates or a force-dependent decrease in off-rates of adhesive bonds. L-selectin requires a threshold shear to support leukocyte rolling on P-selectin glycoprotein ligand-1 (PSGL-1) and other vascular ligands. Low forces decrease L-selectin-PSGL-1 off-rates (catch bonds), whereas higher forces increase off-rates (slip bonds). We determined that a force-dependent decrease in off-rates dictated flow-enhanced rolling of L-selectin-bearing microspheres or neutrophils on PSGL-1. Catch bonds enabled increasing force to convert short-lived tethers into longer-lived tethers, which decreased rolling velocities and increased the regularity of rolling steps as shear rose from the threshold to an optimal value. As shear increased above the optimum, transitions to slip bonds shortened tether lifetimes, which increased rolling velocities and decreased rolling regularity. Thus, force-dependent alterations of bond lifetimes govern L-selectin-dependent cell adhesion below and above the shear optimum. These findings establish the first biological function for catch bonds as a mechanism for flow-enhanced cell adhesion.
Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1
NASA Astrophysics Data System (ADS)
Koch, Alisa E.; Halloran, Margaret M.; Haskell, Catherine J.; Shah, Manisha R.; Polverini, Peter J.
1995-08-01
ENDOTHELIAL adhesion molecules facilitate the entry of leukocytes into inflamed tissues. This in turn promotes neovascularization, a process central to the progression of rheumatoid arthritis, tumour growth and wound repair1. Here we test the hypothesis that soluble endothelial adhesion molecules promote angiogenesis2á¤-4. Human recombinant soluble E-selectin and soluble vascular cell adhesion molecule-1 induced chemotaxis of human endothelial cells in vitro and were angiogenic in rat cornea. Soluble E-selectin acted on endothelial cells in part through a sialyl Lewis-X-dependent mechanism, while soluble vascular cell adhesion molecule-1 acted on endothelial cells in part through a very late antigen (VLA)-4 dependent mechanism. The chemotactic activity of rheumatoid synovial fluid for endothelial cells, and also its angiogenic activity, were blocked by antibodies to either soluble E-selectin or soluble vascular cell adhesion molecule-1. These results suggest a novel function for soluble endothelial adhesion molecules as mediators of angiogenesis.
Serebruany, Victor L; Glassman, Alexander H; Malinin, Alex I; Sane, David C; Finkel, Mitchell S; Krishnan, Ranga R; Atar, Dan; Lekht, Vladimir; O'Connor, Christopher M
2003-09-01
Platelets play a key role in the progression of acute coronary syndromes (ACS). Clinical depression alone is also associated with enhanced platelet activation. The purpose of this study was to compare concentrations of established biomarkers of enhanced platelet/endothelial activation in clinically depressed versus non-depressed patients enrolled in recent clinical trials for ACS. Two hundred and eighty-one baseline plasma samples from patients with acute myocardial infarction (ASSENT-2; n = 41), with ACS (PRONTO; n = 126) and with clinical depression plus previous acute coronary syndrome within 6 months (SADHART; n = 64), and from normal healthy controls (n = 50) were analyzed. Blood was drawn before applying any therapeutic strategies including interventions, thrombolytics, infusions, and selective serotonin re-uptake inhibitors. Platelet factor 4, beta-thromboglobulin, platelet/endothelial cell adhesion molecule-1, P-selectin, thromboxane, prostacyclin, vascular cell adhesion molecule-1, and E-selectin were measured by enzyme-linked immunosorbent assay by a single core laboratory. Patients with ACS exhibited a higher degree of platelet activation than controls independently of the presence of depression. Plasma levels of P-selectin, thromboxane, prostacyclin, and vascular cell adhesion molecule-1 were the highest in the acute myocardial infarction group when compared with ACS despite the presence or absence of clinical depression. Surprisingly, patients with ACS and depression exhibited the highest levels of platelet factor 4, beta-thromboglobulin, and platelet/endothelial cell adhesion molecule-1 when compared with myocardial infarction or angina patients without clinical depression. E-selectin plasma level was constantly elevated compared with controls but did not differ among the groups dependent on the incidence of depression. The depressed plus ACS group had higher plasma levels of all biomarkers compared with the non-depressed patients. Retrospective analysis of the data from several clinical trials reveals that clinical depression is associated with enhanced activation of platelet/endothelial biomarkers even above the level expected in ACS. These findings may contribute to the unfavorable outcome associated with clinical depression in patients with ACS.
Parfenov, A I; Boldyreva, O N; Ruchkina, I N; Knyazev, O V; Sagynbaeva, V E; Shcherbakov, P L; Khomeriki, S G; Lazebnik, L B; Konoplyannikov, A G
2014-01-01
To define the value of adhesion molecules (sVCAM-1 integrin, P-selectin, E-selectin, and L-selectin) for the prediction and evaluation of the efficiency of treatment in patients with ulcerative colitis (UC) and Crohn's disease. Twenty-six patients with UC and 14 patients with CD were examined. Of them, 16 patients took infliximab (INF) in a dose of 5 mg/kg of body weight according to the standard scheme; 14 patients received cultured mesenchymal stem stromal cells (MSSCs) in a quantity of 150 x 10(8) cells, and 10 had azathioprine (AZA) 2 mg/kg and glucocorticosteroids (GCS) 1 mg/kg of body weight. Enzyme immunoassay was used to determine the serum concentration of the adhesion molecules (L-selectin, E-selectin, P-selectin, and sVCAM-1 integrin) before and 2 months after treatment. The signs of bowel inflammatory disease activity and the elevated levels of adhesion molecules whose synthesis did not occur under normal conditions remained in the patients receiving GCS and AZA. INF treatment caused a decrease in P-selectin, E-selectin, and sVCAM-1 levels to 8.9 +/- 1.0, 5.5 +/- 1.7, and 9.5 +/- 4.4 ng/ml, respectively (p < 0.001). Incorporation of MSSCs was followed by a reduction of the concentrations of P-selectin and E-selectin to 6.9 +/- 1.1 and 5.7 +/- 1.3 ng/ml, respectively (p < 0.001). The level of integrin (cVCAM-1) fell to 12.2 +/- 2.2 ng/ml (p > 0.1); that of L-selectin did not drop after MSSC administration and INF induction therapy. P-selectin, E-selectin, L-selectin, and sVCAM-1 integrin are current inflammatory markers and may be used to evaluate the efficiency of standard and biological therapies for inflammatory bowel diseases and to predict disease course.
P-selectin is a nanotherapeutic delivery target in the tumor microenvironment.
Shamay, Yosi; Elkabets, Moshe; Li, Hongyan; Shah, Janki; Brook, Samuel; Wang, Feng; Adler, Keren; Baut, Emily; Scaltriti, Maurizio; Jena, Prakrit V; Gardner, Eric E; Poirier, John T; Rudin, Charles M; Baselga, José; Haimovitz-Friedman, Adriana; Heller, Daniel A
2016-06-29
Disseminated tumors are poorly accessible to nanoscale drug delivery systems because of the vascular barrier, which attenuates extravasation at the tumor site. We investigated P-selectin, a molecule expressed on activated vasculature that facilitates metastasis by arresting tumor cells at the endothelium, for its potential to target metastases by arresting nanomedicines at the tumor endothelium. We found that P-selectin is expressed on cancer cells in many human tumors. To develop a targeted drug delivery platform, we used a fucosylated polysaccharide with nanomolar affinity to P-selectin. The nanoparticles targeted the tumor microenvironment to localize chemotherapeutics and a targeted MEK (mitogen-activated protein kinase kinase) inhibitor at tumor sites in both primary and metastatic models, resulting in superior antitumor efficacy. In tumors devoid of P-selectin, we found that ionizing radiation guided the nanoparticles to the disease site by inducing P-selectin expression. Radiation concomitantly produced an abscopal-like phenomenon wherein P-selectin appeared in unirradiated tumor vasculature, suggesting a potential strategy to target disparate drug classes to almost any tumor. Copyright © 2016, American Association for the Advancement of Science.
Phase 1 Study of the E-Selectin Inhibitor GMI 1070 in Patients with Sickle Cell Anemia
Wun, Ted; Styles, Lori; DeCastro, Laura; Telen, Marilyn J.; Kuypers, Frans; Cheung, Anthony; Kramer, William; Flanner, Henry; Rhee, Seungshin; Magnani, John L.; Thackray, Helen
2014-01-01
Background Sickle cell anemia is an inherited disorder of hemoglobin that leads to a variety of acute and chronic complications. Abnormal cellular adhesion, mediated in part by selectins, has been implicated in the pathophysiology of the vaso-occlusion seen in sickle cell anemia, and selectin inhibition was able to restore blood flow in a mouse model of sickle cell disease. Methods We performed a Phase 1 study of the selectin inhibitor GMI 1070 in patients with sickle cell anemia. Fifteen patients who were clinically stable received GMI 1070 in two infusions. Results The drug was well tolerated without significant adverse events. There was a modest increase in total peripheral white blood cell count without clinical symptoms. Plasma concentrations were well-described by a two-compartment model with an elimination T1/2 of 7.7 hours and CLr of 19.6 mL/hour/kg. Computer-assisted intravital microscopy showed transient increases in red blood cell velocity in 3 of the 4 patients studied. Conclusions GMI 1070 was safe in stable patients with sickle cell anemia, and there was suggestion of increased blood flow in a subset of patients. At some time points between 4 and 48 hours after treatment with GMI 1070, there were significant decreases in biomarkers of endothelial activation (sE-selectin, sP-selectin, sICAM), leukocyte activation (MAC-1, LFA-1, PM aggregates) and the coagulation cascade (tissue factor, thrombin-antithrombin complexes). Development of GMI 1070 for the treatment of acute vaso-occlusive crisis is ongoing. Trial Registration ClinicalTrials.gov NCT00911495 PMID:24988449
Definition of molecular determinants of prostate cancer cell bone extravasation.
Barthel, Steven R; Hays, Danielle L; Yazawa, Erika M; Opperman, Matthew; Walley, Kempland C; Nimrichter, Leonardo; Burdick, Monica M; Gillard, Bryan M; Moser, Michael T; Pantel, Klaus; Foster, Barbara A; Pienta, Kenneth J; Dimitroff, Charles J
2013-01-15
Advanced prostate cancer commonly metastasizes to bone, but transit of malignant cells across the bone marrow endothelium (BMEC) remains a poorly understood step in metastasis. Prostate cancer cells roll on E-selectin(+) BMEC through E-selectin ligand-binding interactions under shear flow, and prostate cancer cells exhibit firm adhesion to BMEC via β1, β4, and αVβ3 integrins in static assays. However, whether these discrete prostate cancer cell-BMEC adhesive contacts culminate in cooperative, step-wise transendothelial migration into bone is not known. Here, we describe how metastatic prostate cancer cells breach BMEC monolayers in a step-wise fashion under physiologic hemodynamic flow. Prostate cancer cells tethered and rolled on BMEC and then firmly adhered to and traversed BMEC via sequential dependence on E-selectin ligands and β1 and αVβ3 integrins. Expression analysis in human metastatic prostate cancer tissue revealed that β1 was markedly upregulated compared with expression of other β subunits. Prostate cancer cell breaching was regulated by Rac1 and Rap1 GTPases and, notably, did not require exogenous chemokines as β1, αVβ3, Rac1, and Rap1 were constitutively active. In homing studies, prostate cancer cell trafficking to murine femurs was dependent on E-selectin ligand, β1 integrin, and Rac1. Moreover, eliminating E-selectin ligand-synthesizing α1,3 fucosyltransferases in transgenic adenoma of mouse prostate mice dramatically reduced prostate cancer incidence. These results unify the requirement for E-selectin ligands, α1,3 fucosyltransferases, β1 and αVβ3 integrins, and Rac/Rap1 GTPases in mediating prostate cancer cell homing and entry into bone and offer new insight into the role of α1,3 fucosylation in prostate cancer development.
Directing stem cell trafficking via GPS.
Sackstein, Robert
2010-01-01
The success of stem-cell-based regenerative therapeutics critically hinges on delivering relevant stem/progenitor cells to sites of tissue injury. To achieve adequate parenchymal infiltration following intravascular administration, it is first necessary that circulating cells bind to target tissue endothelium with sufficient strength to overcome the prevailing forces of hemodynamic shear. The principal mediators of these shear-resistant binding interactions consist of a family of C-type lectins known as "selectins" that bind discrete sialofucosylated glycans on their respective ligands. One member of this family, E-selectin, is an endothelial molecule that is inducibly expressed on postcapillary venules at all sites of tissue injury, but is also constitutively expressed on the luminal surface of bone marrow and dermal microvascular endothelium. Most stem/progenitor cells express high levels of CD44, and, in particular, human hematopoietic stem cells express a specialized sialofucosylated glycoform of CD44 known as "hematopoietic cell E-/L-selectin ligand" (HCELL) that functions as a potent E-selectin ligand. This chapter describes a method called "glycosyltransferase-programmed stereosubstitution" (GPS) for custom-modifying CD44 glycans to create HCELL on the surface of living cells that natively lack HCELL. Ex vivo glycan engineering of HCELL via GPS licenses trafficking of infused cells to endothelial beds that express E-selectin, thereby enabling efficient vascular delivery of stem/progenitor cells to sites where they are needed. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Dynamic biochemical tissue analysis detects functional L-selectin ligands on colon cancer tissues
Carlson, Grady E.; Martin, Eric W.; Shirure, Venktesh S.; Malgor, Ramiro; Resto, Vicente A.; Goetz, Douglas J.; Burdick, Monica M.
2017-01-01
A growing body of evidence suggests that L-selectin ligands presented on circulating tumor cells facilitate metastasis by binding L-selectin presented on leukocytes. Commonly used methods for detecting L-selectin ligands on tissues, e.g., immunostaining, are performed under static, no-flow conditions. However, such analysis does not assay for functional L-selectin ligands, specifically those ligands that promote adhesion under shear flow conditions. Recently our lab developed a method, termed dynamic biochemical tissue analysis (DBTA), to detect functional selectin ligands in situ by probing tissues with L-selectin-coated microspheres under hemodynamic flow conditions. In this investigation, DBTA was used to probe human colon tissues for L-selectin ligand activity. The detection of L-selectin ligands using DBTA was highly specific. Furthermore, DBTA reproducibly detected functional L-selectin ligands on diseased, e.g., cancerous or inflamed, tissues but not on noncancerous tissues. In addition, DBTA revealed a heterogeneous distribution of functional L-selectin ligands on colon cancer tissues. Most notably, detection of L-selectin ligands by immunostaining using HECA-452 antibody only partially correlated with functional L-selectin ligands detected by DBTA. In summation, the results of this study demonstrate that DBTA detects functional selectin ligands to provide a unique characterization of pathological tissue. PMID:28282455
Dynamic biochemical tissue analysis detects functional L-selectin ligands on colon cancer tissues.
Carlson, Grady E; Martin, Eric W; Shirure, Venktesh S; Malgor, Ramiro; Resto, Vicente A; Goetz, Douglas J; Burdick, Monica M
2017-01-01
A growing body of evidence suggests that L-selectin ligands presented on circulating tumor cells facilitate metastasis by binding L-selectin presented on leukocytes. Commonly used methods for detecting L-selectin ligands on tissues, e.g., immunostaining, are performed under static, no-flow conditions. However, such analysis does not assay for functional L-selectin ligands, specifically those ligands that promote adhesion under shear flow conditions. Recently our lab developed a method, termed dynamic biochemical tissue analysis (DBTA), to detect functional selectin ligands in situ by probing tissues with L-selectin-coated microspheres under hemodynamic flow conditions. In this investigation, DBTA was used to probe human colon tissues for L-selectin ligand activity. The detection of L-selectin ligands using DBTA was highly specific. Furthermore, DBTA reproducibly detected functional L-selectin ligands on diseased, e.g., cancerous or inflamed, tissues but not on noncancerous tissues. In addition, DBTA revealed a heterogeneous distribution of functional L-selectin ligands on colon cancer tissues. Most notably, detection of L-selectin ligands by immunostaining using HECA-452 antibody only partially correlated with functional L-selectin ligands detected by DBTA. In summation, the results of this study demonstrate that DBTA detects functional selectin ligands to provide a unique characterization of pathological tissue.
Grober, J S; Bowen, B L; Ebling, H; Athey, B; Thompson, C B; Fox, D A; Stoolman, L M
1993-01-01
Blood monocytes are the principal reservoir for tissue macrophages in rheumatoid synovitis. Receptor-mediated adhesive interactions between circulating cells and the synovial venules initiate recruitment. These interactions have been studied primarily in cultured endothelial cells. Thus the functional activities of specific adhesion receptors, such as the endothelial selectins and the leukocytic integrins, have not been evaluated directly in diseased tissues. We therefore examined monocyte-microvascular interactions in rheumatoid synovitis by modifying the Stamper-Woodruff frozen section binding assay initially developed to study lymphocyte homing. Specific binding of monocytes to venules lined by low or high endothelium occurred at concentrations as low as 5 x 10(5) cells/ml. mAbs specific for P-selectin (CD62, GMP-140/PADGEM) blocked adhesion by > 90% in all synovitis specimens examined. In contrast, P-selectin-mediated adhesion to the microvasculature was either lower or absent in frozen sections of normal foreskin and placenta. mAbs specific for E-selectin (ELAM-1) blocked 20-50% of monocyte attachment in several RA synovial specimens but had no effect in others. mAbs specific for LFA-1, Mo1/Mac 1, the integrin beta 2-chain, and L-selectin individually inhibited 30-40% of adhesion. An mAb specific for the integrin beta 1-chain inhibited the attachment of elutriated monocytes up to 20%. We conclude that P-selectin associated with the synovial microvasculature initiates shear-resistant adhesion of monocytes in the Stamper-Woodruff assay and stabilizes bonds formed by other selectins and the integrins. Thus the frozen section binding assay permits direct evaluation of leukocyte-microvascular adhesive interactions in inflamed tissues and suggests a prominent role for P-selectin in monocyte recruitment in vivo. Images PMID:7685772
Molecular Magnetic Resonance Imaging of Endothelial Activation in the Central Nervous System
Gauberti, Maxime; Fournier, Antoine P.; Docagne, Fabian; Vivien, Denis; Martinez de Lizarrondo, Sara
2018-01-01
Endothelial cells of the central nervous system over-express surface proteins during neurological disorders, either as a cause, or a consequence, of the disease. Since the cerebral vasculature is easily accessible by large contrast-carrying particles, it constitutes a target of choice for molecular magnetic resonance imaging (MRI). In this review, we highlight the most recent advances in molecular MRI of brain endothelial activation and focus on the development of micro-sized particles of iron oxide (MPIO) targeting adhesion molecules including intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), P-Selectin and E-Selectin. We also discuss the perspectives and challenges for the clinical application of this technology in neurovascular disorders (ischemic stroke, intracranial hemorrhage, subarachnoid hemorrhage, diabetes mellitus), neuroinflammatory disorders (multiple sclerosis, brain infectious diseases, sepsis), neurodegenerative disorders (Alzheimer's disease, vascular dementia, aging) and brain cancers (primitive neoplasms, metastasis). PMID:29507614
BERARDI, CECILIA; DECKER, PAUL A.; KIRSCH, PHILLIP S.; DE ANDRADE, MARIZA; TSAI, MICHAEL Y.; PANKOW, JAMES S.; SALE, MICHELE M.; SICOTTE, HUGUES; TANG, WEIHONG; HANSON, NAOMI; POLAK, JOSEPH F.; BIELINSKI, SUZETTE J.
2014-01-01
L-selectin has been suggested to play a role in atherosclerosis. Previous studies on cardiovascular disease (CVD) and serum or plasma L-selectin are inconsistent. The association of serum L-selectin (sL-selectin) with carotid intima-media thickness, coronary artery calcium, ankle-brachial index (subclinical CVD) and incident CVD was assessed within 2403 participants in the Multi-Ethnic Study of Atherosclerosis (MESA). Regression analysis and the Tobit model were used to study subclinical disease; Cox Proportional Hazards regression for incident CVD. Mean age was 63 ± 10, 47% were males; mean sL-selectin was significantly different across ethnicities. Within each race/ethnicity, sL-selectin was associated with age and sex; among Caucasians and African Americans, it was associated with smoking status and current alcohol use. sL-selectin levels did not predict subclinical or clinical CVD after correction for multiple comparisons. Conditional logistic regression models were used to study plasma L-selectin and CVD within 154 incident CVD cases, occurred in a median follow up of 8.5 years, and 306 age-, sex-, and ethnicity-matched controls. L-selectin levels in plasma were significantly lower than in serum and the overall concordance was low. Plasma levels were not associated with CVD. In conclusion, this large multi-ethnic population, soluble L-selectin levels did not predict clinical or subclinical CVD. PMID:24631064
1995-01-01
The inflammatory response at sites of contact hypersensitivity induced by oxazolone was examined in the ears of P-selectin-deficient and wild- type mice. Accumulation of CD4+ T lymphocytes, monocytes, and neutrophils was reduced significantly in the mutant mice, as well as mast cell degranulation. In contrast, there was no significant difference in vascular permeability or edema between the two genotypes. The results demonstrate a role for P-selectin in recruitment of CD4+ T lymphocytes and show that P-selectin plays a role in long-term inflammation as well as in acute responses. PMID:7539046
Myung, Ja Hye; Launiere, Cari A; Eddington, David T; Hong, Seungpyo
2010-06-01
The selective detection of circulating tumor cells (CTCs) is of significant clinical importance for the clinical diagnosis and prognosis of cancer metastasis. However, largely because of the extremely low number of CTCs (as low as 1 in 10(9) hematologic cells) in the blood of patients, effective detection and separation of the rare cells remain a tremendous challenge. Cell rolling is known to play a key role in physiological processes such as the recruitment of leukocytes to sites of inflammation and selectin-mediated CTC metastasis. Furthermore, because CTCs typically express the epithelial-cell adhesion molecule (EpCAM) on the surface whereas normal hematologic cells do not, substrates with immobilized antibody against EpCAM may specifically interact with CTCs. In this article, we created biomimetic surfaces functionalized with P- and E-selectin and anti-EpCAM that induce different responses in HL-60 (used as a model of leukocytes in this study) and MCF-7 (a model of CTCs) cells. HL-60 and MCF-7 cells showed different degrees of interaction with P-/E-selectin and anti-EpCAM at a shear stress of 0.32 dyn/cm(2). HL-60 cells exhibited rolling on P-selectin-immobilized substrates at a velocity of 2.26 +/- 0.28 microm/s whereas MCF-7 cells had no interaction with the surface. Both cell lines, however, had interactions with E-selectin, and the rolling velocity of MCF-7 cells (4.24 +/- 0.31 microm/s) was faster than that of HL-60 cells (2.12 +/- 0.15 microm/s). However, only MCF-7 cells interacted with anti-EpCAM-coated surfaces, forming stationary binding under flow. More importantly, the combination of the rolling (E-selectin) and stationary binding (anti-EpCAM) resulted in substantially enhanced separation capacity and capture efficiency (more than 3-fold enhancement), as compared to a surface functionalized solely with anti-EpCAM that has been commonly used for CTC capture. Our results indicate that cell-specific detection and separation may be achieved through mimicking the biological processes of combined dynamic cell rolling and stationary binding, which will likely lead to a CTC detection device with significantly enhanced specificity and sensitivity without a complex fabrication process.
Sreeramkumar, Vinatha; Leiva, Magdalena; Stadtmann, Anika; Pitaval, Christophe; Ortega-Rodríguez, Inés; Wild, Martin K.; Lee, Brendan; Zarbock, Alexander; Hidalgo, Andrés
2013-01-01
Beyond its well-established roles in mediating leukocyte rolling, E-selectin is emerging as a multifunctional receptor capable of inducing integrin activation in neutrophils, and of regulating various biological processes in hematopoietic precursors. Although these effects suggest important homeostatic contributions of this selectin in the immune and hematologic systems, the ligands responsible for transducing these effects in different leukocyte lineages are not well defined. We have characterized mice deficient in E-selectin ligand-1 (ESL-1), or in both P-selectin glycoprotein-1 (PSGL-1) and ESL-1, to explore and compare the contributions of these glycoproteins in immune and hematopoietic cell trafficking. In the steady state, ESL-1 deficiency resulted in a moderate myeloid expansion that became more prominent when both glycoproteins were eliminated. During inflammation, PSGL-1 dominated E-selectin binding, rolling, integrin activation, and extravasation of mature neutrophils, but only the combined deficiency in PSGL-1 and ESL-1 completely abrogated leukocyte recruitment. Surprisingly, we find that the levels of ESL-1 were strongly elevated in hematopoietic progenitor cells. These elevations correlated with a prominent function of ESL-1 for E-selectin binding and for migration of hematopoietic progenitor cells into the bone marrow. Our results uncover dominant roles for ESL-1 in the immature compartment, and a functional shift toward PSGL-1 dependence in mature neutrophils. PMID:24106206
Sreeramkumar, Vinatha; Leiva, Magdalena; Stadtmann, Anika; Pitaval, Christophe; Ortega-Rodríguez, Inés; Wild, Martin K; Lee, Brendan; Zarbock, Alexander; Hidalgo, Andrés
2013-12-05
Beyond its well-established roles in mediating leukocyte rolling, E-selectin is emerging as a multifunctional receptor capable of inducing integrin activation in neutrophils, and of regulating various biological processes in hematopoietic precursors. Although these effects suggest important homeostatic contributions of this selectin in the immune and hematologic systems, the ligands responsible for transducing these effects in different leukocyte lineages are not well defined. We have characterized mice deficient in E-selectin ligand-1 (ESL-1), or in both P-selectin glycoprotein-1 (PSGL-1) and ESL-1, to explore and compare the contributions of these glycoproteins in immune and hematopoietic cell trafficking. In the steady state, ESL-1 deficiency resulted in a moderate myeloid expansion that became more prominent when both glycoproteins were eliminated. During inflammation, PSGL-1 dominated E-selectin binding, rolling, integrin activation, and extravasation of mature neutrophils, but only the combined deficiency in PSGL-1 and ESL-1 completely abrogated leukocyte recruitment. Surprisingly, we find that the levels of ESL-1 were strongly elevated in hematopoietic progenitor cells. These elevations correlated with a prominent function of ESL-1 for E-selectin binding and for migration of hematopoietic progenitor cells into the bone marrow. Our results uncover dominant roles for ESL-1 in the immature compartment, and a functional shift toward PSGL-1 dependence in mature neutrophils.
Scholz, D; Devaux, B; Hirche, A; Pötzsch, B; Kropp, B; Schaper, W; Schaper, J
1996-06-01
The time course of expression of the adhesion molecules E-selectin, VCAM-1, ICAM-1 and PECAM-1 was studied in interleukin-1 beta-stimulated human umbilical vein cells (HUVEC) and the subcellular sites of synthesis were determined by means of fluorescence immunohistochemistry. The maximal number of cells labelled for E-selectin was observed at 2-4 h, for VCAM-1 at 4-8 h and ICAM-1 at 6-72 h. At 8 h, E-selectin and VCAM-1 started to disappear, but ICAM-1-positive cells persisted. PECAM-1 was constitutively expressed. De novo synthesis for E-selectin started at 1 h and for both, VCAM-1 and ICAM-1 at 1.5-2 h. Maximal synthetic activity was observed at 2.5-4 h for E-selectin and at 4-6 h for VCAM-1 and ICAM-1; thereafter, synthesis slowly decreased. Transport granules occurred at 1.5 h for E-selectin and 4 h for VCAM-1; they were absent for ICAM-1. Diffuse cellular and membrane labelling indicative of the functional activity of the adhesion molecules began at 2-4 h for E-selectin, and 4 h for VCAM, but was constitutively present for ICAM-1. In conclusion, each adhesion molecule shows a specific time-dependent course of appearance and disappearance in interleukin-1 beta-stimulated HUVECs in accordance with their physiological role in vivo. These morphological results confirm data obtained by flow cytometry and Western blotting, but they provide new information about the behaviour of individual cells with regard to the sites of synthesis and cellular localization of the adhesion molecules.
L-selectin-carbohydrate interactions: relevant modifications of the Lewis x trisaccharide.
Sanders, W J; Katsumoto, T R; Bertozzi, C R; Rosen, S D; Kiessling, L L
1996-11-26
Protein-carbohydrate interactions are known to mediate cell-cell recognition and adhesion events. Specifically, three carbohydrate binding proteins termed selectins (E-, P-, and L-selectin) have been shown to be essential for leukocyte rolling along the vascular endothelium, the first step in the recruitment of leukocytes from the blood into inflammatory sites or into secondary lymphoid organs. Although this phenomenon is well-established, little is known about the molecular-level interactions on which it depends. All three selectins recognize sulfated and sialylated derivatives of the Lewis x [Le(x):Gal beta 1-->4(Fuc alpha 1-->3)GlcNAc] and Lewis a [Le(a): Gal beta 1-->3(Fuc alpha 1-->4)GlcNAc] trisaccharide cores with affinities in the millimolar range, and it is believed that variants of these structures are the carbohydrate determinants of selectin recognition. Recently it was shown that the mucin GlyCAM-1, a secreted physiological ligand for L-selectin, is capped with sulfated derivatives of sialyl Lewis x [sLe(x): Sia alpha 2-->3Gal beta 1-->4(Fuc alpha 1-->3)GlcNAc] and that sulfation is required for the high-affinity interaction between GlyCAM-1 and L-selectin. To elucidate the important sites of sulfation on Le(x) with respect to L-selectin recognition, we have synthesized six sulfated Le(x) analogs and determined their abilities to block binding of a recombinant L-selectin-Ig chimera to immobilized GlyCAM-1. Our results suggest that 6-sulfo sLe(x) binds to L-selectin with higher affinity than does sLe(x) or 6'-sulfo sLe(x) and that sulfation of sLe(x) capping groups on GlyCAM-1 at the 6-position is important for L-selectin recognition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Guoqian; Zhang, Xueyan; Su, Zhendong
2015-01-30
Highlights: • GA inhibited TNF-α-induced binding of monocytes to endothelial cells. • GA inhibited the induction of adhesion molecules MCP-1, VCAM-1 and E-selectin. • GA inhibits NF-κB p65 nuclear translocation and transcriptional activity. • GA inhibits TNF-α-induced IκBα degradation. - Abstract: Pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) is considered to be the major one contributing to the process of development of endothelial dysfunction. Exposure to TNF-α induces the expression of a number of proinflammatory chemokines, such as monocyte chemotactic protein-1 (MCP-1), and adhesion molecules, including vascular adhesion molecule-1 (VCAM-1) and E-selectin, which mediate the interaction of invading monocytesmore » with vascular endothelial cells. Glatiramer acetate (GA) is a licensed clinical drug for treating patients suffering from multiple sclerosis (MS). The effects of GA in vascular disease have not shown before. In this study, we found that GA significantly inhibited TNF-α-induced binding of monocytes to endothelial cells. Mechanistically, we found that GA ameliorated the upregulation of MCP-1, VCAM-1, and E-selectin induced by TNF-α. Notably, this process is mediated by inhibiting the nuclear translocation and activation of NF-κB. Our results also indicate that GA pretreatment attenuates the up-regulation of COX-2 and iNOS. These data suggest that GA might have a potential benefit in therapeutic endothelial dysfunction related diseases.« less
Oxidative stress and inflammatory markers in relation to circulating levels of adiponectin.
Gustafsson, Stefan; Lind, Lars; Söderberg, Stefan; Zilmer, Mihkel; Hulthe, Johannes; Ingelsson, Erik
2013-07-01
Previous epidemiological studies together with animal studies have suggested an association between adiponectin and oxidative stress and inflammation, but community-based studies are lacking. Our objective was to investigate the relative importance of oxidative stress and inflammatory markers, representing different pathways in relation to adiponectin. In a cross-sectional sample of 929 70-year-old individuals (50% women) of the Prospective Investigation of the Vasculature in Uppsala Seniors study, relations between serum adiponectin and oxidative stress [conjugated dienes (CD), homocysteine, total antioxidant capacity, oxidized low-density lipoprotein (OxLDL), OxLDL antibodies, baseline CD of LDL, glutathione (GSH), total glutathione (TGSH), glutathione disulfide], circulation interleukins (IL-6, IL-8), other cytokines [tumor necrosis factor α, monocyte chemotactic protein-1 (MCP-1), epidermal growth factor (EGF), vascular endothelial growth factor], cell adhesion molecules (vascular cell adhesion molecule-1, intercellular adhesion molecule-1, E-selectin, P-selectin, L-selectin), and systemic inflammatory markers [C-reactive protein (CRP), leukocyte count] in separate models were investigated. In age- and sex-adjusted, as well as multivariable-adjusted models, adiponectin was significantly and positively associated with GSH, log TGSH, whereas an inverse association was observed for CD and log EGF. An inverse association between adiponectin and MCP-1, log E-selectin, and log CRP was significant in age- and sex-adjusted models, but not in multivariable-adjusted models. Our results imply that higher levels of adiponectin are associated with a more beneficial oxidative stress profile, with higher levels of principal anti-oxidative GSH and total GSH together with lower levels of lipid peroxidation, possibly through shared pathways. Further studies are needed to investigate whether changes in the oxidative stress profile may be a mechanism linking adiponectin with type 2 diabetes and/or cardiovascular disease. Copyright © 2012 The Obesity Society.
Leckel, K; Beecken, W-D; Jonas, D; Oppermann, E; Coman, M C; Beck, K-F; Cinatl, J; Hailer, N P; Auth, M K H; Bechstein, W O; Shipkova, M; Blaheta, R A
2003-11-01
Immunosuppression correlates with the development and recurrence of cancer. Mycophenolate mofetil (MMF) has been shown to reduce adhesion molecule expression and leucocyte recruitment into the donor organ. We have hypothesized that MMF might also prevent receptor-dependent tumour dissemination. Therefore, we have investigated the effects of MMF on tumour cell adhesion to human umbilical vein endothelial cells (HUVEC) and compared them with the effects on T cell-endothelial cell interactions. Influence of MMF on cellular adhesion to HUVEC was analysed using isolated CD4+ and CD8+ T cells, or WiDr colon adenocarcinoma cells as the model tumour. HUVEC receptors ICAM-1, VCAM-1, E-selectin and P-selectin were detected by flow cytometry, Western blot or Northern blot analysis. Binding activity of T cells or WiDr cells in the presence of MMF were measured using immobilized receptor globulin chimeras. MMF potently blocked both T cell and WiDr cell binding to endothelium by 80%. Surface expression of the endothelial cell receptors was reduced by MMF in a dose-dependent manner. E-selectin mRNA was concurrently reduced with a maximum effect at 1 microm. Interestingly, MMF acted differently on T cells and WiDr cells. Maximum efficacy of MMF was reached at 10 and 1 microm, respectively. Furthermore, MMF specifically suppressed T cell attachment to ICAM-1, VCAM-1 and P-selectin. In contrast, MMF prevented WiDr cell attachment to E-selectin. In conclusion, our data reveal distinct effects of MMF on both T cell adhesion and tumour cell adhesion to endothelial cells. This suggests that MMF not only interferes with the invasion of alloactivated T cells, but might also be of value in managing post-transplantation malignancy.
Lebensburger, Jeffrey D.; Howard, Thad; Hu, Yunming; Pestina, Tamara I.; Gao, Geli; Johnson, Melissa; Zakharenko, Stanislav S.; Ware, Russell E.; Tuomanen, Elaine I.; Persons, Derek A.
2012-01-01
Sickle cell anemia is characterized by chronic hemolysis coupled with extensive vascular inflammation. This inflammatory state also mechanistically promotes a high risk of lethal, invasive pneumococcal infection. Current treatments to reduce vaso-occlusive complications include chronic hydroxyurea therapy to induce fetal hemoglobin. Because hydroxyurea also reduces leukocytosis, an understanding of the impact of this treatment on pneumococcal pathogenesis is needed. Using a sickle cell mouse model of pneumococcal pneumonia and sepsis, administration of hydroxyurea was found to significantly improve survival. Hydroxyurea treatment decreased neutrophil extravasation into the infected lung coincident with significantly reduced levels of E-selectin in serum and on pulmonary epithelia. The protective effect of hydroxyurea was abrogated in mice deficient in E-selectin. The decrease in E-selectin levels was also evident in human sickle cell patients receiving hydroxyurea therapy. These data indicate that in addition to induction of fetal hemoglobin, hydroxyurea attenuates leukocyte–endothelial interactions in sickle cell anemia, resulting in protection against lethal pneumococcal sepsis. PMID:22130804
LECKEL, K; BEECKEN, W-D; JONAS, D; OPPERMANN, E; COMAN, M C; BECK, K-F; CINATL, J; HAILER, N P; AUTH, M K H; BECHSTEIN, W O; SHIPKOVA, M; BLAHETA, R A
2003-01-01
Immunosuppression correlates with the development and recurrence of cancer. Mycophenolate mofetil (MMF) has been shown to reduce adhesion molecule expression and leucocyte recruitment into the donor organ. We have hypothesized that MMF might also prevent receptor-dependent tumour dissemination. Therefore, we have investigated the effects of MMF on tumour cell adhesion to human umbilical vein endothelial cells (HUVEC) and compared them with the effects on T cell–endothelial cell interactions. Influence of MMF on cellular adhesion to HUVEC was analysed using isolated CD4+ and CD8+ T cells, or WiDr colon adenocarcinoma cells as the model tumour. HUVEC receptors ICAM-1, VCAM-1, E-selectin and P-selectin were detected by flow cytometry, Western blot or Northern blot analysis. Binding activity of T cells or WiDr cells in the presence of MMF were measured using immobilized receptor globulin chimeras. MMF potently blocked both T cell and WiDr cell binding to endothelium by 80%. Surface expression of the endothelial cell receptors was reduced by MMF in a dose-dependent manner. E-selectin mRNA was concurrently reduced with a maximum effect at 1 µm. Interestingly, MMF acted differently on T cells and WiDr cells. Maximum efficacy of MMF was reached at 10 and 1 µm, respectively. Furthermore, MMF specifically suppressed T cell attachment to ICAM-1, VCAM-1 and P-selectin. In contrast, MMF prevented WiDr cell attachment to E-selectin. In conclusion, our data reveal distinct effects of MMF on both T cell adhesion and tumour cell adhesion to endothelial cells. This suggests that MMF not only interferes with the invasion of alloactivated T cells, but might also be of value in managing post-transplantation malignancy. PMID:14616783
NASA Astrophysics Data System (ADS)
Poeter, Michaela; Brandherm, Ines; Rossaint, Jan; Rosso, Gonzalo; Shahin, Victor; Skryabin, Boris V.; Zarbock, Alexander; Gerke, Volker; Rescher, Ursula
2014-04-01
To enable leukocyte adhesion to activated endothelium, the leukocyte receptor P-selectin is released from Weibel-Palade bodies (WPB) to the endothelial cell surface where it is stabilized by CD63. Here we report that loss of annexin A8 (anxA8) in human umbilical vein endothelial cells (HUVEC) strongly decreases cell surface presentation of CD63 and P-selectin, with a concomitant reduction in leukocyte rolling and adhesion. We confirm the compromised leukocyte adhesiveness in inflammatory-activated endothelial venules of anxA8-deficient mice. We find that WPB of anxA8-deficient HUVEC contain less CD63, and that this is caused by improper transport of CD63 from late multivesicular endosomes to WPB, with CD63 being retained in intraluminal vesicles. Consequently, reduced CD63 cell surface levels are seen following WPB exocytosis, resulting in enhanced P-selectin re-internalization. Our data support a model in which anxA8 affects leukocyte recruitment to activated endothelial cells by supplying WPB with sufficient amounts of the P-selectin regulator CD63.
Inhibition of selectin binding
Nagy, Jon O.; Spevak, Wayne R.; Dasgupta, Falguni; Bertozzi, Caroline
2001-10-09
This invention provides compositions for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10.sup.6 fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, these composition scan be used to palliate certain inflammatory and immunological conditions.
Inhibition of selectin binding
Nagy, Jon O.; Spevak, Wayne R.; Dasgupta, Falguni; Bertozzi, Caroline
1999-01-01
This invention provides compositions for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10.sup.6 fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, these composition scan be used to palliate certain inflammatory and immunological conditions.
Inhibition of selectin binding
Nagy, Jon O.; Spevak, Wayne R.; Dasgupta, Falguni; Bertozzi, Carolyn
1999-10-05
This invention provides a system for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10.sup.6 fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, this system can be used to palliate certain inflammatory and immunological conditions.
YOSHIMOTO, KATSUHIRO; TAJIMA, HIDEHIRO; OHTA, TETSUO; OKAMOTO, KOICHI; SAKAI, SEISHO; KINOSHITA, JUN; FURUKAWA, HIROYUKI; MAKINO, ISAMU; HAYASHI, HIRONORI; NAKAMURA, KEISHI; OYAMA, KATSUNOBU; INOKUCHI, MASAFUMI; NAKAGAWARA, HISATOSHI; ITOH, HIROSHI; FUJITA, HIDETO; TAKAMURA, HIROYUKI; NINOMIYA, ITASU; KITAGAWA, HIROHISA; FUSHIDA, SACHIO; FUJIMURA, TAKASHI; WAKAYAMA, TOMOHIKO; ISEKI, SHOICHI; SHIMIZU, KOICHI
2012-01-01
Several recent studies have reported that selectins are produced during ischemia-reperfusion injury, and that selectin ligands play an important role in cell binding to the endothelium and in liver metastasis. Portal clamping during pancreaticoduodenectomy with vessel resection for pancreatic head cancer causes hepatic ischemia-reperfusion injury, which might promote liver metastasis. We investigated the liver colonization of pancreatic cancer cells under hepatic ischemia-reperfusion and examined the involvement of E-selectin and its ligands. A human pancreatic cancer cell line (Capan-1) was injected into the spleen of mice after hepatic ischemia-reperfusion (I/R group). In addition, to investigate the effect of an anti-E-selectin antibody on liver colonization in the IR group, mice received an intraperitoneal injection of the anti-E-selectin antibody following hepatic ischemia-reperfusion and tumor inoculation (IR+Ab group). Four weeks later, mice were sacrificed and the number of tumor nodules on the liver was compared to mice without hepatic ischemia-reperfusion (control group). The incidence of liver metastasis in the I/R group was significantly higher (16 of 20, 80%) than that in the control group (6 of 20, 30%) (P<0.01). Moreover, mice in the I/R group had significantly more tumor nodules compared to those in the control group (median, 9.9 vs. 2.7 nodules) (P<0.01). In the I/R+Ab group, only 2 of 5 (40%) mice developed liver metastases. RT-PCR and southern blotting of the liver extracts showed that the expression of IL-1 and E-selectin mRNA after hepatic ischemia-reperfusion was significantly higher than the basal levels. Hepatic ischemia-reperfusion increases liver metastases and E-selectin expression in pancreatic cancer. These results suggest that E-selectin produced due to hepatic ischemia-reperfusion is involved in liver metastasis. PMID:22766603
Langerhans' cell expression of the selectin ligand, sialyl Lewis x.
Ross, E L; Barker, J N; Allen, M H; Chu, A C; Groves, R W; MacDonald, D M
1994-01-01
Cellular adhesion molecules play a central role in leucocyte migration through peripheral blood and tissues. A crucial stage in these events in selectin-mediated adhesion involving E-selectin expressed on activated endothelium interacting with a range of carbohydrate ligands expressed by specific subpopulations of leucocytes. As such mechanisms may be relevant to bone marrow-derived dendritic epidermal Langerhans' cell (LC) migration, expression of these carbohydrate ligands was assessed immunocytochemically in whole skin biopsies and in epidermal cell suspensions obtained from adult humans. Double-labelling experiments revealed that sialyl Lewis x, recognized by the monoclonal antibody CSLEX1, was expressed on epidermal LC (n = 9). Furthermore, expression was enhanced at 24 hr following epicutaneous application of antigen and in the inflammatory disorder psoriasis (n = 10). E-selectin was concomitantly strongly expressed on dermal endothelium in psoriasis and allergic contact dermatitis. Intradermal injection of the T-cell-derived cytokine interferon-gamma (IFN-gamma) led to increased LC expression of sialyl Lewis x. In epidermal cell suspensions, in contrast to keratinocytes, CD1a+ cells expressed sialyl Lewis x, intensity of which was enhanced after 4 days in culture. CSLEX1 staining could be abolished and CD15 (non-sialated Lewis x) expression induced by saponification and treatment with neuraminidase. Expression of other selectin ligands was also examined. While the cutaneous lymphocyte antigen defined by the monoclonal antibody HECA-452 reacted with a small minority of LC, sialyl Lewis a and sulphatide were not expressed under any experimental conditions. These studies indicate that E-selectin-sialyl Lewis x interactions are potentially important in LC migration, both into and out of skin. Images Figure 2 Figure 3 Figure 5 Figure 6 PMID:7512530
Wang, Wei-na; Xie, Ke-liang; Chen, Hong-guang; Han, Huan-zhi; Wang, Guo-lin; Yu, Yong-hao
2013-11-19
To explore the regulative effects of hydrogen-rich medium on lipopolysaccharide (LPS)-induced monocytes adhesion to human umbilical vein endothelial cells (HUVEC) and vascular endothelial permeability in vitro. Endothelial cells were seeded in 6-well plates and randomly divided into 4 groups (n = 42 each):control (A), hydrogen-rich medium (B), LPS (C) and LPS+hydrogen-rich medium (D). Cells were cultured in plain culture medium in groups A and C or in hydrogen-saturated culture medium in groups B and D.LPS 1 µg/ml was added into groups C and D.When forming a monolayer, monocytes were added into each group after 6, 12 and 24 h respectively. After a 90-minute co-culturing, adhesion status was detected by Wright-Giemsa stain.Supernatants were collected to detect the concentrations of vascular cell adhesion molecule-1 (VCAM-1) and E-selectin by enzyme-linked immunosorbent assay (ELISA). The expression of VE-cadherin was measured by Western blot. Cells were stained with immunofluorescence to show the distribution of VE-cadherin after a 24-hour incubation. Compared with group A, the adhesion of monocytes to endothelial cells increased (P < 0.05) in group C, the levels of E-selectin and VCAM-1 became elevated (P < 0.05) while the expression of VE-cadherin decreased significantly (P < 0.05). Compared with group C, adhesion decreased in group D (P < 0.05), the levels of E-selectin and VCAM-1 decreased (P < 0.05) while there was an increased expression of VE-cadherin (P < 0.05). Three timepoints showed the same tendency. The results of 24 h fluorescence indicated that, compared with group A, VE-cadherin was incomplete in cell-cell connections in group C.However it was complete and well-distributed in group D versus group C. Hydrogen-rich medium may reduce the LPS-induced release of adhesion molecules, lessen monocytic adhesion to HUVEC and regulate the expression of VE-cadherin to protect vascular permeability.
Fox, Susan C; May, Jane A; Dovlatova, Natalia; Glenn, Jackie R; Johnson, Andrew; White, Ann E; Radhakrishnan, Ashwin; Heptinstall, Stan
2018-02-20
Measurement of P-selectin on activated platelets as a means of measuring platelet function utilizing the technology described here has the advantage of not requiring immediate access to specialist equipment and expertise. Blood samples are activated, fixed, stored, and transported to a central laboratory for flow cytometric analysis. Here we have compared P-selectin with other more traditional approaches to measuring platelet function in blood and/or platelet-rich plasma (PRP) from patients with acute coronary syndromes on treatment for at least 1 month with either aspirin and clopidogrel or aspirin with prasugrel. The comparators were light transmission aggregometry (LTA), VerifyNow and Multiplate aggregometry (for determining the effects of aspirin) and LTA, VerifyNow and Multiplate together with the BioCytex VASP phosphorylation assay (for the P2Y 12 antagonists). The P-selectin Aspirin Test revealed substantial inhibition of platelet function in all but three of 96 patients receiving aspirin with clopidogrel and in none of 51 patients receiving aspirin and prasugrel. The results were very similar to those obtained using LTA. There was only one patient with high residual platelet aggregation and low P-selectin expression. The same patients identified as "non-responders" to aspirin also presented with the highest residual platelet activity as measured using the VerifyNow system, although not quite as well separated from the other values. With the Multiplate test only one of these patients clearly stood out from the others. The results obtained using the P-selectin P2Y 12 Test in 102 patients taking aspirin and clopidogrel were similar to the more traditional approaches in that a wide scatter of results was obtained. Generally, high values seen with the P-selectin P2Y 12 Test were also high with the LTA, VerifyNow, Multiplate, and BioCytex VASP P2Y 12 Tests. Similarly, low residual platelet function using the P2Y 12 test was seen irrespective of the testing procedure used. However, there were differences in some patients. Prasugrel was always more effective than clopidogrel in inhibiting platelet function with none of 56 patients (P-selectin and VerifyNow), only 2 of 56 patients (Multiplate) and only 3 of 56 patients (Biocytex VASP) demonstrating high on-treatment residual platelet reactivity (HRPR) defined using previously published cut-off values. The exception was LTA where there were 11 of 56 patients with HRPR. It remains to be seen which experimental approach provides the most useful information regarding outcomes after adjusting therapies in treated patients.
Coll-Vinent, B; Cebrián, M; Cid, M C; Font, C; Esparza, J; Juan, M; Yagüe, J; Urbano-Márquez, A; Grau, J M
1998-03-01
To investigate endothelial cell adhesion molecule expression in vessels from patients with classic polyarteritis nodosa (PAN). Frozen sections of 21 muscle and 16 nerve samples from 30 patients with biopsy-proven PAN and 12 histologically normal muscle and 2 histologically normal nerve samples from 12 controls were studied immunohistochemically, using specific monoclonal antibodies (MAb) that recognize adhesion molecules. Adhesion molecules identified were intercellular adhesion molecule 1 (ICAM-1), ICAM-2, ICAM-3, vascular cell adhesion molecule 1 (VCAM-1), platelet endothelial cell adhesion molecule 1 (PECAM-1), E-selectin, P-selectin, L-selectin, lymphocyte function-associated antigen 1 (LFA-1), and very late activation antigen 4 (VLA-4). Neutrophils were identified with a MAb recognizing neutrophil elastase. Endothelial cells were identified with the lectin ulex europaeus. In early lesions, expression of PECAM-1, ICAM-1, ICAM-2, and P-selectin was similar to that in control samples, and VCAM-1 and E-selectin were induced in vascular endothelium. In advanced lesions, immunostaining for adhesion molecules diminished or disappeared in luminal endothelium, whereas these molecules were clearly expressed in microvessels within and surrounding inflamed vessels. Staining in endothelia from vessels in a healing stage tended to be negative. A high proportion of infiltrating leukocytes expressed LFA-1 and VLA-4, and only a minority expressed L-selectin. No relationship between the expression pattern of adhesion molecules and clinical features, disease duration, or previous corticosteroid treatment was observed. Endothelial adhesion molecule expression in PAN is a dynamic process that varies according to the histopathologic stage of the vascular lesions. The preferential expression of constitutive and inducible adhesion molecules in microvessels suggests that angiogenesis contributes to the persistence of inflammatory infiltration in PAN.
Nomura, Shosaku; Inami, Norihito; Shouzu, Akira; Urase, Fumiaki; Maeda, Yasuhiro
2009-09-01
Elevated platelet-derived mircoparticles (MP) (PDMP), endothelial cell-derived MP (EDMP), and monocyte-derived MP (MDMP) concentrations are documented in almost all thrombotic diseases. However, the intricate interactions between PDMP, MDMP and EDMP in hypertensive patients with or without type 2 diabetes remains poorly understood. Therefore, to clarify the correlation and association of MPs, we measured and analysed the levels of MPs in 359 hypertensive patients. We compared the results of chemokines, cell adhesion molecules, platelet activation markers and microparticles in hypertensive patients with and without type 2 diabetes mellitus. The levels of all markers were significantly higher in the hypertensive patients with diabetes than in the non-diabetic patients. For hypertensive patients with diabetes, univariate analysis showed that age, body mass index, systolic blood pressure, high density lipoprotein cholesterol (HDL-CHO), creatinine (CRTN), soluble P-selectin (sP-selectin), soluble E-selectin (sE-selectin), soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble CD40 ligand (sCD40L), regulated on activation normally T-cell expressed and secreted (RANTES), monocyte chemotactic peptide-1 (MCP-1), MDMP and EDMP were significantly associated with PDMP. In addition, systolic blood pressure, HDL cholesterol, sP-selectin, sE-selectin, sVCAM-1, sCD40L, RANTES, MDMP and EDMP were significant factors in the multivariate model with PDMP. Furthermore, a correlation between plasma PDMP and MDMP or EDMP in hypertensive patients were observed both with and without diabetes. These results suggest that the existence of diabetes mellitus affects PDMP generation in hypertensive patients and that enhanced plasma levels of PDMP and an association between the plasma levels of PDMP, MDMP and EDMP may result in the development of atherothrombotic complications in hypertensive patients.
Tikhonova, Irina G.; Ivetic, Aleksandar; Schu, Peter
2017-01-01
L-selectin regulates leukocyte adhesion and rolling along the endothelium. Proteins binding to the cytoplasmic tail of L-selectin regulate L-selectin functions. We used L-selectin cytoplasmic tail peptide pulldown assays combined with high sensitivity liquid chromatography/mass spectrometry to identify novel L-selectin tail-binding proteins. Incubation of the L-selectin tail with cell extracts from phorbol 12-myristate 13-acetate-stimulated Raw 264.7 macrophages resulted in the binding of μ1A of the clathrin-coated vesicle AP-1 complex. Furthermore, full-length GST-μ1A and the GST-μ1A C-terminal domain, but not the GST-μ1A N-terminal domain, bind to L-selectin tail peptide, and the intracellular pool of L-selectin colocalizes with AP-1 at the trans-Golgi network. We identified a novel basic protein motif consisting of a cluster of three dibasic residues (356RR357, 359KK360, and 362KK363) in the membrane-proximal domain of the L-selectin tail as well as a doublet of aspartic acid residues (369DD370) in the membrane-distal end of the L-selectin tail involved in μ1A binding. Stimulation of Raw 264.7 macrophages with PMA augmented the amount of μ1A associated with anti-L-selectin immunoprecipitates. However, full-length GST-μ1A did not bind to the phospho-L-selectin tail or phospho-mimetic S364D L-selectin tail. Accordingly, we propose that phosphorylation of μ1A is required for interaction with the L-selectin tail and that L-selectin tail phosphorylation may regulate this interaction in vivo. Molecular docking of the L-selectin tail to μ1A was used to identify the μ1A surface domain binding the L-selectin tail and to explain how phosphorylation of the L-selectin tail abrogates μ1A interaction. Our findings indicate that L-selectin is transported constitutively by the AP-1 complex, leading to the formation of a trans-Golgi network reserve pool and that phosphorylation of the L-selectin tail blocks AP-1-dependent retrograde transport of L-selectin. PMID:28235798
Dib, Karim; Tikhonova, Irina G; Ivetic, Aleksandar; Schu, Peter
2017-04-21
L-selectin regulates leukocyte adhesion and rolling along the endothelium. Proteins binding to the cytoplasmic tail of L-selectin regulate L-selectin functions. We used L-selectin cytoplasmic tail peptide pulldown assays combined with high sensitivity liquid chromatography/mass spectrometry to identify novel L-selectin tail-binding proteins. Incubation of the L-selectin tail with cell extracts from phorbol 12-myristate 13-acetate-stimulated Raw 264.7 macrophages resulted in the binding of μ1A of the clathrin-coated vesicle AP-1 complex. Furthermore, full-length GST-μ1A and the GST-μ1A C-terminal domain, but not the GST-μ1A N-terminal domain, bind to L-selectin tail peptide, and the intracellular pool of L-selectin colocalizes with AP-1 at the trans -Golgi network. We identified a novel basic protein motif consisting of a cluster of three dibasic residues ( 356 RR 357 , 359 KK 360 , and 362 KK 363 ) in the membrane-proximal domain of the L-selectin tail as well as a doublet of aspartic acid residues ( 369 DD 370 ) in the membrane-distal end of the L-selectin tail involved in μ1A binding. Stimulation of Raw 264.7 macrophages with PMA augmented the amount of μ1A associated with anti-L-selectin immunoprecipitates. However, full-length GST-μ1A did not bind to the phospho-L-selectin tail or phospho-mimetic S364D L-selectin tail. Accordingly, we propose that phosphorylation of μ1A is required for interaction with the L-selectin tail and that L-selectin tail phosphorylation may regulate this interaction in vivo Molecular docking of the L-selectin tail to μ1A was used to identify the μ1A surface domain binding the L-selectin tail and to explain how phosphorylation of the L-selectin tail abrogates μ1A interaction. Our findings indicate that L-selectin is transported constitutively by the AP-1 complex, leading to the formation of a trans -Golgi network reserve pool and that phosphorylation of the L-selectin tail blocks AP-1-dependent retrograde transport of L-selectin. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
GMI-1070, a novel pan-selectin antagonist, reverses acute vascular occlusions in sickle cell mice
Chang, Jungshan; Patton, John T.; Sarkar, Arun; Ernst, Beat
2010-01-01
Leukocyte adhesion in the microvasculature influences blood rheology and plays a key role in vaso-occlusive manifestations of sickle cell disease. Notably, polymorphonuclear neutrophils (PMNs) can capture circulating sickle red blood cells (sRBCs) in inflamed venules, leading to critical reduction in blood flow and vaso-occlusion. Recent studies have suggested that E-selectin expression by endothelial cells plays a key role by sending activating signals that lead to the activation of Mac-1 at the leading edge of PMNs, thereby allowing RBC capture. Thus, the inhibition of E-selectin may represent a valuable target in this disease. Here, we have tested the biologic properties of a novel synthetic pan-selectin inhibitor, GMI-1070, with in vitro assays and in a humanized model of sickle cell vaso-occlusion analyzed by intravital microscopy. We have found that GMI-1070 predominantly inhibited E-selectin–mediated adhesion and dramatically inhibited sRBC-leukocyte interactions, leading to improved microcirculatory blood flow and improved survival. These results suggest that GMI-1070 may represent a valuable novel therapeutic intervention for acute sickle cell crises that should be further evaluated in a clinical trial. PMID:20508165
Burns, Siobhan O.; Killock, David J.; Moulding, Dale A.; Metelo, Joao; Nunes, Joao; Taylor, Ruth R.; Forge, Andrew; Thrasher, Adrian J.
2010-01-01
Leukocytes rely on dynamic actin-dependent changes in cell shape to pass through blood vessels, which is fundamental to immune surveillance. Wiskott-Aldrich Syndrome protein (WASp) is a hematopoietic cell–restricted cytoskeletal regulator important for modulating cell shape through Arp2/3-mediated actin polymerization. A recently identified WASpI294T mutation was shown to render WASp constitutively active in vivo, causing increased filamentous (F)–actin polymerization, high podosome turnover in macrophages, and myelodysplasia. The aim of this study was to determine the effect of WASpI294T expression in lymphocytes. Here, we report that lymphocytes isolated from a patient with WASpI294T, and in a cellular model of WASpI294T, displayed abnormal microvillar architecture, associated with an increase in total cellular F-actin. Microvillus function was additionally altered as lymphocytes bearing the WASpI294T mutation failed to roll normally on L-selectin ligand under flow. This was not because of defects in L-selectin expression, shedding, cytoskeletal anchorage, or membranal positioning; however, under static conditions of adhesion, WASpI294T-expressing lymphocytes exhibited altered dynamic interaction with L-selectin ligand, with a significantly reduced rate of adhesion turnover. Together, our results demonstrate that WASpI294T significantly affects lymphocyte membrane topography and L-selectin–dependent adhesion, which may be linked to defective hematopoiesis and leukocyte function in affected patients. PMID:20354175
Double-chimera proteins to enhance recruitment of endothelial cells and their progenitor cells.
Behjati, M; Kazemi, M; Hashemi, M; Zarkesh-Esfahanai, S H; Bahrami, E; Hashemi-Beni, B; Ahmadi, R
2013-08-20
Enhanced attraction of selective vascular reparative cells is of great importance in order to increase vascular patency after endovascular treatments. We aimed to evaluate efficient attachment of endothelial cells and their progenitors on surfaces coated with mixture of specific antibodies, L-selectin and VE-cadherin, with prohibited platelet attachment. The most efficient conditions for coating of L-selectin-Fc chimera and VE-cadherin-Fc chimera proteins were first determined by protein coating on ELISA plates. The whole processes were repeated on titanium substrates, which are commonly used to coat stents. Endothelial progenitor cells (EPCs) and human umbilical vein endothelial cells (HUVECs) were isolated and characterized by flow cytometry. Cell attachment, growth, proliferation, viability and surface cytotoxicity were evaluated using nuclear staining and MTT assay. Platelet and cell attachment were evaluated using scanning electron microscopy. Optimal concentration of each protein for surface coating was 50 ng/ml. The efficacy of protein coating was both heat and pH independent. Calcium ions had significant impact on simultaneous dual-protein coating (P<0.05). Coating stability data revealed more than one year stability for these coated proteins at 4°C. L-selectin and VE-cadherin (ratio of 50:50) coated surface showed highest EPC and HUVEC attachment, viability and proliferation compared to single protein coated and non-coated titanium surfaces (P<0.05). This double coated surface did not show any cytotoxic effect. Surfaces coated with L-selectin and VE-cadherin are friendly surface for EPC and endothelial cell attachment with less platelet attachment. These desirable factors make the L-selectin and VE-cadherin coated surfaces perfect candidate endovascular device. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Shen, Wen-Ching; Liang, Chan-Jung; Huang, Tao-Ming; Liu, Chen-Wei; Wang, Shu-Huei; Young, Guang-Huar; Tsai, Jaw-Shiun; Tseng, Ying-Chin; Peng, Yu-Sen; Wu, Vin-Cent; Chen, Yuh-Lien
2016-11-01
Uremic toxins are considered a risk factor for cardiovascular disorders in kidney diseases, but it is not known whether, under inflammatory conditions, they affect adhesion molecule expression on endothelial cells, which may play a critical role in acute kidney injury (AKI). In the present study, in cardiovascular surgery-related AKI patients, who are known to have high plasma levels of the uremic toxin indoxyl sulfate (IS), plasma levels of IL-1β were found to be positively correlated with plasma levels of the adhesion molecule E-selectin. In addition, high E-selectin and IL-1β expression were seen in the kidney of ischemia/reperfusion mice in vivo. We also examined the effects of IS on E-selectin expression by IL-1β-treated human umbilical vein endothelial cells (HUVECs) and the underlying mechanism. IS pretreatment of HUVECs significantly increased IL-1β-induced E-selectin expression, monocyte adhesion, and the phosphorylation of mitogen-activated protein kinases (ERK, p38, and JNK) and transcription factors (NF-κB and AP-1), and phosphorylation was decreased by pretreatment with inhibitors of ERK1/2 (PD98059), p38 MAPK (SB202190), and JNK (SP600125). Furthermore, IS increased IL-1β-induced reactive oxygen species (ROS) production and this effect was inhibited by pretreatment with N-acetylcysteine (a ROS scavenger) or apocynin (a NADPH oxidase inhibitor). Gel shift assays and ChIP-PCR demonstrated that IS enhanced E-selectin expression in IL-1-treated HUVECs by increasing NF-κB and AP-1 DNA-binding activities. Moreover, IS-enhanced E-selectin expression in IL-1β-treated HUVECs was inhibited by Bay11-7082, a NF-κB inhibitor. Thus, IS may play an important role in the development of cardiovascular disorders in kidney diseases during inflammation by increasing endothelial expression of E-selectin.
Weinhart, Marie; Gröger, Dominic; Enders, Sven; Riese, Sebastian B; Dernedde, Jens; Kainthan, Rajesh K; Brooks, Donald E; Haag, Rainer
2011-08-11
L-, P-, and E-Selectin are cell adhesion molecules that play a crucial role in leukocyte recruitment from the blood stream to the afflicted tissue in an acute and chronic inflammatory setting. Since selectins mediate the initial contact of leukocytes to the vascular endothelium, they have evolved as a valuable therapeutic target in diseases related to inflammation by inhibition of the physiological selectin-ligand interactions. In a previous study, it was demonstrated that dPGS, a fully synthetic heparin analogue, works as an efficient inhibitor towards L- and P-selectin in vitro as well as in vivo. Herein, the focus is directed towards the effect of size and charge density of the polyanion. The efficiency of L-selectin inhibition via an SPR-based in vitro assay and a cell-based flow chamber assay is investigated with dPGS ranging from approximately 4 to 2000 kDa. SPR measurements show that the inhibitory potential of highly sulfated dPGS increases with size and charge density. Thereby, IC(50) values from the micromolar to the low picomolar range are determined. The same tendency could be observed in a cell-based flow chamber assay with three representative dPGS samples. This structure-affinity relationship of dPGS suggests that the strong inhibitory potential of dPGS is not only based on the strong electrostatic interaction with areas of cationic surface potential on L-selectin but is also due to a steric shielding of the carbohydrate binding site by large, flexible dPGS particles. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hameed, Aisha; Rubab, Zille; Abbas Rizvi, Syed Khizar; Hussain, Shabbir; Latif, Waqas; Mohsin, Shahida
2017-07-01
TTo measure levels of platelet-derived microparticles and soluble P-selectin in patients of acute myocardial infarction and their comparison with healthy controls. This case-control study was conducted in Department of Haematology, University of Health Sciences Lahore from April to September 2013, and comprised patients of acute myocardial infarction in group 1 and healthy controls in group 2. Platelet-derived microparticles and soluble P-selectin were measured by enzyme-linked immunosorbent assay. SPSS21 was used for data analysis. Of the 80 participants, 50(62.5%) were patients and 30(37.5%) were controls. The mean levels of platelet-derived microparticles and soluble P-selectin were significantly higher in group 1 compared to group 2 (45.70±10.30 vs 10.60±0.96, and 51.46±9.30 vs 9.16±1.04, respectively) (p<0.001). There was no significant difference in levels of platelet-derived microparticles and soluble P-selectin in three intervals after acute myocardial infarction (p>0.05). Although levels of platelet-derived microparticles and soluble P-selectin did not correlate to creatinekinase-myocardial band levels (p>0.05), but there was a trend of significant correlation with cardiac troponin T (p<0.05). Levels of platelet-derived microparticles and soluble P-selectin can be used as novel early diagnostic marker of acute myocardial infarction.
Morel, Agnieszka; Rywaniak, Joanna; Bijak, Michał; Miller, Elżbieta; Niwald, Marta; Saluk, Joanna
2017-06-01
The epidemiological studies confirm an increased risk of cardiovascular disease in multiple sclerosis, especially prothrombotic events directly associated with abnormal platelet activity. The aim of our study was to investigate the level of blood platelet activation in the circulation of patients with chronic phase of multiple sclerosis (SP MS) and their reactivity in response to typical platelets' physiological agonists. We examined 85 SP MS patients diagnosed according to the revised McDonald's criteria and 50 healthy volunteers as a control group. The platelet activation and reactivity were assessed using flow cytometry analysis of the following: P-selectin expression (CD62P), activation of GP IIb/IIIa complex (PAC-1 binding), and formation of platelet microparticles (PMPs) and platelet aggregates (PA) in agonist-stimulated (ADP, collagen) and unstimulated whole blood samples. Furthermore, we measured the level of soluble P-selectin (sP-selectin) in plasma using ELISA method, to evaluate the in vivo level of platelet activation, both in healthy and SP MS subjects. We found a statistically significant increase in P-selectin expression, GP IIb/IIIa activation, and formation of PMPs and PA, as well as in unstimulated and agonist-stimulated (ADP, collagen) platelets in whole blood samples from patients with SP MS in comparison to the control group. We also determined the higher sP-selectin level in plasma of SP MS subjects than in the control group. Based on the obtained results, we might conclude that during the course of SP MS platelets are chronically activated and display hyperreactivity to physiological agonists, such as ADP or collagen.
Minimizing antibody surface density on liposomes while sustaining cytokine-activated EC targeting.
Almeda, Dariela; Wang, Biran; Auguste, Debra T
2015-02-01
Liposomes may be engineered to target inflamed endothelium by mimicking ligand-receptor interactions between leukocytes and cytokine-activated endothelial cells (ECs). The upregulation and assembly of vascular cell adhesion molecule-1 (VCAM1) and E-selectin on the cell membrane upon exposure to cytokines have shown potential for drug delivery vehicles to target sites of chronic endothelial inflammation, such as atherosclerosis and cancer. Herein, we characterized EC surfaces by measuring the E-selectin and VCAM1 surface densities and adhesion forces of aVCAM1 and aE-selectin to ECs. We quantified the antibody density, ratio, and diffusivity of liposomes to achieve significant binding and internalization. At 1 h, the 1:1 ratio of VCAM1:E-selectin antibodies was significantly higher than 1:0 and 0:1. Significant binding and uptake was achieved at aE-selectin densities as low as 400 molecules/μm(2). The highest levels of binding and uptake were achieved when using a 1:1 ratio of VCAM1:E-selectin antibodies at a density of 1000 molecules/μm(2); this density is 85% lower than previous reports. The binding and uptake of functionalized liposomes were reduced to levels comparable to IgG functionalized liposomes upon a 10-fold reduction in liposome membrane diffusivity. We conclude with a liposomal design that discriminates between healthy and inflamed endothelium while reducing antibody surface presentation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Foubert, Philippe; Silvestre, Jean-Sébastien; Souttou, Boussad; Barateau, Véronique; Martin, Coralie; Ebrahimian, Téni G.; Leré-Déan, Carole; Contreres, Jean Olivier; Sulpice, Eric; Levy, Bernard I.; Plouët, Jean; Tobelem, Gérard; Le Ricousse-Roussanne, Sophie
2007-01-01
Endothelial progenitor cell (EPC) transplantation has beneficial effects for therapeutic neovascularization; however, only a small proportion of injected cells home to the lesion and incorporate into the neocapillaries. Consequently, this type of cell therapy requires substantial improvement to be of clinical value. Erythropoietin-producing human hepatocellular carcinoma (Eph) receptors and their ephrin ligands are key regulators of vascular development. We postulated that activation of the EphB4/ephrin-B2 system may enhance EPC proangiogenic potential. In this report, we demonstrate in a nude mouse model of hind limb ischemia that EphB4 activation with an ephrin-B2–Fc chimeric protein increases the angiogenic potential of human EPCs. This effect was abolished by EphB4 siRNA, confirming that it is mediated by EphB4. EphB4 activation enhanced P selectin glycoprotein ligand-1 (PSGL-1) expression and EPC adhesion. Inhibition of PSGL-1 by siRNA reversed the proangiogenic and adhesive effects of EphB4 activation. Moreover, neutralizing antibodies to E selectin and P selectin blocked ephrin-B2–Fc–stimulated EPC adhesion properties. Thus, activation of EphB4 enhances EPC proangiogenic capacity through induction of PSGL-1 expression and adhesion to E selectin and P selectin. Therefore, activation of EphB4 is an innovative and potentially valuable therapeutic strategy for improving the recruitment of EPCs to sites of neovascularization and thereby the efficiency of cell-based proangiogenic therapy. PMID:17510705
Berger, Christian; Rossaint, Jan; Van Aken, Hugo; Westphal, Martin; Hahnenkamp, Klaus; Zarbock, Alexander
2014-01-01
The inappropriate activation, positioning, and recruitment of leukocytes are implicated in the pathogenesis of multiple organ failure in sepsis. Although the local anesthetic lidocaine modulates inflammatory processes, the effects of lidocaine in sepsis are still unknown. This double-blinded, prospective, randomized clinical trial was conducted to investigate the effect of lidocaine on leukocyte recruitment in septic patients. Fourteen septic patients were randomized to receive either a placebo (n = 7) or a lidocaine (n = 7) bolus (1.5 mg/kg), followed by continuous infusion (100 mg/h for patients >70 kg or 70 mg/h for patients <70 kg) over a period of 48 h. Selectin-mediated slow rolling, chemokine-induced arrest, and transmigration were investigated by using flow chamber and transmigration assays. Lidocaine treatment abrogated chemokine-induced neutrophil arrest and significantly impaired neutrophil transmigration through endothelial cells by inhibition of the protein kinase C-θ while not affecting the selectin-mediated slow leukocyte rolling. The observed results were not attributable to changes in surface expression of adhesion molecules or selectin-mediated capturing capacity, indicating a direct effect of lidocaine on signal transduction in neutrophils. These data suggest that lidocaine selectively inhibits chemokine-induced arrest and transmigration of neutrophils by inhibition of protein kinase C-θ while not affecting selectin-mediated slow rolling. These findings may implicate a possible therapeutic role for lidocaine in decreasing the inappropriate activation, positioning, and recruitment of leukocytes during sepsis.
Ameglio, F; D'Auria, L; Cordiali-Fei, P; Mussi, A; Valenzano, L; D'Agosto, G; Ferraro, C; Bonifati, C; Giacalone, B
1997-01-01
Recently, we reported that soluble E-selectin (sE-selectin), an isoform of the cell membrane E-selectin, an adhesion molecule synthesized only by endothelial cells, is significantly increased in sera of the patients with bullous pemphigoid (PB) or pemphigus vulgaris. A significant correlation was also found between the serum sE-selectin levels and the number of skin lesions, suggesting the possible use of this molecule to gauge disease intensity before therapy. One of the sE-selectin inducers is tumor nerosis factor-alpha (TNF-alpha), that is also able to enhance vascular endothelial growth factor (VEGF), a strong endothelium activator. On the basis of these observations, the present study was conducted to analyze the serum levels of VEGF, sE-selectin, and TNF-alpha in 8 patients with BP (age: 82, range 54-87, 7 males, 1 female) and in 6 patients affected affected with PV (age: 55, range 44-65; 5 males, 1 female) and to verify possible correlations between these variables and the disease activity, In addition, serum sE-selectin levels were measured over time and compared with the serum anti-epithelium antibodies titers. The sE-selectin, VEGF and TNF-alpha levels were measured in the samples by means of commercially available ELISA kit. The same samples were also employed to measure the anti-epithelium antibody titers. Serum VEGF, sE-selectin and TNF-alpha levels were significantly correlated each other (p at least < 0.01). All three variables were also significantly correlated with the number of lesions (p at least < 0.01). Serum VEGF levels were found increased (median = 178 pg/ml, range 37-595) as compared to 28 healthy controls (median = 135 pg/ml, range 18/269, p < 0.05). Also serum TNF-alpha levels were found increased (median = 5.5 pg/ml, range < 0.1-41.0) as compared to 28 healthy controls (median < 0.1 pg/ml, range < 0.1-5.3), p < 0.01). When the patients were observed over time, serum sE-selectin levels highly correlated with the disease intensity in both dermatoses, although with different regression curves. These data further underline the endothelium involvement in these bullous dermatoses and stress the possibility of employing sE-selectin as a non-specific follow-up marker of both BP and PV.
Zhao, Jianmei; Gao, Ying; Cheng, Chun; Yan, Meijuan; Wang, Jian
2013-03-01
Inflammatory infiltration has been recently emphasized in the demyelinating diseases of the central nervous system including multiple sclerosis. β-1,4-Galactosyltransferase I (β-1,4-GalT-I) is a major galactosyltransferase responsible for selectin-ligand biosynthesis, mediating rolling of the inflammatory lymphocytes. In the present study, Western blot showed that expression of β-1,4-GalT-I was low in normal or complete Freund's adjuvant (CFA) control rats' spinal cords, and it began to increase since early stage and peaked at E4 stage of experimental autoimmune encephalomyelitis (EAE) and restored approximately at normal level in the recovery stage. Immunohistochemisty revealed that upregulation of β-1,4-GalT-I was predominantly distributed in the white matter of spinal cord , while there was also some increased staining of β-1,4-GalT-I in the grey matter. Meanwhile, the expression of E-selectin, the substrate of β-1,4-GalT-I, was significantly increased, with a peak at E4 stage of EAE, and gradually decreased thereafter. Lectin blot showed that the protein bands with molecular weights of 65-25 kDa reacted a remarkable increase at the peak stage of EAE when compared with the normal and CFA control. Ricinus Communis Agglutinin-I (RCA-I) histochemistry revealed that RCA-Ι-positive signals were most intense in white matter of lumbosacral spinal cord at the peak stage of EAE (E4). Immunohistochemistry showed that β-1,4-GalT-I and CD62E, a marker for E-selectin stainings located in a considerable number of ED1 (+) macrophages in perivascular or in the white matter in EAE lesions, and a good co-localization of ED1 (+) cells with CD62E was observed. All these results suggest that β-1,4-GalT-I might serve as an inflammatory mediator regulating adhesion and migration of inflammatory cells in EAE, possibly through influencing the modification of galactosylated carbohydrate chains to modulate selectin-ligand biosynthesis and interaction with E-selectin.
Takahashi, Toru; Kobayashi, Seiichi; Fujino, Naoya; Suzuki, Takaya; Ota, Chiharu; Tando, Yukiko; Yamada, Mitsuhiro; Yanai, Masaru; Yamaya, Mutsuo; Kurosawa, Shin; Yamauchi, Masanori; Kubo, Hiroshi
2014-01-01
Objective Growing evidence suggests that endothelial injury is involved in the pathophysiology of chronic obstructive pulmonary disease (COPD). Circulating endothelial microparticles (EMPs) increase in patients with COPD because of the presence of endothelial injury. We examined the relationship between EMP number and changes in forced expiratory volume in 1 s (FEV1) in patients with COPD. Design Prospective study. Setting One hospital in Japan. Participants A total 48 outpatients with stable COPD coming to the hospital from September 2010 to September 2011. Primary and secondary outcomes measured Blood samples were collected and vascular endothelial (VE)-cadherin EMPs (CD144+ EMPs), E-selectin EMPs (CD62E+ EMPs) and platelet endothelial cell adhesion molecule EMPs (CD31+/CD41− EMPs) were measured using fluorescence-activated cell sorting. Annual FEV1 changes were evaluated using FEV1 data acquired a year before and a year after sample collection. Results The number of E-selectin and VE-cadherin EMPs showed significant negative correlations with annual FEV1 changes (rs=−0.65, p<0.001, rs=−0.43, p=0.003, respectively). Leucocyte counts tended to be correlated with annual FEV1 changes, but this correlation was not significant (rs=−0.28, p=0.057). There were significant differences in annual FEV1 changes between with and without history of frequent exacerbation (p=0.006), and among Global Initiative for Chronic Obstructive Lung Disease (GOLD) stages (p=0.009). Multiple linear regression analysis revealed E-selectin EMP to be the only significant parameter associated with annual FEV1 changes, independent of VE-cadherin EMP, GOLD stages, leucocyte counts, and history of frequent exacerbation. Receiver operating characteristic curves showed the optimum E-selectin EMP cut-off level for prediction of rapid FEV1 decline (>66 mL/year) to be 153.0/µL (areas under curve 0.78 (95% CI 0.60 to 0.89); sensitivity, 67%; specificity, 81%). Conclusions The high E-selectin EMP levels in stable patients with COPD are predictive of rapid FEV1 decline. Trial registration number UMIN000005168. PMID:24604485
Liu, Qiang; Imaizumi, Tadaatsu; Kawaguchi, Shogo; Aizawa, Tomomi; Matsumiya, Tomoh; Watanabe, Shojiro; Tsugawa, Koji; Yoshida, Hidemi; Tsuruga, Kazushi; Joh, Kensuke; Kijima, Hiroshi; Tanaka, Hiroshi
2018-05-23
Given the importance of neutrophil recruitment in the pathogenesis of glomerulonephritis (GN), the representative neutrophil chemoattractant C-X-C motif chemokine 1 (CXCL1)/GROα and the adhesion molecule E-selectin in glomerular endothelial cells (GECs) play a pivotal role in the development of GN. Endothelial Toll-like receptor 3 (TLR3) is thought to be involved in the inflammatory response via innate immunity. However, the role of endothelial TLR3 signaling in the expression of neutrophil chemoattractants and adhesion molecules remains to be elucidated. Thus, we aimed to examine this issue. We treated normal human GECs with polyinosinic-polycytidylic acid (poly IC), an authentic double-stranded RNA, and analyzed the expressions of CXCL1 and E-selectin using quantitative real-time reverse transcription-polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay. To further elucidate the poly IC-induced signaling pathway, we subjected the cells to RNA interference against TLR3, interferon (IFN)-β, nuclear factor (NF)-κB p65, and IFN regulatory factor (IRF) 3. We also used immunofluorescence to examine the endothelial expression of CXCL1 in biopsy specimens from patients with crescentic and non-crescentic purpura nephritis (PN). We found that the activation of TLR3 induced the endothelial expression of CXCL1 and E-selectin, and that this involved TLR3, -NF-κB, IRF3, and IFN-β. Intense endothelial CXCL1 expression was observed in biopsy specimens from patients with crescentic PN. These findings support a role for glomerular antiviral innate immunity in the pathogenesis of GN. Intervention of glomerular TLR3 signaling may therefore be a suitable therapeutic strategy for treating GN in the future. © 2018 S. Karger AG, Basel.
Kuryliszyn-Moskal, A; Ciolkiewicz, M; Klimiuk, P A; Sierakowski, S
2009-01-01
To evaluate whether nailfold capillaroscopy (NC) changes are associated with the main serum endothelial cell activation markers and the disease activity of systemic lupus erythematosus (SLE). Serum levels of vascular endothelial growth factor (VEGF), endothelin-1 (ET-1), soluble E-selectin (sE-selectin), and soluble thrombomodulin (sTM) were determined by an enzyme-linked immunosorbent assay (ELISA) in 80 SLE patients and 33 healthy controls. Nailfold capillary abnormalities were seen in 74 out of 80 (92.5%) SLE patients. A normal capillaroscopic pattern or mild changes were found in 33 (41.25%) and moderate/severe abnormalities in 47 (58.75%) of all SLE patients. In SLE patients a capillaroscopic score >1 was more frequently associated with the presence of internal organ involvement (p < 0.001) as well as with immunosuppressive therapy (p < 0.01). Significant differences were found in VEGF (p < 0.001), ET-1 (p < 0.001), sE-selectin (p < 0.01), and sTM (p < 0.001) serum concentrations between SLE patients with a capillaroscopic score > 1 and controls. SLE patients with severe/moderate capillaroscopic abnormalities showed significantly higher VEGF serum levels than patients with mild changes (p < 0.001). Moreover, there was a significant positive correlation between the severity of capillaroscopic changes and the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) (p < 0.005) as well as between capillaroscopic score and VEGF serum levels (p < 0.001). Our findings confirm the usefulness of NC as a non-invasive technique for the evaluation of microvascular involvement in SLE patients. A relationship between changes in NC, endothelial cell activation markers and clinical features of SLE suggest an important role for microvascular abnormalities in clinical manifestation of the disease.
López-Lerma, Ingrid; Estrach, Maria Teresa
2009-08-01
Cell adhesion molecules (CAMs) play a pivotal role in cutaneous localization of T cells. Tissue-selective localization of T lymphocytes to the skin is crucial for immune surveillance and in the pathogenesis of skin disorders. To detect the profile of soluble CAMs in patients with cutaneous T-cell lymphoma (CTCL), we investigated the levels of intercellular adhesion molecule-1 (ICAM-1, soluble ICAM-1 [sICAM-1]); intercellular adhesion molecule-3 (sICAM-3); vascular cell adhesion molecule-1 (sVCAM-1); and E-selectin (sE-selectin) in sera from patients with T-cell-mediated skin diseases. Serum levels of the 4 CAMs were measured by enzyme-linked immunosorbent assay in 42 participants including 11 patients with early stages of CTCL; 7 with advanced stages of CTCL including Sézary syndrome; 12 with inflammatory skin diseases (psoriasis and atopic dermatitis); 8 with skin diseases that may evolve into CTCL; and healthy individuals. Levels were correlated with biological parameters known as prognostic factors in non-Hodgkin lymphomas. In patients with CTCL, significantly increased levels of sICAM-1 and sICAM-3 were found when compared with healthy individuals and patients with inflammatory dermatosis. Soluble E-selectin and sVCAM-1 levels were not increased. There were significant positive correlations between sICAM-1 and sICAM-3 levels and each of them with beta2-microglobulin levels. Limited number of patients was a limitation. There is a distinct profile of soluble CAMs in patients with CTCL. However, future studies with a larger group of patients are needed to confirm these findings. We propose that high sICAM-1 and sICAM-3 levels have important implications in the context of immune response and immune surveillance in these patients.
Long, Dongping; Shang, Yunfei; Qiu, Youyi; Zhou, Bin; Yang, Peihui
2018-04-15
A novel single-cell analysis platform (SCA) was developed for the investigation of platelets adhesion to single human umbilical vein endothelial cell (HUVEC) via using the adhesion molecule (E-selectin) on the damaged HUVEC as the marker site, and integrating electrochemiluminescence (ECL) with the ultrasensitive Au@DL-ZnCQDs nanoprobes. The Au@DL-ZnCQDs nanocomposite, a kind of double layer zinc-coadsorbed carbon quantum dot (ZnCQDs) core-shell nanoprobe, was firstly constructed by using gold nanoparticles (AuNPs) as the core to load with ZnCQDs and then the citrate-modified silver nanoparticles (AgNPs) as the bridge to link AuNPs-ZnCQDs with ZnCQDs to form the core-shell with double layer ZnCQDs (DL-ZnCQDs) nanoprobe, revealed a 10-fold signal amplification. The H 2 O 2 -induced oxidative damage HUVECs were utilized as the cellular model on which anti-E-selectin functionalized nanoprobes specially recognized E-selectin, the SCA showed that the ECL signals decreased with platelets adhesion to single HUVEC. The proposed SCA could effectively and dynamically monitor the adhesion between single HUVEC and platelets in the absence and presence of collagen activation, moreover, be able to quantitatively detect the number of platelets adhesion to single HUVEC, and show a good analytical performance with linear range from 1 to 15 platelets. In contrast, the HUVEC was down-regulated the expression of adhesion molecules by treating with quercetin inhibitor, and the SCA also exhibited the feasibility for analysis of platelets adhesion to single HUVEC. Therefore, the single-cell analysis platform provided a novel and promising protocol for analysis of the single intercellular adhesion, and it will be beneficial to elucidate the pathogenesis of cardiovascular diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Bachelet, Laure; Bertholon, Isabelle; Lavigne, Damien; Vassy, Roger; Jandrot-Perrus, Martine; Chaubet, Frédéric; Letourneur, Didier
2009-02-01
P-selectin is an adhesion receptor expressed on activated platelets and endothelial cells. Its natural ligand, P-selectin glycoprotein ligand-1, is expressed on leucocytes and the P-selectin/PSGL-1 interaction is involved in leukocyte rolling. We have compared the interaction of P-selectin with several low molecular weight polysaccharides: fucoidan, heparin and dextran sulfate. Binding assays were obtained from the interaction of the polysaccharides with Sialyl Lewis X and PSGL-1 based constructs onto microtiter plates coated with P-selectin. SELDI TOF mass spectrometry was performed with anionic chips arrays coated with P-selectin in the absence or in the presence of polysaccharides. Kd were obtained from surface plasmon resonance experiments with immobilized P-selectin constructs, polysaccharides being injected in the mobile phase. Human whole blood flow cytometry experiments were performed with fluorescein isothiocyanate labelled polysaccharides with or without platelets activators. The fucoidan prevented P-selectin binding to Sialyl Lewis X with an IC(50) of 20 nM as compared to 400 nM for heparin and <25000 nM for dextran sulfate. It exhibited the highest affinity for immobilized P-selectin with a KD of 1.2 nM, two orders of magnitude greater than the K(D) of the other polysaccharides. Mass spectrometry evidenced the formation of a complex between P-selectin and fucoidan. The intensity of the fucoidan binding to platelets was dependent on the level of platelet activation. Competition between fucoidan and an anti P-selectin antibody demonstrated the specificity of the interaction. Low molecular weight fucoidan is a promising therapeutic agent of natural origin for biomedical applications.
Morikis, Vasilios A; Chase, Shannon; Wun, Ted; Chaikof, Elliot L; Magnani, John L; Simon, Scott I
2017-11-09
E-selectin extends from the plasma membrane of inflamed endothelium and serves to capture leukocytes from flowing blood via long-lived catch-bonds that support slow leukocyte rolling under shear stress. Its ligands are glycosylated with the tetrasaccharide sialyl Lewis x (sLe x ), which contributes to bond affinity and specificity. E-selectin-mediated rolling transmits signals into neutrophils that trigger activation of high-affinity β 2 -integrins necessary for transition to shear-resistant adhesion and transendothelial migration. Rivipansel is a glycomimetic drug that inhibits E-selectin-mediated vaso-occlusion induced by integrin-dependent sickle-red blood cell-leukocyte adhesion. How Rivipansel antagonizes ligand recognition by E-selectin and blocks outside-in signaling of integrin-mediated neutrophil arrest while maintaining rolling immune-surveillance is unknown. Here, we demonstrate that sLe x expressed on human L-selectin is preferentially bound by E-selectin and, on ligation, initiates secretion of MRP8/14 that binds TLR4 to elicit the extension of β 2 -integrin to an intermediate affinity state. Neutrophil rolling over E-selectin at precise shear stress transmits tension and catch-bond formation with L-selectin via sLe x , resulting in focal clusters that deliver a distinct signal to upshift β 2 -integrins to a high-affinity state. Rivipansel effectively blocked formation of selectin catch-bonds, revealing a novel mechanotransduction circuit that rapidly converts extended β 2 -integrins to high-affinity shear-resistant bond clusters with intracellular adhesion molecule 1 on inflamed endothelium.
Herman, Christine T.; Potts, Gregory K.; Michael, Madeline C.; Tolan, Nicole V.
2014-01-01
Model substrates presenting biochemical cues immobilized in a controlled and well-defined manner are of great interest for their applications in biointerface studies that elucidate the molecular basis of cell receptor-ligand interactions. Herein, we describe a direct, photochemical method to generate one-component surface-immobilized biomolecular gradients that are applied to the study of selectin-mediated leukocyte rolling. The technique employs benzophenone-modified glass substrates, which upon controlled exposure to UV light (350 – 365 nm) in the presence of protein-containing solutions facilitate the generation of covalently immobilized protein gradients. Conditions were optimized to generate gradient substrates presenting P-selectin and PSGL-1 (P-selectin Glycoprotein Ligand-1) immobilized at site densities over a 5- to 10-fold range (from as low as ~200 molecules/μm2 to as high as 6000 molecules/μm2). The resulting substrates were quantitatively characterized via fluorescence analysis and radioimmunoassays before their use in the leukocyte rolling assays. HL-60 promyelocytes and Jurkat T lymphocytes were assessed for their ability to tether to and roll on substrates presenting immobilized P-selectin and PSGL-1 under conditions of physiologically relevant shear stress. The results of these flow assays reveal the combined effect of immobilized protein site density and applied wall shear stress on cell rolling behavior. Two-component substrates presenting P-selectin and ICAM-1 (intercellular adhesion molecule-1) were also generated to assess the interplay between these two proteins and their effect on cell rolling and adhesion. These proof-of-principle studies verify that the described gradient generation approach yields well-defined gradient substrates that present immobilized proteins over a large range of site densities that are applicable for investigation of cell-materials interactions, including multi-parameter leukocyte flow studies. Future applications of this enabling methodology may lead to new insights into the biophysical phenomena and molecular mechanism underlying complex biological processes such as leukocyte recruitment and the inflammatory response. PMID:21614364
Low-level laser irradiation modifies the effect of hyperglycemia on adhesion molecule levels.
Góralczyk, Krzysztof; Szymańska, Justyna; Gryko, Łukasz; Fisz, Jacek; Rość, Danuta
2018-05-03
Endothelium plays a key role in maintaining vascular homeostasis by secreting active factors involved in many biological processes such as hemostasis, angiogenesis, and inflammation. Hyperglycemia in diabetic patients causes dysfunction of endothelial cells. Soluble fractions of adhesion molecules like sE-selectin and vascular cell adhesion molecule (sVCAM) are considered as markers of endothelial damage. The low-level laser therapy (LLLT) effectively supports the conventional treatment of vascular complications in diabetes, for example hard-to-heal wounds in patients with diabetic foot syndrome. The aim of our study was to evaluate the effect of low-energy laser at the wavelength of 635 nm (visible light) and 830 nm (infrared) on the concentration of adhesion molecules: sE-selectin and sVCAM in the supernatant of endothelial cell culture of HUVEC line. Cells were cultured under high-glucose conditions of 30 mM/L. We have found an increase in sE-selectin and sVCAM levels in the supernatant of cells cultured under hyperglycemic conditions. This fact confirms detrimental influence of hyperglycemia on vascular endothelial cell cultures. LLLT can modulate the inflammation process. It leads to a decrease in sE-selectin and sVCAM concentration in the supernatant and an increase in the number of endothelial cells cultured under hyperglycemic conditions. The influence of LLLT is greater at the wavelength of 830 nm.
Biomechanics of leukocyte rolling
Sundd, Prithu; Pospieszalska, Maria K.; Cheung, Luthur Siu-Lun; Konstantopoulos, Konstantinos; Ley, Klaus
2011-01-01
Leukocyte rolling on endothelial cells and other P-selectin substrates is mediated by P-selectin binding to P-selectin glycoprotein ligand-1 expressed on the tips of leukocyte microvilli. Leukocyte rolling is a result of rapid, yet balanced formation and dissociation of selectin-ligand bonds in the presence of hydrodynamic shear forces. The hydrodynamic forces acting on the bonds may either increase (catch bonds) or decrease (slip-bonds) their lifetimes. The force-dependent ‘catch-slip’ bond kinetics are explained using the ‘two pathway model’ for bond dissociation. Both the ‘sliding-rebinding’ and the ‘allosteric’ mechanisms attribute ‘catch-slip’ bond behavior to the force-induced conformational changes in the lectin-EGF domain hinge of selectins. Below a threshold shear stress, selectins cannot mediate rolling. This ‘shear-threshold’ phenomenon is a consequence of shear-enhanced tethering and catch-bond enhanced rolling. Quantitative dynamic footprinting microscopy has revealed that leukocytes rolling at venular shear stresses (> 0.6 Pa) undergo cellular deformation (large footprint) and form long tethers. The hydrodynamic shear force and torque acting on the rolling cell are thought to be synergistically balanced by the forces acting on tethers and stressed microvilli, however, their relative contribution remains to be determined. Thus, improvement beyond the current understanding requires in silico models that can predict both cellular and microvillus deformation and experiments that allow measurement of forces acting on individual microvilli and tethers. PMID:21515934
A functional glycoproteomics approach identifies CD13 as a novel E-selectin ligand in breast cancer.
Carrascal, M A; Silva, M; Ferreira, J A; Azevedo, R; Ferreira, D; Silva, A M N; Ligeiro, D; Santos, L L; Sackstein, R; Videira, P A
2018-05-17
The glycan moieties sialyl-Lewis-X and/or -A (sLe X/A ) are the primary ligands for E-selectin, regulating subsequent tumor cell extravasation into distant organs. However, the nature of the glycoprotein scaffolds displaying these glycans in breast cancer remains unclear and constitutes the focus of the present investigation. We isolated glycoproteins that bind E-selectin from the CF1_T breast cancer cell line, derived from a patient with ductal carcinoma. Proteins were identified using bottom-up proteomics approach by nanoLC-orbitrap LTQ-MS/MS. Data were curated using bioinformatics tools to highlight clinically relevant glycoproteins, which were validated by flow cytometry, Western blot, immunohistochemistry and in-situ proximity ligation assays in clinical samples. We observed that the CF1_T cell line expressed sLe X , but not sLe A and the E-selectin reactivity was mainly on N-glycans. MS and bioinformatics analysis of the targeted glycoproteins, when narrowed down to the most clinically relevant species in breast cancer, identified CD44 glycoprotein (HCELL) and CD13 as key E-selectin ligands. Additionally, the co-expression of sLe X -CD44 and sLe X -CD13 was confirmed in clinical breast cancer tissue samples. Both CD44 and CD13 glycoforms display sLe X in breast cancer and bind E-selectin, suggesting a key role in metastasis development. Such observations provide a novel molecular rationale for developing targeted therapeutics. While HCELL expression in breast cancer has been previously reported, this is the first study indicating that CD13 functions as an E-selectin ligand in breast cancer. This observation supports previous associations of CD13 with metastasis and draws attention to this glycoprotein as an anti-cancer target. Copyright © 2018 Elsevier B.V. All rights reserved.
Tapered oral dexamethasone for the acute chest syndrome of sickle cell disease
Quinn, Charles T.; Stuart, Marie J.; Kesler, Karen; Ataga, Kenneth I.; Wang, Winfred C.; Styles, Lori; Smith-Whitley, Kim; Wun, Ted; Raj, Ahsok; Hsu, Lewis L.; Krishnan, Suba; Kuypers, Frans A; Setty, B. N. Yamaja; Rhee, Seungshin; Key, Nigel S.; Buchanan, George R.
2011-01-01
Summary Tapered oral dexamethasone for acute chest syndrome (ACS) in sickle cell anaemia was studied using a novel ACS assessment tool and investigational biomarkers. Twelve participants were randomized (mean age 17.3 years) before early study termination. Dexamethasone decreased duration of hospitalization for ACS by 20.8 h compared to placebo (P=0.024). Rebound pain occurred in both groups (3 dexamethasone vs. 1 placebo). Overall, dexamethasone decreased the leucocyte activation biomarker, sL-selectin; however, participants with rebound pain had higher sL-selectin within 24 h of treatment (dexamethasone or placebo). This ACS assessment tool was feasibly applied, and sL-selectin is a promising biomarker of ACS therapy. PMID:21848879
Sackstein, Robert
2009-07-01
During evolution of the vertebrate cardiovascular system, the vast endothelial surface area associated with branching vascular networks mandated the development of molecular processes to efficiently and specifically recruit circulating sentinel host defense cells and tissue repair cells at localized sites of inflammation/tissue injury. The forces engendered by high-velocity blood flow commensurately required the evolution of specialized cell surface molecules capable of mediating shear-resistant endothelial adhesive interactions, thus literally capturing relevant cells from the blood stream onto the target endothelial surface and permitting subsequent extravasation. The principal effectors of these shear-resistant binding interactions comprise a family of C-type lectins known as 'selectins' that bind discrete sialofucosylated glycans on their respective ligands. This review explains the 'intelligent design' of requisite reagents to convert native CD44 into the sialofucosylated glycoform known as hematopoietic cell E-/L-selectin ligand (HCELL), the most potent E-selectin counter-receptor expressed on human cells, and will describe how ex vivo glycan engineering of HCELL expression may open the 'avenues' for the efficient vascular delivery of cells for a variety of cell therapies.
Faruqi, R M; Poptic, E J; Faruqi, T R; De La Motte, C; DiCorleto, P E
1997-08-01
We have examined the effects of N-acetyl-L-cysteine (NAC), a well-characterized, thiol-containing antioxidant, on agonist-induced monocytic cell adhesion to endothelial cells (EC). NAC inhibited interleukin-1 (IL-1 beta)-induced, but not basal, adhesion with 50% inhibition at approximately 20 mM. Monocytic cell adhesion to EC in response to tumor necrosis factor-alpha (TNF-alpha), lipopolysaccharide (LPS), alpha-thrombin, or phorbol 12-myristate 13-acetate (PMA) was similarly inhibited by NAC. Unlike published studies with pyrrolidinedithiocarbamate, which specifically inhibited vascular cell adhesion molecule 1 (VCAM-1), NAC inhibited IL-1 beta-induced mRNA and cell surface expression of both E-selectin and VCAM-1. NAC had no effect on the half-life of E-selectin or VCAM-1 mRNA. Although NAC reduced nuclear factor-kappa B (NF-kappa B) activation in EC as measured by gel-shift assays using an oligonucleotide probe corresponding to the consensus NF-kappa B binding sites of the VCAM-1 gene (VCAM-NF-kappa B), the antioxidant had no appreciable effect when an oligomer corresponding to the consensus NF-kappa B binding site of the E-selectin gene (E-selectin-NF-kappa B) was used. Because NF-kappa B has been reported to be redox sensitive, we studied the effects of NAC on the EC redox environment. NAC caused an expected dramatic increase in the reduced glutathione (GSH) levels in EC. In vitro studies demonstrated that whereas the binding affinity of NF-kappa B to the VCAM-NF-kappa B oligomer peaked at a GSH-to-oxidized glutathione (GSSG) ratio of approximately 200 and decreased at higher ratios, the binding to the E-selectin-NF-kappa B oligomer appeared relatively unaffected even at ratios > 400, i.e., those achieved in EC treated with 40 mM NAC. These results suggest that NF-kappa B binding to its consensus sequences in the VCAM-1 and E-selectin gene exhibits marked differences in redox sensitivity, allowing for differential gene expression regulated by the same transcription factor. Our data also demonstrate that NAC increases the GSH-to-GSSG ratio within the EC suggesting one possible mechanism through which this antioxidant inhibits agonist-induced monocyte adhesion to EC.
Ustyol, Ala; Aycan Ustyol, Esra; Gurdol, Figen; Kokali, Funda; Bekpınar, Seldag
2017-05-01
There is increasing evidence for a direct relationship between the vascular system and non-alcoholic fatty liver disease (NAFLD). The aim of this study was to investigate endocan and adhesion molecules such as P-selectin derived from the endothelium and platelets in obese children and adolescents with NAFLD. One hundred obese patients and 40 lean controls were enrolled. The obese subjects were divided into two subgroups based on the presence or absence of fatty liver. Blood samples were assayed for endocan, P-selectin, platelet-derived growth factor (PDGF), intercellular cell adhesion molecule (ICAM)-1, and vascular cell adhesion molecule (VCAM)-1. Obese patients with NAFLD presented higher ALT and insulin levels, as well as more profound dyslipidemia when compared with their counterparts without NAFLD. Serum levels of high-sensitivity C-reactive protein, VCAM-1 and ICAM-1 were found increased in both obese groups, regardless of NAFLD. In obese subjects with NAFLD, decreased P-selectin levels (51.6 ± 4.14 ng/mL) were detected as compared with the obese (72.3 ± 4.23) and control (74.2 ± 6.97) subjects. Furthermore, circulating P-selectin levels were closely associated with endocan levels (r = 0.852, p < 0.001). Childhood obesity leads to vascular inflammation and therefore may cause a predisposition to atherosclerosis at an early age. The possible outcome of decreased P-selectin levels with NAFLD development must be further investigated.
Kuckleburg, Christopher J; McClenahan, Dave J; Czuprynski, Charles J
2008-02-01
Histophilus somni is a gram-negative coccobacillus that causes respiratory and reproductive disease in cattle. The hallmark of systemic H. somni infection is diffuse vascular inflammation that can lead to an acute central nervous system disease known as thrombotic meningoencephalitis. Previously, we demonstrated that H. somni and its lipooligosaccharide (LOS) activate bovine platelets, leading to expression of P selectin, CD40L, and FasL. Because activated platelets have been reported to induce endothelial cell cytokine production and adhesion molecule expression, we sought to determine if bovine platelets induce proinflammatory and procoagulative changes in bovine pulmonary artery endothelial cells. Endothelial cells were incubated with platelets activated with adenosine diphosphate, H. somni, or H. somni LOS. Incubation with activated bovine platelets significantly increased expression of in adhesion molecules (intercellular adhesion molecule 1, E selectin) and tissue factor, as measured by flow cytometry, real-time polymerase chain reaction, and Western blot analysis. Activated platelets also up-regulated expression of endothelial cell IL-1beta, monocyte chemoattractant protein 1, and macrophage inflammatory protein 1alpha as determined by real-time polymerase chain reaction and an IL-1beta enzyme-linked immunosorbent assay. An interesting and surprising finding was that bovine platelets activated by H. somni or its LOS were internalized by bovine endothelial cells as visualized by transmission electron microscopy. This internalization seemed to correlate with endothelial cell activation and morphological changes indicative of cell stress. These findings suggest that activated platelets might play a role in promoting vascular inflammation during H. somni infection.
Tapered oral dexamethasone for the acute chest syndrome of sickle cell disease.
Quinn, Charles T; Stuart, Marie J; Kesler, Karen; Ataga, Kenneth I; Wang, Winfred C; Styles, Lori; Smith-Whitley, Kim; Wun, Ted; Raj, Ashok; Hsu, Lewis L; Krishnan, Suba; Kuypers, Frans A; Setty, Yamaja; Rhee, Seungshin; Key, Nigel S; Buchanan, George R
2011-10-01
Tapered oral dexamethasone for acute chest syndrome (ACS) in sickle cell anaemia was studied using a novel ACS assessment tool and investigational biomarkers. Twelve participants were randomized (mean age 17·3 years) before early study termination. Dexamethasone decreased duration of hospitalization for ACS by 20·8 h compared to placebo (P = 0·024). Rebound pain occurred in both groups (3 dexamethasone versus 1 placebo). Overall, dexamethasone decreased the leucocyte activation biomarker, sL-selectin; however, participants with rebound pain had higher sL-selectin within 24 h of treatment (dexamethasone or placebo). This ACS assessment tool was feasibly applied, and sL-selectin is a promising biomarker of ACS therapy. © 2011 Blackwell Publishing Ltd.
Schroeter, Micha F; Ratsch, Boris A; Lehmann, Jeanette; Baumgrass, Ria; Hamann, Alf; Syrbe, Uta
2012-01-01
Ligands for E-selectin and P-selectin (E-lig and P-lig) are induced on CD4+ T cells upon differentiation into effector T cells. Glycosyltransferases, especially α 1,3-fucosyltransferase VII (FucT-VII) and core 2 β1,6-N-acetyl-glycosaminyltransferase I (C2GlcNAcT-I), are critical for their synthesis. We here analysed the signals that control the expression of E-lig, P-lig and mRNA coding for FucT-VII and C2GlcNAcT-I. In line with previous reports, we found that P-lig expression correlates with the regulation of C2GlcNAcT-I, whereas E-lig expression can occur at low levels of C2GlcNAcT-I mRNA but requires high FucT-VII mRNA expression. Interestingly, the two enzymes are regulated by different signals. Activation-induced C2GlcNAcT-I up-regulation under permissive (T helper type 1) conditions was strongly reduced by cyclosporin A (CsA), suggesting the involvement of T-cell receptor-dependent, calcineurin/NFAT-dependent signals in combination with interleukin-12 (IL-12) -mediated signals in the regulation of C2GlcNAcT-I. In contrast, expression of FucT-VII mRNA was not significantly inhibited by CsA. Interleukin-4 inhibited the expression of FucT-VII but IL-2 and IL-7 were found to support induction of FucT-VII and E-lig. E-selectin, P-selectin and their ligands initially appeared to have rather overlapping functions. These findings however, unravel striking differences in the regulation of E-lig and P-lig expression, dictated by the dominance of FucT-VII and C2GlcNAcT-I, respectively, and their dependency on signals from either promiscuous or homeostatic cytokines (FucT-VII) or a strong T-cell receptor signal in combination with inflammatory cytokines in case of C2GlcNAcT-I. PMID:23039181
Eniola, A. Omolola; Willcox, P. Jeanene; Hammer, Daniel A.
2003-01-01
The firm arrest of leukocytes to the endothelium during inflammation is known to be mediated by endothelial intercellular adhesion molecules (ICAMs) binding to activated integrins displayed on leukocyte surface. Selectin-ligand interactions, which mediate rolling, are believed to be important for facilitating firm adhesion, either by activating integrins or by facilitating the transition to firm adhesion by making it easier for integrins to bind. Although leukocytes employ two distinct adhesion molecules that mediate different states of adhesion, the fundamental biophysical mechanisms by which two pairs of adhesion molecules facilitate cell adhesion is not well understood. In this work, we attempt to understand the interaction between two molecular systems using a cell-free system in which polystyrene microspheres functionalized with the selectin ligand, sialyl LewisX (sLeX), and an antibody against ICAM-1, aICAM-1, are perfused over P-selectin/ICAM-1 coated surfaces in a parallel plate flow chamber. Separately, sLeX/P-selectin interactions support rolling and aICAM-1/ICAM-1 interactions mediate firm adhesion. Our results show that sLeX/aICAM-1 microspheres will firmly adhere to P-selectin/ICAM-1 coated surfaces, and that the extent of firm adhesion of microspheres is dependent on wall shear stress within the flow chamber, sLeX/aICAM-1 microsphere site density, and P-selectin/ICAM-1 surface density ratio. We show that P-selectin's interaction with sLeX mechanistically facilitates firm adhesion mediated by antibody binding to ICAM-1: the extent of firm adhesion for the same concentration of aICAM-1/ICAM-1 interaction is greater when sLeX/P-selectin interactions are present. aICAM-1/ICAM-1 interactions also stabilize rolling by increasing pause times and decreasing average rolling velocities. Although aICAM-1 is a surrogate for β2-integrin, the kinetics of association between aICAM-1 and ICAM-1 is within a factor of 1.5 of activated integrin binding ICAM-1, suggesting the findings from this model system may be insightful to the mechanism of leukocyte firm adhesion. In particular, these experimental results show how two molecule systems can interact to produce an effect not achievable by either system alone, a fundamental mechanism that may pervade leukocyte adhesion biology. PMID:14507735
Derivation of Cinnamon Blocks Leukocyte Attachment by Interacting with Sialosides
Lin, Wei-Ling; Guu, Shih-Yun; Tsai, Chan-Chuan; Prakash, Ekambaranellore; Viswaraman, Mohan; Chen, Hsing-Bao; Chang, Chuan-Fa
2015-01-01
Molecules derived from cinnamon have demonstrated diverse pharmacological activities against infectious pathogens, diabetes and inflammatory diseases. This study aims to evaluate the effect of the cinnamon-derived molecule IND02 on the adhesion of leukocytes to host cells. The anti-inflammatory ability of IND02, a pentameric procyanidin type A polyphenol polymer isolated from cinnamon alcohol extract, was examined. Pretreatment with IND02 significantly reduced the attachment of THP-1 cells or neutrophils to TNF-α-activated HUVECs or E-selectin/ICAM-1, respectively. IND02 also reduced the binding of E-, L- and P-selectins with sialosides. Furthermore, IND02 could agglutinate human red blood cells (RBC), and the agglutination could be disrupted by sialylated glycoprotein. Our findings demonstrate that IND02, a cinnamon-derived compound, can interact with sialosides and block the binding of selectins and leukocytes with sialic acids. PMID:26076445
Targeting of MPEG-protected polyamino acid carrier to human E-selectin in vitro.
Kang, H W; Weissleder, R; Bogdanov, A
2002-01-01
Targeted diagnostic agents are expected to have a significant impact in molecular imaging of cell-surface associated markers of proliferation, inflammation and angiogenesis. In this communication, we describe a new class of targeted polyamino acid-based protected graft copolymers (PGC) of poly-(L-lysine) and methyl poly-(ethylene glycol) (PGC) covalently conjugated with a monoclonal antibody fragment, F(ab')(2). We utilized targeted PGC conjugates as carriers of near-infrared indocyanine fluorophores (Cy5.5) for optical imaging of endothelial cell populations expressing IL-1 beta inducible proinflammatory marker E-selectin. We compared two conjugation chemistries, involving either introduction of sulfhydryl group to F(ab')(2), or via direct attachment of the antibody fragment directly to the chemically activated PGC. Both PGC-based targeted agents demonstrated high binding specificity (20-30 fold over non-specific uptake) and were utilized for imaging E-selectin expression on human endothelial cells activated with IL-1 beta.
Liu, Jiangang; Liu, Zhongjie; Hu, Xiaohui; Zhang, Yuan; Zhang, Shiming
2018-01-01
During the development of postoperative vascular restenosis, the aberrant proliferation of vascular smooth muscle cells (VSMCs) is a critical event resulting in intimal hyperplasia. Inflammatory responses involving the activation of nuclear factor (NF)-κB are among the major molecular processes underlying restenosis. The present study aimed to investigate the roles of NF-κB in VSMC proliferation and restenosis following vascular anastomosis, as well as to evaluate the potential of synthetic E-selectin to downregulate NF-κB and thus inhibit vascular hyperplasia. A total of 72 adult male Sprague-Dawley rats were randomly assigned to three groups: Control, operation and treatment groups. Rats in the operation and treatment groups received longitudinal incisions in the right carotid arteries, which were closed using interrupted sutures. Following vascular anastomosis, synthetic E-selectin (10 mg/kg), or an equal volume of saline, was immediately injected into the right femoral vein of rats in the treatment and operation groups, respectively. Following surgery, the mRNA and protein expression levels of NF-κB at the site of anastomosis, the levels of tumor necrosis factor-α and interleukin-6 in the serum, NF-κB binding activity, and the presence of proliferating cell nuclear antigen (PCNA)-positive cells were evaluated by western blotting, reverse transcription-quantitative polymerase chain reaction, ELISA, electrophoretic mobility shift assay and immunofluorescence staining. The present results demonstrated that following treatment with synthetic E-selectin, the levels of NF-κB and the inflammatory response, as well as the presence of PCNA-positive cells, were significantly reduced (P<0.01). In conclusion, the results of the present study suggested that synthetic E-selectin may exert anti-inflammatory and anti-restenotic effects following vascular anastomosis in vivo. PMID:29393453
Lipid raft-associated β-adducin is required for PSGL-1-mediated neutrophil rolling on P-selectin.
Xu, Tingshuang; Liu, Wenai; Yang, Chen; Ba, Xueqing; Wang, Xiaoguang; Jiang, Yong; Zeng, Xianlu
2015-02-01
Lipid rafts, a liquid-ordered plasma membrane microdomain, are related to cell-surface receptor function. PSGL-1, a major surface receptor protein for leukocyte, also acts as a signaling receptor in leukocyte rolling. To investigate the role of lipid raft in PSGL-1 signaling in human neutrophils, we quantitatively analyzed lipid raft proteome of human promyelocytic leukemia cell line HL-60 cells and identified a lipid raft-associated protein β-adducin. PSGL-1 ligation induced dissociation of the raft-associated protein β-adducin from lipid rafts and actin, as well as phosphorylation of β-adducin, indicating a transient uncoupling of lipid rafts from the actin cytoskeleton. Knockdown of β-adducin greatly attenuated HL-60 cells rolling on P-selectin. We also showed that Src kinase is crucial for PSGL-1 ligation-induced β-adducin phosphorylation and relocation. Taken together, these results show that β-adducin is a pivotal lipid raft-associated protein in PSGL-1-mediated neutrophil rolling on P-selectin. © Society for Leukocyte Biology.
Effects of phytoestrogens derived from soy bean on expression of adhesion molecules on HUVEC.
Andrade, C M de; Sá, M F Silva de; Toloi, M R Torqueti
2012-04-01
The risks of hormone replacement therapy have led to a search for new alternatives such as phytoestrogens, plant compounds with estrogen-like biological activity. Isoflavones are the phytoestrogens most extensively studied and can be found in soybean, red clover and other plants. Due to this estrogen-like activity, phytoestrogens can have some effect on atherosclerosis. Human umbilical vein endothelial cells (HUVEC) have been extensively used to study the biology and pathobiology of human endothelial cells and most of the knowledge acquired is due to experiments with cultures of these cells. To evaluate the effects of the phytoestrogen extracts from Glycine max soy bean, genistein, formononetin, biochanin A and daidzein, as well as a mixture of these extracts (Mix), on expression of adhesion molecules, VCAM-1, ICAM-1 and E-selectin, by endothelial cell HUVEC, stimulated with lipopolysaccharide. HUVEC were cultured in medium EBM(2), pretreated with isoflavones for 24 and 48 h and then stimulated with lipopolysaccharide; in addition, isoflavones were added, after stimulation by lipopolysaccharide, to HUVEC. We evaluated the production of VCAM-1, ICAM-1 and E-selectin on cell surface, by cell-based enzyme immunoassay, and of sVCAM-1, sICAM-1 and sE-selectin in culture supernatant, by ELISA. Genistein, formononetin, biochanin A and daidzein, as well as the Mix were able to reduce VCAM-1, ICAM-1 and E-selectin on cell surface and in culture supernatant. Conclusion Isoflavones extracted from Glycine max soy bean, in vitro, presented antiatherogenic effects, reducing the expression of adhesion molecules and acting as preventive agents as well as therapeutic agents.
Hidalgo, Andrés; Chang, Jungshan; Jang, Jung-Eun; Peired, Anna J.; Chiang, Elaine Y.; Frenette, Paul S.
2009-01-01
Selectins and their ligands mediate leukocyte rolling allowing interactions with chemokines that lead to integrin activation and arrest. Here, we demonstrate that E-selectin is critical to induce a secondary wave of activating signals transduced specifically by E-selectin ligand-1, that induces polarized, activated αMβ2 integrin clusters at the leading edge of crawling neutrophils, allowing the capture of circulating erythrocytes or platelets. In a humanized model of sickle cell disease (SCD), the capture of erythrocytes by αMβ2 microdomains leads to acute lethal vascular occlusions. In a model of transfusion-related acute lung injury, polarized neutrophils capture circulating platelets, resulting in the generation of oxidative species that produces vascular damage and lung injury. Inactivation of E-selectin or αMβ2 prevented tissue injury in both inflammatory models, suggesting broad implications of this paradigm in thrombo-inflammatory diseases. These results indicate that endothelial selectins can influence neutrophil behavior beyond its canonical rolling step through delayed, organ-damaging, polarized activation. PMID:19305412
MiR-126 and miR-126* regulate shear-resistant firm leukocyte adhesion to human brain endothelium
Cerutti, Camilla; Edwards, Laura J.; de Vries, Helga E.; Sharrack, Basil; Male, David K.; Romero, Ignacio A.
2017-01-01
Leukocyte adhesion to brain endothelial cells, the blood-brain barrier main component, is a critical step in the pathogenesis of neuroinflammatory diseases such as multiple sclerosis (MS). Leukocyte adhesion is mediated mainly by selectins, cell adhesion molecules and chemokines induced by pro-inflammatory cytokines such as TNFα and IFNγ, but the regulation of this process is not fully clear. This study investigated the regulation of firm leukocyte adhesion to human brain endothelium by two different brain endothelial microRNAs (miRs), miR-126 and miR-126*, that are downregulated by TNFα and IFNγ in a human brain endothelial cell line, hCMEC/D3. Using a leukocyte adhesion in vitro assay under shear forces mimicking blood flow, we observed that reduction of endothelial miR-126 and miR-126* enhanced firm monocyte and T cell adhesion to hCMEC/D3 cells, whereas their increased expression partially prevented THP1, Jurkat and primary MS patient-derived PBMC firm adhesion. Furthermore, we observed that miR-126* and miR-126 downregulation increased E-selectin and VCAM1, respectively, while miR-126 overexpression reduced VCAM1 and CCL2 expression by hCMEC/D3 cells, suggesting that these miRs regulate leukocyte adhesion by modulating the expression of adhesion-associated endothelial mRNA targets. Hence, human brain endothelial miR-126 and miR-126* could be used as a therapeutic tool to reduce leukocyte adhesion and thus reduce neuroinflammation. PMID:28358058
Kim, Girak; Jang, Mi Seon; Son, Young Min; Seo, Min Ji; Ji, Sang Yun; Han, Seung Hyun; Jung, In Duk; Park, Yeong-Min; Jung, Hyun Jung; Yun, Cheol-Heui
2013-01-01
Background Curcumin is a promising candidate for a natural medicinal agent to treat chronic inflammatory diseases. Although CD4+ T cells have been implicated in the pathogenesis of chronic inflammation, whether curcumin directly regulates CD4+ T cells has not been definitively established. Here, we showed curcumin-mediated regulation of CD2/CD3/CD28-initiated CD4+ T cell activation in vitro. Methodology/Principal Findings Primary human CD4+ T cells were stimulated with anti-CD2/CD3/CD28 antibody-coated beads as an in vitro surrogate system for antigen presenting cell-T cell interaction and treated with curcumin. We found that curcumin suppresses CD2/CD3/CD28-initiated CD4+ T cell activation by inhibiting cell proliferation, differentiation and cytokine production. On the other hand, curcumin attenuated the spontaneous decline of CD69 expression and indirectly increased expression of CCR7, L-selectin and Transforming growth factor-β1 (TGF-β1) at the late phase of CD2/CD3/CD28-initiated T cell activation. Curcumin-mediated up-regulation of CD69 at late phase was associated with ERK1/2 signaling. Furthermore, TGF-β1 was involved in curcumin-mediated regulation of T cell activation and late-phase generation of regulatory T cells. Conclusions/Significance Curcumin not merely blocks, but regulates CD2/CD3/CD28-initiated CD4+ T cell activation by augmenting CD69, CCR7, L-selectin and TGF-β1 expression followed by regulatory T cell generation. These results suggest that curcumin could directly reduce T cell-dependent inflammatory stress by modulating CD4+ T cell activation at multiple levels. PMID:23658623
Blaheta, R A; Leckel, K; Wittig, B; Zenker, D; Oppermann, E; Harder, S; Scholz, M; Weber, S; Schuldes, H; Encke, A; Markus, B H
1998-12-01
The novel immunosuppressive drug mycophenolate mofetil (CellCept, MMF) blocks DNA-synthesis by the inhibition of the enzyme inosine monophosphate dehydrogenase (IMDH). IMDH is also involved in the synthesis of adhesion receptors which are known to play an important role in the regulation of cell-cell contacts. Therefore, application of MMF might lead to a reduction of cellular infiltrates in the course of transplant rejection. To evaluate the therapeutic value of MMF, we investigated to what extent MMF blocks T-lymphocyte infiltration in vitro with regard to (a) adhesion to endothelial cells, (b) horizontal migration along these cells and (c) penetration through the endothelial cells. The results demonstrated a strong inhibition of both CD4+ and CD8+ T-cell adhesion and penetration by MMF. The ID50 value for CD4+ T-cell adhesion was calculated to be 0.03 microM and the ID50 value for CD4+ T-cell penetration 1.21 microM. MMF did not significantly influence the horizontal migration of T-lymphocytes along the human vascular endothelial cell (HUVEC) borders. FACS-analysis revealed a diminished E-selectin and P-selectin expression on endothelial cell membranes in the presence of MMF. Although MMF did not interfere with the synthesis of T-cell adhesion ligands, the binding activity of lymphocytic leucocyte function associated antigen 1 (LFA-1), very late antigen 4 (VLA-4) and PSGL-1 (P-selectin glycoprotein ligand 1) to immobilized intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1) and P-selectin was impaired. Moreover, MMF prevented VLA-4 and PSGL-1 receptor accumulation on the membranes of T-cell pseudopodia. It can be concluded that MMF possesses potent infiltration blocking properties. MMF evoked down-regulation of specific endothelial membrane molecules and the loss of protein localization in the lymphocyte protrusions might be predominantly responsible for the observed blockade of cell adhesion and penetration.
A new approach to explore the binding space of polysaccharide-based ligands: selectin antagonists.
Calosso, Mickael; Charpentier, Daniel; Vaillancourt, Marc; Bencheqroun, Mohammed; St-Pierre, Gabrielle; Wilkes, Brian C; Guindon, Yvan
2012-12-13
The discovery of molecules that interfere with the binding of a ligand to a receptor remains a topic of great interest in medicinal chemistry. Herein, we report that a monosaccharide unit of a polysaccharide ligand can be replaced advantageously by a conformationally locked acyclic molecular entity. A cyclic component of the selectin ligand Sialyl Lewis(x), GlcNAc, is replaced by an acyclic tether, tartaric esters, which link two saccharide units. The conformational bias of this acyclic tether originates from the minimization of intramolecular dipole-dipole interaction and the gauche effect. The evaluation of the binding of these derivatives to P-selectin was measured by surface plasmon resonance spectroscopy. The results obtained in our pilot study suggest that the discovery of tunable tethers could facilitate the exploration of the carbohydrate recognition domain of various receptors.
Rank, A; Nieuwland, R; Liebhardt, S; Iberer, M; Grützner, S; Toth, B; Pihusch, R
2011-02-01
Microparticles (MP) are membrane vesicles with thrombogenic and immunomodulatory properties. We determined MP subgroups from resting platelets, activated platelets and endothelial cells in donors and apheresis platelet concentrates (PC). MP were double stained with annexin V and CD61 (platelet-derived MP; PMP), P-selectin or CD63 (MP from activated platelets) and CD144 plus E-selectin (endothelial cell-derived MP; EMP) and detected by flow cytometry in platelet donors (n=36) and apheresis PC (n=11; Trima™). PC contained MP, mainly from resting platelets [93% (90-95)], and minor fractions of PMP from activated platelets [P-selectin(+) or CD63(+); 4·8% (3·2-7·7) and 2·6% (2·0-4·0)]. Compared to donors, levels of annexin V+ MP, PMP, P-selectin(+) and CD63(+) MP were 1·7-, 2·3-, 8·6- and 3·1-fold higher in PC (all P<0·05). During storage (1-5 days), levels of annexin V+ MP and PMP did not increase, although small increases in the fraction of P-selectin(+) or CD63(+) MP occurred (both P<0·05). PC also contained EMP, which were 2·6- to 3·7-fold enriched in PC compared to donors (P<0·05). Transfusion of apheresis PC also results in transfusion of HLA-carrying PMP and EMP. This might counteract the aim of reducing transfused HLA load by leucodepletion. The increases in PMP exposing P-selectin or CD63 reflect mild platelet activation during storage. We conclude that in leucodepleted platelet apheresis using fluidized particle bed technology, MP are harvested mainly from the donor by apheresis. Improvement in apheresis technology might reduce MP load. © 2010 The Author(s). Vox Sanguinis © 2010 International Society of Blood Transfusion.
Schumacher, A; Seljeflot, I; Lerkerød, A B; Sommervoll, L; Otterstad, J E; Arnesen, H
2002-10-01
To investigate if Chlamydia pneumoniae and/or Helicobacter pylori seropositivity is associated with elevated levels of soluble endothelial cell adhesion molecules (sCAMs) as markers of atherosclerotic activity. Immunoglobulin A (IgA) and IgG antibodies to the two bacteria, soluble intercellular cell adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1) and E-selectin were measured in coronary heart disease (CHD) patients (n = 193) and age- and sex-matched controls (n = 193). Two different serological methods were used for the detection of Chlamydia antibodies: Labsystems microimmunofluorescence to detect species-specific C. pneumoniae antibodies and Medac's recombinant enzyme-linked immunosorbent assay to detect genus-specific lipopolysaccharide antibodies. The concentrations of sICAM-1 and E-selectin were higher in CHD patients with positive vs. negative Chlamydia lipopolysaccharide IgA (P = 0.044 for both). H. pylori antibodies alone did not predict raised levels of sCAMs, but in CHD patients sICAM-1 was increased with IgA seropositivity to both bacteria compared to double seronegativity (P = 0.034). Concentrations of sVCAM-1 were elevated in CHD patients with double IgA seropositivity compared to those with Chlamydia lipopolysaccharide IgA seropositivity alone (P = 0.018). Our results may indicate that C. pneumoniae contributes to increased inflammation in CHD, and that this contribution is even more pronounced when present in combination with H. pylori IgA antibodies.
Miner, Jonathan J.; Xia, Lijun; Yago, Tadayuki; Kappelmayer, János; Liu, Zhenghui; Klopocki, Arkadiusz G.; Shao, Bojing; McDaniel, J. Michael; Setiadi, Hendra; Schmidtke, David W.
2008-01-01
In inflamed venules, leukocytes use P-selectin glycoprotein ligand-1 (PSGL-1) to roll on P-selectin and E-selectin and to activate integrin αLβ2 (lymphocyte function-associated antigen-1, LFA-1) to slow rolling on intercellular adhesion molecule-1 (ICAM-1). Studies in cell lines have suggested that PSGL-1 requires its cytoplasmic domain to localize in membrane domains, to support rolling on P-selectin, and to signal through spleen tyrosine kinase (Syk). We generated “ΔCD” mice that express PSGL-1 without the cytoplasmic domain. Unexpectedly, neutrophils from these mice localized PSGL-1 normally in microvilli, uropods, and lipid rafts. ΔCD neutrophils expressed less PSGL-1 on their surfaces because of inefficient export from the endoplasmic reticulum. Limited digestion of wild-type neutrophils with O-sialoglycoprotein endopeptidase was used to reduce the PSGL-1 density to that on ΔCD neutrophils. At matched PSGL-1 densities, both ΔCD and wild-type neutrophils rolled similarly on P-selectin. However, ΔCD neutrophils rolling on P-selectin did not trigger Syk-dependent activation of LFA-1 to slow rolling on ICAM-1. These data demonstrate that the PSGL-1 cytoplasmic domain is dispensable for leukocyte rolling on P-selectin but is essential to activate β2 integrins to slow rolling on ICAM-1. PMID:18550846
Coll-Vinent, B.; Vilardell, C.; Font, C.; Oristrell, J.; Hernandez-Rodrigu..., J.; Yague, J.; Urbano-Marquez, A.; Grau, J.; Cid, M.
1999-01-01
OBJECTIVE—To evaluate whether changes in concentrations of circulating adhesion molecules are related to disease activity in patients with giant cell arteritis (GCA). METHODS—A sandwich ELISA was used to measure soluble intercellular adhesion molecule-1 (sICAM-1), sICAM-3, vascular cell adhesion molecule-1 (sVCAM-1), E-selectin (sE-selectin), and L-selectin (sL-selectin) in serum and plasma samples from patients with GCA. A cross sectional study was performed on 64 GCA patients at different activity stages and on 35 age and sex matched healthy donors. Thirteen of these patients were evaluated at the time of diagnosis and serially during follow up. RESULTS—At the time of diagnosis, sICAM-1 concentrations were significantly higher in active GCA patients than in controls (mean (SD) 360.55 (129.78) ng/ml versus 243.25 (47.43) ng/ml, p<0.001). In contrast, sICAM-3, sVCAM-1, sE-selectin, and sL-selectin values did not differ from those obtained in normal donors. With corticosteroid administration, a decrease in sICAM-1 concentrations was observed, reaching normal values when clinical remission was achieved (263.18 (92.7) ng/ml globally, 293.59 (108.39) ng/ml in the group of patients in recent remission, and 236.83 (70.02) ng/ml in those in long term remission). In the 13 patients followed up longitudinally, sICAM-1 values also normalised with clinical remission (225.87 (64.25) ng/ml in patients in recent remission, and 256.29 (75.15) ng/ml in those in long term remission). CONCLUSIONS—Circulating sICAM-1 concentrations clearly correlate with clinically apparent disease activity in GCA patients. Differences with results previously found in patients with other vasculitides may indicate that different pathogenic mechanisms contribute to vascular inflammation in different disorders. Keywords: adhesion molecules; giant cell arteritis; inflammation PMID:10364919
Stocco, Bianca; Fumagalli, Helen Figueiredo; Franceschini, Silvio Antônio; Martinez, Edson Zangiacomi; Marzocchi-Machado, Cleni Mara; Toloi, Maria Regina Torqueti
2012-11-01
The objective of this study was to evaluate the effect of three contraceptive pills containing ethinylestradiol (EE) (20 or 30 mcg) in combination with drospirenone (DRSP) and levonorgestrel (LNG) on plasma concentration of adhesion molecules vascular cell adhesion molecule -1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and E-selectin. A cross-sectional study was conducted with 72 participants (18-30 years old) distributed into three groups that used oral contraceptives containing EE 20 or 30 mcg combined with DRSP 3 mg or EE 30 mcg/LNG 150 mcg for at least 6 months. The control group was comprised of nonusers of contraceptives. Soluble VCAM-1, soluble ICAM-1 and soluble E-selectin were evaluated by enzyme-linked immunosorbent assay. Compared to the control group, a significant decrease was found in VCAM-1 and ICAM-1 concentrations with use of DRSP/20 EE and LNG/30 EE. DRSP/20 EE and LNG/30 EE induce favorable changes in endothelial function. Copyright © 2012 Elsevier Inc. All rights reserved.
Global vascular expression of murine CD34, a sialomucin-like endothelial ligand for L-selectin.
Baumhueter, S; Dybdal, N; Kyle, C; Lasky, L A
1994-10-15
Extravasation of leukocytes into organized lymphoid tissues and into sites of inflammation is critical to immune surveillance. Leukocyte migration to peripheral lymph nodes (PLN), mesenteric lymph nodes (MLN) and Peyer's patches (PP) depends on L-selectin, which recognizes carbohydrate-bearing, sialomucin-like endothelial cell surface glycoproteins. Two of these ligands have been identified at the molecular level. One is the potentially soluble mucin, GlyCAM 1, which is almost exclusively produced by high endothelial venules (HEV) of PLN and MLN. The second HEV ligand for L-selectin is the membrane-bound sialomucin CD34. Historically, this molecule has been successfully used to purify human pluripotent bone marrow stem cells, and limited data suggest that human CD34 is present on the vascular endothelium of several organs. Here we describe a comprehensive analysis of the vascular expression of CD34 in murine tissues using a highly specific antimurine CD34 polyclonal antibody. CD34 was detected on vessels in all organs examined and was expressed during pancreatic and skin inflammatory episodes. A subset of HEV-like vessels in the inflamed pancreas of nonobese diabetic (NOD) mice are positive for both CD34 and GlyCAM 1, and bind to an L-selectin/immunoglobulin G (IgG) chimeric probe. Finally, we found that CD34 is present on vessels of deafferentiated PLN, despite the fact that these vessels are no longer able to interact with L-selectin or support lymphocyte binding in vitro or trafficking in vivo. Our data suggest that the regulation of posttranslational carbohydrate modifications of CD34 is critical in determining its capability to act as an L-selectin ligand. Based on its ubiquitous expression, we propose that an appropriately glycosylated form of vascular CD34 may act as a ligand for L-selectin-mediated leukocyte trafficking to both lymphoid and nonlymphoid sites.
Microvascular Channel Device to Study Aggressiveness in Prostate Cancer Metastasis
2013-06-01
Aigner S, Ramos CL, Hafezi- Moghadam A, Lawrence MB, Friederichs J, Altevogt P, Ley K CD24 mediates rolling of breast carcinoma cells on P-selectin...1998 FASEB J 12:1241-1251 9. Friederichs J, Zeller Y, Hafezi- Moghadam A, Grone HJ, Ley K, Altevogt P The CD24/P-selectin binding pathway initiates
Foster, C A; Dreyfuss, M; Mandak, B; Meingassner, J G; Naegeli, H U; Nussbaumer, A; Oberer, L; Scheel, G; Swoboda, E M
1994-11-01
Skin diseases with an inflammatory component, regardless of their etiology, are characterized at some point by the extravasation and subsequent infiltration of leukocytes into the dermal and/or epidermal compartments. This trafficking pattern is determined by a complex series of events whereby the leukocytes interact with cell adhesion molecules (CAM), particularly those induced on endothelial cells following activation with various inflammatory mediators. Vascular CAMs belonging to the selectin family (i.e., P-selectin and E-selectin) are thought to mediate early and reversible events involving leukocyte rolling and margination along the lumenal surface of microvascular cells (post-capillary venules). Certain members of the immunoglobulin supergene family (i.e., VCAM-1 and ICAM-1) regulate later and irreversible steps which lead to firm attachment and subsequent diapedesis of leukocytes. Accumulating evidence suggests that if one blocks the ligand-binding sites between leukocytes and endothelial cells, or inhibits vascular CAM expression, hematopoietic cell extravasation and progressive inflammatory events can be greatly diminished. To identify such inhibitors we developed a cell-based Elisa using the human microvascular cell line HMEC-1. As reported in the present paper, this approach yielded a naturally-occurring, low molecular weight compound which potently inhibits cytokine-induced adhesion molecule expression on cultured endothelial cells, without modulating "house-keeping" proteins.
Askarova, Sholpan; Sun, Zhe; Sun, Grace Y; Meininger, Gerald A; Lee, James C-M
2013-01-01
Increased deposition of amyloid-β peptide (Aβ) at the cerebral endothelial cell (CEC) surface has been implicated in enhancement of transmigration of monocytes across the brain blood barrier (BBB) in Alzheimer's disease (AD). In this study, quantitative immunofluorescence microscopy (QIM) and atomic force microscopy (AFM) with cantilevers biofunctionalized by sialyl-Lewis(x) (sLe(x)) were employed to investigate Aβ-altered mechanics of membrane tethers formed by bonding between sLe(x) and p-selectin at the CEC surface, the initial mechanical step governing the transmigration of monocytes. QIM results indicated the ability for Aβ to increase p-selectin expression at the cell surface and promote actin polymerization in both bEND3 cells (immortalized mouse CECs) and human primary CECs. AFM data also showed the ability for Aβ to increase cell stiffness and adhesion probability in bEND3 cells. On the contrary, Aβ lowered the overall force of membrane tether formation (Fmtf ), and produced a bimodal population of Fmtf , suggesting subcellular mechanical alterations in membrane tethering. The lower Fmtf population was similar to the results obtained from cells treated with an F-actin-disrupting drug, latrunculin A. Indeed, AFM results also showed that both Aβ and latrunculin A decreased membrane stiffness, suggesting a lower membrane-cytoskeleton adhesion, a factor resulting in lower Fmtf . In addition, these cerebral endothelial alterations induced by Aβ were abrogated by lovastatin, consistent with its anti-inflammatory effects. In sum, these results demonstrated the ability for Aβ to enhance p-selectin expression at the CEC surface and induce cytoskeleton reorganization, which in turn, resulted in changes in membrane-cytoskeleton adhesion and membrane tethering, mechanical factors important in transmigration of monocytes through the BBB.
Askarova, Sholpan; Sun, Zhe; Sun, Grace Y.; Meininger, Gerald A.; Lee, James C-M.
2013-01-01
Increased deposition of amyloid-β peptide (Aβ) at the cerebral endothelial cell (CEC) surface has been implicated in enhancement of transmigration of monocytes across the brain blood barrier (BBB) in Alzheimer's disease (AD). In this study, quantitative immunofluorescence microscopy (QIM) and atomic force microscopy (AFM) with cantilevers biofunctionalized by sialyl-Lewisx (sLex) were employed to investigate Aβ-altered mechanics of membrane tethers formed by bonding between sLex and p-selectin at the CEC surface, the initial mechanical step governing the transmigration of monocytes. QIM results indicated the ability for Aβ to increase p-selectin expression at the cell surface and promote actin polymerization in both bEND3 cells (immortalized mouse CECs) and human primary CECs. AFM data also showed the ability for Aβ to increase cell stiffness and adhesion probability in bEND3 cells. On the contrary, Aβ lowered the overall force of membrane tether formation (Fmtf), and produced a bimodal population of Fmtf, suggesting subcellular mechanical alterations in membrane tethering. The lower Fmtf population was similar to the results obtained from cells treated with an F-actin-disrupting drug, latrunculin A. Indeed, AFM results also showed that both Aβ and latrunculin A decreased membrane stiffness, suggesting a lower membrane-cytoskeleton adhesion, a factor resulting in lower Fmtf. In addition, these cerebral endothelial alterations induced by Aβ were abrogated by lovastatin, consistent with its anti-inflammatory effects. In sum, these results demonstrated the ability for Aβ to enhance p-selectin expression at the CEC surface and induce cytoskeleton reorganization, which in turn, resulted in changes in membrane-cytoskeleton adhesion and membrane tethering, mechanical factors important in transmigration of monocytes through the BBB. PMID:23593361
Shih, Mei Fen; Chen, Lih Chi; Cherng, Jong Yuh
2013-01-01
The inflammation process in large vessels involves the up-regulation of vascular adhesion molecules such as endothelial cell selectin (E-selectin), intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) which are also known as the markers of atherosclerosis. We have reported that Chlorella 11-peptide exhibited effective anti-inflammatory effects. This peptide with an amino sequence Val-Glu-Cys-Tyr-Gly-Pro-Asn-Arg-Pro-Gln-Phe was further examined for its potential in preventing atherosclerosis in this study. In particular, the roles of Chlorella 11-peptide in lowering the production of vascular adhesion molecules, monocyte chemoattractant protein (MCP-1) and expression of endothelin-1 (ET-1) from endothelia (SVEC4-10 cells) were studied. The production of E-selectin, ICAM-1, VCAM-1 and MCP-1 in SVEC4-10 cells was measured with ELISA. The mRNA expression of ET-1 was analyzed by RT-PCR and agarose gel. Results showed that Chlorella 11-peptide significantly suppressed the levels of E-selectin, ICAM, VCAM, MCP-1 as well as ET-1 gene expression. The inhibition of ICAM-1 and VCAM-1 production by Chlorella 11-peptide was reversed in the presence of protein kinase A inhibitor (H89) which suggests that the cAMP pathway was involved in the inhibitory cause of the peptide. In addition, this peptide was shown to reduce the extent of increased intercellular permeability induced by combination of 50% of lipopolysaccharide (LPS)-activated RAW 264.7 cells medium and 50% normal SEVC cell culture medium (referred to as 50% RAW-conditioned medium). These data demonstrate that Chlorella 11-peptide is a promising biomolecule in preventing chronic inflammatory-related vascular diseases. PMID:24129228
O-sulfated bacterial polysaccharides with low anticoagulant activity inhibit metastasis.
Borgenström, Marjut; Wärri, Anni; Hiilesvuo, Katri; Käkönen, Rami; Käkönen, Sanna; Nissinen, Liisa; Pihlavisto, Marjo; Marjamäki, Anne; Vlodavsky, Israel; Naggi, Annamaria; Torri, Giangiacomo; Casu, Benito; Veromaa, Timo; Salmivirta, Markku; Elenius, Klaus
2007-07-01
Heparin-like polysaccharides possess the capacity to inhibit cancer cell proliferation, angiogenesis, heparanase-mediated cancer cell invasion, and cancer cell adhesion to vascular endothelia via adhesion receptors, such as selectins. The clinical applicability of the antitumor effect of such polysaccharides, however, is compromised by their anticoagulant activity. We have compared the potential of chemically O-sulfated and N,O-sulfated bacterial polysaccharide (capsular polysaccharide from E. COLI K5 [K5PS]) species to inhibit metastasis of mouse B16-BL6 melanoma cells and human MDA-MB-231 breast cancer cells in two in vivo models. We demonstrate that in both settings, O-sulfated K5PS was a potent inhibitor of metastasis. Reducing the molecular weight of the polysaccharide, however, resulted in lower antimetastatic capacity. Furthermore, we show that O-sulfated K5PS efficiently inhibited the invasion of B16-BL6 cells through Matrigel and also inhibited the in vitro activity of heparanase. Moreover, treatment with O-sulfated K5PS lowered the ability of B16-BL6 cells to adhere to endothelial cells, intercellular adhesion molecule-1, and P-selectin, but not to E-selectin. Importantly, O-sulfated K5PSs were largely devoid of anticoagulant activity. These findings indicate that O-sulfated K5PS polysaccharide should be considered as a potential antimetastatic agent.
Fluorescent carbohydrate probes for cell lectins
NASA Astrophysics Data System (ADS)
Galanina, Oxana; Feofanov, Alexei; Tuzikov, Alexander B.; Rapoport, Evgenia; Crocker, Paul R.; Grichine, Alexei; Egret-Charlier, Marguerite; Vigny, Paul; Le Pendu, Jacques; Bovin, Nicolai V.
2001-09-01
Fluorescein labeled carbohydrate (Glyc) probes were synthesized as analytical tools for the study of cellular lectins, i.e. SiaLe x-PAA-flu, Sia 2-PAA-flu, GlcNAc 2-PAA-flu, LacNAc-PAA-flu and a number of similar ones, with PAA a soluble polyacrylamide carrier. The binding of SiaLe x-PAA-flu was assessed using CHO cells transfected with E-selectin, and the binding of Sia 2-PAA-flu was assessed by COS cells transfected with siglec-9. In flow cytometry assays, the fluorescein probes demonstrated a specific binding to the lectin-transfected cells that was inhibited by unlabeled carbohydrate ligands. The intense binding of SiaLe x-PAA- 3H to the E-selectin transfected cells and the lack of binding to both native and permeabilized control cells lead to the conclusion that the polyacrylamide carrier itself and the spacer arm connecting the carbohydrate moiety with PAA did not contribute anymore to the binding. Tumors were obtained from nude mice by injection of CHO E-selectin or mock transfected cells. The fluorescent SiaLe x-PAA-flu probe could bind to the tumor sections from E-selectin positive CHO cells, but not from the control ones. Thus, these probes can be used to reveal specifically the carbohydrate binding sites on cells in culture as well as cells in tissue sections. The use of the confocal spectral imaging technique with Glyc-PAA-flu probes offered the unique possibility to detect lectins in different cells, even when the level of lectin expression was rather low. The confocal mode of spectrum recording provided an analysis of the probe localization with 3D submicron resolution. The spectral analysis (as a constituent part of the confocal spectral imaging technique) enabled interfering signals of the probe and intrinsic cellular fluorescence to be accurately separated, the distribution of the probe to be revealed and its local concentration to be measured.
Role of P-selectin in thromboembolic events in patients with cancer.
Fernandes, Lúcio Flávio Barbour; Fregnani, José Humberto T G; Strunz, Célia Maria Cássaro; de Andrade Ramos Nogueira, Adriana; Longatto-Filho, Adhemar
2018-01-01
The objective of the present study was to evaluate the role of P-selectin in patients with cancer with suspected thromboembolic events (TEEs). Patients with cancer have a four times greater risk of developing TEEs. P-selectin is a glycoprotein that has the function of facilitating the interaction (adhesion) of leukocytes with the endothelium, or with platelets. There is a well-defined relationship between P-selectin and thrombosis; however, it is likely that the cut-off value of P-selectin for patients with cancer should be considered differently from that of the general population. In the present report, a prospective cross-sectional study was performed with patients of the Cancer Hospital of Barretos who were suspected of having TEEs. Among the 178 study participants, 167 (93.82%) were suspected of having deep vein thrombosis, while 59 of them (35.33%) were confirmed as such; and 11 (6.18%) were suspected of having pulmonary thromboembolism, while 3 of them were confirmed as such (27.69%). The mean results obtained were: P-selectin, 25.37 ng/ml; and D-dimer, 2,181.22 ng/ml. The P-selectin levels averaged 33.60 ng/ml with the confirmed TEE group compared with 20.40 ng/ml with the unconfirmed TEE group, with a standard deviation of 23.35 compared with 6.92 (P<0.001); and the level of D-dimer was 4,615.38 ng/ml compared with 977.52 ng/ml, with a standard deviation of 6,460.54 compared with 2,145.50 (P<0.001). Multiple logistic regression adjusted for distant metastases and the Eastern Cooperative Oncology Group (ECOG) score (2,3 and 4) were constructed. The cut-off value of P-selectin for patients with cancer was identified to be different from that reported in the literature for the general population, and the models using D-dimer and P-selectin therefore have been demonstrated to be a potentially useful tool to be used in a panel of tests to predict TEEs, either independently or in a prediction score.
Endothelial progenitor cells inhibit platelet function in a P-selectin-dependent manner.
Abou-Saleh, Haissam; Hachem, Ahmed; Yacoub, Daniel; Gillis, Marc-Antoine; Merhi, Yahye
2015-05-07
The role of endothelial progenitor cells (EPCs) in vascular repair is related to their recruitment at the sites of injury and their interaction with different components of the circulatory system. We have previously shown that EPCs bind and inhibit platelet function and impair thrombus formation via prostacyclin secretion, but the role of EPC binding to platelet P-selectin in this process has not been fully characterized. In the present study, we assessed the impact of EPCs on thrombus formation and we addressed the implication of P-selectin in this process. EPCs were generated from human peripheral blood mononuclear cells cultured on fibronectin in conditioned media. The impact of EPCs on platelet aggregation and thrombus formation was investigated in P-selectin deficient (P-sel(-/-)) mice and their wild-type (WT) counterparts. EPCs significantly and dose-dependently impaired collagen-induced whole blood platelet aggregation in WT mice, whereas no effects were observed in P-sel(-/-) mice. Moreover, in a ferric chloride-induced arterial thrombosis model, infusion of EPCs significantly reduced thrombus formation in WT, but not in P-sel(-/-) mice. Furthermore, the relative mass of thrombi generated in EPC-treated P-sel(-/-) mice were significantly larger than those in EPC-treated WT mice, and the number of EPCs recruited within the thrombi and along the arterial wall was reduced in P-sel(-/-) mice as compared to WT mice. This study shows that EPCs impair platelet aggregation and reduce thrombus formation via a cellular mechanism involving binding to platelet P-selectin. These findings add new insights into the role of EPC-platelet interactions in the regulation of thrombotic events during vascular repair.
Nadar, Sunil K; Al Yemeni, Eman; Blann, Andrew D; Lip, Gregory Y H
2004-01-01
Endothelial disturbance (whether activation, dysfunction or damage) is a likely pathogenic mechanism in pre-eclampsia and pregnancy-induced hypertension (PIH). We set out to determine which of three plasma markers of endothelial disturbance, indicating endothelial activation (E-selectin) or damage/dysfunction (von Willebrand factor (vWf), soluble thrombomodulin), would provide the best discriminator of PIH compared to normotensive pregnancy. Cross-sectional study of 36 consecutive women with PIH (age 31+/-6 years) and 36 consecutive women with normotensive pregnancies (age 29+/-5 years) of similar parity. Plasma levels of vWf, E-selectin and thrombomodulin were measured using ELISA. As expected, women with PIH had significantly higher levels of plasma vWf (by 19%, p=0.003), E-selectin (by 40%, p<0.001) and thrombomodulin (by 61%, p=0.01) than normotensive women. However, on stepwise multiple regression analysis, only thrombomodulin was an independent significant predictor of the presence of PIH (p=0.023). We conclude that although vWf, E-selectin and thrombomodulin are all raised in PIH, only thrombomodulin was independently associated with PIH. This molecule could potentially be useful in monitoring and in providing clues in aetiology and pathophysiology, and may have implications for the clinical complications associated with PIH.
Chen, Xing; Zhang, Shujun; Cheng, Zhangrui; Cooke, Jessica S.; Werling, Dirk
2017-01-01
Selectins are adhesion molecules, which mediate attachment between leucocytes and endothelium. They aid extravasation of leucocytes from blood into inflamed tissue during the mammary gland’s response to infection. Selectins are also involved in attachment of the conceptus to the endometrium and subsequent placental development. Poor fertility and udder health are major causes for culling dairy cows. The three identified bovine selectin genes SELP, SELL and SELE are located in a gene cluster. SELP is the most polymorphic of these genes. Several SNP in SELP and SELE are associated with human vascular disease, while SELP SNP rs6127 has been associated with recurrent pregnancy loss in women. This study describes the results of a gene association study for SNP in SELP (n = 5), SELL (n = 2) and SELE (n = 1) with fertility, milk production and longevity traits in a population of 337 Holstein Friesian dairy cows. Blood samples for PCR-RFLP were collected at 6 months of age and animals were monitored until either culling or 2,340 days from birth. Three SNP in SELPEx4-6 formed a haplotype block containing a Glu/Ala substitution at rs42312260. This region was associated with poor fertility and reduced survival times. SELPEx8 (rs378218397) coded for a Val475Met variant locus in the linking region between consensus repeats 4 and 5, which may influence glycosylation. The synonymous SNP rs110045112 in SELEEx14 deviated from Hardy Weinberg equilibrium. For both this SNP and rs378218397 there were too few AA homozygotes present in the population and AG heterozygotes had significantly worse fertility than GG homozygotes. Small changes in milk production associated with some SNP could not account for the reduced fertility and only SELPEx6 showed any association with somatic cell count. These results suggest that polymorphisms in SELP and SELE are associated with the likelihood of successful pregnancy, potentially through compromised implantation and placental development. PMID:28419109
CLA and CD62E expression in oral lichen planus lesions.
Werneck, Juliana Tristão; Dias, Eliane Pedra; Gonçalves, Lucio Souza; Silva Junior, Arley
2016-03-01
There are few reports on the migration of CLA+ T cells through E-selectin in cutaneous lichen planus, with only one study on oral lichen planus (OLP). This study aimed to analyze CLA expression and assess whether there is a correlation with E-selectin (CD62E) in OLP lesions. Biopsies were performed on 11 patients including two areas: one without clinical and histopathological features of OLP [perilesional group (PLG)] and the other with clinical and histopathological features of OLP [OLP group (OLPG)]. The specimens obtained were divided into two: One was fixed in formalin for routine analysis (H&E), and the other was frozen for CD3, CD4, CD8, CLA, and CD62E immunofluorescence markers. More CD4+ (median 1409, range 860-2519), CD8+ (median 1568, range 654-3258), and CLA+ T cells (median 958, range 453-2198) and higher CD62E expression (median 37, range 27-85) were identified in OLPG (P = 0.003; P = 0.003; P = 0.004; P = 0.003, respectively) than those in PLG. The median prevalence analysis was also significantly higher for CLA+CD8+ T cells in OLPG (OLPG = 39.4%, range 18.4-64.2; PLG = 29.4%, range 12.1-47.1) (P = 0.026). None of the correlations between CD3+ or CLA+ T cells and CD62E in OLPG and in PLG were significant. The significant presence of CLA+ T cells and E-selectin expressions in the OLPG suggests their involvement in the etiopathogenesis of OLP; however, only a weak correlation between CLA+ T cells and E-selectin was observed. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Fulfilling Koch's postulates in glycoscience: HCELL, GPS and translational glycobiology.
Sackstein, Robert
2016-06-01
Glycoscience-based research that is performed expressly to address medical necessity and improve patient outcomes is called "translational glycobiology". In the 19th century, Robert Koch proposed a set of postulates to rigorously establish causality in microbial pathogenesis, and these postulates can be reshaped to guide knowledge into how naturally-expressed glycoconjugates direct molecular processes critical to human well-being. Studies in the 1990s indicated that E-selectin, an endothelial lectin that binds sialofucosylated carbohydrate determinants, is constitutively expressed on marrow microvessels, and investigations in my laboratory indicated that human hematopoietic stem cells (HSCs) uniquely express high levels of a specialized glycoform of CD44 called "hematopoietic cell E-/L-selectin ligand" (HCELL) that functions as a highly potent E-selectin ligand. To assess the role of HCELL in directing HSC migration to marrow, a method called "glycosyltransferase-programmed stereosubstitution" (GPS) was developed to custom-modify CD44 glycans to enforce HCELL expression on viable cell surfaces. Human mesenchymal stem cells (MSCs) are devoid of E-selectin ligands, but GPS-based glycoengineering of CD44 on MSCs licenses homing of these cells to marrow in vivo, providing direct evidence that HCELL serves as a "bone marrow homing receptor". This review will discuss the molecular basis of cell migration in historical context, will describe the discovery of HCELL and its function as the bone marrow homing receptor, and will inform on how glycoengineering of CD44 serves as a model for adapting Koch's postulates to elucidate the key roles that glycoconjugates play in human biology and for realizing the immense impact of translational glycobiology in clinical medicine. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Berardi, Cecilia; Larson, Nicholas B.; Decker, Paul A.; Wassel, Christina L.; Kirsch, Phillip S.; Pankow, James S.; Sale, Michele M.; de Andrade, Mariza; Sicotte, Hugues; Tang, Weihong; Hanson, Naomi Q.; Tsai, Michael Y.; da Chen, Yii-Der I; Bielinski, Suzette J.
2015-01-01
L-selectin is constitutively expressed on leukocytes and mediates their interaction with endothelial cells during inflammation. Previous studies on the association of soluble L-selectin (sL-selectin) with cardiovascular disease (CVD) are inconsistent. Genetic variants associated with sL-selectin levels may be a better surrogate of levels over a lifetime. We explored the association of genetic variants and sL-selectin levels in a race/ethnicity stratified random sample of 2,403 participants in the Multi-Ethnic Study of Atherosclerosis (MESA). Through a genome-wide analysis with additive linear regression models, we found that rs12938 on the SELL gene accounted for a significant portion of the protein level variance across all four races/ethnicities. To evaluate potential additional associations, elastic net models were used for variants located in the SELL/SELP/SELE genetic region and an additional two SNPs, rs3917768 and rs4987361, were associated with sL-selectin levels in African Americans. These variants accounted for a portion of protein variance that ranged from 4% in Hispanic to 14% in African Americans. To investigate the relationship of these variants with CVD, 6,317 subjects were used. No significant association was found between any of the identified SNPs and carotid intima-media thickness or presence of carotid plaque using linear and logistic regression, respectively. Similarly no significant results were found for coronary artery calcium or coronary heart disease events. In conclusion, we found that variants within the SELL gene are associated with sL-selectin levels. Despite accounting for a significant portion of the protein level variance, none of the variants was associated with clinical or subclinical CVD. PMID:25576479
Expression of Selected Integrins and Selectins in Bullous Pemphigoid
Żebrowska, Agnieszka; Sysa-Jędrzejowska, Anna; Wągrowska-Danilewicz, Małgorzata; Joss-Wichman, Ewa; Erkiert-Polguj, Anna; Waszczykowska, Elżbieta
2007-01-01
Blister development in bullous pemphigoid (BP) results from destruction of hemidesmosomes and basement membrane components within the dermoepidermal junction by autoantibodies. Adhesion molecules can take part in pathogenesis of this disease. The aim of the study was to determine the localization and expression of L- and E-selectins and β1, β3, and β4 integrins by immunohistochemistry in skin lesions of 21 patients with BP, compared with 10 healthy subjects. Expression of L and E selectins and β1, β3 integrins was detected mainly in basal keratinocytes and in inflammatory infiltrates in the dermis, expression of β4 integrin was irregular and was detected mainly in dermal part of the blister, while in the control group only weak and single expression of the examined molecules was detected in basal keratinocytes and endothelium cells. The obtained results reveal the important role of selected selectins and integrins in development of skin lesions in BP. PMID:17515951
SAP Suppresses the Development of Experimental Autoimmune Encephalomyelitis in C57BL6 Mice
Ji, Zhe; Ke, Zun-Ji; Geng, Jian-Guo
2012-01-01
Experimental autoimmune encephalomyelitis (EAE) is a CD4+ T cell-mediated disease of the CNS. Serum amyloid P component (SAP) is a highly conserved plasma protein named for its universal presence in amyloid deposits. Here we report SAP transgenic mice had unexpectedly attenuated EAE due to impaired encephalitogenic responses. Following induction with myelin oligodendroglial glycoprotein (MOG) peptide 35–55 in CFA, SAP transgenic mice showed reduced spinal cord inflammation with lower severity of EAE attacks as compared with control C57BL/6 mice. However in SAP-KO mice, the severity of EAE is enhanced. Adoptive transfer of Ag-restimulated T cells from wild-type to SAP transgenic mice or transfer of SAP transgenic Ag-restimulated T cells to control mice induced milder EAE. T cells from MOG-primed SAP transgenic mice showed weak proliferative responses. Furthermore, in SAP transgenic mice, there is little infiltration of CD45-positive cells in the spinal cord. In vitro, SAP suppressed the secretion of IL-2 stimulated by P-selectin, and blocked P-selectin binding to T cells. Moreover, SAP could change the affinity between α4-integrin and T cells. These data suggested that SAP could antagonize the development of the acute phase of inflammation accompanying EAE by modulating the function of P-selectin. PMID:21647172
van Golen, Rowan F.; Stevens, Katarzyna M.; Colarusso, Pina; Jaeschke, Hartmut; Heger, Michal
2016-01-01
Background Platelets and P-selectin (CD62P) play an unequivocal role in the pathology of hepatic ischemia/reperfusion (I/R) injury. Inhibition or knock-out of P-selectin or immunodepletion of platelets results in amelioration of post-ischemic inflammation, reduced hepatocellular damage, and improved survival. However, P-selectin expression on platelets and endothelial cells, which concurs with platelet activation, has never been clearly demonstrated in I/R-subjected livers. Aims To determine whether platelets become activated and degranulate in the acute phase of liver I/R and whether the platelets interact with neutrophils. Methods Hepatic I/R was induced in male C57BL/6J mice (N = 12) using 37.5-min ischemia time. Platelets, endothelial cells, and neutrophils were fluorescently labeled by systemic administration of non-blocking antibodies. Cell kinetics were monitored by intravital spinning disk confocal microscopy during 90 min of reperfusion. Image analysis and quantification was performed with dedicated software. Results Platelets adhered to sinusoids more extensively in post-ischemic livers compared to livers not subjected to I/R and formed aggregates, which occurred directly after ischemia. Platelets and endothelial cells did not express P-selectin in post-ischemic livers. There was no interaction between platelets and neutrophils. Conclusions Platelets aggregate but do not become activated and do not degranulate in post-ischemic livers. There is no platelet-neutrophil interplay during the early reperfusion phase in a moderate model of hepatic I/R injury. The mechanisms underlying the biological effects of platelets and P-selectin in this setting warrant further investigation. Relevance for patients I/R in surgical liver patients may compromise outcome due to post-ischemic oxidative stress and sterile inflammation. Both processes are mediated in part by platelets. Understanding platelet function during I/R is key to developing effective interventions for I/R injury and improving clinical outcomes. PMID:26925465
Increased levels of markers of vascular inflammation in patients with coronary heart disease.
Schumacher, A; Seljeflot, I; Sommervoll, L; Christensen, B; Otterstad, J E; Arnesen, H
2002-01-01
Elevated levels of soluble cell adhesion molecules (sCAMs), inflammatory cytokines and C-reactive protein (CRP) have been associated with atherosclerotic disease states. The aim of the present study was to evaluate whether circulating levels of vascular cell adhesion molecule-1 (sVCAM-1), intercellular adhesion molecule-1 (sICAM-1), E- and P-selectin were significantly elevated in patients with coronary heart disease (CHD) compared with healthy controls, and to study possible associations between these sCAMs, tumour necrosis factor alpha (TNFalpha). interleukin-6 (IL-6), CRP and major CHD risk factors. The study included 193 patients in various stages of CHD and 193 matched controls. To evaluate any possible influence of acute phase reaction, reinvestigation was performed after 6 months. After adjustment for major CHD risk factors, sVCAM-1, sICAM-1, P-selectin, IL-6 and CRP remained significantly elevated in the CHD patients (p for all <0.001). In multivariate analysis sVCAM-1 was predicted by age (p=0.015), sICAM-1 by smoking (p<0.001) and total cholesterol (p=0.026), E-selectin by body mass index (BMI) (p=0.004) and P-selectin by male gender (p=0.015). TNFalpha significantly predicted sICAM-1 and E-selectin levels, while IL-6 predicted CRP but none of the sCAMs measured. This might indicate that TNFalpha, but not IL-6, plays a major role in the regulation of sCAM levels in vivo.
Ghasemzadeh, Mehran; Hosseini, Ehteramolsadat
2017-08-01
Upon platelet stimulation with agonists, reactive oxygen species (ROS) generation enhances platelet activation and granule release. Whether ROS generation during platelet storage could be directly correlated with the expression of proinflammatory molecules and granule release has been investigated in this study. PRP-platelet concentrates were subjected to flowcytometry analysis to assess the expression of platelet activation marker, P-selectin and CD40L during storage. Intracellular ROS generation was also detected in platelet by flowcytometry using dihydrorhodamine (DHR) 123. Through the dual staining, ROS production was analyzed in either P-selectin positive or negative populations. ROS formation in platelet population was significantly increased by either TRAP (a potent agonist that induces granule release) or PMA (a classic inducer of ROS generation), while the effects of each agonists on P-selectin expression and ROS generation in platelets were comparable. Platelet storage was also associated with the increasing levels of ROS (day 0 vs. day 5; p<0.001) while this increasing pattern was directly correlated with the either expressed P-selectin or CD40L. In addition, in 5 day-stored platelets, samples with ROS levels above 40% showed significantly higher levels of P-selectin and CD40L expression. P-selectin negative population of platelet did not show significant amount of ROS. Our data demonstrated decreased levels of important platelet pro-inflammatory molecules in stored platelets with lower levels of intraplatelet ROS. However, whether quenching of ROS generation during platelet storage can attenuate adverse transfusion reactions raised by platelet pro-inflammatory status is required to be further studied. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kanabar, Varsha; Tedaldi, Lauren; Jiang, Jingqian; Nie, Xiaodan; Panina, Irina; Descroix, Karine; Man, Francis; Pitchford, Simon C; Page, Clive P; Wagner, Gerd K
2016-10-01
P-selectin glycoprotein ligand-1 (PSGL-1, CD162) is a cell-surface glycoprotein that is expressed, either constitutively or inducibly, on all myeloid and lymphoid cell lineages. PSGL-1 is implicated in cell-cell interactions between platelets, leukocytes and endothelial cells, and a key mediator of inflammatory cell recruitment and transmigration into tissues. Here, we have investigated the effects of the β-1,4-galactosyltransferase inhibitor 5-(5-formylthien-2-yl) UDP-Gal (5-FT UDP-Gal, compound 1: ) and two close derivatives on the cell surface levels of PSGL-1 on human peripheral blood mononuclear cells (hPBMCs). PSGL-1 levels were studied both under basal conditions, and upon stimulation of hPBMCs with interleukin-1β (IL-1β). Between 1 and 24 hours after IL-1β stimulation, we observed initial PSGL-1 shedding, followed by an increase in PSGL-1 levels on the cell surface, with a maximal window between IL-1β-induced and basal levels after 72 h. All three inhibitors reduce PSGL-1 levels on IL-1β-stimulated cells in a concentration-dependent manner, but show no such effect in resting cells. Compound 1: also affects the cell surface levels of adhesion molecule CD11b in IL-1β-stimulated hPBMCs, but not of glycoproteins CD14 and CCR2. This activity profile may be linked to the inhibition of global Sialyl Lewis presentation on hPBMCs by compound 1: , which we have also observed. Although this mechanistic explanation remains hypothetical at present, our results show, for the first time, that small molecules can discriminate between IL-1β-induced and basal levels of cell surface PSGL-1. These findings open new avenues for intervention with PSGL-1 presentation on the cell surface of primed hPBMCs and may have implications for anti-inflammatory drug development. © The Author 2016. Published by Oxford University Press.
Voloshyna, O O; Lyzohub, V H; Romanenko, I M
2007-01-01
Endothelial dysfunction and endothelial cells activation as it was shown in patients with ischemic heart disease play important role in atherosclerosis progression and the development of cardiovascular events. Relationship between E-selectine and functional/ structural changes of the arterial vessels in patients with metabolic syndrome was not explored. We revealed that both activation of the endothelial cells and structural/functional changes of the arterial wall mostly depend on obesity and dislipedemia and in less extent on carbohydrates metabolism disorders.
Alves, Christina S.; Konstantopoulos, Konstantinos
2012-01-01
Fibrin(ogen) mediates sustained tumor cell adhesion and survival in the pulmonary vasculature, thereby facilitating the metastatic dissemination of tumor cells. CD44 is the major functional fibrin receptor on colon carcinoma cells. Growth factors, such as platelet-derived growth factor (PDGF), induce post-translational protein modifications, which modulate ligand binding activity. In view of the roles of PDGF, fibrin(ogen) and CD44 in cancer metastasis, we aimed to delineate the effect of PDGF on CD44-fibrin recognition. By immunoprecipitating CD44 from PDGF-treated and untreated LS174T colon carcinoma cells, which express primarily CD44v, we demonstrate that PDGF enhances the adhesion of CD44v-coated beads to immobilized fibrin. Enzymatic inhibition studies coupled with flow-based adhesion assays and autoradiography reveal that PDGF augments the binding of CD44v to fibrin by significantly attenuating the extent of CD44 sulfation primarily on chondroitin and dermatan sulfate chains. Surface plasmon resonance assays confirm that PDGF enhances the affinity of CD44v-fibrin binding by markedly reducing its dissociation rate while modestly increasing the association rate. PDGF mildly reduces the affinity of CD44v-hyaluronan binding without affecting selectin-CD44v recognition. The latter is attributed to the fact that CD44v binds to selectins via sialofucosylated O-linked residues independent of heparan, dermatan and chondroitin sulfates. Interestingly, PDGF moderately reduces the sulfation of CD44s and CD44s-fibrin recognition. Collectively, these data offer a novel perspective into the mechanism by which PGDF regulates CD44-dependent binding of metastatic colon carcinoma cells to fibrin(ogen). PMID:23056168
Kanabar, Varsha; Tedaldi, Lauren; Jiang, Jingqian; Nie, Xiaodan; Panina, Irina; Descroix, Karine; Man, Francis; Pitchford, Simon C; Page, Clive P; Wagner, Gerd K
2016-01-01
P-selectin glycoprotein ligand-1 (PSGL-1, CD162) is a cell-surface glycoprotein that is expressed, either constitutively or inducibly, on all myeloid and lymphoid cell lineages. PSGL-1 is implicated in cell–cell interactions between platelets, leukocytes and endothelial cells, and a key mediator of inflammatory cell recruitment and transmigration into tissues. Here, we have investigated the effects of the β-1,4-galactosyltransferase inhibitor 5-(5-formylthien-2-yl) UDP-Gal (5-FT UDP-Gal, compound 1) and two close derivatives on the cell surface levels of PSGL-1 on human peripheral blood mononuclear cells (hPBMCs). PSGL-1 levels were studied both under basal conditions, and upon stimulation of hPBMCs with interleukin-1β (IL-1β). Between 1 and 24 hours after IL-1β stimulation, we observed initial PSGL-1 shedding, followed by an increase in PSGL-1 levels on the cell surface, with a maximal window between IL-1β-induced and basal levels after 72 h. All three inhibitors reduce PSGL-1 levels on IL-1β-stimulated cells in a concentration-dependent manner, but show no such effect in resting cells. Compound 1 also affects the cell surface levels of adhesion molecule CD11b in IL-1β-stimulated hPBMCs, but not of glycoproteins CD14 and CCR2. This activity profile may be linked to the inhibition of global Sialyl Lewis presentation on hPBMCs by compound 1, which we have also observed. Although this mechanistic explanation remains hypothetical at present, our results show, for the first time, that small molecules can discriminate between IL-1β-induced and basal levels of cell surface PSGL-1. These findings open new avenues for intervention with PSGL-1 presentation on the cell surface of primed hPBMCs and may have implications for anti-inflammatory drug development. PMID:27233805
Paschos, Konstantinos A; Majeed, Ali W; Bird, Nigel C
2014-04-14
Colorectal cancer hepatic metastases represent the final stage of a multi-step biological process. This process starts with a series of mutations in colonic epithelial cells, continues with their detachment from the large intestine, dissemination through the blood and/or lymphatic circulation, attachment to the hepatic sinusoids and interactions with the sinusoidal cells, such as sinusoidal endothelial cells, Kupffer cells, stellate cells and pit cells. The metastatic sequence terminates with colorectal cancer cell invasion, adaptation and colonisation of the hepatic parenchyma. All these events, termed the colorectal cancer invasion-metastasis cascade, include multiple molecular pathways, intercellular interactions and expression of a plethora of chemokines and growth factors, and adhesion molecules, such as the selectins, the integrins or the cadherins, as well as enzymes including matrix metalloproteinases. This review aims to present recent advances that provide insights into these cell-biological events and emphasizes those that may be amenable to therapeutic targeting.
Cimetidine attenuates vinorelbine-induced phlebitis in mice by militating E-selectin expression.
Wang, Zhuo; Ma, Lijuan; Wang, Xuebin; Cai, Heping; Huang, Jin; Liu, Jiyong; Hu, Jinhong; Su, Dingfeng
2014-08-01
We investigated E-selectin expression in mice and rabbits with vinorelbine-induced phlebitis and the effect of cimetidine. To find the relationship between E-selectin expression and vinorelbine-induced phlebitis. Mouse and rabbit model of vinorelbine-induced phlebitis was established by intravenous infusion of vinorelbine. Pathological observation, molecular-biological determination of E-selectin and protein function of it was evaluated. Grossly, we observed swelling, edema and cord-like vessel changes in mice receiving vinorelbine but only mild edema in mice pretreated with cimetidine. Pathological scoring yielded a total score of 37 for vinorelbine-treated mice and 17 for mice pretreated with cimetidine (P < 0.05). ELISA revealed that rabbits treated with vinorelbine had markedly higher serum contents of E-selectin than normal saline (NS) controls (vinorelbine 1.534 ± 0.449 vs. NS 0.746 ± 0.170 ng/mL, P < 0.05), which was markedly attenuated by cimetidine (cimetidine 0.717 ± 0.468 vs. vinorelbine 1.534 ± 0.449 ng/mL, P < 0.05). Rose Bengal staining assays showed that vinorelbine markedly increased the adhesion rate of neutrophils for endothelial cells (vinorelbine 38.70 ± 8.34% vs. controls 8.93 ± 4.85%, P < 0.01), which, however, was significantly suppressed by cimetidine (9.93 ± 5.91%, P < 0.01 vs. vinorelbine). In E-selectin knockout mice, we found no apparent difference in tail swelling in mice receiving vinorelbine or cimetidine and vinorelbine. In conclusion, cimetidine attenuates vinorelbine-induced phlebitis in mice probably by suppressing increased expression of E-selectin.
Woodman, Natalie; Pinder, Sarah E; Tajadura, Virginia; Le Bourhis, Xuefen; Gillett, Cheryl; Delannoy, Philippe; Burchell, Joy M; Julien, Sylvain
2016-07-01
Distant metastases account for the majority of cancer-related deaths in breast cancer. The rate and site of metastasis differ between estrogen receptor (ER)-negative and ER-positive tumours, and metastatic fate can be very diverse even within the ER-negative group. Characterisation of new pro-metastatic markers may help to identify patients with higher risk and improve their care accordingly. Selectin ligands aberrantly expressed by cancer cells promote metastasis by enabling interaction between circulating tumour cells and endothelial cells in distant organs. These ligands consist in carbohydrate molecules, such as sialyl-Lewis x antigen (sLex), borne by glycoproteins or glycolipids on the cancer cell surface. We have previously demonstrated that the molecular scaffold presenting sLex to selectins (e.g. glycolipid vs. glycoproteins) was crucial for these interactions to occur. Moreover, we reported that detection of sLex alone in breast carcinomas was only of limited prognostic value. However, since sLex was found to be carried by several glycoproteins in cancer cells, we hypothesized that the combination of the carbohydrate with its carriers could be more relevant than each marker independently. In this study, we addressed this question by analysing sLex expression together with two glycoproteins (BST-2 and LGALS3BP), shown to interact with E-selectin in a carbohydrate-dependent manner, in a cohort of 249 invasive breast cancers. We found both glycoproteins to be associated with distant metastasis risk and poorer survival. Importantly, concomitant high expression of BST-2 with sLex defined a sub-group of patients with ER-negative tumours displaying higher risks of liver and brain metastasis and a 3-fold decreased survival rate.
Dendritic polyglycerol sulfates as multivalent inhibitors of inflammation.
Dernedde, Jens; Rausch, Alexandra; Weinhart, Marie; Enders, Sven; Tauber, Rudolf; Licha, Kai; Schirner, Michael; Zügel, Ulrich; von Bonin, Arne; Haag, Rainer
2010-11-16
Adhesive interactions of leukocytes and endothelial cells initiate leukocyte migration to inflamed tissue and are important for immune surveillance. Acute and chronic inflammatory diseases show a dysregulated immune response and result in a massive efflux of leukocytes that contributes to further tissue damage. Therefore, targeting leukocyte trafficking may provide a potent form of anti-inflammatory therapy. Leukocyte migration is initiated by interactions of the cell adhesion molecules E-, L-, and P-selectin and their corresponding carbohydrate ligands. Compounds that efficiently address these interactions are therefore of high therapeutic interest. Based on this rationale we investigated synthetic dendritic polyglycerol sulfates (dPGS) as macromolecular inhibitors that operate via a multivalent binding mechanism mimicking naturally occurring ligands. dPGS inhibited both leukocytic L-selectin and endothelial P-selectin with high efficacy. Size and degree of sulfation of the polymer core determined selectin binding affinity. Administration of dPGS in a contact dermatitis mouse model dampened leukocyte extravasation as effectively as glucocorticoids did and edema formation was significantly reduced. In addition, dPGS interacted with the complement factors C3 and C5 as was shown in vitro and reduced C5a levels in a mouse model of complement activation. Thus, dPGS represent an innovative class of a fully synthetic polymer therapeutics that may be used for the treatment of inflammatory diseases.
Dendritic polyglycerol sulfates as multivalent inhibitors of inflammation
Dernedde, Jens; Rausch, Alexandra; Weinhart, Marie; Enders, Sven; Tauber, Rudolf; Licha, Kai; Schirner, Michael; Zügel, Ulrich; von Bonin, Arne; Haag, Rainer
2010-01-01
Adhesive interactions of leukocytes and endothelial cells initiate leukocyte migration to inflamed tissue and are important for immune surveillance. Acute and chronic inflammatory diseases show a dysregulated immune response and result in a massive efflux of leukocytes that contributes to further tissue damage. Therefore, targeting leukocyte trafficking may provide a potent form of anti-inflammatory therapy. Leukocyte migration is initiated by interactions of the cell adhesion molecules E-, L-, and P-selectin and their corresponding carbohydrate ligands. Compounds that efficiently address these interactions are therefore of high therapeutic interest. Based on this rationale we investigated synthetic dendritic polyglycerol sulfates (dPGS) as macromolecular inhibitors that operate via a multivalent binding mechanism mimicking naturally occurring ligands. dPGS inhibited both leukocytic L-selectin and endothelial P-selectin with high efficacy. Size and degree of sulfation of the polymer core determined selectin binding affinity. Administration of dPGS in a contact dermatitis mouse model dampened leukocyte extravasation as effectively as glucocorticoids did and edema formation was significantly reduced. In addition, dPGS interacted with the complement factors C3 and C5 as was shown in vitro and reduced C5a levels in a mouse model of complement activation. Thus, dPGS represent an innovative class of a fully synthetic polymer therapeutics that may be used for the treatment of inflammatory diseases. PMID:21041668
Theoretical modeling of the catch-slip bond transition in biological adhesion
NASA Astrophysics Data System (ADS)
Gunnerson, Kim; Pereverzev, Yuriy; Prezhdo, Oleg
2006-05-01
The mechanism by which leukocytes leave the blood stream and enter inflamed tissue is called extravasation. This process is facilitated by the ability of selectin proteins, produced by the endothelial cells of blood vessels, to form transient bonds with the leukocytes. In the case of P-selectin, the protein bonds with P-selectin glycoprotein ligands (PSGL-1) produced by the leukocyte. Recent atomic force microscopy and flow chamber analyses of the binding of P-selectin to PSGL-1 provide evidence for an unusual biphasic catch-bond/slip-bond behavior in response to the strength of exerted force. This biphasic process is not well-understood. There are several theoretical models for describing this phenomenon. These models use different profiles for potential energy landscapes and how they change under forces. We are exploring these changes using molecular dynamics. We will present a simple theoretical model as well as share some of our early MD results for describing this phenomenon.
Salama, Maysa K; Taha, Fatma M; Safwat, Miriam; Darweesh, Hanan E A; Basel, Mohamed El
2012-01-01
Systemic lupus erythematosus is one of the autoimmune diseases characterized by multisystem involvement associated with autoantibody and immune complex vasculitis along with endothelial cell damage. to study the possible role of Angiopoietin- 2 (Ang-2) as a recently highlighted inflammatory and angiogenic mediator in the pathogenesis of SLE and its correlation with the state of another inflammatory marker, P-Selectin, as well as with various markers of the disease activity. The present study included 3 main groups: active SLE patients (group I), inactive SLE patients (group II) and healthy normal control subjects (group III). Groups I and II were subjected to disease activity assessment using the SLEDAI scoring system and measurement of plasma Ang-2 and P-Selectin by ELISA in addition to various laboratory investigations to assess disease activity as: Complete blood count, ESR, serum creatinine, C3, C4 and 24-h urinary proteins. The mean level of Plasma Ang-2 and P-selectin showed a high significant increase in active group compared to inactive SLE patients and control subjects (p < 0.001).There was a significant positive correlation between Ang-2, P-Selectin, and each of SLEDAI score and 24-h urinary proteins in all SLE patients as well as in the active group, and Ang-2 was a significant independent marker for proteinuria. A significant negative correlation was found between Ang-2, P-Selectin and each of C3, C4. Ang-2 and P-Selectin showed a high sensitivity and specificity in the patients with SLE. Our study suggests that Ang-2 may be a more useful marker than P-Selectin, C3 and C4 in the assessment of disease activity.
Chou, Kang-Ju; Lee, Po-Tsang; Chen, Chien-Liang; Hsu, Chih-Yang; Huang, Wei-Chieh; Huang, Chien-Wei; Fang, Hua-Chang
2017-01-01
The lack of homing ability possibly reduces the healing potential of bone-marrow-derived mesenchymal stem cells (MSCs). Therefore, transforming native CD44 on MSCs into a hematopoietic cell E-/L-selectin ligand (HCELL) that possesses potent E-selectin affinity might enhance the homing and regenerative abilities of MSCs. Through fucosyltransferase VI (FTVI) transfection, MSCs were fucosylated on N-glycans of CD44 to become HCELL positive, thus interacting with E-selectin on injured endothelial cells. HCELL expression facilitated MSC homing in kidneys within 24h after injury and reduced lung stasis. An in vitro adhesion assay revealed that transfection enhanced the association between MSCs and hypoxic endothelial cells. In mice treated with HCELL-positive MSCs, the injured kidneys exhibited clusters of homing MSCs, whereas MSCs were rarely observed in mouse kidneys treated with HCELL-negative MSCs. Most MSCs were initially localized at the renal capsule, and some MSCs later migrated inward between tubules. Most homing MSCs were in close contact with inflammatory cells without tubular transdifferentiation. Furthermore, HCELL-positive MSCs substantially alleviated renal injury, partly by enhancing the polarization of infiltrating macrophages. In conclusion, engineering the glycan of CD44 on MSCs through FTVI transfection might enhance renotropism and the regenerating ability of MSCs in ischemic kidney injury. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Ying; Li, Shu-Jun; Yang, Jian
Highlights: •Mechanisms of inflammatory response induced by HMGB1 are incompletely understood. •We found that endoplasmic reticulum stress mediate the inflammatory response induced by HMGB1. •RAGE-mediated ERS pathways are involved in those processes. •We reported a new mechanism for HMGB1 induced inflammatory response. -- Abstract: The high mobility group 1B protein (HMGB1) mediates chronic inflammatory responses in endothelial cells, which play a critical role in atherosclerosis. However, the underlying mechanism is unknown. The goal of our study was to identify the effects of HMGB1 on the RAGE-induced inflammatory response in endothelial cells and test the possible involvement of the endoplasmic reticulummore » stress pathway. Our results showed that incubation of endothelial cells with HMGB1 (0.01–1 μg/ml) for 24 h induced a dose-dependent activation of endoplasmic reticulum stress transducers, as assessed by PERK and IRE1 protein expression. Moreover, HMGB1 also promoted nuclear translocation of ATF6. HMGB1-mediated ICAM-1 and P-selectin production was dramatically suppressed by PERK siRNA or IRE1 siRNA. However, non-targeting siRNA had no such effects. HMGB1-induced increases in ICAM-1 and P-selectin expression were also inhibited by a specific eIF2α inhibitor (salubrinal) and a specific JNK inhibitor (SP600125). Importantly, a blocking antibody specifically targeted against RAGE (anti-RAGE antibody) decreased ICAM-1, P-selectin and endoplasmic reticulum stress molecule (PERK, eIF2α, IRE1 and JNK) protein expression levels. Collectively, these novel findings suggest that HMGB1 promotes an inflammatory response by inducing the expression of ICAM-1 and P-selectin via RAGE-mediated stimulation of the endoplasmic reticulum stress pathway.« less
Markers of Vascular Perturbation Correlate with Airway Structural Change in Asthma
Kruger, Stanley J.; Schiebler, Mark L.; Evans, Michael D.; Sorkness, Ronald L.; Denlinger, Loren C.; Busse, William W.; Jarjour, Nizar N.; Montgomery, Robert R.; Mosher, Deane F.; Fain, Sean B.
2013-01-01
Rationale: Air trapping and ventilation defects on imaging are characteristics of asthma. Airway wall thickening occurs in asthma and is associated with increased bronchial vascularity and vascular permeability. Vascular endothelial cell products have not been explored as a surrogate to mark structural airway changes in asthma. Objectives: Determine whether reporters of vascular endothelial cell perturbation correlate with airway imaging metrics in patients with asthma of varying severity. Methods: Plasma from Severe Asthma Research Program subjects was analyzed by ELISAs for soluble von Willebrand factor mature protein (VWF:Ag) and propeptide (VWFpp), P-selectin, and platelet factor 4. Additional subjects were analyzed over 48 hours after whole-lung antigen challenge. We calculated ventilation defect volume by hyperpolarized helium-3 magnetic resonance imaging and areas of low signal density by multidetector computed tomography (less than −856 Hounsfield units [HU] at functional residual capacity and −950 HU at total lung capacity [TLC]). Measurements and Main Results: VWFpp and VWFpp/Ag ratio correlated with and predicted greater percentage defect volume on hyperpolarized helium-3 magnetic resonance imaging. P-selectin correlated with and predicted greater area of low density on chest multidetector computed tomography less than −950 HU at TLC. Platelet factor 4 did not correlate. Following whole-lung antigen challenge, variation in VWFpp, VWFpp/Ag, and P-selectin among time-points was less than that among subjects, indicating stability and repeatability of the measurements. Conclusions: Plasma VWFpp and P-selectin may be useful as surrogates of functional and structural defects that are evident on imaging. The results raise important questions about why VWFpp and P-selectin are associated specifically with different imaging abnormalities. PMID:23855693
McKinnon, R; Binder, M; Zupkó, I; Afonyushkin, T; Lajter, I; Vasas, A; de Martin, R; Unger, C; Dolznig, H; Diaz, R; Frisch, R; Passreiter, C M; Krupitza, G; Hohmann, J; Kopp, B; Bochkov, V N
2014-10-15
Neurolaena lobata is a Caribbean medicinal plant used for the treatment of several conditions including inflammation. Recent data regarding potent anti-inflammatory activity of the plant and isolated sesquiterpene lactones raised our interest in further pharmacological studies. The present work aimed at providing a mechanistic insight into the anti-inflammatory activity of N. lobata and eight isolated sesquiterpene lactones, as well as a structure-activity relationship and in vivo anti-inflammatory data. The effect of the extract and its compounds on the generation of pro-inflammatory proteins was assessed in vitro in endothelial and monocytic cells by enzyme-linked immunosorbent assay. Their potential to modulate the expression of inflammatory genes was further studied at the mRNA level. In vivo anti-inflammatory activity of the chemically characterized extract was evaluated using carrageenan-induced paw edema model in rats. The compounds and extract inhibited LPS- and TNF-α-induced upregulation of the pro-inflammatory molecules E-selectin and interleukin-8 in HUVECtert and THP-1 cells. LPS-induced elevation of mRNA encoding for E-selectin and interleukin-8 was also suppressed. Furthermore, the extract inhibited the development of acute inflammation in rats. Sesquiterpene lactones from N. lobata interfered with the induction of inflammatory cell adhesion molecules and chemokines in cells stimulated with bacterial products and cytokines. Structure-activity analysis revealed the importance of the double bond at C-4-C-5 and C-2-C-3 and the acetyl group at C-9 for the anti-inflammatory activity. The effect was confirmed in vivo, which raises further interest in the therapeutic potential of the compounds for the treatment of inflammatory diseases. Copyright © 2014 Elsevier GmbH. All rights reserved.
Circulating endothelial cells in acute ischaemic stroke.
Nadar, Sunil K; Lip, Gregory Y H; Lee, Kaeng W; Blann, Andrew D
2005-10-01
Increased numbers of CD146-bearing circulating endothelial cells (CECs) in the peripheral blood probably represent the most direct evidence of endothelial cell damage. As acute ischaemic strokes are associated with endothelial abnormalities, we hypothesised that these CECs are raised in acute stroke, and that they would correlate with the other indices of endothelial perturbation, i.e. plasma von Willebrand factor (vWf) and soluble E-selectin. We studied 29 hypertensive patients (19 male; mean age 63 years) who presented with an acute stroke and compared them with 30 high risk hypertensive patients (21 male; mean age 62 years) and 30 normotensive controls (16 male; mean age 58 years). CECs were estimated by CD146 immunobead capture, vWf and soluble E-selectin by ELISA. Patients with an acute ischaemic stroke had significantly higher numbers of CECs/ml of blood (p<0.001) plasma vWf (p=0.008) soluble E-selectin (p=0.002) and higher systolic blood pressure (SBP) as compared to the other groups. The number of CECs significantly correlated with soluble E-selectin (r=0.432, p<0.001) and vWf (r=0.349, p=0.001) but not with SBP (r=0.198, p=0.069). However, in multivariate analysis, only disease group (i.e. health, hypertension or stroke) was associated with increased CECs. Acute ischaemic stroke is associated with increased numbers of CECs. The latter correlate well with established plasma markers of endothelial dysfunction or damage, thus unequivocally confirming severe vasculopathy in this condition. However, the greatest influence on CECs numbers was clinical group.
Reduced background autofluorescence for cell imaging using nanodiamonds and lanthanide chelates.
Cordina, Nicole M; Sayyadi, Nima; Parker, Lindsay M; Everest-Dass, Arun; Brown, Louise J; Packer, Nicolle H
2018-03-14
Bio-imaging is a key technique in tracking and monitoring important biological processes and fundamental biomolecular interactions, however the interference of background autofluorescence with targeted fluorophores is problematic for many bio-imaging applications. This study reports on two novel methods for reducing interference with cellular autofluorescence for bio-imaging. The first method uses fluorescent nanodiamonds (FNDs), containing nitrogen vacancy centers. FNDs emit at near-infrared wavelengths typically higher than most cellular autofluorescence; and when appropriately functionalized, can be used for background-free imaging of targeted biomolecules. The second method uses europium-chelating tags with long fluorescence lifetimes. These europium-chelating tags enhance background-free imaging due to the short fluorescent lifetimes of cellular autofluorescence. In this study, we used both methods to target E-selectin, a transmembrane glycoprotein that is activated by inflammation, to demonstrate background-free fluorescent staining in fixed endothelial cells. Our findings indicate that both FND and Europium based staining can improve fluorescent bio-imaging capabilities by reducing competition with cellular autofluorescence. 30 nm nanodiamonds coated with the E-selectin antibody was found to enable the most sensitive detective of E-selectin in inflamed cells, with a 40-fold increase in intensity detected.
Banks, Jessica M; Herman, Christine T; Bailey, Ryan C
2013-01-01
Stem bromelain, a cysteine protease isolated from pineapples, is a natural anti-inflammatory treatment, yet its mechanism of action remains unclear. Curious as to whether bromelain might affect selectin-mediated leukocyte rolling, we studied the ability of bromelain-treated human neutrophils to tether to substrates presenting immobilized P-selectin or E-selectin under shear stress. Bromelain treatment attenuated P-selectin-mediated tethering but had no effect on neutrophil recruitment on E-selectin substrates. Flow cytometric analysis of human neutrophils, using two antibodies against distinct epitopes within the P-selectin glycoprotein ligand-1 (PSGL-1) active site, revealed that bromelain cleaves PSGL-1 to remove one of two sites required for P-selectin binding, while leaving the region required for E-selectin binding intact. These findings suggest one molecular mechanism by which bromelain may exert its anti-inflammatory effects is via selective cleavage of PSGL-1 to reduce P-selectin-mediated neutrophil recruitment.
Bailey, Ryan C.
2013-01-01
Stem bromelain, a cysteine protease isolated from pineapples, is a natural anti-inflammatory treatment, yet its mechanism of action remains unclear. Curious as to whether bromelain might affect selectin-mediated leukocyte rolling, we studied the ability of bromelain-treated human neutrophils to tether to substrates presenting immobilized P-selectin or E-selectin under shear stress. Bromelain treatment attenuated P-selectin-mediated tethering but had no effect on neutrophil recruitment on E-selectin substrates. Flow cytometric analysis of human neutrophils, using two antibodies against distinct epitopes within the P-selectin glycoprotein ligand-1 (PSGL-1) active site, revealed that bromelain cleaves PSGL-1 to remove one of two sites required for P-selectin binding, while leaving the region required for E-selectin binding intact. These findings suggest one molecular mechanism by which bromelain may exert its anti-inflammatory effects is via selective cleavage of PSGL-1 to reduce P-selectin-mediated neutrophil recruitment. PMID:24244398
Huang, Jiqing; Kast, Juergen
2015-08-07
Physiological stimuli, such as thrombin, or pathological stimuli, such as lysophosphatidic acid (LPA), activate platelets circulating in blood. Once activated, platelets bind to monocytes via P-selectin-PSGL-1 interactions but also release the stored contents of their granules. These platelet releasates, in addition to direct platelet binding, activate monocytes and facilitate their recruitment to atherosclerotic sites. Consequently, understanding the changes platelet releasates induce in monocyte membrane proteins is critical. We studied the glyco-proteome changes of THP-1 monocytic cells affected by LPA- or thrombin-induced platelet releasates. We employed lectin affinity chromatography combined with filter aided sample preparation to achieve high glyco- and membrane protein and protein sequence coverage. Using stable isotope labeling by amino acids in cell culture, we quantified 1715 proteins, including 852 membrane and 500 glycoproteins, identifying the up-regulation of multiple proteins involved in monocyte extracellular matrix binding and transendothelial migration. Flow cytometry indicated expression changes of integrin α5, integrin β1, PECAM-1, and PSGL-1. The observed increase in monocyte adhesion to fibronectin was determined to be mediated by the up-regulation of very late antigen 5 via a P-selectin-PSGL-1 independent mechanism. This novel aspect could be validated on CD14+ human primary monocytes, highlighting the benefits of the improved enrichment method regarding high membrane protein coverage and reliable quantification.
Modulation of P-selection and platelet aggregation in chronic periodontitis: A clinical study
Perumal, Ramesh; Rajendran, Maheashwari; Krishnamurthy, Malathi; Ganji, Kiran Kumar; Pendor, Sunil Dattuji
2014-01-01
Background: The primary etiologic factor of periodontitis is the subgingival infection with a group of Gram negative pathogens. Transient bacteremia in periodontitis patients underlie chronic production and systemic increases of various proinflammatory mediators, including Interleukin (IL)-1α, IL-6, C-reactive protein and Tumor necrosis factor (TNF)-α. P- selectin is a member of selectin family of cell surface receptor which is located in the membrane of the secretory granules (alpha granules) of platelets and in the membrane of the Weibel-Palade bodies of the vascular endothelial cells. P selectin redistributes from the membrane of the granules to the plasma membrane when platelets and endothelial cells are activated and thus degranulated. Aim: To compare the level of platelet activation, soluble P Selectin level and morphological changes and aggregation of platelets in patients in periodontitis patients compared to healthy controls. Materials and Methods: 80 patients were included in the study with the age group of 35-60. The patients were divided into 2 groups, 40 subjects with generalized chronic periodontitis and 40 healthy subjects taken as control. Periodontal Examination using clinical parameters namely, Bleeding Index, Plaque Index, Probing Pocket Depth and Clinical Attachment Level were recorded. Collection of blood samples for estimation of serum soluble P- selectin level by ELISA method. Evaluation of Platelet morphology and grading the platelet aggregation. Results: P-selectin expression shows that the mean value for control group is 4.97 ± 16.56 ng/mL and study group 13.05 ± 29.94 ng/mL which was significantly higher than control group with P value 0.001. Platelet morphological changes shows small form – mean value for control group is 75.83% ± 14.24% while for study group is 39.08%. ± 21.59; Big form – mean value for control group 0.80% ± 0.35% while for study group 0.48% ± 1.3%and Spider form- mean value for control group 23.88% ± 14.13 while study group 59.32% ±. 23.42. The observation showed high statistical significance with P- value < 0.001 for small and spider form and no statistical significance for big form P = 0.075. Conclusion: Increased expression of P-selectin, spider form of platelets and pathological aggregation pattern which indicates that platelet activation may be associated with chronic periodontitis. The results of the study showed, higher number of spider forms and significant pathological aggregation pattern in periodontitis patients which indicates activation of platelets thus emphasized that periodontitis can be an contributing factor in the development of cardiovascular disease. PMID:25024540
Onore, Charity E.; Nordahl, Christine Wu; Young, Gregory S.; Van de Water, Judy A.; Rogers, Sally J.; Ashwood, Paul
2012-01-01
Background Although the etiopathology of Autism Spectrum Disorder (ASD) is not clear there is increasing evidence that dysfunction in the immune system affects many children with ASD. Findings of immune dysfunction in ASD include increases in inflammatory cytokines, chemokines and microglial activity in brain tissue and CSF, as well as abnormal peripheral immune cell function. Methods Adhesion molecules, such as platelet endothelial adhesion molecule-1 (PECAM-1), intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), P-Selectin, and L-Selectin, function to facilitate leukocyte transendothelial migration. We assessed concentrations of soluble adhesion molecules, sPECAM-1, sICAM-1, sVCAM-1, sP-Selectin, and sL-Selectin in the plasma of 49 participants with ASD, and 31 typically developing controls of the same age, all of whom were enrolled as part of the Autism Phenome Project (APP). Behavioral assessment, the levels of soluble adhesion molecules, head circumference and MRI measurements of brain volume were compared in the same subjects. Results Levels of sPECAM-1 and sP-Selectin were significantly reduced in the ASD group compared to typically developing controls (p < 0.02). Soluble PECAM-1 levels were negatively associated with repetitive behavior and abnormal brain growth in children with ASD (p=0.03). Conclusions As adhesion molecules modulate the permeability and signaling at the blood brain barrier as well as leukocyte infiltration into the CNS, current data suggests a role for these molecules in the complex pathophysiology of ASD. PMID:22717029
Chen, S; Springer, T A
1999-01-11
Wall shear stress in postcapillary venules varies widely within and between tissues and in response to inflammation and exercise. However, the speed at which leukocytes roll in vivo has been shown to be almost constant within a wide range of wall shear stress, i.e., force on the cell. Similarly, rolling velocities on purified selectins and their ligands in vitro tend to plateau. This may be important to enable rolling leukocytes to be exposed uniformly to activating stimuli on endothelium, independent of local hemodynamic conditions. Wall shear stress increases the rate of dissociation of individual selectin-ligand tether bonds exponentially (, ) thereby destabilizing rolling. We find that this is compensated by a shear-dependent increase in the number of bonds per rolling step. We also find an increase in the number of microvillous tethers to the substrate. This explains (a) the lack of firm adhesion through selectins at low shear stress or high ligand density, and (b) the stability of rolling on selectins to wide variation in wall shear stress and ligand density, in contrast to rolling on antibodies (). Furthermore, our data successfully predict the threshold wall shear stress below which rolling does not occur. This is a special case of the more general regulation by shear of the number of bonds, in which the number of bonds falls below one.
Serum concentrations of soluble (s)L- and (s)P-selectins in women with ovarian cancer.
Majchrzak-Baczmańska, Dominika B; Głowacka, Ewa; Wilczyński, Miłosz; Malinowski, Andrzej
2018-03-01
The aim of the study was to compare serum concentration of soluble L- and P-selectins in women with ovarian cancer (OC) and healthy controls, and to investigate sL- and sP-selectin levels with regard to clinical and pathological parameters. Correlation analysis was used to measure the following: sL- and sP-selectin concentration and Ca125; sP-selectin and platelet concentrations; and sL-selectin and serum leukocyte levels in women with OC. The study included 29 patients with OC and 23 healthy controls. Serum concentrations of sL- and sP-selectins were measured in all subjects. Routine diagnostic tests: CBC and USG (both groups) and Ca125 (study group) were performed. Significantly higher serum concentrations of sL- and sP-selectins were found in the study group as compared to controls. Lower levels of serum sL-selectin were observed in women with poorly-differentiated OC (G3) and advanced stages of the disease (FIGO III, IV), but the results were statistically insignificant. No statistically significant relationship was detected between sP-selectin serum concentration in women with OC and tumour differentiation, histological type, and stage of the disease. No significant correlation was found between sL- and sP-selectins and Ca125 levels. A weak correlation was found between serum concentration of sP-selectin in women with OC and platelet count. No statistically significant correlation was observed between sL-selectin concentration and serum leukocyte levels in women with OC. The analysis of sL- and sP-selectin concentrations may be a useful tool in the diagnosis of OC. The levels of sL-selectin decrease with disease progression.
Chen, Lin; Lin, Shao-xia; Amin, Sanober; Overbergh, Lut; Maggiolino, Giacomo; Chan, Lawrence S
2010-01-01
We investigated the functions of critical adhesion molecules ICAM-1 and VCAM-1 in a keratin-14 IL-4-transgenic (Tg) mouse model of atopic dermatitis, the skin lesions of which are characterized by prominent inflammatory cell infiltration, significantly increased mRNAs and proteins of ICAM-1, VCAM-1, E-selectin, P-selectin, L-selectin, and PSGL-1, and significantly increased numbers of dermal vessels expressing these adhesion molecules. We tested the hypotheses that deletion or blockade of these molecules may impede the inflammation by examining the disease progresses in the Tg mice crossed with ICAM-1-knockout mice and Tg mice received anti-VCAM-1-neutralizing antibody. Although the findings of the ICAM-1-knockout Tg mice (Tg/ICAM-1(-/-)) developed skin lesions similar to wide-type ICAM-1 Tg mice (Tg/ICAM-1(+/+)) were surprising, a compensatory mechanism may account for it: the frequency of VCAM-1 ligand, CD49d, on CD3(+) T cells in the lesional skin significantly increased in the Tg/ICAM-1(-/-) mouse, compared with the Tg/ICAM-1(+/+) mice. In contrast, anti-VCAM-1-treated Tg/ICAM-1(-/-) or Tg/ICAM-1(+/+) mice had significantly delayed onset of skin inflammation compared with isotype antibody-treated groups. Moreover, anti-VCAM-1 significantly reduced the skin inflammation severity in Tg/ICAM-1(+/+) mice, accompanied with reduction of mast cell, eosinophil, and CD3(+) T cell infiltration. VCAM-1 is more critical in developing skin inflammation in this model.
Oligomeric Amyloid-β Peptide on Sialylic Lewisx-Selectin Bonding at Cerebral Endothelial Surface.
Askarova, Sholpan; Sun, Grace Y; Meininger, Gerald A; Lee, James
2014-01-01
Alzheimer's disease (AD) is a chronic neurodegenerative disorder, which affects approximately 10% of the population aged 65 and 40% of people over the age 80. Currently, AD is on the list of diseases with no effective treatment. Thus, the study of molecular and cellular mechanisms of AD progression is of high scientific and practical importance. In fact, dysfunction of the blood-brain barrier (BBB) plays an important role in the onset and progression of the disease. Increased deposition of amyloid b peptide (Aβ) in cerebral vasculature and enhanced transmigration of monocytes across the BBB are frequently observed in AD brains and are some of the pathological hallmarks of the diseases. Since the transmigration of monocytes across the BBB is both a mechanical and a biochemical process, the expression of adhesion molecules and mechanical properties of endothelial cells are the critical factors that require investigation. Because of recent advances in the biological applications of atomic force microscopy (AFM), we applied AFM with cantilever tips bio-functionalized by sLe x in combination with the advanced immunofluorescent microscopy (QIM) to study the direct effects of Aβ 42 oligomers on the selectins expression, actin polymerization, and cellular mechanical and adhesion properties in cerebral endothelial cells (mouse bEnd3 line and primary human CECs) and find a possible way to attenuate these effects. QIM results showed that Aβ 42 increased the expressions of P-selectin on the cell surface and enhanced actin polymerization. Consistent with our QIM results, AFM data showed that Aβ 42 increased the probability of cell adhesion with sLe x -coated cantilever and cell stiffness. These effects were counteracted by lovstatin, a cholesterol-lowering drug. Surprisingly, the apparent rupture force of sLe x -selectin bonding was significantly lower after treatment with Aβ 42 , as compared with the control (i.e. no treatment). Similar results were also obtained when cells were treated with latruculin A (F-actin-disrupting drug). These results suggest that the decrease in the apparent rupture force of sLe x -selectin bonding is the consequence of the dissociation of adhesion between the cytoskeleton and the bilayer membrane induced by Aβ 42 . The major causes of excess mortality in the first group were neoplams (30.6%), hypertension (23.8%), and myocardial infarction (22.6%). The effects of radiation influenced mortality in the second group were 2-2.5 times lower than the first group. The studies of the effects of Aβ 42 on the adhesion properties of cerebral endothelial cells and how pharmacological agents (e.g. statin) counteract these effects should prove to provide insights into the mechanism of inflammation in Alzheimer's brains and the design of therapeutic treatments of the disease.
Hidalgo, Andrés; Peired, Anna J; Wild, Martin; Vestweber, Dietmar; Frenette, Paul S
2007-04-01
The selectins and their ligands are required for leukocyte extravasation during inflammation. Several glycoproteins have been suggested to bind to E-selectin in vitro, but the complete identification of its physiological ligands has remained elusive. Here, we showed that E-selectin ligand-1 (ESL-1), P-selectin glycoprotein ligand-1 (PSGL-1), and CD44 encompassed all endothelial-selectin ligand activity on neutrophils by using gene- and RNA-targeted loss of function. PSGL-1 played a major role in the initial leukocyte capture, whereas ESL-1 was critical for converting initial tethers into steady slow rolling. CD44 controlled rolling velocity and mediated E-selectin-dependent redistribution of PSGL-1 and L-selectin to a major pole on slowly rolling leukocytes through p38 signaling. These results suggest distinct and dynamic contributions of these three glycoproteins in selectin-mediated neutrophil adhesion and signaling.
CTC-Endothelial Cell Interactions during Metastasis
2013-04-01
endothelial cells via a variety of E-selectin ligands ( ESL ). These ESLs express a unique carbohydrate motif, sLex, which appears to be required for... ESL binding. The chemokine receptor CXCR4 has also been reported to supporting transendothelial migration of prostate cells through bone marrow
Leiva, Magdalena; Quintana, Juan A; Ligos, José M; Hidalgo, Andrés
2016-01-08
The life-long maintenance of haematopoietic stem and progenitor cells (HSPCs) critically relies on environmental signals produced by cells that constitute the haematopoietic niche. Here we report a cell-intrinsic mechanism whereby haematopoietic cells limit proliferation within the bone marrow, and show that this pathway is repressed by E-selectin ligand 1 (ESL-1). Mice deficient in ESL-1 display aberrant HSPC quiescence, expansion of the immature pool and reduction in niche size. Remarkably, the traits were transplantable and dominant when mutant and wild-type precursors coexisted in the same environment, but were independent of E-selectin, the vascular receptor for ESL-1. Instead, quiescence is generated by unrestrained production of the cytokine TGFβ by mutant HSPC, and in vivo or in vitro blockade of the cytokine completely restores the homeostatic properties of the haematopoietic niche. These findings reveal that haematopoietic cells, including the more primitive compartment, can actively shape their own environment.
Leiva, Magdalena; Quintana, Juan A.; Ligos, José M.; Hidalgo, Andrés
2016-01-01
The life-long maintenance of haematopoietic stem and progenitor cells (HSPCs) critically relies on environmental signals produced by cells that constitute the haematopoietic niche. Here we report a cell-intrinsic mechanism whereby haematopoietic cells limit proliferation within the bone marrow, and show that this pathway is repressed by E-selectin ligand 1 (ESL-1). Mice deficient in ESL-1 display aberrant HSPC quiescence, expansion of the immature pool and reduction in niche size. Remarkably, the traits were transplantable and dominant when mutant and wild-type precursors coexisted in the same environment, but were independent of E-selectin, the vascular receptor for ESL-1. Instead, quiescence is generated by unrestrained production of the cytokine TGFβ by mutant HSPC, and in vivo or in vitro blockade of the cytokine completely restores the homeostatic properties of the haematopoietic niche. These findings reveal that haematopoietic cells, including the more primitive compartment, can actively shape their own environment. PMID:26742601
Zeng, Bo; Zeng, Zhen; Liu, Chang; Yang, Yaying
2017-06-01
Objective To investigate the effect of Golgi α-mannosidase II (GM2) gene knockdown on adhesion abilities of BGC-823 human gastric carcinoma cells. Methods Three plasmid vectors expressing GM2 shRNAs and a negative control plasmid vector were designed, constructed and then transfected into BGC-823 cells by Lipofectamine TM 2000. After transfection, the mRNA and protein levels of GM2 in BGC-823 cells were detected by real-time quantitative PCR (qRT-PCR) and Western blotting to evaluate the transfection efficacy. The best plasmid for GM2 gene knockdown was selected and stably transfected into BGC-823 cells. Adhesion abilities of BGC-823 cells after GM2 gene silencing were observed by cell-cell, cell-matrix and cell-endothelial cell adhesion assays. At the same time, the expressions of E-cadherin, P-selectin, CD44v6 and intercellular adhesion molecule-1 (ICAM-1) proteins were detected by Western blotting after GM2 gene knockdown. Results The expression of GM2 was effectively knockdown in GM2-shRNA-2-transfected BGC-823 cells. Compared with the blank control group and the negative control group, the intercellular adhesion ability of the GM2-shRNA-2-transfected cells increased significantly, while their cell-matrix and cell-endothelium adhesion abilities markedly decreased. In GM2-shRNA-2 transfection group, E-cadherin expression was significantly elevated and the P-selectin expression was significantly reduced, while the expression levels of CD44v6 and ICAM-1 were not obviously changed. Conclusion After GM2 gene knockdown, the intercellular adhesion ability of gastric carcinoma BGC-823 cells is enhanced, while the adhesion abilities with the extracellular matrix and endothelial cells are weakened. The changes might be related to the up-regulated expression of E-cadherin and the down-regulation of P-selectin.
Belcher, John D.; Chen, Chunsheng; Nguyen, Julia; Abdulla, Fuad; Nguyen, Phong; Nguyen, Minh; Okeley, Nicole M.; Benjamin, Dennis R.; Senter, Peter D.; Vercellotti, Gregory M.
2015-01-01
2-Fluorofucose (2FF) blocks the fucosylation and the tethering of sialyl-Lewisx tetrasaccharide and structural variants on leukocytes and red blood cells to P- and E-selectins on activated endothelial cell surfaces. Because P- and E-selectin are required for vaso-occlusion in murine sickle cell disease (SCD), we investigated whether 2FF would inhibit vaso-occlusion in SCD mice. Microvascular stasis was measured in subcutaneous venules in NY1DD and HbSS-Townes SCD mice with dorsal skin-fold chambers after infusion of hemoglobin or exposure to hypoxia/reoxygenation. 2FF in drinking water or administered by gavage inhibited stasis in sickle mice in a dose-responsive manner. Significant inhibitory effects on stasis were seen 1 day post-treatment. 2FF treatment of SCD mice also significantly reduced leukocyte rolling and adhesion along the vessel walls of SCD mice and the static adhesion of neutrophils and sickle red blood cells isolated from 2FF-treated SCD mice to resting and activated endothelial cells. Total white blood cell counts increased in response to 2FF. NF-ĸB activation and VCAM-1 and E-selectin expression were inhibited in the livers of SCD mice consistent with an overall decrease in vascular inflammation and ischemia-reperfusion physiology. Pretreatment with 2FF completely eliminated heme-induced lethality in HbSS-Townes mice, consistent with the observed anti-inflammatory and anti-adhesive properties of 2FF in SCD mice. These data suggest that 2FF may be beneficial for preventing or treating vaso-occlusive crises in SCD patients. PMID:25706118
Adhesion behavior of endothelial progenitor cells to endothelial cells in simple shear flow
NASA Astrophysics Data System (ADS)
Gong, Xiao-Bo; Li, Yu-Qing; Gao, Quan-Chao; Cheng, Bin-Bin; Shen, Bao-Rong; Yan, Zhi-Qiang; Jiang, Zong-Lai
2011-12-01
The adhesion of endothelial progenitor cells (EPCs) on endothelial cells (ECs) is one of the critical physiological processes for the regenesis of vascular vessels and the prevention of serious cardiovascular diseases. Here, the rolling and adhesion behavior of EPCs on ECs was studied numerically. A two-dimensional numerical model was developed based on the immersed boundary method for simulating the rolling and adhesion of cells in a channel flow. The binding force arising from the catch bond of a receptor and ligand pair was modeled with stochastic Monte Carlo method and Hookean spring model. The effect of tumor necrosis factor alpha (TNF- α) on the expression of the number of adhesion molecules in ECs was analyzed experimentally. A flow chamber system with CCD camera was set up to observe the top view of the rolling of EPCs on the substrate cultivated with ECs. Numerical results prove that the adhesion of EPC on ECs is closely related to membrane stiffness of the cell and shear rate of the flow. It also suggests that the adhesion force between EPC and EC by P-selectin glycoprotein ligand-1 only is not strong enough to bond the cell onto vessel walls unless contributions of other catch bond are considered. Experimental results demonstrate that TNF- α enhanced the expressions of VCAM, ICAM, P-selectin and E-selectin in ECs, which supports the numerical results that the rolling velocity of EPC on TNF- α treated EC substrate decreases obviously compared with its velocity on the untreated one. It is found that because the adhesion is affected by both the rolling velocity and the deformability of the cell, an optimal stiffness of EPC may exist at a given shear rate of flow for achieving maximum adhesion rates.
An, Guangyu; Wang, Huan; Tang, Rong; Yago, Tadayuki; McDaniel, J. Michael; McGee, Samuel; Huo, Yuqing; Xia, Lijun
2008-01-01
Background Ly-6Chi monocytes are key contributors to atherosclerosis in mice. However, how Ly-6Chi monocytes selectively accumulate in atherosclerotic lesions is largely unknown. Monocyte homing to sites of atherosclerosis is primarily initiated by rolling on P- and E-selectin expressed on endothelium. We hypothesize that P-selectin glycoprotein ligand-1 (PSGL-1), the common ligand of P- and E-selectin on leukocytes, contributes to the preferential homing of Ly-6Chi monocytes to atherosclerotic lesions. Methods and Results To test this hypothesis, we examined the expression and function of PSGL-1 on Ly-6Chi and Ly-6Clo monocytes from wild-type mice, ApoE-/- mice, and mice lacking both ApoE and PSGL-1 genes (ApoE-/-/PSGL-1-/-). We found that Ly-6Chi monocytes expressed a higher level of PSGL-1, and had enhanced binding to fluid-phase P- and E-selectin, compared to Ly-6Clo monocytes. Under in vitro flow conditions, more Ly-6Chi monocytes rolled on P-, E-, and L-selectin at slower velocities than Ly-6Clo cells. In an ex vivo perfused carotid artery model, Ly-6Chi monocytes interacted preferentially with atherosclerotic endothelium compared with Ly-6Clo monocytes in a PSGL-1-dependent manner. In vivo, ApoE-/- mice lacking PSGL-1 had impaired Ly-6Chi monocyte recruitment to atherosclerotic lesions. Moreover, ApoE-/-/PSGL-1-/- mice exhibited significantly reduced monocyte infiltration in wire injury-induced neointima and in atherosclerotic lesions. ApoE-/-/PSGL-1-/- mice also developed smaller neointima and atherosclerotic plaques. Conclusions These data indicate that PSGL-1 is a new marker for Ly-6Chi monocytes and a major determinant for Ly-6Chi cell recruitment to sites of atherosclerosis in mice. PMID:18519846
Hsueh, P-T; Lin, H-H; Wang, H-H; Liu, C-L; Ni, W-F; Liu, J-K; Chang, H-H; Sun, D-S; Chen, Y-S; Chen, Y-L
2018-04-15
The murine maternal immune activation (MIA) offspring model enables longitudinal studies to explore aberrant social behaviors similar to those observed in humans. High levels of cytokines, chemokines and cell adhesion molecules (CAM) have been found in the plasma and/or brains of psychiatric patients. We hypothesized that upregulation of the systemic or brain immune response has an augmenting effect by potentially increasing the interplay between the neuronal and immune systems during the growth of the MIA offspring. In this study, a C57BL/6j MIA female offspring model exhibiting social deficits was established. The expression of fetal interferon (IFN)-stimulated (gbp3, irgm1, ifi44), adolescent immunodevelopmental transcription factor (eg, r2, tfap2b), hormone (pomc, hcrt), adult selectin (sell, selp) and neuroligin (nlgn2) genes was altered. Systemic upregulation of endogenous IL-10 occurred at the adult stage, while both IL-1β and IL-6 were increased and persisted in the sera throughout the growth of the MIA offspring. The cerebral IL-6 levels were endogenously upregulated, but both MCP-1 (macrophage inflammatory protein-1) and L-selectin levels were downregulated at the adolescent and/or adult stages. However, the MIA offspring were susceptible to lipopolysaccharide (LPS) stimulation. After reinjecting the MIA offspring with LPS in adulthood, a variety of sera and cerebral cytokines, chemokines and CAMs were increased. Particularly, both MCP-1 and L-selectin showed relatively high expression in the brain compared with the expression levels in phosphate-buffered saline (PBS)-treated offspring injected with LPS. Potentially, MCP-1 was attracted to the L-selectin-mediated immune cells due to augmentation of the immune response following stimulation in MIA female offspring. © 2018 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Zhou, Min; Ding, Yong; Cai, Liang; Wang, Yonggang; Lin, Changpo; Shi, Zhenyu
2018-05-01
Low molecular weight fucoidan (LMWF) is a sulfated polysaccharide extracted from Saccharina Japonica that presents high affinity for P-selectin and abolish selectin-dependent recruitment of leukocytes. We hypothesized that dietary intake of LMWF, as a competitive binding agent of P‑selectin, could limit the inflammatory infiltration and aneurysmal growth in an Angiotensin II‑induced abdominal aortic aneurysm (AAA) mouse model. The Gene Expression Omnibus database was used for gene expressions and gene set enrichment analysis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that focal adhesion was involved in the development of AAA. However, dietary intake of LMWF could limit the enlargement of AAA, decreasing maximal aortic diameter and preserving elastin lamellae. Although LMWF did not decrease the circulatory monocytes count and lower the expression of P‑selectin in endothelium, it reduced macrophages infiltration in media and adventitia. Furthermore, matrix metalloproteinase expression was markedly downregulated, accompanied with reduced expression of inflammatory mediators, including interleukin 1β, tumor necrosis factor‑α and monocyte chemotactic protein‑1. The present study revealed a novel target for the treatment of AAA and the anti‑inflammatory effects of LMWF.
Platelet adhesion in breast cancer: development and application of a novel assay.
Caine, Graham J; Nadar, Sunil K; Lip, Gregory Y H; Stonelake, Paul S; Blann, Andrew D
2004-09-01
The increased risk of thromboembolism in cancer may be related to a prothrombotic or hypercoagulable state, with abnormalities of haemostasis and platelet activation. To further investigate the role of platelets in this disease, we developed and applied a new assay to detect and quantify platelet adhesion to the well-defined subendothelial substrate, fibrinogen. Platelet-rich plasma was obtained from 31 females with breast cancer (13 metastatic, 18 benign), and 30 healthy female controls, re-suspended to 2 x 10(8) cells/ml and 100 microl and incubated for 1 h in microtitre plates pre-coated with fibrinogen (5 mg/ml). The supernatant was carefully aspirated, lysed with Triton X-100 and stored at -70 degrees C as supernatant-platelet lysate. The microtitre wells were carefully washed with saline, bound platelets lysed with Triton, and the lysate stored at -70 degrees C as bound-platelet lysate. P-selectin was determined in supernatant-platelet lysate and bound-platelet lysate for each patient by enzyme-linked immunosorbent assay. Interpreting differences in P-selectin in different lysates as reflective of adhesion, patients with cancer had increased platelet adhesion (absolute and percentage, both P < 0.001) compared with healthy controls. There was also more adhesion (P < 0.001) in metastatic disease compared with non-metastatic disease. Patients with breast carcinomas, and, in particular, those with metastatic disease, have a higher degree of platelet adhesion, which may by quantified by a novel method based on cell lysis. This increase in platelet adhesiveness may be related to an increased risk of thromboembolism in these patients.
Woollard, K J; Kling, D; Kulkarni, S; Dart, A M; Jackson, S; Chin-Dusting, J
2006-01-06
Raised levels of soluble P-selectin (sP-selectin) have been reported in the plasma of patients with vascular diseases; however, the functional importance of this ligand remains unclear. In this study we have examined a potential role for plasma sP-selectin in regulating neutrophil adhesion in patients with peripheral arterial occlusive disease (PAOD). Patients with PAOD had significantly higher levels of sP-selectin (mean+/-SD: 73.3+/-13.0 versus 16.7+/-6.4 ng/mL) and enhanced whole blood leukocyte adhesion to platelets under shear. To examine whether the raised sP-selectin levels can directly influence leukocyte adhesion, isolated neutrophils were incubated with plasma from PAOD patients before and after immunodepletion of sP-selectin. Neutrophil adhesion to fibrinogen increased 2-fold following incubation with PAOD plasma, which was abrogated on sP-selectin immunodepletion. We subsequently demonstrated that recombinant sP-selectin dose-dependently (75 to 250 ng/mL) increased leukocyte adhesion to fibrinogen and platelet monolayers. This increase was PSGL-1 and Src kinase-dependent and correlated with an increase in sP-selectin-mediated Mac-1 activation. sP-selectin-stimulated neutrophil adhesion to platelet monolayers was inversely correlated with shear, such that at low shear (50 s(-1)) a 92.7%+/-15.7 increase in adhesion was observed decreasing to 38.5%+/-11.9 at 150 s(-1) and 10.1%+/-7.4 at 300 s(-1). These studies suggest a potentially important role for sP-selectin in modulating neutrophil adhesion in patients with PAOD, particularly at sites of low shear, where it raises the possibility that raised plasma sP-selectin levels may enhance leukocyte recruitment to vascular injury and promote disease progression.
Role of the endothelial surface layer in neutrophil recruitment.
Marki, Alex; Esko, Jeffrey D; Pries, Axel R; Ley, Klaus
2015-10-01
Neutrophil recruitment in most tissues is limited to postcapillary venules, where E- and P-selectins are inducibly expressed by venular endothelial cells. These molecules support neutrophil rolling via binding of PSGL-1 and other ligands on neutrophils. Selectins extend ≤ 38 nm above the endothelial plasma membrane, and PSGL-1 extends to 50 nm above the neutrophil plasma membrane. However, endothelial cells are covered with an ESL composed of glycosaminoglycans that is ≥ 500 nm thick and has measurable resistance against compression. The neutrophil surface is also covered with a surface layer. These surface layers would be expected to completely shield adhesion molecules; thus, neutrophils should not be able to roll and adhere. However, in the cremaster muscle and in many other models investigated using intravital microscopy, neutrophils clearly roll, and their rolling is easily and quickly induced. This conundrum was thought to be resolved by the observation that the induction of selectins is accompanied by ESL shedding; however, ESL shedding only partially reduces the ESL thickness (to 200 nm) and thus is insufficient to expose adhesion molecules. In addition to its antiadhesive functions, the ESL also presents neutrophil arrest-inducing chemokines. ESL heparan sulfate can also bind L-selectin expressed by the neutrophils, which contributes to rolling and arrest. We conclude that ESL has both proadhesive and antiadhesive functions. However, most previous studies considered either only the proadhesive or only the antiadhesive effects of the ESL. An integrated model for the role of the ESL in neutrophil rolling, arrest, and transmigration is needed. © Society for Leukocyte Biology.
Role of the endothelial surface layer in neutrophil recruitment
Marki, Alex; Esko, Jeffrey D.; Pries, Axel R.; Ley, Klaus
2015-01-01
Neutrophil recruitment in most tissues is limited to postcapillary venules, where E- and P-selectins are inducibly expressed by venular endothelial cells. These molecules support neutrophil rolling via binding of PSGL-1 and other ligands on neutrophils. Selectins extend ≤38 nm above the endothelial plasma membrane, and PSGL-1 extends to 50 nm above the neutrophil plasma membrane. However, endothelial cells are covered with an ESL composed of glycosaminoglycans that is ≥500 nm thick and has measurable resistance against compression. The neutrophil surface is also covered with a surface layer. These surface layers would be expected to completely shield adhesion molecules; thus, neutrophils should not be able to roll and adhere. However, in the cremaster muscle and in many other models investigated using intravital microscopy, neutrophils clearly roll, and their rolling is easily and quickly induced. This conundrum was thought to be resolved by the observation that the induction of selectins is accompanied by ESL shedding; however, ESL shedding only partially reduces the ESL thickness (to 200 nm) and thus is insufficient to expose adhesion molecules. In addition to its antiadhesive functions, the ESL also presents neutrophil arrest-inducing chemokines. ESL heparan sulfate can also bind L-selectin expressed by the neutrophils, which contributes to rolling and arrest. We conclude that ESL has both proadhesive and antiadhesive functions. However, most previous studies considered either only the proadhesive or only the antiadhesive effects of the ESL. An integrated model for the role of the ESL in neutrophil rolling, arrest, and transmigration is needed. PMID:25979432
Hurtenbach, U; Böggemeyer, E; Stehle, T; Museteanu, C; Del Pozo, E; Simon, M M
1996-05-01
Glucocorticosteroids (GC) are widely used as anti-inflammatory agents. The effects of Prednisolone on the development of Borrelia (B.) burgdorferi-induced clinical arthritis and organ inflammation was studied in severe combined immunodeficiency (SCID) mice. The drug was administered orally at a dose of 3, 10 and 30 mg/kg, starting shortly before experimental infection of the mice. A dose dependent inhibition of arthritic joint swelling was observed. Full protection was obtained with 30 mg/kg until 21 days after infection, subsequently, mild joint swelling developed but progression and severity of the disease was considerably less than in the other treated as well as in the untreated mice. Inhibition of clinical arthritis coincided with reduction of inflammatory cell infiltration in the joints, liver and muscle. Prednisolone was ineffective when application was initiated after arthritis was fully developed, i.e., 22 days after infection. Since the activated endothelium plays a critical role in development of inflammatory lesions, the expression of the cellular adhesion molecules (CAMs) E-selectin, P-selectin, ICAM-1 and VCAM-1 was determined in vitro using the bEnd3 endothelial cell line. Stimulation with a sonicated B. burgdorferi preparation in the presence of the water-soluble compound Prednisolone-21-hemisuccinate considerably reduced expression of ICAM-1, and marginally also of E-selectin, whereas the level of P-selectin and VCAM-1 remained unaltered. Thus, downregulation of ICAM-1 might be a critical factor in Prednisolone-mediated inhibition of B. burgdorferi-induced inflammation; the flare up of the disease after the initial protection indicates that additional therapy, e.g. with antibiotics, is necessary.
Hu, Jing-Bo; Kang, Xu-Qi; Liang, Jing; Wang, Xiao-Juan; Xu, Xiao-Ling; Yang, Ping; Ying, Xiao-Ying; Jiang, Sai-Ping; Du, Yong-Zhong
2017-01-01
The effective treatment for acute kidney injury (AKI) is currently limited, and care is primarily supportive. Sialic acid (SA) is main component of Sialyl Lewis x antigen on the mammalian cell surface, which participates in E-selectin binding. Therefore, dexamethasone(DXM)-loaded E-selectin-targeting sialic acid-polyethylene glycol-dexamethasone (SA-PEG-DXM/DXM) conjugate micelles are designed for ameliorating AKI. The conjugates are synthesized via the esterification reaction between PEG and SA or DXM, and can spontaneously form micelles in an aqueous solution with a 65.6 µg/mL critical micelle concentration. Free DXM is incorporated into the micelles with 6.28 ± 0.21% drug loading content. In vitro DXM release from SA-PEG-DXM/DXM micelles can be prolonged to 48h. Much more SA-PEG-DXM micelles can be internalized by lipopolysaccharide (LPS)-activated human umbilical vein endothelial cells (HUVECs) in comparison to PEG-DXM micelles due to specific interaction between SA and E-selectin expressed on HUVECs, and consequently more SA-PEG-DXM micelles are accumulated in the kidney of AKI murine model. Furthermore, SA in SA-PEG-DXM conjugates can significantly ameliorate LPS-induced production of pro-inflammatory cytokines via suppressing LPS-activated Beclin-1/Atg5-Atg12-mediated autophagy to attenuate toxicity. Compared with free DXM and PEG-DXM/DXM micelles, SA-PEG-DXM/DXM micelles show better therapeutical effects, as reflected by the improved renal function, histopathological changes, pro-inflammatory cytokines, oxidative stress and expression of apoptotic related proteins.
O-glycans direct selectin ligands to lipid rafts on leukocytes.
Shao, Bojing; Yago, Tadayuki; Setiadi, Hendra; Wang, Ying; Mehta-D'souza, Padmaja; Fu, Jianxin; Crocker, Paul R; Rodgers, William; Xia, Lijun; McEver, Rodger P
2015-07-14
Palmitoylated cysteines typically target transmembrane proteins to domains enriched in cholesterol and sphingolipids (lipid rafts). P-selectin glycoprotein ligand-1 (PSGL-1), CD43, and CD44 are O-glycosylated proteins on leukocytes that associate with lipid rafts. During inflammation, they transduce signals by engaging selectins as leukocytes roll in venules, and they move to the raft-enriched uropods of polarized cells upon chemokine stimulation. It is not known how these glycoproteins associate with lipid rafts or whether this association is required for signaling or for translocation to uropods. Here, we found that loss of core 1-derived O-glycans in murine C1galt1(-/-) neutrophils blocked raft targeting of PSGL-1, CD43, and CD44, but not of other glycosylated proteins, as measured by resistance to solubilization in nonionic detergent and by copatching with a raft-resident sphingolipid on intact cells. Neuraminidase removal of sialic acids from wild-type neutrophils also blocked raft targeting. C1galt1(-/-) neutrophils or neuraminidase-treated neutrophils failed to activate tyrosine kinases when plated on immobilized anti-PSGL-1 or anti-CD44 F(ab')2. Furthermore, C1galt1(-/-) neutrophils incubated with anti-PSGL-1 F(ab')2 did not generate microparticles. In marked contrast, PSGL-1, CD43, and CD44 moved normally to the uropods of chemokine-stimulated C1galt1(-/-) neutrophils. These data define a role for core 1-derived O-glycans and terminal sialic acids in targeting glycoprotein ligands for selectins to lipid rafts of leukocytes. Preassociation of these glycoproteins with rafts is required for signaling but not for movement to uropods.
Zhao, Wenwen; Wu, Chuanhong; Chen, Xiuping
2016-01-01
ABSTRACT Adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin, play important roles in the initial stage of atherosclerosis. Cryptotanshinone (CPT), a natural compound isolated from Salvia miltiorrhiza Bunge, exhibits anti-atherosclerotic activity although the underlying mechanisms remain elusive. In this study, the protective effect of CPT against oxidized low-density lipoprotein (ox-LDL)-induced adhesion molecule expression was investigated in human umbilical vein endothelial cells. Ox-LDL significantly induced ICAM-1, VCAM-1, and E-selectin expression at the mRNA and protein levels but reduced eNOS phosphorylation and NO generation, which were reversed by CPT pretreatment. Sodium nitroprusside, a NO donor, N-acetyl-L-cysteine (NAC), a reactive oxygen species (ROS) scavenger, and BAY117082, a NF-κB inhibitor, inhibited ox-LDL-induced ICAM-1, VCAM-1, and E-selectin expression. Ox-LDL-induced ROS production was significantly inhibited by CPT and NAC. Furthermore, ox-LDL activated the NF-κB signaling pathway by inducing phosphorylation of IKKβ and IκBα, promoting the interaction of IKKβ and IκBα, and increasing p65 nuclear translocation, which were significantly inhibited by CPT. In addition, CPT, NAC, and BAY117082 inhibited ox-LDL-induced membrane expression of ICAM-1, VCAM-1, E-selectin, and endothelial–monocyte adhesion and restored eNOS phosphorylation and NO generation. Results suggested that CPT inhibited ox-LDL-induced adhesion molecule expression by decreasing ROS and inhibiting the NF-κB pathways, which provides new insight into the anti-atherosclerotic mechanism of CPT. PMID:26647279
Wild, Martin; Vestweber, Dietmar; Frenette, Paul S.
2014-01-01
SUMMARY The selectins and their ligands are required for leukocyte extravasation during inflammation. Several glycoproteins have been suggested to bind to E-selectin in vitro but the complete identification of its physiological ligands has remained elusive. Here, we show using gene- and RNA-targeted loss-of-function that E-selectin ligand-1 (ESL-1), PSGL-1 and CD44 encompass all endothelial selectin ligand activity on neutrophils. PSGL-1 plays a major role in the initial leukocyte capture, while ESL-1 is critical to convert initial tethers into steady slow rolling. CD44 controls rolling velocity and mediates E-selectin-dependent redistribution of PSGL-1 and L-selectin to a major pole on slowly rolling leukocytes through p38 signaling. These results suggest distinct and dynamic contributions of these three glycoproteins in selectin-mediated neutrophil adhesion and signaling. PMID:17442598
Biocompatibility Assessment of a Long-Term Wearable Artificial Pump-Lung in Sheep
Zhou, Kang; Niu, Shuqiong; Bianchi, Giacomo; Wei, Xufeng; Garimella, Narayana; Griffith, Bartley P; Wu, Zhongjun J
2013-01-01
The purpose of this study was to assess the biocompatibility of a newly developed long-term wearable artificial pump-lung (APL) in a clinically relevant ovine animal mode. The wearable APL device was implanted in five sheep through a left thoracotomy. The device was connected between the right atrium (RA) and pulmonary artery (PA) and evaluated for 30 days. Three sheep were used as the sham control. Platelet activation was assessed by measuring platelet surface P-selectin (CD62P) expression with flow cytometry and plasma soluble P-selectin with an enzyme-linked immunosorbent assay (ELISA). Thrombotic deposition on the device components and hollow fiber membranes (HFM) were analyzed with digital imaging and scanning electron microscopy (SEM). Surface P-selectin of the APL and sham groups changed significantly over the study period, but without significant differences between the two groups. Soluble P-selectin for the two groups peaked in the first 24 hours after the surgery. Soluble P-selectin of the APL group remained slightly elevated over the study period compared to the pre-surgical baseline value and was slightly higher compared to that of the sham group. Plasma free hemoglobin (PFH) remained in the normal ranges in all the animals. In spite of the surgery related alteration in laboratory tests and elevation of platelet activation status, the APL devices in all the animals functioned normally (oxygen transfer and blood pumping) during the 30 day study period. The device flow path and membrane surface were free of gross thrombus. Electron microscopy images showed only scattered thrombi on the fibers (membrane surface and weft). In summary, the APL exhibited excellent biocompatibility. Two forms of platelet activation, surgery related and device induced, in the animals implanted with the wearable APL were observed. The limited device-induced platelet activation did not cause gross thrombosis and impair the long-term device performance. PMID:23452221
Faes, Camille; Balayssac-Siransy, Edwige; Connes, Philippe; Hivert, Ludovic; Danho, Clotaire; Bogui, Pascal; Martin, Cyril; Pialoux, Vincent
2014-01-01
Very few studies have investigated the effects of exercise on the biological parameters involved in vaso-occlusive events in sickle cell anaemia (SCA). The aim of this study was to test how a mild-moderate endurance exercise modulates oxidative stress, nitric oxide bioavailability and endothelial activation in SCA patients and healthy individuals. Eleven patients with SCA and 15 healthy subjects completed a 20-min duration submaximal cycling exercise at ≈45 Watts. Plasma markers of oxidative stress, antioxidant activity, endothelial activation and nitric oxide bioavailability were investigated before and after the exercise. Nitric oxide levels, anti-oxidant capacity, soluble (s)E-selectin and sP-selectin did not change in response to this exercise. Except for the malondialdehyde levels, which increased in the two groups, the other markers of oxidative stress remained unchanged in both groups in response to exercise. Soluble vascular cell adhesion molecule 1 levels were increased at the end of exercise in both groups. sL-selectin decreased and soluble intercellular adhesion molecule 1 increased with exercise in SCA patients only. The present data suggest that patients with SCA may undertake mild-moderate physical activities without any acute clinical complications, but care should be taken because oxidative stress and endothelial activation significantly increased in some patients. © 2013 John Wiley & Sons Ltd.
Simion, Viorel; Constantinescu, Cristina Ana; Stan, Daniela; Deleanu, Mariana; Tucureanu, Monica Madalina; Butoi, Elena; Manduteanu, Ileana; Simionescu, Maya
2016-01-01
Inflammation is a common process associated with numerous vascular pathologies. We hypothesized that targeting the inflamed endothelium by coupling a peptide with high affinity for P-selectin to the surface of dexamethasone-loaded lipid nanoemulsions will highly increase their specific binding to activated endothelial cells (EC) and reduce the cell activation. We developed and characterized dexamethasone-loaded lipid nanoemulsions directed towards P-selectin (PLN-Dex) and monitored their anti-inflammatory effects in vitro using cultured EC (EA.hy926 cells) and in vivo using a mouse model of acute inflammation [lipopolysaccharides (LPS) intravenously administered in C57BL/6 mice]. We found that PLN-Dex bound specifically to the surface of activated EC are efficiently internalized by EC and reduced the expression of proinflammatory genes, thus preventing the monocyte adhesion and transmigration to/through activated EC. Given intravenously in mice with acute inflammation, PLN-Dex accumulated at a significant high level in the lungs (compared to nontargeted nanoemulsions) and significantly reduced mRNA expression level of key proinflammatory cytokines such as IL-1β, IL-6, and MCP-1. In conclusion, the newly developed nanoformulation, PLN-Dex, is functional in vitro and in vivo, reducing selectively the endothelium activation and the consequent monocyte infiltration and diminishing significantly the lungs' inflammation, in a mouse model of acute inflammation. PMID:27703301
Guzmán-Guzmán, Iris Paola; Zaragoza-García, Oscar; Vences-Velázquez, Amalia; Castro-Alarcón, Natividad; Muñoz-Valle, José Francisco; Parra-Rojas, Isela
2016-11-18
Inflammation and endothelial dysfunction are considered the primary manifestations of the cardiovascular disease. Studies have established a relationship among components of metabolic syndrome (MetS) with inflammatory markers and the loss of permeability, vasoconstriction and vasodilatation endothelial. To determine the relationship among the concentrations of soluble endothelial dysfunction molecules and inflammation cytokines and components of the metabolic syndrome in young population. A study was performed in 240 young adult students ages 18-28 years. To define the presence of clinical and metabolic alterations and MetS the modified ATP-III criteria was considered. In all subjects were determined sociodemographic characteristics, anthropometric measures and the metabolic profile. Circulating levels of MCP-1, VEGF-A, sICAM-1, sVCAM-1, sE-selectin and sVE-cadherin were determined by ELISA immunoassay (Bioscience). Statistical analysis was performed using STATA statistical software v. 9.2. From all the participants, 44.6% had obesity, 59.9% had abdominal obesity, 49.6% low HDL-c and 16.7% high levels triglycerids. The 16.25% of the population showed 3 or more components of the MetS. Elevated MCP-1, sICAM-1 and sE-selectin levels were linked to the presence of obesity. In a model adjusted by age-gender, high soluble levels of MCP-1 and VEGF-A were linked with abdominal obesity (OR=1.83; 1.02-3.28 and OR=2.03; 1.15-3.56, respectively), as well as to the presence of the 2 components of MetS. sVCAM-1 levels were associated with impaired glucose (OR=4.74; 1.32-17.0); sE-selectin with low HDL-c (OR=1.99; 1.05-3.75), although sICAM-1 and sVE-cadherin were associated with impaired systolic blood pressure (OR=4.04; 1.24-13.1 and OR=6.28; 1.90-20.7, respectively). Levels of circulating MCP-1 and VEGF-A were associated with adiposity, levels of sVCAM-1 with the presence of impaired glucose, sE-selectin with low HDL-c, while the levels of sICAM-1 and sVE-cadherin were associated with impaired systolic blood pressure in young adults independently of other traditional risk factors. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.
Huang, Chin-Shiu; Lin, Ai-Hsuan; Yang, Ting-Chun; Liu, Kai-Li; Chen, Haw-Wen; Lii, Chong-Kuei
2015-02-01
Oxidized low-density lipoprotein (oxLDL) is a key contributor to atherogenesis through multiple mechanisms, including the reactive oxygen species (ROS)-mediated nuclear factor-kappaB (NFκB) signaling pathway. Although shikonin, one of the main active components isolated from the Chinese herb Lithospermum erythrorhizon, has been shown to possess cardioprotective, antioxidative, and anti-inflammatory effects, the mechanisms underlying these actions are not well understood. In this study, we used EA.hy926 endothelial-like cells to examine the anti-atherogenic activity of shikonin. Shikonin (0-1 μM) concentration-dependently induced heme oxygenase-1, glutamate cysteine ligase modifier subunit, catalase, superoxide dismutase 1, glutathione peroxidase 1, and glutathione reductase protein and mRNA expression and glutathione content via activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/Nrf2 signaling pathway. In the presence of oxLDL (40 μg/ml), shikonin pretreatment reversed oxLDL-induced ROS production, antioxidant response element reporter activity, NFκB nuclear translocation, and intercellular adhesion molecule (ICAM)-1 and E-selectin expression and suppressed the increase of monocyte adhesion to endothelial cells. Nrf2 knockdown by using RNA interference attenuated the ability of shikonin to inhibit oxLDL-induced NFκB DNA binding activity, adhesion molecule expression, and monocyte adhesion. Taken together, these results suggest that shikonin protects against oxLDL-induced endothelial damage by suppressing ROS/NFκB-mediated ICAM-1 and E-selectin expression via up-regulation of PI3K/Akt/Nrf2-dependent antioxidant enzyme expression. Copyright © 2014 Elsevier Inc. All rights reserved.
Sawicki, C M; McKim, D B; Wohleb, E S; Jarrett, B L; Reader, B F; Norden, D M; Godbout, J P; Sheridan, J F
2015-08-27
Repeated social defeat (RSD) in mice causes myeloid cell trafficking to the brain that contributes to the development of prolonged anxiety-like behavior. Myeloid cell recruitment following RSD occurs in regions where neuronal and microglia activation is observed. Thus, we hypothesized that crosstalk between neurons, microglia, and endothelial cells contributes to brain myeloid cell trafficking via chemokine signaling and vascular adhesion molecules. Here we show that social defeat caused an exposure- and brain region-dependent increase in several key adhesion molecules and chemokines involved in the recruitment of myeloid cells. For example, RSD induced distinct patterns of adhesion molecule expression that may explain brain region-dependent myeloid cell trafficking. VCAM-1 and ICAM-1 mRNA expression were increased in an exposure-dependent manner. Furthermore, RSD-induced VCAM-1 and ICAM-1 protein expression were localized to the vasculature of brain regions implicated in fear and anxiety responses, which spatially corresponded to previously reported patterns of myeloid cell trafficking. Next, mRNA expression of additional adhesion molecules (E- and P-selectin, PECAM-1) and chemokines (CXCL1, CXCL2, CXCL12, CCL2) were determined in the brain. Social defeat induced an exposure-dependent increase in mRNA levels of E-selectin, CXCL1, and CXCL2 that increased with additional days of social defeat. While CXCL12 was unaffected by RSD, CCL2 expression was increased by six days of social defeat. Last, comparison between enriched CD11b(+) cells (microglia/macrophages) and enriched GLAST-1(+)/CD11b(-) cells (astrocytes) revealed RSD increased mRNA expression of IL-1β, CCL2, and CXCL2 in microglia/macrophages but not in astrocytes. Collectively, these data indicate that key mediators of leukocyte recruitment were increased in the brain vasculature following RSD in an exposure- and brain region-dependent manner. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Sawicki, Caroline M.; McKim, Daniel B.; Wohleb, Eric S.; Jarrett, Brant L.; Reader, Brenda F.; Norden, Diana M.; Godbout, Jonathan P.; Sheridan, John F.
2014-01-01
Repeated social defeat (RSD) in mice causes myeloid cell trafficking to the brain that contributes to the development of prolonged anxiety-like behavior. Myeloid cell recruitment following RSD occurs in regions where neuronal and microglia activation is observed. Thus, we hypothesized that crosstalk between neurons, microglia, and endothelial cells contributes to brain-myeloid cell trafficking via chemokine signaling and vascular adhesion molecules. Here we show that social defeat caused an exposure- and brain region-dependent increase in several key adhesion molecules and chemokines involved in the recruitment of myeloid cells. For example, RSD induced distinct patterns of adhesion molecule expression that may explain brain region-dependent myeloid cell trafficking. VCAM-1 and ICAM-1 mRNA expression were increased in an exposure-dependent manner. Furthermore, RSD-induced VCAM-1 and ICAM-1 protein expression were localized to the vasculature of brain regions implicated in fear and anxiety responses, which spatially corresponded to previously reported patterns of myeloid cell trafficking. Next, mRNA expression of additional adhesion molecules (E- and P-selectin, PECAM-1) and chemokines (CXCL1, CXCL2, CXCL12, CCL2) were determined in the brain. Social defeat induced an exposure-dependent increase in mRNA levels of E-selectin, CXCL1, and CXCL2 that increased with additional days of social defeat. While CXCL12 was unaffected by RSD, CCL2 expression was increased by six days of social defeat. Last, comparison between enriched CD11b+ cells (microglia/macrophages) and enriched GLAST-1+/CD11b− cells (astrocytes) revealed RSD increased mRNA expression of IL-1β, CCL2, and CXCL2 in microglia/macrophages but not in astrocytes. Collectively, these data indicate that key mediators of leukocyte recruitment were increased in the brain vasculature following RSD in an exposure- and brain-region dependent manner. PMID:25445193
Lo, Wan-Yu; Yang, Wen-Kai; Peng, Ching-Tien; Pai, Wan-Yu; Wang, Huang-Joe
2018-01-01
Background and Aims: Increased O -linked N -acetylglucosamine ( O -GlcNAc) modification of proteins by O -GlcNAc transferase (OGT) is associated with diabetic complications. Furthermore, oxidative stress promotes endothelial inflammation during diabetes. A previous study reported that microRNA-200 (miR-200) family members are sensitive to oxidative stress. In this study, we examined whether miR-200a and miR-200b regulate high-glucose (HG)-induced OGT expression in human aortic endothelial cells (HAECs) and whether miRNA-200a/200b downregulate OGT expression to control HG-induced endothelial inflammation. Methods: HAECs were stimulated with high glucose (25 mM) for 12 and 24 h. Real-time polymerase chain reaction (PCR), western blotting, THP-1 adhesion assay, bioinformatics predication, transfection of miR-200a/200b mimic or inhibitor, luciferase reporter assay, and transfection of siRNA OGT were performed. The aortic endothelium of db/db diabetic mice was evaluated by immunohistochemistry staining. Results: HG upregulated OGT mRNA and protein expression and protein O -GlcNAcylation levels (RL2 antibody) in HAECs, and showed increased intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin gene expression; ICAM-1 expression; and THP-1 adhesion. Bioinformatics analysis revealed homologous sequences between members of the miR-200 family and the 3'-untranslated region (3'-UTR) of OGT mRNA, and real-time PCR analysis confirmed that members of miR-200 family were significantly decreased in HG-stimulated HAECs. This suggests the presence of an impaired feedback restraint on HG-induced endothelial protein O -GlcNAcylation levels because of OGT upregulation. A luciferase reporter assay demonstrated that miR-200a/200b mimics bind to the 3'-UTR of OGT mRNA. Transfection with miR-200a/200b mimics significantly inhibited HG-induced OGT mRNA expression, OGT protein expression; protein O -GlcNAcylation levels; ICAM-1, VCAM-1, and E-selectin gene expression; ICAM-1 expression; and THP-1 adhesion. Additionally, siRNA-mediated OGT depletion reduced HG-induced protein O -GlcNAcylation; ICAM-1, VCAM-1, and E-selectin gene expression; ICAM-1 expression; and THP-1 adhesion, confirming that HG-induced endothelial inflammation is partially mediated via OGT-induced protein O -GlcNAcylation. These results were validated in vivo : tail-vein injection of miR-200a/200b mimics downregulated endothelial OGT and ICAM-1 expression in db/db mice. Conclusion: miR-200a/200b are involved in modulating HG-induced endothelial inflammation by regulating OGT-mediated protein O -GlcNAcylation, suggesting the therapeutic role of miR-200a/200b on vascular complications in diabetes.
de Pablo, Raúl; Monserrat, Jorge; Reyes, Eduardo; Díaz, David; Rodríguez-Zapata, Manuel; de la Hera, Antonio; Prieto, Alfredo; Álvarez-Mon, Melchor
2013-03-01
Vascular endothelium activation is a key pathogenic step in systemic inflammatory response syndrome (SIRS) that can be triggered by both microbial and sterile proinflammatory stimuli. The relevance of soluble adhesion molecules as clinical biomarkers to discriminate between infectious and non-infectious SIRS, and the individual patient prognosis, has not been established. We prospectively measured by sandwich ELISA, serum levels of soluble E-Selectin (sE-Selectin), soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble intercellular adhesion molecule-1 (sICAM-1) and soluble intercellular adhesion molecule-2 (sICAM-2) at ICU admission and at days 3, 7, 14 and 28 in patients with sepsis and at days 3 and 7 in patients with non-infectious SIRS. At ICU admission, sE-Selectin, sVCAM-1 and sICAM-1 in patients with infectious SIRS were significantly higher than those found in patients with non-infectious SIRS. ROC analysis revealed that the AUC for infection identification was best for sICAM-1 (0.900±0.041; 95% CI 0.819-0.981; p<0.0001). Moreover, multivariate analysis showed that 4 variables were significantly and independently associated with mortality at 28 days: male gender (OR 15.90; 95% CI, 2.54-99.32), MODS score (OR 5.60; 95% CI, 1.67-18.74), circulating sE-Selectin levels (OR 4.81; 95% CI, 1.34-17.19) and sVCAM-1 concentrations (OR 4.80; 95% CI, 1.34-17.14). Patients with SIRS secondary to infectious or non-infectious etiology show distinctive patterns of disturbance in serum soluble adhesion molecules. Serum ICAM-1 is a reliable biomarker for classifying patients with infectious SIRS from those with non-infectious SIRS. In addition, soluble E-Selectin is a prognostic biomarker with higher levels in patients with SIRS and fatal outcome. Copyright © 2012 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.
E-selectin ligand-1 (ESL-1) is a novel adiponectin binding protein on cell adhesion.
Yamamoto, Hiroyasu; Kuroda, Nana; Uekita, Hiromi; Kochi, Ikoi; Matsumoto, Akane; Niinaga, Ryu; Funahashi, Tohru; Shimomura, Iichiro; Kihara, Shinji
2016-02-05
Adiponectin (APN) is an adipocyte-derived bioactive molecule with anti-diabetic and anti-atherogenic properties. Although anti-diabetic effects are mostly mediated by the adiponectin receptors AdipoR1 and AdipoR2, the anti-atherogenic mechanisms have not been fully elucidated. In this study, we identified E-selectin ligand (ESL)-1 as a novel APN-binding protein by mass spectrometry analysis of HepG2 cell-derived immunoprecipitant with an anti-APN antibody. Cell adhesion assays using fluorescence-labelled monocyte cell line THP-1 cells and human umbilical vein endothelial cells (HUVECs) revealed that APN-pre-treated THP-1 cells had reduced binding ability to HUVECs. This APN-mediated suppressive effect on monocyte binding to endothelial cells was partially abrogated by targeting ESL-1 with shRNA in THP-1 cells. In addition, serial mutagenesis analysis disclosed that five extracellular amino acids close to the N-terminus of ESL-1 were essential for binding with APN. Our results highlight the fact that interaction between APN and ESL-1 could provide a fundamental mechanism underlying the anti-atherogenic properties of APN. Copyright © 2016 Elsevier Inc. All rights reserved.
An Analytical Model for Determining Two-Dimensional Receptor-Ligand Kinetics
Cheung, Luthur Siu-Lun; Konstantopoulos, Konstantinos
2011-01-01
Cell-cell adhesive interactions play a pivotal role in major pathophysiological vascular processes, such as inflammation, infection, thrombosis, and cancer metastasis, and are regulated by hemodynamic forces generated by blood flow. Cell adhesion is mediated by the binding of receptors to ligands, which are both anchored on two-dimensional (2-D) membranes of apposing cells. Biophysical assays have been developed to determine the unstressed (no-force) 2-D affinity but fail to disclose its dependence on force. Here we develop an analytical model to estimate the 2-D kinetics of diverse receptor-ligand pairs as a function of force, including antibody-antigen, vascular selectin-ligand, and bacterial adhesin-ligand interactions. The model can account for multiple bond interactions necessary to mediate adhesion and resist detachment amid high hemodynamic forces. Using this model, we provide a generalized biophysical interpretation of the counterintuitive force-induced stabilization of cell rolling observed by a select subset of receptor-ligand pairs with specific intrinsic kinetic properties. This study enables us to understand how single-molecule and multibond biophysics modulate the macroscopic cell behavior in diverse pathophysiological processes. PMID:21575567
Munoz, F M; Hawkins, E P; Bullard, D C; Beaudet, A L; Kaplan, S L
1997-01-01
Endothelial selectins mediate rolling of leukocytes on endothelium, a crucial step for leukocyte firm adhesion and emigration into sites of tissue injury and infection. To characterize the role of the endothelial selectins during bacterial sepsis in vivo, Streptococcus pneumoniae (1-10 x 10(6) colony-forming units) was inoculated intraperitoneally into wild-type mice and mice with E-, P-, or E-/P-selectin deficiencies. Mice were followed 10 d for morbidity, survival, clearance of bacteremia, and leukocyte migration to the peritoneal cavity and organs 48 h after infection. All selectin-deficient mice showed a more pronounced morbidity, a significantly higher mortality associated with persistent bacteremia, and a higher bacterial load when compared with wild-type mice. These differences were most remarkable in the E-selectin-deficient mice, which showed the highest rate of mortality and bacteremia (P = 0.0001). No significant differences were observed among the groups in the inflammatory response present in the peritoneal cavity, brain, liver, spleen, or kidney at 48 h after inoculation. Extensive hepatic and splenic necrosis and thrombosis were noted in E- and P-selectin-deficient mice. Although the absence of endothelial selectins did not substantially impair leukocyte emigration to sites of infection 48 h after pneumococcal sepsis, it resulted in increased mortality and a higher bacterial load in the bloodstream of selectin-deficient mice. These results demonstrate a definitive phenotypic abnormality in E-selectin-deficient mice, and suggest that E- and P-selectin are important in the host defense against S. pneumoniae infection. PMID:9329976
O-glycans direct selectin ligands to lipid rafts on leukocytes
Shao, Bojing; Yago, Tadayuki; Setiadi, Hendra; Wang, Ying; Mehta-D’souza, Padmaja; Fu, Jianxin; Crocker, Paul R.; Rodgers, William; Xia, Lijun; McEver, Rodger P.
2015-01-01
Palmitoylated cysteines typically target transmembrane proteins to domains enriched in cholesterol and sphingolipids (lipid rafts). P-selectin glycoprotein ligand-1 (PSGL-1), CD43, and CD44 are O-glycosylated proteins on leukocytes that associate with lipid rafts. During inflammation, they transduce signals by engaging selectins as leukocytes roll in venules, and they move to the raft-enriched uropods of polarized cells upon chemokine stimulation. It is not known how these glycoproteins associate with lipid rafts or whether this association is required for signaling or for translocation to uropods. Here, we found that loss of core 1-derived O-glycans in murine C1galt1−/− neutrophils blocked raft targeting of PSGL-1, CD43, and CD44, but not of other glycosylated proteins, as measured by resistance to solubilization in nonionic detergent and by copatching with a raft-resident sphingolipid on intact cells. Neuraminidase removal of sialic acids from wild-type neutrophils also blocked raft targeting. C1galt1−/− neutrophils or neuraminidase-treated neutrophils failed to activate tyrosine kinases when plated on immobilized anti–PSGL-1 or anti-CD44 F(ab′)2. Furthermore, C1galt1−/− neutrophils incubated with anti–PSGL-1 F(ab′)2 did not generate microparticles. In marked contrast, PSGL-1, CD43, and CD44 moved normally to the uropods of chemokine-stimulated C1galt1−/− neutrophils. These data define a role for core 1-derived O-glycans and terminal sialic acids in targeting glycoprotein ligands for selectins to lipid rafts of leukocytes. Preassociation of these glycoproteins with rafts is required for signaling but not for movement to uropods. PMID:26124096
Leukocyte adhesion: High-speed cells with ABS.
van der Merwe, P A
1999-06-03
In order to decide where to exit blood vessels and enter tissues, leukocytes roll along endothelial surfaces. Recent studies suggest that an 'automatic braking system' (ABS), involving selectin cell-adhesion molecules, enables leukocytes to roll at a fairly constant velocity despite large variations in blood flow rate.
Głowińska-Olszewska, Barbara; Urban, Mirosława; Tołwińska, Joanna; Peczyńska, Jadwiga; Florys, Bozena
2005-01-01
Endothelial damage is one of the earliest stages in the atherosclerosis process. Adhesion molecules, secreted from dysfunctional endothelial cells are considered as early markers of atherosclerotic disease. Ultrasonographic evaluation of brachial arteries serves to detect biophysical changes in endothelial function, and evaluation of carotid arteries intima-media thickness allows to evaluate the earliest structural changes in the vessels. The aim of the study was to the evaluate levels of selected adhesion molecules (sICAM-1, sVCAM-1, sE-selectin, sP-selectin) and endothelial function with use of brachial artery dilatation study (flow mediated dilation--FMD, nitroglycerine mediated dilation--NTGMD) and IMT in carotid arteries in children and adolescents with diabetes type 1, as well as the correlation analysis between biochemical and biophysical markers of endothelial dysfunction. We studied 76 children and adolescents, with mean age--15.6+/-2.5 years, suffering from diabetes mean 7.8+/-2.8 years, mean HbA1c--8.4+/-1.5%. Control group consisted of 33 healthy children age and gender matched. Adhesion molecules levels were estimated with the use of immunoenzymatic methods (R&D Systems). Endothelial function was evaluated by study of brachial arteries dilation--FMD, NTGMD, with ultrasonographic evaluation (Hewlett Packard Sonos 4500) after Celermajer method, and IMT after Pignoli method. In the study group we found elevated levels of sICAM-1: 309.54+/-64 vs. 277.85+/-52 ng/ml in the control group (p<00.05) and elevated level of sE-selectin: 87.81+/-35 vs. 66.21+/-22 ng/ml (p<00.05). We found significantly impaired FMD in brachial arteries in the study group--7.51+/-4.52 vs. 12.61+/-4.65% (p<00.05) and significantly higher IMT value: 0.51+/-0.07 vs. 0.42+/-0.05 mm (p<00.001). Correlation analysis revealed a significant negative correlation between sE-selectin and FMD - r=-0.33 (p=0.004), and a positive correlation between E-selectin and IMT: r=0.32 (p=0.005). 1. In children and adolescents with diabetes type 1 we found elevated levels of adhesion molecules sICAM-1 and sE-selectin, what can confirm an endothelial dysfunction in these patients. 2. Significant negative correlation between sE-selectin level and FMD, and positive correlation between sE-selectin and IMT were found. 3. Biophysical proof of this damage is impaired brachial artery dilatation--FMD, and increased IMT values provide information about structural changes in the vessels.
Thomas, Grace M.; Panicot-Dubois, Laurence; Lacroix, Romaric; Dignat-George, Françoise; Lombardo, Dominique
2009-01-01
Recent publications have demonstrated the presence of tissue factor (TF)–bearing microparticles (MPs) in the blood of patients suffering from cancer. However, whether these MPs are involved in thrombosis remains unknown. We show that pancreatic and lung cancer cells produce MPs that express active TF and P-selectin glycoprotein ligand 1 (PSGL-1). Cancer cell–derived MPs aggregate platelets via a TF-dependent pathway. In vivo, cancer cell–derived MPs, but not their parent cells, infused into a living mouse accumulate at the site of injury and reduce tail bleeding time and the time to occlusion of venules and arterioles. This thrombotic state is also observed in mice developing tumors. In such mice, the amount of circulating platelet-, endothelial cell–, and cancer cell–derived MPs is increased. Endogenous cancer cell–derived MPs shed from the growing tumor are able to accumulate at the site of injury. Infusion of a blocking P-selectin antibody abolishes the thrombotic state observed after injection of MPs or in mice developing a tumor. Collectively, our results indicate that cancer cell–derived MPs bearing PSGL-1 and TF play a key role in thrombus formation in vivo. Targeting these MPs could be of clinical interest in the prevention of thrombosis and to limit formation of metastasis in cancer patients. PMID:19667060
Buravkova, Ludmila B; Rudimov, Eugene G; Andreeva, Elena R; Grigoriev, Anatoly I
2018-03-01
Microgravity is a principal risk factor hampering human cardiovascular regulation during space flights. Endothelial dysfunction associated with the impaired integrity and uniformity of the monolayer represents a potential trigger for vascular damage. We characterized the expression profile of the multi-step cascade of adhesion molecules (ICAM-1, VCAM-1, E-selectin, VE-cadherin) in umbilical cord endothelial cells (ECs) after 24 h of exposure to simulated microgravity (SMG), pro-inflammatory cytokine TNF-α, and the combination of the two. Random Positioning Machine (RPM)-mediated SMG was used to mimic microgravity effects. SMG stimulated the expression of E-selectin, which is known to be involved in slowing leukocyte rolling. Primary ECs displayed heterogeneity with respect to the proportion of ICAM-1-positive cells. ECs were divided into two groups: pre-activated ECs displaying high proportion of ICAM-1 + -cells (ECs-1) (greater than 50%) and non-activated ECs with low proportion of ICAM-1 + -cells (ECs-2) (less than 25%). Only non-activated ECs-2 responded to SMG by elevating gene transcription and increasing ICAM-1 and VE-cadherin expression. This effect was enhanced after cumulative SMG-TNF-α exposure. ECs-1 displayed an unexpected decrease in number of E-selectin- and ICAM-1-positive ECs and pronounced up-regulation of VCAM1 upon activation of inflammation, which was partially abolished by SMG. Thus, non-activated ECs-2 are quite resistant to the impacts of microgravity and even exhibited an elevation of the VE-cadherin gene and protein expression, thus improving the integrity of the endothelial monolayer. Pre-activation of ECs with inflammatory stimuli may disturb the EC adhesion profile, attenuating its barrier function. These alterations may be among the mechanisms underlying cardiovascular dysregulation in real microgravity conditions. © 2017 Wiley Periodicals, Inc.
Circulating endothelial progenitor cells in obese children and adolescents.
Pires, António; Martins, Paula; Paiva, Artur; Pereira, Ana Margarida; Marques, Margarida; Castela, Eduardo; Sena, Cristina; Seiça, Raquel
2015-01-01
This study aimed to investigate the relationship between circulating endothelial progenitor cell count and endothelial activation in a pediatric population with obesity. Observational and transversal study, including 120 children and adolescents with primary obesity of both sexes, aged 6-17 years, who were recruited at this Cardiovascular Risk Clinic. The control group was made up of 41 children and adolescents with normal body mass index. The variables analyzed were: age, gender, body mass index, systolic and diastolic blood pressure, high-sensitivity C-reactive protein, lipid profile, leptin, adiponectin, homeostasis model assessment-insulin resistance, monocyte chemoattractant protein-1, E-selectin, asymmetric dimethylarginine and circulating progenitor endothelial cell count. Insulin resistance was correlated to asymmetric dimethylarginine (ρ=0.340; p=0.003), which was directly, but weakly correlated to E-selectin (ρ=0.252; p=0.046). High sensitivity C-reactive protein was not found to be correlated to markers of endothelial activation. Systolic blood pressure was directly correlated to body mass index (ρ=0.471; p<0.001) and the homeostasis model assessment-insulin resistance (ρ=0.230; p=0.012), and inversely correlated to adiponectin (ρ=-0.331; p<0.001) and high-density lipoprotein cholesterol (ρ=-0.319; p<0.001). Circulating endothelial progenitor cell count was directly, but weakly correlated, to body mass index (r=0.211; p=0.016), leptin (ρ=0.245; p=0.006), triglyceride levels (r=0.241; p=0.031), and E-selectin (ρ=0.297; p=0.004). Circulating endothelial progenitor cell count is elevated in obese children and adolescents with evidence of endothelial activation, suggesting that, during infancy, endothelial repairing mechanisms are present in the context of endothelial activation. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Iron oxide nanoparticles stabilized with dendritic polyglycerols as selective MRI contrast agents
NASA Astrophysics Data System (ADS)
Nordmeyer, Daniel; Stumpf, Patrick; Gröger, Dominic; Hofmann, Andreas; Enders, Sven; Riese, Sebastian B.; Dernedde, Jens; Taupitz, Matthias; Rauch, Ursula; Haag, Rainer; Rühl, Eckart; Graf, Christina
2014-07-01
Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 +/- 1 nm) were modified by a ligand exchange process in a one pot synthesis with dPG and dPGS bearing phosphonate as anchor groups. Dynamic light scattering measurements performed in water and different biological media demonstrate that the hydrodynamic diameter of the particles is only slightly increased by the ligand exchange process resulting in a final diameter of less than 30 nm and that the particles are stable in these media. It is also revealed by magnetic resonance studies that their magnetic relaxivity is reduced by the surface modification but it is still sufficient for high contrast magnetic resonance imaging (MRI). Additionally, incubation of dPGS functionalized iron oxide nanoparticles with human umbilical vein endothelial cells showed a 50% survival at 85 nM (concentration of nanoparticles). Surface plasmon resonance (SPR) studies demonstrate that the dPGS functionalized iron oxide nanoparticles inhibit L-selectin ligand binding whereas the particles containing only dPG do not show this effect. Experiments in a flow chamber with human myelogenous leukemia cells confirmed L-selectin inhibition of the dPGS functionalized iron oxide nanoparticles and with that the L-selectin mediated leukocyte adhesion. These results indicate that dPGS functionalized iron oxide nanoparticles are a promising contrast agent for inflamed tissue probed by MRI.Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 +/- 1 nm) were modified by a ligand exchange process in a one pot synthesis with dPG and dPGS bearing phosphonate as anchor groups. Dynamic light scattering measurements performed in water and different biological media demonstrate that the hydrodynamic diameter of the particles is only slightly increased by the ligand exchange process resulting in a final diameter of less than 30 nm and that the particles are stable in these media. It is also revealed by magnetic resonance studies that their magnetic relaxivity is reduced by the surface modification but it is still sufficient for high contrast magnetic resonance imaging (MRI). Additionally, incubation of dPGS functionalized iron oxide nanoparticles with human umbilical vein endothelial cells showed a 50% survival at 85 nM (concentration of nanoparticles). Surface plasmon resonance (SPR) studies demonstrate that the dPGS functionalized iron oxide nanoparticles inhibit L-selectin ligand binding whereas the particles containing only dPG do not show this effect. Experiments in a flow chamber with human myelogenous leukemia cells confirmed L-selectin inhibition of the dPGS functionalized iron oxide nanoparticles and with that the L-selectin mediated leukocyte adhesion. These results indicate that dPGS functionalized iron oxide nanoparticles are a promising contrast agent for inflamed tissue probed by MRI. Electronic supplementary information (ESI) available: A detailed description of the synthesis of the ligands as well as the preparation and functionalization of the iron oxide nanoparticles including their physico-chemical characterization are presented. Further, details of the cell experiments and the SPR experiments are given. Two representative movies are provided showing leukocyte rolling on the ligand coated surface of the flow chamber. See DOI: 10.1039/c3nr04793h
Liu, Jun; He, Xiaole; Zhen, Ping; Zhou, Shenghu; Li, Xusheng
2016-05-25
Objective: To observe the influence of matrix metalloproteinases-2 (MMP-2), monocyte chemoattractant protein-1 (MCP-1), CD47, L-selectin and advanced oxidation proteinproducts (AOPP) in osteoarthritis and the intervention of curcumin. Methods: A total of 20 male C57BL/6 mice (10.05-15.00 g) were randomly divided into control group, OA group, Cur25 group and Cur50 group (intraperitoneal injected 25 μmol/L or 50 μmol/L of curcumin everyday after modeling). After 4 weeks treatment, we observed the morphological changes of the gross specimen by immunohistochemical method, and observed the ultrastructure of cartilage tissue under electron microscope. The expression of MMP-2, MCP-1 and CD47 were detected by western blotting, and L-selectin and AOPP were detected by ELISA and spectrophotometer, respectively. Results: In the cartilage tissue morphology, the chondrocytes of OA group showed obvious change, while Cur25 and Cur50 groups maintained the good cartilage cell membrane intact. Compared with control group, the expressions of MMP-2, MCP-1, L-selectin and AOPP in OA group, Cur25 group and Cur50 group were increased (all P <0.05), while CD47 levels were decreased (all P <0.05). Compared with OA group, the expressions of MMP-2, MCP-1, L-selectin and AOPP in Cur25 group and Cur50 group were decreased (all P <0.05), while CD47 levels were increased (all P <0.05), and such changes were more significant in Cur50 group (all P <0.05). Conclusion: The MMP-2, MCP-1, CD47, L-selectin and AOPP are closely associated with the pathology course of OA. Curcumin has protection effect on cartilage, which can relieve joint cartilage degeneration, reduce cartilage inflammation and increase the metabolic activity of chondrocytes.
Platelets and their chemokines in atherosclerosis—clinical applications
von Hundelshausen, Philipp; Schmitt, Martin M. N.
2014-01-01
The concept of platelets as important players in the process of atherogenesis has become increasingly accepted due to accumulating experimental and clinical evidence. Despite the progress in understanding the molecular details of atherosclerosis, particularly by using animal models, the inflammatory and thrombotic roles of activated platelet s especially in the human system remain difficult to dissect, as often only the complications of atherosclerosis, i.e., stroke and myocardial infarction are definable but not the plaque burden. Platelet indices including platelet count and mean platelet volume (MPV) and soluble mediators released by activated platelets are associated with atherosclerosis. The chemokine CXCL4 has multiple atherogenic activities, e.g., altering the differentiation of T cells and macrophages by inhibiting neutrophil and monocyte apoptosis and by increasing the uptake of oxLDL and synergizing with CCL5. CCL5 is released and deposited on endothelium by activated platelets thereby triggering atherogenic monocyte recruitment, which can be attenuated by blocking the corresponding chemokine receptor CCR5. Atheroprotective and plaque stabilizing properties are attributed to CXCL12, which plays an important role in regenerative processes by attracting progenitor cells. Its release from luminal attached platelets accelerates endothelial healing after injury. Platelet surface molecules GPIIb/IIIa, GP1bα, P-selectin, JAM-A and the CD40/CD40L dyade are crucially involved in the interaction with endothelial cells, leukocytes and matrix molecules affecting atherogenesis. Beyond the effects on the arterial inflammatory infiltrate, platelets affect cholesterol metabolism by binding, modifying and endocytosing LDL particles via their scavenger receptors and contribute to the formation of lipid laden macrophages. Current medical therapies for the prevention of atherosclerotic therapies enable the elucidation of mechanisms linking platelets to inflammation and atherosclerosis. PMID:25152735
Cell adhesion during bullet motion in capillaries.
Takeishi, Naoki; Imai, Yohsuke; Ishida, Shunichi; Omori, Toshihiro; Kamm, Roger D; Ishikawa, Takuji
2016-08-01
A numerical analysis is presented of cell adhesion in capillaries whose diameter is comparable to or smaller than that of the cell. In contrast to a large number of previous efforts on leukocyte and tumor cell rolling, much is still unknown about cell motion in capillaries. The solid and fluid mechanics of a cell in flow was coupled with a slip bond model of ligand-receptor interactions. When the size of a capillary was reduced, the cell always transitioned to "bullet-like" motion, with a consequent decrease in the velocity of the cell. A state diagram was obtained for various values of capillary diameter and receptor density. We found that bullet motion enables firm adhesion of a cell to the capillary wall even for a weak ligand-receptor binding. We also quantified effects of various parameters, including the dissociation rate constant, the spring constant, and the reactive compliance on the characteristics of cell motion. Our results suggest that even under the interaction between P-selectin glycoprotein ligand-1 (PSGL-1) and P-selectin, which is mainly responsible for leukocyte rolling, a cell is able to show firm adhesion in a small capillary. These findings may help in understanding such phenomena as leukocyte plugging and cancer metastasis. Copyright © 2016 the American Physiological Society.
Valim, V; Assis, L S S; Simões, M F J; Trevisani, V F M; Pucinelli, M L C; Andrade, L E C
2004-09-01
E-selectin is expressed by the activated endothelium and its plasma levels are increased in patients with systemic sclerosis. Eighteen patients fulfilling the American Rheumatism Association criteria for systemic sclerosis, 15 females and 3 males, 42-70 years old, 9 with diffuse and 9 with limited forms, were sequentially recruited for this study. Serum E-selectin levels were determined by commercially available ELISA and their association with nailfold capillaroscopic abnormalities was investigated. Nailfold capillaries were analyzed by 16X magnification wide-field capillaroscopy. Two parameters on capillaroscopy were used to correlate to serum E-selectin: deletion and ectasia. Data were analyzed statistically by the Student t-test and Spearman correlation. Two-tailed P values below 0.05 were considered significant. E-selectin range was 38 to 200 ng/ml (80 +/- 39.94). There was a correlation between serum E-selectin levels and the deletion capillaroscopic score (r = 0.50, P < 0.035). This correlation was even stronger within the first 48 months of diagnosis (r = 0.63, P < 0.048). On the other hand, no association was observed between selectin and ectasia. Patients with diffuse disease presented higher serum E-selectin levels than patients with limited disease, although the difference was not statistically significant (96.44 +/- 48.04 vs 63.56 +/- 21.77 ng/dl; P = 0.08). The present study is the first showing a correlation between soluble serum E-selectin levels and alterations in capillaroscopy. The stronger correlation of deletion score in capillaroscopy in early disease suggests that serum E-selectin levels might be a useful biochemical marker of disease activity in systemic sclerosis.
Yago, Tadayuki; Shao, Bojing; Miner, Jonathan J; Yao, Longbiao; Klopocki, Arkadiusz G; Maeda, Kenichiro; Coggeshall, K Mark; McEver, Rodger P
2010-07-22
In inflamed venules, neutrophils rolling on E-selectin induce integrin alpha(L)beta(2)-dependent slow rolling on intercellular adhesion molecule-1 by activating Src family kinases (SFKs), DAP12 and Fc receptor-gamma (FcRgamma), spleen tyrosine kinase (Syk), and p38. E-selectin signaling cooperates with chemokine signaling to recruit neutrophils into tissues. Previous studies identified P-selectin glycoprotein ligand-1 (PSGL-1) as the essential E-selectin ligand and Fgr as the only SFK that initiate signaling to slow rolling. In contrast, we found that E-selectin engagement of PSGL-1 or CD44 triggered slow rolling through a common, lipid raft-dependent pathway that used the SFKs Hck and Lyn as well as Fgr. We identified the Tec kinase Bruton tyrosine kinase as a key signaling intermediate between Syk and p38. E-selectin engagement of PSGL-1 was dependent on its cytoplasmic domain to activate SFKs and slow rolling. Although recruiting phosphoinositide-3-kinase to the PSGL-1 cytoplasmic domain was reported to activate integrins, E-selectin-mediated slow rolling did not require phosphoinositide-3-kinase. Studies in mice confirmed the physiologic significance of these events for neutrophil slow rolling and recruitment during inflammation. Thus, E-selectin triggers common signals through distinct neutrophil glycoproteins to induce alpha(L)beta(2)-dependent slow rolling.
Chen, Shuqi; Springer, Timothy A.
1999-01-01
Wall shear stress in postcapillary venules varies widely within and between tissues and in response to inflammation and exercise. However, the speed at which leukocytes roll in vivo has been shown to be almost constant within a wide range of wall shear stress, i.e., force on the cell. Similarly, rolling velocities on purified selectins and their ligands in vitro tend to plateau. This may be important to enable rolling leukocytes to be exposed uniformly to activating stimuli on endothelium, independent of local hemodynamic conditions. Wall shear stress increases the rate of dissociation of individual selectin–ligand tether bonds exponentially (1, 4) thereby destabilizing rolling. We find that this is compensated by a shear-dependent increase in the number of bonds per rolling step. We also find an increase in the number of microvillous tethers to the substrate. This explains (a) the lack of firm adhesion through selectins at low shear stress or high ligand density, and (b) the stability of rolling on selectins to wide variation in wall shear stress and ligand density, in contrast to rolling on antibodies (14). Furthermore, our data successfully predict the threshold wall shear stress below which rolling does not occur. This is a special case of the more general regulation by shear of the number of bonds, in which the number of bonds falls below one. PMID:9885254
Théorêt, Jean-François; Chahrour, Wissam; Yacoub, Daniel; Merhi, Yahye
2006-01-01
P-selectin is involved, with P-selectin glycoprotein (GP)-ligand-1 (PSGL-1), in platelet/leukocyte interactions during thrombo-inflammatory reactions; it also stabilizes platelet aggregates. Its antagonism accelerates thrombolysis and enhances the anti-aggregatory effects of GPIIb–IIIa inhibitors. This study was designed to investigate the mechanisms of P-selectin-mediated platelet aggregation. In freshly isolated human platelets, P-selectin translocation after thrombin stimulation increased rapidly to 48, 72, and 86% positive platelets after 60, 120, and 300 s, respectively. Platelet aggregation at 60 s post-stimulation averaged 46.7±1.9% and its extent followed closely the kinetics of P-selectin translocation. Pre-treatment of platelets with P-selectin antagonists, a recombinant PSGL-1 (rPSGL-Ig) or a blocking monoclonal antibody, significantly delayed platelet aggregation in a dose-dependent manner. At 100 μg ml−1 of rPSGL-Ig, platelet aggregation was completely inhibited up to 60 s post-stimulation and increased thereafter to reach maximal aggregation at 5 min. The second phase of platelet aggregation, in the presence of rPSGL-Ig, was completely prevented by the addition of a GPIIb–IIIa antagonist (Reopro) at 60 s, whereas its addition in the absence of rPSGL-Ig was without any significant effect. Combination of rPSGL-Ig with Reopro or with an inhibitor of Pi3K (LY294002), which reduces GPIIb–IIIa activation, showed to be more effective in inhibiting platelet aggregation, in comparison to the effects observed individually. rPSGL-Ig blocks P-selectin, whereas Reopro and LY294002 block GPIIb–IIIa and its activation, respectively, without a major effect on the percentage of platelets expressing P-selectin. In summary, platelet P-selectin participates with GPIIb–IIIa in the initiation of platelet aggregation. Its inhibition, with rPSGL-Ig, delays the aggregation process and increases the anti-aggregatory potency of Reopro. Thus, combination of P-selectin and GPIIb–IIIa antagonism may constitute a promising therapeutic option in the management of thrombotic disorders. PMID:16633357
Théorêt, Jean-François; Chahrour, Wissam; Yacoub, Daniel; Merhi, Yahye
2006-06-01
1. P-selectin is involved, with P-selectin glycoprotein (GP)-ligand-1 (PSGL-1), in platelet/leukocyte interactions during thrombo-inflammatory reactions; it also stabilizes platelet aggregates. Its antagonism accelerates thrombolysis and enhances the anti-aggregatory effects of GPIIb-IIIa inhibitors. This study was designed to investigate the mechanisms of P-selectin-mediated platelet aggregation. 2. In freshly isolated human platelets, P-selectin translocation after thrombin stimulation increased rapidly to 48, 72, and 86% positive platelets after 60, 120, and 300 s, respectively. Platelet aggregation at 60 s post-stimulation averaged 46.7 +/- 1.9% and its extent followed closely the kinetics of P-selectin translocation. 3. Pre-treatment of platelets with P-selectin antagonists, a recombinant PSGL-1 (rPSGL-Ig) or a blocking monoclonal antibody, significantly delayed platelet aggregation in a dose-dependent manner. At 100 microg ml(-1) of rPSGL-Ig, platelet aggregation was completely inhibited up to 60 s post-stimulation and increased thereafter to reach maximal aggregation at 5 min. The second phase of platelet aggregation, in the presence of rPSGL-Ig, was completely prevented by the addition of a GPIIb-IIIa antagonist (Reopro) at 60 s, whereas its addition in the absence of rPSGL-Ig was without any significant effect. 4. Combination of rPSGL-Ig with Reopro or with an inhibitor of Pi3K (LY294002), which reduces GPIIb-IIIa activation, showed to be more effective in inhibiting platelet aggregation, in comparison to the effects observed individually. 5. rPSGL-Ig blocks P-selectin, whereas Reopro and LY294002 block GPIIb-IIIa and its activation, respectively, without a major effect on the percentage of platelets expressing P-selectin. 6. In summary, platelet P-selectin participates with GPIIb-IIIa in the initiation of platelet aggregation. Its inhibition, with rPSGL-Ig, delays the aggregation process and increases the anti-aggregatory potency of Reopro. Thus, combination of P-selectin and GPIIb-IIIa antagonism may constitute a promising therapeutic option in the management of thrombotic disorders.
USDA-ARS?s Scientific Manuscript database
This study uses a systems biology approach, integrating global gene expression information and knowledge of the regulatory events in cells to identify transcription networks controlling peripheral blood mononuclear cells’ (PBMCs) immune response to lipopolysaccharide (LPS) and to identify the molecu...
NASA Astrophysics Data System (ADS)
Sakhalkar, Harshad S.; Dalal, Milind K.; Salem, Aliasger K.; Ansari, Ramin; Fu, Jie; Kiani, Mohammad F.; Kurjiaka, David T.; Hanes, Justin; Shakesheff, Kevin M.; Goetz, Douglas J.
2003-12-01
We exploited leukocyte-endothelial cell adhesion chemistry to generate biodegradable particles that exhibit highly selective accumulation on inflamed endothelium in vitro and in vivo. Leukocyte-endothelial cell adhesive particles exhibit up to 15-fold higher adhesion to inflamed endothelium, relative to noninflamed endothelium, under in vitro flow conditions similar to that present in blood vessels, a 6-fold higher adhesion to cytokine inflamed endothelium relative to non-cytokine-treated endothelium in vivo, and a 10-fold enhancement in adhesion to trauma-induced inflamed endothelium in vivo due to the addition of a targeting ligand. The leukocyte-inspired particles have adhesion efficiencies similar to that of leukocytes and were shown to target each of the major inducible endothelial cell adhesion molecules (E-selectin, P-selectin, vascular cell adhesion molecule 1, and intercellular adhesion molecule 1) that are up-regulated at sites of pathological inflammation. The potential for targeted drug delivery to inflamed endothelium has significant implications for the improved treatment of an array of pathologies, including cardiovascular disease, arthritis, inflammatory bowel disease, and cancer.
Dudda, Jan C; Simon, Jan C; Martin, Stefan
2004-01-15
The effector/memory T cell pool branches in homing subsets selectively trafficking to organs such as gut or skin. Little is known about the critical factors in the generation of skin-homing CD8+ T cells, although they are crucial effectors in skin-restricted immune responses such as contact hypersensitivity and melanoma defense. In this study, we show that intracutaneous, but not i.v. injection of bone marrow-derived dendritic cells induced skin-homing CD8+ T cells with up-regulated E-selectin ligand expression and effector function in contact hypersensitivity. The skin-homing potential and E-selectin ligand expression remained stable in memory phase without further Ag contact. In contrast, i.p. injection induced T cells expressing the gut-homing integrin alpha(4)beta(7). Although differential expression of these adhesion molecules was strictly associated with the immunization route, the postulated skin-homing marker CCR4 was transiently up-regulated in all conditions. Interestingly, dendritic cells from different tissues effectively induced the corresponding homing markers on T cells in vitro. Our results suggest a crucial role for the tissue microenvironment and dendritic cells in the instruction of T cells for tissue-selective homing and demonstrate that Langerhans cells are specialized to target T cells to inflamed skin.
Simvastatin reduces vaso-occlusive pain in sickle cell anaemia: a pilot efficacy trial.
Hoppe, Carolyn; Jacob, Eufemia; Styles, Lori; Kuypers, Frans; Larkin, Sandra; Vichinsky, Elliott
2017-05-01
Sickle cell anaemia (SCA) is a progressive vascular disease characterized by episodic vaso-occlusive pain. Despite the broad impact of inflammation on acute and chronic clinical manifestations of SCA, no directed anti-inflammatory therapies currently exist. Statins are cholesterol-lowering agents shown to confer protection from vascular injury by suppressing inflammation. We previously documented a reduction in soluble biomarkers of inflammation in patients with sickle cell disease treated with simvastatin. To determine the potential clinical efficacy of simvastatin, we treated 19 SCA patients with single daily dose simvastatin for 3 months and assessed changes from baseline in the frequency and intensity of diary-reported pain and levels of circulating nitric oxide metabolites (NOx), high sensitivity C-reactive protein (hs-CRP), vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), ICAM-3, E-selectin, and vascular endothelial growth factor (VEGF). Treatment with simvastatin resulted in a significant reduction in the frequency of pain (P = 0·0003), oral analgesic use (P = 0·003) and circulating hs-CRP (P = 0·003), soluble (s)E-selectin (P = 0·01), sICAM-1 (P = 0·02), sICAM-3 (P = 0·02) and sVEGF (P = 0·01). Simvastatin had no effect on pain intensity or levels of NOx, sP-selectin and sVCAM-1. The observed reductions in pain rate and markers of inflammation were greatest in subjects receiving hydroxycarbamide (HC), suggesting a synergistic effect of simvastatin. These results provide preliminary clinical data to support a larger trial of simvastatin in SCA. © 2017 John Wiley & Sons Ltd.
Cord blood neutrophils display a galectin-3 responsive phenotype accentuated by vaginal delivery
2013-01-01
Background Term neonates are at increased risk of infections due to undeveloped immune mechanisms, and proper neutrophil function is important for perinatal immune defence. Galectin-3, an endogenous β-galactoside-binding lectin, is emerging as an inflammatory mediator and we have previously shown that primed/activated, but not resting, adult neutrophils respond to this lectin by production of reactive oxygen species (ROS). We investigated if galectin-3 is of importance in perinatal immune defence, focusing on plasma levels and neutrophil responsiveness. Methods Neutrophils were isolated from peripheral blood of healthy adults and cord blood (CB) after elective Caesarean section (CSCB) and vaginal delivery (VDCB). ROS production was measured by chemiluminescence, L-selectin expression by flow cytometry, and interleukin-8 (IL-8) and galectin-3 concentrations by ELISA. Statistical evaluations were performed using the Mann–Whitney test. Results In response to galectin-3, CSCB neutrophils showed a small but clear ROS production not evident in adult cells, signifying that neonatal neutrophils exist in a primed state. IL-8 production was elevated in CSCB cells while L-selectin exposure was equal to adult cells. Comparing CSCB to VDCB neutrophils, the latter showed an extensive galectin-3 responsiveness, indicating that the degree of priming is dependent on mode of delivery. VDCB neutrophils were increasingly prone to shed L-selectin, while the amount of IL-8 was similar to CSCB cells. The endogenous galectin-3 levels were higher in neonatal as compared to adult plasma, unaffected by mode of delivery. Conclusions Neutrophils enter a pre-primed state already in the fetus. Upon exposure to the inflammatory stimuli that are associated with labor, the neutrophils develop a reactive phenotype with extensive priming features. PMID:23964611
Chae, Young Kwang; Choi, Wooyoung M; Bae, William H; Anker, Jonathan; Davis, Andrew A; Agte, Sarita; Iams, Wade T; Cruz, Marcelo; Matsangou, Maria; Giles, Francis J
2018-01-18
Immunotherapy is emerging as a promising option for lung cancer treatment. Various endothelial adhesion molecules, such as integrin and selectin, as well as various cellular barrier molecules such as desmosome and tight junctions, regulate T-cell infiltration in the tumor microenvironment. However, little is known regarding how these molecules affect immune cells in patients with lung cancer. We demonstrated for the first time that overexpression of endothelial adhesion molecules and cellular barrier molecule genes was linked to differential infiltration of particular immune cells in non-small cell lung cancer. Overexpression of endothelial adhesion molecule genes is associated with significantly lower infiltration of activated CD4 and CD8 T-cells, but higher infiltration of activated B-cells and regulatory T-cells. In contrast, overexpression of desmosome genes was correlated with significantly higher infiltration of activated CD4 and CD8 T-cells, but lower infiltration of activated B-cells and regulatory T-cells in lung adenocarcinoma. This inverse relation of immune cells aligns with previous studies of tumor-infiltrating B-cells inhibiting T-cell activation. Although overexpression of endothelial adhesion molecule or cellular barrier molecule genes alone was not predictive of overall survival in our sample, these genetic signatures may serve as biomarkers of immune exclusion, or resistance to T-cell mediated immunotherapy.
Turhan, Hasan; Saydam, Gul Sevim; Erbay, Ali Riza; Ayaz, Selime; Yasar, Ayse Saatci; Aksoy, Yuksel; Basar, Nurcan; Yetkin, Ertan
2006-04-04
Inflammation has been reported to be a major contributing factor to many cardiovascular events. In the present study, we aimed to evaluate plasma soluble adhesion molecules; intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin as possible indicators of endothelial activation or inflammation in patients with slow coronary flow. Study population included 17 patients with angiographically proven normal coronary arteries and slow coronary flow in all three coronary vessels (group I, 11 male, 6 female, mean age=48+/-9 years), and 20 subjects with angiographically proven normal coronary arteries without associated slow coronary flow (group II, 11 male, 9 female, mean age=50+/-8 years). Coronary flow rates of all patients and control subjects were documented by Thrombolysis In Myocardial Infarction frame count (TIMI frame count). All patients in group I had TIMI frame counts greater than two standard deviation above those of control subjects (group II) and, therefore, were accepted as exhibiting slow coronary flow. Serum levels of ICAM-1, VCAM-1, and E-selectin were measured in all patients and control subjects using commercially available ELISA kits. Serum ICAM-1, VCAM-1, and E-selectin levels of patients with slow coronary flow were found to be significantly higher than those of control subjects with normal coronary flow (ICAM-1: 545+/-198 ng/ml vs. 242+/-113 ng/ml respectively, p<0.001, VCAM-1: 2040+/-634 ng/ml vs. 918+/-336 ng/ml respectively, p<0.001, E-selectin: 67+/-9 ng/ml vs. 52+/-8 ng/ml respectively, p<0.001). Average TIMI frame count was detected to be significantly correlated with plasma soluble ICAM-1 (r=0.550, p<0.001), VCAM-1 (r=0.569, p<0.001) and E-selectin (r=0.443, p=0.006). Increased levels of soluble adhesion molecules in patients with slow coronary flow may be an indicator of endothelial activation and inflammation and are likely to be in the causal pathway leading to slow coronary flow.
Ramackers, Wolf; Klose, Johannes; Tiede, Andreas; Werwitzke, Sonja; Rataj, Dennis; Friedrich, Lars; Johanning, Kai; Vondran, Florian W R; Bergmann, Sabine; Schuettler, Wolfgang; Bockmeyer, Clemens Luitpold; Becker, Jan Ulrich; Klempnauer, Jürgen; Winkler, Michael
2015-01-01
Following pig-to-primate kidney transplantation, endothelial cell activation and xenogenic activation of the recipient's coagulation eventually leading to organ dysfunction and microthrombosis can be observed. In this study, we examined the effect of a TNF-receptor fusion protein (TNF-RFP) on endothelial cell activation and coagulopathy utilizing an appropriate ex vivo perfusion system. Using an ex vivo perfusion circuit based on C1-Inhibitor (C1-Inh) and low-dose heparin administration, we have analyzed consumptive coagulopathy following contact of human blood with porcine endothelium. Porcine kidneys were recovered following in situ cold perfusion with Histidine-tryptophan-ketoglutarate (HTK) organ preservation solution and were immediately connected to a perfusion circuit utilizing freshly drawn pooled porcine or human AB blood. The experiments were performed in three individual groups: autologous perfusion (n = 5), xenogenic perfusion without any further pharmacological intervention (n = 10), or with addition of TNF-RFP (n = 5). After perfusion, tissue samples were obtained for real-time PCR and immunohistological analyses. Endothelial cell activation was assessed by measuring the expression levels of E-selectin, ICAM-1, and VCAM-1. Kidney survival during organ perfusion with human blood, C1-Inh, and heparin, but without any further pharmacological intervention was 126 ± 78 min. Coagulopathy was observed with significantly elevated concentrations of D-dimer and thrombin-antithrombin complex (TAT), resulting in the formation of multiple microthrombi. Endothelial cell activation was pronounced, as shown by increased expression of E-selectin and VCAM-1. In contrast, pharmacological intervention with TNF-RFP prolonged organ survival to 240 ± 0 min (max. perfusion time; no difference to autologous control). Formation of microthrombi was slightly reduced, although not significantly, if compared to the xenogenic control. D-dimer and TAT were elevated at similar levels to the xenogenic control experiments. In contrast, endothelial cell activation, as shown by real-time PCR, was significantly reduced in the TNF-RFP group. We conclude that although coagulopathy was not affected, TNF-RFP is able to suppress inflammation occurring after xenoperfusion in this ex vivo perfusion model. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Mozafari, Mona; Balasupramaniam, Shantheya; Preu, Lutz; El Deeb, Sami; Reiter, Christian G; Wätzig, Hermann
2017-06-01
A fast and precise affinity capillary electrophoresis (ACE) method has been developed and applied for the investigation of the binding interactions between P-selectin and heparinoids as potential P-selectin inhibitors in the presence and absence of calcium ions. Furthermore, model proteins and vitronectin were used to appraise the binding behavior of P-selectin. The normalized mobility ratios (∆R/R f ), which provided information about the binding strength and the overall charge of the protein-ligand complex, were used to evaluate the binding affinities. It was found that P-selectin interacts more strongly with heparinoids in the presence of calcium ions. P-selectin was affected by heparinoids at the concentration of 3 mg/L. In addition, the results of the ACE experiments showed that among other investigated proteins, albumins and vitronectin exhibited strong interactions with heparinoids. Especially with P-selectin and vitronectin, the interaction may additionally induce conformational changes. Subsequently, computational models were applied to interpret the ACE experiments. Docking experiments explained that the binding of heparinoids on P-selectin is promoted by calcium ions. These docking models proved to be particularly well suited to investigate the interaction of charged compounds, and are therefore complementary to ACE experiments. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Protein mobilities and P-selectin storage in Weibel-Palade bodies.
Kiskin, Nikolai I; Hellen, Nicola; Babich, Victor; Hewlett, Lindsay; Knipe, Laura; Hannah, Matthew J; Carter, Tom
2010-09-01
Using fluorescence recovery after photobleaching (FRAP) we measured the mobilities of EGFP-tagged soluble secretory proteins in the endoplasmic reticulum (ER) and in individual Weibel-Palade bodies (WPBs) at early (immature) and late (mature) stages in their biogenesis. Membrane proteins (P-selectin, CD63, Rab27a) were also studied in individual WPBs. In the ER, soluble secretory proteins were mobile; however, following insertion into immature WPBs larger molecules (VWF, Proregion, tPA) and P-selectin became immobilised, whereas small proteins (ssEGFP, eotaxin-3) became less mobile. WPB maturation led to further decreases in mobility of small proteins and CD63. Acute alkalinisation of mature WPBs selectively increased the mobilities of small soluble proteins without affecting larger molecules and the membrane proteins. Disruption of the Proregion-VWF paracrystalline core by prolonged incubation with NH(4)Cl rendered P-selectin mobile while VWF remained immobile. FRAP of P-selectin mutants revealed that immobilisation most probably involves steric entrapment of the P-selectin extracellular domain by the Proregion-VWF paracrystal. Significantly, immobilisation contributed to the enrichment of P-selectin in WPBs; a mutation of P-selectin preventing immobilisation led to a failure of enrichment. Together these data shed new light on the transitions that occur for soluble and membrane proteins following their entry and storage into post-Golgi-regulated secretory organelles.
Markers of mechanical asphyxia: immunohistochemical study on autoptic lung tissues.
Cecchi, R; Sestili, C; Prosperini, G; Cecchetto, G; Vicini, E; Viel, G; Muciaccia, B
2014-01-01
Forensic pathologists are often asked to provide evidence of asphyxia death in the trial and a histological marker of asphyxiation would be of great help. Data from the literature indicate that the reaction of lung tissue cells to asphyxia may be of more interest for forensic purposes than migrating cells. The lungs of 62 medico-legal autopsy cases, 34 acute mechanical asphyxia (AMA), and 28 control cases (CC), were immunostained with anti-P-selectin, anti-E-selectin, anti-SP-A, and anti-HIF1-α antibodies, in order to verify if some of them may be used as markers of asphyxia death. Results show that P- and E-selectins expression in lung vessels, being activated by several types of trigger stimuli not specific to hypoxia, cannot be used as indicator of asphyxia. Intra-alveolar granular deposits of SP-A seem to be related to an intense hypoxic stimulus, and when massively present, they can suggest, together with other elements, a severe hypoxia as the mechanism of death. HIF1-α was expressed in small-, medium-, and large-caliber lung vessels of the vast majority of mechanical asphyxia deaths and CO intoxications, with the number and intensity of positive-stained vessels increasing with the duration of the hypoxia. Although further confirmation studies are required, these preliminary data indicate an interesting potential utility of HIF1-α as a screening test for asphyxia deaths.
Morise, Z; Granger, D; Fuseler, J; Anderson, D; Grisham, M
1999-01-01
BACKGROUND—Neutrophil-endothelial cell interactions are thought to play a critical role in the pathophysiology of non-steroidal anti-inflammatory drug (NSAID) induced gastropathy. AIMS—To optimise a mouse model of NSAID induced gastropathy and to evaluate the importance of adhesion molecules using adhesion molecule deficient mice. METHODS—Gastropathy was induced in C57BL/6 mice or their adhesion molecule deficient counterparts via oral administration of indomethacin (20 mg/kg). Lesion scores, mucosal permeability, and histopathology were used to assess gastric mucosal injury. RESULTS—Intragastric administration of indomethacin induced linear haemorrhagic mucosal lesions, primarily in the corpus of the stomach that were first observed at six hours. These lesions continued to develop over the next six hours with maximal lesion scores and mucosal permeabilities at 12 hours. When indomethacin was administered to mice deficient in CD18, intercellular adhesion molecule 1 (ICAM-1), or P-selectin, there were significant decreases in lesion scores compared with their C57BL/6 controls. In addition, mucosal permeabilities were found to be significantly lower in CD18 or ICAM-1 deficient mice observed at 12 hours. CONCLUSION—Certain leucocyte and endothelial cell adhesion molecules are important determinants for full expression of indomethacin induced gastropathy. It is proposed that this modification of the mouse model may be useful for the investigation of other pathophysiological mechanisms of NSAID induced gastropathy. Keywords: indomethacin; gastropathy; cyclooxygenase; intercellular adhesion molecule; VCAM; vascular cell adhesion molecule; P-selectin PMID:10486359
The state diagram for cell adhesion under flow: leukocyte rolling and firm adhesion.
Chang, K C; Tees, D F; Hammer, D A
2000-10-10
Leukocyte adhesion under flow in the microvasculature is mediated by binding between cell surface receptors and complementary ligands expressed on the surface of the endothelium. Leukocytes adhere to endothelium in a two-step mechanism: rolling (primarily mediated by selectins) followed by firm adhesion (primarily mediated by integrins). Using a computational method called "Adhesive Dynamics," we have simulated the adhesion of a cell to a surface in flow, and elucidated the relationship between receptor-ligand functional properties and the dynamics of adhesion. We express this relationship in a state diagram, a one-to-one map between the biophysical properties of adhesion molecules and various adhesive behaviors. Behaviors that are observed in simulations include firm adhesion, transient adhesion (rolling), and no adhesion. We varied the dissociative properties, association rate, bond elasticity, and shear rate and found that the unstressed dissociation rate, k(r)(o), and the bond interaction length, gamma, are the most important molecular properties controlling the dynamics of adhesion. Experimental k(r)(o) and gamma values from the literature for molecules that are known to mediate rolling adhesion fall within the rolling region of the state diagram. We explain why L-selectin-mediated rolling, which has faster k(r)(o) than other selectins, is accompanied by a smaller value for gamma. We also show how changes in association rate, shear rate, and bond elasticity alter the dynamics of adhesion. The state diagram (which must be mapped for each receptor-ligand system) presents a concise and comprehensive means of understanding the relationship between bond functional properties and the dynamics of adhesion mediated by receptor-ligand bonds.
Zhang, Xiaoying; Xu, Yinhui; Liu, Hongbo; Zhao, Pan; Chen, Yafang; Yue, Zhijie; Zhang, Zhiqing; Wang, Xiaofang
2018-01-01
Mesenchymal stromal cells are proven to be likely induce the angiogenic response in multiple myeloma and thus represent an enticing target for antiangiogenesis therapies for multiple myeloma. Substantial evidence indicates that angiogenesis in multiple myeloma is complex and involves direct production of angiogenic cytokines by abnormal plasma cells and these B-cell neoplasia generated pathophysiology change within the microenvironment. In this study, we demonstrated that mesenchymal stromal cells cultured with U266/Lp-1 under hypoxic conditions resulted in an increased α-smooth muscle actin expression and high productive levels of both hypoxia-inducible factor-2α and integrin-linked kinase proteins. Moreover, inhibition of hypoxia-inducible factor-2α by Small interfering RNA (siRNA) in mesenchymal stromal cells decreased the protein levels of both α-smooth muscle actin and integrin-linked kinase after mesenchymal stromal cells cultured with U266 under hypoxic conditions. We further demonstrated that transfection of integrin-linked kinase-siRNA reduced the protein level of α-smooth muscle actin and attenuated angiogenesis in vitro by decreasing the attachment of Q-dot labeled cells and secretion of angiogenic factors. In conclusion, our research showed that mesenchymal stromal cells cultured with myeloma cells under hypoxia participated in the angiogenesis of multiple myeloma, which is regulated by the hypoxia-inducible factor-2α-integrin-linked kinase pathway. Thus, targeting integrin-linked kinase may represent an effective strategy to block hypoxia-inducible factor-2α-induced angiogenesis in the treatment of multiple myeloma. PMID:29656700
Serum levels of endothelial and neural cell adhesion molecules in prostate cancer.
Lynch, D F; Hassen, W; Clements, M A; Schellhammer, P F; Wright, G L
1997-08-01
Tumorigenesis and progression to metastatic disease are accompanied by changes in the expression of cell adhesion molecules (CAMs). Normally expressed CAMs, such as E-cadherin, are lost, while others, i.e., ICAM-1, VCAM-1, NCAM, and E-selectin, are altered and overexpressed in progressive disease and metastases. Abnormal levels of these latter CAMs have been observed in melanoma and carcinomas of the colon and breast, and NCAM is overexpressed in small-cell lung carcinoma (SCLC). The objective of this study was to determine if serum levels of ICAM-1, VCAM-1, NCAM, and E-selectin could differentiate patients with benign prostate hypertrophy (BPH) from those with prostate carcinoma (CaP) and identify prostate cancers with high potential for progression to metastatic disease. Serum levels of these CAMs were determined by ELISA in serum from normal males and females and from patients with BPH and CaP before and after treatment. Sera from patients with breast carcinoma, colon carcinoma, melanoma, and small-cell lung carcinoma were also evaluated, as soluble CAMs have been reported to be elevated in these cancer patients. ICAM-1 levels were elevated in sera from patients with breast carcinoma (P = 0.0004) and melanoma (P = 0.0001). VCAM-1 levels were elevated in sera from patients with colon carcinoma (P = 0.0001). NCAM levels were elevated in the sera of patients with SCLC (P = 0.0001). Normal levels of ICAM-1, E-selectin, and NCAM were found in both BPH and pretreatment CaP patients. Median NCAM levels in hormone-refractive CaP patients were significantly greater than in BPH (P = 0.0005) and CaP patients with pathologically determined organ-confined (P = 0.0014) or nonorgan-confined disease (P = 0.0385). VCAM-1 levels were significantly elevated in both BPH patients (P = 0.0002) and CaP patients (P = 0.0002) when compared with levels for normal age-matched donors. None of the CAMs were found to offer an advantage over prostatic-specific antigen (PSA) for monitoring CaP patients following definitive radiotherapy, radical prostatectomy, or hormonal therapy. The results of this study indicate that serum ICAM-1, VCAM-1, NCAM, and E-selectin are not clinically useful biomarkers for differentiating CaP from BPH, for predicting progression, for identifying metastatic potential, or for monitoring treatment.
Eini, Peyman; Shirvani, Maria; Hajilooi, Mehrdad; Esna-Ashari, Farzaneh
2018-02-12
The inflammatory response to Mycobacterium tuberculosis bacilli influences tuberculosis (TB) progression. In this study, we aimed to identify the Phe206Leu polymorphism and serum L-selectin level in TB patients, compared to healthy individuals. Ninety patients with a diagnosis of TB and 90 healthy controls were selected in this study. The serum L-selectin level was determined, using ELISA. L-selectin polymorphism was also evaluated using PCR. For data analysis, SPSS was used at a significance level of 0.05. According to the findings, the mean±SD age of the participants was 57.5 ± 18.4 and 56.5 ± 17.5 years in the TB and healthy groups, respectively. The TB group showed a significantly higher serum L-selectin level (1721.1 ± 330.9) versus the healthy controls (1624 ± 279). The L-selectin Phe allele frequencies were higher than the Leu allele frequencies in the main population, whereas the patients and controls were not significantly different. Eight (0.04%) subjects had Leu/Leu genotypes, 84 (46.6%) carried Phe/Leu genotypes, and 88 (48.8%) had Phe/Phe genotypes. Our results showed that the groups were not significantly different regarding L-selectin genotypes. TB patients had a significantly higher serum L-selectin level, compared to the controls. Based on the findings, the incidence of TB and L-selectin polymorphism in the Phe206Leu gene had no significant association. © 2018 Wiley Periodicals, Inc.
P-selectin ligation induces platelet activation and enhances microaggregate and thrombus formation.
Théorêt, Jean-François; Yacoub, Daniel; Hachem, Ahmed; Gillis, Marc-Antoine; Merhi, Yahye
2011-09-01
Platelet P-selectin is a thrombo-inflammatory molecule involved in platelet activation and aggregation. This may occur via the adhesive function of P-selectin and its potential capacity to trigger intracellular signaling. However, its impact on platelet function remains elusive. This study was therefore designed to investigate the relationship between the signaling potential of platelet P-selectin and its function in platelet physiology. Human and mouse platelets were freshly isolated from whole blood. Platelet activation was assessed using flow cytometry and western blot analysis, while platelet physiological responses were evaluated through aggregation, microaggregate formation and in a thrombosis model in wild-type and P-selectin-deficient (CD62P(-/-)) mice. Interaction of P-selectin with its high-affinity ligand, a recombinant soluble form of P-Selectin Glycoprotein Ligand-1 (rPSGL-1), enhances platelet activation, adhesion and microaggregate formation. This augmented platelet microaggregates requires an intact cytoskeleton, but occurs independently of platelet α(IIb)β(3). Thrombus formation and microaggregate were both enhanced by rPSGL-1 in wild-type, but not in CD62P(-/-) mice. In addition, CD62P(-/-) mice exhibited thrombosis abnormalities without an α(IIb)β(3) activation defect. This study demonstrates that the role of platelet P-selectin is not solely adhesive; its binding to PSGL-1 induces platelet activation that enhances platelet aggregation and thrombus formation. Therefore, targeting platelet P-selectin or its ligand PSGL-1 could provide a potential therapeutic approach in the management of thrombotic disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.
Genre, Fernanda; Armesto, Susana; Corrales, Alfonso; López-Mejías, Raquel; Remuzgo-Martínez, Sara; Pina, Trinitario; Ubilla, Begoña; Mijares, Verónica; Martín-Varillas, José Luis; Rueda-Gotor, Javier; Portilla, Virginia; Dierssen-Sotos, Trinidad; González-López, Marcos Antonio; González-Vela, María Del Carmen; Blanco, Ricardo; Llorca, Javier; Hernández, José Luis; González-Gay, Miguel Ángel
2017-12-01
Psoriasis patients have high risk of atherosclerosis, characterized by endothelial dysfunction. We aimed to study the association of the endothelial activation biomarkers monocyte chemoattractant protein 1 (MCP-1), soluble (s) E-selectin and P-selectin with disease activity and severity in psoriasis patients treated with anti-TNF-α therapy. Also, to evaluate the relationship of metabolic syndrome features with these biomarkers and the effect of anti-TNF-α therapy on these molecules. Twenty-nine consecutive non-diabetic patients with moderate-to-severe psoriasis who underwent 6 months of anti-TNF-α-adalimumab therapy were studied. Metabolic and clinical evaluation was performed prior to anti-TNF-α treatment (time 0) and 6 months later. MCP-1, sE-selectin and sP-selectin serum levels were determined by ELISA. Dyslipidemic and obese patients showed higher MCP-1 levels at month 6 from the onset of anti-TNF-α therapy (p = .05 and .01, respectively). sE-selectin positively correlated with pro-inflammatory molecules such as asymmetric dimethylarginine, sP-selectin and resistin at baseline and month 6 (p < .05). sE-selectin levels significantly reduced after 6 months of therapy (p = .0006). Metabolic syndrome features are associated with endothelial activation in patients with moderate-to-severe psoriasis. Adalimumab therapy led to a reduction in sE-selectin levels, supporting the beneficial effect of anti-TNF-α therapy on mechanisms associated with the development of atherosclerosis in psoriasis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Ikuko, E-mail: nakamuri@riken.jp; Department of Cardiovascular Medicine, Saga University, Saga; Hasegawa, Koki
2013-03-29
Highlights: ► P-selectin regulates leukocyte recruitment as an early stage event of atherogenesis. ► We developed an antibody-based molecular imaging probe targeting P-selectin for PET. ► This is the first report on successful PET imaging for delineation of P-selectin. ► P-selectin is a candidate target for atherosclerotic plaque imaging by clinical PET. -- Abstract: Background: Sensitive detection and qualitative analysis of atherosclerotic plaques are in high demand in cardiovascular clinical settings. The leukocyte–endothelial interaction mediated by an adhesion molecule P-selectin participates in arterial wall inflammation and atherosclerosis. Methods and results: A {sup 64}Cu-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid conjugated anti-P-selectin monoclonal antibody ({sup 64}Cu-DOTA-anti-P-selectinmore » mAb) probe was prepared by conjugating an anti-P-selectin monoclonal antibody with DOTA followed by {sup 64}Cu labeling. Thirty-six hours prior to PET and CT fusion imaging, 3 MBq of {sup 64}Cu-DOTA-anti-P-selectin mAb was intravenously injected into low density lipoprotein receptor-deficient Ldlr-/- mice. After a 180 min PET scan, autoradiography and biodistribution of {sup 64}Cu-DOTA-anti-P-selectin monoclonal antibody was examined using excised aortas. In Ldlr-/- mice fed with a high cholesterol diet for promotion of atherosclerotic plaque development, PET and CT fusion imaging revealed selective and prominent accumulation of the probe in the aortic root. Autoradiography of aortas that demonstrated probe uptake into atherosclerotic plaques was confirmed by Oil red O staining for lipid droplets. In Ldlr-/- mice fed with a chow diet to develop mild atherosclerotic plaques, probe accumulation was barely detectable in the aortic root on PET and CT fusion imaging. Probe biodistribution in aortas was 6.6-fold higher in Ldlr-/- mice fed with a high cholesterol diet than in those fed with a normal chow diet. {sup 64}Cu-DOTA-anti-P-selectin mAb accumulated selectively in aortic atherosclerotic plaques and was detectable by PET and CT fusion imaging in Ldlr-/- mice. Conclusions: P-selectin is a candidate target molecule for early-phase detection by PET and CT fusion imaging of atherosclerotic plaques.« less
CTC-Endothelial Cell Interactions during Metastasis
2014-06-01
antibody. For these experiments, we first tested the Bioflux Microfluidics system. In our hands, the Bioflux microfluidic system was suboptimal for...indicated in the results, a subset of rolling assay experiments were also performed using Bioflux Microfluidics technologies (Fluxion Biosciences...behavior of MDA cells in the presence of neutralizing anti-E-selectin antibody. We performed these experiments using Bioflux Microfluidics technology
Makis, Alexandros; Shipway, David; Hatzimichael, Eleftheria; Galanakis, Emmanouil; Pshezhetskiy, Dmitry; Chaliasos, Nikolaos; Stebbing, Justin; Siamopoulou, Antigone
2010-09-01
Viral meningitis is characterized by cerebrospinal fluid (CSF) lymphocyte pleocytosis, although neutrophils may predominate in the early phase. The T helper 1 (Th1)/Th2 cytokine balance and expression of adhesion molecules seem to be involved in the CSF chemotaxis. We aimed to determine expression of cytokines and adhesion molecules in enteroviral meningitis. We investigated the serum and CSF levels of adhesion molecules (E-selectin, L-selectin, vascular cell adhesion molecule-1 [VCAM-1], and intracellular adhesion molecule-1 [ICAM-1]) and cytokines (interleukin-12 [IL-12] and IL-4) in 105 children during an outbreak of enteroviral meningitis. Diagnosis was confirmed with positive polymerase chain reaction (PCR) and/or serology for echovirus or Coxsackie virus, and matched with control subjects for clinical features but with negative PCR and/or serology. Apart from VCAM-1, the CSF levels of all investigated inflammatory molecules were significantly increased. In serum, sL-selectin and ICAM-1 levels were significantly higher than control subjects. Serum and CSF L-selectin, serum VCAM-1, and CSF IL-12 were all observed to be expressed in significantly higher levels in the neutrophil-dominant subgroup (72% had duration of symptoms <24 h) than in the lymphocyte-dominant group (87.5% had duration of symptoms >24 h). Serum and CSF ICAM-1 was found at significantly higher levels in the latter group. Evolving expression of adhesion molecules and cytokines indicates a shift from Th1 to Th2 immune responses as infection progresses.
Victor, Victor M.; Rovira-Llopis, Susana; Bañuls, Celia; Diaz-Morales, Noelia; Martinez de Marañon, Arantxa; Rios-Navarro, Cesar; Alvarez, Angeles; Gomez, Marcelino; Rocha, Milagros; Hernández-Mijares, Antonio
2016-01-01
Cardiovascular diseases and oxidative stress are related to polycystic ovary syndrome (PCOS) and insulin resistance (IR). We have evaluated the relationship between myeloperoxidase (MPO) and leukocyte activation in PCOS patients according to homeostatic model assessment of IR (HOMA-IR), and have explored a possible correlation between these factors and endocrine and inflammatory parameters. This was a prospective controlled study conducted in an academic medical center. The study population consisted of 101 PCOS subjects and 105 control subjects. We divided PCOS subjects into PCOS non-IR (HOMA-IR<2.5) and PCOS IR (HOMA-IR>2.5). Metabolic and anthropometric parameters, total and mitochondrial reactive oxygen species (ROS) production, MPO levels, interactions between human umbilical vein endothelial cells and leukocytes, adhesion molecules (E-selectin, ICAM-1 and VCAM-1) and proinflammatory cytokines (IL-6 and TNF-α) were evaluated. Oxidative stress was observed in PCOS patients, in whom there was an increase in total and mitochondrial ROS production and MPO levels. Enhanced rolling flux and adhesion, and a decrease in polymorphonuclear cell rolling velocity were also detected in PCOS subjects. Increases in IL-6 and TNF-α and adhesion molecules (E-selectin, ICAM-1 and VCAM-1) were also observed, particularly in the PCOS IR group, providing evidence that inflammation and oxidative stress are related in PCOS patients. HOMA-IR was positively correlated with hsCRP (p<0.001, r = 0.304), ROS production (p<0.01, r = 0.593), leukocyte rolling flux (p<0.05, r = 0.446), E-selectin (p<0.01, r = 0.436) and IL-6 (p<0.001, r = 0.443). The results show an increase in the rate of ROS and MPO levels in PCOS patients in general, and particularly in those with IR. Inflammation in PCOS induces leukocyte-endothelium interactions and a simultaneous increase in IL-6, TNF-α, E-selectin, ICAM-1 and VCAM-1. These conditions are aggravated by the presence of IR. PMID:27007571
Makulska, Irena; Szczepańska, Maria; Drożdż, Dorota; Polak-Jonkisz, Dorota; Zwolińska, Danuta
2015-05-01
Skin autofluorescence (sAF) was examined as a marker of the accumulation of advanced glycation end products (AGEs) in tissues of children with chronic kidney disease (CKD) in relation to renal function, dialysis modality and markers of endothelial inflammation and dysfunction. A total of 76 children with CKD were enrolled in the study, of whom 20 children were on hemodialysis (HD), 20 were on peritoneal dialysis (PD) and 36 were treated conservatively. A control group of 26 healthy subjects was also included in the study. In all children, sAF intensity, carotid intima-media (cIMT) thickness and plasma concentrations of sE-selectin, matrix metalloproteinase 9 (MMP-9), tissue inhibitor of metalloproteinase 1 (TIMP-1), asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA) and plasminogen activator inhibitor type 1 (PAI-1) were measured. Compared to the controls, children with CKD had significantly elevated sAF levels. sAF in the children with CKD was positively correlated with sE-selectin, MMP-9, TIMP-1, ADMA, SDMA and PAI-1 levels. In the predialysis group (conservative treatment) sAF levels were positively correlated with sE-selectin and ADMA levels and negatively correlated with glomerular filtration rate. Multiple regression analysis showed a significant association of sAF with sE-selectin and MMP-9 in CKD children. The results reveal that AGEs were accumulated in the children with CKD. This accumulation was related to early vascular changes and a number of biochemical vascular risk markers. sAF measurement, as a noninvasive method, may be useful for identification of clinical risk factors of vascular disease in CKD children.
Selectins and chemokines use shared and distinct signals to activate β2 integrins in neutrophils
Yago, Tadayuki; Zhang, Nan; Zhao, Liang; Abrams, Charles S.
2018-01-01
Rolling neutrophils receive signals while engaging P- and E-selectin and chemokines on inflamed endothelium. Selectin signaling activates β2 integrins to slow rolling velocities. Chemokine signaling activates β2 integrins to cause arrest. Despite extensive study, key aspects of these signaling cascades remain unresolved. Using complementary in vitro and in vivo assays, we found that selectin and chemokine signals in neutrophils triggered Rap1a-dependent and phosphatidylinositol-4-phosphate 5-kinase γ (PIP5Kγ90)–dependent pathways that induce integrin-dependent slow rolling and arrest. Interruption of both pathways, but not either pathway alone, blocked talin-1 recruitment to and activation of integrins. An isoform of PIP5Kγ90 lacking the talin-binding domain (PIP5Kγ87) could not activate integrins. Chemokines, but not selectins, used phosphatidylinositol-4,5-bisphosphate 3-kinase γ (PI3Kγ) in cooperation with Rap1a to mediate integrin-dependent slow rolling (at low chemokine concentrations), as well as arrest (at high chemokine concentrations). High levels of chemokines activated β2 integrins without selectin signals. When chemokines were limiting, they synergized with selectins to activate β2 integrins. PMID:29592875
Selectins and chemokines use shared and distinct signals to activate β2 integrins in neutrophils.
Yago, Tadayuki; Zhang, Nan; Zhao, Liang; Abrams, Charles S; McEver, Rodger P
2018-04-10
Rolling neutrophils receive signals while engaging P- and E-selectin and chemokines on inflamed endothelium. Selectin signaling activates β2 integrins to slow rolling velocities. Chemokine signaling activates β2 integrins to cause arrest. Despite extensive study, key aspects of these signaling cascades remain unresolved. Using complementary in vitro and in vivo assays, we found that selectin and chemokine signals in neutrophils triggered Rap1a-dependent and phosphatidylinositol-4-phosphate 5-kinase γ (PIP5Kγ90)-dependent pathways that induce integrin-dependent slow rolling and arrest. Interruption of both pathways, but not either pathway alone, blocked talin-1 recruitment to and activation of integrins. An isoform of PIP5Kγ90 lacking the talin-binding domain (PIP5Kγ87) could not activate integrins. Chemokines, but not selectins, used phosphatidylinositol-4,5-bisphosphate 3-kinase γ (PI3Kγ) in cooperation with Rap1a to mediate integrin-dependent slow rolling (at low chemokine concentrations), as well as arrest (at high chemokine concentrations). High levels of chemokines activated β2 integrins without selectin signals. When chemokines were limiting, they synergized with selectins to activate β2 integrins. © 2018 by The American Society of Hematology.
Zhao, Yan; Yuan, Zuyi; Liu, Yan; Xue, Jiahong; Tian, Yuling; Liu, Weimin; Zhang, Weiping; Shen, Yan; Xu, Wei; Liang, Xiao; Chen, Tao
2010-03-01
Adhesion molecules have been implicated in the development and progression of atherosclerosis. Cannabinoids have been reported to modulate the migration and adhesion molecules expression of various cell types. Here we examined the effects of WIN55212-2, a cannabinoid receptor 1 (CB1-R)/cannabinoid receptor 2 (CB2-R) agonist on the development of atherosclerotic lesions in apolipoprotein E-deficient (ApoE-/-) mice, which are vulnerable because of their high plasma cholesterol and triacylglycerol levels, focusing on the expression of endothelial adhesion molecules. In the aorta of ApoE-/- mice, WIN55212-2 significantly reduced aortic root plaque area. The mechanism for this seemed to be reduced infiltration of macrophages into the atherosclerotic plaque which was also associated with reduced expression of vascular cellular adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and P-selectin in the aorta. In vitro studies revealed reduced cell adhesion of a monocytic cell line (U937) to human umbilical vein endothelial cells after incubation with WIN55212-2. The reduction in macrophage adhesion also correlated with significant reductions in the expression of VCAM-1, ICAM-1, and P-selectin, indicating that reduced infiltration of macrophages in atherosclerotic plaques may occur as a result of the direct effect of WIN55212-2 on adhesion molecules in macrophages and endothelial cells. In conclusion, WIN55212-2 seems to have direct anti-atherosclerotic effects in an animal model of atherosclerosis. These effects were at least partly due to effects on the expression of VCAM-1, ICAM-1, and P-selectin, which led to reduced macrophage adhesion and infiltration. Furthermore, the protective effects completely blocked by the highly selective CB2 receptor antagonist AM630 suggest that these beneficial effects of WIN55212-2 may be mediated through the CB2 receptor.
Dettmer, Michelle; Alekel, D Lee; Lasrado, Joanne A; Messina, Mark; Carriquiry, Alicia; Heiberger, Kevin; Stewart, Jeanne W; Franke, Warren
2012-04-01
Prehypertensive and hypertensive individuals are at increased risk of atherosclerotic cardiovascular disease (CVD), in part because hypertension contributes to endothelial dysfunction and increased cell adhesion molecule expression. Soy protein and isoflavones may favorably alter CVD risk factors, and hence the aim of this study was to determine whether intake of cow's milk compared with soy beverage prepared from whole soy bean (WSB) or soy protein isolate (SPI) would lower soluble cell adhesion molecule concentrations as a means of decreasing CVD risk. We enrolled healthy prehypertensive/stage 1 hypertensive men (n = 60; 18-63 years) and premenopausal women (n = 8; 20-48 years). Participants were randomized to 1 of 3 groups for 8 weeks: cow's milk (600 mL/d), SPI beverage (840 mL/d; 30.1 mg total isoflavones/d), or WSB beverage (840 mL/d; 91.4 mg total isoflavones/d). We measured soluble vascular cell adhesion molecule-1 (VCAM-1), intercellular cell adhesion molecule-1 (ICAM-1), and endothelial-leukocyte adhesion molecule-1 (E-selectin) concentrations at baseline and week 8. Soluble CAM concentrations were not altered by treatment and did not differ between prehypertensive and hypertensive participants. However, analysis of variance indicated a treatment × gender interaction (gender effect) for ICAM-1 (p = 0.0037) but not for E-selectin (p = 0.067) or VCAM-1 (p = 0.16). Men had higher concentrations of ICAM-1 and E-selectin, respectively, at baseline (p = 0.0071, p = 0.049) and week 8 (p = 0.0054, p = 0.038) than women did. Neither intake of cow's milk nor soy beverage for 8 weeks altered soluble CAM concentrations in prehypertensive/stage 1 hypertensive individuals, suggesting that neither type of beverage diminished atherosclerotic CVD risk in mildly hypertensive individuals by way of improving circulating CAM concentrations.
L-selectin mechanochemistry restricts neutrophil priming in vivo.
Liu, Zhenghui; Yago, Tadayuki; Zhang, Nan; Panicker, Sumith R; Wang, Ying; Yao, Longbiao; Mehta-D'souza, Padmaja; Xia, Lijun; Zhu, Cheng; McEver, Rodger P
2017-05-12
Circulating neutrophils must avoid premature activation to prevent tissue injury. The leukocyte adhesion receptor L-selectin forms bonds with P-selectin glycoprotein ligand-1 (PSGL-1) on other leukocytes and with peripheral node addressin (PNAd) on high endothelial venules. Mechanical forces can strengthen (catch) or weaken (slip) bonds between biological molecules. How these mechanochemical processes influence function in vivo is unexplored. Here we show that mice expressing an L-selectin mutant (N138G) have altered catch bonds and prolonged bond lifetimes at low forces. Basal lymphocyte homing and neutrophil recruitment to inflamed sites are normal. However, circulating neutrophils form unstable aggregates and are unexpectedly primed to respond robustly to inflammatory mediators. Priming requires signals transduced through L-selectin N138G after it engages PSGL-1 or PNAd. Priming enhances bacterial clearance but increases inflammatory injury and enlarges venous thrombi. Thus, L-selectin mechanochemistry limits premature activation of neutrophils. Our results highlight the importance of probing how mechanochemistry functions in vivo.
L-selectin mechanochemistry restricts neutrophil priming in vivo
Liu, Zhenghui; Yago, Tadayuki; Zhang, Nan; Panicker, Sumith R.; Wang, Ying; Yao, Longbiao; Mehta-D'souza, Padmaja; Xia, Lijun; Zhu, Cheng; McEver, Rodger P.
2017-01-01
Circulating neutrophils must avoid premature activation to prevent tissue injury. The leukocyte adhesion receptor L-selectin forms bonds with P-selectin glycoprotein ligand-1 (PSGL-1) on other leukocytes and with peripheral node addressin (PNAd) on high endothelial venules. Mechanical forces can strengthen (catch) or weaken (slip) bonds between biological molecules. How these mechanochemical processes influence function in vivo is unexplored. Here we show that mice expressing an L-selectin mutant (N138G) have altered catch bonds and prolonged bond lifetimes at low forces. Basal lymphocyte homing and neutrophil recruitment to inflamed sites are normal. However, circulating neutrophils form unstable aggregates and are unexpectedly primed to respond robustly to inflammatory mediators. Priming requires signals transduced through L-selectin N138G after it engages PSGL-1 or PNAd. Priming enhances bacterial clearance but increases inflammatory injury and enlarges venous thrombi. Thus, L-selectin mechanochemistry limits premature activation of neutrophils. Our results highlight the importance of probing how mechanochemistry functions in vivo. PMID:28497779
Panagos, Charalampos G; Thomson, Derek S; Moss, Claire; Hughes, Adam D; Kelly, Maeve S; Liu, Yan; Chai, Wengang; Venkatasamy, Radhakrishnan; Spina, Domenico; Page, Clive P; Hogwood, John; Woods, Robert J; Mulloy, Barbara; Bavington, Charlie D; Uhrín, Dušan
2014-10-10
Fucosylated chondroitin sulfate (fCS) extracted from the sea cucumber Holothuria forskali is composed of the following repeating trisaccharide unit: → 3)GalNAcβ4,6S(1 → 4) [FucαX(1 → 3)]GlcAβ(1 →, where X stands for different sulfation patterns of fucose (X = 3,4S (46%), 2,4S (39%), and 4S (15%)). As revealed by NMR and molecular dynamics simulations, the fCS repeating unit adopts a conformation similar to that of the Le(x) blood group determinant, bringing several sulfate groups into close proximity and creating large negative patches distributed along the helical skeleton of the CS backbone. This may explain the high affinity of fCS oligosaccharides for L- and P-selectins as determined by microarray binding of fCS oligosaccharides prepared by Cu(2+)-catalyzed Fenton-type and photochemical depolymerization. No binding to E-selectin was observed. fCS poly- and oligosaccharides display low cytotoxicity in vitro, inhibit human neutrophil elastase activity, and inhibit the migration of neutrophils through an endothelial cell layer in vitro. Although the polysaccharide showed some anti-coagulant activity, small oligosaccharide fCS fragments had much reduced anticoagulant properties, with activity mainly via heparin cofactor II. The fCS polysaccharides showed prekallikrein activation comparable with dextran sulfate, whereas the fCS oligosaccharides caused almost no effect. The H. forskali fCS oligosaccharides were also tested in a mouse peritoneal inflammation model, where they caused a reduction in neutrophil infiltration. Overall, the data presented support the action of fCS as an inhibitor of selectin interactions, which play vital roles in inflammation and metastasis progression. Future studies of fCS-selectin interaction using fCS fragments or their mimetics may open new avenues for therapeutic intervention. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Equid Herpesvirus Type 1 Activates Platelets
Stokol, Tracy; Yeo, Wee Ming; Burnett, Deborah; DeAngelis, Nicole; Huang, Teng; Osterrieder, Nikolaus; Catalfamo, James
2015-01-01
Equid herpesvirus type 1 (EHV-1) causes outbreaks of abortion and neurological disease in horses. One of the main causes of these clinical syndromes is thrombosis in placental and spinal cord vessels, however the mechanism for thrombus formation is unknown. Platelets form part of the thrombus and amplify and propagate thrombin generation. Here, we tested the hypothesis that EHV-1 activates platelets. We found that two EHV-1 strains, RacL11 and Ab4 at 0.5 or higher plaque forming unit/cell, activate platelets within 10 minutes, causing α-granule secretion (surface P-selectin expression) and platelet microvesiculation (increased small events double positive for CD41 and Annexin V). Microvesiculation was more pronounced with the RacL11 strain. Virus-induced P-selectin expression required plasma and 1.0 mM exogenous calcium. P-selectin expression was abolished and microvesiculation was significantly reduced in factor VII- or X-deficient human plasma. Both P-selectin expression and microvesiculation were re-established in factor VII-deficient human plasma with added purified human factor VIIa (1 nM). A glycoprotein C-deficient mutant of the Ab4 strain activated platelets as effectively as non-mutated Ab4. P-selectin expression was abolished and microvesiculation was significantly reduced by preincubation of virus with a goat polyclonal anti-rabbit tissue factor antibody. Infectious virus could be retrieved from washed EHV-1-exposed platelets, suggesting a direct platelet-virus interaction. Our results indicate that EHV-1 activates equine platelets and that α-granule secretion is a consequence of virus-associated tissue factor triggering factor X activation and thrombin generation. Microvesiculation was only partly tissue factor and thrombin-dependent, suggesting the virus causes microvesiculation through other mechanisms, potentially through direct binding. These findings suggest that EHV-1-induced platelet activation could contribute to the thrombosis that occurs in clinically infected horses and provides a new mechanism by which viruses activate hemostasis. PMID:25905776
Neutrophil cell surface receptors and their intracellular signal transduction pathways☆
Futosi, Krisztina; Fodor, Szabina; Mócsai, Attila
2013-01-01
Neutrophils play a critical role in the host defense against bacterial and fungal infections, but their inappropriate activation also contributes to tissue damage during autoimmune and inflammatory diseases. Neutrophils express a large number of cell surface receptors for the recognition of pathogen invasion and the inflammatory environment. Those include G-protein-coupled chemokine and chemoattractant receptors, Fc-receptors, adhesion receptors such as selectins/selectin ligands and integrins, various cytokine receptors, as well as innate immune receptors such as Toll-like receptors and C-type lectins. The various cell surface receptors trigger very diverse signal transduction pathways including activation of heterotrimeric and monomeric G-proteins, receptor-induced and store-operated Ca2 + signals, protein and lipid kinases, adapter proteins and cytoskeletal rearrangement. Here we provide an overview of the receptors involved in neutrophil activation and the intracellular signal transduction processes they trigger. This knowledge is crucial for understanding how neutrophils participate in antimicrobial host defense and inflammatory tissue damage and may also point to possible future targets of the pharmacological therapy of neutrophil-mediated autoimmune or inflammatory diseases. PMID:23994464
Ito, Shunsuke; Osaka, Mizuko; Edamatsu, Takeo; Itoh, Yoshiharu; Yoshida, Masayuki
2016-08-01
The aryl hydrocarbon receptor (AhR), a ligand-inducible transcription factor mediating toxic effects of dioxins and uremic toxins, has recently emerged as a pathophysiological regulator of immune-inflammatory conditions. Indoxyl sulfate, a uremic toxin, is associated with cardiovascular disease in patients with chronic kidney disease and has been shown to be a ligand for AhR. The aim of this study was to investigate the potential role of AhR in indoxyl sulfate-induced leukocyte-endothelial interactions. Endothelial cell-specific AhR knockout (eAhR KO) mice were produced by crossing AhR floxed mice with Tie2 Cre mice. Indoxyl sulfate was administered for 2 weeks, followed by injection of TNF-α. Leukocyte recruitment to the femoral artery was assessed by intravital microscopy. Vascular endothelial cells were transfected with siRNA specific to AhR (siAhR) and treated with indoxyl sulfate, followed by stimulation with TNF-α. Indoxyl sulfate dramatically enhanced TNF-α-induced leukocyte recruitment to the vascular wall in control animals but not in eAhR KO mice. In endothelial cells, siAhR significantly reduced indoxyl sulfate-enhanced leukocyte adhesion as well as E-selectin expression, whereas the activation of JNK and nuclear factor-κB was not affected. A luciferase assay revealed that the region between -153 and -146 bps in the E-selectin promoter was responsible for indoxyl sulfate activity via AhR. Mutational analysis of this region revealed that activator protein-1 (AP-1) is responsible for indoxyl sulfate-triggered E-selectin expression via AhR. AhR mediates indoxyl sulfate-enhanced leukocyte-endothelial interactions through AP-1 transcriptional activity, which may constitute a new mechanism of vascular inflammation in patients with renal disease.
In vitro effects of ATG-Fresenius on immune cell adhesion.
Kanzler, I; Seitz-Merwald, I; Schleger, S; Kaczmarek, I; Kur, F; Beiras-Fernandez, A
2013-06-01
ATG-Fresenius, a purified rabbit polyclonal anti-human T-lymphocyte immunoglobulin is used for induction immunosuppression as well as prevention and treatment of acute rejection episodes among patients receiving solid organ transplants. The aim of this study was to investigate the in vitro activity of ATG-Fresenius upon immune cell adhesion, which may explain its activity to mitigate ischemia-reperfusion injury. Human vascular endothelial cells (HUVEC) and peripheral blood mononuclear cells (PBMCs) isolated from umbilical vein or peripheral blood were incubated 20 to 24 hours before analysis. HUVEC were incubated with 10 and 100 μg/mL ATG-Fresenius or reference polyclonal rabbit immunoglobulin G. Analysis of immune cell adhesion to endothelial cells was studied in cocultures of PBMCs and adherent HUVEC. Endothelial cell expression of adhesion molecules CD62E and CD54 was determined by flow cytometry. The numbers of T-, B- and natural killer cells attached to HUVEC were also determined by flow cytometry. Groups were compared using one-way analysis of variance. We showed that ATG-Fresenius binds to endothelial cells particularly activated ones expressing increased levels of E-selectin and ICAM-1. The increased binding of ATG-Fresenius to activated endothelial cells was consistent with its known binding to Intercellular Adhesion Molecule 1 (ICAM-1) and selectins. We also showed that ATG-Fresenius inhibited adhesion of prestimulated immune cells to activated endothelium. We demonstrated dose-dependent binding of ATG-Fresenius to activated endothelial cells. Copyright © 2013 Elsevier Inc. All rights reserved.
Norris, S; White, M; Mankan, A K; Lawless, M W
2010-04-01
Several abnormalities in the immune status of patients with hereditary haemochromatosis (HH) have been reported, suggesting an imbalance in their immune function. This may include persistent production of, or exposure to, altered immune signalling contributing to the pathogenesis of this disorder. Adhesion molecules L-, E- and P-Selectin, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) are some of the major regulators of the immune processes and altered levels of these proteins have been found in pathological states including cardiovascular diseases, arthritis and liver cancer. The aim of this study was to assess L-, E- and P-Selectin, ICAM-1 and VCAM-1 expression in patients with HH and correlate these results with HFE mutation status and iron indexes. A total of 139 subjects were diagnosed with HH (C282Y homozygotes = 87, C282Y/H63D = 26 heterozygotes, H63D homozygotes = 26), 27 healthy control subjects with no HFE mutation (N/N), 18 normal subjects heterozygous for the H63D mutation served as age-sex-matched controls. We observed a significant decrease in L-selectin (P = 0.0002) and increased E-selectin and ICAM-1 (P = 0.0006 and P = 0.0059) expression in HH patients compared with healthy controls. This study observes for the first time that an altered adhesion molecules profile occurs in patients with HH that is associated with specific HFE genetic component for iron overload, suggesting that differential expression of adhesion molecules may play a role in the pathogenesis of HH.
Liu, Shuyan; Pan, Shengying; Tan, Jing; Zhao, Weina; Liu, Fengguo
2017-12-15
The attachment of monocytes to human brain microvascular endothelial cells (HBMVEs) caused by oxidized low-density lipoprotein (ox-LDL) is associated with an early event and the pathological progression of cerebrovascular diseases. Oxytocin (OT) is a human peptide hormone that is traditionally used as a medication to facilitate childbirth. However, little information is available regarding the physiological function of OT in brain endothelial dysfunction. In the present study, our results indicate that the oxytocin receptor (OTR) was expressed in human brain microvascular endothelial cells (HBMVEs) and was upregulated in response to ox-LDL in a concentration-dependent manner. Notably, OT significantly suppressed ox-LDL-induced attachment of THP-1 monocytes to HBMVEs. Furthermore, we found that OT reduced the expression of adhesion molecules, such as VCAM-1 and E-selectin. Interestingly, it was shown that OT could restore ox-LDL-induced reduction of KLF4 in HBMVEs. Importantly, knockdown of KLF4 abolished the inhibitory effects of OT on ox-LDL-induced expressions of VCAM-1 and E-selectin as well as the adhesion of human monocytic THP-1 cells to endothelial HBMVEs. Mechanistically, we found that the stimulatory effects of OT on KLF4 expression are mediated by the MEK5/MEF2A pathway. Copyright © 2017. Published by Elsevier Inc.
Vo, Thanh-Sang; Kim, Se-Kwon
2013-10-09
Histamine, a potent inflammatory mediator, has been known to cause the pathogenesis of atherosclerosis. In this sense, two bioactive peptides P1 (LDAVNR; 686Da) and P2 (MMLDF; 655Da) purified from gastric enzymatic hydrolysate of Spirulina maxima were examined for their protective effects against early atherosclerotic responses induced by histamine in EA.hy926 endothelial cells. Interestingly, both P1 and P2 exhibited inhibitory activities on the production and expression of IL-6 and MCP-1. Furthermore, P1 and P2 inhibited the production of adhesion molecules including P-selectin and E-selectin, and thus reducing in vitro cell adhesion of monocyte onto endothelial cells. In addition, the production of intracellular reactive oxygen species was observed to reduce in the presence of P1 or P2. Notably, the inhibitory activities of P1 and P2 were found due to down-regulating Egr-1 expression via histamine receptor and PKCδ-dependent MAPKs activation pathway. These results suggest that peptides P1 and P2 from S. maxima are effective to suppress histamine-induced endothelial cell activation that may contribute to the prevention of early atherosclerosis. Copyright © 2013 Elsevier B.V. All rights reserved.
Fetal wound healing using a genetically modified murine model: the contribution of P-selectin
USDA-ARS?s Scientific Manuscript database
During early gestation, fetal wounds heal with paucity of inflammation and absent scar formation. P-selectin is an adhesion molecule that is important for leukocyte recruitment to injury sites. We used a murine fetal wound healing model to study the specific contribution of P-selectin to scarless wo...
Taut, F J H; Schmidt, H; Zapletal, C M; Thies, J C; Grube, C; Motsch, J; Klar, E; Martin, E
2001-01-01
In orthotopic liver transplantation (OLT), N-acetylcysteine (NAC) reduces ischaemia/reperfusion (I/R) injury, improves liver synthesis function and prevents primary nonfunction of the graft. To further elucidate the mechanisms of these beneficial effects of NAC, we investigated influence of high-dose NAC therapy on the pattern of adhesion molecule release from liver and intestine during OLT. Nine patients receiving allograft OLT were treated with 150 mg NAC/kg during the first hour after reperfusion; 10 patients received the carrier only. One hour after reperfusion, samples of arterial, portal venous and hepatic venous plasma were taken and blood flow in the hepatic artery and the portal vein was measured. Absolute concentrations of sICAM-1, sVCAM-1, sP-selectin and sE-selectin were not markedly different. However, balance calculations showed release of selectins from NAC-treated livers as opposed to net uptake in controls (P ≤ 0·02 for sP-selectin). This shedding of selectins might be a contributing factor to the decrease in leucocyte adherence and improved haemodynamics found experimentally with NAC-treatment. PMID:11422213
Endothelial expression of selectins during endotoxin preconditioning.
Bauer, P; Welbourne, T; Shigematsu, T; Russell, J; Granger, D N
2000-12-01
Although bacterial endotoxins [lipopolysaccharide (LPS)] can confer tissue resistance to subsequent inflammatory insults, the mechanisms that underlie this LPS-preconditioning (LPS-PC) response remain poorly defined. The dual-radiolabeled monoclonal antibody technique was used to examine whether LPS-PC alters the upregulation (protein) of E- and P-selectins after subsequent LPS challenge. In the gut of wild-type (C57BL/6J) mice, LPS-PC was associated with a reduction in E- (66%) and P-selectin (33%) expression. A similar reduction in E-selectin expression was observed in mutant mice that were genetically deficient in either the endothelial or inducible isoform of nitric oxide synthase or that overexpressed the human gene for Cu/Zn superoxide dismutase. Severe combined immunodeficient mice, genetically devoid of lymphocytes, did exhibit partial inhibition of the LPS-PC response. We conclude that 1) LPS-PC can be demonstrated for E- and P-selectins in some vascular beds (e.g., gut), 2) the mechanism(s) underlying this blunted selectin response does not include a major role for either nitric oxide and superoxide, and 3) circulating lymphocytes may contribute to the LPS-PC response.
Wisgrill, Lukas; Muck, Martina; Wessely, Isabelle; Berger, Angelika; Spittler, Andreas; Förster-Waldl, Elisabeth; Sadeghi, Kambis
2018-01-01
BackgroundEndothelial cells (ECs) exert immunological functions such as production of proinflammatory cytokines/chemokines as well as facilitation of extravasation of immune cells into infected tissue. Limited data are available on the functionality of ECs from extremely preterm neonates during infection. Accordingly, the aim of our study was to investigate the immune response of premature ECs after proinflammatory stimulation.MethodsCell adhesion receptors' expression and function, nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NFκB) signaling, and chemokine production were analyzed in umbilical cord ECs from extremely preterm and term neonates after proinflammatory stimulation.ResultsP-selectin and E-selectin surface expression as well as NFκB signaling were lower after lipopolysaccharide (LPS) stimulation in premature ECs. Preterm ECs exhibited lower, but significant, cell-adhesive functions after LPS stimulation compared with term ECs. CCL2/CXCL8 chemokine secretion was significantly upregulated after proinflammatory stimulation in both groups. CXCL10 production was significantly increased in term but not in preterm ECs upon stimulation with tumor necrosis factor compared with unstimulated ECs.ConclusionExtremely premature ECs showed partly reduced expression levels and function of cell adhesion molecules. Both NFκB signaling and chemokine/cytokine production were reduced in premature ECs. The diminished endothelial proinflammatory immune response might result in impaired infection control of preterm newborns rendering them prone to severe infection.
Elevated CXCL1 expression in gp130-deficient endothelial cells impairs neutrophil migration in mice
Yao, Longbiao; Yago, Tadayuki; Shao, Bojing; Liu, Zhenghui; Silasi-Mansat, Robert; Setiadi, Hendra; Lupu, Florea
2013-01-01
Neutrophils emigrate from venules to sites of infection or injury in response to chemotactic gradients. How these gradients form is not well understood. Some IL-6 family cytokines stimulate endothelial cells to express adhesion molecules and chemokines that recruit leukocytes. Receptors for these cytokines share the signaling subunit gp130. We studied knockout mice lacking gp130 in endothelial cells. Unexpectedly, gp130-deficient endothelial cells constitutively expressed more CXCL1 in vivo and in vitro, and even more upon stimulation with tumor necrosis factor-α. Mobilization of this increased CXCL1 from intracellular stores to the venular surface triggered β2 integrin–dependent arrest of neutrophils rolling on selectins but impaired intraluminal crawling and transendothelial migration. Superfusing CXCL1 over venules promoted neutrophil migration only after intravenously injecting mAb to CXCL1 to diminish its intravascular function or heparinase to release CXCL1 from endothelial proteoglycans. Remarkably, mice lacking gp130 in endothelial cells had impaired histamine-induced venular permeability, which was restored by injecting anti–P-selectin mAb to prevent neutrophil rolling and arrest. Thus, excessive CXCL1 expression in gp130-deficient endothelial cells augments neutrophil adhesion but hinders migration, most likely by disrupting chemotactic gradients. Our data define a role for endothelial cell gp130 in regulating integrin-dependent adhesion and de-adhesion of neutrophils during inflammation. PMID:24081661
Effects of chlorogenic acid on neutrophil locomotion functions in response to inflammatory stimulus.
Hebeda, C B; Bolonheis, S M; Nakasato, A; Belinati, K; Souza, P D C; Gouvea, D R; Lopes, N P; Farsky, S H P
2011-05-17
Species of Lychnophora are used in Brazilian folk medicine as analgesic and anti-inflammatory agents. Chlorogenic acid (CGA) and their analogues are important components of polar extracts of these species, as well in several European and Asian medicinal plants. Some of these phenolic compounds display anti-inflammatory effects. In this paper we report the isolation of CGA from Lychnophora salicifolia and its effects on functions involved in neutrophils locomotion. LC-MS(n) data confirmed the presence of CGA in the plant. Actions of CGA were investigated on neutrophils obtained from peritoneal cavity of Wistar rats (4h after 1% oyster glycogen solution injection; 10 ml), and incubated with vehicle or with 50, 100 or 1000 μM CGA in presence of lipopolysaccharide from Escherichia coli (LPS, 5 μg/ml). Nitric oxide (NO; Griess reaction); prostaglandin E(2) (PGE(2)), interleukin-1β (IL-1β) and tumor necrosis factor-α [TNF-α; enzyme-linked immunosorbent assay (EIA)]; protein (flow cytometry) and gene (RT-PCR) expression of L-selectin, β(2)integrin and platelet-endothelial cell adhesion molecule-1 (PECAM-1) were quantified. In vitro neutrophil adhesion to primary culture of microvascular endothelial cell (PMEC) and neutrophil migration in response to formyl-methionil-leucil-phenilalanine (fMLP, 10(-8)M, Boyden chamber) was determined. CGA treatment did not modify the secretion of inflammatory mediators, but inhibited L-selectin cleavage and reduced β(2) integrin, independently from its mRNA synthesis, and reduced membrane PECAM-1 expression; inhibited neutrophil adhesion and neutrophil migration induced by fMLP. Based on these findings, we highlight the direct inhibitory actions of CGA on adhesive and locomotion properties of neutrophils, which may contribute to its anti-inflammatory effects and help to explain the use of Lychnophora salicifolia as an anti-inflammatory agent. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Valenzuela, Nicole M; Mulder, Arend; Reed, Elaine F
2013-01-01
Antibody-mediated rejection of solid organ transplants is characterized by intragraft macrophages. It is incompletely understood how donor specific antibody binding to graft endothelium promotes monocyte adhesion, and what, if any, contribution is made by the Fc region of the antibody. We investigated the mechanisms underlying monocyte recruitment by HLA class I antibody-activated endothelium. We used a panel of murine monoclonal antibodies of different subclasses to crosslink HLA I on human aortic, venous and microvascular endothelial cells, and measured the binding of human monocytic cell lines and peripheral blood monocytes. Both anti-HLA I murine IgG1 and mIgG2a induced endothelial P-selectin, which was required for monocyte adhesion to endothelium irrespective of subclass. Mouse IgG2a but not mIgG1 could bind human FcγRs. Accordingly, HLA I mIgG2a but not mIgG1 treatment of endothelial cells significantly augmented recruitment, predominantly through FcγRI, and, to a lesser extent, FcγRIIa. Moreover, HLA I mIgG2a promoted firm adhesion of monocytes to ICAM-1 through Mac-1, which may explain the prominence of monocytes during antibody mediated rejection. We confirmed these observations using human HLA allele specific monoclonal antibodies and IgG purified from transplant patient sera. HLA I antibodies universally elicit endothelial exocytosis leading to monocyte adherence, implying that P-selectin is a putative therapeutic target to prevent macrophage infiltration during antibody-mediated rejection. Importantly, the subclass of donor specific antibody may influence its pathogenesis. These results imply that hIgG1 and hIgG3 should have a greater capacity to trigger monocyte infiltration into the graft than IgG2 or IgG4 due to enhancement by FcγR interactions. PMID:23690477
Valenzuela, Nicole M; Mulder, Arend; Reed, Elaine F
2013-06-15
Ab-mediated rejection (AMR) of solid organ transplants is characterized by intragraft macrophages. It is incompletely understood how donor-specific Ab binding to graft endothelium promotes monocyte adhesion, and what, if any, contribution is made by the Fc region of the Ab. We investigated the mechanisms underlying monocyte recruitment by HLA class I (HLA I) Ab-activated endothelium. We used a panel of murine mAbs of different subclasses to crosslink HLA I on human aortic, venous, and microvascular endothelial cells and measured the binding of human monocytic cell lines and peripheral blood monocytes. Both anti-HLA I murine (m)IgG1 and mIgG2a induced endothelial P-selectin, which was required for monocyte adhesion to endothelium irrespective of subclass. mIgG2a but not mIgG1 could bind human FcγRs. Accordingly, HLA I mIgG2a but not mIgG1 treatment of endothelial cells significantly augmented recruitment, predominantly through FcγRI, and, to a lesser extent, FcγRIIa. Moreover, HLA I mIgG2a promoted firm adhesion of monocytes to ICAM-1 through Mac-1, which may explain the prominence of monocytes during AMR. We confirmed these observations using human HLA allele-specific mAbs and IgG purified from transplant patient sera. HLA I Abs universally elicit endothelial exocytosis leading to monocyte adherence, implying that P-selectin is a putative therapeutic target to prevent macrophage infiltration during AMR. Importantly, the subclass of donor-specific Ab may influence its pathogenesis. These results imply that human IgG1 and human IgG3 should have a greater capacity to trigger monocyte infiltration into the graft than IgG2 or IgG4 due to enhancement by FcγR interactions.
Campos-Estrada, Carolina; Liempi, Ana; González-Herrera, Fabiola; Lapier, Michel; Kemmerling, Ulrike; Pesce, Barbara; Ferreira, Jorge; López-Muñoz, Rodrigo; Maya, Juan D.
2015-01-01
Trypanosoma cruzi is the causal agent of Chagas Disease that is endemic in Latin American, afflicting more than ten million people approximately. This disease has two phases, acute and chronic. The acute phase is often asymptomatic, but with time it progresses to the chronic phase, affecting the heart and gastrointestinal tract and can be lethal. Chronic Chagas cardiomyopathy involves an inflammatory vasculopathy. Endothelial activation during Chagas disease entails the expression of cell adhesion molecules such as E-selectin, vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1) through a mechanism involving NF-κB activation. Currently, specific trypanocidal therapy remains on benznidazole, although new triazole derivatives are promising. A novel strategy is proposed that aims at some pathophysiological processes to facilitate current antiparasitic therapy, decreasing treatment length or doses and slowing disease progress. Simvastatin has anti-inflammatory actions, including improvement of endothelial function, by inducing a novel pro-resolving lipid, the 5-lypoxygenase derivative 15-epi-lipoxin A4 (15-epi-LXA4), which belongs to aspirin-triggered lipoxins. Herein, we propose modifying endothelial activation with simvastatin or benznidazole and evaluate the pathways involved, including induction of 15-epi-LXA4. The effect of 5 μM simvastatin or 20 μM benznidazole upon endothelial activation was assessed in EA.hy926 or HUVEC cells, by E-selectin, ICAM-1 and VCAM-1 expression. 15-epi-LXA4 production and the relationship of both drugs with the NFκB pathway, as measured by IKK-IKB phosphorylation and nuclear migration of p65 protein was also assayed. Both drugs were administered to cell cultures 16 hours before the infection with T. cruzi parasites. Indeed, 5 μM simvastatin as well as 20 μM benznidazole prevented the increase in E-selectin, ICAM-1 and VCAM-1 expression in T. cruzi-infected endothelial cells by decreasing the NF-κB pathway. In conclusion, Simvastatin and benznidazole prevent endothelial activation induced by T. cruzi infection, and the effect of simvastatin is mediated by the inhibition of the NFκB pathway by inducing 15-epi-LXA4 production. PMID:25978361
Goldsmith, H L; Quinn, T A; Drury, G; Spanos, C; McIntosh, F A; Simon, S I
2001-01-01
During inflammation, neutrophil capture by vascular endothelial cells is dependent on L-selectin and beta(2)-integrin adhesion receptors. One of us (S.I.S.) previously demonstrated that homotypic neutrophil aggregation is analogous to this process in that it is also mediated by these receptors, thus providing a model for studying the dynamics of neutrophil adhesion. In the present work, we set out to confirm the hypothesis that cell-cell adhesion via selectins serves to increase the lifetimes of neutrophil doublets formed through shear-induced two-body collisions. In turn, this would facilitate the engagement of more stable beta(2)-integrin bonds and thus increase the two-body collision efficiency (fraction of collisions resulting in the formation of nonseparating doublets). To this end, suspensions of unstimulated neutrophils were subjected to a uniform shear field in a transparent counter-rotating cone and plate rheoscope, and the formation of doublets and growth of aggregates recorded using high-speed videomicroscopy. The dependence of neutrophil doublet lifetime and two-body collision-capture efficiency on shear rate, G, from 14 to 220 s(-1) was investigated. Bond formation during a two-body collision was indicated by doublets rotating well past the orientation predicted for break-up of doublets of inert spheres. A striking dependence of doublet lifetime on shear rate was observed. At low shear (G = 14 s(-1)), no collision capture occurred, and doublet lifetimes were no different from those of neutrophils pretreated with a blocking antibody to L-selectin, or in Ca(++)-depleted EDTA buffers. At G > or = 66 s(-1), doublet lifetimes increased, with increasing G reaching values twice those for the L-selectin-blocked controls. This correlated with capture efficiencies in excess of 20%, and, at G > or = 110 s(-1), led to the rapid formation of large aggregates, and this in the absence of exogenous chemotactic stimuli. Moreover, the aggregates almost completely broke up when the shear rate was reduced below 66 s(-1). Partial inhibition of aggregate formation was achieved by blocking beta(2)-integrin receptors with antibody. By direct observation of the shear-induced interactions between neutrophils, these data reveal that steady application of a threshold level of shear rate is sufficient to support homotypic neutrophil aggregation. PMID:11566775
Minimal sulfated carbohydrates for recognition by L-selectin and the MECA-79 antibody.
Bruehl, R E; Bertozzi, C R; Rosen, S D
2000-10-20
Sulfated forms of sialyl-Le(X) containing Gal-6-SO(4) or GlcNAc-6-SO(4) have been implicated as potential recognition determinants on high endothelial venule ligands for L-selectin. The optimal configuration of sulfate esters on the N-acetyllactosamine (Galbeta1-->4GlcNAc) core of sulfosialyl-Le(X), however, remains unsettled. Using a panel of sulfated lactose (Galbeta1-->4Glc) neoglycolipids as substrates in direct binding assays, we found that 6',6-disulfolactose was the preferred structure for L-selectin, although significant binding to 6'- and 6-sulfolactose was observed as well. Binding was EDTA-sensitive and blocked by L-selectin-specific monoclonal antibodies. Surprisingly, 6', 6-disulfolactose was poorly recognized by MECA-79, a carbohydrate- and sulfate-dependent monoclonal antibody that binds competitively to L-selectin ligands. Instead, MECA-79 bound preferentially to 6-sulfolactose. The difference in preferred substrates between L-selectin and MECA-79 may explain the variable activity of MECA-79 as an inhibitor of lymphocyte adhesion to high endothelial venules in lymphoid organs. Our results suggest that both Gal-6-SO(4) and GlcNAc-6-SO(4) may contribute to L-selectin recognition, either as components of sulfosialyl-Le(X) capping groups or in internal structures. By contrast, only GlcNAc-6-SO(4) appears to contribute to MECA-79 binding.
α(1,3)-Fucosyltransferases FUT4 and FUT7 Control Murine Susceptibility to Thrombosis
Wang, Huili; Morales-Levy, Maria; Rose, Jason; Mackey, Lantz C.; Bodary, Peter; Eitzman, Daniel; Homeister, Jonathon W.
2014-01-01
The α(1,3)-fucosyltransferases, types IV and VII (FUT4 and FUT7, respectively), are required for the synthesis of functional selectin-type leukocyte adhesion molecule ligands. The selectins and their ligands modulate leukocyte trafficking, and P-selectin and its ligand, P-selectin glycoprotein ligand-1, can modulate hemostasis and thrombosis. Regulation of thrombosis by FUT4 and/or FUT7 activity was examined in mouse models of carotid artery thrombosis and collagen/epinephrine-induced thromboembolism. Mice lacking both FUT4 and FUT7 (Fut−/− mice) had a shorter time to occlusive thrombus formation in the injured carotid artery and a higher mortality due to collagen/epinephrine-induced pulmonary thromboemboli. Mice lacking P-selectin or P-selectin glycoprotein ligand-1 did not have a prothrombotic phenotype. Whole blood platelet aggregation was enhanced, and plasma fibrinogen content, clot weight, and clot strength were increased in Fut−/− mice, and in vitro clot lysis was reduced compared with wild type. Fut4−/−, but not Fut7−/−, mice had increased pulmonary thromboembolism-induced mortality and decreased thromboemboli dissolution in vivo. These data show that FUT4 and FUT7 activity regulates thrombosis in a P-selectin– and P-selectin glycoprotein ligand-1–independent manner and suggest that FUT4 activity is important for thrombolysis. PMID:23562273
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Hiroyasu; Kuroda, Nana; Uekita, Hiromi
Background: Adiponectin (APN) is an adipocyte-derived bioactive molecule with anti-diabetic and anti-atherogenic properties. Although anti-diabetic effects are mostly mediated by the adiponectin receptors AdipoR1 and AdipoR2, the anti-atherogenic mechanisms have not been fully elucidated. Methods and Results: In this study, we identified E-selectin ligand (ESL)-1 as a novel APN-binding protein by mass spectrometry analysis of HepG2 cell-derived immunoprecipitant with an anti-APN antibody. Cell adhesion assays using fluorescence-labelled monocyte cell line THP-1 cells and human umbilical vein endothelial cells (HUVECs) revealed that APN-pre-treated THP-1 cells had reduced binding ability to HUVECs. This APN-mediated suppressive effect on monocyte binding to endothelial cells was partiallymore » abrogated by targeting ESL-1 with shRNA in THP-1 cells. In addition, serial mutagenesis analysis disclosed that five extracellular amino acids close to the N-terminus of ESL-1 were essential for binding with APN. Conclusion: Our results highlight the fact that interaction between APN and ESL-1 could provide a fundamental mechanism underlying the anti-atherogenic properties of APN. - Highlights: • E-selectin ligand (ESL)-1 was identified as an adiponectin (APN)-binding protein. • ESL-1 bound to APN at its N-terminal 6th-10th amino acids. • shESL-1 reduced the suppressive effect of APN on adhesion of THP-1 cells to HUVECs. • Interaction with ESL may be involved in the anti-atherogenic effects of APN.« less
Plasma E-selectin levels can play a role in the development of diabetic retinopathy.
Kasza, Márta; Meleg, J; Vardai, J; Nagy, B; Szalai, E; Damjanovich, J; Csutak, A; Ujhelyi, B; Nagy, V
2017-01-01
Diabetic retinopathy is one of the leading causes of blindness. There are several risk factors, such as the duration of diabetes or glycemic control of the patient; however, several biochemical factors also alter the process. Our aim was to investigate the role of soluble E-selectin in the formation of diabetic retinopathy. Fifty-seven patients (37 female and 20 male, aged 61.71 ± 12.31 years) and 14 healthy control subjects (ten female and four male, aged 63.06 ± 10.46 years) were enrolled in the study. We measured the soluble E-selectin level in the plasma of patients by ELISA. All patients underwent careful ophthalmological examination, including ophthalmoscopy and color fundus photography, while diabetic retinopathy grading was performed in line with the 2012 classification of the American Academy of Ophthalmology (AAO). The soluble E-selectin level was significantly higher in patients with diabetes compared to controls (32.95 ng/ml vs. 26.55 ng/ml, p = 0.03). Dividing patients into groups by the presence of retinopathy, the E-selectin level was also significantly higher in the retinopathy group (p < 0.05). When we examined diabetic patients by the severity of retinopathy (groups A, B, and C, by the guidelines of the AAO), however, we did not find any significant difference in soluble E-selectin levels, although it tended to be higher in group B. An elevated E-selectin level can play a role in the development of diabetic retinopathy, but it does not seem to alter disease severity. However, glycemic control and the reduction of cardiovascular risk factors may also alter the level of E-selectin that might play a role in the prevention of diabetic retinopathy.
Fei, Yang; Zong, Guang-Quan; Chen, Jian; Liu, Ren-Min
2016-07-01
To evaluate the value of d-dimer, P-selectin, and platelet count in patients with cirrhotic portal hypertension (PHT) for prediction of portal vein thrombosis (PVT) after devascularization. A total of 137 patients with cirrhotic PHT who undergone devascularization from January 2012 to April 2014 were retrospectively reviewed, all of them were divided into 2 groups (PVT group and non-PVT group) by Doppler ultrasonography (DU) examination. The level of d-dimer, P-selectin, and platelet count was tested during the perioperative period. In all, 38 (27.7%) patients were found to have PVT by DU examination postoperatively. In contrast to the non-PVT group, the level of d-dimer, P-selectin, and platelet count in the PVT group was much higher significantly at 1, 3, and 7 days after devascularization. (P < .05). However, in the 15 days after surgery, the difference in P-selectin between the 2 groups was not significant (P = .260). It was shown that the highest sensitivity of the 3 markers for PVT was d-dimer, the highest specificity belonged to P-selectin. The area under receiver-operating characteristic (ROC) curve of P-selectin was the biggest of the 3 markers. When the 3 markers were combined to be used to diagnose PVT, the sensitivity was increased to 0.907, with a slight drop of specificity to 0.693, the area under the ROC curve was 0.927. The level of d-dimer, P-selectin, and platelet count might be good candidate predictive markers for PVT in patients with cirrhotic PHT after devascularization. The combined test of the 3 markers can increase the value of prediction. © The Author(s) 2015.
Regulation of Catch Bonds by Rate of Force Application*
Sarangapani, Krishna K.; Qian, Jin; Chen, Wei; Zarnitsyna, Veronika I.; Mehta, Padmaja; Yago, Tadayuki; McEver, Rodger P.; Zhu, Cheng
2011-01-01
The current paradigm for receptor-ligand dissociation kinetics assumes off-rates as functions of instantaneous force without impact from its prior history. This a priori assumption is the foundation for predicting dissociation from a given initial state using kinetic equations. Here we have invalidated this assumption by demonstrating the impact of force history with single-bond kinetic experiments involving selectins and their ligands that mediate leukocyte tethering and rolling on vascular surfaces during inflammation. Dissociation of bonds between L-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) loaded at a constant ramp rate to a constant hold force behaved as catch-slip bonds at low ramp rates that transformed to slip-only bonds at high ramp rates. Strikingly, bonds between L-selectin and 6-sulfo-sialyl Lewis X were impervious to ramp rate changes. This ligand-specific force history effect resembled the effect of a point mutation at the L-selectin surface (L-selectinA108H) predicted to contact the former but not the latter ligand, suggesting that the high ramp rate induced similar structural changes as the mutation. Although the A108H substitution in L-selectin eliminated the ramp rate responsiveness of its dissociation from PSGL-1, the inverse mutation H108A in P-selectin acquired the ramp rate responsiveness. Our data are well explained by the sliding-rebinding model for catch-slip bonds extended to incorporate the additional force history dependence, with Ala-108 playing a pivotal role in this structural mechanism. These results call for a paradigm shift in modeling the mechanical regulation of receptor-ligand bond dissociation, which includes conformational coupling between binding pocket and remote regions of the interacting molecules. PMID:21775439
Lung and Intestine: A Specific Link in an Ulcerative Colitis Rat Model
Liu, Yuan; Wang, Xin-Yue; Yang, Xue; Jing, Shan; Zhu, Li; Gao, Si-Hua
2013-01-01
Background. To investigate the link and mechanisms between intestine and lung in the ulcerative colitis (UC) rat model. Materials and Methods. We used the UC rat model by immunological sensitization combined with local 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) in 50% ethanol enema, observed dynamically animal general state and body weight, examined the histological and functional changes in the colon, lung, liver, and kidney tissues, and detected microvascular endothelium response towards inflammation characterized with the expression of iNOS, TXB2, P-selectin, ICAM-1, and vascular endothelial growth factor A (VEGF-A) in the colon and lung tissue. Results. Pulmonary function results suggested ventilator disorder, and pathological findings showed interstitial pneumonia. There were no significant changes in the liver and kidney function and histopathology. The colon and lung tissue iNOS, TXB2, P-selectin, ICAM-1, and VEGF-A expression of the model rats was significantly higher than the normal rats at both time points. Conclusions. Our study is the first to demonstrate the close association between the large intestine and lung in the immune-TNBS-ethanol-induced UC rat model. Different organs and tissues with the same embryonic origin may share the same pathological specificities in a disease. The present study provided a new way of thinking for pathological changes in clinical complex diseases manifested with multiorgan damage. PMID:23606829
Nishida, Eisaku; Aino, Makoto; Kobayashi, Shu-Ichiro; Okada, Kosuke; Ohno, Tasuku; Kikuchi, Takeshi; Hayashi, Jun-Ichiro; Yamamoto, Genta; Hasegawa, Yoshiaki; Mitani, Akio
2016-01-01
Periodontitis is a chronic inflammatory disease that affects the periodontium. Recent studies suggest an association between periodontal and cardiovascular diseases. However, the detailed molecular mechanism is unknown. A previous study has demonstrated that experimental periodontitis induces serum amyloid A (SAA) in the liver and peripheral blood of ApoE-deficient mice as an atherosclerosis model. SAA is an acute-phase protein that affects systemic inflammation. The aim of this study is to investigate the atherosclerosis-onset mechanism using human aortic endothelial cells (HAECs) stimulated by SAA in vitro . Atherosclerosis PCR array and qPCR analyses showed upregulation of adhesion molecules such as intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin in HAECs upon SAA stimulation. In addition, the results demonstrated that Toll-like receptor, TLR2, could serve as an important receptor of SAA in HAECs. Furthermore, small interfering RNA (siRNA) against TLR2 inhibited the upregulation of adhesion molecules in HAECs stimulated by SAA. Our results suggest that SAA stimulates the expression of adhesion molecules via TLR2. SAA could be an important molecule for atherosclerosis induced by periodontal disease.
2016-01-01
Periodontitis is a chronic inflammatory disease that affects the periodontium. Recent studies suggest an association between periodontal and cardiovascular diseases. However, the detailed molecular mechanism is unknown. A previous study has demonstrated that experimental periodontitis induces serum amyloid A (SAA) in the liver and peripheral blood of ApoE-deficient mice as an atherosclerosis model. SAA is an acute-phase protein that affects systemic inflammation. The aim of this study is to investigate the atherosclerosis-onset mechanism using human aortic endothelial cells (HAECs) stimulated by SAA in vitro. Atherosclerosis PCR array and qPCR analyses showed upregulation of adhesion molecules such as intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin in HAECs upon SAA stimulation. In addition, the results demonstrated that Toll-like receptor, TLR2, could serve as an important receptor of SAA in HAECs. Furthermore, small interfering RNA (siRNA) against TLR2 inhibited the upregulation of adhesion molecules in HAECs stimulated by SAA. Our results suggest that SAA stimulates the expression of adhesion molecules via TLR2. SAA could be an important molecule for atherosclerosis induced by periodontal disease. PMID:27799725
Platelet-activated clotting time does not measure platelet reactivity during cardiac surgery.
Shore-Lesserson, L; Ammar, T; DePerio, M; Vela-Cantos, F; Fisher, C; Sarier, K
1999-08-01
Platelet dysfunction is a major contributor to bleeding after cardiopulmonary bypass (CPB), yet it remains difficult to diagnose. A point-of-care monitor, the platelet-activated clotting time (PACT), measures accelerated shortening of the kaolin-activated clotting time by addition of platelet activating factor. The authors sought to evaluate the clinical utility of the PACT by conducting serial measurements of PACT during cardiac surgery and correlating postoperative measurements with blood loss. In 50 cardiac surgical patients, blood was sampled at 10 time points to measure PACT. Simultaneously, platelet reactivity was measured by the thrombin receptor agonist peptide-induced expression of P-selectin, using flow cytometry. These tests were temporally analyzed. PACT values, P-selectin expression, and other coagulation tests were analyzed for correlation with postoperative chest tube drainage. PACT and P-selectin expression were maximally reduced after protamine administration. Changes in PACT did not correlate with changes in P-selectin expression at any time interval. Total 8-h chest tube drainage did not correlate with any coagulation test at any time point except with P-selectin expression after protamine administration (r = -0.4; P = 0.03). The platelet dysfunction associated with CPB may be a result of depressed platelet reactivity, as shown by thrombin receptor activating peptide-induced P-selectin expression. Changes in PACT did not correlate with blood loss or with changes in P-selectin expression suggesting that PACT is not a specific measure of platelet reactivity.
Lopes-Virella, Maria F; Baker, Nathaniel L; Hunt, Kelly J; Cleary, Patricia A; Klein, Richard; Virella, Gabriel
2013-08-01
The current study aimed to determine in the Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications cohort whether or not abnormal levels of markers of inflammation and endothelial dysfunction measured in samples collected at DCCT baseline were able to predict the development of macroalbuminuria. Levels of inflammation and endothelial cell dysfunction biomarkers were measured in 1,237 of 1,441 patients enrolled in the DCCT study who were both free of albuminuria and cardiovascular disease at baseline. To test the association of log-transformed biomarkers with albuminuria, generalized logistic regression models were used to quantify the association of increased levels of biomarkers and development of abnormal albuminuria. Normal, micro-, and macroalbuminuria were the outcomes of interest. In the logistic regression models adjusted by DCCT treatment assignment, baseline albumin excretion rate, and use of ACE/angiotensin receptor blocker drugs, one unit increase in the standardized levels of soluble E-selectin (sE-selectin) was associated with an 87% increase in the odds to develop macroalbuminuria and one unit increase in the levels of interleukin-6 (IL-6), plasminogen activator inhibitor 1 (PAI-1; total and active), and soluble tumor necrosis factor receptors (TNFR)-1 and -2 lead to a 30-50% increase in the odds to develop macroalbuminuria. Following adjustment for DCCT baseline retinopathy status, age, sex, HbA1c, and duration of diabetes, significant associations remained for sE-selectin and TNFR-1 and -2 but not for IL-6 or PAI-1. Our study indicates that high levels of inflammatory markers, mainly E-selectin and sTNRF-1 and -2, are important predictors of macroalbuminuria in patients with type 1 diabetes.
Huang, Go-Shine; Hu, Mei-Hua; Lin, Tso-Chou; Tsai, Yi-Ting; Lin, Chih-Yuan; Ke, Hung-Yen; Zheng, Xu-Zhi; Lin, Yi-Chang; Tsai, Chien-Sung
2018-05-01
Effects of blood transfusions on platelet- and leukocyte-related inflammation are unclear. We simulated transfusion using in vitro blood mixing to evaluate platelet-leukocyte aggregations (PLA) and platelet P-selectin expression, and the mechanism of PLA. Donor packed red blood cells (pRBCs) were obtained from a blood bank. Recipient whole blood samples were obtained from patients undergoing cardiac surgery. Blood sample mixtures were divided into four groups: group M, cross-matched blood type mixing; group O, donor type O with other blood type mixing (A, B, or AB); group S, ABO type-specific uncross-matched blood mixing; and group I, ABO incompatibility mixing. Donor pRBCs were added to recipient blood to reach 1%, 5%, and 10% (vol/vol) concentrations. Blood sample mixtures were analyzed to determine the PLA; P-selectin expression; and leukocyte CD11a, CD11b, and CD18 subunits of integrin expression. Analysis of variance tests were used to analyze differences. PLA significantly increased only in groups O and I (P = 0.003 and P < 0.001). Subpopulations of leukocytes significantly increased in all groups. There were no significant differences among the four groups (P = 0.578) in PLA increase. Although there was no significant effect on P-selectin expression (P = 1.000) and leukocyte CD11a and CD18 expression (P = 0.999, P = 0.422) within and between the groups, there was an increase in CD11b expression (P = 0.018). Blood mixing can increase PLA, especially in platelet-neutrophil and platelet-monocyte aggregations, possibly through nonhemolytic reactions. The CD11b integrin with CD18 may play a role in the formation of PLA.
Kennedy, Simon; McPhaden, Allan R; Wadsworth, Roger M; Wainwright, Cherry L
2000-01-01
The aim of this study was to examine the changes in leukocyte adhesion and leukocyte-induced contraction in balloon-injured rabbit subclavian artery and to correlate these changes with vessel morphology and expression of adhesion molecules on the injured arteries.Rabbits were anaesthetized and their left subclavian arteries were injured by balloon inflation and withdrawal followed by sacrifice at 2, 24, 48 h or 8 days after injury. The left and right subclavian arteries were removed and leukocytes were isolated from autologous rabbit blood. Leukocyte-induced contraction was measured in 5-HT precontracted artery rings and leukocyte adhesion was measured using 51Cr-labelled leukocytes. Immunocytochemistry using paraffin-embedded tissue was employed to detect changes in the expression of adhesion molecules on injured arteries.Autologous leukocytes caused a contraction of rabbit subclavian artery rings, which was prevented by L-NAME (10−3 M). Balloon-induced injury abolished the contractile response to leukocytes, which correlated with loss of carbachol-induced relaxationBalloon injury markedly enhanced the adhesiveness of the subclavian artery for leukocytes, most notably at 24 and 48 h after injury (1.7 and 1.8 fold respectively). Increased leukocyte adhesion at these two time points correlated with an upregulation of E-selectin, P-selectin and VCAM-1 expression on the remaining endothelium of the injured artery.Vessel morphology revealed that balloon inflation had induced an infiltration of inflammatory cells into the vessel wall, the greatest increase being seen at 24 h after injury.It is concluded that an increase in the expression of E-selectin, P-selectin and VCAM-1 following balloon-induced injury leads to enhanced leukocyte adhesion and migration into the injured vessel. PMID:10781003
Asgeirsdóttir, Sigridur A; Talman, Eduard G; de Graaf, Inge A; Kamps, Jan A A M; Satchell, Simon C; Mathieson, Peter W; Ruiters, Marcel H J; Molema, Grietje
2010-01-25
Applications of small-interfering RNA (siRNA) call for specific and efficient delivery of siRNA into particular cell types. We developed a novel, non-viral targeting system to deliver siRNA specifically into inflammation-activated endothelial cells. This was achieved by conjugating the cationic amphiphilic lipid SAINT to antibodies recognizing the inflammatory cell adhesion molecule E-selectin. These anti-E-selectin-SAINT lipoplexes (SAINTarg) maintained antigen recognition capacity of the parental antibody in vitro, and ex vivo in human kidney tissue slices subjected to inflammatory conditions. Regular SAINT mediated transfection resulted in efficient gene silencing in human microvascular endothelial cells (HMEC-1) and conditionally immortalized glomerular endothelial cells (ciGEnC). However, primary human umbilical vein endothelial cells (HUVEC) transfected poorly, a phenomenon that we could quantitatively correlate with a cell-type specific capacity to facilitate siRNA uptake. Importantly, SAINTarg increased siRNA uptake and transfection specificity for activated endothelial cells. Transfection with SAINTarg delivered significantly more siRNA into activated HUVEC, compared to transfection with non-targeted SAINT. The enhanced uptake of siRNA was corroborated by improved silencing of both gene- and protein expression of VE-cadherin in activated HUVEC, indicating that SAINTarg delivered functionally active siRNA into endothelial cells. The obtained results demonstrate a successful design of a small nucleotide carrier system with improved and specific siRNA delivery into otherwise difficult-to-transfect primary endothelial cells, which in addition reduced considerably the amount of siRNA needed for gene silencing. Copyright 2009 Elsevier B.V. All rights reserved.
Phenotypic changes in neutrophils related to anti-inflammatory therapy.
Barton, A E; Bayley, D L; Mikami, M; Llewellyn-Jones, C G; Stockley, R A
2000-01-03
Previous work from the group has shown that non-steroidal anti-inflammatory agents given to volunteers and patients inhibit PMN function possibly by affecting the developing neutrophil during the differentiation process. In this study indomethacin treatment in vivo reduced neutrophil chemotaxis and proteolytic degradation of fibronectin, with a maximal effect after 14 days. Stimulated neutrophil adherence to fibronectin was also reduced but this was not due to quantitative changes in beta(2) integrin expression or function. L-Selectin expression on resting and stimulated neutrophils was increased after 14 days and there was a small decrease in plasma levels of soluble L-selectin. These effects, however, could not be reproduced by treatment of neutrophils with indomethacin in vitro, suggesting they are due to effects on differentiating/maturing PMNs. In an attempt to interpret these changes, studies were performed with dexamethasone, which is known to alter neutrophil function and kinetics. Dexamethasone treatment reduced chemotaxis and increased superoxide generation after 1 day and was associated with increased expression of activated beta(2) integrins and reduced L-selectin expression on resting neutrophils. This suggests the appearance of mainly 'activated' cells as a result of demargination and indicates that the effects of indomethacin are distinctive and not related to changes in compartmentalisation.
Maximizing Immune Response to Carbohydrate Antigens on Breast Tumors
2004-08-01
selectin binding. In vitro phenotyping of the tumor cells suggests that both KM93-Neg and Pos cells grow at the same rate; however, KM-93Neg cells are...and Figure 2. ABL ( Agaricus bisporus, mushroom, lectin) and ACA (Amaranthus caudatus, lectin) do not react with either the KM93-Pos or KM93-Neg...is different (Figure 6B). The KM93-Pos variant, which is similar to the original 4T1, tends to grow in clusters with high densities. While clusters are
Watanabe, Rei; Gehad, Ahmed; Yang, Chao; Scott, Laura L; Teague, Jessica E; Schlapbach, Christoph; Elco, Christopher P; Huang, Victor; Matos, Tiago R; Kupper, Thomas S; Clark, Rachael A
2015-03-18
The skin of an adult human contains about 20 billion memory T cells. Epithelial barrier tissues are infiltrated by a combination of resident and recirculating T cells in mice, but the relative proportions and functional activities of resident versus recirculating T cells have not been evaluated in human skin. We discriminated resident from recirculating T cells in human-engrafted mice and lymphoma patients using alemtuzumab, a medication that depletes recirculating T cells from skin, and then analyzed these T cell populations in healthy human skin. All nonrecirculating resident memory T cells (TRM) expressed CD69, but most were CD4(+), CD103(-), and located in the dermis, in contrast to studies in mice. Both CD4(+) and CD8(+) CD103(+) TRM were enriched in the epidermis, had potent effector functions, and had a limited proliferative capacity compared to CD103(-) TRM. TRM of both types had more potent effector functions than recirculating T cells. We observed two distinct populations of recirculating T cells, CCR7(+)/L-selectin(+) central memory T cells (TCM) and CCR7(+)/L-selectin(-) T cells, which we term migratory memory T cells (TMM). Circulating skin-tropic TMM were intermediate in cytokine production between TCM and effector memory T cells. In patients with cutaneous T cell lymphoma, malignant TCM and TMM induced distinct inflammatory skin lesions, and TMM were depleted more slowly from skin after alemtuzumab, suggesting that TMM may recirculate more slowly. In summary, human skin is protected by four functionally distinct populations of T cells, two resident and two recirculating, with differing territories of migration and distinct functional activities. Copyright © 2015, American Association for the Advancement of Science.
Cocoa consumption reduces NF-κB activation in peripheral blood mononuclear cells in humans.
Vázquez-Agell, M; Urpi-Sarda, M; Sacanella, E; Camino-López, S; Chiva-Blanch, G; Llorente-Cortés, V; Tobias, E; Roura, E; Andres-Lacueva, C; Lamuela-Raventós, R M; Badimon, L; Estruch, R
2013-03-01
Epidemiological studies have demonstrated an association between high-polyphenol intake and reduced incidence of atherosclerosis. The healthy effects of cocoa-polyphenols may be due to their antioxidant and anti-inflammatory actions, although the exact mechanisms are unknown and depend on the matrix in which cocoa-polyphenols are delivered. Nuclear factor κB (NF-κB) is a key molecule in the pathophysiology of atherosclerosis involved in the regulation of adhesion molecules(AM) and cytokine expression and its activation is the first step in triggering the inflammatory process. The aim of this study was to evaluate the effect of acute cocoa consumption in different matrices related to the bioavailability of cocoa-polyphenols in NF-κB activation and the expression of AM. Eighteen healthy volunteers randomly received 3 interventions: 40g of cocoa powder with milk (CM), with water (CW), and only milk (M). NF-κB activation in leukocytes and AM (sICAM, sVCAM, E-selectin) were measured before and 6h after each intervention. Consumption of CW significantly decreased NF-κB activation compared to baseline and to CM (P < 0.05, both), did not change after CM intervention, and significantly increased after M intervention (P = 0.014). sICAM-1 concentrations significantly decreased after 6h of CW and CM interventions (P ≤ 0.026; both) and E-selectin only decreased after CW intervention (P = 0.028). No significant changes were observed in sVCAM-1 concentrations. The anti-inflammatory effect of cocoa intake may depend on the bioavailability of bioactive compounds and may be mediated at least in part by the modulation of NF-κB activation and downstream molecules reinforcing the link between cocoa intake and health. Copyright © 2011 Elsevier B.V. All rights reserved.
Wang, Fei; Zou, Zhirong; Gong, Yi; Yuan, Dong; Chen, Xun; Sun, Tao
2017-05-01
Vascular risk factors have been linked to cognitive decline and dementia in the elderly. Microvascular inflammation, especially of the endothelium, may contribute to the progression of neurodegenerative events in Alzheimer's disease (AD). Memantine, an uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, is a licensed drug used for the treatment of moderate to severe AD. However, little information is available regarding its anti-inflammatory effects on the endothelium. In this study, we investigated the effects of memantine on human brain microvascular endothelial dysfunction induced by the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α). Our results show that memantine prevents the attachment of monocyte THP-1 cells to human brain microvascular endothelial cells (HBMVEs). An in vitro BBB model experiment displayed that memantine could rescue TNF-α-induced disruption of the in vitro BBB model. In addition, memantine also interferes with monocyte transmigration across the BBB model. Our results indicate that TNF-α significantly increased the expression of cell adhesion molecules, such as ICAM-1, VCAM-1, and E-selectin, which was prevented by pretreatment with memantine. Mechanistically, memantine reversed activation of the transcription factor NF-κB by preventing the phosphorylation and degradation of its inhibitor IκBα. Our data is the first to describe a novel anti-inflammatory mechanism driven by the endothelial cell-mediated neuroprotective effects of memantine.
Wang, Yunyun; Liu, Ye; Deng, Xinli; Cong, Yulong; Jiang, Xingyu
2016-12-15
Although conventional enzyme-linked immunosorbent assays (ELISA) and related assays have been widely applied for the diagnosis of diseases, many of them suffer from large error variance for monitoring the concentration of targets over time, and insufficient limit of detection (LOD) for assaying dilute targets. We herein report a readout mode of ELISA based on the binding between peptidic β-sheet structure and Congo Red. The formation of peptidic β-sheet structure is triggered by alkaline phosphatase (ALP). For the detection of P-Selectin which is a crucial indicator for evaluating thrombus diseases in clinic, the 'β-sheet and Congo Red' mode significantly decreases both the error variance and the LOD (from 9.7ng/ml to 1.1 ng/ml) of detection, compared with commercial ELISA (an existing gold-standard method for detecting P-Selectin in clinic). Considering the wide range of ALP-based antibodies for immunoassays, such novel method could be applicable to the analysis of many types of targets. Copyright © 2016 Elsevier B.V. All rights reserved.
Microvascular Channel Device to Study Aggressiveness in Prostate Cancer Metastasis
2012-06-01
metastatic inefficiency. Breast Cancer Res 2000 2:400-407 8. Aigner S, Ramos CL, Hafezi- Moghadam A, Lawrence MB, Friederichs J, Altevogt P, Ley K...CD24 mediates rolling of breast carcinoma cells on P-selectin. 1998 FASEB J 12:1241-1251 9. Friederichs J, Zeller Y, Hafezi- Moghadam A, Grone HJ, Ley
Kumpatla, Satyavani; Karuppiah, Kirubakaran; Immaneni, Sathyamurthy; Muthukumaran, Parthiban; Krishnan, Jayanthi; Narayanamoorthy, Srinivasan Kanthallu; Viswanathan, Vijay
2014-01-01
Background & objectives: The association between adiponectin and risk of cardiovascular disease is well known. The aim of the present study was to evaluate adiponectin and certain inflammatory markers and to determine the correlations between them in angiographically proven coronary artery disease (CAD) in subjects with and without diabetes. Methods: A total of 180 subjects who underwent coronary angiography for symptoms suggestive of CAD were categorised into groups based on their diabetes and/or CAD status: group1 (non-diabetic non-CAD); group2 (non-diabetic CAD); group3 (diabetic non-CAD) and group4 (diabetic CAD). Adiponectin, tumour necrosis factor α (TNF-α) and soluble form of E-selectin (sE-selectin) were estimated using quantitative sandwich enzyme immunoassay and high sensitive C-reactive protein (hsCRP) by particle enhanced immunoturbidimetric method. Results: Adiponectin levels were significantly lower in subjects with either diabetes or CAD and were much lower in subjects who had both. hsCRP was elevated in CAD and diabetes but did not differ significantly between groups. sE-selectin and TNF-α levels were elevated in CAD. Adiponectin negatively correlated with age, glucose, sE-selectin, total and LDL cholesterol. hsCRP correlated with BMI, sE-selectin and urea. sE-selectin correlated with BMI, triglycerides and VLDL cholesterol, whereas TNF-α correlated with fasting plasma glucose. In the logistic regression analysis, adiponectin had a significant inverse association with CAD. sE-selectin and TNF-α also showed significant independent association with CAD. Interpretation & conclusions: Adiponectin and other inflammatory markers such as sE-selectin and TNF-α showed a significant association with CAD. Hence, early assessment of such markers can help to identify high risk patients, and to reduce the inflammatory component of diabetes and CAD. PMID:25109718
Israel, Ina; Fluri, Felix; Schadt, Fabian; Buck, Adreas; Samnick, Samuel
2018-03-19
P-selectin is activated early after stroke, followed by a rapid decline. This time course can be used to generate important information on stroke onset. The latter is crucial for therapeutic decision-making of wake-up strokes (i.e. thrombolysis or not). Here we evaluated the specific p-selectin inhibitor 68Ga-Fucoidan for assessing p-selectin activation after ischemic stroke using PET. 68Ga-Fucoidan was investigated in rats brain at 2-5 h (n=16), and additionally at 24-26 h (n=9) and 48 h (n=3) after induction of photothrombic stroke or in sham operated animals (n=6). Correlation of cerebral 68Ga-Fucoidan uptake with p-selectin activation was determined by exposing freshly cut brain cryosections to autoradiography and immunostaining using specific antibodies against p-selectin. PET scans showed an increased accumulation of 68Ga-Fucoidan in the histologically proven ischemic stroke, as compared to the corresponding contralateral hemisphere in all except one animal. The median ratio between the uptake in the ischemic lesion and the contralateral region was 1.95 (1.45-2.41) at 2-5 h, 1.38 (1.05-1.89) at 24-26 h, and 1.09 (0.81-1.38) at 48 h after stroke, compared to 1.22 (0.99-1.49) for sham operated animals. In the ex vivo autoradiography, 68Ga-Fucoidan accumulation co-localized with p-selectin as assessed by immunostaining. Control animals and those scanned at 24-26 h and 48 h after stroke exhibited no elevated 68Ga-Fucoidan uptake in either hemisphere. PET imaging using 68Ga-Fucoidan represents a valuable tool for assessing p-selectin activation in vivo and to discriminate ischemic stroke early after stroke onset. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Kim, Kyungho; Li, Jing; Barazia, Andrew; Tseng, Alan; Youn, Seock-Won; Abbadessa, Giovanni; Yu, Yi; Schwartz, Brian; Andrews, Robert K.; Gordeuk, Victor R.; Cho, Jaehyung
2017-01-01
Previous studies identified the Ser/Thr protein kinase, AKT, as a therapeutic target in thrombo-inflammatory diseases. Here we report that specific inhibition of AKT with ARQ 092, an orally-available AKT inhibitor currently in phase Ib clinical trials as an anti-cancer drug, attenuates the adhesive function of neutrophils and platelets from sickle cell disease patients in vitro and cell-cell interactions in a mouse model of sickle cell disease. Studies using neutrophils and platelets isolated from sickle cell disease patients revealed that treatment with 50–500 nM ARQ 092 significantly blocks αMβ2 integrin function in neutrophils and reduces P-selectin exposure and glycoprotein Ib/IX/V-mediated agglutination in platelets. Treatment of isolated platelets and neutrophils with ARQ 092 inhibited heterotypic cell-cell aggregation under shear conditions. Intravital microscopic studies demonstrated that short-term oral administration of ARQ 092 or hydroxyurea, a major therapy for sickle cell disease, diminishes heterotypic cell-cell interactions in venules of sickle cell disease mice challenged with tumor necrosis factor-α. Co-administration of hydroxyurea and ARQ 092 further reduced the adhesive function of neutrophils in venules and neutrophil transmigration into alveoli, inhibited expression of E-selectin and intercellular adhesion molecule-1 in cremaster vessels, and improved survival in these mice. Ex vivo studies in sickle cell disease mice suggested that co-administration of hydroxyurea and ARQ 092 efficiently blocks neutrophil and platelet activation and that the beneficial effect of hydroxyurea results from nitric oxide production. Our results provide important evidence that ARQ 092 could be a novel drug for the prevention and treatment of acute vaso-occlusive complications in patients with sickle cell disease. PMID:27758820
Eniola, A Omolola; Krasik, Ellen F; Smith, Lee A; Song, Gang; Hammer, Daniel A
2005-11-01
In their active state, beta(2)-integrins, such as LFA-1, mediate the firm arrest of leukocytes by binding intercellular adhesion molecules (ICAMs) expressed on endothelium. Although the primary function of LFA-1 is assumed to be the ability to mediate firm adhesion, recent work has shown that LFA-1 can contribute to cell tethering and rolling under hydrodynamic flow, a role previously largely attributed to the selectins. The inserted (I) domain of LFA-1 has recently been crystallized in the wild-type (wt) and locked-open conformations and has been shown to, respectively, support rolling and firm adhesion under flow when expressed in alpha(L)beta(2) heterodimers or as isolated domains on cells. Here, we report results from cell-free adhesion assays where wt I-domain-coated polystyrene particles were allowed to interact with ICAM-1-coated surfaces in shear flow. We show that wt I-domain can independently mediate the capture of particles from flow and support their rolling on ICAM-1 surfaces in a manner similar to how carbohydrate-selectin interactions mediate rolling. Adhesion is specific and blocked by appropriate antibodies. We also show that the rolling velocity of I-domain-coated particles depends on the wall shear stress in flow chamber, I-domain site density on microsphere surfaces, and ICAM-1 site density on substrate surfaces. Furthermore, we show that rolling is less sensitive to wall shear stress and ICAM-1 substrate density at high density of I-domain on the microsphere surface. Computer simulations using adhesive dynamics can recreate bead rolling dynamics and show that the mechanochemical properties of ICAM-1-I-domain interactions are similar to those of carbohydrate-selectin interactions. Understanding the biophysics of adhesion mediated by the I-domain of LFA-1 can elucidate the complex roles this integrin plays in leukocyte adhesion in inflammation.
Byrkjeland, Rune; Njerve, Ida U; Arnesen, Harald; Seljeflot, Ingebjørg; Solheim, Svein
2017-03-01
We have previously reported insignificant changes in HbA 1c after exercise in patients with both type 2 diabetes and coronary artery disease. In this study, we investigated the effect of exercise on endothelial function and possible associations between changes in endothelial function and HbA 1c . Patients with type 2 diabetes and coronary artery disease ( n = 137) were randomised to 12 months exercise or standard follow-up. Endothelial function was assessed by circulating biomarkers (E-selectin, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, von Willebrand factor, tissue plasminogen activator antigen, asymmetric dimethylarginine and L-arginine/asymmetric dimethylarginine ratio). Differences between the randomised groups were analysed by analysis of covariance and correlations by Spearman's rho or Pearson's correlation. No effect of exercise on endothelial function was demonstrated. The changes in HbA 1c in the exercise group correlated with changes in E-selectin ( r = 0.56, p < 0.001), intercellular adhesion molecule-1 ( r = 0.27, p = 0.052), vascular cell adhesion molecule-1 ( r = 0.32, p = 0.022) and tissue plasminogen activator antigen ( r = 0.35, p = 0.011). HbA 1c decreased significantly more in patients with versus without a concomitant reduction in E-selectin ( p = 0.002), intercellular adhesion molecule-1 ( p = 0.011), vascular cell adhesion molecule-1 ( p = 0.028) and tissue plasminogen activator antigen ( p = 0.009). Exercise did not affect biomarkers of endothelial function in patients with both type 2 diabetes and coronary artery disease. However, changes in biomarkers of endothelial activation correlated with changes in HbA 1c , and reduced endothelial activation was associated with improved HbA 1c after exercise.
Freestone, Bethan; Gustafsson, Finn; Chong, Aun Yeong; Corell, Pernille; Kistorp, Caroline; Hildebrandt, Per; Lip, Gregory Y H
2008-05-01
Endothelial dysfunction is present in patients with heart failure (HF) due to left ventricular systolic dysfunction, as well as in patients with atrial fibrillation (AF) who have normal cardiac function. It is unknown whether AF influences the degree of endothelial dysfunction in patients with systolic HF. We measured levels of plasma von Willebrand factor (vWF) and E-selectin (as indexes of endothelial damage/dysfunction and endothelial activation, respectively; both enzyme-linked immunosorbent assay) in patients with AF and HF (AF-HF), who were compared to patients with sinus rhythm and HF (SR-HF), as well as in age-matched, healthy, control subjects. We also assessed the relationship of vWF and E-selectin to plasma N-terminal pro B-type natriuretic peptide (NTpro-BNP), a marker for HF severity and prognosis. One hundred ninety patients (73% men; mean age, 69.0 +/- 10.1 years [+/- SD]) with systolic HF were studied, who were compared to 117 healthy control subjects: 52 subjects (27%) were in AF, while 138 subjects (73%) were in sinus rhythm. AF-HF patients were older than SR-HF patients (p = 0.046), but left ventricular ejection fraction and New York Heart Association class were similar. There were significant differences in NT-proBNP (p < 0.0001) and plasma vWF (p = 0.003) between patients and control subjects. On Tukey post hoc analysis, AF-HF patients had significantly increased NT-proBNP (p < 0.001) and vWF (p = 0.0183) but not E-selectin (p = 0.071) levels when compared to SR-HF patients. On multivariate analysis, the presence of AF was related to plasma vWF levels (p = 0.018). Plasma vWF was also significantly correlated with NT-proBNP levels (Spearman r = 0.139; p = 0.017). There is evidence of greater endothelial damage/dysfunction in AF-HF patients when compared to SR-HF patients. The clinical significance of this is unclear but may have prognostic value.
Nadar, Sunil; Blann, Andrew D; Lip, Gregory Y H
2006-09-01
Although aspirin is useful in reducing platelet activation and cardiovascular events, its effects on platelet levels of angiogenic factors, such as vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1), and markers of platelet activation in hypertension are unknown. The aim of this study was to study the effects of aspirin on the platelet morphology, plasma and platelet levels of VEGF (sVEGF and pVEGF respectively), Ang-1 (sAng-1 and pAng-1 respectively), and P-selectin (sPsel and pPsel respectively) in patients with well controlled hypertension. A total of 35 aspirin-naive, hypertensive patients (29 male and six female; mean age 64 years) were compared with 30 (23 male, seven female, mean age 59 years) normotensive control subjects. Blood was collected for plasma VEGF, P-selectin, and Ang-1 (enzyme-linked immunoassay), intra-platelet levels of VEGF, Ang-1, and P-selectin, and platelet volume and mass. Research indices in hypertensive patients were studied before and after 3 months treatment with aspirin 75 mg daily. Hypertensive patients had significantly higher plasma levels of VEGF (P=.04), Ang-1 (P<.001), as well as pVEGF (P=.008), pAng-1(P=.001), sPsel (P=.02), pPsel (P<.001), and mean platelet mass (P=.01) when compared with control subjects. After treatment with aspirin for 3 months, there were significant reductions in plasma VEGF (P=.01), pAng-1 (P=.04), sPsel (P=.001), and pPsel (P<.001) levels, but not levels of platelet VEGF and plasma Ang-1. Neither pVEGF nor pAng-1 correlated with blood pressure or with their respective plasma levels. The use of aspirin in high-risk hypertensive patients leads to a reduction in intra-platelet angiogenic growth factors and platelet activation. This may have implications for the use of aspirin in conditions (such as vascular disease) that have been associated with an increase in angiogenesis and platelet activation.
Vlachadis, Nikolaos; Tsamadias, Vasileios; Vrachnis, Nikolaos; Kaparos, Georgios; Vitoratos, Nikolaos; Kouskouni, Evaggelia; Economou, Emmanuel
2017-04-01
The aim of the study was to investigate the combined impact of the genetic heterogeneity of the glycoproteins Ia (GpIa) and IIIa (GpIIIa) and the platelet-endothelial cell adhesion molecule-1 (PECAM-1) and P-Selectin genes on IVF embryo transfer implantation failures (IVF-ET failures). Sixty nulligravida women with previous IVF-ET failures and 60 fertile controls were genotyped for the GpIa-C807T, GpIIIa-PlA1/PA2, PECAM-1-C373G (Leu125Val) and P-Selectin-A37674C (Thr715Pro) polymorphisms by pyrosequencing. Compared with wild-type combined homozygotes, carriers of combinations of risk alleles in two gene loci were at significantly increased risk for IVF-ET failure, whereas carriers of the combination of GpIa-807T, GpIIIa-PlA2 and PECAM-1-373G alleles had OR = 52.50 (95%CI: 4.05-680.95, p < .001). The area under the receiver-operating characteristic curve (AUC) based on the number of polymorphisms and the number of risk alleles per subject was 75.4% (95%CI: 66.7%-82.8%, p < .001) and 72.5% (95%CI: 63.6%-80.3%, p < .001), respectively. The OR per polymorphism and risk allele increase was 4.26 (95%CI: 2.15-8.41, p < .001) and 2.85 (95%CI: 1.71-4.76, p < .001), respectively. The above associations were more robust among younger women. The combined analysis of these polymorphisms revealed strong association of combined carriers with IVF-ET failures especially for younger women and provided a genetic risk score with good diagnostic accuracy in the prediction of IVF-ET failures.
Miller, Tracie L.; Borkowsky, William; DiMeglio, Linda A.; Dooley, Laurie; Geffner, Mitchell E.; Hazra, Rohan; McFarland, Elizabeth J.; Mendez, Armando J.; Patel, Kunjal; Siberry, George K.; Van Dyke, Russell B.; Worrell, Carol J.; Jacobson, Denise L.
2011-01-01
Objectives Human immunodeficiency virus (HIV)-infected children may be at risk for premature cardiovascular disease. We compared levels of biomarkers of vascular dysfunction among HIV-infected children with and without hyperlipidemia to HIV-exposed, uninfected children (HEU) enrolled in the Pediatric HIV/AIDS Cohort Study (PHACS), and determined factors associated with these biomarkers. Design Prospective cohort study Methods Biomarkers of inflammation (C-reactive protein (CRP), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP1)); coagulant dysfunction (fibrinogen and P-selectin); endothelial dysfunction (soluble intracellular cell adhesion molecule-1 (sICAM), soluble vascular cell adhesion molecule-1 (sVCAM), and E-selectin); and metabolic dysfunction (adiponectin) were measured in 226 HIV-infected and 140 HEU children. Anthropometry, body composition, lipids, glucose, insulin, HIV disease severity, and antiretroviral therapy were recorded. Results The median ages were 12.3 y (HIV-infected) and 10.1 y (HEU). Body mass index (BMI) Z-scores, waist and hip circumference, and percent body fat were lower among HIV-infected. Total and non-HDL cholesterol and triglycerides were higher in HIV-infected children. HIV-infected children had higher MCP-1, fibrinogen, sICAM, and sVCAM levels. In multivariable analyses in the HIV-infected children alone, BMI z-score was associated with higher CRP and fibrinogen, but lower MCP-1 and sVCAM. Unfavorable lipid profiles were positively associated with IL6, MCP1, fibrinogen, and P- and E-selectin, whereas increased HIV viral load was associated with markers of inflammation (MCP1 and CRP) and endothelial dysfunction (sICAM and sVCAM). Conclusions HIV-infected children have higher levels of biomarkers of vascular dysfunction than do HEU children. Risk factors associated with higher biomarkers include unfavorable lipid levels and active HIV replication. PMID:22136114
Huang, Chi-Wei; Tsai, Meng-Han; Chen, Nai-Ching; Chen, Wei-Hsi; Lu, Yan-Ting; Lui, Chun-Chung; Chang, Ya-Ting; Chang, Wen-Neng; Chang, Alice Y W; Chang, Chiung-Chih
2015-11-25
Endothelial dysfunction leads to worse cognitive performance in Alzheimer's dementia (AD). While both cerebrovascular risk factors and endothelial dysfunction lead to activation of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and E-selectin, it is not known whether these biomarkers extend the diagnostic repertoire in reflecting intracerebral structural damage or cognitive performance. A total of 110 AD patients and 50 age-matched controls were enrolled. Plasma levels of VCAM-1, ICAM-1 and E-selectin were measured and correlated with the cognitive performance, white matter macro-structural changes, and major tract-specific fractional anisotropy quantification. The AD patients were further stratified by clinical dementia rating score (mild dementia, n=60; moderate-to-severe dementia, n=50). Compared with the controls, plasma levels of VCAM-1 (p< 0.001), ICAM-1 (p=0.028) and E-selectin (p=0.016) were significantly higher in the patients, but only VCAM-1 levels significantly reflected the severity of dementia (p< 0.001). In addition, only VCAM-1 levels showed an association with macro- and micro- white matter changes especially in the superior longitudinal fasciculus (p< 0.001), posterior thalamic radiation (p=0.002), stria terminalis (p=0.002) and corpus callosum (p=0.009), and were independent of, age and cortical volume. These tracts show significant association with MMSE, short term memory and visuospatial function. Meanwhile, while VCAM-1 level correlated significantly with short-term memory (p=0.026) and drawing (p=0.025) scores in the AD patients after adjusting for age and education, the significance disappeared after adjusting for global FA. Endothelial activation, especially VCAM-1, was of clinical significance in AD that reflects macro- and micro-structural changes and poor short term memory and visuospatial function.
Thrombogenesis with continuous blood flow in the inferior vena cava. A novel mouse model.
Diaz, José A; Hawley, Angela E; Alvarado, Christine M; Berguer, Alexandra M; Baker, Nichole K; Wrobleski, Shirley K; Wakefield, Thomas W; Lucchesi, Benedict R; Myers, Daniel D
2010-08-01
Several rodent models have been used to study deep venous thrombosis (DVT). However, a model that generates consistent venous thrombi in the presence of continuous blood flow, to evaluate therapeutic agents for DVT, is not available. Mice used in the present study were wild-type C57BL/6 (WT), plasminogen activator inhibitor-1 (PAI-1) knock out (KO) and Delta Cytoplasmic Tail (DCT). An electrolytic inferior vena cava (IVC) model (EIM) was used. A 25G stainless-steel needle, attached to a silver coated copper wire electrode (anode), was inserted into the exposed caudal IVC. Another electrode (cathode) was placed subcutaneously. A current of 250 muAmps over 15 minutes was applied. Ultrasound imaging was used to demonstrate the presence of IVC blood flow. Analyses included measurement of plasma soluble P-selectin (sP-Sel), thrombus weight (TW), vein wall morphometrics, P-selectin and Von Willebrand factor (vWF) staining, transmission electron microscopy (TEM), scanning electron microscopy (SEM); and the effect of enoxaparin on TW was evaluated. A current of 250 muAmps over 15 minutes consistently promoted thrombus formation in the IVC. Plasma sP-Sel was decreased in PAI-1 KO and increased in DCT vs. WT (WT/PAI-1: p=0.003, WT/DCT: p=0.0002). Endothelial activation was demonstrated by SEM, TEM, P-selectin and vWF immunohistochemistry and confirmed by inflammatory cell counts. Ultrasound imaging demonstrated thrombus formation in the presence of blood flow. Enoxaparin significantly reduced the thrombus size by 61% in this model. This EIM closely mimics clinical venous disease and can be used to study endothelial cell activation, leukocyte migration, thrombogenesis and therapeutic applications in the presence of blood flow.
Spatiotemporal Targeting of a Dual-Ligand Nanoparticle to Cancer Metastasis
Doolittle, Elizabeth; Peiris, Pubudu M.; Doron, Gilad; Goldberg, Amy; Tucci, Samantha; Rao, Swetha; Shah, Shruti; Sylvestre, Meilyn; Govender, Priya; Turan, Oguz; Lee, Zhenghong; Schiemann, William P.; Karathanasis, Efstathios
2015-01-01
Various targeting strategies and ligands have been employed to direct nanoparticles to tumors that upregulate specific cell-surface molecules. However, tumors display a dynamic, heterogeneous microenvironment, which undergoes spatiotemporal changes including the expression of targetable cell-surface biomarkers. Here, we investigated a dual-ligand nanoparticle to effectively target two receptors overexpressed in aggressive tumors. By using two different chemical specificities, the dual-ligand strategy considered the spatiotemporal alterations in the expression patterns of the receptors in cancer sites. As a case study, we used two mouse models of metastasis of triple-negative breast cancer using the MDA-MB-231 and 4T1 cells. The dual-ligand system utilized two peptides targeting P-selectin and αvβ3 integrin, which are functionally linked to different stages of the development of metastatic disease at a distal site. Using in vivo multimodal imaging and post mortem histological analyses, this study shows that the dual-ligand nanoparticle effectively targeted metastatic disease that was otherwise missed by single-ligand strategies. The dual-ligand nanoparticle was capable of capturing different metastatic sites within the same animal that overexpressed either receptor or both of them. Furthermore, the highly efficient targeting resulted in 22% of the injected dual-ligand nanoparticles being deposited in early-stage metastases within 2 h after injection. PMID:26203676
Spatiotemporal Targeting of a Dual-Ligand Nanoparticle to Cancer Metastasis.
Doolittle, Elizabeth; Peiris, Pubudu M; Doron, Gilad; Goldberg, Amy; Tucci, Samantha; Rao, Swetha; Shah, Shruti; Sylvestre, Meilyn; Govender, Priya; Turan, Oguz; Lee, Zhenghong; Schiemann, William P; Karathanasis, Efstathios
2015-08-25
Various targeting strategies and ligands have been employed to direct nanoparticles to tumors that upregulate specific cell-surface molecules. However, tumors display a dynamic, heterogeneous microenvironment, which undergoes spatiotemporal changes including the expression of targetable cell-surface biomarkers. Here, we investigated a dual-ligand nanoparticle to effectively target two receptors overexpressed in aggressive tumors. By using two different chemical specificities, the dual-ligand strategy considered the spatiotemporal alterations in the expression patterns of the receptors in cancer sites. As a case study, we used two mouse models of metastasis of triple-negative breast cancer using the MDA-MB-231 and 4T1 cells. The dual-ligand system utilized two peptides targeting P-selectin and αvβ3 integrin, which are functionally linked to different stages of the development of metastatic disease at a distal site. Using in vivo multimodal imaging and post mortem histological analyses, this study shows that the dual-ligand nanoparticle effectively targeted metastatic disease that was otherwise missed by single-ligand strategies. The dual-ligand nanoparticle was capable of capturing different metastatic sites within the same animal that overexpressed either receptor or both of them. Furthermore, the highly efficient targeting resulted in 22% of the injected dual-ligand nanoparticles being deposited in early-stage metastases within 2 h after injection.
Vassena, Lia; Giuliani, Erica; Koppensteiner, Herwig; Bolduan, Sebastian; Schindler, Michael
2015-01-01
ABSTRACT Leukocyte recirculation between blood and lymphoid tissues is required for the generation and maintenance of immune responses against pathogens and is crucially controlled by the L-selectin (CD62L) leukocyte homing receptor. CD62L has adhesion and signaling functions and initiates the capture and rolling on the vascular endothelium of cells entering peripheral lymph nodes. This study reveals that CD62L is strongly downregulated on primary CD4+ T lymphocytes upon infection with human immunodeficiency virus type 1 (HIV-1). Reduced cell surface CD62L expression was attributable to the Nef and Vpu viral proteins and not due to increased shedding via matrix metalloproteases. Both Nef and Vpu associated with and sequestered CD62L in perinuclear compartments, thereby impeding CD62L transport to the plasma membrane. In addition, Nef decreased total CD62L protein levels. Importantly, infection with wild-type, but not Nef- and Vpu-deficient, HIV-1 inhibited the capacity of primary CD4+ T lymphocytes to adhere to immobilized fibronectin in response to CD62L ligation. Moreover, HIV-1 infection impaired the signaling pathways and costimulatory signals triggered in primary CD4+ T cells by CD62L ligation. We propose that HIV-1 dysregulates CD62L expression to interfere with the trafficking and activation of infected T cells. Altogether, this novel HIV-1 function could contribute to virus dissemination and evasion of host immune responses. IMPORTANCE L-selectin (CD62L) is an adhesion molecule that mediates the first steps of leukocyte homing to peripheral lymph nodes, thus crucially controlling the initiation and maintenance of immune responses to pathogens. Here, we report that CD62L is downmodulated on the surfaces of HIV-1-infected T cells through the activities of two viral proteins, Nef and Vpu, that prevent newly synthesized CD62L molecules from reaching the plasma membrane. We provide evidence that CD62L downregulation on HIV-1-infected primary T cells results in impaired adhesion and signaling functions upon CD62L triggering. Removal of cell surface CD62L may predictably keep HIV-1-infected cells away from lymph nodes, the privileged sites of both viral replication and immune response activation, with important consequences, such as systemic viral spread and evasion of host immune surveillance. Altogether, we propose that Nef- and Vpu-mediated subversion of CD62L function could represent a novel determinant of HIV-1 pathogenesis. PMID:25822027
Targeting L-Selectin to Improve Neurologic and Urologic Function After Spinal Cord Injury
2015-10-01
demonstrated locomotor recovery in mice receiving 40mg/kg DFA up to 3 hours following spinal cord injury -We demonstrated improved locomotor recovery...health, as evaluated by body weight -We identified no added locomotor recovery due to multiple, successive doses of DFA. Moreover, additional doses...bladder function Significance: We have identified robust locomotor recovery in both mild and severe spinal cord injured mice that received DFA up
1994-01-01
L-selectin is a lectin-like receptor that mediates the attachment of lymphocytes to high endothelial venules (HEV) of lymph nodes during the process of lymphocyte recirculation. Two sulfated, mucin-like glycoproteins known as Sgp50/GlyCAM-1 and Sgp90/CD34 have previously been identified as HEV-associated ligands for L-selectin. These proteins were originally detected with an L-selectin/Ig chimera called LEC-IgG. GlyCAM-1 and CD34 are also recognized by an antiperipheral node addressin (PNAd) mAb called MECA 79, which blocks L-selectin- dependent adhesion and selectively stains lymph node HEV. The present study compares the requirements for the binding of MECA 79 and LEC-IgG to HEV-ligands. Whereas desialylation of GlyCAM-1 and CD34 drastically reduced binding to LEC-IgG, this treatment enhanced the binding of GlyCAM-1 to MECA 79. In contrast, the binding of both MECA 79 and LEC- IgG to GlyCAM-1 and CD34 was greatly decreased when the sulfation of these ligands was reduced with chlorate, a metabolic inhibitor of sulfation. Because MECA 79 stains HEV-like vessels at various sites of inflammation, recognition by L-selectin of ligands outside of secondary lymphoid organs may depend on sulfation. In addition to their reactivity with GlyCAM-1 and CD34, both MECA 79 and LEC-IgG recognize an independent molecule of approximately 200 kD in a sulfate-dependent manner. Thus, this molecule, which we designate Sgp200, is an additional ligand for L-selectin. PMID:7525849
NASA Technical Reports Server (NTRS)
Konstantopoulos, K.; Neelamegham, S.; Burns, A. R.; Hentzen, E.; Kansas, G. S.; Snapp, K. R.; Berg, E. L.; Hellums, J. D.; Smith, C. W.; McIntire, L. V.;
1998-01-01
BACKGROUND: After activation, platelets adhere to neutrophils via P-selectin and beta2-integrin. The molecular mechanisms and adhesion events in whole blood exposed to venous levels of hydrodynamic shear in the absence of exogenous activation remain unknown. METHODS AND RESULTS: Whole blood was sheared at approximately 100 s(-1). The kinetics of neutrophil-platelet adhesion and neutrophil aggregation were measured in real time by flow cytometry. P-selectin was upregulated to the platelet surface in response to shear and was the primary factor mediating neutrophil-platelet adhesion. The extent of neutrophil aggregation increased linearly with platelet adhesion to neutrophils. Blocking either P-selectin, its glycoprotein ligand PSGL-1, or both simultaneously by preincubation with a monoclonal antibody resulted in equivalent inhibition of neutrophil-platelet adhesion (approximately 30%) and neutrophil aggregation (approximately 70%). The residual amount of neutrophil adhesion was blocked with anti-CD11b/CD18. Treatment of blood with prostacyclin analogue ZK36374, which raises cAMP levels in platelets, blocked P-selectin upregulation and neutrophil aggregation to baseline. Complete abrogation of platelet-neutrophil adhesion required both ZK36374 and anti-CD18. Electron microscopic observations of fixed blood specimens revealed that platelets augmented neutrophil aggregation both by forming bridges between neutrophils and through contact-mediated activation. CONCLUSIONS: The results are consistent with a model in which venous levels of shear support platelet adherence to neutrophils via P-selectin binding PSGL-1. This interaction alone is sufficient to mediate neutrophil aggregation. Abrogation of platelet adhesion and aggregation requires blocking Mac-1 in addition to PSGL-1 or P-selectin. The described mechanisms are likely of key importance in the pathogenesis and progression of thrombotic disorders that are exacerbated by leukocyte-platelet aggregation.
Konstantopoulos, K; Neelamegham, S; Burns, A R; Hentzen, E; Kansas, G S; Snapp, K R; Berg, E L; Hellums, J D; Smith, C W; McIntire, L V; Simon, S I
1998-09-01
After activation, platelets adhere to neutrophils via P-selectin and beta2-integrin. The molecular mechanisms and adhesion events in whole blood exposed to venous levels of hydrodynamic shear in the absence of exogenous activation remain unknown. Whole blood was sheared at approximately 100 s(-1). The kinetics of neutrophil-platelet adhesion and neutrophil aggregation were measured in real time by flow cytometry. P-selectin was upregulated to the platelet surface in response to shear and was the primary factor mediating neutrophil-platelet adhesion. The extent of neutrophil aggregation increased linearly with platelet adhesion to neutrophils. Blocking either P-selectin, its glycoprotein ligand PSGL-1, or both simultaneously by preincubation with a monoclonal antibody resulted in equivalent inhibition of neutrophil-platelet adhesion (approximately 30%) and neutrophil aggregation (approximately 70%). The residual amount of neutrophil adhesion was blocked with anti-CD11b/CD18. Treatment of blood with prostacyclin analogue ZK36374, which raises cAMP levels in platelets, blocked P-selectin upregulation and neutrophil aggregation to baseline. Complete abrogation of platelet-neutrophil adhesion required both ZK36374 and anti-CD18. Electron microscopic observations of fixed blood specimens revealed that platelets augmented neutrophil aggregation both by forming bridges between neutrophils and through contact-mediated activation. The results are consistent with a model in which venous levels of shear support platelet adherence to neutrophils via P-selectin binding PSGL-1. This interaction alone is sufficient to mediate neutrophil aggregation. Abrogation of platelet adhesion and aggregation requires blocking Mac-1 in addition to PSGL-1 or P-selectin. The described mechanisms are likely of key importance in the pathogenesis and progression of thrombotic disorders that are exacerbated by leukocyte-platelet aggregation.
Nadar, Sunil K; Lip, Gregory Y H; Blann, Andrew D
2004-12-01
The pathophysiology of ischaemic stroke involves the platelet. In this study, we hypothesised that abnormalities in platelet morphology, as well as soluble (sPsel) and total platelet P-selectin (pPsel) levels would be present in patients presenting with an acute ischaemic stroke, and that these changes would improve at > or = 3 months' follow-up. We studied 59 hypertensive patients (34 male; mean age 68 +/- 12 years) who presented with an acute ischaemic stroke (ictus < 24 hours), and compared them with 2 groups: (i) age-, sex- and ethnic- origin matched normotensive healthy controls; and (ii) uncomplicated 'high risk' hypertensive patients as 'risk factor control' subjects. Platelet morphology (volume and mass) was quantified, and sPsel (plasma marker of platelet activation) was measured (ELISA) in citrated plasma. The mass of P-selectin in each platelet (pPsel) was determined by lysing a fixed number of platelets and then determining the levels of P-selectin in the lysate. Results show that patients who presented with a stroke had significantly higher levels of sPsel and pPsel (both p < 0.001), compared to the normal controls and the hypertensive patients. Patients with an acute stroke had lower mean platelet mass (MPM) and mean platelet volume (MPV) as compared to the uncomplicated hypertensive patients, who had significantly higher mean MPM and MPV values, as compared to normal controls. On follow-up, the levels of both sPsel (p = 0.011), pPsel (< 0.001) and MPV (p = 0.03) were significantly lower. Mean MPM levels remained unchanged. We conclude that patients presenting with an acute ischaemic stroke have activated platelets, as evident by the increased levels of soluble and platelet P-selectin. Further study of platelet activation and the role of P-selectin is warranted.
Blaheta, R A; Hailer, N P; Brude, N; Wittig, B; Leckel, K; Oppermann, E; Bachmann, M; Harder, S; Cinatl, J; Scholz, M; Bereiter-Hahn, J; Weber, S; Encke, A; Markus, B H
2000-02-27
Cyclosporine A (CsA) and tacrolimus prevent proliferation but not transendothelial migration of alloreactive lymphocytes into donor organs. As a result, serious adverse effects, such as nephrotoxicity and neurotoxicity, have been observed under CsA/tacrolimus therapy. The incorporation of new drugs with infiltration blocking properties might enhance the efficacy of the current immunosuppressive protocol, allowing lower CsA/tacrolimus dosage. Because Ca2+ plays a critical role in cell-cell interaction, the Ca2+-channel blocker verapamil might be a good cany. didate for supporting CsA/tacrolimus-based therapy. A T-cell endothelial cell coculture model or immobilized immunoglobulin G globulin chimeras were employed to investigate how S- and R- verapamil interfere with the lymphocytic infiltration process. The expression and arrangement of membranous adhesion receptors and cytoskeletal F-actin filaments were analyzed by fluorometric method in the presence of. verapamil. Both verapamil enantiomers strongly inhibited lymphocyte infiltration. CD4+ and CD8+ T-cells were influenced to a similar extent with regard to horizontal locomotion (CD4+=CD8+), but to a different extent with regard to adhesion and penetration (CD4+ > CD8+). Moreover, penetration was blocked to a higher extent than was adhesion. ID50-values were 31 microM (CD4+-adhesion) and 11 microM (CD4+-penetration). Verapamil reduced P-selectin expression on endothelial cells and effectively down-regulated binding of T-cells to immobilized P-selectin immunoglobulin G globulins (ID50=4.4 microM; CD4+). A verapamil-induced reduction of intracellular F-actin in T-lymphocytes was proven to be mainly responsible for diminished cell locomotion. The prevention of CD4+ T-cell penetration by verapamil might argue for its use as an adjunct to CsA/tacrolimus-based immunosuppressive therapy.
Architecture effects on multivalent interactions by polypeptide-based multivalent ligands
NASA Astrophysics Data System (ADS)
Liu, Shuang
Multivalent interactions are characterized by the simultaneous binding between multiple ligands and multiple binding sites, either in solutions or at interfaces. In biological systems, most multivalent interactions occur between protein receptors and carbohydrate ligands through hydrogen-bonding and hydrophobic interactions. Compared with weak affinity binding between one ligand and one binding site, i.e. monovalent interaction, multivalent interactioins provide greater avidity and specificity, and therefore play unique roles in a broad range of biological activities. Moreover, the studies of multivalent interactions are also essential for producing effective inhibitors and effectors of biological processes that could have important therapeutic applications. Synthetic multivalent ligands have been designed to mimic the biological functions of natural multivalent interactions, and various types of scaffolds have been used to display multiple ligands, including small molecules, linear polymers, dendrimers, nanoparticle surfaces, monolayer surfaces and liposomes. Studies have shown that multivalent interactions can be highly affected by various architectural parameters of these multivalent ligands, including ligand identities, valencies, spacing, ligand densities, nature of linker arms, scaffold length and scaffold conformation. Most of these multivalent ligands are chemically synthesized and have limitations of controlling over sequence and conformation, which is a barrier for mimicking ordered and controlled natural biological systems. Therefore, multivalent ligands with precisely controlled architecture are required for improved structure-function relationship studies. Protein engineering methods with subsequent chemical coupling of ligands provide significant advantages of controlling over backbone conformation and functional group placement, and therefore have been used to synthesize recombinant protein-based materials with desired properties similar to natural protein materials, including structural as well as functional proteins. Therefore, polypeptide-based multivalent scaffolds are used to display ligands to assess the contribution of different architectural parameters to the multivalent binding events. In this work, a family of alanine-rich alpha-helical glycopolypeptides was designed and synthesized by a combination of protein engineering and chemical coupling, to display two types of saccharide ligands for two different multivalent binding systems. The valencies, chain length and spacing between adjacent ligands of these multivalent ligands were designed in order to study architecture effects on multivalent interactions. The polypeptides and their glycoconjugates were characterized via various methods, including SDS-PAGE, NMR, HPLC, amino acid analysis (AAA), MALDI, circular dichroism (CD) and GPC. In the first multivalent binding system, cholera toxin B pentamer (CT B5) was chosen to be the protein receptor due to its well-characterized structure, lack of significant steric interference of binding to multiple binding sites, and requirement of only simple monosaccharide as ligands. Galactopyranoside was incorporated into polypeptide scaffolds through amine-carboxylic acid coupling to the side chains of glutamic acid residues. The inhibition and binding to CT B5 of these glycopolypeptide ligands were evaluated by direct enzyme-linked assay (DELA). As a complement method, weak affinity chromatography (WAC) was also used to evaluate glycopolypeptides binding to a CT B5 immobilized column. The architecture effects on CT B 5 inhibition are discussed. In the second system, cell surface receptor L-selectin was targeted by polypeptide-based multivalent ligands containing disulfated galactopyranoside ligands, due to its important roles in various immunological activities. The effects of glycopolypeptide architectural variables L-selectin shedding were evaluated via ELISA-based assays. These polypeptide-based multivalent ligands are suggested to be useful for elucidating architecture effects on multivalent interactions, manipulating multivalent interactions and the subsequent cellular responses in different systems. These materials have great potential applications in therapeutics and could also provide guidelines for design of multivalent ligands for other protein receptors.
Krump-Konvalinkova, Vera; Yasuda, Satoshi; Rubic, Tina; Makarova, Natalia; Mages, Jörg; Erl, Wolfgang; Vosseler, Claudia; Kirkpatrick, C James; Tigyi, Gabor; Siess, Wolfgang
2005-03-01
Sphingosine 1-phosphate (S1P) is a bioactive phospholipid acting both as a ligand for the G protein-coupled receptors S1P1-5 and as a second messenger. Because S1P1 knockout is lethal in the transgenic mouse, an alternative approach to study the function of S1P1 in endothelial cells is needed. All human endothelial cells analyzed expressed abundant S1P1 transcripts. We permanently silenced (by RNA interference) the expression of S1P1 in the human endothelial cell lines AS-M.5 and ISO-HAS.1. The S1P1 knock-down cells manifested a distinct morphology and showed neither actin ruffles in response to S1P nor an angiogenic reaction. In addition, these cells were more sensitive to oxidant stress-mediated injury. New S1P1-dependent gene targets were identified in human endothelial cells. S1P1 silencing decreased the expression of platelet-endothelial cell adhesion molecule-1 and VE-cadherin and abolished the induction of E-selectin after cell stimulation with lipopolysaccharide or tumor necrosis factor-alpha. Microarray analysis revealed downregulation of further endothelial specific transcripts after S1P1 silencing. Long-term silencing of S1P1 enabled us for the first time to demonstrate the involvement of S1P1 in key functions of endothelial cells and to identify new S1P1-dependent gene targets.
How cells (might) sense microgravity
NASA Technical Reports Server (NTRS)
Ingber, D.
1999-01-01
This article is a summary of a lecture presented at an ESA/NASA Workshop on Cell and Molecular Biology Research in Space that convened in Leuven, Belgium, in June 1998. Recent studies are reviewed which suggest that cells may sense mechanical stresses, including those due to gravity, through changes in the balance of forces that are transmitted across transmembrane adhesion receptors that link the cytoskeleton to the extracellular matrix and to other cells (e.g., integrins, cadherins, selectins). The mechanism by which these mechanical signals are transduced and converted into a biochemical response appears to be based, in part, on the finding that living cells use a tension-dependent form of architecture, known as tensegrity, to organize and stabilize their cytoskeleton. Because of tensegrity, the cellular response to stress differs depending on the level of pre-stress (pre-existing tension) in the cytoskeleton and it involves all three cytoskeletal filament systems as well as nuclear scaffolds. Recent studies confirm that alterations in the cellular force balance can influence intracellular biochemistry within focal adhesion complexes that form at the site of integrin binding as well as gene expression in the nucleus. These results suggest that gravity sensation may not result from direct activation of any single gravioreceptor molecule. Instead, gravitational forces may be experienced by individual cells in the living organism as a result of stress-dependent changes in cell, tissue, or organ structure that, in turn, alter extracellular matrix mechanics, cell shape, cytoskeletal organization, or internal pre-stress in the cell-tissue matrix.--Ingber, D. How cells (might) sense microgravity.
Atangana, Etienne; Schneider, Ulf C; Blecharz, Kinga; Magrini, Salima; Wagner, Josephin; Nieminen-Kelhä, Melina; Kremenetskaia, Irina; Heppner, Frank L; Engelhardt, Britta; Vajkoczy, Peter
2017-04-01
Activation of innate immunity contributes to secondary brain injury after experimental subarachnoid hemorrhage (eSAH). Microglia accumulation and activation within the brain has recently been shown to induce neuronal cell death after eSAH. In isolated mouse brain capillaries after eSAH, we show a significantly increased gene expression for intercellular adhesion molecule-1 (ICAM-1) and P-selectin. Hence, we hypothesized that extracerebral intravascular inflammatory processes might initiate the previously reported microglia accumulation within the brain tissue. We therefore induced eSAH in knockout mice for ICAM-1 (ICAM-1 -/- ) and P-selectin glycoprotein ligand-1 (PSGL-1 -/- ) to find a significant decrease in neutrophil-endothelial interaction within the first 7 days after the bleeding in a chronic cranial window model. This inhibition of neutrophil recruitment to the endothelium results in significantly ameliorated microglia accumulation and neuronal cell death in knockout animals in comparison to controls. Our results suggest an outside-in activation of the CNS innate immune system at the vessel/brain interface following eSAH. Microglia cells, as part of the brain's innate immune system, are triggered by an inflammatory reaction in the microvasculature after eSAH, thus contributing to neuronal cell death. This finding offers a whole range of new research targets, as well as possible therapy options for patients suffering from eSAH.
Glycosylation: a hallmark of cancer?
Vajaria, Bhairavi N; Patel, Prabhudas S
2017-04-01
The hallmarks of cancer are characterized by functional capabilities that allow cancer cells to survive, proliferate and disseminate during the multistep tumorigenesis. Cancer being a cellular disease, changes in cellular glycoproteins play an important role in malignant transformation and cancer progression. The present review summarizes various studies that depicted correlation of glycosylation with tumor initiation, progression and metastasis, which are helpful in early diagnosis, disease monitoring and prognosis. The results are further strengthened by our reports, which depicted alterations in sialylation and fucosylation in different cancers. Alterations in glycosyltransferases are also involved in formation of various tumor antigens (e.g. Sialyl Lewis x) which serves as ligand for the cell adhesion molecule, selectin which is involved in adhesion of cancer cells to vascular endothelium and thus contributes to hematogenous metastasis. Increased glycosylation accompanied by alterations in glycosyltranferases, glycosidases, glycans and mucins (MUC)s are also involved in loss of E-cadherin, a key molecule implicated in metastatic dissemination of cells. The present review also summarizes the correlation of glycosylation with all the hallmarks of cancer. The enormous progress in the design of novel inhibitors of pathway intermediates of sialylation and fucosylation can prove wonders in combating the dreadful disease. The results provide the evidence that altered glycosylation is linked to tumor initiation, progression and metastasis. Hence, it can be considered as a new hallmark of cancer development and strategies to develop novel glycosylation targeted molecules should be strengthened.
Counterion-Release Entropy Governs the Inhibition of Serum Proteins by Polyelectrolyte Drugs.
Xu, Xiao; Ran, Qidi; Dey, Pradip; Nikam, Rohit; Haag, Rainer; Ballauff, Matthias; Dzubiella, Joachim
2018-02-12
Dendritic polyelectrolytes constitute high potential drugs and carrier systems for biomedical purposes. Still, their biomolecular interaction modes, in particular those determining the binding affinity to proteins, have not been rationalized. We study the interaction of the drug candidate dendritic polyglycerol sulfate (dPGS) with serum proteins using isothermal titration calorimetry (ITC) interpreted and complemented with molecular computer simulations. Lysozyme is first studied as a well-defined model protein to verify theoretical concepts, which are then applied to the important cell adhesion protein family of selectins. We demonstrate that the driving force of the strong complexation, leading to a distinct protein corona, originates mainly from the release of only a few condensed counterions from the dPGS upon binding. The binding constant shows a surprisingly weak dependence on dPGS size (and bare charge) which can be understood by colloidal charge-renormalization effects and by the fact that the magnitude of the dominating counterion-release mechanism almost exclusively depends on the interfacial charge structure of the protein-specific binding patch. Our findings explain the high selectivity of P- and L-selectins over E-selectin for dPGS to act as a highly anti-inflammatory drug. The entire analysis demonstrates that the interaction of proteins with charged polymeric drugs can be predicted by simulations with unprecedented accuracy. Thus, our results open new perspectives for the rational design of charged polymeric drugs and carrier systems.
MEK1/2 inhibitors reverse acute vascular occlusion in mouse models of sickle cell disease.
Zhao, Yulin; Schwartz, Evan A; Palmer, Gregory M; Zennadi, Rahima
2016-03-01
In sickle cell disease (SCD), treatment of recurrent vasoocclusive episodes, leading to pain crises and organ damage, is still a therapeutic challenge. Vasoocclusion is caused primarily by adherence of homozygous for hemoglobin S (SS) red blood cells (SSRBCs) and leukocytes to the endothelium. We tested the therapeutic benefits of MEK1/2 inhibitors in reversing vasoocclusion in nude and humanized SCD mouse models of acute vasoocclusive episodes using intravital microscopy. Administration of 0.2, 0.3, 1, or 2 mg/kg MEK1/2 inhibitor to TNF-α-pretreated nude mice before human SSRBC infusion inhibited SSRBC adhesion in inflamed vessels, prevented the progression of vasoocclusion, and reduced SSRBC organ sequestration. By use of a more clinically relevant protocol, 0.3 or 1 mg/kg MEK1/2 inhibitor given to TNF-α-pretreated nude mice after human SSRBC infusion and onset of vasoocclusion reversed SSRBC adhesion and vasoocclusion and restored blood flow. In SCD mice, 0.025, 0.05, or 0.1 mg/kg MEK1/2 inhibitor also reversed leukocyte and erythrocyte adhesion after the inflammatory trigger of vasoocclusion and improved microcirculatory blood flow. Cell adhesion was reversed by shedding of endothelial E-selectin, P-selectin, and αvβ3 integrin, and leukocyte CD44 and β2 integrin. Thus, MEK1/2 inhibitors, by targeting the adhesive function of SSRBCs and leukocytes, could represent a valuable therapeutic intervention for acute sickle cell vasoocclusive crises. © FASEB.
1993-01-01
Tumor necrosis factor alpha (TNF-alpha) is a pleiotropic cytokine triggering cell responses through two distinct membrane receptors. Stimulation of leukocyte adhesion to the endothelium is one of the many TNF-alpha activities and is explained by the upregulation of adhesion molecules on the endothelial cell surface. Human umbilical vein endothelial cells (HUVEC) were isolated, cultured, and demonstrated to express both TNF receptor types, TNF-R55 and TNF-R75. Cell adhesion to HUVEC was studied using the HL60, U937, and MOLT-4 cell lines. HUVEC were activated by either TNF-alpha, binding to both TNF-R55 and TNF- R75, and by receptor type-specific agonists, binding exclusively to TNF- R55 or to TNF-R75. The TNF-alpha-induced cell adhesion to HUVEC was found to be controlled almost exclusively by TNF-R55. This finding correlated with the exclusive activity of TNF-R55 in the TNF-alpha- dependent regulation of the expression of the intercellular adhesion molecule type 1 (ICAM-1), E-selectin, and vascular cell adhesion molecule type 1 (VCAM-1). The CD44 adhesion molecule in HUVEC was also found to be upregulated through TNF-R55. However, both TNF-R55 and TNF- R75 upregulate alpha 2 integrin expression in HUVEC. The predominant role of TNF-R55 in TNF-alpha-induced adhesion in HUVEC may correlate with its specific control of NF-kappa B activation, since kappa B elements are known to be present in ICAM-1, E-selectin, and VCAM-1 gene regulatory sequences. PMID:8386742
Rosovsky, Rachel; Hong, Fangxin; Tocco, Deanna; Connell, Brendan; Mitsiades, Constantine; Schlossman, Robert; Ghobrial, Irene; Lockridge, Leslie; Warren, Diane; Bradwin, Gary; Doyle, Mary; Munshi, Nikhil; Soiffer, Robert J.; Anderson, Kenneth C.; Weller, Edie; Richardson, Paul
2014-01-01
Summary In this prospective study of patients with relapsed and/or refractory multiple myeloma (MM) treated with lenalidomide and dexamethasone, relationships between markers of endothelial stress and drug administration and incidence of venous thromboembolism (VTE) were assessed. Of 33 enrolled patients, laboratory and treatment data were available for 32 patients. Of these, 23 received pulsed dexamethasone (40 mg/day on days 1–4, 9–12, and 17–21 of each 28-day cycle) and 9 received weekly dexamethasone (40 mg/day on days 1, 8, 15, and 21 of each cycle). The overall incidence of VTE was 9%. A decreasing trend in markers values was observed with intercellular adhesion molecule (P = 0·05), fibrinogen (P = 0·008), plasminogen activator inhibitor-1 (P < 0·001), homocysteine (P = 0·002), and P-selectin (P < 0·001) during therapy. Compared with weekly dexamethasone, pulsed dexamethasone was associated with significantly greater variation in mean adjusted relative values of fibrinogen, P-selectin, and vascular endothelial growth factor (P < 0·001 for all comparisons), although there was no apparent association with VTE incidence. Lenalidomide plus dexamethasone affects endothelial stress marker levels in patients with advanced MM. The higher variation seen with pulsed dexamethasone suggests greater endothelial stress with this approach. PMID:23240658
Bąk, Ewelina; Marcisz, Czesław; Kadłubowska, Monika; Michalik, Anna; Krawczyk, Bożena; Dobrzyń-Matusiak, Dorota; Krzemińska, Sylwia; Fiałkowski, Tomasz; Glądys, Elżbieta; Drosdzol-Cop, Agnieszka
2016-01-01
Peripheral arterial disease (PAD) belongs to the commonly-occurring pathologies associated with elderly age. A simple tool for defining the severity of PAD is the ankle-brachial index (ABI). The purpose of this research was to determine independent factors of changes of ABI in elderly patients with occlusive PAD disease (PAOD) with and without diabetes. The research was carried out on 49 elderly patients with PAOD, including 29 patients with type 2 diabetes, and 20 patients without diabetes. The concentration of interleukin-6 (IL-6), E-selectin, fibrinogen, and C-reactive protein (CRP) in the blood serum was marked. In all patients, the independent factors of changes of ABI were determined with the use of the multiple logistic regression analysis. Our results show that in the group of patients with PAOD suffering from diabetes, it was demonstrated that the ABI was related to age, the duration of the symptoms of PAD, body mass index (BMI), low-density lipoprotein cholesterol, fibrinogen, and sex (determination coefficient R2 = 0.699). In patients with PAOD without diabetes, the ABI was related to age, the duration of the symptoms of PAD, the levels of CRP, E-selectin, high-density lipoprotein cholesterol, and the glomerular filtration rate(determination coefficient R2 = 0.844). We conclude that in elderly patients with PAOD with and without diabetes, the participation of independent factors related to the ABI is diversified; in patients with diabetes, the concentration of IL-6 and fibrinogen is lower, and the concentration of E-selectin is higher than in patients without diabetes. PMID:27834825
Bąk, Ewelina; Marcisz, Czesław; Kadłubowska, Monika; Michalik, Anna; Krawczyk, Bożena; Dobrzyń-Matusiak, Dorota; Krzemińska, Sylwia; Fiałkowski, Tomasz; Glądys, Elżbieta; Drosdzol-Cop, Agnieszka
2016-11-08
Peripheral arterial disease (PAD) belongs to the commonly-occurring pathologies associated with elderly age. A simple tool for defining the severity of PAD is the ankle-brachial index (ABI). The purpose of this research was to determine independent factors of changes of ABI in elderly patients with occlusive PAD disease (PAOD) with and without diabetes. The research was carried out on 49 elderly patients with PAOD, including 29 patients with type 2 diabetes, and 20 patients without diabetes. The concentration of interleukin-6 (IL-6), E-selectin, fibrinogen, and C-reactive protein (CRP) in the blood serum was marked. In all patients, the independent factors of changes of ABI were determined with the use of the multiple logistic regression analysis. Our results show that in the group of patients with PAOD suffering from diabetes, it was demonstrated that the ABI was related to age, the duration of the symptoms of PAD, body mass index (BMI), low-density lipoprotein cholesterol, fibrinogen, and sex (determination coefficient R² = 0.699). In patients with PAOD without diabetes, the ABI was related to age, the duration of the symptoms of PAD, the levels of CRP, E-selectin, high-density lipoprotein cholesterol, and the glomerular filtration rate(determination coefficient R² = 0.844). We conclude that in elderly patients with PAOD with and without diabetes, the participation of independent factors related to the ABI is diversified; in patients with diabetes, the concentration of IL-6 and fibrinogen is lower, and the concentration of E-selectin is higher than in patients without diabetes.
Tees, D F; Waugh, R E; Hammer, D A
2001-01-01
A microcantilever technique was used to apply force to receptor-ligand molecules involved in leukocyte rolling on blood vessel walls. E-selectin was adsorbed onto 3-microm-diameter, 4-mm-long glass fibers, and the selectin ligand, sialyl Lewis(x), was coupled to latex microspheres. After binding, the microsphere and bound fiber were retracted using a computerized loading protocol that combines hydrodynamic and Hookean forces on the fiber to produce a range of force loading rates (force/time), r(f). From the distribution of forces at failure, the average force was determined and plotted as a function of ln r(f). The slope and intercept of the plot yield the unstressed reverse reaction rate, k(r)(o), and a parameter that describes the force dependence of reverse reaction rates, r(o). The ligand was titrated so adhesion occurred in approximately 30% of tests, implying that >80% of adhesive events involve single bonds. Monte Carlo simulations show that this level of multiple bonding has little effect on parameter estimation. The estimates are r(o) = 0.048 and 0.016 nm and k(r)(o) = 0.72 and 2.2 s(-1) for loading rates in the ranges 200-1000 and 1000-5000 pN s(-1), respectively. Levenberg-Marquardt fitting across all values of r(f) gives r(o) = 0.034 nm and k(r)(o) = 0.82 s(-1). The values of these parameters are in the range required for rolling, as suggested by adhesive dynamics simulations. PMID:11159435
Chichlowski, Maciej; De Lartigue, Guillaume; German, J. Bruce; Raybould, Helen E.; Mills, David A.
2012-01-01
Objectives Human milk oligosaccharides (HMO) are the third most abundant component of breast milk. Our laboratory has previously revealed gene clusters specifically linked to HMO metabolism in select bifidobacteria isolated from fecal samples of infants. Our objective was to test the hypothesis that growth of select bifidobacteria on HMO stimulates the intestinal epithelium. Methods Caco-2 and HT-29 cells were incubated with lactose (LAC) or HMO-grown Bifidobacterium longum subsp. infantis (B. infantis) or B. bifidum. Bacterial adhesion and translocation was measured by real-time quantitative PCR. Expression of pro- and anti-inflammatory cytokines and tight junction proteins was analyzed by real time reverse transcriptase. Distribution of tight junction proteins was measured using immunofluorescent microscopy. Results We showed that HMO-grown B. infantis had significantly higher rate of adhesion to HT-29 cells compared to B. bifidum. B. infantis also induced expression of a cell membrane glycoprotein, P-selectin glycoprotein ligand -1. Both B. infantis and B. bifidum grown on HMO caused less occludin relocalization and higher expression of anti-inflammatory cytokine, interleukin (IL)-10 compared to LAC-grown bacteria in Caco-2 cells. B. bifidum grown on HMO showed higher expression of junctional adhesion molecule and occludin in Caco-2 cell and HT-29 cells. There were no significant differences between LAC or HMO treatments in bacterial translocation. Conclusions This study provides evidence for the specific relationship between HMO-grown bifidobacteria and intestinal epithelial cells. To our knowledge, this is the first study describing HMO-induced changes in the bifidobacteria-intestinal cells interaction. PMID:22383026
Screening for Psychopathology Versus Selecting for Suitability: Ethical and Legal Considerations
NASA Technical Reports Server (NTRS)
Holland, Albert W.; Galarza, Laura; Arvey, Richard; Hysong, Sylvia; Sackett, Paul; Cascio, Wayne
2000-01-01
The current system for psychological selection of U.S. astronauts is divided into two phases: The select-out phase and the select-in phase. The select-out phase screens candidates for psychopathology; candidates who do not meet the baseline psychiatric requirements are immediately disqualified. The select-in phase assesses candidates for suitability to fly short- and long-duration missions. Suitability ratings are given for ten factors found to be critical for short and long-duration space missions. There are qualitative differences in the purpose of the two phases (select-in vs. select-out) and in the nature of the information collected in each phase. Furthermore, there are different logistic, ethical, and legal issues related to a medical or psychiatric (select-out) screening versus a suitability (select-in) psychological screening process . The purpose of this presentation is to contrast the ethical and legal environment surrounding the select-out and select-in phases of the psychological selection system. Issues such as data collection, data storage and management, the federal statutory environment, and personnel training will be discussed. Further, a summary of the new standards for psychological testing is presented, along with their implications for astronaut selection.
6-Mercaptopurine attenuates adhesive molecules in experimental vasospasm.
Chang, Chih-Zen; Lin, Chih-Lung; Kassel, Neal F; Kwan, Aij-Lie; Howng, Shen-Long
2010-05-01
Adhesion molecules, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin, are important inflammatory mediators which are elevated in the serum of patients following aneurysmal subarachnoid hemorrhage (SAH). The authors previously found that 6-mercaptopurine (6-mp) was effective in preventing and reversing arterial narrowing in a rodent SAH model. The present study was to examine whether levels of adhesion molecules were altered after treatment with 6-mp in this animal model. Animals were each injected with autologous blood into the cisterna magna, and intraperitoneal treatment with 6-mp (2 mg/kg) was initiated 1 h before (prevention) or later (treatment). The compound was subsequently administered at 24 and 48 h post-SAH. Blood samples were collected at 72 h post-SAH to measure ICAM-1, VCAM-1, and E-selectin levels. The basilar arteries were harvested and sliced, and their cross-sectional areas were measured. Morphologically, convolution of the internal elastic lamina, distorted endothelial wall, and myonecrosis of the smooth muscle were prominently observed in the SAH only and vehicle-treated SAH groups, but not in the 6-mp-treated SAH group or in healthy controls. No significant differences were found in the levels of VCAM-1 among all groups. However, the levels of E-selectin were increased in all animals subjected to SAH (SAH only and SAH plus vehicle groups) compared with healthy controls (no SAH), but not in the 6-mp group (SAH plus 6-mp treatment and preventive treatment with 6-mp).Likewise, the levels of ICAM-1 in the SAH only and SAH plus vehicle groups were significantly elevated (p < 0.001), and pretreatment and treatment with 6-mp reduced ICAM-1 to control levels. These results show that ICAM-1 and E-selectin may play a role in mediating SAH-induced vasospasm and that a reduction of both adhesive molecules after SAH may partly contribute to the antispastic effect of 6-mp.
Baker, Nathaniel L; Hunt, Kelly J; Stevens, Danielle R; Jarai, Gabor; Rosen, Glenn D; Klein, Richard L; Virella, Gabriel; Lopes-Virella, Maria F
2018-01-01
To determine whether biomarkers of inflammation and endothelial dysfunction are associated with the development of kidney dysfunction and the time frame of their association. Biomarkers were measured at four time points during 28 years of treatment and follow-up in patients with type 1 diabetes in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) cohort. In addition to traditional biomarkers of inflammation (C-reactive protein and fibrinogen), we measured interleukin-6 (IL-6) and soluble tumor necrosis factor receptors 1 and 2 (sTNFR-1/2), markers of endothelial dysfunction (soluble intracellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin [sE-selectin]), and fibrinolysis (total and active plasminogen activator inhibitor-1 [PAI-1]). Renal outcomes were defined as progression to incident chronic kidney disease (stage 3 or more severe) or macroalbuminuria (albumin excretion rate ≥300 mg/24 h). Prospective multivariate event-time analyses were used to determine the association of each biomarker with each subsequent event within prespecified intervals (3-year and 10-year windows). Multivariate event-time models indicated that several markers of inflammation (sTNFR-1/2), endothelial dysfunction (sE-selectin), and clotting/fibrinolysis (fibrinogen and PAI-1) are significantly associated with subsequent development of kidney dysfunction. Although some markers showed variations in the associations between the follow-up windows examined, the results indicate that biomarkers (sTNFR-1/2, sE-selectin, PAI-1, and fibrinogen) are associated with progression to chronic kidney disease in both the 3-year and the 10-year windows. Plasma markers of inflammation, endothelial dysfunction, and clotting/fibrinolysis are associated with progression to kidney dysfunction in type 1 diabetes during both short-term and long-term follow-up. © 2017 by the American Diabetes Association.
Kaneko, M; Inoue, H; Nakazawa, R; Azuma, N; Suzuki, M; Yamauchi, S; Margolin, S B; Tsubota, K; Saito, I
1998-01-01
Pirfenidone has been shown to modify some cytokine regulatory actions and inhibit fibroblast biochemical reactions resulting in inhibition of proliferation and collagen matrix synthesis by fibroblast. We have investigated the effect of pirfenidone on the expression of cell adhesion molecules. The synovial fibroblasts were treated with IL-1α in the presence or absence of pirfenidone (range 0–1000 μm), and assayed for the expression of adhesion molecules such as ICAM-1 and endothelial-leucocyte adhesion molecule-1 (E-selectin) by cell ELISA. Pirfenidone significantly down-regulated the expression of ICAM-1 on cultured synovial fibroblasts in a dose-dependent manner. In contrast, expression of E-selectin was not affected. Furthermore, we examined whether pirfenidone affects the cellular binding between cultured lymphocytes and IL-1α-stimulated synovial fibroblasts by in vitro binding assay and found their mutual binding was significantly suppressed in a dose-dependent manner by pirfenidone. It is speculated that down-regulation of ICAM-1 might be one of the novel mechanisms of action of pirfenidone. These data indicate a novel mechanism of action for pirfenidone to reduce the activation of synovial fibroblasts. PMID:9697986
Farina, Francesca; Sancini, Giulio; Battaglia, Cristina; Tinaglia, Valentina; Mantecca, Paride; Camatini, Marina; Palestini, Paola
2013-01-01
Recent studies have suggested a link between particulate matter (PM) exposure and increased mortality and morbidity associated with pulmonary and cardiovascular diseases; accumulating evidences point to a new role for air pollution in CNS diseases. The purpose of our study is to investigate PM10sum effects on lungs and extra pulmonary tissues. Milano PM10sum has been intratracheally instilled into BALB/c mice. Broncho Alveolar Lavage fluid, lung parenchyma, heart and brain were screened for markers of inflammation (cell counts, cytokines, ET-1, HO-1, MPO, iNOS), cytotoxicity (LDH, ALP, Hsp70, Caspase8-p18, Caspase3-p17) for a putative pro-carcinogenic marker (Cyp1B1) and for TLR4 pathway activation. Brain was also investigated for CD68, TNF-α, GFAP. In blood, cell counts were performed while plasma was screened for endothelial activation (sP-selectin, ET-1) and for inflammation markers (TNF-α, MIP-2, IL-1β, MPO). Genes up-regulation (HMOX1, Cyp1B1, IL-1β, MIP-2, MPO) and miR-21 have been investigated in lungs and blood. Inflammation in the respiratory tract of PM10sum-treated mice has been confirmed in BALf and lung parenchyma by increased PMNs percentage, increased ET-1, MPO and cytokines levels. A systemic spreading of lung inflammation in PM10sum-treated mice has been related to the increased blood total cell count and neutrophils percentage, as well as to increased blood MPO. The blood-endothelium interface activation has been confirmed by significant increases of plasma ET-1 and sP-selectin. Furthermore PM10sum induced heart endothelial activation and PAHs metabolism, proved by increased ET-1 and Cyp1B1 levels. Moreover, PM10sum causes an increase in brain HO-1 and ET-1. These results state the translocation of inflammation mediators, ultrafine particles, LPS, metals associated to PM10sum, from lungs to bloodstream, thus triggering a systemic reaction, mainly involving heart and brain. Our results provided additional insight into the toxicity of PM10sum and could facilitate shedding light on mechanisms underlying the development of urban air pollution related diseases.
Hortelano, Sonsoles; López-Fontal, Raquel; Través, Paqui G; Villa, Natividad; Grashoff, Carsten; Boscá, Lisardo; Luque, Alfonso
2010-05-01
The inflammatory response to injurious agents is tightly regulated to avoid adverse consequences of inappropriate leucocyte accumulation or failed resolution. Lipopolysaccharide (LPS)-activated endothelium recruits leucocytes to the inflamed tissue through controlled expression of membrane-associated adhesion molecules. LPS responses in macrophages are known to be regulated by integrin-linked kinase (ILK); in this study, we investigated the role of ILK in the regulation of the LPS-elicited inflammatory response in endothelium. This study was performed on immortalized mouse endothelial cells (EC) isolated from lung and coronary vasculature. Cells were thoroughly characterized and the role of ILK in the regulation of the LPS response was investigated by suppressing ILK expression using siRNA and shRNA technologies. Phenotypic and functional analyses confirmed that the immortalized cells behaved as true EC. LPS induced the expression of the inflammatory genes E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). ILK knockdown impaired LPS-mediated endothelial activation by preventing the induction of ICAM-1 and VCAM-1. Blockade of the LPS-induced response inhibited the inflammatory-related processes of firm adhesion and trans-endothelial migration of leucocytes. ILK is involved in the expression of cell adhesion molecules by EC activated with the inflammatory stimulus LPS. This reduced expression modulates leucocyte adhesion to the endothelium and the extravasation process. This finding suggests ILK as a potential anti-inflammatory target for the development of vascular-specific treatments for inflammation-related diseases.
Tunjungputri, Rahajeng N; van de Heijden, Wouter; Urbanus, Rolf T; de Groot, Philip G; van der Ven, Andre; de Mast, Quirijn
2017-09-01
Platelets may play a role in the high risk for vascular complications in Gram-positive sepsis. We compared the platelet reactivity of 15 patients with Gram-positive sepsis, 17 with Gram-negative sepsis and 20 healthy controls using a whole blood flow cytometry-based assay. Patients with Gram-positive sepsis had the highest median fluorescence intensity (MFI) of the platelet membrane expression of P-selectin upon stimulation with high dose adenosine diphosphate (ADP; P = 0.002 vs. Gram-negative and P = 0.005 vs. control groups) and cross-linked collagen-related peptide (CRP-XL; P = 0.02 vs. Gram-negative and P = 0.0001 vs. control groups). The Gram-positive group also demonstrated significantly higher ADP-induced fibrinogen binding (P = 0.001), as wll as platelet-monocyte complex formation (P = 0.02), compared to the Gram-negative group and had the highest plasma levels of platelet factor 4, β-thromboglobulin and soluble P-selectin. In contrast, thrombin-antithrombin complex and C-reactive protein levels were comparable in both patient groups. In conclusion, common Gram-positive pathogens induce platelet hyperreactivity, which may contribute to a higher risk for vascular complications.
Role of siglecs and related glycan-binding proteins in immune responses and immunoregulation.
Bochner, Bruce S; Zimmermann, Nives
2015-03-01
Virtually all cells and extracellular material are heavily decorated by various glycans, yet our understanding of the structure and function of these moieties lags behind the understanding of nucleic acids, lipids, and proteins. Recent years have seen a tremendous acceleration of knowledge in the field of glycobiology, revealing many intricacies and functional contributions that were previously poorly appreciated or even unrecognized. This review highlights several topics relevant to glycoimmunology in which mammalian and pathogen-derived glycans displayed on glycoproteins and other scaffolds are recognized by specific glycan-binding proteins (GBPs), leading to a variety of proinflammatory and anti-inflammatory cellular responses. The focus for this review is mainly on 2 families of GBPs, sialic acid-binding immunoglobulin-like lectins (siglecs) and selectins, that are involved in multiple steps of the immune response, including distinguishing pathogens from self, cell trafficking to sites of inflammation, fine-tuning of immune responses leading to activation or tolerance, and regulation of cell survival. Importantly for the clinician, accelerated rates of discovery in the field of glycoimmunology are being translated into innovative medical approaches that harness the interaction of glycans and GBPs to the benefit of the host and might soon lead to novel diagnostics and therapeutics. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Salunke, Sunita P; Devkar, Ranjitsinh V; Ramachandran, A V
2012-10-01
The present study evaluates efficacy of Sida rhomboidea.Roxb (SR) leaves extract in ameliorating experimental atherosclerosis using in vitro and in vivo experimental models. Atherogenic (ATH) diet fed rats recorded significant increment in the serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), very LDL (VLDL), autoantibody against oxidized LDL (Ox-LDL), markers of LDL oxidation and decrement in high-density lipoprotein (HDL) along with increment in aortic TC and TG. The ex vivo LDL oxidation assay revealed an increased susceptibility of LDL isolated from ATH rats to undergo copper mediated oxidation. These set of changes were minimized by simultaneous co-supplementation of SR extract to ATH diet fed rats. Histopathology of aorta and immunolocalization studies recorded pronounced atheromatous plaque formation, vascular calcification, significant elastin derangements and higher expression of macrophage surface marker (F4/80), vascular cell adhesion molecule-1 (VCAM-1) and p-selectin in ATH rats. Whereas, ATH+SR rats depicted minimal evidence of atheromatous plaque formation, calcium deposition, distortion/defragmentation of elastin and accumulation of macrophages along with lowered expression of VCAM-1 and P-selectin compared to ATH rats. Further, monocyte to macrophage differentiation and in vitro foam cell formation were significantly attenuated in presence of SR extract. In conclusion, SR extract has the potency of controlling experimental atherosclerosis and can be used as promising herbal supplement in combating atherosclerosis.
Hasegawa, S; Ichiyama, T; Sonaka, I; Ohsaki, A; Okada, S; Wakiguchi, H; Kudo, K; Kittaka, S; Hara, M; Furukawa, S
2012-02-01
The activation of nuclear factor-kappa B (NF-κB) in vascular endothelial cells may be involved in vascular pathogeneses such as vasculitis or atherosclerosis. Recently, it has been reported that some amino acids exhibit anti-inflammatory effects. We investigated the inhibitory effects of a panel of amino acids on cytokine production or expression of adhesion molecules that are involved in inflammatory diseases in various cell types. The activation of NF-κB was determined in human coronary arterial endothelial cells (HCAECs) because NF-κB modulates the production of many cytokines and the expression of adhesion molecules. We examined the inhibitory effects of the amino acids cysteine, histidine and glycine on the induction of NF-κB activation, expression of CD62E (E-selectin) and the production of interleukin (IL)-6 in HCAECs stimulated with tumour necrosis factor (TNF)-α. Cysteine, histidine and glycine significantly reduced NF-κB activation and inhibitor κBα (IκBα) degradation in HCAECs stimulated with TNF-α. Additionally, all the amino acids inhibited the expression of E-selectin and the production of IL-6 in HCAECs, and the effects of cysteine were the most significant. Our results show that glycine, histidine and cysteine can inhibit NF-κB activation, IκBα degradation, CD62E expression and IL-6 production in HCAECs, suggesting that these amino acids may exhibit anti-inflammatory effects during endothelial inflammation. © 2012 The Authors. Clinical and Experimental Immunology © 2012 British Society for Immunology.
Pan, Bing; Kong, Jinge; Jin, Jingru; Kong, Jian; He, Yubin; Dong, Shuying; Ji, Liang; Liu, Donghui; He, Dan; Kong, Liming; Jin, David K; Willard, Belinda; Pennathur, Subramaniam; Zheng, Lemin
2016-06-01
High density lipoprotein (HDL) as well as annexin A1 have been reported to be associated with cardiovascular protection. However, the correlation between HDL and annexin A1 was still unknown. In this study, HDL increased endothelial annexin A1 and prevented the decrease of annexin A1 in TNF-α-activated endothelial cells in vitro and in vivo, and above effects were attenuated after knockdown of annexin A1. Annexin A1 modulation affected HDL-mediated inhibition of monocyte adhesion to TNF-α-activated endothelium (45.2±13.7% decrease for annexin A1 RNA interference; 78.7±16.3% decrease for anti-Annexin A1 antibody blocking; 11.2±6.9% increase for Ad-ANXA1 transfection). Additionally, HDL up-regulated annexin A1 through scavenger receptor class B type I, involving ERK, p38MAPK, Akt and PKC signaling pathways, and respective inhibitors of these pathways attenuated HDL-induced annexin A1 expression as well as impaired HDL-mediated inhibition of monocyte-endothelial cell adhesion. Apolipoprotein AI also increased annexin A1 and activated similar signaling pathways. Endothelial annexin A1 from apolipoprotein AI knockout mice was decreased in comparison to that from wild type mice. Finally, HDL-induced annexin A1 inhibited cell surface VCAM-1, ICAM-1 and E-selectin, and secretion of MCP-1, IL-8, VCAM-1 and E-selectin, thereby inhibiting monocyte adhesion. Copyright © 2016 Elsevier B.V. All rights reserved.
Melanoma Stem Cells and Metastasis: Mimicking Hematopoietic Cell Trafficking?
Lee, Nayoung; Barthel, Steven R.; Schatton, Tobias
2014-01-01
Malignant melanoma is a highly metastatic cancer that bears responsibility for the majority of skin cancer-related deaths. Amidst the research efforts to better understand melanoma progression, there has been increasing evidence that hints at a role for a subpopulation of virulent cancer cells, termed malignant melanoma stem or initiating cells (MMICs), in metastasis formation. MMICs are characterized by their preferential ability to initiate and propagate tumor growth and their selective capacity for self-renewal and differentiation into less tumorigenic melanoma cells. The frequency of MMICs has been shown to correlate with poor clinical prognosis in melanoma. Additionally, MMICs are enriched among circulating tumor cells (CTCs) in the peripheral blood of cancer patients, suggesting that MMICs may be a critical player in the metastatic cascade. Although these links exist between MMICs and metastatic disease, the mechanisms by which MMICs may advance metastatic progression are only beginning to be elucidated. Recent studies have shown that MMICs express molecules critical for hematopoietic cell maintenance and trafficking, providing a possible explanation for how circulating MMICs could drive melanoma dissemination. We therefore propose that MMICs might fuel melanoma metastasis by exploiting homing mechanisms commonly utilized by hematopoietic cells. Here we review the biological properties of MMICs and the existing literature on their metastatic potential. We will discuss possible mechanisms by which MMICs might initiate metastases in the context of established knowledge of cancer stem cells (CSCs) in other cancers and of hematopoietic homing molecules, with a particular focus on selectins, integrins, chemokines, and chemokine receptors known to be expressed by melanoma cells. Biological understanding of how these molecules might be utilized by MMICs to propel the metastatic cascade could critically impact the development of more effective therapies for advanced disease. PMID:24126889
Glycobiology simplified: diverse roles of glycan recognition in inflammation
Schnaar, Ronald L.
2016-01-01
Glycans and complementary glycan-binding proteins are essential components in the language of cell-cell interactions in immunity. The study of glycan function is the purview of glycobiology, which has often been presented as an unusually complex discipline. In fact, the human glycome, composed of all of its glycans, is built primarily from only 9 building blocks that are combined by enzymes (writers) with specific and limited biosynthetic capabilities into a tractable and increasingly accessible number of potential glycan patterns that are functionally read by several dozen human glycan-binding proteins (readers). Nowhere is the importance of glycan recognition better understood than in infection and immunity, and knowledge in this area has already led to glycan mimetic anti-infective and anti-inflammatory drugs. This review includes a brief tutorial on human glycobiology and a limited number of specific examples of glycan-binding protein-glycan interactions that initiate and regulate inflammation. Examples include representatives from different glycan-binding protein families, including the C-type lectins (E-selectin, P-selectin, dectin-1, and dectin-2), sialic acid-binding immunoglobulin-like lectins (sialic acid-binding immunoglobulin-like lectins 8 and 9), galectins (galectin-1, galectin-3, and galectin-9), as well as hyaluronic acid-binding proteins. As glycoscience technologies advance, opportunities for enhanced understanding of glycans and their roles in leukocyte cell biology provide increasing opportunities for discovery and therapeutic intervention. PMID:27004978
Törmälä, R; Appt, S; Clarkson, T B; Mueck, A O; Seeger, H; Mikkola, T S; Ylikorkala, O
2008-10-01
Tibolone is often taken concurrently with soy. Tibolone, soy and equol-producing capacity each affect vascular health, whereas their concomitant effects are unknown. We studied the effects of soy on sex steroids and vascular inflammation markers in long-term tibolone users. Postmenopausal women (n = 110) on tibolone were screened with a soy challenge to find 20 equol producers and 20 non-producers. All women were treated for 8 weeks in a cross-over trial with soy (52 g of soy protein containing 112 mg of isoflavones) or placebo. Serum estrone, 17beta-estradiol, testosterone, androstenedione, dehydroepiandrosterone sulfate (DHEAS), sex hormone binding globulin (SHBG), C-reactive protein (CRP), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and platelet-selectin (P-selectin) were assessed. Soy decreased (7.1%) the estrone level, significantly (12.5%) only in equol producers (from 80.2 +/- 10.8 to 70.3 +/- 7.0 pmol/l; p = 0.04). Testosterone was reduced (15.5%; from 586 +/- 62.6 to 495 +/- 50.1 pmol/l, p = 0.02) during soy treatment, and more markedly in equol producers than non-producers (22.1% vs. 10.0%). No changes appeared in SHBG, CRP or ICAM-1, but VCAM-1 increased (9.2%) and P-selectin decreased (10.3%) during soy treatment. Soy modified the concentrations of estrone, testosterone and some endothelial markers. Equol production enforced these effects. Soy supplementation may be clinically significant in tibolone users.
Platelet activation in pregnancy-induced hypertension.
Karalis, Ioannis; Nadar, Sunil K; Al Yemeni, Eman; Blann, Andrew D; Lip, Gregory Y H
2005-01-01
Although excess platelet activation, as indicated by increased plasma beta thromboglobulin (beta-TG), has been shown in pregnancy-induced hypertension (PIH), platelet adhesion, platelet morphology and a comparison of platelet and soluble (plasma) levels of the adhesion molecules P-selectin (pPsel and sPsel, respectively) have not been studied. We conducted a cross-sectional study of 35 consecutive women with PIH (age 31+/-6 years), 31 consecutive women with normotensive pregnancies (age 29+/-5 years) and 30 normotensive non pregnant women (age 30+/-5 years). Platelet adhesion was studied in vitro by binding to fibrinogen-coated microwells, platelet morphology [mass and volume by flow cytometry], whole-platelet P-selectin (pPsel) by ELISA of the lysate of 2 x 10(8) cells, and the plasma markers soluble P-selectin (sP-sel) and beta-TG, by ELISA. The women with PIH had significantly raised sPsel, pPsel and (as expected) beta-TG (all p<0.05), when compared to the normotensive pregnant women and controls. However, in PIH platelet adhesion was similar to that in the normotensive pregnancy, but still higher than the normal controls (p<0.001). There was no difference among the three groups with respect to platelet mass and volume. pPsel and platelet adhesion correlated with gestational age and with systolic and diastolic blood pressure (all p<0.05). Increased platelet activation and adhesion develop during normal pregnancy, with some indices being further altered in PIH.
Shi, Qing; Chen, Chen; Wang, Xue-Feng; Wang, Hong-Li
2004-11-01
To investigate the relationship between the hemostatic coagulation markers of prethrombosis state and pregnancy induced hypertension (PIH). Forty-five PIH patients and 20 control patients were studied. P-selectin, prothrombin fragments 1 + 2 (F1+2), D-dimers (D-D) and plasmin-antiplasmin complex (PAP) were measured by enzyme linked immunosorbent assay. Antithrombin activity (AT: A) was measured by chromogenic peptide substrate assay. (1) The P-selectin level of pre-delivery in moderate and severe PIH patients was (66 +/- 24) microg/L and (80 +/- 30) microg/L, it was (49 +/- 15) microg/L in the control group (both P < 0.05). The P-selectin level of post partum in severe PIH group and control group was (65 +/- 34) microg/L and (40 +/- 12) microg/L, with significant difference between them (P < 0.05). (2) The F1+2 level of pre-delivery in mild, moderate and severe PIH groups was respectively (2.2 +/- 0.2), (2.3 +/- 0.4) and (2.2 +/- 0.2) nmol/L, being all significantly higher than that in the control group, which was (1.2 +/- 0.3) nmol/L, but there was no obvious difference between three PIH groups. (3) The D-D level in mild, moderate and severe PIH groups was respectively (0.7 +/- 0.1), (0.7 +/- 0.3) and (0.8 +/- 0.2) mg/L, and it was (0.4 +/- 0.1) mg/L in the control group. The D-D level was increased when PIH became severe. (4) The PAP level in moderate and severe PIH groups was (0.8 +/- 0.4) mg/L and (0.8 +/- 0.4) mg/L, being significantly higher than that in control group (0.7 +/- 0.3) mg/L (both P < 0.05). (5) The AT: Aactivity was obviously decreased in PIH groups, being respectively (44 +/- 37)%, (64 +/- 25)% and (83 +/- 39)% in severe, moderate and mild PIH groups. There was obvious difference between severe and mild groups (P < 0.01). Elevated P-selectin levels and increased platelet activity were observed in PIH patients. F1+2 may be useful as a screening test for risk pregnancy. D-D can be used as an early monitor of DIC. AT: A reflects the severity of illness. These molecular markers may be used to predict the prethrombosis state in PIH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chengye, Zhan; Daixing, Zhou, E-mail: dxzhou7246@hotmail.com; Qiang, Zhong
2013-09-13
Highlights: •First time to display that LPS downregulate the expression of PRC. •First time to show that PRC inhibits the induction of VCAM-1 and E-selectin. •First time to show that PRC inhibit monocytes attachment to endothelial cells. •First time to display that PRC inhibits transcriptional activity of NF-κB. •PRC protects the respiration rate and suppresses the glycolysis rate against LPS. -- Abstract: PGC-1-related coactivator (PRC) is a growth-regulated transcriptional cofactor known to activate many of the nuclear genes specifying mitochondrial respiratory function. Endothelial dysfunction is a prominent feature found in many inflammatory diseases. Adhesion molecules, such as VCAM-1, mediate themore » attachment of monocytes to endothelial cells, thereby playing an important role in endothelial inflammation. The effects of PRC in regards to endothelial inflammation remain unknown. In this study, our findings show that PRC can be inhibited by the inflammatory cytokine LPS in cultured human umbilical vein endothelial cells (HUVECs). In the presence of LPS, the expression of endothelial cell adhesion molecular, such as VCAM1 and E-selectin, is found to be increased. These effects can be negated by overexpression of PRC. Importantly, monocyte adhesion to endothelial cells caused by LPS is significantly attenuated by PRC. In addition, overexpression of PRC protects mitochondrial metabolic function and suppresses the rate of glycolysis against LPS. It is also found that overexpression of PRC decreases the transcriptional activity of NF-κB. These findings suggest that PRC is a negative regulator of endothelial inflammation.« less
Mitrofan, Claudia-Gabriela; Appleby, Sarah L; Nash, Gerard B; Mallat, Ziad; Chilvers, Edwin R; Upton, Paul D; Morrell, Nicholas W
2017-08-18
Bone morphogenetic proteins 9 and 10 (BMP9/BMP10) are circulating cytokines with important roles in endothelial homeostasis. The aim of this study was to investigate the roles of BMP9 and BMP10 in mediating monocyte-endothelial interactions using an in vitro flow adhesion assay. Herein, we report that whereas BMP9/BMP10 alone had no effect on monocyte recruitment, at higher concentrations both cytokines synergized with tumor necrosis factor-α (TNFα) to increase recruitment to the vascular endothelium. The BMP9/BMP10-mediated increase in monocyte recruitment in the presence of TNFα was associated with up-regulated expression levels of E-selectin, vascular cell adhesion molecule (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1) on endothelial cells. Using siRNAs to type I and II BMP receptors and the signaling intermediaries (Smads), we demonstrated a key role for ALK2 in the BMP9/BMP10-induced surface expression of E-selectin, and both ALK1 and ALK2 in the up-regulation of VCAM-1 and ICAM-1. The type II receptors, BMPR-II and ACTR-IIA were both required for this response, as was Smad1/5. The up-regulation of cell surface adhesion molecules by BMP9/10 in the presence of TNFα was inhibited by LDN193189, which inhibits ALK2 but not ALK1. Furthermore, LDN193189 inhibited monocyte recruitment induced by TNFα and BMP9/10. BMP9/10 increased basal IκBα protein expression, but did not alter p65/RelA levels. Our findings suggest that higher concentrations of BMP9/BMP10 synergize with TNFα to induce the up-regulation of endothelial selectins and adhesion molecules, ultimately resulting in increased monocyte recruitment to the vascular endothelium. This process is mediated mainly via the ALK2 type I receptor, BMPR-II/ACTR-IIA type II receptors, and downstream Smad1/5 signaling. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Abernathy-Carver, K J; Sampson, H A; Picker, L J; Leung, D Y
1995-01-01
The extravasation of T cells at sites of inflammation is critically dependent on the activity of homing receptors (HR) involved in endothelial cell recognition and binding. Two such HR (the cutaneous lymphocyte antigen [CLA] and L-selectin) have been shown to be selectively involved in T cell migration to skin and peripheral lymph nodes, respectively. This study was designed to assess the relationship between the organ specificity of an allergic reaction to food and the expression of HR on T cells activated in vitro by the relevant food allergen. Peripheral blood mononuclear cells were isolated from seven milk allergic children with a history of eczema when exposed to milk. All patients had a positive prick skin test and double-blind placebo-controlled food challenge to milk. 10 children with either allergic eosinophilic gastroenteritis or milk-induced enterocolitis and 8 nonatopic adults served as controls. Five-parameter flow cytometry using monoclonal antibodies was used for detection of the specific HR on freshly isolated T cells versus T cell blasts induced by a 6-d incubation with casein, as compared with Candida albicans. After in vitro stimulation with casein, but not C. albicans, patients with milk allergy and atopic dermatitis had a significantly greater percentage of CLA+ T cells (P < 0.01) than controls with milk-induced enterocolitis, allergic eosinophilic gastroenteritis, or nonatopic healthy controls. In contrast, the percentage of L-selectin-expressing T cells did not differ significantly between these groups. These data suggest that after casein stimulation allergic patients with milk-induced skin disease have an expanded population of CLA+ T cells, as compared with nonatopics or allergic patients without skin involvement. We postulate that heterogeneity in the regulation of HR expression on antigen-specific T cells may play a role in determining sites of involvement in tissue-directed allergic responses. Images PMID:7532192
Abernathy-Carver, K J; Sampson, H A; Picker, L J; Leung, D Y
1995-02-01
The extravasation of T cells at sites of inflammation is critically dependent on the activity of homing receptors (HR) involved in endothelial cell recognition and binding. Two such HR (the cutaneous lymphocyte antigen [CLA] and L-selectin) have been shown to be selectively involved in T cell migration to skin and peripheral lymph nodes, respectively. This study was designed to assess the relationship between the organ specificity of an allergic reaction to food and the expression of HR on T cells activated in vitro by the relevant food allergen. Peripheral blood mononuclear cells were isolated from seven milk allergic children with a history of eczema when exposed to milk. All patients had a positive prick skin test and double-blind placebo-controlled food challenge to milk. 10 children with either allergic eosinophilic gastroenteritis or milk-induced enterocolitis and 8 nonatopic adults served as controls. Five-parameter flow cytometry using monoclonal antibodies was used for detection of the specific HR on freshly isolated T cells versus T cell blasts induced by a 6-d incubation with casein, as compared with Candida albicans. After in vitro stimulation with casein, but not C. albicans, patients with milk allergy and atopic dermatitis had a significantly greater percentage of CLA+ T cells (P < 0.01) than controls with milk-induced enterocolitis, allergic eosinophilic gastroenteritis, or nonatopic healthy controls. In contrast, the percentage of L-selectin-expressing T cells did not differ significantly between these groups. These data suggest that after casein stimulation allergic patients with milk-induced skin disease have an expanded population of CLA+ T cells, as compared with nonatopics or allergic patients without skin involvement. We postulate that heterogeneity in the regulation of HR expression on antigen-specific T cells may play a role in determining sites of involvement in tissue-directed allergic responses.
Park, Jae B
2017-05-27
Monocyte chemoattractant protein-1 (MCP-1) is a well-known chemokine critically involved in the pathophysiological progression of several inflammatory diseases including arthrosclerosis. N -caffeoyltryptamine is a phenolic amide with strong anti-inflammatory effects. Therefore, in this paper, the potential effect of N -caffeoyltryptamine on MCP-1 expression was investigated as a potential p38 mitogen-activated protein (MAP) kinase inhibitor in vitro and in vivo. At the concentration of 20 μM, N -caffeoyltryptamine significantly inhibited p38 MAP kinase α, β, γ and δ by 15-50% ( p < 0.05), particularly p38 MAP kinase α (IC 50 = 16.7 μM) and β (IC 50 = 18.3 μM). Also, the pretreatment of the lipopolysaccharide (LPS)-stimulated THP-1 cells with N -caffeoyltryptamine (10, 20 and 40 μM) led to significant suppression of MCP-1 production by 10-45% ( p < 0.05) in the cells. Additionally, N -caffeoyltryptamine was also able to significantly downregulate MCP-1 mRNA expression in the THP-1 cells ( p < 0.05). On the basis of this strong inhibition in vitro, an animal study was conducted to confirm this inhibitory effect in vivo. Rats were divided into three groups ( n = 8): a normal control diet (C), a high-fat diet (HF), or a high-fat diet supplemented with N -caffeoyltryptamine (2 mg per day) (HFS). After 16 weeks, blood samples were collected from the rats in each group, and MCP-1 levels were determined in plasma with other atherogenic markers (C-reactive protein and soluble E-selectin (sE-selectin)). As expected, the average MCP-1 levels of the HF group were found to be higher than those of the C group ( p < 0.05). However, the MCP-1 levels of the HFS group were significantly lower than those of the HF group ( p < 0.05), suggesting that N -caffeoyltryptamine could decrease MCP-1 expression in vivo. Related to other atherogenic markers such as C-reactive protein and sE-selectin, there was no significant difference in their levels between the HF and HFS groups. These data suggest that N -caffeoyltryptamine may specifically suppress MCP-1 expression in vitro and in vivo, possibly by inhibiting p38 MAP kinase.
Tukaj, Stefan; Bieber, Katja; Witte, Mareike; Ghorbanalipoor, Saeedeh; Schmidt, Enno; Zillikens, Detlef; Ludwig, Ralf J; Kasperkiewicz, Michael
2018-02-01
A link between hypovitaminosis D and development of autoimmune bullous disorders has been suggested recently, but this association has not been elaborated experimentally. Here, the role of vitamin D was investigated in epidermolysis bullosa acquisita (EBA), an anti-type VII collagen autoantibody-induced blistering skin disease. Oral administration of the hormonally active vitamin D metabolite calcitriol ameliorated clinical disease severity and dermal neutrophil infiltration in both an antibody transfer- and immunization-induced EBA mouse model. Mechanistically, calcitriol hindered immune effector cell activation as evidenced by increased L-selectin expression on Gr-1 + cells in calcitriol-treated mice with antibody transfer-induced EBA, as well as suppressed in vitro immune complex-induced reactive oxygen species production in calcitriol-treated murine neutrophils. Additionally, calcitriol administration was associated with an increase of regulatory T (CD4 + FoxP3 + ) and B (CD19 + IL10 + ) cells as well as reduction of pro-inflammatory T helper 17 (CD4 + IL-17 + ) cells in mice with immunization-induced EBA. In line, levels of circulating anti-type VII collagen autoantibodies were lower in mice that received calcitriol compared to solvent-treated animals. Together with the observed state of hypovitaminosis D in most cases of an analyzed EBA patient cohort, the results of this study support the use of vitamin D derivatives or analogs for patients with EBA and related diseases. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Detection of site specific glycosylation in proteins using flow cytometry†
Jayakumar, Deepak; Marathe, Dhananjay D.; Neelamegham, Sriram
2009-01-01
We tested the possibility that it is possible to express unique peptide probes on cell surfaces and detect site-specific glycosylation on these peptides using flow cytometry. Such development can enhance the application of flow cytometry to detect and quantify post-translational modifications in proteins. To this end, the N-terminal section of the human leukocyte glycoprotein PSGL-1 (P-selectin glycoprotein ligand-1) was modified to contain a poly-histidine tag followed by a proteolytic cleavage site. Amino acids preceding the cleavage site have a single O-linked glycosylation site. The recombinant protein called PSGL-1 (HT) was expressed on the surface of two mammalian cell lines, CHO and HL-60, using a lentiviral delivery approach. Results demonstrate that the N-terminal portion of PSGL-1 (HT) can be released from these cells by protease, and the resulting peptide can be readily captured and detected using cytometry-bead assays. Using this strategy, the peptide was immunoprecipitated onto beads bearing mAbs against either the poly-histidine sequence or the human PSGL-1. The carbohydrate epitope associated with the released peptide was detected using HECA-452 and CSLEX-1, monoclonal antibodies that recognize the sialyl Lewis-X epitope. Finally, the peptide released from cells could be separated and enriched using nickel chelate beads. Overall, such an approach that combines recombinant protein expression with flow cytometry, may be useful to quantify changes in site-specific glycosylation for basic science and clinical applications. PMID:19735085
Szük, Tibor; Fejes, Zsolt; Debreceni, Ildikó Beke; Kerényi, Adrienne; Édes, István; Kappelmayer, János; Nagy, Béla
2016-07-01
Drug-eluting stenting (DES) has become a reliable tool for coronary stenting; however, its direct effects on platelet and endothelium function differ from those of bare-metal stenting (BMS). This study involved a periprocedural analysis of various biomarkers of cellular activation after elective DES (Xience(®), Abbott Vascular, Santa Clara, CA, USA) or BMS (Integrity(®), Medtronic, Minneapolis, MI, USA). Forty-nine stable angina patients were recruited: 28 underwent BMS, and 21 received everolimus-eluting stents. Samples were collected (i) prior to stenting, (ii) at 24 hours after procedure, and (iii) after 1 month of dual antiplatelet therapy. Platelet activation was analyzed by surface P-selectin positivity in parallel with plasma levels of soluble P-selectin, CD40L and platelet-derived growth factor (PDGF). Endothelial cell (EC) activation was detected by measuring markers of early (von Willebrand factor) and delayed response (VCAM-1, ICAM-1, E-selectin). Patients were followed for 6 months for the occurrence of restenosis or stent thrombosis. Increased platelet activation was sustained regardless of stent type or antiplatelet medication. Concentrations of most EC markers were more elevated after BMS than after DES. No stent thrombosis was seen, but six BMS subjects displayed restenosis with significantly higher sCD40L (779 [397-899] vs. 381 [229-498] pg/mL; p = 0.032) and sICAM-1 (222 [181-272] vs. 162 [153-223] ng/mL; p = 0.046) levels than in those without complication, while DES patients exhibited significantly decreased PDGF (572 [428-626] vs. 244 [228-311] pg/mL; p = 0.004) after 1 month. Nonresponsiveness to antiplatelet drugs did not influence these changes. In conclusion, the degree of platelet and EC activation suggests that Xience(®) DES may be regarded a safer coronary intervention than Integrity(®) BMS, with a lower risk of in-stent restenosis.
Chan, Joyce M S; Monaco, Claudia; Wylezinska-Arridge, Marzena; Tremoleda, Jordi L; Cole, Jennifer E; Goddard, Michael; Cheung, Maggie S H; Bhakoo, Kishore K; Gibbs, Richard G J
2018-05-01
Identification of patients with high-risk asymptomatic carotid plaques remains an elusive but essential step in stroke prevention. Inflammation is a key process in plaque destabilization and a prelude to clinical sequelae. There are currently no clinical imaging tools to assess the inflammatory activity within plaques. This study characterized inflammation in atherosclerosis using dual-targeted microparticles of iron oxide (DT-MPIO) as a magnetic resonance imaging (MRI) probe. DT-MPIO were used to detect and characterize inflammatory markers, vascular cell adhesion molecule 1 (VCAM-1). and P-selectin on (1) tumor necrosis factor-α-treated cells by immunocytochemistry and (2) aortic root plaques of apolipoprotein-E deficient mice by in vivo MRI. Furthermore, apolipoprotein E-deficient mice with focal carotid plaques of different phenotypes were developed by means of periarterial cuff placement to allow in vivo molecular MRI using these probes. The association between biomarkers and the magnetic resonance signal in different contrast groups was assessed longitudinally in these models. Immunocytochemistry confirmed specificity and efficacy of DT-MPIO to VCAM-1 and P-selectin. Using this in vivo molecular MRI strategy, we demonstrated (1) the DT-MPIO-induced magnetic resonance signal tracked with VCAM-1 (r = 0.69; P = .014), P-selectin (r = 0.65; P = .022), and macrophage content (r = 0.59; P = .045) within aortic root plaques and (2) high-risk inflamed plaques were distinguished from noninflamed plaques in the murine carotid artery within a practical clinical imaging time frame. These molecular MRI probes constitute a novel imaging tool for in vivo characterization of plaque vulnerability and inflammatory activity in atherosclerosis. Further development and translation into the clinical arena will facilitate more accurate risk stratification in carotid atherosclerotic disease in the future. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Endothelial progenitor cells bind and inhibit platelet function and thrombus formation.
Abou-Saleh, Haissam; Yacoub, Daniel; Théorêt, Jean-François; Gillis, Marc-Antoine; Neagoe, Paul-Eduard; Labarthe, Benoit; Théroux, Pierre; Sirois, Martin G; Tabrizian, Maryam; Thorin, Eric; Merhi, Yahye
2009-12-01
Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride-induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. Peripheral blood mononuclear cell-derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential roles in regulating platelet function and thrombosis.
Coussens, Lisa M.; Werb, Zena
2009-01-01
Recent data have expanded the concept that inflammation is a critical component of tumour progression. Many cancers arise from sites of infection, chronic irritation and inflammation. It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration. In addition, tumour cells have co-opted some of the signalling molecules of the innate immune system, such as selectins, chemokines and their receptors for invasion, migration and metastasis. These insights are fostering new anti-inflammatory therapeutic approaches to cancer development. PMID:12490959
Glycopeptide Analogues of PSGL-1 Inhibit P-Selectin In Vitro and In Vivo
Krishnamurthy, Venkata R; Sardar, Mohammed Y. R.; Yu, Ying; Song, Xuezheng; Haller, Carolyn; Dai, Erbin; Wang, Xiacong; Hanjaya-Putra, Donny; Sun, Lijun; Morikis, Vasilios; Simon, Scott I.; Woods, Robert; Cummings, Richard D.; Chaikof, Elliot L.
2015-01-01
Blockade of P-selectin/PSGL-1 interactions holds significant potential for treatment of disorders of innate immunity, thrombosis, and cancer. Current inhibitors remain limited due to low binding affinity or by the recognized disadvantages inherent to chronic administration of antibody therapeutics. Here we report an efficient approach for generating glycosulfopeptide mimics of N-terminal PSGL-1 through development of a stereoselective route for multi-gram scale synthesis of the C2 O-glycan building block and replacement of hydrolytically labile tyrosine sulfates with isosteric sulfonate analogs. Library screening afforded a compound of exceptional stability, GSnP-6, that binds to human P-selectin with nanomolar affinity (Kd ~ 22 nM). Molecular dynamics simulation defines the origin of this affinity in terms of a number of critical structural contributions. GSnP-6 potently blocks P-selectin/PSGL-1 interactions in vitro and in vivo and represents a promising candidate for the treatment of diseases driven by acute and chronic inflammation. PMID:25824568
Lehnert, Per; Johansson, Pär I; Ostrowski, Sisse R; Møller, Christian H; Bang, Lia E; Olsen, Peter Skov; Carlsen, Jørn
2017-02-01
Whole blood coagulation and markers of endothelial damage were studied in patients with acute pulmonary embolism (PE), and evaluated in relation to PE severity. Twenty-five patients were enrolled prospectively each having viscoelastical analysis of whole blood done using thrombelastography (TEG) and Multiplate aggregometry. Fourteen of these patients were investigated for endothelial damage by ELISA measurements of Syndecan-1 (endothelial glycocalyx degradation), soluble endothelial Selectin (endothelial cell activation), soluble Thrombomodulin (endothelial cell injury) and Histone Complexed DNA fragments (endothelial cytotoxic histones). The mean values of TEG and Multiplate parameters were all within the reference levels, but a significant difference between patients with high and intermediate risk PE was observed for Ly30 (lytic activity) 1.5% [0-10] vs. 0.2% [0-2.2] p = .04, and ADP (platelet reactivity) 92 U [20-145] vs. 59 U [20-111] p = .03. A similar difference was indicated for functional fibrinogen 21 mm [17-29] vs. 18 mm [3-23] p = .05. Analysis of endothelial markers identified a significant difference in circulating levels between high and intermediate risk PE patients for Syndecan-1 118.6 ng/mL [76-133] vs. 36.3 ng/mL [11.8-102.9] p = .008. In conclusion, patients with acute PE had normal whole blood coagulation, but high risk PE patients had signs of increased activity of the haemostatic system and significantly increased level of endothelial glycocalyx degradation.
Biophysical regulation of Chlamydia pneumoniae-infected monocyte recruitment to atherosclerotic foci
NASA Astrophysics Data System (ADS)
Evani, Shankar J.; Ramasubramanian, Anand K.
2016-01-01
Chlamydia pneumoniae infection is implicated in atherosclerosis although the contributory mechanisms are poorly understood. We hypothesize that C. pneumoniae infection favors the recruitment of monocytes to atherosclerotic foci by altering monocyte biophysics. Primary, fresh human monocytes were infected with C. pneumoniae for 8 h, and the interactions between monocytes and E-selectin or aortic endothelium under flow were characterized by video microscopy and image analysis. The distribution of membrane lipid rafts and adhesion receptors were analyzed by imaging flow cytometry. Infected cells rolled on E-selectin and endothelial surfaces, and this rolling was slower, steady and uniform compared to uninfected cells. Infection decreases cholesterol levels, increases membrane fluidity, disrupts lipid rafts, and redistributes CD44, which is the primary mediator of rolling interactions. Together, these changes translate to higher firm adhesion of infected monocytes on endothelium, which is enhanced in the presence of LDL. Uninfected monocytes treated with LDL or left untreated were used as baseline control. Our results demonstrate that the membrane biophysical changes due to infection and hyperlipidemia are one of the key mechanisms by which C. pneumoniae can exacerbate atherosclerotic pathology. These findings provide a framework to characterize the role of ‘infectious burden’ in the development and progression of atherosclerosis.
Blocking neutrophil integrin activation prevents ischemia-reperfusion injury.
Yago, Tadayuki; Petrich, Brian G; Zhang, Nan; Liu, Zhenghui; Shao, Bojing; Ginsberg, Mark H; McEver, Rodger P
2015-07-27
Neutrophil recruitment, mediated by β2 integrins, combats pyogenic infections but also plays a key role in ischemia-reperfusion injury and other inflammatory disorders. Talin induces allosteric rearrangements in integrins that increase affinity for ligands (activation). Talin also links integrins to actin and other proteins that enable formation of adhesions. Structural studies have identified a talin1 mutant (L325R) that perturbs activation without impairing talin's capacity to link integrins to actin and other proteins. Here, we found that mice engineered to express only talin1(L325R) in myeloid cells were protected from renal ischemia-reperfusion injury. Dissection of neutrophil function in vitro and in vivo revealed that talin1(L325R) neutrophils had markedly impaired chemokine-induced, β2 integrin-mediated arrest, spreading, and migration. Surprisingly, talin1(L325R) neutrophils exhibited normal selectin-induced, β2 integrin-mediated slow rolling, in sharp contrast to the defective slow rolling of neutrophils lacking talin1 or expressing a talin1 mutant (W359A) that blocks talin interaction with integrins. These studies reveal the importance of talin-mediated activation of integrins for renal ischemia-reperfusion injury. They further show that neutrophil arrest requires talin recruitment to and activation of integrins. However, although neutrophil slow rolling requires talin recruitment to integrins, talin-mediated integrin activation is dispensable. © 2015 Yago et al.
Blocking neutrophil integrin activation prevents ischemia–reperfusion injury
Yago, Tadayuki; Petrich, Brian G.; Zhang, Nan; Liu, Zhenghui; Shao, Bojing; Ginsberg, Mark H.
2015-01-01
Neutrophil recruitment, mediated by β2 integrins, combats pyogenic infections but also plays a key role in ischemia–reperfusion injury and other inflammatory disorders. Talin induces allosteric rearrangements in integrins that increase affinity for ligands (activation). Talin also links integrins to actin and other proteins that enable formation of adhesions. Structural studies have identified a talin1 mutant (L325R) that perturbs activation without impairing talin’s capacity to link integrins to actin and other proteins. Here, we found that mice engineered to express only talin1(L325R) in myeloid cells were protected from renal ischemia–reperfusion injury. Dissection of neutrophil function in vitro and in vivo revealed that talin1(L325R) neutrophils had markedly impaired chemokine-induced, β2 integrin–mediated arrest, spreading, and migration. Surprisingly, talin1(L325R) neutrophils exhibited normal selectin-induced, β2 integrin–mediated slow rolling, in sharp contrast to the defective slow rolling of neutrophils lacking talin1 or expressing a talin1 mutant (W359A) that blocks talin interaction with integrins. These studies reveal the importance of talin-mediated activation of integrins for renal ischemia–reperfusion injury. They further show that neutrophil arrest requires talin recruitment to and activation of integrins. However, although neutrophil slow rolling requires talin recruitment to integrins, talin-mediated integrin activation is dispensable. PMID:26169939
USDA-ARS?s Scientific Manuscript database
Because garlic (Allium sativum) is believed to have positive health effects on cardiovascular disease, the screening of isolated fractions from a garlic extract against cardiovascular disease related-processes should help identify active compounds. Both P-selectin expression suppressing activity ag...
Tully, Phillip J; Baumeister, Harald; Martin, Sean; Atlantis, Evan; Jenkins, Alicia; Januszewski, Andrzej; OʼLoughlin, Peter; Taylor, Anne; Wittert, Gary A
2016-01-01
This prospective cohort study sought to examine key biological measures linking depressive symptoms with Type 2 diabetes, specifically inflammation, microvascular dysfunction, and androgens. A cohort of 688 men without diabetes who were 35 years or older were followed up for 5 years. Venous interleukin-6, high-sensitivity C-reactive protein, sE-selectin, endogenous total testosterone, fasting glucose, and glycated hemoglobin (HbA1c) were quantified at baseline and 5 years later. Depressive symptoms were assessed using the Beck Depression Inventory-I, and men were categorized into persistent, remitted, incident, and nondepressed groups (reference). Logistic regression was used to determine odds ratios (ORs) for diabetes adjusted for propensity score calculated from 18 established risk factors. Diabetes developed in 112 men (16.3% of sample). Persistent depressive symptoms were associated with diabetes (adjusted OR = 2.45, 95% confidence interval [CI] = 1.16-5.20, p = .019). Baseline testosterone (OR = 0.43, 95% CI = 0.22-0.81, p = .01) and follow-up testosterone (OR = 0.51, 95% CI = 0.31-0.84, p = .008) were inversely associated with Type 2 diabetes. Annualized HbA1c was positively associated with annualized change in cognitive Beck Depression Inventory symptoms (β = 0.14, p = .001) and inversely associated with annualized change in testosterone (β = -0.10, p = .014). Annualized change in fasting glucose was associated with sE-selectin (β = 0.12, p < .001) and somatic depressive symptoms (β = -0.12, p = .002). The findings suggest that lower endogenous total testosterone levels and persistent depressive symptoms were associated with Type 2 diabetes risk and HbA1c in men over a 5-year period.
Endothelial Progenitor Cells Bind and Inhibit Platelet Function and Thrombus Formation
Abou-Saleh, Haissam; Yacoub, Daniel; Théorêt, Jean-François; Gillis, Marc-Antoine; Neagoe, Paul-Eduard; Labarthe, Benoit; Théroux, Pierre; Sirois, Martin G.; Tabrizian, Maryam; Thorin, Eric; Merhi, Yahye
2013-01-01
Background Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. Methods and Results Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride–induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. Conclusions Peripheral blood mononuclear cell– derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential roles in regulating platelet function and thrombosis. PMID:19917882
Alvarez, Angeles; Rios-Navarro, Cesar; Blanch-Ruiz, Maria Amparo; Collado-Diaz, Victor; Andujar, Isabel; Martinez-Cuesta, Maria Angeles; Orden, Samuel; Esplugues, Juan V
2017-05-01
The controversy connecting Abacavir (ABC) with cardiovascular disease has been fuelled by the lack of a credible mechanism of action. ABC shares structural similarities with endogenous purines, signalling molecules capable of triggering prothrombotic/proinflammatory programmes. Platelets are leading actors in the process of thrombosis. Our study addresses the effects of ABC on interactions between platelets and other vascular cells, while exploring the adhesion molecules implicated and the potential interference with the purinergic signalling pathway. The effects of ABC on platelet aggregation and platelet-endothelium interactions were evaluated, respectively, with an aggregometer and a flow chamber system that reproduced conditions in vivo. The role of adhesion molecules and purinergic receptors in endothelial and platelet populations was assessed by selective pre-incubation with specific antagonists and antibodies. ABC and carbovir triphosphate (CBT) levels were evaluated by HPLC. The results showed that ABC promoted the adherence of platelets to endothelial cells, a crucial step for the formation of thrombi. This was not a consequence of a direct effect of ABC on platelets, but resulted from activation of the endothelium via purinergic ATP-P2X 7 receptors, which subsequently triggered an interplay between P-selectin and ICAM-1 on endothelial cells with constitutively expressed GPIIb/IIIa and GPIbα on platelets. ABC did not induce platelet activation (P-selectin expression or Ca 2+ mobilization) or aggregation, even at high concentrations. CBT levels in endothelial cells were lower than those required to induce platelet-endothelium interactions. Thus, ABC interference with endothelial purinergic signalling leads to platelet recruitment. This highlights the endothelium as the main cell target of ABC in this interaction, which is in line with previous experimental evidence that ABC induces manifestations of vascular inflammation. Copyright © 2017 Elsevier B.V. All rights reserved.
Martínez-Sánchez, Sara María; Minguela, Alfredo; Prieto-Merino, David; Zafrilla-Rentero, María Pilar; Abellán-Alemán, José; Montoro-García, Silvia
2017-01-01
Background and aims: Dietary studies have shown that active biopeptides provide protective health benefits, although the mediating pathways are somewhat uncertain. To throw light on this situation, we studied the effects of consuming Spanish dry-cured ham on platelet function, monocyte activation markers and the inflammatory status of healthy humans with pre-hypertension. Methods: Thirty-eight healthy volunteers with systolic blood pressure of >125 mmHg were enrolled in a two-arm crossover randomized controlled trial. Participants received 80 g/day dry-cured pork ham of >11 months proteolysis or 100 g/day cooked ham (control product) for 4 weeks followed by a 2-week washout before “crossing over” to the other treatment for 4 more weeks. Soluble markers and cytokines were analyzed by ELISA. Platelet function was assessed by measuring P-selectin expression and PAC-1 binding after ADP (adenosine diphosphate) stimulation using whole blood flow cytometry. Monocyte markers of the pathological status (adhesion, inflammatory and scavenging receptors) were also measured by flow cytometry in the three monocyte subsets after the interventional period. Results: The mean differences between dry-cured ham and cooked ham followed by a time period adjustment for plasmatic P-selectin and interleukin 6 proteins slightly failed (p = 0.062 and p = 0.049, respectively), notably increased for MCP-1 levels (p = 0.023) while VCAM-1 was not affected. Platelet function also decreased after ADP stimulation. The expression of adhesion and scavenging markers (ICAM1R, CXCR4 and TLR4) in the three subsets of monocytes was significantly higher (all p < 0.05). Conclusions: The regular consumption of biopeptides contained in the dry-cured ham but absent in cooked ham impaired platelet and monocyte activation and the levels of plasmatic P-selectin, MCP-1 and interleukin 6 in healthy subjects. This study strongly suggests the existence of a mechanism that links dietary biopeptides and beneficial health effects. PMID:28333093
Lalla, E; Kaplan, S; Yang, J; Roth, G A; Papapanou, P N; Greenberg, S
2007-06-01
Diabetes is associated with an increased risk for vascular disease and periodontitis. The aim of this study was to assess the effects of periodontal treatment in diabetes with respect to alterations in the pro-inflammatory potential of peripheral blood mononuclear cells. Ten patients with diabetes and moderate to severe periodontitis received full-mouth subgingival debridement. Blood samples for serum/plasma and mononuclear cell isolation were collected prior to and 4 wk after therapy. Mononuclear cells were analyzed by flow cytometry and stimulated with lipopolysaccharide or ionomycin/phorbol ester to determine the pro-inflammatory capacity of macrophages and lymphocytes, respectively. Following periodontal treatment, all patients demonstrated a significant improvement in clinical periodontal status (p < 0.05), despite only modest reduction in subgingival bacterial load or homologous serum immunoglobulin G titers. CD14(+) blood monocytes decreased by 47% (p < 0.05), and the percentage of macrophages spontaneously releasing tumor necrosis factor-alpha decreased by 78% (p < 0.05). There were no significant changes in the capacity of lymphocytes to secrete interferon-gamma. Among a number of serum inflammatory markers tested, high-sensitivity-C-reactive protein significantly decreased by 37% (p < 0.01) and soluble E-selectin decreased by 16.6% (p < 0.05). These data suggest a reduced tendency for monocyte/macrophage-driven inflammation with periodontal therapy and a potential impact on atherosclerosis-related complications in diabetic individuals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhavsar, Shefalee K.; Merches, Katja; Bobbala, Diwakar
2012-08-17
Highlights: Black-Right-Pointing-Pointer Akt/SGK dependent phosphorylation of GSK3{alpha},{beta} regulates T lymphocytes. Black-Right-Pointing-Pointer T cells from mice expressing Akt/SGK insensitive GSK3{alpha},{beta} (gsk3{sup KI}) release less IL-2. Black-Right-Pointing-Pointer CD4{sup +} cells from gsk3{sup KI} mice express less CD62L. Black-Right-Pointing-Pointer CD8{sup +} cells from gsk3{sup KI} mice are relatively resistant to activation induced cell death. Black-Right-Pointing-Pointer Perforin expression is enhanced in gsk3{sup KI} T cells. -- Abstract: Survival and function of T-lymphocytes critically depends on phosphoinositide (PI) 3 kinase. PI3 kinase signaling includes the PKB/Akt and SGK dependent phosphorylation and thus inhibition of glycogen synthase kinase GSK3{alpha},{beta}. Lithium, a known unspecific GSK3 inhibitor protectsmore » against experimental autoimmune encephalomyelitis. The present study explored, whether Akt/SGK-dependent regulation of GSK3 activity is a determinant of T cell survival and function. Experiments were performed in mutant mice in which Akt/SGK-dependent GSK3{alpha},{beta} inhibition was disrupted by replacement of the serine residue in the respective SGK/Akt-phosphorylation consensus sequence by alanine (gsk3{sup KI}). T cells from gsk3{sup KI} mice were compared to T cells from corresponding wild type mice (gsk3{sup WT}). As a result, in gsk3{sup KI} CD4{sup +} cells surface CD62L (L-selectin) was significantly less abundant than in gsk3{sup WT} CD4{sup +} cells. Upon activation in vitro T cells from gsk3{sup KI} mice reacted with enhanced perforin production and reduced activation induced cell death. Cytokine production was rather reduced in gsk3{sup KI} T cells, suggesting that GSK3 induces effector function in CD8{sup +} T cells. In conclusion, PKB/Akt and SGK sensitive phosphorylation of GSK3{alpha},{beta} is a potent regulator of perforin expression and activation induced cell death in T lymphocytes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borska, L.; Fiala, Z.; Krejsek, J.
2007-11-15
Psoriasis is a chronic inflammatory skin disease which is often manifested during childhood. The present study investigated changes in the serum levels of proinflammatory cytokines and soluble forms of adhesion molecules in children with psoriasis. The observed patient group of 26 children was treated with the Goeckerman regimen. This therapy combines dermal application of crude coal tar with ultraviolet radiation. The Psoriasis Area Severity Index decreased significantly after treatment by with the Goeckerman regimen (p < 0.001). Serum levels of the proinflammatory cytokine TNF-alpha and adhesion molecules sICAM-1, sP-selectin and sE-selectin decreased after the Goeckerman regimen. The TNF-alpha and sICAM-1more » decreased significantly (p < 0.05). Our findings support the complex role of these immune parameters in the immunopathogenesis of psoriasis in children. The serum level of IL-8 increased after the Goeckerman regimen. This fact indicates that the chemokine pathway of IL-8 activity could be modulated by this treatment, most likely by polycyclic aromatic hydrocarbons.« less
Montiel-Dávalos, Angélica; Silva Sánchez, Guadalupe Jazmin; Huerta-García, Elizabeth; Rueda-Romero, Cristhiam; Soca Chafre, Giovanny; Mitre-Aguilar, Irma B.; Alfaro-Moreno, Ernesto; Pedraza-Chaverri, José
2017-01-01
Curcumin has protective effects against toxic agents and shows preventive properties for various diseases. Particulate material with an aerodynamic diameter of ≤10 μm (PM10) and titanium dioxide nanoparticles (TiO2-NPs) induce endothelial dysfunction and activation. We explored whether curcumin is able to attenuate different events related to endothelial activation. This includes adhesion, expression of adhesion molecules and oxidative stress induced by PM10 and TiO2-NPs. Human umbilical vein endothelial cells (HUVEC) were treated with 1, 10 and 100 μM curcumin for 1 h and then exposed to PM10 at 3 μg/cm2 or TiO2-NPs at 10 μg/cm2. Cell adhesion was evaluated by co-culture with U937 human myelomonocytic cells. Adhesion molecules expression was measured by flow cytometry after 3 or 24 h of exposure. Oxidative stress was determined by 2,7-dichlorodihydrofluorescein (H2DCF) oxidation. PM10 and TiO2-NPs induced the adhesion of U937 cells and the expression of E- and P-selectins, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and platelet-endothelial cell adhesion molecule-1 (PECAM-1). The expression of E- and P-selectins matched the adhesion of monocytes to HUVEC after 3 h. In HUVEC treated with 1 or 10 μM curcumin, the expression of adhesion molecules and monocytes adhesion was significantly diminished. Curcumin also partially reduced the H2DCF oxidation induced by PM10 and TiO2-NPs. Our results suggest an anti-inflammatory and antioxidant role by curcumin attenuating the activation caused on endothelial cells by exposure to particles. Therefore, curcumin could be useful in the treatment of diseases where an inflammatory process and endothelial activation are involved. PMID:29244817
Inhibition of Breast Cancer-Induced Angiogenesis by a Diverged Homeobox Gene
2006-05-01
and then harvested for flow cytometry using appropriate antibodies. Ad.Gax blocked the expression of VCAM-1, E-selectin, and ICAM-1. DOD Idea Award...solution. Bands were visualized by chemiluminescence using the ECL-Plus reagent (Amersham, Piscataway, NJ). Flow Cytometry Cells were harvested after...33), all of whose down-regulation we have confirmed using real time quantitative RT-PCR, Western blot, and flow cytometry (Fig. 5). Moreover, Gax
Sandoval-Pinto, Elena; Padilla-Gutiérrez, Jorge Ramón; Hernández-Bello, Jorge; Martínez-Fernández, Diana Emilia; Valdés-Alvarado, Emmanuel; Muñoz-Valle, José Francisco; Flores-Salinas, H E; Valle, Yeminia
2017-08-20
L-selectin gene (SELL) is a candidate gene for the development of acute coronary syndrome (ACS) that contributes to endothelial dysfunction. The -642C>T (rs2205849) and 725C>T (rs2229569) polymorphisms have been associated with changes in gene expression, ligand affinity and increased risk of cardiovascular disease. The aim of this study was to investigate the association between the haplotypes constructed with the -642C>T and 725C>T polymorphisms of the SELL gene, the expression levels of its mRNA and the serum levels of soluble L-selectin with ACS. We recruited 615 individuals of Mexican origin matched by age, including 342 patients with ACS and 273 individuals without personal history of ischemic cardiopathy as control group (CG). Genotyping was performed by PCR-RFLP. The qPCR technique was used to analyze the expression of mRNA using TaqMan® UPL probes. The levels of soluble L-selectin were measured with ELISA. The allele variants in both polymorphisms were over-represented in the CG compared to the ACS (OR range: 0.371-0.716, p<0.006). The CT and TT haplotypes had a protective effect against the development of ACS (OR=0.401, p<0.0001; OR=0.628, p<0.0001, respectively). SELL expression was 3.076 times higher in the ACS group compared to CG (p<0.001). The levels of soluble L-selectin were similar between ACS and CG. Both polymorphisms had no effect on mRNA expression and soluble protein levels. The polymorphisms -642C>T and 725C>T of the SELL gene are protective factors against the development of ACS. There is an increased gene expression of L-selectin in ACS compared to CG in the population of Western Mexico. Copyright © 2017 Elsevier B.V. All rights reserved.
de Almeida-Pititto, Bianca; Ribeiro-Filho, Fernando Flexa; Bittencourt, Marcio Sommer; Lotufo, Paulo A; Bensenor, Isabela; Ferreira, Sandra R G
2016-01-01
This cross-sectional analysis evaluated whether determination of E-selectin concentrations could identify deterioration of cardiometabolic risk profile or subclinical atherosclerosis in individuals at low-to-moderate risk included in The Brazilian Longitudinal Study of Adult Health-ELSA-Brasil. A sample of 984 individuals from ELSA-Brasil (35-54 years) without cardiovascular disease or diabetes was stratified according to E-selectin tertiles. Traditional risk factors, inflammatory markers and categories of coronary artery calcium (CAC) scores were evaluated across the tertiles by ANOVA or Chi-squared test. In linear regression models, associations of E-selectin levels with insulin resistance index, adjusted for age, sex and adiposity were tested. The mean age of the participants was 45.8 (SD 4.9) years and 55 % were women. Mean values of age, anthropometric data, biochemical variables and inflammatory status increased across E-selectin tertiles. Also, a gradual deterioration of the cardiometabolic profile was reflected by increments in frequencies (95 % CI) of BMI ≥ 25 kg/m(2) [53.7 % (48.5-58.8), 61.0 % (56.1-66.5) and 64.2 % (59.0-69.4), p = 0.019], hypertension [18.0 % (14.1-22.8), 19.8 % (15.4-24.6) and 24.8 % (20.4-29.9), p = 0.048], pre-diabetes [62.5 % (57.4-68.3), 63.1 % (58.4-69.6) and 73.8 % (68.8-78.3), p = 0.003] and hypertriglyceridemia [22.4 % (17.9-27.2), 27.3 % (22.5-32.8) and 33.4 % (28.3-38.5), p = 0.013]. Insulinemia and HOMA-IR were independently associated with E-selectin concentration. A greater proportion of individuals with CAC scores different from zero was found in the third tertile when compared with the first and second tertiles (16.1 versus 11 %, p = 0.04, respectively). Direct associations of E-selectin with traditional risk factors slightly above their normal ranges, components of the metabolic syndrome, insulin resistance and presence of CAC suggest that this biomarker may indicate an initial atherogenic process.
Wang, Peisheng; Liu, Zhichao; Liu, Xianli; Teng, Hongming; Zhang, Cuili; Hou, Lin; Zou, Xiangyang
2014-01-01
Metastasis is one of the major causes of cancer-related death. It is a complex biological process involving multiple genes, steps, and phases. It is also closely connected to many biological activities of cancer cells, such as growth, invasion, adhesion, hematogenous metastasis, and lymphatic metastasis. Fucoidan derived from Undaria pinnatifida sporophylls (Ups-fucoidan) is a sulfated polysaccharide with more biological activities than other fucoidans. However, there is no information on the effects of Ups-fucoidan on tumor invasion and metastasis. We used the mouse hepatocarcinoma Hca-F cell line, which has high invasive and lymphatic metastasis potential in vitro and in vivo, to examine the effect of Ups-fucoidan on cancer cell invasion and metastasis. Ups-fucoidan exerted a concentration- and time-dependent inhibitory effect on tumor metastasis in vivo and inhibited Hca-F cell growth, migration, invasion, and adhesion capabilities in vitro. Ups-fucoidan inhibited growth and metastasis by downregulating vascular endothelial growth factor (VEGF) C/VEGF receptor 3, hepatocyte growth factor/c-MET, cyclin D1, cyclin-dependent kinase 4, phosphorylated (p) phosphoinositide 3-kinase, p-Akt, p-extracellular signal regulated kinase (ERK) 1/2, and nuclear transcription factor-κB (NF-κB), and suppressed adhesion and invasion by downregulating L-Selectin, and upregulating protein levels of tissue inhibitor of metalloproteinases (TIMPs). The results suggest that Ups-fucoidan suppresses Hca-F cell growth, adhesion, invasion, and metastasis capabilities and that these functions are mediated through the mechanism involving inactivation of the NF-κB pathway mediated by PI3K/Akt and ERK signaling pathways.
Wang, Peisheng; Liu, Zhichao; Liu, Xianli; Teng, Hongming; Zhang, Cuili; Hou, Lin; Zou, Xiangyang
2014-01-01
Metastasis is one of the major causes of cancer-related death. It is a complex biological process involving multiple genes, steps, and phases. It is also closely connected to many biological activities of cancer cells, such as growth, invasion, adhesion, hematogenous metastasis, and lymphatic metastasis. Fucoidan derived from Undaria pinnatifida sporophylls (Ups-fucoidan) is a sulfated polysaccharide with more biological activities than other fucoidans. However, there is no information on the effects of Ups-fucoidan on tumor invasion and metastasis. We used the mouse hepatocarcinoma Hca-F cell line, which has high invasive and lymphatic metastasis potential in vitro and in vivo, to examine the effect of Ups-fucoidan on cancer cell invasion and metastasis. Ups-fucoidan exerted a concentration- and time-dependent inhibitory effect on tumor metastasis in vivo and inhibited Hca-F cell growth, migration, invasion, and adhesion capabilities in vitro. Ups-fucoidan inhibited growth and metastasis by downregulating vascular endothelial growth factor (VEGF) C/VEGF receptor 3, hepatocyte growth factor/c-MET, cyclin D1, cyclin-dependent kinase 4, phosphorylated (p) phosphoinositide 3-kinase, p-Akt, p-extracellular signal regulated kinase (ERK) 1/2, and nuclear transcription factor-κB (NF-κB), and suppressed adhesion and invasion by downregulating L-Selectin, and upregulating protein levels of tissue inhibitor of metalloproteinases (TIMPs). The results suggest that Ups-fucoidan suppresses Hca-F cell growth, adhesion, invasion, and metastasis capabilities and that these functions are mediated through the mechanism involving inactivation of the NF-κB pathway mediated by PI3K/Akt and ERK signaling pathways. PMID:25162296
Inflammatory Mediator Profiles Differ in Sepsis Patients With and Without Bacteremia.
Mosevoll, Knut Anders; Skrede, Steinar; Markussen, Dagfinn Lunde; Fanebust, Hans Rune; Flaatten, Hans Kristian; Aßmus, Jörg; Reikvam, Håkon; Bruserud, Øystein
2018-01-01
Systemic levels of cytokines are altered during infection and sepsis. This prospective observational study aimed to investigate whether plasma levels of multiple inflammatory mediators differed between sepsis patients with and those without bacteremia during the initial phase of hospitalization. A total of 80 sepsis patients with proven bacterial infection and no immunosuppression were included in the study. Plasma samples were collected within 24 h of hospitalization, and Luminex ® analysis was performed on 35 mediators: 16 cytokines, six growth factors, four adhesion molecules, and nine matrix metalloproteases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs). Forty-two patients (52.5%) and 38 (47.5%) patients showed positive and negative blood cultures, respectively. There were significant differences in plasma levels of six soluble mediators between the two "bacteremia" and "non-bacteremia" groups, using Mann-Whitney U test ( p < 0.0014): tumor necrosis factor alpha (TNFα), CCL4, E-selectin, vascular cell adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), and TIMP-1. Ten soluble mediators also significantly differed in plasma levels between the two groups, with p -values ranging between 0.05 and 0.0014: interleukin (IL)-1ra, IL-10, CCL2, CCL5, CXCL8, CXCL11, hepatocyte growth factor, MMP-8, TIMP-2, and TIMP-4. VCAM-1 showed the most robust results using univariate and multivariate logistic regression. Using unsupervised hierarchical clustering, we found that TNFα, CCL4, E-selectin, VCAM-1, ICAM-1, and TIMP-1 could be used to discriminate between patients with and those without bacteremia. Patients with bacteremia were mainly clustered in two separate groups (two upper clusters, 41/42, 98%), with higher levels of the mediators. One (2%) patient with bacteremia was clustered in the lower cluster, which compromised most of the patients without bacteremia (23/38, 61%) (χ 2 test, p < 0.0001). Our study showed that analysis of the plasma inflammatory mediator profile could represent a potential strategy for early identification of patients with bacteremia.
Bottino, Daniel Alexandre; Lopes, Flávia Gomes; de Oliveira, Francisco José; Mecenas, Anete de Souza; Clapauch, Ruth; Bouskela, Eliete
2015-04-08
There is a functional decline of endothelial- dependent vasodilatation in the aging process. The aims of this study were to investigate if various microcirculatory parameters could correlate to anthropometrical variables, oxidative stress and inflammatory biomarkers in successful aging and compare the results to young healthy controls. Healthy elderly women (HE, 74.0 ± 8.7 years, n = 11) and young controls (YC, 23.1 ± 3.6 years, n = 24) were evaluated through nailfold videocapillaroscopy (NVC), venous occlusion plethysmography (VOP) and laboratorial analysis. Functional capillary density (FCD) and diameters, maximum red blood cell velocity (RBCVmax) during the reactive hyperemia response/RBCVbaseline after 1 min arterial occlusion at the finger base, time to reach RBCVmax were determined by NVC, peak increment of forearm blood flow (FBF) during the reactive hyperemia response (%Hyper) and after 0.4 mg sublingual nitroglycerin (%Nitro) by VOP and lipidogram, fibrinogen, fasting and postload glucose, oxidized LDL-cholesterol (oxLDL), sICAM, sVCAM, sE-Selectin, interleukines 1 and 6 and TNF-α by laboratorial analysis. Correlations and linear multiple regression (LMR) between %Hyper, %Nitro, microcirculatory parameters, oxidative stress and inflammatory biomarkers were investigated. sVCAM, sE-Selectin and oxLDL were higher and RBCVmax/RBCVbaseline and %Hyper lower in HE, while %Nitro and FCD remained unchanged. Fibrinogen, LDL-cholesterol, oxLDL correlated negatively to %Hyper while sVCAM correlated negatively to %Hyper and RBCVmax/RBCVbaseline. Healthy aged women presented dilated capillaries with sustained perfusion and endothelial dysfunction with preserved vascular smooth muscle reactivity. Fibrinogen, LDL-cholesterol, oxidized-LDL and sVCAM correlated negatively to endothelial function but not to microcirculatory parameters. Oxidized-LDL and sVCAM could determine %Hyper through LMR. Oxidized-LDL and sVCAM might be used as endothelial dysfunction biomarkers for elderly with normal cardiovascular risk factors.
Arouca, Aline; Michels, Nathalie; Moreno, Luis A; González-Gil, Esther M; Marcos, Ascensión; Gómez, Sonia; Díaz, Ligia Esperanza; Widhalm, Kurt; Molnár, Dénes; Manios, Yannis; Gottrand, Frederic; Kafatos, Antonio; Kersting, Mathilde; Sjöström, Michael; de la O, Alejandro; Ferrari, Marika; Huybrechts, Inge; Gonzalez-Gross, Marcela; De Henauw, Stefaan
2017-04-18
To test whether the Mediterranean diet score and each food-subgroup is associated with inflammatory biomarkers in European adolescents. In 464 adolescents (13-17 years) of the European HELENA study, data were available on body composition, inflammation markers, and food intake determined by two computerized 24-h recalls. The Mediterranean diet score and its food-subgroups (Vegetables, Fruits and Nuts, Pulses, Cereal and Roots, Monounsaturated/Saturated fat ratio, Dairy, Fish, Meat and Alcohol) were evaluated. A set of inflammation-related biomarkers was measured: IL-1, IL-2, IL-4, IL-5, IL-6, IL-10, TGFβ-1, TNF-α, sVCAM-1, sICAM1, sE-selectin, white blood cells, lymphocytes, CD3, CRP, GGT, ALT, and homocysteine. Multivariate and multiple linear regression analyses were adjusted for age, sex, country, socioeconomic status, paternal and maternal education, adiposity, and smoking habits. The Mediterranean diet score was positively associated with CRP, and negatively with sVCAM-1. The subgroups showed the following positive/negative associations: Vegetables with IL-10(+), CRP(+), CD3(+), ALT(+), lymphocytes(+), sE-selectin(-); Fruits and Nuts with IL-4(-), TNF-alpha; Pulses with IL-5(+), IL-6(+), IL-2(-); Cereals and Roots with IL-6(-), IL-10(-); Monounsaturated/Saturated-fat ratio with IL-6(+), TGFβ-1(+), sVCAM-1(+boys, -girls), homocysteine(-); Dairy with IL-1(+), IL-5(+), IL-6(+), IL-10(+), TGFβ-1(+), homocysteine(-); Fish with homocysteine(-); Meat with IL-2(+), IL-10(+); Alcohol with CRP(+), lymphocytes(-). Sex differences were found. Some specific food-inflammation associations were found, suggesting that diet is to a certain extent already related to inflammation in adolescents and can be used in disease prevention. Also some counterintuitive results were found, which might be due to grouping very different foods into a single group, besides considering that the human body may respond differently depending on the interaction between diet, lifestyle, genetics, biochemical individuality, age and sex.
Williams, Pete A; Braine, Catherine E; Foxworth, Nicole E; Cochran, Kelly E; John, Simon W M
2017-04-26
We previously reported a profound long-term neuroprotection subsequent to a single radiation-therapy in the DBA/2J mouse model of glaucoma. This neuroprotection prevents entry of monocyte-like immune cells into the optic nerve head during glaucoma. Gene expression studies in radiation-treated mice implicated Glycam1 in this protection. Glycam1 encodes a proteoglycan ligand for L-selectin and is an excellent candidate to modulate immune cell entry into the eye. Here, we experimentally test the hypothesis that radiation-induced over-expression of Glycam1 is a key component of the neuroprotection. We generated a null allele of Glycam1 on a DBA/2J background. Gene and protein expression of Glycam1, monocyte entry into the optic nerve head, retinal ganglion cell death, and axon loss in the optic nerve were assessed. Radiation therapy potently inhibits monocyte entry into the optic nerve head and prevents retinal ganglion cell death and axon loss. DBA/2J mice carrying a null allele of Glycam1 show increased monocyte entry and increased retinal ganglion cell death and axon loss following radiation therapy, but the majority of optic nerves were still protected by radiation therapy. Although GlyCAM1 is an L-selectin ligand, its roles in immunity are not yet fully defined. The current study demonstrates a partial role for GlyCAM1 in radiation-mediated protection. Furthermore, our results clearly show that GlyCAM1 levels modulate immune cell entry from the vasculature into neural tissues. As Glycam1 deficiency has a more profound effect on cell entry than on neurodegeneration, further experiments are needed to precisely define the role of monocyte entry in DBA/2J glaucoma. Nevertheless, GlyCAM1's function as a negative regulator of extravasation may lead to novel therapeutic strategies for an array of common conditions involving inflammation.
Roe, Kelsey; Orillo, Beverly; Verma, Saguna
2014-01-01
Characterizing the mechanisms by which West Nile virus (WNV) causes blood-brain barrier (BBB) disruption, leukocyte infiltration into the brain and neuroinflammation is important to understand the pathogenesis of WNV encephalitis. Here, we examined the role of endothelial cell adhesion molecules (CAMs) in mediating the adhesion and transendothelial migration of leukocytes across human brain microvascular endothelial cells (HBMVE). Infection with WNV (NY99 strain) significantly induced ICAM-1, VCAM-1, and E-selectin in human endothelial cells and infected mice brain, although the levels of their ligands on leukocytes (VLA-4, LFA-1and MAC-1) did not alter. The permeability of the in vitro BBB model increased dramatically following the transmigration of monocytes and lymphocytes across the models infected with WNV, which was reversed in the presence of a cocktail of blocking antibodies against ICAM-1, VCAM-1, and E-selectin. Further, WNV infection of HBMVE significantly increased leukocyte adhesion to the HBMVE monolayer and transmigration across the infected BBB model. The blockade of these CAMs reduced the adhesion and transmigration of leukocytes across the infected BBB model. Further, comparison of infection with highly neuroinvasive NY99 and non-lethal (Eg101) strain of WNV demonstrated similar level of virus replication and fold-increase of CAMs in HBMVE cells suggesting that the non-neuropathogenic response of Eg101 is not because of its inability to infect HBMVE cells. Collectively, these results suggest that increased expression of specific CAMs is a pathological event associated with WNV infection and may contribute to leukocyte infiltration and BBB disruption in vivo. Our data further implicate that strategies to block CAMs to reduce BBB disruption may limit neuroinflammation and virus-CNS entry via 'Trojan horse' route, and improve WNV disease outcome.
Close, Taylor E; Cepinskas, Gediminas; Omatsu, Tatsushi; Rose, Keeley L; Summers, Kelly; Patterson, Eric K; Fraser, Douglas D
2013-08-01
To determine if the DKA-induced inflammation in juvenile mice provokes activation and dysfunction of CVECs. DKA in juvenile mice was induced with administration of STZ and ALX. Blood from DKA mice was assessed for cytokines and soluble cell adhesion proteins, and either DKA plasma or exogenous compounds were applied to immortalized bEND3. DKA increased circulating levels of IL-6, IL-8(KC), MCP-1, IL-10, sE-selectin, sICAM-1, and sVCAM-1. Stimulation of bEND3 with DKA plasma caused cellular activation (increased ROS and activation of NF-κΒ), upregulation of a proadhesive phenotype (E-selectin, ICAM-1, and VCAM-1), and increased leukocyte-bEND3 interaction (leukocyte rolling/adhesion). TEER, a measure of bEND3 monolayer integrity, was decreased by DKA plasma. Activation and dysfunction of bEND3 with DKA plasma were suppressed by plasma heat treatment (56°C, 1 hour) and replicated with the application of DKA recombinant cytomix (IL-6, IL-8[KC], MCP-1, and IL-10), implicating circulating inflammatory protein(s) as mediators. Treatment of bEND3 with β-OH-butyrate, the main ketone elevated in DKA, failed to mimic the DKA plasma-induced activation and dysfunction of bEND3. DKA elicits systemic inflammation associated with CVEC activation and dysfunction, possibly contributing to DKA-associated intracranial microvascular complications. © 2013 John Wiley & Sons Ltd.
Holloway, Paul M; Gillespie, Scarlett; Becker, Felix; Vital, Shantel A; Nguyen, Victoria; Alexander, J Steven; Evans, Paul C; Gavins, Felicity N E
2016-10-01
Sepsis is often characterized by an acute brain inflammation and dysfunction, which is associated with increased morbidity and mortality worldwide. Preventing cerebral leukocyte recruitment may provide the key to halt progression of systemic inflammation to the brain. Here we investigated the influence of the anti-inflammatory and anti-oxidant compound, sulforaphane (SFN) on lipopolysaccharide (LPS)-induced cellular interactions in the brain. The inflammatory response elicited by LPS was blunted by SFN administration (5 and 50mg/kg i.p.) 24h prior to LPS treatment in WT animals, as visualized and quantified using intravital microscopy. This protective effect of SFN was lost in Nrf2-KO mice at the lower dose tested, however 50mg/kg SFN revealed a partial effect, suggesting SFN works in part independently of Nrf2 activity. In vitro, SFN reduced neutrophil recruitment to human brain endothelial cells via a down regulation of E-selectin and vascular cell adhesion molecule 1 (VCAM-1). Our data confirm a fundamental dose-dependent role of SFN in limiting cerebral inflammation. Furthermore, our data demonstrate that not only is Nrf2 in part essential in mediating these neuroprotective effects, but they occur via down-regulation of E-selectin and VCAM-1. In conclusion, SFN may provide a useful therapeutic drug to reduce cerebral inflammation in sepsis. Copyright © 2016 Elsevier Inc. All rights reserved.
Immunophenotyping of posttraumatic neutrophils on a routine haematology analyser.
Groeneveld, Kathelijne Maaike; Heeres, Marjolein; Leenen, Loek Petrus Hendrikus; Huisman, Albert; Koenderman, Leo
2012-01-01
Flow cytometry markers have been proposed as useful predictors for the occurrence of posttraumatic inflammatory complications. However, currently the need for a dedicated laboratory and the labour-intensive analytical procedures make these markers less suitable for clinical practice. We tested an approach to overcome these limitations. Neutrophils of healthy donors were incubated with antibodies commonly used in trauma research: CD11b (MAC-1), L-selectin (CD62L), FcγRIII (CD16), and FcγRII (CD32) in active form (MoPhab A27). Flow cytometric analysis was performed both on a FACSCalibur, a standard flow cytometer, and on a Cell-Dyn Sapphire, a routine haematology analyser. There was a high level of agreement between the two types of analysers, with 41% for FcγRIII, 80% for L-selectin, 98% for CD11b, and even a 100% agreement for active FcγRII. Moreover, analysis on the routine haematology analyser was possible in less than a quarter of the time in comparison to the flow cytometer. Analysis of neutrophil phenotype on the Cell-Dyn Sapphire leads to the same conclusion compared to a standard flow cytometer. The markedly reduced time necessary for analysis and reduced labour intensity constitutes a step forward in implementation of this type of analysis in clinical diagnostics in trauma research. Copyright © 2012 Kathelijne Maaike Groeneveld et al.
Wun, Ted; McCavit, Timothy L.; De Castro, Laura M.; Krishnamurti, Lakshmanan; Lanzkron, Sophie; Hsu, Lewis L.; Smith, Wally R.; Rhee, Seungshin; Magnani, John L.; Thackray, Helen
2015-01-01
Treatment of vaso-occlusive crises (VOC) or events in sickle cell disease (SCD) remains limited to symptom relief with opioids. Animal models support the effectiveness of the pan-selectin inhibitor GMI-1070 in reducing selectin-mediated cell adhesion and abrogating VOC. We studied GMI-1070 in a prospective multicenter, randomized, placebo-controlled, double-blind, phase 2 study of 76 SCD patients with VOC. Study drug (GMI-1070 or placebo) was given every 12 hours for up to 15 doses. Other treatment was per institutional standard of care. All subjects reached the composite primary end point of resolution of VOC. Although time to reach the composite primary end point was not statistically different between the groups, clinically meaningful reductions in mean and median times to VOC resolution of 41 and 63 hours (28% and 48%, P = .19 for both) were observed in the active treatment group vs the placebo group. As a secondary end point, GMI-1070 appeared safe in acute vaso-occlusion, and adverse events were not different in the two arms. Also in secondary analyses, mean cumulative IV opioid analgesic use was reduced by 83% with GMI-1070 vs placebo (P = .010). These results support a phase 3 study of GMI-1070 (now rivipansel) for SCD VOC. This trial was registered at www.clinicaltrials.gov as #NCT01119833. PMID:25733584
Rocha, Natalia G.; Sales, Allan R. K.; Penedo, Leticia A.; Pereira, Felipe S.; Silva, Mayra S.; Miranda, Renan L.; Silva, Jemima F. R.; Silva, Bruno M.; Santos, Aline A.; Nobrega, Antonio C. L.
2015-01-01
Increased levels of adhesion molecules or metalloproteinases (MMPs) may indicate endothelial dysfunction. Exercise mobilizes circulating angiogenic cells (CACs) from bone marrow in healthy subjects, improving vascular function. However, it is unclear whether this mechanism is preserved in the early stages of metabolic syndrome (early MetS). We aimed to evaluate the acute effects of exercise on adhesion molecules, angiogenic factors, MMPs, and CACs in early MetS. Fifteen subjects with early MetS and nine healthy controls underwent an exercise session and a nonexercise session, randomly. Adhesion molecules, angiogenic factors, CACs, and MMPs were evaluated before and after exercise or nonexercise sessions. At baseline, levels of sE-selectin, sICAM-1, and MMP-9 were higher in early MetS than in controls (P ≤ 0.03). After exercise, sE-selectin, sICAM-1, and MMP-9 levels were still higher in early MetS (P < 0.05). Subjects with early MetS presented less CACs (P = 0.02) and higher MMP-9 activity (P ≤ 0.04), while healthy controls presented higher MMP-2 activity after exercise. There was no difference between moments in nonexercise session (P > 0.05). In conclusion, subjects with early MetS already presented impaired endothelial function at rest along with a decrease in CACs and an increase in MMP-9 activity in response to exercise. PMID:26557715
Rocha, Natalia G; Sales, Allan R K; Penedo, Leticia A; Pereira, Felipe S; Silva, Mayra S; Miranda, Renan L; Silva, Jemima F R; Silva, Bruno M; Santos, Aline A; Nobrega, Antonio C L
2015-01-01
Increased levels of adhesion molecules or metalloproteinases (MMPs) may indicate endothelial dysfunction. Exercise mobilizes circulating angiogenic cells (CACs) from bone marrow in healthy subjects, improving vascular function. However, it is unclear whether this mechanism is preserved in the early stages of metabolic syndrome (early MetS). We aimed to evaluate the acute effects of exercise on adhesion molecules, angiogenic factors, MMPs, and CACs in early MetS. Fifteen subjects with early MetS and nine healthy controls underwent an exercise session and a nonexercise session, randomly. Adhesion molecules, angiogenic factors, CACs, and MMPs were evaluated before and after exercise or nonexercise sessions. At baseline, levels of sE-selectin, sICAM-1, and MMP-9 were higher in early MetS than in controls (P ≤ 0.03). After exercise, sE-selectin, sICAM-1, and MMP-9 levels were still higher in early MetS (P < 0.05). Subjects with early MetS presented less CACs (P = 0.02) and higher MMP-9 activity (P ≤ 0.04), while healthy controls presented higher MMP-2 activity after exercise. There was no difference between moments in nonexercise session (P > 0.05). In conclusion, subjects with early MetS already presented impaired endothelial function at rest along with a decrease in CACs and an increase in MMP-9 activity in response to exercise.
2013-01-01
Background Platelet activation has been implicated in the pathogenesis of sickle cell disease (SCD) suggesting antiplatelet agents may be therapeutic. To evaluate the safety of prasugrel, a thienopyridine antiplatelet agent, in adult patients with SCD, we conducted a double-blind, randomized, placebo-controlled study. Methods The primary endpoint, safety, was measured by hemorrhagic events requiring medical intervention. Patients were randomized to prasugrel 5 mg daily (n = 41) or placebo (n = 21) for 30 days. Platelet function by VerifyNow® P2Y12 and vasodilator-stimulated phosphoprotein assays at days 10 and 30 were significantly inhibited in prasugrel- compared with placebo-treated SCD patients. Results There were no hemorrhagic events requiring medical intervention in either study arm. Mean pain rate (percentage of days with pain) and intensity in the prasugrel arm were decreased compared with placebo. However, these decreases did not reach statistical significance. Platelet surface P-selectin and plasma soluble P-selectin, biomarkers of in vivo platelet activation, were significantly reduced in SCD patients receiving prasugrel compared with placebo. In sum, prasugrel was well tolerated and not associated with serious hemorrhagic events. Conclusions Despite the small size and short duration of this study, there was a decrease in platelet activation biomarkers and a trend toward decreased pain. PMID:23414938
Aldasoro Arguinano, Alex-Ander; Dadé, Sébastien; Stathopoulou, Maria; Derive, Marc; Coumba Ndiaye, Ndeye; Xie, Ting; Masson, Christine; Gibot, Sébastien
2017-01-01
High levels of TREM-1 are associated with cardiovascular and inflammatory diseases risks and the most recent studies have showed that TREM-1 deletion or blockade is associated with up to 60% reduction of the development of atherosclerosis. So far, it is unknown whether the levels of TREM-1 protein are genetically regulated. Moreover, TREM family receptors have been suggested to regulate the cellular adhesion process. The goal of this study was to investigate whether polymorphisms within TREM-1 are regulating the variants of serum TREM-1 levels and the expression levels of their mRNA. Furthermore, we aimed to point out associations between polymorphisms on TREM-1 and blood levels of selectins. Among the 10 SNPs studied, the minor allele T of rs2234246, was associated with increased sTREM-1 in the discovery population (p-value = 0.003), explaining 33% of its variance, and with increased levels of mRNA (p-value = 0.007). The same allele was associated with increased soluble L-selectin levels (p-value = 0.011). The higher levels of sTREM-1 and L-selectin were confirmed in the replication population (p-value = 0.0007 and p-value = 0.018 respectively). We demonstrated for the first time one SNP on TREM-1, affecting its expression levels. These novel results, support the hypothesis that TREM-1 affects monocytes extravasation and accumulation processes leading to atherogenesis and atherosclerotic plaque progression, possibly through increased inflammation and subsequent higher expression of sL-selectin. PMID:28771614
Ryu, Jae Choon; Davidson, Brian P; Xie, Aris; Qi, Yue; Zha, Daogang; Belcik, J Todd; Caplan, Evan S; Woda, Juliana M; Hedrick, Catherine C; Hanna, Richard N; Lehman, Nicholas; Zhao, Yan; Ting, Anthony; Lindner, Jonathan R
2013-02-12
Stem cells are thought to enhance vascular remodeling in ischemic tissue in part through paracrine effects. Using molecular imaging, we tested the hypothesis that treatment of limb ischemia with multipotential adult progenitor cells (MAPCs) promotes recovery of blood flow through the recruitment of proangiogenic monocytes. Hind-limb ischemia was produced in mice by iliac artery ligation, and MAPCs were administered intramuscularly on day 1. Optical imaging of luciferase-transfected MAPCs indicated that cells survived for 1 week. Contrast-enhanced ultrasound on days 3, 7, and 21 showed a more complete recovery of blood flow and greater expansion of microvascular blood volume in MAPC-treated mice than in controls. Fluorescent microangiography demonstrated more complete distribution of flow to microvascular units in MAPC-treated mice. On ultrasound molecular imaging, expression of endothelial P-selectin and intravascular recruitment of CX(3)CR-1-positive monocytes were significantly higher in MAPC-treated mice than in the control groups at days 3 and 7 after arterial ligation. Muscle immunohistology showed a >10-fold-greater infiltration of monocytes in MAPC-treated than control-treated ischemic limbs at all time points. Intravital microscopy of ischemic or tumor necrosis factor-α-treated cremaster muscle demonstrated that MAPCs migrate to perimicrovascular locations and potentiate selectin-dependent leukocyte rolling. In vitro migration of human CD14(+) monocytes was 10-fold greater in response to MAPC-conditioned than basal media. In limb ischemia, MAPCs stimulate the recruitment of proangiogenic monocytes through endothelial activation and enhanced chemotaxis. These responses are sustained beyond the MAPC lifespan, suggesting that paracrine effects promote flow recovery by rebalancing the immune response toward a more regenerative phenotype.
Molecular Imaging of the Paracrine Proangiogenic Effects of Progenitor Cell Therapy in Limb Ischemia
Ryu, Jae Choon; Davidson, Brian P.; Xie, Aris; Qi, Yue; Zha, Daogang; Belcik, J. Todd; Caplan, Evan S.; Woda, Juliana M.; Hedrick, Catherine C.; Hanna, Richard N.; Lehman, Nicholas; Zhao, Yan; Ting, Anthony; Lindner, Jonathan R.
2013-01-01
Background Stem cells are thought to enhance vascular remodeling in ischemic tissue in part through paracrine effects. Using molecular imaging, we tested the hypothesis that treatment of limb ischemia with multipotential adult progenitor cells (MAPC) promotes recovery of blood flow through the recruitment of pro-angiogenic monocytes. Methods and Results Hindlimb ischemia was produced in mice by iliac artery ligation and MAPC were administered intramuscularly on day 1. Optical imaging of luciferase-transfected MAPC indicated that cells survived for 1 week. Contrast-enhanced ultrasound on day 3, 7 and 21 showed a more complete recovery of blood flow and greater expansion of microvascular blood volume in MAPC-treated mice than in controls. Fluorescent microangiography demonstrated more complete distribution of flow to microvascular units in MAPC-treated mice. On ultrasound molecular imaging, expression of endothelial P-selectin and intravascular recruitment of CX3CR-1-positive monocytes was significantly higher in MAPC-treated than control groups at day 3 and 7 after arterial ligation. Muscle immunohistology showed a >10-fold greater infiltration of monocytes in MAPC-treated than control-treated ischemic limbs at all time points. Intravital microscopy of ischemic or TNF-α-treated cremaster muscle demonstrated that MAPC migrate to peri-microvascular locations and potentiate selectin-dependent leukocyte rolling. In vitro migration of human CD14+ monocytes was 10-fold greater in response to MAPC-conditioned than basal media. Conclusions In limb ischemia, MAPC stimulate the recruitment of pro-angiogenic monocytes through endothelial activation and enhanced chemotaxis. These responses are sustained beyond MAPC lifespan suggesting that paracrine effects promote flow recovery by rebalancing the immune response toward a more regenerative phenotype. PMID:23307829
Mazzocca, Augustus D; McCarthy, Mary Beth R; Intravia, Jessica; Beitzel, Knut; Apostolakos, John; Cote, Mark P; Bradley, James; Arciero, Robert A
2013-04-01
The purpose of this study was to quantify the extent of the anti-inflammatory effect of platelet-rich plasma (PRP) in a controlled in vitro environment. Through the stimulation of human umbilical vein endothelial cells with inflammatory cytokines (tumor necrosis factor α and interferon γ), cell adhesion molecule expression (E-selectin, vascular cell adhesion molecule, and human leukocyte antigen DR) and PRP's anti-inflammatory effect can be measured. PRP was produced from 3 individuals using a single-spin (PRPLP) process. Treatment groups include negative (unstimulated) controls, positive (stimulated) controls, ketorolac tromethamine, methylprednisolone, PRP, ketorolac-PRP, and methylprednisolone-PRP. A fluorescence assay of the cellular inflammation markers was measured by the BioTek Synergy HT plate reader (BioTek Instruments, Winooski, VT) at 0, 1, 2, and 5 days. At days 2 and 5, methylprednisolone treatment showed a 2.1- to 5.8-fold reduction (P < .05) in inflammation markers over PRP. In addition, PRP and ketorolac showed a 1.4- to 2.5-fold reduction (P < .05) in cellular inflammation markers over the control. There was no statistically significant difference between ketorolac and PRP. Although PRP and ketorolac reduced cellular inflammation markers (E-selectin, vascular cell adhesion molecule, and human leukocyte antigen DR) compared with control, neither caused as great a reduction as methylprednisolone. Although PRP and ketorolac did not produce as significant a reduction in cellular inflammation markers as methylprednisolone, they reduced cellular inflammation compared with the control. These agents may have clinical application as injectable anti-inflammatory medications. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Smith, Peter L; Myers, Jay T; Rogers, Clare E; Zhou, Lan; Petryniak, Bronia; Becker, Daniel J; Homeister, Jonathon W; Lowe, John B
2002-08-19
Glycoprotein fucosylation enables fringe-dependent modulation of signal transduction by Notch transmembrane receptors, contributes to selectin-dependent leukocyte trafficking, and is faulty in leukocyte adhesion deficiency (LAD) type II, also known as congenital disorder of glycosylation (CDG)-IIc, a rare human disorder characterized by psychomotor defects, developmental abnormalities, and leukocyte adhesion defects. We report here that mice with an induced null mutation in the FX locus, which encodes an enzyme in the de novo pathway for GDP-fucose synthesis, exhibit a virtually complete deficiency of cellular fucosylation, and variable frequency of intrauterine demise determined by parental FX genotype. Live-born FX(-/-) mice exhibit postnatal failure to thrive that is suppressed with a fucose-supplemented diet. FX(-/-) adults suffer from an extreme neutrophilia, myeloproliferation, and absence of leukocyte selectin ligand expression reminiscent of LAD-II/CDG-IIc. Contingent restoration of leukocyte and endothelial selectin ligand expression, general cellular fucosylation, and normal postnatal physiology is achieved by modulating dietary fucose to supply a salvage pathway for GDP-fucose synthesis. Conditional control of fucosylation in FX(-/-) mice identifies cellular fucosylation events as essential concomitants to fertility, early growth and development, and leukocyte adhesion.
Pichierri, Fabio; Matsuo, Yo
2002-08-01
Semiempirical molecular orbital (MO) calculations with an implicit treatment of the water environment were employed in order to assess whether the sialyl Lewis(X) (sLe(X)) tetrasaccharide binds to E-selectin in the anionic or neutral (i.e., protonated) state. The analysis of the frontier molecular orbitals, electrostatic potential surfaces, and conformational behavior of the sugar indicates that its neutral form possesses the necessary characteristics for binding. In particular, the LUMO level of the neutral sLe(X) molecule is localized both on the carboxylic group of the N-acetyl neuraminic acid (NeuNAc) residue and on the nearby glycosidic linkage. These two moieties interact with the Arg97 residue of E-selectin, as revealed by a recent crystal structure analysis of the E-selectin/sLe(X) complex. The energetics of this specific interaction was investigated with the aid of ab initio Hartree-Fock MO calculations, which resulted in a BSSE-corrected binding energy of 16.63 kcal/mol. Our observations could open up new perspectives in the design of sLe(X) mimics.
Lapi, Dominga; Sabatino, Lina; Altobelli, Giovanna Giuseppina; Mondola, Paolo; Cimini, Vincenzo; Colantuoni, Antonio
2010-01-01
Propionyl-l-carnitine (pLc) exerts protective effects in different experimental models of ischemia-reperfusion (I/R). The aim of the present study was to assess the effects of intravenously and topically applied pLc on microvascular permeability increase induced by I/R in the hamster cheek pouch preparation. The hamster cheek pouch microcirculation was visualized by fluorescence microscopy. Microvascular permeability, leukocyte adhesion to venular walls, perfused capillary length, and capillary red blood cell velocity (V(RBC)) were evaluated by computer-assisted methods. E-selectin expression was assessed by in vitro analysis. Lipid peroxidation and reactive oxygen species (ROS) formation were determined by thiobarbituric acid-reactive substances (TBARS) and 2'-7'-dichlorofluorescein (DCF), respectively. In control animals, I/R caused a significant increase in permeability and in the leukocyte adhesion in venules. Capillary perfusion and V(RBC) decreased. TBARS levels and DCF fluorescence significantly increased compared with baseline. Intravenously infused pLc dose-dependently prevented leakage and leukocyte adhesion, preserved capillary perfusion, and induced vasodilation at the end of reperfusion, while ROS concentration decreased. Inhibition of nitric oxide synthase prior to pLc caused vasoconstriction and partially blunted the pLc-induced protective effects; inhibition of the endothelium-derived hyperpolarizing factor (EDHF) abolished pLc effects. Topical application of pLc on cheek pouch membrane produced the same effects as observed with intravenous administration. pLc decreased the E-selectin expression. pLc prevents microvascular changes induced by I/R injury. The reduction of permeability increase could be mainly due to EDHF release induce vasodilatation together with NO. The reduction of E-selectin expression prevents leukocyte adhesion and permeability increase.
Arata-Kawai, Hanayo; Singer, Mark S; Bistrup, Annette; Zante, Annemieke van; Wang, Yang-Qing; Ito, Yuki; Bao, Xingfeng; Hemmerich, Stefan; Fukuda, Minoru; Rosen, Steven D
2011-01-01
L-selectin initiates lymphocyte interactions with high endothelial venules (HEVs) of lymphoid organs through binding to ligands with specific glycosylation modifications. 6-Sulfo sLe(x), a sulfated carbohydrate determinant for L-selectin, is carried on core 2 and extended core 1 O-glycans of HEV-expressed glycoproteins. The MECA-79 monoclonal antibody recognizes sulfated extended core 1 O-glycans and partially blocks lymphocyte-HEV interactions in lymphoid organs. Recent evidence has identified the contribution of 6-sulfo sLe(x) carried on N-glycans to lymphocyte homing in mice. Here, we characterize CL40, a novel IgG monoclonal antibody. CL40 equaled or surpassed MECA-79 as a histochemical staining reagent for HEVs and HEV-like vessels in mouse and human. Using synthetic carbohydrates, we found that CL40 bound to 6-sulfo sLe(x) structures, on both core 2 and extended core 1 structures, with an absolute dependency on 6-O-sulfation. Using transfected CHO cells and gene-targeted mice, we observed that CL40 bound its epitope on both N-glycans and O-glycans. Consistent with its broader glycan-binding, CL40 was superior to MECA-79 in blocking lymphocyte-HEV interactions in both wild-type mice and mice deficient in forming O-glycans. This superiority was more marked in human, as CL40 completely blocked lymphocyte binding to tonsillar HEVs, whereas MECA-79 inhibited only 60%. These findings extend the evidence for the importance of N-glycans in lymphocyte homing in mouse and indicate that this dependency also applies to human lymphoid organs. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Lee, Dong-Kee; Kang, Jae-Eun; Park, Hye-Jin; Kim, Myung-Hwa; Yim, Tae-Hee; Kim, Jung-Min; Heo, Min-Kyu; Kim, Kyu-Yeun; Kwon, Ho Jeong; Hur, Man-Wook
2005-07-29
The POZ domain is a highly conserved protein-protein interaction motif found in many regulatory proteins. Nuclear factor-kappaB (NF-kappaB) plays a key role in the expression of a variety of genes in response to infection, inflammation, and stressful conditions. We found that the POZ domain of FBI-1 (factor that binds to the inducer of short transcripts of human immunodeficiency virus-1) interacted with the Rel homology domain of the p65 subunit of NF-kappaB in both in vivo and in vitro protein-protein interaction assays. FBI-1 enhanced NF-kappaB-mediated transcription of E-selectin genes in HeLa cells upon phorbol 12-myristate 13-acetate stimulation and overcame gene repression by IkappaB alpha or IkappaB beta. In contrast, the POZ domain of FBI-1, which is a dominant-negative form of FBI-1, repressed NF-kappaB-mediated transcription, and the repression was cooperative with IkappaB alpha or IkappaB beta. In contrast, the POZ domain tagged with a nuclear localization sequence polypeptide of FBI-1 enhanced NF-kappaB-responsive gene transcription, suggesting that the molecular interaction between the POZ domain and the Rel homology domain of p65 and the nuclear localization by the nuclear localization sequence are important in the transcription enhancement mediated by FBI-1. Confocal microscopy showed that FBI-1 increased NF-kappaB movement into the nucleus and increased the stability of NF-kappaB in the nucleus, which enhanced NF-kappaB-mediated transcription of the E-selectin gene. FBI-1 also interacted with IkappaB alpha and IkappaB beta.
Lapi, Dominga; Sabatino, Lina; Altobelli, Giovanna Giuseppina; Mondola, Paolo; Cimini, Vincenzo; Colantuoni, Antonio
2010-01-01
Background and purpose Propionyl-l-carnitine (pLc) exerts protective effects in different experimental models of ischemia–reperfusion (I/R). The aim of the present study was to assess the effects of intravenously and topically applied pLc on microvascular permeability increase induced by I/R in the hamster cheek pouch preparation. Methods The hamster cheek pouch microcirculation was visualized by fluorescence microscopy. Microvascular permeability, leukocyte adhesion to venular walls, perfused capillary length, and capillary red blood cell velocity (VRBC) were evaluated by computer-assisted methods. E-selectin expression was assessed by in vitro analysis. Lipid peroxidation and reactive oxygen species (ROS) formation were determined by thiobarbituric acid-reactive substances (TBARS) and 2′-7′-dichlorofluorescein (DCF), respectively. Results In control animals, I/R caused a significant increase in permeability and in the leukocyte adhesion in venules. Capillary perfusion and VRBC decreased. TBARS levels and DCF fluorescence significantly increased compared with baseline. Intravenously infused pLc dose-dependently prevented leakage and leukocyte adhesion, preserved capillary perfusion, and induced vasodilation at the end of reperfusion, while ROS concentration decreased. Inhibition of nitric oxide synthase prior to pLc caused vasoconstriction and partially blunted the pLc-induced protective effects; inhibition of the endothelium-derived hyperpolarizing factor (EDHF) abolished pLc effects. Topical application of pLc on cheek pouch membrane produced the same effects as observed with intravenous administration. pLc decreased the E-selectin expression. Conclusions pLc prevents microvascular changes induced by I/R injury. The reduction of permeability increase could be mainly due to EDHF release induce vasodilatation together with NO. The reduction of E-selectin expression prevents leukocyte adhesion and permeability increase. PMID:21423374
Zhang, X; Brewer, L; Walcheck, B; Johnson, A; Pease, L R; Njenga, M K
2001-06-01
Mice with targeted deletion of L-selectin gene (L-sel(-/-)) were used to investigate the role of adhesion molecule in immunologic responses following virus infection in the central nervous system (CNS). L-Sel(-/-) mice from a resistant H-2(b) genetic background and parental wild-type H-2(b) (C57BL/6) mice were infected with Theiler's murine encephalomyelitis virus (TMEV) intracerebrally and the kinetics of virus replication and infiltration of immune cells in the CNS determined. The levels of infectious TMEV, as measured by plaque assay at 3, 7, 14, and 28 days after infection were between 4 and 6 log(10) PFU of virus per gram of CNS tissues at days 3 and 7 post-infection, and then decreased to undetectable levels by day 14 after infection in both strains of mice. The L-sel(-/-) mice had decreased numbers of CD8(+) T lymphocytes (17.72%+/-2.4) infiltrating into the CNS at 7 days post-infection when compared to wild-type mice (31.02%+/-7.5). In addition, the L-sel(-/-) mice had significantly lower levels of TMEV-specific serum IgG resulting in lower virus neutralizing activity of the serum when compared to wild-type mice. However, the L-sel(-/-) mice had 2.5-fold increase in B lymphocytes in the CNS (8.29%+/-1.1) when compared to wild-type mice (3.2%+/-0.4). Taken together, these data indicate that L-selectin plays a role in recruitment of B and CD8(+) T lymphocytes into the CNS following virus infection, which, however, did not affect the ability of the mice to clear TMEV infection.
Kulkarni, Onkar P.; Susanti, Heni Eka; Migliorini, Adriana; Garlanda, Cecilia; Mantovani, Alberto; Anders, Hans-Joachim
2011-01-01
The long pentraxin PTX3 has multiple roles in innate immunity. For example, PTX3 regulates C1q binding to pathogens and dead cells and regulates their uptake by phagocytes. It also inhibits P-selectin-mediated recruitment of leukocytes. Both of these mechanisms are known to be involved in autoimmunity and autoimmune tissue injury, e.g. in systemic lupus erythematosus, but a contribution of PTX3 is hypothetical. To evaluate a potential immunoregulatory role of PTX3 in autoimmunity we crossed Ptx3-deficient mice with Fas-deficient (lpr) C57BL/6 (B6) mice with mild lupus-like autoimmunity. PTX3 was found to be increasingly expressed in kidneys and lungs of B6lpr along disease progression. Lack of PTX3 impaired the phagocytic uptake of apoptotic T cells into peritoneal macrophages and selectively expanded CD4/CD8 double negative T cells while other immune cell subsets and lupus autoantibody production remained unaffected. Lack of PTX3 also aggravated autoimmune lung disease, i.e. peribronchial and perivascular CD3+ T cell and macrophage infiltrates of B6lpr mice. In contrast, histomorphological and functional parameters of lupus nephritis remained unaffected by the Ptx3 genotype. Together, PTX3 specifically suppresses autoimmune lung disease that is associated with systemic lupus erythematosus. Vice versa, loss-of-function mutations in the Ptx3 gene might represent a genetic risk factor for pulmonary (but not renal) manifestations of systemic lupus or other autoimmune diseases. PMID:21637713
Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer
Udum, Yasemin; Denk, Patrick; Adam, Getachew; Apaydin, Dogukan H.; Nevosad, Andreas; Teichert, Christian; S. White, Matthew.; S. Sariciftci, Niyazi.; Scharber, Markus C.
2014-01-01
We have developed a hole-blocking layer for bulk-heterojunction solar cells based on cross-linked polyethylenimine (PEI). We tested five different ether-based cross-linkers and found that all of them give comparable solar cell efficiencies. The initial idea that a cross-linked layer is more solvent resistant compared to a pristine PEI layer could not be confirmed. With and without cross-linking, the PEI layer sticks very well to the surface of the indium–tin–oxide electrode and cannot be removed by solvents used to process PEI or common organic semiconductors. The cross-linked PEI hole-blocking layer functions for multiple donor–acceptor blends. We found that using cross-linkers improves the reproducibility of the device fabrication process. PMID:24817837
A simplified model for dynamics of cell rolling and cell-surface adhesion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cimrák, Ivan, E-mail: ivan.cimrak@fri.uniza.sk
2015-03-10
We propose a three dimensional model for the adhesion and rolling of biological cells on surfaces. We study cells moving in shear flow above a wall to which they can adhere via specific receptor-ligand bonds based on receptors from selectin as well as integrin family. The computational fluid dynamics are governed by the lattice-Boltzmann method. The movement and the deformation of the cells is described by the immersed boundary method. Both methods are fully coupled by implementing a two-way fluid-structure interaction. The adhesion mechanism is modelled by adhesive bonds including stochastic rules for their creation and rupture. We explore amore » simplified model with dissociation rate independent of the length of the bonds. We demonstrate that this model is able to resemble the mesoscopic properties, such as velocity of rolling cells.« less
Activation states of blood eosinophils in asthma
Johansson, Mats W.
2014-01-01
Asthma is characterized by airway inflammation rich in eosinophils. Airway eosinophilia is associated with exacerbations and has been suggested to play a role in airway remodeling. Recruitment of eosinophils from the circulation requires that blood eosinophils become activated, leading to their arrest on the endothelium and extravasation. Circulating eosinophils can be envisioned as potentially being in different activation states, including non-activated, pre-activated or “primed”, or fully activated. In addition, the circulation can potentially be deficient of pre-activated or activated eosinophils, because such cells have marginated on activated endothelium or extravasated into the tissue. A number of eosinophil-surface proteins, including CD69, L-selectin, intercellular adhesion molecule-1 (ICAM-1, CD54), CD44, P-selectin glycoprotein ligand-1 (PSGL-1, CD162), cytokine receptors, Fc receptors, integrins including αM integrin (CD11b), and activated conformations of Fc receptors and integrins have been proposed to report cell activation. Variation in eosinophil activation states may be associated with asthma activity. Eosinophil-surface proteins proposed to be activation markers, with a particular focus on integrins, and evidence for associations between activation states of blood eosinophils and features of asthma are reviewed here. Partial activation of β1 and β2 integrins on blood eosinophils, reported by monoclonal antibodies (mAb) N29 and KIM-127, is associated with impaired pulmonary function and airway eosinophilia, respectively, in non-severe asthma. The association with lung function does not occur in severe asthma, presumably due to greater eosinophil extravasation, specifically of activated or pre-activated cells, in severe disease. PMID:24552191
Koupenova, Milka; Vitseva, Olga; MacKay, Christopher R.; Beaulieu, Lea M.; Benjamin, Emelia J.; Mick, Eric; Kurt-Jones, Evelyn A.; Ravid, Katya
2014-01-01
Viral infections have been associated with reduced platelet counts, the biological significance of which has remained elusive. Here, we show that infection with encephalomyocarditis virus (EMCV) rapidly reduces platelet count, and this response is attributed to platelet Toll-like receptor 7 (TLR7). Platelet-TLR7 stimulation mediates formation of large platelet-neutrophil aggregates, both in mouse and human blood. Intriguingly, this process results in internalization of platelet CD41-fragments by neutrophils, as assessed biochemically and visualized by microscopy, with no influence on platelet prothrombotic properties. The mechanism includes TLR7-mediated platelet granule release, translocation of P-selectin to the cell surface, and a consequent increase in platelet-neutrophil adhesion. Viral infection of platelet-depleted mice also led to increased mortality. Transfusion of wild-type, TLR7-expressing platelets into TLR7-deficient mice caused a drop in platelet count and increased survival post EMCV infection. Thus, this study identifies a new link between platelets and their response to single-stranded RNA viruses that involves activation of TLR7. Finally, platelet-TLR7 stimulation is independent of thrombosis and has implications to the host immune response and survival. PMID:24755410
González-Herrera, Fabiola; Cramer, Allysson; Pimentel, Pollyana; Castillo, Christian; Liempi, Ana; Kemmerling, Ulrike; Machado, Fabiana S; Maya, Juan D
2017-03-01
Current treatments for chronic Chagas cardiomyopathy, a disease with high mortality rates and caused by the protozoan Trypanosoma cruzi , are unsatisfactory. Myocardial inflammation, including endothelial activation, is responsible for the structural and functional damage seen in the chronic phase. The clinical efficacy of benznidazole could be improved by decreasing chronic inflammation. Statins, which have anti-inflammatory properties, may improve the action of benznidazole. Here, the action of simvastatin in a murine model of chronic Chagas cardiomyopathy and the link with the production of the proresolving eicosanoid 15-epi-lipoxin A4, produced by 5-lipoxygenase, are evaluated. Simvastatin decreased the expression of the adhesion molecules E-selectin, intracellular adhesion molecule type 1 (ICAM-1), and vascular cell adhesion molecule type 1 (VCAM-1) in T. cruzi -infected mice. However, when this drug was administered to 5-lipoxygenase-deficient mice, the anti-inflammatory effect was not observed unless exogenous 15-epi-lipoxin A4 was administered. Thus, in chronic Chagas disease, 5-epi-lipoxin A4 induced by simvastatin treatment could improve the pathophysiological condition of patients by increasing the trypanocidal action of benznidazole. Copyright © 2017 American Society for Microbiology.
Endothelial Activation by Platelets from Sickle Cell Anemia Patients
Proença-Ferreira, Renata; Brugnerotto, Ana Flávia; Garrido, Vanessa Tonin; Dominical, Venina Marcela; Vital, Daiana Morelli; Ribeiro, Marilene de Fátima Reis; dos Santos, Melissa Ercolin; Traina, Fabíola; Olalla-Saad, Sara T.; Costa, Fernando Ferreira; Conran, Nicola
2014-01-01
Sickle cell anemia (SCA) is associated with a hypercoagulable state. Increased platelet activation is reported in SCA and SCA platelets may present augmented adhesion to the vascular endothelium, potentially contributing to the vaso-occlusive process. We sought to observe the effects of platelets (PLTs) from healthy control (CON) individuals and SCA individuals on endothelial activation, in vitro. Human umbilical vein endothelial cells (HUVEC) were cultured, in the presence, or not, of washed PLTs from CON or steady-state SCA individuals. Supernatants were reserved for cytokine quantification, and endothelial adhesion molecules (EAM) were analyzed by flow cytometry; gene expressions of ICAM1 and genes of the NF-κB pathway were analyzed by qPCR. SCA PLTs were found to be more inflammatory, displaying increased adhesive properties, an increased production of IL-1β and a tendency towards elevated expressions of P-selectin and activated αIIbβ3. Following culture in the presence of SCA PLTs, HUVEC presented significant augmentations in the expressions of the EAM, ICAM-1 and E-selectin, as well as increased IL-8 production and increased ICAM1 and NFKB1 (encodes p50 subunit of NF-κB) gene expressions. Interestingly, transwell inserts abolished the effects of SCA PLTs on EAM expression. Furthermore, an inhibitor of the NF-κB pathway, BAY 11-7082, also prevented the induction of EAM expression on the HUVEC surface by SCA PLTs. In conclusion, we find further evidence to indicate that platelets circulate in an activated state in sickle cell disease and are capable of stimulating endothelial cell activation. This effect appears to be mediated by direct contact, or even adhesion, between the platelets and endothelial cells and via NFκB-dependent signaling. As such, activated platelets in SCD may contribute to endothelial activation and, therefore, to the vaso-occlusive process. Results provide further evidence to support the use of anti-platelet approaches in association with other therapies for SCD. PMID:24551209
Guessous, Fadila; Marcinkiewicz, Marek; Polanowska-Grabowska, Renata; Kongkhum, Sudawadee; Heatherly, Daniel; Obrig, Tom; Gear, Adrian R. L.
2005-01-01
Shiga toxins (Stxs) produced by Shigella dysenteriae type 1 and enterohemorrhagic Escherichia coli are the most common cause of hemolytic-uremic syndrome (HUS). It is well established that vascular endothelial cells, mainly those located in the renal microvasculature, are targets for Stxs. The aim of the present research was to evaluate whether E. coli-derived Shiga toxin 2 (Stx2) incubated with human microvascular endothelial cells (HMEC-1) induces release of chemokines and other factors that might stimulate platelet function. HMEC-1 were exposed for 24 h in vitro to Stx2, lipopolysaccharide (LPS), or the Stx2-LPS combination, and chemokine production was assessed by immunoassay. More interleukin-8 was released than stromal cell-derived factor 1α (SDF-1α) or SDF-1β and RANTES. The Stx2-LPS combination potentiated chemokine release, but Stx2 alone caused more release of SDF-1α at 24 h than LPS or Stx2-LPS did. In the presence of low ADP levels, HMEC-1 supernatants activated platelet function assessed by classical aggregometry, single-particle counting, granule secretion, P-selectin exposure, and the formation of platelet-monocyte aggregates. Supernatants from HMEC-1 exposed only to Stx2 exhibited enhanced exposure of platelet P-selectin and platelet-THP-1 cell interactions. Blockade of platelet cyclooxygenase by indomethacin prevented functional activation. The chemokine RANTES enhanced platelet aggregation induced by SDF-1α, macrophage-derived chemokine, or thymus and activation-regulated chemokine in the presence of very low ADP levels. These data support the hypothesis that microvascular endothelial cells exposed to E. coli O157:H7-derived Stx2 and LPS release chemokines and other factors, which when combined with low levels of primary agonists, such as ADP, cause platelet activation and promote the renal thrombosis associated with HUS. PMID:16299328
HETEROGENEITY OF SYSTEMIC INFLAMMATORY RESPONSES TO PERIODONTAL THERAPY
Behle, Jan H.; Sedaghatfar, Michael H.; Demmer, Ryan T.; Wolf, Dana L.; Celenti, Romanita; Kebschull, Moritz; Belusko, Paul B.; Herrera-Abreu, Miriam; Lalla, Evanthia; Papapanou, Panos N.
2009-01-01
Aims We investigated the effect of comprehensive periodontal therapy on the levels of multiple systemic inflammatory biomarkers. Methods Thirty patients with severe periodontitis received comprehensive periodontal therapy within a 6-week period. Blood samples were obtained at: one week pre- therapy (T1), therapy initiation (T2), treatment completion (T3), and 4 weeks thereafter (T4). We assessed plasma concentrations of 19 biomarkers using multiplex assays, and serum IgG antibodies to periodontal bacteria using checkerboard immunoblotting. At T2 and T4, dental plaque samples were analyzed using checkerboard hybridizations. Results At T3, PAI-1, sE-selectin, sVCAM-1, MMP-9, myeloperoxidase, and a composite Summary Inflammatory Score (SIS) were significantly reduced. However, only sE-selectin, sICAM, and serum amyloid P sustained a reduction at T4. Responses were highly variable: analyses of SIS slopes between baseline and T4 showed that approximately 1/3 and 1/4 of the patients experienced marked reduction and pronounced increase in systemic inflammation, respectively, while the remainder were seemingly unchanged. Changes in inflammatory markers correlated poorly with clinical, microbiological and serological markers of periodontitis. Conclusions Periodontal therapy resulted in an overall reduction of systemic inflammation, but the responses were inconsistent across subjects and largely not sustainable. The determinants of this substantial heterogeneity need to be explored further. PMID:19426174
Inflammatory Mediators in Smoke Inhalation Injury
2009-01-01
during inhalation injury significantly add to the acute lung injury physiology. Since vitamin E (alpha- tocopherol ) is an oxygen superoxide scav...with nebulized alpha- tocopherol [46]. Selectin Binding Sulfo Lewis C, a sulfated oligosaccharide, is a ligand of selectins with reported activity to...depletes vitamin E: kinetic studies using deu- terated tocopherols . Free Radic. Biol. Med., 2007, 42, 1421-1429. [45] Morita, N.; Shimoda, K.; Traber
Teng, Ming-Sheng; Hsu, Lung-An; Wu, Semon; Chou, Hsin-Hua; Chang, Chi-Jen; Sun, Yu-Zen; Juan, Shu-Hui; Ko, Yu-Lin
2013-06-01
Previous investigations have revealed an association between the ABO locus/blood group and total cholesterol and inflammatory biomarker levels. We aimed to test the statistical association of ABO locus variants with lipid profiles and levels of thirteen inflammatory markers in a Taiwanese population. A sample population of 617 Taiwanese subjects was enrolled. Five ABO gene region polymorphisms were selected and genotyped. After adjusting for clinical covariates and inflammatory marker levels, the genetic-inferred ABO blood group genotypes were associated with sE-selectin level (P = 3.5 × 10(-36)). Significantly higher total and low-density lipoprotein cholesterol (LDL-C) levels were noted in individuals with blood group A (P = 7.2 × 10(-4) and P = 7.3 × 10(-4), respectively). Interestingly, after adjusting for sE-selectin level, significantly lower high-density lipoprotein cholesterol (HDL-C) level as well as higher triglyceride (TG) level and ratio of triglyceride to HDL-C (TG/HDL-C ratio) were noted in individuals with blood group A comparing to non-A individuals (P = 0.009, P = 0.004 and P = 0.001, respectively); these associations were also observed in the group A male subjects (P = 0.027, P = 0.001, and P = 0.002, respectively). Mediation analysis further revealed a suppression effect of sE-selectin level on the association between genetic-inferred ABO blood group genotypes and TG/HDL-C ratio in total participants (P = 1.18 × 10(-6)) and in males (P = 5.99 × 10(-5)). Genetic variants at the ABO locus independently affect sE-selectin level in Taiwanese subjects, while the association of ABO locus variants with TG/HDL-C ratio is suppressed by sE-selectin level in Taiwanese males. These results provided further evidence for the mechanism in the association of ABO blood groups with atherosclerotic cardiovascular diseases. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Liu, Zhou; Shum, Ho Cheung
2013-01-01
In this work, we demonstrate a robust and reliable approach to fabricate multi-compartment particles for cell co-culture studies. By taking advantage of the laminar flow within our microfluidic nozzle, multiple parallel streams of liquids flow towards the nozzle without significant mixing. Afterwards, the multiple parallel streams merge into a single stream, which is sprayed into air, forming monodisperse droplets under an electric field with a high field strength. The resultant multi-compartment droplets are subsequently cross-linked in a calcium chloride solution to form calcium alginate micro-particles with multiple compartments. Each compartment of the particles can be used for encapsulating different types of cells or biological cell factors. These hydrogel particles with cross-linked alginate chains show similarity in the physical and mechanical environment as the extracellular matrix of biological cells. Thus, the multi-compartment particles provide a promising platform for cell studies and co-culture of different cells. In our study, cells are encapsulated in the multi-compartment particles and the viability of cells is quantified using a fluorescence microscope after the cells are stained for a live/dead assay. The high cell viability after encapsulation indicates the cytocompatibility and feasibility of our technique. Our multi-compartment particles have great potential as a platform for studying cell-cell interactions as well as interactions of cells with extracellular factors.
Liu, Zhou; Shum, Ho Cheung
2013-01-01
In this work, we demonstrate a robust and reliable approach to fabricate multi-compartment particles for cell co-culture studies. By taking advantage of the laminar flow within our microfluidic nozzle, multiple parallel streams of liquids flow towards the nozzle without significant mixing. Afterwards, the multiple parallel streams merge into a single stream, which is sprayed into air, forming monodisperse droplets under an electric field with a high field strength. The resultant multi-compartment droplets are subsequently cross-linked in a calcium chloride solution to form calcium alginate micro-particles with multiple compartments. Each compartment of the particles can be used for encapsulating different types of cells or biological cell factors. These hydrogel particles with cross-linked alginate chains show similarity in the physical and mechanical environment as the extracellular matrix of biological cells. Thus, the multi-compartment particles provide a promising platform for cell studies and co-culture of different cells. In our study, cells are encapsulated in the multi-compartment particles and the viability of cells is quantified using a fluorescence microscope after the cells are stained for a live/dead assay. The high cell viability after encapsulation indicates the cytocompatibility and feasibility of our technique. Our multi-compartment particles have great potential as a platform for studying cell-cell interactions as well as interactions of cells with extracellular factors. PMID:24404050
Dawson, Alison J; Sathyapalan, Thozhukat; Smithson, Jacqueline A J; Vince, Rebecca V; Coady, Anne-Marie; Ajjan, Ramzi; Kilpatrick, Eric S; Atkin, Stephen L
2014-06-01
Women with polycystic ovary syndrome (PCOS) have an adverse cardiovascular risk profile and an increased prevalence of nonalcoholic fatty liver disease (NAFLD), which is also associated with an adverse cardiovascular risk profile. To compare the cardiovascular risk profile of women with PCOS alone and women with PCOS and NAFLD. Twenty-five oligoanovulatory women with PCOS were screened for NAFLD (including liver biopsy if appropriate) and had their cardiovascular risk factors measured which included the inflammatory marker C-reactive protein (CRP), endothelial function {measured using endoPAT 2000 and serum markers [intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), E-selectin and P-selectin]}, clot structure and function [maximum absorbance (MA) and lysis potential (LT)]. Twelve patients had confirmed PCOS without evidence of NAFLD, and 13 patients had confirmed PCOS with evidence of NAFLD. The PCOS and NAFLD group were heavier (BMI 43·9 ± 2·2 kg/m(2) ) compared with the PCOS alone group (BMI 37·6 ± 1·4 kg/m(2) P = 0·03). There was no difference in CRP (7·57 ± 0·95 vs 6·59 ± 1·87 mm P = 0·62) or endothelial function (RH-PAT 1·96 ± 0·1 vs 1·74 ± 0·16 P = 0·25), ICAM-1 (221 ± 48 vs 250 ± 60 ng/ml P = 0·19), VCAM-1 (2124 ± 78 vs 2314 ± 91 ng/ml P = 0·13), E-selectin (33·9 ± 3·3 vs 39·5 ± 15·5 ng/ml P = 0·31) and P-selectin (101·0 ± 6·6 vs 95·9 ± 10·2 ng/ml P = 0·69). There was no difference in clot formation or lysis. The patients with PCOS and NAFLD were heavier compared with patients with PCOS alone. Despite this, we were unable to demonstrate differences in inflammatory markers, endothelial function or clot structure and function, suggesting that severity of steatosis is not the most important determinant of cardiovascular risk in PCOS. © 2013 John Wiley & Sons Ltd.
A Targeting Microbubble for Ultrasound Molecular Imaging
Yeh, James Shue-Min; Sennoga, Charles A.; McConnell, Ellen; Eckersley, Robert; Tang, Meng-Xing; Nourshargh, Sussan; Seddon, John M.; Haskard, Dorian O.; Nihoyannopoulos, Petros
2015-01-01
Rationale Microbubbles conjugated with targeting ligands are used as contrast agents for ultrasound molecular imaging. However, they often contain immunogenic (strept)avidin, which impedes application in humans. Although targeting bubbles not employing the biotin-(strept)avidin conjugation chemistry have been explored, only a few reached the stage of ultrasound imaging in vivo, none were reported/evaluated to show all three of the following properties desired for clinical applications: (i) low degree of non-specific bubble retention in more than one non-reticuloendothelial tissue; (ii) effective for real-time imaging; and (iii) effective for acoustic quantification of molecular targets to a high degree of quantification. Furthermore, disclosures of the compositions and methodologies enabling reproduction of the bubbles are often withheld. Objective To develop and evaluate a targeting microbubble based on maleimide-thiol conjugation chemistry for ultrasound molecular imaging. Methods and Results Microbubbles with a previously unreported generic (non-targeting components) composition were grafted with anti-E-selectin F(ab’)2 using maleimide-thiol conjugation, to produce E-selectin targeting microbubbles. The resulting targeting bubbles showed high specificity to E-selectin in vitro and in vivo. Non-specific bubble retention was minimal in at least three non-reticuloendothelial tissues with inflammation (mouse heart, kidneys, cremaster). The bubbles were effective for real-time ultrasound imaging of E-selectin expression in the inflamed mouse heart and kidneys, using a clinical ultrasound scanner. The acoustic signal intensity of the targeted bubbles retained in the heart correlated strongly with the level of E-selectin expression (|r|≥0.8), demonstrating a high degree of non-invasive molecular quantification. Conclusions Targeting microbubbles for ultrasound molecular imaging, based on maleimide-thiol conjugation chemistry and the generic composition described, may possess properties (i)–(iii) desired for clinical applications. PMID:26161541
Muthard, Ryan W.; Welsh, John D.; Brass, Lawrence F.; Diamond, Scott L.
2015-01-01
SUMMARY Objective Biological and physical factors interact to modulate blood response in a wounded vessel, resulting in a hemostatic clot or an occlusive thrombus. Flow and pressure differential (ΔP) across the wound from the lumen to the extravascular compartment may impact hemostasis and the observed core/shell architecture. We examined physical and biological factors responsible for regulating thrombin mediated clot growth. Approach and Results Using factor XIIa-inhibited human whole blood perfused in a microfluidic device over collagen/tissue factor at controlled wall shear rate and ΔP, we found thrombin to be highly localized in the P-selectin+ core of hemostatic clots. Increasing ΔP from 9 to 29 mm-Hg (wall shear rate = 400 s−1) reduced P-selectin+ core size and total clot size due to enhanced extravasation of thrombin. Blockade of fibrin polymerization with 5 mM GPRP dysregulated hemostasis by enhancing both P-selectin+ core size and clot size at 400 s−1 (20 mm-Hg). For whole blood flow (no GPRP), the thickness of the P-selectin-negative shell was reduced under arterial conditions (2000 s−1, 20 mm-Hg). Consistent with the antithrombin-1 activity of fibrin implicated with GPRP, anti-γ’-fibrinogen antibody enhanced core-localized thrombin, core size, and overall clot size, especially at venous (100 s−1) but not arterial wall shear rates (2000 s−1). Pathological shear (15,000 s−1) and GPRP synergized to exacerbate clot growth. Conclusions Hemostatic clotting was dependent on core-localized thrombin that (1) triggered platelet P-selectin display and (2) was highly regulated by fibrin and the trans-clot ΔP. Also, γ’-fibrinogen had a role in venous but not arterial conditions. PMID:25614284
Yngen, M; Ostenson, C-G; Hjemdahl, P; Wallén, N H
2006-02-01
To compare the effects of treatment with repaglinide and glibenclamide on platelet function and endothelial markers in patients with Type 2 diabetes mellitus, before and after a standardized meal. Fifteen patients with Type 2 diabetes were investigated on three occasions: at baseline without oral hypoglycaemic drug treatment, and after 6 weeks' treatment with repaglinide or glibenclamide, respectively, in an open randomized cross-over study. Agonist-induced platelet P-selectin expression and platelet aggregation, urinary thromboxane, soluble P-selectin, von Willebrand factor (VWF), soluble E-selectin, intercellular adhesion molecule (ICAM-1) and C-reactive protein (CRP) were measured. In addition, pre-meal data were compared with non-diabetic control subjects (n = 15), matched for sex, age and BMI. Adenosine diphosphate (ADP)-induced platelet P-selectin expression increased post-meal in Type 2 diabetic patients both at baseline and after treatment with repaglinide and glibenclamide (P < 0.01 for all; repeated measures anova). Repaglinide treatment reduced fasting ADP-induced P-selectin expression compared with baseline (P = 0.01), but did not influence meal-induced platelet hyper-reactivity (P = 0.32). No significant anti-platelet effects of glibenclamide treatment were found. Plasma concentrations of VWF and ICAM-1 were elevated in patients with Type 2 diabetes compared with control subjects (P < 0.05 for both) and were reduced during treatment with repaglinide (P < 0.01 for both) but did not change during glibenclamide treatment. The post-meal state is associated with enhanced platelet reactivity in patients with Type 2 diabetes mellitus. Pre-meal treatment with repaglinide or glibenclamide does not inhibit postprandial platelet activation, but repaglinide treatment is associated with attenuated platelet and endothelial activity in the fasting state.
Jalaly, Leila; Sharifi, Gholamreza; Faramarzi, Mohammad; Nematollahi, Alireza; Rafieian-kopaei, Mahmoud; Amiri, Masoud; Moattar, Fariborz
2015-12-19
Adhesion molecules play an important role in the development and progression of coronary atherosclerosis. The aim of this study was comparing the effect of Cratagol herbal tablet, aerobic exercise and their combination on the serum levels of Intercellular adhesion molecule (ICAM)-1 and E-Selectin in patients with stable angina pectoris. Eighty stable angina pectoris patients aged between 45 and 65 years, were randomly divided into four groups including three experimental groups and one control group: aerobic exercise (E), Crataegus oxyacantha extract (S), aerobic exercise and Crataegus oxyacantha extract (S+E), and control (C). Blood sampling was taken 24 h before and after 12 weeks of aerobic exercise and Crataegus oxyacantha extract consumption. The results of serum levels of ICAM-1 and E-selectin were compared. Intergroup comparison of the data revealed a significant reduction (P <0.01) in serum levels of ICAM-1 and E-selectin in experimental groups. Analysis of data showed that the serum levels of ICAM-1 had significant difference when group S+E was compared with groups S and C, but not group E (P = 0.021, P = 0.000 and P = 0.068, respectively). Also the difference between the levels of E-selectin was significant comparing S+E and S but not E with group C (P = 0.021, P = 0.000 and P = 0.052, respectively). Twelve weeks effects of aerobic exercise and Crataegus oxyacantha extract consuming is an effective complementary strategy to significantly lower the risk of atherosclerosis and heart problems.
Rapid Isolation of Viable Circulating Tumor Cells from Patient Blood Samples
Hughes, Andrew D.; Mattison, Jeff; Powderly, John D.; Greene, Bryan T.; King, Michael R.
2012-01-01
Circulating tumor cells (CTC) are cells that disseminate from a primary tumor throughout the circulatory system and that can ultimately form secondary tumors at distant sites. CTC count can be used to follow disease progression based on the correlation between CTC concentration in blood and disease severity1. As a treatment tool, CTC could be studied in the laboratory to develop personalized therapies. To this end, CTC isolation must cause no cellular damage, and contamination by other cell types, particularly leukocytes, must be avoided as much as possible2. Many of the current techniques, including the sole FDA-approved device for CTC enumeration, destroy CTC as part of the isolation process (for more information see Ref. 2). A microfluidic device to capture viable CTC is described, consisting of a surface functionalized with E-selectin glycoprotein in addition to antibodies against epithelial markers3. To enhance device performance a nanoparticle coating was applied consisting of halloysite nanotubes, an aluminosilicate nanoparticle harvested from clay4. The E-selectin molecules provide a means to capture fast moving CTC that are pumped through the device, lending an advantage over alternative microfluidic devices wherein longer processing times are necessary to provide target cells with sufficient time to interact with a surface. The antibodies to epithelial targets provide CTC-specificity to the device, as well as provide a readily adjustable parameter to tune isolation. Finally, the halloysite nanotube coating allows significantly enhanced isolation compared to other techniques by helping to capture fast moving cells, providing increased surface area for protein adsorption, and repelling contaminating leukocytes3,4. This device is produced by a straightforward technique using off-the-shelf materials, and has been successfully used to capture cancer cells from the blood of metastatic cancer patients. Captured cells are maintained for up to 15 days in culture following isolation, and these samples typically consist of >50% viable primary cancer cells from each patient. This device has been used to capture viable CTC from both diluted whole blood and buffy coat samples. Ultimately, we present a technique with functionality in a clinical setting to develop personalized cancer therapies. PMID:22733259
tRNA and Its Activation Targets as Biomarkers and Regulators of Breast Cancer
2013-09-01
linked tRNA misregulation to cancer. We have previously reported that tRNA levels are significantly elevated in breast cancer and multiple myeloma ...significantly elevated in breast cancer and multiple myeloma cells. To further investigate the cellular and physiological effects of tRNA overexpression, we...tRNA levels are elevated in breast cancer and multiple myeloma cell lines (Pavon-Eternod et al. 2009; Zhou et al. 2009). Though abnormal RNA polymerase
Pathological Fingerprints, Systems Biology and Biomarkers of Blast Brain Injury
2010-06-01
in triplicate. *=pɘ.05 vs. sham ( noise exposed rats) according unpaired t-test analysis. NS- Not significant. E-selectin and L-selectin are adhesion...an energy balance, food intake, wakefulness . We measured serum Resistin and Orexin A levels after blast exposure using 2 different methods...penetrating flesh wounds (Belanger et al., 2005; Lew, 2005). However, even mild and moderate brain injuries can produce significant deficits , and when repeated
Concha, Claudia; Carretta, María Daniella; Alarcón, Pablo; Conejeros, Ivan; Gallardo, Diego; Hidalgo, Alejandra Isabel; Tadich, Nestor; Cáceres, Dante Daniel; Hidalgo, María Angélica
2014-01-01
Reactive oxygen species (ROS) production is one of the main mechanisms used to kill microbes during innate immune response. D-lactic acid, which is augmented during acute ruminal acidosis, reduces platelet activating factor (PAF)-induced ROS production and L-selectin shedding in bovine neutrophils in vitro. This study was conducted to investigate whether acute ruminal acidosis induced by acute oligofructose overload in heifers interferes with ROS production and L-selectin shedding in blood neutrophils. Blood neutrophils and plasma were obtained by jugular venipuncture, while ruminal samples were collected using rumenocentesis. Lactic acid from plasma and ruminal samples was measured by HPLC. PAF-induced ROS production and L-selectin shedding were measured in vitro in bovine neutrophils by a luminol chemiluminescence assay and flow cytometry, respectively. A significant increase in ruminal and plasma lactic acid was recorded in these animals. Specifically, a decrease in PAF-induced ROS production was observed 8 h after oligofructose overload, and this was sustained until 48 h post oligofructose overload. A reduction in PAF-induced L-selectin shedding was observed at 16 h and 32 h post oligofructose overload. Overall, the results indicated that neutrophil PAF responses were altered in heifers with ruminal acidosis, suggesting a potential dysfunction of the innate immune response. PMID:25013355
Concha, Claudia; Carretta, María Daniella; Alarcón, Pablo; Conejeros, Ivan; Gallardo, Diego; Hidalgo, Alejandra Isabel; Tadich, Nestor; Cáceres, Dante Daniel; Hidalgo, María Angélica; Burgos, Rafael Agustín
2014-01-01
Reactive oxygen species (ROS) production is one of the main mechanisms used to kill microbes during innate immune response. D-lactic acid, which is augmented during acute ruminal acidosis, reduces platelet activating factor (PAF)-induced ROS production and L-selectin shedding in bovine neutrophils in vitro. This study was conducted to investigate whether acute ruminal acidosis induced by acute oligofructose overload in heifers interferes with ROS production and L-selectin shedding in blood neutrophils. Blood neutrophils and plasma were obtained by jugular venipuncture, while ruminal samples were collected using rumenocentesis. Lactic acid from plasma and ruminal samples was measured by HPLC. PAF-induced ROS production and L-selectin shedding were measured in vitro in bovine neutrophils by a luminol chemiluminescence assay and flow cytometry, respectively. A significant increase in ruminal and plasma lactic acid was recorded in these animals. Specifically, a decrease in PAF-induced ROS production was observed 8 h after oligofructose overload, and this was sustained until 48 h post oligofructose overload. A reduction in PAF-induced L-selectin shedding was observed at 16 h and 32 h post oligofructose overload. Overall, the results indicated that neutrophil PAF responses were altered in heifers with ruminal acidosis, suggesting a potential dysfunction of the innate immune response.
Dai, Bingyang; Li, Lan; Li, Qiangqiang; Song, Xiaoxiao; Chen, Dongyang; Dai, Jin; Yao, Yao; Yan, Wenjin; Teng, Huajian; Yang, Fang; Xu, Zhihong; Jiang, Qing
2017-07-01
: L-Arginine (L-arg), widely known as a substrate for endogenous nitric oxide synthesis, can improve endothelial function associated with the vasculature, inhibit platelet aggregation, and alter the activity of vascular smooth muscle cells. P-selectin is a membrane component of the platelet alpha-granule and the endothelial cell-specific Wiebel-Palade body that plays a central role in mediating interactions between platelets and both leukocytes and the endothelium. The experiment was designed to evaluate the effect of novel microspheres with L-arg targeting P-selectin on the formation of deep vein thrombosis and repair of vascular wall in a rat model. Thrombosis of the inferior vena cava was induced by applying a piece of filter paper (5 mm × 10 mm) saturated with 10% FeCl3 solution for 5 min. Targeted microspheres with L-arg, targeted microspheres with water, and saline were injected into the tail veins of the rats after 30 min of applying the filter paper saturated with 10% FeCl3 solution. The dry weight and length of the thrombus isolated from the inferior vena cava were significantly decreased in the group with L-arg in microsphere after 24 h. No significant differences in prothrombin time, activated partial thromboplastin time, thrombin time, and fibrinogen among the groups were indicated. Images revealed that apoptosis in the vascular wall was less in the group injected with targeted microspheres with L-arg than in the other two groups at 1 and 8 d postsurgery. Meanwhile, cell proliferation was considerably excessive in the group injected with L-arg wrapped in targeted microspheres. Therefore, these novel microspheres could decrease the formation of thrombus in the early stages and in the subsequent periods of thrombosis. The microspheres can also enhance the vitality of impaired endothelial cells and reduce cell apoptosis.
Dai, Bingyang; Li, Lan; Li, Qiangqiang; Song, Xiaoxiao; Chen, Dongyang; Dai, Jin; Yao, Yao; Yan, Wenjin; Teng, Huajian; Yang, Fang; Xu, Zhihong; Jiang, Qing
2017-01-01
L-Arginine (L-arg), widely known as a substrate for endogenous nitric oxide synthesis, can improve endothelial function associated with the vasculature, inhibit platelet aggregation, and alter the activity of vascular smooth muscle cells. P-selectin is a membrane component of the platelet alpha-granule and the endothelial cell-specific Wiebel–Palade body that plays a central role in mediating interactions between platelets and both leukocytes and the endothelium. The experiment was designed to evaluate the effect of novel microspheres with L-arg targeting P-selectin on the formation of deep vein thrombosis and repair of vascular wall in a rat model. Thrombosis of the inferior vena cava was induced by applying a piece of filter paper (5 mm × 10 mm) saturated with 10% FeCl3 solution for 5 min. Targeted microspheres with L-arg, targeted microspheres with water, and saline were injected into the tail veins of the rats after 30 min of applying the filter paper saturated with 10% FeCl3 solution. The dry weight and length of the thrombus isolated from the inferior vena cava were significantly decreased in the group with L-arg in microsphere after 24 h. No significant differences in prothrombin time, activated partial thromboplastin time, thrombin time, and fibrinogen among the groups were indicated. Images revealed that apoptosis in the vascular wall was less in the group injected with targeted microspheres with L-arg than in the other two groups at 1 and 8 d postsurgery. Meanwhile, cell proliferation was considerably excessive in the group injected with L-arg wrapped in targeted microspheres. Therefore, these novel microspheres could decrease the formation of thrombus in the early stages and in the subsequent periods of thrombosis. The microspheres can also enhance the vitality of impaired endothelial cells and reduce cell apoptosis. PMID:28306627
Grönwall, Caroline; Reynolds, Harmony; Kim, June K; Buyon, Jill; Goldberg, Judith D; Clancy, Robert M; Silverman, Gregg J
2014-07-01
Noninvasive carotid measurements have proven value in the estimation of future cardiovascular (CV) outcomes in systemic lupus erythematosus (SLE). Natural IgM-antibodies to phosphorylcholine (PC) epitopes can enhance apoptotic-cell clearance and induce anti-inflammatory pathways. Herein, we show that subclinical CV disease, as detected by carotid ultrasound, in a cross-sectional SLE cohort was associated with lower levels of IgM anti-PC, as well as lower levels of the ratio of IgM anti-PC/total IgM, compared to patients without plaque (p=0.004 and p=0.02, respectively). The IgM anti-PC/total IgM association remained significant after adjusting for age, cholesterol and hypertension. Adiponectin and sE-selectin were significantly elevated in patients with plaque, and statistical models showed that combining adiponectin, sE-selectin and IgM anti-PC/total IgM was better for predicting plaque than either test alone. These results support the hypothesis that IgM-natural autoantibodies may inhibit atherogenesis, and confirm the utility of IgM anti-PC levels as a biomarker for subclinical CV disease. Copyright © 2014 Elsevier Inc. All rights reserved.
Musiał, Kinga; Zwolińska, Danuta
2011-03-01
Phenomena related to chronic kidney disease, such as atherosclerosis, aggravate with the introduction of dialysis. Matrix metalloproteinases (MMP) and factors modifying their activity, such as their tissue inhibitors (TIMP) or neutrophil gelatinase-associated lipocalin (NGAL), take part in the matrix turnover and the endothelial damage characteristic for atherogenesis. However, there are no data on the associations between these parameters and other known pro-atherogenic factors, or on the impact of various dialysis modalities on them. The aim of our study was to assess the serum concentrations of NGAL, MMP-7, MMP-9, and TIMP-1, as well as their correlations with human heat shock proteins (Hsp90α, anti-Hsp60), endothelial dysfunction (sE-selectin), and inflammation (hsCRP) in pediatric patients chronically dialyzed. Twenty-two children on automated peritoneal dialysis (APD), 17 patients on hemodialysis (HD) and 24 controls were examined. The serum concentrations of NGAL, MMP-7, MMP-9, TIMP-1, Hsp90α, anti-Hsp60, and sE-selectin were assessed by enzyme-linked immunosorbent assay (ELISA). The median values of NGAL, MMP-7, MMP-9, TIMP-1, and MMP-9/NGAL ratio were significantly elevated in all dialyzed children vs. controls and were higher in HD than in APD. The values of MMP-9/TIMP-1 and MMP-7/TIMP-1 ratios in the HD subjects were lower than those in the APD children. Hsp90α and anti-Hsp60 predicted the values of NGAL, MMPs, and TIMP-1. Additionally, sE-selectin was a predictor of NGAL levels, whereas NGAL predicted the MMP and TIMP-1 concentrations. The increased concentrations of examined parameters indicate the dysfunction of MMP/TIMP/NGAL system in the dialyzed children, more pronounced on hemodialysis. The discrepancies between dialysis modalities and correlations with heat shock proteins (HSPs) suggest that NGAL may be considered a novel stress protein, whereas MMP-7, MMP-9, and TIMP-1 may be regarded as indicators of stress response in the pediatric population on chronic dialysis.
Ullah, Mujib; Sittinger, Michael; Ringe, Jochen
2013-01-01
Extracellular matrix (ECM) is the non-cellular component of tissues, which not only provides biological shelter but also takes part in the cellular decisions for diverse functions. Every tissue has an ECM with unique composition and topology that governs the process of determination, differentiation, proliferation, migration and regeneration of cells. Little is known about the structural organization of matrix especially of MSC-derived adipogenic ECM. Here, we particularly focus on the composition and architecture of the fat ECM to understand the cellular behavior on functional bases. Thus, mesenchymal stem cells (MSC) were adipogenically differentiated, then, were transferred to adipogenic propagation medium, whereas they started the release of lipid droplets leaving bare network of ECM. Microarray analysis was performed, to indentify the molecular machinery of matrix. Adipogenesis was verified by Oil Red O staining of lipid droplets and by qPCR of adipogenic marker genes PPARG and FABP4. Antibody staining demonstrated the presence of collagen type I, II and IV filaments, while alkaline phosphatase activity verified the ossified nature of these filaments. In the adipogenic matrix, the hexagonal structures were abundant followed by octagonal structures, whereas they interwoven in a crisscross manner. Regarding molecular machinery of adipogenic ECM, the bioinformatics analysis revealed the upregulated expression of COL4A1, ITGA7, ITGA7, SDC2, ICAM3, ADAMTS9, TIMP4, GPC1, GPC4 and downregulated expression of COL14A1, ADAMTS5, TIMP2, TIMP3, BGN, LAMA3, ITGA2, ITGA4, ITGB1, ITGB8, CLDN11. Moreover, genes associated with integrins, glycoproteins, laminins, fibronectins, cadherins, selectins and linked signaling pathways were found. Knowledge of the interactive-language between cells and matrix could be beneficial for the artificial designing of biomaterials and bioscaffolds. © 2013.
Awad, E M; Khan, S Y; Sokolikova, B; Brunner, P M; Olcaydu, D; Wojta, J; Breuss, J M; Uhrin, P
2013-09-01
Organs intended for transplantation are generally stored in the cold for better preservation of their function. However, following transplantation and reperfusion, the microvasculature of transplanted organs often proves to be activated. Extensive leukocyte adhesion and microthrombus formation contribute to failure of the transplanted organ. In this study we analyzed cold-induced changes to the activation status of cultured endothelial cells, possibly contributing to organ failure. We exposed human umbilical vein endothelial cells (HUVECs) to temperatures below 37 °C (mostly to 8 °C) for 30 min and upon rewarming to 37 °C kept incubating them for up to 24 h. We also in vivo locally exposed mice to cold. The exposure to low temperatures induced, in HUVECs, expression of the prothrombotic factors plasminogen activator inhibitor-1 (PAI-1) and tissue factor (TF) and of the inflammatory adhesion molecules, E-selectin, intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Furthermore, upon rewarming for 30 min, we detected activation of the inflammatory NF-κB pathway, as measured by transient NF-κB translocation to the nucleus and IκBα degradation. Using butylated hydroxytoluene (BHT), a scavenger of reactive oxygen species (ROS), we further demonstrated that cold-induced NF-κB activation depends on ROS production. Local exposure to cold also, in vivo, induced ROS production and ICAM-1 expression and resulted in leukocyte infiltration. Our results point to a causative link between ROS production and NF-κB activation, suppression of which had been shown to be beneficial during hypothermic storage and subsequent rewarming of organs for transplantation. © 2013 International Society on Thrombosis and Haemostasis.
Review of autoantigens in Sjögren's syndrome: an update.
Tong, Louis; Koh, Vanessa; Thong, Bernard Yu-Hor
2017-01-01
Primary Sjögren's syndrome (pSS) is an autoimmune disease characterized by inflammation in exocrine glands, resulting in reduced secretion of tears and saliva, manifesting as xerophthalmia and xerostomia, respectively. It is commonly associated with Sjögren's syndrome type A (Ro) and Sjögren's syndrome type B (La) antigens. However, in most patients, the identity of the triggering antigen is not known. Factors such as genetics of histocompatibility, dysregulation of T-cells, B-cells and viral infections have been implicated. Several important studies on autoantigens in pSS have been published since a review in 2012, and the aim of this review is to provide an update on further peer-reviewed original articles in this field. Oxidative damage of Ro60 antigen may explain the epitope spreading during the immune activation in pSS. Immune-mediated destruction of the muscarinic receptor-3-expressing cells has been associated with a reduction in parasympathetic function, which could cause reduced secretory function of exocrine glands. Such a process also activates reactive oxidative species and antioxidants, which are linked to the triggering of inflammatory responses. Elevated levels of kallikrein, yet another antigen present in the lacrimal gland and other tissues, are similarly involved in triggering an autoimmune T-cell response against target glands. Studying additional antigens, the platelet-selectin and vasoactive intestinal peptides, in patients with pSS can help to elucidate the origin and process of autoimmunity, or even lead to potential biomarkers. In conclusion, the understanding of autoantigens has led to exciting major advances in the biology of pSS and may influence diagnosis and management of pSS in future.
Jakobsen, P H; Rasheed, F N; Bulmer, J N; Theisen, M; Ridley, R G; Greenwood, B M
1998-01-01
To better understand reasons for increased susceptibility to malaria in pregnancy; and the interrelationships between maternal malaria, local immune reactions and the development of the fetus, concentrations of soluble interleukin-10 (IL-10), cytokine receptors, adhesion molecules, a Plasmodium falciparum protein, glutamate-rich protein (GLURP) and antibodies to P. falciparum rhoptry-associated protein-1 were measured among 105 Gambian women and their neonates. Peripheral blood concentrations of IL-10, soluble cytokine receptors and soluble adhesion molecules were found to be different from those concentrations measured in the placenta. Markers of inflammatory reactions: IL-10, sIL-2R, sIL-4R, and soluble tumour necrosis factor receptor I (sTNF-RI) were found in high concentrations in the placenta, indicating that inflammatory reactions take place in the placenta which has been regarded as an immunoprivileged site. Concentrations of soluble vascular cell adhesion molecule-1 (sVCAM-1) and soluble intracellular adhesion molecule-1 (sICAM-1), potential adhesion receptors for malaria parasites, were associated with an active P. falciparum infection in the placenta although the associations did not reach significance. P. falciparum exoantigen, GLURP, was detected in cord blood indicating transplacental passage of malarial antigens. Concentrations of E-selectin were higher in cord blood samples compared with peripheral blood samples. This appeared to be associated with development of cord endothelial cells and not with P. falciparum infection. PMID:9616377
Moderate consumption of red wine and human platelet responsiveness.
Tozzi Ciancarelli, Maria Giuliana; Di Massimo, Caterina; De Amicis, Daniela; Ciancarelli, Irene; Carolei, Antonio
2011-08-01
Available studies showed an inverse association between red wine consumption and prevalence of vascular risk factors in coronary hearth disease and stroke. Effects were mainly associated to wine antioxidant and antiaggregant properties. Actually, in vitro studies indicate a favourable effect of wine and/or of its non-alcoholic components in decreasing platelet sensitivity and aggregability. In a 4-week supplementation in 15 healthy male volunteers, we evaluated whether moderate red wine consumption might improve antioxidant defence mechanisms and promote positive modulation of inflammatory cytokines and cell adhesion molecules in relation to platelet responsiveness. We did not find any change of ADP- and collagen-induced platelet aggregation ex vivo, any change of biomarkers of oxidative stress, and any change of plasma lipid profile and haemostatic parameters, with the only exception of decreased fibrinogen levels (P<0.05). We also found an increase of mean platelet volume (P<0.05) without any significant modification of CD40 Ligand and P-selectin levels. Increased expressions of intercellular adhesion molecule-1, soluble E-selectin and interleukin-6 (P<0.05) were also observed. According to our findings increased circulating levels of inflammatory and endothelial cell activation markers may indicate a low-grade systemic inflammation and vascular activation that could be responsible for the lack of inhibition or of decreased platelet responsiveness, possibly because the plasmatic increase of wine antioxidant compounds is insufficient to improve endothelial function and to counteract the influence of ethanol on endothelial activation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kawano, Susumu; Iyaguchi, Daisuke; Okada, Chiaki; Sasaki, Yusuke; Toyota, Eiko
2013-06-01
Attempts to obtain active E-selectin from Escherichia coli (E. coli) have not yet been successful. In this study, we succeeded in expressing the recombinant lectin and epidermal growth factor domain fragments of human E-selectin (rh-ESLE) in E. coli on a large-scale. The rh-ESLE protein was expressed as an inactive form in the inclusion bodies. The inactive form of rh-ESLE was denatured and solubilized by 6 M guanidine hydrochloride and then purified by Ni(2+) affinity chromatography under denaturing conditions. Denatured rh-ESLE was then refolded by a rapid-dilution method using a large amount of refolding buffer, which contained arginine and cysteine/cystine. The refolded rh-ESLE showed binding affinity for sLe(X) (K(d) = 321 nM, B(max) = 1.9 pmol/μg protein). This result suggests that the refolded rh-ESLE recovered its native and functional structure.
ACUTE CARDIOVASCULAR EFFECTS OF FIREFIGHTING AND ACTIVE COOLING DURING REHABILITATION
Burgess, Jefferey L.; Duncan, Michael D.; Hu, Chengcheng; Littau, Sally R.; Caseman, Delayne; Kurzius-Spencer, Margaret; Davis-Gorman, Grace; McDonagh, Paul F.
2012-01-01
Objectives To determine the cardiovascular and hemostatic effects of fire suppression and post-exposure active cooling. Methods Forty-four firefighters were evaluated prior to and after a 12 minute live-fire drill. Next, 50 firefighters undergoing the same drill were randomized to post-fire forearm immersion in 10°C water or standard rehabilitation. Results In the first study, heart rate and core body temperature increased and serum C-reactive protein decreased but there were no significant changes in fibrinogen, sE-selectin or sL-selectin. The second study demonstrated an increase in blood coagulability, leukocyte count, factors VIII and X, cortisol and glucose, and a decrease in plasminogen and sP-selectin. Active cooling reduced mean core temperature, heart rate and leukocyte count. Conclusions Live-fire exposure increased core temperature, heart rate, coagulability and leukocyte count; all except coagulability were reduced by active cooling. PMID:23090161
Gu, Phillip; Theiss, Arianne; Han, Jie; Feagins, Linda A
2017-07-01
Predicting the risk of flare-ups for patients with inflammatory bowel disease (IBD) is difficult. Alterations in gut endothelial regulation of mucosal immune homeostasis might be early events leading to flares in IBD. Cell adhesion molecules (CAMs), in particular, are important in maintaining endothelial integrity and regulating the migration of leukocytes into the gut. We evaluated the mRNA expression of various tight junction proteins, with an emphasis on CAMs, in 40 patients with IBD in clinical remission. Patients were retrospectively assessed at 6, 12, and 24 months after baseline colonoscopy, and at the end of all available follow-up (maximum 65 mo), for flare events to determine whether baseline mRNA expression was associated with subsequent flares. At all follow-up points, the baseline expression of platelet endothelial cell adhesion molecule-1 (PECAM-1), ICAM-3, and VCAM-1 was significantly higher in patients who flared than in those who did not (2.4-fold elevation, P=0.012 for PECAM-1; 1.9-fold increased, P=0.03 for ICAM-3; and 1.4-fold increased, P=0.02 for VCAM-1). PECAM-1 and ICAM-3 expression was significantly increased in patients who flared as early as 6 months after baseline colonoscopy. In contrast, there were no significant differences between patients with and without flares in baseline expression of other CAMs (ESAM, ICAM-1, ICAM-2, E-selectin, P-selectin, and MadCAM1). Increased expression of PECAM-1, ICAM-3, and VCAM-1 in colonic biopsies from patients with IBD in clinical remission is associated with subsequent flares. This suggests that increases in the expression of these proteins may be early events that lead to flares in patients with IBD.
Graham, Susan M; Rajwans, Nimerta; Jaoko, Walter; Estambale, Benson B A; McClelland, R Scott; Overbaugh, Julie; Liles, W Conrad
2013-07-17
We aimed to determine whether endothelial activation biomarkers increase after HIV-1 acquisition, and whether biomarker levels measured in chronic infection would predict disease progression and death in HIV-1 seroconverters. HIV-1-seronegative Kenyan women were monitored monthly for seroconversion, and followed prospectively after HIV-1 acquisition. Plasma levels of angiopoietin-1 and angiopoietin-2 (ANG-1, ANG-2) and soluble vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin were tested in stored samples from pre-infection, acute infection, and two chronic infection time points. We used nonparametric tests to compare biomarkers before and after HIV-1 acquisition, and Cox proportional-hazards regression to analyze associations with disease progression (CD4 < 200 cells/μl, stage IV disease, or antiretroviral therapy initiation) or death. Soluble ICAM-1 and VCAM-1 were elevated relative to baseline in all postinfection periods assessed (P < 0.0001). Soluble E-selectin and the ANG-2:ANG-1 ratio increased in acute infection (P = 0.0001), and ANG-1 decreased in chronic infection (P = 0.0004). Among 228 participants followed over 1028 person-years, 115 experienced disease progression or death. Plasma VCAM-1 levels measured during chronic infection were independently associated with time to HIV progression or death (adjusted hazard ratio 5.36, 95% confidence interval 1.99-14.44 per log10 increase), after adjustment for set point plasma viral load, age at infection, and soluble ICAM-1 levels. HIV-1 acquisition was associated with endothelial activation, with sustained elevations of soluble ICAM-1 and VCAM-1 postinfection. Soluble VCAM-1 may be an informative biomarker for predicting the risk of HIV-1 disease progression, morbidity, and mortality.
Cerda, Alvaro; Pavez, Monica; Manriquez, Victor; Luchessi, Andre Ducati; Leal, Pamela; Benavente, Felipe; Fajardo, Cristina Moreno; Salazar, Luis; Hirata, Mario Hiroyuki; Hirata, Rosario Dominguez Crespo
2017-08-01
Clopidogrel is commonly used in prevention and treatment of atherothrombosis. Some previous studies have suggested a pleiotropic effect of clopidogrel; however, when this drug causes platelet-independent effects on endothelial function remains unclear. To evaluate the influence of clopidogrel on inflammatory biomarkers and adhesion molecules in human endothelial cells and the role of nitric oxide (NO) in this process. TNF-α-induced human umbilical vein endothelial cells (HUVEC) were exposed to clopidogrel. Gene expression and protein expression of ICAM-1, P-selectin, IL-8, IL-6, and MCP-1 were evaluated by qPCR, flux cytometry, or milliplex technology. Expression of endothelial nitric oxide synthase (NOS3) and NO release were also evaluated. Influence of clopidogrel was further evaluated in NOS3 downregulated HUVEC by RNAi. Clopidogrel at 20 μmol/L induced NO release in HUVEC after 24-hours treatment. Gene expressions of inflammatory markers IL-8 and MCP1 were reduced after clopidogrel treatment (P<.05); however, only MCP-1 remained reduced at protein level. IL-6 was not modified by clopidogrel treatment. Gene expression and protein expression of ICAM-1 were diminished by 24-hours clopidogrel exposure, whereas P-selectin was not modified. NOS3 downregulated HUVEC model revealed that ICAM-1 modification by clopidogrel is dependent of this via, whereas MCP-1 is modulated in an NO-independent form. Our results support new evidence for pleiotropic effects of clopidogrel on inflammation and endothelial function. Reduction in ICAM-1 and MCP-1 in human endothelium is an important extent of the use of this drug for treatment of cardiovascular diseases, and NO has an important role in this process. © 2017 John Wiley & Sons Ltd.
Hernandez-Mijares, Antonio; Bañuls, Celia; Rovira-Llopis, Susana; Diaz-Morales, Noelia; Escribano-Lopez, Irene; de Pablo, Carmen; Alvarez, Angeles; Veses, Silvia; Rocha, Milagros; Victor, Victor M
2016-04-01
Cholesterol-lowering therapy has been related with several beneficial effects; however, its influence on oxidative stress and endothelial function is not fully elucidated. To investigate the effect of simvastatin and ezetimibe on mitochondrial function and leukocyte-endothelium interactions in polymorphonuclear cells of hyperlipidemic patients. Thirty-nine hyperlipidemic patients were randomly assigned to one of two groups: one received simvastatin (40 mg/day) and the other received ezetimibe (10 mg/day) for 4 weeks, after which both groups were administered combined therapy for an additional 4-week period. Lipid profile, mitochondrial parameters (oxygen consumption, reactive oxygen species (ROS) and membrane potential), glutathione levels, superoxide dismutase activity, catalase activity and leukocyte/endothelial cell interactions and adhesion molecules -VCAM-1, ICAM-1, E-selectin, were evaluated. An improvement in lipid profile was observed after administration of simvastatin or ezetimibe alone (LDLc: -40.2 vs -19.6%, respectively), though this effect was stronger with the former (p < 0.001), and a further reduction was registered when the two were combined (LDLc: -50.7% vs -56.8%, respectively). In addition to this, simvastatin, ezetimibe and simvastatin + ezetimibe significantly increased oxygen consumption, membrane potential and glutathione content, and decreased levels of ROS, thereby improving mitochondrial function. Furthermore, simvastatin + ezetimibe increased catalase activity. In addition, simvastatin and simvastatin/ezetimibe improved leukocyte/endothelium interactions by decreasing leukocyte rolling and adhesion and increasing leukocyte rolling velocity. Finally, simvastatin, ezetimibe and simvastatin + ezetimibe reduced levels of the adhesion molecule ICAM-1, and ezetimibe + simvastatin significantly decreased levels of E-selectin. Co-administration of simvastatin and ezetimibe has an additive cholesterol-lowering effect and beneficial consequences for mitochondrial function and leukocyte/endothelium interactions in leukocytes of hypercholesterolemic patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Effect of a kinin B2 receptor antagonist on LPS- and cytokine-induced neutrophil migration in rats
Santos, Danielle R; Calixto, João B; Souza, Glória E P
2003-01-01
This study examines the involvement of kinins in neutrophil migration into rat subcutaneous air pouches triggered by lipopolysaccharide (LPS), as well as the putative roles played by kinin B1 and B2 receptors, tumour necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β) and selectins in this response. LPS (5 ng to 10 μg cavity−1) injected into the 6-day-old pouch induced a dose- and time-dependent neutrophil migration which peaked between 4 and 6 h, and was maximal following the dose of 100 ng cavity−1 (saline: 0.46±0.1; LPS: 43±3.70 × 106 cells cavity−1 at 6 h). Bradykinin (BK) (600 nmol) injected into the pouch of saline-treated rats induced only modest neutrophil migration (0.73±0.16 × 106 cells cavity−1). A more robust response to BK (3.2±0.25 × 106 cells cavity−1) was seen in animals pretreated with captopril, but this was still smaller than the responses to IL-1β or TNF-α (15 pmol: 23±2.2 × 106 and 75 pmol: 29.5±2 × 106 cells cavity−1, respectively). Nevertheless, the B1 agonist des-Arg9-BK (600 nmol) failed to induce neutrophil migration. HOE-140 (1 and 2 mg kg−1), a B2 receptor antagonist, reduced LPS-induced neutrophil migration. HOE-140 also reduced the neutrophil migration induced by BK, but had no effect on the migration promoted by IL-1β or TNF-α. des-Arg9-[Leu8]-BK, B1 receptor antagonist was ineffective in changing neutrophil migration caused by any of these stimuli. Neutrophil migration induced by LPS or BK was reduced by interleukin-1 receptor antagonist (IL-1ra) (1 mg kg−1), sheep anti-rat TNF serum (anti-TNF serum) (0.3 ml cavity−1), and the nonspecific selectin inhibitor fucoidin (10 mg kg−1). TNF-α levels in the pouch fluid were increased by LPS or BK injection, peaking at 0.5–1 h and gradually declining thereafter up to 6 h. IL-1β levels increased steadily throughout the 6 h period. HOE-140 markedly inhibited the rise in IL-1β and TNF-α levels in pouch fluid triggered by both stimuli. These results indicate that BK participates importantly in selectin-dependent neutrophil migration into the air pouch triggered by LPS in the rat, by stimulating B2 receptors coupled to synthesis/release of TNF-α and IL-1β. PMID:12770932
Sakurai, Kentaro; Miyashita, Tomoharu; Okazaki, Mitsuyoshi; Yamaguchi, Takahisa; Ohbatake, Yoshinao; Nakanuma, Shinichi; Okamoto, Koichi; Sakai, Seisho; Kinoshita, Jun; Makino, Isamu; Nakamura, Keishi; Hayashi, Hironori; Oyama, Katsunobu; Tajima, Hidehiro; Takamura, Hiroyuki; Ninomiya, Itasu; Fushida, Sachio; Harada, Kenichi; Harmon, John W; Ohta, Tetsuo
2017-01-01
Severe sepsis is associated with high morbidity and mortality rates. Inflammation and coagulation play pivotal roles in the pathogenesis of sepsis leading to multiple organ failure, especially in the liver. The aim of the present study was to assess the mechanism from sepsis to liver damage in a mouse model. We created a sepsis model by injecting lipopolysaccharide (LPS) intraperitoneally in mice. At 0, 6, 12, and 24 h following intraperitoneal injection of LPS, mice were euthanised and analyzed. Primary antibodies against myeloperoxidase (MPO), hepatic sinusoidal endothelial cells (SE-1), and P-selectin (CD62p) were used. Expression and localization in neutrophil, sinusoidal endothelial, and platelet cells were assessed by immunohistochemistry. Immunohistochemical analyses revealed a positive staining for MPO, most abundantly in neutrophil granulocytes, within the hepatic sinusoids immediately after injection. Neutrophil extracellular trap (NET)-like structures stained for MPO, indicating the presence of neutrophils undergoing NETosis, were confirmed at 6 h after LPS administration. SE-1 staining for liver sinusoidal endothelial cells was significantly reduced at 12 h post-LPS administration through sinusoidal endothelial injury or detachment. Furthermore, the presence of extravasated platelets was confirmed in the space of Disse at 24 h after LPS administration. Blood sample analyses showed that white blood cell counts and platelet counts decreased gradually, while MPO amounts increased until 12 h after LPS administration. We conclude that NET formation and intravasated platelet aggregation are the first steps from sepsis to liver damage, and that extravasated platelet aggregation promoted by NET-facilitated detachment of sinusoidal endothelial cells is the origin of sepsis-induced liver dysfunction. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Plasma confinement apparatus using solenoidal and mirror coils
Fowler, T. Kenneth; Condit, William C.
1979-01-01
A plasma confinement apparatus, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed.
Cell protein cross-linking by erbstatin and related compounds | Center for Cancer Research
The scheme depicts a possible mechanism of cross-linking by erbstatin and related analogues. A mechanism of action is proposed which involves initial oxidation to reactive quinone intermediates that subsequently cross-link protein nucleophiles via multiple 1,4-Michael-type additions. Similar alkylation of protein by protein-tyrosine kinase inhibitors, such as herbimycin A, has
Single-cell genomic sequencing using Multiple Displacement Amplification.
Lasken, Roger S
2007-10-01
Single microbial cells can now be sequenced using DNA amplified by the Multiple Displacement Amplification (MDA) reaction. The few femtograms of DNA in a bacterium are amplified into micrograms of high molecular weight DNA suitable for DNA library construction and Sanger sequencing. The MDA-generated DNA also performs well when used directly as template for pyrosequencing by the 454 Life Sciences method. While MDA from single cells loses some of the genomic sequence, this approach will greatly accelerate the pace of sequencing from uncultured microbes. The genetically linked sequences from single cells are also a powerful tool to be used in guiding genomic assembly of shotgun sequences of multiple organisms from environmental DNA extracts (metagenomic sequences).
Södergren, A L; Tynngård, N; Berlin, G; Ramström, S
2016-02-01
Storage lesions may prevent transfused platelets to respond to agonists and arrest bleeding. The aim of this study was to evaluate and quantify the capacity of platelet activation during storage using flow cytometry and new markers of platelet activation. Activation responses of platelets prepared by apheresis were measured on days 1, 5, 7 and 12. In addition, comparisons were made for platelet concentrates stored until swirling was affected. Lysosome-associated membrane protein-1 (LAMP-1), P-selectin and phosphatidylserine (PS) exposure were assessed by flow cytometry on platelets in different subpopulations in resting state or following stimulation with platelet agonists (cross-linked collagen-related peptide (CRP-XL), PAR1- and PAR4-activating peptides). The ability to form subpopulations upon activation was significantly decreased already at day 5 for some agonist combinations. The agonist-induced exposure of PS and LAMP-1 also gradually decreased with time. Spontaneous exposure of P-selectin and PS increased with time, while spontaneous LAMP-1 exposure was unchanged. In addition, agonist-induced LAMP-1 expression clearly discriminated platelet concentrates with reduced swirling from those with retained swirling. This suggests that LAMP-1 could be a good marker to capture changes in activation capacity in stored platelets. The platelet activation potential seen as LAMP-1 exposure and fragmentation into platelet subpopulations is potential sensitive markers for the platelet storage lesion. © 2015 International Society of Blood Transfusion.
Drugs Approved for Multiple Myeloma
This page lists cancer drugs approved by the Food and Drug Administration (FDA) for multiple myeloma and other plasma cell neoplasms. The list includes generic names, brand names, and common drug combinations, which are shown in capital letters. The drug names link to NCI's Cancer Drug Information summaries.
Kaba, Nubia K.; Schultz, Joanne; Law, Foon-Yee; Lefort, Craig T.; Martel-Gallegos, Guadalupe; Kim, Minsoo; Waugh, Richard E.; Arreola, Jorge; Knauf, Philip A.
2008-01-01
Ischemia-reperfusion injury is a common pathological occurrence causing tissue damage in heart attack and stroke. Entrapment of neutrophils in the vasculature during ischemic events has been implicated in this process. In this study, we examine the effects that lactacidosis and consequent reductions in intracellular pH (pHi) have on surface expression of adhesion molecules on neutrophils. When human neutrophils were exposed to pH 6 lactate, there was a marked decrease in surface L-selectin (CD62L) levels, and the decrease was significantly enhanced by inclusion of Na+/H+ exchanger (NHE) inhibitor 5-(N,N-hexamethylene)amiloride (HMA). Similar effects were observed when pHi was reduced while maintaining normal extracellular pH, by using an NH4Cl prepulse followed by washes and incubation in pH 7.4 buffer containing NHE inhibitors [HMA, cariporide, or 5-(N,N-dimethyl)amiloride (DMA)]. The amount of L-selectin shedding induced by different concentrations of NH4Cl in the prepulse correlated with the level of intracellular acidification with an apparent pK of 6.3. In contrast, β2-integrin (CD11b and CD18) was only slightly upregulated in the low-pHi condition and was enhanced by NHE inhibition to a much lesser extent. L-selectin shedding was prevented by treating human neutrophils with inhibitors of extracellular metalloproteases (RO-31-9790 and KD-IX-73-4) or with inhibitors of intracellular signaling via p38 MAP kinase (SB-203580 and SB-239063), implying a transmembrane effect of pHi. Taken together, these data suggest that the ability of NHE inhibitors such as HMA to reduce ischemia-reperfusion injury may be related to the nearly complete removal of L-selectin from the neutrophil surface. PMID:18829897
Xiao, Chao-Wu; Wood, Carla M; Swist, Eleonora; Nagasaka, Reiko; Sarafin, Kurtis; Gagnon, Claude; Fernandez, Lois; Faucher, Sylvie; Wu, Hong-Xing; Kenney, Laura; Ratnayake, Walisundera M N
2016-01-01
This study compared cardio-metabolic disease risk factors and their associations with serum vitamin D and omega-3 status in South Asian (SAC) and White Canadians (WC) living in Canada's capital region. Fasting blood samples were taken from 235 SAC and 279 WC aged 20 to 79 years in Ottawa, and 22 risk factors were measured. SAC men and women had significantly higher fasting glucose, insulin, homeostasis model assessment for insulin resistance (HOMA-IR), apolipoprotein B (ApoB), ratios of total (TC) to HDL cholesterol (HDLC) and ApoB to ApoA1, leptin, E-selectin, P-selectin, ICAM-1 and omega-3 (p < 0.05), but lower HDLC, ApoA1, vitamin D levels than WC (p < 0.05). SAC women had higher CRP and VEGF than WC women. Adequate (50-74.9 nmol/L) or optimal (≥ 75 nmol/L) levels of 25(OH)D were associated with lower BMI, glucose, insulin, HOMA-IR, TG, TC, low density lipoprotein cholesterol (LDLC), ApoB/ApoA1 ratio, CRP, leptin, and higher HDLC, ApoA1, omega-3 index, L-selectin levels in WC, but not in SAC. Intermediate (>4%-<8%) or high (≥ 8%) levels of omega-3 indices were related to lower E-selectin, P-selectin, ICAM-1 and higher HDLC, 25(OH)D levels in WC, but not in SAC. The BMIs of ≤ 25 kg/m2 were related to lower LDLC, ApoB, VEGF, creatinine and higher 25(OH)D in WC, but not in SAC. The associations of vitamin D, omega-3 status, BMI and risk factors were more profound in the WC than SAC. Compared to WC, vitamin D status and omega-3 index may not be good predictive risk factors for the prevalence of CVD and diabetes in SAC.
Xiao, Chao-Wu; Wood, Carla M.; Swist, Eleonora; Nagasaka, Reiko; Sarafin, Kurtis; Gagnon, Claude; Fernandez, Lois; Faucher, Sylvie; Wu, Hong-Xing; Kenney, Laura; Ratnayake, Walisundera M. N.
2016-01-01
Objectives This study compared cardio-metabolic disease risk factors and their associations with serum vitamin D and omega-3 status in South Asian (SAC) and White Canadians (WC) living in Canada’s capital region. Methods Fasting blood samples were taken from 235 SAC and 279 WC aged 20 to 79 years in Ottawa, and 22 risk factors were measured. Results SAC men and women had significantly higher fasting glucose, insulin, homeostasis model assessment for insulin resistance (HOMA-IR), apolipoprotein B (ApoB), ratios of total (TC) to HDL cholesterol (HDLC) and ApoB to ApoA1, leptin, E-selectin, P-selectin, ICAM-1 and omega-3 (p < 0.05), but lower HDLC, ApoA1, vitamin D levels than WC (p < 0.05). SAC women had higher CRP and VEGF than WC women. Adequate (50–74.9 nmol/L) or optimal (≥ 75 nmol/L) levels of 25(OH)D were associated with lower BMI, glucose, insulin, HOMA-IR, TG, TC, low density lipoprotein cholesterol (LDLC), ApoB/ApoA1 ratio, CRP, leptin, and higher HDLC, ApoA1, omega-3 index, L-selectin levels in WC, but not in SAC. Intermediate (>4%-<8%) or high (≥ 8%) levels of omega-3 indices were related to lower E-selectin, P-selectin, ICAM-1 and higher HDLC, 25(OH)D levels in WC, but not in SAC. The BMIs of ≤ 25 kg/m2 were related to lower LDLC, ApoB, VEGF, creatinine and higher 25(OH)D in WC, but not in SAC. Conclusions The associations of vitamin D, omega-3 status, BMI and risk factors were more profound in the WC than SAC. Compared to WC, vitamin D status and omega-3 index may not be good predictive risk factors for the prevalence of CVD and diabetes in SAC. PMID:26809065
Effects of Antimalarial Tafenoquine on Blood Platelet Activity and Survival.
Cao, Hang; Bissinger, Rosi; Umbach, Anja T; Al Mamun Bhuyan, A; Lang, Florian; Gawaz, Meinrad
2017-01-01
The 8-aminoquinoline tafenoquine has been shown to be effective against Plasmodia, Leishmania and Trypanosoma. The substance is at least in part effective by triggering apoptosis of the parasites. Moreover, tafenoquine has been shown to trigger eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. The effect of tafenoquine on eryptosis is in part due to stimulation of Ca2+ entry and oxidative stress. Ca2+ entry is a critical event in the activation of blood platelets by thrombin and collagen related peptide (CRP). The present study explored, whether tafenoquine influences Ca2+ entry, activation and apoptosis of blood platelets. Platelets isolated from wild-type mice were exposed for 30 minutes to tafenoquine (2.5 µg/ml) without or with an additional treatment with thrombin (0.01 U/ml) or CRP (2 µg/ml or 5 µg/ml). Flow cytometry was employed to estimate cytosolic Ca2+-activity ([Ca2+] i ) from Fluo-3 fluorescence, platelet degranulation from P-selectin abundance, integrin activation from α IIb β 3 integrin abundance, phosphatidylserine abundance from annexin-V-binding, relative platelet volume from forward scatter, reactive oxygen species (ROS) from DCF fluorescence, caspase 3 activity with an active caspase-3 Staining kit, and aggregation utilizing staining with CD9-APC and CD9-PE. Both, thrombin (0.01 U/ml) and CRP (2 µg/ml or 5 µg/ml), significantly increased [Ca2+] i , P-selectin abundance, active α IIb β 3 integrin, and annexin-V-binding, and both significantly decreased platelet volume, activated caspase 3 and stimulated aggregation. Administration of tafenoquine (2.5 µg/ml, 30 min) significantly decreased [Ca2+] i both, in the absence and presence of thrombin and CRP. Tafenoquine significantly blunted the effect of thrombin and CRP on [Ca2+] i , P-selectin abundance, and active α IIb β 3 integrin, but significantly increased ROS and annexin-V-binding, significantly augmented the effect of thrombin on caspase 3 activity and platelet volume and significantly enhanced platelet aggregation. Tafenoquine counteracts thrombin and CRP induced increase of cytosolic Ca2+ activity and platelet activation, but enhances platelet apoptosis and platelet aggregation. © 2017 The Author(s) Published by S. Karger AG, Basel.
Kimura, Tetsuya; Nakao, Akihide; Murata, Sachiko; Kobayashi, Yasuyuki; Tanaka, Yuji; Shibahara, Kenta; Kawazu, Tetsu; Nakagawa, Tsuyoshi
2013-01-01
We developed the Gateway recycling cloning system, which allows multiple linking of expression cassettes by multiple rounds of the Gateway LR reaction. Employing this system, the recycling donor vector pRED419 was subjected to the first LR reaction with an attR1-attR2 type destination vector. Then conversion vector pCON was subjected to an LR reaction to restore the attR1-attR2 site on the destination vector for the next cloning cycle. By repetition of these two simple steps, we linked four expression cassettes of a reporter gene in Gateway binary vector pGWB1, introduced the constructs into tobacco BY-2 cells, and observed the expression of transgenes.
Huang, Xiaoqin; He, Dan; Ming, Jia; He, Yubin; Zhou, Champion; Ren, Hui; He, Xin; Wang, Chenguang; Jin, Jingru; Ji, Liang; Willard, Belinda; Pan, Bing; Zheng, Lemin
2016-02-01
Adhesion of disseminating tumor cells to vascular endothelium is a pivotal starting point in the metastasis cascade. We have shown previously that diabetic high-density lipoprotein (HDL) has the capability of promoting breast cancer metastasis, and this report summarizes our more recent work studying the role of abnormal HDL in facilitating the adhesion of the circulating tumor cells to the endothelium. This is an initiating step in breast cancer metastasis, and this work assesses the role of ICAM-1 and VCAM-1 in this process. MDA-MB-231, MCF 7, and human umbilical vein endothelial cells (HUVECs) were treated with normal HDL from healthy controls (N-HDL), HDL from breast cancer patients (B-HDL), or HDL from breast cancer patients complicated with type 2 diabetes mellitus (BD-HDL), and the cell adhesion abilities were determined. ICAM-1 and VCAM-1 expression as well as the protein kinase C (PKC) activity were evaluated. The effect of PKC inhibitor and PKC siRNA on adhesion was also studied. The immunohistochemical staining of ICAM-1, VCAM-1, and E-selectin from breast cancer patients and breast cancer patients complicated with type 2 diabetes mellitus (T2DM) were examined. Our results indicate that BD-HDL promoted an increase in breast cancer cell adhesion to HUVECs and stimulated higher ICAM-1 and VCAM-1 expression on the cells surface of both breast cancer and HUVEC cells, along with the activation of PKC. Increased tumor cell (TC)-HUVEC adhesion, as well as ICAM-1 and VCAM-1 expression induced by BD-HDL, could be inhibited by staurosporine and PKC siRNA. In addition, a Db/db type 2 diabetes mouse model has more TC-Vascular Endothelium adhesion compared to a normal model. However, BD patients have a lower expression of ICAM-1, VCAM-1, and E-selectin in their tumor tissues. BD-HDL facilitates the adhesion of tumor cells to vascular endothelium by upregulating the expression of ICAM-1 and VCAM-1, thereby promoting the initial progression of breast cancer metastasis. This work indicates a prospective utilization of HDL-based strategies in the treatment of breast cancer patients with type 2 diabetes.
Training Select-in Interviewers for Astronaut Selection: A Program Evaluation
NASA Technical Reports Server (NTRS)
Hysong, S.; Galarza, L.; Holland, A.; Billica, Roger (Technical Monitor)
2000-01-01
Psychological factors critical to the success of short and long-duration missions have been identified in previous research; however, evaluation for such critical factors in astronaut applicants leaves much room for human interpretation. Thus, an evaluator training session was designed to standardize the interpretation of critical factors, as well as the structure of the select-in interview across evaluators. The purpose of this evaluative study was to determine the effectiveness of the evaluator training sessions and their potential impact on evaluator ratings.
Necrotic platelets provide a procoagulant surface during thrombosis
Hua, Vu Minh; Abeynaike, Latasha; Glaros, Elias; Campbell, Heather; Pasalic, Leonardo; Chen, Vivien M. Y.
2015-01-01
A subpopulation of platelets fulfills a procoagulant role in hemostasis and thrombosis by enabling the thrombin burst required for fibrin formation and clot stability at the site of vascular injury. Excess procoagulant activity is linked with pathological thrombosis. The identity of the procoagulant platelet has been elusive. The cell death marker 4-[N-(S-glutathionylacetyl)amino]phenylarsonous acid (GSAO) rapidly enters a subpopulation of agonist-stimulated platelets via an organic anion-transporting polypeptide and is retained in the cytosol through covalent reaction with protein dithiols. Labeling with GSAO, together with exposure of P-selectin, distinguishes necrotic from apoptotic platelets and correlates with procoagulant potential. GSAO+ platelets form in occluding murine thrombi after ferric chloride injury and are attenuated with megakaryocyte-directed deletion of the cyclophilin D gene. These platelets form a procoagulant surface, supporting fibrin formation, and reduction in GSAO+ platelets is associated with reduction in platelet thrombus size and fibrin formation. Analysis of platelets from human subjects receiving aspirin therapy indicates that these procoagulant platelets form despite aspirin therapy, but are attenuated by inhibition of the necrosis pathway. These findings indicate that the major subpopulation of platelets involved in fibrin formation are formed via regulated necrosis involving cyclophilin D, and that they may be targeted independent of platelet activation. PMID:26474813
A multicolor flow cytometric assay for measurement of platelet-derived microparticles.
Mobarrez, Fariborz; Antovic, Jovan; Egberg, Nils; Hansson, Mona; Jörneskog, Gun; Hultenby, Kjell; Wallén, Håkan
2010-03-01
Flow cytometry (FCM) is the most commonly used method for detection of platelet-derived microparticles (PDMPs), but it is poorly standardized and mainly used for "bedside" analyses in fresh samples. If PDMPs could be analyzed in previously frozen samples it would increase the usefulness of the method. However, cell membrane fragments from contaminating cells created during freezing/thawing may cause artifacts and disturb measurements. PDMPs were labeled with monoclonal antibodies directed against CD42a and CD62P, or CD42a and CD142. The PDMP gate was determined using forward scatter (FSC) and CD42a expression. The mean fluorescence intensities (MFIs) of CD62P or CD142 positive particles were translated into MESF -values (Molecules of Equivalent Soluble Fluorochrome) using a standard curve. FITC-labeled phalloidin (which binds to intracellular actin) was used to detect destroyed cells/cell fragments. Phalloidin-positive particles were significantly more common in supernatants of frozen/thawed platelet rich and platelet poor plasma samples compared with supernatants of platelet free plasma. High-speed centrifugation was then used to obtain PDMP samples with low contamination of cell fragments. Electron microscopy showed that these samples contained numerous round stained particles with cellular membranes of a size of 100-700 nm. Reproducibility experiments using plasma samples from healthy individuals showed that the coefficients of variation (CVs) of MESF values of CD62P and CD142 (both intra- and interassay) were <10%, and the variation between two cytometers in two different laboratories was <5%. We also found that PDMP expression of CD142 (i.e. tissue factor [TF]) and CD62P (i.e P-selectin) was around two times higher in samples from type 1-diabetes patients compared with those from healthy controls (p<0.001). The use of MESF values to quantify PDMP expression of P-selectin and TF yields reproducible data and enables comparison of data between laboratories. If high-speed centrifugation is performed, contamination of cell fragments is low in frozen/thawed samples. (c) 2009 Elsevier Ltd. All rights reserved.
Ibrutinib targets microRNA-21 in multiple myeloma cells by inhibiting NF-κB and STAT3.
Ma, Jing; Gong, Wei; Liu, Su; Li, Qian; Guo, Mengzheng; Wang, Jinhan; Wang, Suying; Chen, Naiyao; Wang, Yafei; Liu, Qiang; Zhao, Hui
2018-01-01
The oncogenic microRNA-21 contributes to the pathogenesis of multiple myeloma. Ibrutinib (also referred to as PCI-32765), an inhibitor of Bruton's tyrosine kinase, while its effects on multiple myeloma have not been well described. Here, we show that microRNA-21 is an oncogenic marker closely linked with progression of multiple myeloma. Moreover, ibrutinib attenuates microRNA-21 expression in multiple myeloma cells by inhibiting nuclear factor-κB and signal transducer and activator of transcription 3 signaling pathways. Taken together, our results suggest that ibrutinib is a promising potential treatment for multiple myeloma. Further investigation of mechanisms of ibrutinib function in multiple myeloma will be necessary to evaluate its use as a novel multiple myeloma treatment.
Salden, Bouke N; Troost, Freddy J; de Groot, Eric; Stevens, Yala R; Garcés-Rimón, Marta; Possemiers, Sam; Winkens, Bjorn; Masclee, Ad A
2016-12-01
Endothelial dysfunction (ED) is involved in the development of atherosclerosis. Hesperidin, a citrus flavonoid with antioxidant and other biological properties, potentially exerts beneficial effects on endothelial function (EF). We investigated the effect of hesperidin 2S supplementation on EF in overweight individuals. This was a randomized, double-blind, placebo-controlled study in which 68 individuals were randomly assigned to receive hesperidin 2S (450 mg/d) or a placebo for 6 wk. At baseline and after 6 wk of intervention, flow-mediated dilation (FMD), soluble vascular adhesion molecule-1 (sVCAM-1), soluble intracellular adhesion molecule-1 (sICAM-1), soluble P-selectin (sP-selectin), systolic blood pressure (SBP), and diastolic blood pressure (DBP) were assessed. Acute, reversible ED was induced by intake of a high-fat meal (HFM). A second FMD scan was performed 2 h postprandially, and adhesion molecules were assessed 2 and 4 h postprandially. An additional exploratory analysis was performed in subjects with baseline FMD ≥3%. No significant change in fasting or postprandial FMD was observed after 6 wk of hesperidin intake compared with placebo intake. However, there was a trend for a reduction of sVCAM-1, sICAM-1, sP-selectin, SBP, and DBP after 6 wk of hesperidin treatment. In the FMD ≥3% group, hesperidin protected individuals from postprandial ED (P = 0.050) and significantly downregulated sVCAM-1 and sICAM-1 (all P ≤ 0.030). The results reported in the current article were not adjusted for multiplicity. Six weeks of consumption of hesperidin 2S did not improve basal or postprandial FMD in our total study population. There was a tendency toward a reduction of adhesion molecules and a decrease in SBP and DBP. Further exploratory analyses revealed that, in subjects with baseline FMD ≥3%, hesperidin 2S improved ED after an HFM and reduced adhesion molecules. These results indicate the cardiovascular health benefits of hesperidin 2S in overweight and obese individuals with a relatively healthy endothelium. This trial was registered at clinicaltrials.gov as NCT02228291. © 2016 American Society for Nutrition.
Self-generated covalent cross-links in the cell-surface adhesins of Gram-positive bacteria.
Baker, Edward N; Squire, Christopher J; Young, Paul G
2015-10-01
The ability of bacteria to adhere to other cells or to surfaces depends on long, thin adhesive structures that are anchored to their cell walls. These structures include extended protein oligomers known as pili and single, multi-domain polypeptides, mostly based on multiple tandem Ig-like domains. Recent structural studies have revealed the widespread presence of covalent cross-links, not previously seen within proteins, which stabilize these domains. The cross-links discovered so far are either isopeptide bonds that link lysine side chains to the side chains of asparagine or aspartic acid residues or ester bonds between threonine and glutamine side chains. These bonds appear to be formed by spontaneous intramolecular reactions as the proteins fold and are strategically placed so as to impart considerable mechanical strength. © 2015 Authors; published by Portland Press Limited.
Hair cell transduction, tuning and synaptic transmission in the mammalian cochlea
Fettiplace, Robert
2017-01-01
Sound pressure fluctuations striking the ear are conveyed to the cochlea, where they vibrate the basilar membrane on which sit hair cells, the mechanoreceptors of the inner ear. Recordings of hair cell electrical responses have shown that they transduce sound via sub-micrometer deflections of their hair bundles, which are arrays of interconnected stereocilia containing the mechanoelectrical transducer (MET) channels. MET channels are activated by tension in extracellular tip links bridging adjacent stereocilia, and they can respond within microseconds to nanometer displacements of the bundle, facilitated by multiple processes of Ca2+-dependent adaptation. Studies of mouse mutants have produced much detail about the molecular organization of the stereocilia, the tip links and their attachment sites, and the MET channels localized to the lower ends of each tip link. The mammalian cochlea contains two categories of hair cells. Inner hair cells relay acoustic information via multiple ribbon synapses that transmit rapidly without rundown. Outer hair cells are important for amplifying sound-evoked vibrations. The amplification mechanism primarily involves contractions of the outer hair cells, which are driven by changes in membrane potential and mediated by prestin, a motor protein in the outer hair cell lateral membrane. Different sound frequencies are separated along the cochlea, with each hair cell being tuned to a narrow frequency range; amplification sharpens the frequency resolution and augments sensitivity 100-fold around the cell’s characteristic frequency. Genetic mutations and environmental factors such as acoustic overstimulation cause hearing loss through irreversible damage to the hair cells or degeneration of inner hair cell synapses. PMID:28915323
Jee, Haemi; Park, Jaehyun; Oh, Jae-Gun; Lee, Yoon-Hee; Shin, Kyung-A; Kim, Young-Joo
2013-06-01
The aim of this study was to observe the changes in endothelial and inflammatory markers in middle-aged male runners with exercise-induced hypertension (EIH) at baseline and at 100-km, 200-km, and 308-km checkpoints during a prolonged endurance ultramarathon. Among a total of 62 ultramarathon volunteers, 8 with systolic blood pressure higher than 210 mm Hg and 8 with normal systolic blood pressure were selected for this study. The subjects were designated to EIH and control (CON) groups. Blood was collected for the analysis of soluble vascular cell adhesion molecule-1, soluble E-selectin, leukocytes, creatine kinase, and high-sensitivity C-reactive protein. Soluble vascular cell adhesion molecule-1 showed a significantly greater increase in the EIH group than in the CON group at 100 km and 200 km. Soluble E-selectin also showed a significantly greater increase in the EIH group than in the CON group at 100 km. Leukocytes significantly increased in the EIH group than in the CON group at 308 km. Creatine kinase and high-sensitivity C-reactive protein showed no group differences. Leukocytes, creatine kinase, and high-sensitivity C-reactive protein showed delayed-onset increases in both groups. Increased exercise intensity may stimulate greater endothelial responses independent of the inflammatory markers in EIH. The loss of a protective effect may be greater in those with EIH than in CONs. Acknowledging and prescribing proper exercise intensity may be critical in preventing possible vascular-related complications in runners with EIH.
Fang, Wei; Wang, Guizhen; Tang, Luyan; Su, Huilin; Chen, Huyan; Liao, Wanqing; Xu, Jinhua
2018-06-19
Pressure ulcer formation depends on various factors among which repetitive ischaemia/reperfusion(I/R) injury plays a vital role. Molecular hydrogen (H 2 ) was reported to have protective effects on I/R injuries of various internal organs. In this study, we investigated the effects of H 2 inhalation on pressure ulcer and the underlying mechanisms. H 2 inhalation significantly reduced wound area, 8-oxo-dG level (oxidative DNA damage) and cell apoptosis rates in skin lesions. H 2 remarkably decreased ROS accumulation and enhanced antioxidant enzymes activities by up-regulating expression of Nrf2 and its downstream components in wound tissue and/or H 2 O 2 -treated endothelia. Meanwhile, H 2 inhibited the overexpression of MCP-1, E-selectin, P-selectin and ICAM-1 in oxidant-induced endothelia and reduced inflammatory cells infiltration and proinflammatory cytokines (TNF-α, IL-1, IL-6 and IL-8) production in the wound. Furthermore, H 2 promoted the expression of pro-healing factors (IL-22, TGF-β, VEGF and IGF1) and inhibited the production of MMP9 in wound tissue in parallel with acceleration of cutaneous collagen synthesis. Taken together, these data indicated that H 2 inhalation suppressed the formation of pressure ulcer in a mouse model. Molecular hydrogen has potentials as a novel and alternative therapy for severe pressure ulcer. The therapeutic effects of molecular hydrogen might be related to its antioxidant, anti-inflammatory, pro-healing actions. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
E-selectin S128R polymorphism and severe coronary artery disease in Arabs
Abu-Amero, Khaled K; Al-Boudari, Olayan M; Mohamed, Gamal H; Dzimiri, Nduna
2006-01-01
Background The E-selectin p. S128R (g. A561C) polymorphism has been associated with the presence of angiographic coronary artery disease (CAD) in some populations, but no data is currently available on its association with CAD in Arabs. Methods In the present study, we determined the potential relevance of the E-selectin S128R polymorphism for severe CAD and its associated risk factors among Arabs. We genotyped Saudi Arabs for this polymorphism by PCR, followed by restriction enzyme digestion. Results The polymorphism was determined in 556 angiographically confirmed severe CAD patients and 237 control subjects with no CAD as established angiographically (CON). Frequencies of the S/S, S/R and R/R genotypes were found as 81.1%, 16.6% and 2.3% in CAD patients and 87.8%, 11.8%, and 0.4% in CON subjects, respectively. The frequency of the mutant 128R allele was higher among CAD patients compared to CON group (11% vs. 6%; odds ratio = 1.76; 95% CI 1.14 – 2.72; p = .007), thus indicating a significant association of the 128R allele with CAD among our population. However, the stepwise logistic regression for the 128R allele and different CAD risk factors showed no significant association. Conclusion Among the Saudi population, The E-selectin p. S128R (g. A561C) polymorphism was associated with angiographic CAD in Univariate analysis, but lost its association in multivariate analysis. PMID:16756647
Non-Syndromic Recurrent Multiple Odontogenic Keratocysts: A Case Report
Bartake, AR.; Shreekanth, NG.; Prabhu, S.; Gopalkrishnan, K.
2011-01-01
Odontogenic keratocysts (OKCs) are one of the most frequent features of nevoid basal cell carcinoma syndrome (NBS). It is linked with mutation in the PTCH gene. Partial expression of the gene may result in occurrence of only multiple recurring OKC. Our patient presented with nine cysts with multiple recurrences over a period of 11 years without any other manifestation of the syndrome. PMID:21998815
An amorphous alloy core medium frequency magnetic-link for medium voltage photovoltaic inverters
NASA Astrophysics Data System (ADS)
Rabiul Islam, Md.; Guo, Youguang; Wei Lin, Zhi; Zhu, Jianguo
2014-05-01
The advanced magnetic materials with high saturation flux density and low specific core loss have led to the development of an efficient, compact, and lightweight multiple-input multiple-output medium frequency magnetic-link. It offers a new route to eliminate some critical limitations of recently proposed medium voltage photovoltaic inverters. In this paper, a medium frequency magnetic-link is developed with Metglas amorphous alloy 2605S3A. The common magnetic-link generates isolated and balanced multiple DC supplies for all of the H-bridge inverter cells of the medium voltage inverter. The design and implementation of the prototype, test platform, and the experimental test results are analyzed and discussed. The medium frequency non-sinusoidal excitation electromagnetic characteristics of alloy 2605S3A are also compared with that of alloy 2605SA1. It is expected that the proposed new technology will have great potential for future renewable power generation systems and smart grid applications.
Gkonis, Panagiotis K.; Seimeni, Maria A.; Asimakis, Nikolaos P.; Kaklamani, Dimitra I.; Venieris, Iakovos S.
2014-01-01
The goal of the study presented in this paper is to investigate the performance of a new subcarrier allocation strategy for Orthogonal Frequency Division Multiple Access (OFDMA) multicellular networks which employ Multiple Input Multiple Output (MIMO) architecture. For this reason, a hybrid system-link level simulator has been developed executing independent Monte Carlo (MC) simulations in parallel. Up to two tiers of cells around the central cell are taken into consideration and increased loading per cell. The derived results indicate that this strategy can provide up to 12% capacity gain for 16-QAM modulation and two tiers of cells around the central cell in a symmetric 2 × 2 MIMO configuration. This gain is derived when comparing the proposed strategy to the traditional approach of allocating subcarriers that maximize only the desired user's signal. PMID:24683351
Wong, Heng Jian; Croft, Kevin; Mori, Trevor; Farrell, Geoffrey C.
2014-01-01
Background & Aims Ischemia–reperfusion injury (IRI) can cause hepatic failure after liver surgery or transplantation. IRI causes oxidative stress, which injures sinusoidal endothelial cells (SECs), leading to recruitment and activation of Kupffer cells, platelets and microcirculatory impairment. We investigated whether injured SECs and other cell types release microparticles during post-ischemic reperfusion, and whether such microparticles have pro-inflammatory, platelet-activating and pro-injurious effects that could contribute to IRI pathogenesis. Methods C57BL6 mice underwent 60 min of partial hepatic ischemia followed by 15 min–24 hrs of reperfusion. We collected blood and liver samples, isolated circulating microparticles, and determined protein and lipid content. To establish mechanism for microparticle production, we subjected murine primary hepatocytes to hypoxia-reoxygenation. Because microparticles express everted phosphatidylserine residues that are the target of annexin V, we analyzed the effects of an annexin V-homodimer (Diannexin or ASP8597) on post-ischemia microparticle production and function. Results Microparticles were detected in the circulation 15–30 min after post-ischemic reperfusion, and contained markers of SECs, platelets, natural killer T cells, and CD8+ cells; 4 hrs later, they contained markers of macrophages. Microparticles contained F2-isoprostanes, indicating oxidative damage to membrane lipids. Injection of mice with TNF-α increased microparticle formation, whereas Diannexin substantially reduced microparticle release and prevented IRI. Hypoxia-re-oxygenation generated microparticles from primary hepatocytes by processes that involved oxidative stress. Exposing cultured hepatocytes to preparations of microparticles isolated from the circulation during IRI caused injury involving mitochondrial membrane permeability transition. Microparticles also activated platelets and induced neutrophil migration in vitro. The inflammatory properties of microparticles involved activation of NF-κB and JNK, increased expression of E-selectin, P-selectin, ICAM-1 and VCAM-1. All these processes were blocked by coating microparticles with Diannexin. Conclusions Following hepatic IRI, microparticles circulate and can be taken up by hepatocytes, where they activate signaling pathways that mediate inflammation and hepatocyte injury. Diannexin prevents microparticle formation and subsequent inflammation. PMID:25222287
Huang, Zhouqing; Chen, Chen; Li, Sheng; Kong, Fanqi; Shan, Peiren; Huang, Weijian
2016-06-01
The aim of this study was to examine endothelial dysfunction and inflammation in hypertension and prediabetes by studying adhesion molecules and inflammatory factors. This study included 133 outpatients. Participants were categorized into three groups based on the presence or absence of hypertension and prediabetes: control subjects without prediabetes and hypertension (N group, n = 39); patients with hypertension only (H group, n = 34); and patients with hypertension and prediabetes (HD group, n = 60). Hypertension was diagnosed according to JNC7 criteria. Prediabetes was defined according to 2010 American Diabetes Association criteria. Plasma was isolated from overnight fasting blood samples for enzyme-linked immunosorbent assay (ELISA) analysis of concentrations of intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-α (TNF-α), P-selectin, and interleukin-6 (IL-6) as indicators of endothelial function and inflammation. We found that the H and HD groups showed significantly higher levels of all four biomarkers compared with the N group (all p < 0.01). The HD group also showed significantly higher levels of ICAM-1 (p = 0.042) and TNF-α (p < 0.01) compared with the H group; no significant differences in P-selectin (p = 0.59) and IL-6 (p = 0.70) levels were observed among these groups. Prediabetes and hypertension induce endothelial dysfunction and inflammation by elevating levels of soluble adhesion molecules and inflammatory cytokines. The comorbidity of these diseases may exacerbate inflammation and endothelial dysfunction by enhancing the expression of ICAM-1 and TNF-α.
DNA Methylation Analysis of the Angiotensin Converting Enzyme (ACE) Gene in Major Depression
Zill, Peter; Baghai, Thomas C.; Schüle, Cornelius; Born, Christoph; Früstück, Clemens; Büttner, Andreas; Eisenmenger, Wolfgang; Varallo-Bedarida, Gabriella; Rupprecht, Rainer; Möller, Hans-Jürgen; Bondy, Brigitta
2012-01-01
Background The angiotensin converting enzyme (ACE) has been repeatedly discussed as susceptibility factor for major depression (MD) and the bi-directional relation between MD and cardiovascular disorders (CVD). In this context, functional polymorphisms of the ACE gene have been linked to depression, to antidepressant treatment response, to ACE serum concentrations, as well as to hypertension, myocardial infarction and CVD risk markers. The mostly investigated ACE Ins/Del polymorphism accounts for ∼40%–50% of the ACE serum concentration variance, the remaining half is probably determined by other genetic, environmental or epigenetic factors, but these are poorly understood. Materials and Methods The main aim of the present study was the analysis of the DNA methylation pattern in the regulatory region of the ACE gene in peripheral leukocytes of 81 MD patients and 81 healthy controls. Results We detected intensive DNA methylation within a recently described, functional important region of the ACE gene promoter including hypermethylation in depressed patients (p = 0.008) and a significant inverse correlation between the ACE serum concentration and ACE promoter methylation frequency in the total sample (p = 0.02). Furthermore, a significant inverse correlation between the concentrations of the inflammatory CVD risk markers ICAM-1, E-selectin and P-selectin and the degree of ACE promoter methylation in MD patients could be demonstrated (p = 0.01 - 0.04). Conclusion The results of the present study suggest that aberrations in ACE promoter DNA methylation may be an underlying cause of MD and probably a common pathogenic factor for the bi-directional relationship between MD and cardiovascular disorders. PMID:22808171
Expression of multiple proteins in transgenic plants
Vierstra, Richard D.; Walker, Joseph M.
2002-01-01
A method is disclosed for the production of multiple proteins in transgenic plants. A DNA construct for introduction into plants includes a provision to express a fusion protein of two proteins of interest joined by a linking domain including plant ubiquitin. When the fusion protein is produced in the cells of a transgenic plant transformed with the DNA construction, native enzymes present in plant cells cleave the fusion protein to release both proteins of interest into the cells of the transgenic plant. Since the proteins are produced from the same fusion protein, the initial quantities of the proteins in the cells of the plant are approximately equal.
Injuries to the vascular endothelium: vascular wall and endothelial dysfunction.
Fisher, Mark
2008-01-01
Vascular endothelial injury has multiple elements, and this article focuses on ischemia-related processes that have particular relevance to ischemic stroke. Distinctions between necrotic and apoptotic cell death provide a basic science context in which to better understand the significance of classical core and penumbra concepts of acute stroke, with apoptotic processes particularly prominent in the penumbra. The mitochondria are understood to serve as a reservoir of proteins that mediate apoptosis. Oxidative stress pathways generating reactive oxygen species (ROS) are prominent in endothelial injury, both ischemic and nonischemic, with prominent roles of enzyme- and nonenzymemediated pathways; mitochondria once again have a critical role, particularly in the nonenzymatic pathways generating ROS. Inflammation also contributes to vascular endothelial injury, and endothelial cells have the capacity to rapidly increase expression of inflammatory mediators following ischemic challenge; this leads to enhanced leukocyte-endothelial interactions mediated by selectins and adhesion molecules. Preconditioning consists of a minor version of an injurious event, which in turn may protect vascular endothelium from injury following a more substantial event. Presence of the blood-brain barrier creates unique responses to endothelial injury, with permeability changes due to impairment of endothelial-matrix interactions compounding altered vasomotor tone and tissue perfusion mediated by nitric oxide. Pharmacological protection against vascular endothelial injury can be provided by several of the phosphodiesterases (cilostazol and dipyridamole), along with statins. Optimal clinical responses for protection of brain vascular endothelium may use preconditioning as a model, and will likely require combined protection against apoptosis, ROS, and inflammation.
Krska, Z; Kvasnièka, J; Faltýn, J; Schmidt, D; Sváb, J; Kormanová, K; Hubík, J
2003-11-01
To compare by prospective randomised trial the postoperative tissue reaction of stapled vs. conventional haemorrhoidectomy. Fifty patients with stage III haemorrhoids underwent surgery for haemorrhoids. Group 1 (n = 25) had the Milligan-Morgan procedure; Group 2 (n = 25) had a stapled haemorrhoidectomy. All patients underwent measurements of endothelial dysfunction markers including E-selectin, P-selectin and intercellular adhesion molecule (ICAM). Acute-phase proteins including C-reactive protein, orosomucoid and fibrinogen were also measured. Estimations were made prior to surgery, immediately afterward surgery and on the first and fifth postoperative days. Assessment of clinical outcome was made one month after the surgery. There was a postoperative increase of acute-phase reactants in both groups. The patterns of the cures of the monitored parameters appeared similar in both groups. Lower values were found in Group 1, but the difference was not statistically significant except the level of fibrinogen on day 5, which was significantly higher in Group 2. E-selectin, P-selectin and ICAM showed similar time curves. Statistical analysis found the differences to be significant only when individual days were compared and not for the types of surgery. Raised ICAM and P-selectin on the fifth postoperative day was found in both groups. In Group 1, pain assessment by patients remained in the lower part of the pain rating scale, while in Group 2 it did not start declining until one week after surgery and became normal in the third to fourth weeks. In Group 1, the duration of hospitalization and the duration of incapacity for work were 50% of the values in Group 2. Patients having stapled haemorrhoidectomy have less pain and experience more rapid recovery when compared to classical haemorroidectomy. This was mirrored by the acute-phase protein CRP and fibrinogen levels postoperatively. There was no significant difference in other acute-phase reactants monitored, nor was there any difference in parameters of endothelial dysfunction. The techniques differ in extent of pain and duration of hospital stay and incapacity for work.
Xie, Aris; Belcik, Todd; Qi, Yue; Morgan, Terry K; Champaneri, Shivam A; Taylor, Sarah; Davidson, Brian P; Zhao, Yan; Klibanov, Alexander L; Kuliszewski, Michael A; Leong-Poi, Howard; Ammi, Azzdine; Lindner, Jonathan R
2012-12-01
Ultrasound-mediated gene delivery can be amplified by acoustic disruption of microbubble carriers that undergo cavitation. We hypothesized that endothelial targeting of microbubbles bearing cDNA is feasible and, through optimizing proximity to the vessel wall, increases the efficacy of gene transfection. Contrast ultrasound-mediated gene delivery is a promising approach for site-specific gene therapy, although there are concerns with the reproducibility of this technique and the safety when using high-power ultrasound. Cationic lipid-shelled decafluorobutane microbubbles bearing a targeting moiety were prepared and compared with nontargeted microbubbles. Microbubble targeting efficiency to endothelial adhesion molecules (P-selectin or intercellular adhesion molecule [ICAM]-1) was tested using in vitro flow chamber studies, intravital microscopy of tumor necrosis factor-alpha (TNF-α)-stimulated murine cremaster muscle, and targeted contrast ultrasound imaging of P-selectin in a model of murine limb ischemia. Ultrasound-mediated transfection of luciferase reporter plasmid charge coupled to microbubbles in the post-ischemic hindlimb muscle was assessed by in vivo optical imaging. Charge coupling of cDNA to the microbubble surface was not influenced by the presence of targeting ligand, and did not alter the cavitation properties of cationic microbubbles. In flow chamber studies, surface conjugation of cDNA did not affect attachment of targeted microbubbles at microvascular shear stresses (0.6 and 1.5 dyne/cm(2)). Attachment in vivo was also not affected by cDNA according to intravital microscopy observations of venular adhesion of ICAM-1-targeted microbubbles and by ultrasound molecular imaging of P-selectin-targeted microbubbles in the post-ischemic hindlimb in mice. Transfection at the site of high acoustic pressures (1.0 and 1.8 MPa) was similar for control and P-selectin-targeted microbubbles but was associated with vascular rupture and hemorrhage. At 0.6 MPa, there were no adverse bioeffects, and transfection was 5-fold greater with P-selectin-targeted microbubbles. We conclude that ultrasound-mediated transfection at safe acoustic pressures can be markedly augmented by endothelial juxtaposition. Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Feng, Z; Hu, Y; An, N N; Feng, W J; Hu, T; Mao, Y J
2018-02-12
Objective: To observe the effects of acidic oligosaccharides (AOS) on P-selectin levels in the serum and the pulmonary arteries of pulmonary hypertensive rats induced by monocrotaline. Methods: Sixty healthy adult male Sprague-Dawley rats were randomly divided into control group ( n =10), model group ( n =10), Alprostadil group ( n =10), low-dose AOS group (AOS-L, n =10), medium-dose AOS group (AOS-M, n =10) and high-dose AOS group (AOS-H, n =10). The rat model of pulmonary arterial hypertension was made by a single intraperitoneal injection of monocrotaline(60 mg/kg). Five weeks after injection, pulmonary arterial (PA) acceleration time (PAT) and ejection time (ET) were measured by color Doppler ultrasound. Then, the Alprostadil group was treated by Alprostadil 5 μg·kg(-1)·d(-1)intraperitoneally. Acidic oligosaccharides was administered by intraperitoneal injection to rats in the AOS-L group(5 kg(-1)·d(-1)), AOS-M group (10 mg·kg(-1)·d(-1))and AOS-H group (20 mg·kg(-1)·d(-1)). Control group and model group were given normal saline instead. At the end of experiments, the death rate was recorded and PAT/ET was measured. We calculated the right ventricular hypertrophy index (RVHI) of all rats sacrificed under anesthesia. Precision-cut lung slices were stained with HE for observation of the structure of middle and small arteries. The expression level of P-selectin in serum and pulmonary arterial tissues were detected by ELISA and Western blot respectively. Results: AOS significantly increased the level of PAT/ET ( P <0.01), and attenuated RVHI ( P <0.01). AOS significantly improved intima-media proliferation in small-to medium-sized pulmonary arteries, and attenuated perivascular inflammation. AOS and Alprostadil significantly down-regulated the protein expression of P-selectin in serum and pulmonary arteries ( P <0.01). Conclusion: In this rat model of monocrotaline-induced pulmonary hypertension, AOS decreased the expressions of P-selectin in serum and pulmonary arteries in a dose-dependent manner.
Lindsey, Brooks D.; Shelton, Sarah E.; Foster, F. Stuart; Dayton, Paul A.
2017-01-01
Purpose To evaluate a new ultrasound molecular imaging approach in its ability to image a preclinical tumor model and to investigate the capacity to visualize and quantify co-registered microvascular and molecular imaging volumes. Procedures Molecular imaging using the new technique was compared with a conventional ultrasound molecular imaging technique (multi-pulse imaging) by varying the injected microbubble dose and scanning each animal using both techniques. Each of the 14 animals was randomly assigned one of three doses; bolus dose was varied, and the animals were imaged for three consecutive days so that each animal received every dose. A microvascular scan was also acquired for each animal by administering an infusion of non-targeted microbubbles. These scans were paired with co-registered molecular images (VEGFR2-targeted microbubbles), the vessels were segmented, and the spatial relationships between vessels and VEGFR2 targeting locations were analyzed. In 5 animals, an additional scan was performed in which the animal received a bolus of microbubbles targeted to E- and P-selectin. Vessel tortuosity as a function of distance from VEGF and selectin targeting was analyzed in these animals. Results Although resulting differences in image intensity due to varying microbubble dose were not significant between the two lowest doses, superharmonic imaging had significantly higher contrast-to-tissue ratio (CTR) than multi-pulse imaging (mean across all doses: 13.98 dB for molecular acoustic angiography vs. 0.53 dB for multi-pulse imaging; p = 4.9 × 10−10). Analysis of registered microvascular and molecular imaging volumes indicated that vessel tortuosity decreases with increasing distance from both VEGFR2 and selectin targeting sites. Conclusions Molecular acoustic angiography (superharmonic molecular imaging) exhibited a significant increase in CTR at all doses tested due to superior rejection of tissue artifact signals. Due to the high resolution of acoustic angiography molecular imaging, it is possible to analyze spatial relationships in aligned microvascular and molecular superharmonic imaging volumes. Future studies are required to separate the effects of biomarker expression and blood flow kinetics in comparing local tortuosity differences between different endothelial markers such as VEGFR2, E-selectin and P-selectin. PMID:27519522
Frelinger, Andrew L; Gerrits, Anja J; Garner, Allen L; Torres, Andrew S; Caiafa, Antonio; Morton, Christine A; Berny-Lang, Michelle A; Carmichael, Sabrina L; Neculaes, V Bogdan; Michelson, Alan D
2016-01-01
Activated autologous platelet-rich plasma (PRP) used in therapeutic wound healing applications is poorly characterized and standardized. Using pulsed electric fields (PEF) to activate platelets may reduce variability and eliminate complications associated with the use of bovine thrombin. We previously reported that exposing PRP to sub-microsecond duration, high electric field (SMHEF) pulses generates a greater number of platelet-derived microparticles, increased expression of prothrombotic platelet surfaces, and differential release of growth factors compared to thrombin. Moreover, the platelet releasate produced by SMHEF pulses induced greater cell proliferation than plasma. To determine whether sub-microsecond duration, low electric field (SMLEF) bipolar pulses results in differential activation of PRP compared to SMHEF, with respect to profiles of activation markers, growth factor release, and cell proliferation capacity. PRP activation by SMLEF bipolar pulses was compared to SMHEF pulses and bovine thrombin. PRP was prepared using the Harvest SmartPreP2 System from acid citrate dextrose anticoagulated healthy donor blood. PEF activation by either SMHEF or SMLEF pulses was performed using a standard electroporation cuvette preloaded with CaCl2 and a prototype instrument designed to take into account the electrical properties of PRP. Flow cytometry was used to assess platelet surface P-selectin expression, and annexin V binding. Platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), endothelial growth factor (EGF) and platelet factor 4 (PF4), and were measured by ELISA. The ability of supernatants to stimulate proliferation of human epithelial cells in culture was also evaluated. Controls included vehicle-treated, unactivated PRP and PRP with 10 mM CaCl2 activated with 1 U/mL bovine thrombin. PRP activated with SMLEF bipolar pulses or thrombin had similar light scatter profiles, consistent with the presence of platelet-derived microparticles, platelets, and platelet aggregates whereas SMHEF pulses primarily resulted in platelet-derived microparticles. Microparticles and platelets in PRP activated with SMLEF bipolar pulses had significantly lower annexin V-positivity than those following SMHEF activation. In contrast, the % P-selectin positivity and surface P-selectin expression (MFI) for platelets and microparticles in SMLEF bipolar pulse activated PRP was significantly higher than that in SMHEF-activated PRP, but not significantly different from that produced by thrombin activation. Higher levels of EGF were observed following either SMLEF bipolar pulses or SMHEF pulses of PRP than after bovine thrombin activation while VEGF, PDGF, and PF4 levels were similar with all three activating conditions. Cell proliferation was significantly increased by releasates of both SMLEF bipolar pulse and SMHEF pulse activated PRP compared to plasma alone. PEF activation of PRP at bipolar low vs. monopolar high field strength results in differential platelet-derived microparticle production and activation of platelet surface procoagulant markers while inducing similar release of growth factors and similar capacity to induce cell proliferation. Stimulation of PRP with SMLEF bipolar pulses is gentler than SMHEF pulses, resulting in less platelet microparticle generation but with overall activation levels similar to that obtained with thrombin. These results suggest that PEF provides the means to alter, in a controlled fashion, PRP properties thereby enabling evaluation of their effects on wound healing and clinical outcomes.
Ladwiniec, Andrew; Ettelaie, Camille; Cunnington, Michael S; Rossington, Jennifer; Thackray, Simon; Alamgir, Farquad; Hoye, Angela
2016-06-01
In the presence of a chronically occluded coronary artery, the collateral circulation matures by a process of arteriogenesis; however, there is considerable variation between individuals in the functional capacity of that collateral network. This could be explained by differences in endothelial health and function. We aimed to examine the relationship between the functional extent of collateralization and levels of biomarkers that have been shown to relate to endothelial health. We measured four potential biomarkers of endothelial health in 34 patients with mature collateral networks who underwent a successful percutaneous coronary intervention (PCI) for a chronic total coronary occlusion (CTO) before PCI and 6-8 weeks after PCI, and examined the relationship of biomarker levels with physiological measures of collateralization. We did not find a significant change in the systemic levels of sICAM-1, sE-selectin, microparticles or tissue factor 6-8 weeks after PCI. We did find an association between estimated retrograde collateral flow before CTO recanalization and lower levels of sICAM-1 (r=0.39, P=0.026), sE-selectin (r=0.48, P=0.005) and microparticles (r=0.38, P=0.03). Recanalization of a CTO and resultant regression of a mature collateral circulation do not alter systemic levels of sICAM-1, sE-selectin, microparticles or tissue factor. The identified relationship of retrograde collateral flow with sICAM-1, sE-selectin and microparticles is likely to represent an association with an ability to develop collaterals rather than their presence and extent.
Thrombopoietin contributes to enhanced platelet activation in cigarette smokers.
Lupia, Enrico; Bosco, Ornella; Goffi, Alberto; Poletto, Cesare; Locatelli, Stefania; Spatola, Tiziana; Cuccurullo, Alessandra; Montrucchio, Giuseppe
2010-05-01
Thrombopoietin (TPO) is a humoral growth factor that primes platelet activation in response to several agonists. We recently showed that TPO enhances platelet activation in unstable angina and sepsis. Aim of this study was to investigate the role of TPO in platelet function abnormalities described in cigarette smokers. In a case-control study we enrolled 20 healthy cigarette smokers and 20 nonsmokers, and measured TPO and C-reactive protein (CRP), as well as platelet-leukocyte binding and P-selectin expression. In vitro we evaluated the priming activity of smoker or control plasma on platelet activation, and the role of TPO in this effect. We then studied the effects of acute smoking and smoking cessation on TPO levels and platelet activation indices. Chronic cigarette smokers had higher circulating TPO levels than nonsmoking controls, as well as increased platelet-leukocyte binding, P-selectin expression, and CRP levels. Serum cotinine concentrations correlated with TPO concentrations, platelet-monocyte aggregates and P-selectin expression. In addition, TPO levels significantly correlated with ex vivo platelet-monocyte aggregation and P-selectin expression. In vitro, the plasma from cigarette smokers, but not from nonsmoking controls, primed platelet-monocyte binding, which was reduced when an inhibitor of TPO was used. We also found that acute smoking slightly increased TPO levels, but did not affect platelet-leukocyte binding, whereas smoking cessation induced a significant decrease in both circulating TPO and platelet-leukocyte aggregation. Elevated TPO contributes to enhance platelet activation and platelet-monocyte cross-talk in cigarette smokers. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.