Science.gov

Sample records for cell-mediated antitumor effect

  1. Cord blood T cells mediate enhanced antitumor effects compared with adult peripheral blood T cells.

    PubMed

    Hiwarkar, Prashant; Qasim, Waseem; Ricciardelli, Ida; Gilmour, Kimberly; Quezada, Sergio; Saudemont, Aurore; Amrolia, Persis; Veys, Paul

    2015-12-24

    Unrelated cord blood transplantation (CBT) without in vivo T-cell depletion is increasingly used to treat high-risk hematologic malignancies. Following T-replete CBT, naïve CB T cells undergo rapid peripheral expansion with memory-effector differentiation. Emerging data suggest that unrelated CBT, particularly in the context of HLA mismatch and a T-replete graft, may reduce leukemic relapse. To study the role of CB T cells in mediating graft-versus-tumor responses and dissect the underlying immune mechanisms for this, we compared the ability of HLA-mismatched CB and adult peripheral blood (PB) T cells to eliminate Epstein-Barr virus (EBV)-driven human B-cell lymphoma in a xenogeneic NOD/SCID/IL2rg(null) mouse model. CB T cells mediated enhanced tumor rejection compared with equal numbers of PB T cells, leading to improved survival in the CB group (P < .0003). Comparison of CB T cells that were autologous vs allogeneic to the lymphoma demonstrated that this antitumor effect was mediated by alloreactive rather than EBV-specific T cells. Analysis of tumor-infiltrating lymphocytes demonstrated that CB T cells mediated this enhanced antitumor effect by rapid infiltration of the tumor with CCR7(+)CD8(+) T cells and prompt induction of cytotoxic CD8(+) and CD4(+) T-helper (Th1) T cells in the tumor microenvironment. In contrast, in the PB group, this antilymphoma effect is impaired because of delayed tumoral infiltration of PB T cells and a relative bias toward suppressive Th2 and T-regulatory cells. Our data suggest that, despite being naturally programmed toward tolerance, reconstituting T cells after unrelated T-replete CBT may provide superior Tc1-Th1 antitumor effects against high-risk hematologic malignancies.

  2. CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma.

    PubMed

    Casucci, Monica; Nicolis di Robilant, Benedetta; Falcone, Laura; Camisa, Barbara; Norelli, Margherita; Genovese, Pietro; Gentner, Bernhard; Gullotta, Fabiana; Ponzoni, Maurilio; Bernardi, Massimo; Marcatti, Magda; Saudemont, Aurore; Bordignon, Claudio; Savoldo, Barbara; Ciceri, Fabio; Naldini, Luigi; Dotti, Gianpietro; Bonini, Chiara; Bondanza, Attilio

    2013-11-14

    Genetically targeted T cells promise to solve the feasibility and efficacy hurdles of adoptive T-cell therapy for cancer. Selecting a target expressed in multiple-tumor types and that is required for tumor growth would widen disease indications and prevent immune escape caused by the emergence of antigen-loss variants. The adhesive receptor CD44 is broadly expressed in hematologic and epithelial tumors, where it contributes to the cancer stem/initiating phenotype. In this study, silencing of its isoform variant 6 (CD44v6) prevented engraftment of human acute myeloid leukemia (AML) and multiple myeloma (MM) cells in immunocompromised mice. Accordingly, T cells targeted to CD44v6 by means of a chimeric antigen receptor containing a CD28 signaling domain mediated potent antitumor effects against primary AML and MM while sparing normal hematopoietic stem cells and CD44v6-expressing keratinocytes. Importantly, in vitro activation with CD3/CD28 beads and interleukin (IL)-7/IL-15 was required for antitumor efficacy in vivo. Finally, coexpressing a suicide gene enabled fast and efficient pharmacologic ablation of CD44v6-targeted T cells and complete rescue from hyperacute xenogeneic graft-versus-host disease modeling early and generalized toxicity. These results warrant the clinical investigation of suicidal CD44v6-targeted T cells in AML and MM.

  3. Genetic vaccines to potentiate the effective CD103+ dendritic cell-mediated cross-priming of antitumor immunity.

    PubMed

    Zhang, Yi; Chen, Guo; Liu, Zuqiang; Tian, Shenghe; Zhang, Jiying; Carey, Cara D; Murphy, Kenneth M; Storkus, Walter J; Falo, Louis D; You, Zhaoyang

    2015-06-15

    The development of effective cancer vaccines remains an urgent, but as yet unmet, clinical need. This deficiency is in part due to an incomplete understanding of how to best invoke dendritic cells (DC) that are crucial for the induction of tumor-specific CD8(+) T cells capable of mediating durable protective immunity. In this regard, elevated expression of the transcription factor X box-binding protein 1 (XBP1) in DC appears to play a decisive role in promoting the ability of DC to cross-present Ags to CD8(+) T cells in the therapeutic setting. Delivery of DNA vaccines encoding XBP1 and tumor Ag to skin DC resulted in increased IFN-α production by plasmacytoid DC (pDC) from skin/tumor draining lymph nodes and the cross-priming of Ag-specific CD8(+) T cell responses associated with therapeutic benefit. Antitumor protection was dependent on cross-presenting Batf3(+) DC, pDC, and CD8(+) T cells. CD103(+) DC from the skin/tumor draining lymph nodes of the immunized mice appeared responsible for activation of Ag-specific naive CD8(+) T cells, but were dependent on pDC for optimal effectiveness. Similarly, human XBP1 improved the capacity of human blood- and skin-derived DC to activate human T cells. These data support an important intrinsic role for XBP1 in DC for effective cross-priming and orchestration of Batf3(+) DC-pDC interactions, thereby enabling effective vaccine induction of protective antitumor immunity.

  4. IL-7 inhibits tumor growth by promoting T cell-mediated antitumor immunity in Meth A model.

    PubMed

    Tang, Jian-Cai; Shen, Guo-Bo; Wang, Shi-Min; Wan, Yong-Sheng; Wei, Yu-Quan

    2014-01-01

    Immune suppression is well documented during tumor progression, which includes loss of effect of T cells and expansion of T regulatory (Treg) cells. IL-7 plays a key role in the proliferation, survival and homeostasis of T cells and displays a potent antitumor activity in vivo. In the present study, we investigated the antitumor effect of IL-7 in Meth A model. IL-7 inhibited tumor growth and prolonged the survival of tumor-bearing mice with corresponding increases in the frequency of CD4 and CD8 T cells, Th1 (CD4(+)IFN-γ(+)), Tc1 (CD8(+)IFN-γ(+)) and T cells cytolytic activity against Meth A cells. Neutralization of CD4 or CD8 T cells reversed the antitumor benefit of IL-7. Furthermore, IL-7 decreased regulatory T Foxp3 as well as cells suppressive activity with a reciprocal increase in SMAD7. In addition, we observed an increase of the serum concentrations of IL-6 and IFN-γ, and a significant decrease of TGF-β and IL-10 after IL-7 treatment. Taken together, these results indicate that IL-7 augments T cell-mediated antitumor immunity and improves the effect of antitumor in Meth A model.

  5. Trypanosoma cruzi adjuvants potentiate T cell-mediated immunity induced by a NY-ESO-1 based antitumor vaccine.

    PubMed

    Junqueira, Caroline; Guerrero, Ana Tereza; Galvão-Filho, Bruno; Andrade, Warrison A; Salgado, Ana Paula C; Cunha, Thiago M; Ropert, Catherine; Campos, Marco Antônio; Penido, Marcus L O; Mendonça-Previato, Lúcia; Previato, José Oswaldo; Ritter, Gerd; Cunha, Fernando Q; Gazzinelli, Ricardo T

    2012-01-01

    Immunological adjuvants that induce T cell-mediate immunity (TCMI) with the least side effects are needed for the development of human vaccines. Glycoinositolphospholipids (GIPL) and CpGs oligodeoxynucleotides (CpG ODNs) derived from the protozoa parasite Trypanosoma cruzi induce potent pro-inflammatory reaction through activation of Toll-Like Receptor (TLR)4 and TLR9, respectively. Here, using mouse models, we tested the T. cruzi derived TLR agonists as immunological adjuvants in an antitumor vaccine. For comparison, we used well-established TLR agonists, such as the bacterial derived monophosphoryl lipid A (MPL), lipopeptide (Pam3Cys), and CpG ODN. All tested TLR agonists were comparable to induce antibody responses, whereas significant differences were noticed in their ability to elicit CD4(+) T and CD8(+) T cell responses. In particular, both GIPLs (GTH, and GY) and CpG ODNs (B344, B297 and B128) derived from T. cruzi elicited interferon-gamma (IFN-γ) production by CD4(+) T cells. On the other hand, the parasite derived CpG ODNs, but not GIPLs, elicited a potent IFN-γ response by CD8(+) T lymphocytes. The side effects were also evaluated by local pain (hypernociception). The intensity of hypernociception induced by vaccination was alleviated by administration of an analgesic drug without affecting protective immunity. Finally, the level of protective immunity against the NY-ESO-1 expressing melanoma was associated with the magnitude of both CD4(+) T and CD8(+) T cell responses elicited by a specific immunological adjuvant.

  6. Unmasking targets of T cell-mediated antitumor immunity through high-throughput antigen profiling

    PubMed Central

    Battaglia, Sebastiano; Muhitch, Jason B

    2017-01-01

    More than three decades of evidence has established that antitumor immune responses, initially shown with IL-2 treatment, can result in complete, durable eradication of malignant disease in metastatic patients. Recent studies have demonstrated that immune checkpoint blockade as well as cellular therapies, including dendritic cell activation of T cells and adoptive T cell transfer, can induce long-lasting responses. To elicit cytolysis of tumor cells, effector T cells rely on tumor expression of target antigens. However, the antigens targeted during antitumor responses are largely unknown. Technological advancements and availability of sequencing data have paved the way for more efficient screening and validation of tumor-associated antigens and neoantigens derived from non-synonymous mutations targeted by T cells under baseline conditions and in the context of immunotherapy. PMID:27010105

  7. Effect of space flight on cell-mediated immunity

    NASA Technical Reports Server (NTRS)

    Mandel, A. D.; Balish, E.

    1977-01-01

    The cell-mediated immune response to Listeria monocytogenes was studied in rats subjected to 20 days of flight aboard the Soviet biosatellite Kosmos 7820. Groups of rats were immunized with 1,000,000 formalin-killed Listeria suspended in Freunds Complete Adjuvant, 5 days prior to flight. Immunized rats subjected to the same environmental factors as the flight rats, except flight itself, and immunized and nonimmunized rats held in a normal animal colony served as controls. Following recovery, lymphocyte cultures were harvested from spleens of all rats, cultured in vitro in the presence of L. monocytogenes antigens, Phytohemagglutinin, Conconavlin A, or purified protein derivative (PPD), and measured for their uptake of H-3-thymidine. Although individual rats varied considerably, all flight and immunized control rats gave a blastogenic response to the Listeria antigens and PPD. With several mitogens, the lymphocytes of flight rats showed a significantly increased blastogenic response over the controls. The results of this study do not support a hypothesis of a detrimental effect of space flight on cell-mediated immunity. The data suggest a possible suppressive effect of stress and gravity on an in vitro correlate of cell-mediated immunity.

  8. Dehydroeffusol effectively inhibits human gastric cancer cell-mediated vasculogenic mimicry with low toxicity.

    PubMed

    Liu, Wenming; Meng, Mei; Zhang, Bin; Du, Longsheng; Pan, Yanyan; Yang, Ping; Gu, Zhenlun; Zhou, Quansheng; Cao, Zhifei

    2015-09-01

    Accumulated data has shown that various vasculogenic tumor cells, including gastric cancer cells, are able to directly form tumor blood vessels via vasculogenic mimicry, supplying oxygen and nutrients to tumors, and facilitating progression and metastasis of malignant tumors. Therefore, tumor vasculogenic mimicry is a rational target for developing novel anticancer therapeutics. However, effective antitumor vasculogenic mimicry-targeting drugs are not clinically available. In this study, we purified 2,7-dihydroxyl-1-methyl-5-vinyl-phenanthrene, termed dehydroeffusol, from the traditional Chinese medicinal herb Juncus effusus L., and found that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry in vitro and in vivo with very low toxicity. Dehydroeffusol significantly suppressed gastric cancer cell adhesion, migration, and invasion. Molecular mechanistic studies revealed that dehydroeffusol markedly inhibited the expression of a vasculogenic mimicry master gene VE-cadherin and reduced adherent protein exposure on the cell surface by inhibiting gene promoter activity. In addition, dehydroeffusol significantly decreased the expression of a key vasculogenic gene matrix metalloproteinase 2 (MMP2) in gastric cancer cells, and diminished MMP2 protease activity. Together, our results showed that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry with very low toxicity, suggesting that dehydroeffusol is a potential drug candidate for anti-gastric cancer neovascularization and anti-gastric cancer therapy.

  9. Maximal T cell-mediated antitumor responses rely upon CCR5 expression in both CD4(+) and CD8(+) T cells.

    PubMed

    González-Martín, Alicia; Gómez, Lucio; Lustgarten, Joseph; Mira, Emilia; Mañes, Santos

    2011-08-15

    Immune responses against cancer rely upon leukocyte trafficking patterns that are coordinated by chemokines. CCR5, the receptor for chemotactic chemokines MIP1alpha, MIP1beta, and RANTES (CCL3, CCL4, CCL5), exerts major regulatory effects on CD4(+)- and CD8(+) T cell-mediated immunity. Although CCR5 and its ligands participate in the response to various pathogens, its relevance to tumoral immune control has been debated. Here, we report that CCR5 has a specific, ligand-dependent role in optimizing antitumor responses. In adoptive transfer studies, efficient tumor rejection required CCR5 expression by both CD4(+) and CD8(+) T cells. CCR5 activation in CD4(+) cells resulted in CD40L upregulation, leading to full maturation of antigen-presenting cells and enhanced CD8(+) T-cell crosspriming and tumor infiltration. CCR5 reduced chemical-induced fibrosarcoma incidence and growth, but did not affect the onset or progression of spontaneous breast cancers in tolerogenic Tg(MMTV-neu) mice. However, CCR5 was required for TLR9-mediated reactivation of antineu responses in these mice. Our results indicate that CCR5 boosts T-cell responses to tumors by modulating helper-dependent CD8(+) T-cell activation.

  10. Dehydroeffusol effectively inhibits human gastric cancer cell-mediated vasculogenic mimicry with low toxicity

    SciTech Connect

    Liu, Wenming; Meng, Mei; Zhang, Bin; Du, Longsheng; Pan, Yanyan; Yang, Ping; Gu, Zhenlun; Zhou, Quansheng Cao, Zhifei

    2015-09-01

    Accumulated data has shown that various vasculogenic tumor cells, including gastric cancer cells, are able to directly form tumor blood vessels via vasculogenic mimicry, supplying oxygen and nutrients to tumors, and facilitating progression and metastasis of malignant tumors. Therefore, tumor vasculogenic mimicry is a rational target for developing novel anticancer therapeutics. However, effective antitumor vasculogenic mimicry-targeting drugs are not clinically available. In this study, we purified 2,7-dihydroxyl-1-methyl-5-vinyl-phenanthrene, termed dehydroeffusol, from the traditional Chinese medicinal herb Juncus effusus L., and found that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry in vitro and in vivo with very low toxicity. Dehydroeffusol significantly suppressed gastric cancer cell adhesion, migration, and invasion. Molecular mechanistic studies revealed that dehydroeffusol markedly inhibited the expression of a vasculogenic mimicry master gene VE-cadherin and reduced adherent protein exposure on the cell surface by inhibiting gene promoter activity. In addition, dehydroeffusol significantly decreased the expression of a key vasculogenic gene matrix metalloproteinase 2 (MMP2) in gastric cancer cells, and diminished MMP2 protease activity. Together, our results showed that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry with very low toxicity, suggesting that dehydroeffusol is a potential drug candidate for anti-gastric cancer neovascularization and anti-gastric cancer therapy. - Highlights: • Dehydroeffusol markedly inhibits gastric cancer cell-mediated vasculogenic mimicry. • Dehydroeffusol suppresses the expression of vasculogenic mimicry key gene VE-cadherin. • Dehydroeffusol decreases the MMP2 expression and activity in gastric cancer cells. • Dehydroeffusol is a potential anti-cancer drug candidate with very low toxicity.

  11. Ibrutinib interferes with the cell-mediated anti-tumor activities of therapeutic CD20 antibodies: implications for combination therapy

    PubMed Central

    Roit, Fabio Da; Engelberts, Patrick J.; Taylor, Ronald P.; Breij, Esther C.W.; Gritti, Giuseppe; Rambaldi, Alessandro; Introna, Martino; Parren, Paul W.H.I.; Beurskens, Frank J.; Golay, Josée

    2015-01-01

    The novel Bruton tyrosine kinase inhibitor ibrutinib and phosphatidyl-4-5-biphosphate 3-kinase-δ inhibitor idelalisib are promising drugs for the treatment of chronic lymphocytic leukemia and B-cell non-Hodgkin lymphoma, either alone or in combination with anti-CD20 antibodies. We investigated the possible positive or negative impact of these drugs on all known mechanisms of action of both type I and type II anti-CD20 antibodies. Pretreatment with ibrutinib for 1 hour did not increase direct cell death of cell lines or chronic lymphocytic leukemia samples mediated by anti-CD20 antibodies. Pre-treatment with ibrutinib did not inhibit complement activation or complement-mediated lysis. In contrast, ibrutinib strongly inhibited all cell-mediated mechanisms induced by anti-CD20 antibodies rituximab, ofatumumab or obinutuzumab, either in purified systems or whole blood assays. Activation of natural killer cells, and antibody-dependent cellular cytotoxicity by these cells, as well as phagocytosis by macrophages or neutrophils were inhibited by ibrutinib with a half maximal effective concentration of 0.3–3 μM. Analysis of anti-CD20 mediated activation of natural killer cells isolated from patients on continued oral ibrutinib treatment suggested that repeated drug dosing inhibits these cells in vivo. Finally we show that the phosphatidyl-4-5-biphosphate 3-kinase-δ inhibitor idelalisib similarly inhibited the immune cell-mediated mechanisms induced by anti-CD20 antibodies, although the effects of this drug at 10 μM were weaker than those observed with ibrutinib at the same concentration. We conclude that the design of combined treatment schedules of anti-CD20 antibodies with these kinase inhibitors should consider the multiple negative interactions between these two classes of drugs. PMID:25344523

  12. Virus-stimulated neutrophils in the tumor microenvironment enhance T cell-mediated anti-tumor immunity

    PubMed Central

    Chang, Chin Yang; Tai, Jiayu A.; Li, Sumin; Nishikawa, Tomoyuki; Kaneda, Yasufumi

    2016-01-01

    The tumor microenvironment (TME) fosters tumors by attenuating anti-tumor immunity, reinforcing tumor cell survival and increasing angiogenesis. Among the constituents of the TME, here, we focused on tumor-associated neutrophils (TANs). First, we found that the combination of poly I:C and inactivated Sendai virus particles (hemagglutinating virus of Japan envelope; HVJ-E) synergistically suppressed tumor growth in the B16-F10 melanoma mouse model. In this model, poly I:C contributed to the recruitment of CD11b+Ly6G+ neutrophils to the TME, and co-injection of poly I:C and HVJ-E increased CD11b+Ly6G+FAS+ TAN in the TME. Depletion of neutrophils abolished the synergistic anti-tumor effect of HVJ-E and poly I:C in B16-F10 tumors. We revealed that C-X-C motif chemokine ligand 2 (CXCL2) is produced in the TME by poly I:C, but HVJ-E enhanced neutrophil infiltration of the TME does not occur. An anti-CXCL2 antibody inhibited the tumor suppression by HVJ-E+poly I:C. HVJ-E in combination with recombinant CXCL2 protein or CXCL2 pDNA suppressed mouse melanoma by increasing cytotoxic T lymphocyte activity against B16-F10 melanoma, which was abolished by an anti-Ly6G antibody. HVJ-E directly and indirectly increased FAS and ICAM-1 expression in cultured bone marrow-derived naïve neutrophils. Thus, HVJ-E activates anti-tumor immunity via anti-tumorigenic neutrophils in the TME. An HVJ-E vector containing the CXCL2 gene may be applicable as a novel cancer gene therapy strategy. PMID:27259252

  13. Amphiregulin activates regulatory T lymphocytes and suppresses CD8+ T cell-mediated anti-tumor response in hepatocellular carcinoma cells

    PubMed Central

    Yuan, Chun-Hui; Sun, Xiao-Ming; Zhu, Cheng-Liang; Liu, Shao-Ping; Wu, Long; Chen, Hao; Feng, Mao-Hui; Wu, Ke; Wang, Fu-Bing

    2015-01-01

    CD8+ T cell-mediated immune response plays an important role in inhibiting progression of hepatocellular carcinoma (HCC). For strategic immunotherapy, it is critical to understand why some of the tumor cells escape from this immune attack. In this study, we investigated how HCC cells alter endogenous anti-tumor immunity and their related signaling pathways. We found that HCC cells, both in vitro and in vivo, substantially secret and express amphiregulin (AR). AR in turn activates immunosuppressive function of intratumoral CD4+Foxp3+ regulatory T cells (Tregs), a major inhibitor of CD8+ T cells. Using either lentiviral siRNA, or AR neutralizing antibody, we blocked the expression and function of AR to test the specificity of AR mediated activation of Tregs, Biochemical and cell biology studies were followed and confirmed that blocking of AR inhibited Tregs activation. In addition, we found that AR can trigger the activation of rapamycin complex 1(mTORC1) signaling in Tregs. The mTORC1 inhibitor rapamycin treatment led to compromise Treg function and resulted in enhancing anti-tumor function of CD8+ T cells. Blocking AR/EGFR signaling in Tregs with Gefitinib also enhanced anti-tumor immunity and decreased tumor size in a mouse xenograft tumor model. Taken together, our study suggested a novel mechanism of functional interaction between HCC and Tregs for regulating anti-tumor function of CD8+ T cells. PMID:26451607

  14. p38 MAPK-inhibited dendritic cells induce superior antitumor immune responses and overcome regulatory T cell-mediated immunosuppression

    PubMed Central

    Lu, Yong; Zhang, Mingjun; Wang, Siqing; Hong, Bangxing; Wang, Zhiqiang; Li, Haiyan; Zheng, Yuhuan; Yang, Jing; Davis, Richard E.; Qian, Jianfei; Hou, Jian; Yi, Qing

    2014-01-01

    Dendritic cell (DC)-based cancer immunotherapy is a promising method but so far has demonstrated limited clinical benefits. Regulatory T cells (Treg) represent a major obstacle to cancer immunotherapy approaches. Here we show that inhibiting p38 MAPK during DC differentiation enables DCs to activate tumor-specific effector T cells (Teff), inhibiting the conversion of Treg and compromising Treg inhibitory effects on Teff. Inhibition of p38 MAPK in DCs lowers expression of PPARγ, activating p50 and upregulation of OX40L expression in DCs. OX40L/OX40 interactions between DCs and Teff and/or Treg are critical for priming effective and therapeutic antitumor responses. Similarly, p38 MAPK inhibition also augments the T cell-stimulatory capacity of human monocyte-derived DCs in the presence of Treg. These findings contribute to ongoing efforts to improve DC-based immunotherapy in human cancers. PMID:24957461

  15. Surgical Stress Abrogates Pre-Existing Protective T Cell Mediated Anti-Tumor Immunity Leading to Postoperative Cancer Recurrence.

    PubMed

    Ananth, Abhirami A; Tai, Lee-Hwa; Lansdell, Casey; Alkayyal, Almohanad A; Baxter, Katherine E; Angka, Leonard; Zhang, Jiqing; Tanese de Souza, Christiano; Stephenson, Kyle B; Parato, Kelley; Bramson, Jonathan L; Bell, John C; Lichty, Brian D; Auer, Rebecca C

    2016-01-01

    Anti-tumor CD8+ T cells are a key determinant for overall survival in patients following surgical resection for solid malignancies. Using a mouse model of cancer vaccination (adenovirus expressing melanoma tumor-associated antigen (TAA)-dopachrome tautomerase (AdDCT) and resection resulting in major surgical stress (abdominal nephrectomy), we demonstrate that surgical stress results in a reduction in the number of CD8+ T cell that produce cytokines (IFNγ, TNFα, Granzyme B) in response to TAA. This effect is secondary to both reduced proliferation and impaired T cell function following antigen binding. In a prophylactic model, surgical stress completely abrogates tumor protection conferred by vaccination in the immediate postoperative period. In a clinically relevant surgical resection model, vaccinated mice undergoing a positive margin resection with surgical stress had decreased survival compared to mice with positive margin resection alone. Preoperative immunotherapy with IFNα significantly extends survival in surgically stressed mice. Importantly, myeloid derived suppressor cell (MDSC) population numbers and functional impairment of TAA-specific CD8+ T cell were altered in surgically stressed mice. Our observations suggest that cancer progression may result from surgery-induced suppression of tumor-specific CD8+ T cells. Preoperative immunotherapies aimed at targeting the prometastatic effects of cancer surgery will reduce recurrence and improve survival in cancer surgery patients.

  16. Electric Pulse Stimulation of Myotubes as an In Vitro Exercise Model: Cell-Mediated and Non-Cell-Mediated Effects.

    PubMed

    Evers-van Gogh, Inkie J A; Alex, Sheril; Stienstra, Rinke; Brenkman, Arjan B; Kersten, Sander; Kalkhoven, Eric

    2015-06-19

    Regular exercise has emerged as one of the best therapeutic strategies to prevent and treat type-2-diabetes. Exercise-induced changes in the muscle secretome, consisting of myokines and metabolites, may underlie the inter-organ communication between muscle and other organs. To investigate this crosstalk, we developed an in vitro system in which mouse C2C12 myotubes underwent electric pulse stimulation (EPS) to induce contraction. Subsequently the effects of EPS-conditioned media (EPS-CM) on hepatocytes were investigated. Here, we demonstrate that EPS-CM induces Metallothionein 1/2 and Slc30a2 gene expression and reduces Cyp2a3 gene expression in rat hepatocytes. When testing EPS-CM that was generated in the absence of C2C12 myotubes (non-cell EPS-CM) no decrease in Cyp2a3 expression was detected. However, similar inductions in hepatic Mt1/2 and Slc30a2 expression were observed. Non-cell EPS-CM were also applied to C2C12 myotubes and compared to C2C12 myotubes that underwent EPS: here changes in AMPK phosphorylation and myokine secretion largely depended on EPS-induced contraction. Taken together, these findings indicate that EPS can alter C2C12 myotube function and thereby affect gene expression in cells subjected to EPS-CM (Cyp2a3). However, EPS can also generate non-cell-mediated changes in cell culture media, which can affect gene expression in cells subjected to EPS-CM too. While EPS clearly represents a valuable tool in exercise research, care should be taken in experimental design to control for non-cell-mediated effects.

  17. Electric Pulse Stimulation of Myotubes as an In Vitro Exercise Model: Cell-Mediated and Non-Cell-Mediated Effects

    PubMed Central

    Evers-van Gogh, Inkie J.A.; Alex, Sheril; Stienstra, Rinke; Brenkman, Arjan B.; Kersten, Sander; Kalkhoven, Eric

    2015-01-01

    Regular exercise has emerged as one of the best therapeutic strategies to prevent and treat type-2-diabetes. Exercise-induced changes in the muscle secretome, consisting of myokines and metabolites, may underlie the inter-organ communication between muscle and other organs. To investigate this crosstalk, we developed an in vitro system in which mouse C2C12 myotubes underwent electric pulse stimulation (EPS) to induce contraction. Subsequently the effects of EPS-conditioned media (EPS-CM) on hepatocytes were investigated. Here, we demonstrate that EPS-CM induces Metallothionein 1/2 and Slc30a2 gene expression and reduces Cyp2a3 gene expression in rat hepatocytes. When testing EPS-CM that was generated in the absence of C2C12 myotubes (non-cell EPS-CM) no decrease in Cyp2a3 expression was detected. However, similar inductions in hepatic Mt1/2 and Slc30a2 expression were observed. Non-cell EPS-CM were also applied to C2C12 myotubes and compared to C2C12 myotubes that underwent EPS: here changes in AMPK phosphorylation and myokine secretion largely depended on EPS-induced contraction. Taken together, these findings indicate that EPS can alter C2C12 myotube function and thereby affect gene expression in cells subjected to EPS-CM (Cyp2a3). However, EPS can also generate non-cell-mediated changes in cell culture media, which can affect gene expression in cells subjected to EPS-CM too. While EPS clearly represents a valuable tool in exercise research, care should be taken in experimental design to control for non-cell-mediated effects. PMID:26091097

  18. Tumor immunogenicity determines the effect of B7 costimulation on T cell-mediated tumor immunity

    PubMed Central

    1994-01-01

    A costimulatory signal through B7 to its counter-receptor CD28 on T cells enhances T cell activation. We have generated recombinant retroviruses containing cDNA for murine B7 and transduced a panel of murine tumor lines with varying immunogenicity to study the effect of B7 costimulation on antitumor immunity. In contrast to the progressive outgrowth of all wild-type (B7-) tumors in unimmunized syngeneic mice, four immunogenic tumors, lymphoma RMA, EL4, mastocytoma P815, and melanoma E6B2, regressed completely when transduced with the B7 gene. In contrast, four nonimmunogenic tumors, sarcomas MCA101, MCA102, and Ag104, and melanoma B16, remained tumorigenic after transduction of the B7 gene. Immunization with B7-transduced immunogenic tumors enhanced protective immunity and increased specific cytotoxic T lymphocyte (CTL) activity against the respective wild-type tumors as compared to immunization with nontransduced or mock-transduced tumors. Moreover, cocultivation of CTL with B7-transduced EL4 cells augmented the specificity of tumor-reactive CTL in long-term cultures. Treatment by injection of B7-transduced tumor cells cured 60% of mice with established wild-type EL4 lymphoma. In contrast, immunization with nonimmunogenic tumors transduced with B7 did not provide protective immunity and did not increase specific CTL activity. Our results show that tumor immunogenicity is critical to the outcome of costimulation of T cell-mediated tumor immunity by B7. PMID:7507508

  19. Antitumor effects of electrochemical treatment

    PubMed Central

    González, Maraelys Morales; Zamora, Lisset Ortíz; Cabrales, Luis Enrique Bergues; Sierra González, Gustavo Victoriano; de Oliveira, Luciana Oliveira; Zanella, Rodrigo; Buzaid, Antonio Carlos; Parise, Orlando; Brito, Luciana Macedo; Teixeira, Cesar Augusto Antunes; Gomes, Marina das Neves; Moreno, Gleyce; Feo da Veiga, Venicio; Telló, Marcos; Holandino, Carla

    2013-01-01

    Electrochemical treatment is an alternative modality for tumor treatment based on the application of a low intensity direct electric current to the tumor tissue through two or more platinum electrodes placed within the tumor zone or in the surrounding areas. This treatment is noted for its great effectiveness, minimal invasiveness and local effect. Several studies have been conducted worldwide to evaluate the antitumoral effect of this therapy. In all these studies a variety of biochemical and physiological responses of tumors to the applied treatment have been obtained. By this reason, researchers have suggested various mechanisms to explain how direct electric current destroys tumor cells. Although, it is generally accepted this treatment induces electrolysis, electroosmosis and electroporation in tumoral tissues. However, action mechanism of this alternative modality on the tumor tissue is not well understood. Although the principle of Electrochemical treatment is simple, a standardized method is not yet available. The mechanism by which Electrochemical treatment affects tumor growth and survival may represent more complex process. The present work analyzes the latest and most important research done on the electrochemical treatment of tumors. We conclude with our point of view about the destruction mechanism features of this alternative therapy. Also, we suggest some mechanisms and strategies from the thermodynamic point of view for this therapy. In the area of Electrochemical treatment of cancer this tool has been exploited very little and much work remains to be done. Electrochemical treatment constitutes a good therapeutic option for patients that have failed the conventional oncology methods. PMID:23592904

  20. T-cell mediated anti-tumor immunity after photodynamic therapy: Why does it not always work and how can we improve it?

    PubMed Central

    de Freitas, Lucas Freitas; Hamblin, Michael R

    2015-01-01

    Photodynamic therapy (PDT) uses the combination of non-toxic photosensitizers and harmless light to generate reactive oxygen species that destroy tumors by a combination of direct tumor cell killing, vascular shutdown, and activation of the immune system. It has been shown in some animal models that mice that have been cured of cancer by PDT, may exhibit resistance to rechallenge. The cured mice can also possess tumor specific T-cells that recognize defined tumor antigens, destroy tumor cells in vitro, and can be adoptively transferred to protect naïve mice from cancer. However, these beneficial outcomes are the exception rather than the rule. The reasons for this lack of consistency lie in the ability of many tumors to suppress the host immune system and to actively evade immune attack. The presence of an appropriate tumor rejection antigen in the particular tumor cell line is a requisite for T-cell mediated immunity. Regulatory T-cells (CD25+, Foxp3+) are potent inhibitors of anti-tumor immunity, and their removal by low dose cyclophosphamide can potentiate the PDT-induced immune response. Treatments that stimulate dendritic cells (DC) such as CpG oligonucleotide can overcome tumor-induced DC dysfunction and improve PDT outcome. Epigenetic reversal agents can increase tumor expression of MHC class I and also simultaneously increase expression of tumor antigens. A few clinical reports have shown that anti-tumor immunity can be generated by PDT in patients, and it is hoped that these combination approaches may increase tumor cures in patients. PMID:26062987

  1. Preexisting antitumor immunity augments the antitumor effects of chemotherapy.

    PubMed

    Zhang, Lingbing; Feng, Dongdong; Yu, Lynda X; Tsung, Kangla; Norton, Jeffrey A

    2013-06-01

    Efficacy of cancer chemotherapy is generally believed to be the result of direct drug killing of tumor cells. However, increased tumor cell killing does not always lead to improved efficacy. Herein, we demonstrate that the status of antitumor immunity at the time of chemotherapy treatment is a critical factor affecting the therapeutic outcome in that tumor-bearing mice that possess preexisting antitumor immunity respond to chemotherapy much better than those that do not. Enhancing antitumor immunity before or at the time of chemotherapy-induced antigen release increases subsequent response to chemotherapy significantly. By in vitro and in vivo measurements of antitumor immunity, we found a close correlation between the intensity of antitumor immunity activated by chemotherapy and the efficacy of treatment. Immune intervention with interleukin-12 during the early phase of chemotherapy-induced immune activation greatly amplifies the antitumor response, often resulting in complete tumor eradication not only at the chemo-treated local site, but also systemically. These findings provide additional evidence for an immune-mediated antitumor response to chemotherapy. Further, our results show that timely immune modification of chemotherapy-activated antitumor immunity can result in enhanced antitumor-immune response and complete tumor eradication.

  2. PPARγ-Independent Antitumor Effects of Thiazolidinediones

    PubMed Central

    Wei, Shuo; Yang, Jian; Lee, Su-Lin; Kulp, Samuel K.; Chen, Ching-Shih

    2009-01-01

    The thiazolidinedione (TZD) family of PPARγ agonists, especially troglitazone and ciglitazone, induce cell cycle arrest, differentiation, and apoptosis in cancer cells. Mounting evidence indicates that TZDs interfere with multiple signaling mechanisms independently of PPARγactivation, which affect many aspects of cellular functions governing cell cycle progression and survival of cancer cells. Here, we review the “off-target” mechanisms that underlie the antitumor effects of TZDs with emphasis on three key pathways, namely, inhibition of Bcl-2/Bcl-xL function, proteasomal degradation of cell cycle- and apoptosis-regulatory proteins, and transcriptional repression of androgen receptor (AR) through Sp1 degradation. Relative to tumor cells, nonmalignant cells are resistant to these PPARγ-independent antitumor effects, which underscores the translational potential of these agents. Furthermore, dissociation of these antitumor effects from their PPARγ agonist activity provides a rationale for using TZDs as scaffolds for lead optimization to develop a novel class of antitumor agents with a unique mode of mechanism. PMID:18790559

  3. NK1.1 cells and CD8 T cells mediate the antitumor activity of Cl-IB-MECA in a mouse melanoma model.

    PubMed

    Morello, Silvana; Sorrentino, Rosalinda; Montinaro, Antonella; Luciano, Antonio; Maiolino, Piera; Ngkelo, Anta; Arra, Claudio; Adcock, Ian M; Pinto, Aldo

    2011-04-01

    Cl-IB-MECA, synthetic A(3) adenosine receptor agonist, is a potential anticancer agent. In this study, we have examined the effect of Cl-IB-MECA in a mouse melanoma model. Cl-IB-MECA significantly inhibited tumor growth in immune-competent mice. Notably, the number of tumor-infiltrating NK1.1(+) cells and CD8(+) T cells was significantly increased in Cl-IB-MECA-treated mice. This effect was correlated with high levels of tumor necrosis factor α (TNF-α) and interferon γ in melanoma tissue. Depletion of either CD8(+) T cells or NK1.1(+) cells completely abrogated the antitumor effect of Cl-IB-MECA. Accordingly, Cl-IB-MECA did not affect tumor growth in nude mice. In addition, we also found that the number of mature and active conventional dendritic cells at the tumor site was increased after Cl-IB-MECA administration. Moreover, Cl-IB-MECA significantly increased TNF-α and IL-12p40 release from splenic CD11c(+) cells. In conclusion, our study provides novel insights into the mechanism by which Cl-IB-MECA leads to an effective antitumor response that involves the activation of natural killer cells and CD8(+) T cells and further highlights its therapeutic potential.

  4. Insulin-like growth factors inhibit dendritic cell-mediated anti-tumor immunity through regulating ERK1/2 phosphorylation and p38 dephosphorylation.

    PubMed

    Huang, Ching-Ting; Chang, Ming-Cheng; Chen, Yu-Li; Chen, Tsung-Ching; Chen, Chi-An; Cheng, Wen-Fang

    2015-04-01

    Insulin-like growth factors (IGFs) can promote tumorigenesis via inhibiting the apoptosis of cancer cells. The relationship between IGFs and dendritic cell (DC)-mediated immunity were investigated. Advanced-stage ovarian carcinoma patients were first evaluated to show higher IGF-1 and IGF-2 concentrations in their ascites than early-stage patients. IGFs could suppress DCs' maturation, antigen presenting abilities, and the ability to activate antigen-specific CD8(+) T cell. IGF-treated DCs also secreted higher concentrations of IL-10 and TNF-α. IGF-treated DCs showed decreased ERK1/2 phosphorylation and reduced p38 dephosphorylation. The percentages of matured DCs in the ascites were significantly lower in the IGF-1 or IGF-2 highly-expressing WF-3 tumor-bearing mice. The IGF1R inhibitor - NVP-AEW541, could block the effects of IGFs to rescue DCs' maturation and to restore DC-mediated antigen-specific immunity through enhancing ERK1/2 phosphorylation and p38 dephosphorylation. IGFs can inhibit DC-mediated anti-tumor immunity through suppressing maturation and function and the IGF1R inhibitor could restore the DC-mediated anti-tumor immunity. Blockade of IGFs could be a potential strategy for cancer immunotherapy.

  5. Saos-2 cell-mediated mineralization on collagen gels: Effect of densification and bioglass incorporation.

    PubMed

    Liu, Gengbo; Pastakia, Meet; Fenn, Michael B; Kishore, Vipuil

    2016-05-01

    Plastic compression is a collagen densification process that has been widely used for the development of mechanically robust collagen-based materials. Incorporation of bioglass within plastically compressed collagen gels has been shown to mimic the microstructural properties of native bone and enhance in vitro cell-mediated mineralization. The current study seeks to decouple the effects of collagen densification and bioglass incorporation to understand the interplay between collagen packing density and presence of bioglass on cell-mediated mineralization. Saos-2 cell-mediated mineralization was assessed as a measure of the osteoconductivity of four different collagen gels: (1) uncompressed collagen gel (UC), (2) bioglass incorporated uncompressed collagen gel (UC + BG), (3) plastically compressed collagen gel (PC), and (4) bioglass incorporated plastically compressed collagen gel (PC + BG). The results indicated that collagen densification enhanced mineralization as shown by SEM, increased alkaline phosphatase activity and produced significantly higher amounts of mineralized nodules on PC gels compared to UC gels. Further, the amount of nodule formation on PC gels was significantly higher compared to UC + BG gels indicating that increase in matrix stiffness due to collagen densification had a greater effect on cell-mediated mineralization compared to bioglass incorporation into loosely packed UC gels. Incorporation of bioglass into PC gels further enhanced mineralization as evidenced by significantly larger nodule size and higher amount of mineralization on PC + BG gels compared to PC gels. In conclusion, collagen densification via plastic compression improves the osteoconductivity of collagen gels. Further, incorporation of bioglass within PC gels has an additive effect and further enhances the osteoconductivity of collagen gels.

  6. The Eltrombopag antitumor effect on hepatocellular carcinoma

    PubMed Central

    KUROKAWA, TOMOHIRO; MURATA, SOICHIRO; ZHENG, YUN-WEN; IWASAKI, KENICHI; KOHNO, KEISUKE; FUKUNAGA, KIYOSHI; OHKOHCHI, NOBUHIRO

    2015-01-01

    Currently, sorafenib is the only available chemotherapeutic agent for advanced hepatocellular carcinoma (HCC), but it cannot be used in patients with liver cirrhosis (LC) or thrombocytopenia. In these cases, sorafenib is likely effective if given in combination with treatments that increase the number of platelets, such as thrombopoietin (TPO) receptor agonists. Increasing the platelet count via TPO treatment resulted in reduction of LC. Eltrombopag (EP), a TPO receptor agonist, has been reported to have antitumor effects against certain cancers, despite their lack of TPO receptor expression. We hypothesized that EP may possess antitumor activity against HCC in addition to its ability to suppress hepatic fibrosis by increasing the platelet count. In the present study, the antitumor activity of EP was examined by assessing the inhibition of cell proliferation and then ascertaining the ability of iron supplementation to reverse these effects in HepG2, Hep3B and Huh7 cells. In addition, a cell cycle assay was performed using flow cytometry, and signal transduction was evaluated by analyzing cell cycle-related protein expression. The results of EP were compared with those of the most common iron chelator, deferoxamine (DFO). The combined effect of EP and sorafenib was also assessed. The results revealed that EP exerts antitumor activity in HCC that is mediated by the modulation of intracellular iron content. EP suppressed the expression of the cell cycle-related protein cyclin D1 and elicited cell cycle arrest in the G0/G1 phase. The activity of EP was comparable to that of DFO in HCC, and EP did not compete with sorafenib at low concentrations. In conclusion, our findings suggest that EP is a good candidate chemotherapeutic agent for the treatment of HCC in patients with LC and thrombocytopenia. PMID:26397763

  7. Novel Cell-Penetrating Peptide-Based Vaccine Induces Robust CD4+ and CD8+ T Cell-Mediated Antitumor Immunity.

    PubMed

    Derouazi, Madiha; Di Berardino-Besson, Wilma; Belnoue, Elodie; Hoepner, Sabine; Walther, Romy; Benkhoucha, Mahdia; Teta, Patrick; Dufour, Yannick; Yacoub Maroun, Céline; Salazar, Andres M; Martinvalet, Denis; Dietrich, Pierre-Yves; Walker, Paul R

    2015-08-01

    Vaccines that can coordinately induce multi-epitope T cell-mediated immunity, T helper functions, and immunologic memory may offer effective tools for cancer immunotherapy. Here, we report the development of a new class of recombinant protein cancer vaccines that deliver different CD8(+) and CD4(+) T-cell epitopes presented by MHC class I and class II alleles, respectively. In these vaccines, the recombinant protein is fused with Z12, a novel cell-penetrating peptide that promotes efficient protein loading into the antigen-processing machinery of dendritic cells. Z12 elicited an integrated and multi-epitopic immune response with persistent effector T cells. Therapy with Z12-formulated vaccines prolonged survival in three robust tumor models, with the longest survival in an orthotopic model of aggressive brain cancer. Analysis of the tumor sites showed antigen-specific T-cell accumulation with favorable modulation of the balance of the immune infiltrate. Taken together, the results offered a preclinical proof of concept for the use of Z12-formulated vaccines as a versatile platform for the development of effective cancer vaccines.

  8. The Antitumor Effect of Singlet Oxygen.

    PubMed

    Bauer, Georg

    2016-11-01

    Tumor cells are protected against intercellular apoptosis-inducing signaling through expression of membrane-associated catalase and superoxide dismutase. Exogenous singlet oxygen derived from activated photosensitizers or from cold atmospheric plasma causes local inactivation of protective catalase which is followed by the generation of secondary extracellular singlet oxygen. This process is specific for tumor cells and is driven by a complex interaction between H2O2 and peroxynitrite. Secondary singlet oxygen has the potential for autoamplification of its generation, resulting in optimal inactivation of protective catalase and reactivation of intercellular apoptosis-inducing signaling. An increase in the endogenous NO concentration also causes inactivation of catalase and autoamplificatory generation of secondary singlet oxygen. This principle is essential for the antitumor activity of secondary plant products, such as cyanidins and other inhibitors of NO dioxygenase. It seems that the action of the established chemotherapeutic taxol and the recently established antitumor effect of certain azoles are based on the same principles.

  9. Advanced research on anti-tumor effects of amygdalin.

    PubMed

    Song, Zuoqing; Xu, Xiaohong

    2014-08-01

    Malignant tumors are the major disease that cause serious damage to human health, and have been listed as the premier diseases which seriously threatened human health by World Health Organization (WHO). In recent years the development of antitumor drugs has been gradually transformed from cytotoxic drugs to improving the selectivity of drugs, overcoming multidrug resistance, development of new targeted drugs and low toxicity with high specificity drugs. Amygdalin is a natural product that owns antitumor activity, less side effects, widely sourced and relatively low priced. All these features make the amygdalin a promising antitumor drugs, if combined with conditional chemotherapy drugs, which can produce synergistic effect. In this paper, we summarized the pharmacological activity, toxicity and antitumor activity of amygdalin, mainly focused on the advanced research of amygdalin on its antitumor effects in recent years, providing new insights for the development of new anticancer drugs, new targets searching and natural antitumor mechanism investigations.

  10. Alocasia cucullata exhibits strong antitumor effect in vivo by activating antitumor immunity.

    PubMed

    Peng, Qiuxian; Cai, Hongbing; Sun, Xuegang; Li, Xin; Mo, Zhixian; Shi, Jue

    2013-01-01

    Chinese herbal medicines have long been used to treat various illnesses by modulating the human immune response. In this study, we investigate the immuno-modulating effect and antitumor activity of Alocasia Cucullata (AC), a Chinese herb traditionally used to treat infection and cancer. We found that the whole water extract of AC roots could significantly attenuate tumor growth in mouse tumor models. The median survival time of the AC-treated mice was 43 days, 16 days longer than that of the control group. Moreover, the AC-treated mice showed substantially higher induction of key antitumor cytokines, such as IL-2, IFN-γ, and TNF-α, indicating that AC may exert antitumor effect by activating antitumor immunity. To further pinpoint the cellular and molecular mechanism of AC, we studied the dose response of a human monocytic cell line, THP-1, to the whole water extract of AC. Treatment of the AC extract significantly induced THP-1 differentiation into macrophage-like cells and the differentiated THP-1 showed expression of specific macrophage surface markers, such as CD11b and CD14, as well as productions of antitumor cytokines, e.g. IFN-γ and TNF-α. Our data thus point to AC as potentially a new, alternative immuno-modulating herbal remedy for anticancer treatment.

  11. Inhibitory effect of Moutan Cortex aqueous fraction on mast cell-mediated allergic inflammation.

    PubMed

    Kee, Ji-Ye; Inujima, Akiko; Andoh, Tsugunobu; Tanaka, Ken; Li, Feng; Kuraishi, Yasushi; Sakurai, Hiroaki; Shibahara, Naotoshi; Saiki, Ikuo; Koizumi, Keiichi

    2015-04-01

    Moutan Cortex and its major compounds have been shown to possess various biological activities, including anti-inflammatory properties. However, the effects of Moutan Cortex aqueous fraction (MCA) and its molecular mechanisms have yet to be elucidated. In this study, we attempted to evaluate the effects of MCA on mast cell-mediated allergy inflammation in vitro and in vivo compared with major Moutan Cortex compounds. Thus, we examined the anti-inflammatory effects of a water extract of Moutan Cortex by comparing the inhibition of β-hexosaminadase and tumor necrosis factor-α (TNF-α) release in an aqueous fraction with other major compounds of Moutan Cortex. The inhibitory mechanism of MCA was investigated by western blotting in IgE-mediated DNP-BSA-stimulated RBL-2H3 cells. We confirmed the pharmacological effects of MCA on compound 48/80-induced allergic reactions in a mouse model by assessing scratching behavior and passive cutaneous anaphylaxis (PCA)-like reaction. Consequently, MCA inhibited IgE-mediated DNP-BSA-induced β-hexosaminadase and TNF-α release via inactivation of p38, ERK, Akt, and NF-κB in RBL-2H3 cells. MCA reduced compound 48/80-induced PCA reaction and scratching behavior in mice. This inhibitory effect of MCA is more potent than major compounds of Moutan Cortex. In conclusion, our results suggest that MCA has more potential in the treatment of allergic inflammatory diseases compared to other major compounds of Moutan Cortex.

  12. Effects of endosulfan on humoral and cell-mediated immune responses in rats

    SciTech Connect

    Banerjee, B.D.; Hussain, Q.Z.

    1987-03-01

    Endosulfan (6,7,8,9,10,10a-hexa-chloro-1,5,5a,6,9,9a-hexahydro, 6,9-methano-2,4,3-benzodioxathiepin-3-oxide), a polycyclic chlorinated hydrocarbon of cyclodien group, is a well known insecticide. Food is the main source of exposure of the general population to endosulfan. The physical, chemical as well as toxicological effects of endosulfan in experimental animals have been reported by various workers. However, the reports regarding the effect of endosulfan on immune system are not available. In view of its widespread use there is an urgent need to investigate the immunotoxicological effect of endosulfan in mammals for the safety evaluation of this insecticide. This has, therefore, prompted the authors to investigate the effect of endosulfan on immune system employing albino rats as the experimental animals. Included in this report are their preliminary findings on humoral and cell-mediated immune responses in rats exposed to sub-chronic doses of endosulfan.

  13. Photodynamic effect on specific antitumor immune activity

    NASA Astrophysics Data System (ADS)

    Vonarx-Coinsmann, Veronique; Foultier, Marie-Therese; Morlet, Laurent; de Brito, Leonor X.; Patrice, Thierry

    1995-03-01

    In this study the effect of PDT on the antitumoral specific immunologic response was evaluated. We compared the specific cytolytic activity (CLA) by a chromium release assay of primed mouse spleen T lymphocytes sensitized against syngeneic mastocytoma P511 cells. P511 cells, or lymphocytes, or both cells were treated or not with photofrin and/or light (514 nm). Photofrin II alone (1 (mu) g/ml, 2 hours) reduced CLA 59% when P511 were treated. Photofrin II (1 (mu) g/ml) followed by light (25 Joules/sq cm) also reduced CLA 35%. Photofrin II alone (0.5 (mu) g/ml, 2 hours) reduced CLA 8% when only lymphocytes were treated. And Photofrin II (0.5 (mu) g/ml) followed by light (25 Joules/sq cm) also reduced CLA 45%. When both cells were treated with Photofrin II alone or followed by light (25 Joules/sq cm) the CLA was also reduced respectively 19, 41%.

  14. Immune Regulation and Antitumor Effect of TIM-1

    PubMed Central

    Du, Peng; Xiong, Ruihua; Li, Xiaodong; Jiang, Jingting

    2016-01-01

    T cells play an important role in antitumor immunity, and the T cell immunoglobulin domain and the mucin domain protein-1 (TIM-1) on its surface, as a costimulatory molecule, has a strong regulatory effect on T cells. TIM-1 can regulate and enhance type 1 immune response of tumor association. Therefore, TIM-1 costimulatory pathways may be a promising therapeutic target in future tumor immunotherapy. This review describes the immune regulation and antitumor effect of TIM-1. PMID:27413764

  15. Effect of chronic microwave radiation on T cell-mediated immunity in the rabbit

    NASA Astrophysics Data System (ADS)

    Nageswari, K. Sri; Sarma, K. R.; Rajvanshi, V. S.; Sharan, R.; Sharma, Manju; Barathwal, Vinita; Singh, Vinod

    1991-06-01

    Experiments were conducted to elucidate the effects of chronic low power-level microwave radiation on the immunological systems of rabbits. Fourteen male Belgian white rabbits were exposed to microwave radiation at 5 mW/cm2, 2.1 GHz, 3 h daily, 6 days/week for 3 months in two batches of 7 each in specially designed miniature anechoicchambers. Seven rabbits were subjected to sham exposure for identical duration. The microwave energy was provided through S band standard gain horns connected to a 4K3SJ2 Klystron power amplifier. The first batch of animals were assessed for T lymphocyte-mediated cellular immune response mechanisms and the second batch of animals for B lymphocyte-mediated humoral immune response mechanisms. The peripheral blood samples collected monthly during microwave/sham exposure and during follow-up (5/14 days after termination of exposures, in the second batch animals only) were analysed for T lymphocyte numbers and their mitogen responsiveness to ConA and PHA. Significant suppression of T lymphocyte numbers was noted in the microwave group at 2 months ( P<0.01, Δ% 21.5%) and during follow-up ( P<0.01, Δ% 30.2%). The first batch animals were initially sensitised with BCG and challenged with tuberculin (0.03 ml) at the termination of microwave irradiation/sham exposure and the increase in foot pad thickness (Δ mm), which is a measure of T cell-mediated immunity (delayed type hypersensitivity response, DTH) was noted in both the groups. The microwave group revealed a better response than the control group (Δ%+12.4 vs.+7.54). The animals were sacrified and the tissue T lymphocyte counts (spleen and lymph node) were analysed. No significant variation was observed in the tissue T lymphocyte counts of microwave-irradiated rabbits. From these results it is speculated that the T lymphocytes are sequestered to various lymphoid organs under the influence of microwaves. A sub-population of T cells known as T helper cells (mediating DTH response) are

  16. Inhibitory effects of mast cell-mediated allergic reactions by cell cultured Siberian Ginseng.

    PubMed

    Jeong, H J; Koo, H N; Myung, N I; Shin, M K; Kim, J W; Kim, D K; Kim, K S; Kim, H M; Lee, Y M

    2001-02-01

    The crude drug "Siberian Ginseng (SG)" has long been used in empirical Oriental medicine for the nonspecific enhancement of resistance in humans and animals. In this study, we investigated the effect of cell cultured SG by oral administration in mast cell-mediated allergic reactions. SG dose-dependently inhibited compound 48/80-induced systemic allergy with doses of 10(-2) to 1 g/kg 1 h before oral administration. Of special note, SG inhibited systemic allergy with the dose of 1 g/kg by 25%. SG (1 g/kg) also inhibited passive cutaneous allergic reaction by 51%. SG dose-dependently inhibited histamine release from rat peritoneal mast cells. When SG (0.01 mg/ml) was added, the secretion of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 in antidinitrophenyl (DNP) IgE antibody-stimulated mast cells was inhibited 39.5% and 23.3%, respectively. In addition, SG inhibited anti-DNP IgE antibody-stimulated TNF-alpha protein expression in mast cells. Our studies provide evidence that SG may be beneficial in the treatment of various types of allergic diseases.

  17. Effect of Chicoric Acid on Mast Cell-Mediated Allergic Inflammation in Vitro and in Vivo.

    PubMed

    Lee, Na Young; Chung, Kyung-Sook; Jin, Jong Sik; Bang, Keuk Soo; Eom, Ye-Jin; Hong, Chul-Hee; Nugroho, Agung; Park, Hee-Jun; An, Hyo-Jin

    2015-12-24

    Chicoric acid (dicaffeoyl-tartaric acid), is a natural phenolic compound found in a number of plants, such as chicory (Cichorium intybus) and Echinacea (Echinacea purpurea), which possesses antioxidant, anti-inflammatory, antiviral, and analgesic activities. Although these biological effects of chicoric acid have been investigated, there are no reports of its antiallergic-related anti-inflammatory effects in human mast cells (HMC)-1 or anaphylactic activity in a mouse model. Therefore, we investigated the antiallergic-related anti-inflammatory effect of chicoric acid and its underlying mechanisms of action using phorbol-12-myristate 13-acetate plus calcium ionophore A23187 (PMACI)-stimulated HMC-1 cells. Chicoric acid decreased the mRNA expression of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β. We studied the inhibitory effects of chicoric acid on the nuclear translocation of nuclear factor kappa B (NF-κB) and activation of caspase-1. However, mitogen-activated protein kinase (MAPK) activation was not sufficient to abrogate the stimulus. In addition, we investigated the ability of chicoric acid to inhibit compound 48/80-induced systemic anaphylaxis in vivo. Oral administration of chicoric acid at 20 mg/kg inhibited histamine release and protected mice against compound 48/80-induced anaphylactic mortality. These results suggest that chicoric acid has an antiallergic-related anti-inflammatory effect that involves modulating mast cell-mediated allergic responses. Therefore, chicoric acid could be an efficacious agent for allergy-related inflammatory disorders.

  18. B Cells Are Critical to T-cell-Mediated Antitumor Immunity Induced by a Combined Immune-Stimulatory/Conditionally Cytotoxic Therapy for Glioblastoma12

    PubMed Central

    Candolfi, Marianela; Curtin, James F; Yagiz, Kader; Assi, Hikmat; Wibowo, Mia K; Alzadeh, Gabrielle E; Foulad, David; Muhammad, AKM G; Salehi, Sofia; Keech, Naomi; Puntel, Mariana; Liu, Chunyan; Sanderson, Nicholas R; Kroeger, Kurt M; Dunn, Robert; Martins, Gislaine; Lowenstein, Pedro R; Castro, Maria G

    2011-01-01

    We have demonstrated that modifying the tumor microenvironment through intratumoral administration of adenoviral vectors (Ad) encoding the conditional cytotoxic molecule, i.e., HSV1-TK and the immune-stimulatory cytokine, i.e., fms-like tyrosine kinase 3 ligand (Flt3L) leads to T-cell-dependent tumor regression in rodent models of glioblastoma. We investigated the role of B cells during immune-mediated glioblastoma multiforme regression. Although treatment with Ad-TK+Ad-Flt3L induced tumor regression in 60% of wild-type (WT) mice, it completely failed in B-cell-deficient Igh6-/- mice. Tumor-specific T-cell precursors were detected in Ad-TK+Ad-Flt3L-treated WT mice but not in Igh6-/- mice. The treatment also failed in WT mice depleted of total B cells or marginal zone B cells. Because we could not detect circulating antibodies against tumor cells and the treatment was equally efficient in WT mice and in mice with B-cell-specific deletion of Prdm 1 (encoding Blimp-1), in which B cells are present but unable to fully differentiate into antibody-secreting plasma cells, tumor regression in this model is not dependent on B cells' production of tumor antigen-specific immunoglobulins. Instead, B cells seem to play a role as antigen-presenting cells (APCs). Treatment with Ad-TK+Ad-Flt3L led to an increase in the number of B cells in the cervical lymph nodes, which stimulated the proliferation of syngeneic T cells and induced clonal expansion of antitumor T cells. Our data show that B cells act as APCs, playing a critical role in clonal expansion of tumor antigen-specific T cells and brain tumor regression. PMID:22028620

  19. Anti-allergic effects of Lycopus lucidus on mast cell-mediated allergy model

    SciTech Connect

    Shin, Tae-Yong . E-mail: tyshin@woosuk.ac.kr; Kim, Sang-Hyun; Suk, Kyoungho; Ha, Jeoung-Hee; Kim, InKyeom; Lee, Maan-Gee; Jun, Chang-Duk; Kim, Sang-Yong; Lim, Jong-Pil; Eun, Jae-Soon; Shin, Hye-Young; Kim, Hyung-Min

    2005-12-15

    The current study characterizes the mechanism by which the aqueous extract of Lycopus lucidus Turcz. (Labiatae) (LAE) decreases mast cell-mediated immediate-type allergic reaction. The immediate-type allergic reaction is involved in many allergic diseases such as asthma and allergic rhinitis. LAE has been used as a traditional medicine in Korea and is known to have an anti-inflammatory effect. However, its specific mechanism of action is still unknown. LAE was anally administered to mice for high and fast absorption. LAE inhibited compound 48/80-induced systemic reactions in mice. LAE decreased the local allergic reaction, passive cutaneous anaphylaxis, activated by anti-dinitrophenyl (DNP) IgE antibody. LAE dose-dependently reduced histamine release from rat peritoneal mast cells activated by compound 48/80 or anti-DNP IgE. Furthermore, LAE decreased the secretion of TNF-{alpha} and IL-6 in phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore A23187-stimulated human mast cells. The inhibitory effect of LAE on the pro-inflammatory cytokine was p38 mitogen-activated protein kinase (MAPK) and nuclear factor-{kappa}B (NF-{kappa}B) dependent. LAE attenuated PMA plus A23187-induced degradation of I{kappa}B{alpha} and nuclear translocation of NF-{kappa}B, and specifically blocked activation of p38 MAPK, but not that of c-jun N-terminal kinase and extracellular signal-regulated kinase. Our findings provide evidence that LAE inhibits mast cell-derived immediate-type allergic reactions and involvement of pro-inflammatory cytokines, p38 MAPK, and NF-{kappa}B in these effects.

  20. Heterogeneous effects of exogenous IL-2 on HIV-specific cell-mediated immunity (CMI).

    PubMed Central

    Bell, S J; Cooper, D A; Kemp, B E; Doherty, R R; Penny, R

    1992-01-01

    A characteristic feature associated with HIV-1 infection of the human host is a chronic decline in circulating CD4+ T helper/inducer cell numbers. Impaired cell-mediated immune functions usually occur in parallel with the decline in CD4+ T cells. Activated CD4+ T helper cells are a major source of endogenous IL-2 which is required for the immunoregulation of both antigen-specific B cells and CD8+ T cells. HIV-specific T cell proliferative responses are said to be weak and inconsistent, even during the asymptomatic phase of disease. We thus wished to determine how exogenous IL-2 affected HIV-specific T cell proliferation at different stages of the disease. Our cohort of 81 included both asymptomatic and symptomatic HIV-infected patients as well as uninfected normal donors. Proliferative responses of peripheral blood mononuclear cells (PBMC) that were elicited during culture with an immunodominant gp41-derived synthetic peptide, gp41[8], and which were known to be CD8+ cell-associated in asymptomatics only, were used to analyse the effects of exogenous IL-2. IL-2 had three main effects on HIV-specific proliferation, namely (i) an additive effect, (ii) a synergistic effect, and (iii) an induced effect. More specifically, low dose exogenous IL-2 frequently augmented lymphoproliferation in both asymptomatic and symptomatic gp41[8] responders. In most symptomatics, however, who were predominantly gp41[8] non-responders, exogenous IL-2 induced lymphoproliferation. Flow cytometric analyses using dual immunofluorescence were used to analyse the T cell subset distribution of proliferating PBMC cultures. During culture with gp41[8], both CD4+ and CD8+ T cell numbers increased. However, after the addition of exogenous IL-2 to gp41[8]-containing cultures, CD8+ cell-associated lymphoproliferative responses were preferentially augmented. These results suggest that in symptomatics there is an inadequate supply of endogenous IL-2 to help maintain the strong and effective CD8+ cell

  1. Fibrinogen facilitates the anti-tumor effect of nonnative endostatin

    PubMed Central

    Tang, Huadong; Fu, Yan; Lei, Qingxin; Han, Qing; Ploplis, Victoria A.; Castellino, Francis J.; Li, Ling; Luo, Yongzhang

    2009-01-01

    Endostatin is a potent inhibitor of tumor angiogenesis. Interestingly, nonnative endostatin also exhibits an anti-tumor effect, which remains a mystery so far. Here we show that intravenous injection of nonnative endostatin results in tumor inhibition effect. Soluble and active endostatin is isolated from human blood after the addition of nonnative endostatin in vitro. By fractionation of the whole blood, we surprisingly identify fibrinogen specifically binding to and inhibiting the aggregation of nonnative endostatin. Moreover, the anti-tumor activity of nonnative endostatin is substantially impaired in fibrinogen-deficient mice. Our studies demonstrate that fibrinogen facilitates the anti-tumor effect of nonnative endostatin, which also provides new insights into the novel physiological function of fibrinogen. PMID:19167351

  2. Differential effect of pancreatectomy on humoral and cell-mediated immune responses.

    PubMed Central

    Fabris, N; Piantanelli, L

    1977-01-01

    Cell-mediated immune reactions, such as allogenic skin-graft rejection and PHA or MLC responses, and antibody synthesis against different antigens (sheep erythrocytes, Brucella antigen, bovine serum albumin) have been evaluated in rats suffering from experimentally-induced diabetes and in age-matched sham-treated controls. Cell-mediated immune reactions are strongly depressed diabetic rats. The cellularity of the thymus and of thymus-dependent areas and the number of peripheral blood lymphocytes is significantly reduced in pancreatectomized rats. Moreover, the immunological recovery from heavy cortisonization is also greatly impaired. Daily treatment with insulin may prevent these immunological alterations. By contrast, antibody responses in diabetic rats are not quantitatively altered in respect to either the number of antibody producing cells in the spleen or the circulating antibody titres. The discrepancy between the abnormality of cell-mediated immune reactions in diabetic rats and their physiological capacity to synthetize antibodies suggests that the sensitivity to an insulin-deprived environment is present only in a definite, although yet undefined, subpopulation of lymphoid cells rather than in the whole lymphoid system. Images Fig. 4 PMID:141353

  3. Metronomic cyclophosphamide enhances HPV16E7 peptide vaccine induced antigen-specific and cytotoxic T-cell mediated antitumor immune response.

    PubMed

    Weir, Genevieve M; Hrytsenko, Olga; Stanford, Marianne M; Berinstein, Neil L; Karkada, Mohan; Liwski, Robert S; Mansour, Marc

    In clinical trials, metronomic cyclophosphamide (CPA) is increasingly being combined with vaccines to reduce tumor-induced immune suppression. Previous strategies to modulate the immune system during vaccination have involved continuous administration of low dose chemotherapy, studies that have posed unique considerations for clinical trial design. Here, we evaluated metronomic CPA in combination with a peptide vaccine targeting HPV16E7 in an HPV16-induced tumor model, focusing on the cytotoxic T-cell response and timing of low dose metronomic CPA (mCPA) treatment relative to vaccination. Mice bearing C3 tumors were given metronomic CPA on alternating weeks in combination with immunization with a DepoVax vaccine containing HPV16E749-57 peptide antigen every 3 weeks. Only the combination therapy provided significant long-term control of tumor growth. The efficacy of the vaccine was uncompromised if given at the beginning or end of a cycle of metronomic CPA. Metronomic CPA had a pronounced lymphodepletive effect on the vaccine draining lymph node, yet did not reduce the development of antigen-specific CD8(+) T cells induced by vaccination. This enrichment correlated with increased cytotoxic activity in the spleen and increased expression of cytotoxic gene signatures in the tumor. Immunity could be passively transferred through CD8(+) T cells isolated from tumor-bearing mice treated with the combinatorial treatment regimen. A comprehensive survey of splenocytes indicated that metronomic CPA, in the absence of vaccination, induced transient lymphodepletion marked by a selective expansion of myeloid-derived suppressor cells. These results provide important insights into the multiple mechanisms of metronomic CPA induced immune modulation in the context of a peptide cancer vaccine that may be translated into more effective clinical trial designs.

  4. Antitumor effects and mechanisms of Ganoderma extracts and spores oil

    PubMed Central

    Chen, Chun; Li, Peng; Li, Ye; Yao, Guan; Xu, Jian-Hua

    2016-01-01

    Ganoderma lucidum is a popular herbal medicine used in China to promote health. Modern studies have disclosed that the active ingredients of Ganoderma can exhibit several effects, including antitumor effects and immunomodulation. The present study evaluated the antitumor effects of self-prepared Ganoderma extracts and spores oil, and investigated the possible underlying mechanisms by observing the effects of the extracts and oil on topoisomerases and the cell cycle. The results showed that Ganoderma extracts and spores oil presented dose-dependent inhibitory effects on tumor cells. The half maximal inhibitory concentration (IC50) values of Ganoderma extracts on HL60, K562 and SGC-7901 cells for 24 h were 0.44, 0.39 and 0.90 mg/ml, respectively; for Ganoderma spores oil, the IC50 values were 1.13, 2.27 and 6.29 mg/ml, respectively. In the in vivo study, the inhibitory rates of Ganoderma extracts (4 g/kg/d, intragastrically) on S180 and H22 cells were 39.1 and 44.6%, respectively, and for Ganoderma spores oil (1.2 g/kg/d, intragastrically) the inhibitory rates were 30.9 and 44.9%, respectively. Ganoderma extracts and spores oil inhibited the activities of topoisomerase I and II. Ganoderma spores oil was shown block the cell cycle at the transition between the G1 and S phases and induce a marked decrease in cyclin D1 levels in K562 cells, with no significant change in cyclin E level. These results suggest that the Ganoderma extracts and spores oil possessed antitumor effects in the in vitro and in vivo studies. The antitumor mechanisms of the extracts and spores oil were associated with inhibitory effects on topoisomerase I and II activities, and for Ganoderma spores oil, the antitumor effects may also be associated with decreased cyclin D1 levels, thus inducing G1 arrest in the cell cycle. PMID:27900038

  5. Effect of viral and bacterial pneumonias on cell-mediated immunity in humans.

    PubMed Central

    Kauffman, C A; Linnemann, C C; Schiff, G M; Phair, J P

    1976-01-01

    Cell-mediated immunity (CMI) was assessed during infection and after convalescence in 12 patients with influenza pneumonia and 10 patients with bacterial pneumonia. The patients with influenza pneumonia had a marked impairment of skin test reactivity, and their lymphocytes showed a diminished response to phytohemagglutinin and streptokinase-streptodornase stimulation in vitro. Suppression of CMI was related to the severity of the pneumonia. Patients with bacterial pneumonia showed as great a suppression of the response to phytohemagglutinin and streptokinase-streptodornase as the patients with viral pneumonia. All parameters of CMI returned to normal in both groups after convalescence. The depression of CMI could not be related to a decrease in the number of thymus-derived lymphocytes or to serum-suppressive factors in these patients. PMID:1082445

  6. Antioxidant, antimutagenic, and antitumor effects of pine needles (Pinus densiflora).

    PubMed

    Kwak, Chung Shil; Moon, Sung Chae; Lee, Mee Sook

    2006-01-01

    Pine needles (Pinus densiflora Siebold et Zuccarini) have long been used as a traditional health-promoting medicinal food in Korea. To investigate their potential anticancer effects, antioxidant, antimutagenic, and antitumor activities were assessed in vitro and/or in vivo. Pine needle ethanol extract (PNE) significantly inhibited Fe(2+)-induced lipid peroxidation and scavenged 1,1-diphenyl- 2-picrylhydrazyl radical in vitro. PNE markedly inhibited mutagenicity of 2-anthramine, 2-nitrofluorene, or sodium azide in Salmonella typhimurium TA98 or TA100 in Ames tests. PNE exposure effectively inhibited the growth of cancer cells (MCF-7, SNU-638, and HL-60) compared with normal cell (HDF) in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In in vivo antitumor studies, freeze-dried pine needle powder supplemented (5%, wt/wt) diet was fed to mice inoculated with Sarcoma-180 cells or rats treated with mammary carcinogen, 7,12-dimethylbenz[a]anthracene (DMBA, 50 mg/kg body weight). Tumorigenesis was suppressed by pine needle supplementation in the two model systems. Moreover, blood urea nitrogen and aspartate aminotransferase levels were significantly lower in pine needle-supplemented rats in the DMBA-induced mammary tumor model. These results demonstrate that pine needles exhibit strong antioxidant, antimutagenic, and antiproliferative effects on cancer cells and also antitumor effects in vivo and point to their potential usefulness in cancer prevention.

  7. Antitumor effects of the benzophenanthridine alkaloid sanguinarine: Evidence and perspectives

    PubMed Central

    Gaziano, Roberta; Moroni, Gabriella; Buè, Cristina; Miele, Martino Tony; Sinibaldi-Vallebona, Paola; Pica, Francesca

    2016-01-01

    Historically, natural products have represented a significant source of anticancer agents, with plant-derived drugs becoming increasingly explored. In particular, sanguinarine is a benzophenanthridine alkaloid obtained from the root of Sanguinaria canadensis, and from other poppy Fumaria species, with recognized anti-microbial, anti-oxidant and anti-inflammatory properties. Recently, increasing evidence that sanguinarine exibits anticancer potential through its capability of inducing apoptosis and/or antiproliferative effects on tumor cells, has been proved. Moreover, its antitumor seems to be due not only to its pro-apoptotic and inhibitory effects on tumor growth, but also to its antiangiogenic and anti-invasive properties. Although the precise mechanisms underlying the antitumor activity of this compound remain not fully understood, in this review we will focus on the most recent findings about the cellular and molecular pathways affected by sanguinarine, together with the rationale of its potential application in clinic. The complex of data currently available suggest the potential application of sanguinarine as an adjuvant in the therapy of cancer, but further pre-clinical studies are needed before such an antitumor strategy can be effectively translated in the clinical practice. PMID:26798435

  8. Antitumor effects of the benzophenanthridine alkaloid sanguinarine: Evidence and perspectives.

    PubMed

    Gaziano, Roberta; Moroni, Gabriella; Buè, Cristina; Miele, Martino Tony; Sinibaldi-Vallebona, Paola; Pica, Francesca

    2016-01-15

    Historically, natural products have represented a significant source of anticancer agents, with plant-derived drugs becoming increasingly explored. In particular, sanguinarine is a benzophenanthridine alkaloid obtained from the root of Sanguinaria canadensis, and from other poppy Fumaria species, with recognized anti-microbial, anti-oxidant and anti-inflammatory properties. Recently, increasing evidence that sanguinarine exibits anticancer potential through its capability of inducing apoptosis and/or antiproliferative effects on tumor cells, has been proved. Moreover, its antitumor seems to be due not only to its pro-apoptotic and inhibitory effects on tumor growth, but also to its antiangiogenic and anti-invasive properties. Although the precise mechanisms underlying the antitumor activity of this compound remain not fully understood, in this review we will focus on the most recent findings about the cellular and molecular pathways affected by sanguinarine, together with the rationale of its potential application in clinic. The complex of data currently available suggest the potential application of sanguinarine as an adjuvant in the therapy of cancer, but further pre-clinical studies are needed before such an antitumor strategy can be effectively translated in the clinical practice.

  9. Requirements for effective antitumor responses of TCR transduced T cells.

    PubMed

    de Witte, Moniek A; Jorritsma, Annelies; Kaiser, Andrew; van den Boom, Marly D; Dokter, Maarten; Bendle, Gavin M; Haanen, John B A G; Schumacher, Ton N M

    2008-10-01

    Adoptive transfer of TCR gene-modified T cells has been proposed as an attractive approach to target tumors for which it is difficult or impossible to induce strong tumor-specific T cell responses by vaccination. Whereas the feasibility of generating tumor Ag-specific T cells by gene transfer has been demonstrated, the factors that determine the in vivo effectiveness of TCR-modified T cells are largely unknown. We have analyzed the value of a number of clinically feasible strategies to enhance the antitumor potential of TCR modified T cells. These experiments reveal three factors that contribute greatly to the in vivo potency of TCR-modified T cells. First, irradiation-induced host conditioning is superior to vaccine-induced activation of genetically modified T cells. Second, increasing TCR expression through genetic optimization of TCR sequences has a profound effect on in vivo antitumor activity. Third, a high precursor frequency of TCR modified T cells within the graft is essential. Tumors that ultimately progress in animals treated with this optimized regimen for TCR-based adoptive cell transfer invariably display a reduced expression of the target Ag. This suggests TCR gene therapy can achieve a sufficiently strong selective pressure to warrant the simultaneous targeting of multiple Ags. The strategies outlined in this study should be of value to enhance the antitumor activity of TCR-modified T cells in clinical trials.

  10. Antitumor effect of lysine-isopeptides

    PubMed Central

    Szende, B; Szökán, Gy; Tyihá, E; Pál, K; Gáborjányi, R; Almás, M; Khlafulla, A R

    2002-01-01

    Isopeptides (ε-peptides) of lysine, with a given Mw and low polydispersity (10–400 units), were synthesized to study the relationship between their chemical structure and biological effect. The designed compounds were of high purity, low polydispersity and high stereochemical purity. The effect of the compounds was tested on a human erythroleukemia cell line (K-562) and on four transplantable mouse tumors (L1210 lymphoid leukemia, P38 macrophage derived tumor, Ehrlich ascites carcinoma, Lewis lung tumor /LLT/). In case of the L1210 and P388 tumors and the Ehrlich carcinoma, survival of the animals was used as an indicator of the effect. In case of the Lewis lung tumor, the number and size of metastases in the lung and/or liver of treated and untreated mice were used as indicators. The polymers of polymerisation degree 80–120 (Mw 10.2–15.4 KD) showed the strongest antiproliferative effect both on K562 cells and the tumors growing in vivo. This effect was manifest with a significantly higher survival rate as compared to the control (L1210, P38, Ehrlich ascites), furthermore, by a decrease in the number and size of liver and lung metastases (LLT). PMID:12076354

  11. Antibiotics and immunity: effects of antibiotics on natural killer, antibody dependent cell-mediated cytotoxicity and antibody production.

    PubMed

    Ibrahim, M S; Maged, Z A; Haron, A; Khalil, R Y; Attallah, A M

    1987-12-01

    We studied the effects of antibiotics on natural killer (NK), antibody dependent cell-mediated cytotoxicity (ADCC) and immunoglobulin production. When human peripheral blood lymphocytes were incubated overnight with the antibiotic before the assay, nitrofurantoin significantly reduced NK but not ADCC activity. Nitrofurantoin also suppressed both spontaneous and interferon-enhanced NK activities in a dose-dependent fashion. Though it did not affect spontaneous ADCC activity, nitrofurantoin suppressed interferon enhancement of ADCC. Chloramphenicol significantly decreased the number of plaque forming cells in mice. In addition to chloramphenicol, tetracycline, rifampicin, cephalothin, polymyxin B and nitrofurantoin reduced mitogen-induced polycloned immunoglobulin synthesis. Results of this study may have clinical relevance, especially in treating immunocompromised patients.

  12. Anti-tumor effects of an engineered 'killer' transfer RNA

    SciTech Connect

    Zhou, Dong-hui; Lee, Jiyoung; Frankenberger, Casey; Geslain, Renaud; Rosner, Marsha; Pan, Tao

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer tRNA with anti-cancer effects. Black-Right-Pointing-Pointer tRNA induced protein misfolding. Black-Right-Pointing-Pointer tRNA as anti-tumor agent. -- Abstract: A hallmark of cancer cells is their ability to continuously divide; and rapid proliferation requires increased protein translation. Elevating levels of misfolded proteins can elicit growth arrest due to ER stress and decreased global translation. Failure to correct prolonged ER stress eventually results in cell death via apoptosis. tRNA{sup Ser}(AAU) is an engineered human tRNA{sup Ser} with an anticodon coding for isoleucine. Here we test the possibility that tRNA{sup Ser}(AAU) can be an effective killing agent of breast cancer cells and can effectively inhibit tumor-formation in mice. We found that tRNA{sup Ser}(AAU) exert strong effects on breast cancer translation activity, cell viability, and tumor formation. Translation is strongly inhibited by tRNA{sup Ser}(AAU) in both tumorigenic and non-tumorigenic cells. tRNA{sup Ser}(AAU) significantly decreased the number of viable cells over time. A short time treatment with tRNA{sup Ser}(AAU) was sufficient to eliminate breast tumor formation in a xenograft mouse model. Our results indicate that tRNA{sup Ser}(AAU) can inhibit breast cancer metabolism, growth and tumor formation. This RNA has strong anti-cancer effects and presents an opportunity for its development into an anti-tumor agent. Because tRNA{sup Ser}(AAU) corrupts the protein synthesis mechanism that is an integral component of the cell, it would be extremely difficult for tumor cells to evolve and develop resistance against this anti-tumor agent.

  13. Antitumor effect of seaweeds. II. Fractionation and partial characterization of the polysaccharide with antitumor activity from Sargassum fulvellum.

    PubMed

    Yamamoto, I; Nagumo, T; Fujihara, M; Takahashi, M; Ando, Y

    1977-06-01

    An almost purified antitumor polysaccharide fraction (SFPP) was obtained by fractional precipitation with ethanol from hot-water extract of Sargassum fulvellum. The fraction showed remarkable tumor-inhibiting effect against sarcoma-180 implanted subcutaneously in mice. The results of chemical and physical analyses suggested that the active substance may be either a sulphated peptidoglycuronoglycan or a sulphated glycuronoglycan.

  14. NY-ESO-1 specific TCR engineered T-cells mediate sustained antigen-specific antitumor effects in myeloma

    PubMed Central

    Goloubeva, Olga; Vogl, Dan T.; Lacey, Simon F.; Badros, Ashraf Z.; Garfall, Alfred; Weiss, Brendan; Finklestein, Jeffrey; Kulikovskaya, Irina; Sinha, Sanjoy K.; Kronsberg, Shari; Gupta, Minnal; Bond, Sarah; Melchiori, Luca; Brewer, Joanna E.; Bennett, Alan D.; Gerry, Andrew B.; Pumphrey, Nicholas J.; Williams, Daniel; Tayton-Martin, Helen K.; Ribeiro, Lilliam; Holdich, Tom; Yanovich, Saul; Hardy, Nancy; Yared, Jean; Kerr, Naseem; Philip, Sunita; Westphal, Sandra; Siegel, Don L.; Levine, Bruce L.; Jakobsen, Bent K.; Kalos, Michael; June, Carl H.

    2015-01-01

    Despite recent therapeutic advances, multiple myeloma (MM) remains largely incurable. Herein we report results of a phase I/II trial to evaluate the safety and activity of autologous T-cells engineered to express an affinity-enhanced T-cell receptor (TCR) recognizing a naturally processed peptide shared by the cancer-testis antigens NY-ESO-1 and LAGE-1. Twenty patients with antigen-positive MM received an average 2.4×109 engineered T cells two days after autologous stem cell transplant (ASCT). Infusions were well-tolerated without clinically apparent cytokine release syndrome, despite high IL-6 levels. Engineered T-cells expanded, persisted, trafficked to marrow and exhibited a cytotoxic phenotype. Persistence of engineered T cells in blood was inversely associated with NY-ESO-1 levels in the marrow. Disease progression was associated with loss of T cell persistence or antigen escape, consistent with the expected mechanism of action of the transferred T cells. Encouraging clinical responses were observed in 16 of 20 patients (80%) with advanced disease, with a median progression free survival of 19.1 months. NY-ESO-1/LAGE-1 TCR-engineered T-cells were safe, trafficked to marrow and showed extended persistence that correlated with clinical activity against antigen-positive myeloma. PMID:26193344

  15. Anordrin Eliminates Tamoxifen Side Effects without Changing Its Antitumor Activity

    PubMed Central

    Gu, Wenwen; Xu, Wenping; Sun, Xiaoxi; Zeng, Bubing; Wang, Shuangjie; Dong, Nian; Zhang, Xu; Chen, Chengshui; Yang, Long; Chen, Guowu; Xin, Aijie; Ni, Zhong; Wang, Jian; Yang, Jun

    2017-01-01

    Tamoxifen is administered for estrogen receptor positive (ER+) breast cancers, but it can induce uterine endometrial cancer and non-alcoholic fatty liver disease (NAFLD). Importantly, ten years of tamoxifen treatment has greater protective effect against ER+ breast cancer than five years of such treatment. Tamoxifen was also approved by the FDA as a chemopreventive agent for those deemed at high risk for the development of breast cancer. The side effects are of substantial concern because of these extended methods of tamoxifen administration. In this study, we found that anordrin, marketed as an antifertility medicine in China, inhibited tamoxifen-induced endometrial epithelial cell mitosis and NAFLD in mouse uterus and liver as an anti-estrogenic and estrogenic agent, respectively. Additionally, compared with tamoxifen, anordiol, the active metabolite of anordrin, weakly bound to the ligand binding domain of ER-α. Anordrin did not regulate the classic estrogen nuclear pathway; thus, it did not affect the anti-tumor activity of tamoxifen in nude mice. Taken together, these data suggested that anordrin could eliminate the side effects of tamoxifen without affecting its anti-tumor activity. PMID:28266626

  16. Juglone exerts antitumor effect in ovarian cancer cells

    PubMed Central

    Fang, Fang; Qin, Yingxin; Qi, Ling; Fang, Qing; Zhao, Liangzhong; Chen, Shuang; Li, Qiang; Zhang, Duo; Wang, Liguo

    2015-01-01

    Objective(s): Juglone is isolated from many species of the Juglandaceae family and used as an anti-viral, anti-bacterial, and anti-tumor therapeutic. Here, we evaluated juglone-induced antitumor effect in ovarian cancer SKOV3 cells. Materials and Methods: MTT assay was performed to examine juglone anti-proliferative effect. Cell cycle and apoptosis were studied using flow cytometry in juglone-treated SKOV3 cells. To investigate molecular mechanism of cell cycle and apoptosis, protein expression levels were measured by Western blot analysis of cyclin D1, Bcl-2, Bax, cytochrome c, caspase-9 and caspase-3. To investigate the motility of juglone-treated SKOV3 cell, Matrigel invasion assay was employed to characterize cell invasion. Also, matrix metalloproteinase-2 (MMP-2) expression levels were detected by western blot. Results: Juglone significantly inhibited SKOV3 cell proliferation as shown by G0/G1 phase arrest, and this effect was mediated by inactivation of cyclin D1 protein (P<0.05). Juglone induced apoptosis in SKOV3 cell which was accompanied by caspase-9 and caspase-3 activation (P<0.05). Juglone decreased Bcl-2 levels and increased Bax and cytochrome c (Cyt c) levels (P<0.05). Juglone sufficiently inhibited invasion while evidently decreased MMP-2 expression (P<0.05). Conclusion: The results suggest that juglone could probably induce apoptosis through mitochondrial pathway and restrained cell invasiveness by decreasing MMP expression. PMID:26221477

  17. Anti-inflammatory effect of curcumin on mast cell-mediated allergic responses in ovalbumin-induced allergic rhinitis mouse.

    PubMed

    Zhang, Ning; Li, Hong; Jia, Jihui; He, Mingqiang

    2015-01-01

    Curcumin has commonly been used for the treatment of various allergic diseases. However, its precise anti-allergic rhinitis effect and mechanism remain unknown. In the present study, the effect of curcumin on allergic responses in ovalbumin (OVA)-induced allergic rhinitis mouse was investigated. We explored the effect of curcumin on the release of allergic inflammatory mediators, such as histamine, OVA-specific IgE, and inflammatory cytokines. Also, we found that curcumin improved rhinitis symptoms, inhibited the histopathological changes of nasal mucosa, and decreased the serum levels of histamine, OVA-specific IgE and TNF-α in OVA-induced allergic rhinitis mice. In addition, curcumin suppressed the production of inflammatory cytokines, such as TNF-α, IL-1β, IL-6 and IL-8. Moreover, curcumin significantly inhibited PMA-induced p-ERK, p-p38, p-JNK, p-Iκ-Bα and NF-κB. These findings suggest that curcumin has an anti-allergic effect through modulating mast cell-mediated allergic responses in allergic rhinitis, at least partly by inhibiting MAPK/NF-κB pathway.

  18. Curative effect of HF10 on liver and peritoneal metastasis mediated by host antitumor immunity

    PubMed Central

    Hotta, Yoshihiro; Kasuya, Hideki; Bustos, Itzel; Naoe, Yoshinori; Ichinose, Toru; Tanaka, Maki; Kodera, Yasuhiro

    2017-01-01

    Background HF10 is a highly attenuated type 1 herpes simplex virus (HSV) with proven effective oncolytic effect. Previous investigations have demonstrated that colon cancer mice model treated with HF10 not only had better survival but were also resistant to the reimplantation of the antitumor effect mediated by host antitumor immunity. Importantly, it has also been noted that in mice with antitumors implanted on both sides of the back, an injection of HF10 on only one side strongly restrains not only the injected antitumor but also the non-injected ones. Materials and methods MC26 colon cancer cells were injected subcutaneously into the back, spleen, and intraperitoneal region of metastasis model mice. Antitumor volume and survival rate were monitored. To measure cytotoxic T lymphocytes (CTL) cytotoxicity against MC26, lymphocytes were extracted from the spleens of the peritoneal metastasis model mice as well as from the thymus of the liver metastasis model mice. The expression of interferon gamma was examined by enzyme-linked immunospot assay. Samples from the liver metastasis model mice were subjected to polymerase chain reaction to quantify the level of HSV genomes. Results HF10 was injected only on the back antitumor; however, a antitumor-suppressor effect was observed against liver and peritoneal metastases. When HF10 genome was measured, we observed lower genome on liver metastases compared to back antitumor genome quantity. CTL activity against MC26 was also observed. These results indicate that local administration of HF10 exerts a curative effect on systemic disease, mediated by host antitumor immunity. Conclusion HF10 local administration stimulates antitumor immunity to recognize antitumor-specific antigen, which then improves systemic disease. Metastatic antitumors lysis, on the other hand, appears to be mediated by the host immune system, rather than by virus-mediated direct oncolysis. PMID:28331843

  19. Antitumor effect of sonodynamically activated pyrrolidine tris-acid fullerene

    NASA Astrophysics Data System (ADS)

    Iwase, Yumiko; Nishi, Koji; Fujimori, Junya; Fukai, Toshio; Yumita, Nagahiko; Ikeda, Toshihiko; Chen, Fu-shin; Momose, Yasunori; Umemura, Shin-ichiro

    2016-07-01

    In this study, the sonodynamically induced antitumor effect of pyrrolidine tris-acid fullerene (PTF) was investigated. Sonodynamically induced antitumor effects of PTF by focused ultrasound were investigated using isolated sarcoma-180 cells and mice bearing ectopically-implanted colon 26 carcinoma. Cell damage induced by ultrasonic exposure was enhanced by 5-fold in the presence of 80 µM PTF. The combined treatment of ultrasound and PTF suppressed the growth of the implanted colon 26 carcinoma. Ultrasonically induced 2,2,6,6-tetramethyl-4-piperidone-1-oxyl (4oxoTEMPO) production in the presence and absence of PTF was assessed, and it was shown that 80 µM PTF enhanced 4oxoTEMPO production as measured by ESR spectroscopy. Histidine, a reactive oxygen scavenger, significantly reduced cell damage and 4oxoTEMPO generation caused by ultrasonic exposure in the presence of PTF. These results suggest that singlet oxygen is likely to be involved in the ultrasonically induced cell damage enhanced by PTF.

  20. Contrasting Effects of the Cytotoxic Anticancer Drug Gemcitabine and the EGFR Tyrosine Kinase Inhibitor Gefitinib on NK Cell-Mediated Cytotoxicity via Regulation of NKG2D Ligand in Non-Small-Cell Lung Cancer Cells

    PubMed Central

    Okita, Riki; Wolf, Diana; Yasuda, Koichiro; Maeda, Ai; Yukawa, Takuro; Saisho, Shinsuke; Shimizu, Katsuhiko; Yamaguchi, Yoshiyuki; Oka, Mikio; Nakayama, Eiichi; Lundqvist, Andreas; Kiessling, Rolf; Seliger, Barbara; Nakata, Masao

    2015-01-01

    Introduction Several cytotoxic anticancer drugs inhibit DNA replication and/or mitosis, while EGFR tyrosine kinase inhibitors inactivate EGFR signalling in cancer cell. Both types of anticancer drugs improve the overall survival of the patients with non-small-cell lung cancer (NSCLC), although tumors often become refractory to this treatment. Despite several mechanisms by which the tumors become resistant having been described the effect of these compounds on anti-tumor immunity remains largely unknown. Methods This study examines the effect of the cytotoxic drug Gemcitabine and the EGFR tyrosine kinase inhibitor Gefitinib on the expression of NK group 2 member D (NKG2D) ligands as well as the sensitivity of NSCLC cells to the NK-mediated lysis. Results We demonstrate that Gemcitabine treatment leads to an enhanced expression, while Gefitinib downregulated the expression of molecules that act as key ligands for the activating receptor NKG2D and promote NK cell-mediated recognition and cytolysis. Gemcitabine activated ATM and ATM- and Rad-3-related protein kinase (ATR) pathways. The Gemcitabine-induced phosphorylation of ATM as well as the upregulation of the NKG2D ligand expression could be blocked by an ATM-ATR inhibitor. In contrast, Gefitinib attenuated NKG2D ligand expression. Silencing EGFR using siRNA or addition of the PI3K inhibitor resulted in downregulation of NKG2D ligands. The observations suggest that the EGFR/PI3K pathway also regulates the expression of NKG2D ligands. Additionally, we showed that both ATM-ATR and EGFR regulate MICA/B via miR20a. Conclusion In keeping with the effect on NKG2D expression, Gemcitabine enhanced NK cell-mediated cytotoxicity while Gefitinib attenuated NK cell killing in NSCLC cells. PMID:26439264

  1. Promoting effect of Antrodia camphorata as an immunomodulating adjuvant on the antitumor efficacy of HER-2/neu DNA vaccine.

    PubMed

    Huang, Chia-Hsin; Chang, Chia-Che; Lin, Chiu-Mei; Wang, Sin-Ting; Wu, Min-Tze; Li, Eric I C; Chang, Hsien-Chang; Lin, Chi-Chen

    2010-08-01

    It is well known that DNA vaccines induce protective humoral and cell-mediated immune responses in several animal models. Antrodia camphorata (AC) is a unique basidiomycete fungus of the Polyporaceae family that only grows on the aromatic tree Cinnamomum kanehirai Hayata (Lauraceae) endemic to Taiwan. Importantly, AC has been shown to be highly beneficial in the treatment and prevention of cancer. The goal of this study was to investigate whether AC is able to augment the antitumor immune properties of a HER-2/neu DNA vaccine in a mouse model in which p185neu is overexpressed in MBT-2 tumor cells. Compared with the mice that received the HER-2/neu DNA vaccine alone, co-treatment with AC suppressed tumor growth and extended the survival rate. This increase in the antitumor efficacy was attributed to the enhancement of the Th1-like cellular immune response by the HER-2/neu DNA vaccine-AC combination. Evidence for this came from the marked increase in the IFN-gamma mRNA expression in CD4+ T cells in the draining inguinal lymph nodes, an increase in the number of functional HER-2/neu-specific CTLs, and the increased tumor infiltration of both CD4+ and CD8+ T cells, depletion of which abolishes the antitumor effect of the HER-2/neu DNA vaccine-AC therapy. Our results further indicate that the treatment of mice with AC enhanced DC activation and production of Th1-activating cytokines (e.g. IL-12, and IFN-alpha) in the draining lymph nodes, which were sufficient to directly stimulate T cell proliferation and higher IFN-gamma production in response to ErbB2. Overall, these results clearly demonstrate that AC represents a promising immunomodulatory adjuvant that could enhance the therapeutic potency of HER-2/neu DNA vaccines in cancer therapy.

  2. Proteomic Study to Survey the CIGB-552 Antitumor Effect

    PubMed Central

    Rodríguez-Ulloa, Arielis; Gil, Jeovanis; Ramos, Yassel; Hernández-Álvarez, Lilian; Flores, Lisandra; Oliva, Brizaida; García, Dayana; Sánchez-Puente, Aniel; Musacchio-Lasa, Alexis; Fernández-de-Cossio, Jorge; Padrón, Gabriel; González López, Luis J.; Besada, Vladimir; Guerra-Vallespí, Maribel

    2015-01-01

    CIGB-552 is a cell-penetrating peptide that exerts in vitro and in vivo antitumor effect on cancer cells. In the present work, the mechanism involved in such anticancer activity was studied using chemical proteomics and expression-based proteomics in culture cancer cell lines. CIGB-552 interacts with at least 55 proteins, as determined by chemical proteomics. A temporal differential proteomics based on iTRAQ quantification method was performed to identify CIGB-552 modulated proteins. The proteomic profile includes 72 differentially expressed proteins in response to CIGB-552 treatment. Proteins related to cell proliferation and apoptosis were identified by both approaches. In line with previous findings, proteomic data revealed that CIGB-552 triggers the inhibition of NF-κB signaling pathway. Furthermore, proteins related to cell invasion were differentially modulated by CIGB-552 treatment suggesting new potentialities of CIGB-552 as anticancer agent. Overall, the current study contributes to a better understanding of the antitumor action mechanism of CIGB-552. PMID:26576414

  3. [Antitumoral effect of xenogenic substances in vivo and in vitro].

    PubMed

    Munder, P G; Stiefel, T; Widmann, K H; Theurer, K

    1982-04-01

    The proliferation of various tumour cells was inhibited in vivo and in vitro after application of/or incubation with xenogeneic liver tissue. The development of s.c.-implanted meth-A-sarcoma was blocked by the prophylactic injection of these preparations. In addition firmly established tumours regressed under therapy. Preparations obtained from xenogeneic organs like thymus, placenta or brain had a similar antitumor activity. A mixture of various xenogeneic tissues from different species had a much higher therapeutic efficiency. In the Meth-A-system the xenogeneic material surpassed the antineoplastic effect of rather high doses of cyclophosphamide. The preparations showed no side-effects in mice and rats. These results were supported by experiments in tissue culture. This new antitumour activity of xenogeneic tissues in vivo is interpreted as mediated by an increased host defense. The results in tissue culture however, indicate also a direct regulatory effect on cells.

  4. Antitumor Effects of Laminaria Extract Fucoxanthin on Lung Cancer

    PubMed Central

    Mei, ChengHan; Zhou, ShunChang; Zhu, Lin; Ming, JiaXiong; Zeng, FanDian; Xu, Rong

    2017-01-01

    Lung cancer is the leading cause of cancer mortality worldwide and non-small-cell lung cancer (NSCLC) is the most common type. Marine plants provide rich resources for anticancer drug discovery. Fucoxanthin (FX), a Laminaria japonica extract, has attracted great research interest for its antitumor activities. Accumulating evidence suggests anti-proliferative effects of FX on many cancer cell lines including NSCLCs, but the detailed mechanisms remain unclear. In the present investigation, we confirmed molecular mechanisms and in vivo anti-lung cancer effect of FX at the first time. Flow cytometry, real-time PCR, western blotting and immunohistochemistry revealed that FX arrested cell cycle and induced apoptosis by modulating expression of p53, p21, Fas, PUMA, Bcl-2 and caspase-3/8. These results show that FX is a potent marine drug for human non-small-cell lung cancer treatment. PMID:28212270

  5. Tamoxifen improves cytopathic effect of oncolytic adenovirus in primary glioblastoma cells mediated through autophagy

    PubMed Central

    Ulasov, Ilya V.; Shah, Nameeta; Kaverina, Natalya V.; Lee, Hwahyang; Lin, Biaoyang; Lieber, Andre; Kadagidze, Zaira G.; Yoon, Jae-Guen; Schroeder, Brett; Hothi, Parvinder; Ghosh, Dhimankrishna; Baryshnikov, Anatoly Y.; Cobbs, Charles S.

    2015-01-01

    Oncolytic gene therapy using viral vectors may provide an attractive therapeutic option for malignant gliomas. These viral vectors are designed in a way to selectively target tumor cells and spare healthy cells. To determine the translational impact, it is imperative to assess the factors that interfere with the anti-glioma effects of the oncolytic adenoviral vectors. In the current study, we evaluated the efficacy of survivin-driven oncolytic adenoviruses pseudotyping with adenoviral fiber knob belonging to the adenoviral serotype 3, 11 and 35 in their ability to kill glioblastoma (GBM) cells selectively without affecting normal cells. Our results indicate that all recombinant vectors used in the study can effectively target GBM in vitro with high specificity, especially the 3 knob-modified vector. Using intracranial U87 and U251 GBM xenograft models we have also demonstrated that treatment with Conditionally Replicative Adenovirus (CRAd-S-5/3) vectors can effectively regress tumor. However, in several patient-derived GBM cell lines, cells exhibited resistance to the CRAd infection as evident from the diminishing effects of autophagy. To improve therapeutic response, tumor cells were pretreated with tamoxifen. Our preliminary data suggest that tamoxifen sensitizes glioblastoma cells towards oncolytic treatment with CRAd-S-5/3, which may prove useful for GBM in future experimental therapy. PMID:25738357

  6. Immune regulatory effects of simvastatin on regulatory T cell-mediated tumour immune tolerance.

    PubMed

    Lee, K J; Moon, J Y; Choi, H K; Kim, H O; Hur, G Y; Jung, K H; Lee, S Y; Kim, J H; Shin, C; Shim, J J; In, K H; Yoo, S H; Kang, K H; Lee, S Y

    2010-08-01

    Statins are potent inhibitors of hydroxyl-3-methylglutaryl co-enzyme A (HMG-CoA) reductase, and have emerged as potential anti-cancer agents based on preclinical evidence. In particular, compelling evidence suggests that statins have a wide range of immunomodulatory properties. However, little is known about the role of statins in tumour immune tolerance. Tumour immune tolerance involves the production of immunosuppressive molecules, such as interleukin (IL)-10, transforming growth factor (TGF)-beta and indoleamine-2,3-dioxygenase (IDO) by tumours, which induce a regulatory T cell (T(reg)) response. In this study, we investigated the effect of simvastatin on the production of IL-10, TGF-beta and IDO production and the proliferation of T(regs) using several cancer cell lines, and Lewis lung cancer (3LL) cells-inoculated mouse tumour model. Simvastatin treatment resulted in a decrease in the number of cancer cells (3LL, A549 and NCI-H292). The production of the immune regulatory markers IL-10, TGF-beta in 3LL and NCI-H292 cells increased after treatment with simvastatin. The expression of IDO and forkhead box P3 (FoxP3) transcription factor was also increased in the presence of simvastatin. In a murine 3LL model, there were no significant differences in tumour growth rate between untreated and simvastatin-treated mice groups. Therefore, while simvastatin had an anti-proliferative effect, it also exhibited immune tolerance-promoting properties during tumour development. Thus, due to these opposing actions, simvastatin had no net effect on tumour growth.

  7. Size-Dependent Effects of Gold Nanoparticles Uptake on Maturation and Antitumor Functions of Human Dendritic Cells In Vitro

    PubMed Central

    Tomić, Sergej; Đokić, Jelena; Vasilijić, Saša; Ogrinc, Nina; Rudolf, Rebeka; Pelicon, Primož; Vučević, Dragana; Milosavljević, Petar; Janković, Srđa; Anžel, Ivan; Rajković, Jelena; Rupnik, Marjan Slak; Friedrich, Bernd; Čolić, Miodrag

    2014-01-01

    Gold nanoparticles (GNPs) are claimed as outstanding biomedical tools for cancer diagnostics and photo-thermal therapy, but without enough evidence on their potentially adverse immunological effects. Using a model of human dendritic cells (DCs), we showed that 10 nm- and 50 nm-sized GNPs (GNP10 and GNP50, respectively) were internalized predominantly via dynamin-dependent mechanisms, and they both impaired LPS-induced maturation and allostimulatory capacity of DCs, although the effect of GNP10 was more prominent. However, GNP10 inhibited LPS-induced production of IL-12p70 by DCs, and potentiated their Th2 polarization capacity, while GNP50 promoted Th17 polarization. Such effects of GNP10 correlated with a stronger inhibition of LPS-induced changes in Ca2+ oscillations, their higher number per DC, and more frequent extra-endosomal localization, as judged by live-cell imaging, proton, and electron microscopy, respectively. Even when released from heat-killed necrotic HEp-2 cells, GNP10 inhibited the necrotic tumor cell-induced maturation and functions of DCs, potentiated their Th2/Th17 polarization capacity, and thus, impaired the DCs' capacity to induce T cell-mediated anti-tumor cytotoxicity in vitro. Therefore, GNP10 could potentially induce more adverse DC-mediated immunological effects, compared to GNP50. PMID:24802102

  8. Effect of Lactobacillus brevis KB290 on the cell-mediated cytotoxic activity of mouse splenocytes: a DNA microarray analysis.

    PubMed

    Fukui, Yuichiro; Sasaki, Erika; Fuke, Nobuo; Nakai, Yuji; Ishijima, Tomoko; Abe, Keiko; Yajima, Nobuhiro

    2013-11-14

    Lactic acid bacteria confer a variety of health benefits. Here, we investigate the mechanisms by which Lactobacillus brevis KB290 (KB290) enhances cell-mediated cytotoxic activity. Female BALB/c mice aged 9 weeks were fed a diet containing KB290 (3 × 10(9) colony-forming units/g) or starch for 1 d. The resulting cytotoxic activity of splenocytes against YAC-1 cells was measured using flow cytometry and analysed for gene expression using DNA microarray technology. KB290 enhanced the cell-mediated cytotoxic activity of splenocytes. DNA microarray analysis identified 327 up-regulated and 347 down-regulated genes that characterised the KB290 diet group. The up-regulated genes were significantly enriched in Gene Ontology terms related to immunity, and, especially, a positive regulation of T-cell-mediated cytotoxicity existed among these terms. Almost all the genes included in the term encoded major histocompatibility complex (MHC) class I molecules involved in the presentation of antigen to CD8(+) cytotoxic T cells. Marco and Signr1 specific to marginal zone macrophages (MZM), antigen-presenting cells, were also up-regulated. Flow cytometric analysis confirmed that the proportion of MZM was significantly increased by KB290 ingestion. Additionally, the over-represented Kyoto Encyclopedia of Genes and Genomes pathways among the up-regulated genes were those for natural killer (NK) cell-mediated cytotoxicity and antigen processing and presentation. The results for the selected genes associated with NK cells and CD8(+) cytotoxic T cells were confirmed by quantitative RT-PCR. These results suggest that enhanced cytotoxic activity could be caused by the activation of NK cells and/or of CD8(+) cytotoxic T cells stimulated via MHC class I presentation.

  9. Doxycycline potentiates antitumor effect of cyclophosphamide in mice

    SciTech Connect

    Chhipa, Rishi Raj; Singh, Sandeep; Surve, Sachin V.; Vijayakumar, Maleppillil Vavachan; Bhat, Manoj Kumar . E-mail: manojkbhat@nccs.res.in

    2005-02-01

    Cyclophosphamide (CPA) is a widely used chemotherapeutic drug in neoplasias. It is a DNA and protein alkylating agent that has a broad spectrum of activity against variety of neoplasms including breast cancer. The therapeutic effectiveness of CPA is limited by the high-dose hematopoietic, renal, and cardiac toxicity that accompanies the systemic distribution of liver-derived activated drug metabolites. The present study examines the potential of combining well-tolerated antibiotic doxycycline (DOX) with CPA and understanding the mechanism of cell killing. Interestingly, we found that DOX significantly enhances the tumor regression activity of CPA on xenograft mice model bearing MCF-7 cells. DOX also potentiates MCF-7 cell killing by CPA in vitro. In presence of DOX (3 {mu}g/ml), the IC{sub 50} value of CPA decreased significantly from 10 to 2.5 mM. Additional analyses indicate that the tumor suppressor p53 and p53-regulated proapoptotic Bax were upregulated in vivo and in vitro following CPA treatment in combination with DOX, suggesting that upregulation of p53 may contribute to the enhancement of antitumor effect of CPA by DOX. Furthermore, downregulation of antiapoptotic Bcl-2 was observed in animals treated with CPA and CPA plus DOX when compared to untreated or DOX-treated groups. Our results raise the possibility that this combination chemotherapeutic regimen may lead to additional improvements in treatment of breast cancer.

  10. Immunological and antitumor effects of coumarin and some derivatives.

    PubMed

    Rosskopf, F; Kraus, J; Franz, G

    1992-02-01

    Coumarin and its 4-OH and 7-OH derivatives, as well as o-, m- and p-coumaric acid were tested against P-815 and P-388 tumor cells in vitro. In addition, the compounds were investigated in various in vitro immunological test systems and genuine coumarin was tested furthermore against the Sarcoma-180 in CD1 mice. In vivo, coumarin showed only a moderate antitumor effect against the allogeneic Sarcoma-180 at concentrations of 10 and 40 mg/kg, with inhibition rates of 49 and 60%, respectively. However, both concentrations were markedly toxic. In vitro all compounds were more or less cytotoxic against P-815 and P-388 tumor cell lines starting at a concentration of 100 micrograms/ml. At subtoxic concentrations (less than or equal to 10 micrograms/ml) the samples showed no mitogenic activity against murine spleen lymphocytes and PHA costimulated human peripheral blood lymphocytes. Furthermore, with the coumarin derivatives neither cytotoxic macrophages could be induced against P-815 tumor cells nor an increased release of Il-2 and TNF-alpha could be observed. Only 7-OH coumarin, in concentrations of 2 and 20 micrograms/ml, caused a strong increase in phagocytosis of 124 and 84% in both, human peripheral blood granulocytes and murine peritoneal macrophages, respectively.

  11. A New Ex Vivo Method for Effective Expansion and Activation of Human Natural Killer Cells for Anti-Tumor Immunotherapy.

    PubMed

    Yang, Hui; Tang, Ruihua; Li, Jing; Liu, Yaxiong; Ye, Linjie; Shao, Dongyan; Jin, Mingliang; Huang, Qingsheng; Shi, Junling

    2015-12-01

    Preserving the activities of natural killer (NK) cells in human peripheral blood mononuclear cells (PBMCs) after ex vivo expansion and activation is critical for NK cell-based therapy. Collected from human PBMCs, the NK cells were expanded and activated. The expressions of surface receptors, cytotoxicity against tumor cells, and antibody-dependent cell-mediated cytotoxicity (ADCC) of the NK cells before and after expansion and activation were, respectively, compared. After expansion, the ADCC activity of healthy human NK cells was improved by 32 %, and the cytotoxicity against four types of tumor cells was increased by 19, 29, 26, and 28 %, respectively. The positive expression rates for the activating receptors NKG2D, CD94, NKp46, NKp30, and NKp44 of healthy human NK cells expanded ex vivo were increased by 60, 40, 20, 40, and 63 %, respectively, whereas those for the inhibitory receptors CD158b, NKB1, and NKAT showed no significant changes. The addition of an immunologically active peptide, "TKD," during cell expansion further increased NK cytotoxicity by approximately 10 %. The expanded and activated NK cells from cancer patients achieved average purity which was greater than 90 %, and the cytotoxicity against K562 cells was increased by more than 17 %. Compared with resting NK cells, NK cells both from healthy volunteers and cancer patients expanded and activated ex vivo using our method were significantly more active and demonstrated significantly increased anti-tumor activity. This method could be therefore used as a new and effective approach to meet requirements for anti-tumor immunotherapy.

  12. Amplexicaule A exerts anti-tumor effects by inducing apoptosis in human breast cancer

    PubMed Central

    Shu, Guangwen; Wan, Dingrong; He, Feng; Loaec, Morgann; Ding, Yali; Li, Jun; Dovat, Sinisa; Yang, Gaungzhong; Song, Chunhua

    2016-01-01

    Chemotherapy is the main treatment for patients with breast cancer metastases, but natural alternatives have been receiving attention for their potential as novel anti-tumor reagents. Amplexicaule A (APA) is a flavonoid glucoside isolated from rhizomes of Polygonum amplexicaule D. Don var. sinense Forb (PADF). We found that APA has anti-tumor effects in a breast cancer xenograft mouse model and induces apoptosis in breast cancer cell lines. APA increased levels of cleaved caspase-3,-8,-9 and PARP, which resulted from suppression of MCL-1 and BCL-2 expression in the cells. APA also inactivated the Akt/mTOR pathway in breast cancer cells. Thus, APA exerts a strong anti-tumor effect on breast cancer cells, most likely through induction of apoptosis. Our study is the first to identify this novel anti-tumor compound and provides a new strategy for isolation and separation of single compounds from herbs. PMID:26943775

  13. The antitumor effect of locoregional magnetic cobalt ferrite in dog mammary adenocarcinoma

    NASA Astrophysics Data System (ADS)

    Şincai, Mariana; Gângǎ, Diana; Bica, Doina; Vékás, Ladislau

    2001-01-01

    The endocytosis of nanosized magnetic particles by tumor cells led to numerous tests to establish the use of this phenomenon in antitumor therapy. The direct antitumor effect of a biocompatible cobalt-ferrite-based magnetic fluid directly inoculated in bitch mammary tumors was studied. A direct correlation between tumor cell lysis and cobalt ferrite was established in tumors. Massive endocytosis of magnetic particles was observed 1 h after the contact of magnetic fluid with tumor cells.

  14. Effect of levan's branching structure on antitumor activity.

    PubMed

    Yoon, Eun Ju; Yoo, Sang-Ho; Cha, Jaeho; Gyu Lee, Hyeon

    2004-06-01

    Levan produced from Microbacterium laevaniformans KCTC 9732 (M-levan) was isolated and treated with an inulinase to modify its branching structure. The chemical structures of levans were characterized, and the modified levans were applied on animal tumor cells to evaluate their antitumor activity. The GC-MS analysis indicated that beta-(2,1)-linked branches of M-levan were specifically hydrolyzed. As the ratio of applied inulinase to levan increased, the branching degree decreased proportionally. Sequential degrees of branching were obtained from 12.3 to 4.2%. Strong levan-induced inhibition of cell growth was detected on SNU-1 and HepG2 tumor cell lines. As the branching degree of M-levan reduced, antitumor activity on SNU-1 linearly decreased (r2=0.96). In HepG2, the antitumor activity rapidly dropped when the branching reached up to 9.3%, then slightly increased as the branching degree of M-levan further decreased. These results suggested that the branch structure would play a crucial role in levan's antitumor activity.

  15. Antitumor effects of hyaluronan inhibition in desmoid tumors.

    PubMed

    Briggs, Alexandra; Rosenberg, Laura; Buie, Justin D; Rizvi, Hira; Bertagnolli, Monica M; Cho, Nancy L

    2015-02-01

    Desmoid tumors (DTs) are rare, mesenchymal tumors that exhibit features of an abundant wound healing process. Previously, we showed that mesenchymal stem cells (MSCs) are constituents of DTs and may contribute to desmoid tumorigenesis via activities associated with wound healing. Hyaluronan (HA) is a long-charged chain of repeating glucuronate and N-acetylglucosamine disaccharides that is synthesized by HA synthases (HAS) and degraded by hyaluronidases (HYAL). HA is secreted into the extracellular matrix by injured stroma and is important for normal tissue repair and neoplastic progression. Here, we investigated the presence of HA in DTs and the antitumor effects of the HA inhibitor, 4-methylumbelliferone (4-MU), on DT-derived mesenchymal cells. By immunohistochemistry and enzyme-linked immunosorbent assay, we found abundant expression of HA in 29/30 DTs as well as >5-fold increased HA levels in DT-derived cell lines relative to controls. Immunohistochemistry also demonstrated high expression of HAS2 in DTs, and quantitative PCR analysis showed increased HAS2 upregulation in frozen DTs and DT-derived cells. 4-MU treatment of DT-derived cells significantly decreased proliferation as well as HA and HAS2 levels. Fluorescent immunohistochemistry showed that MSCs in DTs coexpressed HA, HAS2, HYAL2, as well as the major HA receptor CD44 and HA coreceptor TLR4. Taken together, our results suggest that paracrine regulation of HA signaling in DTs may contribute to MSC recruitment and tumor proliferation. Future studies investigating the role of HA in tumor-stroma crosstalk and inhibition of HA-MSC interactions as a novel therapeutic target in DTs and other solid tumors are warranted.

  16. Spirulina platensis Lacks Antitumor Effect against Solid Ehrlich Carcinoma in Female Mice.

    PubMed

    Barakat, Waleed; Elshazly, Shimaa M; Mahmoud, Amr A A

    2015-01-01

    Spirulina is a blue-green alga used as a dietary supplement. It has been shown to possess anti-inflammatory, antioxidant, and hepatoprotective properties. This study was designed to evaluate the antitumor effect of spirulina (200 and 800 mg/kg) against a murine model of solid Ehrlich carcinoma compared to a standard chemotherapeutic drug, 5-fluorouracil (20 mg/kg). Untreated mice developed a palpable solid tumor after 13 days. Unlike fluorouracil, spirulina at the investigated two dose levels failed to exert any protective effect. In addition, spirulina did not potentiate the antitumor effect of fluorouracil when they were administered concurrently. Interestingly, their combined administration resulted in a dose-dependent increase in mortality. The present study demonstrates that spirulina lacks antitumor effect against this model of solid Ehrlich carcinoma and increased mortality when combined with fluorouracil. However, the implicated mechanism is still elusive.

  17. Spirulina platensis Lacks Antitumor Effect against Solid Ehrlich Carcinoma in Female Mice

    PubMed Central

    Barakat, Waleed; Elshazly, Shimaa M.; Mahmoud, Amr A. A.

    2015-01-01

    Spirulina is a blue-green alga used as a dietary supplement. It has been shown to possess anti-inflammatory, antioxidant, and hepatoprotective properties. This study was designed to evaluate the antitumor effect of spirulina (200 and 800 mg/kg) against a murine model of solid Ehrlich carcinoma compared to a standard chemotherapeutic drug, 5-fluorouracil (20 mg/kg). Untreated mice developed a palpable solid tumor after 13 days. Unlike fluorouracil, spirulina at the investigated two dose levels failed to exert any protective effect. In addition, spirulina did not potentiate the antitumor effect of fluorouracil when they were administered concurrently. Interestingly, their combined administration resulted in a dose-dependent increase in mortality. The present study demonstrates that spirulina lacks antitumor effect against this model of solid Ehrlich carcinoma and increased mortality when combined with fluorouracil. However, the implicated mechanism is still elusive. PMID:26366170

  18. The Effect of Omega-3 Fatty Acids on Bronchial Hyperresponsiveness, Sputum Eosinophilia, and Mast Cell Mediators in Asthma

    PubMed Central

    Bood, Johan; Alkhabaz, Ahmad; Balgoma, David; Otis, Joceline; Delin, Ingrid; Dahlén, Barbro; Wheelock, Craig E.; Nair, Parameswaran; Dahlén, Sven-Erik; O’Byrne, Paul M.

    2015-01-01

    BACKGROUND: Omega-3 fatty acid supplements have been reported to inhibit exercise-induced bronchoconstriction (EIB). It has not been determined whether omega-3 supplements inhibit airway sensitivity to inhaled mannitol, a test for bronchial hyperresponsiveness (BHR) and model for EIB in people with mild to moderate asthma. METHODS: In a double-blind, crossover trial, subjects with asthma who had BHR to inhaled mannitol (n = 23; 14 men; mean age, 28 years; one-half taking regular inhaled corticosteroids) were randomized to omega-3 supplements (4.0 g/d eicosapentaenoic acid and 2.0 g/d docosahexaenoic acid) or matching placebo for 3 weeks separated by a 3-week washout. The primary outcome was the provoking dose of mannitol (mg) to cause a 15% fall in FEV1 (PD15). Secondary outcomes were sputum eosinophil count, spirometry, Asthma Control Questionnaire (ACQ) score, serum triacylglyceride level, and lipid mediator profile in urine and serum. RESULTS: PD15 (geometric mean, 95% CI) to mannitol following supplementation with omega-3s (78 mg, 51-119 mg) was not different from placebo (88 mg, 56-139 mg, P = .5). There were no changes in sputum eosinophils (mean ± SD) in a subgroup of 11 subjects (omega-3, 8.4% ± 8.2%; placebo, 7.8% ± 11.8%; P = .9). At the end of each treatment period, there were no differences in FEV1 % predicted (omega-3, 85% ± 13%; placebo, 84% ± 11%; P = .9) or ACQ score (omega-3, 1.1% ± 0.5%; placebo, 1.1% ± 0.5%; P = .9) (n = 23). Omega-3s caused significant lowering of blood triglyceride levels and expected shifts in serum fatty acids and eicosanoid metabolites, confirming adherence to the supplements; however, no changes were observed in urinary mast cell mediators. CONCLUSIONS: Three weeks of omega-3 supplements does not improve BHR to mannitol, decrease sputum eosinophil counts, or inhibit urinary excretion of mast cell mediators in people with mild to moderate asthma, indicating that dietary omega-3 supplementation is not useful in the

  19. Effects of feed supplementation with glycine chelate and iron sulfate on selected parameters of cell-mediated immune response in broiler chickens.

    PubMed

    Jarosz, Łukasz; Kwiecień, Małgorzata; Marek, Agnieszka; Grądzki, Zbigniew; Winiarska-Mieczan, Anna; Kalinowski, Marcin; Laskowska, Ewa

    2016-08-01

    Because little is known about the impact of chelated (Fe-Gly, Fe-Gly+F) and inorganic (FeSO4, FeSO4+F) iron products on immune response parameters in broiler chickens, the objective of the study was to determine the effects of inorganic and organic forms of iron on selected parameters of the cell-mediated immune response in broiler chickens by assessing the percentage of CD3(+)CD4(+), CD3(+)CD8(+), CD25(+), and MHC Class II lymphocytes, as well as the CD4(+)/CD8(+) ratio and IL-2 concentration in the peripheral blood. The experiments were conducted using 50day-old Ross 308 roosters. The test material was peripheral blood. Flow cytometry was used to determine selected cell-mediated immune response parameters. The results obtained indicate that the use of iron chelates in the diet of broiler chickens may stimulate cellular defense mechanisms. As a result of the experiment an increase was observed in the percentage of Th1, mainly T CD4(+) and T CD8(+). It was also noted that application of chelated iron can increase production of T CD8(+) cytotoxic cells and IL-2, which promotes the body's natural response to developing inflammation. There were no changes in T CD4(+), T CD8(+), T CD25(+) or MHC II lymphocyte subpopulations in the chickens following application of the inorganic form of iron.

  20. Development of a lipopolysaccharide (LPS)-supplemented adjuvant and its effects on cell-mediated and humoral immune responses in male rats immunized against sperm

    PubMed Central

    NOGUCHI, Junko; WATANABE, Shinya; NGUYEN, Thanh Q. Dang; KIKUCHI, Kazuhiro; KANEKO, Hiroyuki

    2016-01-01

    Supplementation with lipopolysaccharide (LPS) from non-pathogenic Escherichia coli was found to enhance the adjuvant effects of a veterinary vaccine adjuvant (ISA 71VG®). Sperm immunization using 71VG as an adjuvant in the immature period induced infertility in 25% of male rats, whereas this increased to 62.5% after immunization with 71VG + LPS or Freund′s complete adjuvant (FCA). Mean testicular weight of non-sterile males in the 71VG + LPS group was significantly lower than that in the 71VG or FCA group. Histological examination of testicular tissue from sterile males demonstrated severe impairment of spermatogenesis due to experimental autoimmune orchitis, a cell-mediated autoimmune condition. The serum anti-sperm titer was elevated in the three sperm-immunized groups relative to male rats treated with adjuvant alone, but the titer was higher in the 71VG + LPS and FCA groups than in the 71VG group. We consider that this LPS-supplemented adjuvant stimulates both humoral and cell-mediated immune responses to an extent comparable to FCA. PMID:27890874

  1. Antitumor effects of traditional Chinese medicine targeting the cellular apoptotic pathway

    PubMed Central

    Xu, Huanli; Zhao, Xin; Liu, Xiaohui; Xu, Pingxiang; Zhang, Keming; Lin, Xiukun

    2015-01-01

    Defects in apoptosis are common phenomena in many types of cancer and are also a critical step in tumorigenesis. Targeting the apoptotic pathway has been considered an intriguing strategy for cancer therapy. Traditional Chinese medicine (TCM) has been used in the People’s Republic of China for thousands of years, and many of the medicines have been confirmed to be effective in the treatment of a number of tumors. With increasing cancer rates worldwide, the antitumor effects of TCMs have attracted more and more attention globally. Many of the TCMs have been shown to have antitumor activity through multiple targets, and apoptosis pathway-related targets have been extensively studied and defined to be promising. This review focuses on several antitumor TCMs, especially those with clinical efficacy, based on their effects on the apoptotic signaling pathway. The problems with and prospects of development of TCMs as anticancer agents are also presented. PMID:26056434

  2. Effect of cadmium exposure on primary tumor growth and cell-mediated cytotoxicity in mice bearing MSB sarcomas.

    PubMed

    Kerkvliet, N I; Koller, L D; Baecher, L G; Brauner, J A

    1979-08-01

    In vivo MSB tumor growth and cell-mediated cytotoxicity (CMC) to MSB tumor cells in vitro were studied in male C57BL/6 mice exposed to 0, 3, 30, or 300 ppm Cd as CdCl2 in their drinking water for 21 weeks prior to and during tumor growth. CMC was assessed on days 5, 12, and 19 post injection with the use of both a 51Cr release assay and a 51Cr post-label assay. Cd exposure significantly inhibited the growth of MSB tumors in vivo and enhanced the levels of CMC in the tumor-bearing hosts. Peak levels of CMC on day 12 post tumor injection were significantly increased in Cd-exposed animals. However, whereas the inhibition of tumor growth was directly dependent on the dose of Cd, the enhancement of CMC was inversely related to dosage. These data suggested that other mechanisms in addition to increased CMC were involved in tumor growth inhibition. Possible factors such as direct inhibition of tumor growth by Cd and decreased serum blocking levels in Cd-exposed animals are discussed.

  3. Bystander cytotoxicity in human medullary thyroid carcinoma cells mediated by fusion yeast cytosine deaminase and 5-fluorocytosine.

    PubMed

    Kucerova, Lucia; Matuskova, Miroslava; Hlubinova, Kristina; Bohovic, Roman; Feketeova, Lucia; Janega, Pavol; Babal, Pavel; Poturnajova, Martina

    2011-12-01

    In our work, we have evaluated efficiency of gene-directed enzyme/prodrug therapy (GDEPT) based on combination of fusion yeast cytosine deaminase (yCD) and 5-fluorocytosine (5FC) on model human medullary thyroid carcinoma (MTC) cell line TT. We determined the efficiency of this GDEPT approach in suicide and bystander cytotoxicity induction. We have shown significant bystander effect in vitro and 5FC administration resulted in potent antitumor effect in vivo. Furthermore, we have unraveled high efficiency of cell-mediated GDEPT, when human mesenchymal stromal cells (MSC) were used as delivery vehicles in direct cocultures in vitro. Nevertheless, effector MSC exhibited inhibitory effect on TT cell proliferation and abrogated TT xenotransplant growth in vivo. We suggest that yCD/5FC combination represents another experimental treatment modality to be tested in MTC and our data further support the exploration of MSC antitumor potential for future use in metastatic MTC therapy.

  4. Sex-Specific Effects of High Yolk Androgen Levels on Constitutive and Cell-Mediated Immune Responses in Nestlings of an Altricial Passerine.

    PubMed

    Muriel, Jaime; Pérez-Rodríguez, Lorenzo; Ortiz-Santaliestra, Manuel E; Puerta, Marisa; Gil, Diego

    Avian embryos are exposed to yolk androgens that are incorporated into the egg by the ovulating female. These steroids can affect several aspects of embryo development, often resulting in increases in overall size or the speed of growth of different traits. However, several studies suggest that they also entail immune costs to the offspring. In this study, we explored whether variation in yolk androgen concentration affected several measures of the constitutive and cell-mediated immune axes in the spotless starling (Sturnus unicolor). Using a within-brood design, we injected different doses of androgens (testosterone and androstenedione) into the eggs. Our study showed that experimentally increased yolk androgens led to sex-specific immunosuppression in both the innate and adaptive axes of the immune system. Both cell-mediated immune response (CMI) and lysozyme activity decreased with increasing androgen levels injected into the egg in the case of male nestlings, whereas there were no effects on females. The effects that we found were always linear: no quadratic or threshold patterns were detected. We found no effects of the experimental treatment in hemolysis or agglutination capacity, but these measures were negatively correlated with CMI, suggesting negative correlation among different branches of the immune system. Blood (trypanosomes and hemosporidians) and intestinal (coccidia) parasites were not affected by the experimental increase of yolk androgen levels. Our results show that in our study species yolk androgens induce immunosuppression in some axes of the male nestling immune system. Further studies should analyze the proximate causes for these contrasting effects in different axes of the immune system and the reason for the differential impact on males and females.

  5. Opposing effects on mitochondrial membrane potential by malonate and levamisole, whose effect on cell-mediated mineralization is antagonistic.

    PubMed

    Klein, B Y; Gal, I; Libergal, M; Ben-Bassat, H

    1996-01-01

    The act of chondrocyte preparation for primary, enchondral, mineralization is associated with a decline in mitochondrial respiration toward the end of the proliferative zone and the hypertrophic zone in the growth plate. Dexamethasone (Dex)-stimulated cultures of rat marrow stroma constitute a differentiation model simulating, in its energy metabolism, chondrocyte mineralization. In this model, early inhibition of succinate dehydrogenase (SDH) enriches the culture with mineralizing cells, whereas levamisole inhibits mineralization. Dex also increases mitochondrial membrane potential in stromal cells, especially on days 7-8 of stimulation. In the present study, suicide inhibition of SDH, by nitropropionic acid (NPA), in Dex-stimulated cells showed a dose-dependent increase in day 21 mineralization; the maximal effect was induced on days 2-4 of stimulation. Mineralization under 2-day-long exposure to NPA showed a similar trend to the previously studied effect of continuous exposure to malonate applied between days 3-11. Unlike malonate, the effect of NPA required its presence in the cultures for only 2 days and resulted in higher mineralization than that seen under 8 days of malonate. NPA delineated a period, days 2/4 to 7/9, in which inhibition of succinate oxidation is necessary to augment mineralization. During this period, NPA also exhibited OPC selection capacity. Early application of levamisole, under conditions previously shown to decrease day 21 mineralization, maintained mitochondrial membrane potential at the beginning of Dex stimulation but decreased or had little effect on it during days 5-10. By contrast, malonate previously found to increase day 21 mineralization decreased the membrane potential at the beginning of Dex stimulation but increased it later on day 7, or during days 5-10. These results indicate that during osteoprogenitor differentiation, before the mineralization stage, a surge in mitochondrial inner membrane potential during late matrix

  6. Intracellular haemolytic agents of Heterocapsa circularisquama exhibit toxic effects on H. circularisquama cells themselves and suppress both cell-mediated haemolytic activity and toxicity to rotifers (Brachionus plicatilis).

    PubMed

    Nishiguchi, Tomoki; Cho, Kichul; Yasutomi, Masumi; Ueno, Mikinori; Yamaguchi, Kenichi; Basti, Leila; Yamasaki, Yasuhiro; Takeshita, Satoshi; Kim, Daekyung; Oda, Tatsuya

    2016-10-01

    A harmful dinoflagellate, Heterocapsa circularisquama, is highly toxic to shellfish and the zooplankton rotifer Brachionus plicatilis. A previous study found that H. circularisquama has both light-dependent and -independent haemolytic agents, which might be responsible for its toxicity. Detailed analysis of the haemolytic activity of H. circularisquama suggested that light-independent haemolytic activity was mediated mainly through intact cells, whereas light-dependent haemolytic activity was mediated by intracellular agents which can be discharged from ruptured cells. Because H. circularisquama showed similar toxicity to rotifers regardless of the light conditions, and because ultrasonic ruptured H. circularisquama cells showed no significant toxicity to rotifers, it was suggested that live cell-mediated light-independent haemolytic activity is a major factor responsible for the observed toxicity to rotifers. Interestingly, the ultrasonic-ruptured cells of H. circularisquama suppressed their own lethal effect on the rotifers. Analysis of samples of the cell contents (supernatant) and cell fragments (precipitate) prepared from the ruptured H. circularisquama cells indicated that the cell contents contain inhibitors for the light-independent cell-mediated haemolytic activity, toxins affecting H. circularisquama cells themselves, as well as light-dependent haemolytic agents. Ethanol extract prepared from H. circularisquama, which is supposed to contain a porphyrin derivative that displays photosensitising haemolytic activity, showed potent toxicity to Chattonella marina, Chattonella antiqua, and Karenia mikimotoi, as well as to H. circularisquama at the concentration range at which no significant toxicity to rotifers was observed. Analysis on a column of Sephadex LH-20 revealed that light-dependent haemolytic activity and inhibitory activity on cell-mediated light-independent haemolytic activity existed in two separate fractions (f-2 and f-3), suggesting that both

  7. Effect of linalool as a component of Humulus lupulus on doxorubicin-induced antitumor activity.

    PubMed

    Miyashita, Michiko; Sadzuka, Yasuyuki

    2013-03-01

    As malignant neoplasm is a major public health problem, there is a need for the development of a novel modulator that enhances antitumor activity and reduces adverse reactions to antitumor agents. In this study, the effects of some volatile oil components in Humulus lupulus on doxorubicin (DOX) permeability in tumor cells and DOX-induced antitumor activity were examined. In vitro, DOX levels in tumor cells by combined linalool as its component significantly increased in the DOX influx system, and the increased effect by linalool on DOX cytotoxicity was shown. In vivo, the combination of DOX with linalool significantly decreased tumor weight compared with that of DOX alone treated group. The promotion of DOX influx level by combined linalool did not depend on energy, whereas it was suppressed by the absence of Na(+). This promoting effect was suppressed by the presence of S-(4-nitrobenzyl)-6-thioinosine and inhibited dependently on phlorizin concentration. It is considered that linalool promoted DOX influx in tumor cells because of its action on DOX transport through concentrative Na(+)-dependent nucleoside transporter 3, which increased DOX concentration in tumor cells and thus enhanced the antitumor activity of DOX. Therefore, linalool as a food component is anticipated to be an effective DOX modulator.

  8. Preclinical trial of the antitumoral therapeutic effectiveness of some natural polyphenolic biopreparations.

    PubMed

    Rotinberg, P; Kelemen, S; Gramescu, M; Rotinberg, H; Nuta, V

    2000-01-01

    We have assessed the antitumoral action of the POLYAS I and POLYAS II vegetal polyphenolic biopreparations--separated and purified from Asclepias syriaca leaves - in rats with various experimental tumoral lines. We studied the therapeutic effect of different doses on the tumor generation process and compared it with the experimental oncostatic action of several standard chemotherapeutic drugs of clinical use (thiotepa, methotrexate, melphalan and cyclophosphamide). In our experimental treatment with the bioactive polyphenolic agents, we have used various doses, both higher and lower than the dose that had conditioned the expression of their antitumoral action upon Guerin T-8 lymphotropic epithelioma and upon Walker 256 carcinosarcoma. We found the antineoplastic effectiveness of those aromatic biopreparations from phytomass to be dose-dependent. We compared the evaluation indices of the antitumoral pharmacodynamic effect we obtained in the treatment with the POLYAS biopreparations with those of reference cytostatic agents. The antitumoral potential of the new natural biopreparations is higher than, equal or close to that of the standard oncochemotherapeutic agents. Antitumoral effectiveness can be improved by an experimental manipulation of the therapeutic doses--which proves the existence of a dose-response relationship. POLYAS I and POLYAS II polyphenolic biopreparations are compatible in point of effectiveness with the standard cytostatic agents, a fact that we considered relevant for the characterization of the POLYAS I and POLYAS II vegetal extracts as potential antineoplastic agents. The quantitative preclinical evaluation of the specific pharmacodynamic effect will be complemented by the investigation of the new polyphenolic biopreparations therapeutic effectiveness in tumors with various degrees of development.

  9. Pegfilgrastim Enhances the Antitumor Effect of Therapeutic Monoclonal Antibodies.

    PubMed

    Cornet, Sébastien; Mathé, Doriane; Chettab, Kamel; Evesque, Anne; Matera, Eva-Laure; Trédan, Olivier; Dumontet, Charles

    2016-06-01

    Therapeutic mAbs exert antitumor activity through various mechanisms, including apoptotic signalization, complement-dependent cytotoxicity, and antibody-dependent cellular cytotoxicity (ADCC) or phagocytosis (ADCP). G-CSF and GM-CSF have been reported to increase the activity of antibodies in preclinical models and in clinical trials. To determine the potential role of pegfilgrastim as an enhancer of anticancer antibodies, we performed a comparative study of filgrastim and pegfilgrastim. We found that pegfilgrastim was significantly more potent than filgrastim in murine xenograft models treated with mAbs. This was observed with rituximab in CD20(+) models and with trastuzumab in HER2(+) models. Stimulation with pegfilgrastim was associated with significant enhancement of leukocyte content in spleen as well as mobilization of activated monocytes/granulocytes from the spleen to the tumor bed. These results suggest that pegfilgrastim could constitute a potent adjuvant for immunotherapy with mAbs possessing ADCC/ADCP properties. Mol Cancer Ther; 15(6); 1238-47. ©2016 AACR.

  10. Targeting Gene-Viro-Therapy with AFP driving Apoptin gene shows potent antitumor effect in hepatocarcinoma

    PubMed Central

    2012-01-01

    Background Gene therapy and viral therapy are used for cancer therapy for many years, but the results are less than satisfactory. Our aim was to construct a new recombinant adenovirus which is more efficient to kill hepatocarcinoma cells but more safe to normal cells. Methods By using the Cancer Targeting Gene-Viro-Therapy strategy, Apoptin, a promising cancer therapeutic gene was inserted into the double-regulated oncolytic adenovirus AD55 in which E1A gene was driven by alpha fetoprotein promoter along with a 55 kDa deletion in E1B gene to form AD55-Apoptin. The anti-tumor effects and safety were examined by western blotting, virus yield assay, real time polymerase chain reaction, 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, Hoechst33342 staining, Fluorescence-activated cell sorting, xenograft tumor model, Immunohistochemical assay, liver function analysis and Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling assay. Results The recombinant virus AD55-Apoptin has more significant antitumor effect for hepatocelluar carcinoma cell lines (in vitro) than that of AD55 and even ONYX-015 but no or little impair on normal cell lines. Furthermore, it also shows an obvious in vivo antitumor effect on the Huh-7 liver carcinoma xenograft in nude mice with bigger beginning tumor volume till about 425 mm3 but has no any damage on the function of liver. The induction of apoptosis is involved in AD55-Apoptin induced antitumor effects. Conclusion The AD55-Apoptin can be a potential anti-hepatoma agent with remarkable antitumor efficacy as well as higher safety in cancer targeting gene-viro-therapy system. PMID:22321574

  11. The in vitro sustained release profile and antitumor effect of etoposide-layered double hydroxide nanohybrids

    PubMed Central

    Qin, Lili; Wang, Mei; Zhu, Rongrong; You, Songhui; Zhou, Ping; Wang, Shilong

    2013-01-01

    Magnesium-aluminum layered double hydroxides intercalated with antitumor drug etoposide (VP16) were prepared for the first time using a two-step procedure. The X-ray powder diffraction data suggested the intercalation of VP16 into layers with the increased basal spacing from 0.84–1.18 nm was successful. Then, it was characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, thermogravimetry and differential thermal analysis, and transmission electron microscopy. The prepared nanoparticles, VP16-LDH, showed an average diameter of 62.5 nm with a zeta potential of 20.5 mV. Evaluation of the buffering effect of VP16-LDH indicated that the nanohybrids were ideal for administration of the drugs that treat human stomach irritation. The loading amount of intercalated VP16 was 21.94% and possessed a profile of sustained release. The mechanism of VP16-LDH release in the phosphate buffered saline solution at pH 7.4 is likely controlled by the diffusion of VP16 anions from inside to the surface of LDH particles. The in vitro cytotoxicity and antitumor assays indicated that VP16-LDH hybrids were less toxic to GES-1 cells while exhibiting better antitumor efficacy on MKN45 and SGC-7901 cells. These results imply that VP16-LDH is a potential antitumor drug for a broad range of gastric cancer therapeutic applications. PMID:23737669

  12. Antitumor effect of a polysaccharide isolated from Phellinus pullus as an immunostimulant

    PubMed Central

    YANG, WEIHUA; ZHANG, HENGLAN; JI, MINGYU; PEI, FENGYAN; WANG, YUNSHAN

    2016-01-01

    The antitumor function of fungal polysaccharides is a popular area of interest in the research field due to their high efficiency and low side effects. The main mechanism of fungal polysaccharides is immune enhancement. The polysaccharose (APS-3) was extracted from the fruit body of Phellinus pullus. The proliferation inhibition to mouse sarcoma 180 (S180) tumor cells was studied by the MTT method. Mice models of transplanted S180 tumor were established and treated with APS-3 to verify the antitumor activity in vivo. Natural killer (NK) and lymphokine-activated killer (LAK) cytotoxicities of the mice were evaluated by the lactate dehydrogenase method. APS-3 can significantly inhibit the proliferation of the S180 cells. Cells could be completely inhibited by 1.6 mg/ml APS-3 after 24 h treatment. After 18 days of treatment, the antitumor rate of the high-dose group was 85.47%. Histopathology detection showed that for the APS-3-treated mice, the tumor cells dissolved, and exhibited a large range of structureless necrotic areas. NK and LAK cytotoxicities of the APS-3 treated mice increased by 61.85 and 56.16%, respectively, compared with the normal control mice. APS-3 can be used as an antitumor agent by way of immune enhancement. PMID:26998276

  13. Antitumor effect of D-erythrose in an abdominal metastatic model of colon carcinoma

    PubMed Central

    LIU, LI-LI; YI, TAO; ZHAO, XIA

    2015-01-01

    Traditional chemotherapy drugs against colorectal cancer possess little or no specificity, leading to severe intolerable side-effects. Therefore, it is necessary to develop additional specific therapeutic strategies. It has been suggested that D-erythrose may specifically inhibit the growth of tumor cells. However, the in vivo antitumor effect of D-erythrose against colorectal cancer remains unknown. Thus, the present study investigated the antitumor effect of D-erythrose in an abdominal metastatic model of colon carcinoma. Intraperitoneal (IP) colon carcinoma-bearing BALB/c mice received an IP injection of D-erythrose or normal saline (NS) daily for 15 days. The mice were weighed every three days. The tumor weights and the volume of ascites were evaluated following the treatment. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay was used to assess apoptosis in tumor tissues. The results revealed that D-erythrose significantly reduced the weight of the intraperitoneal tumor by 69.1%, markedly inhibited the development of ascites and increased tumor cell apoptosis, without any observed toxic effects. These observations suggest that D-erythrose possesses antitumor activity against colon cancer. The present study may provide a potentially effective and specific approach for colon cancer treatment. PMID:25621049

  14. Enhanced NK cell adoptive antitumor effects against breast cancer in vitro via blockade of the transforming growth factor-β signaling pathway

    PubMed Central

    Zhao, Yue; Hu, Jinyue; Li, Rongguo; Song, Jian; Kang, Yujuan; Liu, Si; Zhang, Dongwei

    2015-01-01

    Natural killer (NK) cells have great potential for improving cancer immunotherapy. Adoptive NK cell transfer, an adoptive immunotherapy, represents a promising nontoxic anticancer therapy. However, existing data indicate that tumor cells can effectively escape NK cell-mediated apoptosis through immunosuppressive effects in the tumor microenvironment, and the therapeutic activity of adoptive NK cell transfer is not as efficient as anticipated. Transforming growth factor-beta (TGF-β) is a potent immunosuppressant. Genetic and epigenetic events that occur during mammary tumorigenesis circumvent the tumor-suppressing activity of TGF-β, thereby permitting late-stage breast cancer cells to acquire an invasive and metastatic phenotype in response to TGF-β. To block the TGF-β signaling pathway, NK cells were genetically modified with a dominant-negative TGF-β type II receptor by optimizing electroporation using the Amaxa Nucleofector system. These genetically modified NK cells were insensitive to TGF-β and resisted the suppressive effect of TGF-β on MCF-7 breast cancer cells in vitro. Our results demonstrate that blocking the TGF-β signaling pathway to modulate the tumor microenvironment can improve the antitumor activity of adoptive NK cells in vitro, thereby providing a new rationale for the treatment of breast cancer. PMID:26124672

  15. Effect of histamine-receptor blocking on human natural and lectin-dependent cell-mediated cytotoxicity against adherent HEP-2 cells.

    PubMed

    Perl, A; Gonzalez-Cabello, R; Benedek, K; Nékam, K; Láng, I; Gergely, P

    1985-01-01

    The effect of histamine (H) and H1-, H2-receptor blocking agents was studied on natural (NCMC) and lectin-dependent cell-mediated cytotoxicity (LDCC) of peripheral blood lymphocytes (PBL) from eight healthy subjects on HEP-2 adherent human epipharynx carcinoma target cells. Cytotoxicity was measured by detachment from the monolayer of 3H-TdR-prelabelled HEp-2 cells. LDCC was evaluated in a 24 h assay with a Concanavalin A (Con A) dose of 25 micrograms/ml at 50:1 effector-target cell ratio. Under these conditions, but without Con A, considerable NCMC was not elicited by normal lymphocytes. The presence of histamine and the H2-receptor blocker cimetidine resulted in a significant NCMC to HEp-2 cells. On the contrary, histamine and cimetidine reduced LDCC. The H1-receptor blocker clemastine had no significant effect on either NCMC or LDCC to HEp-2 targets. The possible involvement of H2-receptor bearing cells in the regulation of cytotoxicity to HEp-2 cells is suggested.

  16. Lectin of Abelmoschus esculentus (okra) promotes selective antitumor effects in human breast cancer cells.

    PubMed

    Monte, Leonardo G; Santi-Gadelha, Tatiane; Reis, Larissa B; Braganhol, Elizandra; Prietsch, Rafael F; Dellagostin, Odir A; E Lacerda, Rodrigo Rodrigues; Gadelha, Carlos A A; Conceição, Fabricio R; Pinto, Luciano S

    2014-03-01

    The anti-tumor effects of a newly-discovered lectin, isolated from okra, Abelmoschus esculentus (AEL), were investigated in human breast cancer (MCF7) and skin fibroblast (CCD-1059 sk) cells. AEL induced significant cell growth inhibition (63 %) in MCF7 cells. The expression of pro-apoptotic caspase-3, caspase-9, and p21 genes was increased in MCF7 cells treated with AEL, compared to those treated with controls. In addition, AEL treatment increased the Bax/Bcl-2 ratio in MCF7 cells. Flow cytometry also indicated that cell death (72 %) predominantly occurred through apoptosis. Thus, AEL in its native form promotes selective antitumor effects in human breast cancer cells and may represent a potential therapeutic to combat human breast cancer.

  17. Adenovirus with p16 gene exerts antitumor effect on laryngeal carcinoma Hep2 cells.

    PubMed

    Yang, Zhengang; Hu, Jingxia; Li, Dajun; Pan, Xinliang

    2016-08-01

    Laryngeal cancer is an uncommon form of cancer. The tumor suppressor P16, known to be mutated or deleted in various types of human tumor, including laryngeal carcinoma, is involved in the formation and development of laryngeal carcinoma. It has been previously reported that the inactivation or loss of P16 is associated with the acquisition of malignant characteristics. The current study hypothesized that restoring wild‑type P16 activity into P16‑null malignant Hep2 cells may exert an antitumor effect. A recombinant adenovirus carrying the P16 gene (Ad‑P16) was used to infect and express high levels of P16 protein in P16‑null Hep2 cells. Cell proliferation and invasion assays and polymerase chain reaction were performed to evaluate the effects of the P16 gene on cell proliferation and the antitumor effect on Hep2 cells. The results demonstrated that the Hep2 cells infected with Ad‑P16 exhibited significantly reduced cell proliferation, invasion and tumor volume compared with untreated or control adenovirus cells. Furthermore, the expression of laryngeal carcinoma‑associated genes, EGFR, survivin and cyclin D1, were measured in Ad‑P16‑infected cells and were significantly reduced compared with control groups. The results of the current study demonstrate that restoring wild‑type P16 activity into P16-null Hep2 cells exerts an antitumor effect.

  18. Antitumor Effect of Zhihuang Fuzheng Soft Capsules on Tumor-Bearing Mice.

    PubMed

    Bao, Yanyan; Pan, Xin; Jin, Yahong; Gao, Yingjie; Cui, Xiaolan

    2016-01-01

    Chinese medicines (CMs) have been shown to have some advantages in preventing and controlling tumors. In this study, we investigated the antitumor effect of ZFSC by establishing a mouse model of HT-1080, A-549, and HCT-8 tumors. The result showed that tumor volumes of HT-1080 tumor-bearing nude mice in ZFSC low, medium, and high dose groups were lower significantly compared to the model group, and the high dose ZFSC showed the best antitumor effect. Tumor volumes of A-549 tumor-bearing nude mice in ZFSC low, medium, and high dose groups were lower significantly compared to the model group and showed a good dose-response relationship. There was no significant effect on human colon cancer, although inhibition trends disappeared in the bar chart. In order to verify the immunomodulatory effect of ZFSC, ELISA was used to analyze serums IL-2, TNF-α, and IFN in spleens. The results showed that ZFSC could enhance the immune function of tumor-bearing mice. ZFSC reduced IFN-γ and TNF-α content in the serum of HT-1080 tumor-bearing mice and inhibit PD1 and PDL1 and suggested that the antitumor mechanism of ZFSC on human fibrosarcoma could be attributed to inhibition of the PDL1/PD1 pathway.

  19. Characterization and anti-tumor effects of chondroitin sulfate-chitosan nanoparticles delivery system

    NASA Astrophysics Data System (ADS)

    Hu, Chieh-Shen; Tang, Sung-Ling; Chiang, Chiao-Hsi; Hosseinkhani, Hossein; Hong, Po-Da; Yeh, Ming-Kung

    2014-11-01

    We prepared chondroitin sulfate (ChS)-chitosan (CS) nanoparticles (NPs) as a delivery carrier, and doxorubicin (Dox) was used as a model drug. The physicochemical properties and biological activities of the Dox-ChS-CS NPs including the release profile, cell cytotoxicity, cellular internalization, and in vivo anti-tumor effects were evaluated. The ChS-CS NPs and Dox-ChS-CS NPs had a mean size of 262.0 ± 15.0 and 369.4 ± 77.4 nm, and a zeta potential of 30.2 ± 0.9 and 20.6 ± 3.1 mV, respectively. In vitro release tests showed that the 50 % release time for the Dox-ChS-CS NPs was 20 h. Two hepatoma cell models, HepG2 and HuH6, were used for evaluating the cytotoxicity and cell uptake efficiency of the Dox-ChS-CS NPs. A significant difference was observed between doxorubicin solution and the Dox-ChS-CS NPs in the cellular uptake within 60 min ( p < 0.01). For the in vivo human xenograft-nude mouse model, the Dox-ChS-CS NPs were more effective with less body weight loss and anti-tumor growth suppression in comparison with the Dox solution. The prepared Dox-ChS-CS NPs offer a new effective targeting nanoparticle delivery system platform for anti-tumor therapy.

  20. Antitumor Effects of Saffron-Derived Carotenoids in Prostate Cancer Cell Models

    PubMed Central

    Festuccia, Claudio; Mancini, Andrea; Gravina, Giovanni Luca; Scarsella, Luca; Llorens, Silvia; Alonso, Gonzalo L.; Tatone, Carla; Di Cesare, Ernesto; Jannini, Emmanuele A.; Lenzi, Andrea; D'Alessandro, Anna M.; Carmona, Manuel

    2014-01-01

    Crocus sativus L. extracts (saffron) are rich in carotenoids. Preclinical studies have shown that dietary intake of carotenoids has antitumor effects suggesting their potential preventive and/or therapeutic roles. We have recently reported that saffron (SE) and crocin (CR) exhibit anticancer activity by promoting cell cycle arrest in prostate cancer (PCa) cells. It has also been demonstrated that crocetin esters are produced after SE gastrointestinal digestion by CR hydrolysis. The aim of the present report was to investigate if SE, crocetin (CCT), and CR affected in vivo tumor growth of two aggressive PCa cell lines (PC3 and 22rv1) which were xenografted in male nude mice treated by oral gavage with SE, CR, and CCT. We demonstrated that the antitumor effects of CCT were higher when compared to CR and SE and treatments reverted the epithelial-mesenchymal transdifferentiation (EMT) as attested by the significant reduction of N-cadherin and beta-catenin expression and the increased expression of E-cadherin. Additionally, SE, CR, and CCT inhibited PCa cell invasion and migration through the downmodulation of metalloproteinase and urokinase expression/activity suggesting that these agents may affect metastatic processes. Our findings suggest that CR and CCT may be dietary phytochemicals with potential antitumor effects in biologically aggressive PCa cells. PMID:24900952

  1. Targeting Tumor Metabolism to Enhance the Effectiveness of Antitumor Immune Response in the Treatment of Breast Cancer

    DTIC Science & Technology

    2013-11-01

    the effectiveness of antitumor immune response in the treatment of breast cancer PRINCIPAL INVESTIGATOR: Shanmugasundaram Ganapathy-Kanniappan...the effectiveness of antitumor immune response in the treatment of breast cancer 5b. GRANT NUMBER W81XWH-11-1-0343 5c. PROGRAM ELEMENT NUMBER 6...response. Data from the current research investigation demonstrate that human breast cancer cells pre-treated with low, non-toxic dose of the

  2. Antitumor effects of the partially purified polysaccharides from Antrodia camphorata and the mechanism of its action

    SciTech Connect

    Liu, J.-J.; Huang, T.-S.; Hsu, M.-L.; Chen, C.-C.; Lin, W.-S.; Lu, F.-J. . E-mail: fjlu@csmu.edu.tw; Chang, W.-H. . E-mail: whchang@csmu.edu.tw

    2004-12-01

    Antrodia camphorata is a popular folk medicine that has attracted great attention due to its fame for antitumor activity against cancer. However, there is little information available about its action. In the present study, we purified a unique polysaccharide component from A. camphorata mycelia (AC-PS) and found that it has pronounced anti-tumor effects on both in vitro and in vivo model. Our results showed that AC-PS alone did not show any direct cytotoxic effect to human leukemic U937 cells, even at high concentration (200 {mu}g/ml). However, it could inhibit the proliferation of U937 cells via activation of mononuclear cells (MNCs). Treatment of U937 cells with AC-PS-stimulated-MNC-CM could significantly inhibit its proliferation with 55.3% growth inhibition rate. The in vitro antitumor activity was substantiated by the in vivo therapeutical study of AC-PS in sarcoma 180-bearing mice. Intraperitoneal and oral administration of AC-PS, 100 and 200 mg/kg significantly suppressed the tumor growth with the inhibition rate of 69.1% and 58.8%, respectively. In vivo studies also showed that several immunoparameters, such as the spontaneous proliferation of spleen cells, after AC-PS administration, were two-fold higher than in control mice. Furthermore, the cytolytic activity of spleen cells also increased from 9.8 {+-} 1.1% in control mice to 34.2 {+-} 5.5% and 48.2 {+-} 2.5%, after oral and intraperitoneal treatment, respectively. Besides, the mice serum interleukin-12 levels increased significantly by AC-PS treatment. Considering all these results, it is suggested that AC-PS elicit its anti-tumor effect by promoting a Th1-dominant state and killer activities.

  3. Quantitative evaluation of fucose reducing effects in a humanized antibody on Fcγ receptor binding and antibody-dependent cell-mediated cytotoxicity activities

    PubMed Central

    Chung, Shan; Quarmby, Valerie; Gao, Xiaoying; Ying, Yong; Lin, Linda; Reed, Chae; Fong, Chris; Lau, Wendy; Qiu, Zhihua J.; Shen, Amy; Vanderlaan, Martin; Song, An

    2012-01-01

    The presence or absence of core fucose in the Fc region N-linked glycans of antibodies affects their binding affinity toward FcγRIIIa as well as their antibody-dependent cell-mediated cytotoxicity (ADCC) activity. However, the quantitative nature of this structure-function relationship remains unclear. In this study, the in vitro biological activity of an afucosylated anti-CD20 antibody was fully characterized. Further, the effect of fucose reduction on Fc effector functions was quantitatively evaluated using the afucosylated antibody, its “regular” fucosylated counterpart and a series of mixtures containing varying proportions of “regular” and afucosylated materials. Compared with the “regular” fucosylated antibody, the afucosylated antibody demonstrated similar binding interactions with the target antigen (CD20), C1q and FcγRIa, moderate increases in binding to FcγRIIa and IIb, and substantially increased binding to FcγRIIIa. The afucosylated antibodies also showed comparable complement-dependent cytotoxicity activity but markedly increased ADCC activity. Based on EC50 values derived from dose-response curves, our results indicate that the amount of afucosylated glycan in antibody samples correlate with both FcγRIIIa binding activity and ADCC activity in a linear fashion. Furthermore, the extent of ADCC enhancement due to fucose depletion was not affected by the FcγRIIIa genotype of the effector cells. PMID:22531441

  4. Quantitative evaluation of fucose reducing effects in a humanized antibody on Fcγ receptor binding and antibody-dependent cell-mediated cytotoxicity activities.

    PubMed

    Chung, Shan; Quarmby, Valerie; Gao, Xiaoying; Ying, Yong; Lin, Linda; Reed, Chae; Fong, Chris; Lau, Wendy; Qiu, Zhihua J; Shen, Amy; Vanderlaan, Martin; Song, An

    2012-01-01

    The presence or absence of core fucose in the Fc region N-linked glycans of antibodies affects their binding affinity toward FcγRIIIa as well as their antibody-dependent cell-mediated cytotoxicity (ADCC) activity. However, the quantitative nature of this structure-function relationship remains unclear. In this study, the in vitro biological activity of an afucosylated anti-CD20 antibody was fully characterized. Further, the effect of fucose reduction on Fc effector functions was quantitatively evaluated using the afucosylated antibody, its "regular" fucosylated counterpart and a series of mixtures containing varying proportions of "regular" and afucosylated materials. Compared with the "regular" fucosylated antibody, the afucosylated antibody demonstrated similar binding interactions with the target antigen (CD20), C1q and FcγRIa, moderate increases in binding to FcγRIIa and IIb, and substantially increased binding to FcγRIIIa. The afucosylated antibodies also showed comparable complement-dependent cytotoxicity activity but markedly increased ADCC activity. Based on EC 50 values derived from dose-response curves, our results indicate that the amount of afucosylated glycan in antibody samples correlate with both FcγRIIIa binding activity and ADCC activity in a linear fashion. Furthermore, the extent of ADCC enhancement due to fucose depletion was not affected by the FcγRIIIa genotype of the effector cells.

  5. The research progress of antitumorous effectiveness of Stichopus japonicus acid mucopolysaccharide in north of China.

    PubMed

    Lu, Yun; Wang, Bao-Lei

    2009-03-01

    The sea cucumbers growing in the estuary of the Pohai of northern China are called Stichopus japonicus and are the orthodox holothurians in traditional Chinese medicine. There are multiple biological active ingredients in S. japonicus, and S. japonicus acid mucopolysaccharide (SJAMP) is one of the important ingredients. SJAMP has multiple pharmacologic actions, such as antitumor, immunologic regulation, anticoagulated blood, and antivirus. The research on antitumor has been carried out by way of animal experiments aiming at studying internal tumor-inhibiting effect of SJAMP, and the route of administration is usually peritoneal or intragastric. Additionally, sea cucumbers have been widely recognized and applied as medicated food or therapeutic prescriptions during and after the treatment of some tumors.

  6. Immunomodulatory properties of medicinal mushrooms: differential effects of water and ethanol extracts on NK cell-mediated cytotoxicity.

    PubMed

    Lu, Chia-Chen; Hsu, Ya-Jing; Chang, Chih-Jung; Lin, Chuan-Sheng; Martel, Jan; Ojcius, David M; Ko, Yun-Fei; Lai, Hsin-Chih; Young, John D

    2016-10-01

    Medicinal mushrooms have been used for centuries in Asian countries owing to their beneficial effects on health and longevity. Previous studies have reported that a single medicinal mushroom may produce both stimulatory and inhibitory effects on immune cells, depending on conditions, but the factors responsible for this apparent dichotomy remain obscure. We show here that water and ethanol extracts of cultured mycelium from various species (Agaricus blazei Murrill, Antrodia cinnamomea, Ganoderma lucidum and Hirsutella sinensis) produce opposite effects on NK cells. Water extracts enhance NK cell cytotoxic activity against cancer cells, whereas ethanol extracts inhibit cytotoxicity. Water extracts stimulate the expression and production of cytolytic proteins (perforin and granulysin) and NKG2D/NCR cell surface receptors, and activate intracellular signaling kinases (ERK, JNK and p38). In contrast, ethanol extracts inhibit expression of cytolytic and cell surface receptors. Our results suggest that the mode of extraction of medicinal mushrooms may determine the nature of the immunomodulatory effects produced on immune cells, presumably owing to the differential solubility of stimulatory and inhibitory mediators. These findings have important implications for the preparation of medicinal mushrooms to prevent and treat human diseases.

  7. A Systematic Study of the Effect of Different Molecular Weights of Hyaluronic Acid on Mesenchymal Stromal Cell-Mediated Immunomodulation

    PubMed Central

    Gómez-Aristizábal, Alejandro; Kim, Kyung-Phil; Viswanathan, Sowmya

    2016-01-01

    Introduction Osteoarthritis (OA) is associated with chronic inflammation, and mesenchymal stromal cells (MSCs) have been shown to provide pain relief and reparative effects in clinical investigations. MSCs are often delivered with hyaluronic acid (HA), although the combined mechanism of action is not fully understood; we thus investigated the immunomodulatory effects of combining MSCs with different molecular weights (MW) of HA. Methods HAs with MWs of 1.6 MDa (hHA), 150 kDa or 7.5 kDa, were added to MSCs alone or MSC-immune cell co-cultures. Gene expression analyses, flow cytometry and cytokine measurements were assessed to determine the effect of HAs on the MSC interactions with immune cells. Results MSCs in the presence of HAs, in both normal and lymphocyte-conditioned medium, showed negligible changes in gene expression. While addition of hHA resulted in increased proliferation of activated lymphocytes, both in the presence and absence of MSCs, the overall combined effect was a more regulated, homeostatic one; this was supported by higher ratios of secreted IL10/IFNγ and IL10/IL2, in lymphocyte cultures, than with lower MW HAs or no HA, both in the presence and absence of MSCs. In addition, examination of monocyte-derived macrophages showed an increased M2 macrophage frequency (CD14+CD163+CD206+) in the presence of hHA, both with and without MSCs. Conclusions hHA produces a less pro-inflammatory environment than lower MW HAs. Moreover, combining hHA with MSCs has an additive effect on the MSC-mediated immunomodulation, suggestive of a more potent combination treatment modality for OA. PMID:26820314

  8. Anti-tumor effects of peptide analogs targeting neuropeptide hormone receptors on mouse pheochromocytoma cells.

    PubMed

    Ziegler, C G; Ullrich, M; Schally, A V; Bergmann, R; Pietzsch, J; Gebauer, L; Gondek, K; Qin, N; Pacak, K; Ehrhart-Bornstein, M; Eisenhofer, G; Bornstein, S R

    2013-05-22

    Pheochromocytoma is a rare but potentially lethal chromaffin cell tumor with currently no effective treatment. Peptide hormone receptors are frequently overexpressed on endocrine tumor cells and can be specifically targeted by various anti-tumor peptide analogs. The present study carried out on mouse pheochromocytoma cells (MPCs) and a more aggressive mouse tumor tissue-derived (MTT) cell line revealed that these cells are characterized by pronounced expression of the somatostatin receptor 2 (sst2), growth hormone-releasing hormone (GHRH) receptor and the luteinizing hormone-releasing hormone (LHRH) receptor. We further demonstrated significant anti-tumor effects mediated by cytotoxic somatostatin analogs, AN-162 and AN-238, by LHRH antagonist, Cetrorelix, by the cytotoxic LHRH analog, AN-152, and by recently developed GHRH antagonist, MIA-602, on MPC and for AN-152 and MIA-602 on MTT cells. Studies of novel anti-tumor compounds on these mouse cell lines serve as an important basis for mouse models of metastatic pheochromocytoma, which we are currently establishing.

  9. Targeting CD47 and autophagy elicited enhanced antitumor effects in non-small cell lung cancer.

    PubMed

    Zhang, Xuyao; Fan, Jiajun; Wang, Shaofei; Li, Yubin; Wang, Yichen; Li, Song; Luan, Jingyun; Wang, Ziyu; Song, Ping; Chen, Qicheng; Tian, Wenzhi; Ju, Dianwen

    2017-03-28

    CD47-specific antibodies and fusion proteins that block CD47-SIRPα signaling are employed as antitumor agents for several cancers. Here, we investigated the synergistic antitumor effect of simultaneously targeting CD47 and autophagy in NSCLC. SIRPαD1-Fc, a novel CD47-targeting fusion protein, was generated and was found to increase the phagocytic and cytotoxic activities of macrophages against NSCLC cells. During this process, autophagy was markedly triggered, which was characterized by the three main stages of autophagic flux. including formation and accumulation of autophagosomes, fusion of autophagosomes with lysosomes, and degradation of autophagosomes in lysosomes. Meanwhile, reactive oxygen species (ROS) and inactivation of mTOR were shown to be involved in autophagy initiation in SIRPαD1-Fc-treated cells, indicating a probable mechanism for autophagy activation after targeting CD47 by SIRPαD1-Fc. Inhibition of autophagy enhanced macrophage-mediated phagocytosis and cytotoxicity against SIRPαD1-Fc-treated NSCLC cells. In addition, simultaneously targeting both CD47 and autophagy in NSCLC xenograft models elicited enhanced antitumor effects, with recruitment of macrophages, activated caspase 3, and over-production of ROS at the tumor site. Our data elucidated the cytoprotective role of autophagy in CD47-targeted therapy and highlighted the potential approach for NSCLC treatment by simultaneously targeting CD47 and autophagy.

  10. Verification of antitumor effect in vivo using nanosecond pulsed streamer discharge

    NASA Astrophysics Data System (ADS)

    Yonetamari, Kenta; Shirakawa, Yuki; Akiyama, Taketoshi; Mizuno, Kazue; Ono, Ryo

    2015-09-01

    Cancer treatment using plasma has intensively studied these days. In this work, antitumor effect by nanosecond pulsed streamer discharge was investigated. Nanosecond pulsed streamer plasma was used as a plasma source, which can generate stable streamer discharge by using a nanosecond pulsed power supply. The rod electrode of 3 mm diameter is made of copper. Its end is formed into a semispherical shape of 1.5 mm curvature. The electrode is inserted into a quartz tube (inner diameter: 4 mm, thickness: 1 mm) concentrically, so any gas can be introduced. B16F10 cells were selected to perform in vivo antitumor study. These cells were injected under the skin of leg of mice to make cancer tumor. One week later from injections, plasma was applied to the cancer tumor. Mice were randomly assigned into three groups which were one control group and two plasma treatment groups. In the control group, mice were not treated. In the plasma treatment groups, plasma with dry N2 and wet O2 as a working gas were irradiated for 5 consecutive days. Processing time was 10 min and the gap distance between the electrode and tumor was 4 mm. After 5 days plasma treatment, antitumor effect was observed. The result indicates that the streamer discharge has a potential for cancer treatment.

  11. Effects of cultural medium on the formation and antitumor activity of polysaccharides by Cordyceps gunnii.

    PubMed

    Zhu, Zhen-Yuan; Liu, Xiao-Cui; Tang, Ya-Li; Dong, Feng-Ying; Sun, Hui-Qing; Chen, Lu; Zhang, Yong-Min

    2016-10-01

    The effects of culture medium composition (i.e., carbon and nitrogen sources) on the growth of mycelia, molecular weight distribution and antitumor activity of intracellular polysaccharides (IPS) from Cordyceps gunnii were investigated. Sucrose and peptone were proved to be the best carbon and nitrogen sources for mycelia growth and remarkably improved IPS production. When the sucrose concentration was 2.0%, the mycelium yield reached up to 15.94±1.26 g/L, but with lower IPS yield; whereas the sucrose concentration was 4.5%, IPS yield reached to a maximum of 138.78±3.89 mg/100 mL. The effects of different carbon/nitrogen (C/N) ratios with equal amounts of carbon source matter on the mycelia and IPS formation were optimized. It found that the yield of mycelia and IPS were both reached to the highest at a C/N ratio of 10:3. In addition, the IPS had the highest macro molecular polysaccharide content and antitumor activity when sucrose concentration was 3.5% and the C/N ratio was 10:1.5. Thus, there was a positive correlation between molecular weight distribution and antitumor activity of IPS by C. gunnii.

  12. cGAS is essential for the antitumor effect of immune checkpoint blockade

    PubMed Central

    Wang, Hua; Hu, Shuiqing; Chen, Xiang; Shi, Heping; Chen, Chuo; Sun, Lijun; Chen, Zhijian J.

    2017-01-01

    cGMP-AMP (cGAMP) synthase (cGAS) is a cytosolic DNA sensor that activates innate immune responses. cGAS catalyzes the synthesis of cGAMP, which functions as a second messenger that binds and activates the adaptor protein STING to induce type I interferons (IFNs) and other immune modulatory molecules. Here we show that cGAS is indispensable for the antitumor effect of immune checkpoint blockade in mice. Wild-type, but not cGAS-deficient, mice exhibited slower growth of B16 melanomas in response to a PD-L1 antibody treatment. Consistently, intramuscular delivery of cGAMP inhibited melanoma growth and prolonged the survival of the tumor-bearing mice. The combination of cGAMP and PD-L1 antibody exerted stronger antitumor effects than did either treatment alone. cGAMP treatment activated dendritic cells and enhanced cross-presentation of tumor-associated antigens to CD8 T cells. These results indicate that activation of the cGAS pathway is important for intrinsic antitumor immunity and that cGAMP may be used directly for cancer immunotherapy. PMID:28137885

  13. Anti-Tumor Effects From Dendritic Cell-Based Cancer Immunotherapy Using Liposomal Bubbles and Ultrasound

    NASA Astrophysics Data System (ADS)

    Oda, Yusuke; Suzuki, Ryo; Hirata, Keiichi; Nomura, Tetsuya; Utoguchi, Naoki; Maruyama, Kazuo

    2011-09-01

    Dendritic cell (DC)-based cancer immunotherapy has the potential to be a minimally invasive therapy that could prevent cancer metastasis and recurrence. Recently, in order to induce effective anti-tumor immunity, we developed a novel antigen delivery system for DCs by the combination of ultrasound (US) and liposomal bubbles (Bubble Liposomes: BLs) with entrapped perfluoropropane gas. In this study, we investigated the induction of antigen specific immune responses in vivo and the anti-tumor effect caused by immunization of DCs treated with BLs and US. For the immunization of DCs which had delivered antigen, using BLs and US, the mice induced antigen specific cytotoxic T lymphocytes (CTLs) were found to be the main effector cells in DC-based cancer immunotherapy. In addition, immunization with DCs that had been pulsed with antigen using BLs and US completely suppressed tumor growth Therefore, immunization of DCs with this antigen delivery system has promise for the efficient induction of anti-tumor immune responses.

  14. CpG Oligodeoxynucleotide1826 combined with radioresistant cancer cell vaccine confers significant antitumor effects.

    PubMed

    Zhuang, X B; Xing, N; Zhang, Q; Yuan, S J; Chen, W; Qiao, T K

    2015-01-01

    Immunotherapy is a hot issue in cancer research over the years and tumor cell vaccine is one of the increasing number of studies. Although the whole tumor cell vaccine can provide the best source of immunizing antigens, there is still a limitation that most tumors are not naturally immunogenic. CpG Oligodeoxynucleotides (CpG ODNs), synthetic oligonucleotides containing a cytosine-phosphate-guanine(CpG) motif, was shown to enhance immune responses to a wide variety of antigens. In this study, we generated the radioresistant Lewis lung cancer cell by repeated X-ray radiation and inactivated it as a whole tumor cell vaccine to enhance the immunogenicity of tumor cell vaccine. Mice were subcutaneously immunized with this inactivated vaccine combined with CpG ODN1826 and then inoculated with autologous Lewis lung cancer (LLC) to estimate the antitumor efficacy. The results showed that the radioresistant tumor cell vaccine combined with CpG ODN1826 could significantly inhibit tumor growth, increased survival of the mice and with 20% of the mice surviving tumor free in vivo compared with the unimmunized mice bearing LLC tumor. A significant increase of apoptosis was also observed in the tumor prophylactically immunized with vaccine of inactivated radioresistant tumor cell plus CpG ODN1826. The potent antitumor effect correlated with higher secretion levels of tumor necrosis factor-alpha(TNF-α) and lower levels of interleukin-10(IL-10) concentration in serum. Furthermore, the results suggested that the antitumor mechanism was probably depended on the decreased level of programmed death ligand-1(PD-L1) which plays an important role in the negative regulation of immune response by the inhibition of tumor antigen-specific T cell activation. These findings clearly demonstrated that the radioresistant tumor cell vaccine combined with CpG ODN1826 as an appropriate adjuvant could induce effective antitumor immunity in vivo.

  15. Intraoperative intravenous lidocaine exerts a protective effect on cell-mediated immunity in patients undergoing radical hysterectomy.

    PubMed

    Wang, Huan-Liang; Yan, Hong-Dan; Liu, Ya-Yang; Sun, Bao-Zhu; Huang, Rui; Wang, Xiao-Shuang; Lei, Wei-Fu

    2015-11-01

    Surgical procedures cause a decrease in lymphocyte proliferation rate, an increase in apoptosis and shifts the balance of T‑helper (Th)1/Th2 cells towards anti‑cell‑mediated immunity (CMI) Th2 dominance, which is relevant to the immunosuppressive effects of CMI, postoperative septic complications and the formation of tumor metastasis. Previous studies have revealed that lidocaine exhibits antibacterial actions; regulating inflammatory responses, reducing postoperative pain and affecting the duration spent in hospital. Thus, the present study hypothesized that lidocaine may exert a protective effect on the CMI of patients undergoing surgery for the removal of a primary tumor. A total of 30 adult female patients diagnosed with cervical cancer were recruited to the present study and were randomized into two groups. The lidocaine group received an intravenous bolus dose of 1.5 mg/kg lidocaine, followed by continuous infusion at 1.5 mg/kg/h until discharge from the operating room. The control group received the same volume of normal saline. A 10 ml sample of venous blood was drawn, and the lymphocytes were isolated using Ficoll‑paque 1 day prior to surgery, at discharge from the operating room and 48 h post‑surgery. The proliferation rate of the lymphocytes was assessed using a Cell Counting Kit‑8 assay and was found to be higher in the lidocaine group. The early apoptosis of lymphocytes was attenuated following lidocaine treatment at 48 h post‑surgery, as detected using flow cytometry with Annexin V‑fluorescein isothiocyanate/propidium iodide staining. The level of interferon (IFN)‑γ in the serum at 48 h was significantly decreased following surgery in the control group, compared with the pre‑surgical values (3.782 ± 0.282, vs. 4.089 ± 0.339 pg/ml, respectively) and the ratio of IFN‑γ to interleukin‑4 was well preserved in the lidocaine group. In conclusion, the present study demonstrated that the intraoperative systemic administration of

  16. EpCAM is a putative stem marker in retinoblastoma and an effective target for T-cell-mediated immunotherapy

    PubMed Central

    Mitra, Moutushy; Kandalam, Mallikarjuna; Harilal, Anju; Verma, Rama Shenkar; Krishnan, Uma Maheswari; Swaminathan, Sethuraman

    2012-01-01

    Purpose The molecular markers cluster of differentiation (CD)24, CD44, adenosine tri-phosphate (ATP) binding cassette protein G2 (ABCG2), and epithelial cell adhesion molecule (EpCAM) are widely used, individually or in combination, to characterize some types of cancer stem cells. In this study we characterized the EpCAM+ retinoblastoma (RB) cells for their cancer stem-like properties in vitro. Additionally, we targeted RB tumor cells via redirecting T cells using bispecific EpCAM×CD3 antibody. Methods Flow cytometry was used to study the co-expression of EpCAM with putative cancer stem cell markers, such as CD44, CD24, and ABCG2, in RB primary tumors. In vitro methyl thiazol tetrazolium (MTT) assay, invasion assay, and neurosphere formation assay were performed to characterize EpCAM+ cells for their cancer stem/progenitor cell-like properties. We assessed the in vitro efficacy of bispecific EpCAM×CD3 antibody on RB tumor cell proliferation and validated the results by evaluating effector cytokine production in the culture medium with the ELISA method. Results EpCAM was co-expressed with all cancer stem cell markers (CD44, CD24, and ABCG2) in primary RB tumors. EpCAM+ cells showed significantly higher proliferative invasive potential and neurosphere formation in vitro compared to EpCAM– Y79 cells. EpCAM+ cells showed higher β-catenin expression compared to EpCAMˉ cells. EpCAM×CD3 significantly retarded proliferation of RB primary tumor cells. EpCAM×CD3 effectively induced the secretion of effector cytokines, such as interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-10, IL-2, and transforming growth factor (TGF)-β1, and also perforin levels by pre-activated lymphocytes. Conclusions EpCAM might be a novel cancer stem cell marker in RB. EpCAM×CD3 antibody redirecting T cells to attack RB tumor cells may prove effective in RB management. Further preclinical studies are needed to confirm the initial findings of our study. PMID:22328825

  17. CD4+ T cells mediate the protective effect of the recombinant Asp f3-based anti-aspergillosis vaccine.

    PubMed

    Diaz-Arevalo, Diana; Bagramyan, Karine; Hong, Teresa B; Ito, James I; Kalkum, Markus

    2011-06-01

    The mortality and morbidity caused by invasive aspergillosis present a major obstacle to the successful treatment of blood cancers with hematopoietic cell transplants. Patients who receive hematopoietic cell transplants are usually immunosuppressed for extended periods, and infection with the ubiquitous mold Aspergillus fumigatus is responsible for most cases of aspergillosis. Previously, we demonstrated that vaccination with recombinant forms of the A. fumigatus protein Asp f3 protected cortisone acetate-immunosuppressed mice from experimentally induced pulmonary aspergillosis. Here, we investigated the vaccine's protective mechanism and evaluated in particular the roles of antibodies and T cells. After vaccination, Asp f3-specific preinfection IgG titers did not significantly differ between surviving and nonsurviving mice, and passive transfer of anti-Asp f3 antibodies did not protect immunosuppressed recipients from aspergillosis. We experimentally confirmed Asp f3's predicted peroxisomal localization in A. fumigatus hyphae. We found that fungal Asp f3 is inaccessible to antibodies, unless both cell walls and membranes have been permeabilized. Antibody-induced depletion of CD4+ T cells reduced the survival of recombinant Asp f3 (rAsp f3)-vaccinated mice to nonimmune levels, and transplantation of purified CD4+ T cells from rAsp f3-vaccinated mice into nonimmunized recipients transferred antifungal protection. In addition, residues 60 to 79 and 75 to 94 of Asp f3 contain epitopes that induce proliferation of T cells from vaccinated survivors. Vaccine-primed CD4+ T cells are not expected to clear the fungal pathogen directly; however, they may locally activate immunosuppressed phagocytes that elicit the antifungal effect.

  18. Antioxidants Impair Anti-Tumoral Effects of Vorinostat, but Not Anti-Neoplastic Effects of Vorinostat and Caspase-8 Downregulation

    PubMed Central

    Bergadà, Laura; Yeramian, Andree; Sorolla, Annabel

    2014-01-01

    We have recently demonstrated that histone deacetylase inhibitor, Vorinostat, applied as a single therapy or in combination with caspase-8 downregulation exhibits high anti-tumoral activity on endometrial carcinoma cell lines. In the present study, we have assessed the signalling processes underlying anti-tumoral effects of Vorinostat. Increasing evidence suggests that reactive oxygen species are responsible for histone deacetylase inhibitor-induced cell killing. We have found that Vorinostat induces formation of reactive oxygen species and DNA damage. To investigate the role of oxidative stress as anti-neoplastic mechanism, we have evaluated the effects of different antioxidants (Bha, Nac and Tiron) on endometrial carcinoma cell line Ishikawa treated with Vorinostat. We show that Bha, Nac and Tiron markedly inhibited the cytotoxic effects of Vorinostat, increasing cell viability in vitro. We found that all three antioxidants did not inhibited accumulation of acetyl Histone H4, so that antioxidants did not inhibit Vorinostat activity. Finally, we have evaluated the effects of antioxidants on anti-tumoral activity of Vorinostat as monotherapy or in combination with caspase-8 downregulation in vivo. Interestingly, antioxidants blocked the reduction of tumour growth caused by Vorinostat, but they were unable to inhibit anti-tumoral activity of Vorinostat plus caspase-8 inhibition. PMID:24651472

  19. Potentiated antitumor effects of a combination therapy with a farnesyltransferase inhibitor L-744,832 and butyrate in vitro.

    PubMed

    Kopec, Maciej; Strusinska, Katarzyna; Legat, Magdalena; Makowski, Marcin; Jakobisiak, Marek; Golab, Jakub

    2004-05-01

    Farnesyltransferase inhibitors, butyrate and butyric acid derivatives have previously been reported to exert anti-tumor activity in experimental models in vitro and in vivo and have recently gained acceptance as potential anticancer agents. In our study, we examined antitumor effects of a combination of a farnesyltransferase inhibitor L-744,832 and butyrate in vitro against MDA-MB-231 and MIA PaCa-2 human cancer cells. This combination therapy showed synergistic antitumor activity against MDA-MB-231 cells, which was at least in part due to induction of p27KIP1 expression. Both drugs increased intracellular levels of p53 as well but there was no significant difference between the groups treated with single drugs and the group treated with their combination. In MIA PaCa-2 cells, the combination therapy exerted additive antitumor activity. Our results illustrate possible application of the farnesyltransferase inhibitor L-744,832 and butyrate as a combination therapy of cancer.

  20. Effects of Androgen Ablation on Anti-Tumor Immunity

    DTIC Science & Technology

    2005-09-01

    Eradication of established tumors by vaccination with Venezuelan equine encephalitis virus replicon particles delivering human papillomavirus 16 E7...Androgen Ablation (AA) constitutes the most common therapy for the treatment of advanced prostate cancer. While initially effective at reducing tumor burden...most patients recur with androgen insensitive disease. There exists a clear need to augment the clinical efficacy of hormone-based therapies , and

  1. Proton Pump Inhibitors Display Antitumor Effects in Barrett's Adenocarcinoma Cells

    PubMed Central

    Chueca, Eduardo; Apostolova, Nadezda; Esplugues, Juan V.; García-González, María A.; Lanas, Ángel; Piazuelo, Elena

    2016-01-01

    Recent evidence has reported that proton pump inhibitors (PPIs) can exert antineoplastic effects through the disruption of pH homeostasis by inhibiting vacuolar ATPase (H+-VATPase), a proton pump overexpressed in several tumor cells, but this aspect has not been deeply investigated in EAC yet. In the present study, the expression of H+-VATPase was assessed through the metaplasia-dysplasia-adenocarcinoma sequence in Barrett's esophagus (BE) and the antineoplastic effects of PPIs and cellular mechanisms involved were evaluated in vitro. H+-VATPase expression was assessed by immunohistochemistry in paraffined-embedded samples or by immunofluorescence in cultured BE and EAC cell lines. Cells were treated with different concentrations of PPIs and parameters of citotoxicity, oxidative stress, and autophagy were evaluated. H+-VATPase expression was found in all biopsies and cell lines evaluated, showing differences in the location of the pump between the cell lines. Esomeprazole inhibited proliferation and cell invasion and induced apoptosis of EAC cells. Production of reactive oxygen species (ROS) seemed to be involved in the cytotoxic effects observed since the addition of N-acetylcysteine significantly reduced esomeprazole-induced apoptosis in EAC cells. Esomeprazole also reduced intracellular pH of tumor cells, whereas only disturbed the mitochondrial membrane potential in OE33 cells. Esomeprazole induced autophagy in both EAC cells, but also triggered a blockade in autophagic flux in the metastatic cell line. These data provide in vitro evidence supporting the potential use of PPIs as novel antineoplastic drugs for EAC and also shed some light on the mechanisms that trigger PPIs cytotoxic effects, which differ upon the cell line evaluated. PMID:27932981

  2. EXPLORING THE ANTITUMOR EFFECT OF VIRUS IN MALIGNANT GLIOMA

    PubMed Central

    Saha, Dipongkor; Ahmed, Seemin S.; Rabkin, Samuel D.

    2016-01-01

    SUMMARY Malignant gliomas are the most common type of primary malignant brain tumor with no effective treatments. Current conventional therapies (surgical resection, radiation therapy, temozolomide (TMZ), and bevacizumab administration) typically fail to eradicate the tumors resulting in the recurrence of treatment-resistant tumors. Therefore, novel approaches are needed to improve therapeutic outcomes. Oncolytic viruses (OVs) are excellent candidates as a more effective therapeutic strategy for aggressive cancers like malignant gliomas since OVs have a natural preference or have been genetically engineered to selectively replicate in and kill cancer cells. OVs have been used in numerous preclinical studies in malignant glioma, and a large number of clinical trials using OVs have been completed or are underway that have demonstrated safety, as well as provided indications of effective antiglioma activity. In this review, we will focus on those OVs that have been used in clinical trials for the treatment of malignant gliomas (herpes simplex virus, adenovirus, parvovirus, reovirus, poliovirus, Newcastle disease virus, measles virus, and retrovirus) and OVs examined preclinically (vesicular stomatitis virus and myxoma virus), and describe how these agents are being used. PMID:26855472

  3. Preparation, characterization, and evaluation of antitumor effect of Brucea javanica oil cationic nanoemulsions

    PubMed Central

    Liu, Ting-ting; Mu, Li-Qiu; Dai, Wei; Wang, Chuan-bang; Liu, Xin-Yi; Xiang, Da-Xiong

    2016-01-01

    The purpose of this study was to prepare Brucea javanica oil cationic nanoemulsions (BJO-CN) with BJO as drug as well as oil phase and chitosan as cationic inducer, to explore the practical suitability of using cationic nanoemulsions for oral delivery of mixed oil, and to test its bioavailability and antitumor effect. BJO-CN was prepared by chitosan solution stirring method and then characterized physicochemically. The obtained BJO-CN had a spherical morphology with a positive zeta potential of 18.9 mV and an average particle size of 42.36 nm, showing high colloidal stability. The drug loading of BJO-CN was 91.83 mg·mL−1, determined by high-performance liquid chromatography with precolumn derivatization. Pharmacokinetic studies revealed that, compared with BJO emulsion (BJO-E) (the dosage of BJO-CN and BJO-E was equal to 505 mg·kg−1, calculated by oleic acid), BJO-CN exhibited a significant increase in the area under the plasma drug concentration–time curve over the period of 24 hours and relative bioavailability was 1.6-fold. Furthermore, the antitumor effect of BJO-CN in the orthotopic mouse model of lung cancer was evaluated by recording the median survival time and the weight of lung tissue with tumor, hematoxylin and eosin staining, and immunohistochemical technique. Results of anticancer experiments illustrated that, even though the administrated dosage in the BJO-CN group was half of that in the BJO-E group, BJO-CN exhibited similar antitumor effect to BJO-E. Moreover, BJO-CN had good synergistic effect in combination therapy with vinorelbine. These results suggested that cationic nanoemulsions are an effective and promising delivery system to enhance the oral bioavailability and anticancer effect of BJO. PMID:27330293

  4. Anti-tumor effect of bevacizumab on a xenograft model of feline mammary carcinoma

    PubMed Central

    MICHISHITA, Masaki; OHTSUKA, Aya; NAKAHIRA, Rei; TAJIMA, Tsuyoshi; NAKAGAWA, Takayuki; SASAKI, Nobuo; ARAI, Toshiro; TAKAHASHI, Kimimasa

    2015-01-01

    Feline mammary carcinomas are characterized by rapid progression and metastases. Vascular endothelial growth factor (VEGF) is a key regulator of tumor angiogenesis, proliferation and metastasis. The present study aimed to investigate the effects of a single drug therapy of bevacizumab on a xenograft model of feline mammary carcinoma expressing VEGF protein. Bevacizumab treatment suppressed tumor growth by inhibiting angiogenesis and enhancing apoptosis; however, it did not affect the tumor proliferation index. Thus, bevacizumab had anti-tumor effects on a xenograft model, and this may be useful for the treatment of feline mammary carcinoma. PMID:26616000

  5. Antiangiogenic and Antitumor Effects of Src Inhibition in Ovarian Carcinoma

    PubMed Central

    Han, Liz Y.; Landen, Charles N.; Trevino, Jose G.; Halder, Jyotsnabaran; Lin, Yvonne G.; Kamat, Aparna A.; Kim, Tae-Jin; Merritt, William M.; Coleman, Robert L.; Gershenson, David M.; Shakespeare, William C.; Wang, Yihan; Sundaramoorth, Raji; Metcalf, Chester A.; Dalgarno, David C.; Sawyer, Tomi K.; Gallick, Gary E.; Sood, Anil K.

    2011-01-01

    Src, a nonreceptor tyrosine kinase, is a key mediator for multiple signaling pathways that regulate critical cellular functions and is often aberrantly activated in a number of solid tumors, including ovarian carcinoma. The purpose of this study was to determine the role of activated Src inhibition on tumor growth in an orthotopic murine model of ovarian carcinoma. In vitro studies on HeyA8 and SKOV3ip1 cell lines revealed that Src inhibition by the Src-selective inhibitor, AP23846, occurred within 1 hour and responded in a dose-dependent manner. Furthermore, Src inhibition enhanced the cytotoxicity of docetaxel in both chemosensitive and chemoresistant ovarian cancer cell lines, HeyA8 and HeyA8-MDR, respectively. In vivo, Src inhibition by AP23994, an orally bioavailable analogue of AP23846, significantly decreased tumor burden in HeyA8 (P = 0.02), SKOV3ip1 (P = 0.01), as well as HeyA8-MDR (P < 0.03) relative to the untreated controls. However, the greatest effect on tumor reduction was observed in combination therapy with docetaxel (P < 0.001, P = 0.002, and P = 0.01, for the above models, respectively). Proliferating cell nuclear antigen staining showed that Src inhibition alone (P = 0.02) and in combination with docetaxel (P = 0.007) significantly reduced tumor proliferation. In addition, Src inhibition alone and in combination with docetaxel significantly down-regulated tumoral production of vascular endothelial growth factor and interleukin 8, whereas combination therapy decreased the microvessel density (P = 0.02) and significantly affected vascular permeability (P < 0.05). In summary, Src inhibition with AP23994 has potent antiangiogenic effects and significantly reduces tumor burden in preclinical ovarian cancer models. Thus, Src inhibition may be an attractive therapeutic approach for patients with ovarian carcinoma. PMID:16951177

  6. NK Cell–Mediated Antitumor Effects of a Folate-Conjugated Immunoglobulin are Enhanced by Cytokines

    PubMed Central

    Kondadasula, SriVidya; Skinner, Cassandra C.; Mundy-Bosse, Bethany L.; Luedke, Eric; Jones, Natalie B.; Mani, Aruna; Roda, Julie; Karpa, Volodymyr; Li, Hong; Li, Jilong; Elavazhagan, Saranya; La Perle, Krista M.; Schmitt, Alessandra C.; Lu, Yanhui; Zhang, Xiaoli; Pan, Xueliang; Mao, Hsaioyin; Davis, Melanie; Jarjoura, David; Butchar, Jonathan P.; Poi, Ming; Phelps, Mitch; Tridandapani, Susheela; Byrd, John C.; Caligiuri, Michael A.; Lee, Robert J.; Carson, William E.

    2016-01-01

    Optimally effective antitumor therapies would not only activate immune effector cells, but engage them at the tumor. Folate-conjugated to immunoglobulin (F-IgG) could direct innate immune cells with Fc receptors to folate receptor–expressing cancer cells. F-IgG bound to human KB and HeLa cells, as well as murine L1210JF, a folate receptor (FR) overexpressing cancer cell line, as determined by flow cytometry. Recognition of F-IgG by NK cell Fc receptors led to phosphorylation of the ERK transcription factor and increased NK cell expression of CD69. Lysis of KB tumor cells by NK cells increased about 5-fold after treatment with F-IgG, an effect synergistically enhanced by treatment with IL2, IL12, IL15, or IL21 (P < 0.001). F-IgG also enhanced the lysis of chronic lymphocytic leukemia cells by autologous NK cells. NK cells significantly increased production of IFNγ, MIP-1α, and RANTES in response to F-IgG–coated KB target cells in the presence of the NK cell–activating cytokine IL12, and these coculture supernatants induced significant T cell chemotaxis P < 0.001). F-IgG–coated targets also stimulated FcR-mediated monocyte effector functions. Studies in a murine leukemia model confirmed the intratumoral localization and antitumor activity of F-IgG, as well as enhancement of its effects by IL12 (P = 0.05). The antitumor effect of this combination was dependent on NK cells and led to decreased tumor cell proliferation in vivo. Thus, F-IgG can induce an immune response against FR-positive tumor cells that is mediated by NK cells and can be augmented by cytokine therapy. PMID:26865456

  7. Tetramethylpyrazine (TMP) exerts antitumor effects by inducing apoptosis and autophagy in hepatocellular carcinoma.

    PubMed

    Cao, Jiao; Miao, Qing; Miao, Shan; Bi, Linlin; Zhang, Song; Yang, Qian; Zhou, Xuanxuan; Zhang, Meng; Xie, Yanhua; Zhang, Jin; Wang, Siwang

    2015-05-01

    Hepatocellular carcinoma (HCC) is one of the most common types of liver cancers with high recurrence rate and mortality rate. Recent studies have indicated that tetramethylpyrazine (TMP), a purified chemical extracted from Ligusticum wallichii Franchat (ChuanXiong), possessed antitumor effects on HCC, but detailed mechanism remains unclear. Our study aims at investigating the antitumor effect of TMP on HCC and its underlying mechanism. We found that TMP inhibited cell proliferation of HepG2 cells in a dose-dependent way, and xenograft tumor models also indicated that high concentrations of TMP administration inhibited tumor growth. Next, flow cytometric analysis and transmission electron microscope images showed that TMP enhanced cell apoptosis in HepG2 cells, and western blot results showed that TMP promoted cleavage of caspase-3 and PARP in vitro and in vivo. We also found that TMP caused autophagy in HCC in vitro and in vivo. In order to examine the role of autophagy in TMP-induced apoptosis, 3-methyladenine (3-MA) was used to block the action of autophagy. Our data showed TMP-induced autophagy might be a pro-apoptosis process in HCC. Furthermore, the results of anti-oxidative enzymes and oxidation-sensitive fluorescent probe 2, 7-dichlorofluorescein diacetate (DCFH-DA) indicated that TMP induced ROS generation and inhibition of ROS diminished the anticancer function of TMP. In conclusion, our studies provide new insights into the mechanisms underlying the antitumor effect of TMP and suggest that TMP can be a novel therapeutic regimen for HCC.

  8. Manipulation of autophagy by MIR375 generates antitumor effects in liver cancer.

    PubMed

    Chang, Ying; Lin, Jusheng; Tsung, Allan

    2012-12-01

    The exploration into the roles of autophagy in tumorigenesis, either as tumor suppressor or tumor promoter, has led to a great increase in the knowledge of cancer development, progression and treatment. However, there is currently no consensus on how to manipulate autophagy to improve antitumor effects. In this study, we investigated the role of autophagy in established liver cancer cells in response to hypoxia. Hypoxia not only is the most pervasive microenvironmental stress in solid tumors but is also a canonical stimulus for autophagy. The involvement of dysregulated microRNAs in hypoxia-induced autophagy and their therapeutic potential in advanced liver cancer were examined.

  9. Combination antitumor effect with central nervous system depressants on rat ascites hepatomas.

    PubMed

    Koshiura, R; Miyamoto, K; Sanae, F

    1980-02-01

    Combined effect of twenty-one central nervous system depressants with several antitumor agents was studied in the in vitro and in vivo experimental systems, using rat ascites hepatoma call lines, AH13 and AH44, sensitive and insensitive to alkylating agents, respectively. Reserpine remarkably enhanced the cytotoxic effect of 1-(gamma-chloropropyl)-2-chloromethylpiperidine hydrobromide (CAP-2) both on AH13 and AH44 cells. In the in vivo combined experiments, reserpine also synergistically enhanced the life-prolonging effect of CAP-2 on AH13-bearing rats and, although CAP-2 was not potent on the prolongation of life span of AH44-bearing rats and reserpine was also ineffective at the doses examined, the life span of tumor-bearing rats receiving the combined administration was apparently prolonged compared with control groups. Thus, there was a parallelism between in vitro and in vivo experiments. These findings suggested that the antitumor-enhancing effect of reserpine might be due to the direct action on the tumor cells, and a possible mechanism that reserpine inhibited the DNA damage-repairing activity of the cells was contradictory. Other mechanisms are also discussed.

  10. The effect of N-acetylcysteine on the antitumor activity of ifosfamide.

    PubMed

    Chen, Nancy; Hanly, Lauren; Rieder, Michael; Yeger, Herman; Koren, Gideon

    2011-05-01

    Ifosfamide-induced nephrotoxicity is a serious adverse effect in children undergoing chemotherapy. Our previous cell and rodent models have shown that the antioxidant N-acetylcysteine (NAC), used extensively as an antidote for acetaminophen poisoning, protects renal tubular cells from ifosfamide-induced nephrotoxicity at a clinically relevant concentration. For the use of NAC to be clinically relevant in preventing ifosfamide nephrotoxicity, we must ensure there is no effect of NAC on the antitumor activity of ifosfamide. Common pediatric tumors that are sensitive to ifosfamide, human neuroblastoma SK-N-BE(2) and rhabdomyosarcoma RD114-B cells, received either no pretreatment or pretreatment with 400 µmol/L of NAC, followed by concurrent treatment with NAC and either ifosfamide or the active agent ifosfamide mustard. Ifosfamide mustard significantly decreased the growth of both cancer cell lines in a dose-dependent manner (p < 0.001). The different combined treatments of NAC alone, sodium 2-mercaptoethanesulfonate alone, or NAC plus sodium 2-mercaptoethanesulfonate did not significantly interfere with the tumor cytotoxic effect of ifosfamide mustard. These observations suggest that NAC may improve the risk/benefit ratio of ifosfamide by decreasing ifosfamide-induced nephrotoxicity without interfering with its antitumor effect in cancer cells clinically treated with ifosfamide.

  11. Anti-tumor effects of cimetidine on hepatocellular carcinomas in diethylnitrosamine-treated rats.

    PubMed

    Furuta, Koichiro; Sato, Shuichi; Miyake, Tatsuya; Okamoto, Eisuke; Ishine, Junichi; Ishihara, Shunji; Amano, Yuji; Adachi, Kyoichi; Kinoshita, Yoshikazu

    2008-02-01

    Cimetidine is known to have an anti-tumor effect on certain types of malignancies, though on hepatocellular carcinomas (HCCs), its effect remains unclear. We studied the anti-tumor effects of cimetidine on chemically-induced HCCs in rats. Four-week-old male Wistar rats (n=105) were divided into 4 groups. Those in groups A and B were administered diethylnitrosamine (DEN) intraperitoneally at 100 mg/kg body weight every week for 6 weeks, during which rats in group A were given tap water and those in group B received cimetidine (100 mg/kg/day) in their drinking water. Rats in groups C and D were administered saline instead of DEN and given tap water with 100 mg/kg/day of cimetidine, respectively. The animals were sacrificed at 7, 12, 22 and 32 weeks after the first administration of drugs and examined. Liver nodules were observed only in groups A and B, with the number of nodules, maximum diameter of the largest nodule, and liver weight significantly lower in group B. Immunohistochemistry findings showed that glutathione S-transferase placental-positive preneoplastic foci were significantly decreased in group B. Cimetidine treatment decreased the number of proliferating cell nuclear antigen-positive hepatocytes and tended to enhance natural killer (NK) cell activity in splenic lymphocytes. In addition, flow cytometry revealed that the proportion of NK cells among total splenic lymphocytes was not affected by cimetidine treatment. Our results showed that cimetidine has an inhibiting effect on hepatocarcinogenesis.

  12. Anti-tumor effects of metformin on head and neck carcinoma cell lines: A systematic review

    PubMed Central

    Rêgo, Daniela Fortunato; Elias, Silvia Taveira; Amato, AngéLica Amorim; Canto, Graziela De Luca; Guerra, Eliete Neves Silva

    2017-01-01

    Metformin is commonly used for treating type 2 diabetes, and may also reduce cancer risk. Previous studies have demonstrated the association between metformin use and a decreased risk of head and neck cancer. Therefore, the aim of the present systematic review was to summarize the available literature on the in vitro anti-tumor effects of metformin on head and neck squamous cell carcinoma (HNSCC). Research studies were obtained from Cochrane Library, Embase, LILACS, MEDLINE and PubMed databases, without time or language restrictions. Only in vitro studies analyzing the effects of metformin on HNSCC cell lines were included. The authors methodically appraised all the selected studies according to the Grading of Recommendations Assessment, Development and Evaluation method to make a judgment of the evidence quality. Of the 388 identified reports, 11 studies met the inclusion criteria and were used for qualitative analysis. These studies demonstrated that metformin is important in inhibiting cell proliferation, inducing G0/G1 cell cycle arrest and apoptosis, and in regulating proteins involved in carcinogenesis pathways, which corroborates its potential in vitro anti-tumor effects. The present systematic review highlights the biological mechanisms of metformin used alone or together with traditional therapies for cancer. Though very limited, currently available preclinical evidence shows that metformin exerts a potential effect on head and neck carcinoma. PMID:28356929

  13. Cell-Mediated Drugs Delivery

    PubMed Central

    Batrakova, Elena V.; Gendelman, Howard E.; Kabanov, Alexander V.

    2011-01-01

    INTRODUCTION Drug targeting to sites of tissue injury, tumor or infection with limited toxicity is the goal for successful pharmaceutics. Immunocytes (including mononuclear phagocytes (dendritic cells, monocytes and macrophages), neutrophils, and lymphocytes) are highly mobile; they can migrate across impermeable barriers and release their drug cargo at sites of infection or tissue injury. Thus immune cells can be exploited as trojan horses for drug delivery. AREAS COVERED IN THIS REVIEW This paper reviews how immunocytes laden with drugs can cross the blood brain or blood tumor barriers, to facilitate treatments for infectious diseases, injury, cancer, or inflammatory diseases. The promises and perils of cell-mediated drug delivery are reviewed, with examples of how immunocytes can be harnessed to improve therapeutic end points. EXPERT OPINION Using cells as delivery vehicles enables targeted drug transport, and prolonged circulation times, along with reductions in cell and tissue toxicities. Such systems for drug carriage and targeted release represent a novel disease combating strategy being applied to a spectrum of human disorders. The design of nanocarriers for cell-mediated drug delivery may differ from those used for conventional drug delivery systems; nevertheless, engaging different defense mechanisms into drug delivery may open new perspectives for the active delivery of drugs. PMID:21348773

  14. Antitumor effect of pharmacologic ascorbate in the B16 murine melanoma model.

    PubMed

    Serrano, Oscar K; Parrow, Nermi L; Violet, Pierre-Christian; Yang, Jacqueline; Zornjak, Jennifer; Basseville, Agnes; Levine, Mark

    2015-10-01

    Because 5-year survival rates for patients with metastatic melanoma remain below 25%, there is continued need for new therapeutic approaches. For some tumors, pharmacologic ascorbate treatment may have a beneficial antitumor effect and may work synergistically with standard chemotherapeutics. To investigate this possibility in melanoma, we examined the effect of pharmacologic ascorbate on B16-F10 cells. Murine models were employed to compare tumor size following treatment with ascorbate, and the chemotherapeutic agents dacarbazine or valproic acid, alone or in combination with ascorbate. Results indicated that nearly all melanoma cell lines were susceptible to ascorbate-mediated cytotoxicity. Compared to saline controls, pharmacologic ascorbate decreased tumor size in both C57BL/6 (P < 0.0001) and NOD-scid tumor bearing mice (P < 0.0001). Pharmacologic ascorbate was superior or equivalent to dacarbazine as an antitumor agent. Synergy was not apparent when ascorbate was combined with either dacarbazine or valproic acid; the latter combination may have additional toxicities. Pharmacologic ascorbate induced DNA damage in melanoma cells, as evidenced by increased phosphorylation of the histone variant, H2A.X. Differences were not evident in tumor samples from C57BL/6 mice treated with pharmacologic ascorbate compared to tumors from saline-treated controls. Together, these results suggest that pharmacologic ascorbate has a cytotoxic effect against melanoma that is largely independent of lymphocytic immune functions and that continued investigation of pharmacologic ascorbate in cancer treatment is warranted.

  15. Macrophage PPARγ inhibits Gpr132 to mediate the anti-tumor effects of rosiglitazone

    PubMed Central

    Cheng, Wing Yin; Huynh, HoangDinh; Chen, Peiwen; Peña-Llopis, Samuel; Wan, Yihong

    2016-01-01

    Tumor-associated macrophage (TAM) significantly contributes to cancer progression. Human cancer is enhanced by PPARγ loss-of-function mutations, but inhibited by PPARγ agonists such as TZD diabetes drugs including rosiglitazone. However, it remains enigmatic whether and how macrophage contributes to PPARγ tumor-suppressive functions. Here we report that macrophage PPARγ deletion in mice not only exacerbates mammary tumor development but also impairs the anti-tumor effects of rosiglitazone. Mechanistically, we identify Gpr132 as a novel direct PPARγ target in macrophage whose expression is enhanced by PPARγ loss but repressed by PPARγ activation. Functionally, macrophage Gpr132 is pro-inflammatory and pro-tumor. Genetic Gpr132 deletion not only retards inflammation and cancer growth but also abrogates the anti-tumor effects of PPARγ and rosiglitazone. Pharmacological Gpr132 inhibition significantly impedes mammary tumor malignancy. These findings uncover macrophage PPARγ and Gpr132 as critical TAM modulators, new cancer therapeutic targets, and essential mediators of TZD anti-cancer effects. DOI: http://dx.doi.org/10.7554/eLife.18501.001 PMID:27692066

  16. Saffron and natural carotenoids: Biochemical activities and anti-tumor effects.

    PubMed

    Bolhassani, Azam; Khavari, Afshin; Bathaie, S Zahra

    2014-01-01

    Saffron, a spice derived from the flower of Crocus sativus, is rich in carotenoids. Two main natural carotenoids of saffron, crocin and crocetin, are responsible for its color. Preclinical studies have shown that dietary intake of some carotenoids have potent anti-tumor effects both in vitro and in vivo, suggesting their potential preventive and/or therapeutic roles in several tissues. The reports represent that the use of carotenoids without the potential for conversion to vitamin A may provide further protection and avoid toxicity. The mechanisms underlying cancer chemo-preventive activities of carotenoids include modulation of carcinogen metabolism, regulation of cell growth and cell cycle progression, inhibition of cell proliferation, anti-oxidant activity, immune modulation, enhancement of cell differentiation, stimulation of cell-to-cell gap junction communication, apoptosis and retinoid-dependent signaling. Taken together, different hypotheses for the antitumor actions of saffron and its components have been proposed such as a) the inhibitory effect on cellular DNA and RNA synthesis, but not on protein synthesis; b) the inhibitory effect on free radical chain reactions; c) the metabolic conversion of naturally occurring carotenoids to retinoids; d) the interaction of carotenoids with topoisomerase II, an enzyme involved in cellular DNA-protein interaction. Furthermore, the immunomodulatory activity of saffron was studied on driving toward Th1 and Th2 limbs of the immune system. In this mini-review, we briefly describe biochemical and immunological activities and chemo-preventive properties of saffron and natural carotenoids as an anticancer drug.

  17. Quercetin Potentiates Doxorubicin Mediated Antitumor Effects against Liver Cancer through p53/Bcl-xl

    PubMed Central

    Wang, Guanyu; Sharma, Sherven; Dong, Qinghua

    2012-01-01

    Background The dose-dependent toxicities of doxorubicin (DOX) limit its clinical applications, particularly in drug-resistant cancers, such as liver cancer. In this study, we investigated the role of quercetin on the antitumor effects of DOX on liver cancer cells and its ability to provide protection against DOX-mediated liver damage in mice. Methodology and Results The MTT and Annexin V/PI staining assay demonstrated that quercetin selectively sensitized DOX-induced cytotoxicity against liver cancer cells while protecting normal liver cells. The increase in DOX-mediated apoptosis in hepatoma cells by quercetin was p53-dependent and occurred by downregulating Bcl-xl expression. Z-VAD-fmk (caspase inhibitor), pifithrin-α (p53 inhibitor), or overexpressed Bcl-xl decreased the effects of quercetin on DOX-mediated apoptosis. The combined treatment of quercetin and DOX significantly reduced the growth of liver cancer xenografts in mice. Moreover, quercetin decreased the serum levels of alanine aminotransferase and aspartate aminotransferase that were increased in DOX-treated mice. Quercetin also reversed the DOX-induced pathological changes in mice livers. Conclusion and Significance These results indicate that quercetin potentiated the antitumor effects of DOX on liver cancer cells while protecting normal liver cells. Therefore, the development of quercetin may be beneficial in a combined treatment with DOX for increased therapeutic efficacy against liver cancer. PMID:23240061

  18. Antioxidant Activity, Antitumor Effect, and Antiaging Property of Proanthocyanidins Extracted from Kunlun Chrysanthemum Flowers

    PubMed Central

    Jing, Siqun; Zhang, Xiaoming

    2015-01-01

    The objective of the present study was to evaluate the antioxidant activity, antitumor effect, and antiaging property of proanthocyanidins from Kunlun Chrysanthemum flowers (PKCF) grown in Xinjiang. In vitro antioxidant experiments results showed that the total antioxidant activity and the scavenging capacity of hydroxyl radicals (•OH) and 1,1-diphenyl-2-picrylhydrazyl (DPPH•) radicals increased in a concentration-dependent manner and were stronger than those of vitamin C. To investigate the antioxidant activity of PKCF in vivo, we used serum, liver, and kidney from mouse for the measurement of superoxide dismutase (SOD), malondialdehyde (MDA), and total antioxidant capacity (T-AOC). Results indicated that PKCF had antioxidative effect in vivo which significantly improved the activity of SOD and T-AOC and decreased MDA content. To investigate the antitumor activity of PKCF, we used H22 cells, HeLa cells, and Eca-109 cells with Vero cells as control. Inhibition ratio and IC50 values were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay; PKCF showed great inhibitory activity on H22 cells and HeLa cells. We also used fruit flies as a model for analyzing the anti-aging property of PKCF. Results showed that PKCF has antiaging effect on Drosophila. Results of the present study demonstrated that PKCF could be a promising agent that may find applications in health care, medicine, and cosmetics. PMID:25628774

  19. The antitumor effect of bromophenol derivatives in vitro and Leathesia nana extract in vivo

    NASA Astrophysics Data System (ADS)

    Shi, Dayong; Li, Jing; Guo, Shuju; Su, Hua; Fan, Xiao

    2009-05-01

    To investigate the antitumor effect of bromophenol derivatives in vitro and Leathesia nana extract in vivo, six bromophenol derivatives 6-(2,3-dibromo-4,5-dihydroxybenzyl)-2,3-dibromo-4,5-dihydroxy benzyl methyl ether (1), (+)-3-(2,3-dibromo-4,5-dihydroxyphenyl)-4-bromo-5,6-dihydroxy-1,3-dihydroisobenzofuran (2), 3-bromo-4-(2,3-dibromo-4,5-dihydroxybenzyl)-5-methoxymethyl-pyrocatechol (3), 2,2',3,3'-tetrabromo-4,4',5,5'-tetrahydroxy-diphenylmethane (4), bis(2,3-dibromo-4,5-dihydroxybenzyl) ether (5), 2,2',3-tribromo-3',4,4',5-tetrahydroxy-6'-ethyloxymethyldiphenylmethane (6) were isolated from brown alga Leathesia nana, and their cytotoxicity were tested by MTT assays in human cancer cell lines A549, BGC-823, MCF-7, B16-BL6, HT-1080, A2780, Bel7402 and HCT-8. Their inhibitory activity against protein tyrosine kinase (PTK) with over-expression of c-kit was analyzed also by ELISA. The antitumor activity of ethanolic extraction of Leathesia nana (EELN) was evaluated on S180-bearing mice. All compounds showed very potent cytotoxicity against all of the eight cancer cell lines with IC50 below 10 μg/mL. In PTK inhibition study, all bromophenol derivatives showed moderate inhibitory activity and compounds 2, 5 and 6 showed significant bioactivity with the inhibition ratio of 77.5%, 80.1% and 71.4%, respectively. Pharmacological studies reveal that EELN could inhibit the growth of Sarcoma 180 tumor and increase the indices of thymus and spleen to improve the immune system remarkably in vivo. Results indicated that the bromophenol derivatives and EELN can be used as potent antitumor agents for PTK over-expression of c-kit and considered in a new therapeutic strategy for treatment of cancer.

  20. [Antitumor effect of low-intensity extremely high-frequency electromagnetic radiation on a model of solid Ehrlich carcinoma].

    PubMed

    Gapeev, A B; Shved, D M; Mikhaĭlik, E N; Korystov, Iu N; Levitman, M Kh; Shaposhnikova, V V; Sadovnikov, V B; Alekhin, A I; Goncharov, N G; Chemeris, N K

    2009-01-01

    The influence of different exposure regimes of low-intensity extremely high-frequency electromagnetic radiation on the growth rate of solid Ehrlich carcinoma in mice has been studied. It was shown that, at an optimum repetition factor of exposure (20 min daily for five consecutive days after the tumor inoculation), there is a clearly pronounced frequency dependence of the antitumor effect. The analysis of experimental data indicates that the mechanisms of antitumor effects of the radiation may be related to the modification of the immune status of the organism. The results obtained show that extremely high-frequency electromagnetic radiation at a proper selection of exposure regimes can result in distinct and stable antitumor effects.

  1. Non-thermal atmospheric pressure plasma activates lactate in Ringer's solution for anti-tumor effects.

    PubMed

    Tanaka, Hiromasa; Nakamura, Kae; Mizuno, Masaaki; Ishikawa, Kenji; Takeda, Keigo; Kajiyama, Hiroaki; Utsumi, Fumi; Kikkawa, Fumitaka; Hori, Masaru

    2016-11-08

    Non-thermal atmospheric pressure plasma is a novel approach for wound healing, blood coagulation, and cancer therapy. A recent discovery in the field of plasma medicine is that non-thermal atmospheric pressure plasma not only directly but also indirectly affects cells via plasma-treated liquids. This discovery has led to the use of non-thermal atmospheric pressure plasma as a novel chemotherapy. We refer to these plasma-treated liquids as plasma-activated liquids. We chose Ringer's solutions to produce plasma-activated liquids for clinical applications. In vitro and in vivo experiments demonstrated that plasma-activated Ringer's lactate solution has anti-tumor effects, but of the four components in Ringer's lactate solution, only lactate exhibited anti-tumor effects through activation by non-thermal plasma. Nuclear magnetic resonance analyses indicate that plasma irradiation generates acetyl and pyruvic acid-like groups in Ringer's lactate solution. Overall, these results suggest that plasma-activated Ringer's lactate solution is promising for chemotherapy.

  2. Heme oxygenase-1 has antitumoral effects in colorectal cancer: involvement of p53.

    PubMed

    Andrés, Nancy Carolina; Fermento, María Eugenia; Gandini, Norberto Ariel; Romero, Alejandro López; Ferro, Alejandro; Donna, Lucila Gonzalez; Curino, Alejandro Carlos; Facchinetti, María Marta

    2014-12-01

    The expression of heme oxygenase-1 (HO-1) has been shown to be up-regulated in colorectal cancer (CRC), but the role it plays in this cancer type has not yet been addressed. The aims of this study have been to analyze HO-1 expression in human invasive CRC, evaluate its correlation with clinical and histo-pathological parameters and to investigate the mechanisms through which the enzyme influences tumor progression. We confirmed that HO-1 was over-expressed in human invasive CRC and found that the expression of the enzyme was associated with a longer overall survival time. In addition, we observed in a chemically-induced CRC animal model that total and nuclear HO-1 expression increases with tumor progression. Our investigation of the mechanisms involved in HO-1 action in CRC demonstrates that the protein reduces cell viability through induction of cell cycle arrest and apoptosis and, importantly, that a functional p53 tumor suppressor protein is required for these effects. This reduction in cell viability is accompanied by modulation of the levels of p21, p27, and cyclin D1 and by modulation of Akt and PKC pathways. Altogether, our results demonstrate an antitumoral role of HO-1 and points to the importance of p53 status in this antitumor activity.

  3. Antitumor and Antimetastatic Effect of Small Immunostimulatory RNA against B16 Melanoma in Mice

    PubMed Central

    Kabilova, Tatyana O.; Sen’kova, Aleksandra V.; Nikolin, Valeriy P.; Popova, Nelly A.; Zenkova, Marina A.; Vlassov, Valentin V.; Chernolovskaya, Elena L.

    2016-01-01

    Small interfering RNAs, depending on their structure, delivery system and sequence, can stimulate innate and adaptive immunity. The aim of this study was to investigate the antitumor and antimetastatic effects of immunostimulatory 19-bp dsRNA with 3’- trinucleotide overhangs (isRNA) on melanoma B16 in C57Bl/6 mice. Recently developed novel cationic liposomes 2X3-DOPE were used for the in vivo delivery of isRNA. Administration of isRNA/2X3-DOPE complexes significantly inhibits melanoma tumor growth and metastasis. Histopathological analysis of spleen cross sections showed hyperplasia of the lymphoid white pulp and formation of large germinal centers after isRNA/2X3-DOPE administration, indicating activation of the immune system. The treatment of melanoma-bearing mice with isRNA/2X3-DOPE decreases the destructive changes in the liver parenchyma. Thus, the developed isRNA displays pronounced immunostimulatory, antitumor and antimetastatic properties against melanoma B16 and may be considered a potential agent in the immunotherapy of melanoma. PMID:26981617

  4. In vivo antitumor effect of cromolyn in PEGylated liposomes for pancreatic cancer.

    PubMed

    Kim, Cha-Eun; Lim, Sun-Kyung; Kim, Jin-Seok

    2012-01-30

    A PEGylated liposomal formulation of cromolyn, composed of dipalmitoylphosphatidylcholine (DPPC), dimyristoylphosphatidylcholine (DMPC), distearoylphosphatidylcholine (DSPC) and 1,2-distearoyl-sn-glycero-3-phospho-ethanolamine-N-[methoxy(polyethyleneglycol)-2000] (DSPE-mPEG2000), has been developed with the purpose of improving the antitumor activity of cromolyn for human pancreatic adenocarcinoma. In stability study, the amount of proteins adsorbed onto the PEGylated liposomes encapsulating cromolyn was 4.5-fold lower than the non-PEGylated liposome. In vitro study showed that the cromolyn in PEGylated liposome exhibited better anti-proliferative effect in BxPC-3 cells than in Panc-1 cells, which indicates higher level of endogenous S100P protein in BxPC-3 cells than in Panc-1 cells as a target protein for this drug. Moreover, the combination of cromolyn with gemcitabine in PEGylated liposomes demonstrated the strongest cytotoxicity to BxPC-3 pancreatic cancer cells in vitro and the highest anti-tumor activity against the BxPC-3 tumor bearing nude mice in vivo. Thus, this PEGylated liposomal formulation of cromolyn is expected to provide a novel approach to the treatment of pancreatic cancer in the future.

  5. A new sensitizer DVDMS combined with multiple focused ultrasound treatments: an effective antitumor strategy

    NASA Astrophysics Data System (ADS)

    Xiong, Wenli; Wang, Pan; Hu, Jianmin; Jia, Yali; Wu, Lijie; Chen, Xiyang; Liu, Quanhong; Wang, Xiaobing

    2015-12-01

    Sonodynamic therapy (SDT) was developed as a promising noninvasive approach. The present study investigated the antitumor effect of a new sensitizer (sinoporphyrin sodium, referred to as DVDMS) combined with multiple ultrasound treatments on sarcoma 180 both in vitro and in vivo. The combined treatment significantly suppressed cell viability, potentiated apoptosis, and markedly inhibited angiogenesis in vivo. In vivo, the tumor weight inhibition ratio reached 89.82% fifteen days after three sonication treatments plus DVDMS. This effect was stronger than one ultrasound alone (32.56%) and than one round of sonication plus DVDMS (59.33%). DVDMS combined with multiple focused ultrasound treatments initiated tumor tissue destruction, induced cancer cell apoptosis, inhibited tumor angiogenesis, suppressed cancer cell proliferation, and decreased VEGF and PCNA expression levels. Moreover, the treatment did not show obvious signs of side effects or induce a drop in body weight. These results indicated that DVDMS combined with multiple focused ultrasounds may be a promising strategy against solid tumor.

  6. Efficient antitumor effect of co-drug-loaded nanoparticles with gelatin hydrogel by local implantation

    PubMed Central

    Zhang, Hao; Tian, Yong; Zhu, Zhenshu; Xu, Huae; Li, Xiaolin; Zheng, Donghui; Sun, Weihao

    2016-01-01

    Tetrandrine (Tet) could enhance the antitumor effect of Paclitaxel (Ptx) by increasing intracellular Reactive Oxygen Species (ROS) levels, which leads to the possibility of co-delivery of both drugs for synergistic antitumor effect. In the current study, we reported an efficient, local therapeutic strategy employing effective Tet and Ptx delivery with a nanoparticle-loaded gelatin system. Tet- and Ptx co-loaded mPEG-PCL nanoparticles (P/T-NPs) were encapsulated into the physically cross-linked gelatin hydrogel and then implanted on the tumor site for continuous drug release. The drug-loaded gelatin hydrogel underwent a phase change when the temperature slowly increased. In vitro study showed that Tet/Ptx-loaded PEG-b-PCL nanoparticles encapsulated within a gelatin hydrogel (P/T-NPs-Gelatin) inhibited the growth and invasive ability of BGC-823 cells more effectively than the combination of free drugs or P/T-NPs. In vivo study validated the therapeutic potential of P/T-NPs-Gelatin. P/T-NPs-Gelatin significantly inhibited the activation of p-Akt and the downstream anti-apoptotic Bcl-2 protein and also inducing the activation of pro-apoptotic Bax protein. Moreover, the molecular-modulating effect of P/T-NPs-Gelatin on related proteins varied slightly under the influence of NAC, which was supported by the observations of the tumor volumes and weights. Based on these findings, local implantation of P/T-NPs-Gelatin may be a promising therapeutic strategy for the treatment of gastric cancer. PMID:27226240

  7. Dendritic Cells The Tumor Microenvironment and the Challenges for an Effective Antitumor Vaccination

    PubMed Central

    Benencia, Fabian; Sprague, Leslee; McGinty, John; Pate, Michelle; Muccioli, Maria

    2012-01-01

    Many clinical trials have been carried out or are in progress to assess the therapeutic potential of dendritic-cell- (DC-) based vaccines on cancer patients, and recently the first DC-based vaccine for human cancer was approved by the FDA. Herewith, we describe the general characteristics of DCs and different strategies to generate effective antitumor DC vaccines. In recent years, the relevance of the tumor microenvironment in the progression of cancer has been highlighted. It has been shown that the tumor microenvironment is capable of inactivating various components of the immune system responsible for tumor clearance. In particular, the effect of the tumor microenvironment on antigen-presenting cells, such as DCs, does not only render these immune cells unable to induce specific immune responses, but also turns them into promoters of tumor growth. We also describe strategies likely to increase the efficacy of DC vaccines by reprogramming the immunosuppressive nature of the tumor microenvironment. PMID:22505809

  8. Establishment of Stable, Cell-Mediated Immunity that Makes "Susceptible" Mice Resistant to Leishmania major

    NASA Astrophysics Data System (ADS)

    Bretscher, Peter A.; Wei, Guojian; Menon, Juthika N.; Bielefeldt-Ohmann, Helle

    1992-07-01

    Cell-mediated, but not antibody-mediated, immune responses protect humans against certain pathogens that produce chronic diseases such as leishmaniasis. Effective vaccination against such pathogens must therefore produce an immunological "imprint" so that stable, cell-mediated immunity is induced in all individuals after natural infection. BALB/c mice "innately susceptible" to Leishmania major produce antibodies after substantial infection. In the present study, "susceptible" mice injected with a small number of parasites mounted a cell-mediated response and acquired resistance to a larger, normally pathogenic, challenge. This vaccination strategy may be applicable in diseases in which protection is dependent on cell-mediated immunity.

  9. Antitumor effect of novel gallium compounds and efficacy of nanoparticle-mediated gallium delivery in lung cancer.

    PubMed

    Wehrung, Daniel; Oyewumi, Moses O

    2012-02-01

    The widespread application of gallium (Ga) in cancer therapy has been greatly hampered by lack of specificity resulting in poor tumor accumulation and retention. To address the challenge, two lipophilic gallium (III) compounds (gallium hexanedione; GaH and gallium acetylacetonate; GaAcAc) were synthesized and antitumor studies were conducted in human lung adenocarcinoma (A549) cells. Nanoparticles (NPs) containing various concentrations of the Ga compounds were prepared using a binary mixture of Gelucire 44/14 and cetyl alcohol as matrix materials. NPs were characterized based on size, morphology, stability and biocompatibility. Antitumor effects of free or NP-loaded Ga compounds were investigated based on cell viability, production of reactive oxygen species and reduction of mitochondrial potential. Compared to free Ga compounds, cytotoxicity of NP-loaded Ga (5-150 microg/ml) was less dependent on concentration and incubation time (exposure) with A549 cells. NP-mediated delivery (5-150 microg Ga/ml) enhanced antitumor effects of Ga compounds and the effect was pronounced at: (i) shorter incubation times; and (ii) at low concentrations of gallium (approximately 50 microg/ml) (p < 0.0006). Additional studies showed that NP-mediated Ga delivery was not dependent on transferrin receptor uptake mechanism (p > 0.13) suggesting the potential in overcoming gallium resistance in some tumors. In general, preparation of stable and biocompatible NPs that facilitated Ga tumor uptake and antitumor effects could be effective in gallium-based cancer therapy.

  10. Gold nanoparticles enhance anti-tumor effect of radiotherapy to hypoxic tumor

    PubMed Central

    Kim, Mi Sun; Lee, Eun-Jung; Kim, Jae-Won; Chung, Ui Seok; Koh, Won-Gun; Keum, Ki Chang; Koom, Woong Sub

    2016-01-01

    Purpose Hypoxia can impair the therapeutic efficacy of radiotherapy (RT). Therefore, a new strategy is necessary for enhancing the response to RT. In this study, we investigated whether the combination of nanoparticles and RT is effective in eliminating the radioresistance of hypoxic tumors. Materials and Methods Gold nanoparticles (GNPs) consisting of a silica core with a gold shell were used. CT26 colon cancer mouse model was developed to study whether the combination of RT and GNPs reduced hypoxia-induced radioresistance. Hypoxia inducible factor-1α (HIF-1α) was used as a hypoxia marker. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were conducted to evaluate cell death. Results Hypoxic tumor cells had an impaired response to RT. GNPs combined with RT enhanced anti-tumor effect in hypoxic tumor compared with RT alone. The combination of GNPs and RT decreased tumor cell viability compare to RT alone in vitro. Under hypoxia, tumors treated with GNPs + RT showed a higher response than that shown by tumors treated with RT alone. When a reactive oxygen species (ROS) scavenger was added, the enhanced antitumor effect of GNPs + RT was diminished. Conclusion In the present study, hypoxic tumors treated with GNPs + RT showed favorable responses, which might be attributable to the ROS production induced by GNPs + RT. Taken together, GNPs combined with RT seems to be potential modality for enhancing the response to RT in hypoxic tumors. PMID:27730800

  11. Composition and mechanism of anti-tumor effects of Hericium erinaceus mushroom extracts in tumor-bearing mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated anti-tumor effects of the following four extracts of freeze-dried Hericium erinaceus mushrooms in Balb/c mice intracutaneously transplanted on the backs with CT-26 colon cancer cells: HWE, hot-water extraction by boiling in water for 3 h; MWE, microwaving in 50% ethanol/water at 60 W...

  12. Regulatory T cell effects in antitumor laser immunotherapy: a mathematical model and analysis

    NASA Astrophysics Data System (ADS)

    Dawkins, Bryan A.; Laverty, Sean M.

    2016-03-01

    Regulatory T cells (Tregs) have tremendous influence on treatment outcomes in patients receiving immunotherapy for cancerous tumors. We present a mathematical model incorporating the primary cellular and molecular components of antitumor laser immunotherapy. We explicitly model developmental classes of dendritic cells (DCs), cytotoxic T cells (CTLs), primary and metastatic tumor cells, and tumor antigen. Regulatory T cells have been shown to kill antigen presenting cells, to influence dendritic cell maturation and migration, to kill activated killer CTLs in the tumor microenvironment, and to influence CTL proliferation. Since Tregs affect explicitly modeled cells, but we do not explicitly model dynamics of Treg themselves, we use model parameters to analyze effects of Treg immunosuppressive activity. We will outline a systematic method for assigning clinical outcomes to model simulations and use this condition to associate simulated patient treatment outcome with Treg activity.

  13. Improving vascular maturation using noncoding RNAs increases antitumor effect of chemotherapy

    PubMed Central

    Mangala, Lingegowda S.; Wang, Hongyu; Jiang, Dahai; Wu, Sherry Y.; Somasunderam, Anoma; Volk, David E.; Lokesh, Ganesh L. R.; Li, Xin; Pradeep, Sunila; Yang, Xianbin; Haemmerle, Monika; Nagaraja, Archana S; Bayraktar, Emine; Bayraktar, Recep; Li, Li; Tanaka, Takemi; Hu, Wei; Gharpure, Kshipra M; McGuire, Michael H.; Thiviyanathan, Varatharasa; Zhang, Xinna; Maiti, Sourindra N.; Bulayeva, Nataliya; Dorniak, Piotr L.; Cooper, Laurence J.N.; Rosenblatt, Kevin P.; Lopez-Berestein, Gabriel; Gorenstein, David G.; Sood, Anil K.

    2016-01-01

    Current antiangiogenesis therapy relies on inhibiting newly developed immature tumor blood vessels and starving tumor cells. This strategy has shown transient and modest efficacy. Here, we report a better approach to target cancer-associated endothelial cells (ECs), reverse permeability and leakiness of tumor blood vessels, and improve delivery of chemotherapeutic agents to the tumor. First, we identified deregulated microRNAs (miRs) from patient-derived cancer-associated ECs. Silencing these miRs led to decreased vascular permeability and increased maturation of blood vessels. Next, we screened a thioaptamer (TA) library to identify TAs selective for tumor-associated ECs. An annexin A2–targeted TA was identified and used for delivery of miR106b-5p and miR30c-5p inhibitors, resulting in vascular maturation and antitumor effects without inducing hypoxia. These findings could have implications for improving vascular-targeted therapy. PMID:27777972

  14. The Wnt/β-catenin signaling pathway is involved in the antitumor effect of fulvestrant on rat prolactinoma MMQ cells.

    PubMed

    Cao, Lei; Gao, Hua; Li, Ping; Gui, Songbai; Zhang, Yazhuo

    2014-06-01

    Although an antiestrogen treatment for estrogen-dependent diseases, such as breast cancers, has been reported, the effect of this endocrine therapy on prolactinomas and its possible mechanism are unclear. This study investigates the antitumor effect of fulvestrant, which is a new estrogen receptor antagonist, on rat prolactinoma MMQ cells and the possible roles of the Wnt/β-catenin signaling pathway that is involved in this antitumor effect. To investigate the antitumor effect of fulvestrant, the effects of exposure to gradient doses of fulvestrant (0, 0.04, 1, 25, and 625 nM) on the proliferation of cells and the secretion of prolactin (PRL) were studied. Then, the expression levels of the Wnt/β-catenin signaling pathway-related proteins β-catenin and Wnt inhibitory factor-1 (WIF-1) were measured to investigate their possible roles in the antitumor effect of fulvestrant. The cells were also treated with decitabine (10 μM) to investigate the epigenetic mechanism of WIF-1 expression. The proliferation of MMQ cells and the secretion of PRL were suppressed by fulvestrant in a dose-dependent manner (up to 57.0 ± 3.9 % and 51.2 ± 4.9 %, respectively). β-Catenin expression was downregulated and was positively correlated with ER-α expression (P<0.01). As a tumor suppressor, WIF-1 expression was upregulated and was negatively correlated with ER-α expression (P<0.01). Furthermore, WIF-1 expression was upregulated via the hypomethylation of the promoter by decitabine, and cellular proliferation was correspondingly suppressed (37.8 ± 4.3 %). Antitumor effect of fulvestrant was partially disrupted by SB 216763 via activation of the Wnt/β-catenin pathway. In conclusion, through the Wnt/β-catenin signaling pathway, fulvestrant can suppress the proliferation of MMQ cells and the secretion of PRL.

  15. Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma.

    PubMed

    Ligresti, Alessia; Moriello, Aniello Schiano; Starowicz, Katarzyna; Matias, Isabel; Pisanti, Simona; De Petrocellis, Luciano; Laezza, Chiara; Portella, Giuseppe; Bifulco, Maurizio; Di Marzo, Vincenzo

    2006-09-01

    Delta(9)-Tetrahydrocannabinol (THC) exhibits antitumor effects on various cancer cell types, but its use in chemotherapy is limited by its psychotropic activity. We investigated the antitumor activities of other plant cannabinoids, i.e., cannabidiol, cannabigerol, cannabichromene, cannabidiol acid and THC acid, and assessed whether there is any advantage in using Cannabis extracts (enriched in either cannabidiol or THC) over pure cannabinoids. Results obtained in a panel of tumor cell lines clearly indicate that, of the five natural compounds tested, cannabidiol is the most potent inhibitor of cancer cell growth (IC(50) between 6.0 and 10.6 microM), with significantly lower potency in noncancer cells. The cannabidiol-rich extract was equipotent to cannabidiol, whereas cannabigerol and cannabichromene followed in the rank of potency. Both cannabidiol and the cannabidiol-rich extract inhibited the growth of xenograft tumors obtained by s.c. injection into athymic mice of human MDA-MB-231 breast carcinoma or rat v-K-ras-transformed thyroid epithelial cells and reduced lung metastases deriving from intrapaw injection of MDA-MB-231 cells. Judging from several experiments on its possible cellular and molecular mechanisms of action, we propose that cannabidiol lacks a unique mode of action in the cell lines investigated. At least for MDA-MB-231 cells, however, our experiments indicate that cannabidiol effect is due to its capability of inducing apoptosis via: direct or indirect activation of cannabinoid CB(2) and vanilloid transient receptor potential vanilloid type-1 receptors and cannabinoid/vanilloid receptor-independent elevation of intracellular Ca(2+) and reactive oxygen species. Our data support the further testing of cannabidiol and cannabidiol-rich extracts for the potential treatment of cancer.

  16. Comparative serum albumin interactions and antitumor effects of Au(III) and Ga(III) ions.

    PubMed

    Sarioglu, Omer Faruk; Ozdemir, Ayse; Karaboduk, Kuddusi; Tekinay, Turgay

    2015-01-01

    In the present study, interactions of Au(III) and Ga(III) ions on human serum albumin (HSA) were studied comparatively via spectroscopic and thermal analysis methods: UV-vis absorbance spectroscopy, fluorescence spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and isothermal titration calorimetry (ITC). The potential antitumor effects of these ions were studied on MCF-7 cells via Alamar blue assay. It was found that both Au(III) and Ga(III) ions can interact with HSA, however; Au(III) ions interact with HSA more favorably and with a higher affinity. FT-IR second derivative analysis results demonstrated that, high concentrations of both metal ions led to a considerable decrease in the α-helix content of HSA; while Au(III) led to around 5% of decrease in the α-helix content at 200μM, it was around 1% for Ga(III) at the same concentration. Calorimetric analysis gave the binding kinetics of metal-HSA interactions; while the binding affinity (Ka) of Au(III)-HSA binding was around 3.87×10(5)M(-1), it was around 9.68×10(3)M(-1) for Ga(III)-HSA binding. Spectroscopy studies overall suggest that both metal ions have significant effects on the chemical structure of HSA, including the secondary structure alterations. Antitumor activity studies on MCF7 tumor cell line with both metal ions revealed that, Au(III) ions have a higher antiproliferative activity compared to Ga(III) ions.

  17. Antitumor and Immunomodulatory Effect of Gastrodia elata on Colon Cancer In Vitro and In Vivo.

    PubMed

    Kim, Na-Hyung; Xin, Ming Jie; Cha, Ji-Yoon; Ji, Soo-Jeong; Kwon, Se-Uk; Jee, Ho-Kyun; Park, Mi-Ran; Park, Yong-Soo; Kim, Chong-Tai; Kim, Dae-Ki; Lee, Young-Mi

    2017-02-23

    Gastrodia elata Blume (GE) is a well-known kind of herb that has been used in traditional medicine for thousands of years. The extrusion of raw materials from it could improve flavor and enhance bioavailability in food and drug development. The purpose of this study is to investigate antitumor and immune boosting effects of extruded GE in human colon carcinoma cells, splenocytes, and mice-bearing CT26 colon carcinoma cell. Treatment with 100[Formula: see text][Formula: see text]g/mL of extruded GE decreased cell viability and induced the expression of Caspase-3 and Bax in HT29 cells ([Formula: see text]). When we performed DAPI staining, apoptotic bodies with condensed chromatin and fragmented nuclei, known as indicative of apoptotic morphology, increased 24[Formula: see text]h after treatment with 100[Formula: see text][Formula: see text]g/mL of extruded GE. Treatments with extruded GE significantly promoted splenocyte proliferation and IL-2 or IFN-[Formula: see text] secretion, compared with that of control cells ([Formula: see text]). The administration of extruded GE of 200 mg/kg/day decreased tumor growth and Ki-67 or [Formula: see text]-catenin expression in mice ([Formula: see text]). Additionally, we investigated the contents of compounds in extruded GE extracts using ultra performance liquid chromatography. The contents of p-hydroxylbenzyl alcohol and p-hydroxybenzaldehyde in extruded GE were 2.97[Formula: see text]mg/g and 0.04[Formula: see text]mg/g, respectively. It was supposed that antitumor and immunomodulatory effects of extruded GE might exert by the p-hydroxylbenzyl alcohol and p-hydroxybenzaldehyde of many compositions analyzed from extruded GE. These results suggest that extruded GE have the potential to be developed into a natural pharmaceutical and functional food as a cancer chemopreventive agent.

  18. The augmented anti-tumor effects of Antrodia camphorata co-fermented with Chinese medicinal herb in human hepatoma cells.

    PubMed

    Li, Shun-Lai; Huang, Zih-Ning; Hsieh, Hsiao-Hui; Yu, Wen-Chun; Tzeng, Win-Yu; Lee, Guo-Yang; Chen, Yi-Peng; Chang, Chia-Yu; Chuu, Jiunn-Jye

    2009-01-01

    Antrodia camphorata, unique fungal specie, has been used as a folk medicine in Taiwan for many years. The purpose of this study was to compare the extracts from the solid-state culture of A. camphorata co-fermented with Chinese medicinal herb (AC-CF) with two other extracts from fruiting bodies (AC-FB) or solid-state culture (AC-SS), for their anti-tumor effects in human hepatoma HepG2 cells. We measured in vitro cell proliferation, percentage of apoptosis, population distribution of cell cycles, Western blot analysis of multiple drugs resistance-1 (MDR-1), and apoptosis-related proteins in HepG2 cells treated with three different preparations of A. camphorate extracts. Our results showed that AC-CF had better anti-proliferation effect on human hepatoma HepG2 cells than AC-FB or AC-SS dose-dependently. In addition, AC-CF in combination with anti-tumor agents (mitomycin C or methotrexate) showed better adjuvant anti-tumor effects than AC-FB or AC-SS. We further demonstrated the augmented adjuvant anti-tumor effects of AC-CF not only through down regulation of MDR-1 expression but also through a COX-2 dependent apoptosis pathway, involving down-regulation of COX-2 and p-AKT and up-regulation of PARP-1. In conclusion, in this study, we have demonstrated a novel strategy of fermenting A. camphorata with Chinese medicinal herb (AC-CF), which augmented their anti-tumor effects in human hepatoma HepG2 cells as compared to the traditional ones (AC-FB or AC-SS).

  19. Do Helper T Cell Subtypes in Lymphocytic Thyroiditis Play a Role in the Antitumor Effect?

    PubMed Central

    Yang, Seok Woo; Kang, Seong-Ho; Kim, Kyung Rae; Choi, In Hong; Chang, Hang Seok; Oh, Young Lyun; Hong, Soon Won

    2016-01-01

    Background Papillary thyroid carcinoma (PTC) is frequently accompanied by lymphocytic thyroiditis (LT). Some reports claim that Hashimoto’s thyroiditis (the clinical form of LT) enhances the likelihood of PTC; however, others suggest that LT has antitumor activity. This study was aimed to find out the relationship between the patterns of helper T cell (Th) cytokines in thyroid tissue of PTC with or without LT and the clinicopathological manifestation of PTC. Methods Fresh surgical samples of PTC with (13 cases) or without (10 cases) LT were used. The prognostic parameters (tumor size, extra-thyroidal extension of PTC, and lymph node metastasis) were analyzed. The mRNA levels of two subtypes of Th cytokines, Th1 (tumor necrosis factor α [TNF-α], interferon γ [IFN-γ ], and interleukin [IL] 2) and Th2 (IL-4 and IL-10), were analyzed. Because most PTC cases were microcarcinomas and recent cases without clinical follow-up, negative or faint p27 immunoreactivity was used as a surrogate marker for lymph node metastasis. Results PTC with LT cases showed significantly higher expression of TNF-α (p = .043), IFN-γ (p < .010), IL-4 (p = .015) than those without LT cases. Although the data were not statistically significant, all analyzed cytokines (except for IL-4) were highly expressed in the cases with higher expression of p27 surrogate marker. Conclusions These results indicate that mixed Th1 (TNF-α, IFN-γ , and IL-2) and Th2 (IL-10) immunity might play a role in the antitumor effect in terms of lymph node metastasis. PMID:27681413

  20. Anti-tumor effects of pigment epithelium-derived factor (PEDF): implication for cancer therapy. A mini-review.

    PubMed

    Belkacemi, Louiza; Zhang, Shaun Xiaoliu

    2016-01-08

    Pigment epithelium-derived factor (PEDF) is a secreted glycoprotein and a non-inhibitory member of the serine protease inhibitor (serpin) family. It is widely expressed in human fetal and adult tissues but its expression decreases with age and in malignant tissues. The main anti-cancer activities of PEDF derive from its dual effects, either indirectly on the tumor microenvironment (indirect antitumor action) or directly on the tumor itself (direct antitumor influence). The indirect antitumor activities of PEDF were uncovered from the early findings that it stimulates retinoblastoma cell differentiation and that additionally it possesses anti-angiogenic, anti-tumorigenic and anti-metastatic properties. The mechanisms of its direct antitumor effect, however, have not been fully elucidated. This review highlights recent progress in our understanding of the multifunctional activities of PEDF and, in particular, its anti-cancer signaling mechanisms. Additionally, we discuss the possibility of using novel phosphaplatin compounds that can upregulate PEDF expression as a chemotherapy for cancer treatment.

  1. Rebamipide does not interfere with the antitumor effect of radiotherapy or chemotherapy in human oral tumor-bearing nude mice.

    PubMed

    Shibamori, Masafumi; Sato, Masayuki; Uematsu, Naoya; Nakashima, Takako; Sato, Asuka; Yamamura, Yoshiya; Sasabe, Hiroyuki; Umehara, Ken; Sakurai, Kazushi

    2015-09-01

    Recent studies have shown that rebamipide, which suppresses reactive oxygen species, prevents chemoradiotherapy-induced oral mucositis in patients with head and neck cancers. However, anticancer action of radiotherapy and chemotherapy is believed to be partially associated with generation of reactive oxygen species. The aim of this study was to determine whether rebamipide interferes with the antitumor action of radiotherapy and chemotherapy. The effect of rebamipide on tumor cell growth was investigated using a human oral squamous carcinoma cell line, HSC-2, in vitro and in vivo. Rebamipide showed no significant effect on cell or tumor growth in HSC-2 tumor-bearing nude mice. Influences of rebamipide on the antitumor action of radiotherapy and of chemotherapy with cisplatin or docetaxel were investigated using the same animal model. In radiotherapy, the tumor was treated with 2.5 Gy of X-rays for 5 days, and rebamipide (300 mg/kg p.o.) was administered during irradiation periods. In chemotherapy, tumor-bearing mice were treated once with cisplatin (8 mg/kg, i.v.) or docetaxel (15 mg/kg i.v.) and rebamipide (300 mg/kg p.o.) was administered for 5 days following the antitumor drug treatment. Rebamipide did not interfere with the antitumor action of radiotherapy and chemotherapy.

  2. Acute local irritative effect of (2''R)-4'-O-tetrahydropyranyladriamycin, a new antitumor antibiotic.

    PubMed

    Tone, H; Kiyosaki, T; Cuthbert, J A; Carr, S M; Aitken, R

    1986-02-01

    (2"R)-4'-O-Tetrahydropyranyladriamycin hydrochloride (THP), a new antitumor antibiotic, was administered to rabbits at a concentration from 0.02 to 0.5% by instillation, or by intracutaneous, subcutaneous or intramuscular injection to study its local irritative effect. The irritative effect of THP increased with concentration. At a concentration of 0.5%, THP was irritant to the eye, skin and muscle but at a concentration of 0.1% practically no effect was observed. The effect was equal to or lower than that of doxorubicin. An instillation of 0.5% THP caused reversible irritation effect on the eye. Slight conjunctival responses (redness and chemoisis) were observed. Rinsing reduced the irritative effect. Intracutaneous injection of 0.1 ml of 0.5% THP caused well defined, moderate erythema, surface ulceration and dermal necrosis. Cutaneous muscle necrosis also occurred. At a concentration of 0.02%, dermal necrosis and inflammatory cell infiltration were observed. Erythema, as well as muscle necrosis and calcification with giant cell reaction and inflammatory cell infiltration were observed by an intramuscular injection at a concentration of 0.5%. Subcutaneous injection of 0.5% THP showed no irritative effect.

  3. Chemopreventive effect of a mixture of Chinese Herbs (antitumor B) on chemically induced oral carcinogenesis.

    PubMed

    Wang, Yian; Yao, Ruisheng; Gao, Song; Wen, Weidong; Du, Yinqiu; Szabo, Eva; Hu, Ming; Lubet, Ronald A; You, Ming

    2013-01-01

    In this study, we evaluated chemopreventive efficacy of Antitumor B, a Chinese herbal mixture of six plants (Sophora tonkinensis, Polygonum bistorta, Prunella vulgaris, Sonchus arvensis L., Dictamnus dasycarpus, and Dioscorea bulbifera) on the development of 4-nitroquinoline-1-oxide (4NQO) induced oral squamous cell carcinomas in A/J mice. Antitumor B, delivered through diet, inhibited 4NQO-induced oral cancer development by 59.19%. The reduction of cell proliferation appears to be associated with efficacy of Antitumor B against 4NQO-induced oral cancer in A/J mice. The expression of epidermal growth factor receptor (EGFR) and phosphorylated EGFR (Tyr1173) were down-regulated by Antitumor B. Tissue distribution of Antitumor B was determined using obacunone, matrine, and maackiain as marker chemicals. We found significant amounts of obacunone, matrine, and maackiain in the blood after 1-wk treatment. The concentrations of these three compounds did not increase further at 18  wk, suggesting that plasma concentrations had reached a steady-state level at 1  wk. There was no significant body weight loss and there was no other obvious sign of toxicity in Antitumor B-treated mice. These results suggest that Antitumor B is a promising agent for human oral cancer chemoprevention.

  4. Interaction of natural killer cells with neutrophils exerts a significant antitumor immunity in hematopoietic stem cell transplantation recipients.

    PubMed

    Ueda, Ryosuke; Narumi, Kenta; Hashimoto, Hisayoshi; Miyakawa, Reina; Okusaka, Takuji; Aoki, Kazunori

    2016-01-01

    Autologous hematopoietic stem cell transplantation (HSCT) can induce a strong antitumor immunity by homeostatic proliferation (HP) of T cells and suppression of regulatory T cells following preconditioning-induced lymphopenia. However, the role of innate immunity including natural killer (NK) cells is still not understood. Here, first, we examined whether NK cells exert an antitumor effect after syngeneic HSCT in a murine colon cancer model. Flow cytometry showed that NK cells as well as T cells rapidly proliferated after HSCT, and the frequency of mature NK cells was increased in tumor during HP. Furthermore, NK cells undergoing HP were highly activated, which contributed to substantial tumor suppression. Then, we found that a large number of neutrophils accumulated in tumor early after syngeneic HSCT. It was recently reported that neutrophil-derived mediators modulate NK cell effector functions, and so we examined whether the neutrophils infiltrated in tumor are associated with NK cell-mediated antitumor effect. The depletion of neutrophils significantly impaired an activation of NK cells in tumor and increased the fraction of proliferative NK cells accompanied by a decrease in NK cell survival. The results suggested that neutrophils in tumor prevent NK cells from activation-induced cell death during HP, thus leading to a significant antitumor effect by NK cells. This study revealed a novel aspect of antitumor immunity induced by HSCT and may contribute to the development of an effective therapeutic strategy for cancer using HSCT.

  5. Effects of extraction methods on the yield, chemical structure and anti-tumor activity of polysaccharides from Cordyceps gunnii mycelia.

    PubMed

    Zhu, Zhen-Yuan; Dong, Fengying; Liu, Xiaocui; Lv, Qian; YingYang; Liu, Fei; Chen, Ling; Wang, Tiantian; Wang, Zheng; Zhang, Yongmin

    2016-04-20

    This study was to investigate the effects of different extraction methods on the yield, chemical structure and antitumor activity of polysaccharides from Cordyceps gunnii (C. gunnii) mycelia. Five extraction methods were used to extract crude polysaccharides (CPS), which include room-temperature water extraction (RWE), hot-water extraction (HWE), microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and cellulase-assisted extraction (CAE). Then Sephadex G-100 was used for purification of CPS. As a result, the antitumor activities of CPS and PPS on S180 cells were evaluated. Five CPS and purified polysaccharides (PPS) were obtained. The yield of CPS by microwave-assisted extraction (CPSMAE) was the highest and its anti-tumor activity was the best and its macromolecular polysaccharide (3000-1000kDa) ratio was the largest. The PPS had the same monosaccharide composition, but their obvious difference was in the antitumor activity and the physicochemical characteristics, such as intrinsic viscosity, specific rotation, scanning electron microscopy and circular dichroism spectra.

  6. Comparative study of antitumor effects of bromelain and papain in human cholangiocarcinoma cell lines.

    PubMed

    Müller, Alena; Barat, Samarpita; Chen, Xi; Bui, Khac Cuong; Bozko, Przemyslaw; Malek, Nisar P; Plentz, Ruben R

    2016-05-01

    Cholangiocarcinoma (CC) worldwide is the most common biliary malignancy with poor prognostic value and new systemic treatments are desirable. Plant extracts like bromelain and papain, which are cysteine proteases from the fruit pineapple and papaya, are known to have antitumor activities. Therefore, in this study for the first time we investigated the anticancer effect of bromelain and papain in intra- and extrahepatic human CC cell lines. The effect of bromelain and papain on human CC cell growth, migration, invasion and epithelial plasticity was analyzed using cell proliferation, wound healing, invasion and apoptosis assay, as well as western blotting. Bromelain and papain lead to a decrease in the proliferation, invasion and migration of CC cells. Both plant extracts inhibited NFκB/AMPK signalling as well as their downstream signalling proteins such as p-AKT, p-ERK, p-Stat3. Additionally, MMP9 and other epithelial-mesenchymal-transition markers were partially found to be downregulated. Apoptosis was induced after bromelain and papain treatment. Interestingly, bromelain showed an overall more effective inhibition of CC as compared to papain. siRNA mediated silencing of NFκB on CC cells indicated that bromelain and papain have cytotoxic effects on human CC cell lines and bromelain and partially papain in comparison impair tumor growth by NFκB/AMPK signalling. Especially bromelain can evolve as promising, potential therapeutic option that might open new insights for the treatment of human CC.

  7. Evaluation of antitumor and toxic side effects of mitomycin C-estradiol conjugates.

    PubMed

    Ishiki, Nobuyuki; Onishi, Hiraku; Machida, Yoshiharu

    2004-07-26

    The antitumor and toxic side effects of mitomycin C-estradiol conjugates (EB-glu-MMC and E-glu-MMC) were evaluated in detail for solutions in propylene glycol and suspensions in 10% (v/v) propylene glycol. Tumor growth, body weight and number of leukocytes were examined after i.p. administration to sarcoma 180 solid tumor-bearing mice. Body weight and number of leukocytes were also examined in normal mice after i.p. administration of the solution. In solution dosage forms, the two conjugates had almost the same suppressive effect on tumor growth at 30 mg MMC eq./kg as MMC at 5 mg/kg, did not lower body weight significantly, but reduced the number of leukocytes at 30 mg MMC eq./kg. MMC, lethally toxic at 10 mg, significantly lowered the body weight and leukocyte number. In the suspension dosage forms, these conjugates had a greater suppressive effect on tumor growth at 50 mg MMC eq./kg than MMC at 5 mg/kg, and reduced the body weight and leukocyte number, with E-glu-MMC more toxic than EB-glu-MMC. The presence of the tumor itself influenced the body weight and leukocyte number. However, toxic side effects could be evaluated from the body weight and leukocyte number to almost the same extent between tumor-bearing and normal mice.

  8. Antitumor effects of rapamycin in pancreatic cancer cells by inducing apoptosis and autophagy.

    PubMed

    Dai, Zhi-Jun; Gao, Jie; Ma, Xiao-Bin; Kang, Hua-Feng; Wang, Bao-Feng; Lu, Wang-Feng; Lin, Shuai; Wang, Xi-Jing; Wu, Wen-Ying

    2012-12-21

    Rapamycin (Rapa), an inhibitor of mammalian target of Rapamycin (mTOR), is an immunosuppressive agent that has anti-proliferative effects on some tumors. This study aims to investigate the effects of Rapa suppressing proliferation of pancreatic carcinoma PC-2 cells in vitro and its molecular mechanism involved in antitumor activities. MTT assays showed that the inhibition of proliferation of PC-2 cells in vitro was in a time- and dose-dependent manner. By using transmission electron microscopy, apoptosis bodies and formation of abundant autophagic vacuoles were observed in PC-2 cells after Rapa treatment. Flow cytometry assays also showed Rapa had a positive effect on apoptosis. MDC staining showed that the fluorescent density was higher and the number of MDC-labeled particles in PC-2 cells was greater in the Rapa treatment group than in the control group. RT-PCR revealed that the expression levels of p53, Bax and Beclin 1 were up-regulated in a dose-dependent manner, indicating that Beclin 1 was involved in Rapa induced autophagy and Rapa induced apoptosis as well as p53 up-regulation in PC-2 cells. The results demonstrated that Rapa could effectively inhibit proliferation and induce apoptosis and autophagy in PC-2 cells.

  9. Immunostimulatory Effects of Melphalan and Usefulness in Adoptive Cell Therapy with Antitumor CD4+ T Cells

    PubMed Central

    Kuczma, Michal; Ding, Zhi-Chun; Zhou, Gang

    2017-01-01

    The alkylating agent melphalan is used in the treatment of hematological malignancies, especially multiple myeloma. In the past, the usefulness of melphalan has been solely attributed to its cytotoxicity on fast-growing cancerous cells. Although the immunomodulatory effects of melphalan were suggested many years ago, only recently has this aspect of melphalan’s activity begun to be elucidated at the molecular level. Emerging evidence indicates that melphalan can foster an immunogenic microenvironment by inducing immunogenic cell death (ICD) as characterized by membrane translocation of endoplasmic reticulum protein calreticulin (CRT) and by release of chromatin-binding protein high-mobility group box 1 (HMGB1). In addition, the lympho-depletive effect of melphalan can induce the release of pro-inflammatory cytokines and growth factors, deplete regulatory T cells, and create space to facilitate the expansion of infused tumor-reactive T cells. These features suggest that melphalan can be used as a preparative chemotherapy for adoptive T-cell therapy. This notion is supported by our recent work demonstrating that the combination of melphalan and adoptive transfer of tumor-reactive CD4+ T cells can mediate potent antitumor effects in animal models. This review summarizes the recent advances in understanding and utilizing the immunomodulatory effects of melphalan. PMID:27910767

  10. Anti-tumor Effects of Plasma Activated Media and Correlation with Hydrogen Peroxide Concentration

    NASA Astrophysics Data System (ADS)

    Laroussi, Mounir; Mohades, Soheila; Barekzi, Nazir; Maruthamuthu, Venkat; Razavi, Hamid

    2016-09-01

    Plasma activated media (PAM) can induce death in cancer cells. In our research, PAM is produced by exposing liquid culture medium to a helium plasma pencil. Reactive oxygen and nitrogen species in the aqueous state are known factors in anti-tumor effects of PAM. The duration of plasma exposure determines the concentrations of reactive species produced in PAM. Stability of the plasma generated reactive species and their lifetime depend on parameters such as the chemical composition of the medium. Here, a complete cell culture medium was employed to make PAM. Later, PAM was used to treat SCaBER cancer cells either as an immediate PAM (right after exposure) or as an aged-PAM (after storage). SCaBER (ATCC®HTB-3™) is an epithelial cell line from a human bladder with the squamous carcinoma disease. A normal epithelial cell line from a kidney tissue of a dog - MDCK (ATCC®CCL-34™) - was used to analyze the selective effect of PAM. Correspondingly, we measured the concentration of hydrogen peroxide- as a stable species with biological impact on cell viability- in both immediate PAM and aged-PAM. In addition, we report on the effect of serum supplemented in PAM on the H2O2 concentration measured by Amplex red assay kit. Finally, we evaluate the effects of PAM on growth and morphological changes in MDCK cells using fluorescence microscopy.

  11. TWEAK mediates anti-tumor effect of tumor-infiltrating macrophage

    SciTech Connect

    Kaduka, Yuki; Takeda, Kazuyoshi . E-mail: ktakeda@med.juntendo.ac.jp; Nakayama, Masafumi; Kinoshita, Katsuyuki; Yagita, Hideo; Okumura, Ko

    2005-06-03

    TWEAK induces diverse cellular responses, including pro-inflammatory chemokine production, migration, proliferation, and cell death through the TWEAK receptor, Fn14. In the present study, we examined the effect of TWEAK or Fn14 expression in tumor cells on tumor outgrowth in vivo. Administration of neutralizing anti-TWEAK mAb significantly reduced the frequency of tumor rejection and shortened the survival of mice intraperitoneally inoculated with TWEAK-sensitive Fn14-expressing tumor cells. Moreover, anti-TWEAK mAb treatment promoted the subcutaneous growth of TWEAK-sensitive Fn14-expressing tumor cells, and this promotion was abolished by the inhibition of macrophage infiltration but not NK cell depletion. In contrast, administration of anti-TWEAK mAb had no apparent effect on the growth of TWEAK-resistant tumor cells, even if tumor cells expressed Fn14. On the other hand, TWEAK expression in tumor cells had no significant effect on subcutaneous tumor growth. These results indicate that TWEAK mediates anti-tumor effect of macrophages in vivo.

  12. A new sensitizer DVDMS combined with multiple focused ultrasound treatments: an effective antitumor strategy

    PubMed Central

    Xiong, Wenli; Wang, Pan; Hu, Jianmin; Jia, Yali; Wu, Lijie; Chen, Xiyang; Liu, Quanhong; Wang, Xiaobing

    2015-01-01

    Sonodynamic therapy (SDT) was developed as a promising noninvasive approach. The present study investigated the antitumor effect of a new sensitizer (sinoporphyrin sodium, referred to as DVDMS) combined with multiple ultrasound treatments on sarcoma 180 both in vitro and in vivo. The combined treatment significantly suppressed cell viability, potentiated apoptosis, and markedly inhibited angiogenesis in vivo. In vivo, the tumor weight inhibition ratio reached 89.82% fifteen days after three sonication treatments plus DVDMS. This effect was stronger than one ultrasound alone (32.56%) and than one round of sonication plus DVDMS (59.33%). DVDMS combined with multiple focused ultrasound treatments initiated tumor tissue destruction, induced cancer cell apoptosis, inhibited tumor angiogenesis, suppressed cancer cell proliferation, and decreased VEGF and PCNA expression levels. Moreover, the treatment did not show obvious signs of side effects or induce a drop in body weight. These results indicated that DVDMS combined with multiple focused ultrasounds may be a promising strategy against solid tumor. PMID:26631871

  13. Metformin displays in vitro and in vivo antitumor effect against osteosarcoma

    PubMed Central

    Ko, Yunmi; Choi, Aery; Lee, Minyoung

    2016-01-01

    Purpose Patients with unresectable, relapsed, or refractory osteosarcoma need a novel therapeutic agent. Metformin is a biguanide derivative used in the treatment of type II diabetes, and is recently gaining attention in cancer research. Methods We evaluated the effect of metformin against human osteosarcoma. Four osteosarcoma cell lines (KHOS/NP, HOS, MG-63, U-2 OS) were treated with metformin and cell proliferation was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell cycle progression and apoptosis were evaluated using flow cytometric analysis, and migration and wound healing assay were performed. Fourteen female Balb/c-nude mice received KHOS/NP cell grafts in their thigh, and were allowed access to metformin containing water (2 mg/mL) ad libitum. Tumor volume was measured every 3–4 days for a period of 4 weeks. Results Metformin had a significant antiproliferative effect on human osteosarcoma cells. In particular, metformin inhibited the proliferation and migration of KHOS/NP cells by activation of AMP-activated protein kinase and consequent inhibition of the mammalian target of rapamycin pathway. It also inhibited the proliferation of cisplatin-resistant KHOS/NP clone cells. Analysis of KHOS/NP xenograft Balb/c-nude models indicated that metformin displayed potent in vivo antitumor effects. Conclusion Further studies are necessary to explore metformin's therapeutic potential and the possibilities for its use as an adjuvant agent for osteosarcoma. PMID:27721842

  14. Influence of tumors on protective anti-tumor immunity and the effects of irradiation

    PubMed Central

    Foulds, Gemma A.; Radons, Jürgen; Kreuzer, Mira; Multhoff, Gabriele; Pockley, Alan G.

    2012-01-01

    Innate and adaptive immunity plays important roles in the development and progression of cancer and it is becoming apparent that tumors can influence the induction of potentially protective responses in a number of ways. The prevalence of immunoregulatory T cell populations in the circulation and tumors of patients with cancer is increased and the presence of these cells appears to present a major barrier to the induction of tumor immunity. One aspect of tumor-mediated immunoregulation which has received comparatively little attention is that which is directed toward natural killer (NK) cells, although evidence that the phenotype and function of NK cell populations are modified in patients with cancer is accumulating. Although the precise mechanisms underlying these localized and systemic immunoregulatory effects remain unclear, tumor-derived factors appear, in part at least, to be involved. The effects could be manifested by an altered function and/or via an influence on the migratory properties of individual cell subsets. A better insight into endogenous immunoregulatory mechanisms and the capacity of tumors to modify the phenotype and function of innate and adaptive immune cells might assist the development of new immunotherapeutic approaches and improve the management of patients with cancer. This article reviews current knowledge relating to the influence of tumors on protective anti-tumor immunity and considers the potential influence that radiation-induced effects might have on the prevalence, phenotype, and function of innate and adaptive immune cells in patients with cancer. PMID:23378947

  15. The Safety and Anti-Tumor Effects of Ozonated Water in Vivo.

    PubMed

    Kuroda, Kohei; Azuma, Kazuo; Mori, Takuro; Kawamoto, Kinya; Murahata, Yusuke; Tsuka, Takeshi; Osaki, Tomohiro; Ito, Norihiko; Imagawa, Tomohiro; Itoh, Fumio; Okamoto, Yoshiharu

    2015-10-22

    Ozonated water is easier to handle than ozone gas. However, there have been no previous reports on the biological effects of ozonated water. We conducted a study on the safety of ozonated water and its anti-tumor effects using a tumor-bearing mouse model and normal controls. Local administration of ozonated water (208 mM) was not associated with any detrimental effects in normal tissues. On the other hand, local administration of ozonated water (20.8, 41.6, 104, or 208 mM) directly into the tumor tissue induced necrosis and inhibited proliferation of tumor cells. There was no significant difference in the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick-end labeling (TUNEL)-positive cells following administration of ozonated water. The size of the necrotic areas was dependent on the concentration of ozonated water. These results indicate that ozonated water does not affect normal tissue and damages only the tumor tissue by selectively inducing necrosis. There is a possibility that it exerts through the production of reaction oxygen species (ROS). In addition, the induction of necrosis rather than apoptosis is very useful in tumor immunity. Based on these results, we believe that administration of ozonated water is a safe and potentially simple adjunct or alternative to existing antineoplastic treatments.

  16. Beneficial effects of the thymic hormone preparation thymostimulin in patients with defects in cell-mediated immunity and chronic purulent rhinosinusitis. A double-blind cross-over trial on improvements in monocyte polarization and clinical effects.

    PubMed Central

    Tas, M; Leezenberg, J A; Drexhage, H A

    1990-01-01

    Twenty patients with chronic purulent rhinosinusitis were treated with TP-1 (Serono; 1 mg/kg body weight), in a double-blind cross-over trial. TP-1 was administered by daily i.m. injections for the first 14 days followed by two injections/week for 6 further weeks. The patients were immunologically special in that they had defects in their cell-mediated immune system. Fourteen showed a decreased chemotactic responsiveness of their peripheral blood monocytes as measured in the polarization assay. This defective function can probably be ascribed to the presence in serum of low molecular weight factors (LMWFs; less than 25 kD). As reported earlier, this factor shows a structural homology to the envelope protein of murine and feline leukaemia virus (P15E). Thirteen patients showed a defective delayed-type hypersensitivity (DTH) skin test reactivity towards candidin and/or streptokinase-streptodornase (Sk/Sd) antigen, 14 had a defective MIF production from their peripheral blood lymphocytes towards candidin, Sk/Sd and/or Haemophilus influenzae antigen. Eighteen patients completed the TP-1 trial and showed clinical improvements: 12 out of 15 were feeling better during TP-1 therapy and the nasal mucosa showed on inspection absent mucopurulent secretion in 13 patients. Positive bacterial culture rates for the nose decreased from 14 out of 16 to five out of 15. Placebo treatment had no significant effects. The clinical improvements were accompanied by a better performance of the cell-mediated immune system; the most significant effects were recorded in the monocyte polarization assay. The suppressive P15E-like LMWFs in serum clearly decreased during TP-1 treatment. In vitro TP-1 neutralized the immunosuppressive effect of the LMWFs. The restoring effects of TP-1 on monocyte polarization and its neutralizing activity of P15E-like LMWFs could explain the beneficial effects of thymic hormone treatment reported in adults with clinical signs of immunodeficiency in the presence of

  17. Antitumor effects in gastrointestinal stromal tumors using photodynamic therapy with a novel glucose-conjugated chlorin.

    PubMed

    Tanaka, Mamoru; Kataoka, Hiromi; Yano, Shigenobu; Ohi, Hiromi; Moriwaki, Kazuhiro; Akashi, Haruo; Taguchi, Takahiro; Hayashi, Noriyuki; Hamano, Shingo; Mori, Yoshinori; Kubota, Eiji; Tanida, Satoshi; Joh, Takashi

    2014-04-01

    Gastrointestinal stromal tumors (GIST) are the most common mesenchymal tumors of the gastrointestinal tract. Except for surgical resection, no effective treatment strategies have been established. Photodynamic therapy (PDT) consists of intravenous administration of a photosensitizer, activated by a specific wavelength of light, which produces reactive oxygen species that directly kill tumor cells. We analyzed the efficacy of PDT using a newly developed photosensitizer, 5,10,15,20-tetrakis [4-[β-d-glucopyranosylthio-2,3,5,6-tetrafluorophenyl]-2,3,[methano[N-methyl] iminomethano] chlorin (H(2)TFPC-SGlc), for the GIST treatment. Various photosensitizers were administered in vitro to GIST (GIST-T1) and fibroblast (WI-38) cells, followed by irradiation, after which cell death was compared. We additionally established xenograft mouse models with GIST-T1 tumors and examined the accumulation and antitumor effects of these photosensitizers in vivo. In vitro, the expression of the glucose transporters GLUT1, GLUT3, and GLUT4, the cellular uptake of H(2)TFPC-SGlc, and apoptosis mediated by PDT with H(2)TFPC-SGlc were significantly higher in GIST-T1 than in WI-38 cells. In vivo, H(2)TFPC-SGlc accumulation was higher in xenograft tumors of GIST-T1 cells than in the adjacent normal tissue, and tumor growth was significantly suppressed following PDT. PDT with novel H(2)TFPC-SGlc is potentially useful for clinical applications about the treatment of GIST.

  18. An evaluation of anti-tumor effect and toxicity of PEGylated ursolic acid liposomes

    NASA Astrophysics Data System (ADS)

    Wang, Qianqian; Zhao, Tingting; Liu, Yanping; Xing, Shanshan; Li, Lei; Gao, Dawei

    2016-02-01

    Therapy of solid tumors mediated by nano-drug delivery has attracted considerable interest. In our previous study, ursolic acid (UA) was successfully encapsulated into PEGylated liposomes. The study aimed to evaluate the tumor inhibition effect and cytotoxicity of the PEGylated UA liposomes by U14 cervical carcinoma-bearing mice. The liposomes were spherical particles with mean particle diameters of 127.2 nm. The tumor inhibition rate of PEGylated UA liposomes was 53.60 % on U14 cervical carcinoma-bearing mice, which was greater than those of the UA solution (18.25 %) and traditional UA liposome groups (40.75 %). The tumor cells apoptosis rate of PEGylated UA liposomes was 25.81 %, which was significantly higher than that of the traditional UA liposomes (13.37 %). Moreover, the kidney and liver did not emerge the pathological changes in UA therapeutic mice by histopathological analysis, while there were significant differences on tumor tissues among three UA formulation groups. The PEGylated UA liposomes exhibited higher anti-tumor activity and lower cytotoxicity, and the main reason was that the coating PEG layer improved UA liposome properties, such as enhancing the stability of liposomes, promoting the effect of slow release, and prolonging the time of blood circulation. This may shed light on the development of PEGylated nano-vehicles.

  19. Antitumor, Antioxidant, and Nitrite Scavenging Effects of Chinese Water Chestnut (Eleocharis dulcis) Peel Flavonoids.

    PubMed

    Zhan, Ge; Pan, Leiqing; Tu, Kang; Jiao, Shunshan

    2016-10-01

    The preparation, quantification, and characterization of flavonoid compounds from Chinese water chestnut peel (CWCP) flavonoid extract and ethyl acetate fraction (EF), n-butanol fraction, and water fraction were studied. Among these, EF showed the maximum free radical levels (IC50 values of 0.36, 0.40, and 0.37 mg/mL for DPPH•, ABTS•(+) , and •OH, respectively), nitrite scavenging effects (IC50 = 1.89 mg/mL), and A549 cell inhibitory activities (IC50 = 776.12 μg/mL) with the highest value of total flavonoid content (TFC, 421.32 mg/g). Moreover, the contents of 8 flavonoids in this fraction were quantified using high-performance liquid chromatography, and fisetin, diosmetin, luteolin, and tectorigenin were the 4 major flavonoids with levels of 31.66, 29.91, 13.69, and 12.41 mg/g, respectively. Luteolin produced a greater inhibition of human lung cancer A549 cells (IC50 = 59.60 μg/mL) than did fisetin, diosmetin, and tectorigenin. Flow cytometry revealed that the cellular mechanisms of luteolin inhibition of A549 cells were achieved via the induction of cell proliferation arrest at G1 phase and apoptosis/necrosis. Our findings suggest that flavonoids are closely associated with antitumor, antioxidant, and nitrite scavenging effects of CWCP.

  20. Ultrasound-targeted HSVtk and Timp3 gene delivery for synergistically enhanced antitumor effects in hepatoma.

    PubMed

    Yu, B-F; Wu, J; Zhang, Y; Sung, H-W; Xie, J; Li, R-K

    2013-05-01

    Cancer gene therapy has great potential for decreasing tumor-induced mortality but has been clinically limited by non-targeted and insufficient gene transfer. We evaluated gene therapy targeting hepatocellular carcinoma (HCC) using the herpes simplex virus thymidine kinase/ganciclovir (HSVtk/GCV) suicide gene system and the tissue inhibitor of metalloproteinase 3 (Timp3) gene. Ultrasound-targeted microbubble destruction (UTMD) targeted gene delivery to the tumor tissue, and the α-fetoprotein promoter targeted HSVtk expression to the HCC cells. Human HepG2 cells transfected with the HSVtk or Timp3 gene demonstrated a reduction in cell viability by >40% compared with the vector control. Cell viability was further inhibited by over 50% with co-transfection of the genes. HepG2 cells were inoculated subcutaneously into athymic mice to induce tumors. UTMD-mediated delivery of HSVtk or Timp3 suppressed tumor growth by >45% and increased survival of tumor-bearing animals (P<0.01 vs vector control). Co-delivery of the genes resulted in a further 30% improvement in tumor suppression and significant extension of animal survival (P<0.01 vs vector control). Targeted gene delivery increased the number of apoptotic cells and decreased the vascular density of the tumors. Targeted co-delivery of the genes synergistically improved the antitumor effects and may provide an effective therapy for HCC.

  1. Synergistic effects of host B7-H4 deficiency and gemcitabine treatment on tumor regression and anti-tumor T cell immunity in a mouse model.

    PubMed

    Leung, Joanne; St-Onge, Philippe; Stagg, John; Suh, Woong-Kyung

    2017-04-01

    B7-H4 (B7x/B7S1), a B7 family inhibitor of T cell activity, is expressed in multiple human cancers and correlates with decreased infiltrating lymphocytes and poor prognosis. In murine models, tumor-expressed B7-H4 enhances tumor growth and reduces T cell immunity, and blockade of tumor-B7-H4 rescues T cell activity and lowers tumor burden. This implicates B7-H4 as a target for cancer immunotherapy, yet limits the efficacy of B7-H4 blockade exclusively to patients with B7-H4+ tumors. Given the expression of B7-H4 on host immune cells, we have previously shown that BALB/c mice lacking host B7-H4 have enhanced anti-tumor profiles, yet similar 4T1 tumor growth relative to control. Given that T cell-mediated immunotherapies work best for tumors presenting tumor-associated neoantigens, we further investigated the function of host B7-H4 in the growth of a more immunogenic derivative, 4T1-12B, which is known to elicit strong anti-tumor CD8 T cell responses due to expression of a surrogate tumor-specific antigen, firefly luciferase. Notably, B7-H4 knockout hosts not only mounted greater tumor-associated anti-tumor T cell responses, but also displayed reduced tumors. Additionally, B7-H4-deficiency synergized with gemcitabine to further inhibit tumor growth, often leading to tumor eradication and the generation of protective T cell immunity. These findings imply that inhibition of host B7-H4 can enhance anti-tumor T cell immunity in immunogenic cancers, and can be combined with other anti-cancer therapies to further reduce tumor burden regardless of tumor-B7-H4 positivity.

  2. Antitumor Effects and Immunomodulating Activities of Phellinus linteus Extract in a CT-26 Cell-Injected Colon Cancer Mouse Model

    PubMed Central

    Hwang, Seung-Lark; Yun, Ik-Jin; Do, Eun-Ju; Lee, Won-Ha; Jung, Young-Mi; Hong, Sung-Chang; Park, Dong-Chan

    2009-01-01

    The antitumor effects of Phellinus linteus extract (Keumsa Linteusan) were investigated in a CT-26 cell-injected colon cancer mouse model. When administered orally (250~1,000 mg/kg body weight), Keumsa Linteusan significantly inhibited the growth of solid colon cancer. The highest dose was highly effective, reducing tumor formation by 26% compared with the control group. The anticomplementary activity of Keumsa Linteusan increased in a dose-dependent manner. Lysosomal enzyme activity of macrophages was increased by 2-fold (100 µg/ml) compared with the control group. Keumsa Linteusan can be regarded as a potent enhancer of the innate immune response, and can be considered as a very promising candidate for antitumor action. PMID:23983521

  3. Immunomodulatory and anti-tumor effects of Nigella glandulifera freyn and sint seeds on ehrlich ascites carcinoma in mouse model

    PubMed Central

    Aikemu, Ainiwaer; Xiaerfuding, Xiadiya; Shiwenhui, Chengyufeng; Abudureyimu, Meiliwan; Maimaitiyiming, Dilinuer

    2013-01-01

    Aim: This study investigated the immunomodulatory and anti-tumor effects of Nigella glandulifera Freyn and Sint seeds (NGS) on Ehrlich ascites carcinoma in a mouse model. Materials and Methods: Kunming mice with transplanted Ehrlich ascites tumor cells (EAC) were treated with NGS by oral administration. On the 11th day after the EAC implant, mouse thymus, liver, spleen and kidney tumors were removed for histopathological analysis. Blood samples were taken for hematological and biochemical analyses. Results: The results indicate that NGS treatment leads to an increase in TNF-α, IL-1β, and IL-2 blood serum levels. Absence of viable EAC and presence of necrotic cells were observed in the tumor tissue of the NGS-treated animals. Conclusions: The study results indicated that a water extract of NGS had the highest anti-tumor effect. Moreover, NGS treatment also showed an increase in the immune system activity. PMID:23929999

  4. Role of tissue factor in the antitumor effect of recombinant human tumor necrosis factor-alpha in mice.

    PubMed

    Nishigaki, F; Miyayasu, K; Tsujimoto, S; Manda, T; Shimomura, K

    1994-01-01

    Recombinant tumor necrosis factor-alpha (rTNF-alpha) inhibited tumor growth of Meth A fibrosarcoma (Meth A) solid tumor in mice, and the antitumor effect of rTNF-alpha was significantly decreased by pretreatment with small doses or rTNF-alpha in mice. In in vitro experiments, incubation of human umbilical vein endothelial cells with rTNF-alpha enhanced procoagulant activity (PCA), which was drastically augmented after an addition of the conditioned medium of Meth A tumor cells. Furthermore, rTNF-alpha-induced PCA was decreased by pretreatment with rTNF-alpha in endothelial cells. This PCA was completely blocked after the addition of anti-human tissue factor (TF) murine monoclonal antibody. These results imply that in vivo antitumor effects of rTNF-alpha are mediated by expression of TF in endothelial cells, which is augmented by tumor released factor(s).

  5. Evaluation of antitumor, immunomodulatory and free radical scavenging effects of a new herbal prescription seaweed complex preparation

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Shao, Changlun; Kong, Wenwen; Fang, Yuchun; Wang, Changyun

    2013-09-01

    Seaweed Complex Preparation (SCP) is a clinical traditional Chinese medicine preparation which is composed of seven traditional Chinese herbs, and it has been used for treatment of lung cancer, liver cancer and digestive cancer. However, little information is available about the pharmacodynamic basis. The antitumor, immunomodulatory and free radical scavenging effects of SCP were evaluated in this study. Transplanted tumor in vivo method was used to determine the antitumor effect. The effects on splenocyte proliferation and phagocytosis of macrophages in tumor-bearing mice were measured by the MTT method and the phagocytizing cock red blood cell (CRBC) method respectively. The scavenging activities of SCP on DPPH and hydroxyl radicals in vitro were investigated. It was found that the medium-dose and high-dose of SCP could significantly inhibit the growth of transplanted hepatic tumor of murine hepatocarcinoma cell line H22, and promote proliferation of splenocytes and phagocytosis of macrophages. SCP possessed noticeable scavenging activities on DPPH and hydroxyl radicals. The antitumor effects of SCP might be achieved by improving immune system and scavenging free radicals, which is in accordance with the viewpoint of traditional Chinese medicine in promoting the body resistance and eliminating pathogenic factors for cancer treatment.

  6. Potassium increases the antitumor effects of ascorbic acid in breast cancer cell lines in vitro.

    PubMed

    Frajese, Giovanni Vanni; Benvenuto, Monica; Fantini, Massimo; Ambrosin, Elena; Sacchetti, Pamela; Masuelli, Laura; Giganti, Maria Gabriella; Modesti, Andrea; Bei, Roberto

    2016-06-01

    Ascorbic acid (A) has been demonstrated to exhibit anti-cancer activity in association with chemotherapeutic agents. Potassium (K) is a regulator of cellular proliferation. In the present study, the biological effects of A and K bicarbonate, alone or in combination (A+K), on breast cancer cell lines were evaluated. The survival of cancer cells was determined by sulforhodamine B cell proliferation assay, while analysis of the cell cycle distribution was conducted via fluorescence-activated cell sorting. In addition, the expression of signaling proteins was analyzed upon treatment. The results indicated that there was a heterogeneous response of the different cell lines to A and K, and the best effects were achieved by A+K and A treatment. The interaction between A+K indicated an additive or synergistic effect. In addition, A+K increased the percentage of cells in the sub-G1 phase of the cell cycle, and was the most effective treatment in activating the degradation of poly(adenosine diphosphate-ribose) polymerase-1. In the breast cancer cell line MCF-7, A+K induced the appearance of the 18 kDa isoform of B-cell lymphoma-2-associated X protein (Bax), which is a more potent inducer of apoptosis than the full-length Bax-p21. The effects of A and K on the phosphorylation of extracellular signal-regulated kinase (ERK)1 and ERK2 were heterogeneous. In addition, treatment with K, A and A+K inhibited the expression of nuclear factor-κB. Overall, the results of the present study indicated that K potentiated the anti-tumoral effects of A in breast cancer cells in vitro.

  7. Potassium increases the antitumor effects of ascorbic acid in breast cancer cell lines in vitro

    PubMed Central

    FRAJESE, GIOVANNI VANNI; BENVENUTO, MONICA; FANTINI, MASSIMO; AMBROSIN, ELENA; SACCHETTI, PAMELA; MASUELLI, LAURA; GIGANTI, MARIA GABRIELLA; MODESTI, ANDREA; BEI, ROBERTO

    2016-01-01

    Ascorbic acid (A) has been demonstrated to exhibit anti-cancer activity in association with chemotherapeutic agents. Potassium (K) is a regulator of cellular proliferation. In the present study, the biological effects of A and K bicarbonate, alone or in combination (A+K), on breast cancer cell lines were evaluated. The survival of cancer cells was determined by sulforhodamine B cell proliferation assay, while analysis of the cell cycle distribution was conducted via fluorescence-activated cell sorting. In addition, the expression of signaling proteins was analyzed upon treatment. The results indicated that there was a heterogeneous response of the different cell lines to A and K, and the best effects were achieved by A+K and A treatment. The interaction between A+K indicated an additive or synergistic effect. In addition, A+K increased the percentage of cells in the sub-G1 phase of the cell cycle, and was the most effective treatment in activating the degradation of poly(adenosine diphosphate-ribose) polymerase-1. In the breast cancer cell line MCF-7, A+K induced the appearance of the 18 kDa isoform of B-cell lymphoma-2-associated X protein (Bax), which is a more potent inducer of apoptosis than the full-length Bax-p21. The effects of A and K on the phosphorylation of extracellular signal-regulated kinase (ERK)1 and ERK2 were heterogeneous. In addition, treatment with K, A and A+K inhibited the expression of nuclear factor-κB. Overall, the results of the present study indicated that K potentiated the anti-tumoral effects of A in breast cancer cells in vitro. PMID:27313770

  8. Controlled Release and Antitumor Effect of Pluronic F127 Mixed with Cisplatin in a Rabbit Model

    SciTech Connect

    Sonoda, Akinaga Nitta, Norihisa; Ohta, Shinich; Nitta-Seko, Ayumi; Morikawa, Shigehiro; Tabata, Yasuhiko; Takahashi, Masashi; Murata, Kiyoshi

    2010-02-15

    The purpose of this study was to evaluate pluronic F127 for the controlled release of cisplatin in a rabbit model. Pluronic F127 becomes liquid at temperatures <25{sup o}C and converts to a gelatinous state at temperatures between 25 and 60{sup o}C. Six Japanese white rabbits were injected with pluronic + cisplatin (n = 3, renal group A) or saline + cisplatin (n = 3, renal group B) to measure the platinum concentration in kidneys. Another 25 rabbits with VX2 liver tumors were divided into five equal groups. They were injected with saline, saline + cisplatin, iodized oil + cisplatin, pluronic alone, or pluronic + cisplatin and labeled as liver groups A, B, C, D, and E, respectively. The antitumor effect of pluronic was then assessed. In the presence of pluronic, the platinum concentration in the kidneys of rabbits remained relatively high. In animals with liver tumors, the delivery of pluronic + cisplatin produced higher tumor reduction rates (P < 0.05) than in the other groups, without apparent damage to normal liver tissue. We conclude that pluronic is useful for the controlled release of cisplatin in a rabbit model.

  9. Tumor vessel-injuring ability improves antitumor effect of cytotoxic T lymphocytes in adoptive immunotherapy

    PubMed Central

    Kanagawa, N; Yanagawa, T; Nakagawa, T; Okada, N; Nakagawa, S

    2013-01-01

    Angiogenesis is required for normal physiologic processes, but it is also involved in tumor growth, progression and metastasis. Here, we report the development of an immune-based antiangiogenic strategy based on the generation of T lymphocytes that possess killing specificity for cells expressing vascular endothelial growth factor receptor 2 (VEGFR2). To target VEGFR2-expressing cells, we engineered cytotoxic T lymphocyte (CTL) expressing chimeric T-cell receptors (cTCR–CTL) comprised of a single-chain variable fragment (scFv) against VEGFR2 linked to an intracellular signaling sequence derived from the CD3ζ chain of the TCR and CD28 by retroviral gene transduction methods. The cTCR–CTL exhibited efficient killing specificity against VEGFR2 and a tumor-targeting function in vitro and in vivo. Reflecting such abilities, we confirmed that the cTCR–CTL strongly inhibited the growth of a variety of syngeneic tumors after adoptive transfer into tumor-bearing mice without consequent damage to normal tissue. In addition, CTL expressing both cTCR and tumor-specific TCR induced complete tumor regression due to enhanced tumor infiltration by the CTL and long-term antigen-specific function. These findings provide evidence that the tumor vessel-injuring ability improved the antitumor effect of CTLs in adoptive immunotherapy for a broad range of cancers by inducing immune-mediated destruction of the tumor neovasculature. PMID:23175243

  10. Antitumor effect of combined NAMPT and CD73 inhibition in an ovarian cancer model.

    PubMed

    Sociali, Giovanna; Raffaghello, Lizzia; Magnone, Mirko; Zamporlini, Federica; Emionite, Laura; Sturla, Laura; Bianchi, Giovanna; Vigliarolo, Tiziana; Nahimana, Aimable; Nencioni, Alessio; Raffaelli, Nadia; Bruzzone, Santina

    2016-01-19

    Nicotinamide phosphoribosyltransferase (NAMPT) is a crucial enzyme in the biosynthesis of intracellular NAD+. NAMPT inhibitors have potent anticancer activity in several preclinical models by depleting NAD+ and ATP levels. Recently, we demonstrated that CD73 enables the utilization of extracellular NAD+/nicotinamide mononucleotide (NMN) by converting them to Nicotinamide riboside (NR), which can cross the plasmamembrane and fuel intracellular NAD+ biosynthesis in human cells. These processes are herein confirmed to also occur in a human ovarian carcinoma cell line (OVCAR-3), by means of CD73 or NRK1 specific silencing. Next, we investigated the anti-tumor activity of the simultaneous inhibition of NAMPT (with FK866) and CD73 (with α, β-methylene adenosine 5'-diphosphate, APCP), in an in vivo human ovarian carcinoma model. Interestingly, the combined therapy was found to significantly decrease intratumor NAD+, NMN and ATP levels, compared with single treatments. In addition, the concentration of these nucleotides in ascitic exudates was more remarkably reduced in animals treated with both FK866 and APCP compared with single treatments. Importantly, tumors treated with FK866 in combination with APCP contained a statistically significant lower proportion of Ki67 positive proliferating cells and a higher percentage of necrotic area. Finally, a slight but significant increase in animal survival in response to the combined therapy, compared to the single agents, could be demonstrated. Our results indicate that the pharmacological inhibition of CD73 enzymatic activity could be considered as a means to potentiate the anti-cancer effects of NAMPT inhibitors.

  11. TCRγ4δ1-Engineered αβT Cells Exhibit Effective Antitumor Activity

    PubMed Central

    He, Kangxia; You, Hongqin; Li, Yuxia; Cui, Lianxian; Zhang, Jianmin; He, Wei

    2016-01-01

    T cell engineering with T cell receptors (TCRs) specific for tumors plays an important role in adoptive T cell transfer (ATC) therapy for cancer. Here, we present a novel strategy to redirect peripheral blood-derived αβT cells against tumors via TCRγ4δ1 gene transduction. The broad-spectrum antitumor activity of TCRδ1 cells in innate immunity is dependent on CDR3δ1. TCRγ4δ1-engineered αβT cells were prepared by lentiviral transduction and characterized by analyzing in vitro and in vivo cytotoxicity to tumors, ability of proliferation and cytokine production, and potential role in autoimmunity. Results show that TCRγ4δ1 genes were transduced to approximately 36% of polyclonal αβT cells. TCRγ4δ1-engineered αβT cells exhibited effective in vitro TCRγδ-dependent cytotoxicity against various tumor cells via the perforin-granzyme pathway. They also showed a strong proliferative capacity and robust cytokine production. TCRγ4δ1-engineered αβT cells neither expressed mixed TCR dimers nor bound/killed normal cells in vitro. More important, adoptive transfer of TCRγ4δ1-engineered αβT cells into nude mice bearing a human HepG2 cell line significantly suppressed tumor growth. Our results demonstrate a novel role for TCRγ4δ1 in gene therapy and ATC for cancer. PMID:27463149

  12. Design, Synthesis of Novel Platinum(II) Glycoconjugates, and Evaluation of Their Antitumor Effects.

    PubMed

    Han, Jianbin; Gao, Xiangqian; Liu, Ran; Yang, Jinna; Zhang, Menghua; Mi, Yi; Shi, Ying; Gao, Qingzhi

    2016-06-01

    A new series of sugar-conjugated (trans-R, R-cyclohexane-1, 2-diamine)-2-halo-malonato-platinum(II) complexes were designed and synthesized to target tumor-specific glucose transporters (GLUTs). The water solubility of the sugar-conjugated platinum (II) complexes was greatly improved by average of 570-fold, 33-fold, and 94-fold, respectively, compared to cisplatin (1.0 mg/mL), carboplatin (17.1 mg/mL), and the newest generation of clinical drug oxaliplatin (6.0 mg/mL). Despite the high water solubility, the platinum(II) glycoconjugates exhibited a notable increase in cytotoxicity by a margin of 1.5- to 6.0-fold in six different human cancer cell lines with respect to oxaliplatin. The potential GLUT1 transportability of the complexes was investigated through a molecular docking study and was confirmed with GLUT1 inhibitor-mediated cytotoxicity dependency evaluation. The results showed that the sugar-conjugated platinum(II) complexes can be recognized by the glucose recognition binding site of GLUT1 and their cell killing effect depends highly on the GLUT1 inhibitor, quercetin. The research presenting a prospective concept for targeted therapy anticancer drug design, and with the analysis of the synthesis, water solubility, antitumor activity, and the transportability of the platinum(II) glycoconjugates, this study provides fundamental data supporting the inherent potential of these designed conjugates as lead compounds for GLUT-mediated tumor targeting.

  13. PKC/MEK inhibitors suppress oxaliplatin-induced neuropathy and potentiate the antitumor effects.

    PubMed

    Tsubaki, Masanobu; Takeda, Tomoya; Tani, Tadahumi; Shimaoka, Hirotaka; Suzuyama, Naohiro; Sakamoto, Kotaro; Fujita, Arisa; Ogawa, Naoki; Itoh, Tatsuki; Imano, Motohiro; Funakami, Yoshinori; Ichida, Seiji; Satou, Takao; Nishida, Shozo

    2015-07-01

    Oxaliplatin is a key drug commonly used in colorectal cancer treatment. Despite high clinical efficacy, its therapeutic application is limited by common, dose-limiting occurrence of neuropathy. As usual symptomatic neuropathy treatments fail to improve the patients' condition, there is an urgent need to advance our understanding of the pathogenesis of neuropathy to propose effective therapy and ensure adequate pain management. Oxaliplatin-induced neuropathy was recently reported to be associated with protein kinase C (PKC) activation. It is unclear, however, whether PKC inhibition can prevent neuropathy. In our current studies, we found that a PKC inhibitor, tamoxifen, inhibited oxaliplatin-induced neuropathy via the PKC/extracellular signal-regulated kinase (ERK)/c-Fos pathway in lumbar spinal cords (lumbar segments 4-6). Additionally, tamoxifen was shown to act in synergy with oxaliplatin to inhibit growth in tumor cells-implanted mice. Moreover, mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, PD0325901, suppressed oxaliplatin-induced neuropathy and enhanced oxaliplatin efficacy. Our results indicate that oxaliplatin-induced neuropathy is associated with PKC/ERK/c-Fos pathway in lumbar spinal cord. Additionally, we demonstrate that disruption of this pathway by PKC and MEK inhibitors suppresses oxaliplatin-induced neuropathy, thereby suggesting that PKC and MEK inhibitors may be therapeutically useful in preventing oxaliplatin-induced neuropathy and could aid in combination antitumor pharmacotherapy.

  14. Anti-tumor effects of Astragalus on hepatocellular carcinoma in vivo

    PubMed Central

    Li, Lian-Kun; Kuang, Wen-Juan; Huang, Yun-Feng; Xie, Han-Hong; Chen, Guo; Zhou, Qing-Chun; Wang, Bin-Rong; Wan, Li-Hong

    2012-01-01

    Objective: The objective of the present study is to investigate the anti-proliferation activity of Astragalus on human hepatocellular carcinoma (HCC) cells and its mechanism. Materials and Methods: Hepatic cancer H22 bearing mice were used to study the anti-hepatocarcinoma activity of Astragalus in vivo. The growth curve and inhibitory rate of tumor growth were measured. Cell apoptosis of each group was measured by flow cytometry (FCM). Protein expression of Bax and Bcl-2 were analyzed by immunohistochemistry (IHC). The Statistical Package for Social Sciences version 13.0 (SPSS Inc, Chicago, IL) was used for standard statistical analysis including one-way ANOVA and Student's t-test. A value of P<0.05 was considered to be statistically significant. Results: Astragalus significantly inhibited the growth of H22 carcinoma, with an inhibitory rate of 17.28-52.36%. FCM and immunohistochemical assay show that the cell apoptosis rate and protein expression of Bax and Bax/Bcl-2 ratio of H22 transplanted tumor in Astragalus treated group were significantly higher than the control group (P<0.05). The protein expression of Bcl-2 was significantly lower than control (P<0.05). Conclusion: The results of the present study suggest that Astragalus has significant anti-tumor effect in vivo in inducing apoptosis of H22 tumor cells by promoting protein expression of Bax, decreasing protein expression of Bcl-2 gene, and markedly increasing the Bax/Bcl-2 ratio. PMID:22345875

  15. Antitumor effects of calgranulin B internalized in human colon cancer cells

    PubMed Central

    Yoo, Byong Chul; Ku, Ja-Lok; Shin, Young-Kyoung; Cho, Jae Youl; Kim, Minjae; Kwon, Myung-Hee; Goh, Sung Ho; Chang, Hee Jin; Oh, Jae Hwan

    2016-01-01

    Calgranulin B is a small, calcium-binding protein expressed in neutrophils that is secreted into the tumor microenvironment in cancer cases. We previously showed that calgranulin B levels are increased in the stools of colorectal cancer patients. In patient tumor tissues, calgranulin B protein levels correlated with the presence of stromal inflammatory cells surrounding tumor cells, and calgranulin B promoter methylation was observed in both paired human tissues and colon cancer cell lines. Cell lines did not express calgranulin B, but in vitro studies showed that colon cancer cells internalized extracellular calgranulin B, while other types of cancer cells did not. Calgranulin B internalization led to reduced cell proliferation and increased apoptotic cell death. AKT and ERK signals were also increased after calgranulin B treatment, as were p53, β-catenin, E-cadherin and cleaved caspase-3 levels. Additionally, a human protein microarray identified aurora A kinase as a calgranulin B binding partner, and binding inhibited aurora A kinase activity in a dose-dependent manner. Our findings demonstrate the antitumor effects of calgranulin B in the inflammatory microenvironment and suggest that calgranulin B could be potentially efficacious in the treatment of colon cancer. PMID:26933915

  16. Antitumor Effects of Fucoidan on Human Colon Cancer Cells via Activation of Akt Signaling.

    PubMed

    Han, Yong-Seok; Lee, Jun Hee; Lee, Sang Hun

    2015-05-01

    We identified a novel Akt signaling mechanism that mediates fucoidan-induced suppression of human colon cancer cell (HT29) proliferation and anticancer effects. Fucoidan treatment significantly inhibited growth, induced G1-phase-associated upregulation of p21WAF1 expression, and suppressed cyclin and cyclin-dependent kinase expression in HT29 colon cancer cells. Additionally, fucoidan treatment activated the Akt signaling pathway, which was inhibited by treatment with an Akt inhibitor. The inhibition of Akt activation reversed the fucoidan-induced decrease in cell proliferation, the induction of G1-phase-associated p21WAF1 expression, and the reduction in cell cycle regulatory protein expression. Intraperitoneal injection of fucoidan reduced tumor volume; this enhanced antitumor efficacy was associated with induction of apoptosis and decreased angiogenesis. These data suggest that the activation of Akt signaling is involved in the growth inhibition of colon cancer cells treated with fucoidan. Thus, fucoidan may serve as a potential therapeutic agent for colon cancer.

  17. Targeting STAT3 in adoptively transferred T cells promotes their in vivo expansion and antitumor effects

    PubMed Central

    Kujawski, Maciej; Zhang, Chunyan; Herrmann, Andreas; Reckamp, Karen; Scuto, Anna; Jensen, Michael; Deng, Jiehui; Forman, Stephen; Figlin, Robert; Yu, Hua

    2010-01-01

    Adoptive cell therapy with engineered T cells to improve natural immune response and antitumor functions has shown promise for treating cancer. However, the requirement for extensive ex vivo manipulation of T cells and the immunosuppressive effects of the tumor microenvironment limit this therapeutic modality. In the present study, we investigated the possibility to circumvent these limitations by engineering Stat3-deficient CD8+ T cells or by targeting Stat3 in the tumor microenvironment. We show that ablating Stat3 in CD8+ T cells prior to their transfer allows their efficient tumor infiltration and robust proliferation, resulting in increased tumor antigen-specific T cell activity and tumor growth inhibition. For potential clinical translation, we combined adoptive T cell therapy with an FDA-approved tyrosine kinase inhibitor, sunitinib, in renal cell carcinoma and melanoma tumor models. Sunitinib inhibited Stat3 in dendritic cells and T cells, reduced conversion of transferred Foxp3− T cells to tumor-associated T regulatory cells while increasing transferred CD8+ T cell infiltration and activation at the tumor site, leading to inhibition of primary tumor growth. These data demonstrate that adoptively transferred T cells can be expanded and activated in vivo either by engineering Stat3 silenced T cells or by targeting Stat3 systemically with small-molecule inhibitors. PMID:21118964

  18. Anti-tumor effects of dehydroaltenusin, a specific inhibitor of mammalian DNA polymerase {alpha}

    SciTech Connect

    Maeda, Naoki; Kokai, Yasuo; Ohtani, Seiji; Sahara, Hiroeki; Kuriyama, Isoko; Kamisuki, Shinji; Takahashi, Shunya; Sakaguchi, Kengo; Sugawara, Fumio; Yoshida, Hiromi; Sato, Noriyuki; Mizushina, Yoshiyuki . E-mail: mizushin@nutr.kobegakuin.ac.jp

    2007-01-12

    In the screening of selective inhibitors of eukaryotic DNA polymerases (pols), dehydroaltenusin was found to be an inhibitor of pol {alpha} from a fungus (Alternaria tennuis). We succeeded in chemically synthesizing dehydroaltenusin, and the compound inhibited only mammalian pol {alpha} with IC{sub 50} value of 0.5 {mu}M, and did not influence the activities of other replicative pols such as pols {delta} and {epsilon}, but also showed no effect on pol {alpha} activity from another vertebrate, fish, or from a plant species. Dehydroaltenusin also had no influence on the other pols and DNA metabolic enzymes tested. The compound also inhibited the proliferation of human cancer cells with LD{sub 50} values of 38.0-44.4 {mu}M. In an in vivo anti-tumor assay on nude mice bearing solid tumors of HeLa cells, dehydroaltenusin was shown to be a promising suppressor of solid tumors. Histopathological examination revealed that increased tumor necrosis and decreased mitotic index were apparently detected by the compound in vivo. Therefore, dehydroaltenusin could be of interest as not only a mammalian pol {alpha}-specific inhibitor, but also as a candidate drug for anti-cancer treatment.

  19. Oyster (Crassostrea gigas) hydrolysates produced on a plant scale have antitumor activity and immunostimulating effects in BALB/c mice.

    PubMed

    Wang, Yu-Kai; He, Hai-Lun; Wang, Guo-Fan; Wu, Hao; Zhou, Bai-Cheng; Chen, Xiu-Lan; Zhang, Yu-Zhong

    2010-02-02

    Oyster extracts have been reported to have many bioactive peptides. But the function of oyster peptides produced by proteolysis is still unknown. In this study, the oligopeptide-enriched hydrolysates from oyster (Crassostrea gigas) were produced using the protease from Bacillus sp. SM98011 at laboratory level, and scaled up to pilot (100 L) and plant (1,000 L) levels with the same conditions. And the antitumor activity and immunostimulating effects of the oyster hydrolysates in BALB/c mice were investigated. The growth of transplantable sarcoma-S180 was obviously inhibited in a dose-dependent manner in BALB/c mice given the oyster hydrolysates. Mice receiving 0.25, 0.5 and 1 mg/g of body weight by oral gavage had 6.8%, 30.6% and 48% less tumor growth, respectively. Concurrently, the weight coefficients of the thymus and the spleen, the activity of natural killer (NK) cells, the spleen proliferation of lymphocytes and the phagocytic rate of macrophages in S180-bearing mice significantly increased after administration of the oyster hydrolysates. These results demonstrated that oyster hydrolysates produced strong immunostimulating effects in mice, which might result in its antitumor activity. The antitumor and immunostimulating effects of oyster hydrolysates prepared in this study reveal its potential for tumor therapy and as a dietary supplement with immunostimulatory activity.

  20. Anti-tumor effects of genetic vaccines against HPV major oncogenes.

    PubMed

    Cordeiro, Marcelo Nazário; Paolini, Francesca; Massa, Silvia; Curzio, Gianfranca; Illiano, Elena; Duarte Silva, Anna Jéssica; Franconi, Rosella; Bissa, Massimiliano; Morghen, Carlo De Giuli; de Freitas, Antonio Carlos; Venuti, Aldo

    2015-01-01

    Expression of HPV E5, E6 and E7 oncogenes are likely to overcome the regulation of cell proliferation and to escape immunological control, allowing uncontrolled growth and providing the potential for malignant transformation. Thus, their three oncogenic products may represent ideal target antigens for immunotherapeutic strategies. In previous attempts, we demonstrated that genetic vaccines against recombinant HPV16 E7 antigen were able to affect the tumor growth in a pre-clinical mouse model. To improve this anti-HPV strategy we developed a novel approach in which we explored the effects of E5-based genetic immunization. We designed novel HPV16 E5 genetic vaccines based on two different gene versions: whole E5 gene and E5Multi. The last one is a long multi epitope gene designed as a harmless E5 version. Both E5 genes were codon optimized for mammalian expression. In addition, we demonstrated that HPV 16 E5 oncogene is expressed in C3 mouse cell line making it an elective model for the study of E5 based vaccine. In this mouse model the immunological and biological activity of the E5 vaccines were assessed in parallel with the activity of anti-E7 and anti-E6 vaccines already reported to be effective in an immunotherapeutic setting. These E7 and E6 vaccines were made with mutated oncogenes, the E7GGG mutant that does not bind pRb and the E6F47R mutant that is less effective in inhibiting p53, respectively. Results confirmed the immunological activity of genetic formulations based on attenuated HPV16 oncogenes and showed that E5-based genetic immunization provided notable anti-tumor effects.

  1. Antitumor effects of a sirtuin inhibitor, tenovin-6, against gastric cancer cells via death receptor 5 up-regulation.

    PubMed

    Hirai, Sachiko; Endo, Shinji; Saito, Rie; Hirose, Mitsuaki; Ueno, Takunori; Suzuki, Hideo; Yamato, Kenji; Abei, Masato; Hyodo, Ichinosuke

    2014-01-01

    Up-regulated sirtuin 1 (SIRT1), an NAD+-dependent class III histone deacetylase, deacetylates p53 and inhibits its transcriptional activity, leading to cell survival. SIRT1 overexpression has been reported to predict poor survival in some malignancies, including gastric cancer. However, the antitumor effect of SIRT1 inhibition remains elusive in gastric cancer. Here, we investigated the antitumor mechanisms of a sirtuin inhibitor, tenovin-6, in seven human gastric cancer cell lines (four cell lines with wild-type TP53, two with mutant-type TP53, and one with null TP53). Interestingly, tenovin-6 induced apoptosis in all cell lines, not only those with wild-type TP53, but also mutant-type and null versions, accompanied by up-regulation of death receptor 5 (DR5). In the KatoIII cell line (TP53-null), DR5 silencing markedly attenuated tenovin-6-induced apoptosis, suggesting that the pivotal mechanism behind its antitumor effects is based on activation of the death receptor signal pathway. Although endoplasmic reticulum stress caused by sirtuin inhibitors was reported to induce DR5 up-regulation in other cancer cell lines, we could not find marked activation of its related molecules, such as ATF6, PERK, and CHOP, in gastric cancer cells treated with tenovin-6. Tenovin-6 in combination with docetaxel or SN-38 exerted a slight to moderate synergistic cytotoxicity against gastric cancer cells. In conclusion, tenovin-6 has potent antitumor activity against human gastric cancer cells via DR5 up-regulation. Our results should be helpful for the future clinical development of sirtuin inhibitors.

  2. Effect of the antitumoral alkylating agent 3-bromopyruvate on mitochondrial respiration: role of mitochondrially bound hexokinase.

    PubMed

    Rodrigues-Ferreira, Clara; da Silva, Ana Paula Pereira; Galina, Antonio

    2012-02-01

    The alkylating agent 3-Bromopyruvate (3-BrPA) has been used as an anti-tumoral drug due to its anti-proliferative property in hepatomas cells. This propriety is believed to disturb glycolysis and respiration, which leads to a decreased rate of ATP synthesis. In this study, we evaluated the effects of the alkylating agent 3-BrPA on the respiratory states and the metabolic steps of the mitochondria of mice liver, brain and in human hepatocarcinoma cell line HepG2. The mitochondrial membrane potential (ΔΨ(m)), O(2) consumption and dehydrogenase activities were rapidly dissipated/or inhibited by 3-BrPA in respiration medium containing ADP and succinate as respiratory substrate. 3-BrPA inhibition was reverted by reduced glutathione (GSH). Respiration induced by yeast soluble hexokinase (HK) was rapidly inhibited by 3-BrPA. Similar results were observed using mice brain mitochondria that present HK naturally bound to the outer mitochondrial membrane. When the adenine nucleotide transporter (ANT) was blocked by the carboxyatractiloside, the 3-BrPA effect was significantly delayed. In permeabilized human hepatoma HepG2 cells that present HK type II bound to mitochondria (mt-HK II), the inhibiting effect occurred faster when the endogenous HK activity was activated by 2-deoxyglucose (2-DOG). Inhibition of mt-HK II by glucose-6-phosphate retards the mitochondria to react with 3-BrPA. The HK activities recovered in HepG2 cells treated or not with 3-BrPA were practically the same. These results suggest that mitochondrially bound HK supporting the ADP/ATP exchange activity levels facilitates the 3-BrPA inhibition reaction in tumors mitochondria by a proton motive force-dependent dynamic equilibrium between sensitive and less sensitive SDH in the electron transport system.

  3. Antitumor effects and molecular mechanisms of ponatinib on endometrial cancer cells harboring activating FGFR2 mutations

    PubMed Central

    Kim, Do-Hee; Kwak, Yeonui; Kim, Nam Doo; Sim, Taebo

    2016-01-01

    ABSTRACT Aberrant mutational activation of FGFR2 is associated with endometrial cancers (ECs). AP24534 (ponatinib) currently undergoing clinical trials has been known to be an orally available multi-targeted tyrosine kinase inhibitor. Our biochemical kinase assay showed that AP24534 is potent against wild-type FGFR1-4 and 5 mutant FGFRs (V561M-FGFR1, N549H-FGFR2, K650E-FGFR3, G697C-FGFR3, N535K-FGFR4) and possesses the strongest kinase-inhibitory activity on N549H-FGFR2 (IC50 of 0.5 nM) among all FGFRs tested. We therefore investigated the effects of AP24534 on endometrial cancer cells harboring activating FGFR2 mutations and explored the underlying molecular mechanisms. AP24534 significantly inhibited the proliferation of endometrial cancer cells bearing activating FGFR2 mutations (N549K, K310R/N549K, S252W) and mainly induced G1/S cell cycle arrest leading to apoptosis. AP24534 also diminished the kinase activity of immunoprecipitated FGFR2 derived from MFE-296 and MFE-280 cells and reduced the phosphorylation of FGFR2 and FRS2 on MFE-296 and AN3CA cells. AP24534 caused substantial reductions in ERK phosphorylation, PLCγ signaling and STAT5 signal transduction on ECs bearing FGFR2 activating mutations. Akt signaling pathway was also deactivated by AP24534. AP24534 causes the chemotherapeutic effect through mainly the blockade of ERK, PLCγ and STAT5 signal transduction on ECs. Moreover, AP24534 inhibited migration and invasion of endometrial cancer cells with FGFR2 mutations. In addition, AP24534 significantly blocked anchorage-independent growth of endometrial cancer cells. We, for the first time, report the molecular mechanisms by which AP24534 exerts antitumor effects on ECs with FGFR2 activating mutations, which would provide mechanistic insight into ongoing clinical investigations of AP24534 for ECs. PMID:26574622

  4. Promotion of initial anti-tumor effect via polydopamine modified doxorubicin-loaded electrospun fibrous membranes

    PubMed Central

    Yuan, Ziming; Zhao, Xin; Wang, Xiaohu; Qiu, Wangwang; Chen, Xinliang; Zheng, Qi; Cui, Wenguo

    2014-01-01

    Drug-loaded electrospun PLLA membranes are not conducive to adhesion between materials and tissues due to the strong hydrophobicity of PLLA, which possibly attenuate the drugs’ effect loaded on the materials. In the present work, we developed a facile method to improve the hydrophilicity of doxorubicin (DOX)-loaded electrospun PLLA fibrous membranes, which could enhance the anti-tumor effect at the early stage after implantation. A mussel protein, polydopamine (PDA), could be easily grafted on the surface of hydrophobic DOX-loaded electrospun PLLA membranes (PLLA-DOX/pDA) in water solution. The morphology analysis of PLLA-DOX/pDA fibers displayed that though the fiber diameter was slightly swollen, they still maintained a 3D fibrous structure, and the XPS analysis certified that pDA had successfully been grafted onto the surface of the fibers. The results of surface wettability analysis showed that the contact angle decreased from 136.7° to 0° after grafting. In vitro MTT assay showed that the cytotoxicity of PLLA-DOX/pDA fibers was the strongest, and the stereologic cell counting assay demonstrated that the adhesiveness of PLLA/pDA fiber was significantly better than PLLA fiber. In vivo tumor-bearing mice displayed that, after one week of implantation, the tumor apoptosis and necrosis of PLLA-DOX/pDA fibers were the most obvious from histopathology and TUNEL assay. The caspase-3 activity of PLLA-DOX/pDA group was the highest using biochemical techniques, and the Bax: Bcl-2 ratio increased significantly in PLLA-DOX/pDA group through qRT-PCR analysis. All the results demonstrated that pDA can improve the affinity of the electrospun PLLA membranes and enhance the drug effect on tumors. PMID:25337186

  5. Doxorubicin loaded silica nanorattles actively seek tumors with improved anti-tumor effects

    NASA Astrophysics Data System (ADS)

    Gao, Fuping; Li, Linlin; Liu, Tianlong; Hao, Nanjing; Liu, Huiyu; Tan, Longfei; Li, Hongbo; Huang, Xinglu; Peng, Bo; Yan, Chuanmiao; Yang, Liuqing; Wu, Xiaoli; Chen, Dong; Tang, Fangqiong

    2012-05-01

    Silica nanorattles (SNs) have proven to be promising vehicles for drug delivery. In order to further enhance efficacy and minimize adverse effects, active targeted delivery to tumors is necessary. In this work, SNs modified with a tumor specific targeting ligand, folic acid (FA), was used as carrier of doxorubicin (DOX) (DOX-FA-SNs). Drug loading, cytotoxicity and cellular uptake of DOX-FA-SNs in vitro in human cervical carcinoma cells (HeLa cells) were evaluated. DOX-FA-SNs showed a higher cytotoxicity in human cervical carcinoma cells (HeLa cells) than DOX loaded carboxyl (-COOH) and poly(ethylene glycol) (PEG) modified SNs (DOX-COOH-SNs and DOX-PEG-SNs, respectively). However, DOX-FA-SNs showed lower cytotoxicity in folate receptor negative normal mouse fibroblast cells (L929 cells) compared with free DOX. In vivo tumor-targeted fluorescence imaging indicated specific tumor targeting and uptake of FA-SNs in nude mice bearing subcutaneous HeLa cell-derived xenograft tumors. In vivo anti-tumor experiments demonstrated that DOX-FA-SNs (10 mg kg-1 of DOX) significantly regressed the tumor growth and reduced toxicity compared with free DOX. These results have great significance in developing and optimizing SNs as effective intracellular delivery and specific tumor targeting vehicles.Silica nanorattles (SNs) have proven to be promising vehicles for drug delivery. In order to further enhance efficacy and minimize adverse effects, active targeted delivery to tumors is necessary. In this work, SNs modified with a tumor specific targeting ligand, folic acid (FA), was used as carrier of doxorubicin (DOX) (DOX-FA-SNs). Drug loading, cytotoxicity and cellular uptake of DOX-FA-SNs in vitro in human cervical carcinoma cells (HeLa cells) were evaluated. DOX-FA-SNs showed a higher cytotoxicity in human cervical carcinoma cells (HeLa cells) than DOX loaded carboxyl (-COOH) and poly(ethylene glycol) (PEG) modified SNs (DOX-COOH-SNs and DOX-PEG-SNs, respectively). However, DOX

  6. Anti-tumor effects of the Notch pathway in gastrointestinal stromal tumors.

    PubMed

    Dumont, Amaury G; Yang, Yanwen; Reynoso, David; Katz, Daniela; Trent, Jonathan C; Hughes, Dennis P

    2012-09-01

    Gastrointestinal stromal tumors (GISTs) are driven by gain-of-function mutations of KIT or PDGFRa. The introduction of imatinib has significantly extended survival for patients. However, most patients develop resistances. Notch signaling is a conserved developmental pathway known to play a critical role in the development of several cancers, functioning as a tumor promoter or a tumor suppressor. Given that the normal progenitor cell for GIST, the interstitial cell of Cajal, has characteristics similar to those of cells of neuroendocrine origin, we hypothesized that Notch pathway impacts the biology of GIST cells. In this study, we retrovirally and pharmacologically manipulated the Notch pathway in human GIST cells. We also performed a retrospective analysis of a cohort on 15 primary tumors to determine the role of Hes1, a major target gene of Notch, as a prognostic marker for GIST. Constitutively, active intracellular domain of Notch1 (ICN1) expression potently induced growth arrest and downregulated KIT expression in vitro. Additionally, treatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid caused dose-dependent upregulation of Notch1 expression and a parallel decrease in viability in these cells. Retroviral silencing of downstream targets of Notch (dominant-negative Hes1) and pharmacological inhibition of Notch activation (γ-secretase inhibition) partially rescued GIST cells from suberoylanilide hydroxamic acid treatment. GIST patients with high Hes1 mRNA levels have a significantly longer relapse-free survival. These results identify a novel anti-tumor effect of Notch1 and cross talk between the Notch and KIT pathways. Thus, activation of this pathway by treatment with histone deacetylase inhibitors is an appealing potential therapeutic strategy for GISTs. Précis: This study is the first report of the tumor suppressor effects of Notch pathway in gastrointestinal stromal tumors via a negative feedback with the oncogene KIT and may

  7. Combining MPDL3280A with adoptive cell immunotherapy exerts better antitumor effects against cervical cancer.

    PubMed

    Zheng, Yi; Yang, Yicheng; Wu, Shu; Zhu, Yongqiang; Tang, Xiaolong; Liu, Xiaopeng

    2016-10-18

    As the second most common gynecologic malignant tumors with a high mortality rate, cervical cancer jeopardizes women's life worldwide. The low cure rate in cervical cancer patients is mainly attributed to the lack of effective therapies. One feasible novel strategy is to develop immune-based approaches such as adoptive cell immunotherapy of DCCIKs which represents a promising nontoxic antineoplastic immunotherapy preferred in clinic practice. However, the therapeutic effect is not as efficient as anticipated. Possible explanations are tumors exploit immunoregulatory check-points such as programmed death 1(PD1)/PDL1 which provides tumor cells an escape strategy of circumventing immunologic rejection from immune surveillance by hampering activated tumor-specific T cell activities and rendering them functionally exhausted. With reduced transformation activity and enhanced antigenicity, a modified HPV16 E7 (HPV16mE7) was used to load DCs with silenced SOCS1 mediated by a recombinant adenovirus to improve the targetability and efficiency against cervical cancer. Combined with anti-PDL1 antibody MPDL3280A therapy, the co-cultured DCCIKs were transfused into murine models bearing tumor of HPV16 E6/E7 expressing CaSki cells for in vitro/in vivo antitumor activity assay. Although all of the animals succumbed to CaSki tumors even after adoptive DCCIKs transfer or MPDL3280A immunotherapy, the infusion of PDL1 blocking monoclonal antibody with activated T cells cured 40% of animals. These data support PDL1 blockade improves the efficacy of adoptive DCCIKs therapy, providing a new approach of immunotherapy against cervical cancer.

  8. Antitumor effects of anti-CD40/CpG immunotherapy combined with gemcitabine or 5-fluorouracil chemotherapy in the B16 melanoma model.

    PubMed

    Qu, Xiaoyi; Felder, Mildred A R; Perez Horta, Zulmarie; Sondel, Paul M; Rakhmilevich, Alexander L

    2013-12-01

    Our previous studies demonstrated that anti-CD40 mAb (anti-CD40) can synergize with CpG oligodeoxynucleotides (CpG) to mediate antitumor effects by activating myeloid cells, such as macrophages in tumor-bearing mice. Separate teams have shown that chemotherapy with gemcitabine (GEM) or 5-fluorouracil (5-FU) can reduce tumor-induced myeloid-derived suppressor cells (MDSC) in mice. In this study we asked if the same chemotherapy regimens with GEM or 5-FU will enhance the antitumor effect of anti-CD40 and CpG. Using the model of B16 melanoma growing intraperitoneally in syngeneic C57BL/6 mice, we show that these GEM or 5-FU treatment regimens reduced MDSC in the peritoneal cavity of tumor-bearing mice. Treatment of mice with GEM or 5-FU did not significantly affect the antitumor function of macrophages as assessed in vitro. In vivo, treatment with these GEM or 5-FU regimens followed by anti-CD40/CpG resulted in antitumor effects similar to those of anti-CD40/CpG in the absence of GEM or 5-FU. Likewise, reduction of MDSC by in vivo anti-Gr-1 mAb treatment did not significantly affect anti-CD40/CpG antitumor responses. Together, the results show that the GEM or 5-FU chemotherapy regimens did not substantially affect the antitumor effects induced by anti-CD40/CpG immunotherapy.

  9. Gecko Proteins Exert Anti-Tumor Effect against Cervical Cancer Cells Via PI3-Kinase/Akt Pathway

    PubMed Central

    Jeong, Ae-Jin; Chung, Chung-Nam; Kim, Hye-Jin; Bae, Kil Soo; Choi, Song; Jun, Woo Jin; Shim, Sang In; Kang, Tae-Hong; Leem, Sun-Hee

    2012-01-01

    Anti-tumor activity of the proteins from Gecko (GP) on cervical cancer cells, and its signaling mechanisms were assessed by viable cell counting, propidium iodide (PI) staining, and Western blot analysis. GP induced the cell death of HeLa cells in a dose-dependent manner while it did not affect the viability of normal cells. Western blot analysis showed that GP decreased the activation of Akt, and co-administration of GP and Akt inhibitors synergistically exerted anti-tumor activities on HeLa cells, suggesting the involvement of PI3-kinase/Akt pathway in GP-induced cell death of the cancer cells. Indeed, the cytotoxic effect of GP against HeLa cells was inhibited by overexpression of constituvely active form of Akt in HeLa cells. The candidates of the functional proteins in GP were analyzed by Mass-spectrum. Taken together, our results suggest that GP elicits anti-tumor activity against HeLa cells by inhibition of PI3-kinase/Akt pathway. PMID:23118562

  10. Antitumor Effects of JAK3 Inhibitor on the Model of Transplantable Lewis Lung Carcinoma and Mechanisms of Their Development.

    PubMed

    Zyuz'kov, G N; Amosova, E N; Chaikovskii, A V; Miroshnichenko, L A; Udut, E V; Rybalkina, O Yu; Zhdanov, V V; Udut, V V; Dygai, A M; Zueva, E P

    2016-07-01

    Mice with Lewis lung carcinoma were used to study the antitumor and antimetastatic effects of JAK3 inhibitor. The study revealed no effect of JAK3 inhibitor on the growth of primary tumor node, but found a pronounced inhibition of hematogenous spread of the pathologic process into the lungs. In vitro blockade of JAK3 in cultured Lewis lung carcinoma produced no effect on the count of the stem tumor cells and stimulated functions of committed elements. In addition, blockade of JAK3 significantly elevated maturation index of the tumor tissue.

  11. 1810011o10 Rik Inhibits the Antitumor Effect of Intratumoral CD8+ T Cells through Suppression of Notch2 Pathway in a Murine Hepatocellular Carcinoma Model

    PubMed Central

    Dai, Kai; Huang, Ling; Huang, Ya-bing; Chen, Zu-bing; Yang, Li-hua; Jiang, Ying-an

    2017-01-01

    The mechanisms by which tumor-responsive CD8+ T cells are regulated are important for understanding the tumor immunity and for developing new therapeutic strategies. In current study, we identified the expression of 1810011o10 Rik, which is the homolog of human thyroid cancer 1, in intratumoral activated CD8+ T cells in a murine hepatocellular carcinoma (HCC) implantation model. To investigate the role of 1810011o10 Rik in the regulation of antitumor activity of CD8+ T cells, normal CD8+ T cells were transduced with 1810011o10 Rik-expressing lentiviruses. Although 1810011o10 Rik overexpression did not influence agonistic antibody-induced CD8+ T cell activation in vitro, it inhibited the cytotoxic efficacy of CD8+ T cells on HCC cells in vivo. 1810011o10 Rik overexpression impeded CD8+ T cell-mediated HCC cell apoptosis and favored tumor cell growth in vivo. Further investigation revealed that 1810011o10 Rik blocked the nuclear translocation of Notch2 intracellular domain, which is crucial for CD8+ T cell activity. Furthermore, a brief in vitro experiment suggested that both antigen-presenting cells and TGF-β might be necessary for the upregulation of Rik expression in activated CD8+ T cells. In general, our study disclosed a novel mechanism underlying the negative regulation of antitumor CD8+ T cells during HCC progression. PMID:28382040

  12. Micronutrient supplementation and T-cell mediated immune responses in patients with tuberculosis in Tanzania

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Limited studies exist regarding whether incorporating micronutrient supplements during tuberculosis (TB) treatment may improve cell-mediated immune response. We examine the effect of micronutrient supplementation on lymphocyte proliferation response to mycobacteria or T cell mitogens in a randomize...

  13. Targeted Delivery of Chemotherapeutic Agents Using Improved Radiosensitive Liquid Core Microcapsules and Assessment of Their Antitumor Effect

    SciTech Connect

    Harada, Satoshi Ehara, Shigeru; Ishii, Keizo; Yamazaki, Hiromichi; Matsuyama, Shigeo; Sato, Takahiro; Oikawa, Shyoichi; Kamiya, Tomihiro; Arakawa, Kazuo; Yokota, Wataru; Sera, Koichiro; Ito, Jyun

    2009-10-01

    Purpose: Radiation-sensitive microcapsules composed of alginate and hyaluronic acid are being developed. We report the development of improved microcapsules that were prepared using calcium- and yttrium-induced polymerization. We previously reported on the combined antitumor effect of carboplatin-containing microcapsules and radiotherapy. Methods and Materials: We mixed a 0.1% (wt/vol) solution of hyaluronic acid with a 0.2% alginate solution. Carboplatin (l mg) and indocyanine green (12.5 {mu}g) were added to this mixture, and the resultant material was used for capsule preparation. The capsules were prepared by spraying the material into a mixture containing a 4.34% CaCl{sub 2} solution supplemented with 0-0.01% yttrium. These capsules were irradiated with single doses of 0.5, 1.0, 1.5, or 2 Gy {sup 60}Co {gamma}-rays. Immediately after irradiation, the frequency of microcapsule decomposition was determined using a microparticle-induced X-ray emission camera. The amount of core content released was estimated by particle-induced X-ray emission and colorimetric analysis with 0.25% indocyanine green. The antitumor effect of the combined therapy was determined by monitoring its effects on the diameter of an inoculated Meth A fibrosarcoma. Results: Microcapsules that had been polymerized using a 4.34% CaCl{sub 2} solution supplemented with 5.0 x 10{sup -3}% (10{sup -3}% meant or 10%{sup -3}) yttrium exhibited the maximal decomposition, and the optimal release of core content occurred after 2-Gy irradiation. The microcapsules exhibited a synergistic antitumor effect combined with 2-Gy irradiation and were associated with reduced adverse effects. Conclusion: The results of our study have shown that our liquid core microcapsules can be used in radiotherapy for targeted delivery of chemotherapeutic agents.

  14. Delivery of baicalein and paclitaxel using self-assembled nanoparticles: synergistic antitumor effect in vitro and in vivo

    PubMed Central

    Wang, Wei; Xi, Mei; Duan, Xuezhong; Wang, Yong; Kong, Fansheng

    2015-01-01

    Purpose Combination anticancer therapy is promising to generate synergistic anticancer effects to maximize the treatment effect and overcome multidrug resistance. The aim of the study reported here was to develop multifunctional, dual-ligand, modified, self-assembled nanoparticles (NPs) for the combination delivery of baicalein (BCL) and paclitaxel (PTX) prodrugs. Methods Prodrug of PTX and prodrug of BCL, containing dual-targeted ligands of folate (FA) and hyaluronic acid (HA), were synthesized. Multifunctional self-assembled NPs for combination delivery of PTX prodrug and BCL prodrug (PTX-BCL) were prepared and the synergistic antitumor effect was evaluated in vitro and in vivo. The in vitro transfection efficiency of the novel modified vectors was evaluated in human lung cancer A549 cells and drug-resistant lung cancer A549/PTX cells. The in vivo antitumor efficiency and systemic toxicity of different formulations were further investigated in mice bearing A549/PTX drug-resistant human lung cancer xenografts. Results The size of the PTX-BCL NPs was approximately 90 nm, with a positive zeta potential of +3.3. The PTX-BCL NPs displayed remarkably better antitumor activity over a wide range of drug concentrations, and showed an obvious synergism effect with CI50 values of 0.707 and 0.513, indicating that double-ligand modification and the co-delivery of PTX and BCL prodrugs with self-assembled NPs had remarkable superiority over other formulations. Conclusion The prepared PTX-BCL NP drug-delivery system was proven efficient by its targeting of drug-resistant human lung cancer cells and delivering of BCL and PTX prodrugs. Enhanced synergistic anticancer effects were achieved by PTX-BCL NPs, and multidrug resistance of PTX was overcome by this promising targeted nanomedicine. PMID:26045664

  15. Anti-PD-L1 treatment enhances antitumor effect of everolimus in a mouse model of renal cell carcinoma.

    PubMed

    Hirayama, Yukiyoshi; Gi, Min; Yamano, Shotaro; Tachibana, Hirokazu; Okuno, Takahiro; Tamada, Satoshi; Nakatani, Tatsuya; Wanibuchi, Hideki

    2016-12-01

    Immunotherapy based on blockade of the programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) axis has shown promising clinical activity for renal cell carcinoma (RCC) patients; however, the most effective use of these agents in combination with conventional targeted therapy remains to be resolved. Here we evaluated the therapeutic efficacy of the combination of the mTOR inhibitor everolimus (EVE) and anti-PD-L1 using an immunocompetent mouse model of RCC. We first assessed the in vitro effect of EVE on PD-L1 expression in the human 786-O and mouse RENCA RCC cell lines and found that EVE upregulated PD-L1 expression in these RCC cell lines. We then treated RENCA tumor-bearing mice with EVE and found that PD-L1 expression was also increased in tumor cells after EVE treatment. To determine the antitumor effects of EVE alone, anti-PD-L1 alone, and EVE in combination with anti-PD-L1, we evaluated their antitumor effects on RENCA tumor-bearing mice. A significant decrease in the tumor burden was observed in the EVE alone but not in the anti-PD-L1 alone treatment group compared with the control group. Importantly, the combination of EVE with anti-PD-L1 significantly reduced tumor burden compared with the EVE alone treatment, increasing tumor infiltrating lymphocytes (TILs) and the ratio of cytotoxic CD8(+) T cells to TILs. The results of the present study demonstrated that anti-PD-L1 treatment enhanced the antitumor effect of EVE in a mouse model, supporting a direct translation of this combination strategy to the clinic for the treatment of RCC.

  16. Antitumor and immunomodulatory effects of low-dose 5-FU on hepatoma 22 tumor-bearing mice

    PubMed Central

    CAO, ZHIYUN; ZHANG, ZHIDENG; HUANG, ZHENGRONG; WANG, RONGPING; YANG, AILIAN; LIAO, LIANMING; DU, JIAN

    2014-01-01

    Low-dose 5-fluorouracil (5-FU), a widely used chemotherapeutic, has been reported to have immunomodulatory effects. This study aimed to evaluate the optimal dose of 5-FU that produces antitumor and immunomodulatory effects. In a hepatoma 22 tumor-bearing mouse model, 0, 10, 20 and 40 mg/kg 5-FU (i.p.) was administered for 10 days. Tumor weight and volume were measured, thymus index (TI) and spleen index (SI) were calculated, and the number of white blood cells (WBCs) and lymphocytes (LYs) were counted following treatment. The percentages of CD3+, CD4+, CD8+ and natural killer (NK) cells were measured by flow cytometry. In addition, the body weights of the mice were measured and the average diet consumption was calculated. Administration of 5-FU produced a potent antitumor effect in a dose-dependent manner (P<0.01). At 20 and 40 mg/kg, a significant reduction of body weight and food consumption was observed. TI and SI decreased in the 20- and 40-mg/kg groups (P<0.01) for 10 days. The number of WBCs significantly decreased in each group (P<0.01); however, the number of LYs only decreased in the 40-mg/kg group (P<0.01). Percentages of CD3+ and CD4+ cells were increased in the 10- and 20-mg/kg groups (P<0.01). Thus, 5-FU at 10 mg/kg inhibits tumor growth while maintaining the immune function of the mice. 5-FU may exert its antitumor effect at a low dose with low toxicity and stimulate the host immune system. Future clinical trials taking into account the immunostimulatory capacity of chemotherapeutic agents are desirable for certain patients. PMID:24660037

  17. Antitumor activity and systemic effects of PVM/MA-shelled selol nanocapsules in lung adenocarcinoma-bearing mice

    NASA Astrophysics Data System (ADS)

    de Souza, Ludmilla Regina; Alexandre Muehlmann, Luis; Carneiro Matos, Lívia; Simón-Vázquez, Rosana; Guerreiro Marques Lacava, Zulmira; Maurício Batista De-Paula, Alfredo; Mosiniewicz-Szablewska, Ewa; Suchocki, Piotr; César Morais, Paulo; González-Fernández, África; Nair Báo, Sônia; Bentes Azevedo, Ricardo

    2015-12-01

    Selol is a semi-synthetic compound containing selenite that is effective against cancerous cells and safer for clinical applications in comparison with other inorganic forms of selenite. Recently, we have developed a formulation of poly(methyl vinyl ether-co-maleic anhydride)-shelled selol nanocapsules (SPN), which reduced the proliferative activity of lung adenocarcinoma cells and presented little deleterious effects on normal cells in in vitro studies. In this study, we report on the antitumor activity and systemic effects induced by this formulation in chemically induced lung adenocarcinoma-bearing mice. The in vivo antitumor activity of the SPN was verified by macroscopic quantification, immunohistochemistry and morphological analyses. Toxicity analyses were performed by evaluations of the kidney, liver, and spleen; analyses of hemogram and plasma levels of alanine aminotransferase, aspartate transaminase, urea, and creatinine; and DNA fragmentation and cell cycle activity of the bone marrow cells. Furthermore, we investigated the potential of the SPN formulation to cause hemolysis, activate the complement system, provoke an inflammatory response and change the conformation of the plasma proteins. Our results showed that the SPN reduced the area of the surface tumor nodules but not the total number of tumor nodules. The biochemical and hematological findings were suggestive of the low systemic toxicity of the SPN formulation. The surface properties of the selol nanocapsules point to characteristics that are consistent with the treatment of the tumors in vivo: low hemolytic activity, weak inflammatory reaction with no activation of the complement system, and mild or absent conformational changes of the plasma proteins. In conclusion, this report suggests that the SPN formulation investigated herein exhibits anti-tumoral effects against lung adenocarcinoma in vivo and is associated with low systemic toxicity and high biocompatibility.

  18. Synthesis of PEGylated fullerene-5-fluorouracil conjugates to enhance the antitumor effect of 5-fluorouracil

    NASA Astrophysics Data System (ADS)

    Dou, Zengpei; Xu, Yingying; Sun, Hongfang; Liu, Yuanfang

    2012-07-01

    Many drugs have been delivered by different types of nanoscale vehicles to enhance their therapeutic efficacy. 5-Fluorouracil (5FU) is a widely used antitumor drug, however its bioavailability still needs to be improved. Herein we synthesized a polyethylene glycol monomethylether-C60-5FU conjugate (mPEG-C60-5FU) and evaluated its antitumor efficacy in vitro. The results show that the inhibition abilities of mPEG-C60-5FU to the human breast cancer cell line MCF-7 and the human gastric carcinoma cell line BGC-823 are significantly higher than that of 5FU. The conjugate has good stability in murine serum for at least 24 h. Moreover, the PEGylated fullerene (mPEG-C60) vehicle is non-toxic to MCF-7 cells. These results demonstrate that mPEG-C60 is an efficient vehicle for the delivery of 5FU.

  19. Adoptive transfer of Tc1 or Tc17 cells elicits antitumor immunity against established melanoma through distinct mechanisms.

    PubMed

    Yu, Yu; Cho, Hyun-Ii; Wang, Dapeng; Kaosaard, Kane; Anasetti, Claudio; Celis, Esteban; Yu, Xue-Zhong

    2013-02-15

    Adoptive cell transfer (ACT) of ex vivo-activated autologous tumor-reactive T cells is currently one of the most promising approaches for cancer immunotherapy. Recent studies provided some evidence that IL-17-producing CD8(+) (Tc17) cells may exhibit potent antitumor activity, but the specific mechanisms have not been completely defined. In this study, we used a murine melanoma lung-metastasis model and tested the therapeutic effects of gp100-specific polarized type I CD8(+) cytotoxic T (Tc1) or Tc17 cells combined with autologous bone marrow transplantation after total body irradiation. Bone marrow transplantation combined with ACT of antitumor (gp100-specific) Tc17 cells significantly suppressed the growth of established melanoma, whereas Tc1 cells induced long-term tumor regression. After ACT, Tc1 cells maintained their phenotype to produce IFN-γ, but not IL-17. However, although Tc17 cells largely preserved their ability to produce IL-17, a subset secreted IFN-γ or both IFN-γ and IL-17, indicating the plasticity of Tc17 cells in vivo. Furthermore, after ACT, the Tc17 cells had a long-lived effector T cell phenotype (CD127(hi)/KLRG-1(low)) as compared with Tc1 cells. Mechanistically, Tc1 cells mediated antitumor immunity primarily through the direct effect of IFN-γ on tumor cells. In contrast, despite the fact that some Tc17 cells also secreted IFN-γ, Tc17-mediated antitumor immunity was independent of the direct effects of IFN-γ on the tumor. Nevertheless, IFN-γ played a critical role by creating a microenvironment that promoted Tc17-mediated antitumor activity. Taken together, these studies demonstrate that both Tc1 and Tc17 cells can mediate effective antitumor immunity through distinct effector mechanisms, but Tc1 cells are superior to Tc17 cells in mediating tumor regression.

  20. Size effect of se-enriched green tea particles on in vitro antioxidant and antitumor activities.

    PubMed

    Li, Huajia; Li, Feng; Yang, Fangmei; Fang, Yong; Xin, Zhihong; Zhao, Liyan; Hu, Qiuhui

    2008-06-25

    The antioxidant and antitumor activities (in vitro) of superfine regular and Se-enriched green tea particles with different sizes (3.52 microm and 220 nm) were investigated in this paper. The vitamin C and tea polyphenol contents of green tea in different sizes were significantly different, and amino acid and chlorophyll just changed a little. The antioxidant activity of green tea particles was evaluated by DPPH radical scavenging and linoleic acid peroxidation inhibition methods, and the antitumor activity was evaluated by antiproliferation assay on HepG2, A549, and MGC803 cells. The results indicated that enrichment of selenium endowed green tea with higher antioxidant activity and antitumor activity on HepG2 and A549 cells but not on MGC803 cells. The DPPH radical scavenging rates of regular and Se-enriched green tea of 220 nm (67.87% and 69.49%, respectively) were significantly greater than that of 3.52 microm, but the inhibition of linoleic acid peroxidation for green tea of 220 nm was lower. The inhibitory rates of green tea of 220 nm on HepG2, A549, and MGC803 cells achieved 77.35%, 80.76%, and 87.54% for regular green tea, and 82.51%, 88.09%, and 74.48% for Se-enriched green tea at the dose of 100 microg mL (-1), values that were all significantly higher compared to that of 3.52 microm.

  1. Comparison of the Anti-tumor Effects of Two Platinum Agents (Miriplatin and Fine-Powder Cisplatin)

    SciTech Connect

    Watanabe, Shobu Nitta, Norihisa Ohta, Shinichi Sonoda, Akinaga Otani, Hideji Tomozawa, Yuki Nitta-Seko, Ayumi Tsuchiya, Keiko Tanka, Toyohiko Takahashi, Masashi Murata, Kiyoshi

    2012-04-15

    Purpose: This study was designed to evaluate the anti-tumor effects of miriplatin-lipidol and fine-powder cisplatin-lipiodol suspensions. Methods: Assessment of the cytotoxicity of two drugs was performed: a soluble derivative of miriplatin (DPC) and fine-powder cisplatin. We randomly divided 15 rabbits with transplanted VX2 liver tumors into three equal groups. They were infused via the proper hepatic artery with a miriplatin-lipiodol suspension (ML), a fine-powder cisplatin-lipiodol suspension (CL), or saline (control) and the tumor growth rate was determined on MR images acquired before and 7 days after treatment. The concentration of platinum (PCs) in blood was assayed immediately, and 10, 30, and 60 min, and 24 h and 7 days after drug administration. Its concentration in tumor and surrounding normal liver tissues was determined at 7 days postadministration. Results: At high concentrations, fine-powder cisplatin exhibited stronger cytotoxicity than DPC. At low concentrations, both agents manifested weak cytotoxicity. While there was no difference between the tumor growth rate of the ML and the CL groups, the difference between the controls and ML- and CL-treated rabbits was significant. The blood PCs peaked at 10 min and then gradually decreased over time. On the other hand, no platinum was detected at any point after the administration of ML. There was no difference between the ML and CL groups in the PCs in tumor tissues; however, in normal hepatic tissue, the PCs were higher in ML- than CL-treated rabbits. Conclusions: We confirmed the anti-tumor effect of ML and CL. There was no significant difference between the anti-tumor effect of ML and CL at 7 days postadministration.

  2. Effects of activation of maternal immune system at early stages of pregnancy on antitumor immunity of the progeny.

    PubMed

    Obernikhin, S S

    2013-11-01

    The effects of maternal immune system on the formation and functioning of the fetus is an important problem. Single stimulation of immune system of female C57Bl/6 mice with concanavalin A at the early stages of pregnancy before the formation of fetal immune organs was followed by impairment of antitumor immunity in the progeny by the time of puberty. These changes manifested in the increased survival rate of B16 melanoma, high rate of death of tumor-bearing animals, and low cytotoxic activity of spleen cells on L-929 fibrosarcoma cells.

  3. Antitumor and antimetastasis effects of carboplatin liposomes with polyethylene glycol-2000 on SGC-7901 gastric cell-bearing nude mice.

    PubMed

    Zhang, Jianzhong; Huang, Changming; Huang, Heguang

    2014-11-01

    The present study aimed to analyze the characteristics of polyethylene glycol (PEG)ylated carboplatin liposomes (PL-CBPs), including size, stability, their release, entrapping and loading efficiencies, and their antitumor and antimetastatic effects on the lymph nodes. The PL-CBPs were prepared using PEG-2000 with the thin film hydration method. The liposome size and release, entrapping and loading efficiencies were detected by ultra-violet/visible spectrophotometry. A nude mouse model was established with the SGC-7901 gastric cell line to evaluate the antitumor effect of the PL-CBP. After 7 days, the mice were randomly divided into three groups (the control, CBP, and PL-CBP groups). CBP and PL-CBP were administered at a dose of 10 mg/kg for two consecutive cycles of treatment, 5 days apart, to their respective groups. In each group, two doses of 5 mg/kg were administered every 48 h. The tumor weight and volume were detected, and the food intake and body weight were measured during the administration. Apoptosis in the tumor cells was evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and platinum (Pt) accumulation was detected by atomic absorption spectroscopy. Lastly, lymph node metastasis was evaluated by hematoxylin and eosin staining. The PL-CBPs were more stable when comapred with CBP alone, and the drug release efficiency was 0.7, 22.5, 48.7 and 65.1% at 37°C for 0, 12, 24 and 48 h. The results showed that the encapsulation efficiency was 85% and the loading efficiency was 0.15 mg/mg lipid. After 35 days, PL-CBP induced potent antitumor effects compared with the control and CBP groups (PL-CBP vs. control, P<0.01; PL-CBP vs. CBP, P<0.05). PL-CBP and CBP induced a lower and the lowest body weight and level of food intake, respectively, compared with the control group (CBP vs. control, P<0.05). The apoptosis rate and lymph node metastasis in the PL-CBP group was higher than that in the CBP and control groups (PL-CBP vs. control, P

  4. Antitumor effect of microbubbles enhanced by low frequency ultrasound cavitation on prostate carcinoma xenografts in nude mice

    PubMed Central

    WANG, YU; HU, BING; DIAO, XUEHONG; ZHANG, JIZHEN

    2012-01-01

    The aim of this study was to investigate the antitumor effect induced by low frequency (20 kHz) ultrasound (US) radiation combined with intravenous injection of microbubbles (Mbs) on prostate carcinoma Du145 xenografts in nude mice. Du145 prostate tumors were percutaneously implanted in 40 nude mice, which were randomly divided into 4 groups (n=10 each): US+Mbs, US, Mbs and control groups. The mice in the US+Mbs group were treated with 20 kHz, 200 mW/cm2 US radiation and with 0.2 ml Mbs injected intravenously. Mice in the US and Mbs groups were only treated with US radiation and injection of Mbs, respectively. Tumors were measured with sonography, and the ratio of antitumor growth was calculated. The mice were sacrificed 14 days after treatment. Specimens of the tumor tissues were observed pathologically using light microscopy and transmission electron microscopy. Microvessel density and the average optical density of vascular endothelial growth factor were compared among groups by immunohistochemistry. The average gross tumor volume of the US+Mbs group was significantly reduced compared with the other groups following treatment (P<0.05). The ratio of the antitumor growth in the US+Mbs group was significantly greater than that of the US and Mbs group (P<0.05). Histological examination showed signs of tumor cell injury in the US+Mbs group. Examination by electron microscopy revealed vessel injury in the endothelium in the tumors treated with US+Mbs. Microvessel density and the average optical density of vascular endothelial growth factor in the US+Mbs group were significantly less than that of other groups (P<0.05). In conclusion, low frequency US of 20 kHz radiation combined with Mbs may be used to inhibit the growth of human prostate carcinoma xenografts in nude mice, and the effect is likely realized through microvessel destruction caused by cavitation. PMID:22969866

  5. Antitumor effect of microbubbles enhanced by low frequency ultrasound cavitation on prostate carcinoma xenografts in nude mice.

    PubMed

    Wang, Yu; Hu, Bing; Diao, Xuehong; Zhang, Jizhen

    2012-02-01

    The aim of this study was to investigate the antitumor effect induced by low frequency (20 kHz) ultrasound (US) radiation combined with intravenous injection of microbubbles (Mbs) on prostate carcinoma Du145 xenografts in nude mice. Du145 prostate tumors were percutaneously implanted in 40 nude mice, which were randomly divided into 4 groups (n=10 each): US+Mbs, US, Mbs and control groups. The mice in the US+Mbs group were treated with 20 kHz, 200 mW/cm(2) US radiation and with 0.2 ml Mbs injected intravenously. Mice in the US and Mbs groups were only treated with US radiation and injection of Mbs, respectively. Tumors were measured with sonography, and the ratio of antitumor growth was calculated. The mice were sacrificed 14 days after treatment. Specimens of the tumor tissues were observed pathologically using light microscopy and transmission electron microscopy. Microvessel density and the average optical density of vascular endothelial growth factor were compared among groups by immunohistochemistry. The average gross tumor volume of the US+Mbs group was significantly reduced compared with the other groups following treatment (P<0.05). The ratio of the antitumor growth in the US+Mbs group was significantly greater than that of the US and Mbs group (P<0.05). Histological examination showed signs of tumor cell injury in the US+Mbs group. Examination by electron microscopy revealed vessel injury in the endothelium in the tumors treated with US+Mbs. Microvessel density and the average optical density of vascular endothelial growth factor in the US+Mbs group were significantly less than that of other groups (P<0.05). In conclusion, low frequency US of 20 kHz radiation combined with Mbs may be used to inhibit the growth of human prostate carcinoma xenografts in nude mice, and the effect is likely realized through microvessel destruction caused by cavitation.

  6. Synergistic antitumor effect with indoleamine 2,3-dioxygenase inhibition and temozolomide in a murine glioma model.

    PubMed

    Hanihara, Mitsuto; Kawataki, Tomoyuki; Oh-Oka, Kyoko; Mitsuka, Kentaro; Nakao, Atsuhito; Kinouchi, Hiroyuki

    2016-06-01

    OBJECT Indoleamine 2,3-dioxygenase (IDO), a key enzyme of tryptophan (Trp) metabolism, is involved in tumor-derived immune suppression through depletion of Trp and accumulation of the metabolite kynurenine, resulting in inactivation of natural killer cells and generation of regulatory T cells (Tregs). It has been reported that high expression of IDO in cancer cells is associated with suppression of the antitumor immune response and is consistent with a poor prognosis. Thus, IDO may be a therapeutic target for malignant cancer. The authors have recently shown that IDO expression is markedly increased in human glioblastoma and secondary glioblastoma with malignant change, suggesting that IDO targeting may also have therapeutic potential for patients with glioma. The aim of this study was to investigate the antitumor effect of IDO inhibition and to examine the synergistic function of IDO inhibitor and temozolomide (TMZ) in a murine glioma model. METHODS Murine glioma GL261 cells and human glioma U87 cells were included in this study. The authors used 3 mouse models to study glioma cell growth: 1) a subcutaneous ectopic model, 2) a syngeneic intracranial orthotopic model, and 3) an allogenic intracranial orthotopic model. IDO inhibition was achieved via knockdown of IDO in GL261 cells using short hairpin RNA (shRNA) and through oral administration of the IDO inhibitor, 1-methyl-l-tryptophan (1-MT). Tumor volume in the subcutaneous model and survival time in the intracranial model were evaluated. RESULTS In the subcutaneous model, oral administration of 1-MT significantly suppressed tumor growth, and synergistic antitumor effects of 1-MT and TMZ were observed (p < 0.01). Mice containing intracranially inoculated IDO knockdown cells had a significantly longer survival period as compared with control mice (p < 0.01). CONCLUSIONS These results suggest that IDO expression is implicated in immunosuppression and tumor progression in glioma cells. Therefore, combining IDO

  7. Mechanism responsible for the antitumor effect of BCG-CWS using the LEEL method in a mouse bladder cancer model.

    PubMed

    Nakamura, Takashi; Fukiage, Masafumi; Suzuki, Yoshiteru; Yano, Ikuya; Miyazaki, Jun; Nishiyama, Hiroyuki; Akaza, Hideyuki; Harashima, Hideyoshi

    2014-12-28

    We previously reported on the development of a water soluble formulation of the cell wall skeleton of BCG (BCG-CWS), a major immune active center of BCG, by encapsulating it into a nanoparticle (CWS-NP). The CWS-NP allowed us to clarify the machinery associated with the BCG mediated anti-bladder tumor effect, especially the roles of bladder cancer cells and dendritic cells (DCs) in the initial step, which remains poorly understood. We show herein that the internalization of BCG-CWS by bladder cancer cells, but not DCs, is indispensable for the induction of an antitumor effect against bladder cancer. Tumor growth was significantly inhibited in mice that had been inoculated with mouse bladder cancer (MBT-2) cells containing internalized BCG-CWS. On the other hand, the internalization of BCG-CWS by DCs had only a minor effect on inducing an antitumor effect against MBT-2 tumors. This was clarified for the first time by using the CWS-NP. This finding provides insights into our understanding of the role of bladder cancer cells and DCs in BCG therapy against bladder cancer.

  8. Scutellaria barbata D. Don extract synergizes the antitumor effects of low dose 5-fluorouracil through induction of apoptosis and metabolism.

    PubMed

    Xu, Huanli; Yu, Jinmei; Sun, Yan; Xu, Xiaona; Li, Li; Xue, Ming; Du, Guanhua

    2013-07-15

    Traditional Chinese medicines have been recognized as a new source of anticancer drugs or chemotherapy adjuvant to enhance the efficacy of chemotherapy and to ameliorate the side effects. This study aimed to investigate the antitumor effects of combined Scutellaria barbata D. Don extract (SBE) and 5-FU treatment in vitro and in vivo and the potential mechanisms. SBE was prepared and analyzed by HPLC. Tumor growth inhibition both in vitro and in vivo, cell apoptosis, apoptosis related protein expressions (P53, bid, bax, bcl-2), caspase-3 activities and 5-FU related enzymes were assessed. SBE could significantly synergize the antitumor effects of low dose 5-FU both in vivo and in vitro. SBE could increase the apoptosis inducing effect of low dose 5-FU in both Bel-7402 and HCT-8 cells. Also, caspase-3 activities, P53 and bax expressions were significantly increased, while bid and bcl-2 expressions were significantly decreased in drug combination groups, compared with individual drug treatment groups. Furthermore, SBE could significantly decrease the mRNA levels of dihydropyrimidine dehydrogenase. These results showed that combined treatment with SBE and low dose 5-FU can significantly inhibit the tumor growth both in vitro and in vivo, which might be related with apoptosis and regulations of 5-FU metabolism.

  9. Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model

    PubMed Central

    Yeung, Hing-Yuen; Lo, Pui-Chi; Ng, Dennis K.P.; Fong, Wing-Ping

    2017-01-01

    In recent decades, accumulating evidence from both animal and clinical studies has suggested that a sufficiently activated immune system may strongly augment various types of cancer treatment, including photodynamic therapy (PDT). Through the generation of reactive oxygen species, PDT eradicates tumors by triggering localized tumor damage and inducing anti-tumor immunity. As the major component of anti-tumor immunity, the involvement of a cell-mediated immune response in PDT has been well investigated in the past decade, whereas the role of humoral immunity has remained relatively unexplored. In the present investigation, using the photosensitizer BAM-SiPc and the CT26 tumor-bearing BALB/c mouse model, it was demonstrated that both cell-mediated and humoral adaptive immune components could be involved in PDT. With a vascular PDT (VPDT) regimen, BAM-SiPc could eradicate the tumors of ∼70% of tumor-bearing mice and trigger an anti-tumor immune response that could last for more than 1 year. An elevation of Th2 cytokines was detected ex vivo after VPDT, indicating the potential involvement of a humoral response. An analysis of serum from the VPDT-cured mice also revealed elevated levels of tumor-specific antibodies. Moreover, this serum could effectively hinder tumor growth and protect the mice against further re-challenge in a T-cell-dependent manner. Taken together, these results show that the humoral components induced after BAM-SiPc-VPDT could assist the development of anti-tumor immunity. PMID:26388236

  10. Ageing and cell-mediated immunity.

    PubMed

    Fixa, B; Komárková, O; Chmelar, V

    1975-01-01

    The lymphocyte transformation test with phytohemagglutinin as mitogen estimated according to the incorporation of 2-(14)C-thymidine in DNA was used as an indicator of cell-mediated reactivity in 53 healthy subjects. Three age groups were examined: up to 20 years (21 subjects), 21-40 years (10 subjects) and over 70 years (22 subjects). The responsiveness of lymphocytes decreased significantly with age. In the highest age group 12 pathologically low values were found.

  11. Acute inflammation induces immunomodulatory effects on myeloid cells associated with anti-tumor responses in a tumor mouse model

    PubMed Central

    Salem, Mohamed L.; Attia, Zeinab I.; Galal, Sohaila M.

    2015-01-01

    Given the self nature of cancer, anti-tumor immune response is weak. As such, acute inflammation induced by microbial products can induce signals that result in initiation of an inflammatory cascade that helps activation of immune cells. We aimed to compare the nature and magnitude of acute inflammation induced by toll-like receptor ligands (TLRLs) on the tumor growth and the associated inflammatory immune responses. To induce acute inflammation in tumor-bearing host, CD1 mice were inoculated with intraperitoneal (i.p.) injection of Ehrlich ascites carcinoma (EAC) (5 × 105 cells/mouse), and then treated with i.p. injection on day 1, day 7 or days 1 + 7 with: (1) polyinosinic:polycytidylic (poly(I:C)) (TLR3L); (2) Poly-ICLC (clinical grade of TLR3L); (3) Bacillus Calmette Guerin (BCG) (coding for TLR9L); (4) Complete Freund’s adjuvant (CFA) (coding for TLR9L); and (5) Incomplete Freund’s Adjuvant (IFA). Treatment with poly(I:C), Poly-ICLC, BCG, CFA, or IFA induced anti-tumor activities as measured by 79.1%, 75.94%, 73.94%, 71.88% and 47.75% decreases, respectively in the total number of tumor cells collected 7 days after tumor challenge. Among the tested TLRLs, both poly(I:C) (TLR3L) and BCG (contain TLR9L) showed the highest anti-tumor effects as reflected by the decrease in the number of EAc cells. These effects were associated with a 2-fold increase in the numbers of inflammatory cells expressing the myeloid markers CD11b+Ly6G+, CD11b+Ly6G−, and CD11b+Ly6G−. We concluded that Provision of the proper inflammatory signal with optimally defined magnitude and duration during tumor growth can induce inflammatory immune cells with potent anti-tumor responses without vaccination. PMID:26966565

  12. In Vivo Safety, Biodistribution and Antitumor Effects of uPAR Retargeted Oncolytic Measles Virus in Syngeneic Cancer Models

    PubMed Central

    Jing, Yuqi; Zaias, Julia; Duncan, Robert; Russell, Stephen J.; Merchan, Jaime R.

    2014-01-01

    The urokinase receptor (uPAR) is a clinically relevant target for novel biological therapies. We have previously rescued oncolytic measles viruses fully retargeted against human (MV-h-uPA) or murine (MV-m-uPA) uPAR. Here, we investigated the in vivo effects of systemic administration of MV-m-uPA in immunocompetent cancer models. MV-m-uPA induced in vitro cytotoxicity and replicated in a receptor dependent manner in murine mammary (4T1), and colon (MC-38 and CT-26) cancer cells. Intravenous administration of MV-m-uPA to 4T1 tumor bearing mice was not associated with significant clinical or laboratory toxicity. Higher MV-N RNA copy numbers were detected in primary tumors, and viable viral particles were recovered from tumor bearing tissues only. Non-tumor bearing organs did not show histological signs of viral induced toxicity. Serum anti-MV antibodies were detected at day 14 of treatment. Immunohistochemistry and immunofluorescence studies confirmed successful tumor targeting and demonstrated enhanced MV-m-uPA induced tumor cell apoptosis in treated, compared to control mice. Significant antitumor effects and prolonged survival were observed after systemic administration of MV-m-uPA in colon (CT-26) and mammary (4T1) cancer models. The above results demonstrate safety and feasibility of uPAR targeting by an oncolytic virus, and confirm significant antitumor effects in highly aggressive syngeneic immunocompetent cancer models. PMID:24430235

  13. Antitumor and anti-angiogenesis effects of thymoquinone on osteosarcoma through the NF-κB pathway.

    PubMed

    Peng, Lei; Liu, An; Shen, Yue; Xu, Hua-Zi; Yang, Shi-Zhou; Ying, Xiao-Zhou; Liao, Wei; Liu, Hai-Xiao; Lin, Zhong-Qin; Chen, Qing-Yu; Cheng, Shao-Wen; Shen, Wei-Dong

    2013-02-01

    Thymoquinone (TQ), the predominant bioactive constituent derived from the medicinal spice Nigella sativa (also known as black cumin), has been applied for medical purposes for more than 2,000 years. Recent studies reported that thymoquinone exhibited inhibitory effects on the cell proliferation of several cancer cell lines. This study was performed to investigate the antitumor and anti-angiogenic effects of thymoquinone on osteosarcoma in vitro and in vivo. Our results showed that thymoquinone induced a higher percentage of growth inhibition and apoptosis in the human osteosarcoma cell line SaOS-2 compared to that of control, and thymoquinone significantly blocked human umbilical vein endothelial cell (HUVEC) tube formation in a dose-dependent manner. To investigate the possible mechanisms involved in these events, we performed electrophoretic mobility shift assay (EMSA) and western blot analysis, and found that thymoquinone significantly downregulated NF-κB DNA-binding activity, XIAP, survivin and VEGF in SaOS-2 cells. Moreover, the expression of cleaved caspase-3 and Smac were upregulated in SaOS-2 cells after treatment with thymoquinone. In addition to these in vitro results, we also found that thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing NF-κB and its regulated molecules. Collectively, our results demonstrate that thymoquinone effectively inhibits tumor growth and angiogenesis both in vitro and in vivo. Moreover, inhibition of NF-κB and downstream effector molecules is a possible underlying mechanism of the antitumor and anti-angiogenic activity of thymoquinone in osteosarcoma.

  14. Ethacrynic acid improves the antitumor effects of irreversible epidermal growth factor receptor tyrosine kinase inhibitors in breast cancer

    PubMed Central

    Hu, YunLong; Chen, TingTing; Peng, BoYa; Gao, NingNing; Jin, ZhenChao; Jia, TieLiu; Zhang, Na; Wang, ZhuLin; Jin, GuangYi

    2016-01-01

    Prolonged treatment of breast cancer with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) often results in acquired resistance and a narrow therapeutic index. One strategy to improve the therapeutic effects of EGFR TKIs is to combine them with drugs used for other clinical indications. Ethacrynic acid (EA) is an FDA approved drug that may have antitumor effects and may enhance the cytotoxicity of chemotherapeutic agents by binding to glutathione and inhibiting WNT signaling. While the α,β-unsaturated-keto structure of EA is similar to that of irreversible TKIs, the mechanism of action of EA when combined with irreversible EGFR TKIs in breast cancer remains unknown. We therefore investigated the combination of irreversible EGFR TKIs and EA. We found that irreversible EGFR TKIs and EA synergistically inhibit breast cancer both in vitro and in vivo. The combination of EGFR TKIs and EA induces necrosis and cell cycle arrest and represses WNT/β-catenin signaling as well as MAPK-ERK1/2 signaling. We conclude that EA synergistically enhances the antitumor effects of irreversible EGFR TKIs in breast cancer. PMID:27487128

  15. Ethacrynic acid improves the antitumor effects of irreversible epidermal growth factor receptor tyrosine kinase inhibitors in breast cancer.

    PubMed

    Liu, Bing; Huang, XinPing; Hu, YunLong; Chen, TingTing; Peng, BoYa; Gao, NingNing; Jin, ZhenChao; Jia, TieLiu; Zhang, Na; Wang, ZhuLin; Jin, GuangYi

    2016-09-06

    Prolonged treatment of breast cancer with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) often results in acquired resistance and a narrow therapeutic index. One strategy to improve the therapeutic effects of EGFR TKIs is to combine them with drugs used for other clinical indications. Ethacrynic acid (EA) is an FDA approved drug that may have antitumor effects and may enhance the cytotoxicity of chemotherapeutic agents by binding to glutathione and inhibiting WNT signaling. While the α,β-unsaturated-keto structure of EA is similar to that of irreversible TKIs, the mechanism of action of EA when combined with irreversible EGFR TKIs in breast cancer remains unknown. We therefore investigated the combination of irreversible EGFR TKIs and EA. We found that irreversible EGFR TKIs and EA synergistically inhibit breast cancer both in vitro and in vivo. The combination of EGFR TKIs and EA induces necrosis and cell cycle arrest and represses WNT/β-catenin signaling as well as MAPK-ERK1/2 signaling. We conclude that EA synergistically enhances the antitumor effects of irreversible EGFR TKIs in breast cancer.

  16. The Fruit Hull of Gleditsia sinensis Enhances the Anti-Tumor Effect of cis-Diammine Dichloridoplatinum II (Cisplatin)

    PubMed Central

    Han, Chang-Woo; Yoon, Seong Hoon; Kim, Yun Seong; Kim, Jong-In

    2016-01-01

    Lung cancer has substantial mortality worldwide, and chemotherapy is a routine regimen for the treatment of patients with lung cancer, despite undesirable effects such as drug resistance and chemotoxicity. Here, given a possible antitumor effect of the fruit hull of Gleditsia sinensis (FGS), we tested whether FGS enhances the effectiveness of cis-diammine dichloridoplatinum (II) (CDDP), a chemotherapeutic drug. We found that CDDP, when administered with FGS, significantly decreased the viability and increased the apoptosis and cell cycle arrest of Lewis lung carcinoma (LLC) cells, which were associated with the increase of p21 and decreases of cyclin D1 and CDK4. Concordantly, when combined with FGS, CDDP significantly reduced the volume and weight of tumors derived from LLC subcutaneously injected into C57BL/6 mice, with concomitant increases of phosphor-p53 and p21 in tumor tissue. Together, these results show that FGS could enhance the antitumor activity of CDDP, suggesting that FGS can be used as a complementary measure to enhance the efficacy of a chemotherapeutic agent such as CDDP. PMID:27721894

  17. STING activator c-di-GMP enhances the anti-tumor effects of peptide vaccines in melanoma-bearing mice.

    PubMed

    Wang, Zili; Celis, Esteban

    2015-08-01

    Therapeutic vaccines to induce anti-tumor CD8 T cells have been used in clinical trials for advanced melanoma patients, but the clinical response rate and overall survival time have not improved much. We believe that these dismal outcomes are caused by inadequate number of antigen-specific CD8 T cells generated by most vaccines. In contrast, huge CD8 T cell responses readily occur during acute viral infections. High levels of type-I interferon (IFN-I) are produced during these infections, and this cytokine not only exhibits anti-viral activity but also promotes CD8 T cell responses. The studies described here were performed to determine whether promoting the production of IFN-I could enhance the potency of a peptide vaccine. We report that cyclic diguanylate monophosphate (c-di-GMP), which activates the stimulator of interferon genes, potentiated the immunogenicity and anti-tumor effects of a peptide vaccine against mouse B16 melanoma. The synergistic effects of c-di-GMP required co-administration of costimulatory anti-CD40 antibody, the adjuvant poly-IC, and were mediated in part by IFN-I. These findings demonstrate that peptides representing CD8 T cell epitopes can be effective inducers of large CD8 T cell responses in vaccination strategies that mimic acute viral infections.

  18. Zoledronic acid exerts antitumor effects in NB4 acute promyelocytic leukemia cells by inducing apoptosis and S phase arrest.

    PubMed

    Liu, Shou-Sheng; Wang, Xiao-Pai; Li, Xiu-Bo; Liang, Jia-Yi; Liu, Ling-Ling; Lu, Ying; Zhong, Xue-Yun; Chen, Yun-Xian

    2014-10-01

    The aim of this study was to investigate the antitumor effect of zoledronic acid (ZOL) in the NB4 human acute promyelocytic leukemia (APL) cell line and explore the potential mechanism of action of this compound. NB4 cells were exposed to various concentrations (0-200μM) of ZOL. Cell viability was measured by MTS assay. The extent of cell apoptosis and distribution of cells in the different phases of the cell cycle were analyzed with flow cytometry. The expression of apoptosis- and cell cycle-related proteins was assayed by Western blot. The combined effect of ZOL and arsenic trioxide (ATO) on the proliferation of NB4 cells was also determined. The results of this study indicate that ZOL inhibits cell proliferation in a time- and dose-dependent fashion and also induces apoptosis and S phase arrest in a dose-dependent manner. The Western blot analysis confirmed the induction of apoptosis and S phase arrest, revealing that the pro-apoptosis proteins Bax, Puma and activated caspase-9 were upregulated and the anti-apoptosis proteins Bcl-2 and Bcl-xL were downregulated. ZOL at a concentration of 50μM synergized with 0.5μM ATO on the growth inhibition of NB4 cells. Taken together, our data indicate that ZOL exerts a potent antitumor effect on NB4 cells by inducing apoptosis and cell cycle arrest, and that ZOL can synergize with the traditional chemotherapy drug ATO.

  19. Blockade of programmed death-1/programmed death ligand pathway enhances the antitumor immunity of human invariant natural killer T cells.

    PubMed

    Kamata, Toshiko; Suzuki, Akane; Mise, Naoko; Ihara, Fumie; Takami, Mariko; Makita, Yuji; Horinaka, Atsushi; Harada, Kazuaki; Kunii, Naoki; Yoshida, Shigetoshi; Yoshino, Ichiro; Nakayama, Toshinori; Motohashi, Shinichiro

    2016-12-01

    The role of invariant natural killer T (iNKT) cells in antitumor immunity has been studied extensively, and clinical trials in patients with advanced cancer have revealed a prolonged survival in some cases. In recent years, humanized blocking antibodies against co-stimulatory molecules such as PD-1 have been developed. The enhancement of T cell function is reported to improve antitumor immunity, leading to positive clinical effects. However, there are limited data on the role of PD-1/programmed death ligand (PDL) molecules in human iNKT cells. In this study, we investigated the interaction between PD-1 on iNKT cells and PDL on antigen-presenting cells (APCs) in the context of iNKT cell stimulation. The blockade of PDL1 at the time of stimulation resulted in increased release of helper T cell (Th) 1 cytokines from iNKT cells, leading to the activation of NK cells. The direct antitumor function of iNKT cells was also enhanced after stimulation with anti-PDL1 antibody-treated APCs. According to these results, we conclude that the co-administration of anti-PDL1 antibody and alpha-galactosylceramide (αGalCer)-pulsed APCs enhances iNKT cell-mediated antitumor immunity.

  20. Chemical insights in the concept of hybrid drugs: the antitumor effect of nitric oxide-donating aspirin involves a quinone methide but not nitric oxide nor aspirin.

    PubMed

    Hulsman, Niels; Medema, Jan Paul; Bos, Carina; Jongejan, Aldo; Leurs, Rob; Smit, Martine J; de Esch, Iwan J P; Richel, Dick; Wijtmans, Maikel

    2007-05-17

    Hybrid drug 1 (NO-ASA) continues to attract intense research from chemists and biologists alike. It consists of ASA and a -ONO2 group connected through a spacer and is in preclinical development as an antitumor drug. We report that, contrary to current beliefs, neither ASA nor NO contributes to this antitumor effect. Rather, an unsubstituted QM was identified as the sole cytotoxic agent. QM forms from 1 after carboxylic ester hydrolysis and, in accordance with the HSAB theory, selectively reacts with cellular GSH, which in turn triggers cell death. Remarkably, a derivative lacking ASA and the -ONO2 group is 10 times more effective than 1. Thus, our data provide a conclusive molecular mechanism for the antitumor activity of 1. Equally importantly, we show for the first time that a "presumed invisible" linker in a hybrid drug is not so invisible after all and is in fact solely responsible for the biological effect.

  1. A HER2-specific Modified Fc Fragment (Fcab) Induces Antitumor Effects Through Degradation of HER2 and Apoptosis

    PubMed Central

    Leung, Kin-Mei; Batey, Sarah; Rowlands, Robert; Isaac, Samine J; Jones, Phil; Drewett, Victoria; Carvalho, Joana; Gaspar, Miguel; Weller, Sarah; Medcalf, Melanie; Wydro, Mateusz M; Pegram, Robert; Mudde, Geert C; Bauer, Anton; Moulder, Kevin; Woisetschläger, Max; Tuna, Mihriban; Haurum, John S; Sun, Haijun

    2015-01-01

    FS102 is a HER2-specific Fcab (Fc fragment with antigen binding), which binds HER2 with high affinity and recognizes an epitope that does not overlap with those of trastuzumab or pertuzumab. In tumor cells that express high levels of HER2, FS102 caused profound HER2 internalization and degradation leading to tumor cell apoptosis. The antitumor effect of FS102 in patient-derived xenografts (PDXs) correlated strongly with the HER2 amplification status of the tumors. Superior activity of FS102 over trastuzumab or the combination of trastuzumab and pertuzumab was observed in vitro and in vivo when the gene copy number of HER2 was equal to or exceeded 10 per cell based on quantitative polymerase chain reaction (qPCR). Thus, FS102 induced complete and sustained tumor regression in a significant proportion of HER2-high PDX tumor models. We hypothesize that the unique structure and/or epitope of FS102 enables the Fcab to internalize and degrade cell surface HER2 more efficiently than standard of care antibodies. In turn, increased depletion of HER2 commits the cells to apoptosis as a result of oncogene shock. FS102 has the potential of a biomarker-driven therapeutic that derives superior antitumor effects from a unique mechanism-of-action in tumor cells which are oncogenically addicted to the HER2 pathway due to overexpression. PMID:26234505

  2. Influence of drying methods over in vitro antitumoral effects of exopolysaccharides produced by Agaricus blazei LPB 03 on submerged fermentation.

    PubMed

    Fernandes, M B A; Habu, S; de Lima, M A; Thomaz-Soccol, V; Soccol, C R

    2011-03-01

    Agaricus blazei is a mushroom that belongs to the Brazilian biodiversity and is considered as an important producer of bioactive compounds beneficial to human health. Studies have demonstrated that these compounds present immuno-modulatory, antioxidant and antitumor properties. In order to compare the most used method for fungal polysaccharide drying, lyophilization with other industrial-scale methods, the aim of this work was to submit A. blazei LPB 03 polysaccharide extracts to vaucum, spray and freeze drying, and evaluate the maintenance of its antitumoral effects in vitro. Exopolysaccharides produced by A. blazei LPB 03 on submerged fermentation were extracted with ethanol and submitted to drying processes. The efficiency represents the water content that was removed during the drying process. The resultant dried products showed water content around 3% and water activity less than 0.380, preventing therefore the growth of microorganisms and reactions of chemical degradation. Exopolysaccharide extracts dried by vacuum and spray dryer did not showed any significant cytotoxic effect on cell viability of Wistar mice macrophages. Content of total sugars and protein decrease after drying, nevertheless, 20 mg/ml of exopolysaccharides dried by spray dryer reached 33% of inhibition rate over Ehrlich tumor cells in vitro.

  3. Graphene oxide as a chemosensitizer: diverted autophagic flux, enhanced nuclear import, elevated necrosis and improved antitumor effects.

    PubMed

    Chen, Guan-Yu; Meng, Chia-Le; Lin, Kuan-Chen; Tuan, Hsing-Yu; Yang, Hong-Jie; Chen, Chiu-Ling; Li, Kuei-Chang; Chiang, Chi-Shiun; Hu, Yu-Chen

    2015-02-01

    Graphene oxide (GO) is a nanomaterial that provokes autophagy in CT26 colon cancer cells and confers antitumor effects. Here we demonstrated that both GO and the chemotherapy drug cisplatin (CDDP) induced autophagy but elicited low degrees of CT26 cell death. Strikingly, GO combined with CDDP (GO/CDDP) potentiated the CT26 cell killing via necrosis. GO/CDDP not only elicited autophagy, but induced the nuclear import of CDDP and the autophagy marker LC3. The nuclear LC3 did not co-localize with p62 or Lamp-2, neither did blocking autolysosome formation significantly hinder the nuclear import of LC3/CDDP and necrosis, indicating that autophagosome and autolysosome formation was dispensable. Conversely, suppressing phagophore formation and importin-α/β significantly alleviated the nuclear import of LC3/CDDP and necrosis. These data suggested that GO/CDDP diverted the LC3 flux in the early phase of autophagy, resulting in LC3 trafficking towards the nucleus in an importin-α/β-dependent manner, which concurred with the CDDP nuclear import and necrosis. Intratumoral injection of GO/CDDP into mice bearing CT26 colon tumors potentiated immune cell infiltration and promoted cell death, autophagy and HMGB1 release, thereby synergistically augmenting the antitumor effects. Altogether, we unveiled a mechanism concerning how nanomaterials chemosensitize cancer cells and demonstrated the potentials of GO as a chemosensitizer.

  4. Simultaneous monitoring of the drug release and antitumor effect of a novel drug delivery system-MWCNTs/DOX/TC.

    PubMed

    Dong, Xia; Sun, Zhiting; Wang, Xiaoxiao; Zhu, Dunwan; Liu, Lanxia; Leng, Xigang

    2017-11-01

    Monitoring drug release and therapeutic efficacy is crucial for developing drug delivery systems. Our preliminary study demonstrated that, as compared with pristine multiwalled carbon nanotubes (MWCNTs), transactivator of transcription (TAT)-chitosan functionalized MWCNTs (MWCNTs-TC) were a more promising candidate for drug delivery in cancer therapy. In the present study, a MWCNTs/TC-based drug delivery system was developed for an anticancer drug, doxorubicin (DOX). The drug loading and in vitro release profiles, cellular uptake and cytotoxicity were assessed. More importantly, the in vivo drug release and antitumor effect of MWCNTs/DOX/TC were evaluated by noninvasive fluorescence and bioluminescence imaging. It was demonstrated that MWCNTs/DOX/TC can be efficiently taken up by BEL-7402 hepatoma cells. The release of DOX from MWCNTs/DOX/TC was faster under lower pH condition, which was beneficial for intrcellular drug release. The in vivo release process of DOX and antitumor effect in animal model were monitored simultaneously by noninvasive fluorescence and luminescence imaging, which demonstrated the application potential of MWCNTs/DOX/TC for cancer therapy.

  5. Non-thermal atmospheric pressure plasma activates lactate in Ringer’s solution for anti-tumor effects

    PubMed Central

    Tanaka, Hiromasa; Nakamura, Kae; Mizuno, Masaaki; Ishikawa, Kenji; Takeda, Keigo; Kajiyama, Hiroaki; Utsumi, Fumi; Kikkawa, Fumitaka; Hori, Masaru

    2016-01-01

    Non-thermal atmospheric pressure plasma is a novel approach for wound healing, blood coagulation, and cancer therapy. A recent discovery in the field of plasma medicine is that non-thermal atmospheric pressure plasma not only directly but also indirectly affects cells via plasma-treated liquids. This discovery has led to the use of non-thermal atmospheric pressure plasma as a novel chemotherapy. We refer to these plasma-treated liquids as plasma-activated liquids. We chose Ringer’s solutions to produce plasma-activated liquids for clinical applications. In vitro and in vivo experiments demonstrated that plasma-activated Ringer’s lactate solution has anti-tumor effects, but of the four components in Ringer’s lactate solution, only lactate exhibited anti-tumor effects through activation by non-thermal plasma. Nuclear magnetic resonance analyses indicate that plasma irradiation generates acetyl and pyruvic acid-like groups in Ringer’s lactate solution. Overall, these results suggest that plasma-activated Ringer’s lactate solution is promising for chemotherapy. PMID:27824103

  6. Cell-specific expression of artificial microRNAs targeting essential genes exhibit potent antitumor effect on hepatocellular carcinoma cells.

    PubMed

    Mao, Chenyu; Liu, Hao; Chen, Ping; Ye, Jingjia; Teng, Lisong; Jia, Zhenyu; Cao, Jiang

    2015-03-20

    To achieve specific and potent antitumor effect of hepatocyte carcinoma cells, replication defective adenoviral vectors, namely rAd/AFP-amiRG, rAd/AFP-amiRE and rAd/AFP-amiRP, were constructed which were armed with artificial microRNAs (amiRs) targeting essential functional genes glyceraldehyde-3-phosphate dehydrogenase, eukaryotic translation initiation factor 4E and DNA polymerase α respectively under the control of a recombinant promoter comprised of human α-fetoprotein enhancer and basal promoter. The AFP enhancer/promoter showed specific high transcription activity in AFP-positive HCC cells Hep3B, HepG2 and SMMC7721, while low in AFP-negative cell Bcap37. All artificial microRNAs exhibited efficient knockdown of target genes. Decreased ATP production and protein synthesis was observed in rAd/AFP-amiRG and rAd/AFP-amiRE treated HCC cells. All three recombinant adenoviruses showed efficient blockage of cell cycle progression and significant suppression of HCC cells in vitro. In nude mice model bearing Hep3B xenograft, administration of rAd/AFP-amiRG showed potent antitumor effect. The strategy of tumor-specific knockdown of genes essential for cell survival and proliferation may suggest a novel promising approach for HCC gene therapy.

  7. Non-thermal atmospheric pressure plasma activates lactate in Ringer’s solution for anti-tumor effects

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiromasa; Nakamura, Kae; Mizuno, Masaaki; Ishikawa, Kenji; Takeda, Keigo; Kajiyama, Hiroaki; Utsumi, Fumi; Kikkawa, Fumitaka; Hori, Masaru

    2016-11-01

    Non-thermal atmospheric pressure plasma is a novel approach for wound healing, blood coagulation, and cancer therapy. A recent discovery in the field of plasma medicine is that non-thermal atmospheric pressure plasma not only directly but also indirectly affects cells via plasma-treated liquids. This discovery has led to the use of non-thermal atmospheric pressure plasma as a novel chemotherapy. We refer to these plasma-treated liquids as plasma-activated liquids. We chose Ringer’s solutions to produce plasma-activated liquids for clinical applications. In vitro and in vivo experiments demonstrated that plasma-activated Ringer’s lactate solution has anti-tumor effects, but of the four components in Ringer’s lactate solution, only lactate exhibited anti-tumor effects through activation by non-thermal plasma. Nuclear magnetic resonance analyses indicate that plasma irradiation generates acetyl and pyruvic acid-like groups in Ringer’s lactate solution. Overall, these results suggest that plasma-activated Ringer’s lactate solution is promising for chemotherapy.

  8. HB-EGF inhibition in combination with various anticancer agents enhances its antitumor effects in gastric cancer.

    PubMed

    Sanui, Ayako; Yotsumoto, Fusanori; Tsujioka, Hiroshi; Fukami, Tatsuya; Horiuchi, Shinji; Shirota, Kyoko; Yoshizato, Toshiyuki; Kawarabayashi, Tatsuhiko; Kuroki, Masahide; Miyamoto, Shingo

    2010-08-01

    Advanced gastric cancer (GC) is one of the most lethal malignancies. Although many anticancer agents exist for the treatment of GC, its prognosis remains extremely poor. Therefore, further development of targeted therapies is required for patients with GC. To assess the role of heparin-binding epidermal growth factor-like growth factor (HB-EGF) as a target for GC therapy, the expression of EGF receptor ligands in GC cell lines, and the antitumor effects of an HB-EGF inhibitor (CRM197) as a single agent and in combination with other anticancer agents was assessed in GC cells. HB-EGF was the predominantly expressed ligand among EGF receptor ligands in all the cells. CRM197 induced significant cell apoptosis. Anticancer agents augmented the secretion of HB-EGF into the medium and simultaneously induced cell apoptosis. Combination of CRM197 with other anticancer agents significantly enhanced cell apoptosis. Additionally, co-administration of CRM197 and paclitaxel resulted in synergistic antitumor effects. These results suggested that HB-EGF is a rational target for GC therapy.

  9. Effects of phycocyanin on INS-1 pancreatic β-cell mediated by PI3K/Akt/FoxO1 signaling pathway.

    PubMed

    Gao, Yingnv; Liao, Gaoyong; Xiang, Chenxi; Yang, Xuegan; Cheng, Xiaodong; Ou, Yu

    2016-02-01

    The level of methylglyoxal (MG), which is a side-product of metabolic pathways, particularly in glycolysis, is elevated in diabetes. Notably, the accumulation of MG causes a series of pathological changes. Phycocyanin (PC) has been demonstrated to show insulin-sensitizing effect, however, the underlying molecular mechanism remains elusive. The aim of this study was to investigate the protective effects of PC on INS-1 rat insulinoma β-cell against MG-induced cell dysfunction, as well as the underlying mechanisms. PC was preliminarily verified to time-dependently activate PI3-kinase (PI3K) pathway, but the PI3K-specific inhibitor Wortmannin blocked the effect of PC. Glucose-stimulated insulin secretion (GSIS) was impaired in MG-treated INS-1 cells. Furthermore, MG induced dephosphorylation of Akt and FoxO1, resulting in nuclear localization and transactivation of FoxO1. Nevertheless, these effects were all effectively attenuated by PC. The ameliorated insulin secretion was related to the changes of FoxO1 mediated by PC, which demonstrated by RNA interference. And, the dosage used in the above experiments did not affect β-cell viability and apoptosis, although long-term MG induced cell apoptosis and mitochondrial dysfunction. In conclusion, PC was capable to protect INS-1 pancreatic β-cell against MG-induced cell dysfunction through modulating PI3K/Akt pathway and the downstream FoxO1.

  10. Antitumor Effects of Chimeric Receptor Engineered Human T Cells Directed to Tumor Stroma

    PubMed Central

    Kakarla, Sunitha; Chow, Kevin KH; Mata, Melinda; Shaffer, Donald R; Song, Xiao-Tong; Wu, Meng-Fen; Liu, Hao; Wang, Lisa L; Rowley, David R; Pfizenmaier, Klaus; Gottschalk, Stephen

    2013-01-01

    Cancer-associated fibroblasts (CAFs), the principle component of the tumor-associated stroma, form a highly protumorigenic and immunosuppressive microenvironment that mediates therapeutic resistance. Co-targeting CAFs in addition to cancer cells may therefore augment the antitumor response. Fibroblast activation protein-α (FAP), a type 2 dipeptidyl peptidase, is expressed on CAFs in a majority of solid tumors making it an attractive immunotherapeutic target. To target FAP-positive CAFs in the tumor-associated stroma, we genetically modified T cells to express a FAP-specific chimeric antigen receptor (CAR). The resulting FAP-specific T cells recognized and killed FAP-positive target cells as determined by proinflammatory cytokine release and target cell lysis. In an established A549 lung cancer model, adoptive transfer of FAP-specific T cells significantly reduced FAP-positive stromal cells, with a concomitant decrease in tumor growth. Combining these FAP-specific T cells with T cells that targeted the EphA2 antigen on the A549 cancer cells themselves significantly enhanced overall antitumor activity and conferred a survival advantage compared to either alone. Our study underscores the value of co-targeting both CAFs and cancer cells to increase the benefits of T-cell immunotherapy for solid tumors. PMID:23732988

  11. Involvement of lipid rafts in the localization and dysfunction effect of the antitumor ether phospholipid edelfosine in mitochondria

    PubMed Central

    Mollinedo, F; Fernández, M; Hornillos, V; Delgado, J; Amat-Guerri, F; Acuña, A U; Nieto-Miguel, T; Villa-Pulgarín, J A; González-García, C; Ceña, V; Gajate, C

    2011-01-01

    Lipid rafts and mitochondria are promising targets in cancer therapy. The synthetic antitumor alkyl-lysophospholipid analog edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine) has been reported to target lipid rafts. Here, we have found that edelfosine induced loss of mitochondrial membrane potential and apoptosis in human cervical carcinoma HeLa cells, both responses being abrogated by Bcl-xL overexpression. We synthesized a number of new fluorescent edelfosine analogs, which preserved the proapoptotic activity of the parent drug, and colocalized with mitochondria in HeLa cells. Edelfosine induced swelling in isolated mitochondria, indicating an increase in mitochondrial membrane permeability. This mitochondrial swelling was independent of reactive oxygen species generation. A structurally related inactive analog was unable to promote mitochondrial swelling, highlighting the importance of edelfosine molecular structure in its effect on mitochondria. Raft disruption inhibited mitochondrial localization of the drug in cells and edelfosine-induced swelling in isolated mitochondria. Edelfosine promoted a redistribution of lipid rafts from the plasma membrane to mitochondria, suggesting a raft-mediated link between plasma membrane and mitochondria. Our data suggest that direct interaction of edelfosine with mitochondria eventually leads to mitochondrial dysfunction and apoptosis. These observations unveil a new framework in cancer chemotherapy that involves a link between lipid rafts and mitochondria in the mechanism of action of an antitumor drug, thus opening new avenues for cancer treatment. PMID:21593790

  12. Bisphosphonates Inhibit Stellate Cell Activity and Enhance Antitumor Effects of Nanoparticle Albumin Bound-Paclitaxel in Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Gonzalez-Villasana, Vianey; Rodriguez-Aguayo, Cristian; Arumugam, Thiruvengadam; Cruz-Monserrate, Zobeida; Fuentes-Mattei, Enrique; Deng, Defeng; Hwang, Rosa F.; Wang, Huamin; Ivan, Cristina; Garza, Raul Joshua; Cohen, Evan; Gao, Hui; Armaiz-Pena, Guillermo N.; Monroig-Bosque, Paloma del C.; Philip, Bincy; Rashed, Mohammed H.; Aslan, Burcu; Erdogan, Mumin Alper; Gutierrez-Puente, Yolanda; Ozpolat, Bulent; Reuben, James M.; Sood, Anil K.; Logsdon, Craig; Lopez-Berestein, Gabriel

    2014-01-01

    Pancreatic stellate cells (PSCs) have been recognized as the principal cells responsible for the production of fibrosis in PDAC. Recently PSCs have been noted to share characteristics with cells of monocyte-macrophage lineage (MML cells). Thus, we tested whether PSCs could be targeted with the nitrogen-containing bisphosphonates (NBPs) [pamidronate (Pam) or zoledronic acid (ZA)], which are potent MML cell inhibitors. In addition, we tested NBPs treatment combination with nanoparticle albumin-bound paclitaxel (nab-paclitaxel) to enhance antitumor activity. In vitro we observed that PSCs possess α-naphthyl butyrate esterase (ANBE) enzyme activity, a specific marker of MML cells. Moreover NBPs inhibited PSCs proliferation, activation, release of macrophage chemoattractant protein-1 (MCP-1) and type I collagen expression. NBPs also induced PSC apoptosis and cell cycle arrest in the G1 phase. In vivo, NBPs inactivated PSCs; reduced fibrosis; inhibited tumor volume, tumor weight, peritoneal dissemination, angiogenesis, and cell proliferation; and increased apoptosis in an orthotopic murine model of PDAC. These in vivo antitumor effects were enhanced when NBPs were combined with nab-paclitaxel but not gemcitabine (Gem). Our study suggests that targeting PSCs and tumor cells with NBPs in combination with nab-paclitaxel may be a novel therapeutic approach to PDAC. PMID:25193509

  13. Protamine and mast-cell-mediated angiogenesis in the rat.

    PubMed Central

    Jakobsson, A.; Sörbo, J.; Norrby, K.

    1990-01-01

    Different doses of protamine sulphate (PS) given s.c. (at 12-h intervals) were tested for signs of non-specific toxicity measured as effect on body weight and small-gut proliferation as well as on mast-cell secretion and mast-cell-mediated mitogenesis in the mesenteric windows following i.p. injection of Compound 48/80, a potent mast cell secretagogue, in normal rats. In a non-toxic dose range, the effect of PS on mast-cell-mediated angiogenesis, effected by 48/80, was quantified as the number of vessels per mm of mesenteric window in histological sections at x 400. No intelligible dose-effect relationship was discernible between the dose of PS given and the effect on angiogenesis. Only in a tight interval, at 40 mg PS/kg but not at 20 or 60 mg PS/kg, was the angiogenesis statistically significantly suppressed. Hence, it was concluded that PS can be angiostatic but does not exert a more general angiostatic effect in the autogenous systems used. PMID:1691920

  14. Oncostatin m modulates the mesenchymal-epithelial transition of lung adenocarcinoma cells by a mesenchymal stem cell-mediated paracrine effect.

    PubMed

    Wang, Mong-Lien; Pan, Chih-Ming; Chiou, Shih-Hwa; Chen, Wen-Hsin; Chang, Hsiang-Yi; Lee, Oscar Kuang-Sheng; Hsu, Han-Sui; Wu, Cheng-Wen

    2012-11-15

    Mesenchymal stem cells (MSC) are strongly associated with tumor progression and have been used as novel cell-based agents to deliver anticancer drugs to tumors. However, controversies about the direct involvement of MSCs in tumor progression suggest that MSCs mediate tumor progression in a cancer type-dependent manner. In this report, we analyzed the functional interactions between human MSCs and lung adenocarcinoma (LAC) cells to determine the therapeutic potential of MSCs in lung cancer. We showed that MSCs effectively inhibited the migration, invasion, and cell-cycle progression of several LAC cell lines. MSCs also enhanced the mesenchymal-epithelial transition (MET) pathway, as evidenced by the reduction of several epithelial-mesenchymal transition-related markers in LAC cells cocultured with MSCs or in MSC-conditioned medium (MSC-CM). By cytokine array analysis, we determined that Oncostatin M (OSM), a differentiation-promoting cytokine, was elevated in the MSC-CM derived from primary MSC cultures. Furthermore, OSM treatment had the same effects as MSC-CM on LAC, whereas neutralizing antibodies to OSM reversed them. Notably, short hairpin RNAs against STAT1, an important downstream target of OSM, hindered the OSM-dependent induction of MET. In vivo xenograft tumor studies indicated that OSM inhibited tumor formation and metastasis of LAC cells, whereas neutralizing OSM in the MSC-CM hampered its inhibitory effects. In conclusion, this study showed that OSM is a paracrine mediator of MSC-dependent inhibition of tumorigenicity and activation of MET in LAC cells. These effects of OSM may serve as a basis for the development of new drugs and therapeutic interventions targeting cancer cells.

  15. Sub-chronic effects of nitrate in drinking water on red-legged partridge (Alectoris rufa): oxidative stress and T-cell mediated immune function.

    PubMed

    Rodríguez-Estival, Jaime; Martínez-Haro, Mónica; Martín-Hernando, M A Paz; Mateo, Rafael

    2010-07-01

    In order to evaluate the effects of nitrates on birds, we have exposed captive red-legged partridges to nitrates concentrations of 0 (control), 100 (dwell water in farming areas) or 500 mg/l (fertirrigation level). The cellular immune response, plasma biochemistry, methemoglobin concentration (metHb), and oxidative stress biomarkers in blood and tissues were studied after two weeks of exposure. Several blood parameters such as aspartate aminotransferase, creatinine phosphokinase and lactate dehydrogenase activities and magnesium level decreased with nitrate exposure, whereas alkaline phosphatase activity and creatinine level increased. The oxidant effect of nitrates was evidenced by the increase in blood metHb, accompanied by the lipid peroxidation of red blood cells, the increased levels of oxidized glutathione (GSH) in liver, and the generation of oxidative DNA damage in plasma lymphocytes. GSH in erythrocytes was negatively correlated with blood metHb. The cellular immune function was slightly lower at partridges exposed to nitrates. These results suggest that adverse effects of nitrates on birds occur at concentrations potentially present in the field.

  16. Inhibitory effect of 1,2,4,5-tetramethoxybenzene on mast cell-mediated allergic inflammation through suppression of IκB kinase complex

    SciTech Connect

    Je, In-Gyu; Choi, Hyun Gyu; Kim, Hui-Hun; Lee, Soyoung; Choi, Jin Kyeong; Kim, Sung-Wan; Kim, Duk-Sil; Kwon, Taeg Kyu; Shin, Tae-Yong; Park, Pil-Hoon; Khang, Dongwoo; Kim, Sang-Hyun

    2015-09-01

    As the importance of allergic disorders such as atopic dermatitis and allergic asthma, research on potential drug candidates becomes more necessary. Mast cells play an important role as initiators of allergic responses through the release of histamine; therefore, they should be the target of pharmaceutical development for the management of allergic inflammation. In our previous study, anti-allergic effect of extracts of Amomum xanthioides was demonstrated. To further investigate improved candidates, 1,2,4,5-tetramethoxybenzene (TMB) was isolated from methanol extracts of A. xanthioides. TMB dose-dependently attenuated the degranulation of mast cells without cytotoxicity by inhibiting calcium influx. TMB decreased the expression of pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin (IL)-4 at both the transcriptional and translational levels. Increased expression of these cytokines was caused by translocation of nuclear factor-κB into the nucleus, and it was hindered by suppressing activation of IκB kinase complex. To confirm the effect of TMB in vivo, the ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) and IgE-mediated passive cutaneous anaphylaxis (PCA) models were used. In the ASA model, hypothermia was decreased by oral administration of TMB, which attenuated serum histamine, OVA-specific IgE, and IL-4 levels. Increased pigmentation of Evans blue was reduced by TMB in a dose-dependent manner in the PCA model. Our results suggest that TMB is a possible therapeutic candidate for allergic inflammatory diseases that acts through the inhibition of mast cell degranulation and expression of pro-inflammatory cytokines. - Highlights: • TMB reduced the degranulation of mast cells. • TMB inhibited the production of pro-inflammatory cytokines. • TMB suppressed both active and passive anaphylaxis. • Anti-allergic inflammatory effects of TMB might be due to the blocking IKK complex. • TMB might be a candidate for the treatment of

  17. Anticancer Effects of 1,3-Dihydroxy-2-Methylanthraquinone and the Ethyl Acetate Fraction of Hedyotis Diffusa Willd against HepG2 Carcinoma Cells Mediated via Apoptosis

    PubMed Central

    Li, Yun-lan; Zhang, Jiali; Min, Dong; Hongyan, Zhou; Lin, Niu; Li, Qing-shan

    2016-01-01

    Hedyotis Diffusa Willd, used in Traditional Chinese Medicine, is a treatment for various diseases including cancer, owing to its mild effectiveness and low toxicity. The aim of this study was to identify the main anticancer components in Hedyotis Diffusa Willd, and explore mechanisms underlying their activity. Hedyotis Diffusa Willd was extracted and fractionated using ethyl acetate to obtain the H-Ethyl acetate fraction, which showed higher anticancer activity than the other fractions obtained against HepG2 cells with sulforhodamine B assays. The active component of the H-Ethyl acetate fraction was identified to be 1,3-dihydroxy-2-methylanthraquinone (DMQ) with much high inhibitory rate up to 48.9 ± 3.3% and selectivity rate up to 9.4 ± 4.5 folds (p<0.01) at 125 μmol/L. HepG2 cells treated with the fraction and DMQ visualized morphologically using light and fluorescence microscopy. Annexin V—fluorescein isothiocyanate / propidium iodide staining flow cytometry, DNA ladder and cell cycle distribution assays. Mechanistic studies showed up-regulation of caspase-3, -8, and -9 proteases activities (p<0.001), indicating involvement of mitochondrial apoptotic and death receptor pathways. Further studies revealed that reactive oxygen species in DMQ and the fraction treated HepG2 cells increased (p<0.01) while mitochondrial membrane potential reduced significantly (p<0.001) compared to the control by flow cytometry assays. Western blot analysis showed that Bax, p53, Fas, FasL, p21 and cytoplasmic cytochrome C were up-regulated (p<0.01), while Bcl-2, mitochondrial cytochrome C, cyclin E and CDK 2 were down-regulated dose-dependently (p<0.01). The reverse transcriptase-polymerase chain reaction showed that mRNA expressions of p53 and Bax increased (p<0.001) while that of Bcl-2 decreased (p<0.001). Pre-treatment with caspase-8 inhibitor Z-IETD-FMK, or caspase-9 inhibitor Z-LEHD-FMK, attenuated the growth-inhibitory and apoptosis-inducing effects of DMQ and the fraction

  18. Dendritic cell-activated cytokine-induced killer cell-mediated immunotherapy is safe and effective for cancer patients >65 years old

    PubMed Central

    Liu, Yanfeng; Liu, Haibo; Liu, Hausheng; He, Pengcheng; Li, Jing; Liu, Xin; Chen, Limei; Wang, Mengchang; Xi, Jiejing; Wang, Huaiyu; Zhang, Haitao; Zhu, Ying; Zhu, Wei; Ning, Jing; Guo, Caili; Sun, Chunhong; Zhang, Mei

    2016-01-01

    Individuals >65 years old account for a large proportion of cancer patients, and usually have poor prognoses due to relative weaker physiological function and lower drug tolerance. To characterize the efficacy and safety of dendritic cell (DC)-activated cytokine-induced killer cell (CIK)-mediated treatment, and develop an adoptive immunotherapy for cancer patients >65 years old, a retrospective study was performed in 58 cancer sufferers who received 1–4 cycles of DC-activated CIK (DC-CIK) treatment and evaluated the response (tumor remission rate) and toxicity (side effects to the treatment). The present results showed that DCs and CIKs could be expanded rapidly in vitro, and following co-culture with DCs, the population of cluster of differentiation (CD) 3+, CD3+CD4+, CD3+CD8+ and CD3+CD56+ CIKs was significantly increased compared to CIKs without DC activation (P=0.044). In addition, DC-CIK infusion produced marked clinical outcomes, resulting in an objective remission rate, overall clinical benefit rate and Karnofsky performance status of 44.83, 75.86 and 87.28±5.46%, respectively, which was significantly improved compared with prior to treatment (P<0.05). Additionally, subsequent to two cycles of this immunotherapy, several tumor marker expression levels declined, returning to the normal range. The proportion of CD3+CD4+ (P=0.017) and CD3+CD8+ (P=0.023) lymphocytes, and the population of CD4/CD8 cells (P=0.024) were also increased. In conclusion, the present study suggests that the immunotherapy mediated by DC-CIK is safe and effective for cancer patients aged >65 years. PMID:28105230

  19. Cytotoxic effects of Urtica dioica radix on human colon (HT29) and gastric (MKN45) cancer cells mediated through oxidative and apoptotic mechanisms.

    PubMed

    Ghasemi, S; Moradzadeh, M; Mousavi, S H; Sadeghnia, H R

    2016-10-15

    Defects in the apoptotic pathways are responsible for both the colorectal cancer pathogenesis and resistance to therapy. In this study, we examined the level of cellular oxidants, cytotoxicity and apoptosis induced by hydroalcoholic extract of U. dioica radix (0-2000 µg/mL) and oxaliplatin (0-1000 µg/mL, as positive control) in human gastric (MKN45) and colon (HT29) cancer, as well as normal human foreskin fibroblast (HFF) cells. Exposure to U. dioica or oxaliplatin showed a concentration dependent suppression in cell survival with IC50 values of 24.7, 249.9 and 857.5 µg/mL for HT29, MKN45 and HFF cells after 72 h treatment, respectively. ROS formation and lipid peroxidation were also concentration-dependently increased following treatment with U. dioica, similar to oxaliplatin. In addition, the number of apoptotic cells significantly increased concomitantly with concentration of U. dioica as compared with control cells, which is similar to oxaliplatin and serum-deprived cancer cells. In conclusion, the present study demonstrated that U. dioica inhibited proliferation of gastric and colorectal cancer cells while posing no significant toxic effect on normal cells. U. dioica not only increased levels of oxidants, but also induced concomitant increase of apoptosis. The precise signaling pathway by which U. dioica induce apoptosis needs further research.

  20. Natural killer cell-mediated innate sieve effect on HIV-1: the impact of KIR/HLA polymorphism on HIV-1 subtype-specific acquisition in east Africa.

    PubMed

    Koehler, Rebecca N; Alter, Galit; Tovanabutra, Sodsai; Saathoff, Elmar; Arroyo, Miguel A; Walsh, Anne M; Sanders-Buell, Eric E; Maboko, Leonard; Hoelscher, Michael; Robb, Merlin L; Michael, Nelson L; McCutchan, Francine E; Kim, Jerome H; Kijak, Gustavo H

    2013-10-15

    Here we explore the association between killer cell immunoglobulin-like receptor (KIR)/HLA and human immunodeficiency virus type 1 (HIV-1) acquisition with different viral subtypes circulating in East Africa. In the prospective Cohort Development (CODE) cohort (Mbeya, Tanzania), carriers of KIR3DS1 and its putative ligand (HLA-A or HLA-B Bw4-80Ile alleles) showed increased HIV-1 acquisition risk (odds ratio [OR] = 3.46; 95% confidence interval [CI], 1.12-10.63; P = .04) and a trend for enrichment for subtype A and A-containing recombinants (78% vs. 46%; OR = 4.05; 95% CI, .91-28.30; P = .09) at the expense of subtype C (11% vs. 43%; OR = 0.17; 95% CI, .01-.97; P = .08). In vitro, only natural killer cells from KIR3DS1(+)/HLA-Bw4-80Ile(+) healthy donors showed a 2-fold increased capacity to inhibit replication of subtype C vs subtype A viruses (P = .01). These findings suggest the presence of an innate sieve effect and may inform HIV-1 vaccine development.

  1. The effects of reduced gluten barley diet on humoral and cell-mediated systemic immune responses of gluten-sensitive rhesus macaques.

    PubMed

    Sestak, Karol; Thwin, Hazel; Dufour, Jason; Aye, Pyone P; Liu, David X; Moehs, Charles P

    2015-03-06

    Celiac disease (CD) affects approximately 1% of the general population while an estimated additional 6% suffers from a recently characterized, rapidly emerging, similar disease, referred to as non-celiac gluten sensitivity (NCGS). The only effective treatment of CD and NCGS requires removal of gluten sources from the diet. Since required adherence to a gluten-free diet (GFD) is difficult to accomplish, efforts to develop alternative treatments have been intensifying in recent years. In this study, the non-human primate model of CD/NCGS, e.g., gluten-sensitive rhesus macaque, was utilized with the objective to evaluate the treatment potential of reduced gluten cereals using a reduced gluten (RG; 1% of normal gluten) barley mutant as a model. Conventional and RG barleys were used for the formulation of experimental chows and fed to gluten-sensitive (GS) and control macaques to determine if RG barley causes a remission of dietary gluten-induced clinical and immune responses in GS macaques. The impacts of the RG barley diet were compared with the impacts of the conventional barley-containing chow and the GFD. Although remission of the anti-gliadin antibody (AGA) serum responses and an improvement of clinical diarrhea were noted after switching the conventional to the RG barley diet, production of inflammatory cytokines, e.g., interferon-gamma (IFN-γ), tumor necrosis factor (TNF) and interleukin-8 (IL-8) by peripheral CD4+ T helper lymphocytes, persisted during the RG chow treatment and were partially abolished only upon re-administration of the GFD. It was concluded that the RG barley diet might be used for the partial improvement of gluten-induced disease but its therapeutic value still requires upgrading-by co-administration of additional treatments.

  2. The Effects of Reduced Gluten Barley Diet on Humoral and Cell-Mediated Systemic Immune Responses of Gluten-Sensitive Rhesus Macaques

    PubMed Central

    Sestak, Karol; Thwin, Hazel; Dufour, Jason; Aye, Pyone P.; Liu, David X.; Moehs, Charles P.

    2015-01-01

    Celiac disease (CD) affects approximately 1% of the general population while an estimated additional 6% suffers from a recently characterized, rapidly emerging, similar disease, referred to as non-celiac gluten sensitivity (NCGS). The only effective treatment of CD and NCGS requires removal of gluten sources from the diet. Since required adherence to a gluten-free diet (GFD) is difficult to accomplish, efforts to develop alternative treatments have been intensifying in recent years. In this study, the non-human primate model of CD/NCGS, e.g., gluten-sensitive rhesus macaque, was utilized with the objective to evaluate the treatment potential of reduced gluten cereals using a reduced gluten (RG; 1% of normal gluten) barley mutant as a model. Conventional and RG barleys were used for the formulation of experimental chows and fed to gluten-sensitive (GS) and control macaques to determine if RG barley causes a remission of dietary gluten-induced clinical and immune responses in GS macaques. The impacts of the RG barley diet were compared with the impacts of the conventional barley-containing chow and the GFD. Although remission of the anti-gliadin antibody (AGA) serum responses and an improvement of clinical diarrhea were noted after switching the conventional to the RG barley diet, production of inflammatory cytokines, e.g., interferon-gamma (IFN-γ), tumor necrosis factor (TNF) and interleukin-8 (IL-8) by peripheral CD4+ T helper lymphocytes, persisted during the RG chow treatment and were partially abolished only upon re-administration of the GFD. It was concluded that the RG barley diet might be used for the partial improvement of gluten-induced disease but its therapeutic value still requires upgrading—by co-administration of additional treatments. PMID:25756783

  3. The vesicle size of DDA:TDB liposomal adjuvants plays a role in the cell-mediated immune response but has no significant effect on antibody production.

    PubMed

    Henriksen-Lacey, Malou; Devitt, Andrew; Perrie, Yvonne

    2011-09-05

    The use of cationic liposomes as experimental adjuvants for subunit peptide of protein vaccines is well documented. Recently the cationic liposome CAF01, composed of dimethyldioctadecylammonium (DDA) and trehalose dibehenate (TDB), has entered Phase I clinical trials for use in a tuberculosis (TB) vaccine. CAF01 liposomes are a heterogeneous population with a mean vesicle size of 500 nm; a strong retention of antigen at the injection site and a Th1-biassed immune response are noted. The purpose of this study was to investigate whether CAF01 liposomes of significantly different vesicle sizes exhibited altered pharmacokinetics in vivo and cellular uptake with activation in vitro. Furthermore, the immune response against the TB antigen Ag85B-ESAT-6 was followed when various sized CAF01 liposomes were used as vaccine adjuvants. The results showed no differences in vaccine (liposome or antigen) draining from the injection site, however, significant differences in the movement of liposomes to the popliteal lymph node were noted. Liposome uptake by THP-1 vitamin D3 stimulated macrophage-like cells did not show a liposome size-dependent pattern of uptake. Finally, whilst there were no significant differences in the IgG1/2 regardless of the liposome size used as a delivery vehicle for Ag85B-ESAT-6, vesicle size has a size dependent effect on cell proliferation and IL-10 production with larger liposomes (in excess of 2 μm) promoting the highest proliferation and lowest IL-10 responses, yet vesicles of ~500 nm promoting higher IFN-γ cytokine production from splenocytes and higher IL-1β at the site of injection.

  4. Endostatin enhances antitumor effect of tumor antigen-pulsed dendritic cell therapy in mouse xenograft model of lung carcinoma

    PubMed Central

    Liang, Jing; Liu, Xiaolin; Xie, Qi; Chen, Guoling; Li, Xingyu; Jia, Yanrui; Yin, Beibei; Qu, Xun; Li, Yan

    2016-01-01

    Objective To investigate the antitumor effect of endostatin combined with tumor antigen-pulsed dendritic cell (DC)-T cell therapy on lung cancer. Methods Transplanted Lewis lung cancer (LLC) models of C57BL/6 mice were established by subcutaneous injection of LLC cells in left extremity axillary. Tumor antigen-pulsed DC-T cells from spleen cells and bone of mice were cultured in vitro. Tumor-bearing mice were randomly divided into three groups, including DC-T+endostatin group, DC-T group, and phosphate-buffered saline (PBS) control group. Microvessel density (MVD) of tumor tissue in tumor-bearing mice was determined by immunohistochemistry (IHC). The expressions of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α) were determined by Western blotting and IHC staining. The proportions of CD8+ T cells, mature dendritic cells (mDC), tumor-associated macrophages [TAM (M1/M2)], and myeloid-derived suppressor cells (MDSC) in suspended cells of tumor tissue were determined by flow cytometry. The expressions of interleukin (IL)-6, IL-10, IL-17, transforming growth factor-β (TGF-β) and interferon-γ (IFN-γ) in suspended cells of tumor tissue were detected by enzyme-linked immune sorbent assay (ELISA). Results DC-T cells combined with endostatin remarkably suppressed tumor growth. MVD of mice in DC-T+endostatin group was significantly lower than that of the control group and DC-T monotherapy group. The expressions of VEGF, IL-6 and IL-17 in tumors were markedly decreased, but IFN-γ and HIF-1α increased after treating with DC-T cells combined with endostatin, compared to control group and DC-T group. In the DC-T+endostatin group, the proportions of MDSC and TAM (M2 type) were significantly decreased, mDC and TAM (M1 type) were up-regulated, and CD8+ T cells were recruited to infiltrate tumors, in contrast to PBS control and DC-T monotherapy. DC-T cells combined with endostatin potently reduced the expressions of IL-6, IL-10, TGF-β and

  5. IL-12 Enhances the Antitumor Actions of Trastuzumab via NK Cell IFN-γ Production

    PubMed Central

    Jaime-Ramirez, Alena Cristina; Mundy-Bosse, Bethany L.; Kondadasula, SriVidya; Jones, Natalie B.; Roda, Julie M.; Mani, Aruna; Parihar, Robin; Karpa, Volodymyr; Papenfuss, Tracey L.; LaPerle, Krista M.; Biller, Elizabeth; Lehman, Amy; Chaudhury, Abhik Ray; Jarjoura, David; Burry, Richard W.; Carson, William E.

    2013-01-01

    The antitumor effects of therapeutic mAbs may depend on immune effector cells that express FcRs for IgG. IL-12 is a cytokine that stimulates IFN-γ production from NK cells and T cells. We hypothesized that coadministration of IL-12 with a murine anti-HER2/neu mAb (4D5) would enhance the FcR-dependent immune mechanisms that contribute to its antitumor activity. Thrice-weekly therapy with IL-12 (1 μg) and 4D5 (1 mg/kg) significantly suppressed the growth of a murine colon adenocarcinoma that was engineered to express human HER2 (CT-26HER2/neu) in BALB/c mice compared with the result of therapy with IL-12, 4D5, or PBS alone. Combination therapy was associated with increased circulating levels of IFN-γ, monokine induced by IFN-γ, and RANTES. Experiments with IFN-γ–deficient mice demonstrated that this cytokine was necessary for the observed antitumor effects of therapy with IL-12 plus 4D5. Immune cell depletion experiments showed that NK cells (but not CD4+ or CD8+ T cells) mediated the antitumor effects of this treatment combination. Therapy of HER2/neu-positive tumors with trastuzumab plus IL-12 induced tumor necrosis but did not affect tumor proliferation, apoptosis, vascularity, or lymphocyte infiltration. In vitro experiments with CT-26HER2/neu tumor cells revealed that IFN-γ induced an intracellular signal but did not inhibit cellular proliferation or induce apoptosis. Taken together, these data suggest that tumor regression in response to trastuzumab plus IL-12 is mediated through NK cell IFN-γ production and provide a rationale for the coadministration of NK cell-activating cytokines with therapeutic mAbs. PMID:21321106

  6. Combination treatment with oncolytic Vaccinia virus and cyclophosphamide results in synergistic antitumor effects in human lung adenocarcinoma bearing mice

    PubMed Central

    2014-01-01

    Background The capacity of the recombinant Vaccinia virus GLV-1h68 as a single agent to efficiently treat different human or canine cancers has been shown in several preclinical studies. Currently, its human safety and efficacy are investigated in phase I/II clinical trials. In this study we set out to evaluate the oncolytic activity of GLV-1h68 in the human lung adenocarcinoma cell line PC14PE6-RFP in cell cultures and analyzed the antitumor potency of a combined treatment strategy consisting of GLV-1h68 and cyclophosphamide (CPA) in a mouse model of PC14PE6-RFP lung adenocarcinoma. Methods PC14PE6-RFP cells were treated in cell culture with GLV-1h68. Viral replication and cell survival were determined by plaque assays and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, respectively. Subcutaneously implanted PC14PE6-RFP xenografts were treated by systemic injection of GLV-1h68, CPA or a combination of both. Tumor growth and viral biodistribution were monitored and immune-related antigen profiling of tumor lysates was performed. Results GLV-1h68 efficiently infected, replicated in and lysed human PC14PE6-RFP cells in cell cultures. PC14PE6-RFP tumors were efficiently colonized by GLV-1h68 leading to much delayed tumor growth in PC14PE6-RFP tumor-bearing nude mice. Combination treatment with GLV-1h68 and CPA significantly improved the antitumor efficacy of GLV-1h68 and led to an increased viral distribution within the tumors. Pro-inflammatory cytokines and chemokines were distinctly elevated in tumors of GLV-1h68-treated mice. Factors expressed by endothelial cells or present in the blood were decreased after combination treatment. A complete loss in the hemorrhagic phenotype of the PC14PE6-RFP tumors and a decrease in the number of blood vessels after combination treatment could be observed. Conclusions CPA and GLV-1h68 have synergistic antitumor effects on PC14PE6-RFP xenografts. We strongly suppose that in the PC14PE6-RFP model the

  7. Prostate Cancer-Specific and Potent Antitumor Effect of a DD3-Controlled Oncolytic Virus Harboring the PTEN Gene

    PubMed Central

    Ding, Miao; Cao, Xin; Xu, Hai-neng; Fan, Jun-kai; Huang, Hong-ling; Yang, Dong-qin; Li, Yu-hua; Wang, Jian; Li, Runsheng; Liu, Xin-Yuan

    2012-01-01

    Prostate cancer is a major health problem for men in Western societies. Here we report a Prostate Cancer-Specific Targeting Gene-Viro-Therapy (CTGVT-PCa), in which PTEN was inserted into a DD3-controlled oncolytic viral vector (OV) to form Ad.DD3.E1A.E1B(Δ55)-(PTEN) or, briefly, Ad.DD3.D55-PTEN. The woodchuck post-transcriptional element (WPRE) was also introduced at the downstream of the E1A coding sequence, resulting in much higher expression of the E1A gene. DD3 is one of the most prostate cancer-specific genes and has been used as a clinical bio-diagnostic marker. PTEN is frequently inactivated in primary prostate cancers, which is crucial for prostate cancer progression. Therefore, the Ad.DD3.D55-PTEN has prostate cancer specific and potent antitumor effect. The tumor growth rate was almost completely inhibited with the final tumor volume after Ad.DD3.D55-PTEN treatment less than the initial volume at the beginning of Ad.DD3.D55-PTEN treatment, which shows the powerful antitumor effect of Ad.DD3.D55-PTEN on prostate cancer tumor growth. The CTGVT-PCa construct reported here killed all of the prostate cancer cell lines tested, such as DU145, 22RV1 and CL1, but had a reduced or no killing effect on all the non-prostate cancer cell lines tested. The mechanism of action of Ad.DD3.D55-PTEN was due to the induction of apoptosis, as detected by TUNEL assays and flow cytometry. The apoptosis was mediated by mitochondria-dependent and -independent pathways, as determined by caspase assays and mitochondrial membrane potential. PMID:22509396

  8. Liposomal n-butylidenephthalide protects the drug from oxidation and enhances its antitumor effects in glioblastoma multiforme

    PubMed Central

    Lin, Yu-Ling; Chang, Kai-Fu; Huang, Xiao-Fan; Hung, Che-Lun; Chen, Shyh-Chang; Chao, Wan-Ru; Liao, Kuang-Wen; Tsai, Nu-Man

    2015-01-01

    Background The natural compound n-butylidenephthalide (BP) can pass through the blood–brain barrier to inhibit the growth of glioblastoma multiforme tumors. However, BP has an unstable structure that reduces its antitumor activity and half-life in vivo. Objective The aim of this study is to design a drug delivery system to encapsulate BP to enhance its efficacy by improving its protection and delivery. Methods To protect its structural stability against protein-rich and peroxide solutions, BP was encapsulated into a lipo-PEG-PEI complex (LPPC). Then, the cytotoxicity of BP/LPPC following preincubation in protein-rich, acid/alkaline, and peroxide solutions was analyzed by MTT. Cell uptake of BP/LPPC was also measured by confocal microscopy. The therapeutic effects of BP/LPPC were analyzed in xenograft mice following intratumoral and intravenous injections. Results When BP was encapsulated in LPPC, its cytotoxicity was maintained following preincubation in protein-rich, acid/alkaline, and peroxide solutions. The cytotoxic activity of encapsulated BP was higher than that of free BP (~4.5- to 8.5-fold). This increased cytotoxic activity of BP/LPPC is attributable to its rapid transport across the cell membrane. In an animal study, a subcutaneously xenografted glioblastoma multiforme mouse that was treated with BP by intratumoral and intravenous administration showed inhibited tumor growth. The same dose of BP/LPPC was significantly more effective in terms of tumor inhibition. Conclusion LPPC encapsulation technology is able to protect BP’s structural stability and enhance its antitumor effects, thus providing a better tool for use in cancer therapy. PMID:26451107

  9. Enhancement of anti-tumor activity of Newcastle disease virus by the synergistic effect of cytosine deaminase.

    PubMed

    Lv, Zheng; Zhang, Tian-Yuan; Yin, Jie-Chao; Wang, Hui; Sun, Tian; Chen, Li-Qun; Bai, Fu-Liang; Wu, Wei; Ren, Gui-Ping; Li, De-Shan

    2013-01-01

    This study was conducted to investigate enhancement of anti-tumor effects of the lentogenic Newcastle disease virus Clone30 strain (NDV rClone30) expressing cytosine deaminase (CD) gene against tumor cells and in murine groin tumor-bearing models. Cytotoxic effects of the rClone30-CD/5-FC on the HepG2 cell line were examined by an MTT method. Anti-tumor activity of rClone30-CD/5-FC was examined in H22 tumor-bearing mice. Compared to the rClone30-CD virus treatment alone, NDV rClone30-CD/5-FC at 0.1 and 1 MOIs exerted significant cytotoxic effects (P<0.05) on HepG2 cells. For treatment of H22 tumor-bearing mice, recombinant NDV was injected together with 5-FC given by either intra-tumor injection or tail vein injection. When 5-FC was administered by intra-tumor injection, survival for the rClone30-CD/5-FC-treated mice was 4/6 for 80 days period vs 1/6 , 0/6 and 0/6 for the mice treated with rClone30-CD, 5-FC and saline alone, respectively. When 5-FC was given by tail vein injection, survival for the rClone30-CD/5-FC-treated mice was 3/6 vs 2/6 , 0/6 and 0/6 for the mice treated with rClone30-CD, 5-FC or saline alone, respectively. In this study, NDV was used for the first time to deliver the suicide gene for cancer therapy. Incorporation of the CD gene in the lentogenic NDV genome together with 5-FC significantly enhances cell death of HepG2 tumor cells in vitro, decreases tumor volume and increases survival of H22 tumor-bearing mice in vivo.

  10. Topoisomerase I (Top1): a major target of FL118 for its antitumor efficacy or mainly involved in its side effects of hematopoietic toxicity?

    PubMed Central

    Li, Fengzhi; Ling, Xiang; Harris, Danni L; Liao, Jianqun; Wang, Yuping; Westover, David; Jiang, Guohui; Xu, Bo; Boland, Patrick M; Jin, Chunyang

    2017-01-01

    FL118 is a novel camptothecin (CPT) analogue that possesses exceptional antitumor efficacy in human tumor animal models. To date, two CPT analogues, irinotecan and topotecan, have been approved by the FDA for cancer treatment. FL118 exhibits superior antitumor activity over irinotecan and topotecan, and effectively overcomes the irinotecan- or topotecan-resistant human tumors in animal models. Accordingly, FL118 selectively inhibits the expression of multiple cancer-associated proteins (survivin, Mcl-1, XIAP, cIAP2, MdmX). However, FL118 has hematopoietic toxicity similar to irinotecan and topotecan, suggesting that FL118’s hematopoietic toxicity may share a mechanism similar to irinotecan and topotecan. It is known that CPTs including irinotecan, SN-38 (active metabolite of irinotecan) and topotecan are topoisomerase I (Top1) inhibitors. However, the evidence from our studies failed to reveal that FL118 is a better Top1 inhibitor than SN-38. It was documented that Top1 expression level is positively associated with CPTs’ sensitivity. Low Top1 expression links to CPTs’ resistance. In contrast to these findings, we found that human colorectal tumor sensitivity to FL118 is irrelevant to the expression level of Top1 protein. FL118 can show high antitumor efficacy in Top1-negative tumors, while Top1 highly positive tumors can exhibit FL118 resistance. This suggests that the presence of Top1 target is not critical for FL118 antitumor activity. In other words, targeting Top1 by FL118 may not play a major role for its antitumor efficacy. However, studies indicate that FL118 can bind to, and inhibit Top1 activity. This raises the possibility that inhibition of Top1 by FL118 may predominantly be involved in hematopoietic toxicity, but not in FL118 antitumor activity. In this article, we will summarize existing observations and provide our up-to-date research results to support our opinion on this important topic. PMID:28337384

  11. Conjugation of toll-like receptor-7 agonist to gastric cancer antigen MG7-Ag exerts antitumor effects

    PubMed Central

    Wang, Xiao-Dong; Gao, Ning-Ning; Diao, Yu-Wen; Liu, Yu; Gao, Dong; Li, Wang; Wan, Yan-Yan; Zhong, Jing-Jing; Jin, Guang-Yi

    2015-01-01

    AIM: To investigate the effects of our tumor vaccines on reversing immune tolerance and generating therapeutic response. METHODS: Vaccines were synthesized by solid phase using an Fmoc strategy, where a small molecule toll-like receptor-7 agonist (T7) was conjugated to a monoclonal gastric cancer 7 antigen mono-epitope (T7-MG1) or tri-epitope (T7-MG3). Cytokines were measured in both mouse bone marrow dendritic cells and mouse spleen lymphocytes after exposed to the vaccines. BALB/c mice were intraperitoneally immunized with the vaccines every 2 wk for a total of three times, and then subcutaneously challenged with Ehrlich ascites carcinoma (EAC) cells. Three weeks later, the mice were killed, and the tumors were surgically removed and weighed. Serum samples were collected from the mice, and antibody titers were determined by ELISA using an alkaline phosphate-conjugated detection antibody for total IgG. Antibody-dependent cell-mediated cytotoxicity was detected by the lactate dehydrogenase method using natural killer cells as effectors and antibody-labeled EAC cells as targets. Cytotoxic T lymphocyte activities were also detected by the lactate dehydrogenase method using lymphocytes as effectors and EAC cells as targets. RESULTS: Vaccines were successfully synthesized and validated by analytical high performance liquid chromatography and electrospray mass spectrometry, including T7, T7-MG1, and T7-MG3. Rapid inductions of tumor necrosis factor-α and interleukin-12 in bone marrow dendritic cells and interferon γ and interleukin-12 in lymphocytes occurred in vitro after T7, T7-MG1, and T7-MG3 treatment. Immunization with T7-MG3 reduced the EAC tumor burden in BALB/c mice to 62.64% ± 5.55% compared with PBS control (P < 0.01). Six or nine weeks after the first immunization, the monoclonal gastric cancer 7 antigen antibody increased significantly in the T7-MG3 group compared with the PBS control (P < 0.01). As for antibody-dependent cell-mediated cytotoxicity

  12. Effects of cryopreservation on effector cells for antibody dependent cell-mediated cytotoxicity (ADCC) and natural killer (NK) cell activity in (51)Cr-release and CD107a assays.

    PubMed

    Mata, Mariana M; Mahmood, Fareeha; Sowell, Ryan T; Baum, Linda L

    2014-04-01

    Freshly isolated PBMC are broadly used as effector cells in functional assays that evaluate antibody-dependent cell mediated cytotoxicity (ADCC) and NK activity; however, they introduce natural-individual donor-to-donor variability. Cryopreserved PBMC provide a more consistent source of effectors than fresh cells in cytotoxicity assays. Our objective was to determine the effects of cryopreservation of effector PBMC on cell frequency, and on the magnitude and specificity of ADCC and NK activity. Fresh, frozen/overnight rested and frozen/not rested PBMC were used as effector cells in (51)Cr-release and CD107a degranulation assays. Frozen/overnight rested PBMC had higher ADCC and NK activity in both assays when compared to fresh PBMC; however, when using frozen/not rested PBMC, ADCC and NK activities were significantly lower than fresh PBMC. Background CD107a degranulation in the absence of target cell stimulation was greater in PBMC that were frozen/not rested when compared to fresh PBMC or PBMC that were frozen overnight and rested. The percentages of CD16(+)CD56(dim) NK cells and CD14(+) monocytes were lower in PBMC that were frozen and rested overnight than in fresh PBMC. CD16 expression on CD56(dim) NK cells was similar for all PBMC treatments. PBMC that were frozen and rested overnight were comparable to fresh PBMC effectors. PBMC that were frozen and used immediately when evaluating ADCC or NK activity using either a (51)Cr-release assay or a CD107a degranulation assay had the lowest activity. Clinical studies of antibodies that mediate ADCC would benefit from using effector cells that have been frozen, thawed and rested overnight prior to assay.

  13. The enhanced inhibitory effect of different antitumor agents in self-microemulsifying drug delivery systems on human cervical cancer HeLa cells.

    PubMed

    Ujhelyi, Zoltán; Kalantari, Azin; Vecsernyés, Miklós; Róka, Eszter; Fenyvesi, Ferenc; Póka, Róbert; Kozma, Bence; Bácskay, Ildikó

    2015-07-21

    The aim of this study was to develop topical self-microemulsifying drug delivery systems (SMEDDS) containing antitumor agents (bleomycin, cisplatin and ifosfamide) and to investigate their inhibitory potential in SMEDDS on human cervical cancer HeLa cells. The physicochemical properties of cytostatic drug loaded SMEDDS were characterized. The cytotoxicity of main components of SMEDDS was also investigated. Their IC50 values were determined. HeLa cells were treated by different concentrations of cisplatin, bleomycin and ifosfamide alone and in various SMEDDS. The inhibitory effect on cell growth was analyzed by MTT cell viability assay. Inflammation is a driving force that accelerates cancer development. The inhibitory effect of these antitumor agents has also been tested on HeLa cells in the presence of inflammatory mediators (IL-1-β, TNF-α) as an in vitro model of inflamed human cervix. Significant differences in the cytotoxicity of cytostatic drugs alone and in SMEDDS have been found in a concentration-dependent manner. The self-micro emulsifying system may potentiate the effectiveness of bleomycin, cisplatin and ifosfamide topically. The effect of SMEDDS containing antitumor agents was decreased significantly in the presence of inflammatory mediators. According to our experiments, the optimal SMEDDS formulation is 1:1:2:6:2 ratios of Isopropyl myristate, Capryol 90, Kolliphor RH 40, Cremophor RH40, Transcutol HP and Labrasol. It can be concluded that SMEDDS may increase the inhibitory effect of bleomycin, ifosfamide and cisplatin on human cervical cancer HeLa cells. Inflammation on HeLa cells hinders the effectiveness of SMEDDS containing antitumor agents. Our results might ensure useful data for development of optimal antitumor formulations.

  14. Inhibition of iNOS activity enhances the anti-tumor effects of alpha-galactosylceramide in established murine cancer model.

    PubMed

    Ito, Hiroyasu; Ando, Tatsuya; Seishima, Mitsuru

    2015-12-08

    Alpha-garactosylceramide (GalCer) has been shown to have anti-tumor effect in the basic research and clinical studies. However, anti-tumor effect of GalCer is limited. The administration of GalCer increases the production of IFN-γ which is involved in the suppression of tumor growth. On the other hand, the enhancement of IFN-γ production increases immunosuppressive factors such as nitric oxide. This suppressive action might impair the anti-tumor effect of GalCer. In the present study, we evaluated the anti-tumor effect of GalCer in the absence of inducible nitric oxide synthase (iNOS). In lung metastatic model, the number of tumor nodules in the lung of iNOS-KO mice treated with GalCer was significantly reduced compared with that of WT mice treated with GalCer. Moreover, L-NAME, which is the inhibitor for iNOS, enhanced the anti-tumor effect of GalCer in lung metastatic model. The frequency of CD8+ cells in bronchoalveolar lavage fluid increased in iNOS-KO mice treated with GalCer. The administration of GalCer increased the frequency of myeloid-derived suppressor cells (MDSCs) in the lung from tumor-bearing WT mice, but the increase of MDSCs in the lung was not induced in iNOS-KO mice. The subcutaneous tumor experiments revealed that the administration of GalCer in the absence of iNOS expression significantly enhanced the induction of tumor antigen-specific response. Finally, our results indicated that the inhibition of iNOS expression could enhance the therapeutic efficacy of GalCer via the increase of tumor antigen-specific immune response and the suppression of MDSCs.

  15. Antitumor activity of enkephalin analogues in inhibiting PYB6 tumor growth in mice and immunological effects of methionine enkephalinamide.

    PubMed

    Srisuchart, B; Fuchs, B A; Sikorski, E E; Munson, A E; Loveless, S E

    1989-01-01

    Recent evidence has implicated enkephalins as immunomodulators. Several studies have reported the regulation of tumor growth by methionine enkephalin (ME). However, there has been little effort to relate the immunological significance of enkephalins to the development of anticancer drugs. The present study had three aims: first, to compare the antitumor activity of the synthetic peptide, D-[Ala2]methionine enkephalinamide (MEA), with endogenous enkephalins on PYB6 fibrosarcoma tumor growth; second, to determine whether tumor growth inhibition was mediated by an opiate receptor; and third, to investigate the effects of MEA on selected immune responses. Female B6C3F1 mice were injected i.p. daily for 7 days with 50-4000 micrograms/kg of ME, MEA, leucine enkephalin (LE) or D-[Ala2]leucine enkephalinamide (LEA), beginning 1 day after PYB6 inoculation. ME and MEA, but not LE or LEA, decreased the PYB6 growth rate. The dose of 50 micrograms/kg MEA exerted the maximum inhibition of tumor growth (nearly 72% on day 15 post tumor transplantation). MEA was not directly toxic to PYB6 tumor cells, as evaluated by the measurement of DNA synthesis and cellular ATP levels of PYB6 cells exposed to MEA in vitro. No [3H]-etorphine specific bindings were detected on the cell membrane or sonicates of splenic lymphocytes or PYB6 cells. Therefore, the antitumor activity by MEA is likely mediated by an indirect mechanism. Immunological studies indicated that MEA selectively enhanced the lymphoproliferative response to the T-cell mitogen, concanavalin A, but not to the B-cell mitogen, lipopolysaccharide.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. The effect of microneedles on the skin permeability and antitumor activity of topical 5-fluorouracil

    PubMed Central

    Naguib, Youssef W.; Kumar, Amit; Cui, Zhengrong

    2014-01-01

    Topical 5-fluorouracil (5-FU) is approved for the treatment of superficial basal cell carcinoma and actinic keratosis. However, 5-FU suffers from poor skin permeation. Microneedles have been successfully applied to improve the skin permeability of small and large molecules, and even nanoparticles, by creating micron-sized pores in the stratum corneum layer of the skin. In this report, the feasibility of using microneedles to increase the skin permeability of 5-FU was tested. Using full thickness mouse skin mounted on Franz diffusion apparatus, it was shown that the flux of 5-FU through the skin was increased by up to 4.5-fold when the skin was pretreated with microneedles (500 μm in length, 50 μm in base diameter). In a mouse model with B16-F10 mouse melanoma cells implanted in the subcutaneous space, the antitumor activity of a commercially available 5-FU topical cream (5%) was significantly enhanced when the cream was applied on a skin area that was pretreated with microneedles, as compared to when the cream was simply applied on a skin area, underneath which the tumor cells were implanted, and without pretreatment of the skin with microneedles. Fluorouracil is not approved for melanoma therapy, but the clinical efficacy of topical 5-FU against tumors such as basal cell carcinoma may be improved by integrating microneedle technology into the therapy. PMID:25313350

  17. Nonintegrating Lentiviral Vectors Can Effectively Deliver Ovalbumin Antigen for Induction of Antitumor Immunity

    PubMed Central

    Hu, Biliang; Yang, Haiguang; Dai, Bingbing; Tai, April

    2009-01-01

    Abstract It has been demonstrated that nonintegrating lentiviral vectors (NILVs) are efficient in maintaining transgene expression in vitro and in vivo. Gene delivery by NILVs can significantly reduce nonspecific vector integration, which has been shown to cause malignant transformation in patients receiving gene therapy for X-linked severe combined immunodeficiency. Strong and sustained immune responses were observed after a single immunization with NILVs carrying viral antigens. However, there is no report to date that evaluates the efficacy of NILVs in inducing antigen-specific antitumor immunity. Using a well-characterized tumor model, we tested in vivo immunization with a self-inactivating lentiviral vector harboring a defective integrase. A high frequency of ovalbumin peptide (OVAp1)-specific CD8+ T cells and a substantial antibody response were detected in naive mice immunized with an NILV encoding an OVA transgene. Furthermore, this immunization method completely protected the mice against the growth of E.G7 tumor cells expressing the OVA antigen. Thus, this study provides evidence that immunization using NILVs can be a safe and promising approach for exploring cancer immunotherapy. PMID:19663564

  18. Purification, partial characterization and antitumor effect of an exopolysaccharide from Rhizopus nigricans.

    PubMed

    Yu, Wenqian; Chen, Guochuang; Zhang, Pengying; Chen, Kaoshan

    2016-01-01

    In this study, a homogeneous exopolysaccharide (EPS1-1) was purified from the fermentation broth of Rhizopus nigricans. EPS1-1 was composed of glucose, mannose, galactose and fructose in the molar ratio of 5.89:3.64:3.20:1.00 with weight average molecular weight of 9.7×10(3)g/mol. EPS1-1 could significantly inhibit proliferation of human colorectal carcinoma HCT-116 cells in vitro. EPS1-1 also induced S phase cell cycle arrest and increased sub-G0/G1 population, a hallmark of apoptosis. The results of morphological characterization and flow cytometry showed that EPS1-1 induced apoptotic cell death in HCT-116 cells. EPS1-1 caused dissipation of mitochondrial membrane potential, accumulation of reactive oxygen species, up-regulation of Bax and p53 mRNA expression and down-regulation of Bcl-2 mRNA expression, which suggested that mitochondrial pathway was involved in the EPS1-1-induced apoptosis. These findings bring new insights into the potential use of EPS1-1 as antitumor drug against human colorectal carcinoma.

  19. Synergistic antitumor effect of a human papillomavirus DNA vaccine harboring E6E7 fusion gene and vascular endothelial growth factor receptor 2 gene.

    PubMed

    Gao, Jie; Fan, Lei; Ma, Wei; Xiao, Huan

    2016-09-01

    Human papillomavirus (HPV) has been identified as the primary etiological factor in cervical cancer as well as in subsets of anogenital and oropharyngeal cancers. The two HPV viral oncoproteins, E6 and E7, are uniquely and consistently expressed in all HPV-infected cells and are therefore promising targets for therapeutic vaccination. In order to achieve a synergistic antitumor and anti-angiogenesis effect, we designed and constructed a novel DNA vaccine that can express the HPV 16 E6E7 fusion protein and VEGFR2 in the same reading frame. A series of DNA plasmids encoding E6E7, VEGFR2 and their conjugates were constructed and injected into mice. The resultant humoral and cellular immune responses were detected by ELISA and enzyme-linked immunospot (ELISPOT), respectively. To evaluate the antitumor efficacy of these plasmids, tumor-bearing mice expressing the E6E7 fusion protein were constructed. After injection into the tumor-bearing mouse model, the plasmid harboring the E6E7 fusion gene and VEGFR2 showed stronger inhibition of tumor growth than the plasmid expressing E6E7 or VEGFR2 alone, which indicated that the combination of E6E7 and VEGFR2 could exert a synergistic antitumor effect. These observations emphasize the potential of a synergistic antitumor and anti-angiogenesis strategy using a DNA vaccine, which could be a promising approach for tumor immunotherapy.

  20. Mast Cell-Mediated Mechanisms of Nociception.

    PubMed

    Aich, Anupam; Afrin, Lawrence B; Gupta, Kalpna

    2015-12-04

    Mast cells are tissue-resident immune cells that release immuno-modulators, chemo-attractants, vasoactive compounds, neuropeptides and growth factors in response to allergens and pathogens constituting a first line of host defense. The neuroimmune interface of immune cells modulating synaptic responses has been of increasing interest, and mast cells have been proposed as key players in orchestrating inflammation-associated pain pathobiology due to their proximity to both vasculature and nerve fibers. Molecular underpinnings of mast cell-mediated pain can be disease-specific. Understanding such mechanisms is critical for developing disease-specific targeted therapeutics to improve analgesic outcomes. We review molecular mechanisms that may contribute to nociception in a disease-specific manner.

  1. Mast Cell-Mediated Mechanisms of Nociception

    PubMed Central

    Aich, Anupam; Afrin, Lawrence B.; Gupta, Kalpna

    2015-01-01

    Mast cells are tissue-resident immune cells that release immuno-modulators, chemo-attractants, vasoactive compounds, neuropeptides and growth factors in response to allergens and pathogens constituting a first line of host defense. The neuroimmune interface of immune cells modulating synaptic responses has been of increasing interest, and mast cells have been proposed as key players in orchestrating inflammation-associated pain pathobiology due to their proximity to both vasculature and nerve fibers. Molecular underpinnings of mast cell-mediated pain can be disease-specific. Understanding such mechanisms is critical for developing disease-specific targeted therapeutics to improve analgesic outcomes. We review molecular mechanisms that may contribute to nociception in a disease-specific manner. PMID:26690128

  2. Melatonin enhances the anti-tumor effect of fisetin by inhibiting COX-2/iNOS and NF-κB/p300 signaling pathways.

    PubMed

    Yi, Canhui; Zhang, Yong; Yu, Zhenlong; Xiao, Yao; Wang, Jingshu; Qiu, Huijuan; Yu, Wendan; Tang, Ranran; Yuan, Yuhui; Guo, Wei; Deng, Wuguo

    2014-01-01

    Melatonin is a hormone identified in plants and pineal glands of mammals and possesses diverse physiological functions. Fisetin is a bio-flavonoid widely found in plants and exerts antitumor activity in several types of human cancers. However, the combinational effect of melatonin and fisetin on antitumor activity, especially in melanoma treatment, remains unclear. Here, we tested the hypothesis that melatonin could enhance the antitumor activity of fisetin in melanoma cells and identified the underlying molecular mechanisms. The combinational treatment of melanoma cells with fisetin and melatonin significantly enhanced the inhibitions of cell viability, cell migration and clone formation, and the induction of apoptosis when compared with the treatment of fisetin alone. Moreover, such enhancement of antitumor effect by melatonin was found to be mediated through the modulation of the multiply signaling pathways in melanoma cells. The combinational treatment of fisetin with melatonin increased the cleavage of PARP proteins, triggered more release of cytochrome-c from the mitochondrial inter-membrane, enhanced the inhibition of COX-2 and iNOS expression, repressed the nuclear localization of p300 and NF-κB proteins, and abrogated the binding of NF-κB on COX-2 promoter. Thus, these results demonstrated that melatonin potentiated the anti-tumor effect of fisetin in melanoma cells by activating cytochrome-c-dependent apoptotic pathway and inhibiting COX-2/iNOS and NF-κB/p300 signaling pathways, and our study suggests the potential of such a combinational treatment of natural products in melanoma therapy.

  3. Antitumor effects of FP3 in combination with capecitabine on PDTT xenograft models of primary colon carcinoma and related lymphatic and hepatic metastases.

    PubMed

    Jin, Ketao; Lan, Huanrong; Xie, Bojian; He, Kuifeng; Xu, Zhenzhen; Li, Guangliang; Han, Na; Teng, Lisong; Cao, Feilin

    2012-07-01

    FP3 is an engineered protein which contains the extracellular domain 2 of VEGF receptor 1 (Flt-1) and extracellular domain 3 and 4 of VEGF receptor 2 (Flk-1, KDR) fused to the Fc portion of human immunoglobulin G 1. Previous studies demonstrated its antiangiogenic effects in vitro and in vivo, and its antitumor activity in vivo. In this study, patient-derived tumor tissue (PDTT) xenograft models of primary colon carcinoma and lymphatic and hepatic metastases were established for assessment of the antitumor activity of FP3 in combination with capecitabine. Xenografts were treated with FP3, capecitabine, alone or in combination. After tumor growth was confirmed, volume and microvessel density in tumors were evaluated. Levels of VEGF, and PCNA in the tumor were examined by immunohistonchamical staining, level of thymidine phosphorylase (TP) was examined by ELISA, and levels of related cell signaling pathways proteins expression were examined by western blotting. FP3 in combination with capecitabine showed significant antitumor activity in three xenograft models (primary colon carcinoma, lymphatic metastasis, and hepatic metastasis). The microvessel density in tumor tissues treated with FP3 in combination with capecitabine was lower than that of the control. Antitumor activity of FP3 in combination with capecitabine was significantly higher than that of each agent alone in three xenograft models (primary colon carcinoma, lymphatic metastasis, and hepatic metastasis). This study indicated that addition of FP3 to capecitabine significantly improved tumor growth inhibition in the PDTT xenograft models of primary colon carcinoma and lymphatic and hepatic metastases.

  4. Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma.

    PubMed

    Shimizu, Satoshi; Takehara, Tetsuo; Hikita, Hayato; Kodama, Takahiro; Tsunematsu, Hinako; Miyagi, Takuya; Hosui, Atsushi; Ishida, Hisashi; Tatsumi, Tomohide; Kanto, Tatsuya; Hiramatsu, Naoki; Fujita, Naonobu; Yoshimori, Tamotsu; Hayashi, Norio

    2012-08-01

    Multikinase inhibitor sorafenib inhibits proliferation and angiogenesis of tumors by suppressing the Raf/MEK/ERK signaling pathway and VEGF receptor tyrosine kinase. It significantly prolongs median survival of patients with advanced hepatocellular carcinoma (HCC) but the response is disease-stabilizing and cytostatic rather than one of tumor regression. To examine the mechanisms underlying the relative resistance in HCC, we investigated the role of autophagy, an evolutionarily conserved self-digestion pathway, in hepatoma cells in vitro and in vivo. Sorafenib treatment led to accumulation of autophagosomes as evidenced by conversion from LC3-I to LC3-II observed by immunoblot in Huh7, HLF and PLC/PRF/5 cells. This induction was due to activation of autophagic flux, as there was further increase in LC3-II expression upon treatment with lysosomal inhibitors, clear decline of the autophagy substrate p62, and an mRFP-GFP-LC3 fluorescence change in sorafenib-treated hepatoma cells. Sorafenib inhibited the mammalian target of rapamycin complex 1 and its inhibition led to accumulation of LC3-II. Pharmacological inhibition of autophagic flux by chloroquine increased apoptosis and decreased cell viability in hepatoma cells. siRNA-mediated knockdown of the ATG7 gene also sensitized hepatoma cells to sorafenib. Finally, sorafenib induced autophagy in Huh7 xenograft tumors in nude mice and coadministration with chloroquine significantly suppressed tumor growth compared with sorafenib alone. In conclusion, sorafenib administration induced autophagosome formation and enhanced autophagic activity, which conferred a survival advantage to hepatoma cells. Concomitant inhibition of autophagy may be an attractive strategy for unlocking the antitumor potential of sorafenib in HCC.

  5. MiRNA-Embedded ShRNAs for Radiation-Inducible LGMN Knockdown and the Antitumor Effects on Breast Cancer

    PubMed Central

    Zhang, Zhi-Qiang; Cao, Zhi; Liu, Cong; Li, Rong; Wang, Wei-Dong; Wang, Xing-Yong

    2016-01-01

    Legumain (LGMN) is highly expressed in breast cancer (BC) and other solid tumors and is a potential anticancer target. Here we investigate the anti-tumor effects of short hairpin RNAs (shRNAs) targeting LGMN embedded in a microRNA-155 (miR-155) architecture, which is driven by a radiation-inducible chimeric RNA polymerase II (Pol II) promoter. Lentiviral vectors were generated with the chimeric promoter which controlled the expression of downstream shRNA-miR-155 cassette. Fluorescence was observed by using confocal microscopy. Real-time quantitative PCR and Western blotting were used to determine the expression level of LGMN, MMP2, and MMP9. Furthermore, the proliferation and invasive ability of BC cells was analyzed via plate colony formation and invasion assays. Here we demonstrated that the chimeric promoter could be effectively induced by radiation treatment. Furthermore, the shRNA-miR-155 cassette targeting LGMN could be effectively activated by the chimeric promoter. Radiation plus knockdown of LGMN impairs colony formation and dampens cell migration and invasion in BC cells. Inhibition of LGMN downregulates MMP2 and MMP9 expression in BC cells. Pol II-driven shRNA-miR-155 could effectively suppress the growth and invasiveness of BC cells, and that the interference effects could be regulated by radiation doses. Moreover, knockdown of LGMN alleviates the aggressive phenotype of BC cells through modulating MMPs expression. PMID:27656894

  6. Effects of nanoparticle size on antitumor activity of 10-hydroxycamptothecin-conjugated gold nanoparticles: in vitro and in vivo studies

    PubMed Central

    Bao, Hanmei; Zhang, Qing; Xu, Hui; Yan, Zhao

    2016-01-01

    Gold nanoparticles (AuNPs) have emerged as a promising anticancer drug delivery scaffold. However, some controversial points still require further investigation before clinical use. A complete understanding of how animal cells interact with drug-conjugated AuNPs of well-defined sizes remains poorly understood. In this study, we prepared a series of 10-hydroxycamptothecin (HCPT)-AuNP conjugates of different sizes and compared their cytotoxic effect in vitro and antitumor effect in vivo. Transmission electron micrographs showed that the NPs had a round, regular shape with a mean diameter of ~10, 25, and 50 nm. An in vitro drug release study showed that HCPT was continuously released for 120 hours. HCPT-AuNPs showed greater cytotoxic effects on the MDA-MB-231 cell line compared with an equal dose of free HCPT. Notably, HCPT-AuNPs of an average diameter of 50 nm (HCPT-AuNPs-50) had the greatest effect. Furthermore, administration of HCPT-AuNPs-50 showed the most tumor-suppressing activity against MDA-MB-231 tumor in mice among all treatment groups. The results indicate that AuNPs not only act as a carrier but also play an active role in mediating biological effects. This work gives important insights into the design of nanoscale delivery and therapeutic systems. PMID:27022260

  7. Synergistic effect of CTLA-4 blockade and cancer chemotherapy in the induction of anti-tumor immunity.

    PubMed

    Lesterhuis, W Joost; Salmons, Joanne; Nowak, Anna K; Rozali, Esdy N; Khong, Andrea; Dick, Ian M; Harken, Julie A; Robinson, Bruce W; Lake, Richard A

    2013-01-01

    Several chemotherapeutics exert immunomodulatory effects. One of these is the nucleoside analogue gemcitabine, which is widely used in patients with lung cancer, ovarian cancer, breast cancer, mesothelioma and several other types of cancer, but with limited efficacy. We hypothesized that the immunopotentiating effects of this drug are partly restrained by the inhibitory T cell molecule CTLA-4 and thus could be augmented by combining it with a blocking antibody against CTLA-4, which on its own has recently shown beneficial clinical effects in the treatment of patients with metastatic melanoma. Here we show, using two non-immunogenic murine tumor models, that treatment with gemcitabine chemotherapy in combination with CTLA-4 blockade results in the induction of a potent anti-tumor immune response. Depletion experiments demonstrated that both CD4(+) and CD8(+) T cells are required for optimal therapeutic effect. Mice treated with the combination exhibited tumor regression and long-term protective immunity. In addition, we show that the efficacy of the combination is moderated by the timing of administration of the two agents. Our results show that immune checkpoint blockade and cytotoxic chemotherapy can have a synergistic effect in the treatment of cancer. These results provide a basis to pursue combination therapies with anti-CTLA-4 and immunopotentiating chemotherapy and have important implications for future studies in cancer patients. Since both drugs are approved for use in patients our data can be immediately translated into clinical trials.

  8. In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: perspectives on cancer treatment.

    PubMed

    Fantini, Massimo; Benvenuto, Monica; Masuelli, Laura; Frajese, Giovanni Vanni; Tresoldi, Ilaria; Modesti, Andrea; Bei, Roberto

    2015-04-24

    Carcinogenesis is a multistep process triggered by genetic alterations that activate different signal transduction pathways and cause the progressive transformation of a normal cell into a cancer cell. Polyphenols, compounds ubiquitously expressed in plants, have anti-inflammatory, antimicrobial, antiviral, anticancer, and immunomodulatory properties, all of which are beneficial to human health. Due to their ability to modulate the activity of multiple targets involved in carcinogenesis through direct interaction or modulation of gene expression, polyphenols can be employed to inhibit the growth of cancer cells. However, the main problem related to the use of polyphenols as anticancer agents is their poor bioavailability, which might hinder the in vivo effects of the single compound. In fact, polyphenols have a poor absorption and biodistribution, but also a fast metabolism and excretion in the human body. The poor bioavailability of a polyphenol will affect the effective dose delivered to cancer cells. One way to counteract this drawback could be combination treatment with different polyphenols or with polyphenols and other anti-cancer drugs, which can lead to more effective antitumor effects than treatment using only one of the compounds. This report reviews current knowledge on the anticancer effects of combinations of polyphenols or polyphenols and anticancer drugs, with a focus on their ability to modulate multiple signaling transduction pathways involved in cancer.

  9. In Vitro and in Vivo Antitumoral Effects of Combinations of Polyphenols, or Polyphenols and Anticancer Drugs: Perspectives on Cancer Treatment

    PubMed Central

    Fantini, Massimo; Benvenuto, Monica; Masuelli, Laura; Frajese, Giovanni Vanni; Tresoldi, Ilaria; Modesti, Andrea; Bei, Roberto

    2015-01-01

    Carcinogenesis is a multistep process triggered by genetic alterations that activate different signal transduction pathways and cause the progressive transformation of a normal cell into a cancer cell. Polyphenols, compounds ubiquitously expressed in plants, have anti-inflammatory, antimicrobial, antiviral, anticancer, and immunomodulatory properties, all of which are beneficial to human health. Due to their ability to modulate the activity of multiple targets involved in carcinogenesis through direct interaction or modulation of gene expression, polyphenols can be employed to inhibit the growth of cancer cells. However, the main problem related to the use of polyphenols as anticancer agents is their poor bioavailability, which might hinder the in vivo effects of the single compound. In fact, polyphenols have a poor absorption and biodistribution, but also a fast metabolism and excretion in the human body. The poor bioavailability of a polyphenol will affect the effective dose delivered to cancer cells. One way to counteract this drawback could be combination treatment with different polyphenols or with polyphenols and other anti-cancer drugs, which can lead to more effective antitumor effects than treatment using only one of the compounds. This report reviews current knowledge on the anticancer effects of combinations of polyphenols or polyphenols and anticancer drugs, with a focus on their ability to modulate multiple signaling transduction pathways involved in cancer. PMID:25918934

  10. In vitro and ex vivo vanadium antitumor activity in (TGF-β)-induced EMT. Synergistic activity with carboplatin and correlation with tumor metastasis in cancer patients.

    PubMed

    Petanidis, Savvas; Kioseoglou, Efrosini; Domvri, Kalliopi; Zarogoulidis, Paul; Carthy, Jon M; Anestakis, Doxakis; Moustakas, Aristidis; Salifoglou, Athanasios

    2016-05-01

    Epithelial to mesenchymal transition (EMT) plays a key role in tumor progression and metastasis as a crucial event for cancer cells to trigger the metastatic niche. Transforming growth factor-β (TGF-β) has been shown to play an important role as an EMT inducer in various stages of carcinogenesis. Previous reports had shown that antitumor vanadium inhibits the metastatic potential of tumor cells by reducing MMP-2 expression and inducing ROS-dependent apoptosis. However, the role of vanadium in (TGF-β)-induced EMT remains unclear. In the present study, we report for the first time on the inhibitory effects of vanadium on (TGF-β)-mediated EMT followed by down-regulation of ex vivo cancer stem cell markers. The results demonstrate blockage of (TGF-β)-mediated EMT by vanadium and reduction in the mitochondrial potential of tumor cells linked to EMT and cancer metabolism. Furthermore, combination of vanadium and carboplatin (a) resulted in synergistic antitumor activity in ex vivo cell cultures, and (b) prompted G0/G1 cell cycle arrest and sensitization of tumor cells to carboplatin-induced apoptosis. Overall, the findings highlight the multifaceted antitumor action of vanadium and its synergistic antitumor efficacy with current chemotherapy drugs, knowledge that could be valuable for targeting cancer cell metabolism and cancer stem cell-mediated metastasis in aggressive chemoresistant tumors.

  11. Effect of Tea Polyphenol Compounds on Anticancer Drugs in Terms of Anti-Tumor Activity, Toxicology, and Pharmacokinetics.

    PubMed

    Cao, Jianhua; Han, Jie; Xiao, Hao; Qiao, Jinping; Han, Mei

    2016-12-14

    Multidrug resistance and various adverse side effects have long been major problems in cancer chemotherapy. Recently, chemotherapy has gradually transitioned from mono-substance therapy to multidrug therapy. As a result, the drug cocktail strategy has gained more recognition and wider use. It is believed that properly-formulated drug combinations have greater therapeutic efficacy than single drugs. Tea is a popular beverage consumed by cancer patients and the general public for its perceived health benefits. The major bioactive molecules in green tea are catechins, a class of flavanols. The combination of green tea extract or green tea catechins and anticancer compounds has been paid more attention in cancer treatment. Previous studies demonstrated that the combination of chemotherapeutic drugs and green tea extract or tea polyphenols could synergistically enhance treatment efficacy and reduce the adverse side effects of anticancer drugs in cancer patients. In this review, we summarize the experimental evidence regarding the effects of green tea-derived polyphenols in conjunction with chemotherapeutic drugs on anti-tumor activity, toxicology, and pharmacokinetics. We believe that the combination of multidrug cancer treatment with green tea catechins may improve treatment efficacy and diminish negative side effects.

  12. Poly-S-Nitrosated Albumin as a Safe and Effective Multifunctional Antitumor Agent: Characterization, Biochemistry and Possible Future Therapeutic Applications

    PubMed Central

    Ishima, Yu; Kragh-Hansen, Ulrich; Maruyama, Toru; Otagiri, Masaki

    2013-01-01

    Nitric oxide (NO) is a ubiquitous molecule involved in multiple cellular functions. Inappropriate production of NO may lead to disease states. To date, pharmacologically active compounds that release NO within the body, such as organic nitrates, have been used as therapeutic agents, but their efficacy is significantly limited by unwanted side effects. Therefore, novel NO donors with better pharmacological and pharmacokinetic properties are highly desirable. The S-nitrosothiol fraction in plasma is largely composed of endogenous S-nitrosated human serum albumin (Mono-SNO-HSA), and that is why we are testing whether this albumin form can be therapeutically useful. Recently, we developed SNO-HSA analogs such as SNO-HSA with many conjugated SNO groups (Poly-SNO-HSA) which were prepared using chemical modification. Unexpectedly, we found striking inverse effects between Poly-SNO-HSA and Mono-SNO-HSA. Despite the fact that Mono-SNO-HSA inhibits apoptosis, Poly-SNO-HSA possesses very strong proapoptotic effects against tumor cells. Furthermore, Poly-SNO-HSA can reduce or perhaps completely eliminate the multidrug resistance often developed by cancer cells. In this review, we forward the possibility that Poly-SNO-HSA can be used as a safe and effective multifunctional antitumor agent. PMID:24490156

  13. Effect of Tea Polyphenol Compounds on Anticancer Drugs in Terms of Anti-Tumor Activity, Toxicology, and Pharmacokinetics

    PubMed Central

    Cao, Jianhua; Han, Jie; Xiao, Hao; Qiao, Jinping; Han, Mei

    2016-01-01

    Multidrug resistance and various adverse side effects have long been major problems in cancer chemotherapy. Recently, chemotherapy has gradually transitioned from mono-substance therapy to multidrug therapy. As a result, the drug cocktail strategy has gained more recognition and wider use. It is believed that properly-formulated drug combinations have greater therapeutic efficacy than single drugs. Tea is a popular beverage consumed by cancer patients and the general public for its perceived health benefits. The major bioactive molecules in green tea are catechins, a class of flavanols. The combination of green tea extract or green tea catechins and anticancer compounds has been paid more attention in cancer treatment. Previous studies demonstrated that the combination of chemotherapeutic drugs and green tea extract or tea polyphenols could synergistically enhance treatment efficacy and reduce the adverse side effects of anticancer drugs in cancer patients. In this review, we summarize the experimental evidence regarding the effects of green tea-derived polyphenols in conjunction with chemotherapeutic drugs on anti-tumor activity, toxicology, and pharmacokinetics. We believe that the combination of multidrug cancer treatment with green tea catechins may improve treatment efficacy and diminish negative side effects. PMID:27983622

  14. Ganoderma lucidum exerts anti-tumor effects on ovarian cancer cells and enhances their sensitivity to cisplatin.

    PubMed

    Zhao, Sufen; Ye, Gang; Fu, Guodong; Cheng, Jian-Xin; Yang, Burton B; Peng, Chun

    2011-05-01

    Ganoderma lucidum is a herbal mushroom known to have many health benefits, including the inhibition of tumor cell growth. However, the effect of Ganoderma lucidum on epithelial ovarian cancer (EOC), the most fatal gynecological malignancy, has not yet been reported. In this study, we determined whether Ganoderma lucidum regulates EOC cell activity. Using several cell lines derived from EOC, we found that Ganoderma lucidum strongly decreased cell numbers in a dose-dependent manner. Ganoderma lucidum also inhibited colony formation, cell migration and spheroid formation. In particular, Ganoderma lucidum was effective in inhibiting cell growth in both chemosensitive and chemoresistant cells and the treatment with Ganoderma lucidum significantly enhanced the effect of cisplatin on EOC cells. Furthermore, Ganoderma lucidum induced cell cycle arrest at the G2/M phase and also induced apoptosis by activating caspase 3. Finally, Ganoderma lucidum increased p53 but inhibited Akt expression. Taken together, these findings suggest that Ganoderma lucidum exerts multiple anti-tumor effects on ovarian cancer cells and can enhance the sensitivity of EOC cells to cisplatin.

  15. Inhibition of histone deacetylases by trans-cinnamic acid and its antitumor effect against colon cancer xenografts in athymic mice

    PubMed Central

    ZHU, BINGYAN; SHANG, BOYANG; LI, YI; ZHEN, YONGSU

    2016-01-01

    Previous studies have shown that trans-cinnamic acid (tCA) has a broad spectrum of biological activities, and exhibits antioxidant, anti-inflammatory and anticancer properties. In addition, tCA and a variety of its analogs have been detected as gut microbe-derived metabolites exerting various biological effects in the colon. The aim of this study was to assess the antitumor activity of tCA in vitro and in vivo, in particular its therapeutic efficacy against colon cancer xenografts in athymic mice. Furthermore, it aimed to examine the effects of tCA on histone deacetylases (HDACs) and to identify the underlying molecular mechanisms. Using an MTT assay, tCA was observed to inhibit the proliferation of several cancer cell lines, and the half maximal inhibitory concentration (IC50) in HT29 colon carcinoma cells was ~1 mM. Western blot analysis demonstrated that tCA upregulated the expression of acetyl-H3 and acetyl-H4 proteins, which was consistent with the effects of the HDAC inhibitor, trichostatin A (TSA). Furthermore, expression of Bcl-2 (a marker of cell proliferation) was reduced, and apoptosis was induced. Apoptosis was shown by the activation of cleavage of poly ADP ribose polymerase and the increased expression of Bax. Apoptosis was also confirmed using APC Annexin V and SYTOX Green Nucleic Acid Stain. In addition, the tCA-induced inhibition of the expression of HDAC markers and activation of apoptosis in tumor tissues were further confirmed by immunohistochemistry. Intragastric administration of tCA at doses of 1.0 and 1.5 mmol/kg body weight suppressed the growth of HT29 human colon carcinoma xenografts in athymic mice at well-tolerated doses. No toxic changes were found in the heart, lung, liver, kidney, colon or bone marrow following histopathological examination. This study indicated that tCA is effective against colon cancer xenograft in nude mice. The antitumor mechanism of tCA was mediated, at least in part, by inhibition of HDACs in cancer cells. As

  16. An optimized peptide vaccine strategy capable of inducing multivalent CD8+ T cell responses with potent antitumor effects

    PubMed Central

    Cho, Hyun-Il; Jung, Soo-Hyun; Sohn, Hyun-Jung; Celis, Esteban; Kim, Tai-Gyu

    2015-01-01

    Therapeutic cancer vaccines are an attractive alternative to conventional therapies for treating malignant tumors, and successful tumor eradication depends primarily on obtaining high numbers of long-lasting tumor-reactive CD8+ T cells. Dendritic cell (DC)-based vaccines constitute a promising approach for treating cancer, but in most instances low immune responses and suboptimal therapeutic effects are achieved indicating that further optimization is required. We describe here a novel vaccination strategy with peptide-loaded DCs followed by a mixture of synthetic peptides, polyinosine-polycytidylic acid (poly-IC) and anti-CD40 antibodies (TriVax) for improving the immunogenicity and therapeutic efficacy of DC-based vaccines in a melanoma mouse model. TriVax immunization 7–12 d after priming with antigen-loaded DCs generated large numbers of long-lasting multiple antigen-specific CD8+ T cells capable of recognizing tumor cells. These responses were far superior to those generated by homologous immunizations with either TriVax or DCs. CD8+ T cells but not CD4+ T cells or NK cells mediated the therapeutic efficacy of this heterologous prime-boost strategy. Moreover, combinations of this vaccination regimen with programmed cell death-1 (PD-1) blockade or IL2 anti-IL2 antibody complexes led to complete disease eradication and survival enhancement in melanoma-bearing mice. The overall results suggest that similar strategies would be applicable for the design of effective therapeutic vaccination for treating viral diseases and various cancers, which may circumvent current limitations of cell-based cancer vaccines. PMID:26451316

  17. Effects of injectable trace minerals on humoral and cell-mediated immune responses to Bovine viral diarrhea virus, Bovine herpes virus 1 and Bovine respiratory syncytial virus following administration of a modified-live virus vaccine in dairy calves.

    PubMed

    Palomares, R A; Hurley, D J; Bittar, J H J; Saliki, J T; Woolums, A R; Moliere, F; Havenga, L J; Norton, N A; Clifton, S J; Sigmund, A B; Barber, C E; Berger, M L; Clark, M J; Fratto, M A

    2016-10-01

    Our objective was to evaluate the effect of an injectable trace mineral (ITM) supplement containing zinc, manganese, selenium, and copper on the humoral and cell mediated immune (CMI) responses to vaccine antigens in dairy calves receiving a modified-live viral (MLV) vaccine containing BVDV, BHV1, PI3V and BRSV. A total of 30 dairy calves (3.5 months of age) were administered a priming dose of the MLV vaccine containing BHV1, BVDV1 & 2, BRSV, PI3V, and an attenuated-live Mannheimia-Pasteurella bacterin subcutaneously (SQ). Calves were randomly assigned to 1 of 2 groups: (1) administration of ITM SQ (ITM, n=15) or (2) injection of sterile saline SQ (Control; n=15). Three weeks later, calves received a booster of the same vaccine combination SQ, and a second administration of ITM, or sterile saline, according to the treatment group. Blood samples were collected on days 0, 7, 14, 21, 28, 42, 56, and 90 post-vaccination for determination of antibody titer, viral recall antigen-induced IFN-γ production, and viral antigen-induced proliferation by peripheral blood mononuclear cells (PBMC). Administration of ITM concurrently with MLV vaccination resulted in higher antibody titers to BVDV1 on day 28 after priming vaccination compared to the control group (P=0.03). Calves treated with ITM showed an earlier enhancement in PBMC proliferation to BVDV1 following vaccination compared to the control group. Proliferation of PBMC after BVDV stimulation tended to be higher on day 14 after priming vaccination in calves treated with ITM than in the control group (P=0.08). Calves that received ITM showed higher PBMC proliferation to BRSV stimulation on day 7 after priming vaccination compared to the control group (P=0.01). Moreover, calves in the ITM group also had an enhanced production IFN-γ by PBMC after stimulation with BRSV on day 21 after priming vaccination compared to day 0 (P<0.01). In conclusion, administration of ITM concurrently with MLV vaccination in dairy calves

  18. Anti-tumor angiogenesis effect of a new compound: B-9-3 through interference with VEGFR2 signaling.

    PubMed

    Ma, Qin; Chen, Wei; Chen, Wen

    2016-05-01

    B-9-3, a derivative of harmine, was first synthesized in our laboratory. We have reported that B-9-3 has an anti-proliferative effect against human lung cancer cells via induction of apoptosis and inhibition of cell migration. In the present study, we first studied that the anti-tumor angiogenesis effect and the molecular mechanism of B-9-3-induced tumor vascular degrade and mortify in lung cancer. In vitro, the results showed that B-9-3 selectively inhibited the proliferation of endothelial cells IC50 = 6.16 μg/ml) and vascular fibroblasts (IC50 = 12.59 μg/ml) and induced regression of tumor cells of the following: Lewis lung carcinoma (LLC), Mouse fore-stomach carcinoma (MFC), Human ovarian cancer (SK-OV-3), and prostate cancer (22RV1). Moreover, B-9-3 could significantly increase the apoptosis rate (80.95 %) of vascular endothelial cells, while inhibiting migration of endothelial cells, capillary tube formation of endothelial cells, neovascularization of the rat thoracic aorta ring, and the angiogenesis of chick chorioallantoic membrane (CAM) predominantly through blocking VEGFR2 signaling pathway. In vivo, we investigated the anti-tumor rate and the signal transduction mechanism of B-9-3 by LCC-bearing C57BL/6 mice. The data showed that the tumor inhibition ratio of high dose (20 mg/kg) of B-9-3 was 72.9 %, and quantification of CD34 marker indicated a marked reduction in the number of neovessels after B-9-3 treatment as compared with control group (66.87 %). Remarkably, using IHC and q-RT-PCR, we found that downregulation of the expression of VEGFR2, VEGF-A, and TGFβ1 in tumor confers enhancement to the angiogenesis effect of B-9-3. These data suggest that the angiogenesis inhibitor B-9-3 selectively induces apoptosis of endothelial cells, in part through disruption of VEGF-A/VEGFR2 signaling.

  19. Microbubbles Enhance the Antitumor Effects of Sinoporphyrin Sodium Mediated Sonodynamic Therapy both In Vitro and In Vivo

    PubMed Central

    Wang, Haiping; Wang, Pan; Li, Li; Zhang, Kun; Wang, Xiaobing; Liu, Quanhong

    2015-01-01

    Objectives: To evaluate the anti-cancer effect of sonodynamic therapy combined with microbubbles both in vitro and in vivo. Methods: Cell viability was measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide and guava viacount assays. Annexin V-FITC/PI staining was adopted to analyze cell apoptosis rate. FD500 uptake assay was performed to assess cell membrane permeability changes. Tumor weight, mice weight and the visual image of tumor size were used to reflect the anti-tumor effect of this combined method. Histological change of tumor tissue after different treatments was measured through hematoxylin and eosin (H&E) staining. Results: Microbubbles can significantly enhance the cytotoxicity and necrocytosis rate induced by SDT treatment. Increased cell membrane permeability and more uptake of DVDMS were founded in SDT combined with microbubbles group. For in vivo experiments, SDT with microbubbles can significantly reduce tumor weight and size with pimping difference of mice weight compare with other treatment groups. In addition, microbubbles notably improved tumor tissue destruction caused by ultrasound and SDT treatment. Conclusion: The results suggest that microbubbles can markedly improve the anti-cancer effect of DVDMS mediate sonodynamic therapy both in vitro and in vivo. PMID:26681919

  20. Resveratrol potentiates the in vitro and in vivo anti-tumoral effects of curcumin in head and neck carcinomas.

    PubMed

    Masuelli, Laura; Di Stefano, Enrica; Fantini, Massimo; Mattera, Rosanna; Benvenuto, Monica; Marzocchella, Laura; Sacchetti, Pamela; Focaccetti, Chiara; Bernardini, Roberta; Tresoldi, Ilaria; Izzi, Valerio; Mattei, Maurizio; Frajese, Giovanni Vanni; Lista, Florigio; Modesti, Andrea; Bei, Roberto

    2014-11-15

    The survival rate of head and neck squamous cell carcinomas (HNSCC) patients has not considerably changed over the last two decades. Polyphenols inhibit the growth of cancer cells. We determined whether the combination of Resveratrol (RES) and Curcumin (CUR) enhanced their in vitro and in vivo antitumor activities on HNSCC cell lines compared to the single compounds. We provide evidence that RES potentiated the apoptotic effect and reduced the IC50 of CUR on HNSCC cell lines. The model of compounds interaction indicated the onset of an additive effect of the two compounds compared to the single treatment after decrease of their concentrations. RES+CUR compared to CUR increased the PARP-1 cleavage, the Bax/Bcl-2 ratio, the inhibition of ERK1 and ERK2 phosphorylation, and the expression of LC3 II simultaneously with the formation of autophagic vacuoles. RES and CUR induced cytoplasmic NF-κB accumulation. RES+CUR administrations were safe in BALB/c mice and reduced the growth of transplanted salivary gland cancer cells (SALTO) more efficiently than CUR. Overall, combinations of CUR and RES was more effective in inhibiting in vivo and in vitro cancer growth than the treatment with CUR. Additional studies will be needed to define the therapeutic potential of these compounds in combination.

  1. Resveratrol potentiates the in vitro and in vivo anti-tumoral effects of curcumin in head and neck carcinomas

    PubMed Central

    Masuelli, Laura; Stefano, Enrica Di; Fantini, Massimo; Mattera, Rosanna; Benvenuto, Monica; Marzocchella, Laura; Sacchetti, Pamela; Focaccetti, Chiara; Bernardini, Roberta; Tresoldi, Ilaria; Izzi, Valerio; Mattei, Maurizio; Frajese, Giovanni Vanni; Lista, Florigio; Modesti, Andrea; Bei, Roberto

    2014-01-01

    The survival rate of head and neck squamous cell carcinomas (HNSCC) patients has not considerably changed over the last two decades. Polyphenols inhibit the growth of cancer cells. We determined whether the combination of Resveratrol (RES) and Curcumin (CUR) enhanced their in vitro and in vivo antitumor activities on HNSCC cell lines compared to the single compounds. We provide evidence that RES potentiated the apoptotic effect and reduced the IC50 of CUR on HNSCC cell lines. The model of compounds interaction indicated the onset of an additive effect of the two compounds compared to the single treatment after decrease of their concentrations. RES+CUR compared to CUR increased the PARP-1 cleavage, the Bax/Bcl-2 ratio, the inhibition of ERK1 and ERK2 phosphorylation, and the expression of LC3 II simultaneously with the formation of autophagic vacuoles. RES and CUR induced cytoplasmic NF-κB accumulation. RES+CUR administrations were safe in BALB/c mice and reduced the growth of transplanted salivary gland cancer cells (SALTO) more efficiently than CUR. Overall, combinations of CUR and RES was more effective in inhibiting in vivo and in vitro cancer growth than the treatment with CUR. Additional studies will be needed to define the therapeutic potential of these compounds in combination. PMID:25296980

  2. The role of NK cells in antitumor activity of dietary fucoidan from Undaria pinnatifida sporophylls (Mekabu).

    PubMed

    Maruyama, Hiroko; Tamauchi, Hidekazu; Iizuka, Mariko; Nakano, Takahisa

    2006-12-01

    Fucoidan from Mekabu (sporophyll of Undaria pinnatifida), a dietary alga, exerts antitumor activity possibly through enhancing the immune response. The present report describes the effects of dietary Mekabu fucoidan on the tumor growth of mouse A20 leukemia cells and on T cell-mediated immune responses in T cell receptor transgenic (DO-11 - 10 - Tg) mice. The animals were fed with a diet containing 1% Mekabu fucoidan (0.034 +/- 0.003 g/mouse/day) for 10 days and subcutaneously (s. c.) inoculated with A20 leukemia cells. Thereafter, the mice were fed with the diet containing fucoidan for 40 days. Mekabu fucoidan inhibited tumors by 65.4 %. We studied how the killer activities of T cell-mediated and natural killer (NK) cells are augmented in DO-11 - 10 mice fed with Mekabu fucoidan. The cytolytic activities of ovalbumin (OVA), which is specific against OVA-transfected A20 (OVA-A20) B lymphoma cells, and NK cells against YAC-1 were significantly enhanced in the mice fed with fucoidan compared with a basic diet. Thus, these findings suggested that Mekabu fucoidan mediates tumor destruction through Th1 cell and NK cell responses.

  3. Antitumor effects of recombinant human adenovirus-p53 against human cutaneous squamous cell carcinoma in mice

    PubMed Central

    Li, Yuanchao; He, Wei; Wang, Rupeng; Yang, Libin; Zhou, Chunli; Zhang, Bin

    2016-01-01

    The present study was conducted to identify the anti-tumor effects of rAd/p53, which is a recombinant human serotype 5 adenovirus, in cutaneous squamous cell carcinoma (cSCC). Mouse models of human cSCC were constructed by injecting human cutaneous squamous cell carcinoma cells into both flanks of nude mice. Subsequently, the 75 nude mice with cSCC xenograft tumors were randomly divided into recombinant human serotype 5 adenovirus (rAd)/p53, rAd/p53 + 5-fluorouracil (5-Fu) and 5-Fu groups. One side of the tumors was administered the therapeutic agents as the therapeutic group, whereas the remaining side was treated with medical saline as the control. At 24, 48, 72, 120 and 168 h post-intratumoral injection, alterations in tumor volume, tumor necrosis and the expression of several tumor-associated genes, including Smad4, Brca1 and matrix metalloproteinase (MMP-2), were analyzed. Compared with its control group, the rAd/P53 group exhibited a significantly increased tumor necrosis ratio. In addition, Smad4 and Brca1 expression levels increased significantly at various time points (P<0.05), and MMP-2 expression decreased significantly (P<0.05). In the rAd/p53 + 5-Fu group, the tumor necrosis ratio, and Smad4 and Brca1 expression levels also significantly increased at various time points (P<0.05). MMP-2 gene transcription gradually decreased, high expression of Smad4 was prolonged, and high expression of Brca1 was observed in the early period following treatment compared with the rAd/P53 group. In addition, p53 expression exhibited a positive correlation with the tumor necrosis ratio and Smad4 expression, and showed a negative correlation with MMP-2 gene transcription (P<0.05). These findings indicate that rAd/p53 has a potent anti-tumor effect in cSCC via the promotion of tumor necrosis and regulating the expression of various tumor-associated genes. PMID:28105142

  4. Anti-tumor effects of bemiparin in HepG2 and MIA PaCa-2 cells.

    PubMed

    Alur, İhsan; Dodurga, Yavuz; Seçme, Mücahit; Elmas, Levent; Bağcı, Gülseren; Gökşin, İbrahim; Avcı, Çığır Biray

    2016-07-10

    Recent researches have demonstrated improved survival in oncologic patients treated with low molecular weight heparins (LMWHs) which are anticoagulant drugs. We evaluated "second generation" LMWH bemiparin and its in vitro anti-tumor effects on HepG2 hepatocellular carcinoma and MIA PaCa-2 cancer cells. The aim of the study is to investigate anti-cancer mechanism of bemiparin in HepG2 and Mia-Paca-2 cancer cells. Cytotoxic effects of bemiparin were determined by XTT assay. IC50 dose of bemiparin was found to be 200 IU/mL in the 48th hour in the MiaPaCa-2 cell line and 50 IU/mL in the 48th hour in the HepG2 cell line. CCND1 (cyclin D1), CDK4, CDK6, p21, p16, p53, caspase-3, caspase-9, caspase-8, Bcl-2, BID, DR4, DR5, FADD, TRADD, Bax, gene mRNA expressions were evaluated by Real-time PCR. Real-time PCR analysis showed that CCND1 expression was reduced in HepG2 dose the group cells when compared with the control group cells and p53, caspase-3, caspase p21, caspase-8 and expressions were increased in the dose group cells when compared with the control group cells. CCND1, CDK4 and CDK6 expressions were reduced in MIA PaCa-2 dose group cells when compared with the control group cells and p53 expression was increased in the dose group cells when compared with the control group cells. Other expressions of genes were found statistically insignificant both of cell lines. It was found that bemiparin in HepG2 and MIA PaCa-2 cells suppressed invasion, migration, and colony formation by using matrigel invasion chamber, and colony formation assay, respectively. In conclusion, it is thought that bemiparin indicates anti-tumor activity by affecting cell cycle arrest, apoptosis, invasion, migration, and colony formation on cancer cells.

  5. In Vivo Anti-Tumor Effects of Flavokawain A in 4T1 Breast Cancer Cell-Challenged Mice.

    PubMed

    Abu, Nadiah; Mohamed, Nurul Elyani; Yeap, Swee Keong; Lim, Kian Lam; Akhtar, M Nadeem; Zulfadli, Aimi Jamil; Kee, Beh Boon; Abdullah, Mohd Puad; Omar, Abdul Rahman; Alitheen, Noorjahan Banu

    2015-01-01

    Flavokawain A is a chalcone that can be found in the kava-kava plant (Piper methsyticum) extract. The kava-kava plant has been reported to possess anti-cancer, anti-inflammatory and antinociceptive activities. The state of the immune system, and the inflammatory process play vital roles in the progression of cancer. The immunomodulatary effects and the anti-inflammatory effects of flavokawain A in a breast cancer murine model have not been studied yet. Thus, this study aimed to elucidate the basic mechanism as to how flavokawain A regulates and enhance the immune system as well as impeding the inflammatory process in breast cancer-challenged mice. Based on our study, it is interesting to note that flavokawain A increased the T cell population; both Th1 cells and CTLs, aside from the natural killer cells. The levels of IFN-γ and IL-2 were also elevated in the serum of flavokawain A-treated mice. Apart from that, flavokawain A also decreased the weight and volume of the tumor, and managed to induce apoptosis in them. In terms of inflammation, flavokawain A-treated mice had reduced level of major pro-inflammatory mediators; NO, iNOS, NF-KB, ICAM and COX-2. Overall, flavokawain A has the potential to not only enhance antitumor immunity, but also prevents the inflammatory process in a cancer-prone microenvironment.

  6. Tumor Microenvironment Remodeling by 4-Methylumbelliferone Boosts the Antitumor Effect of Combined Immunotherapy in Murine Colorectal Carcinoma.

    PubMed

    Malvicini, Mariana; Fiore, Esteban; Ghiaccio, Valentina; Piccioni, Flavia; Rizzo, Miguel; Olmedo Bonadeo, Lucila; García, Mariana; Rodríguez, Marcelo; Bayo, Juan; Peixoto, Estanislao; Atorrasagasti, Catalina; Alaniz, Laura; Aquino, Jorge; Matar, Pablo; Mazzolini, Guillermo

    2015-09-01

    We have previously demonstrated that a low dose of cyclophosphamide (Cy) combined with gene therapy of interleukin-12 (AdIL-12) has a synergistic, although limited, antitumoral effect in mice with colorectal carcinoma. The main mechanism involved in the efficacy of Cy+AdIL-12 was the induction of a specific immune response mediated by cytotoxic T lymphocytes. Our current aims were to evaluate the effects of 4-methylumbelliferone (4Mu), a selective inhibitor of hyaluronan (HA) synthesis, on tumor microenvironment (TME) and to investigate how 4Mu affects the therapeutic efficacy of Cy+AdIL-12. The results showed that 4Mu significantly reduced the amount of tumoral HA leading to a significant decrease in tumor interstitial pressure (TIP). As a consequence, tumor perfusion was improved allowing an increased adenoviral transgene expression. In addition, treatment with 4Mu boosted the number of cytotoxic T lymphocytes that reach the tumor after adoptive transfer resulting in a potent inhibition of tumor growth. Importantly, we observed complete tumor regression in 75% of mice when 4Mu was administrated in combination with Cy+AdIL-12. The triple combination 4Mu+Cy+AdIL-12 also induced a shift toward antiangiogenic factors production in tumor milieu. Our results showed that TME remodeling is an interesting strategy to increase the efficacy of anticancer immunotherapies based on gene and/or cell therapy.

  7. In vitro and in vivo studies of antitumor effects of the recombinant immunotoxin MSH-PE38KDEL on melanoma.

    PubMed

    Hui, Q; Ma, J; Song, J; Liu, Z; Ren, H; Jiang, W; Wang, Y; Xu, Y; Guo, D; Zhang, X; Lu, S

    2014-01-01

    MSH-PE38KDEL is a chimeric molecule composed of MSH, and fused to a truncated mutant form of Pseudomonas exotoxin (PE38KDEL). Our study aims to evaluate the specific cytotoxicity of recombinant immunotoxin MSH-PE38KDEL on melanoma cells A875 and B16 in vitro, as well as its inhibition of metastatic melanoma in vivo. MSH-PE38KDEL was expressed in Escherichia coli, and greater than 90% purity was obtained. The purified MSH-PE38KDEL was found to be selectively cytotoxic to MSH receptor-positive melanoma cells in vitro. The specific cytotoxicity of recombinant MSH-PE38KDEL to A875 and B16 was over 85% by cell viability assay; however, MSH-PE38KDEL had no cytotoxicity to the human 2BS cells. The anti-tumor activity of MSH-PE38KDEL was evaluated in mice with induced melanoma through intra-tumor or intravenous administration. The results showed that 90% melanoma growths were inhibited, and 40% of the tumors were disappeared completely. Histopathology results showed MSH-PE38KDEL can effectively inhibit intrahepatic metastasis. In conclusion, MSH-PE38KDEL had cytotoxic effects on MSH receptor-positive melanoma cells, and causes significant tumor growth inhibition. These results support a possible new approach for the treatment of melanoma.

  8. Tumor Microenvironment Remodeling by 4-Methylumbelliferone Boosts the Antitumor Effect of Combined Immunotherapy in Murine Colorectal Carcinoma

    PubMed Central

    Malvicini, Mariana; Fiore, Esteban; Ghiaccio, Valentina; Piccioni, Flavia; Rizzo, Miguel; Olmedo Bonadeo, Lucila; García, Mariana; Rodríguez, Marcelo; Bayo, Juan; Peixoto, Estanislao; Atorrasagasti, Catalina; Alaniz, Laura; Aquino, Jorge; Matar, Pablo; Mazzolini, Guillermo

    2015-01-01

    We have previously demonstrated that a low dose of cyclophosphamide (Cy) combined with gene therapy of interleukin-12 (AdIL-12) has a synergistic, although limited, antitumoral effect in mice with colorectal carcinoma. The main mechanism involved in the efficacy of Cy+AdIL-12 was the induction of a specific immune response mediated by cytotoxic T lymphocytes. Our current aims were to evaluate the effects of 4-methylumbelliferone (4Mu), a selective inhibitor of hyaluronan (HA) synthesis, on tumor microenvironment (TME) and to investigate how 4Mu affects the therapeutic efficacy of Cy+AdIL-12. The results showed that 4Mu significantly reduced the amount of tumoral HA leading to a significant decrease in tumor interstitial pressure (TIP). As a consequence, tumor perfusion was improved allowing an increased adenoviral transgene expression. In addition, treatment with 4Mu boosted the number of cytotoxic T lymphocytes that reach the tumor after adoptive transfer resulting in a potent inhibition of tumor growth. Importantly, we observed complete tumor regression in 75% of mice when 4Mu was administrated in combination with Cy+AdIL-12. The triple combination 4Mu+Cy+AdIL-12 also induced a shift toward antiangiogenic factors production in tumor milieu. Our results showed that TME remodeling is an interesting strategy to increase the efficacy of anticancer immunotherapies based on gene and/or cell therapy. PMID:26105158

  9. A novel combination of TRAIL and doxorubicin enhances antitumor effect based on passive tumor-targeting of liposomes

    NASA Astrophysics Data System (ADS)

    Guo, Liangran; Fan, Li; Ren, Jinfeng; Pang, Zhiqing; Ren, Yulong; Li, Jingwei; Wen, Ziyi; Jiang, Xinguo

    2011-07-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a novel anticancer agent for non-small cell lung cancer (NSCLC). However, approximately half of NSCLC cell lines are highly resistant to TRAIL. Doxorubicin (DOX) can sensitize NSCLC cells to TRAIL-induced apoptosis, indicating the possibility of combination therapy. Unfortunately, the therapeutic effect of a DOX and TRAIL combination is limited by multiple factors including the short serum half-life of TRAIL, poor compliance and application difficulty in the clinic, chronic DOX-induced cardiac toxicity, and the multidrug resistance (MDR) property of NSCLC cells. To solve such problems, we developed the combination of TRAIL liposomes (TRAIL-LP) and DOX liposomes (DOX-LP). An in vitro cytotoxicity study indicated that DOX-LP sensitized the NSCLC cell line A-549 to TRAIL-LP-induced apoptosis. Furthermore, this combination therapy of TRAIL-LP and DOX-LP displayed a stronger antitumor effect on NSCLC in xenografted mice when compared with free drugs or liposomal drugs alone. Therefore, the TRAIL-LP and DOX-LP combination therapy has excellent potential to become a new therapeutic approach for patients with advanced NSCLC.

  10. Anti-tumoral effects of a trypsin inhibitor derived from buckwheat in vitro and in vivo.

    PubMed

    Bai, Chong-Zhi; Feng, Ma-Li; Hao, Xu-Liang; Zhao, Zhi-Juan; Li, Yu-Ying; Wang, Zhuan-Hua

    2015-08-01

    Native buckwheat, a common component of food products and medicine, has been observed to inhibit cancer cell proliferation in vitro. The aim of the present study was to evaluate the in vitro and in vivo anti-tumoral effects of recombinant buckwheat trypsin inhibitor (rBTI) on hepatic cancer cells and the mechanism of apoptosis involved. Apoptosis in the H22 cell line induced by rBTI was identified using MTT assays, DNA electrophoresis, flow cytometry, morphological observation of the nuclei, measurement of cytochrome C and assessment of caspase activation. It was identified that rBTI decreases cell viability by inducing apoptosis, as evidenced by the formation of apoptotic bodies and DNA fragmentation. rBTI-induced apoptosis occurred in association with mitochondrial dysfunction, leading to the release of cytochrome C from the mitochondria to the cytosol, as well as the activation of caspase-3, -8 and -9. In conclusion, the results of the present study suggested that rBTI specifically inhibited the growth of the H22 hepatic carcinoma cell line in vitro and in vivo in a concentration-dependent and time-dependent manner, while there were minimal effects on the 7702 normal liver cell line. In addition, rBTI‑induced apoptosis in H22 cells was, at least in part, mediated by a mitochondrial pathway via caspase-9.

  11. The effect of Cu 2+ on the interaction between an antitumor drug-mitoxantrone and human serum albumin

    NASA Astrophysics Data System (ADS)

    Tian, Ming-Yue; Zhang, Xiu-Feng; Xie, Ling; Xiang, Jun-Feng; Tang, Ya-Lin; Zhao, Chang-Qi

    2008-12-01

    The studies on the interaction between HSA and drugs have been an interesting research field in life sciences, chemistry and clinical medicine. There are also many metal ions present in blood plasma, thus the research about the effect of metal ions on the interaction between drugs and plasma proteins is crucial. In this study, we have investigated the effect of a familiar metal ion-Cu 2+ on the interaction between an antitumor drug-mitoxantrone (MTO) and human serum albumin (HSA) by using fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy and circular dichroism spectroscopy, for the first time. The results showed that the quenching efficiency of MTO to HSA is higher with Cu 2+ than that without Cu 2+. In the presence of Cu 2+, the secondary structure of HSA was changed and the α-helix content was increased. The apparent association constant ( KA), the binding sites ( n) and the spatial-distance ( r) between MTO and HSA decreased. These results indicated that Cu 2+ could affect the interaction between MTO and HSA by altering HSA molecular conformation. Further calculation indicated that the binding mode of Cu 2+ in MTO-HSA system was likely to form Cu 2+-HSA complex.

  12. Magnolol and honokiol exert a synergistic anti-tumor effect through autophagy and apoptosis in human glioblastomas.

    PubMed

    Cheng, Yu-Chen; Hueng, Dueng-Yuan; Huang, Hua-Yin; Chen, Jang-Yi; Chen, Ying

    2016-05-17

    Glioblastoma (GBM) is a malignant brain tumor associated with a high mortality rate. The aim of this study is to investigate the synergistic effects of honokiol (Hono) and magnolol (Mag), extracted from Magnolia officinalis, on cytotoxicity and inhibition of human GBM tumor progression in cellular and animal models. In comparison with Hono or Mag alone, co-treatment with Hono and Mag (Hono-Mag) decreased cyclin A, D1 and cyclin-dependent kinase 2, 4, 6 significantly, leading to cell cycle arrest in U87MG and LN229 human glioma cells. In addition, phosphorylated phosphoinositide 3-kinase (p-PI3K), p-Akt, and Ki67 were decreased after Hono-Mag treatment, showing proliferation inhibition. Hono-Mag treatment also reduced p-p38 and p-JNK but elevated p-ERK expression. Besides, Hono-Mag treatment induced autophagy and intrinsic and extrinsic apoptosis. Both ERK and autophagy inhibitors enhanced Hono-Mag-induced apoptosis in LN229 cells, indicating a rescuer role of ERK. In human GBM orthotopic xenograft model, the Hono-Mag treatment inhibited the tumor progression and induced apoptosis more efficiently than Temozolomide, Hono, or Mag group. In conclusion, the Hono-Mag exerts a synergistic anti-tumor effect by inhibiting cell proliferation and inducing autophagy and apoptosis in human GBM cells. The Hono-Mag may be applied as an adjuvant therapy to improve the therapeutic efficacy of GBM treatment.

  13. Triterpenoids Amplify Anti-Tumoral Effects of Mistletoe Extracts on Murine B16.F10 Melanoma In Vivo

    PubMed Central

    Strüh, Christian M.; Jäger, Sebastian; Kersten, Astrid; Schempp, Christoph M.; Scheffler, Armin; Martin, Stefan F.

    2013-01-01

    Purpose Mistletoe extracts are often used in complementary cancer therapy although the efficacy of that therapy is controversially discussed. Approved mistletoe extracts contain mainly water soluble compounds of the mistletoe plant, i.e. mistletoe lectins. However, mistletoe also contains water-insoluble triterpenoids (mainly oleanolic acid) that have anti-tumorigenic effects. To overcome their loss in watery extracts we have solubilized mistletoe triterpenoids with cyclodextrins, thus making them available for in vivo cancer experiments. Experimental design B16.F10 subcutaneous melanoma bearing C57BL/6 mice were treated with new mistletoe extracts containing both water soluble compounds and solubilized triterpenoids. Tumor growth and survival was monitored. In addition, histological examinations of the tumor material and tumor surrounding tissue were performed. Results Addition of solubilized triterpenoids increased the anti-tumor effects of the mistletoe extracts, resulting in reduced tumor growth and prolonged survival of the mice. Histological examination of the treated tumors showed mainly tumor necrosis and some apoptotic cells with active caspase-3 and TUNEL staining. A significant decrease of CD31-positive tumor blood vessels was observed after treatment with solubilized triterpenoids and different mistletoe extracts. Conclusion We conclude that the addition of solubilized mistletoe triterpenoids to conventional mistletoe extracts improves the efficacy of mistletoe treatment and may represent a novel treatment option for malignant melanoma. PMID:23614029

  14. Monocyte chemoattractant protein-1 gene delivery enhances antitumor effects of herpes simplex virus thymidine kinase/ganciclovir system in a model of colon cancer.

    PubMed

    Kagaya, T; Nakamoto, Y; Sakai, Y; Tsuchiyama, T; Yagita, H; Mukaida, N; Kaneko, S

    2006-04-01

    Suicide gene therapy using the herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV) system is a well-characterized tool for cancer gene therapy; however, it does not yet exhibit sufficient efficacy to cure patients of malignancies. We have reported that adenovirally delivered monocyte chemoattractant protein (MCP)-1 augmented the antitumor effects of the HSV-tk/GCV system in an athymic nude mouse model. The current study, which uses an immunocompetent mouse model of colon cancer, was designed to evaluate the antitumor effects of MCP-1 gene delivery in conjunction with this suicide gene therapy system. Subcutaneous tumor foci were directly transduced with both recombinant adenoviruses (rAds) expressing an HSV-tk gene and either of the MCP-1, CD80 and LacZ genes, followed by GCV administration. The growth of tumors was markedly suppressed by codelivery of HSV-tk and MCP-1 genes, which was exclusively associated with the recruitment of monocytes/macrophages, T helper 1 (Th1) cytokine gene expression and cytotoxic activity of the splenocytes. Furthermore, the antitumor effects were more efficient than that obtained by the combination of HSV-tk and CD80 genes. These results suggest an immunomodulatory effect of MCP-1 in the context of suicide gene therapy of colon cancer via orchestration of innate and acquired immune responses.

  15. Poly (I:C) enhances the anti-tumor activity of canine parvovirus NS1 protein by inducing a potent anti-tumor immune response.

    PubMed

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Tiwari, A K; Gandham, Ravi Kumar; Sahoo, A P

    2016-09-01

    The canine parvovirus NS1 (CPV2.NS1) protein selectively induces apoptosis in the malignant cells. However, for an effective in vivo tumor treatment strategy, an oncolytic agent also needs to induce a potent anti-tumor immune response. In the present study, we used poly (I:C), a TLR3 ligand, as an adjuvant along with CPV2.NS1 to find out if the combination can enhance the oncolytic activity by inducing a potent anti-tumor immune response. The 4T1 mammary carcinoma cells were used to induce mammary tumor in Balb/c mice. The results suggested that poly (I:C), when given along with CPV2.NS1, not only significantly reduced the tumor growth but also augmented the immune response against tumor antigen(s) as indicated by the increase in blood CD4+ and CD8+ counts and infiltration of immune cells in the tumor tissue. Further, blood serum analysis of the cytokines revealed that Th1 cytokines (IFN-γ and IL-2) were significantly upregulated in the treatment group indicating activation of cell-mediated immune response. The present study reports the efficacy of CPV2.NS1 along with poly (I:C) not only in inhibiting the mammary tumor growth but also in generating an active anti-tumor immune response without any visible toxicity. The results of our study may help in developing CPV2.NS1 and poly (I: C) combination as a cancer therapeutic regime to treat various malignancies.

  16. The Effect of Antitumor Glycosides on Glioma Cells and Tissues as Studied by Proton HR-MAS NMR Spectroscopy

    PubMed Central

    García-Álvarez, Isabel; Garrido, Leoncio; Romero-Ramírez, Lorenzo; Nieto-Sampedro, Manuel; Fernández-Mayoralas, Alfonso; Campos-Olivas, Ramón

    2013-01-01

    The effect of the treatment with glycolipid derivatives on the metabolic profile of intact glioma cells and tumor tissues, investigated using proton high resolution magic angle spinning (1H HR-MAS) nuclear magnetic resonance (NMR) spectroscopy, is reported here. Two compounds were used, a glycoside and its thioglycoside analogue, both showing anti-proliferative activity on glioma C6 cell cultures; however, only the thioglycoside exhibited antitumor activity in vivo. At the drug concentrations showing anti-proliferative activity in cell culture (20 and 40 µM), significant increases in choline containing metabolites were observed in the 1H NMR spectra of the same intact cells. In vivo experiments in nude mice bearing tumors derived from implanted C6 glioma cells, showed that reduction of tumor volume was associated with significant changes in the metabolic profile of the same intact tumor tissues; and were similar to those observed in cell culture. Specifically, the activity of the compounds is mainly associated with an increase in choline and phosphocholine, in both the cell cultures and tumoral tissues. Taurine, a metabolite that has been considered a biomarker of apoptosis, correlated with the reduction of tumor volume. Thus, the results indicate that the mode of action of the glycoside involves, at least in part, alteration of phospholipid metabolism, resulting in cell death. PMID:24194925

  17. Development of high boron content liposomes and their promising antitumor effect for neutron capture therapy of cancers.

    PubMed

    Koganei, Hayato; Ueno, Manabu; Tachikawa, Shoji; Tasaki, Lisa; Ban, Hyun Seung; Suzuki, Minoru; Shiraishi, Kouichi; Kawano, Kumi; Yokoyama, Masayuki; Maitani, Yoshie; Ono, Koji; Nakamura, Hiroyuki

    2013-01-16

    Mercaptoundecahydrododecaborate (BSH)-encapsulating 10% distearoyl boron lipid (DSBL) liposomes were developed as a boron delivery vehicle for neutron capture therapy. The current approach is unique because the liposome shell itself possesses cytocidal potential in addition to its encapsulated agents. BSH-encapsulating 10% DSBL liposomes have high boron content (B/P ratio: 2.6) that enables us to prepare liposome solution with 5000 ppm boron concentration. BSH-encapsulating 10% DSBL liposomes displayed excellent boron delivery efficacy to tumor: boron concentrations reached 174, 93, and 32 ppm at doses of 50, 30, and 15 mg B/kg, respectively. Magnescope was also encapsulated in the 10% DSBL liposomes and the real-time biodistribution of the Magnescope-encapsulating DSBL liposomes was measured in a living body using MRI. Significant antitumor effect was observed in mice injected with BSH-encapsulating 10% DSBL liposomes even at the dose of 15 mg B/kg; the tumor completely disappeared three weeks after thermal neutron irradiation ((1.5-1.8) × 10(12) neutrons/cm(2)). The current results enabled us to reduce the total dose of liposomes to less than one-fifth compared with that of the BSH-encapsulating liposomes without reducing the efficacy of boron neutron capture therapy (BNCT).

  18. Survivin promoter-regulated oncolytic adenovirus with Hsp70 gene exerts effective antitumor efficacy in gastric cancer immunotherapy.

    PubMed

    Wang, Weiguo; Ji, Weidan; Hu, Huanzhang; Ma, Juming; Li, Xiaoya; Mei, Weiqun; Xu, Yang; Hu, Huizhen; Yan, Yan; Song, Qizhe; Li, Zhigang; Su, Changqing

    2014-01-15

    Gene therapy is a promising adjuvant therapeutic strategy for cancer treatment. To overcome the limitations of current gene therapy, such as poor transfection efficiency of vectors, low levels of transgene expression and lack of tumor targeting, the Survivin promoter was used to regulate the selective replication of oncolytic adenovirus in tumor cells, and the heat shock protein 70 (Hsp70) gene was loaded as the anticancer transgene to generate an AdSurp-Hsp70 viral therapy system. The efficacy of this targeted immunotherapy was examined in gastric cancer. The experiments showed that the oncolytic adenovirus can selectively replicate in and lyse the Survivin-positive gastric cancer cells, without significant toxicity to normal cells. AdSurp-Hsp70 reduced viability of cancer cells and inhibited tumor growth of gastric cancer xenografts in immuno-deficient and immuno-reconstruction mouse models. AdSurp-Hsp70 produced dual antitumor effects due to viral replication and high Hsp70 expression. This therapeutic system used the Survivin promoter-regulated oncolytic adenovirus vector to mediate targeted expression of the Hsp70 gene and ensure safety and efficacy for subsequent gene therapy programs against a variety of cancers.

  19. Th17 Cells Exhibit Antitumor Effects in MDS Possibly through Augmenting Functions of CD8+ T Cells.

    PubMed

    Li, Jing; Yue, Lanzhu; Wang, Huaquan; Liu, Chunyan; Liu, Hui; Tao, Jinglian; Qi, Weiwei; Wang, Yihao; Zhang, Wei; Fu, Rong; Shao, Zonghong

    2016-01-01

    Th17 cells are a newly found subset of distinct CD4+ Th effector cells' family and are found to play an important role in cancers. Myelodysplastic syndromes (MDS) are a common malignant hematological disease. Here, we showed that both the percentage and the function of Th17 cells were elevated in low-risk MDS while being decreased in high-risk MDS. Levels of upstream molecules of Th17 cells, IL-6 and IL-23, were higher in low-risk MDS but lower in high-risk MDS patients. The abnormal percentage of Th17 cells was closely related to clinical parameters including karyotype, morphologic blast percentage of bone marrow, peripheral absolute neutrophil count, and hemoglobin concentration. Furthermore, expression rates of perforin and granzyme B in BM CD3+CD8+ cells (cytotoxic T lymphocyte, CTL) positively correlated with levels of IL-17 but negatively correlated with BM blast percentage and could be significantly increased after stimulation with human recombinant IL-17 (rhIL-17). Our results suggested that Th17 cells might play an antitumor effect in the pathogenesis of MDS through IL-17/CTL pathway.

  20. Statistical optimization of culture medium for production of exopolysaccharide from endophytic fungus Bionectria ochroleuca and its antitumor effect in vitro.

    PubMed

    Li, Yun; Guo, Shoujun; Zhu, Hui

    2016-01-01

    Endophytic fungi have been recognized as possible useful sources of bioactive metabolites. However, exopolysaccharide (EPS) production from endophytic fungi and its antitumor activity have been less explored. In the present study, endophtic fungus Bionectria ochroleuca M21 was exploited for the production of EPS in submerged culture. Among tested medium components, glucose, yeast extract, MgSO4 and Tween80 were found to be effective and significant on EPS production. Response surface methodology (RSM) was employed to optimize medium composition. The results showed that the significant factors were glucose, yeast extract and Tween80. The optimal medium was observed at the composition of glucose 55.7 g/L, yeast extract 6.04 g/L, MgSO4 0.25g/L and Tween80 0.1 % (v/v). Using the optimized medium, EPS production was achieve at 2.65 ± 0.16 g/L after 4 days fermentation in a 5L bioreactor. Examination of cytotoxicity showed that the EPS from B. ochroleuca M21 did not have cytotoxic activity on human liver HL-7702 cells at concentration 0.025-1.6 mg/mL. In contrast, the EPS exhibited antiproliferative activities against cell lines of liver cancer (HepG2), gastric cancer (SGC-7901) and colon cancer (HT29) in a dose- and time-dependent manner in the concentration ranges of 0.1-0.45 mg/mL.

  1. Development, characterization and anti-tumor effect of a sequential sustained-release preparation containing ricin and cobra venom cytotoxin.

    PubMed

    Zhang, Xiu-Juan; Ke, Li-Ming; Yang, Jing; Lin, Li-Wu; Xue, En-Sheng; Wang, Yan; Yu, Li-Yun; Chen, Zhi-Kui

    2012-07-01

    Cobra venom cytotoxin (CVC) loaded in poly (lactide-co-glycolide) (PLGA) microspheres was mixed with ricin and encapsulated in a thermosensitive PLGA-PEG-PLGA hydrogel for this study. This sequential sustained-release preparation (SSRP) containing ricin and CVC could avoid burst release effect of CVC from microspheres. In addition, in SSRP, the two biotoxins have different drug release rates and antitumor mechanisms, which can be complementary to each other. Ricin has a faster release rate than CVC. It can combine with the tumor cell membrane and enter the cell, inhibiting protein synthesis within 2 weeks. Whereas CVC releases slowly in 5 weeks directly dissolving the tumor cell membrane and killing the cells which are less-sensitive to ricin. The in vivo experiments showed that intratumoral injection of SSRP could inhibit hepatocellular carcinoma growth significantly, and the tumor growth inhibition rate reached 73.5%. It appears that a new medicine preparation for cancer local treatment should be further studied for clinical applications.

  2. Antimutagenic, Antirecombinogenic, and Antitumor Effect of Amygdalin in a Yeast Cell-Based Test and Mammalian Cell Lines.

    PubMed

    Todorova, Atanaska; Pesheva, Margarita; Iliev, Ivan; Bardarov, Krum; Todorova, Teodora

    2017-02-01

    Amygdalin is a major component of the seeds of Rosaceae family of plants such as apricots, peaches, cherry, nectarines, apples, plums, and so on, as well as almonds. It is used in alternative medicine for cancer prevention, alleviation of fever, cough suppression, and quenching thirst. The aim of the present study is to determine the mutagenic and recombinogenic effects of amygdalin in a test system Saccharomyces cerevisiae and to evaluate its potential antitumor effect in a yeast cell-based test and colon cancer cell lines. Results obtained show that concentrations 25, 50, and 100 μg/mL did not have any cytotoxic, mutagenic, and carcinogenic effect in yeast cell-based tests. Pretreatment with amygdalin at concentration 100 μg/mL leads to around twofold of the cell survival and decrease of reverse mutation frequency, induced by the alkylating agent methyl methanesulfonate. The frequency of gene conversion and mitotic crossing-over is around threefold lower. The anticarcinogenic potential of amygdalin at the same concentration is presented as around fourfold reduction of Ty1 retrotransposition induced by hexavalent chromium. In summary, data presented in this study provide evidence concerning the inability of amygdalin itself to provoke events related to the initial steps of tumorigenesis. In addition, the observed antimutagenic/antirecombinogenic effect could be activation of error-free and error-prone recombination events. Based on the high selectivity toward normal or tumor cell lines, it could be speculated that amygdalin has higher cytotoxic effect in cell lines with higher proliferative and metabolic activity, which are the majority of fast developing tumors.

  3. Effects of moderate exercise and oat beta-glucan on lung tumor metastases and macrophage antitumor cytotoxicity.

    PubMed

    Murphy, E A; Davis, J M; Brown, A S; Carmichael, M D; Mayer, E P; Ghaffar, A

    2004-09-01

    Both moderate exercise and the soluble fiber beta-glucan can have beneficial effects on the initiation and growth of tumors, but the data are limited, and there is no information on their combined effects. This study tested the independent and combined effects of short-term moderate-exercise training and the soluble oat fiber beta-glucan (ObetaG) on the metatastic spread of injected tumor cells and macrophage antitumor cytotoxicity. Male C57BL/6 mice were assigned to one of four groups: exercise (Ex)-H2O, Ex-ObetaG, control (Con)-H2O, or Con-ObetaG. ObetaG was fed in the drinking water for 10 days before tumor administration and death. Exercise consisted of treadmill running (1 h/day) for 6 days. After rest or exercise on the last day of training, syngeneic B16 melanoma cells (2 x 10(5)) were administered via intravenous injection (n = 8-11 per group). Lungs were removed 14 days later, and tumor foci were counted. Additional mice (n = 8 per group) were killed, and peritoneal macrophages were assayed for cytotoxicity against the same mouse tumor cell line at various effector-to-target ratios. Both moderate exercise and ObetaG decreased lung tumor foci and increased macrophage cytotoxicity. However, there were no differences in lung tumor foci and macrophage cytotoxicity between Ex-ObetaG and either Ex-H2O or Con-ObetaG. These data suggest that, although not additive in their effects, both short-term moderate-exercise training and consumption of the soluble ObetaG can decrease the metatastic spread of injected B16 melanoma cells, and these effects may be mediated in part by an increase in macrophage cytotoxicity to B16 melanoma.

  4. Incorporation of lapatinib into human serum albumin nanoparticles with enhanced anti-tumor effects in HER2-positive breast cancer.

    PubMed

    Wan, Xu; Zheng, Xiaoyao; Pang, Xiaoying; Zhang, Zheming; Zhang, Qizhi

    2015-12-01

    Lapatinib, a selective small-molecule dual-tyrosine kinase inhibitor of HER2 and EGFR, is effective in HER2-positive patients with advanced metastatic breast cancer. However, its low and variable oral absorption, large required daily dose and serious gastrointestinal side effects all limit its clinical use. Intravenous administration offers a good option to overcome these disadvantages. However, the poor solubility of lapatinib in water and organic solvents causes lapatinib to fail in a common injectable preparation. Considering lapatinib's high albumin binding ability (>99%), in this study, we developed human serum albumin nanoparticles loaded with lapatinib (LHNPs) by Nab technology for intravenous administration and investigated its efficacy against HER2-positive breast cancer. Raman shift, X-ray diffraction and X-ray photoelectron spectroscopy studies demonstrated that lapatinib was successfully incorporated into nanoparticles, and LHNPs exhibited good stability and sustained-release effect in vitro. LHNPs could be effectively taken up by SKBr3 cells in a concentration- and time-dependent manner, and the uptake was mediated by energy-dependent endocytosis, which involved clathrin-dependent pinocytosis. Furthermore, in vitro and in vivo data indicated that LHNPs presented the strong ability to induce apoptosis and superior anti-tumor efficacy in tumor-bearing mice to the commercial tablet Tykerb through the inhibition of HER2 phosphorylation. Subchronic toxicity assays indicated that LHNPs had no hepatic or kidney toxicity. With mature technology for industrial production and enhanced therapeutic effects, LHNPs are likely to have great potential as a safe therapeutic candidate against HER2-positive breast cancer in the clinic.

  5. Synergistic antitumor effects of doxorubicin-loaded carboxymethyl cellulose nanoparticle in combination with endostar for effective treatment of non-small-cell lung cancer.

    PubMed

    Li, Mingqiang; Tang, Zhaohui; Lin, Jian; Zhang, Yu; Lv, Shixian; Song, Wantong; Huang, Yubin; Chen, Xuesi

    2014-11-01

    The multi-modal combination therapy is proved powerful and successful to enhance the antitumor efficacy in clinics as compared with single therapy modes. In this study, the potential of combining chemotherapy with antiangiogenic therapy for the treatment of non-small-cell lung cancer is explored. Towards this aim, OEGylated carboxymethyl cellulose-(2-(2-(2-methoxyethoxy)ethoxy)methyl)oxirane (CMC-ME2MO) is prepared by treating CMC with ME2MO in the alkaline aqueous solution, and used to efficiently carry doxorubicin (DOX) with high drug-loading content (16.64%) and encapsulation efficiency (99.78%). As compared to free DOX, the resulting nanoparticles show not only the favorable stability in vitro but also the prolonged blood circulation, improved safety and tolerability, optimized biodistribution, reduced systemic toxicity, and enhanced antitumor efficacy in vivo, indicates a potential utility in cancer chemotherapy. Furthermore, the combination of the DOX-loaded polysaccharide nanoparticles and antiangiogenic drug endostar provides synergistic effects of chemotherapy and antiangiogenic therapy, which shows the highest efficiency in tumor suppression. The combination approach of the DOX-containing nanomedicine and endostar for efficient treatment of non-small-cell lung cancer is first proposed to demonstrate the synergistic therapeutic effect. This synergistic combination proves to be a promising therapeutic regimen in cancer therapy and holds great potential for clinical application.

  6. Magnetic poly epsilon-caprolactone nanoparticles containing Fe3O4 and gemcitabine enhance anti-tumor effect in pancreatic cancer xenograft mouse model.

    PubMed

    Gang, Jingu; Park, Seong-Bae; Hyung, Woochan; Choi, Eric H; Wen, Jing; Kim, Han-Soo; Shul, Young-Gun; Haam, Seungjoo; Song, Si Young

    2007-07-01

    We prepared magnetic (Fe(3)O(4)) poly epsilon-caprolactone (PCL) nanoparticles (mean diameter 164 +/- 3 nm) containing an anticancer drug (gemcitabine) using emulsion-diffusion method in order to develop more efficient drug delivery for cancer treatment. Nanoparticles were smooth, well individualized and homogeneous in size. The values of magnetizations for the magnetic PCL nanoparticles were observed around 10.2 emu/g at 2000 Oe magnetic field intensity and showed super-paramagnetic property. In case of the drug, the drug loading contents was 18.6% and entrapment efficiency was 52.2%. The anti-tumor effects caused by these particles were examined using nude mice bearing subcutaneous human pancreatic adenocarcinoma cells (HPAC) in vivo. We divided that these mice were randomly assigned to one of five treatment groups for experimental contrast. The antitumor effect was showed with 15-fold higher dose when compared to free gemcitabine. From the result, the magnetic PCL nanoparticles may provide a therapeutic benefit by delivering drugs efficiently to magnetically targeted tumor tissues, thus achieving safe and successful anti-tumor effects with low toxicity.

  7. Fusion protein of mutant B7-DC and Fc enhances the antitumor immune effect of GM-CSF-secreting whole-cell vaccine.

    PubMed

    Kojima, Masatsugu; Murata, Satoshi; Mekata, Eiji; Takebayashi, Katsushi; Jaffee, Elizabeth M; Tani, Tohru

    2014-04-01

    B7-DC [also known as programmed death ligand 2 (PD-L2)] is a costimulatory molecule expressed predominantly on dendritic cells (DCs) and macrophages. In addition to its coinhibitory receptor, programmed death receptor 1 (PD-1), evidence suggests that B7-DC interacts with an unidentified costimulatory receptor on T cells. B7-DC mutants with selective binding capacity for the costimulatory receptor may be effective in stimulating antitumor immune responses, while avoiding the inhibitory effects of PD-1. In this study, we concomitantly administered a GM-CSF-secreting whole-cell vaccine together with a fusion protein of mutant B7-DC and Fc portion (mB7-DC-Fc), which binds selectively to the costimulatory receptor. This lead to an increased number of tumor antigen-specific cytotoxic T lymphocytes both in the spleen and at the tumor site and complete elimination of established tumors in vivo. In addition, mB7-DC-Fc increased IFN-γ and IL-2 production and decreased IL-4 and IL-10 production in vitro, indicating that mB7-DC-Fc tips the Th1/Th2 balance toward Th1 dominance, which is more favorable for antitumor immunity. Furthermore, mB7-DC-Fc decreased the PD-1(+) proportion of CD8(+) T cells in vitro and tumor-infiltrating CD8(+) T cells in vivo, suggesting that mB7-DC-Fc may maintain tumor-infiltrating CD8(+) T cells in a nonexhausted state. In conclusion, mB7-DC-Fc administration during the T-cell priming phase enhances antitumor effects of vaccine by generating more tumor antigen-specific cytotoxic T lymphocytes and leading to their accumulation at the tumor site. We suggest that this combination approach may be a promising strategy for antitumor immunotherapy.

  8. The anti-tumor effect of p53 gene-loaded hydroxyapatite nanoparticles in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Zhao, Ruibo; Yang, Xinyan; Chen, Cen; Chen, Kan; Wang, Shibing; Xie, Chungang; Ren, Xiaoyuan; Kong, Xiangdong

    2014-04-01

    This research focused on anti-tumor effect of pEGFP-C1-p53 (p53) gene-loaded hydroxyapatite (HAp) nanoparticles in vitro and in vivo. Four kinds of HAp nanoparticles, spherical HAp nanoparticles (S-HAp, diameter: 50 nm), needle-like HAp nanoparticles (N-HAp, average length: 110 nm and width: 30 nm), rod-like HAp nanoparticles (R-HAp, average length: 100 nm and width: 30 nm), and short-rod-like HAp nanoparticles (SR-HAp, average length: 40 nm and width: 30 nm), were prepared initially. The HAp nanoparticles with or without being modified by PEI (named HAp and HAp-PEI, respectively) have excellent biocompatibility as shown by MTT assay and crystal violet staining tests. Then, the subsequent MTT, Hocehst staining tests, and Western blot showed that the killing effect of p53-loaded HAp-PEI (HAp-PEI-p53) was effective with fair selectivity toward Hep-3B and HuH-7 cells' cell lines. Moreover, HAp-PEI-p53 could inhibit the tumor growth in vivo, and the mechanism of tumor growth inhibition was verified by the hematoxylin and eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, P53 protein immunohistochemistry, and transmission electron microscope of the tumor cell in vivo. We found that HAp-PEI-p53 has good anti-cancer effect in vitro and in vivo, especially for the S-HAp-PEI-p53. Tumor metastasis could be suppressed significantly by the S-HAp-PEI-p53 and N-HAp-PEI-p53 treatments by the in vivo imaging system. All these results lead to the conclusion that the particle sizes of HAp ranging from 100 to 200 nm are appropriate for cancer gene therapy and may be widely used in anti-cancer investigation.

  9. Tim-3 and Tim-4 as the potential targets for antitumor therapy.

    PubMed

    Cheng, Lin; Ruan, Zhihua

    2015-01-01

    Both Tim-3 and Tim-4 belong to the T-cell immunoglobulin and mucin domain (Tim) gene family, which plays a critical role in immunoregulation. Tim-3 has been suggested as a negative regulator of anti-tumor immunity due to its function on inducing T cells exhaustion in cancer. In addition to its expression on exhausted T cells, Tim-3 also has been reported to up-regulate on nature killer (NK) cells and promote NK cells functionally exhausted in cancer. While Tim-3 selectively expression on most types of leukemia stem cells, it promotes the progression of acute myeloid leukemia. Recently, data from experimental models of tumor discovered that Tim-3 and Tim-4 up-regulation on tumor associated dendritic cells and macrophages attenuated the anti-tumor effects of cancer vaccines and chemotherapy. Moreover, co-blockage of Tim-3 and PD-1, Tim-3 and CD137, Tim-3 and carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1) could enhance cell-mediated immunity in advanced tumor, and combined treatment with anti-Tim-3 and anti-Tim-4 mAbs further increase the efficacy of cancer vaccines. The therapeutic manipulation of TIM-3 and TIM-4 may provide a novel strategy to improve the clinical efficacy of cancer immunotherapy.

  10. Two photon microscopy intravital study of DC-mediated anti-tumor response of NK cells

    NASA Astrophysics Data System (ADS)

    Caccia, Michele; Gorletta, Tatiana; Sironi, Laura; Zanoni, Ivan; Salvetti, Cristina; Collini, Maddalena; Granucci, Francesca; Chirico, Giuseppe

    2010-02-01

    Recent studies have demonstrated that dendritic cells (DCs) play a crucial role in the activation of Natural Killer cells (NKs) that are responsible for anti-tumor innate immune responses. The focus of this report is on the role of pathogen associated molecular pattern (PAMP) activated-DCs in inducing NK cell-mediated anti-tumor responses. Mice transplanted sub-cute (s.c.) with AK7 cells, a mesothelioma cell line sensitive to NK cell responses, are injected with fluorescent NK cells and DC activation is then induced by s.c. injection of Lipopolysaccharide (LPS). Using 4 dimensional tracking we follow the kinetic behavior of NK cells at the Draining Lymph-Node (DLN). As control, noninflammatory conditions are also evaluated. Our data suggest that NK cells are recruited to the DLN where they can interact with activated-DCs with a peculiar kinetic behavior: short lived interactions interleaved by rarer longer ones. We also found that the changes in the NK dynamic behavior in inflammatory conditions clearly affect relevant motility parameters such as the instantaneous and average velocity and the effective diffusion coefficient. This observation suggests that NK cells and activated-DCs might efficiently interact in the DLN, where cells could be activated. Therefore the interaction between activated-DCs and NK cells in DLN is not only a reality but it may be also crucial for the start of the immune response of the NKs.

  11. Antitumor effect and toxicity of free rhodium (II) citrate and rhodium (II) citrate-loaded maghemite nanoparticles in mice bearing breast cancer

    PubMed Central

    2013-01-01

    Background Magnetic fluids containing superparamagnetic iron oxide nanoparticles represent an attractive platform as nanocarriers in chemotherapy. Recently, we developed a formulation of maghemite nanoparticles coated with rhodium (II) citrate, which resulted in in vitro cytotoxicity enhanced up to 4.6 times when compared to free rhodium (II) citrate formulation on breast carcinoma cells. In this work, we evaluate the antitumor activity and toxicity induced by these formulations in Balb/c mice bearing orthotopic 4T1 breast carcinoma. Methods Mice were evaluated with regard to the treatments’ toxicity through analyses of hemogram, serum levels of alanine aminotransferase, iron, and creatinine; DNA fragmentation and cell cycle of bone marrow cells; and liver, kidney and lung histology. In addition, the antitumor activity of rhodium (II) citrate and maghemite nanoparticles coated with rhodium (II) citrate was verified by tumor volume reduction, histology and immunohistochemistry. Results Regarding the treatments’ toxicity, no experimental groups had alterations in levels of serum ALT or creatinine, and this suggestion was corroborated by the histopathologic examination of liver and kidney of mice. Moreover, DNA fragmentation frequency of bone marrow cells was lower than 15% in all experimental groups. On the other hand, the complexes rhodium (II) citrate-functionalized maghemite and free rhodium (II) citrate led to a marked growth inhibition of tumor and decrease in CD31 and Ki-67 staining. Conclusions In summary, we demonstrated that both rhodium (II) citrate and maghemite nanoparticles coated with rhodium (II) citrate formulations exhibited antitumor effects against 4T1 metastatic breast cancer cell line following intratumoral administration. This antitumor effect was followed by inhibition of both cell proliferation and microvascularization and by tumor tissue injury characterized as necrosis and fibrosis. Remarkably, this is the first published report

  12. Neonatal Fc receptor expression in dendritic cells mediates protective immunity against colorectal cancer.

    PubMed

    Baker, Kristi; Rath, Timo; Flak, Magdalena B; Arthur, Janelle C; Chen, Zhangguo; Glickman, Jonathan N; Zlobec, Inti; Karamitopoulou, Eva; Stachler, Matthew D; Odze, Robert D; Lencer, Wayne I; Jobin, Christian; Blumberg, Richard S

    2013-12-12

    Cancers arising in mucosal tissues account for a disproportionately large fraction of malignancies. Immunoglobulin G (IgG) and the neonatal Fc receptor for IgG (FcRn) have an important function in the mucosal immune system that we have now shown extends to the induction of CD8(+) T cell-mediated antitumor immunity. We demonstrate that FcRn within dendritic cells (DCs) was critical for homeostatic activation of mucosal CD8(+) T cells that drove protection against the development of colorectal cancers and lung metastases. FcRn-mediated tumor protection was driven by DCs activation of endogenous tumor-reactive CD8(+) T cells via the cross-presentation of IgG complexed antigens (IgG IC), as well as the induction of cytotoxicity-promoting cytokine secretion, particularly interleukin-12, both of which were independently triggered by the FcRn-IgG IC interaction in murine and human DCs. FcRn thus has a primary role within mucosal tissues in activating local immune responses that are critical for priming efficient anti-tumor immunosurveillance.

  13. Near-infrared light triggers release of Paclitaxel from biodegradable microspheres: photothermal effect and enhanced antitumor activity.

    PubMed

    You, Jian; Shao, Ruping; Wei, Xin; Gupta, Sanjay; Li, Chun

    2010-05-07

    Despite advances in controlled drug delivery, reliable methods for activatable, high-resolution control of drug release are needed. The hypothesis that the photothermal effect mediated by a near-infrared (NIR) laser and hollow gold nanospheres (HAuNSs) could modulate the release of anticancer agents is tested with biodegradable and biocompatible microspheres (1-15 microm) containing the antitumor drug paclitaxel (PTX) and HAuNSs (approximately 35 nm in diameter), which display surface plasmon absorbance in the NIR region. HAuNS-containing microspheres exhibit a NIR-induced thermal effect similar to that of plain HAuNSs. Rapid, repetitive PTX release from the PTX/HAuNS-containing microspheres is observed upon irradiation with NIR light (808 nm), whereas PTX release is insignificant when the NIR light is switched off. The release of PTX from the microspheres is readily controlled by the output power of the NIR laser, duration of irradiation, treatment frequency, and concentration of HAuNSs embedded inside the microspheres. In vitro, cancer cells incubated with PTX/HAuNS-loaded microspheres and irradiated with NIR light display significantly greater cytotoxic effects than cells incubated with the microspheres alone or cells irradiated with NIR light alone, owing to NIR-light-triggered drug release. Treatment of human U87 gliomas and MDA-MB-231 mammary tumor xenografts in nude mice with intratumoral injections of PTX/HAuNS-loaded microspheres followed by NIR irradiation results in significant tumor-growth delay compared to tumors treated with HAuNS-loaded microspheres (no PTX) and NIR irradiation or with PTX/HAuNS-loaded microspheres alone. The data support the feasibility of a therapeutic approach in which NIR light is used for simultaneous modulation of drug release and induction of photothermal cell killing.

  14. CD8+ T-cell interaction with HCV replicon cells: evidence for both cytokine- and cell-mediated antiviral activity.

    PubMed

    Liu, Chen; Zhu, Haizhen; Tu, Zhengkun; Xu, Yi-Ling; Nelson, David R

    2003-06-01

    The interaction between the host immune response and infected hepatocytes plays a central role in the pathogenesis of hepatitis C virus (HCV). The lack of a suitable animal or in vitro model has hindered our understanding of the host T-cell/HCV interaction. Our aim was to develop an in vitro model to study the mechanisms of HCV-specific T-cell-mediated antiviral and cytolytic function. The HCV replicon was HLA typed and lymphocytes were obtained from an HLA class I-matched subject. CD8(+) T cells were expanded with 2 HCV-specific/HLA-restricted peptides for NS3. Lymphocyte preparations were cocultured with HCV replicon (FCA1) and control (Huh7) cells labeled with (51)Cr. After a 48-hour incubation, the cells were harvested for RNA extraction. Standard blocking assays were performed in the presence of anti-interferon gamma (IFN-gamma), anti-tumor necrosis factor alpha (TNF-alpha), and anti-FasL. Cytolytic activity was measured by (51)Cr release. HCV replicon cells express homozygous HLA-A11 alleles and present HCV nonstructural proteins. HCV-specific expansion of CD8(+) cells led to a 10-fold decrease in HCV replication by Northern blot analysis and 21% specific lysis of FCA1 cells (compared with 2% of control Huh7 cells). Twenty percent of this antiviral activity was independent of T-cell binding, suggesting cytokine-mediated antiviral activity. The CD8(+) antiviral effect was markedly reduced by blocking either IFN-gamma or FasL but was unaffected by blocking TNF-alpha. In conclusion, HCV-specific CD8(+) cells inhibit viral RNA replication by cytokine-mediated and direct cytolytic effects. This T-cell/HCV subgenomic replicon system represents a model for the investigation of CD8 cell interaction with HCV-infected hepatocytes.

  15. Metronomic Small Molecule Inhibitor of Bcl-2 (TW-37) Is Antiangiogenic and Potentiates the Antitumor Effect of Ionizing Radiation

    SciTech Connect

    Zeitlin, Benjamin D.; Spalding, Aaron C.; Campos, Marcia S.; Ashimori, Naoki; Dong Zhihong; Wang Shaomeng; Lawrence, Theodore S.; Noer, Jacques E.

    2010-11-01

    Purpose: To investigate the effect of a metronomic (low-dose, high-frequency) small-molecule inhibitor of Bcl-2 (TW-37) in combination with radiotherapy on microvascular endothelial cells in vitro and in tumor angiogenesis in vivo. Methods and Materials: Primary human dermal microvascular endothelial cells were exposed to ionizing radiation and/or TW-37 and colony formation, as well as capillary sprouting in three-dimensional collagen matrices, was evaluated. Xenografts vascularized with human blood vessels were engineered by cotransplantation of human squamous cell carcinoma cells (OSCC3) and human dermal microvascular endothelial cells seeded in highly porous biodegradable scaffolds into the subcutaneous space of immunodeficient mice. Mice were treated with metronomic TW-37 and/or radiation, and tumor growth was evaluated. Results: Low-dose TW-37 sensitized primary endothelial cells to radiation-induced inhibition of colony formation. Low-dose TW-37 or radiation partially inhibited endothelial cell sprout formation, and in combination, these therapies abrogated new sprouting. Combination of metronomic TW-37 and low-dose radiation inhibited tumor growth and resulted in significant increase in time to failure compared with controls, whereas single agents did not. Notably, histopathologic analysis revealed that tumors treated with TW-37 (with or without radiation) are more differentiated and showed more cohesive invasive fronts, which is consistent with less aggressive phenotype. Conclusions: These results demonstrate that metronomic TW-37 potentiates the antitumor effects of radiotherapy and suggest that patients with head and neck cancer might benefit from the combination of small molecule inhibitor of Bcl-2 and radiation therapy.

  16. Ras pathway activation in hepatocellular carcinoma and anti-tumoral effect of combined sorafenib and rapamycin in vivo☆

    PubMed Central

    Newell, Pippa; Toffanin, Sara; Villanueva, Augusto; Chiang, Derek Y.; Minguez, Beatriz; Cabellos, Laia; Savic, Radoslav; Hoshida, Yujin; Lim, Kiat Hon; Melgar-Lesmes, Pedro; Yea, Steven; Peix, Judit; Deniz, Kemal; Fiel, M. Isabel; Thung, Swan; Alsinet, Clara; Tovar, Victoria; Mazzaferro, Vincenzo; Bruix, Jordi; Roayaie, Sasan; Schwartz, Myron; Friedman, Scott L.; Llovet, Josep M.

    2010-01-01

    Background/Aims The success of sorafenib in the treatment of advanced hepatocellular carcinoma (HCC) has focused interest on the role of Ras signaling in this malignancy. We investigated the molecular alterations of the Ras pathway in HCC and the antineoplastic effects of sorafenib in combination with rapamycin, an inhibitor of mTOR pathway, in experimental models. Methods Gene expression (qRT-PCR, oligonucleotide microarray), DNA copy number changes (SNP-array), methylation of tumor suppressor genes (methylation-specific PCR) and protein activation (immunohistochemistry) were analysed in 351 samples. Anti-tumoral effects of combined therapy targeting the Ras and mTOR pathways were evaluated in cell lines and HCC xenografts. Results Different mechanisms accounted for Ras pathway activation in HCC. H-ras was up-regulated during different steps of hepatocarcinogenesis. B-raf was overexpressed in advanced tumors and its expression was associated with genomic amplification. Partial methylation of RASSF1A and NORE1A was detected in 89% and 44% of tumors respectively, and complete methylation was found in 11 and 4% of HCCs. Activation of the pathway (pERK immunostaining) was identified in 10.3% of HCC. Blockade of Ras and mTOR pathways with sorafenib and rapamycin reduced cell proliferation and induced apoptosis in cell lines. In vivo, the combination of both compounds enhanced tumor necrosis and ulceration when compared with sorafenib alone. Conclusions Ras activation results from several molecular alterations, such as methylation of tumor suppressors and amplification of oncogenes (B-raf). Sorafenib blocks signaling and synergizes with rapamycin in vivo, preventing tumor progression. These data provide the rationale for testing this combination in clinical studies. PMID:19665249

  17. Bisphosphonates enhance antitumor effect of EGFR-TKIs in patients with advanced EGFR mutant NSCLC and bone metastases

    PubMed Central

    Zhang, Guowei; Cheng, Ruirui; Zhang, Zengli; Jiang, Tao; Ren, Shengxiang; Ma, Zhiyong; Zhao, Sha; Zhou, Caicun; Zhang, Jun

    2017-01-01

    Whether bisphosphonates could enhance the effect of epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) in non-small-cell lung cancer (NSCLC) patients with EGFR mutation and bone metastases (BM) remains unknown. EGFR mutation status were collected from 1560 patients with NSCLC and BM. 356 NSCLC patients with EGFR mutation and BM were identified. Among them, 91 patients received EGFR-TKIs alone and 105 patients received EGFR-TKIs plus bisphosphonates as first-line therapy. Comparing to TKIs alone, EGFR-TKIs plus bisphosphonates had a statistically significant longer progression-free survival (PFS: 11.6 vs. 9.3 months; HR = 0.68, P = 0.009), while a similar overall survival (OS: 20.5 vs. 19.5 months; HR = 0.95, P = 0.743) in patients with EGFR-mutant NSCLC and BM. The incidence of skeletal-related events in combined group was numerically lower than that in EGFR-TKIs alone group (29.7% vs. 39.4%, P = 0.147). In multivariate analysis, EGFR mutation was found to be a significant independent prognostic factor for OS in NSCLC patients with BM (HR = 0.710, P = 0.021). In conclusion, EGFR mutation was the significant independent prognostic factor for OS and the addition of bisphosphonates to EGFR-TKIs could enhance the antitumor effect of EGFR-TKIs in patients with EGFR-mutant NSCLC and BM. PMID:28211502

  18. Enhancement of Ad-CRT/E7-mediated antitumor effect by preimmunization with L. lactis expressing HPV-16 E7.

    PubMed

    Rangel-Colmenero, Blanca R; Gomez-Gutierrez, Jorge G; Villatoro-Hernández, Julio; Zavala-Flores, Laura M; Quistián-Martínez, Deyanira; Rojas-Martínez, Augusto; Arce-Mendoza, Alma Y; Guzmán-López, Santos; Montes-de-Oca-Luna, Roberto; Saucedo-Cárdenas, Odila

    2014-11-01

    Although current polyvalent vaccines can prevent development of cervical cancer, they cannot be used to treat patients who already have the disease. Adenovirus expressing calreticulin-E7 (Ad-CRT-E7) has shown promising results in the cervical cancer murine model. We also demonstrated that immunization with Lactococcus lactis encoding HPV-16 E7 (Ll-E7) anchored to its surface induces significant HPV-16 E7-specific immune response. Here, we assessed the combination of both approaches in the treatment of a cervical cancer animal model. Intranasal preimmunization of Ll-E7, followed by a single Ad-CRT/E7 application, induced ∼80% of tumor suppression in comparison with controls. Mice treated with a combination of Ll-E7 and Ad-CRT/E7 resulted in a 70% survival rate 300 days post-treatment, whereas 100% of the mice in the control groups died by 50 days. Significant CD8+ cytotoxic T-lymphocytes infiltration was detected in the tumors of mice treated with Ll-E7+Ad-CRT/E7. Tumors with regression showed a greater number of positive cells for in situ TUNEL staining than controls. Our results suggest that preimmunization with Ll-E7 enhances the Ad-CRT/E7-mediated antitumor effect. This treatment provides an enormous advantage over repeated applications of Ad-CRT/E7 by maintaining the effectiveness of the three-dose application of Ad-CRT/E7, but avoiding the high systemic toxicities associated with such repeat treatments.

  19. Enhanced Antitumor Effect of Tirapazamine Delivered Intraperitoneally to VX2 Liver Tumor-Bearing Rabbits Subjected to Transarterial Hepatic Embolization

    SciTech Connect

    Sonoda, Akinaga Nitta, Norihisa Ohta, Shinich Nitta-Seko, Ayumi Nagatani, Yukihiro Takahashi, Masashi Murata, Kiyoshi

    2011-12-15

    Purpose: We evaluated the effects of the combination of Tirapazamine (TPZ), activated preferentially under hypoxic conditions, and gelatin microspheres (GMS) on the tumor growth ratio in rabbits. Methods: We assigned 20 liver tumor-bearing Japanese white rabbits to 4 equal groups. Group 1 received 1 ml of saline intra-arterially (i.a.) and 20 ml of saline intraperitoneally (i.p.; saline group). Group 2 was injected with GMS i.a. and 20 ml saline i.p. (GMS group). Group 3 received 1 ml of saline i.a. and 300 mg/m{sup 2} of TPZ i.p. (TPZ group), and group 4 was treated with GMS i.a. and 300 mg/m{sup 2} of TPZ i.p. (GMS + TPZ group). The infusion of GMS was stopped when the blood flow stagnated. Before and 7 days after treatment, the liver tumor volumes were measured as the total number of pixels on 0.3Tesla (T) magnetic resonance imaging (MRI) scans. Results: The tumor growth ratio (mean {+-} standard deviation) of the saline, GMS, TPZ, and GMS + TPZ groups was 519.15 {+-} 93.78, 279.24 {+-} 91.83, 369.78 {+-} 95.73, and 119.87 {+-} 17.62, respectively. The difference between the GMS + TPZ group and the other groups was statistically significant (P < 0.05). Conclusions: Our results show that the combination of TPZ i.p. and GMS i.a. enhanced the antitumor effect of TPZ. This procedure may represent a new alternative treatment for patients with hepatic cell carcinoma.

  20. Antitumor effects of nano-bubble hydrogen-dissolved water are enhanced by coexistent platinum colloid and the combined hyperthermia with apoptosis-like cell death.

    PubMed

    Asada, Ryoko; Kageyama, Katsuhiro; Tanaka, Hiroshi; Matsui, Hisakazu; Kimura, Masatsugu; Saitoh, Yasukazu; Miwa, Nobuhiko

    2010-12-01

    In order to erase reactive oxygen species (ROS) related with the proliferation of tumor cells by reducing activity of hydrogen, we developed functional water containing nano-bubbles (diameters: <900 nm for 71%/population) hydrogen of 1.1-1.5 ppm (the theoretical maximum: 1.6 ppm) with a reducing ability (an oxidation-reduction potential -650 mV, normal water: +100-200 mV) using a microporous-filter hydrogen-jetting device. We showed that hydrogen water erased ROS indispensable for tumor cell growth by ESR/spin trap, the redox indicator CDCFH-DA assay, and was cytotoxic to Ehrlich ascites tumor cells as assessed by WST-8 assay, crystal violet dye stain and scanning electron microscopy, after 24-h or 48-h incubation sequent to warming at 37°C or 42°C. Hydrogen water supplemented with platinum colloid (0.3 ppm Pt in 4% polyvinylpyrrolidone) had more antitumor activity than hydrogen water alone, mineral water alone (15.6%), hydrogen water plus mineral water, or platinum colloid alone as observed by decreased cell numbers, cell shrinkage and pycnosis (nuclear condensation)/karyorrhexis (nuclear fragmentation) indicative of apoptosis, together with cell deformation and disappearance of microvilli on the membrane surface. These antitumor effects were promoted by combination with hyperthermia at 42°C. Thus, the nano-bubble hydrogen water with platinum colloid is potent as an anti-tumor agent.

  1. Antitumor and immunomodulatory effects of recombinant fusion protein rMBP-NAP through TLR-2 dependent mechanism in tumor bearing mice.

    PubMed

    Wang, Ting; Liu, Xilong; Ji, Zhenyu; Men, Yingli; Du, Mingxuan; Ding, Cong; Wu, Yahong; Liu, Xin; Kang, Qiaozhen

    2015-12-01

    The pro-inflammatory and immunomodulatory properties of Helicobacter pylori neutrophil activating protein (Hp-NAP) not only make it to play an important role in disease pathogenesis but also make it to be a potential candidate for therapeutic applications, including vaccine and drug development. Our previous work demonstrated that the recombinant Hp-NAP fused with the maltose binding protein of Escherichia coli (rMBP-NAP) play an important role in regulating the differentiation of Th1 cells. In this study, we investigated the ability of rMBP-NAP to induce antitumor immunity using two murine models of hepatoma H22 and sarcoma S180. Subcutaneous administration of mice with rMBP-NAP resulted in an about 40%-50% decrease of tumor growth compared with that of the control mice. Splenocytes from the tumor-bearing mice treated with rMBP-NAP showed a significant accumulation of CD4(+) IFN-γ-secreting cells, which is a cytokine profile of Th1 cells. Furthermore, intravenous injection of T2.5, toll like receptor (TLR) 2 blocking antibody, significantly recede the antitumor effect of rMBP-NAP and the production of IFN-γ induced by rMBP-NAP. Our findings indicate that potentiality of rMBP-NAP to be a candidate for the development of immunomodulatory antitumoral drugs.

  2. Natural killer cell-mediated cytotoxicity is increased by a type II arabinogalactan from Anoectochilus formosanus.

    PubMed

    Yang, Li-Chan; Lai, Ching-Yi; Lin, Wen-Chuan

    2017-01-02

    This study investigated the effects of a type II arabinogalactan from Anoectochilus formosanus (AGAF) on natural killer (NK) cell-mediated cytotoxicity and the possible underlying mechanisms. This study reported that sustained exposure to AGAF increased NK-92MI cell-mediated cytotoxicity in a time- and concentration-dependent manner, as characterized according to the cellular lactic dehydrogenase leakage from K562 leukemia cells. Additionally, antibody neutralization studies have reported that interferon (IFN)-γ, but not perforin or tumor necrosis factor-α, released by NK-92MI NK cells is crucial in enhancing cytotoxicity through an autocrine loop. In this study, AGAF was further demonstrated to induce IFN-γ expression, increasing the susceptibility to NK-92MI cell-mediated cytotoxicity through the toll-like receptor (TLR)-2, TLR4, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and nuclear factor-κB pathways. A pharmacological study revealed that Janus kinase 2/signal transducers and activators of the signal transducers and of transcription 3 signaling are involved in IFN-γ-induced NK cell-mediated cytotoxicity.

  3. Anti-tumor activity and the mechanism of SIP-S: A sulfated polysaccharide with anti-metastatic effect.

    PubMed

    Zong, Aizhen; Liu, Yuhong; Zhang, Yan; Song, Xinlei; Shi, Yikang; Cao, Hongzhi; Liu, Chunhui; Cheng, Yanna; Jiang, Wenjie; Du, Fangling; Wang, Fengshan

    2015-09-20

    Our previous studies demonstrated that SIP-S had anti-metastatic activity and inhibited the growth of metastatic foci. Here we report the anti-tumor and immunoregulatory potential of SIP-S. SIP-S could significantly inhibit tumor growth in S180-bearing mice, and the inhibition rates was 43.7% at 30 mg/kg d. Besides, SIP-S could improve the thymus and spleen indices of S180-bearing mice and the mice treated with CTX. The combination of SIP-S (15 mg/kg d) with CTX (12.5 mg/kg d) showed higher anti-tumor potency than CTX (25 mg/kg d) alone. These results indicated that SIP-S had immunoenhancing and anticancer activity, and the immunoenhancing activity might be one mechanism for its anti-tumor activity. Flow cytometry results showed that SIP-S could induce tumor cells apoptosis. Western blot analysis indicated that SIP-S could upregulate the expression of pro-apoptotic proteins, caspase-3, -8, -9 and Bax, and downregulate the expression of anti-apoptotic protein PARP-1 in tumor cells in a dose-dependent manner. In summary, SIP-S has anti-tumor activity, which may be associated with its immunostimulating and pro-apoptotic activity.

  4. Data for comparative proteomics analysis of the antitumor effect of CIGB-552 peptide in HT-29 colon adenocarcinoma cells

    PubMed Central

    Núñez de Villavicencio-Díaz, Teresa; Ramos Gómez, Yassel; Oliva Argüelles, Brizaida; Fernández Masso, Julio R.; Rodríguez-Ulloa, Arielis; Cruz García, Yiliam; Guirola-Cruz, Osmany; Perez-Riverol, Yasset; Javier González, Luis; Tiscornia, Inés; Victoria, Sabina; Bollati-Fogolín, Mariela; Besada Pérez, Vladimir; Guerra Vallespi, Maribel

    2015-01-01

    CIGB-552 is a second generation antitumor peptide that displays potent cytotoxicity in lung and colon cancer cells. The nuclear subproteome of HT-29 colon adenocarcinoma cells treated with CIGB-552 peptide was identified and analyzed [1]. This data article provides supporting evidence for the above analysis. PMID:26306321

  5. Antitumor activity of 7RH, a discoidin domain receptor 1 inhibitor, alone or in combination with dasatinib exhibits antitumor effects in nasopharyngeal carcinoma cells.

    PubMed

    Lu, Qiu-Ping; Chen, Wen-Dan; Peng, Jie-Ren; Xu, Yao-Dong; Cai, Qian; Feng, Gong-Kan; Ding, Ke; Zhu, Xiao-Feng; Guan, Zhong

    2016-11-01

    Dysregulation of the discoidin domain receptors (DDRs) has been implicated in the development of numerous types of tumors, including head and neck cancer, and nasopharyngeal, breast, ovarian and esophageal carcinomas. Furthermore, agents that inhibit DDR1 activity are hypothesized to be useful for the treatment of nasopharyngeal carcinoma (NPC). The aim of the present study was to evaluate the effect of the DDR1 inhibitory (3-(2-(pyrazolo(1,5-a)pyrimidin-6-yl)-ethynyl)benzamide compound, 7RH, in NPC cells both in vitro and in vivo, and its effect when used in combination with dasatinib, a SRC family kinase (SFK) inhibitor. The effects of 7RH alone or in combination with dasatinib on cell viability were assessed using MTT assays and apoptosis was detected by flow cytometry. In addition, western blotting was performed to analyze the relative protein expression levels of cell cycle-associated genes in human NPC cell lines (CNE1, CNE2, HONE1 and SUNE1). Cell migration was also assessed using cell adhesion assays. Furthermore, tumor xenografts of CNE2 NPC cells were established in nude mice and the growth inhibitory effects of 7RH treatment alone or in combination with dasatinib were evaluated. Finally, knockdown of DDR1 protein expression was achieved by transfection of CNE2 cells with DDR1-specific small interfering RNA. Treatment with 7RH effectively suppressed the proliferation and induced the apoptosis of NPC cells. In addition, the Janus kinase 1 (JAK1)/signal transducer and activator of transcription (STAT3) signaling pathway was downregulated by 7RH, whereas the activities of the Ras/Raf/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/AKT signaling pathways were upregulated in response to 7RH treatment. Furthermore, the expression levels of phosphorylated SRC were increased in NPC cells treated with 7RH; thus indicating that SRC exhibits a vital function in the resistance of NPC cells

  6. Antitumor activity of 7RH, a discoidin domain receptor 1 inhibitor, alone or in combination with dasatinib exhibits antitumor effects in nasopharyngeal carcinoma cells

    PubMed Central

    Lu, Qiu-Ping; Chen, Wen-Dan; Peng, Jie-Ren; Xu, Yao-Dong; Cai, Qian; Feng, Gong-Kan; Ding, Ke; Zhu, Xiao-Feng; Guan, Zhong

    2016-01-01

    Dysregulation of the discoidin domain receptors (DDRs) has been implicated in the development of numerous types of tumors, including head and neck cancer, and nasopharyngeal, breast, ovarian and esophageal carcinomas. Furthermore, agents that inhibit DDR1 activity are hypothesized to be useful for the treatment of nasopharyngeal carcinoma (NPC). The aim of the present study was to evaluate the effect of the DDR1 inhibitory (3-(2-(pyrazolo(1,5-a)pyrimidin-6-yl)-ethynyl)benzamide compound, 7RH, in NPC cells both in vitro and in vivo, and its effect when used in combination with dasatinib, a SRC family kinase (SFK) inhibitor. The effects of 7RH alone or in combination with dasatinib on cell viability were assessed using MTT assays and apoptosis was detected by flow cytometry. In addition, western blotting was performed to analyze the relative protein expression levels of cell cycle-associated genes in human NPC cell lines (CNE1, CNE2, HONE1 and SUNE1). Cell migration was also assessed using cell adhesion assays. Furthermore, tumor xenografts of CNE2 NPC cells were established in nude mice and the growth inhibitory effects of 7RH treatment alone or in combination with dasatinib were evaluated. Finally, knockdown of DDR1 protein expression was achieved by transfection of CNE2 cells with DDR1-specific small interfering RNA. Treatment with 7RH effectively suppressed the proliferation and induced the apoptosis of NPC cells. In addition, the Janus kinase 1 (JAK1)/signal transducer and activator of transcription (STAT3) signaling pathway was downregulated by 7RH, whereas the activities of the Ras/Raf/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/AKT signaling pathways were upregulated in response to 7RH treatment. Furthermore, the expression levels of phosphorylated SRC were increased in NPC cells treated with 7RH; thus indicating that SRC exhibits a vital function in the resistance of NPC cells

  7. Anti-tumoral effect of desmethylclomipramine in lung cancer stem cells.

    PubMed

    Bongiorno-Borbone, Lucilla; Giacobbe, Arianna; Compagnone, Mirco; Eramo, Adriana; De Maria, Ruggero; Peschiaroli, Angelo; Melino, Gerry

    2015-07-10

    Lung cancer is the most feared of all cancers because of its heterogeneity and resistance to available treatments. Cancer stem cells (CSCs) are the cell population responsible for lung cancer chemoresistance and are a very good model for testing new targeted therapies. Clomipramine is an FDA-approved antidepressant drug, able to inhibit in vitro the E3 ubiquitin ligase Itch and potentiate the pro-apoptotic effects of DNA damaging induced agents in several cancer cell lines. Here, we investigated the potential therapeutic effect of desmethylclomipramine (DCMI), the active metabolite of Clomipramine, on the CSCs homeostasis. We show that DCMI inhibits lung CSCs growth, decreases their stemness potential and increases the cytotoxic effect of conventional chemotherapeutic drugs. Being DCMI an inhibitor of the E3 ubiquitin ligase Itch, we also verified the effect of Itch deregulation on CSCs survival. We found that the siRNA-mediated depletion of Itch induces similar anti-proliferative effects on lung CSCs, suggesting that DCMI might exert its effect, at least in part, by inhibiting Itch. Notably, Itch expression is a negative prognostic factor in two primary lung tumors datasets, supporting the potential clinical relevance of Itch inhibition to circumvent drug resistance in the treatment of lung cancer.

  8. Anti-tumoral effect of desmethylclomipramine in lung cancer stem cells

    PubMed Central

    Bongiorno-Borbone, Lucilla; Giacobbe, Arianna; Compagnone, Mirco; Eramo, Adriana; De Maria, Ruggero; Peschiaroli, Angelo; Melino, Gerry

    2015-01-01

    Lung cancer is the most feared of all cancers because of its heterogeneity and resistance to available treatments. Cancer stem cells (CSCs) are the cell population responsible for lung cancer chemoresistance and are a very good model for testing new targeted therapies. Clomipramine is an FDA-approved antidepressant drug, able to inhibit in vitro the E3 ubiquitin ligase Itch and potentiate the pro-apoptotic effects of DNA damaging induced agents in several cancer cell lines. Here, we investigated the potential therapeutic effect of desmethylclomipramine (DCMI), the active metabolite of Clomipramine, on the CSCs homeostasis. We show that DCMI inhibits lung CSCs growth, decreases their stemness potential and increases the cytotoxic effect of conventional chemotherapeutic drugs. Being DCMI an inhibitor of the E3 ubiquitin ligase Itch, we also verified the effect of Itch deregulation on CSCs survival. We found that the siRNA-mediated depletion of Itch induces similar anti-proliferative effects on lung CSCs, suggesting that DCMI might exert its effect, at least in part, by inhibiting Itch. Notably, Itch expression is a negative prognostic factor in two primary lung tumors datasets, supporting the potential clinical relevance of Itch inhibition to circumvent drug resistance in the treatment of lung cancer. PMID:26219257

  9. Synergistic antitumor effect of puerarin combined with 5-fluorouracil on gastric carcinoma.

    PubMed

    Guo, Xu-Feng; Yang, Zi-Rong; Wang, Jun; Lei, Xiao-Fei; Lv, Xiao-Guang; Dong, Wei-Guo

    2015-04-01

    Combination chemotherapy is a crucial method in the treatment of gastric cancer. The aim of the present study was to investigate the inhibitory effects of puerarin and 5‑fluorouracil (5‑FU) on BGC‑823 gastric cancer cells in vitro and in vivo. The in vitro growth inhibition of puerarin or 5‑FU alone or combined on BGC‑823 cells was determined using a cell counting kit 8 (CCK‑8) on living cells. Apoptotic morphological features and proteins expression levels were detected by Hoechst 33258 staining, an Annexin V/propidium iodide apoptosis kit and western blot analysis, respectively. Tumor xenografts were established in nude mice and the inhibitory effects and side effects were detected. Results of the CCK‑8, Hoechst 33258 staining and flow cytometry revealed that the combined treatment was more effective than the separate treatments. The tumor volume was 90.65% of that of the controls and the mean tumor weight was only 0.125 g at the end of the experiment in the combination group compared with the control group (0.822 g). In addition, it was determined that liver and renal toxicity did not increase in combined treatment. These findings showed that puerarin and 5‑FU produced a significant synergic effect on gastric cancer cells, while there was no increase in side effects.

  10. Tasquinimod modulates tumor-infiltrating myeloid cells and improves the antitumor immune response to PD-L1 blockade in bladder cancer.

    PubMed

    Nakhlé, Jessica; Pierron, Valérie; Bauchet, Anne-Laure; Plas, Pascale; Thiongane, Amath; Meyer-Losic, Florence; Schmidlin, Fabien

    2016-06-01

    The infiltration of myeloid cells helps tumors to overcome immune surveillance and imparts resistance to cancer immunotherapy. Thus, strategies to modulate the effects of these immune cells may offer a potential therapeutic benefit. We report here that tasquinimod, a novel immunotherapy which targets S100A9 signaling, reduces the immunosuppressive properties of myeloid cells in preclinical models of bladder cancer (BCa). As single anticancer agent, tasquinimod treatment was effective in preventing early stage tumor growth, but did not achieve a clear antitumor effect in advanced tumors. Investigations of this response revealed that tasquinimod induces an increase in the expression of a negative regulator of T cell activation, Programmed-death-ligand 1 (PD-L1). This markedly weakens its antitumor immunity, yet provokes an "inflamed" milieu rendering tumors more prone to T cell-mediated immune attack by PD-L1 blockade. Interestingly, the combination of tasquinimod with an Anti-PD-L1 antibody enhanced the antitumor immune response in bladder tumors. This combination synergistically modulated tumor-infiltrating myeloid cells, thereby strongly affecting proliferation and activation of effector T cells. Together, our data provide insight into the rational combination of therapies that activate both innate and adaptive immune system, such as the association of S100A9-targeting agents with immune checkpoints inhibitors, to improve the response to cancer immunotherapeutic agents in BCa.

  11. Tasquinimod modulates tumor-infiltrating myeloid cells and improves the antitumor immune response to PD-L1 blockade in bladder cancer

    PubMed Central

    Nakhlé, Jessica; Pierron, Valérie; Bauchet, Anne-Laure; Plas, Pascale; Thiongane, Amath; Meyer-Losic, Florence; Schmidlin, Fabien

    2016-01-01

    ABSTRACT The infiltration of myeloid cells helps tumors to overcome immune surveillance and imparts resistance to cancer immunotherapy. Thus, strategies to modulate the effects of these immune cells may offer a potential therapeutic benefit. We report here that tasquinimod, a novel immunotherapy which targets S100A9 signaling, reduces the immunosuppressive properties of myeloid cells in preclinical models of bladder cancer (BCa). As single anticancer agent, tasquinimod treatment was effective in preventing early stage tumor growth, but did not achieve a clear antitumor effect in advanced tumors. Investigations of this response revealed that tasquinimod induces an increase in the expression of a negative regulator of T cell activation, Programmed-death-ligand 1 (PD-L1). This markedly weakens its antitumor immunity, yet provokes an “inflamed” milieu rendering tumors more prone to T cell-mediated immune attack by PD-L1 blockade. Interestingly, the combination of tasquinimod with an Anti-PD-L1 antibody enhanced the antitumor immune response in bladder tumors. This combination synergistically modulated tumor-infiltrating myeloid cells, thereby strongly affecting proliferation and activation of effector T cells. Together, our data provide insight into the rational combination of therapies that activate both innate and adaptive immune system, such as the association of S100A9-targeting agents with immune checkpoints inhibitors, to improve the response to cancer immunotherapeutic agents in BCa. PMID:27471612

  12. Downregulation of survivin expression exerts antitumoral effects on mouse breast cancer cells in vitro and in vivo

    PubMed Central

    MA, WEN-HUI; LIU, YONG-CHAO; XUE, MEI-LAN; ZHENG, ZHENG; GE, YIN-LIN

    2016-01-01

    Metastasis constantly occurs in the majority of cases of primary breast cancer at late stage or following surgical treatment. Survivin, a member of the inhibitor of apoptosis protein family, has long been recognized as a promising anticancer target, but its antitumor effects remain largely unexplored. In order to elucidate the role of survivin in breast cancer metastasis, short interfering RNA (siRNA) was used in the present study to specifically downregulate survivin expression in the murine breast cancer cell line 4T1. The results demonstrated that blocking the expression of survivin by siRNA inhibited the proliferation, migration and invasion abilities of murine breast cancer cells in vitro. Vascular endothelial growth factor (VEGF)-C is a lymphatic endothelial cell-stimulating factor that may lead to the formation of lymphatic vessels in lymph nodes. In the present study, the inhibition of survivin by siRNA was able to reduce the overexpression of VEGF-C in 4T1 cells. Furthermore, intratumoral injections of the survivin-siRNA significantly inhibited the growth of orthotopically transplanted 4T1 tumors in vivo. In addition, the number of pulmonary metastases and the microlymphatic vessel density were significantly reduced in vivo, following transfection with survivin-siRNA. The results of the present study suggested that the Akt/hypoxia-inducible factor-1α signaling pathway participates in the survivin-mediated downregulation of VEGF-C expression observed in breast cancer cells treated with survivin-siRNA. Therefore, the use of siRNA specifically targeting survivin may be a potential anticancer method in the future. PMID:26870183

  13. Flt3-L gene therapy enhances immunocytokine-mediated antitumor effects and induces long-term memory.

    PubMed

    Neal, Zane C; Sondel, Paul M; Bates, Mary Kay; Gillies, Stephen D; Herweijer, Hans

    2007-11-01

    Therapeutic treatment with hu14.18-IL-2 immunocytokine (IC) or Flt3-L (FL) protein is initially effective at resolving established intradermal NXS2 neuroblastoma tumors in mice. However, many treated animals develop recurrent disease. We previously found that tumors recurring following natural killer (NK) mediated IC treatment show augmented MHC class I expression, while the tumors that recurred following T cell dependent Flt3-L treatment exhibited decreased MHC class I expression. We hypothesized that this divergent MHC modulation on recurrent tumors was due to therapy-specific immunoediting. We further postulated that combining IC and Flt3-L treatments might decrease the likelihood of recurrent disease by preventing MHC modulation as a mechanism for immune escape. We now report that combinatorial treatment of FL plus hu14.18-IL-2 IC provides greater antitumor benefit than treatment with either alone, suppressing development of recurrent disease. We administered FL by gene therapy using a clinically relevant approach: hydrodynamic limb vein (HLV) delivery of DNA for transgene expression by myofibers. Delivery of FL DNA by HLV injection in mice resulted in systemic expression of >10 ng/ml of FL in blood at day 3, and promoted up to a fourfold and tenfold increase in splenic NK and dendritic cells (DCs), respectively. Furthermore, the combination of FL gene therapy plus suboptimal IC treatment induced a greater expansion in the absolute number of splenic NK and DCs than achieved by individual component treatments. Mice that received combined FL gene therapy plus IC exhibited complete and durable resolution of established NXS2 tumors, and demonstrated protection from subsequent rechallenge with NXS2 tumor.

  14. Special antitumor immune effects of laser immunotherapy with SWNT-GC

    NASA Astrophysics Data System (ADS)

    Zhou, Feifan; Song, Sheng; Chen, Wei R.

    2014-02-01

    In our previous work, we constructed a multifunction nano system SWNT-GC, which can synergize photothermal and immunological effects. To further improve the application of this system, we study the cytotoxicity of SWNT-GC and investigate the effects on malignant tumor therapy. Here, we selected the optimal concentration of GC and SWNTs for the stable SWNT-GC construction. No cytotoxicity was observed under the dose used in the experiments. Using mouse melanoma tumor model, Laser+SWNT-GC treatment resulted in a significant mice survival rate, there were no long-term survivors under other treatment. It is providing a promising treatment modality for the malignancy.

  15. Anti-tumor effect of Radix Paeoniae Rubra extract on mice bladder tumors using intravesical therapy

    PubMed Central

    Lin, Mei-Yi; Chiang, Su-Yin; Li, Yi-Zhen; Chen, Mei-Fang; Chen, Yueh-Sheng; Wu, Jin-Yi; Liu, Yi-Wen

    2016-01-01

    Radix Paeoniae Rubra (RPR) is the dried root of Paeonia lactiflora Pallas and Paeonia veitchii Lynch, and is a herbal medicine that is widely used in traditional Chinese medicine for the treatment of blood-heat and blood-stasis syndrome, similarly to Cortex Moutan. The present study identified the same three components in RPR and Cortex Moutan extracts. In addition, it has been reported that RPR has an anti-cancer effect. Bladder cancer is the seventh most common type of cancer worldwide. Due to the high recurrence rate, identifying novel drugs for bladder cancer therapy is essential. In the present study, RPR extract was evaluated as a bladder cancer therapy in vitro and in vivo. The present results revealed that RPR extract reduced the cell viability of bladder cancer cells with a half maximal inhibitory concentration of 1–3 mg/ml, and had an extremely low cytotoxic effect on normal urothelial cells. Additionally, RPR decreased certain cell cycle populations, predominantly cells in the G1 phase, and caused a clear sub-G increase. In a mouse orthotopic bladder tumor model, intravesical application of RPR extract decreased the bladder tumor size without altering the blood biochemical parameters of the mice. In summary, the present results demonstrate the anti-proliferative properties of RPR extract on bladder cancer cells, and its anti-bladder tumor effect in vivo. Compared to Cortex Moutan extract, RPR extract may provide a more effective alternative therapeutic strategy for the intravesical therapy of superficial bladder cancer. PMID:27446367

  16. Chemical constituents of Murraya siamensis: three coumarins and their anti-tumor promoting effect.

    PubMed

    Ito, Chihiro; Itoigawa, Masataka; Onoda, Saori; Hosokawa, Atsuko; Ruangrungsi, Nijsiri; Okuda, Toshimitsu; Tokuda, Harukuni; Nishino, Hoyoku; Furukawa, Hiroshi

    2005-03-01

    Isolation and structure elucidation of three coumarins, murrayacoumarins A, B, and C, together with eight known coumarins, from the leaves of Murraya siamensis Craib collected in Thailand are described. Results of a primary screening of inhibitory effects of seven of these compounds on 12-O-tetradecanoylphorbol-13-acetate-induced Epstein-Barr virus early antigen activation in Raji cells are also presented.

  17. The effects of narrow-band middle infrared radiation in enhancing the antitumor activity of paclitaxel.

    PubMed

    Tsai, Shang-Ru; Sheu, Bor-Ching; Huang, Pei-Shen; Lee, Si-Chen

    2016-01-01

    Paclitaxel is used as an adjuvant to enhance the effectiveness of ionization radiation therapy; however, high-energy radiation often damages the healthy cells surrounding cancer cells. Low-energy, middle-infrared radiation (MIR) has been shown to prevent tissue damage, and recent studies have begun combining MIR with paclitaxel. However, the cytotoxic effects of this treatment combination remain unclear, and the mechanism underlying its effects on HeLa cells has yet to be elucidated. This study investigated the effectiveness of treating HeLa human cervical cancer cells with a combination of paclitaxel for 48 h in conjunction with narrow-band MIR from 3.0 to 5.0 μm. This combined treatment significantly inhibited the growth of HeLa cells. Specifically, results from Annexin V-FITC/PI apoptosis detection and cell mitochondrial membrane potential analyses revealed an increase in apoptotic cell death and a collapse of mitochondrial membrane potential. One possible mechanism underlying cellular apoptosis is an increase in oxidative stress. These preliminary findings provide evidence to support the combination of narrow-band MIR with paclitaxel as an alternative approach in the treatment of human cervical cancer.

  18. Antitumoral Effect of Hibiscus sabdariffa on Human Squamous Cell Carcinoma and Multiple Myeloma Cells.

    PubMed

    Malacrida, Alessio; Maggioni, Daniele; Cassetti, Arianna; Nicolini, Gabriella; Cavaletti, Guido; Miloso, Mariarosaria

    2016-10-01

    Cancer is a leading cause of death worldwide. Despite therapeutic improvements, some cancers are still untreatable. Recently there has been an increasing interest in the use of natural substances for cancer prevention and treatment. Hibiscus sabdariffa (HS) is a plant, belonging to Malvaceae family, widespread in South Asia and Central Africa. HS extract (HSE) used in folk medicine, gained researchers' interest thanks to its antioxidant, anti-inflammatory, and chemopreventive properties. In the present study, we initially assessed HSE effect on a panel of human tumor cell lines. Then we focused our study on the following that are most sensitive to HSE action cell lines: Multiple Myeloma (MM) cells (RPMI 8226) and Oral Squamous Cell Carcinoma (OSCC) cells (SCC-25). In both RPMI 8226 and SCC-25 cells, HSE impaired cell growth, exerted a reversible cytostatic effect, and reduced cell motility and invasiveness. We evaluated the involvement of MAPKs ERK1/2 and p38 in HSE effects by using specific inhibitors, U0126 and SB203580, respectively. For both SCC-25 and RPMI 8226, HSE cytostatic effect depends on p38 activation, whereas ERK1/2 modulation is crucial for cell motility and invasiveness. Our results suggest that HSE may be a potential therapeutic agent against MM and OSCC.

  19. Berberine inhibits EGFR signaling and enhances the antitumor effects of EGFR inhibitors in gastric cancer

    PubMed Central

    Wang, Junxiong; Yang, Shuo; Cai, Xiqiang; Dong, Jiaqiang; Chen, Zhangqian; Wang, Rui; Zhang, Song; Cao, Haichao; Lu, Di; Jin, Tong; Nie, Yongzhan; Hao, Jianyu; Fan, Daiming

    2016-01-01

    Cetuximab plus chemotherapy for advanced gastric cancer (GC) shows an active result in phase 2 trials. Unfortunately, Combination of cetuximab does not provide enough benefit to chemotherapy alone in phase 3 trials. Studies have demonstrated that berberine can suppress the activation of EGFR in tumors. In this study, we evaluated whether berberine could enhance the effects of EGFR-TKIs in GC cell lines and xenograft models. Our data suggest that berberine could effectively enhance the activity of erlotinib and cetuximab in vitro and in vivo. Berberine was found to inhibit growth in GC cell lines and to induce apoptosis. These effects were linked to inhibition of EGFR signaling activation, including the phosphorylation of STAT3. The expressions of Bcl-xL and Cyclind1 proteins were decreased, whereas the levels of cleavage of poly-ADP ribose polymerase (PARP) were considerably increased in the cell lines in response to berberine treatment. These results suggest a potential role for berberine in the treatment of GC, particularly in combination with EGFR-TKIs therapy. Berberine may be a competent therapeutic agent in GC where it can enhance the effects of EGFR inhibitors. PMID:27738318

  20. Antitumor effects of oncolytic herpes simplex virus type 2 against colorectal cancer in vitro and in vivo

    PubMed Central

    Yin, Lei; Zhao, Chunhong; Han, Jixia; Li, Zengjun; Zhen, Yanan; Xiao, Ruixue; Xu, Zhongfa; Sun, Yanlai

    2017-01-01

    Background The incidence of colorectal cancer (CRC) is on the rise. Furthermore, late-stage diagnoses and limited efficacious treatment options make CRC a complex clinical challenge. Therefore, a new therapeutic regimen with a completely novel therapeutic mechanism is necessary for CRC. In the present study, the therapeutic efficacy of oncolytic herpes simplex virus type 2 (oHSV2) in CRC was assessed in vitro and in vivo. oHSV2 is an oncolytic agent derived from herpes simplex virus type 2 that encodes granulocyte-macrophage colony-stimulating factor. Materials and methods We investigated the cytopathic effects of oHSV2 in CRC cell lines using the MTT assay. Then, cell cycle progression and apoptosis of oHSV2 were examined by flow cytometry. We generated a model of CRC with mouse CRC cell CT26 in BALB/c mice. The antitumor effects and adaptive immune response of oHSV2 were assessed in tumor-bearing mice. The therapeutic efficacy of oHSV2 was compared with the traditional chemotherapeutic agent, 5-fluorouracil. Results The in vitro data showed that oHSV2 infected the CRC cell lines successfully and that the tumor cells formed a significant number of syncytiae postinfection. The oHSV2 killed cancer cells independent of the cell cycle and mainly caused tumor cells necrosis. The in vivo results showed that oHSV2 significantly inhibited tumor growth and prolonged survival of tumor-bearing mice without weight loss. With virus replication, oHSV2 not only resulted in a reduction of myeloid-derived suppressor cells and regulatory T cells in the spleen, but also increased the number of mature dendritic cells in tumor-draining lymph nodes and the effective CD4+T and CD8+T-cells in the tumor microenvironment. Conclusion Our study provides the first evidence that oHSV2 induces cell death in CRC in vitro and in vivo. These findings indicate that oHSV2 is an effective therapeutic cancer candidate that causes an oncolytic effect and recruits adaptive immune responses for an

  1. The CD8+ T Cell-Mediated Immunity Induced by HPV-E6 Uploaded in Engineered Exosomes Is Improved by ISCOMATRIXTM Adjuvant

    PubMed Central

    Manfredi, Francesco; di Bonito, Paola; Ridolfi, Barbara; Anticoli, Simona; Arenaccio, Claudia; Chiozzini, Chiara; Baz Morelli, Adriana; Federico, Maurizio

    2016-01-01

    We recently described the induction of an efficient CD8+ T cell-mediated immune response against a tumor-associated antigen (TAA) uploaded in engineered exosomes used as an immunogen delivery tool. This immune response cleared tumor cells inoculated after immunization, and controlled the growth of tumors implanted before immunization. We looked for new protocols aimed at increasing the CD8+ T cell specific response to the antigen uploaded in engineered exosomes, assuming that an optimized CD8+ T cell immune response would correlate with a more effective depletion of tumor cells in the therapeutic setting. By considering HPV-E6 as a model of TAA, we found that the in vitro co-administration of engineered exosomes and ISCOMATRIXTM adjuvant, i.e., an adjuvant composed of purified ISCOPREPTM saponin, cholesterol, and phospholipids, led to a stronger antigen cross-presentation in both B- lymphoblastoid cell lines ( and monocyte-derived immature dendritic cells compared with that induced by the exosomes alone. Consistently, the co-inoculation in mice of ISCOMATRIXTM adjuvant and engineered exosomes induced a significant increase of TAA-specific CD8+ T cells compared to mice immunized with the exosomes alone. This result holds promise for effective usage of exosomes as well as alternative nanovesicles in anti-tumor therapeutic approaches. PMID:27834857

  2. Tranilast enhances the anti-tumor effects of tamoxifen on human breast cancer cells in vitro

    PubMed Central

    2013-01-01

    Background Tamoxifen is the most widely used anti-estrogen for the treatment of breast cancer. Studies show that the combination therapy with other substances that helps the activity of tamoxifen. The objective of this study was to evaluate the effect of tamoxifen when used in combination with tranilast on human breast cancer cells. Results Two MCF-7 and MDA-MB-231 human breast cancer cell lines were treated with tamoxifen and/or tranilast. The cell viability and cytotoxicity was assessed using MTT and LDH assays; the apoptotic effects were examined by TUNEL assay, acridine orange/ethidium bromide staining and DNA laddering, also the expression levels of bax and bcl-2 genes were detected by real-time RT-PCR. The mRNA expression of TGF-β ligands and receptors examined using real-time RT-PCR and TGF-β1 protein secretion levels were also evaluated by ELISA assay. Inhibitory effect of these drugs on invasion and metastasis were tested by wound healing and matrigel invasion assay. We found that combination of these drugs led to a marked increase in growth and proliferation inhibition compared to either agent alone. Furthermore, bax and bcl-2 affected by tamoxifen and/or tranilast and resulted in a significant increase in bax and decrease in bcl-2 mRNA expression. In addition, treatment with tamoxifen and/or tranilast resulted in significant decreased in TGF-β1, 2, 3, TGF-βRI and II mRNA and TGF-β1 protein levels while TGF-βRIII mRNA level was increased and invasion was also inhibited. Conclusions These findings indicate that tranilast, by synergistic effect, enhances the activity of tamoxifen and the TGF-β pathway is a target for this combination therapy, therefore; we propose that this combined treatment may be suitable selection in prevention of breast cancer. PMID:24143895

  3. The antitumor effects of geraniol: Modulation of cancer hallmark pathways (Review)

    PubMed Central

    CHO, MINSOO; SO, INSUK; CHUN, JUNG NYEO; JEON, JU-HONG

    2016-01-01

    Geraniol is a dietary monoterpene alcohol that is found in the essential oils of aromatic plants. To date, experimental evidence supports the therapeutic or preventive effects of geraniol on different types of cancer, such as breast, lung, colon, prostate, pancreatic, and hepatic cancer, and has revealed the mechanistic basis for its pharmacological actions. In addition, geraniol sensitizes tumor cells to commonly used chemotherapy agents. Geraniol controls a variety of signaling molecules and pathways that represent tumor hallmarks; these actions of geraniol constrain the ability of tumor cells to acquire adaptive resistance against anticancer drugs. In the present review, we emphasize that geraniol is a promising compound or chemical moiety for the development of a safe and effective multi-targeted anticancer agent. We summarize the current knowledge of the effects of geraniol on target molecules and pathways in cancer cells. Our review provides novel insight into the challenges and perspectives with regard to geraniol research and to its application in future clinical investigation. PMID:26983575

  4. Cell-Mediated Immune Function and Cytokine Regulation During Space Flight

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.; Pierson, Duane L.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    The changes in immune function which occur during space flight potentially expose the crews to an increased risk for development of illness. Decreased cellular immune function has been repeatedly documented after space flight and confirmed during flight by in vivo delayed-type hypersensitivity testing. However, correlation of immune changes with a clinically significant risk factor has not yet been performed. Our hypothesis is that space flight induces a decrease in cell-mediated immune function accompanied by a shift from a type 1 cytokine pattern (favoring cell-mediated immunity) to a type 2 cytokine pattern (favoring humoral immunity). We further hypothesize that reactivation of latent viruses will occur during space flight in association with the decreased cellular immunity. To test these hypotheses, we will determine the effects of space flight on cell-mediated immunity and viral reactivation. We will utilize delayed-type hypersensitivity testing as an in vivo measure of integrated cell-mediated immune function. The production of cytokines and immunoregulatory factors by lymphocytes and monocytes will be measured to determine whether changes in cytokine patterns are associated with the space flight-induced immune dysregulation. Correlation of antigen-specific immune changes with reactivation of latent herpes viruses will be determined by measuring peripheral levels of viral (CMV, VZV, EBV) antigen-specific T cells and comparing to the levels of EBV-infected B-cells by fluorescence in situ hybridization and flow cytometry. A comparison of cell-mediated immune function, cytokine regulation and viral reactivation will provide new insights into crew member health risks during flight.

  5. Antitumor effect of forbesione isolated from Garcinia hanburyi on cholangiocarcinoma in vitro and in vivo

    PubMed Central

    Boueroy, Parichart; Hahnvajanawong, Chariya; Boonmars, Thidarut; Saensa-Ard, Sunitta; Anantachoke, Natthinee; Vaeteewoottacharn, Kulthida; Reutrakul, Vichai

    2016-01-01

    Cholangiocarcinoma (CCA) is a malignancy with no effective therapy and poor prognosis. Forbesione, a caged xanthone isolated from Garcinia hanburyi, has been reported to inhibit proliferation and to induce apoptosis in human CCA cell lines. The present study aimed to further explore the potential anticancer properties of forbesione by testing its effects against the hamster CCA cell line Ham-1 in vitro and in vivo. It was observed that forbesione inhibited the growth of Ham-1 cells in vitro and suppressed Ham-1 growth as allograft in hamsters by inducing cell cycle arrest at the S phase. This was mediated by decreasing the protein expression of cyclin E, cyclin A and cyclin-dependent kinase 2. In addition, increased expression of p21 and p27 was detected, which could possibly explain the reduced expression of proliferating cell nuclear antigen and of the bile duct cell marker cytokeratin 19 observed in forbesione-treated Ham-1 cells in vitro and in tumor tissues of forbesione-treated hamsters. Furthermore, forbesione induced apoptosis through multiple pathways. The death receptor pathway was activated by increased expression of Fas, Fas-associated death domain and activated caspase-3, along with decreased expression of procaspase-8 and procaspase-3. The mitochondrial pathway was driven by increased expression of B-cell lymphoma (Bcl)-2-like protein 4, activated caspase-9 and inhibitor of κB-α, along with decreased expression of Bcl-2, survivin, procaspase-9 and nuclear factor-κB/p65. The endoplasmic reticulum pathway was stimulated by increased expression of activated caspase-12 and decreased expression of procaspase-12. No side effects or toxicity were observed in forbesione-treated hamsters. Thus, forbesione is a potential drug candidate for cancer therapy that deserves further investigation. PMID:28101220

  6. Novel Imidazopyridine Derivatives Possess Anti-Tumor Effect on Human Castration-Resistant Prostate Cancer Cells.

    PubMed

    Ingersoll, Matthew A; Lyons, Anastesia S; Muniyan, Sakthivel; D'Cunha, Napoleon; Robinson, Tashika; Hoelting, Kyle; Dwyer, Jennifer G; Bu, Xiu R; Batra, Surinder K; Lin, Ming-Fong

    2015-01-01

    Prostate cancer (PCa) is the second leading cause of cancer-related death afflicting United States males. Most treatments to-date for metastatic PCa include androgen-deprivation therapy and second-generation anti-androgens such as abiraterone acetate and enzalutamide. However, a majority of patients eventually develop resistance to these therapies and relapse into the lethal, castration-resistant form of PCa to which no adequate treatment option remains. Hence, there is an immediate need to develop effective therapeutic agents toward this patient population. Imidazopyridines have recently been shown to possess Akt kinase inhibitory activity; thus in this study, we investigated the inhibitory effect of novel imidazopyridine derivatives HIMP, M-MeI, OMP, and EtOP on different human castration-resistant PCa cells. Among these compounds, HIMP and M-MeI were found to possess selective dose- and time-dependent growth inhibition: they reduced castration-resistant PCa cell proliferation and spared benign prostate epithelial cells. Using LNCaP C-81 cells as the model system, these compounds also reduced colony formation as well as cell adhesion and migration, and M-MeI was the most potent in all studies. Further investigation revealed that while HIMP primarily inhibits PCa cell growth via suppression of PI3K/Akt signaling pathway, M-MeI can inhibit both PI3K/Akt and androgen receptor pathways and arrest cell growth in the G2 phase. Thus, our results indicate the novel compound M-MeI to be a promising candidate for castration-resistant PCa therapy, and future studies investigating the mechanism of imidazopyridine inhibition may aid to the development of effective anti-PCa agents.

  7. Novel Imidazopyridine Derivatives Possess Anti-Tumor Effect on Human Castration-Resistant Prostate Cancer Cells

    PubMed Central

    Muniyan, Sakthivel; D’Cunha, Napoleon; Robinson, Tashika; Hoelting, Kyle; Dwyer, Jennifer G.; Bu, Xiu R.; Batra, Surinder K.; Lin, Ming-Fong

    2015-01-01

    Prostate cancer (PCa) is the second leading cause of cancer-related death afflicting United States males. Most treatments to-date for metastatic PCa include androgen-deprivation therapy and second-generation anti-androgens such as abiraterone acetate and enzalutamide. However, a majority of patients eventually develop resistance to these therapies and relapse into the lethal, castration-resistant form of PCa to which no adequate treatment option remains. Hence, there is an immediate need to develop effective therapeutic agents toward this patient population. Imidazopyridines have recently been shown to possess Akt kinase inhibitory activity; thus in this study, we investigated the inhibitory effect of novel imidazopyridine derivatives HIMP, M-MeI, OMP, and EtOP on different human castration-resistant PCa cells. Among these compounds, HIMP and M-MeI were found to possess selective dose- and time-dependent growth inhibition: they reduced castration-resistant PCa cell proliferation and spared benign prostate epithelial cells. Using LNCaP C-81 cells as the model system, these compounds also reduced colony formation as well as cell adhesion and migration, and M-MeI was the most potent in all studies. Further investigation revealed that while HIMP primarily inhibits PCa cell growth via suppression of PI3K/Akt signaling pathway, M-MeI can inhibit both PI3K/Akt and androgen receptor pathways and arrest cell growth in the G2 phase. Thus, our results indicate the novel compound M-MeI to be a promising candidate for castration-resistant PCa therapy, and future studies investigating the mechanism of imidazopyridine inhibition may aid to the development of effective anti-PCa agents. PMID:26121643

  8. Edelfosine and miltefosine effects on lipid raft properties: membrane biophysics in cell death by antitumor lipids.

    PubMed

    Castro, Bruno M; Fedorov, Aleksander; Hornillos, Valentin; Delgado, Javier; Acuña, A Ulises; Mollinedo, Faustino; Prieto, Manuel

    2013-07-03

    Edelfosine (1-O-octadecyl-2-O-methyl-sn-glycero-phosphocholine) and miltefosine (hexadecylphosphocholine) are synthetic alkylphospholipids (ALPs) that are reported to selectively accumulate in tumor cell membranes, inducing Fas clustering and activation on lipid rafts, triggering apoptosis. However, the exact mechanism by which these lipids elicit these events is still not fully understood. Recent studies propose that their mode of action might be related with alterations of lipid rafts biophysical properties caused by these lipid drugs. To achieve a clear understanding of this mechanism, we studied the effects of pharmacologically relevant amounts of edelfosine and miltefosine in the properties of model and cellular membranes. The influence of these molecules on membrane order, lateral organization, and lipid rafts molar fraction and size were studied by steady-state and time-resolved fluorescence methods, Förster resonance energy transfer (FRET), confocal and fluorescence lifetime imaging microscopy (FLIM). We found that the global membrane and lipid rafts biophysical properties of both model and cellular membranes were not significantly affected by both the ALPs. Nonetheless, in model membranes, a mild increase in membrane fluidity induced by both alkyl lipids was detected, although this effect was more noticeable for edelfosine than miltefosine. This absence of drastic alterations shows for the first time that ALPs mode of action is unlikely to be directly linked to alterations of lipid rafts biophysical properties caused by these drugs. The biological implications of this result are discussed in the context of ALPs effects on lipid metabolism, mitochondria homeostasis modulation, and their relationship with tumor cell death.

  9. Effects of psoralens as anti-tumoral agents in breast cancer cells

    PubMed Central

    Panno, Maria Luisa; Giordano, Francesca

    2014-01-01

    This review examines the biological properties of coumarins, widely distributed at the highest levels in the fruit, followed by the roots, stems and leaves, by considering their beneficial effects in the prevention of some diseases and as anti-cancer agents. These compounds are well known photosensitizing drugs which have been used as pharmaceuticals for a broad number of therapeutic applications requiring cell division inhibitors. Despite this, even in the absence of ultraviolet rays they are active. The current paper mainly focuses on the effects of psoralens on human breast cancer as they are able to influence many aspects of cell behavior, such as cell growth, survival and apoptosis. In addition, analytical and pharmacological data have demonstrated that psoralens antagonize some metabolizing enzymes, affect estrogen receptor stability and counteract cell invasiveness as well as cancer drug resistance. The scientific findings summarized highlight the pleiotropic functions of phytochemical drugs, given that recently their target signals and how these are modified in the cells have been identified. The encouraging results in this field suggest that multiple modulating strategies based on coumarin drugs in combination with canonical chemotherapeutic agents or radiotherapy could be a useful approach to address the treatment of many types of cancer. PMID:25114850

  10. Immune-mediated antitumor effect by type 2 diabetes drug, metformin

    PubMed Central

    Eikawa, Shingo; Nishida, Mikako; Mizukami, Shusaku; Yamazaki, Chihiro; Nakayama, Eiichi; Udono, Heiichiro

    2015-01-01

    Metformin, a prescribed drug for type 2 diabetes, has been reported to have anti-cancer effects; however, the underlying mechanism is poorly understood. Here we show that this mechanism may be immune-mediated. Metformin enabled normal but not T-cell–deficient SCID mice to reject solid tumors. In addition, it increased the number of CD8+ tumor-infiltrating lymphocytes (TILs) and protected them from apoptosis and exhaustion characterized by decreased production of IL-2, TNFα, and IFNγ. CD8+ TILs capable of producing multiple cytokines were mainly PD-1−Tim-3+, an effector memory subset responsible for tumor rejection. Combined use of metformin and cancer vaccine improved CD8+ TIL multifunctionality. The adoptive transfer of antigen-specific CD8+ T cells treated with metformin concentrations as low as 10 μM showed efficient migration into tumors while maintaining multifunctionality in a manner sensitive to the AMP-activated protein kinase (AMPK) inhibitor compound C. Therefore, a direct effect of metformin on CD8+ T cells is critical for protection against the inevitable functional exhaustion in the tumor microenvironment. PMID:25624476

  11. Antitumor effect of Kanglaite® injection in human pancreatic cancer xenografts

    PubMed Central

    2014-01-01

    Background Kanglaite® injection (KLT), with a main ingredient of Coix seed oil (a traditional Chinese medicine), has been widely used for cancer treatment in China. KLT has an inhibitory effect on many kinds of tumors and PI3K/Akt/mTOR signaling promotes cell survival, proliferation, and progression in cancer cells. Therefore, targeting this pathway may lead to the development of novel therapeutic approaches for human cancers. Methods Here, we examined the effects of KLT on the PI3K/Akt/mTOR pathway in pancreatic cancer xenografts in mice, and assessed its therapeutic potential. Growth and apoptosis of tumor xenografts were examined, and the expression levels of genes and proteins involved in the PI3K/Akt/mTOR pathway were measured by RT-PCR and western blotting, respectively. Results Our results revealed that KLT dramatically inhibited the growth of pancreatic cancer xenografts and induced apoptosis simultaneously. Furthermore, it downregulated the expression of phospho-Akt and phospho-mTOR. Conclusions These results suggest that KLT can suppress growth and induce apoptosis of pancreatic cancer xenografts. Moreover, KLT can downregulate the expression of phospho-Akt and phospho-mTOR to modulate the PI3K/Akt/mTOR signaling pathway. PMID:25005526

  12. Potential Antitumor Effect of Harmine in the Treatment of Thyroid Cancer

    PubMed Central

    2017-01-01

    Thyroid cancer is one of the most common types of cancer in endocrine system. In latest studies, harmine has been proved to inhibit the growth of several cancers in vitro and in vivo. In the current study, we evaluated the in vitro and in vivo anticancer efficiency of harmine against thyroid cancer cell line TPC-1. The in vitro cytotoxicity of harmine evaluated by XTT assay indicated that harmine suppressed the proliferation of TPC-1 cells in a dose- and time-dependent manner. Moreover, harmine dose-dependently induced apoptosis of TPC-1 cells through regulating the ratio of Bcl-2/Bax. The colony forming ability of TPC-1 cells was also time-dependently inhibited by harmine. The inhibitory effects of harmine on migration and invasion of TPC-1 cells were studied by wound scratching and Transwell assays. In vivo evaluation showed that harmine effectively inhibited the growth of thyroid cancer in a dose-dependent manner in nude mice. Therefore, harmine might be a promising herbal medicine in the therapy of thyroid cancer and further efforts are needed to explore this therapeutic strategy. PMID:28270853

  13. Statins Impair Antitumor Effects of Rituximab by Inducing Conformational Changes of CD20

    PubMed Central

    Winiarska, Magdalena; Bil, Jacek; Wilczek, Ewa; Wilczynski, Grzegorz M; Lekka, Malgorzata; Engelberts, Patrick J; Mackus, Wendy J. M; Gorska, Elzbieta; Bojarski, Lukasz; Stoklosa, Tomasz; Nowis, Dominika; Kurzaj, Zuzanna; Makowski, Marcin; Glodkowska, Eliza; Issat, Tadeusz; Mrowka, Piotr; Lasek, Witold; Dabrowska-Iwanicka, Anna; Basak, Grzegorz W; Wasik, Maria; Warzocha, Krzysztof; Sinski, Maciej; Gaciong, Zbigniew; Jakobisiak, Marek; Parren, Paul W. H. I; Golab, Jakub

    2008-01-01

    Background Rituximab is used in the treatment of CD20+ B cell lymphomas and other B cell lymphoproliferative disorders. Its clinical efficacy might be further improved by combinations with other drugs such as statins that inhibit cholesterol synthesis and show promising antilymphoma effects. The objective of this study was to evaluate the influence of statins on rituximab-induced killing of B cell lymphomas. Methods and Findings Complement-dependent cytotoxicity (CDC) was assessed by MTT and Alamar blue assays as well as trypan blue staining, and antibody-dependent cellular cytotoxicity (ADCC) was assessed by a 51Cr release assay. Statins were found to significantly decrease rituximab-mediated CDC and ADCC of B cell lymphoma cells. Incubation of B cell lymphoma cells with statins decreased CD20 immunostaining in flow cytometry studies but did not affect total cellular levels of CD20 as measured with RT-PCR and Western blotting. Similar effects are exerted by other cholesterol-depleting agents (methyl-β-cyclodextrin and berberine), but not filipin III, indicating that the presence of plasma membrane cholesterol and not lipid rafts is required for rituximab-mediated CDC. Immunofluorescence microscopy using double staining with monoclonal antibodies (mAbs) directed against a conformational epitope and a linear cytoplasmic epitope revealed that CD20 is present in the plasma membrane in comparable amounts in control and statin-treated cells. Atomic force microscopy and limited proteolysis indicated that statins, through cholesterol depletion, induce conformational changes in CD20 that result in impaired binding of anti-CD20 mAb. An in vivo reduction of cholesterol induced by short-term treatment of five patients with hypercholesterolemia with atorvastatin resulted in reduced anti-CD20 binding to freshly isolated B cells. Conclusions Statins were shown to interfere with both detection of CD20 and antilymphoma activity of rituximab. These studies have significant

  14. Anti-tumor effects of recombinant human macrophage colony-stimulating factor, alone or in combination with local irradiation, in mice inoculated with Lewis lung carcinoma cells.

    PubMed

    Lu, L; Shen, R N; Lin, Z H; Aukerman, S L; Ralph, P; Broxmeyer, H E

    1991-01-02

    Recombinant human (rhu) macrophage colony-stimulating factor (M-CSF) was evaluated for efficacy, either alone or in combination with local X-irradiation (LR), in mice inoculated subcutaneously (s.c.) with Lewis lung carcinoma (LLC) cells. The size of the primary tumor and numbers of lung metastases, 21 days after tumor inoculation and 15 days after the start of treatment, were reduced by 87% in tumor-bearing mice treated with 20 micrograms/dose M-CSF s.c. twice a day for 5 days. LR (800 cGy) to the tumor once a week for 2 weeks had a moderate anti-tumor effect and enhanced the anti-tumor effect of M-CSF. Hematological parameters, including nucleated cellularity in peripheral blood, femoral marrow, spleen and peritoneal exudate, as well as marrow and splenic granulocyte-macrophage progenitor cells, and numbers of splenic Thy 1.2+ cell and peritoneal mast cells, were perturbed in LLC-bearing mice, and were influenced by treatment with M-CSF and LR. Treatment with M-CSF plus LR, but not with either agent alone, was associated with a significant, although slight, enhancement in survival time for LLC-bearing mice. Inability to obtain a better survival-enhancing effect appeared to be related to the limited treatment, since the anti-tumor effects of M-CSF were more notable early on in disease progression and were related to the dose of M-CSF used. The effects of M-CSF were most probably indirect ones on the host immune system. M-CSF, in combination with LR, may be of benefit in the treatment of human tumors that have metastatic potential.

  15. Immunomodulatory and Antitumor Effects of a Novel TLR7 Agonist Combined with Lapatinib

    PubMed Central

    Gao, Ningning; Zhong, Jingjing; Wang, Xiaodong; Jin, Zhenchao; Li, Wang; Liu, Yu; Diao, Yuwen; Wang, Zhulin; Jiang, Wenqi; Jin, Guangyi

    2016-01-01

    As new treatment approaches, both immunotherapy and targeted treatments have been used in the clinical treatment of cancers. These therapies are different from traditional surgery, chemotherapy and radiotherapy. Use of a combination of immunotherapy and targeted treatments may improve tumor clearance. We investigated the feasibility of combining tyrosine kinase inhibitors (TKIs, targeted drugs) and SZU-101 (a novel TLR7 agonist synthesized by our laboratory). Thirteen different TKIs were combined with or without SZU-101 and studied to determine their effects on immunocytes. On the basis of the distinctive results, lapatinib and sunitinib were selected for further tumor-inhibition investigation and determination of the underlying mechanism. Interestingly, we found lapatinib to work better with SZU-101, enhancing tumor clearance in vivo, without affecting the TLR7-NF-κB pathway activated by the TLR7 agonist in mouse spleen lymphocytes and bone marrow dendritic cells (BMDCs). PMID:28000738

  16. Antitumor effectiveness of different amounts of electrical charge in Ehrlich and fibrosarcoma Sa-37 tumors

    PubMed Central

    Ciria, HC; Quevedo, MS; Cabrales, LB; Bruzón, RP; Salas, MF; Pena, OG; González, TR; López, DS; Flores, JM

    2004-01-01

    Background In vivo studies were conducted to quantify the effectiveness of low-level direct electric current for different amounts of electrical charge and the survival rate in fibrosarcoma Sa-37 and Ehrlich tumors, also the effect of direct electric in Ehrlich tumor was evaluate through the measurements of tumor volume and the peritumoral and tumoral findings. Methods BALB/c male mice, 7–8 week old and 20–22 g weight were used. Ehrlich and fibrosarcoma Sa-37 cell lines, growing in BALB/c mice. Solid and subcutaneous Ehrlich and fibrosarcoma Sa-37 tumors, located dorsolaterally in animals, were initiated by the inoculation of 5 × 106 and 1 × 105 viable tumor cells, respectively. For each type of tumor four groups (one control group and three treated groups) consisting of 10 mice randomly divided were formed. When the tumors reached approximately 0.5 cm3, four platinum electrodes were inserted into their bases. The electric charge delivered to the tumors was varied in the range of 5.5 to 110 C/cm3 for a constant time of 45 minutes. An additional experiment was performed in BALB/c male mice bearing Ehrlich tumor to examine from a histolological point of view the effects of direct electric current. A control group and a treated group with 77 C/cm3 (27.0 C in 0.35 cm3) and 10 mA for 45 min were formed. In this experiment when the tumor volumes reached 0.35 cm3, two anodes and two cathodes were inserted into the base perpendicular to the tumor long axis. Results Significant tumor growth delay and survival rate were achieved after electrotherapy and both were dependent on direct electric current intensity, being more marked in fibrosarcoma Sa-37 tumor. Complete regressions for fibrosarcoma Sa-37 and Ehrlich tumors were observed for electrical charges of 80 and 92 C/cm3, respectively. Histopathological and peritumoral findings in Ehrlich tumor revealed in the treated group marked tumor necrosis, vascular congestion, peritumoral neutrophil infiltration, an acute

  17. [Development of high boron content liposomes and their promising antitumor effect for neutron capture therapy].

    PubMed

    Nakamura, Hiroyuki

    2013-01-01

      High accumulation and selective delivery of boron into tumor tissue are the most important requirements to achieve the efficient cell-killing effect of boron neutron capture therapy (BNCT) that relies on the nuclear reaction of two essentially nontoxic species, boron-10 ((10)B) and thermal neutrons in boron-loaded tissues. Recent development of boron cluster lipids and their liposomal boron delivery system (BDS) are summarized in this article. Boron compounds that have no affinity to tumor can potentially be delivered to tumor tissues by liposomes, therefore, liposomal BDS would be one of the most attractive approaches for efficient BNCT of various cancers. There are two approaches for BDS: encapsulation of boron compounds into liposomes and incorporation of boron-conjugated lipids into the liposomal bilayer. The combination of both approaches has a potential for reduction of the total dose of liposomes without reducing the efficacy of BNCT.

  18. Anti-Tumor Effects of Atractylenolide-I on Human Ovarian Cancer Cells

    PubMed Central

    Long, Fangyi; Wang, Ting; Jia, Ping; Wang, Huafei; Qing, Yi; Xiong, Tingting; He, Mengjie; Wang, Xiaoli

    2017-01-01

    Background The aim of this study was to investigate the effects of Atractylenolide-I (AT-I), a naturally occurring sesquiterpene lactone isolated from Atractylodes macrocephala Koidz, on human ovarian cancer cells. Material/Methods The viability and anchorage-independent growth of ovarian cancer cells were evaluated using MTT and colony formation assay, respectively. Cell cycle and apoptosis were detected with flow cytometry analysis. The level of cyclin B1 and CDK1 was measured using qPCR and ELISA analysis. The expression of Bax, cleaved caspase-9, cleaved caspase-3, cytochrome c, AIF, and Bcl-2, and phosphorylation level of PI3K, AKT, and mTOR were determined with Western blot analysis. Results AT-I decreased the cell viability and suppressed anchorage-independent growth of A2780 cells. Cell cycle was arrested in G2/M phase transition by AT-I treatment, which was related to decreased expression of cyclin B1 and CDK1 in a dose-dependent manner. In addition, the treatment induced apoptosis, as shown by up-regulation of Bax, cleaved caspase-9, cleaved caspase-3, and cytosolic release of cytochrome c and AIF, and down-regulation of Bcl-2, in a dose-dependent manner. Then, the effects of AT-I on PI3K/Akt/mTOR pathways were examined to further investigate the underlying anti-cancer mechanism of AT-I, and the results showed that treatment with AT-I significantly decreased the phosphorylation level of PI3K, Akt, and mTOR. Conclusions This study demonstrated that AT-I induced cell cycle arrest and apoptosis through inhibition of PI3K/Akt/mTOR pathway in ovarian cancer cells. These results suggest that AT-I might be a potential therapeutic agent in the treatment of ovarian cancer. PMID:28141785

  19. Antitumor effects of the hyaluronan inhibitor 4-methylumbelliferone on pancreatic cancer

    PubMed Central

    Yoshida, Eri; Kudo, Daisuke; Nagase, Hayato; Shimoda, Hiroshi; Suto, Shinichiro; Negishi, Mika; Kakizaki, Ikuko; Endo, Masahiko; Hakamada, Kenichi

    2016-01-01

    Hyaluronan (HA) is a major component of the extracellular matrix (ECM), and influences tumor invasion and metastasis. In a previous study, the present authors reported for the first time that 4-methylumbelliferone (MU) inhibited HA synthesis and suppressed tumor growth. However, the localization of HA and the changes in ECM morphology caused by MU in pancreatic cancer remain to be examined in detail. In the present study, the cytotoxicity of MU and its effect on cellular proliferation was evaluated in the human pancreatic cancer cell line MIA PaCa-2. The amount of HA synthesized and the retention of HA around the cells were quantitatively and immunohistochemically analyzed in vitro and in vivo. Structural changes in the ECM in the tumor tissue were investigated using an electron microscope. MU treatment led to a decrease in extracellular HA retention, as evidenced by a particle exclusion assay and immunohistochemical staining. Cell proliferation was suppressed by MU in a dose-dependent manner. The release of lactate dehydrogenase into the culture medium due to damage to the cellular membrane did not increase following MU administration. In tumor-inoculated mice, MU suppressed any increase in tumor volume and decreased the quantity of HA. Electron microscopy revealed that MU attenuated the intercellular space and caused it to be less cohesive. These data indicate that MU inhibits HA synthesis and reduces the amount of HA in the ECM while exhibiting no obvious cytotoxic effect. These findings suggest that MU has potential as a novel therapeutic agent for pancreatic cancer. PMID:27698797

  20. Anti-tumor effects of (1→3)-β-d-glucan from Saccharomyces cerevisiae in S180 tumor-bearing mice.

    PubMed

    Mo, Li; Chen, Yafei; Li, Wenjian; Guo, Shuai; Wang, Xuzhao; An, Hailong; Zhan, Yong

    2017-02-01

    (1→3)-β-d-Glucan from Saccharomyces cerevisiae is a typical polysaccharide with various biological effects and is considered a candidate for the prevention and treatment of cancer in vitro. Research into the function of (1→3)-β-d-glucan in tumor-bearing animals in vivo, however, is limited. Here, we investigated the effects of (1→3)-β-d-glucan from S. cerevisiae on S180 tumor-bearing mice and on the immunity of the tumor-bearing host. The molecular mechanisms underlying the observed effects were investigated. (1→3)-β-d-Glucan was shown to exert anti-tumor effects without toxicity in normal mouse cells. The volume and weight of S180 tumors decreased dramatically following treatment with (1→3)-β-d-glucan, and treatment with the polysaccharide was furthermore shown to increase the tumor inhibition rate in a dose-dependent manner. Spleen index, T lymphocyte subsets (CD4 and CD8), as well as interleukins (IL)-2, (IL-2, IL-6), and tumor necrosis factor-α were assayed to detect the immunoregulatory and anti-tumor effects after (1→3)-β-d-glucan intragastrical administration. (1→3)-β-d-Glucan was shown to significantly potentiate the mouse immune responses by, among other effects, decreasing the ratio of CD4 to CD8. The expression levels of IL-2, IL-6, and TNF-α were also significantly increased by (1→3)-β-d-glucan. These results suggest that (1→3)-β-d-glucan enhances the host's immune function during the tumor inhibition process. S180 tumor cells treated with (1→3)-β-d-glucan also exhibited significant apoptotic characteristics. (1→3)-β-d-glucan increased the ratio of Bax to Bcl-2 at the translation level by up-regulating Bax expression and down-regulating Bcl-2 expression, resulting in the initiation of cell apoptosis in S180 tumor-bearing mice. Taken together, these results indicate that the anti-tumor effects exerted by (1→3)-β-d-glucan may be attributed to the polysaccharide's immunostimulating properties and apoptosis

  1. Antitumor effects of hyaluronic acid inhibitor 4-methylumbelliferone in an orthotopic hepatocellular carcinoma model in mice.

    PubMed

    Piccioni, Flavia; Malvicini, Mariana; Garcia, Mariana G; Rodriguez, Andrés; Atorrasagasti, Catalina; Kippes, Nestor; Piedra Buena, Ignacio T; Rizzo, Manglio M; Bayo, Juan; Aquino, Jorge; Viola, Manuela; Passi, Alberto; Alaniz, Laura; Mazzolini, Guillermo

    2012-03-01

    Liver cirrhosis is characterized by an excessive accumulation of extracellular matrix components, including hyaluronan (HA). In addition, cirrhosis is considered a pre-neoplastic disease for hepatocellular carcinoma (HCC). Altered HA biosynthesis is associated with cancer progression but its role in HCC is unknown. 4-Methylumbelliferone (4-MU), an orally available agent, is an HA synthesis inhibitor with anticancer properties. In this work, we used an orthotopic Hepa129 HCC model established in fibrotic livers induced by thioacetamide. We evaluated 4-MU effects on HCC cells and hepatic stellate cells (HSCs) in vitro by proliferation, apoptosis and cytotoxicity assays; tumor growth and fibrogenesis were also analyzed in vivo. Our results showed that treatment of HCC cells with 4-MU significantly reduced tumor cell proliferation and induced apoptosis, while primary cultured hepatocytes remained unaffected. 4-MU therapy reduced hepatic and systemic levels of HA. Tumors systemically treated with 4-MU showed the extensive areas of necrosis, inflammatory infiltrate and 2-3-fold reduced number of tumor satellites. No signs of toxicity were observed after 4-MU therapy. Animals treated with 4-MU developed a reduced fibrosis degree compared with controls (F1-2 vs F2-3, respectively). Importantly, 4-MU induced the apoptosis of HSCs in vitro and decreased the amount of activated HSCs in vivo. In conclusion, our results suggest a role for 4-MU as an anticancer agent for HCC associated with advanced fibrosis.

  2. Exploring the anti-tumoral effects of tick saliva and derived components.

    PubMed

    Sousa, Ana Carolina Prado; Szabó, Matias Pablo Juan; Oliveira, Carlo Jose Freire; Silva, Marcelo José Barbosa

    2015-08-01

    Ticks are blood-feeding arthropods with an outstanding ability to remain attached to its host for considerable periods while blood-feeding and remaining unnoticed. Their success results from the ability to modulate hemostatic and host immune responses. The ability to "bypass" a host's defenses, prevent blood clotting and wound healing makes ticks utterly interesting animals for the development of new drugs. Studies worldwide on various tick species have shown that tick saliva possesses a wide array of lipidic and proteic biomolecules with useful properties. These include not only immunomodulatory, anti-inflammatory, anti-platelet and anti-clotting properties, but also cytotoxic and cytolitic properties that act against various cell types, and anti-angiogenic properties, which have gained increasing prominence. We searched PubMed, Science Direct, Elsevier and other sites for publications regarding tick saliva and its effects on cancer cells and angiogenesis. Our aim was to compile a list of molecules with potential for host adaptation and for the development of new cancer treatment drugs.

  3. Suppressive effects of 3-methylcholanthrene on the in vitro antitumor activity of naturally cytotoxic cells

    SciTech Connect

    Lill, P.H.; Gangemi, D.

    1986-01-01

    Transient suppression of splenic natural killer (NK), natural cytotoxic (NC) and peritoneal macrophage cytotoxicity was observed following a single injection of 3-methylcholanthrene (3-MC) into C3H/HeN mice. Natural killer cell activity was depressed by 30-60% 4-6 d after injection of 1.0 mg 3-MC. Levels of NK reactivity returned to normal 8 d post 3-MC injection, and no suppression of natural killing was seen when tested 6 wk after 3-MC treatment. 3-MC did not affect propionibacterium acnes augmentation of NK cell activity when tested both 6 d and 6 wk after carcinogen injection. The results indicate that the observed suppression of naturally cytotoxic cells may not be important in allowing 3-MC-induced tumors to grow, since suppression is not long-lasting. Therefore, any effect on tumor growth mediated by a suppression of naturally cytotoxic cells would have to be exerted at the earliest stages of tumor development.

  4. Zinc supplementation augments in vivo antitumor effect of chemotherapy by restoring p53 function.

    PubMed

    Margalit, Ofer; Simon, Amos J; Yakubov, Eduard; Puca, Rosa; Yosepovich, Ady; Avivi, Camila; Jacob-Hirsch, Jasmine; Gelernter, Ilana; Harmelin, Alon; Barshack, Iris; Rechavi, Gideon; D'Orazi, Gabriella; Givol, David; Amariglio, Ninette

    2012-08-15

    Activated p53 is necessary for tumor suppression. Homeodomain-interacting protein kinase-2 (HIPK2) is a positive regulator of functional p53. HIPK2 modulates wild-type p53 activity toward proapoptotic transcription and tumor suppression by the phosphorylation of serine 46. Knock-down of HIPK2 interferes with tumor suppression and sensitivity to chemotherapy. Combined administration of adriamycin and zinc restores activity of misfolded p53 and enables the induction of its proapoptotic and tumor suppressor functions in vitro and in vivo. We therefore looked for a cancer model where HIPK2 expression is low. MMTV-neu transgenic mice overexpressing HER2/neu, develop mammary tumors at puberty with a long latency, showing very low expression of HIPK2. Here we show that whereas these tumors are resistant to adriamycin treatment, a combination of adriamycin and zinc suppresses tumor growth in vivo in these mice, an effect evidenced by the histological features of the mammary tumors. The combined treatment of adriamycin and zinc also restores wild-type p53 conformation and induces proapoptotic transcription activity. These findings may open up new possibilities for the treatment of human cancers via the combination of zinc with chemotherapeutic agents, for a selected group of patients expressing low levels of HIPK2, with an intact p53. In addition, HIPK2 may serve as a new biomarker for tumor aggressiveness.

  5. Antitumor effects of a drug combination targeting glycolysis, glutaminolysis and de novo synthesis of fatty acids.

    PubMed

    Cervantes-Madrid, Diana; Dueñas-González, Alfonso

    2015-09-01

    There is a strong rationale for targeting the metabolic alterations of cancer cells. The most studied of these are the higher rates of glycolysis, glutaminolysis and de novo synthesis of fatty acids (FAs). Despite the availability of pharmacological inhibitors of these pathways, no preclinical studies targeting them simultaneously have been performed. In the present study it was determined whether three key enzymes for glycolysis, glutaminolysis and de novo synthesis of FAs, hexokinase-2, glutaminase and fatty acid synthase, respectively, were overexpressed as compared to primary fibroblasts. In addition, we showed that at clinically relevant concentrations lonidamine, 6-diazo-5-oxo-L-norleucine and orlistat, known inhibitors of the mentioned enzymes, exerted a cell viability inhibitory effect. Genetic downregulation of the three enzymes also reduced cell viability. The three drugs were highly synergistic when administered as a triple combination. Of note, the cytotoxicity of the triple combination was low in primary fibroblasts and was well tolerated when administered into healthy BALB/c mice. The results suggest the feasibility and potential clinical utility of the triple metabolic targeting which merits to be further studied by using either repositioned old drugs or newer, more selective inhibitors.

  6. Antitumor Effects and Mechanism of Novel Emodin Rhamnoside Derivatives against Human Cancer Cells In Vitro

    PubMed Central

    Deng, Jun-peng; Jiang, Ling-zhi; Xiong, Ping; Yang, Bin-jie; Liu, Shan-shan

    2015-01-01

    A series of novel anthracene L-rhamnopyranosides compounds were designed and synthesized and their anti-proliferative activities on cancer cell lines were investigated. We found that one derivative S-8 (EM-d-Rha) strongly inhibited cell proliferation of a panel of different human cancer cell lines including A549, HepG2, OVCAR-3, HeLa and K562 and SGC-790 cell lines, and displayed IC50 values in low micro-molar ranges, which are ten folds more effective than emodin. In addition, we found EM-d-Rha (3-(2”,3”-Di-O-acetyl-α-L-rhamnopyranosyl-(1→4)-2’,3’-di-O-acetyl-α-L-rhamnopyranosyl)-emodin) substantially induced cellular apoptosis of HepG2 and OVCAR-3 cells in the early growth stage. Furthermore, EM-d-Rha led to the decrease of mitochondrial transmembrane potential, and up-regulated the express of cells apoptosis factors in a concentration- and time-dependent manner. The results indicated the EM-d-Rha may inhibit the growth and proliferation of HepG2 cells through the pathway of apoptosis induction, and the possible molecular mechanism may due to the activation of intrinsic apoptotic signal pathway. PMID:26682731

  7. The Relationship between the Antitumor Effect of the IL-12 Gene Therapy and the Expression of Th1 Cytokines in an HPV16-Positive Murine Tumor Model

    PubMed Central

    García Paz, Flor; Madrid Marina, Vicente; Morales Ortega, Ausencio; Santander González, Abimelec; Peralta Zaragoza, Oscar; Burguete García, Ana; Torres Poveda, Kirvis; Moreno, José; Alcocer González, Juan; Hernandez Marquez, Eva; Bermúdez Morales, Victor

    2014-01-01

    Objective. The goal of the present study was to investigate the effect of IL-12 expressed in plasmid on the Th1 cytokine profile in an experimental HPV16-positive murine tumor model and the association with the IL-12's antitumor effect. Methods. Mice were injected with BMK-16/myc cells to establish HPV16-positive tumor and then pNGVL3-mIL-12 plasmid; pcDNA3 plasmid or PBS was injected directly into tumor site. The antitumor effect of the treatment was evaluated and the cytokines expression profile in each tumor tissue was analyzed. Results. Treatment with pNGVL3-mIL-12 plasmid had a significant antitumor effect, and a Th2-Th3-type cytokines prolife was detected in the murine tumor model with expression of the cytokines IL-10, IL-4, and TGF-β1. However, after the tumor was treated with three intratumoral injections of plasmid containing IL-12 cDNA, it showed a cytokine profile associated with Th1 with expression of IL-2, IL-12, and IFN-γ cytokines and reduced expression of IL-10, IL-4, and TGF-β1. Conclusions. The treatment with the IL-12 gene in the experimental HPV16-positive tumor model promoted the activation of the cellular immune response via expression of a Th1-type cytokine profile and was associated with the inhibition of tumor growth. Thus, IL-12 treatment represents a novel approach for gene therapy against cervical cancer. PMID:24808638

  8. Drug activity screening based on microsomes-hydrogel system in predicting metabolism induced antitumor effect of oroxylin A

    PubMed Central

    Yang, Huiying; Li, Jianfeng; Zheng, Yuanting; Zhou, Lu; Tong, Shanshan; Zhao, Bei; Cai, Weimin

    2016-01-01

    A novel microsomes-hydrogel added cell culture system (MHCCS) was employed in the antitumor activity screening of natural compounds, aiming to achieve drug screening with better in vivo correlation, higher initiative to explore the potential active metabolites, and investigation of the antitumor mechanism from the perspective of metabolism. MTT assay and cell apoptosis detection showed that test drug oroxylin A (OA) had enhanced cytotoxicity and wogonin (W) with reduced cytotoxicity on MCF-7 cell line upon MHCCS incubation. In vivo antitumor evaluations also demonstrated that OA induced higher tumor inhibition than W at the same dosage. To explore the reasons, nine major metabolites of OA were separated and collected through UPLC-Q-TOF and semi-preparative HPLC. Metabolites M318 exhibited higher cytotoxicity than OA and other metabolites by MTT assay. 1H NMR spectrums, HPLC and TOF MS/MS results revealed that OA was catalyzed into its active metabolite M318 via a ring-opening reaction. M318 induced significant cell apoptosis and S-phase arrest through affecting tumor survival related genes after mechanism study. In conclusion, our MHCCS could be a useful tool for drug activity screening from a perspective of metabolism. PMID:26905263

  9. Rare sugar D-allose enhances anti-tumor effect of 5-fluorouracil on the human hepatocellular carcinoma cell line HuH-7.

    PubMed

    Yamaguchi, Fuminori; Kamitori, Kazuyo; Sanada, Keiko; Horii, Mariko; Dong, Youyi; Sui, Li; Tokuda, Masaaki

    2008-09-01

    d-Allose is a novel anti-tumor monosaccharide that causes cell growth inhibition, specifically of the cancer cells, by inducing the tumor suppressor gene thioredoxin interacting protein (TXNIP). The commonly used anti-tumor drug, 5-fluorouracil (5-FU), blocks the cell cycle by inhibiting thymidylate synthase, and is also known to induce TXNIP gene expression. In this study, we examined the synergistic effect of d-allose and 5-FU and the role of TXNIP on cancer cell growth. The treatment of HuH-7 cells with d-allose or 5-FU inhibited the cell growth in a dose-dependent manner (75.2+/-2.7% with 50 mM d-allose and 66.1+/-2.7% with 0.5 mug/ml 5-FU) and d-allose enhanced the anti-tumor effect of 5-FU (55.3+/-1.1 %). TUNEL analysis did not show any evidence of apoptosis with either d-allose or 5-FU treatment. 5-FU suppressed the expression of p27(kip1), p53, and cyclin E, whereas d-allose induced p53 and reduced cyclins D, A, and E. The expression of p27(kip1) remained unchanged by d-allose at transcriptional level, but increased at the protein level suggesting an increase in protein stability by TXNIP. d-Allose and to a lesser extent 5-FU induced TXNIP expression significantly (808.4+/-122.9% and 186.8+/-32.9%, respectively) and the combination of both further enhanced TXNIP expression. As d-allose has no known side effects on normal cells, the combination of d-allose and 5-FU might be a potent candidate for cancer therapy.

  10. An oncolytic adenovirus enhances antiangiogenic and antitumoral effects of a replication-deficient adenovirus encoding endostatin by rescuing its selective replication in nasopharyngeal carcinoma cells

    SciTech Connect

    Liu, Ran-yi; Zhou, Ling; Zhang, Yan-ling; Huang, Bi-jun; Ke, Miao-la; Chen, Jie-min; Li, Li-xia; Fu, Xiang; Wu, Jiang-xue; Huang, Wenlin

    2013-12-13

    Highlights: •H101 promotes endostatin expression by Ad-Endo via rescuing Ad-Endo replication. •H101 rescued Ad-Endo replication by supplying E1A and E1B19k proteins. •Ad-Endo enhanced the cytotoxicity of H101 in NPC cells. •Ad-Endo and oncolytic Ad H101 have synergistic antitumor effects on NPC. -- Abstract: A replication-deficient adenovirus (Ad) encoding secreted human endostatin (Ad-Endo) has been demonstrated to have promising antiangiogenic and antitumoral effects. The E1B55k-deleted Ad H101 can selectively lyse cancer cells. In this study, we explored the antitumor effects and cross-interactions of Ad-Endo and H101 on nasopharyngeal carcinoma (NPC). The results showed that H101 dramatically promoted endostatin expression by Ad-Endo via rescuing Ad-Endo replication in NPC cells, and the expressed endostatin proteins significantly inhibited the proliferation of human umbilical vein endothelial cells. E1A and E1B19k products are required for the rescuing of H101 to Ad-Endo replication in CNE-1 and CNE-2 cells, but not in C666-1 cells. On the other hand, Ad-Endo enhanced the cytotoxicity of H101 by enhancing Ad replication in NPC cells. The combination of H101 and Ad-Endo significantly inhibited CNE-2 xenografts growth through the increased endostatin expression and Ad replication. These findings indicate that the combination of Ad-Endo gene therapy and oncolytic Ad therapeutics could be promising in comprehensive treatment of NPC.

  11. Enhanced antitumor effects of an engineered measles virus Edmonston strain expressing the wild-type N, P, L genes on human renal cell carcinoma.

    PubMed

    Meng, Xin; Nakamura, Takafumi; Okazaki, Toshihiko; Inoue, Hiroyuki; Takahashi, Atsushi; Miyamoto, Shohei; Sakaguchi, Gaku; Eto, Masatoshi; Naito, Seiji; Takeda, Makoto; Yanagi, Yusuke; Tani, Kenzaburo

    2010-03-01

    Measles virus Edmonston strain (MV-Edm) is thought to have remarkable oncolytic activity that selectively destroys human tumor cells. The P/V/C protein of wild-type MV was shown to resist the antiviral effects of interferon (IFN)-alpha. Here, we engineered new MVs by arming MV-Edm tag strain (a V-defective vaccine-lineage strain, MV-Etag) with the P or N, P, and L genes of wild-type MV (MV-P and MV-NPL, respectively). The oncolytic activities of the MVs were determined in human renal cell carcinoma (RCC) cell lines and primary human RCC cells by the MTT assay. The antitumor efficacy of the MVs was evaluated in A-498 xenografts in nude mice. IFN-alpha effectively inhibited the replication of MV-Etag and MV-P, but not MV-NPL. MV-NPL more efficiently induced cytopathic effects (CPEs) in OS-RC-2 cells, even in the presence of human IFN-alpha. MV-NPL replicated more rapidly than MV-P and MV-Etag in A-498 cells. Apoptosis was induced earlier in A-498 cells by MV-NPL than MV-Etag and MV-P. MV-NPL showed more significant antitumoral effects and had prolonged replication compared to MV-Etag and MV-P. In this study, we demonstrated that the newly engineered MV-NPL has more effective oncolytic activity and may help establish an innovative cancer therapy.

  12. Biodistribution and pharmacokinetics in rats and antitumor effect in various types of tumor-bearing mice of novel self-assembled gelatin-oleic acid nanoparticles containing paclitaxel.

    PubMed

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Lee, Beom-Jin

    2014-01-01

    The aim of this study was to investigate the pharmacokinetics and biodistribution in Sprague-Dawley rats, anti-tumor activity and acute toxicity in different tumor-bearing mice of novel biocompatible nanoparticles. Paclitaxel (PTX) was selected as a model drug and loaded on different tumor types and at various doses. The nanoparticles were prepared using a newly synthesized gelatin-oleic acid conjugate via self-assembly in an aqueous solution. The nanoparticles were further functionalized using folic acid (FA) as a targeting ligand for cancer. The in vivo effects of the nanoparticles were compared with the commercially available Taxol (a solution form of PTX) as a reference dosage form. The in vivo studies confirmed that nanoparticles showed improved therapeutic effects on tumors and significantly reduced the toxic effects associated with Taxol, even at the 50% lethal dose (LD50). The in vivo pharmacokinetic parameters and biodistribution of the nanoparticles containing PTX also indicated slower clearance, longer blood circulation and higher tumor selectivity. Furthermore, the functionalized nanoparticles with FA were more effective than the non-functionalized nanoparticles. Thus, the suitable properties of gelatin-oleic nanoparticles (GON) as a drug carrier and the effective targeting ligand could synergistically maximize the in vivo anti-tumor efficacy resulting in delayed tumor volume growth and hence, providing versatile strategies in cancer therapy and drug delivery.

  13. Antitumor effect of manumycin on colorectal cancer cells by increasing the reactive oxygen species production and blocking PI3K-AKT pathway

    PubMed Central

    Zhang, Jingyu; Jiang, Hua; Xie, Li; Hu, Jing; Li, Li; Yang, Mi; Cheng, Lei; Liu, Baorui; Qian, Xiaoping

    2016-01-01

    Manumycin is a natural, well-tolerated microbial metabolite and is regarded as a farnesyltransferase inhibitor. Some data suggest that manumycin inhibits proliferation of diverse cancer cells through various pathways. However, the antitumor effect of manumycin on colorectal cancer (CRC) remains unknown. In the present study, we investigated the antitumor effect of manumycin on CRC in vitro and in vivo. The results of cell viability assay revealed that the proliferation of the CRC cells was significantly inhibited by manumycin. Moreover, cell apoptosis induced by manumycin was also found in a time- and dose-dependent manner. Interestingly, treatment of the CRC cells with manumycin resulted in increased generation of reactive oxygen species. Subsequently, manumycin also decreased the phosphorylation of phosphatidylinositol 3-kinase (PI3K) and AKT, as well as the expression of caspase-9 and poly(ADP-ribose) polymerase (PARP) in a time-dependent manner. In addition, we found that N-acetyl-l-cysteine (NAC) attenuated the effect of manumycin on the PI3K-AKT pathway, and wortmannin reduced the effect of manumycin on caspase-9 and PARP expression. More importantly, the anticancer effect of manumycin was also observed in established tumor xenografts. Taken together, these findings supported the potential application of manumycin against colorectal carcinoma. PMID:27307747

  14. Anti-tumor effect of cimetidine via inhibiting angiogenesis factors in N-butyl-N-(4-hydroxybutyl) nitrosamine-induced mouse and rat bladder carcinogenesis.

    PubMed

    Chihara, Yoshitomo; Fujimoto, Kiyohide; Miyake, Makito; Hiasa, Yoshio; Hirao, Yoshihiko

    2009-07-01

    The aim of this study was to assess the anti-tumor effect and mechanisms of cimetidine in N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced bladder carcinogenesis model. Sixty-three male BALB/c mice and 67 male Wister rats were treated with BBN and cimetidine to examine the anti-tumor effect of cimetidine. Immunohistochemistry (IHC) of vascular endothelial growth factor (VEGF), platelet-derived endothelial growth factor (PDECGF), and E-selectin were examined to compare their expression in the tumor tissues. In mice, the tumor growth was reduced by cimetidine (p=0.011). The expression of PDECGF was reduced in the cimetidine-treated group (p=0.016). In rats, treatment of cimetidine reduced tumor growth (p=0.0001). Moreover, the expression of VEGF and PDECGF was reduced (p=0.02 and <0.001, respectively). The expression of E-selectin did not correlate with the tumor growth in either mice or rats. In mice, long-term cimetidine treatment proved very effective for inhibiting the tumor growth, but in rats, BBN after treatment with cimetidine showed the least tumor growth-inhibitory effect. In conclusion, cimetidine may have an inhibitory effect on tumor growth in bladder carcinogenesis via reducing the expression of angiogenesis factors including VEGF and PDECGF.

  15. HER-3 peptide vaccines/mimics: Combined therapy with IGF-1R, HER-2, and HER-1 peptides induces synergistic antitumor effects against breast and pancreatic cancer cells

    PubMed Central

    Miller, Megan Jo; Foy, Kevin C; Overholser, Jay P; Nahta, Rita; Kaumaya, Pravin TP

    2014-01-01

    The human epidermal growth factor receptor 3 (HER-3/ErbB3) is a unique member of the human epidermal growth factor family of receptors, because it lacks intrinsic kinase activity and ability to heterodimerize with other members. HER-3 is frequently upregulated in cancers with epidermal growth factor receptor (EGFR/HER-1/ErbB1) or human epidermal growth factor receptor 2 (HER-2/ErBB2) overexpression, and targeting HER-3 may provide a route for overcoming resistance to agents that target EGFR or HER-2. We have previously developed vaccines and peptide mimics for HER-1, HER-2 and vascular endothelial growth factor (VEGF). In this study, we extend our studies by identifying and evaluating novel HER-3 peptide epitopes encompassing residues 99–122, 140–162, 237–269 and 461–479 of the HER-3 extracellular domain as putative B-cell epitopes for active immunotherapy against HER-3 positive cancers. We show that the HER-3 vaccine antibodies and HER-3 peptide mimics induced antitumor responses: inhibition of cancer cell proliferation, inhibition of receptor phosphorylation, induction of apoptosis and antibody dependent cellular cytotoxicity (ADCC). Two of the HER-3 epitopes 237–269 (domain II) and 461–479 (domain III) significantly inhibited growth of xenografts originating from both pancreatic (BxPC3) and breast (JIMT-1) cancers. Combined therapy of HER-3 (461–471) epitope with HER-2 (266–296), HER-2 (597–626), HER-1 (418–435) and insulin-like growth factor receptor type I (IGF-1R) (56–81) vaccine antibodies and peptide mimics show enhanced antitumor effects in breast and pancreatic cancer cells. This study establishes the hypothesis that combination immunotherapy targeting different signal transduction pathways can provide effective antitumor immunity and long-term control of HER-1 and HER-2 overexpressing cancers. PMID:25941588

  16. Antitumor effects in vitro and in vivo and mechanisms of protection against melanoma B16F10-Nex2 cells by fastuosain, a cysteine proteinase from Bromelia fastuosa.

    PubMed

    Guimarães-Ferreira, Carla A; Rodrigues, Elaine G; Mortara, Renato A; Cabral, Hamilton; Serrano, Fabiana A; Ribeiro-dos-Santos, Ricardo; Travassos, Luiz R

    2007-09-01

    In the present work, the antitumor effect of fastuosain, a cysteine proteinase from Bromelia fastuosa, was investigated. In the intravenous model of lung colonization in C57Bl/6 mice, fastuosain and bromelain injected intraperitoneally were protective, and very few nodules of B16F10-Nex2 melanoma cells were detected. Tumor cells treated with fastuosain showed reduced expression of CD44 and decreased invasion through Matrigel, lost their cytoplasmic extensions and substrate adherence, and became round and detached, forming strongly bound cell clusters in suspension. Peritoneal cells recruited and activated by fastuosain treatment (mainly monocytic cells and lymphocytes) migrated to the lung, where pulmonary melanoma metastases grew. Adoptive transference of peritoneal cells recruited by fastuosain had no protective effect against lung metastases in recipient mice. Treatment of green fluorescent protein-chimeric animals with fastuosain did not change the number of cells that migrated to the lung, compared to PBS-injected control mice, but the number of positive major histocompatibility complex class II cells increased with fastuosain treatment. Murine antibodies against fastuosain, bromelain, and cathepsins B and L cross-reacted in ELISA and recognized surface and cytoplasmic components expressed on B16F10-Nex2 cells. Anti-fastuosain antibodies were cytotoxic/lytic to B16F10-Nex2 cells. Antitumor effects of fastuosain involve mainly the direct effect of the enzyme and elicitation of protective antibodies.

  17. miR-196b/miR-1290 participate in the antitumor effect of resveratrol via regulation of IGFBP3 expression in acute lymphoblastic leukemia.

    PubMed

    Zhou, Wei; Wang, Shunqing; Ying, Yi; Zhou, Ruiqing; Mao, Ping

    2017-02-01

    MicroRNAs play critical roles in the progression of acute lymphoblastic leukemia (ALL). Previous studies have indicated that miR-196b and miR-1290 play critical roles in T-cell ALL (T-ALL) and B-cell ALL (B-ALL), respectively. Resveratrol, a natural edible polyphenolic phytoalexin, possesses certain anticancer activities. Nevertheless, the mechanism involved in the regulation of ALL by resveratrol is still poorly understood. The present study aimed to reveal the potential mechanism underlying the antitumor effect of resveratrol in ALL focusing on miRNAs. Research indicates that insulin-like growth factor binding protein 3 (IGFBP3) plays a critical role in the aetiology of ALL. In the present study, we first demonstrated that the expression of IGFBP3 was decreased in ALL patients. We further identified that miR-196b and miR-1290 were overexpressed in T-ALL TALL-104 and B-ALL SUP-B15 cell lines, respectively. Moreover, resveratrol markedly decreased the overexpression of miR-196b/miR-1290 and elevated IGFBP3 expression in the ALL cell lines. As an miR-196b/miR-1290 inhibitor, resveratrol was further demonstrated to exert antitumor effects on ALL cells including antiproliferation, cell cycle arrest, apoptosis and inhibition of migration. Dual-luciferase reporter assay revealed that miR-196b/miR-1290 directly bound to the 3'-untranslated (3'-UTR) region of IGFBP3 mRNA. Moreover, we observed that IGFBP3 short interfering RNA reversed the antitumor activity of resveratrol against ALL cells. Taken together, the present study provides evidence that resveratrol targets miR-196b and miR-1290 for its antitumor activity in T-ALL and B-ALL, respectively. The present study also confirms that both miR‑196b and miR-1290 target the IGFBP3 3'-UTR and are potential therapeutic targets for ALL.

  18. A new magnetic nanocapsule containing 5-fluorouracil: in vivo drug release, anti-tumor, and pro-apoptotic effects on CT26 cells allograft model.

    PubMed

    Shakeri-Zadeh, Ali; Shiran, Mohammad-Bagher; Khoee, Sepideh; Sharifi, Ali Mohammad; Ghaznavi, Habib; Khoei, Samideh

    2014-10-01

    The purpose of this study was to create an optimized method for preparation of 5-fluorouracil-loaded magnetic poly lactic-co-glycolic acid nanocapsules and to investigate its potential as multifunctional carriers to deliver therapeutic agents for tumor-targeted therapies. The in vitro release of the newly synthesized 5-fluorouracil-loaded poly lactic-co-glycolic acid magnetic nanocapsules was investigated in phosphate-buffered saline medium using the dialysis method. In vivo release studies of the magnetic nanocapsules were performed in rabbits. Finally, the targeting properties, anti-tumor, and pro-apoptotic effects of this new magnetic nanocapsule on CT26 cells allograft model were studied. The effective diameter of nanocapsules was 67.2 nm. In vivo release investigations showed that 5-fluorouracil has a sustained release profile, prolonged lifetime in the rabbit plasma, and increased tissue appetency when loaded into the magnetic nanocapsule. Magnetic resonance imaging confirmed that the magnetic nanocapsules were successfully targeted to the tumor. Additionally, the anti-tumor studies revealed that the targeted therapy with magnetic nanocapsules containing 5-fluorouracil effectively inhibits the growth of tumors compared with 5-fluorouracil alone (P < 0.01). The present study demonstrates that this new magnetic nanocapsule can be considered a new nanotechnology-based cancer chemotherapy agent in vivo.

  19. Construction and application of a lung cancer stem cell model: antitumor drug screening and molecular mechanism of the inhibitory effects of sanguinarine.

    PubMed

    Yang, Jia; Fang, Zhihong; Wu, Jianchun; Yin, Xiaoling; Fang, Yuan; Zhao, Fanchen; Zhu, Shiguo; Li, Yan

    2016-10-01

    Lung cancer is a neoplasm with a 5-year survival rate of less than 15 % and a leading cause of death worldwide, despite recent progress in treatment and diagnostic methods. Lung cancer stem-like cells (CSCs) are pivotal in lung cancer metastasis and drug resistance. This study aimed to develop lung CSCs that stably express stem cell properties through transfection to further screen traditional Chinese herbal compounds. Lung adenocarcinoma stem cells, which include various phenotypic subgroups, are normally characterized by high expression levels of pluripotent stem cell genes, particularly Nanog and OCT4. Plasmids containing Nanog and OCT4 were constructed and transfected into cells, and lung CSCs were identified not only in vitro using RT-PCR, Western blotting, plate cloning, sphere formation, drug resistance, and transwell migration but also in vivo using a nude mouse tumorigenicity assay. Subsequently, sanguinarine, which is derived from the whole leaves of the traditional Chinese medicine celandine, was identified through the high-throughput screening of a small-molecule compound library. Investigation of the molecular mechanisms of the effects of sanguinarine revealed that it significantly inhibited lung CSC proliferation, invasion, and apoptosis, possibly via downregulation of the Wnt/β-catenin signaling pathway. Our results indicate that lung CSCs established by gene transfection may provide a stable and effective method of constructing CSCs to effectively screen potential antitumor drugs. Furthermore, these results suggest that sanguinarine may be a natural antitumor compound that targets lung CSCs, laying a foundation for further clinical study.

  20. Identification of Optimal Insertion Site in Recombinant Newcastle Disease Virus (rNDV) Vector Expressing Foreign Gene to Enhance Its Anti-Tumor Effect

    PubMed Central

    Pan, Ziye; He, Jinjiao; Rasoul, Lubna M.; Liu, Yunye; Che, Ruixiang; Ding, Yun; Guo, Xiaocheng; Yang, Jiarui; Zou, Dehua; Zhang, Hua; Li, Deshan; Cao, Hongwei

    2016-01-01

    Recombinant Newcastle disease virus (rNDV) is tumor selective and intrinsically oncolytic, which has been developed as a vector to express exogenous genes to enhance its oncolytic efficacy. Our previous studies found that insertion sites of foreign gene in rNDV vector affected its expression and anti-tumor activities. However, the optimal insertion site for foreign genes remains unknown. In this study, we inserted the enhanced green fluorescence protein (EGFP) and IL2 genes into four different intergenic regions of the rNDV using reverse genetics technology. Recombinants rNDV-EGFPs and rNDV-IL2s were successfully rescued, which displayed the similar growth kinetics with parental virus. Both EGFP mRNA and protein levels were most abundant in HepG2 cells, when EGFP gene was inserted between the NP/P site of the rNDV. Similarly, the IL-2 expressed by HepG2 cells infected with rNDV-IL2 was highest, when IL2 was inserted into NP/P site. To test whether these rNDVs that express higher foreign genes could induce stronger anti-tumor response, we treated the H22-oxter-tumor-bearing C57BL/6J mice with rNDV-IL2s and then examined the oncolytic efficacy. The results showed that rNDV-IL2-NP/P had the strongest inhibition of murine hepatoma carcinoma tumors. The splenocytes isolated from the mice treated with rNDV-IL2-NP/P reached the highest degrees of CD4+ T and CD8+ T cells. In addition, animals’ survival rate in rNDV-IL2-NP/P-treated group was higher than that of other groups. Taken together, these results demonstrate that NP and P gene junction in rNDV is the optimal insertion site for foreign genes expression to enhance rNDV’s anti-tumor effects. PMID:27736965

  1. An oncolytic adenovirus enhances antiangiogenic and antitumoral effects of a replication-deficient adenovirus encoding endostatin by rescuing its selective replication in nasopharyngeal carcinoma cells.

    PubMed

    Liu, Ran-Yi; Zhou, Ling; Zhang, Yan-Ling; Huang, Bi-Jun; Ke, Miao-la; Chen, Jie-Min; Li, Li-Xia; Fu, Xiang; Wu, Jiang-Xue; Huang, Wenlin

    2013-12-13

    A replication-deficient adenovirus (Ad) encoding secreted human endostatin (Ad-Endo) has been demonstrated to have promising antiangiogenic and antitumoral effects. The E1B55k-deleted Ad H101 can selectively lyse cancer cells. In this study, we explored the antitumor effects and cross-interactions of Ad-Endo and H101 on nasopharyngeal carcinoma (NPC). The results showed that H101 dramatically promoted endostatin expression by Ad-Endo via rescuing Ad-Endo replication in NPC cells, and the expressed endostatin proteins significantly inhibited the proliferation of human umbilical vein endothelial cells. E1A and E1B19k products are required for the rescuing of H101 to Ad-Endo replication in CNE-1 and CNE-2 cells, but not in C666-1 cells. On the other hand, Ad-Endo enhanced the cytotoxicity of H101 by enhancing Ad replication in NPC cells. The combination of H101 and Ad-Endo significantly inhibited CNE-2 xenografts growth through the increased endostatin expression and Ad replication. These findings indicate that the combination of Ad-Endo gene therapy and oncolytic Ad therapeutics could be promising in comprehensive treatment of NPC.

  2. Cell-mediated and humoral immune response in diabetic patients with periodontitis.

    PubMed

    Anil, S; Remani, P; Vijayakumar, T; Hari, S

    1990-07-01

    Cell-mediated and humoral immune responses were assessed in 50 patients with type II or non-insulin-dependent diabetes mellitus and 50 nondiabetic patients with periodontitis. The values were compared with those of 50 age and sex-matched control subjects. The cell-mediated immunity assessed by enumerating the total and high-affinity rosette-forming cells of the patient did not show any significant variation from that of the normal control subjects. The humoral immune response was assessed by estimating serum immunoglobulins G, A, M, D, and E by single radial immunodiffusion. Except IgD, all other immunoglobulins were found to be elevated significantly in both diabetic and nondiabetic subjects. The alteration in humoral immune response may be the cause or the effect of periodontitis. The defective host response reported in diabetic patients may be responsible for the increased incidence of periodontitis in diabetic patients as compared to nondiabetic patients.

  3. Cell-mediated and humoral immune responses in patients with localized juvenile periodontitis.

    PubMed

    Anil, S; Hari, S; Remani, P; Vijayakumar, T; Ankathil, R

    1990-03-01

    Cell-mediated and humoral immune responses were assessed in 21 patients with localized juvenile periodontitis (LJP), and in an equal number of control subjects. The cell-mediated immunity, assessed by enumeration of total rosette forming cells [TRFC] and high affinity rosette forming cells [HARFC], was found to be depressed in LJP patients compared to controls. Estimation of serum immunoglobulins G,A,M,D and E levels were done using single radial immunodiffusion. All the immunoglobulins except IgD were found to be elevated significantly in LJP patients. The defective immune response found in LJP patients may be the cause or effect of the disease process. Further investigations are necessary to determine whether these defects are genetically controlled.

  4. Detection of cell mediated immune response to avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In birds, lymphomyeloid tissues develop from epithelial (Bursa of Fabricus or thymus) or mesenchymal tissue which are populated by heamatopoietic stem cells. These stem cells develop directly into immunologically competent B (bursa) and T (thymus) cells. Cell-mediated immunity (CMI) is a part of the...

  5. B-Cell-Mediated Strategies to Fight Chronic Allograft Rejection

    PubMed Central

    Dalloul, Ali

    2013-01-01

    Solid organs have been transplanted for decades. Since the improvement in graft selection and in medical and surgical procedures, the likelihood of graft function after 1 year is now close to 90%. Nonetheless even well-matched recipients continue to need medications for the rest of their lives hence adverse side effects and enhanced morbidity. Understanding Immune rejection mechanisms, is of increasing importance since the greater use of living-unrelated donors and genetically unmatched individuals. Chronic rejection is devoted to T-cells, however the role of B-cells in rejection has been appreciated recently by the observation that B-cell depletion improve graft survival. By contrast however, B-cells can be beneficial to the grafted tissue. This protective effect is secondary to either the secretion of protective antibodies or the induction of B-cells that restrain excessive inflammatory responses, chiefly by local provision of IL-10, or inhibit effector T-cells by direct cellular interactions. As a proof of concept B-cell-mediated infectious transplantation tolerance could be achieved in animal models, and evidence emerged that the presence of such B-cells in transplanted patients correlate with a favorable outcome. Among these populations, regulatory B-cells constitute a recently described population. These cells may develop as a feedback mechanism to prevent uncontrolled reactivity to antigens and inflammatory stimuli. The difficult task for the clinician, is to quantify the respective ratios and functions of “tolerant” vs. effector B-cells within a transplanted organ, at a given time point in order to modulate B-cell-directed therapy. Several receptors at the B-cell membrane as well as signaling molecules, can now be targeted for this purpose. Understanding the temporal expansion of regulatory B-cells in grafted patients and the stimuli that activate them will help in the future to implement specific strategies aimed at fighting chronic allograft

  6. Improved Bioavailability and Antitumor Effect of Docetaxel by TPGS Modified Proniosomes: In Vitro and In Vivo Evaluations

    PubMed Central

    Liu, Helong; Tu, Liangxing; Zhou, Yongxin; Dang, Zefang; Wang, Luting; Du, Junfeng; Feng, Jianfang; Hu, Kaili

    2017-01-01

    A novel oral drug delivery system, TPGS modified docetaxel proniosomes (DTX-TPGS-PNs), was designed to enhance the oral bioavailability and antitumor efficiency of the poorly water-soluble drug docetaxel. DTX-TPGS-PN niosomes were 93 ± 6.5 nm in size, −18.53 ± 1.65 mV in zeta potential and exhibited spherical morphology, with an encapsulation efficiency of 97.31 ± 0.60%. The system showed sustained release in both simulated gastric and intestinal fluid. The results of caco-2 monolayer, everted gut sac model and improved single-pass intestinal perfusion model transport studies showed that DTX-TPGS-PN niosomes could significantly improve the absorption of DTX. The pharmacokinetics study suggested the absolute bioavailability of DTX-TPGS-PN niosomes were 7.3 times that of DTX solution. In addition, a higher antitumor efficacy than DTX solution was demonstrated in MCF-7 and MDA-MB-231 cells in vitro and in MCF-7 tumor-bearing mice model in vivo. Our results demonstrated DTX-TPGS-PN is promising in enhancing the bioavailability and efficiency of poorly water-soluble drug DTX, and the potential of proniosomes as stable precursors for oral drug delivery. PMID:28266539

  7. Anti-tumor effect of adipose tissue derived-mesenchymal stem cells expressing interferon-β and treatment with cisplatin in a xenograft mouse model for canine melanoma.

    PubMed

    Ahn, Jin ok; Lee, Hee woo; Seo, Kyoung won; Kang, Sung keun; Ra, Jeong chan; Youn, Hwa young

    2013-01-01

    Adipose tissue-derived mesenchymal stem cells (AT-MSCs) are attractive cell-therapy vehicles for the delivery of anti-tumor molecules into the tumor microenvironment. The innate tropism of AT-MSCs for tumors has important implications for effective cellular delivery of anti-tumor molecules, including cytokines, interferon, and pro-drugs. The present study was designed to determine the possibility that the combination of stem cell-based gene therapy with low-dose cisplatin would improve therapeutic efficacy against canine melanoma. The IFN-β transduced canine AT-MSCs (cAT-MSC-IFN-β) inhibited the growth of LMeC canine melanoma cells in direct and indirect in vitro co-culture systems. In animal experiments using BALB/c nude mouse xenografts, which developed by injecting LMeC cells, the combination treatment of cAT-MSC-IFN-β and low-dose cisplatin significantly reduced tumor volume compared with the other treatment groups. Fluorescent microscopic analysis with a TUNEL (terminal deoxynucleotidyl transferase-mediated nick-end labeling) assay of tumor section provided evidence for homing of cAT-MSC-IFN-β to the tumor site and revealed that the combination treatment of cAT-MSC-IFN-β with low-dose cisplatin induced high levels of cell apoptosis. These findings may prove useful in further explorations of the application of these combined approaches to the treatment of malignant melanoma and other tumors.

  8. Identification of a Novel Antibiotic from Myxobacterium Stigmatella Eracta WXNXJ-B and Evaluation of its Antitumor Effects In-vitro

    PubMed Central

    Wang, Dahong; Yuan, Jiangfeng; Tao, Wenyi

    2014-01-01

    This work was to isolate and identify the bioactive secondary metabolite which was produced by myxobacterium Stigmatella eracta WXNXJ-B, and to evaluate its antitumor and apoptosis-inducing effects. The results showed that one novel compound (molecular formula C29H25NO3) was isolated, purified by Sephadex LH-20 column chromatography and preparative RP-HPLC, and identified as 5-(6-benzyl-quinolin-3-ylmethyl)-6- phenyl-3,7-dioxa- bicycle [4.1.0] heptan-3-one (named as quinoxalone) according to its UV, IR, HRMS and NMR spectra. The compound showed strong antitumor activity on B16, HepG2, MCF-7, SGC-7901, MDA-MB231 and CT-26 six tumor cell lines in-vitro. Nevertheless, it showed less cytotoxic to the mouse normal spleen cells (IC50 was 836.27 ± 13.02 µg mL-1). The cytotoxic study on HepG2 cells in-vitro showed that quinoxalone could induce the change of cell nuclear and arrested the cell division in the S and G2/M phase. Our results suggest that quinoxalone could be a potential anti-cancer agent. PMID:24734069

  9. Antitumor effects of MsurvivinT34A-CaPi complex-embedded PLGA nanoparticles in combination with Doxil in mice

    NASA Astrophysics Data System (ADS)

    Tang, Jie; He, Jinfeng; Yang, Chengli; Mao, Yi; Hu, Tingting; Zhang, Lijing; Cao, Hua; Tong, Ai-ping; Song, Xiangrong; He, Gu; Guo, Gang; Luo, Youfu; Zhang, Xiaoning; Xie, Yongmei; Zheng, Yu

    2014-11-01

    A novel calcium phosphate-pDNA complex-embedded PLGA nanoparticles have been developed for delivering therapy genes. CaPi-MsurvivinT34A-PLGA-NPs (abbreviated as ms-CaPi-PLGA-NPs) containing the MsurvivinT34A plasmid and null-CaPi-PLGA-NPs containing the empty plasmid vector as control were prepared. The nanoparticles had mean size around 130 nm and encapsulation efficiency above 85 %. What is more, the drug loading content and zeta potential of ms-CaPi-PLGA-NPs were 0.734 ± 0.007 % and -3.75 ± 1.2 mV, respectively. ms-CaPi-PLGA-NPs combined with Doxil significantly inhibited the proliferation of 4T1 breast cancer cells with IC50 of 0.2937 ± 0.02 µg/mL, which was significantly lower than those of Doxil and null-CaPi-PLGA-NPs ( p < 0.05). Morphological analysis using Hoechst 33342 and PI staining suggested that a lot of 4T1 cells in combination therapy group of ms-CaPi-PLGA-NPs + Doxil showed typical morphological characteristic of late apoptosis and necrosis. Flow cytometry analysis with PI and the apoptosis marker Annexin V-FITC staining confirmed that apoptosis fraction given by ms-CaPi-PLGA-NPs + Doxil was greater than 80 %. Both ms-CaPi-PLGA-NPs and Doxil resulted in cell cycle arrest implying that their synergistic antitumor effect was probably related to the cell cycle regulation. Then, the antitumor effect of ms-CaPi-PLGA-NPs ( i.t.) + Doxil ( i.v.) in vivo was studied using BALB/c mice inoculated with 4T1 cells. The result showed that ms-CaPi-PLGA-NPs + Doxil suppressed the tumor growth most effectively among all the treatment groups. TUNEL assay together with immunohistochemical study on CD31 and VEGF indicated that the ideal antitumor effect of ms-CaPi-PLGA-NPs + Doxil was ascribed to induction of apoptosis (apoptotic index over 90 %) and inhibition of angiogenesis. Toxicity assessment showed that no significant toxic effects were produced after treatment of ms-CaPi-PLGA-NPs + Doxil. Above all, we may conclude that the calcium phosphate-pDNA complex

  10. Stem and progenitor cell-mediated tumor selective gene therapy.

    PubMed

    Aboody, K S; Najbauer, J; Danks, M K

    2008-05-01

    The poor prognosis for patients with aggressive or metastatic tumors and the toxic side effects of currently available treatments necessitate the development of more effective tumor-selective therapies. Stem/progenitor cells display inherent tumor-tropic properties that can be exploited for targeted delivery of anticancer genes to invasive and metastatic tumors. Therapeutic genes that have been inserted into stem cells and delivered to tumors with high selectivity include prodrug-activating enzymes (cytosine deaminase, carboxylesterase, thymidine kinase), interleukins (IL-2, IL-4, IL-12, IL-23), interferon-beta, apoptosis-promoting genes (tumor necrosis factor-related apoptosis-inducing ligand) and metalloproteinases (PEX). We and others have demonstrated that neural and mesenchymal stem cells can deliver therapeutic genes to elicit a significant antitumor response in animal models of intracranial glioma, medulloblastoma, melanoma brain metastasis, disseminated neuroblastoma and breast cancer lung metastasis. Most studies reported reduction in tumor volume (up to 90%) and increased survival of tumor-bearing animals. Complete cures have also been achieved (90% disease-free survival for >1 year of mice bearing disseminated neuroblastoma tumors). As we learn more about the biology of stem cells and the molecular mechanisms that mediate their tumor-tropism and we identify efficacious gene products for specific tumor types, the clinical utility of cell-based delivery strategies becomes increasingly evident.

  11. Encapsulation of cisplatin in long-circulating and pH-sensitive liposomes improves its antitumor effect and reduces acute toxicity

    PubMed Central

    Leite, Elaine A; Souza, Cristina M; Carvalho-Júnior, Álvaro D; Coelho, Luiz GV; Lana, Ângela MQ; Cassali, Geovanni D; Oliveira, Mônica C

    2012-01-01

    Cisplatin (CDDP) is one of the most effective and potent anticancer drugs used as first-line chemotherapy against several solid tumors. However, the severe side effects and its tendency to provoke chemoresistance often limit CDDP therapy. To avoid these inconveniences, the present study’s research group developed long-circulating and pH-sensitive liposomes containing CDDP (SpHL-CDDP). The present study aimed to evaluate the antitumor effect and toxicity of SpHL-CDDP, as compared with that of free CDDP, and long-circulating and non- pH-sensitive liposomes containing CDDP (NSpHL-CDDP), after their intravenous administration in solid Ehrlich tumor-bearing mice. Antitumor activity was evaluated by analysis of tumor volume and growth inhibition ratio, serum vascular endothelial growth factor (VEGF) levels, and histomorphometric and immunohistochemical studies. Body weight variation and the histological examination of bone marrow and kidneys were used as toxicity indicators. A significant reduction in the tumor volume and a higher tumor growth inhibition ratio was observed after SpHL-CDDP treatment, compared with free CDDP and NSpHL-CDDP treatments. In addition, complete remission of the tumor was detected in 18.2% of the mice treated with SpHL- CDDP (16 mg/kg). As such, the administration of SpHL-CDDP, as compared with free CDDP and NSpHL-CDDP, led to a decrease in the area of necrosis and in the percentage of positive CDC 47 tumor cells. A significant reduction in the VEGF serum level was also observed after SpHL-CDDP treatment, as compared with free-CDDP treatment. SpHL-CDDP administered in a two-fold higher dose than that of free CDDP presented a loss in body weight and changes in the hematopoietic tissue morphology, which proved to be similar to that of free CDDP. No changes could be verified in the renal tissue after any formulations containing CDDP had been administered. These findings showed that SpHL-CDDP allowed for the administration of higher doses of CDDP

  12. The anti-tumor effect of A3 adenosine receptors is potentiated by pulsed electromagnetic fields in cultured neural cancer cells.

    PubMed

    Vincenzi, Fabrizio; Targa, Martina; Corciulo, Carmen; Gessi, Stefania; Merighi, Stefania; Setti, Stefania; Cadossi, Ruggero; Borea, Pier Andrea; Varani, Katia

    2012-01-01

    A(3) adenosine receptors (ARs) play a pivotal role in the development of cancer and their activation is involved in the inhibition of tumor growth. The effects of pulsed electromagnetic fields (PEMFs) on cancer have been controversially discussed and the detailed mechanisms are not yet fully understood. In the past we have demonstrated that PEMFs increased A(2A) and A(3)AR density and functionality in human neutrophils, human and bovine synoviocytes, and bovine chondrocytes. In the same cells, PEMF exposure increased the anti-inflammatory effect mediated by A(2A) and/or A(3)ARs. The primary aim of the present study was to evaluate if PEMF exposure potentiated the anti-tumor effect of A(3)ARs in PC12 rat adrenal pheochromocytoma and U87MG human glioblastoma cell lines in comparison with rat cortical neurons. Saturation binding assays and mRNA analysis revealed that PEMF exposure up-regulated A(2A) and A(3)ARs that are well coupled to adenylate cyclase activity and cAMP production. The activation of A(2A) and A(3)ARs resulted in the decrease of nuclear factor-kappa B (NF-kB) levels in tumor cells, whilst only A(3)ARs are involved in the increase of p53 expression. A(3)AR stimulation mediated an inhibition of tumor cell proliferation evaluated by thymidine incorporation. An increase of cytotoxicity by lactate dehydrogenase (LDH) release and apoptosis by caspase-3 activation in PC12 and U87MG cells, but not in cortical neurons, was observed following A(3)AR activation. The effect of the A(3)AR agonist in tumor cells was enhanced in the presence of PEMFs and blocked by using a well-known selective antagonist. Together these results demonstrated that PEMF exposure significantly increases the anti-tumor effect modulated by A(3)ARs.

  13. The Anti-Tumor Effect of A3 Adenosine Receptors Is Potentiated by Pulsed Electromagnetic Fields in Cultured Neural Cancer Cells

    PubMed Central

    Vincenzi, Fabrizio; Targa, Martina; Corciulo, Carmen; Gessi, Stefania; Merighi, Stefania; Setti, Stefania; Cadossi, Ruggero; Borea, Pier Andrea; Varani, Katia

    2012-01-01

    A3 adenosine receptors (ARs) play a pivotal role in the development of cancer and their activation is involved in the inhibition of tumor growth. The effects of pulsed electromagnetic fields (PEMFs) on cancer have been controversially discussed and the detailed mechanisms are not yet fully understood. In the past we have demonstrated that PEMFs increased A2A and A3AR density and functionality in human neutrophils, human and bovine synoviocytes, and bovine chondrocytes. In the same cells, PEMF exposure increased the anti-inflammatory effect mediated by A2A and/or A3ARs. The primary aim of the present study was to evaluate if PEMF exposure potentiated the anti-tumor effect of A3ARs in PC12 rat adrenal pheochromocytoma and U87MG human glioblastoma cell lines in comparison with rat cortical neurons. Saturation binding assays and mRNA analysis revealed that PEMF exposure up-regulated A2A and A3ARs that are well coupled to adenylate cyclase activity and cAMP production. The activation of A2A and A3ARs resulted in the decrease of nuclear factor-kappa B (NF-kB) levels in tumor cells, whilst only A3ARs are involved in the increase of p53 expression. A3AR stimulation mediated an inhibition of tumor cell proliferation evaluated by thymidine incorporation. An increase of cytotoxicity by lactate dehydrogenase (LDH) release and apoptosis by caspase-3 activation in PC12 and U87MG cells, but not in cortical neurons, was observed following A3AR activation. The effect of the A3AR agonist in tumor cells was enhanced in the presence of PEMFs and blocked by using a well-known selective antagonist. Together these results demonstrated that PEMF exposure significantly increases the anti-tumor effect modulated by A3ARs. PMID:22761760

  14. Combination of gambogic acid with cisplatin enhances the antitumor effects on cisplatin-resistant lung cancer cells by downregulating MRP2 and LRP expression

    PubMed Central

    Zhang, Wendian; Zhou, Hechao; Yu, Ying; Li, Jingjing; Li, Haiwen; Jiang, Danxian; Chen, Zihong; Yang, Donghong; Xu, Zumin; Yu, Zhonghua

    2016-01-01

    Cisplatin resistance is a main clinical problem of lung cancer therapy. Gambogic acid (GA) could prohibit the proliferation of a variety of human cancer cells. However, the effects of GA on cisplatin-resistant lung cancer are still unclear. The objective of the present study was to find out the antitumor effects of GA on cisplatin-resistant human lung cancer A549/DDP cells and further explore its underlying mechanisms. Cell Counting Kit-8 assay was used to observe the impacts of GA and/or cisplatin on the proliferation of lung cancer cells; flow cytometry was used to detect the effects of GA on cell cycle and apoptosis; Western blot was used to examine the effects of GA on the expression of lung resistance protein (LRP) and multidrug resistance-associated protein 2 (MRP2) protein in A549/DDP cells. Our results showed that GA dose- and time-dependently prohibited the proliferation and induced significant cell apoptosis in A549 and A549/DDP cells. GA also induced G0/G1 arrest in both A549/DDP and A549 cells. Moreover, GA upregulated protein expression level of cleaved caspase-3 and Bax and downregulated protein expression level of pro-caspase-9 and Bcl-2 in time- and dose-dependent way in A549/DDP cells. GA combined with cisplatin enhanced the cells apoptotic rate and reduced the cisplatin resistance index in A549/DDP cells. In addition, GA reduced the MRP2 and LRP protein expression level in A549/DDP cells. GA inhibits the proliferation, induces cell cycle arrest and apoptosis in A549/DDP cells. Combination of GA with cisplatin enhances the antitumor effects on cisplatin-resistant lung cancer cells by downregulating MRP2 and LRP expression. PMID:27330316

  15. Supercritical-Carbon Dioxide Fluid Extract from Chrysanthemum indicum Enhances Anti-Tumor Effect and Reduces Toxicity of Bleomycin in Tumor-Bearing Mice

    PubMed Central

    Yang, Hong-Mei; Sun, Chao-Yue; Liang, Jia-Li; Xu, Lie-Qiang; Zhang, Zhen-Biao; Luo, Dan-Dan; Chen, Han-Bin; Huang, Yong-Zhong; Wang, Qi; Lee, David Yue-Wei; Yuan, Jie; Li, Yu-Cui

    2017-01-01

    Bleomycin (BLM), a family of anti-tumor drugs, was reported to exhibit severe side effects limiting its usage in clinical treatment. Therefore, finding adjuvants that enhance the anti-tumor effect and reduce the detrimental effect of BLM is a prerequisite. Chrysanthemum indicum, an edible flower, possesses abundant bioactivities; the supercritical-carbon dioxide fluid extract from flowers and buds of C. indicum (CISCFE) have strong anti-inflammatory, anti-oxidant, and lung protective effects. However, the role of CISCFE combined with BLM treatment on tumor-bearing mice remains unclear. The present study aimed to investigate the potential synergistic effect and the underlying mechanism of CISCFE combined with BLM in the treatment of hepatoma 22 (H22) tumor-bearing mice. The results suggested that the oral administration of CISCFE combined with BLM could markedly prolong the life span, attenuate the BLM-induced pulmonary fibrosis, suppress the production of pro-inflammatory cytokines (interleukin-6), tumor necrosis factor-α, activities of myeloperoxidase, and malondiadehyde. Moreover, CISCFE combined with BLM promoted the ascites cell apoptosis, the activities of caspases 3 and 8, and up-regulated the protein expression of p53 and down-regulated the transforming growth factor-β1 by activating the gene expression of miR-29b. Taken together, these results indicated that CISCFE could enhance the anti-cancer activity of BLM and reduce the BLM-induced pulmonary injury in H22 tumor-bearing mice, rendering it as a potential adjuvant drug with chemotherapy after further investigation in the future. PMID:28245556

  16. Synergistic antitumor effect of recombinant adeno-associated virus-mediated pigment epithelium-derived factor with hyperthermia on solid tumor.

    PubMed

    Wu, Qinjie; He, Shasha; Wei, Xiawei; Shao, Bin; Luo, Shuntao; Guo, Fuchun; Zhang, Hailong; Wang, Yongsheng; Gong, Changyang; Yang, Li

    2014-09-01

    Adeno-associated virus (AAV) is an ideal choice for gene delivery; however, its further development has been limited owing to its low transduction efficiency. DNA-damaging agents can improve AAV-mediated transgene expression. Hyperthermia, as one of the oldest documented tumor treatment modalities, can cause DNA damage as well. However, combined treatment consisting of hyperthermia and AAV-mediated gene therapy has not been reported yet. In this work we investigated whether therapy consisting of AAV-mediated pigment epithelium-derived factor (PEDF) delivery combined with hyperthermia has synergistic antitumor effect on established solid tumors. We produced the recombinant AAV encoding PEDF (rAAV-PEDF). The therapeutic effect of rAAV-PEDF plus hyperthermia was evaluated in a subcutaneous fibrosarcoma mouse model, and the possible mechanism of antitumor effect was investigated. We found that rAAV-PEDF could infect a murine fibrosarcoma cell line (Meth-A) and express PEDF protein with bioactivity in vitro. In addition, in vivo experiments suggested that the combination of rAAV-PEDF with hyperthermia could significantly suppress tumor growth and prolong survival time of treated mice. Immunofluorescence studies indicated that the combination therapy could inhibit angiogenesis and induce apoptosis in tumor tissues. An immunohistochemistry assay of tumor tissue showed that PEDF expression in the combined treatment group was significantly higher than in the rAAV-PEDF group, which implied that hyperthermia could improve the expression of PEDF protein in vivo. No significant differences were observed in each group by hematoxylin-eosin staining of major organs, serum chemistry test, and complete blood assay. These results indicate that the combination of rAAV-PEDF with hyperthermia has synergistic therapeutic effects on established solid tumors, with no side effects. In addition, hyperthermia could improve AAV-mediated transgene expression, which suggests that hyperthermia

  17. Induction of Wnt-inducible signaling protein-1 correlates with invasive breast cancer oncogenesis and reduced type 1 cell-mediated cytotoxic immunity: a retrospective study.

    PubMed

    Klinke, David J

    2014-01-01

    Innate and type 1 cell-mediated cytotoxic immunity function as important extracellular control mechanisms that maintain cellular homeostasis. Interleukin-12 (IL12) is an important cytokine that links innate immunity with type 1 cell-mediated cytotoxic immunity. We recently observed in vitro that tumor-derived Wnt-inducible signaling protein-1 (WISP1) exerts paracrine action to suppress IL12 signaling. The objective of this retrospective study was three fold: 1) to determine whether a gene signature associated with type 1 cell-mediated cytotoxic immunity was correlated with overall survival, 2) to determine whether WISP1 expression is increased in invasive breast cancer, and 3) to determine whether a gene signature consistent with inhibition of IL12 signaling correlates with WISP1 expression. Clinical information and mRNA expression for genes associated with anti-tumor immunity were obtained from the invasive breast cancer arm of the Cancer Genome Atlas study. Patient cohorts were identified using hierarchical clustering. The immune signatures associated with the patient cohorts were interpreted using model-based inference of immune polarization. Reverse phase protein array, tissue microarray, and quantitative flow cytometry in breast cancer cell lines were used to validate observed differences in gene expression. We found that type 1 cell-mediated cytotoxic immunity was correlated with increased survival in patients with invasive breast cancer, especially in patients with invasive triple negative breast cancer. Oncogenic transformation in invasive breast cancer was associated with an increase in WISP1. The gene expression signature in invasive breast cancer was consistent with WISP1 as a paracrine inhibitor of type 1 cell-mediated immunity through inhibiting IL12 signaling and promoting type 2 immunity. Moreover, model-based inference helped identify appropriate immune signatures that can be used as design constraints in genetically engineering better pre

  18. HER2-specific immunoligands engaging NKp30 or NKp80 trigger NK-cell-mediated lysis of tumor cells and enhance antibody-dependent cell-mediated cytotoxicity.

    PubMed

    Peipp, Matthias; Derer, Stefanie; Lohse, Stefan; Staudinger, Matthias; Klausz, Katja; Valerius, Thomas; Gramatzki, Martin; Kellner, Christian

    2015-10-13

    NK cells detect tumors through activating surface receptors, which bind self-antigens that are frequently expressed upon malignant transformation. To increase the recognition of tumor cells, the extracellular domains of ligands of the activating NK cell receptors NKp30, NKp80 and DNAM-1 (i.e. B7-H6, AICL and PVR, respectively) were fused to a single-chain fragment variable (scFv) targeting the human epidermal growth factor receptor 2 (HER2), which is displayed by various solid tumors. The resulting immunoligands, designated B7-H6:HER2-scFv, AICL:HER2-scFv, and PVR:HER2-scFv, respectively, bound HER2 and the addressed NK cell receptor. However, whereas B7-H6:HER2-scFv and AICL:HER2-scFv triggered NK cells to kill HER2-positive breast cancer cells at nanomolar concentrations, PVR:HER2-scFv was not efficacious. Moreover, NK cell cytotoxicity was enhanced synergistically when B7-H6:HER2-scFv or AICL:HER2-scFv were applied in combination with another HER2-specific immunoligand engaging the stimulatory receptor NKG2D. In contrast, no improvements were achieved by combining B7-H6:HER2-scFv with AICL:HER2-scFv. Additionally, B7-H6:HER2-scFv and AICL:HER2-scFv enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) by the therapeutic antibodies trastuzumab and cetuximab synergistically, with B7-H6:HER2-scFv exhibiting a higher efficacy. In summary, antibody-derived proteins engaging NKp30 or NKp80 may represent attractive biologics to further enhance anti-tumor NK cell responses and may provide an innovative approach to sensitize tumor cells for antibody-based immunotherapy.

  19. 1,6-Bis[4-(4-amino-3-hydroxyphenoxy)phenyl] diamantane potentiates in vitro and in vivo antitumor effects of irinotecan on human colorectal cancer cells.

    PubMed

    Yang, Po-Sheng; Wang, Jane-Jen; Wang, Yea-Hwey; Jan, Woan-Ching; Cheng, Shih-Ping; Hsu, Yi-Chiung

    2016-05-01

    1,6-Bis[4-(4-amino-3-hydroxyphenoxy)phenyl] diamantane (DPD), a diamantane derivative, was previously noted as an anticancer compound through anticancer drug screening with NCI-60 human tumor cells. Irinotecan (CPT-11), a semisynthetic derivative of camptothecin, is clinically active in the treatment of colorectal cancer, with no cross-resistance. The current study conducted a pharmacokinetic evaluation of DPD, an essential component of drug discovery. Subsequent pathway analysis of microarray gene expression data indicated that the anticancer mechanisms of DPD were associated with cell cycle progression and apoptosis. The combined effect of DPD and CPT-11 with regard to the mechanisms of apoptosis-related pathways in COLO 205 cells, and the antitumor effects in colon cancer xenograft mice, were investigated. The plasma concentration and pharmacokinetic parameters of DPD in male albino rats were analyzed following a single dose of DPD by injection. The protein expression of active caspase-3, procaspase-3 and poly ADP-ribose polymerase (PARP) in COLO 205 cells treated with DPD and CPT-11, alone or combined, was evaluated by western blotting. A trypan blue dye exclusion assay revealed that, whilst DPD alone demonstrated good antitumor effects, this effect was potentiated when combined with CPT-11. Combined treatment with DPD and CPT-11 upregulated the expression of cleaved PARP, procaspase-3, caspase-3 and active caspase-3 in COLO 205 cells. In the colon cancer xenograft model, compared with the control (vehicle-treated) mice, the sizes of the tumors were significantly lower in mice treated with DPD and CPT-11, alone or in combination. Thus, DPD may be a potential therapeutic agent for the treatment of colorectal cancer via upregulating apoptosis-related pathways.

  20. 1,6-Bis[4-(4-amino-3-hydroxyphenoxy)phenyl] diamantane potentiates in vitro and in vivo antitumor effects of irinotecan on human colorectal cancer cells

    PubMed Central

    YANG, PO-SHENG; WANG, JANE-JEN; WANG, YEA-HWEY; JAN, WOAN-CHING; CHENG, SHIH-PING; HSU, YI-CHIUNG

    2016-01-01

    1,6-Bis[4-(4-amino-3-hydroxyphenoxy)phenyl] diamantane (DPD), a diamantane derivative, was previously noted as an anticancer compound through anticancer drug screening with NCI-60 human tumor cells. Irinotecan (CPT-11), a semisynthetic derivative of camptothecin, is clinically active in the treatment of colorectal cancer, with no cross-resistance. The current study conducted a pharmacokinetic evaluation of DPD, an essential component of drug discovery. Subsequent pathway analysis of microarray gene expression data indicated that the anticancer mechanisms of DPD were associated with cell cycle progression and apoptosis. The combined effect of DPD and CPT-11 with regard to the mechanisms of apoptosis-related pathways in COLO 205 cells, and the antitumor effects in colon cancer xenograft mice, were investigated. The plasma concentration and pharmacokinetic parameters of DPD in male albino rats were analyzed following a single dose of DPD by injection. The protein expression of active caspase-3, procaspase-3 and poly ADP-ribose polymerase (PARP) in COLO 205 cells treated with DPD and CPT-11, alone or combined, was evaluated by western blotting. A trypan blue dye exclusion assay revealed that, whilst DPD alone demonstrated good antitumor effects, this effect was potentiated when combined with CPT-11. Combined treatment with DPD and CPT-11 upregulated the expression of cleaved PARP, procaspase-3, caspase-3 and active caspase-3 in COLO 205 cells. In the colon cancer xenograft model, compared with the control (vehicle-treated) mice, the sizes of the tumors were significantly lower in mice treated with DPD and CPT-11, alone or in combination. Thus, DPD may be a potential therapeutic agent for the treatment of colorectal cancer via upregulating apoptosis-related pathways. PMID:27123150

  1. Antitumor effects of deguelin on H460 human lung cancer cells in vitro and in vivo: Roles of apoptotic cell death and H460 tumor xenografts model.

    PubMed

    Hsu, Yu-Chieh; Chiang, Jo-Hua; Yu, Chun-Shu; Hsia, Te-Chun; Wu, Rick Sai-Chuen; Lien, Jin-Cherng; Lai, Kuang-Chi; Yu, Fu-Shun; Chung, Jing-Gung

    2017-01-01

    Deguelin, a naturally occurring rotenoid of the flavonoid family, is known to be an Akt inhibitor, to have chemopreventive activities and anti-tumor effect on several cancers. In this study, investigation to elucidate the effect of deguelin on apoptotic pathways in human lung cancer cells and on the anti-tumor effect in lung cancer xenograft nu/nu mice was performed. In vitro studies, found that deguelin induced cell morphological changes, and decreased the percentage of viability through the induction of apoptosis in H460 lung cancer cells. Deguelin triggered apoptosis in H460 cells was also confirmed by DAPI staining, DNA gel electrophoresis, and Annexin V-FITC staining and these effects are dose-dependent manners. It was also found that deguelin promoted the Ca(2+) production and activation of caspase-3 but decreased the level of ΔΨm in H460 cells. Western blots indicated that the protein levels of cytochrome c, AIF, and pro-apoptotic Bax and Bak protein were increased, but the anti-apoptotic Bcl-2 and Bcl-x were decreased that may have led to apoptosis in H460 cells after exposure to deguelin. It was also confirmed by confocal laser microscope examination that deguelin promoted the release of AIF from mitochondria to cytosol. In vivo studies, found that in immunodeficient nu/nu mice bearing H460 tumor xenografts showed that the deguelin significantly suppressed tumor growth. Deguelin might be a potential therapeutic agent for the treatment of lung cancer in the future. This finding might fully support a critical event for deguelin via induction of apoptotic cell death and H460 tumor xenografts model against human lung cancer. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 84-98, 2017.

  2. Utility of Clostridium difficile toxin B for inducing anti-tumor immunity.

    PubMed

    Huang, Tuxiong; Li, Shan; Li, Guangchao; Tian, Yuan; Wang, Haiying; Shi, Lianfa; Perez-Cordon, Gregorio; Mao, Li; Wang, Xiaoning; Wang, Jufang; Feng, Hanping

    2014-01-01

    Clostridium difficile toxin B (TcdB) is a key virulence factor of bacterium and induces intestinal inflammatory disease. Because of its potent cytotoxic and proinflammatory activities, we investigated the utility of TcdB in developing anti-tumor immunity. TcdB induced cell death in mouse colorectal cancer CT26 cells, and the intoxicated cells stimulated the activation of mouse bone marrow-derived dendritic cells and subsequent T cell activation in vitro. Immunization of BALB/c mice with toxin-treated CT26 cells elicited potent anti-tumor immunity that protected mice from a lethal challenge of the same tumor cells and rejected pre-injected tumors. The anti-tumor immunity generated was cell-mediated, long-term, and tumor-specific. Further experiments demonstrated that the intact cell bodies were important for the immunogenicity since lysing the toxin-treated tumor cells reduced their ability to induce antitumor immunity. Finally, we showed that TcdB is able to induce potent anti-tumor immunity in B16-F10 melanoma model. Taken together, these data demonstrate the utility of C. difficile toxin B for developing anti-tumor immunity.

  3. Cytokine-inducing activity and antitumor effect of a liposome-incorporated interferon-gamma-inducing molecule derived from OK-432, a streptococcal preparation.

    PubMed

    Okamoto, M; Gohda, H; Ohe, G; Yoshida, H; Matsuno, T; Saito, M; Sato, M

    2000-01-01

    An interferon-gamma (IFN-gamma)-inducing molecule (OK-PSA) has been purified from OK-432 by an affinity chromatographic technique performed on cyanogen bromide-activated Sepharose 4B-bound TS-2 monoclonal antibody, which neutralizes IFN-gamma-inducing activity of OK-432. OK-PSA has striking anti-tumor activity in vivo and in vitro. In the current study, the liposomes were used to improve the delivery of the agent (OK-PSA) to effector cells and to increase the therapeutic effect. Significantly less OK-PSA encapsulated into liposomes (Lipo-OK-PSA) than OK-PSA alone (1/100 or less of OK-PSA alone) was required to induce IFN-gamma, tumor necrosis factor-alpha (TNF-alpha), TNF-beta, interleukin-1 beta (IL-1 beta), natural killer, and lymphokine-activated killer activities by human peripheral blood mononuclear cells and mouse spleen cells. Furthermore, higher levels of these activities were detected in peripheral blood mononuclear cells and mouse spleen cells treated with Lipo-OK-PSA than in those treated with OK-PSA. All of these activities induced by Lipo-OK-PSA were almost completely neutralized by anti-asialo-GM1 antibody and complement (p < 0.001). In in vivo experiments, Lipo-OK-PSA elicited striking anti-tumor activity on syngeneic Meth-A tumor-bearing and colon 26-bearing BALB/c mice and on salivary gland tumor-bearing nude mice far better than did OK-PSA. Furthermore, high levels of natural killer and lymphokine-activated killer activities and a significant increase in the number of cells positive for asialo-GM1, IFN-gamma, TNF-alpha, or IL-1 beta were detected in the spleen cells derived from the animals given Lipo-OK-PSA compared with those given saline. These findings clearly indicate that OK-PSA plays an important role in the anti-tumor efficiency of OK-432, and that, for the most part, liposome encapsulation of this molecule markedly accelerates its effect mediated by asialo-GM1-positive cells (mainly natural killer cells).

  4. Comparison of the anti-tumor effects of denosumab and zoledronic acid on the neoplastic stromal cells of giant cell tumor of bone.

    PubMed

    Lau, Carol P Y; Huang, Lin; Wong, Kwok Chuen; Kumta, Shekhar Madhukar

    2013-01-01

    Denosumab and Zoledronic acid (ZOL) are two antiresorptive drugs currently in use for treating osteoporosis. They have different mechanisms of action but both have been shown to delay the onset of skeletal-related events in patients with giant cell tumor of bone (GCT). However, the anti-tumor mechanisms of denosumab on the neoplastic GCT stromal cells remain unknown. In this study, we focused on the direct effects of denosumab on the neoplastic GCT stromal cells and compared with ZOL. The microscopic view demonstrated a reduced cell growth in ZOL-treated but not in denosumab-treated GCT stromal cells. ZOL was found to exhibit a dose-dependent inhibition in cell growth in all GCT stromal cell lines tested and cause apoptosis in two out of three cell lines. In contrast, denosumab only exerted a minimal inhibitory effect in one cell line and did not induce any apoptosis. ZOL significantly inhibited the mRNA expression of receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG) in two GCT stromal cell lines whereas their protein levels remained unchanged. On the contrary, denosumab did not regulate RANKL and OPG expression at both mRNA and protein levels. Moreover, the protein expression of Macrophage Colony-Stimulating Factor (M-CSF), Alkaline Phosphatase (ALP), and Collagen α1 Type I were not regulated by denosumab and ZOL either. Our findings provide new insights in the anti-tumor effect of denosumab on GCT stromal cells and raise a concern that tumor recurrence may occur after the withdrawal of the drug.

  5. Preparation of the core-shell structure adriamycin lipiodol microemulsions and their synergistic anti-tumor effects with diethyldithiocarbamate in vivo.

    PubMed

    Daocheng, Wu; Mingxi, Wan

    2010-11-01

    We prepared the core-shell structure adriamycin lipiodol microemulsions (ADM-CSLMs) and evaluated their in vivo antitumor effects in combination with Diethyldithiocarbamate (DDC). Two types of ADM-CSLMs, adriamycin liposome-lipiodol microemulsion(ADM-LLM) and adriamycin microsphere lipiodol microemulsion (ADM-MLM), were prepared through the emulsification method. The drug loading and encapsulation efficiency of ADM-CSLMs were measured by the high-performance liquid chromatograph (HPLC). The size and shape of the ADM-CSLMs were determined by an atom force microscopy (AFM), a transmission electron microscopy (TEM), and a particle size analyzer, respectively. The synergistic effects of DDC and ADM-CSLMs for cancer treatment of carcinoma drug-resistance cell was evaluated by the MTT method, the activation of superoxide dismutase (SOD) was detected by chemiluminescence, and the ADM accumulation in cells was measured by flow cytometry. Walker-256 carcinoma was transplanted to the livers of the male SD rats, ADM-CSLMs were administrated to the livers of the rats by intervention hepatic artery embolization through microsurgery. The tumor growth and animal survival were evaluated. The results show that the average diameter of ADM-LLM and ADM-MLM were 4.23 ± 1.2 μm and 4.67 ± 1.4 μm, respectively, and their ADM encapsulation efficiency were 83.7% and 87.2% with respect to loading efficiency of 82 μg/ml and 91 μg/ml. The tumor growth and animal survival in two of the ADM-CSLMs combined with DDC groups were significantly higher than that of ADM only treatment, ADM liposome combined with DDC (P < 0.01), as well as the ADM microsphere combined with DDC (P < 0.01). Therefore, ADM-CSLMs are useful carriers for the treatment of carcinoma and their anti-tumor effect can be enhanced by DDC in a suitable concentration.

  6. Cellular Preoxygenation Partially Attenuates the Antitumoral Effect of Cisplatin despite Highly Protective Effects on Renal Epithelial Cells

    PubMed Central

    Rasoulian, Bahram; Rezaei, Maryam; Hajializadeh, Zahra

    2017-01-01

    Our previous in vitro studies demonstrated that oxygen pretreatment significantly protects human embryonic renal tubular cell against acute cisplatin- (CP-) induced cytotoxicity. The present study was designed to investigate whether this protective effect is associated with decreasing therapeutic effects of cisplatin on malignant cells. For this purpose, cultured human embryonic kidney epithelial-like (AD293), cervical carcinoma epithelial-like (Hela), and ovarian adenocarcinoma epithelial-like (OVCAR-3) cells were subjected to either 2-hour pretreatment with oxygen (≥90%) or normal air and then to a previously determined 50% lethal dose of cisplatin for 24 hours. Cellular viability was evaluated via MTT and Neutral Red assays. Also, activated caspase-3 and Bax/Bcl-2 ratio, as the biochemical markers of cell apoptosis, were determined using immunoblotting. The hyperoxic preexposure protocol significantly protects renal AD293 cells against cisplatin-induced toxicity. Oxygen pretreatment also partially attenuated the cisplatin-induced cytotoxic effects on Hela and OVCAR-3 cells. However, it did not completely protect these cells against the therapeutic cytotoxic effects of cisplatin. In summary, the protective methods for reducing cisplatin nephrotoxic side effects like oxygen pretreatment might be associated with concurrent reduction of the therapeutic cytotoxic effects of cisplatin on malignant cells like cervical carcinoma (Hela) and ovarian adenocarcinoma (OVCAR-3) cells. PMID:28298953

  7. Cellular Preoxygenation Partially Attenuates the Antitumoral Effect of Cisplatin despite Highly Protective Effects on Renal Epithelial Cells.

    PubMed

    Rasoulian, Bahram; Kaeidi, Ayat; Rezaei, Maryam; Hajializadeh, Zahra

    2017-01-01

    Our previous in vitro studies demonstrated that oxygen pretreatment significantly protects human embryonic renal tubular cell against acute cisplatin- (CP-) induced cytotoxicity. The present study was designed to investigate whether this protective effect is associated with decreasing therapeutic effects of cisplatin on malignant cells. For this purpose, cultured human embryonic kidney epithelial-like (AD293), cervical carcinoma epithelial-like (Hela), and ovarian adenocarcinoma epithelial-like (OVCAR-3) cells were subjected to either 2-hour pretreatment with oxygen (≥90%) or normal air and then to a previously determined 50% lethal dose of cisplatin for 24 hours. Cellular viability was evaluated via MTT and Neutral Red assays. Also, activated caspase-3 and Bax/Bcl-2 ratio, as the biochemical markers of cell apoptosis, were determined using immunoblotting. The hyperoxic preexposure protocol significantly protects renal AD293 cells against cisplatin-induced toxicity. Oxygen pretreatment also partially attenuated the cisplatin-induced cytotoxic effects on Hela and OVCAR-3 cells. However, it did not completely protect these cells against the therapeutic cytotoxic effects of cisplatin. In summary, the protective methods for reducing cisplatin nephrotoxic side effects like oxygen pretreatment might be associated with concurrent reduction of the therapeutic cytotoxic effects of cisplatin on malignant cells like cervical carcinoma (Hela) and ovarian adenocarcinoma (OVCAR-3) cells.

  8. Advances in the study of berberine and its derivatives: a focus on anti-inflammatory and anti-tumor effects in the digestive system

    PubMed Central

    Zou, Kun; Li, Zhao; Zhang, Yong; Zhang, Hao-yue; Li, Bo; Zhu, Wei-liang; Shi, Ji-ye; Jia, Qi; Li, Yi-ming

    2017-01-01

    It has been widely recognized that inflammation, particularly chronic inflammation, can increase the risk of cancer and that the simultaneous treatment of inflammation and cancer may produce excellent therapeutic effects. Berberine, an alkaloid isolated from Rhizoma coptidis, has broad applications, particularly as an antibacterial agent in the clinic with a long history. Over the past decade, many reports have demonstrated that this natural product and its derivatives have high activity against both cancer and inflammation. In this review, we summarize the advances in studing berberine and its derivatives as anti-inflammatory and anti-tumor agents in the digestive system; we also discuss their structure-activity relationship. These data should be useful for the development of this natural product as novel anticancer drugs with anti-inflammation activity. PMID:27917872

  9. Antitumor effect of iRGD-modified liposomes containing conjugated linoleic acid–paclitaxel (CLA-PTX) on B16-F10 melanoma

    PubMed Central

    Du, Ruo; Zhong, Ting; Zhang, Wei-Qiang; Song, Ping; Song, Wen-Ding; Zhao, Yang; Wang, Chao; Tang, Yi-Qun; Zhang, Xuan; Zhang, Qiang

    2014-01-01

    In the present study, we prepared a novel delivery system of iRGD (CRGDK/RGPD/EC)-modified sterically stabilized liposomes (SSLs) containing conjugated linoleic acid–paclitaxel (CLA-PTX). The anti-tumor effect of iRGD-SSL-CLA-PTX was investigated on B16-F10 melanoma in vitro and in vivo. The in vitro targeting effect of iRGD-modified SSLs was investigated in a real-time confocal microscopic analysis experiment. An endocytosis-inhibition assay was used to evaluate the endocytosis pathways of the iRGD-modified SSLs. In addition, the in vitro cellular uptake and in vitro cytotoxicity of iRGD-SSL-CLA-PTX were evaluated in B16-F10 melanoma cells. In vivo biodistribution and in vivo antitumor effects of iRGD-SSL-CLA-PTX were investigated in B16-F10 tumor-bearing mice. The induction of apoptosis by iRGD-SSL-CLA-PTX was evaluated in tumor-tissue sections. Real-time confocal microscopic analysis results indicated that the iRGD-modified SSLs internalized into B16-F10 cells faster than SSLs. The identified endocytosis pathway of iRGD-modified SSLs indicated that energy- and lipid raft-mediated endocytosis played a key role in the liposomes’ cellular uptake. The results of the cellular uptake experiment indicated that the increased cellular uptake of CLA-PTX in the iRGD-SSL-CLA-PTX-treated group was 1.9-, 2.4-, or 2.1-fold compared with that in the CLA-PTX group after a 2-, 4-, or 6-hour incubation, respectively. In the biodistribution test, the CLA-PTX level in tumor tissues from iRGD-SSL-CLA-PTX-treated mice at 1 hour (1.84±0.17 μg/g) and 4 hours (1.17±0.28 μg/g) was 2.3- and 2.0-fold higher than that of CLA-PTX solution at 1 hour (0.79±0.06 μg/g) and 4 hours (0.58±0.04 μg/g). The value of the area under the curve for the first 24 hours in the tumors of iRGD-SSL-CLA-PTX-treated mice was significantly higher than that in the SSL-CLA-PTX and CLA-PTX solution-treated groups (P<0.01). The in vivo antitumor results indicated that iRGD-SSL-CLA-PTX significantly

  10. Antitumor effect of iRGD-modified liposomes containing conjugated linoleic acid-paclitaxel (CLA-PTX) on B16-F10 melanoma.

    PubMed

    Du, Ruo; Zhong, Ting; Zhang, Wei-Qiang; Song, Ping; Song, Wen-Ding; Zhao, Yang; Wang, Chao; Tang, Yi-Qun; Zhang, Xuan; Zhang, Qiang

    2014-01-01

    In the present study, we prepared a novel delivery system of iRGD (CRGDK/RGPD/EC)-modified sterically stabilized liposomes (SSLs) containing conjugated linoleic acid-paclitaxel (CLA-PTX). The anti-tumor effect of iRGD-SSL-CLA-PTX was investigated on B16-F10 melanoma in vitro and in vivo. The in vitro targeting effect of iRGD-modified SSLs was investigated in a real-time confocal microscopic analysis experiment. An endocytosis-inhibition assay was used to evaluate the endocytosis pathways of the iRGD-modified SSLs. In addition, the in vitro cellular uptake and in vitro cytotoxicity of iRGD-SSL-CLA-PTX were evaluated in B16-F10 melanoma cells. In vivo biodistribution and in vivo antitumor effects of iRGD-SSL-CLA-PTX were investigated in B16-F10 tumor-bearing mice. The induction of apoptosis by iRGD-SSL-CLA-PTX was evaluated in tumor-tissue sections. Real-time confocal microscopic analysis results indicated that the iRGD-modified SSLs internalized into B16-F10 cells faster than SSLs. The identified endocytosis pathway of iRGD-modified SSLs indicated that energy- and lipid raft-mediated endocytosis played a key role in the liposomes' cellular uptake. The results of the cellular uptake experiment indicated that the increased cellular uptake of CLA-PTX in the iRGD-SSL-CLA-PTX-treated group was 1.9-, 2.4-, or 2.1-fold compared with that in the CLA-PTX group after a 2-, 4-, or 6-hour incubation, respectively. In the biodistribution test, the CLA-PTX level in tumor tissues from iRGD-SSL-CLA-PTX-treated mice at 1 hour (1.84±0.17 μg/g) and 4 hours (1.17±0.28 μg/g) was 2.3- and 2.0-fold higher than that of CLA-PTX solution at 1 hour (0.79±0.06 μg/g) and 4 hours (0.58±0.04 μg/g). The value of the area under the curve for the first 24 hours in the tumors of iRGD-SSL-CLA-PTX-treated mice was significantly higher than that in the SSL-CLA-PTX and CLA-PTX solution-treated groups (P<0.01). The in vivo antitumor results indicated that iRGD-SSL-CLA-PTX significantly inhibited

  11. Endostar enhances the antitumor effects of radiation by affecting energy metabolism and alleviating the tumor microenvironment in a Lewis lung carcinoma mouse model

    PubMed Central

    ZHENG, YONG-FA; GE, WEI; XU, HUI-LIN; CAO, DE-DONG; LIU, LIANG; MING, PING-PO; LI, CHANG-HU; XU, XI-MING; TAO, WEI-PING; TAO, ZE-ZHANG

    2015-01-01

    Lung cancer is a leading cause of morbidity and mortality. Previous studies have identified that an improvement in treatment efficacy was achieved using Endostar; however, the role of Endostar in lung cancer remains poorly understood. The present study investigated whether the enhanced antitumor effects of Endostar in combination with radiation involved changes in the metabolism and microenvironment in non-small cell lung cancer. A Lewis lung carcinoma mouse model was used, including the control, Endostar (ES), radiotherapy (RT) and Endostar plus radiotherapy (ES + RT) groups. The tumor inhibition rates and growth were described based on changes in tumor volume. In addition, ultraviolet enzymatic analysis was performed to determine the lactate level and reverse transcription-polymerase chain reaction was used to measure the mRNA expression of lactate dehydrogenase (LDH). A Meph-3 pH meter was used to detect the ranges of tumor interstitial tissue pH, and immunohistochemical analysis was adopted to examine hypoxia within the tumor microenvironment. The tumor inhibition rate of the ES + RT group was significantly higher compared with the other three groups (P<0.05). Following treatment, the lactate levels decreased in all three treatment groups compared with the control, particularly in the ES + RT group (P<0.05). Reduced LDH expression and hypoxic fraction in the tumor microenvironment were also observed in the ES + RT group (P<0.05). Furthermore, changes from acidic to alkaline pH in the tumor microenvironment were detected in the ES + RT group. The present study suggested that Endostar is involved in the regulation of metabolism and tumor microenvironment hypoxia, which may be responsible for the enhanced antitumor effect of Endostar in combination with radiotherapy. PMID:26722291

  12. Antitumor effects obtained by autologous Lewis lung cancer cell vaccine engineered to secrete mouse interleukin 27 by means of cationic liposome.

    PubMed

    Zhang, Junfeng; Tian, Hongwei; Li, Can; Cheng, Lin; Zhang, Shuang; Zhang, Xiaomei; Wang, Ruibo; Xu, Fen; Dai, Lei; Shi, Gang; Chen, Xiaolei; Li, Yiming; Du, Tao; Deng, Jie; Liu, Yu; Yang, Yang; Wei, Yuquan; Deng, Hongxin

    2013-10-01

    Interleukin-27 (IL-27), a novel IL-6/IL-12 family cytokine, plays an important role in the early regulation of Th1 responses. The cytokine IL-27 can exert a variety of immune-regulatory functions including cytotoxic T lymphocyte (CTL), CD4+, CD8+ T lymphocytes activation and interferon-γ (IFN-γ) production. In this study, we developed an effective and gene modified tumor cell vaccine. Lewis lung cancer cell LL/2 transfected with the DOTAP:cholesterol cationic liposome could express the mouse IL-27 (mIL-27) gene at a relative high level. The resultant transfectants were then irradiated with X-ray and used as a tumor cell vaccine. This tumor cell vaccine not only contained tumor associated antigen (TAA) of LL/2 cells but also secreted mIL-27 which could induce immune response in mice. The mice vaccinated with LL/2-mIL-27 performed strong tumor inhibiting effect accompanied with a high IFN-γ production. Both CD4+ and CD8+ T lymphocytes were significantly elevated in these mice vaccinated with LL/2-mIL-27 cell vaccine. Moreover, after depletion of CD4+, CD8+ T lymphocytes by injection of antibodies against CD4 and CD8, the vaccinated mice inoculated with autologous LL/2 cells were not protected from tumor challenge. In contrast, vaccinated mice inoculated with autologous LL/2 cells were treated with antibody against natural killer (NK)cells or normal rat IgG still possessed strong antitumor activity. Our data suggested that DOTAP:cholesterol cationic liposome was quite useful in generating an autologous tumor cell vaccine and mIL-27 could be therapeutically used to potentiate the host antitumor immunity.

  13. Acidic mucopolysaccharide from Holothuria leucospilota has antitumor effect by inhibiting angiogenesis and tumor cell invasion in vivo and in vitro.

    PubMed

    Zhang, Weiwei; Lu, Yin; Xu, Bo; Wu, Jiaming; Zhang, Lijuan; Gao, Ming; Zheng, Shizhong; Wang, Aiyun; Zhang, Changbin; Chen, Lei; Lei, Na

    2009-08-01

    Acidic mucopolysaccharide from Holothuria Leucospilota (HS) may affect some steps in metastasis cascade. In vitro, HS inhibited the growth of B16F10 cells and proliferation of VEGF-induced HUVEC dose-dependently compared to the control, VEGF-induced capillary-like tube networks and the numbers of migratory and invasive cells were significantly inhibited by HS in a dose-dependent manner under the cytotoxic doses. Additionally, VEGF-induced vessel sprouting of rat aortic ring was also inhibited by HS. It also has been demonstrated that the invasive ability of B16F10 melanoma cells through the Matrigel-embedded Boyden chamber was suppressed by 0.5 muM HS. The protein level secreted by B16F10 cells of MMP-2,-9 and VEGF were decreased by HS treatment. In vivo, a tumor growth inhibition study was carried out using mice bearing B16F10 cells model of metastasis, no matter experimental or spontaneous, showed that HS at 5.2, 11.6 and 26 mg/kg (weight of mice) could markedly decreased the metastatic tumors in mouse lung in a dose-dependent manner. In CAM assay and Matrigel plug assay in vivo, HS (50 microg/egg and 100 microg/egg) inhibited new blood vessel formation on the growing chick chorioallantoic membrane, and HS (5.2 and 26 mg/kg body weight) reduced the vessel density in Matrigel plugs implanted in mice. Taken together, these results demonstrate that HS has antimetastasic properties possibly via its antiangiogenesis induced by downregulation of VEGF and suppression of invasive ability of cancer cells mediated by downregulation of MMP-2, -9 and their activities.

  14. New flow cytometric assays for monitoring cell-mediated cytotoxicity.

    PubMed

    Zaritskaya, Liubov; Shurin, Michael R; Sayers, Thomas J; Malyguine, Anatoli M

    2010-06-01

    The exact immunologic responses after vaccination that result in effective antitumor immunity have not yet been fully elucidated and the data from ex vivo T-cell assays have not yet defined adequate surrogate markers for clinical efficacy. A more detailed knowledge of the specific immune responses that correlate with positive clinical outcomes should help to develop better or novel strategies to effectively activate the immune system against tumors. Furthermore, clinically relevant material is often limited and, thus, precludes the ability to perform multiple assays. The two main assays currently used to monitor lymphocyte-mediated cytoxicity in cancer patients are the (51)Cr-release assay and IFN-gamma ELISpot assay. The former has a number of disadvantages, including low sensitivity, poor labeling and high spontaneous release of isotope from some tumor target cells. Additional problems with the (51)Cr-release assay include difficulty in obtaining autologous tumor targets, and biohazard and disposal problems for the isotope. The ELISpot assays do not directly measure cytotoxic activity and are, therefore, a surrogate marker of cyotoxic capacity of effector T cells. Furthermore, they do not assess cytotoxicity mediated by the production of the TNF family of death ligands by the cytotoxic cells. Therefore, assays that allow for the simultaneous measurement of several parameters may be more advantageous for clinical monitoring. In this respect, multifactor flow cytometry-based assays are a valid addition to the currently available immunologic monitoring assays. Use of these assays will enable detection and enumeration of tumor-specific cytotoxic T lymphocytes and their specific effector functions and any correlations with clinical responses. Comprehensive, multifactor analysis of effector cell responses after vaccination may help to detect factors that determine the success or failure of a vaccine and its immunological potency.

  15. Intratumoral hu14.18-IL-2 (IC) induces local and systemic antitumor effects that involve both activated T and NK cells as well as enhanced IC retention.

    PubMed

    Yang, Richard K; Kalogriopoulos, Nicholas A; Rakhmilevich, Alexander L; Ranheim, Erik A; Seo, Songwon; Kim, Kyungmann; Alderson, Kory L; Gan, Jacek; Reisfeld, Ralph A; Gillies, Stephen D; Hank, Jacquelyn A; Sondel, Paul M

    2012-09-01

    hu14.18-IL-2 (IC) is an immunocytokine consisting of human IL-2 linked to hu14.18 mAb, which recognizes the GD2 disialoganglioside. Phase 2 clinical trials of i.v. hu14.18-IL-2 (i.v.-IC) in neuroblastoma and melanoma are underway and have already demonstrated activity in neuroblastoma. We showed previously that intratumoral hu14.18-IL-2 (IT-IC) results in enhanced antitumor activity in mouse models compared with i.v.-IC. The studies presented in this article were designed to determine the mechanisms involved in this enhanced activity and to support the future clinical testing of intratumoral administration of immunocytokines. Improved survival and inhibition of growth of both local and distant tumors were observed in A/J mice bearing s.c. NXS2 neuroblastomas treated with IT-IC compared with those treated with i.v.-IC or control mice. The local and systemic antitumor effects of IT-IC were inhibited by depletion of NK cells or T cells. IT-IC resulted in increased NKG2D receptors on intratumoral NKG2A/C/E⁺ NKp46⁺ NK cells and NKG2A/C/E⁺ CD8⁺ T cells compared with control mice or mice treated with i.v.-IC. NKG2D levels were augmented more in tumor-infiltrating lymphocytes compared with splenocytes, supporting the localized nature of the intratumoral changes induced by IT-IC treatment. Prolonged retention of IC at the tumor site was seen with IT-IC compared with i.v.-IC. Overall, IT-IC resulted in increased numbers of activated T and NK cells within tumors, better IC retention in the tumor, enhanced inhibition of tumor growth, and improved survival compared with i.v.-IC.

  16. Valproic Acid Upregulates NKG2D Ligand Expression through an ERK-dependent Mechanism and Potentially Enhances NK Cell-mediated Lysis of Myeloma1

    PubMed Central

    Wu, Xiaosong; Tao, Yi; Hou, Jun; Meng, Xiuqin; Shi, Jumei

    2012-01-01

    Modulation of the antitumor immune response through the engagement of NKG2D receptors with their ligands (L) on targets represents a promising therapeutic approach against cancer. In this study, we tested the effect of valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, on the expression of NKG2D ligands in myeloma cells. We demonstrated that VPA was able to upregulate both protein and mRNA expression of major histocompatibility complex class I-related chain (MIC) A/B and UL16-binding protein (ULBP) 2 without any significant effect on the expression of ULBP1, ULBP3, and ULBP4 or induction of other natural killer (NK) cell ligands, such as NKp30-L, NKp44-L, and NKp46-L in myeloma cells. A 51Cr release assay and degranulation assay indicated that the induction of MICA/B and ULBP2 augmented NK cell-mediated lysis of myeloma cells, which was abolished by the addition of a blocking NKG2D antibody. Activation of constitutively phosphorylated extracellular signal-regulated kinase (ERK) by VPA is essential for the up-regulation of MICA/B and ULBP2 expressions. Inhibition of ERK using ERK inhibitor PD98059 decreased both MICA/B and ULBP2 expressions and NK cell cytotoxicity. Furthermore, overexpression of constitutively active ERK in ARK resulted in increased MICA/B and ULBP2 expressions and enhanced NK cell lysis. These data indicate that increased sensitivity of VPA-treated myeloma cells to NK cell lysis is caused by higher NKG2D ligand expression, resulting from more active ERK signaling pathway. Our results provide evidence that targeting ERK signaling pathway may be an additional mechanism supporting the antimyeloma activity of HDAC inhibitors and suggest its possible immunotherapeutic value for myeloma treatment. PMID:23308050

  17. Degrasyn potentiates the antitumor effects of bortezomib in mantle cell lymphoma cells in vitro and in vivo: therapeutic implications.

    PubMed

    Pham, Lan V; Tamayo, Archito T; Li, Changping; Bornmann, William; Priebe, Waldemar; Ford, Richard J

    2010-07-01

    Mantle cell lymphoma (MCL) is an aggressive histotype of B-cell non-Hodgkin lymphoma that has increased in incidence over the past few decades and is incurable, usually poorly responsive to standard chemotherapy combinations, and associated with poor prognoses. Discovering new therapeutic agents with low toxicity that produce better outcomes in patients with MCL is an ongoing challenge. Recent studies showed that degrasyn, a novel small-molecule inhibitor of the Janus kinase/signal transducer and activation of transcription (JAK/STAT) pathway, exerts antitumor activity in lymphoid tumors by inhibiting key growth and survival signaling (JAK/STAT) pathways. In the present study, we found that treatment of both typical and blastoid-variant MCL cells with degrasyn in combination with bortezomib resulted in synergistic growth inhibition and apoptosis induction in vitro. The apoptosis in these cells was correlated with the downregulation of constitutive NF-kappaB and phosphorylated STAT3 activation, leading to the inhibition of c-Myc, cyclin D1, and bcl-2 protein expression and the upregulation of bax protein expression. In vivo, degrasyn and bortezomib interacted to synergistically prevent tumor development and prolong survival durations in a xenotransplant severe combined immunodeficient mouse model of MCL. These findings suggest that agents such as degrasyn that can pharmacologically target constitutively expressed NF-kappaB and STAT3 in MCL cells may be useful therapeutic agents for MCL when administered together with bortezomib.

  18. Antitumor resistance induced by zinostatin stimalamer (ZSS), a polymer-conjugated neocarzinostatin (NCS) derivative. I. Meth A tumor eradication and tumor-neutralizing activity in mice pretreated with ZSS or NCS.

    PubMed

    Masuda, E; Maeda, H

    1995-05-01

    Zinostatin stimalamer (ZSS) is a new anticancer agent derived from neocarzinostatin (NCS), which is synthesized by conjugation of one molecule of NCS and two molecules of poly(styrene-co-maleic acid). ZSS exhibited potent in vitro and in vivo antitumor activity in preclinical experiments, and a clinical trial of the intra-arterial administration of ZSS with iodized oil on hepatocellular carcinoma showed potent antitumor activity. We investigated the effect of ZSS and NCS on antitumor resistance and found that pretreatment with either drug suppressed the growth of MethA tumors in Balb/c mice and induced tumor eradication when given separately by single administration at therapeutic doses between 1 day and 4 weeks before tumor transplantation. The findings that the cytocidal activity of these drugs was not detected in vivo at the time of tumor transplantation and that tumor regression was preceded by a period of transient growth suggested that tumor regression was due to host-mediated antitumor activity induced by these drugs. Pretreatment with ZSS or NCS also suppressed the growth of Colon 26 carcinoma and Sarcoma 180. The finding that NCS showed the same effect as ZSS suggests that poly(styrene-comaleic acid) is not essential for the induction of host-mediated antitumor activity. Furthermore, apo-ZSS, which lacks cytocidal activity, did not induce antitumor activity. From this, it is suggested that the cytocidal effect of ZSS involves the induction of host-mediated antitumor resistance. In athymic Balb/c nu/nu mice, pretreatment with ZSS or NCS did not induce tumor eradication, suggesting that mature T lymphocytes play an important role in tumor eradication. Challenging MethA was rejected without transient growth in mice that had been cured of MethA, but challenging Colon 26 was not, showing that anti-MethA resistance was augmented selectively in the MethA-eradicated mice. Splenocytes from MethA-bearing mice pretreated with the drug showed tumor

  19. Noninvasive Imaging of Natural Killer Cell-Mediated Apoptosis in a Mouse Tumor Model.

    PubMed

    Singh, Thoudam Debraj; Lee, Jaetae; Jeon, Yong Hyun

    2016-01-01

    Natural killer (NK) cells are cytotoxic lymphocytes that induce apoptosis in cancer cells infected with viruses and bacteria through a caspase-3-dependent pathway. Effective NK cell-based immunotherapy requires highly sensitive imaging tools for in vivo monitoring of the dynamic events involved in apoptosis. Here, we describe a noninvasive bioluminescence imaging approach to determine the antitumor effects of NK cell-based therapy by serial imaging of caspase-3-dependent apoptosis in a mouse model of human glioma.

  20. A DEPRESSION OF CELL-MEDIATED IMMUNITY TO MEASLES ANTIGEN IN PATIENTS WITH SYSTEMIC LUPUS ERYTHEMATOSUS

    PubMed Central

    Utermohlen, Virginia; Winfield, John B.; Zabriskie, John B.; Kunkel, Henry G.

    1974-01-01

    Using the direct migration inhibition test, response to measles antigen in patients with systemic lupus erythematosus (SLE) was found to be decreased when compared with that of normal subjects. No alteration was observed in similar experiments using parainfluenza type 1 and rubella antigens. The specific decrease in measles antigen effect showed no obvious correlation with activity of SLE or with the presence of lymphocytotoxic antibodies. Whether the specificity of the decrease in reactivity is due to some particular relationship between the measles virus or antigen and SLE, or to the possibility that measles reactivity is a more sensitive indicator of a generalized defect of cell-mediated immunity, remains unclear. PMID:4361242

  1. Essential oil of clove (Eugenia caryophyllata) augments the humoral immune response but decreases cell mediated immunity.

    PubMed

    Halder, Sumita; Mehta, Ashish K; Mediratta, Pramod K; Sharma, Krishna K

    2011-08-01

    The present study was undertaken to explore the effect of the essential oil isolated from the buds of Eugenia caryophyllata on some immunological parameters. Humoral immunity was assessed by measuring the hemagglutination titre to sheep red blood cells and delayed type hypersensitivity was assessed by measuring foot pad thickness. Clove oil administration produced a significant increase in the primary as well as secondary humoral immune response. In addition, it also produced a significant decrease in foot pad thickness compared with the control group. Thus, these results suggest that clove oil can modulate the immune response by augmenting humoral immunity and decreasing cell mediated immunity.

  2. Transpresentation of interleukin-15 by IL-15/IL-15Rα mRNA-engineered human dendritic cells boosts antitumoral natural killer cell activity

    PubMed Central

    Van den Bergh, Johan; Willemen, Yannick; Lion, Eva; Van Acker, Heleen; De Reu, Hans; Anguille, Sébastien; Goossens, Herman; Berneman, Zwi

    2015-01-01

    In cancer immunotherapy, the use of dendritic cell (DC)-based vaccination strategies can improve overall survival, but until now durable clinical responses remain scarce. To date, DC vaccines are designed primarily to induce effective T-cell responses, ignoring the antitumor activity potential of natural killer (NK) cells. Aiming to further improve current DC vaccination outcome, we engineered monocyte-derived DC to produce interleukin (IL)-15 and/or IL-15 receptor alpha (IL-15Rα) using mRNA electroporation. The addition of IL-15Rα to the protocol, enabling IL-15 transpresentation to neighboring NK cells, resulted in significantly better NK-cell activation compared to IL-15 alone. Next to upregulation of NK-cell membrane activation markers, IL-15 transpresentation resulted in increased NK-cell secretion of IFN-γ, granzyme B and perforin. Moreover, IL-15-transpresenting DC/NK cell cocultures from both healthy donors and acute myeloid leukemia (AML) patients in remission showed markedly enhanced cytotoxic activity against NK cell sensitive and resistant tumor cells. Blocking IL-15 transpresentation abrogated NK cell-mediated cytotoxicity against tumor cells, pointing to a pivotal role of IL-15 transpresentation by IL-15Rα to exert its NK cell-activating effects. In conclusion, we report an attractive approach to improve antitumoral NK-cell activity in DC-based vaccine strategies through the use of IL-15/IL-15Rα mRNA-engineered designer DC. PMID:26675759

  3. Antitumor immunization of mothers delays tumor development in cancer-prone offspring

    PubMed Central

    Barutello, Giuseppina; Curcio, Claudia; Spadaro, Michela; Arigoni, Maddalena; Trovato, Rosalinda; Bolli, Elisabetta; Zheng, Yujuan; Ria, Francesco; Quaglino, Elena; Iezzi, Manuela; Riccardo, Federica; Holmgren, Lars; Forni, Guido; Cavallo, Federica

    2015-01-01

    Maternal immunization is successfully applied against some life-threatening infectious diseases as it can protect the mother and her offspring through the passive transfer of maternal antibodies. Here, we sought to evaluate whether the concept of maternal immunization could also be applied to cancer immune-prevention. We have previously shown that antibodies induced by DNA vaccination against rat Her2 (neu) protect heterozygous neu-transgenic female (BALB-neuT) mice from autochthonous mammary tumor development. We, herein, seek to evaluate whether a similar maternal immunization can confer antitumor protection to BALB-neuT offspring. Significantly extended tumor-free survival was observed in BALB-neuT offspring born and fed by mothers vaccinated against neu, as compared to controls. Maternally derived anti-neu immunoglobulin G (IgG) was successfully transferred from mothers to newborns and was responsible for the protective effect. Vaccinated mothers and offspring also developed active immunity against neu as revealed by the presence of T–cell-mediated cytotoxicity against the neu immunodominant peptide. This active response was due to the milk transfer of immune complexes that were formed between the neu extracellular domain, shed from vaccine-transfected muscle cells, and the anti-neu IgG induced by the vaccine. These findings show that maternal immunization has the potential to hamper mammary cancer in genetically predestinated offspring and to develop into applications against lethal neonatal cancer diseases for which therapeutic options are currently unavailable. PMID:26155401

  4. Antitumor effect of the tyrosine kinase inhibitor nilotinib on gastrointestinal stromal tumor (GIST) and imatinib-resistant GIST cells.

    PubMed

    Sako, Hiroyuki; Fukuda, Kazumasa; Saikawa, Yoshiro; Nakamura, Rieko; Takahashi, Tsunehiro; Wada, Norihito; Kawakubo, Hirohumi; Takeuchi, Hiroya; Ohmori, Tai; Kitagawa, Yuko

    2014-01-01

    Despite the benefits of imatinib for treating gastrointestinal stromal tumors (GIST), the prognosis for high risk GIST and imatinib-resistant (IR) GIST remains poor. The mechanisms of imatinib resistance have not yet been fully clarified. The aim of the study was to establish imatinib-resistant cell lines and investigate nilotinib, a second generation tyrosine kinase inhibitor (TKI), in preclinical models of GIST and imatinib-resistant GIST. For a model of imatinib-resistant GIST, we generated resistant cells from GK1C and GK3C cell lines by exposing them to imatinib for 6 months. The parent cell lines GK1C and GK3C showed imatinib sensitivity with IC50 of 4.59±0.97 µM and 11.15±1.48 µM, respectively. The imatinib-resistant cell lines GK1C-IR and GK3C-IR showed imatinib resistance with IC50 values of 11.74±0.17 µM (P<0.001) and 41.37±1.07 µM (P<0.001), respectively. The phosphorylation status of key cell signaling pathways, receptor tyrosine kinase KIT (CD117), platelet-derived growth factor receptor alpha (PDGFRA) and downstream signaling kinases: serine-threonine kinase Akt (AKT) and extracellular signal-regulated kinase 1/2 (ERK1/2) or the non-receptor tyrosine kinase: proto-oncogene tyrosine-protein kinase Src (SRC), was analyzed in established cell lines and ERK1/2 phosphorylation was found to be increased compared to the parental cells. Nilotinib demonstrated significant antitumor efficacy against GIST xenograft lines and imatinib-resistant GIST cell lines. Thus, nilotinib may have clinical potential for patients with GIST or imatinib-resistant GIST.

  5. Anti-tumoral activity of native compound morelloflavone in glioma

    PubMed Central

    Li, Xianfeng; Ai, Hongyan; Sun, Deke; Wu, Tao; He, Jian; Xu, Zhai; Ding, Li; Wang, Ling

    2016-01-01

    The aim of the study was to investigate the anti-tumoral activity of morelloflavone substances with different structures. We also studied the possible link between morelloflavone structure and its function. Various types of chromatographic techniques were used to isolate and screen morelloflavone substances from the extracts of gambogic tree trunk and the morelloflavone structures were identified by analytical techniques such as high resolution mass spectrometry and nuclear magnetism. Anti-tumoral activities of different compounds were investigated and the link between the antitumor activity and the structure of compound was exaimed. Our results showed that the isolated morelloflavone substances demonstrated a certain level of antitumor activity. The compound no. 1 had the strongest effect to inhibit glioma U87 and C6 cells followed by compound no. 2 while compound no. 5 was the weakest among them. We conducted a preliminary analysis on the structure-function relationship through the structure comparison and we concluded that the antitumor effects of morelloflavone substances with different structures were significantly different from each other. Thus, the glucose chain in C4 position of biflavone structure can enhance the antitumor activity of the compound in glioma cells. Additionally, the formation of intramolecular hydrogen bonds in biflavone compounds may also play a role in enhancing the antitumor activity and inhibition rate. PMID:27900007

  6. Isorhamnetin augments the anti-tumor effect of capeciatbine through the negative regulation of NF-κB signaling cascade in gastric cancer.

    PubMed

    Manu, Kanjoormana A; Shanmugam, Muthu K; Ramachandran, Lalitha; Li, Feng; Siveen, Kodappully Sivaraman; Chinnathambi, Arunachalam; Zayed, M E; Alharbi, Sulaiman Ali; Arfuso, Frank; Kumar, Alan Prem; Ahn, Kwang Seok; Sethi, Gautam

    2015-07-10

    Development of drug resistance to standard chemotherapy is a common phenomenon that leads to poor prognosis in patients. Thus, novel agents that can attenuate chemoresistance are urgently needed. Therefore, we analyzed whether isorhamnetin (IH), a 3'-O-methylated metabolite of quercetin, can enhance the potential efficacy of capecitabine in gastric cancer. The potential effect of IH on viability was analyzed by MTT assay, apoptosis by flow cytometric analysis, and NF-κB activation by DNA binding as well as Western blot assays. The in vivo effect of IH was also examined on the growth of subcutaneously implanted tumors in nude mice. IH inhibited the viability, potentiated the apoptotic effects of capecitabine, abrogated NF-κB activation, and suppressed the expression of various NF-κB regulated gene products in tumor cells. In a gastric cancer xenograft model, administration of IH alone (1 mg/kg body weight, i.p.) significantly suppressed the tumor growth alone as well as in combination with capecitabine. IH further reduced NF-κB activation and the expression of various proliferative and oncogenic biomarkers in tumor tissues. Overall, our results demonstrate that IH can significantly enhance the anti-tumor effects of capecitabine through the negative regulation of NF-κB regulated oncogenic genes.

  7. RIG-I activation induces the release of extracellular vesicles with antitumor activity

    PubMed Central

    Daßler-Plenker, Juliane; Reiners, Katrin S.; van den Boorn, Jasper G.; Hansen, Hinrich P.; Putschli, Bastian; Barnert, Sabine; Schuberth-Wagner, Christine; Schubert, Rolf; Tüting, Thomas; Hallek, Michael; Schlee, Martin; Hartmann, Gunther; Pogge von Strandmann, Elke; Coch, Christoph

    2016-01-01

    ABSTRACT Activation of the innate immune receptor retinoic acid-inducible gene I (RIG-I) by its specific ligand 5′-triphosphate-RNA (3pRNA) triggers antitumor immunity predominantly via NK cell activation and direct apoptosis induction in tumor cells. However, how NK cells are mobilized to attack the tumor cells remains elusive. Here, we show that RIG-I activation induced the secretion of extracellular vesicles (EVs) from melanoma cells, which by themselves revealed antitumor activity in vitro and in vivo. RIG-I-induced EVs from melanoma cells exhibited an increased expression of the NKp30-ligand (BAG6, BAT3) on their surface triggering NK cell-mediated lysis of melanoma cells via activati