Science.gov

Sample records for cell-mediated immunity adoptive

  1. Vascular endothelial cells in cell-mediated immunity: adoptive transfer with in vitro conditioned cells is genetically restricted at the endothelial cell barrier

    SciTech Connect

    Standage, B.A.; Vetto, R.M.; Jones, R.; Burger, D.R.

    1985-01-01

    Delayed-type hypersensitivity (DTH) is a cell-mediated immune response that can be adoptively transferred in rats when greater than 2 X 10(8) cells from peritoneal exudate, lymph nodes, or spleen are used. We have shown that by using an in vitro conditioning step with antigen, transfer can be subsequently carried out with as few as 2 X 10(7) spleen cells. The magnitude of DTH was reflected in ear swelling after intradermal injection of antigen (tuberculin or keyhole limpet hemocyanin (KLH)) and confirmed histologically. The transfer was antigen specific, requiring the sensitizing antigen in both the in vitro conditioning step and in the ear test challenge. Adoptive transfer with conditioned cells was genetically restricted by alleles of the RT-1 region (major histocompatibility complex (MHC) of the rat). Brown Norway strain (n haplotype) immune cells would not transfer DTH to Lewis (1 haplotype), ACI (a haplotype), or Buffalo (b haplotype) rats, whereas each strain would transfer DTH to syngeneic recipients. Moreover, this pattern of restriction held for all strains when tested in reciprocal fashion. In additional experiments, F1 to parental bone marrow chimeras were constructed so that bone-marrow-derived cells and non-bone-marrow-derived cells were of different RT-1 haplotypes. When these chimeras were used as recipients, transfer of DTH was only observed when immune donor cells and recipient non-bone-marrow-derived cells were syngeneic. These results point to the critical role of non-bone-marrow-derived cells (endothelial cells) in the DTH reaction.

  2. VZV T cell-mediated immunity.

    PubMed

    Weinberg, Adriana; Levin, Myron J

    2010-01-01

    Primary varicella-zoster virus (VZV) infection (varicella) induces VZV-specific antibody and VZV-specific T cell-mediated immunity. T cell-mediated immunity, which is detected within 1-2 weeks after appearance of rash, and consists of both CD4 and CD8 effector and memory T cells, is essential for recovery from varicella. Administration of a varicella vaccine also generates VZV-specific humoral and cellular immune responses. The memory cell responses that develop during varicella or after vaccination contribute to protection following re-exposure to VZV. These responses are subsequently boosted either by endogenous re-exposure (silent reactivation of latent virus) or exogenous re-exposure (environmental). VZV-specific T cell-mediated immunity is also necessary to maintain latent VZV in a subclinical state in sensory ganglia. When these responses decline, as occurs with aging or iatrogenic immune suppression, reactivation of VZV leads to herpes zoster. Similarly, the magnitude of these responses early after the onset of herpes zoster correlates with the extent of zoster-associated pain. These essential immune responses are boosted by the VZV vaccine developed to prevent herpes zoster.

  3. Cutaneous sensitivity induced by immunization with irradiated Schistosoma mansoni cercariae. I. Induction, elicitation, and adoptive transfer analysis of cell-mediated cutaneous sensitivity

    SciTech Connect

    Ch'ang, L.Y.; Colley, D.G.

    1986-06-01

    Exposure of C57BL/6 mice to highly irradiated (50 kR) cercariae of Schistosoma mansoni leads to the development of partial resistance against subsequent challenge with unattenuated cercariae. We have analyzed the cellular immune responses that occur during the afferent and efferent phases of this protective sensitization. Mice were immunized by exposure to irradiated S. mansoni cercariae. After challenge with irradiated cercariae, delayed-type (18-72 hr) cutaneous sensitivity reaction sites were rich in mononuclear cells and eosinophils. This reactivity was established by 4 days after sensitization, reached its maximum between 7 and 14 days after sensitization, and was maintained for over 20 weeks. These challenge reactions could be abrogated by treatment with either 200 mg/kg cyclophosphamide or 5 mg of hydrocortisone. Syngeneic adoptive transfer of cutaneous sensitivity was accomplished with lymphoid cells from the draining lymph nodes or spleens of mice sensitized 7-14 days previously. Negative selection studies of nylon-wool non-adherent cells from sensitized donors demonstrated that the cells responsible for transferring this eosinophil-rich, delayed-type cutaneous sensitivity to S. mansoni irradiated cercariae were Thy/sup -1 +/, Lyt/sup 1 +/, Lyt/sup 2 -/, surface Ig/sup -/ lymphocytes.

  4. Ageing and cell-mediated immunity.

    PubMed

    Fixa, B; Komárková, O; Chmelar, V

    1975-01-01

    The lymphocyte transformation test with phytohemagglutinin as mitogen estimated according to the incorporation of 2-(14)C-thymidine in DNA was used as an indicator of cell-mediated reactivity in 53 healthy subjects. Three age groups were examined: up to 20 years (21 subjects), 21-40 years (10 subjects) and over 70 years (22 subjects). The responsiveness of lymphocytes decreased significantly with age. In the highest age group 12 pathologically low values were found.

  5. Effect of space flight on cell-mediated immunity

    NASA Technical Reports Server (NTRS)

    Mandel, A. D.; Balish, E.

    1977-01-01

    The cell-mediated immune response to Listeria monocytogenes was studied in rats subjected to 20 days of flight aboard the Soviet biosatellite Kosmos 7820. Groups of rats were immunized with 1,000,000 formalin-killed Listeria suspended in Freunds Complete Adjuvant, 5 days prior to flight. Immunized rats subjected to the same environmental factors as the flight rats, except flight itself, and immunized and nonimmunized rats held in a normal animal colony served as controls. Following recovery, lymphocyte cultures were harvested from spleens of all rats, cultured in vitro in the presence of L. monocytogenes antigens, Phytohemagglutinin, Conconavlin A, or purified protein derivative (PPD), and measured for their uptake of H-3-thymidine. Although individual rats varied considerably, all flight and immunized control rats gave a blastogenic response to the Listeria antigens and PPD. With several mitogens, the lymphocytes of flight rats showed a significantly increased blastogenic response over the controls. The results of this study do not support a hypothesis of a detrimental effect of space flight on cell-mediated immunity. The data suggest a possible suppressive effect of stress and gravity on an in vitro correlate of cell-mediated immunity.

  6. Effect of space flight on cell-mediated immunity

    NASA Technical Reports Server (NTRS)

    Mandel, A. D.; Balish, E.

    1977-01-01

    The cell-mediated immune response to Listeria monocytogenes was studied in rats subjected to 20 days of flight aboard the Soviet biosatellite Kosmos 7820. Groups of rats were immunized with 1,000,000 formalin-killed Listeria suspended in Freunds Complete Adjuvant, 5 days prior to flight. Immunized rats subjected to the same environmental factors as the flight rats, except flight itself, and immunized and nonimmunized rats held in a normal animal colony served as controls. Following recovery, lymphocyte cultures were harvested from spleens of all rats, cultured in vitro in the presence of L. monocytogenes antigens, Phytohemagglutinin, Conconavlin A, or purified protein derivative (PPD), and measured for their uptake of H-3-thymidine. Although individual rats varied considerably, all flight and immunized control rats gave a blastogenic response to the Listeria antigens and PPD. With several mitogens, the lymphocytes of flight rats showed a significantly increased blastogenic response over the controls. The results of this study do not support a hypothesis of a detrimental effect of space flight on cell-mediated immunity. The data suggest a possible suppressive effect of stress and gravity on an in vitro correlate of cell-mediated immunity.

  7. Detection of cell mediated immune response to avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    In birds, lymphomyeloid tissues develop from epithelial (Bursa of Fabricus or thymus) or mesenchymal tissue which are populated by heamatopoietic stem cells. These stem cells develop directly into immunologically competent B (bursa) and T (thymus) cells. Cell-mediated immunity (CMI) is a part of the...

  8. Fitness of cell-mediated immunity independent of repertoire diversity.

    PubMed

    AbuAttieh, Mouhammed; Rebrovich, Michelle; Wettstein, Peter J; Vuk-Pavlovic, Zvezdana; Limper, Andrew H; Platt, Jeffrey L; Cascalho, Marilia

    2007-03-01

    Fitness of cell-mediated immunity is thought to depend on TCR diversity; however, this concept has not been tested formally. We tested the concept using JH(-/-) mice that lack B cells and have TCR Vbeta diversity <1% that of wild-type mice and quasimonoclonal (QM) mice with oligoclonal B cells and TCR Vbeta diversity 7% that of wild-type mice. Despite having a TCR repertoire contracted >99% and defective lymphoid organogenesis, JH(-/-) mice rejected H-Y-incompatible skin grafts as rapidly as wild-type mice. JH(-/-) mice exhibited T cell priming by peptide and delayed-type hypersensitivity, although these responses were less than normal owing either to TCR repertoire contraction or defective lymphoid organogenesis. QM mice with TCR diversity contracted >90%, and normal lymphoid organs rejected H-Y incompatible skin grafts as rapidly as wild type mice and exhibited normal T cell priming and normal delayed-type hypersensitivity reactions. QM mice also resisted Pneumocystis murina like wild-type mice. Thus, cell-mediated immunity can function normally despite contractions of TCR diversity >90% and possibly >99%.

  9. CXCR5+ T helper cells mediate protective immunity against tuberculosis

    PubMed Central

    Slight, Samantha R.; Rangel-Moreno, Javier; Gopal, Radha; Lin, Yinyao; Fallert Junecko, Beth A.; Mehra, Smriti; Selman, Moises; Becerril-Villanueva, Enrique; Baquera-Heredia, Javier; Pavon, Lenin; Kaushal, Deepak; Reinhart, Todd A.; Randall, Troy D.; Khader, Shabaana A.

    2013-01-01

    One third of the world’s population is infected with Mycobacterium tuberculosis (Mtb). Although most infected people remain asymptomatic, they have a 10% lifetime risk of developing active tuberculosis (TB). Thus, the current challenge is to identify immune parameters that distinguish individuals with latent TB from those with active TB. Using human and experimental models of Mtb infection, we demonstrated that organized ectopic lymphoid structures containing CXCR5+ T cells were present in Mtb-infected lungs. In addition, we found that in experimental Mtb infection models, the presence of CXCR5+ T cells within ectopic lymphoid structures was associated with immune control. Furthermore, in a mouse model of Mtb infection, we showed that activated CD4+CXCR5+ T cells accumulated in Mtb-infected lungs and produced proinflammatory cytokines. Mice deficient in Cxcr5 had increased susceptibility to TB due to defective T cell localization within the lung parenchyma. We demonstrated that CXCR5 expression in T cells mediated correct T cell localization within TB granulomas, promoted efficient macrophage activation, protected against Mtb infection, and facilitated lymphoid follicle formation. These data demonstrate that CD4+CXCR5+ T cells play a protective role in the immune response against TB and highlight their potential use for future TB vaccine design and therapy. PMID:23281399

  10. Cell-mediated immunity to soluble and particulate inhaled antigens

    PubMed Central

    Hill, J. O.; Burrell, R.

    1979-01-01

    In order to determine the influence of an antigen's physical properties on the development of cell-mediated immunity (CMI) in the lung following aerosol immunization, human serum albumin (HSA) was prepared in either a soluble or a particulate form, the latter being coupled to respirable, carboxylated latex beads. Antigen was administered via an aerosol to groups of guinea-pigs, twice weekly for up to 4 weeks. Additional groups of animals served as unexposed and unconjugated latex controls. Lymphoid cells for CMI assays were isolated from the lung by bronchopulmonary lavage and from blood for use in mitogen- and antigen-induced lymphocyte transformation assays, as well as indirect macrophage migration inhibition tests. Particulate HSA-exposed animals yielded the highest numbers of free lung cells containing predominantly macrophages, with up to 33% lymphocytes. These were followed by the latex control, soluble HSA and unexposed control groups, respectively. Only the animals exposed to particulate HSA had evidence of antigen reactivation in the lung cell populations as measured by lymphocyte stimulation assays. In contrast, a response to polyclonal mitogens was found only in animals exposed to antigen in a soluble form. Data from macrophage depletion experiments suggest that the antigenicity of inhaled antigens may be due to the types and numbers of cells responding to the stimulus, and the subsequent role the alveolar macrophage may play in the modulation of cellular immunity. PMID:393444

  11. Establishment of Stable, Cell-Mediated Immunity that Makes "Susceptible" Mice Resistant to Leishmania major

    NASA Astrophysics Data System (ADS)

    Bretscher, Peter A.; Wei, Guojian; Menon, Juthika N.; Bielefeldt-Ohmann, Helle

    1992-07-01

    Cell-mediated, but not antibody-mediated, immune responses protect humans against certain pathogens that produce chronic diseases such as leishmaniasis. Effective vaccination against such pathogens must therefore produce an immunological "imprint" so that stable, cell-mediated immunity is induced in all individuals after natural infection. BALB/c mice "innately susceptible" to Leishmania major produce antibodies after substantial infection. In the present study, "susceptible" mice injected with a small number of parasites mounted a cell-mediated response and acquired resistance to a larger, normally pathogenic, challenge. This vaccination strategy may be applicable in diseases in which protection is dependent on cell-mediated immunity.

  12. Essential oil of clove (Eugenia caryophyllata) augments the humoral immune response but decreases cell mediated immunity.

    PubMed

    Halder, Sumita; Mehta, Ashish K; Mediratta, Pramod K; Sharma, Krishna K

    2011-08-01

    The present study was undertaken to explore the effect of the essential oil isolated from the buds of Eugenia caryophyllata on some immunological parameters. Humoral immunity was assessed by measuring the hemagglutination titre to sheep red blood cells and delayed type hypersensitivity was assessed by measuring foot pad thickness. Clove oil administration produced a significant increase in the primary as well as secondary humoral immune response. In addition, it also produced a significant decrease in foot pad thickness compared with the control group. Thus, these results suggest that clove oil can modulate the immune response by augmenting humoral immunity and decreasing cell mediated immunity.

  13. HIV-1 adaptation to NK cell mediated immune pressure

    PubMed Central

    Alter, Galit; Heckerman, David; Schneidewind, Arne; Fadda, Lena; Kadie, Carl M.; Carlson, Jonathan M.; Oniangue-Ndza, Cesar; Martin, Maureen; Li, Bin; Khakoo, Salim I.; Carrington, Mary; Allen, Todd M.; Altfeld, Marcus

    2011-01-01

    Natural Killer (NK) cells play an important role in the control of viral infections, recognizing virally infected cells through a variety of activating and inhibitory receptors1–3. Epidemiological and functional studies have recently suggested that NK cells can also contribute to the control of HIV-1 infection through recognition of virally infected cells by both activating and inhibitory Killer Immunoglobulin-like receptors (KIRs)4–7. However, it remains unknown whether NK cells can directly mediate antiviral immune pressure in vivo in humans. Here we describe KIR-associated amino acid polymorphisms in the HIV-1 sequence of chronically infected individuals on a population level. We show that these KIR-associated HIV-1 sequence polymorphisms can enhance the binding of inhibitory KIRs to HIV-1-infected CD4+ T cells, leading to reduced antiviral activity of KIR+ NK cells. These data demonstrate that KIR+ NK cells can place immunological pressure on HIV-1, and that the virus can evade such NK cell mediated immune pressure by selecting for sequence polymorphisms, as previously described for virus-specific T cells and neutralizing antibodies8. NK cells might therefore play a previously underappreciated role in contributing to viral evolution. PMID:21814282

  14. Suppression of Cell-Mediated Immunity in Experimental African Trypanosomiasis

    PubMed Central

    Mansfield, John M.; Wallace, John H.

    1974-01-01

    Adult New Zealand white rabbits were experimentally infected with a parasitic African hemoflagellate, Trypanosoma congolense, and were subsequently tested for in vivo and in vitro aspects of cell-mediated immune function. Chronically infected rabbits were sensitized to mycobacterial protein and skin-tested with purified protein derivative; all infected animals demonstrated much milder skin-test responses to antigen than control groups. Similarly, peripheral blood lymphocyte responses in vitro to purified protein derivative and, as well, to phytohemagglutinin were markedly suppressed. Supernatant fluids of antigen-stimulated lymph node cell cultures from T. congolense-infected rabbits failed to demonstrate migration inhibitory factor activity but did possess normal levels of blastogenic factor activity. An active infection was necessary for demonstration of suppressed immune responses, and components present in infected rabbit serum were apparently not responsible for the observed abnormalities. Suppression of T-lymphocyte subpopulations may well explain the occurrence of numerous immunological aberrations arising during human and animal infections with the African trypanosomes. PMID:4854532

  15. Cell-Mediated Immunity and Its Role in Resistance to Infection

    PubMed Central

    Wing, Edward J.; Remington, Jack S.

    1977-01-01

    The recently acquired knowledge of the importance of cell-mediated immunity in many illnesses and the discovery of a variety of substances that can restore certain cell-mediated immune functions has served to focus the attention of physicians on this area of immunity. It is important for practicing physicians to have a clear understanding of current knowledge of the role of cell-mediated immunity in resistance to infection and how this arm of the immune system relates to the diagnosis and therapy of infectious diseases. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5. PMID:318786

  16. Assessing humoral and cell-mediated immune response in Hawaiian green turtles, Chelonia mydas

    USGS Publications Warehouse

    Work, T.M.; Balazs, G.H.; Rameyer, R.A.; Chang, S.P.; Berestecky, J.

    2000-01-01

    Seven immature green turtles, Chelonia mydas, captured from Kaneohe Bay on the island of Oahu were used to evaluate methods for assessing their immune response. Two turtles each were immunized intramuscularly with egg white lysozyme (EWL) in Freunda??s complete adjuvant, Gerbu, or ISA-70; a seventh turtle was immunized with saline only and served as a control. Humoral immune response was measured with an indirect enzyme linked immunosorbent assay (ELISA). Cell-mediated immune response was measured using in vitro cell proliferation assays (CPA) using whole blood or peripheral blood mononuclear cells (PBM) cultured with concanavalin A (ConA), phytohaemagglutinin (PHA), or soluble egg EWL antigen. All turtles, except for one immunized with Gerbu and the control, produced a detectable humoral immune response by 6 weeks which persisted for at least 14 weeks after a single immunization. All turtles produced an anamnestic humoral immune response after secondary immunization. Antigen specific cell-mediated immune response in PBM was seen in all turtles either after primary or secondary immunization, but it was not as consistent as humoral immune response; antigen specific cell-mediated immune response in whole blood was rarely seen. Mononuclear cells had significantly higher stimulation indices than whole blood regardless of adjuvant, however, results with whole blood had lower variability. Both Gerbu and ISA-70 appeared to potentiate the cell-mediated immune response when PBM or whole blood were cultured with PHA. This is the first time cell proliferation assays have been compared between whole blood and PBM for reptiles. This is also the first demonstration of antigen specific cell-mediated response in reptiles. Cell proliferation assays allowed us to evaluate the cell-mediated immune response of green turtles. However, CPA may be less reliable than ELISA for detecting antigen specific immune response. Either of the three adjuvants appears suitable to safely elicit a

  17. Micronutrient supplementation and T-cell mediated immune responses in patients with tuberculosis in Tanzania

    USDA-ARS?s Scientific Manuscript database

    Limited studies exist regarding whether incorporating micronutrient supplements during tuberculosis (TB) treatment may improve cell-mediated immune response. We examine the effect of micronutrient supplementation on lymphocyte proliferation response to mycobacteria or T cell mitogens in a randomize...

  18. Cell-mediated immunity to hepatitis B virus antigens in mice: correlation of in vivo and in vitro assays.

    PubMed Central

    De Moerloose, P A; Frazer, I H; Sewell, W A; Collins, E J; Mackay, I R

    1986-01-01

    Cell mediated immunity (CMI) to hepatitis B viral antigens was studied in BALB/mice after immunization with purified hepatitis B surface antigen (HBsAg), or core antigen (HBcAg), with adjuvants. The two in vitro assays for cell-mediated immunity (CMI), utilizing lymph node cells, were release of interferon after exposure to antigen, and blast transformation of lymphocytes, and the in vivo assay was ear swelling at 24 h after local injection of antigen. Immunization with HBsAg or HBcAg with adjuvants induced antigen-specific cutaneous reactivity; if no adjuvants were given, immunization with HBcAg, but not HBsAg, induced cutaneous reactivity. CMI could be adoptively transferred by lymph node cells, but for only a limited period after immunization with HbsAg or HBcAg. The ability of lymph node cells from mice immunized with HBV antigens to transfer adoptively CMI correlated well with their production of interferon after challenge with antigen in vitro, but less well with blastogenesis after challenge with antigen in vitro, or with cutaneous reactivity to antigen in the donor mouse. Reliable antigen-specific lymphokine release assays, rather than blast transformation of lymphocytes or cutaneous reactivity after antigen challenge, are required to assess CMI to HBV antigens in the mouse and, by inference, in man. Images Fig. 1 PMID:3091300

  19. Analysis of cell-mediated immune responses in support of dengue vaccine development efforts.

    PubMed

    Rothman, Alan L; Currier, Jeffrey R; Friberg, Heather L; Mathew, Anuja

    2015-12-10

    Dengue vaccine development has made significant strides, but a better understanding of how vaccine-induced immune responses correlate with vaccine efficacy can greatly accelerate development, testing, and deployment as well as ameliorate potential risks and safety concerns. Advances in basic immunology knowledge and techniques have already improved our understanding of cell-mediated immunity of natural dengue virus infection and vaccination. We conclude that the evidence base is adequate to argue for inclusion of assessments of cell-mediated immunity as part of clinical trials of dengue vaccines, although further research to identify useful correlates of protective immunity is needed.

  20. Colostral antibody-mediated and cell-mediated immunity contributes to innate and antigen-specific immunity in piglets

    USDA-ARS?s Scientific Manuscript database

    Immunoglobulins and immune cells are critical components of colostral immunity; however, their transfer to and function in the neonate, especially maternal lymphocytes, is unclear. Cell-mediated and antibody-mediated immunity in sow blood and colostrum and piglet blood before (PS) and after (AS) suc...

  1. Cell-Mediated Immune Function and Cytokine Regulation During Space Flight

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.; Pierson, Duane L.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    The changes in immune function which occur during space flight potentially expose the crews to an increased risk for development of illness. Decreased cellular immune function has been repeatedly documented after space flight and confirmed during flight by in vivo delayed-type hypersensitivity testing. However, correlation of immune changes with a clinically significant risk factor has not yet been performed. Our hypothesis is that space flight induces a decrease in cell-mediated immune function accompanied by a shift from a type 1 cytokine pattern (favoring cell-mediated immunity) to a type 2 cytokine pattern (favoring humoral immunity). We further hypothesize that reactivation of latent viruses will occur during space flight in association with the decreased cellular immunity. To test these hypotheses, we will determine the effects of space flight on cell-mediated immunity and viral reactivation. We will utilize delayed-type hypersensitivity testing as an in vivo measure of integrated cell-mediated immune function. The production of cytokines and immunoregulatory factors by lymphocytes and monocytes will be measured to determine whether changes in cytokine patterns are associated with the space flight-induced immune dysregulation. Correlation of antigen-specific immune changes with reactivation of latent herpes viruses will be determined by measuring peripheral levels of viral (CMV, VZV, EBV) antigen-specific T cells and comparing to the levels of EBV-infected B-cells by fluorescence in situ hybridization and flow cytometry. A comparison of cell-mediated immune function, cytokine regulation and viral reactivation will provide new insights into crew member health risks during flight.

  2. Cell-Mediated Immune Function and Cytokine Regulation During Space Flight

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.; Pierson, Duane L.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    The changes in immune function which occur during space flight potentially expose the crews to an increased risk for development of illness. Decreased cellular immune function has been repeatedly documented after space flight and confirmed during flight by in vivo delayed-type hypersensitivity testing. However, correlation of immune changes with a clinically significant risk factor has not yet been performed. Our hypothesis is that space flight induces a decrease in cell-mediated immune function accompanied by a shift from a type 1 cytokine pattern (favoring cell-mediated immunity) to a type 2 cytokine pattern (favoring humoral immunity). We further hypothesize that reactivation of latent viruses will occur during space flight in association with the decreased cellular immunity. To test these hypotheses, we will determine the effects of space flight on cell-mediated immunity and viral reactivation. We will utilize delayed-type hypersensitivity testing as an in vivo measure of integrated cell-mediated immune function. The production of cytokines and immunoregulatory factors by lymphocytes and monocytes will be measured to determine whether changes in cytokine patterns are associated with the space flight-induced immune dysregulation. Correlation of antigen-specific immune changes with reactivation of latent herpes viruses will be determined by measuring peripheral levels of viral (CMV, VZV, EBV) antigen-specific T cells and comparing to the levels of EBV-infected B-cells by fluorescence in situ hybridization and flow cytometry. A comparison of cell-mediated immune function, cytokine regulation and viral reactivation will provide new insights into crew member health risks during flight.

  3. Hypothalamus-Pituitary-Adrenal cell-mediated immunity regulation in the Immune Restoration Inflammatory Syndrome

    PubMed Central

    Khakshooy, Allen; Chiappelli, Francesco

    2016-01-01

    Over one third of the patients sero-positive for the human immunodeficiency virus (HIV) with signs of the acquired immune deficiency syndrome (AIDS), and under treatment with anti-retroviral therapy (ART), develop the immune reconstitution inflammatory syndrome (IRIS). It is not clear what variables are that determine whether a patient with HIV/AIDS will develop ART-related IRIS, but the best evidence base thus far indicates that HIV/AIDS patients with low CD4 cell count, and HIV/AIDS patients whose CD4 count recovery shows a sharp slope, suggesting a particularly fast "immune reconstitution", are at greater risk of developing IRIS. Here, we propose the hypothesis that one important variable that can contribute to low CD4 cell count number and function in ART-treated HIV/AIDS patients is altered hypothalamic-pituitary-adrenal (HPA) cell-mediated immune (CMI) regulation. We discuss HPA-CMI deregulation in IRIS as the new frontier in comparative effectiveness research (CRE) for obtaining and utilizing the best evidence base for treatment of patients with HIV/AIDS in specific clinical settings. We propose that our hypothesis about altered HPA-CMI may extend to the pathologies observed in related viral infection, including Zika PMID:27212842

  4. Human cell-mediated immune responses to chlamydial antigens.

    PubMed

    Hanna, L; Schmidt, L; Sharp, M; Stites, D P; Jawetz, E

    1979-02-01

    A reproducible method was developed to determine the ability of chlamydial antigens to stimulate lymphocytes from volunteers. In tests repeated 4 to 14 times, the cells from a given volunteer gave a relatively narrow range of responses, but there were great differences in the mean response of different volunteers. In the entire group of 52 volunteers, lymphocyte stimulation was significantly associated with the presence of antibody, but in a given individual results of one test did not aid in predicting the results of the other. A majority of persons with either antichlamydial antibody or elevated lymphocyte stimulation, or both, did not have a history of signs or symptoms within a spectrum of chlamydial diseases. This may reflect the great frequency of asymptomatic infection with these organisms. The lymphocytes of some individuals were stimulated to a significantly greater degree by antigens of one chlamydial species (Chlamydia trachomatis or C. psittaci) than by the other. These and other cell-mediated reactions in human chlamydial infections, and their possible medical significance, are under continued study.

  5. Biomarkers of CD4+ CTL cell Mediated Immunity to Tuberculosis

    USDA-ARS?s Scientific Manuscript database

    The immune responses mediated by interactions between T-lymphocyte subsets and mycobacteria-infected macrophages are critical for control of tuberculosis. In these studies, the bovine model was used to characterize the cytolytic and mycobactericidal CD4+ T cell response induced by BCG vaccination. ...

  6. Cell-mediated and humoral immune response in diabetic patients with periodontitis.

    PubMed

    Anil, S; Remani, P; Vijayakumar, T; Hari, S

    1990-07-01

    Cell-mediated and humoral immune responses were assessed in 50 patients with type II or non-insulin-dependent diabetes mellitus and 50 nondiabetic patients with periodontitis. The values were compared with those of 50 age and sex-matched control subjects. The cell-mediated immunity assessed by enumerating the total and high-affinity rosette-forming cells of the patient did not show any significant variation from that of the normal control subjects. The humoral immune response was assessed by estimating serum immunoglobulins G, A, M, D, and E by single radial immunodiffusion. Except IgD, all other immunoglobulins were found to be elevated significantly in both diabetic and nondiabetic subjects. The alteration in humoral immune response may be the cause or the effect of periodontitis. The defective host response reported in diabetic patients may be responsible for the increased incidence of periodontitis in diabetic patients as compared to nondiabetic patients.

  7. Human cell mediated immunity to porins from Salmonella typhi.

    PubMed

    Blanco, F; Isibasi, A; Raúl González, C; Ortiz, V; Paniagua, J; Arreguín, C; Kumate, J

    1993-01-01

    The current studies were undertaken to assess the role of the porins and outer membrane proteins (OMP) in the human immune response to Salmonella typhi 9, 12 Vi:d. Experiments were performed to determinate the lymphocyte activation response to porins in individuals who had been vaccinated against typhoid fever. 10 healthy volunteers were studied before and 10 days after oral or subcutaneous immunisation. Five patients with typhoid fever were also studied. Lymphocyte activation was measured by the 3H thymidine incorporation assay. Individuals with typhoid fever as well as those immunised with oral vaccine responded well to porins and outer membrane proteins, as opposed to those immunised with the subcutaneous vaccine. These results suggest that the porins and OMP play a role in the cellular immune response against Salmonella typhi.

  8. Cell mediated and humoral immunity and light-chain proteinuria in rifampicin-treated tuberculous patients.

    PubMed

    Galal, S H; Khalil, S H; el Husseiny, W; Brock, J

    1988-01-01

    The present study was devoted to assess the humoral and cell mediated immune responsiveness in patients with pulmonary tuberculosis before and after rifampicin therapy. Skin test using PPD and PHA; Rosette forming cells test, serum IgG, M and A; and light chain proteinuria have been tested for 15 newly diagnosed tuberculous patients and 15 normal controls. Rifampicin showed an immunosuppressive effect on both cellular and humoral immune responses as well as by the advent of light chain proteinuria.

  9. Neutrophils as effector cells of T-cell-mediated, acquired immunity in murine listeriosis.

    PubMed Central

    Appelberg, R; Castro, A G; Silva, M T

    1994-01-01

    The control of the infections caused by Listeria monocytogenes, considered an example of an intracellular parasite, is thought to involve co-operation between antigen-specific T cells and activated macrophages. Here we investigated the participation of polymorphonuclear leucocytes in the mechanisms of resistance during the immune phase of the antimicrobial response to L. monocytogenes infection. We found that BALB/c mice were unable to express T-cell-mediated (acquired) immunity to this pathogen in the absence of granulocytes. We propose that neutrophils should be included in the concept of cell-mediated immunity and that their antimicrobial role is not exclusively expressed during the early phases of a primary infection. PMID:7835951

  10. Cell-mediated and humoral immune responses in patients with localized juvenile periodontitis.

    PubMed

    Anil, S; Hari, S; Remani, P; Vijayakumar, T; Ankathil, R

    1990-03-01

    Cell-mediated and humoral immune responses were assessed in 21 patients with localized juvenile periodontitis (LJP), and in an equal number of control subjects. The cell-mediated immunity, assessed by enumeration of total rosette forming cells [TRFC] and high affinity rosette forming cells [HARFC], was found to be depressed in LJP patients compared to controls. Estimation of serum immunoglobulins G,A,M,D and E levels were done using single radial immunodiffusion. All the immunoglobulins except IgD were found to be elevated significantly in LJP patients. The defective immune response found in LJP patients may be the cause or effect of the disease process. Further investigations are necessary to determine whether these defects are genetically controlled.

  11. Siglecs as targets for therapy in immune cell mediated disease

    PubMed Central

    O’Reilly, Mary K.; Paulson, James C.

    2010-01-01

    The sialic acid-binding immunoglobulin-like lectins (siglecs) comprise a family of receptors that are differentially expressed on leukocytes and other immune cells. The restricted expression of several siglecs to one or a few cell types makes them attractive targets for cell-directed therapies. The anti-CD33 (Siglec-3) antibody Gemtuzumab (Mylotarg™) is approved for treatment of acute myeloid leukemia (AML), and antibodies targeting CD22 (Siglec-2) are currently in clinical trials for treatment of B cell non-Hodgkins lymphomas and autoimmune diseases. Because siglecs are endocytic receptors, they are well suited for a ‘Trojan horse’ strategy, whereby therapeutic agents conjugated to an antibody, or multimeric glycan ligand, bind to the siglec and are efficiently carried into the cell. Although the rapid internalization of unmodified siglec antibodies reduces their utility for induction of antibody-dependent cellular cytotoxicity (ADCC) or complement-mediated cytotoxicity (CDC), antibody binding of Siglec-8, Siglec-9, and CD22 have been demonstrated to induce apoptosis of eosinophils, neutrophils, and depletion of B cells, respectively. Here we review the properties of siglecs that make them attractive for cell-targeted therapies. PMID:19359050

  12. Enkephalins and immunity. II: In vivo modulation of cell-mediated immunity.

    PubMed

    Marić, D; Janković, B D

    1987-01-01

    Body, thymus, and spleen weights, and cellular makeup of lymphoid tissues of rat were not affected to a great extent by intraperitoneal injections of met-enkephalin, leu-enkephalin, or naloxone. However, enkephalins induced a diminution of peripheral blood leukocytes and lymphocytes. In addition, met-enkephalin depleted the population of T4 helper/inducer lymphocytes. On the other hand, there was an increase of blood leukocytes and lymphocytes in naloxone-treated animals. Arthus and delayed skin hypersensitivity reactions to bovine serum albumin and old tuberculin were sharply reduced in enkephalin-treated rats. Rejection of allogenic thyroid graft implanted under the renal capsule was considerably delayed by repeated injections of enkephalins. Mesenteric mast cell degranulation in rats sensitized to ovalbumin and injected with a shocking dose of antigen was less pronounced after treatment with enkephalins. These results show that enkephalins, in dosage levels of 5 mg/kg b.w., exert a suppressive influence on cell-mediated immune reactions. Other experiments from our laboratory, reported in a companion paper in this volume, suggest that much lower doses may have opposite (immunoenhancing) effects.

  13. Humoral and cell-mediated immune responses in DNA immunized mink challenged with wild-type canine distemper virus.

    PubMed

    Nielsen, Line; Søgaard, Mette; Karlskov-Mortensen, Peter; Jensen, Trine Hammer; Jensen, Tove Dannemann; Aasted, Bent; Blixenkrone-Møller, Merete

    2009-07-30

    The aim of the study was to investigate the different phases of the immune response after DNA immunization with the hemagglutinin and nucleoprotein genes from canine distemper virus (CDV). Although attenuated live CDV vaccines have effectively reduced the incidence of disease, canine distemper is still a problem worldwide. The broad host range of CDV creates a constant viral reservoir among wildlife animals. Our results demonstrated early humoral and cell-mediated immune responses (IFN-gamma) in DNA vaccinated mink compared to mock-vaccinated mink after challenge with a Danish wild-type CDV. The DNA vaccine-induced immunity protected the natural host against disease development.

  14. Cell Mediated Immunity to Herpesvirus Type 1 in Carcinoma and Pre-cancerous Lesions

    PubMed Central

    Lehner, T.; Shillitoe, E. J.; Wilton, J. M. A.; Ivanyi, L.

    1973-01-01

    The response of lymphocytes to Herpesvirus hominis type 1 (HVH1), Candida albicans and phytohaemagglutinin was studied sequentially over a period of 3 years in patients with leukoplakia and carcinoma. In the keratosis-acanthosis group of leukoplakia there was a significant decrease in stimulation of lymphocytes by HVH1, in contrast to epithelial atypia which yielded both increased stimulation indices and macrophage migration inhibition to HVH1. Non-specific depressed cell mediated immune responses were found in carcinoma. Sequential data revealed major fluctuations in stimulation indices to HVH1 during the course of epithelial atypia and a fall in the stimulation indices from > 7 to < 2 was associated with carcinomatous transformation. These changes argue in favour of participation of HVH1 in the pathogenesis of some leukoplakias, and the development of epithelial atypia with subsequent carcinoma might be a function of the cell mediated immune responses to the virus. PMID:4374226

  15. Impaired cell mediated immunity in haemophilia in the absence of infection with human immunodeficiency virus.

    PubMed Central

    Madhok, R; Gracie, A; Lowe, G D; Burnett, A; Froebel, K; Follett, E; Forbes, C D

    1986-01-01

    The cell mediated immune response was evaluated in vivo in 29 patients with clinically severe haemophilia by means of the dinitrochlorobenzene skin test. All patients had a response below the median normal value, and in 19 the response was on or below the lower limit of the normal range. There was no difference in skin response between patients positive and negative for the human immunodeficiency virus (HIV; formerly known as human T cell lymphotropic virus III or lymphadenopathy associated virus). In the whole group, and in seronegative patients (n = 17), there was an inverse relation between exposure to clotting factor and skin response. In seropositive patients (n = 12) no such association was apparent. This study shows that clotting factor concentrate impairs the cell mediated immune response to a new antigen in the absence of infection with HIV. PMID:3094762

  16. [Production of a dialysable transfer factor of cell mediated immunity by lymphoblastoid cells in continuous proliferation].

    PubMed

    Goust, J M; Viza, D; Moulias, R; Trejdosiewicz, L; Lesourd, B; Marescot, M R; Prévot, A

    1975-01-20

    Four lymphoblastoid cell lines tested in this work contain normally a dialysable moiety having by ultraviolet spectroscopy, column chromatography (Biogel P 10) and chemically the same properties than human dialysable Transfer Factor (TFd), but unable to transfer cell mediated immune response against common antigens. Two of them are able to do so after incubation with minimal amounts of TFd. Production of a molecule identical to human TFd is possible in some lymphoblastoid cell lines after induction with TFd.

  17. Activation of cell-mediated immunity by Morinda citrifolia fruit extract and its constituents.

    PubMed

    Murata, Kazuya; Abe, Yumi; Futamura-Masudaa, Megumi; Uwaya, Akemi; Isami, Fumiyuki; Matsuda, Hideaki

    2014-04-01

    Morinda citrifolia, commonly known as noni, is a traditional natural medicine in French Polynesia and Hawaii. Functional foods derived from M. citrifolia fruit have been marketed to help prevent diseases and promote good health. The objective of this study was to assess the effects of M. citrifolia fruit on cell-mediated immunity. In the picryl chloride-induced contact dermatitis test, M. citrifolia fruit extract (Noni-ext) inhibited the suppression of cell-mediated immunity by immunosuppressive substances isolated from freeze-dried ascites of Ehrlich carcinoma-bearing mice (EC-sup). In addition, Noni-ext inhibited reduction of IL-2 production in EC-sup-treated mice and activated natural killer cells in normal mice. These results suggest that Noni-ext has multiple effects on the recovery of cell-mediated immunity. Furthermore, we investigated the active principles of Noni-ext and identified an iridoid glycoside, deacetylasperulosidic acid. Oral administration of deacetylasperulosidic acid inhibited the reduction of ear swelling, and also cancelled the suppression of IL-2 production along with the activation of natural killer cells in the same manner as that of Noni-ext.

  18. Differential effect of pancreatectomy on humoral and cell-mediated immune responses.

    PubMed Central

    Fabris, N; Piantanelli, L

    1977-01-01

    Cell-mediated immune reactions, such as allogenic skin-graft rejection and PHA or MLC responses, and antibody synthesis against different antigens (sheep erythrocytes, Brucella antigen, bovine serum albumin) have been evaluated in rats suffering from experimentally-induced diabetes and in age-matched sham-treated controls. Cell-mediated immune reactions are strongly depressed diabetic rats. The cellularity of the thymus and of thymus-dependent areas and the number of peripheral blood lymphocytes is significantly reduced in pancreatectomized rats. Moreover, the immunological recovery from heavy cortisonization is also greatly impaired. Daily treatment with insulin may prevent these immunological alterations. By contrast, antibody responses in diabetic rats are not quantitatively altered in respect to either the number of antibody producing cells in the spleen or the circulating antibody titres. The discrepancy between the abnormality of cell-mediated immune reactions in diabetic rats and their physiological capacity to synthetize antibodies suggests that the sensitivity to an insulin-deprived environment is present only in a definite, although yet undefined, subpopulation of lymphoid cells rather than in the whole lymphoid system. Images Fig. 4 PMID:141353

  19. Cell mediated immune response after challenge in Omp25 liposome immunized mice contributes to protection against virulent Brucella abortus 544.

    PubMed

    Goel, Divya; Rajendran, Vinoth; Ghosh, Prahlad C; Bhatnagar, Rakesh

    2013-02-06

    Brucellosis is a disease affecting various domestic and wild life species, and is caused by a bacterium Brucella. Keeping in view the serious economic and medical consequences of brucellosis, efforts have been made to prevent the infection through the use of vaccines. Cell-mediated immune responses [CMI] involving interferon gamma and cytotoxic CD4(+) and CD8(+) T cells are required for removal of intracellular Brucella. Omp25 has been reported to be involved in virulence of Brucella melitensis, Brucella abortus and Brucella ovis. In our previous study, we have shown the protective efficacy of recombinant Omp25, when administered intradermally. In this study, the recombinant Omp25 was formulated in PC-PE liposomes and PLGA microparticles, to enhance the protective immunity generated by it. Significant protection was seen with prime and booster liposome immunization in Balb/c mice against virulent B. abortus 544 as it was comparable to B. abortus S-19 vaccine strain. However, microparticle prime and booster immunization failed to give better protection when compared to B. abortus S-19 vaccine strain. This difference can be attributed to the stimulation of cell mediated immune response in PC-PE liposome immunized mice even after challenge which converted to cytotoxicity seen in CD4(+) and CD8(+) enriched lymphocytes. However, in PLGA microparticle immunized mice, cell mediated immunity was not generated after challenge as observed by decreased cytotoxicity of CD4(+) and CD8(+) enriched lymphocytes. Our study emphasizes on the importance of liposome encapsulating Omp25 immunization in conferring protection against B. abortus 544 challenge in Balb/c mice with a single dose immunization regimen.

  20. T Cell-Mediated Immunity towards Yellow Fever Virus and Useful Animal Models

    PubMed Central

    Watson, Alan M.; Klimstra, William B.

    2017-01-01

    The 17D line of yellow fever virus vaccines is among the most effective vaccines ever created. The humoral and cellular immunity elicited by 17D has been well characterized in humans. Neutralizing antibodies have long been known to provide protection against challenge with a wild-type virus. However, a well characterized T cell immune response that is robust, long-lived and polyfunctional is also elicited by 17D. It remains unclear whether this arm of immunity is protective following challenge with a wild-type virus. Here we introduce the 17D line of yellow fever virus vaccines, describe the current state of knowledge regarding the immunity directed towards the vaccines in humans and conclude with a discussion of animal models that are useful for evaluating T cell-mediated immune protection to yellow fever virus. PMID:28398253

  1. T Cell-Mediated Immunity towards Yellow Fever Virus and Useful Animal Models.

    PubMed

    Watson, Alan M; Klimstra, William B

    2017-04-11

    The 17D line of yellow fever virus vaccines is among the most effective vaccines ever created. The humoral and cellular immunity elicited by 17D has been well characterized in humans. Neutralizing antibodies have long been known to provide protection against challenge with a wild-type virus. However, a well characterized T cell immune response that is robust, long-lived and polyfunctional is also elicited by 17D. It remains unclear whether this arm of immunity is protective following challenge with a wild-type virus. Here we introduce the 17D line of yellow fever virus vaccines, describe the current state of knowledge regarding the immunity directed towards the vaccines in humans and conclude with a discussion of animal models that are useful for evaluating T cell-mediated immune protection to yellow fever virus.

  2. Human CD8+ T cells mediate protective immunity induced by a human malaria vaccine in human immune system mice.

    PubMed

    Li, Xiangming; Huang, Jing; Zhang, Min; Funakoshi, Ryota; Sheetij, Dutta; Spaccapelo, Roberta; Crisanti, Andrea; Nussenzweig, Victor; Nussenzweig, Ruth S; Tsuji, Moriya

    2016-08-31

    A number of studies have shown that CD8+ T cells mediate protective anti-malaria immunity in a mouse model. However, whether human CD8+ T cells play a role in protection against malaria remains unknown. We recently established human immune system (HIS) mice harboring functional human CD8+ T cells (HIS-CD8 mice) by transduction with HLA-A∗0201 and certain human cytokines using recombinant adeno-associated virus-based gene transfer technologies. These HIS-CD8 mice mount a potent, antigen-specific HLA-A∗0201-restricted human CD8+ T-cell response upon immunization with a recombinant adenovirus expressing a human malaria antigen, the Plasmodium falciparum circumsporozoite protein (PfCSP), termed AdPfCSP. In the present study, we challenged AdPfCSP-immunized HIS-CD8 mice with transgenic Plasmodium berghei sporozoites expressing full-length PfCSP and found that AdPfCSP-immunized (but not naïve) mice were protected against subsequent malaria challenge. The level of the HLA-A∗0201-restricted, PfCSP-specific human CD8+ T-cell response was closely correlated with the level of malaria protection. Furthermore, depletion of human CD8+ T cells from AdPfCSP-immunized HIS-CD8 mice almost completely abolished the anti-malaria immune response. Taken together, our data show that human CD8+ T cells mediate protective anti-malaria immunity in vivo.

  3. ITIM-dependent negative signaling pathways for the control of cell-mediated xenogeneic immune responses.

    PubMed

    del Rio, Maria-Luisa; Seebach, Jörg D; Fernández-Renedo, Carlos; Rodriguez-Barbosa, Jose-Ignacio

    2013-01-01

    Xenotransplantation is an innovative field of research with the potential to provide us with an alternative source of organs to face the severe shortage of human organ donors. For several reasons, pigs have been chosen as the most suitable source of organs and tissues for transplantation in humans. However, porcine xenografts undergo cellular immune responses representing a major barrier to their acceptance and normal functioning. Innate and adaptive xenogeneic immunity is mediated by both the recognition of xenogeneic tissue antigens and the lack of inhibition due to molecular cross-species incompatibilities of regulatory pathways. Therefore, the delivery of immunoreceptor tyrosine-based inhibitory motif (ITIM)-dependent and related negative signals to control innate (NK cells, macrophages) and adaptive T and B cells might overcome cell-mediated xenogeneic immunity. The proof of this concept has already been achieved in vitro by the transgenic overexpression of human ligands of several inhibitory receptors in porcine cells resulting in their resistance against xenoreactivity. Consequently, several transgenic pigs expressing tissue-specific human ligands of inhibitory coreceptors (HLA-E, CD47) or soluble competitors of costimulation (belatacept) have already been generated. The development of these robust and innovative approaches to modulate human anti-pig cellular immune responses, complementary to conventional immunosuppression, will help to achieve long-term xenograft survival. In this review, we will focus on the current strategies to enhance negative signaling pathways for the regulation of undesirable cell-mediated xenoreactive immune responses.

  4. Listeria monocytogenes-Induced Cell Death Inhibits the Generation of Cell-Mediated Immunity

    PubMed Central

    Theisen, Erin

    2016-01-01

    ABSTRACT The influence of cell death on adaptive immunity has been studied for decades. Despite these efforts, the intricacies of how various cell death pathways shape immune responses in the context of infection remain unclear, particularly with regard to more recently discovered pathways such as pyroptosis. The emergence of Listeria monocytogenes as a promising immunotherapeutic platform demands a thorough understanding of how cell death induced in the context of infection influences the generation of CD8+ T-cell-mediated immune responses. To begin to address this question, we designed strains of L. monocytogenes that robustly activate necrosis, apoptosis, or pyroptosis. We hypothesized that proinflammatory cell death such as necrosis would be proimmunogenic while apoptosis would be detrimental, as has previously been reported in the context of sterile cell death. Surprisingly, we found that the activation of any host cell death in the context of L. monocytogenes infection inhibited the generation of protective immunity and specifically the activation of antigen-specific CD8+ T cells. Importantly, the mechanism of attenuation was unique for each type of cell death, ranging from deficits in costimulation in the context of necrosis to a suboptimal inflammatory milieu in the case of pyroptosis. Our results suggest that cell death in the context of infection is different from sterile-environment-induced cell death and that inhibition of cell death or its downstream consequences is necessary for developing effective cell-mediated immune responses using L. monocytogenes-based immunotherapeutic platforms. PMID:27821585

  5. HLA-B8 and cell-mediated immunity to gluten.

    PubMed Central

    Simpson, F G; Bullen, A W; Robertson, D A; Losowsky, M S

    1981-01-01

    The leucocyte migration inhibition (LMI) test was used as an indicator of cell mediated immunity to gluten fraction III in 30 healthy controls and 58 patients with adult coeliac disease and the results related to HLA status and duration of treatment with a gluten-free diet. HLA-B8 controls showed significantly lower leucocyte migration indices, indicating greater immune response, than non-HLA B8 controls. Untreated coeliacs showed no difference from HLA-B8 controls. There was no difference between results from HLA-B8 and non-HLA-B8 coeliacs. Leucocyte migration was even lower in coeliacs early in treatment but rose after treatment for over one year. These results may reflect an immune response gene for gluten in linkage disequilibrium with HLA-B8. The increased immune response to gluten as measured in this test cannot be the sole factor in aetiology of coeliac disease. Furthermore, it is necessary to re-evaluate earlier results of cell-mediated immunity in coeliac disease with reference to HLA status of the controls. PMID:6974678

  6. Optimistic Expectancies and Cell-Mediated Immunity: The Role of Positive Affect

    PubMed Central

    Segerstrom, Suzanne C.; Sephton, Sandra E.

    2014-01-01

    Optimistic expectancies affect many psychosocial outcomes and may also predict immune system changes and health, but the nature and mechanisms of any such physiological effects have not been identified. The present study related law-school expectancies to cell-mediated immunity (CMI), examining the within- and between-person components of this relationship and affective mediators. First-year law students (N = 124) completed questionnaire measures of expectancies and affect and received delayed-type hypersensitivity skin tests at five time points. A positive relationship between optimistic expectancies and CMI occurred, in which that changes in optimism correlated with changes in CMI. Likewise, changes in optimism predicted changes in positive and, to a lesser degree, negative affect, but the relationship between optimism and immunity was partially accounted for only by positive affect. This dynamic relationship between expectancies and immunity has positive implications for psychological interventions to improve health, particularly those that increase positive affect. PMID:20424083

  7. Cell-Mediated Immunity in Elite Controllers Naturally Controlling HIV Viral Load.

    PubMed

    Genovese, Luca; Nebuloni, Manuela; Alfano, Massimo

    2013-01-01

    The natural course of human immunodeficiency virus (HIV) infection is characterized by high viral load, depletion of immune cells, and immunodeficiency, ultimately leading to acquired immunodeficiency syndrome phase and the occurrence of opportunistic infections and diseases. Since the discovery of HIV in the early 1980s a naturally selected population of infected individuals has been emerged in the last years, characterized by being infected for many years, with viremia constantly below detectable level and poor depletion of immune cells. These individuals are classified as "elite controllers (EC) or suppressors" and do not develop disease in the absence of anti-retroviral therapy. Unveiling host factors and immune responses responsible for the elite status will likely provide clues for the design of therapeutic vaccines and functional cures. Scope of this review was to examine and discuss differences of the cell-mediated immune responses between HIV+ individuals with disease progression and EC.

  8. Cell-Mediated Immunity in Elite Controllers Naturally Controlling HIV Viral Load

    PubMed Central

    Genovese, Luca; Nebuloni, Manuela; Alfano, Massimo

    2013-01-01

    The natural course of human immunodeficiency virus (HIV) infection is characterized by high viral load, depletion of immune cells, and immunodeficiency, ultimately leading to acquired immunodeficiency syndrome phase and the occurrence of opportunistic infections and diseases. Since the discovery of HIV in the early 1980s a naturally selected population of infected individuals has been emerged in the last years, characterized by being infected for many years, with viremia constantly below detectable level and poor depletion of immune cells. These individuals are classified as “elite controllers (EC) or suppressors” and do not develop disease in the absence of anti-retroviral therapy. Unveiling host factors and immune responses responsible for the elite status will likely provide clues for the design of therapeutic vaccines and functional cures. Scope of this review was to examine and discuss differences of the cell-mediated immune responses between HIV+ individuals with disease progression and EC. PMID:23577012

  9. Regulation of herpes simplex virus-specific cell-mediated immunity by a specific suppressor factor.

    PubMed Central

    Horohov, D W; Wyckoff, J H; Moore, R N; Rouse, B T

    1986-01-01

    Our study was designed to investigate the nature of an antigen-specific suppressor factor generated by antigen-stimulated herpes simplex virus (HSV)-immune splenocytes. Factor SF-200, a 90,000- to 100,000-dalton fraction obtained after Sephacryl gel filtration, suppressed the generation of HSV-specific cytotoxic T-lymphocyte and lymphoproliferative responses. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis of SF-200 indicated that it contained an I-J+, anti-idiotypic protein. It was possible to adsorb the suppressor activity of SF-200 to an anti-I-J immunoaffinity column. The suppressor activity could be eluted from the immunoaffinity column with a low-pH buffer. The acid-eluted material was determined to be both I-J+ and reactive with anti-HSV antiserum by Western blot analysis. Both SF-200 and the I-J+ suppressor activity suppressed only HSV-specific cell-mediated immunity responses. However, it was possible to generate nonspecific suppressor activity by incubating the I-J+ suppressor factor with Lyt 1+ splenocytes from HSV-immune mice. The implication of these results with respect to the model for a suppressor cell circuit regulating HSV-specific cell-mediated immunity responses is discussed. Images PMID:3009850

  10. Ornamental comb colour predicts T-cell-mediated immunity in male red grouse Lagopus lagopus scoticus

    NASA Astrophysics Data System (ADS)

    Mougeot, Francois

    2008-02-01

    Sexual ornaments might reliably indicate the ability to cope with parasites and diseases, and a better ability to mount a primary inflammatory response to a novel challenge. Carotenoid-based ornaments are amongst the commonest sexual signals of birds and often influence mate choice. Because carotenoids are immuno-stimulants, signallers may trade-off allocating these to ornamental colouration or using them for immune responses, so carotenoid-based ornaments might be particularly useful as honest indicators of immuno-compentence. Tetraonid birds, such as the red grouse Lagopus lagopus scoticus, exhibit supra-orbital yellow red combs, a conspicuous ornament which functions in intra- and inter-sexual selection. The colour of combs is due to epidermal pigmentation by carotenoids, while their size is testosterone-dependent. In this study, I investigated whether comb characteristics, and in particular, comb colour, indicated immuno-competence in free-living male red grouse. I assessed T-cell-mediated immunity using a standardised challenge with phytohaemagglutinin. Red grouse combs reflect in the red and in the ultraviolet spectrum of light, which is not visible to humans but that grouse most likely see, so I measured comb colour across the whole bird visible spectrum (300 700 nm) using a reflectance spectrometer. I found that males with bigger and redder combs, but with less ultraviolet reflectance, had greater T-cell-mediated immune response. Comb colour predicted T-cell-mediated immune response better than comb size, indicating that the carotenoid-based colouration of this ornament might reliably signal this aspect of male quality.

  11. Ornamental comb colour predicts T-cell-mediated immunity in male red grouse Lagopus lagopus scoticus.

    PubMed

    Mougeot, Francois

    2008-02-01

    Sexual ornaments might reliably indicate the ability to cope with parasites and diseases, and a better ability to mount a primary inflammatory response to a novel challenge. Carotenoid-based ornaments are amongst the commonest sexual signals of birds and often influence mate choice. Because carotenoids are immuno-stimulants, signallers may trade-off allocating these to ornamental colouration or using them for immune responses, so carotenoid-based ornaments might be particularly useful as honest indicators of immuno-compentence. Tetraonid birds, such as the red grouse Lagopus lagopus scoticus, exhibit supra-orbital yellow-red combs, a conspicuous ornament which functions in intra- and inter-sexual selection. The colour of combs is due to epidermal pigmentation by carotenoids, while their size is testosterone-dependent. In this study, I investigated whether comb characteristics, and in particular, comb colour, indicated immuno-competence in free-living male red grouse. I assessed T-cell-mediated immunity using a standardised challenge with phytohaemagglutinin. Red grouse combs reflect in the red and in the ultraviolet spectrum of light, which is not visible to humans but that grouse most likely see, so I measured comb colour across the whole bird visible spectrum (300-700 nm) using a reflectance spectrometer. I found that males with bigger and redder combs, but with less ultraviolet reflectance, had greater T-cell-mediated immune response. Comb colour predicted T-cell-mediated immune response better than comb size, indicating that the carotenoid-based colouration of this ornament might reliably signal this aspect of male quality.

  12. Cell-mediated Immunity and Antibodies to Herpesvirus hominis Type 1 in Oral Leukoplakia and Carcinoma

    PubMed Central

    Lehner, T.; Wilton, J. M. A.; Shillitoe, E. J.; Ivanyi, L.

    1973-01-01

    Cell-mediated and humoral immune responses to Herpesvirus hominis type 1 (HVH1) and Candida albicans were studied in patients with leukoplakia, showing a histological spectrum of changes from epithelial keratosis to acanthosis and atypia, and in patients with carcinoma. The results were ranked according to increasing values of stimulation indices of lymphocyte transformation to HVH1, and the corresponding macrophage migration inhibition indices, and complement fixing antibody titres of each patient were correlated. This revealed that most patients with epithelial atypia were clustered to that end of the spectrum which had the highest stimulation and migration indices to HVH1; this relationship was not evident with C. albicans. In patients with keratosis and acanthosis there was a significant lack of correlation between lymphocyte transformation and migration inhibition to both HVH1 and C. albicans. In carcinoma the indices of lymphocyte transformation and migration inhibition to HVH1 and C. albicans were depressed. Furthermore, a significant negative correlation was found between lymphocyte transformation and migration inhibition to HVH1, unlike the positive correlation in control subjects. Complement fixing antibodies to HVH1, HVH2, cytomegalovirus and adenovirus, and fluorescent antibodies to C. albicans failed to show a significant change in titre in any one group of subjects tested. The results suggest a cell-mediated immune defect in leukoplakia, with a dissociation between lymphocyte transformation and macrophage migration inhibition to HVH1 and C. albicans in cases of keratosis or acanthosis. A specific increase in cell-mediated immunity to HVH1 in leukoplakia with epithelial atypia and the sequential changes argue in favour of a possible participation of HVH1 in carcinomatous transformation of some leukoplakias. PMID:4351511

  13. Cell mediated immunity after measles in Guinea-Bissau: historical cohort study.

    PubMed Central

    Shaheen, S. O.; Aaby, P.; Hall, A. J.; Barker, D. J.; Heyes, C. B.; Shiell, A. W.; Goudiaby, A.

    1996-01-01

    OBJECTIVE: To investigate whether children who have had measles have reduced general cell mediated immunity three years later compared with vaccinated children who have not had measles. DESIGN: Historical cohort study. SETTING: Bissau, Guinea-Bissau. SUBJECTS: 391 children aged 3-13 years who were living in Bissau during a measles epidemic in 1991 and still lived there. These included 131 primary cases and 139 secondary cases from the epidemic and 121 vaccinated controls with no history of measles. MAIN OUTCOME MEASURES: General cell mediated immunity assessed by measurement of delayed type hypersensitivity skin responses to seven recall antigens. Anergy was defined as a lack of response to all antigens. RESULTS: 82 out of 268 cases of measles (31%) were anergic compared with 20 of the 121 vaccinated controls (17%) (odds ratio adjusted for potential confounding variables 2.2 (95% confidence interval 1.2 to 4.0); P 0.009). The prevalence of anergy was higher in secondary cases (33% (46/138)) than in primary cases (28% (36/130)), although this difference was not significant. Anergy was more common in the rainy season (unadjusted prevalence 31% (91/291) than in the dry season (11% (11/98)) (adjusted odds ratio 4.8 (2.2 to 10.3)). This seasonal increase occurred predominantly in the case of measles. CONCLUSION: Reduced general cell mediated immunity may contribute to the higher long term mortality in children who have had measles compared with recipients of standard measles vaccine and to the higher child mortality in the rainy season in west Africa. PMID:8892416

  14. Cordyceps militaris Enhances Cell-Mediated Immunity in Healthy Korean Men.

    PubMed

    Kang, Ho Joon; Baik, Hyun Wook; Kim, Sang Jung; Lee, Seong Gyu; Ahn, Hong Yup; Park, Ju Sang; Park, Sang Jong; Jang, Eun Jeong; Park, Sang Woon; Choi, Jin Young; Sung, Ji Hee; Lee, Seung Min

    2015-10-01

    Cordyceps militaris is a mushroom traditionally used for diverse pharmaceutical purposes in East Asia, including China, and has been found to be effective for enhancing immunity through various types of animal testing. The aim of this study is to determine the efficacy of C. militaris for enhancing cell-mediated immunity and its safety in healthy male adults. Healthy male adults were divided into the experimental group (n = 39), given 1.5 g/day of ethanol treated C. militaris in capsules, and the control group (n = 40), given the same number of identical placebo capsules filled with microcrystalline cellulose and lactose for 4 weeks from February 13 to March 14, 2012; the natural killer (NK) cell activity, lymphocyte proliferation index (PI), and T-helper cell 1 (Th1) cytokine cluster (interferon [IFN]-γ, interleukin [IL]-12, IL-2, and tumor necrosis factor [TNF]-α) were measured, along with stability test, at weeks 0, 2, and 4. The C. militaris group showed a statistically significant greater increase in NK200 (P = .0010), lymphocyte PI (P ≤ .0001), IL-2 (P = .0096), and IFN-γ (P = .0126), compared with the basal level, than the placebo group. There was no statistically significant adverse reaction. C. militaris enhanced the NK cell activity and lymphocyte proliferation and partially increased Th1 cytokine secretion. Therefore, C. militaris is safe and effective for enhancing cell-mediated immunity of healthy male adults.

  15. Autochthonous primary and metastatic melanomas in Hgf-Cdk4 R24C mice evade T-cell-mediated immune surveillance.

    PubMed

    Landsberg, Jennifer; Gaffal, Evelyn; Cron, Mira; Kohlmeyer, Judith; Renn, Marcel; Tüting, Thomas

    2010-10-01

    Genetically engineered mouse models offer new opportunities to investigate the role of cell-mediated immunity in the natural progression of melanoma in an immunocompetent host. Here we report that Hgf-Cdk4(R24C) mice spontaneously develop a spectrum of primary melanomas with high penetrance during their first year of life. Malignant transformation proceeds in a stepwise manner from multiple melanocytic nevi to single nodular melanomas and disseminated metastases in most mice. Migrating melanoma cells invade the draining lymph nodes without activating the immune system. Autochthonous primary tumors are destroyed following experimental introduction of immune surveillance using an adoptive lymphocyte transfer approach. However, some tumor cells are able to survive, evade immune cell control, and recur both locally and systemically. Immune tolerance in recurring tumors may be supported by immunosuppressive Gr1(+) myeloid cells. Taken together, our results demonstrate that primary and metastatic melanomas developing spontaneously in Hgf-Cdk4(R24C) mice effectively evade cellular immune surveillance.

  16. A DEPRESSION OF CELL-MEDIATED IMMUNITY TO MEASLES ANTIGEN IN PATIENTS WITH SYSTEMIC LUPUS ERYTHEMATOSUS

    PubMed Central

    Utermohlen, Virginia; Winfield, John B.; Zabriskie, John B.; Kunkel, Henry G.

    1974-01-01

    Using the direct migration inhibition test, response to measles antigen in patients with systemic lupus erythematosus (SLE) was found to be decreased when compared with that of normal subjects. No alteration was observed in similar experiments using parainfluenza type 1 and rubella antigens. The specific decrease in measles antigen effect showed no obvious correlation with activity of SLE or with the presence of lymphocytotoxic antibodies. Whether the specificity of the decrease in reactivity is due to some particular relationship between the measles virus or antigen and SLE, or to the possibility that measles reactivity is a more sensitive indicator of a generalized defect of cell-mediated immunity, remains unclear. PMID:4361242

  17. Tumor immunogenicity determines the effect of B7 costimulation on T cell-mediated tumor immunity

    PubMed Central

    1994-01-01

    A costimulatory signal through B7 to its counter-receptor CD28 on T cells enhances T cell activation. We have generated recombinant retroviruses containing cDNA for murine B7 and transduced a panel of murine tumor lines with varying immunogenicity to study the effect of B7 costimulation on antitumor immunity. In contrast to the progressive outgrowth of all wild-type (B7-) tumors in unimmunized syngeneic mice, four immunogenic tumors, lymphoma RMA, EL4, mastocytoma P815, and melanoma E6B2, regressed completely when transduced with the B7 gene. In contrast, four nonimmunogenic tumors, sarcomas MCA101, MCA102, and Ag104, and melanoma B16, remained tumorigenic after transduction of the B7 gene. Immunization with B7-transduced immunogenic tumors enhanced protective immunity and increased specific cytotoxic T lymphocyte (CTL) activity against the respective wild-type tumors as compared to immunization with nontransduced or mock-transduced tumors. Moreover, cocultivation of CTL with B7-transduced EL4 cells augmented the specificity of tumor-reactive CTL in long-term cultures. Treatment by injection of B7-transduced tumor cells cured 60% of mice with established wild-type EL4 lymphoma. In contrast, immunization with nonimmunogenic tumors transduced with B7 did not provide protective immunity and did not increase specific CTL activity. Our results show that tumor immunogenicity is critical to the outcome of costimulation of T cell-mediated tumor immunity by B7. PMID:7507508

  18. The 3 major types of innate and adaptive cell-mediated effector immunity.

    PubMed

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases.

  19. Childhood adversity and cell-mediated immunity in young adulthood: does type and timing matter?

    PubMed

    Slopen, Natalie; McLaughlin, Katie A; Dunn, Erin C; Koenen, Karestan C

    2013-02-01

    Childhood adversity can have powerful effects on health over the life course. Persistent changes in cell-mediated immune function may be one pathway linking adverse childhood experiences with later disease risk. However, limited research has examined childhood adversity in relation to cell-mediated immune function, and in particular, immune response to latent viruses in adulthood. The present study investigated the association of two types of childhood adversity, socioeconomic disadvantage during adolescence and abuse prior to age 18, with Epstein-Barr Virus (EBV) antibody titers in a large nationally representative sample of young adults aged 24-32years. Data were drawn from the National Longitudinal Study on Adolescent Health, Wave 4 (n=13,162). We examined the associations of three indicators of adolescent SES (parental education, household income, and occupational status) and frequency and timing of physical and sexual abuse with EBV antibodies, controlling for age, sex, race/ethnicity, and presence of a smoker in the household during adolescence. Lower parental occupational status and some categories of lower education were associated with elevated EBV antibodies (p<.05), and individuals who reported sexual abuse that occurred more than 10times had elevated EBV antibodies relative to individuals who were not sexually abused (p=0.03). Among individuals exposed to physical abuse, those who were first abused at age 3-5years had heightened EBV antibodies relative to those first abused during adolescence (p=0.004). This study extends prior research linking early adversity and immune function, and provides initial evidence that childhood adversity has a persistent influence on immune responses to latent infection in adulthood.

  20. Idiopathic pulmonary fibrosis: can cell mediated immunity markers predict clinical outcome?

    PubMed Central

    Meliconi, R; Lalli, E; Borzì, R M; Sturani, C; Galavotti, V; Gunella, G; Miniero, R; Facchini, A; Gasbarrini, G

    1990-01-01

    Most of the cells found in lung parenchyma in patients with idiopathic pulmonary fibrosis are activated T lymphocytes and macrophages. The serum levels of three markers of cell mediated immunity were measured in 20 patients with idiopathic pulmonary fibrosis, in 20 normal subjects and in 12 patients with sarcoidosis to evaluate their clinical and prognostic significance in idiopathic pulmonary fibrosis. The three markers were: soluble CD8 (from activated suppressor-cytotoxic lymphocytes), soluble interleukin (IL)-2 receptors (from activated T cells and macrophages), and neopterin (from activated macrophages). Patients with idiopathic pulmonary fibrosis had higher levels of all three markers than the control subjects. Soluble IL-2 receptor and neopterin tended to be lower (though not significantly) in patients with idiopathic pulmonary fibrosis than in those with sarcoidosis, whereas soluble CD8 was similar in the two groups of patients. No correlation was found between soluble IL-2 receptors or soluble CD8 and the clinical, radiological, and physiological measures of disease activity or with clinical outcome (after a mean follow up of 23 months). Tumour necrosis factor levels were also determined. Only 30% of patients with idiopathic pulmonary fibrosis or sarcoidosis had detectable circulating tumour necrosis factor; these patients had a lower percentage of bronchoalveolar lavage fluid neutrophils in their lavage fluid. Tumour necrosis factor levels did not correlate with clinical measures of severity or outcome. Thus our data support the hypothesis that cell mediated alveolitis occurs in idiopathic pulmonary fibrosis. They do not, however, provide evidence to support the use of these markers of cell mediated immunity to monitor the clinical course in these patients. PMID:2118691

  1. Tetherin promotes the innate and adaptive cell-mediated immune response against retrovirus infection in vivo.

    PubMed

    Li, Sam X; Barrett, Bradley S; Heilman, Karl J; Messer, Ronald J; Liberatore, Rachel A; Bieniasz, Paul D; Kassiotis, George; Hasenkrug, Kim J; Santiago, Mario L

    2014-07-01

    Tetherin/BST-2 is a host restriction factor that could directly inhibit retroviral particle release by tethering nascent virions to the plasma membrane. However, the immunological impact of Tetherin during retrovirus infection remains unknown. We now show that Tetherin influences antiretroviral cell-mediated immune responses. In contrast to the direct antiviral effects of Tetherin, which are dependent on cell surface expression, the immunomodulatory effects are linked to the endocytosis of the molecule. Mice encoding endocytosis-competent C57BL/6 Tetherin exhibited lower viremia and pathology at 7 d postinfection with Friend retrovirus (FV) compared with mice encoding endocytosis-defective NZW/LacJ Tetherin. Notably, antiretroviral protection correlated with stronger NK cell responses. In addition, Friend retrovirus infection levels were significantly lower in wild-type C57BL/6 mice than in Tetherin knockout mice at 2 wk postinfection, and antiretroviral protection correlated with stronger NK cell and virus-specific CD8+ T cell responses. The results demonstrate that Tetherin acts as a modulator of the cell-mediated immune response against retrovirus infection in vivo.

  2. Cell-mediated immune responses to artificial food additives in chronic urticaria.

    PubMed

    Warrington, R J; Sauder, P J; McPhillips, S

    1986-11-01

    In some cases of chronic urticaria it is suspected that food additives such as tartrazine and sodium benzoate or salicylates may play a role in the pathogenesis of the condition. Since, at times, chronic urticaria may appear histologically similar to a mild cell-mediated immune response, the release of the T cell-derived lymphokine leucocyte inhibitory factor (LIF), in response to incubation with these additives and with acetylsalicylic acid (ASA), was measured in vitro using cells from normal controls, from patients with chronic urticaria with or without clinically associated additive sensitivity and from patients with asthma with or without associated ASA sensitivity. It was found that significant production of LIF occurred in response to tartrazine and sodium benzoate in those individuals with chronic additive induced urticaria. In addition, tartrazine caused LIF release from mononuclear cells of ASA-sensitive asthmatics. These results may indicate a possible role for additive-induced cell-mediated immune responses in the pathogenesis of some cases of chronic urticaria and suggest a potential diagnostic test for this condition.

  3. Salmonella Modulates B Cell Biology to Evade CD8+ T Cell-Mediated Immune Responses

    PubMed Central

    Lopez-Medina, Marcela; Perez-Lopez, Araceli; Alpuche-Aranda, Celia; Ortiz-Navarrete, Vianney

    2014-01-01

    Although B cells and antibodies are the central effectors of humoral immunity, B cells can also produce and secrete cytokines and present antigen to helper T cells. The uptake of antigen is mainly mediated by endocytosis; thus, antigens are often presented by MHC-II molecules. However, it is unclear if B cells can present these same antigens via MHC-I molecules. Recently, Salmonella bacteria were found to infect B cells, allowing possible antigen cross-processing that could generate bacterial peptides for antigen presentation via MHC-I molecules. Here, we will discuss available knowledge regarding Salmonella antigen presentation by infected B cell MHC-I molecules and subsequent inhibitory effects on CD8+ T cells for bacterial evasion of cell-mediated immunity. PMID:25484884

  4. Cell-Mediated Immunity to AAV Vectors, Evolving Concepts and Potential Solutions.

    PubMed

    Basner-Tschakarjan, Etiena; Mingozzi, Federico

    2014-01-01

    Adeno-associated virus (AAV) vectors are one of the most efficient in vivo gene delivery platforms. Over the past decade, clinical trials of AAV vector-mediated gene transfer led to some of the most exciting results in the field of gene therapy and, recently, to the market approval of an AAV-based drug in Europe. With clinical development, however, it became obvious that the host immune system represents an important obstacle to successful gene transfer with AAV vectors. In this review article, we will discuss the issue of cytotoxic T cell responses directed against the AAV capsid encountered on human studies. While over the past several years the field has acquired a tremendous amount of information on the interactions of AAV vectors with the immune system, a lot of questions are still unanswered. Novel concepts are emerging, such as the relationship between the total capsid dose and the T cell-mediated clearance of transduced cells, the potential role of innate immunity in vector immunogenicity highlighted in preclinical studies, and the cross talk between regulatory and effector T cells in the determination of the outcome of gene transfer. There is still a lot to learn about immune responses in AAV gene transfer, for example, it is not well understood what are the determinants of the kinetics of activation of T cells in response to vector administration, why not all subjects develop detrimental T cell responses following gene transfer, and whether the intervention strategies currently in use to block T cell-mediated clearance of transduced cells will be safe and effective for all gene therapy indications. Results from novel preclinical models and clinical studies will help to address these points and to reach the important goal of developing safe and effective gene therapy protocols to treat human diseases.

  5. STIM1 controls T cell-mediated immune regulation and inflammation in chronic infection.

    PubMed

    Desvignes, Ludovic; Weidinger, Carl; Shaw, Patrick; Vaeth, Martin; Ribierre, Theo; Liu, Menghan; Fergus, Tawania; Kozhaya, Lina; McVoy, Lauren; Unutmaz, Derya; Ernst, Joel D; Feske, Stefan

    2015-06-01

    Chronic infections induce a complex immune response that controls pathogen replication, but also causes pathology due to sustained inflammation. Ca2+ influx mediates T cell function and immunity to infection, and patients with inherited mutations in the gene encoding the Ca2+ channel ORAI1 or its activator stromal interaction molecule 1 (STIM1) are immunodeficient and prone to chronic infection by various pathogens, including Mycobacterium tuberculosis (Mtb). Here, we demonstrate that STIM1 is required for T cell-mediated immune regulation during chronic Mtb infection. Compared with WT animals, mice with T cell-specific Stim1 deletion died prematurely during the chronic phase of infection and had increased bacterial burdens and severe pulmonary inflammation, with increased myeloid and lymphoid cell infiltration. Although STIM1-deficient T cells exhibited markedly reduced IFN-γ production during the early phase of Mtb infection, bacterial growth was not immediately exacerbated. During the chronic phase, however, STIM1-deficient T cells displayed enhanced IFN-γ production in response to elevated levels of IL-12 and IL-18. The lack of STIM1 in T cells was associated with impaired activation-induced cell death upon repeated TCR engagement and pulmonary lymphocytosis and hyperinflammation in Mtb-infected mice. Chronically Mtb-infected, STIM1-deficient mice had reduced levels of inducible regulatory T cells (iTregs) due to a T cell-intrinsic requirement for STIM1 in iTreg differentiation and excessive production of IFN-γ and IL-12, which suppress iTreg differentiation and maintenance. Thus, STIM1 controls multiple aspects of T cell-mediated immune regulation to limit injurious inflammation during chronic infection.

  6. Isolation of Immune Cells for Adoptive Transfer.

    PubMed

    Barhoumi, Tlili; Paradis, Pierre; Mann, Koren K; Schiffrin, Ernesto L

    2017-01-01

    Adoptive transfer of T lymphocytes is a useful technique to characterize the role of the immune system in hypertension and vascular disease. Here we describe as an example the isolation of splenic T regulatory cells from donor mice processed to obtain a single cell suspension, followed by negative and positive selection to obtain CD4(+) T cells and CD4(+)CD25(+) Treg cells, respectively. Treg cells can be subsequently transferred to recipient animals.

  7. T-cell-mediated drug hypersensitivity: immune mechanisms and their clinical relevance

    PubMed Central

    Cai, Fenfen; Lee, Frederick J; Pichler, Werner J

    2016-01-01

    T-cell-mediated drug hypersensitivity represents a significant proportion of immune mediated drug hypersensitivity reactions. In the recent years, there has been an increase in understanding the immune mechanisms behind T-cell-mediated drug hypersensitivity. According to hapten mechanism, drug specific T-cell response is stimulated by drug-protein conjugate presented on major histocompatibility complex (MHC) as it is presented as a new antigenic determinant. On the other hand, p-i concept suggests that a drug can stimulate T cells via noncovalent direct interaction with T-cell receptor and/or peptide-MHC. The drug binding site is quite variable and this leads to several different mechanisms within p-i concept. Altered peptide repertoire can be regarded as an 'atypical' subset of p-i concept since the mode of the drug binding and the binding site are essentially identical to p-i concept. However, the intracellular binding of abacavir to HLA-B*57:01 additionally results in alteration in peptide repertoire. Furthermore the T-cell response to altered peptide repertoire model is only shown for abacavir and HLA-B*57:01 and therefore it may not be generalised to other drug hypersensitivity. Danger hypothesis has been postulated to play an important role in drug hypersensitivity by providing signal 2 but its experimental data is lacking at this point in time. Furthermore, the recently described allo-immune response suggests that danger signal may be unnecessary. Finally, in view of these new understanding, the classification and the definition of type B adverse drug reaction should be revised. PMID:27141480

  8. Postoperative Depression of Tumour-directed Cell-mediated Immunity in Patients with Malignant Disease

    PubMed Central

    Cochran, A. J.; Spilg, W. G. S.; Mackie, Rona M.; Thomas, Catherine E.

    1972-01-01

    Leucocytes from 46 melanoma patients, 45 breast carcinoma patients, and 95 control donors were tested by the leucocyte migration test against the supernatants of homogenates of malignant melanomas, breast carcinomas, simple breast tumours, and breasts showing simple cystic disease. By comparison with controls inhibition of migration occurred significantly more frequently when tumour patients' leucocytes were exposed to extracts of histogenetically similar tumours. Cell-mediated immunity to tumour-associated antigens was measured in 12 patients with breast carcinoma and 12 with malignant melanoma immediately before surgical operation and in the postoperative period. All patients tested before operation showed significant inhibition of migration on contact with extracts of histogenetically similar tumours. Postoperatively the degree of leucocyte migration inhibition was reduced in all patients with melanoma and breast carcinoma. Significant inhibition of leucocyte migration returned in most patients 6-22 days after operation. PMID:5077468

  9. [The humoral and cell-mediated immune response induced by the NIVGRIP inactivated influenza vaccine].

    PubMed

    Mihail, A; Steiner, N; Berca, C; Jucu, V; Muşat, G

    1988-01-01

    A comparative study was conducted in patients vaccinated with the NIVGRIP trivalent inactivated influenza vaccine and in placebo receiving controls on the kinetics of the serum hemagglutination inhibiting (HAI) antibodies and the neutralizing secretory antibodies in the nasopharyngeal secretions (NPS), of the blastic transformation of lymphocytes index, of the rosette formation index and of the serum immunoglobulins. A significant rise of the H.A.I. and the neutralizing secretory antibodies as well as of the blastic transformation of lymphocytes index was recorded after stimulation with the influenza vaccine. There were no significant changes in controls. No significant variations of the blastic transformation of lymphocytes index after stimulation with P.P.D. and of the rosette formation index were recorded in both investigated groups. Serum immunoglobulin titres showed significant variations in vaccinated as well as in control groups. The results point out the stimulating effect of the NIVGRIP inactivated influenza vaccine on both humoral and cell mediated immune responses.

  10. Effect of viral and bacterial pneumonias on cell-mediated immunity in humans.

    PubMed Central

    Kauffman, C A; Linnemann, C C; Schiff, G M; Phair, J P

    1976-01-01

    Cell-mediated immunity (CMI) was assessed during infection and after convalescence in 12 patients with influenza pneumonia and 10 patients with bacterial pneumonia. The patients with influenza pneumonia had a marked impairment of skin test reactivity, and their lymphocytes showed a diminished response to phytohemagglutinin and streptokinase-streptodornase stimulation in vitro. Suppression of CMI was related to the severity of the pneumonia. Patients with bacterial pneumonia showed as great a suppression of the response to phytohemagglutinin and streptokinase-streptodornase as the patients with viral pneumonia. All parameters of CMI returned to normal in both groups after convalescence. The depression of CMI could not be related to a decrease in the number of thymus-derived lymphocytes or to serum-suppressive factors in these patients. PMID:1082445

  11. Development of a simplified and convenient assay for cell-mediated immunity to the mumps virus.

    PubMed

    Otani, Naruhito; Shima, Masayuki; Nakajima, Kazuhiko; Takesue, Yoshio; Okuno, Toshiomi

    2014-09-01

    Because methods for measuring cell-mediated immunity (CMI) to the mumps virus are expensive, time-consuming, and technically demanding, the role of CMI in mumps virus infection remains unclear. To address this issue, we report here the development of a simplified method for measuring mumps virus-specific CMI that is suitable for use in diverse laboratory and clinical settings. A mumps vaccine was cultured with whole blood, and interferon (IFN)-γ released into the culture supernatant was measured using an enzyme-linked immunosorbent assay. IFN-γ production in blood from vaccinated subjects markedly increased in response to the vaccine and decreased before the antibody titer decreased in some cases, suggesting that this assay may be used as a simple surrogate method for measuring CMI specific for the mumps virus. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Dendritic cell-mediated immune humanization of mice: implications for allogeneic and xenogeneic stem cell transplantation.

    PubMed

    Salguero, Gustavo; Daenthanasanmak, Anusara; Münz, Christian; Raykova, Ana; Guzmán, Carlos A; Riese, Peggy; Figueiredo, Constanca; Länger, Florian; Schneider, Andreas; Macke, Laura; Sundarasetty, Bala Sai; Witte, Torsten; Ganser, Arnold; Stripecke, Renata

    2014-05-15

    De novo regeneration of immunity is a major problem after allogeneic hematopoietic stem cell transplantation (HCT). HCT modeling in severely compromised immune-deficient animals transplanted with human stem cells is currently limited because of incomplete maturation of lymphocytes and scarce adaptive responses. Dendritic cells (DC) are pivotal for the organization of lymph nodes and activation of naive T and B cells. Human DC function after HCT could be augmented with adoptively transferred donor-derived DC. In this study, we demonstrate that adoptive transfer of long-lived human DC coexpressing high levels of human IFN-α, human GM-CSF, and a clinically relevant Ag (CMV pp65 protein) promoted human lymphatic remodeling in immune-deficient NOD.Rag1(-/-).IL-2rγ(-/-) mice transplanted with human CD34(+) cells. After immunization, draining lymph nodes became replenished with terminally differentiated human follicular Th cells, plasma B cells, and memory helper and cytotoxic T cells. Human Igs against pp65 were detectable in plasma, demonstrating IgG class-switch recombination. Human T cells recovered from mice showed functional reactivity against pp65. Adoptive immunotherapy with engineered DC provides a novel strategy for de novo immune reconstitution after human HCT and a practical and effective tool for studying human lymphatic regeneration in vivo in immune deficient xenograft hosts.

  13. Neonatal Fc receptor expression in dendritic cells mediates protective immunity against colorectal cancer.

    PubMed

    Baker, Kristi; Rath, Timo; Flak, Magdalena B; Arthur, Janelle C; Chen, Zhangguo; Glickman, Jonathan N; Zlobec, Inti; Karamitopoulou, Eva; Stachler, Matthew D; Odze, Robert D; Lencer, Wayne I; Jobin, Christian; Blumberg, Richard S

    2013-12-12

    Cancers arising in mucosal tissues account for a disproportionately large fraction of malignancies. Immunoglobulin G (IgG) and the neonatal Fc receptor for IgG (FcRn) have an important function in the mucosal immune system that we have now shown extends to the induction of CD8(+) T cell-mediated antitumor immunity. We demonstrate that FcRn within dendritic cells (DCs) was critical for homeostatic activation of mucosal CD8(+) T cells that drove protection against the development of colorectal cancers and lung metastases. FcRn-mediated tumor protection was driven by DCs activation of endogenous tumor-reactive CD8(+) T cells via the cross-presentation of IgG complexed antigens (IgG IC), as well as the induction of cytotoxicity-promoting cytokine secretion, particularly interleukin-12, both of which were independently triggered by the FcRn-IgG IC interaction in murine and human DCs. FcRn thus has a primary role within mucosal tissues in activating local immune responses that are critical for priming efficient anti-tumor immunosurveillance.

  14. CXCR5⁺ T helper cells mediate protective immunity against tuberculosis.

    PubMed

    Slight, Samantha R; Rangel-Moreno, Javier; Gopal, Radha; Lin, Yinyao; Fallert Junecko, Beth A; Mehra, Smriti; Selman, Moises; Becerril-Villanueva, Enrique; Baquera-Heredia, Javier; Pavon, Lenin; Kaushal, Deepak; Reinhart, Todd A; Randall, Troy D; Khader, Shabaana A

    2013-02-01

    One third of the world's population is infected with Mycobacterium tuberculosis (Mtb). Although most infected people remain asymptomatic, they have a 10% lifetime risk of developing active tuberculosis (TB). Thus, the current challenge is to identify immune parameters that distinguish individuals with latent TB from those with active TB. Using human and experimental models of Mtb infection, we demonstrated that organized ectopic lymphoid structures containing CXCR5+ T cells were present in Mtb-infected lungs. In addition, we found that in experimental Mtb infection models, the presence of CXCR5+ T cells within ectopic lymphoid structures was associated with immune control. Furthermore, in a mouse model of Mtb infection, we showed that activated CD4+CXCR5+ T cells accumulated in Mtb-infected lungs and produced proinflammatory cytokines. Mice deficient in Cxcr5 had increased susceptibility to TB due to defective T cell localization within the lung parenchyma. We demonstrated that CXCR5 expression in T cells mediated correct T cell localization within TB granulomas, promoted efficient macrophage activation, protected against Mtb infection, and facilitated lymphoid follicle formation. These data demonstrate that CD4+CXCR5+ T cells play a protective role in the immune response against TB and highlight their potential use for future TB vaccine design and therapy.

  15. Changes in cell-mediated immune response after lung resection surgery for MDR-TB patients.

    PubMed

    Park, Seung-Kyu; Hong, Sunghee; Eum, Seok-Yong; Lee, In Hee; Shin, Donk Ok; Cho, Jang Eun; Cho, Sungae; Cho, Sang-Nae

    2011-07-01

    The immune responses of multidrug-resistant tuberculosis (MDR-TB) patients undergoing lung resection surgery were investigated in order to understand the mechanism of strong immune suppression in MDR-TB. We examined changes in cell-mediated immune response (CMI) of a total of sixteen MDR-TB patients, three of them extensively drug-resistant tuberculosis (XDR-TB) patients, after the removal of the heavily diseased lung section. The IFN-γ response to Mycobacterium tuberculosis culture filtrate proteins (Mtb-CFP), one of the most important CMI to defend TB, showed a statistically significant elevation in 2-4 months after operation when compared to the preoperative CMI in patients who were converted into AFB negative and cured in two years' follow-up, suggesting that the recovery of CMI may be one of the key factors in the successful treatment of MDR-TB. Interestingly, IL-10 response to Mtb-CFP was also elevated in 2-4 months after surgery in cured patients although both proliferative response and PBMC composition were not significantly changed. Infection with first- or second-line drugs resistant Mtb reduces the efficiency of chemotherapeutic treatment of MDR-TB to about 50%. Thus, this study suggests that chemotherapeutic treatment of MDR-TB may be more effective when combined with accompanying therapy that increases CMI, includes lung resection surgery.

  16. Cell mediated immune response of the Mediterranean sea urchin Paracentrotus lividus after PAMPs stimulation.

    PubMed

    Romero, A; Novoa, B; Figueras, A

    2016-09-01

    The Mediterranean sea urchin (Paracentrotus lividus) is of great ecological and economic importance for the European aquaculture. Yet, most of the studies regarding echinoderm's immunological defense mechanisms reported so far have used the sea urchin Strongylocentrotus purpuratus as a model, and information on the immunological defense mechanisms of Paracentrotus lividus and other sea urchins, is scarce. To remedy this gap in information, in this study, flow cytometry was used to evaluate several cellular immune mechanisms, such as phagocytosis, cell cooperation, and ROS production in P. lividus coelomocytes after PAMP stimulation. Two cell populations were described. Of the two, the amoeboid-phagocytes were responsible for the phagocytosis and ROS production. Cooperation between amoeboid-phagocytes and non-adherent cells resulted in an increased phagocytic response. Stimulation with several PAMPs modified the phagocytic activity and the production of ROS. The premise that the coelomocytes were activated by the bacterial components was confirmed by the expression levels of two cell mediated immune genes: LPS-Induced TNF-alpha Factor (LITAF) and macrophage migration inhibitory factor (MIF). These results have helped us understand the cellular immune mechanisms in P. lividus and their modulation after PAMP stimulation.

  17. Effects of endosulfan on humoral and cell-mediated immune responses in rats

    SciTech Connect

    Banerjee, B.D.; Hussain, Q.Z.

    1987-03-01

    Endosulfan (6,7,8,9,10,10a-hexa-chloro-1,5,5a,6,9,9a-hexahydro, 6,9-methano-2,4,3-benzodioxathiepin-3-oxide), a polycyclic chlorinated hydrocarbon of cyclodien group, is a well known insecticide. Food is the main source of exposure of the general population to endosulfan. The physical, chemical as well as toxicological effects of endosulfan in experimental animals have been reported by various workers. However, the reports regarding the effect of endosulfan on immune system are not available. In view of its widespread use there is an urgent need to investigate the immunotoxicological effect of endosulfan in mammals for the safety evaluation of this insecticide. This has, therefore, prompted the authors to investigate the effect of endosulfan on immune system employing albino rats as the experimental animals. Included in this report are their preliminary findings on humoral and cell-mediated immune responses in rats exposed to sub-chronic doses of endosulfan.

  18. Colostral antibody-mediated and cell-mediated immunity contributes to innate and antigen-specific immunity in piglets

    PubMed Central

    Bandrick, Meggan; Ariza-Nieto, Claudia; Baidoo, Samuel K.; Molitor, Thomas W.

    2014-01-01

    Immunoglobulins and immune cells are critical components of colostral immunity; however, their transfer to and function in the neonate, especially maternal lymphocytes, is unclear. Cell-mediated and antibody-mediated immunity in sow blood and colostrum and piglet blood before (PS) and after (AS) suckling were assessed to investigate transfer and function of maternal immunity in the piglet. CD4, CD8, and γδ lymphocytes were found in sow blood and colostrum and piglet blood PS and AS; each had a unique T lymphocyte profile. Immunoglobulins were detected in sow blood, colostrum, and in piglet blood AS; the immunoglobulin profile of piglet serum AS mimicked that of sow serum. These results suggest selectivity in lymphocyte concentration into colostrum and subsequent lymphocyte transfer into the neonate, but that immunoglobulin transfer is unimpeded. Assessment of colostral natural killer activity and antigen-specific proliferation revealed that colostral cells are capable of influencing the innate and specific immune response of neonatal pigs. PMID:24252519

  19. Gamma-irradiated scrub typhus immunogens: development of cell-mediated immunity after vaccination of inbred mice.

    PubMed Central

    Jerrells, T R; Palmer, B A; Osterman, J V

    1983-01-01

    Mice immunized with three injections of gamma-irradiated Karp strain of Rickettsia tsutsugamushi were evaluated for the presence of cell-mediated immunity by using delayed-type hypersensitivity, antigen-induced lymphocyte proliferation, and antigen-induced lymphokine production. These animals also were evaluated for levels of circulating antibody after immunization as well as for the presence of rickettsemia after intraperitoneal challenge with viable Karp rickettsiae. After immunization with irradiated Karp rickettsiae, a demonstrable cell-mediated immunity was present as evidenced by delayed-type hypersensitivity responsiveness, lymphocyte proliferation, and production of migration inhibition factor and interferon by immune spleen lymphocytes. Also, a reduction in circulating rickettsiae was seen in mice immunized with irradiated rickettsiae after challenge with 1,000 50% mouse lethal doses of viable, homologous rickettsiae. All responses except antibody titer and reduction of rickettsemia were similar to the responses noted in mice immunized with viable organisms. Antibody levels were lower in mice immunized with irradiated rickettsiae than in mice immunized with viable rickettsiae. Furthermore, mice that were immunized with viable rickettsiae demonstrated markedly lower levels of rickettsemia after intraperitoneal challenge compared with either mice immunized with irradiated rickettsiae or nonimmunized mice. PMID:6185433

  20. Infectious Diseases and Immunizations in International Adoption.

    PubMed

    Obringer, Emily; Walsh, Linda

    2017-02-01

    Children who are adopted internationally have an increased risk of infectious diseases due to endemic conditions and variable access to preventive health care, such as vaccines, in their country of origin. Pediatricians and other providers who care for children should be familiar with the recommended screening for newly arrived international adoptees. Testing for gastrointestinal pathogens, tuberculosis, hepatitis, syphilis, and HIV should be routinely performed. Other endemic diseases and common skin infections may need to be assessed. Evaluation of the child's immunization record is also important, as nearly all international adoptees will require catch-up vaccines. The provider may also be asked to review medical records prior to adoption, provide travel advice, and ensure that parents and other close contacts are up-to-date on immunizations prior to the arrival of the newest family member. The pediatrician serves a unique role in facilitating the evaluation, treatment, and prevention of infectious diseases in international adoptees. [Pediatr Ann. 2017;46(2):e56-e60.]. Copyright 2017, SLACK Incorporated.

  1. T-Cell Immunoglobulin- and Mucin-Domain-Containing Molecule 3 Signaling Blockade Improves Cell-Mediated Immunity Against Malaria.

    PubMed

    Hou, Nan; Zou, Yang; Piao, Xianyu; Liu, Shuai; Wang, Lei; Li, Shanshan; Chen, Qijun

    2016-11-15

    Cell-mediated immune responses play important roles in immune protection against Plasmodium infection. However, impaired immunity, such as lymphocyte exhaustion, is a common phenomenon in malaria. T-cell immunoglobulin- and mucin-domain-containing molecule 3 (Tim-3) is an important regulatory molecule in cell-mediated immunity and has been implicated in malaria. In this study, it was found that Tim-3 expression on key populations of lymphocytes was significantly increased in both Plasmodium falciparum-infected patients and Plasmodium berghei ANKA (PbANKA)-infected C57BL/6 mice. Upregulation of Tim-3 led to lymphocyte exhaustion, while blocking Tim-3 signaling with an anti-Tim-3 antibody restored lymphocyte activity in Plasmodium infections. Further, anti-Tim-3 treatment accelerated the parasite clearance and relieved the symptoms of cerebral malaria in PbANKA-infected mice. In conclusion, Tim-3 on immune cells negatively regulates cell-mediated immunity against Plasmodium infection, and blocking Tim-3 signaling enhances sterile immunity and may play a protective role during malarial parasite infections. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  2. Stimulatory effect of Eucalyptus essential oil on innate cell-mediated immune response.

    PubMed

    Serafino, Annalucia; Sinibaldi Vallebona, Paola; Andreola, Federica; Zonfrillo, Manuela; Mercuri, Luana; Federici, Memmo; Rasi, Guido; Garaci, Enrico; Pierimarchi, Pasquale

    2008-04-18

    Besides few data concerning the antiseptic properties against a range of microbial agents and the anti-inflammatory potential both in vitro and in vivo, little is known about the influence of Eucalyptus oil (EO) extract on the monocytic/macrophagic system, one of the primary cellular effectors of the immune response against pathogen attacks. The activities of this natural extract have mainly been recognized through clinical experience, but there have been relatively little scientific studies on its biological actions. Here we investigated whether EO extract is able to affect the phagocytic ability of human monocyte derived macrophages (MDMs) in vitro and of rat peripheral blood monocytes/granulocytes in vivo in absence or in presence of immuno-suppression induced by the chemotherapeutic agent 5-fluorouracil (5-FU). Morphological activation of human MDMs was analysed by scanning electron microscopy. Phagocytic activity was tested: i) in vitro in EO treated and untreated MDMs, by confocal microscopy after fluorescent beads administration; ii) in vivo in monocytes/granulocytes from peripheral blood of immuno-competent or 5-FU immuno-suppressed rats, after EO oral administration, by flow cytometry using fluorescein-labelled E. coli. Cytokine release by MDMs was determined using the BD Cytometric Bead Array human Th1/Th2 cytokine kit. EO is able to induce activation of MDMs, dramatically stimulating their phagocytic response. EO-stimulated internalization is coupled to low release of pro-inflammatory cytokines and requires integrity of the microtubule network, suggesting that EO may act by means of complement receptor-mediated phagocytosis. Implementation of innate cell-mediated immune response was also observed in vivo after EO administration, mainly involving the peripheral blood monocytes/granulocytes. The 5-FU/EO combined treatment inhibited the 5-FU induced myelotoxicity and raised the phagocytic activity of the granulocytic/monocytic system, significantly

  3. Effect of chronic microwave radiation on T cell-mediated immunity in the rabbit

    NASA Astrophysics Data System (ADS)

    Nageswari, K. Sri; Sarma, K. R.; Rajvanshi, V. S.; Sharan, R.; Sharma, Manju; Barathwal, Vinita; Singh, Vinod

    1991-06-01

    Experiments were conducted to elucidate the effects of chronic low power-level microwave radiation on the immunological systems of rabbits. Fourteen male Belgian white rabbits were exposed to microwave radiation at 5 mW/cm2, 2.1 GHz, 3 h daily, 6 days/week for 3 months in two batches of 7 each in specially designed miniature anechoicchambers. Seven rabbits were subjected to sham exposure for identical duration. The microwave energy was provided through S band standard gain horns connected to a 4K3SJ2 Klystron power amplifier. The first batch of animals were assessed for T lymphocyte-mediated cellular immune response mechanisms and the second batch of animals for B lymphocyte-mediated humoral immune response mechanisms. The peripheral blood samples collected monthly during microwave/sham exposure and during follow-up (5/14 days after termination of exposures, in the second batch animals only) were analysed for T lymphocyte numbers and their mitogen responsiveness to ConA and PHA. Significant suppression of T lymphocyte numbers was noted in the microwave group at 2 months ( P<0.01, Δ% 21.5%) and during follow-up ( P<0.01, Δ% 30.2%). The first batch animals were initially sensitised with BCG and challenged with tuberculin (0.03 ml) at the termination of microwave irradiation/sham exposure and the increase in foot pad thickness (Δ mm), which is a measure of T cell-mediated immunity (delayed type hypersensitivity response, DTH) was noted in both the groups. The microwave group revealed a better response than the control group (Δ%+12.4 vs.+7.54). The animals were sacrified and the tissue T lymphocyte counts (spleen and lymph node) were analysed. No significant variation was observed in the tissue T lymphocyte counts of microwave-irradiated rabbits. From these results it is speculated that the T lymphocytes are sequestered to various lymphoid organs under the influence of microwaves. A sub-population of T cells known as T helper cells (mediating DTH response) are

  4. Arsenic Exposure and Cell-Mediated Immunity in Pre-School Children in Rural Bangladesh

    PubMed Central

    Ahmed, Sultan; Moore, Sophie E.; Kippler, Maria; Gardner, Renee; Hawlader, M. D. H.; Wagatsuma, Yukiko; Raqib, Rubhana; Vahter, Marie

    2014-01-01

    Prenatal arsenic exposure has been associated with reduced thymic index and increased morbidity in infants, indicating arsenic-related impaired immune function. We aimed at elucidating potential effects of pre- and postnatal arsenic exposure on cell-mediated immune function in pre-school aged children. Children born in a prospective mother-child cohort in rural Bangladesh were followed up at 4.5 years of age (n = 577). Arsenic exposure was assessed by concentrations of arsenic metabolites (U-As) in child urine and maternal urine during pregnancy, using high-performance liquid chromatography online with inductively coupled plasma mass spectrometry. For assessment of delayed type hypersensitivity response, an intradermal injection of purified protein derivative (PPD) was given to Bacillus Calmette-Guerin vaccinated children. The diameter (mm) of induration was measured after 48–72 h. Plasma concentrations of 27 cytokines were analyzed by a multiplex cytokine assay. Children's concurrent, but not prenatal, arsenic exposure was associated with a weaker response to the injected PPD. The risk ratio (RR) of not responding to PPD (induration <5 mm) was 1.37 (95% confidence interval (CI): 1.07, 1.74) in children in the highest quartile of U-As (range 126–1228 μg/l), compared with the lowest (range 12–34 μg/l). The p for trend across the quartiles was 0.003. The association was stronger in undernourished children. Children's U-As in tertiles was inversely associated with two out of 27 cytokines only, i.e., IL-2 and TNF-α, both Th1 cytokines (in the highest tertile, regression coefficients (95% CI): −1.57 (−2.56, −0.57) and −4.53 (−8.62, −0.42), respectively), but not with Th2 cytokines. These associations were particularly strong in children with recent infections. In conclusion, elevated childhood arsenic exposure appeared to reduce cell-mediated immunity, possibly linked to reduced concentrations of Th1 cytokines. PMID:24924402

  5. The Role of Cell-Mediated Immunity in the Induction of Inflammatory Responses

    PubMed Central

    Cohen, Stanley

    1977-01-01

    Reactions of cell-mediated immunity fall into two broad categories: those that involve direct participation of intact lymphocytes in the effector mechanism of the reaction and those that involve mediation by soluble lymphocyte-derived factors known as lymphokines. The first kind of reaction is essentially limited to lymphocyte-dependent cytotoxicity, although certain aspects of T cell-B cell cooperation may fall into this category as well. The second category appears to comprise the bulk of the so-called cell-mediated immune response and provides a link between this system and the inflammatory system. Various lymphokines have been shown to exert profound influence upon inflammatory cell metabolism, cell surface properties, patterns of cell migration, and the activation of cells for various biologic activities involved in host defense. Although substantial information is now available about various physicochemical as well as biologic properties of lymphokines, purification and characterization data are as yet too incomplete to allow us to ascribe all of these activities to discrete mediator molecules. Current work involving the development of antibody-based techniques for mediator assay may shed light on this issue. Information on the kinds of cells capable of lymphokine production is now available. Contrary to prior expectation, T cells are not unique in their capacity for lymphokine production. Under appropriate circumstances, B cells and even nonlymphoid cells can do so as well. The unique property of lymphocytes in this regard appears to relate to their ability to respond to certain specialized signals such as specific antigen or an appropriate mitogen. Mediator production per se may represent a general biologic phenomenon. Although lymphokines have been defined mainly in terms of in vitro assays, early speculations about their in vivo importance are proving correct. Evidence for the role of lymphokines comes from studies involving detection of lymphokines in

  6. Cell-mediated immune responses in owl monkeys (Aotus trivirgatus) with trachoma to soluble antigens of Chlamydia trachomatis.

    PubMed Central

    Sacks, D L; Todd, W J; Macdonald, A B

    1978-01-01

    The first temporal study of the cell-mediated immune responses (CMI) following ocular infections with Chlamydia trachomatis is presented. We examined the CMI of owl monkeys infected with trachoma to soluble antigens of C. trachomatis by leucocyte migration inhibition (LIF) and delayed hypersensitivity skin testing. Delayed hypersensitivity of a systemic nature developed after a local eye infection in owl monkeys; clearance of inclusions from conjunctival cells coincided with the onset of this response. The association of eye secretion and circulating antibodies with recovery from primary infection was not so striking. Both cellular and humoral immune responses persisted for at least 2 months, at which time all test animals were completely resistant to re-infection. The elicitation of cell-mediated immune reactions with solubilized chlamydial antigens may permit the isolation of specific antigens involved in the generation of protective immunity in the owl monkey model. PMID:101327

  7. Serum dependent cell-mediated immune reactions to Brugia pahangi infective larvae.

    PubMed

    Chandrashekar, R; Rao, U R; Subrahmanyam, D

    1985-11-01

    Fresh normal rat serum (fNRS) promoted adherence and cytotoxicity of albino rat neutrophils and macrophages to Brugia pahangi infective larvae (L3) in vitro. EDTA and not EGTA abolished the adherence activity suggesting the involvement of complement components via the alternate pathway. C3 molecules were detected on the surface of the parasite by immunofluorescence. fNRS depleted of complement by treatment with Zymosan A or of factor B by heating at 50 degrees C for 20 min, failed to promote cell adherence to the parasite. fNRS and cells from albino rat were more potent in inducing cytotoxicity to L3 than those from jird or Mastomys which may reflect the greater resistance offered by the albino rat to B. pahangi infection. In the presence of IgG and a heat labile factor, possibly complement, of immune serum, neutrophils and macrophages and to a lesser extent eosinophils adhered to and killed the larvae. Immune sera raised against microfilariae of different filarial parasites promoted cell-mediated cytotoxicity to B. pahangi L3 suggesting sharing of antigens between the two stages.

  8. Cell-mediated immune responses to chlamydial antigens in guinea pigs injected with inactivated chlamydiae.

    PubMed

    Senyk, G; Sharp, M; Stites, D P; Hanna, L; Keshishyan, H; Jawetz, E

    1980-01-01

    Cell-mediated immunity (CMI) to chlamydial antigens was readily induced in guinea pigs by a single injection of Betaprone-inactivated chlamydiae in complete Freund adjuvant. The CMI was measured in vivo by delayed hypersensitivity skin tests, and in vitro by inhibition of migration of peritoneal exudate cells and by proliferation of lymph node lymphocytes. There was an overall correlation between in vivo and in vitro responses. Of the in vitro assays, migration inhibition reflected the state of sensitization, as judged by skin tests, more uniformly than lymphocyte stimulation. Extensive inter- and intra-species cross-reactivity was noted between LB-1, a strain of C. trachomatis, and three strains of C. psittaci, 6BC, GPIC, and 562F. Cross-reactivity between LB-1 and 6BC was one-way only, by all three parameters: LB-1 elicited strong cross-reactions in 6BC-immunized animals but not vice versa. Antichlamydial antibodies could not be demonstrated in any of the animals by microimmunofluorescence.

  9. Is cell-mediated immunity related to the evolution of life-history strategies in birds?

    PubMed Central

    Tella, José L; Scheuerlein, Alex; Ricklefs, Robert E

    2002-01-01

    According to life-history theory, the development of immune function should be balanced through evolutionary optimization of the allocation of resources to reproduction and through mechanisms that promote survival. We investigated interspecific variability in cell-mediated immune response (CMI), as measured by the phytohaemagglutinin (PHA) assay, in relation to clutch size, longevity and other life-history traits in 50 species of birds. CMI exhibited significant repeatability within species, and PHA responses in chicks were consistently stronger than in adults. Univariate tests showed a variety of significant relationships between the CMI of both chicks and adults with respect to size, development period and lifespan, but not clutch size or prevalence of blood parasites in adults. Multivariate analyses confirmed these patterns but independent variables were too highly correlated to isolate unique influences on CMI. The positive relationship of chick CMI to nestling period is further complicated by a parallel relationship of chick CMI to the age at testing. However, multivariate analysis showed that chick CMI varies uniquely with length of the nestling period. Adult CMI was associated with a strong life-history axis of body size, development rate and longevity. Therefore, adult CMI may be associated with prevention and repair mechanisms related to long lifespan, but it also may be allometrically related to body size through other pathways. Neither chick CMI nor adult CMI was related to clutch size, contradicting previous results linking parasite-related mortality to CMI and the evolution of clutch size (reproductive investment) in birds. PMID:12028764

  10. TRESK channel as a potential target to treat T-cell mediated immune dysfunction

    SciTech Connect

    Han, Jaehee; Kang, Dawon

    2009-12-25

    In this review, we propose that TRESK background K{sup +} channel could serve as a potential therapeutic target for T-cell mediated immune dysfunction. TRESK has many immune function-related properties. TRESK is abundantly expressed in the thymus, the spleen, and human leukemic T-lymphocytes. TRESK is highly activated by Ca{sup 2+}, calcineurin, acetylcholine, and histamine which induce hypertrophy, whereas TRESK is inhibited by immunosuppressants, such as cyclosporin A and FK506. Cyclosporine A and FK506 target the binding site of nuclear factor of activated T-cells (NFAT) to inhibit calcineurin. Interestingly, TRESK possesses an NFAT-like docking site that is present at its intracellular loop. Calcineurin has been found to interact with TRESK via specific NFAT-like docking site. When the T-cell is activated, calcineurin can bind to the NFAT-docking site of TRESK. The activation of both TRESK and NFAT via Ca{sup 2+}-calcineurin-NFAT/TRESK pathway could modulate the transcription of new genes in addition to regulating several aspects of T-cell function.

  11. Dynamics of an HIV-1 infection model with cell mediated immunity

    NASA Astrophysics Data System (ADS)

    Yu, Pei; Huang, Jianing; Jiang, Jiao

    2014-10-01

    In this paper, we study the dynamics of an improved mathematical model on HIV-1 virus with cell mediated immunity. This new 5-dimensional model is based on the combination of a basic 3-dimensional HIV-1 model and a 4-dimensional immunity response model, which more realistically describes dynamics between the uninfected cells, infected cells, virus, the CTL response cells and CTL effector cells. Our 5-dimensional model may be reduced to the 4-dimensional model by applying a quasi-steady state assumption on the variable of virus. However, it is shown in this paper that virus is necessary to be involved in the modeling, and that a quasi-steady state assumption should be applied carefully, which may miss some important dynamical behavior of the system. Detailed bifurcation analysis is given to show that the system has three equilibrium solutions, namely the infection-free equilibrium, the infectious equilibrium without CTL, and the infectious equilibrium with CTL, and a series of bifurcations including two transcritical bifurcations and one or two possible Hopf bifurcations occur from these three equilibria as the basic reproduction number is varied. The mathematical methods applied in this paper include characteristic equations, Routh-Hurwitz condition, fluctuation lemma, Lyapunov function and computation of normal forms. Numerical simulation is also presented to demonstrate the applicability of the theoretical predictions.

  12. Effect of morphine on cell-mediated immune responses of human lymphocytes against allogeneic malignant cells.

    PubMed

    Fuggetta, M P; Di Francesco, P; Falchetti, R; Cottarelli, A; Rossi, L; Tricarico, M; Lanzilli, G

    2005-06-01

    Opioid drugs, including morphine, are largely used as pain control in cancer patients at different stages of neoplastic growth and progression. Therefore, the possible influence of these drugs on host immunity appears to be of considerable interest. We have examined in vitro the effect of morphine on the generation of human cytotoxic T lymphocytes (CTL) against HTLV-I induced T-cell leukemia cells (MT-2 line). The results show that the drug, at graded concentrations (from 3 pg/ml to 32 microg/ml), that include those detectable in treated patients, enhances CTL activity whereas natural killer cell activity was unaffected. The enhancing effect is particularly evident when morphine was present at the onset of lymphocyte/MT-2 co-culture. On the contrary, the drug was ineffective when added on the last day of co-culture, thus indicating that morphine operates during the generation phase of CTL, but not on mature CTL. Flow cytometric analysis of intracellular cytokine expression showed that morphine increases the percentage of interferon gamma-producing CD8+ T cells in co-culture assay. Collectively, these results suggest that in our experimental model morphine enhances CTL responses by directly affecting the induction phase of T-dependent cell-mediated immunity.

  13. Arthrofibrosis is the result of a T cell mediated immune response.

    PubMed

    Bosch, U; Zeichen, J; Skutek, M; Haeder, L; van Griensven, M

    2001-09-01

    It is thought that an excessive fibrotic healing response with diffuse intra-articular scarring leads to arthrofibrosis after trauma and surgery around joints. To clarify the specific cellular mechanism of arthrofibrosis during arthrolysis we took fibrotic tissue samples from 18 patients at varying periods after knee trauma or surgery. Sections were stained with hematoxylin and eosin to study the overall histopathological changes. Major histocompatibility complex (MHC) class II expressing cells as well as CD3, CD4, CD25, CD28, CD68, CD80, and CD83 positive cells were localized immunohistologically. The results demonstrated synovial hyperplasia with fibrotic enlargement of the subintima and infiltration of inflammatory cells. The number of MHC class II expressing cells was increased. Mainly, intimal macrophages and dendritic cells showed positive immunostaining for MHC class II antigens. In the subintima moderate infiltration of T cells including activated T cells (CD25), CD4+ T helper (Th) cells and Th1 and Th2 subsets was detected. There was a slight polarization of the Th1/Th2 balance towards Th1 differentiation. Positive immunostaining for CD80/CD28 indicated the costimulatory signal for T cell activation and clonal expansion. These findings strongly support an immune response as the cause of capsulitis leading to formation of diffuse scar tissue within the knee joint. Based on our immunohistological study we conclude that a T cell mediated immune response plays a crucial role in the mechanism of arthrofibrosis.

  14. Antibody- and cell-mediated immune responses to a synthetic oligosaccharide conjugate vaccine after booster immunization.

    PubMed

    Safari, Dodi; Dekker, Huberta A Th; de Jong, Ben; Rijkers, Ger T; Kamerling, Johannis P; Snippe, Harm

    2011-09-02

    Memory formation to CRM-neoglycoconjugate, a synthetic branched tetrasaccharide of Streptococcus pneumoniae type 14 polysaccharide (Pn14PS) that is conjugated to a CRM197 protein, was investigated using mice models. Mice were first immunized with the CRM-neoglycoconjugate and then boosted with either the same neoglycoconjugate or a native Pn14PS in order to investigate the effect of booster immunization. Boosting with the CRM-neoglycoconjugate resulted in increased levels of interleukin 5 (IL-5) in the serum on Day 1, followed by the appearance of high levels of specific anti-Pn14PS IgG antibodies on Day 7. Boosting with native Pn14PS resulted in neither IL-5 induction nor the generation of anti-Pn14PS IgG antibodies. In vitro (re)stimulation of spleen cells after booster injection with the neoglycoconjugate revealed the presence of IL-4 and IL-5. This was not seen in spleen cells obtained from mice boosted with the polysaccharide. When stimulated with heat-inactivated bacteria, however, the polysaccharide-boosted mice did have higher levels of IFN-γ and lower levels of IL-17 than both the CRM-neoglycoconjugate-boosted mice and the mock-immunized mice. In conclusion, neoglycoconjugate boosting is responsible for the activation of memory cells and the establishment of sustained immunity. Not only is a booster with native polysaccharide ineffective in inducing opsonic antibodies, but it also interferes with several immunoregulatory mechanisms.

  15. Studies of Cell-Mediated Immunity Against Immune Disorders Using Synthetic Peptides and Rotating Bioreactor System

    NASA Technical Reports Server (NTRS)

    Sastry, Jagannadha K.

    1997-01-01

    Our proposed experiments included: (1) immunzing mice with synthetic peptides; (2) preparing spleen and lymph node cells; (3) growing them under conventional conditions as well as in the rotatory vessel in appropriate medium reconstituting with synthetic peptides and/or cytokines as needed; and (4) comparing at regular time intervals the specific CTL activity as well as helper T-cell activity (in terms of both proliferative responses and cytokine production) using established procedures in my laboratory. We further proposed that once we demonstrated the merit of rotatory vessel technology to achieve desired results, these studies would be expanded to include immune cells from non-human primates (rhesus monkeys and chimpanzees) and also humans. We conducted a number of experiments to determine CTL induction by the synthetic peptides corresponding to antigenic proteins in HIV and HPV in different mouse strains that express MHC haplotypes H-2b or H-2d. We immunized mice with 100 ug of the synthetic peptide, suspended in sterile water, and emulsified in CFA (1:1). The immune lymph node cells obtained after 7 days were restimulated by culturing in T25 flask, HARV-10, or STLV-50, in the presence of the peptide at 20 ug/ml. The results from the 5'Cr-release assay consistently revealed complete abrogation of CTL activity of cells grown in the bioreactors (both HARV and STLV), while significant antigen-specific CTL activity was observed with cells cultured in tissue culture flasks. Thus, overall the data we generated in this study proved the usefulness of the NASA-developed developed technology for understanding the known immune deficiency during space travel. Additionally, this ex vivo microgravity technology since it mimics effectively the in vivo situation, it is also useful in understanding immune disorders in general. Thus, our proposed studies in TMC-NASA contract round II application benefit from data generated in this TMC-NASA contract round I study.

  16. Nifurtimox-induced alterations in the cell-mediated immune response to PPD tin guinea-pigs.

    PubMed Central

    Lelchuk, R; Cardoni, R L; Levis, S

    1977-01-01

    Positive skin reactions to PPD in guinea-pigs immunized with Freund's complete adjuvant (FCA) were reversed after treatment with 10 mg/kg/day nifurtimox for 12 days. The in vitro migration of peripheral blood leucocytes from FCA-immunized guinea-pigs was inhibited with PPD, but it returned to normal values after nifurtimox treatment. Furthermore, the cell-free supernatant from PPD-stimulated lymphocytes from FCA-immunized nifurtimox-treated guinea-pigs did not inhibit the migration of normal cells. Thus the administration of nifurtimox impaired the specific cell-mediated immune response to PPD both in vivo and in vitro. PMID:414870

  17. Cell-mediated and humoral immune responses to chlamydial antigens in guinea pigs infected ocularly with the agent of guinea pig inclusion conjunctivitis.

    PubMed

    Senyk, G; Kerlan, R; Stites, D P; Schanzlin, D J; Ostler, H B; Hanna, L; Keshishyan, H; Jawetz, E

    1981-04-01

    Cell-mediated immune response and humoral response to chlamydial antigens were investigated in guinea pigs infected with the agent of guinea pig inclusion conjunctivitis (GPIC). Pronounced cell-mediated immune response to the homologous antigen, as well as to two other chlamydial antigens, 6BC (Chlamydia psittaci) and LB-1 (C. trachomatis), occurred in all infected animals. Cell-mediated immune response to GPIC, and to a lesser extent to 6BC and LB-1 as well, was enhanced with time after infection even without the re-inoculation of the infectious agent. Extensive cross-reactions among the three chlamydial antigens during the cell-mediated immune response appeared to be due to shared species-specific and group-reactive antigens. Serum antibody response was pronounced and uniform to GPIC; it was less marked to 6BC and LB-1, with fewer cross-reactions than seen in tests for cell-mediated immunity.

  18. Studies of Cell-Mediated Immunity Against Immune Disorders Using Synthetic Peptides and Rotating Bioreactor System

    NASA Technical Reports Server (NTRS)

    Sastry, Jagannadha K.

    1998-01-01

    We conducted a series of experiments using mouse immune-precursor cells, and observed that bioreactor culturing results in the loss of antigen-specific cytotoxic T lymphocyte (CTL) function. The reason for the abrogation of CTL function is microgravity conditions in the bioreactor, but not the antigen per se or its MHC restriction. Similarly, we observed that allostimulation of human PBMC in the bioreactor, but not in the T flask, resulted in the blunting of both allo-CTL function and the NK activity, indicating that the microgravity-associated functional defects are not unique to the mouse system. These results provide further confirmation to the microgravity-associated immune dysfunction, and constitute ground-based confirmatory data for those related to space-travel.

  19. Effect of chronic microwave radiation on T cell-mediated immunity in the rabbit.

    PubMed

    Nageswari, K S; Sarma, K R; Rajvanshi, V S; Sharan, R; Sharma, M; Barathwal, V; Singh, V

    1991-09-01

    Experiments were conducted to elucidate the effects of chronic low power-level microwave radiation on the immunological systems of rabbits. Fourteen male Belgian white rabbits were exposed to microwave radiation at 5 mW/cm2, 2.1 GHz, 3 h daily, 6 days/week for 3 months in two batches of 7 each in specially designed miniature anechoic chambers. Seven rabbits were subjected to sham exposure for identical duration. The microwave energy was provided through S band standard gain horns connected to a 4K3SJ2 Klystron power amplifier. The first batch of animals were assessed for T lymphocyte-mediated cellular immune response mechanisms and the second batch of animals for B lymphocyte-mediated humoral immune response mechanisms. The peripheral blood samples collected monthly during microwave/sham exposure and during follow-up (5/14 days after termination of exposures, in the second batch animals only) were analysed for T lymphocyte numbers and their mitogen responsiveness to ConA and PHA. Significant suppression of T lymphocyte numbers was noted in the microwave group at 2 months (P less than 0.01, delta % 21.5%) and during follow-up (P less than 0.01, delta % 30.2%). The first batch animals were initially sensitised with BCG and challenged with tuberculin (0.03 ml) at the termination of microwave irradiation/sham exposure and the increase in foot pad thickness (delta mm), which is a measure of T cell-mediated immunity (delayed type hypersensitivity response, DTH) was noted in both the groups. The microwave group revealed a better response than the control group (delta % +12.4 vs. +7.54). The animals were sacrificed and the tissue T lymphocyte counts (spleen and lymph node) were analysed.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. ISCOM-matrix-based equine influenza (EIV) vaccine stimulates cell-mediated immunity in the horse.

    PubMed

    Paillot, R; Prowse, L

    2012-01-15

    The humoral immune response induced by ISCOM-matrix (Immuno Stimulating COMplex-Matrix)-adjuvanted equine influenza virus (EIV) vaccine is well documented in horses. ISCOM-matrix adjuvanted vaccines against human influenza are strong inducers of cell-mediated immunity (CMI), including T cell proliferation and virus-specific cytotoxic T cell. In the horse, the CMI response to equine influenza vaccination is less well characterised. An ISCOM-based vaccine has been shown to induce interferon gamma (IFN-γ) synthesis, a CMI marker, in the horse, but this has not been shown for the ISCOM-matrix vaccine, which is a different formulation. The objective of this study was to measure EIV-specific IFN-γ synthesis after vaccination with an ISCOM-matrix-adjuvanted EIV vaccine. Equilis Prequenza is a commercialised inactivated EIV vaccine containing purified haemagglutinin (HA) and neuraminidase (NA) subunits adjuvanted with ISCOM-matrix. Six influenza-naïve Welsh mountain ponies were vaccinated twice with Equilis Prequenza at an interval of four weeks. Six control ponies received a placebo of physiological water. EIV-specific IFN-γ synthesis by peripheral blood lymphocytes and the antibody response to a panel of representative EIV isolates were measured prior to and after both injections. Immunisation with the ISCOM-matrix-based EIV vaccine stimulated significant EIV-specific IFN-γ synthesis and EIV-specific single radial haemolysis (SRH) antibody. In conclusion, EIV vaccine adjuvanted with ISCOM-matrix stimulates both antibody and a cellular immune response in the horse.

  1. Immune regulatory effects of simvastatin on regulatory T cell-mediated tumour immune tolerance.

    PubMed

    Lee, K J; Moon, J Y; Choi, H K; Kim, H O; Hur, G Y; Jung, K H; Lee, S Y; Kim, J H; Shin, C; Shim, J J; In, K H; Yoo, S H; Kang, K H; Lee, S Y

    2010-08-01

    Statins are potent inhibitors of hydroxyl-3-methylglutaryl co-enzyme A (HMG-CoA) reductase, and have emerged as potential anti-cancer agents based on preclinical evidence. In particular, compelling evidence suggests that statins have a wide range of immunomodulatory properties. However, little is known about the role of statins in tumour immune tolerance. Tumour immune tolerance involves the production of immunosuppressive molecules, such as interleukin (IL)-10, transforming growth factor (TGF)-beta and indoleamine-2,3-dioxygenase (IDO) by tumours, which induce a regulatory T cell (T(reg)) response. In this study, we investigated the effect of simvastatin on the production of IL-10, TGF-beta and IDO production and the proliferation of T(regs) using several cancer cell lines, and Lewis lung cancer (3LL) cells-inoculated mouse tumour model. Simvastatin treatment resulted in a decrease in the number of cancer cells (3LL, A549 and NCI-H292). The production of the immune regulatory markers IL-10, TGF-beta in 3LL and NCI-H292 cells increased after treatment with simvastatin. The expression of IDO and forkhead box P3 (FoxP3) transcription factor was also increased in the presence of simvastatin. In a murine 3LL model, there were no significant differences in tumour growth rate between untreated and simvastatin-treated mice groups. Therefore, while simvastatin had an anti-proliferative effect, it also exhibited immune tolerance-promoting properties during tumour development. Thus, due to these opposing actions, simvastatin had no net effect on tumour growth.

  2. Physical disruption of skin during poxvirus immunization is critical for the generation of highly protective T cell-mediated immunity

    PubMed Central

    Liu, Luzheng; Zhong, Qiong; Tian, Tian; Dubin, Krista; Athale, Shruti K.; Kupper, Thomas S.

    2010-01-01

    Introductory Paragraph Variola major infection (Smallpox) claimed hundreds of millions lives before it was eradicated by a simple vaccination strategy: epicutaneous application of the related orthopoxvirus Vaccinia virus (VACV) to superficially injured skin (skin scarification, s.s.)1. However, the remarkable success of this strategy was attributed to the immunogenicity of VACV rather than the unique vaccine delivery mode. We now demonstrate that VACV immunization via s.s., but not conventional injection routes, is essential to the generation of superior T cell-mediated immune responses that provide complete protection against subsequent challenges, independent of neutralizing antibodies. Skin-resident effector memory T cells (TEM) provide complete protection against cutaneous challenge, while protection against lethal respiratory challenge requires both respiratory mucosal TEM and central memory T cells (TCM). Vaccination with recombinant VACV (rVACV) expressing a tumor antigen was protective against tumor challenge only if delivered via s.s. route, but not by hypodermic injection. Finally, the clinically safer non-replicative Modified Vaccinia Ankara (MVA) also generated far superior protective immunity when delivered via s.s route compared to intramuscular injection used in MVA clinical trials. Thus, delivering rVACV -based vaccines, including MVA vaccines, through physically disrupted epidermis represents a uniquely powerful strategy with clear-cut advantages over conventional vaccination via hypodermic injection. PMID:20081864

  3. Au@Pt nanoparticles as catalase mimics to attenuate tumor hypoxia and enhance immune cell-mediated cytotoxicity.

    PubMed

    Li, Juan; Liang, Hong; Wu, Ying; Ou, Xiang-Yu; Li, Jingying

    2017-09-19

    Hypoxic tumor microenvironment (TME) is closely linked to tumor progression, heterogeneity and immune suppression. Therefore, the development of effective methods to overcome hypoxia and substantially enhance the immunotherapy efficacy remains a desirable goal. Herein, we engineered a biocompatible Au core/Pt shell nanoparticles (Au@Pt NPs) to reoxygenate the TME by reacting with endogenous H2O2. Treatment with Au@Pt NPs appeared to improve oxygen in intracellular environments and decrease hypoxia-inducible factor (HIF)-1α expression. Furthermore, the integration of high catalytic efficiency of Au@Pt NPs with cytokine-induced killer (CIK) cell immunotherapy, could lead to significantly improve the effect of CIK cell-mediated cytotoxicity. These results suggest great potential of Au@Pt NPs for regulation of the hypoxic TME and enhance immune cell mediated anti-tumor immunity. © 2017 IOP Publishing Ltd.

  4. Comparison of the effectiveness of antibody and cell-mediated immunity against inhaled and instilled influenza virus challenge.

    PubMed

    Rivers, Katie; Bowen, Larry E; Gao, Jin; Yang, Kevin; Trombley, John E; Bohannon, J Kyle; Eichelberger, Maryna C

    2013-06-19

    To evaluate immunity against influenza, mouse challenge studies are typically performed by intranasal instillation of a virus suspension to anesthetized animals. This results in an unnatural environment in the lower respiratory tract during infection, and therefore there is some concern that immune mechanisms identified in this model may not reflect those that protect against infectious virus particles delivered directly to the lower respiratory tract as an aerosol. To evaluate differences in protection against instilled and inhaled virus, mice were immunized with influenza antigens known to induce antibody or cell-mediated responses and then challenged with 100 LD50 A/PR/8/34 (PR8) in the form of aerosol (inhaled) or liquid suspension (instilled). Mice immunized with recombinant adenovirus (Ad) expressing hemagglutinin were protected against weight loss and death in both challenge models, however immunization with Ad expressing nucleoprotein of influenza A (NPA) or M2 resulted in greater protection against inhaled aerosolized virus than virus instilled in liquid suspension. Ad-M2, but not Ad-NPA-immunized mice were protected against a lower instillation challenge dose. These results demonstrate differences in protection that are dependent on challenge method, and suggest that cell-mediated immunity may be more accurately demonstrated in mouse inhalation studies. Furthermore, the data suggest immune mechanisms generally characterized as incomplete or weak in mouse models using liquid intranasal challenge may offer greater immunity against influenza infection than previously thought.

  5. Comparison of the effectiveness of antibody and cell-mediated immunity against inhaled and instilled influenza virus challenge

    PubMed Central

    2013-01-01

    Background To evaluate immunity against influenza, mouse challenge studies are typically performed by intranasal instillation of a virus suspension to anesthetized animals. This results in an unnatural environment in the lower respiratory tract during infection, and therefore there is some concern that immune mechanisms identified in this model may not reflect those that protect against infectious virus particles delivered directly to the lower respiratory tract as an aerosol. Method To evaluate differences in protection against instilled and inhaled virus, mice were immunized with influenza antigens known to induce antibody or cell-mediated responses and then challenged with 100 LD50 A/PR/8/34 (PR8) in the form of aerosol (inhaled) or liquid suspension (instilled). Results Mice immunized with recombinant adenovirus (Ad) expressing hemagglutinin were protected against weight loss and death in both challenge models, however immunization with Ad expressing nucleoprotein of influenza A (NPA) or M2 resulted in greater protection against inhaled aerosolized virus than virus instilled in liquid suspension. Ad-M2, but not Ad-NPA-immunized mice were protected against a lower instillation challenge dose. Conclusions These results demonstrate differences in protection that are dependent on challenge method, and suggest that cell-mediated immunity may be more accurately demonstrated in mouse inhalation studies. Furthermore, the data suggest immune mechanisms generally characterized as incomplete or weak in mouse models using liquid intranasal challenge may offer greater immunity against influenza infection than previously thought. PMID:23777453

  6. Persistence of cell-mediated immunity three decades after vaccination with the live vaccine strain of Francisella tularensis

    PubMed Central

    Eneslätt, Kjell; Rietz, Cecilia; Rydén, Patrik; Stöven, Svenja; House, Robert V.; Wolfraim, Lawrence A.; Tärnvik, Arne; Sjöstedt, Anders

    2012-01-01

    Summary The efficacy of many vaccines against intracellular bacteria depends on the generation of cell-mediated immunity, but studies to determine the duration of immunity are usually confounded by re-exposure. The causative agent of tularemia, Francisella tularensis, is rare in most areas and, therefore, tularemia vaccination is an interesting model for studies of the longevity of vaccine-induced cell-mediated immunity. Here lymphocyte proliferation and cytokine production in response to F. tularensis were assayed in two groups of 16 individuals, vaccinated 1-3 or 27-34 years previously. As compared to naïve individuals, vaccinees of both groups showed higher proliferative responses and, out of 17 cytokines assayed, higher levels of MIP-1β, IFN-γ, IL-10, and IL-5 in response to recall stimulation. The responses were very similar in the two groups of vaccinees. A statistical model was developed to predict the immune status of the individuals and by use of two parameters, proliferative responses and levels of IFN-γ, 91.1% of the individuals were correctly classified. Using flow cytometry analysis, we demonstrated that during recall stimulation, expression of IFN-γ by CD4+CCR7+, CD4+CD62L+, CD8+CCR7+, and CD8+CD62L+ cells significantly increased in samples from vaccinated donors. In conclusion, cell-mediated immunity was found to persist three decades after tularemia vaccination without evidence of decline. PMID:21442618

  7. Mathematical modeling on T-cell mediated adaptive immunity in primary dengue infections.

    PubMed

    Sasmal, Sourav Kumar; Dong, Yueping; Takeuchi, Yasuhiro

    2017-09-21

    At present, dengue is the most common mosquito-borne viral disease in the world, and the global dengue incidence is increasing day by day due to climate changing. Here, we present a mathematical model of dengue viruses (DENVs) dynamics in micro-environment (cellular level) consisting of healthy cells, infected cells, virus particles and T-cell mediated adaptive immunity. We have considered the explicit role of cytokines and antibody in our model. We find that the virus load goes down to zero within 6 days as it is common for DENV infection. From our analysis, we have identified the important model parameters and done the numerical simulation with respect to such important parameters. We have shown that the cytokine mediated virus clearance plays a very important role in dengue dynamics. It can change the dynamical behavior of the system and causes essential extinction of the virus. Finally, we have incorporated the antiviral treatment for dengue in our model and shown that the basic reproduction number is directly proportional to the antiviral treatment effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Epstein-Barr virus reactivation associated with diminished cell-mediated immunity in antarctic expeditioners

    NASA Technical Reports Server (NTRS)

    Mehta, S. K.; Pierson, D. L.; Cooley, H.; Dubow, R.; Lugg, D.

    2000-01-01

    Epstein-Barr virus (EBV) reactivation and cell-mediated immune (CMI) responses were followed in 16 Antarctic expeditioners during winter-over isolation at 2 Australian National Antarctic Research Expedition stations. Delayed-type hypersensitivity (DTH) skin testing was used as an indicator of the CMI response, that was evaluated 2 times before winter isolation and 3 times during isolation. At all 5 evaluation times, 8 or more of the 16 subjects had a diminished CMI response. Diminished DTH was observed on every test occasion in 4/16 subjects; only 2/16 subjects exhibited normal DTH responses for all 5 tests. A polymerase chain reaction (PCR) assay was used to detect EBV DNA in saliva specimens collected before, during, and after the winter isolation. EBV DNA was present in 17% (111/642) of the saliva specimens; all 16 subjects shed EBV in their saliva on at least 1 occasion. The probability of EBV shedding increased (P = 0.013) from 6% before or after winter isolation to 13% during the winter period. EBV appeared in saliva during the winter isolation more frequently (P < 0.0005) when DTH response was diminished than when DTH was normal. The findings indicate that the psychosocial, physical, and other stresses associated with working and living in physical isolation during the Antarctic winter result in diminished CMI and an accompanying increased reactivation and shedding of latent viruses.

  9. Epstein-Barr Virus Reactivation Associated with Diminished Cell-Mediated Immunity in Antarctic Expeditioners

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Mehta, Satish K.; Cooley, Helen; Dubow, Robin; Lugg, Desmond

    1999-01-01

    Reactivation of Epstein-Barr virus (EBV) and cell-mediated immune (CMI) responses were followed in 16 Antarctic expeditioners during winter-over isolation at two Australian National Antarctic Research Expedition stations. Delayed-type hypersensitivity skin testing was used as an indicator of the CMI response, which was evaluated two times before winter isolation and three times during isolation. At all five evaluation times, 8 or more of the 16 subjects had a diminished. CMI response. Diminished CMI was observed on every test occasion in 4/16 subjects; only 2/16 subjects exhibited normal CMI responses for all five tests. A polymerase chain reaction (PCR) assay was used to detect EBV DNA in saliva specimens collected before, after, and during the winter isolation. EBV DNA was present in 17% (111/642) of the saliva specimens; all 16 subjects shed EBV in their saliva on at least one occasion. The probability of EBV shedding increased (p=0.013) from 6% before or after winter isolation to 13% during the winter period. EBV appeared in saliva during the winter isolation more frequently (p<0.0005) when CMI responsiveness was diminished than when CMI status was normal. The findings indicate that the psychosocial, physical, and other stresses associated with working and living in physical isolation during the Antarctic winter results in diminished CMI and an accompanying increased reactivation and shedding of latent viruses.

  10. Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination.

    PubMed

    Zaharoff, David A; Rogers, Connie J; Hance, Kenneth W; Schlom, Jeffrey; Greiner, John W

    2007-03-01

    The development of safe, novel adjuvants is necessary to maximize the efficacy of new and/or available vaccines. Chitosan is a non-toxic, biocompatible, biodegradable, natural polysaccharide derived from the exoskeletons of crustaceans and insects. Chitosan's biodegradability, immunological activity and high viscosity make it an excellent candidate as a depot/adjuvant for parenteral vaccination. To this end, we explored chitosan solution as an adjuvant for subcutaneous vaccination of mice with a model protein antigen. We found that chitosan enhanced antigen-specific antibody titers over five-fold and antigen-specific splenic CD4+ proliferation over six-fold. Strong increases in antibody titers together with robust delayed-type hypersensitivity (DTH) responses revealed that chitosan induced both humoral and cell-mediated immune responses. When compared with traditional vaccine adjuvants, chitosan was equipotent to incomplete Freund's adjuvant (IFA) and superior to aluminum hydroxide. Mechanistic studies revealed that chitosan exhibited at least two characteristics that may allow it to function as an immune adjuvant. First, the viscous chitosan solution created an antigen depot. More specifically, less than 9% of a protein antigen, when delivered in saline, remained at the injection site after 8 h. However, more than 60% of a protein antigen delivered in chitosan remained at the injection site for 7 days. Second, chitosan induced a transient 67% cellular expansion in draining lymph nodes. The expansion peaked between 14 and 21 days after chitosan injection and diminished as the polysaccharide was degraded. These mechanistic studies, taken together with the enhancement of a vaccine response, demonstrate that chitosan is a promising and safe platform for parenteral vaccine delivery.

  11. Modulation by gamma interferon of antiviral cell-mediated immune responses in vivo.

    PubMed Central

    Utermöhlen, O; Dangel, A; Tárnok, A; Lehmann-Grube, F

    1996-01-01

    Mice were infected with lymphocytic choriomeningitis virus and injected once 24 h later with a monoclonal antibody directed against gamma interferon. In comparison with controls, the increase of numbers of CD8+ T cells and the generation of virus-specific cytotoxic T lymphocytes in spleens and virus clearance from organs were diminished, as was the ability of spleen cells to transmit adoptive immunity to infected recipients. The same treatment slightly but consistently lessened rather than augmented the virus titers early in infection, which was also observed in thymusless nu/nu mice. Injection into infected mice of the lymphokine itself in quantities probably higher than are produced endogenously resulted in lower virus titers in spleens but higher titers in livers. The adoptive immunity in infected mice achieved by infusion of immune spleen cells was not altered by treating the recipients with gamma interferon monoclonal antibody. Such treatment did not measurably affect the production of antiviral serum antibodies. We conclude that in lymphocytic choriomeningitis virus-infected mice, gamma interferon is needed for the generation of antivirally active CD8+ T lymphocytes, and furthermore that in this experimental model, direct antiviral effects of the lymphokine elude detection. PMID:8627670

  12. Influence of brachytherapy ( sup 192 Ir afterloading) on cell-mediated immune reactions in patients with stage I endometrial cancer

    SciTech Connect

    Gerstner, G.J.; Kucera, H.; Kudlacek, S.; Micksche, M. )

    1989-11-01

    The influence of radiation therapy on cell-mediated immune reactions in cancer patients seems to depend on source, dose, and area of irradiation, as well as on the variables reflected by the patient population investigated. In the present study we demonstrated that brachytherapy ({sup 192}Ir afterloading), applied to patients with inoperable stage I endometrial cancer, has no immediate or sustained effect on lymphocyte function. Both lymphocyte mitogen response and natural killer cell (NK) activity are not significantly changed in terms of baseline values compared with test results during and after therapy. Brachytherapy, as used in this study, has no influence on cell-mediated immunity in patients with endometrial cancer stage I.

  13. Unmasking targets of T cell-mediated antitumor immunity through high-throughput antigen profiling

    PubMed Central

    Battaglia, Sebastiano; Muhitch, Jason B

    2017-01-01

    More than three decades of evidence has established that antitumor immune responses, initially shown with IL-2 treatment, can result in complete, durable eradication of malignant disease in metastatic patients. Recent studies have demonstrated that immune checkpoint blockade as well as cellular therapies, including dendritic cell activation of T cells and adoptive T cell transfer, can induce long-lasting responses. To elicit cytolysis of tumor cells, effector T cells rely on tumor expression of target antigens. However, the antigens targeted during antitumor responses are largely unknown. Technological advancements and availability of sequencing data have paved the way for more efficient screening and validation of tumor-associated antigens and neoantigens derived from non-synonymous mutations targeted by T cells under baseline conditions and in the context of immunotherapy. PMID:27010105

  14. MYSM1-dependent checkpoints in B cell lineage differentiation and B cell-mediated immune response.

    PubMed

    Förster, Michael; Farrington, Kyo; Petrov, Jessica C; Belle, Jad I; Mindt, Barbara C; Witalis, Mariko; Duerr, Claudia U; Fritz, Jörg H; Nijnik, Anastasia

    2017-03-01

    MYSM1 is a chromatin-binding histone deubiquitinase. MYSM1 mutations in humans result in lymphopenia whereas loss of Mysm1 in mice causes severe hematopoietic abnormalities, including an early arrest in B cell development. However, it remains unknown whether MYSM1 is required at later checkpoints in B cell development or for B cell-mediated immune responses. We analyzed conditional mouse models Mysm1(fl/fl)Tg.mb1-cre, Mysm1(fl/fl)Tg.CD19-cre, and Mysm1(fl/fl)Tg.CD21-cre with inactivation of Mysm1 at prepro-B, pre-B, and follicular B cell stages of development. We show that loss of Mysm1 at the prepro-B cell stage in Mysm1(fl/fl)Tg.mb1-cre mice results in impaired B cell differentiation, with an ∼2-fold reduction in B cell numbers in the lymphoid organs. Mysm1(fl/fl)Tg.mb1-cre B cells also showed increased expression of activation markers and impaired survival and proliferation. In contrast, Mysm1 was largely dispensable from the pre-B cell stage onward, with Mysm1(fl/fl)Tg.CD19-cre and Mysm1(fl/fl)Tg.CD21-cre mice showing no alterations in B cell numbers and largely normal responses to stimulation. MYSM1, therefore, has an essential role in B cell lineage specification but is dispensable at later stages of development. Importantly, MYSM1 activity at the prepro-B cell stage of development is important for the normal programming of B cell responses to stimulation once they complete their maturation process.

  15. Cell-mediated immune responses in horses with equine protozoal myeloencephalitis.

    PubMed

    Spencer, Jennifer A; Ellison, Siobhan E; Guarino, Anthony J; Blagburn, Byron L

    2004-04-01

    Equine protozoal myeloencephalitis (EPM) is a neurologic syndrome seen in horses from the Americas and is mainly caused by Sarcocystis neurona. Cell-mediated immune responses to mitogens have been shown to be reduced in horses with EPM, although it is not known whether the parasite causes this immunosuppression or if the immunosuppression is required for disease manifestation. Recently, a 29-kDa surface antigen from S. neurona merozoites was identified as being highly immunodominant on Western blot. This antigen has been sequenced and cloned, and the expressed protein has been named SnSAG1. Isolated peripheral blood lymphocytes from 43 EPM-negative horses and 28 horses with clinical EPM were cocultured with a mitogen or SnSAG1, and lymphocyte blastogenic responses to these antigens was measured by tritiated thymidine uptake. The ability of SnSAG1 to induce gamma-interferon (gammaIFN) production was also investigated with reverse transcriptase-polymerase chain reaction. There was no significant differences between EPM-positive and -negative horses in lymphocyte responses to ConcanavalinA. However, lymphocytes from EPM-negative horses responded significantly higher to SnSAG1 than lymphocytes from EPM-positive horses. GammaIFN production was detectable by 24 hr in culture in response to SnSAG1 in all EPM-negative horses. There was still no detectable gammaIFN production in EPM-positive horses after 72 hr in culture. It appears that the parasite is also able to induce an immunosuppression toward parasite-derived antigens as parasite-specific responses are decreased.

  16. Cell-mediated immunity to insulin: a new criterion for differentiation of diabetes mellitus?

    PubMed

    Asfandiyarova, Nailya S

    2012-03-01

    Any classification is a step forward and it should help to determine the reason, the course, the prognosis, the treatment of a disease. The current classification of diabetes mellitus (DM) is really very convenient for work, but it has some drawbacks, and the absence of differentiation of type 2 diabetes is the main. The problem is the absence of an adequate criterion, based on pathogenesis for differentiation. We suppose that cell mediated immunity (CMI) to insulin plays the central role in the diabetes genesis. Autoimmune process may be triggered by viruses family Paramyxoviridae, in 10-20% of type 1 diabetes patients the disease is a consequence of direct cytotoxic effect of other viruses to the islet cells of pancreas. In acute phase of viral infection (measles, mumps, parainfluenza) CMI against viruses is developed, in some patients CMI to insulin appeared. We suppose that autoimmune reactions in these cases are the result of cross reaction between viral antigens and insulin. The majorities of patients suppress these reactions and recover from acute infection diseases with the antiviral immunity development and without any complications. Other patients are not able to suppress autoimmune reactions to insulin and pathological process is triggered. Type 1A diabetes is a result of direct CMI to insulin, and this process is responsible for beta-cells destruction; may be type 1B DM is due to the direct cytotoxic effect of other viruses or toxins to them. Some patients with acute viral infection cannot destroy the aggressive clone and they suppress autoimmune reaction to insulin by prostaglandin synthesizing cells (PGSC) or сells with histamine receptors (CHR). As a result of this process the insulin resistance is developed, because these cells or their cytokines form a block to the insulin receptors not only on immunocompetent cells, but in insulin sensitive tissues too. Patients with different reactions to insulin have different courses and outcomes of DM. We

  17. γδ T Cell-Mediated Immunity to Cytomegalovirus Infection

    PubMed Central

    Khairallah, Camille; Déchanet-Merville, Julie; Capone, Myriam

    2017-01-01

    γδ T lymphocytes are unconventional immune cells, which have both innate- and adaptive-like features allowing them to respond to a wide spectrum of pathogens. For many years, we and others have reported on the role of these cells in the immune response to human cytomegalovirus in transplant patients, pregnant women, neonates, immunodeficient children, and healthy people. Indeed, and as described for CD8+ T cells, CMV infection leaves a specific imprint on the γδ T cell compartment: (i) driving a long-lasting expansion of oligoclonal γδ T cells in the blood of seropositive individuals, (ii) inducing their differentiation into effector/memory cells expressing a TEMRA phenotype, and (iii) enhancing their antiviral effector functions (i.e., cytotoxicity and IFNγ production). Recently, two studies using murine CMV (MCMV) have corroborated and extended these observations. In particular, they have illustrated the ability of adoptively transferred MCMV-induced γδ T cells to protect immune-deficient mice against virus-induced death. In vivo, expansion of γδ T cells is associated with the clearance of CMV infection as well as with reduced cancer occurrence or leukemia relapse risk in kidney transplant patients and allogeneic stem cell recipients, respectively. Taken together, all these studies show that γδ T cells are important immune effectors against CMV and cancer, which are life-threatening diseases affecting transplant recipients. The ability of CMV-induced γδ T cells to act independently of other immune cells opens the door to the development of novel cellular immunotherapies that could be particularly beneficial for immunocompromised transplant recipients. PMID:28232834

  18. Self-adjuvanting influenza candidate vaccine presenting epitopes for cell-mediated immunity on a proteinaceous multivalent nanoplatform.

    PubMed

    Szurgot, Inga; Szolajska, Ewa; Laurin, David; Lambrecht, Benedicte; Chaperot, Laurence; Schoehn, Guy; Chroboczek, Jadwiga

    2013-09-13

    We exploit the features of a virus-like particle, adenoviral dodecahedron (Ad Dd), for engineering a multivalent vaccination platform carrying influenza epitopes for cell-mediated immunity. The delivery platform, Ad Dd, is a proteinaceous, polyvalent, and biodegradable nanoparticle endowed with remarkable endocytosis activity that can be engineered to carry 60 copies of a peptide. Influenza M1 is the most abundant influenza internal protein with the conserved primary structure. Two different M1 immunodominant epitopes were separately inserted in Dd external positions without destroying the particles' dodecahedric structure. Both kinds of DdFluM1 obtained through expression in baculovirus system were properly presented by human dendritic cells triggering efficient activation of antigen-specific T cells responses. Importantly, the candidate vaccine was able to induce cellular immunity in vivo in chickens. These results warrant further investigation of Dd as a platform for candidate vaccine, able to stimulate cellular immune responses.

  19. Evaluation of innate, humoral and cell-mediated immunity in mice following in vivo implantation of electrospun polycaprolactone.

    PubMed

    McLoughlin, Colleen E; Smith, Matthew J; Auttachoat, Wimolnut; Bowlin, Gary L; White, Kimber L

    2012-06-01

    Electrospun polycaprolactone (EPCL) is currently being investigated for use in tissue engineering applications such as vascular grafts. However, the effects of electrospun polymers on systemic immune responses following in vivo exposure have not previously been examined. The work presented evaluates whether EPCL in either a microfibrous or nanofibrous form affects innate, humoral and/or cell-mediated immunity using a standard immunotoxicological testing battery. Holistic in vivo endpoints examined include the antibody-forming cell assay (AFC or plaque assay) and the delayed-type hypersensitivity response to Candida albicans. In addition, natural killer cell cytotoxic activity was assessed using an ex vivo assay and splenic cell population phenotypes were analyzed by flow cytometry for material exposure-related changes. Results indicated that 28 day subcutaneous implantation of EPCL, either in microfibrous or nanofibrous form, did not affect the systemic functions of the immune system in 12-16 week old female B6C3F1 mice.

  20. [Immunosuppressive acidic protein (IAP) in gynecologic malignant tumors and its relationship with other immunosuppressive substances and cell-mediated immunity].

    PubMed

    Takada, M

    1983-02-01

    We investigated the relationship between immunosuppressive acidic protein (IAP), an immunosuppressive substance determined in the body fluid from patients with cancer and the stages of cancer, and also its relationship with the progress of cancer during treatment and convalescence in 42 cases of ovary cancer, 47 cases of cancer of the uterine neck, 19 cases of cancer of the uterine body, and 5 cases of other of cancers. In addition, the relationship of IAP with other immunosuppressive substances and cell-mediated immunities was also investigated. The IAP level in the serum was not useful for early diagnosis of gynecologic malignant tumors, but it reflected on stages of cancer more accurately compared to levels of other immunosuppressive substances in the serum: alpha-antitripsine (alpha AT), alpha-glyco-protein (alpha AG), carcinoembrionic antigen (CEA), c-reactive protein (CRP), and serum ferritin (s-Fer), were useful as parameters showing progress of cancer during treatment and convalescence. The IAP level in the peritoneal fluid showed the same tendency. For the relationship with cell-mediated immunity, a stimulate index (SI) showed an inverse correlation from stage I; a T-cell count exhibited the same tendency; IgGFcR+ T-cell count showed a positive correlation in stage III; and ADCC exhibited an inverse correlation in stage III. However, immunosuppressive substances including IAP show high levels also in inflammatory diseases. Therefore, an appreciative value of IAP in the clinical area increases by being used for monitoring gynecologic cancer patients in combination with indicators of cell-mediated immunity, particularly, with SI.

  1. Aspects of T Cell-Mediated Immunity Induced in Mice by a DNA Vaccine Based on the Dengue-NS1 Antigen after Challenge by the Intracerebral Route

    PubMed Central

    Oliveira, Edson R. A.; Gonçalves, Antônio J. S.; Costa, Simone M.; Azevedo, Adriana S.; Mantuano-Barradas, Marcio; Nogueira, Ana Cristina M. A.

    2016-01-01

    Dengue disease has emerged as a major public health issue across tropical and subtropical countries. Infections caused by dengue virus (DENV) can evolve to life-threatening forms, resulting in about 20,000 deaths every year worldwide. Several animal models have been described concerning pre-clinical stages in vaccine development against dengue, each of them presenting limitations and advantages. Among these models, a traditional approach is the inoculation of a mouse-brain adapted DENV variant in immunocompetent animals by the intracerebral (i.c.) route. Despite the historical usage and relevance of this model for vaccine testing, little is known about the mechanisms by which the protection is developed upon vaccination. To cover this topic, a DNA vaccine based on the DENV non-structural protein 1 (pcTPANS1) was considered and investigations were focused on the induced T cell-mediated immunity against i.c.-DENV infection. Immunophenotyping assays by flow cytometry revealed that immunization with pcTPANS1 promotes a sustained T cell activation in spleen of i.c.-infected mice. Moreover, we found that the downregulation of CD45RB on T cells, as an indicator of cell activation, correlated with absence of morbidity upon virus challenge. Adoptive transfer procedures supported by CFSE-labeled cell tracking showed that NS1-specific T cells induced by vaccination, proliferate and migrate to peripheral organs of infected mice, such as the liver. Additionally, in late stages of infection (from the 7th day onwards), vaccinated mice also presented reduced levels of circulating IFN-γ and IL-12p70 in comparison to non-vaccinated animals. In conclusion, this work presented new aspects about the T cell-mediated immunity concerning DNA vaccination with pcTPANS1 and the i.c. infection model. These insights can be explored in further studies of anti-dengue vaccine efficacy. PMID:27631083

  2. T-cell mediated anti-tumor immunity after photodynamic therapy: Why does it not always work and how can we improve it?

    PubMed Central

    de Freitas, Lucas Freitas; Hamblin, Michael R

    2015-01-01

    Photodynamic therapy (PDT) uses the combination of non-toxic photosensitizers and harmless light to generate reactive oxygen species that destroy tumors by a combination of direct tumor cell killing, vascular shutdown, and activation of the immune system. It has been shown in some animal models that mice that have been cured of cancer by PDT, may exhibit resistance to rechallenge. The cured mice can also possess tumor specific T-cells that recognize defined tumor antigens, destroy tumor cells in vitro, and can be adoptively transferred to protect naïve mice from cancer. However, these beneficial outcomes are the exception rather than the rule. The reasons for this lack of consistency lie in the ability of many tumors to suppress the host immune system and to actively evade immune attack. The presence of an appropriate tumor rejection antigen in the particular tumor cell line is a requisite for T-cell mediated immunity. Regulatory T-cells (CD25+, Foxp3+) are potent inhibitors of anti-tumor immunity, and their removal by low dose cyclophosphamide can potentiate the PDT-induced immune response. Treatments that stimulate dendritic cells (DC) such as CpG oligonucleotide can overcome tumor-induced DC dysfunction and improve PDT outcome. Epigenetic reversal agents can increase tumor expression of MHC class I and also simultaneously increase expression of tumor antigens. A few clinical reports have shown that anti-tumor immunity can be generated by PDT in patients, and it is hoped that these combination approaches may increase tumor cures in patients. PMID:26062987

  3. TRAF3 is required for T cell-mediated immunity and T cell receptor/CD28 signaling1

    PubMed Central

    Xie, Ping; Kraus, Zachary J.; Stunz, Laura L.; Liu, Yan; Bishop, Gail A.

    2011-01-01

    We recently reported that TRAF3, a ubiquitously expressed adaptor protein, promotes mature B cell apoptosis. However, the specific function of TRAF3 in T cells has remained unclear. Here we report the generation and characterization of T cell-specific TRAF3−/− mice, in which the TRAF3 gene was deleted from thymocytes and T cells. Ablation of TRAF3 in the T cell-lineage did not affect the numbers or proportions of CD4+,CD8+ or double positive or negative thymocytes, or CD4 or CD8 T cell populations in secondary lymphoid organs except that the T cell specific TRAF3−/− mice had a two-fold increase in FoxP3+ T cells.. In striking contrast to mice lacking TRAF3 in B cells, the T cell TRAF3 deficient mice exhibited defective IgG1 responses to a T dependent antigen, and impaired T cell-mediated immunity to infection with Listeria monocytogenes. Surprisingly, we found that TRAF3 was recruited to the TCR/CD28 signaling complex upon co-stimulation, and that TCR/CD28-mediated proximal and distal signaling events were compromised by TRAF3 deficiency. These findings provide new insights into the roles played by TRAF3 in T cell activation and T cell-mediated immunity. PMID:21084666

  4. Caloric Restriction reduces inflammation and improves T cell-mediated immune response in obese mice but concomitant consumption of curcumin/piperine adds no further benefit

    USDA-ARS?s Scientific Manuscript database

    Obesity is associated with low-grade inflammation and impaired immune response. Caloric restriction (CR) has been shown to inhibit inflammatory response and enhance cell-mediated immune function. Curcumin, the bioactive phenolic component of turmeric spice, is proposed to have anti-obesity and anti-...

  5. Induction of Wnt-inducible signaling protein-1 correlates with invasive breast cancer oncogenesis and reduced type 1 cell-mediated cytotoxic immunity: a retrospective study.

    PubMed

    Klinke, David J

    2014-01-01

    Innate and type 1 cell-mediated cytotoxic immunity function as important extracellular control mechanisms that maintain cellular homeostasis. Interleukin-12 (IL12) is an important cytokine that links innate immunity with type 1 cell-mediated cytotoxic immunity. We recently observed in vitro that tumor-derived Wnt-inducible signaling protein-1 (WISP1) exerts paracrine action to suppress IL12 signaling. The objective of this retrospective study was three fold: 1) to determine whether a gene signature associated with type 1 cell-mediated cytotoxic immunity was correlated with overall survival, 2) to determine whether WISP1 expression is increased in invasive breast cancer, and 3) to determine whether a gene signature consistent with inhibition of IL12 signaling correlates with WISP1 expression. Clinical information and mRNA expression for genes associated with anti-tumor immunity were obtained from the invasive breast cancer arm of the Cancer Genome Atlas study. Patient cohorts were identified using hierarchical clustering. The immune signatures associated with the patient cohorts were interpreted using model-based inference of immune polarization. Reverse phase protein array, tissue microarray, and quantitative flow cytometry in breast cancer cell lines were used to validate observed differences in gene expression. We found that type 1 cell-mediated cytotoxic immunity was correlated with increased survival in patients with invasive breast cancer, especially in patients with invasive triple negative breast cancer. Oncogenic transformation in invasive breast cancer was associated with an increase in WISP1. The gene expression signature in invasive breast cancer was consistent with WISP1 as a paracrine inhibitor of type 1 cell-mediated immunity through inhibiting IL12 signaling and promoting type 2 immunity. Moreover, model-based inference helped identify appropriate immune signatures that can be used as design constraints in genetically engineering better pre

  6. Tissue requirements for establishing long-term CD4+ T cell-mediated immunity following Leishmania donovani infection.

    PubMed

    Bunn, Patrick T; Stanley, Amanda C; de Labastida Rivera, Fabian; Mulherin, Alexander; Sheel, Meru; Alexander, Clare E; Faleiro, Rebecca J; Amante, Fiona H; Montes De Oca, Marcela; Best, Shannon E; James, Kylie R; Kaye, Paul M; Haque, Ashraful; Engwerda, Christian R

    2014-04-15

    Organ-specific immunity is a feature of many infectious diseases, including visceral leishmaniasis caused by Leishmania donovani. Experimental visceral leishmaniasis in genetically susceptible mice is characterized by an acute, resolving infection in the liver and chronic infection in the spleen. CD4+ T cell responses are critical for the establishment and maintenance of hepatic immunity in this disease model, but their role in chronically infected spleens remains unclear. In this study, we show that dendritic cells are critical for CD4+ T cell activation and expansion in all tissue sites examined. We found that FTY720-mediated blockade of T cell trafficking early in infection prevented Ag-specific CD4+ T cells from appearing in lymph nodes, but not the spleen and liver, suggesting that early CD4+ T cell priming does not occur in liver-draining lymph nodes. Extended treatment with FTY720 over the first month of infection increased parasite burdens, although this associated with blockade of lymphocyte egress from secondary lymphoid tissue, as well as with more generalized splenic lymphopenia. Importantly, we demonstrate that CD4+ T cells are required for the establishment and maintenance of antiparasitic immunity in the liver, as well as for immune surveillance and suppression of parasite outgrowth in chronically infected spleens. Finally, although early CD4+ T cell priming appeared to occur most effectively in the spleen, we unexpectedly revealed that protective CD4+ T cell-mediated hepatic immunity could be generated in the complete absence of all secondary lymphoid tissues.

  7. Cadm1 is a metastasis susceptibility gene that suppresses metastasis by modifying tumor interaction with the cell-mediated immunity.

    PubMed

    Faraji, Farhoud; Pang, Yanli; Walker, Renard C; Nieves Borges, Rosan; Yang, Li; Hunter, Kent W

    2012-09-01

    Metastasis is a complex process utilizing both tumor-cell-autonomous properties and host-derived factors, including cellular immunity. We have previously shown that germline polymorphisms can modify tumor cell metastatic capabilities through cell-autonomous mechanisms. However, how metastasis susceptibility genes interact with the tumor stroma is incompletely understood. Here, we employ a complex genetic screen to identify Cadm1 as a novel modifier of metastasis. We demonstrate that Cadm1 can specifically suppress metastasis without affecting primary tumor growth. Unexpectedly, Cadm1 did not alter tumor-cell-autonomous properties such as proliferation or invasion, but required the host's adaptive immune system to affect metastasis. The metastasis-suppressing effect of Cadm1 was lost in mice lacking T cell-mediated immunity, which was partially phenocopied by depleting CD8(+) T cells in immune-competent mice. Our data show a novel function for Cadm1 in suppressing metastasis by sensitizing tumor cells to immune surveillance mechanisms, and this is the first report of a heritable metastasis susceptibility gene engaging tumor non-autonomous factors.

  8. Mechanisms of immunological eradication of a syngeneic guinea pig tumor. II. Effect of methotrexate treatment and T cell depletion of the recipient on adoptive immunity

    SciTech Connect

    Shu, S.; Fonseca, L.S.; Hunter, J.T.; Rapp, H.J.

    1983-01-01

    The influence of methotrexate on the development of immunity to the line 10 hepatoma was studied in guinea pigs. Chronic methotrexate treatment had no apparent effect on the ability of immune guinea pigs to suppress the growth of inoculated tumor cells. In contrast, the same methotrexate regimen inhibited the development of tumor immunity if started before the 8th day after immunization with a vaccine containing viable line 10 cells admixed with Bacillus Calmette-Guerin (BCG) cell walls. Thus, methotrexate selectively inhibited the afferent limb of the immune response. In adoptive transfer experiments, methotrexate-treated recipient guinea pigs were capable of being passively sensitized with immune spleen cells, indicating that the primary cell-mediated immune response of the recipient was not required for adoptive immunity. The contribution of recipient T cells in adoptive immunity was further investigated in guinea pigs deleted of T cells by thymectomy, irradiation, and bone marrow reconstitution. Despite demonstrable deficiency in T lymphocyte reactions, B animals were fully capable of rejecting tumors after transfer of immune cells. These results suggest that the expression of adoptive immunity was independent of recipient T cell participation. In addition, sublethal irradiation of immune spleen cells prior to adoptive transfer abolished their efficacy. Proliferation of transferred immune cells in the recipient may be essential for expression of adoptive immunity.

  9. Development of a lipopolysaccharide (LPS)-supplemented adjuvant and its effects on cell-mediated and humoral immune responses in male rats immunized against sperm

    PubMed Central

    NOGUCHI, Junko; WATANABE, Shinya; NGUYEN, Thanh Q. Dang; KIKUCHI, Kazuhiro; KANEKO, Hiroyuki

    2016-01-01

    Supplementation with lipopolysaccharide (LPS) from non-pathogenic Escherichia coli was found to enhance the adjuvant effects of a veterinary vaccine adjuvant (ISA 71VG®). Sperm immunization using 71VG as an adjuvant in the immature period induced infertility in 25% of male rats, whereas this increased to 62.5% after immunization with 71VG + LPS or Freund′s complete adjuvant (FCA). Mean testicular weight of non-sterile males in the 71VG + LPS group was significantly lower than that in the 71VG or FCA group. Histological examination of testicular tissue from sterile males demonstrated severe impairment of spermatogenesis due to experimental autoimmune orchitis, a cell-mediated autoimmune condition. The serum anti-sperm titer was elevated in the three sperm-immunized groups relative to male rats treated with adjuvant alone, but the titer was higher in the 71VG + LPS and FCA groups than in the 71VG group. We consider that this LPS-supplemented adjuvant stimulates both humoral and cell-mediated immune responses to an extent comparable to FCA. PMID:27890874

  10. An African horse sickness virus serotype 4 recombinant canarypox virus vaccine elicits specific cell-mediated immune responses in horses.

    PubMed

    El Garch, H; Crafford, J E; Amouyal, P; Durand, P Y; Edlund Toulemonde, C; Lemaitre, L; Cozette, V; Guthrie, A; Minke, J M

    2012-09-15

    A recombinant canarypox virus vectored vaccine co-expressing synthetic genes encoding outer capsid proteins, VP2 and VP5, of African horse sickness virus (AHSV) serotype 4 (ALVAC(®)-AHSV4) has been demonstrated to fully protect horses against homologous challenge with virulent field virus. Guthrie et al. (2009) detected weak and variable titres of neutralizing antibody (ranging from <10 to 40) 8 weeks after vaccination leading us to hypothesize that there could be a participation of cell mediated immunity (CMI) in protection against AHSV4. The present study aimed at characterizing the CMI induced by the experimental ALVAC(®)-AHSV4 vaccine. Six horses received two vaccinations twenty-eight days apart and three horses remained unvaccinated. The detection of VP2/VP5 specific IFN-γ responses was assessed by enzyme linked immune spot (ELISpot) assay and clearly demonstrated that all ALVAC(®)-AHSV4 vaccinated horses developed significant IFN-γ production compared to unvaccinated horses. More detailed immune responses obtained by flow cytometry demonstrated that ALVAC(®)-AHSV4 vaccinations induced immune cells, mainly CD8(+) T cells, able to recognize multiple T-epitopes through all VP2 and only the N-terminus sequence of VP5. Neither VP2 nor VP5 specific IFN-γ responses were detected in unvaccinated horses. Overall, our data demonstrated that an experimental recombinant canarypox based vaccine induced significant CMI specific for both VP2 and VP5 proteins of AHSV4.

  11. TH1 and TH2 lymphocyte development and regulation of TH cell-mediated immune responses of the skin.

    PubMed

    Biedermann, Tilo; Röcken, Martin; Carballido, José M

    2004-01-01

    Since the first description of the subpopulations of TH1 and TH2 cells, insights into the development and control of these cells as two polarized and physiologically balanced subsets have been generated. In particular, implications of the TH1-TH2 concept for TH cell-mediated skin disorders have been discovered. This article will review the basic factors that control the development of TH1 and TH2 cells, such as the cytokines IL-12 and IL-4 and transcription factors, the possible role of costimulatory molecules, and specialized dendritic cell populations. These regulatory mechanisms will be discussed in the context of polarized TH1 or TH2 skin disorders such as psoriasis and atopic dermatitis. Also presented are the principles that govern how chemokines and chemokine receptors recruit TH1 and TH2 cells to inflammatory sites and how they amplify these polarized TH cell responses. All of these concepts, including a novel role for IL-4-inducing TH1 responses, can contribute to the design of better therapeutic strategies to modulate TH cell-mediated immune responses.

  12. Transfer of T-cell mediated immunity to Hymenolepis nana from mother mice to their neonates.

    PubMed

    Asano, K; Okamoto, K

    1992-01-15

    Administration of lymph node cells from Hymenolepis nana-infected mice into lactating mothers, or directly suckling neonates successfully transferred immunity to the neonates. The capacity of lymph node cells to transfer immunity was completely abrogated by pretreatment with anti-Thy-1.2 monoclonal antibody and complement.

  13. Obesity impairs cell-mediated immunity during the second trimester of pregnancy

    USDA-ARS?s Scientific Manuscript database

    Obesity is associated with impaired immunity. In obese pregnancy, both mother and fetus are susceptible to the short- and long-term deleterious effects of infectious illness. The objective of the study was to determine the impact of obesity on maternal blood immune cell subsets, intracellular and s...

  14. Correlation Between Rubella Antibody Levels and Cytokine Measures of Cell-Mediated Immunity

    PubMed Central

    Tosh, Pritish K.; Kennedy, Richard B.; Vierkant, Robert A.; Jacobson, Robert M.

    2009-01-01

    Abstract Despite a safe and effective vaccine, endemic rubella remains a problem in developing countries. Isolated cases and outbreaks can occur in areas with high vaccine coverage. Individuals, especially pregnant women who remain unimmunized or do not seroconvert, are susceptible to infection and their infants are at risk for congenital rubella syndrome (CRS). Both humoral and cellular immune responses contribute to immune protection. Classically, immunity to rubella has been assessed through the detection of rubella-specific antibody titers. In this study we examined correlates of both humoral and cellular immunity in a large population of immunized young adults in Olmsted County, MN. We were unable to find any significant correlation between cytokine production after in-vitro rubella stimulation and serum antibody titers. PMID:19951182

  15. T-cell mediated immunity and the role of TRAIL in sepsis-induced immunosuppression

    PubMed Central

    Condotta, Stephanie A.; Cabrera-Perez, Javier; Badovinac, Vladimir P.; Griffith, Thomas S.

    2013-01-01

    Sepsis is the leading cause of death in most intensive care units, and the death of septic patients usually does not result from the initial septic event but rather from subsequent nosocomial infections. Patients who survive severe sepsis often display severely compromised immune function. Not only is there significant apoptosis of lymphoid and myeloid cells that depletes critical components of the immune system during sepsis, there is also decreased function of the remaining immune cells. Studies in animals and humans suggest the immune defects that occur during sepsis may be critical to the pathogenesis and subsequent mortality. This review is focused on sepsis-induced alterations with the CD8 T-cell compartment that can affect the control of secondary heterologous infections. Understanding how a septic event directly influences CD8 T-cell populations through apoptotic death and homeostatic proliferation and indirectly by immune-mediated suppression will provide valuable starting points for developing new treatment options. PMID:23510024

  16. Why vaccines are not the answer - the failure of V520 and the importance of cell-mediated immunity in the fight against HIV.

    PubMed

    White, Aaron

    2008-12-01

    The recent failure of Merck's HIV vaccine, V520, left the future of HIV vaccine research in question. The current article offers a possible explanation for the failure of V520 and explores a potential alternative to the vaccine approach. Vaccines prior to V520 were designed to evoke strong antibody-mediated immune responses to HIV; that is, the generation of antibodies to attach to and disable the HIV virus before it infiltrates host cells. V520 represents a misguided, though well-intentioned, effort to evoke a cell-mediated immune response to HIV; that is, immune activity aimed at identifying proteins associated with HIV after it infiltrates host cells. In the body, these two immune responses, antibody-mediated (for extracellular infections) and cell-mediated (primarily for intracellular infections), operate in a teeter-totter fashion. When one is activated the other is suppressed. Because HIV quickly infects host cells near entrances to the body, it requires a strong cell-mediated response to defeat, not an antibody-mediated response. The driving hypothesis of this article is that the antibody-mediated immune response triggered by V520 suppressed the ability of the body to mount the cell-mediated immune response necessary to protect against HIV and created a window of opportunity for HIV infection, particularly in subjects previously exposed to the adenovirus vector used in the vaccine. While the immune system uses antibodies to identify extracellular pathogens, it uses transfer factors to label infected host cells. Hundred of papers indicate that pathogen-specific transfer factors can be used to stimulate cell-mediated immunity against a wide variety of viruses. The available research, reviewed in this manuscript, suggests that HIV-specific transfer factors could prove extremely useful, far more useful than vaccines, in preventing and treating HIV infections.

  17. In vivo testing confirms a blunting of the human cell-mediated immune mechanism during space flight

    NASA Technical Reports Server (NTRS)

    Taylor, G. R.; Janney, R. P.

    1992-01-01

    The cell-mediated immune (CMI) mechanism was evaluated in 10 space shuttle astronauts by measuring their delayed-type hypersensitivity response to seven common recall antigens. The Multitest CMI test system was used to administer antigens of tetanus, diphtheria, Streptococcus, Proteus, old tuberculin, Candida, and Trichophyton to the forearm 46 h before nominal mission termination; readings were conducted 2 h after landing. The mean number of reactions was reduced from 4.5 preflight to 3.0 inflight, and the mean reaction score was reduced from 21.4 to 13.7 mm inflight. The data presented suggest that the CMI system is still being degraded by space flight conditions on day 4 and that between day 5 and day 10, the depression maximizes and the system begins to adjust to the new conditions. The relation of these in vivo findings to previously reported in vitro results is discussed.

  18. In vivo testing confirms a blunting of the human cell-mediated immune mechanism during space flight.

    PubMed

    Taylor, G R; Janney, R P

    1992-02-01

    The cell-mediated immune (CMI) mechanism was evaluated in 10 space shuttle astronauts by measuring their delayed-type hypersensitivity response to seven common recall antigens. The Multitest CMI test system was used to administer antigens of tetanus, diphtheria, Streptococcus, Proteus, old tuberculin, Candida, and Trichophyton to the forearm 46 h before nominal mission termination; readings were conducted 2 h after landing. The mean number of reactions was reduced from 4.5 preflight to 3.0 inflight, and the mean reaction score was reduced from 21.4 to 13.7 mm inflight. The data presented suggest that the CMI system is still being degraded by space flight conditions on day 4 and that between day 5 and day 10, the depression maximizes and the system begins to adjust to the new conditions. The relation of these in vivo findings to previously reported in vitro results is discussed.

  19. LEI0258 microsatellite variability and its association with humoral and cell mediated immune responses in broiler chickens.

    PubMed

    Esmailnejad, Atefeh; Nikbakht Brujeni, Gholamreza; Badavam, Maryam

    2017-10-01

    Major histocompatibility complex (MHC) has a profound influence on disease resistance or susceptibility, productivity and important economic traits in chicken. Association of the MHC with a wide range of immune responses makes it a valuable predictive factor for the disease pathogenesis and outcome. The tandem repeat LEI0258 is a genetic marker which is located within the B locus of chicken MHC and strongly associated with serologically defined haplotypes. LEI0258 microsatellite marker was applied to investigate the MHC polymorphism in Ross 308 broiler chicken (N=104). Association of LEI0258 alleles with humoral and cell mediated immune responses to Newcastle disease (ND), Infectious bursal disease (IBD) and Avian influenza (AI) vaccines were also examined. LEI0258 polymorphism was determined by PCR-based fragment analysis, and association of LEI0258 alleles with immune responses were evaluated using multivariate regression analysis and GLM procedures. A total of seven alleles ranging from 195 to 448bp were found, including two novel alleles (263 and 362bp) that were unique in Ross 308 broiler population. Association study revealed a significant influence of MHC alleles on humoral and cellular immune responses in Ross population (P<0.05). Alleles 385 and 448bp were associated with increased peripheral blood lymphocyte proliferation response. Alleles 300, 362 and 448bp had a positive effect on immune responses to Infectious bursal disease vaccine, and allele 263bp was significantly correlated with elevated antibody titer against Newcastle disease vaccine. Results obtained from this study confirmed the important role of MHC as a candidate gene marker for immune responses that could be used in genetic improvement of disease-resistant traits and resource conservation in broiler population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Multifunctional nanorods serving as nanobridges to modulate T cell-mediated immunity.

    PubMed

    Son, Young Ju; Kim, Hyesung; Leong, Kam W; Yoo, Hyuk Sang

    2013-11-26

    Electrodeposited nanorods serving as multivalent bridges were fabricated and surface-decorated with ligands for immune cells. Gold and nickel solutions were sequentially electrodeposited on nanoporous anodized disc templates and the template was dissolved to retrieve bisegmented nanorods with different lengths. Gold and nickel segmented nanorods were surface-immobilized with mannose and RGD peptides to prepare immune-cell recruiting nanorods. Surface-functionalization of nanorods were confirmed by fluorescence-labeling of each ligands and confocal microscopy. Dendritic cells and T cells were co-incubated with the surface-functionalized nanorods, and the proximity between the nanorods and the immune cells was visualized by variable pressure scanning electron microscopy and confocal microscopy. The long nanorods were associated with the immune cells, whereas the shorter nanorods were rather endocytosed by cells, suggesting a feasibility of the longer nanorods as bridging for the cells. Cytokine releases from the immune cells were monitored by cultivating lipopolysaccharide-activated dendritic cells with T cells. Interleukine-2 and interferon-γ release profiles showed a strong correlation with the length of the nanorod, where the 4 μm nanorods induced the highest levels of cytokine release compared to 1 or 2 μm nanorods. Thus, we concluded that the proximity of the immune cells increased by bridging the immune cells with the nanobridging system, which subsequently increased cytokine release by facilitating the antigen presentation process.

  1. Cell-mediated immunity in operable bronchial carcinoma: the effect of injecting irradiated autologous tumour cells and BCG.

    PubMed

    Stack, B H; McSwan, N; Stirling, J M; Hole, D J; Parratt, D; Spilg, W G; Gillis, C R; McHattie, I; Green, A G; White, R G; Turner, M A

    1979-02-01

    In 52 patients undergoing tests of cell-mediated immunity before surgical resection of bronchial carcinoma a positive tuberculin test result was found in 71% compared with 68% of age- and sex-matched controls. Sensitisation to DNCB occurred in 52% of 37 patients but in 78% of controls. There was depression of lymphocyte transformation by PPD in 19 patients compared with controls (P=0.001), but there was no difference in lymphocyte transformation by PHA or pokeweed mitogen between 34 patients and controls. In a pilot study patients were randomly allocated to autograft (eight) or non-autograft (seven) groups. The autograft group were given an intradermal injection of a suspension of irradiated autologous tumour-cells mixed with intradermal BCG on the day of operation. Tests of cell-mediated immunity were repeated two weeks after operation. Five patients in each group received a course of radiotherapy to the mediastinum three weeks after operation. There was a rise in cutaneous tuberculin reactivity (P=0.08) and total leucocyte count (P=0.09) in the autograft group postoperatively with a fall in total lymphocyte and T lymphocyte counts in the non-autograft group (P less 0.05). These differences, however, were not followed by any difference in the frequency of tumour recurrence or the survival rate two years after operation. The results show that the immunological surveillance mechanism is impaired even in patients with early bronchial carcinoma and that it is possible to overcome postoperative immunological depression with specific immunotherapy combined with BCG. This treatment did not produce any clinical advantage in this small number of patients and the skin lesions caused the patients considerable discomfort.

  2. The Ebola Interferon Inhibiting Domains Attenuate and Dysregulate Cell-Mediated Immune Responses

    PubMed Central

    Meyer, Michelle; Koup, Richard A.; Bukreyev, Alexander

    2016-01-01

    Ebola virus (EBOV) infections are characterized by deficient T-lymphocyte responses, T-lymphocyte apoptosis and lymphopenia. We previously showed that disabling of interferon-inhibiting domains (IIDs) in the VP24 and VP35 proteins effectively unblocks maturation of dendritic cells (DCs) and increases the secretion of cytokines and chemokines. Here, we investigated the role of IIDs in adaptive and innate cell-mediated responses using recombinant viruses carrying point mutations, which disabled IIDs in VP24 (EBOV/VP24m), VP35 (EBOV/VP35m) or both (EBOV/VP35m/VP24m). Peripheral blood mononuclear cells (PBMCs) from cytomegalovirus (CMV)-seropositive donors were inoculated with the panel of viruses and stimulated with CMV pp65 peptides. Disabling of the VP35 IID resulted in increased proliferation and higher percentages of CD4+ T cells secreting IFNγ and/or TNFα. To address the role of aberrant DC maturation in the IID-mediated suppression of T cell responses, CMV-stimulated DCs were infected with the panel of viruses and co-cultured with autologous T-lymphocytes. Infection with EBOV/VP35m infection resulted in a significant increase, as compared to wt EBOV, in proliferating CD4+ cells secreting IFNγ, TNFα and IL-2. Experiments with expanded CMV-specific T cells demonstrated their increased activation following co-cultivation with CMV-pulsed DCs pre-infected with EBOV/VP24m, EBOV/VP35m and EBOV/VP35m/VP24m, as compared to wt EBOV. Both IIDs were found to block phosphorylation of TCR complex-associated adaptors and downstream signaling molecules. Next, we examined the effects of IIDs on the function of B cells in infected PBMC. Infection with EBOV/VP35m and EBOV/VP35m/VP24m resulted in significant increases in the percentages of phenotypically distinct B-cell subsets and plasma cells, as compared to wt EBOV, suggesting inhibition of B cell function and differentiation by VP35 IID. Finally, infection with EBOV/VP35m increased activation of NK cells, as compared to wt

  3. Empirical evidence of cold stress induced cell mediated and humoral immune response in common myna (Sturnus tristis).

    PubMed

    Sandhu, Mansur A; Zaib, Anila; Anjum, Muhammad S; Qayyum, Mazhar

    2015-11-01

    Common myna (Sturnus tristis) is a bird indigenous to the Indian subcontinent that has invaded many parts of the world. At the onset of our investigation, we hypothesized that the immunological profile of myna makes it resistant to harsh/new environmental conditions. In order to test this hypothesis, a number of 40 mynas were caught and divided into two groups, i.e., 7 and 25 °C for 14 days. To determine the effect of cold stress, cell mediated and humoral immune responses were assessed. The macrophage engulfment percentage was significantly (P < 0.05) higher at 25 °C rather than 7 °C either co-incubated with opsonized or unopsonized sheep red blood cells (SRBC). Macrophage engulfment/cell and nitric oxide production behaved in a similar manner. However, splenic cells plaque formation, heterophil to lymphocyte (H/L) ratio, and serum IgM or IgG production remained non-significant. There was a significant increase of IgG antibody production after a second immunization by SRBC. To the best of our knowledge, these findings have never been reported in the progression of this bird's invasion in frosty areas of the world. The results revealed a strengthened humoral immune response of myna and made this bird suitable for invasion in the areas of harsh conditions.

  4. TLR4 ligand formulation causes distinct effects on antigen-specific cell-mediated and humoral immune responses.

    PubMed

    Fox, Christopher B; Moutaftsi, Magdalini; Vergara, Julie; Desbien, Anthony L; Nana, Ghislain I; Vedvick, Thomas S; Coler, Rhea N; Reed, Steven G

    2013-12-02

    The formulation of TLR ligands and other immunomodulators has a critical effect on their vaccine adjuvant activity. In this work, the synthetic TLR4 ligand GLA was formulated with three distinct vaccine delivery system platforms (aqueous suspension, liposome, or oil-in-water emulsion). The effect of the different formulations on the adaptive immune response to protein subunit vaccines was evaluated in the context of a recombinant malaria antigen, Plasmodium berghei circumsporozoite protein (PbCSP). Antibody responses in vaccinated mice were similar for the different formulations of GLA. However, cell-mediated responses differed significantly depending on the adjuvant system; in particular, the emulsion formulation of the TLR4 ligand induced significantly enhanced cellular IFN-γ and TNF-α responses compared to the other formulations. The effects of differences in adjuvant formulation composition and physical characteristics on biological activity are discussed. These results illustrate the importance of formulation of immunostimulatory adjuvants (e.g. TLR ligands) on the resulting immune responses to adjuvanted vaccines and may play a critical role for combating diseases where T cell immunity is advantageous. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Empirical evidence of cold stress induced cell mediated and humoral immune response in common myna ( Sturnus tristis)

    NASA Astrophysics Data System (ADS)

    Sandhu, Mansur A.; Zaib, Anila; Anjum, Muhammad S.; Qayyum, Mazhar

    2015-11-01

    Common myna ( Sturnus tristis) is a bird indigenous to the Indian subcontinent that has invaded many parts of the world. At the onset of our investigation, we hypothesized that the immunological profile of myna makes it resistant to harsh/new environmental conditions. In order to test this hypothesis, a number of 40 mynas were caught and divided into two groups, i.e., 7 and 25 °C for 14 days. To determine the effect of cold stress, cell mediated and humoral immune responses were assessed. The macrophage engulfment percentage was significantly ( P < 0.05) higher at 25 °C rather than 7 °C either co-incubated with opsonized or unopsonized sheep red blood cells (SRBC). Macrophage engulfment/cell and nitric oxide production behaved in a similar manner. However, splenic cells plaque formation, heterophil to lymphocyte (H/L) ratio, and serum IgM or IgG production remained non-significant. There was a significant increase of IgG antibody production after a second immunization by SRBC. To the best of our knowledge, these findings have never been reported in the progression of this bird's invasion in frosty areas of the world. The results revealed a strengthened humoral immune response of myna and made this bird suitable for invasion in the areas of harsh conditions.

  6. Protective effect of rutin on humoral and cell mediated immunity in rat model.

    PubMed

    Ganeshpurkar, Aditya; Saluja, Ajay K

    2017-08-01

    Diet and dietary intake can persuade the development, safeguard and proper functioning of immune system. Ruin, an important bioflavonoid, is abundantly found in various foodstuffs. Rutin has been acknowledged for its protective and beneficial effects on various aspects of the biological system. The present study was aimed to examine the effect of rutin on the regulation of the immune response in experimental animal models. Effect of rutin of cellular immunity was determined by delayed-type hypersensitivity (DTH) response, carbon clearance assay, leucocyte mobilization test, and cyclophosphamide-induced myelosuppression, whereas humoral immunity was analyzed by the haemagglutinating antibody (HA) titre assay. Rutin (25, 50 and 100 mg/kg, p.o.) evoked a significant increase in antibody titre in the haemagglutination test, increased immunoglobulin levels, and enhanced the delayed type hypersensitivity reaction induced by sheep red blood cells. It also significantly restored the functioning of leucocytes in cyclophosphamide treated rats and augmented phagocytic index in the carbon clearance assay. The outcomes from the present study indicate that rutin possesses sufficient potential for increasing immune activity by cellular and humoral mediated mechanisms. Copyright © 2017. Published by Elsevier B.V.

  7. In vitro enhancement of dendritic cell-mediated anti-glioma immune response by graphene oxide

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Zhongjun; Duan, Jinhong; Wang, Chen; Fang, Ying; Yang, Xian-Da

    2014-06-01

    Malignant glioma has extremely poor prognosis despite combination treatments with surgery, radiation, and chemotherapy. Dendritic cell (DC)-based immunotherapy may potentially serve as an adjuvant treatment of glioma, but its efficacy generally needs further improvement. Here we explored whether graphene oxide (GO) nanosheets could modulate the DC-mediated anti-glioma immune response in vitro, using the T98G human glioma cell line as the study model. Pulsing DCs with a glioma peptide antigen (Ag) generated a limited anti-glioma response compared to un-pulsed DCs. Pulsing DCs with GO alone failed to produce obvious immune modulation effects. However, stimulating DCs with a mixture of GO and Ag (GO-Ag) significantly enhanced the anti-glioma immune reaction ( p < 0.05). The secretion of interferon gamma (IFN-γ) by the lymphocytes was also markedly boosted by GO-Ag. Additionally, the anti-glioma immune response induced by GO-Ag appeared to be target-specific. Furthermore, at the concentration used in this study, GO exhibited a negligible effect on the viability of the DCs. These results suggested that GO might have potential utility for boosting a DC-mediated anti-glioma immune response.

  8. Immunization of Mice with a Live Transconjugant Shigella Hybrid Strain Induced Th1 and Th17 Cell-Mediated Immune Responses and Confirmed Passive Protection Against Heterologous Shigellae.

    PubMed

    Nag, D; Koley, H; Sinha, R; Mukherjee, P; Sarkar, C; Withey, J H; Gachhui, R

    2016-02-01

    An avirulent, live transconjugant Shigella hybrid (LTSHΔstx) strain was constructed in our earlier study by introducing a plasmid vector, pPR1347, into a Shiga toxin gene deleted Shigella dysenteriae 1. Three successive oral administrations of LTSHΔstx to female adult mice produced comprehensive passive heterologous protection in their offspring against challenge with wild-type shigellae. Production of NO and different cytokines such asIL-12p70, IL-1β and IL-23 in peritoneal mice macrophages indicated that LTSHΔstx induced innate and adaptive immunity in mice. Furthermore, production of IFN-γ, IL-10 and IL-17 in LTSH-primed splenic CD4+ T cell suggested that LTSHΔstx may induce Th1 and Th17 cell-mediated immune responses. Exponential increase of the serum IgG and IgA titre against whole shigellae was observed in immunized adult mice during and after the immunization with the highest peak on day 35. Antigen-specific sIgA was also determined from intestinal lavage of immunized mice. The stomach extracts of neonates from immunized mice, mainly containing mother's milk, contained significant levels of anti-LTSHΔstx immunoglobulin. These studies suggest that the LTSHΔstx could be a new live oral vaccine candidate against shigellosis in the near future.

  9. Dendritic Cell-Mediated Phagocytosis but Not Immune Activation Is Enhanced by Plasmin

    PubMed Central

    Borg, Rachael J.; Samson, Andre L.; Au, Amanda E.-L.; Scholzen, Anja; Fuchsberger, Martina; Kong, Ying Y.; Freeman, Roxann; Mifsud, Nicole A.; Plebanski, Magdalena; Medcalf, Robert L.

    2015-01-01

    Removal of dead cells in the absence of concomitant immune stimulation is essential for tissue homeostasis. We recently identified an injury-induced protein misfolding event that orchestrates the plasmin-dependent proteolytic degradation of necrotic cells. As impaired clearance of dead cells by the innate immune system predisposes to autoimmunity, we determined whether plasmin could influence endocytosis and immune cell stimulation by dendritic cells – a critical cell that links the innate and adaptive immune systems. We find that plasmin generated on the surface of necrotic cells enhances their phagocytic removal by human monocyte-derived dendritic cells. Plasmin also promoted phagocytosis of protease-resistant microparticles by diverse mouse dendritic cell sub-types both in vitro and in vivo. Together with an increased phagocytic capacity, plasmin-treated dendritic cells maintain an immature phenotype, exhibit reduced migration to lymph nodes, increase their expression/release of the immunosuppressive cytokine TGF-β, and lose their capacity to mount an allogeneic response. Collectively, our findings support a novel role for plasmin formed on dead cells and other phagocytic targets in maintaining tissue homeostasis by increasing the phagocytic function of dendritic cells while simultaneously decreasing their immunostimulatory capacity consistent with producing an immunosuppressive state. PMID:26132730

  10. Cell-mediated immune response during experimental acute infection with bovine viral diarrhoea virus: evaluation of blood parameters.

    PubMed

    Molina, V; Risalde, M A; Sánchez-Cordón, P J; Romero-Palomo, F; Pedrera, M; Garfia, B; Gómez-Villamandos, J C

    2014-02-01

    Acute infections with bovine viral diarrhoea virus (BVDV), a major pathogen of cattle, are often asymptomatic or produce only mild clinical symptoms. However, they may play an important role in the bovine respiratory disease complex by exerting a marked immunosuppressive effect, as a result of the death of the immunocompetent cell populations involved in controlling innate and adaptive immune responses, together with a marked reduction of both cytokine expression and co-stimulatory molecule synthesis. Although experimental research and field studies have shown that acute BVDV infection enhances susceptibility to secondary infection, the precise mechanism involved in BVDV-induced immunosuppression remains unclear. The present study is aimed at measuring a range of blood parameters in a single group of fourteen calves infected with non-cytopathic BVDV-1. Focus has been put on those related to the cell-mediated immune response just as leucocyte populations and lymphocyte subpopulations, serum concentrations of cytokines (IL-1β, TNF-α, IFN-γ, IL-12, IL-4 and IL-10) and acute phase proteins [haptoglobin, serum amyloid A (SAA), fibrinogen and albumin], as well as BVDV-specific antibodies and viremia. After non-cytopathic BVDV-1 infection, clinical signs intensity was never more than moderate coinciding with the presence of viremia and leucocyte and lymphocyte depletion. An early increase in TNF-α, IFN-γ and IL-12 levels in contrast to IL-1β was observed in line with a raise in haptoglobin and SAA levels on the latest days of the study. As regards IL-4 levels, no evidence was found of any changes. However, a slight increase in IL-10 was observed, matching up the TNF-α decline during the acute phase response. These findings would help to increase our knowledge of the immune mechanisms involved in acute infection with non-cytopathic BVDV-1 strains, suggesting the existence of a clear tendency towards a type 1 immune response, thereby enhancing resistance against

  11. Recombinant nucleocapsid-like particles from dengue-2 induce functional serotype-specific cell-mediated immunity in mice.

    PubMed

    Gil, Lázaro; Bernardo, Lídice; Pavón, Alequis; Izquierdo, Alienys; Valdés, Iris; Lazo, Laura; Marcos, Ernesto; Romero, Yaremis; Guzmán, María G; Guillén, Gerardo; Hermida, Lisset

    2012-06-01

    The interplay of different inflammatory cytokines induced during dengue virus infection plays a role in either protection or increased disease severity. In this sense, vaccine strategies incorporating whole virus are able to elicit both functional and pathological responses. Therefore, an ideal tetravalent vaccine candidate against dengue should be focused on serotype-specific sequences. In the present work, a new formulation of nucleocapsid-like particles (NLPs) obtained from the recombinant dengue-2 capsid protein was evaluated in mice to determine the level of protection against homologous and heterologous viral challenge and to measure the cytotoxicity and cytokine-secretion profiles induced upon heterologous viral stimulation. As a result, a significant protection rate was achieved after challenge with lethal dengue-2 virus, which was dependent on CD4(+) and CD8(+) cells. In turn, no protection was observed after heterologous challenge. In accordance, in vitro-stimulated spleen cells from mice immunized with NLPs from the four dengue serotypes showed a serotype-specific response of gamma interferon- and tumour necrosis factor alpha-secreting cells. A similar pattern was detected when spleen cells from dengue-immunized animals were stimulated with the capsid protein. Taking these data together, we can assert that NLPs constitute an attractive vaccine candidate against dengue. They induce a functional immune response mediated by CD4(+) and CD8(+) cells in mice, which is protective against viral challenge. In turn, they are potentially safe due to two important facts: induction of serotype specific cell-mediated immunity and lack of induction of antiviral antibodies. Further studies in non-human primates or humanized mice should be carried out to elucidate the usefulness of the NLPs as a potential vaccine candidate against dengue disease.

  12. Phleum pratense pollen starch granules induce humoral and cell-mediated immune responses in a rat model of allergy.

    PubMed

    Motta, A; Peltre, G; Dormans, J A M A; Withagen, C E T; Lacroix, G; Bois, F; Steerenberg, P A

    2004-02-01

    Timothy grass (Phleum pratense) pollen allergens are an important cause of allergic symptoms. However, pollen grains are too large to penetrate the deeper airways. Grass pollen is known to release allergen-bearing starch granules (SG) upon contact with water. These granules can create an inhalable allergenic aerosol capable of triggering an early asthmatic response and are implicated in thunderstorm-associated asthma. We studied the humoral (IgE) and bronchial lymph node cells reactivities to SG from timothy grass pollen in pollen-sensitized rats. Brown-Norway rats were sensitized (day 0) and challenged (day 21) intratracheally with intact pollen and kept immunized by pollen intranasal instillation by 4 weeks intervals during 3 months. Blood and bronchial lymph nodes were collected 7 days after the last intranasal challenge. SG were purified from fresh timothy grass pollen using 5 microm mesh filters. To determine the humoral response (IgE) to SG, we developed an original ELISA inhibition test, based on competition between pollen allergens and purified SG. The cell-mediated response to SG in the bronchial lymph node cells was determined by measuring the uptake of [3H]thymidine in a proliferation assay. An antibody response to SG was induced, and purified SG were able to inhibit the IgE ELISA absorbance by 45%. Pollen extract and intact pollen gave inhibitions of 55% and 52%, respectively. A cell-mediated response was also found, as pollen extract, intact pollen and SG triggered proliferation of bronchial lymph node cells. It was confirmed that timothy grass pollen contains allergen-loaded SG, which are released upon contact with water. These granules were shown to be recognized by pollen-sensitized rats sera and to trigger lymph node cell proliferation in these rats. These data provide new arguments supporting the implication of grass pollen SG in allergic asthma.

  13. Memory T-Cell-Mediated Immune Responses Specific to an Alternative Core Protein in Hepatitis C Virus Infection

    PubMed Central

    Bain, Christine; Parroche, Peggy; Lavergne, Jean Pierre; Duverger, Blandine; Vieux, Claude; Dubois, Valérie; Komurian-Pradel, Florence; Trépo, Christian; Gebuhrer, Lucette; Paranhos-Baccala, Glaucia; Penin, François; Inchauspé, Geneviève

    2004-01-01

    In vitro studies have described the synthesis of an alternative reading frame form of the hepatitis C virus (HCV) core protein that was named F protein or ARFP (alternative reading frame protein) and includes a domain coded by the +1 open reading frame of the RNA core coding region. The expression of this protein in HCV-infected patients remains controversial. We have analyzed peripheral blood from 47 chronically or previously HCV-infected patients for the presence of T lymphocytes and antibodies specific to the ARFP. Anti-ARFP antibodies were detected in 41.6% of the patients infected with various HCV genotypes. Using a specific ARFP 99-amino-acid polypeptide as well as four ARFP predicted class I-restricted 9-mer peptides, we show that 20% of the patients display specific lymphocytes capable of producing gamma interferon, interleukin-10, or both cytokines. Patients harboring three different viral genotypes (1a, 1b, and 3) carried T lymphocytes reactive to genotype 1b-derived peptides. In longitudinal analysis of patients receiving therapy, both core and ARFP-specific T-cell- and B-cell-mediated responses were documented. The magnitude and kinetics of the HCV antigen-specific responses differed and were not linked with viremia or therapy outcome. These observations provide strong and new arguments in favor of the synthesis, during natural HCV infection, of an ARFP derived from the core sequence. Moreover, the present data provide the first demonstration of the presence of T-cell-mediated immune responses directed to this novel HCV antigen. PMID:15367612

  14. Circumvention of regulatory CD4(+) T cell activity during cross-priming strongly enhances T cell-mediated immunity.

    PubMed

    Heit, Antje; Gebhardt, Friedemann; Lahl, Katharina; Neuenhahn, Michael; Schmitz, Frank; Anderl, Florian; Wagner, Hermann; Sparwasser, Tim; Busch, Dirk H; Kastenmüller, Kathrin

    2008-06-01

    Immunization with purified antigens is a safe and practical vaccination strategy but is generally unable to induce sustained CD8(+) T cell-mediated protection against intracellular pathogens. Most efforts to improve the CD8(+) T cell immunogenicity of these vaccines have focused on co-administration of adjuvant to support cross-presentation and dendritic cell maturation. In addition, it has been shown that CD4(+) T cell help during the priming phase contributes to the generation of protective CD8(+) memory T cells. In this report we demonstrate that the depletion of CD4(+) T cells paradoxically enhances long-lasting CD8-mediated protective immunity upon protein vaccination. Functional and genetic in vivo inactivation experiments attribute this enhancement primarily to MHC class II-restricted CD4(+) regulatory T cells (Treg), which appear to physiologically suppress the differentiation process towards long-living effector memory T cells. Since, in functional terms, this suppression by Treg largely exceeds the positive effects of conventional CD4(+) T cell help, even the absence of all CD4(+) T cells or lack of MHC class II-mediated interactions on priming dendritic cells result in enhanced CD8(+) T cell immunogenicity. These findings have important implications for the improvement of vaccines against intracellular pathogens or tumors, especially in patients with highly active Treg.

  15. IL-7 inhibits tumor growth by promoting T cell-mediated antitumor immunity in Meth A model.

    PubMed

    Tang, Jian-Cai; Shen, Guo-Bo; Wang, Shi-Min; Wan, Yong-Sheng; Wei, Yu-Quan

    2014-01-01

    Immune suppression is well documented during tumor progression, which includes loss of effect of T cells and expansion of T regulatory (Treg) cells. IL-7 plays a key role in the proliferation, survival and homeostasis of T cells and displays a potent antitumor activity in vivo. In the present study, we investigated the antitumor effect of IL-7 in Meth A model. IL-7 inhibited tumor growth and prolonged the survival of tumor-bearing mice with corresponding increases in the frequency of CD4 and CD8 T cells, Th1 (CD4(+)IFN-γ(+)), Tc1 (CD8(+)IFN-γ(+)) and T cells cytolytic activity against Meth A cells. Neutralization of CD4 or CD8 T cells reversed the antitumor benefit of IL-7. Furthermore, IL-7 decreased regulatory T Foxp3 as well as cells suppressive activity with a reciprocal increase in SMAD7. In addition, we observed an increase of the serum concentrations of IL-6 and IFN-γ, and a significant decrease of TGF-β and IL-10 after IL-7 treatment. Taken together, these results indicate that IL-7 augments T cell-mediated antitumor immunity and improves the effect of antitumor in Meth A model.

  16. Coupling of HIV-1 Antigen to the Selective Autophagy Receptor SQSTM1/p62 Promotes T-Cell-Mediated Immunity

    PubMed Central

    Andersen, Aram Nikolai; Landsverk, Ole Jørgen; Simonsen, Anne; Bogen, Bjarne; Corthay, Alexandre; Øynebråten, Inger

    2016-01-01

    Vaccines aiming to promote T-cell-mediated immune responses have so far showed limited efficacy, and there is a need for novel strategies. Studies indicate that autophagy plays an inherent role in antigen processing and presentation for CD4+ and CD8+ T cells. Here, we report a novel vaccine strategy based on fusion of antigen to the selective autophagy receptor sequestosome 1 (SQSTM1)/p62. We hypothesized that redirection of vaccine antigen from proteasomal degradation into the autophagy pathway would increase the generation of antigen-specific T cells. A hybrid vaccine construct was designed in which the antigen is fused to the C-terminus of p62, a signaling hub, and a receptor that naturally delivers ubiquitinated cargo for autophagic degradation. Fusion of the human immunodeficiency virus-1 antigen Gagp24 to p62 resulted in efficient antigen delivery into the autophagy pathway. Intradermal immunization of mice revealed that, in comparison to Gagp24 delivered alone, fusion to p62 enhanced the number of Gagp24-specific interferon-γ-producing T cells, including CD8+ T cells. The strategy may also have the potential to modulate the antigenic peptide repertoire. Because p62 and autophagy are highly conserved between species, we anticipate this strategy to be a candidate for the development of T-cell-based vaccines in humans. PMID:27242780

  17. Nature of "memory" in T-cell-mediated antibacterial immunity: anamnestic production of mediator T cells.

    PubMed Central

    North, R J

    1975-01-01

    Mice that survived an immunizing infection with Listeria monocytogenes remained specifically resistant to lethal secondary infection for several months. This acquired, long-lived state of resistance was not dependent on activated macrophages that remained after the primary response. It depended, instead, on an acquired long-lived capacity on the part of immunized mice for generating mediator T cells faster and in larger numbers than normal mice. The number of mediator T cells generated in response to secondary infection was proportional to the level of infection. The results suggest that the accelerated production of mediator T cells that occurs in response to secondary infection represents the expression of a state of immunological T-cell memory. PMID:811558

  18. Myeloid-derived suppressor cells mediate immune suppression in spinal cord injury.

    PubMed

    Wang, Lei; Yu, Wei-bo; Tao, Lian-yuan; Xu, Qing

    2016-01-15

    Spinal cord injury (SCI) is characterized by the loss of motor and sensory functions in areas below the level of the lesion and numerous accompanying deficits. Previous studies have suggested that myeloid-derived suppressor cell (MDSC)-induced immune depression may play a pivotal role in the course of SCI. However, the concrete mechanism of these changes regarding immune suppression remains unknown. Here, we created an SCI mouse model to gain further evidence regarding the relationship between MDSCs following SCI and T lymphocyte suppression. We showed that in the SCI mouse model, the expanding MDSCs have the capacity to suppress T cell proliferation, and this suppression could be reversed by blocking the arginase.

  19. Different immune cells mediate mechanical pain hypersensitivity in male and female mice

    PubMed Central

    Sorge, Robert E.; Mapplebeck, Josiane C.S.; Rosen, Sarah; Beggs, Simon; Taves, Sarah; Alexander, Jessica K.; Martin, Loren J.; Austin, Jean-Sebastien; Sotocinal, Susana G.; Chen, Di; Yang, Mu; Shi, Xiang Qun; Huang, Hao; Pillon, Nicolas J.; Bilan, Philip J.; Tu, Yu Shan; Klip, Amira; Ji, Ru-Rong; Zhang, Ji; Salter, Michael W.; Mogil, Jeffrey S.

    2016-01-01

    A large and rapidly increasing body of evidence indicates that microglia-neuron signaling is essential for chronic pain hypersensitivity. Here we show using multiple approaches that microglia are not required for mechanical pain hypersensitivity in female mice; female mice achieve similar levels of pain hypersensitivity using adaptive immune cells, likely T-lymphocytes. This sexual dimorphism suggests that male mice cannot be used as proxies for females in pain research. PMID:26120961

  20. Comparison of dendritic cell-mediated immune responses among canine malignant cells.

    PubMed

    Tamura, Kyoichi; Arai, Hiroyoshi; Ueno, Emi; Saito, Chie; Yagihara, Hiroko; Isotani, Mayu; Ono, Kenichiro; Washizu, Tsukimi; Bonkobara, Makoto

    2007-09-01

    Dendritic cell (DC) vaccination is one of the most attractive immunotherapies for malignancies in dogs. To examine the differences in DC-mediated immune responses from different types of malignancies in dogs, we vaccinated dogs using autologous DCs pulsed with keyhole limpet hemocyanin (KLH) and cell lysate prepared from squamous cell carcinoma SCC2/88 (SCC-KLH-DC), histiocytic sarcoma CHS-5 (CHS-KLH-DC), or B cell leukemia GL-1 (GL-KLH-DC) in vitro. In vivo inductions of immune responses against these tumor cells were compared by the delayed-type hypersensitivity (DTH) skin test. The DTH response against SCC2/88 cells were observed in dogs vaccinated with autologous SCC-KLH-DC, while the response was undetectable against CHS-5 and GL-1 cells in dogs vaccinated with autologous CHS-KLH-DC and GL-KLH-DC. Skin biopsies taken from DTH challenge sites were then examined for immunohistochemistry, and recruitment of CD8 and CD4 T cells was detected at the site where SCC2/88 cells were inoculated in dogs vaccinated with SCC-KLH-DC. By contrast, neither CD8 nor CD4 T cell infiltration was found at the DTH challenge site in the dogs vaccinated with CHS-KLH-DC or GL-KLH-DC. These findings may reflect that the efficacy of immune induction by DC vaccination varies among tumor types and that immune responses could be inducible in squamous cell carcinoma. Our results encouraged further investigation of therapeutic vaccination for dogs with advanced squamous cell carcinoma in clinical trials.

  1. Differential effect on cell-mediated immunity in human volunteers after intake of different lactobacilli

    PubMed Central

    Rask, C; Adlerberth, I; Berggren, A; Ahrén, I L; Wold, A E

    2013-01-01

    Probiotics are live microorganisms which have beneficial effects on the host when ingested in adequate amounts. Probiotic bacteria may stimulate immune effector functions in a strain-specific manner. In this blind placebo-controlled trial, we investigated the effects on the immune system following daily intake of six different strains of lactobacilli or the Gram-negative bacterium Pseudomonas lundensis for 2 or 5 weeks. Blood lymphocyte subsets were quantified by fluorescence activated cell sorter and the expression of activation and memory markers was determined. The bacterial strains were also examined for their capacity to adhere to human intestinal cells and to be phagocytosed by human peripheral blood mononuclear cells. Intake of Lactobacillus plantarum strain 299v increased the expression of the activation marker CD25 (P = 0·01) on CD8+ T cells and the memory cell marker CD45RO on CD4+ T cells (P = 0·03), whereas intake of L. paracasei tended to expand the natural killer T (NK T) cell population (P = 0·06). The phagocytic activity of granulocytes was increased following intake of L. plantarum 299v, L. plantarum HEAL, L. paracasei or L. fermentum. In contrast, ingestion of L. rhamnosus decreased the expression of CD25 and CD45RO significantly within the CD4+ cell population. The observed immune effects after in-vivo administration of the probiotic bacteria could not be predicted by either their adherence capacity or the in-vitro-induced cytokine production. The stimulation of CD8+ T cells and NK T cells suggests that intake of probiotic bacteria may enhance the immune defence against, e.g. viral infections or tumours. PMID:23574328

  2. Plasmodium berghei: immunosuppression of the cell-mediated immune response induced by nonviable antigenic preparations

    SciTech Connect

    Gross, A.; Frankenburg, S.

    1989-01-01

    In this work, plasmodial antigens were examined for their ability to suppress the cellular immune response during lethal Plasmodium berghei infection. Splenic enlargement and the number and function of white spleen cells were assessed after injection of normal mice with irradiated parasitized erythrocytes (IPE) or with parasitized erythrocytes (PE) membranes. Both IPE and PE membranes caused splenomegaly and an increase in the number of splenic white cells with concurrent alteration of the relative proportions of T cells and macrophages. The percentage of T lymphocytes was fractionally diminished, but there was a marked increase in Lyt 2.2 positive (suppressor and cytotoxic) T subsets and in the number of splenic macrophage precursors. The pathological enlargement of the spleen was induced by various plasma membrane-derived antigens containing both proteins and carbohydrates. Splenocytes of mice injected with liposomes containing deoxycholate-treated PE or PE fractions showed both diminished interleukin 2 production and a decreased response to mitogen. It appears that some of the changes in the cellular immune response during P. berghei infection are a consequence of the massive provision of a wide spectrum of antigens, capable of suppressing the immune response. Thus, it may be appropriate to evaluate the possible negative effect of parasite epitopes that are candidates for vaccine.

  3. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression

    PubMed Central

    Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-01

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression. PMID:26700461

  4. Activated group 3 innate lymphoid cells promote T-cell-mediated immune responses.

    PubMed

    von Burg, Nicole; Chappaz, Stéphane; Baerenwaldt, Anne; Horvath, Edit; Bose Dasgupta, Somdeb; Ashok, Devika; Pieters, Jean; Tacchini-Cottier, Fabienne; Rolink, Antonius; Acha-Orbea, Hans; Finke, Daniela

    2014-09-02

    Group 3 innate lymphoid cells (ILC3s) have emerged as important cellular players in tissue repair and innate immunity. Whether these cells meaningfully regulate adaptive immune responses upon activation has yet to be explored. Here we show that upon IL-1β stimulation, peripheral ILC3s become activated, secrete cytokines, up-regulate surface MHC class II molecules, and express costimulatory molecules. ILC3s can take up latex beads, process protein antigen, and consequently prime CD4(+) T-cell responses in vitro. The cognate interaction of ILC3s and CD4(+) T cells leads to T-cell proliferation both in vitro and in vivo, whereas its disruption impairs specific T-cell and T-dependent B-cell responses in vivo. In addition, the ILC3-CD4(+) T-cell interaction is bidirectional and leads to the activation of ILC3s. Taken together, our data reveal a novel activation-dependent function of peripheral ILC3s in eliciting cognate CD4(+) T-cell immune responses.

  5. Antibody and cell-mediated immunity to Streptococcus pneumoniae: implications for vaccine development.

    PubMed

    Malley, Richard

    2010-02-01

    It has long been assumed that children develop natural immunity to pneumococci via the acquisition of anticapsular antibodies, which confers serotype-specific immunity to the organism. This view has been further reinforced by the recent success of capsular polysaccharide conjugate vaccines in children in reducing colonization and disease caused by vaccine-type strains. Less clear, however, is whether this mechanism is responsible for the age-related gradual increased resistance to pneumococcal carriage and disease. Recent epidemiologic and experimental evidence point to the possibility that another mechanism may be involved. Here, an alternative possibility is presented, whereby it is proposed that acquired immunity to this common human pathogen is derived not only from natural acquisition of antibodies (capsular and noncapsular) that provides protection against invasive disease but also from the development of pneumococcus-specific CD4+ T(H)17 cells that reduces the duration of carriage and may also impact mucosal disease. This review focuses on the experimental and clinical evidence in support of this hypothesis. The implications for future vaccine development against Streptococcus pneumoniae are also discussed.

  6. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression.

    PubMed

    Pinton, Laura; Solito, Samantha; Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-12

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression.

  7. A multi-subunit chlamydial vaccine induces antibody and cell-mediated immunity in immunized koalas (Phascolarctos cinereus): comparison of three different adjuvants.

    PubMed

    Carey, Alison J; Timms, Peter; Rawlinson, Galit; Brumm, Jacqui; Nilsson, Karen; Harris, Jonathon M; Beagley, Kenneth W

    2010-02-01

    Chlamydial infections represent a major threat to the survival of the koala. Infections caused by Chlamydia pecorum cause blindness, infertility, pneumonia and urinary tract infections and represent a threat to the survival of the species. Little is known about the immune response in koalas, or the safety of commonly used adjuvants for induction of protective systemic and mucosal immunity. of study In the present study, we immunized 18 healthy female koalas subcutaneously with a combination of three chlamydial antigens [major outer membrane protein (MOMP), NrdB and TC0512 (Omp85)] mixed with one of three different adjuvants [Alhydrogel, Immunostimulating Complex (ISC) and TiterMax Gold]. All adjuvants induced strong neutralizing IgG responses in plasma against the three antigens with prolonged responses lasting more than 270 days seen in Alhydrogel and ISC immunized animals. Cloacal IgG responses lasting >270 days were also induced in ISC-immunized animals. Chlamydia-specific peripheral blood mononuclear cell proliferative responses were elicited by both Alhydrogel and ISC, and these lasted >270 days in the ISC group. The data show that a multi-subunit chlamydial vaccine, given subcutaneously, can elicit Chlamydia-specific cell-mediated and antibody responses in the koala demonstrating that the development of a protective vaccine is feasible.

  8. Cell-mediated immunity to Toxoplasma gondii develops primarily by local Th-1 host immune responses in the absence of parasite replication1

    PubMed Central

    Gigley, Jason P.; Fox, Barbara A.; Bzik, David J.

    2008-01-01

    A single inoculation of mice with the live attenuated Toxoplasma gondii uracil auxotroph strain cps1-1 induces long-lasting immunity against lethal challenge with hyper-virulent strain RH. The mechanism for this robust immunity in the absence of parasite replication has not been addressed. The mechanism of long-lasting immunity, the importance of route of immunization, cellular recruitment to the site of infection, and local and systemic inflammation were evaluated. Our results show that infection with cps1-1 elicits long-lasting CD8+ T cell mediated immunity. We show that immunization with cps1-1 infected DCs elicits long-lasting immunity. Intraperitoneal infection with cps1-1 induced a rapid influx of GR1+ neutrophils and 2 stages of GR1+ CD68+ inflammatory monocyte infiltration into the site of inoculation. CD19+ B cells and CD3+ T cells steadily increase for 8 days after infection. CD8+ T cells were rapidly recruited to the site of infection and increased faster than CD4+ T cells. Surprisingly, cps1-1 infection induced high systemic levels of bioactive IL-12p70 and very low level and transient systemic Ifn-γ. Furthermore, we show significant levels of these inflammatory cytokines were locally produced at the site of cps1-1 inoculation. These findings offer new insight into immunological mechanisms and local host responses to a non-replicating Type I parasite infection associated with development of long-lasting immunity to Toxoplasma gondii. PMID:19124750

  9. Immune cell-mediated protection of the mammary gland and the infant during breastfeeding.

    PubMed

    Hassiotou, Foteini; Geddes, Donna T

    2015-05-01

    Breastfeeding has been regarded first and foremost as a means of nutrition for infants, providing essential components for their unique growth and developmental requirements. However, breast milk is also rich in immunologic factors, highlighting its importance as a mediator of protection. In accordance with its evolutionary origin, the mammary gland offers via the breastfeeding route continuation of the maternal to infant immunologic support established in utero. At birth, the infant's immune system is immature, and although it was exposed to the maternal microbial flora during pregnancy, it experiences an abrupt change in its microbial environment during and after birth, which is challenging and renders the infant highly susceptible to infection. Active and passive immunity protects the infant via breast milk, which is rich in immunoglobulins, lactoferrin, lysozyme, cytokines, and numerous other immunologic factors, including maternal leukocytes. Breast milk leukocytes provide active immunity and promote development of immunocompetence in the infant. Additionally, it has been speculated that they play a role in the protection of the mammary gland from infection. Leukocytes are thought to exert these functions via phagocytosis, secretion of antimicrobial factors and/or antigen presentation in both the mammary gland and the gastrointestinal tract of the infant, and also in other infant tissues, where they are transported via the systemic circulation. Recently, it has been demonstrated that breast milk leukocytes respond dynamically to maternal as well as infant infections, and are fewer in nonexclusively compared with exclusively breastfeeding dyads, further emphasizing their importance for both the mother and infant. This review summarizes the current knowledge of human milk leukocytes and factors influencing them, and presents recent novel findings supporting their potential as a diagnostic marker for infections of the lactating breast and of the breastfed infant.

  10. Humoral and cell mediated immune responses to a pertussis containing vaccine in pregnant and nonpregnant women.

    PubMed

    Huygen, Kris; Caboré, Raïssa Nadège; Maertens, Kirsten; Van Damme, Pierre; Leuridan, Elke

    2015-08-07

    Vaccination of pregnant women is recommended for some infectious diseases in order to protect both women and offspring through high titres of maternal IgG antibodies. Less is known on the triggering of cellular immune responses by vaccines administered during pregnancy. In an ongoing study on maternal pertussis vaccination (2012-2014) 18 pregnant women were vaccinated with a tetanus-diphtheria-acellular pertussis (Tdap) containing vaccine (Boostrix®) during the third pregnancy trimester. Sixteen age-matched nonpregnant women received the same vaccine in the same time period. A blood sample was taken at the moment of, but before vaccination and one month and one year after vaccination. Anti-Pertussis Toxin (PT), filamentous hemagglutinin (FHA), pertactin (Prn), tetanus toxin (TT) and diphtheria toxin (DT) antibodies were measured by ELISA. Cellular immune responses were analyzed using a diluted whole blood assay, measuring proliferation, and cytokine release in response to vaccine antigens PT, FHA, TT, and to pokeweed mitogen (PWM) as polyclonal stimulus. Antibody levels to all five vaccine components increased significantly and to the same extent after vaccination in pregnant and nonpregnant women. One year after vaccination, antibody titres had decreased particularly to PT, but they were still significantly higher to all antigens than before vaccination. In contrast, proliferative and IFN-γ responses were increased to TT, PT, and FHA in nonpregnant women one month after vaccination, whereas in pregnant women only TT specific T cell responses were increased and to a lesser extent than in the control group. One year after vaccination, cellular responses equaled the baseline levels detected prior to vaccination in both groups. In conclusion, a Tdap vaccination can increase vaccine specific IgG antibodies to the same extent in pregnant and in nonpregnant women, whereas the stimulation of vaccine specific Th1 type cellular immune responses with this acellular vaccine

  11. CD8+ T Cell-Mediated Immunity during Trypanosoma cruzi Infection: A Path for Vaccine Development?

    PubMed Central

    dos Santos Virgilio, Fernando; Pontes, Camila; Dominguez, Mariana Ribeiro; Ersching, Jonatan; Rodrigues, Mauricio Martins; Vasconcelos, José Ronnie

    2014-01-01

    MHC-restricted CD8+ T cells are important during infection with the intracellular protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Experimental studies performed in the past 25 years have elucidated a number of features related to the immune response mediated by these T cells, which are important for establishing the parasite/host equilibrium leading to chronic infection. CD8+ T cells are specific for highly immunodominant antigens expressed by members of the trans-sialidase family. After infection, their activation is delayed, and the cells display a high proliferative activity associated with high apoptotic rates. Although they participate in parasite control and elimination, they are unable to clear the infection due to their low fitness, allowing the parasite to establish the chronic phase when these cells then play an active role in the induction of heart immunopathology. Vaccination with a number of subunit recombinant vaccines aimed at eliciting specific CD8+ T cells can reverse this path, thereby generating a productive immune response that will lead to the control of infection, reduction of symptoms, and reduction of disease transmission. Due to these attributes, activation of CD8+ T lymphocytes may constitute a path for the development of a veterinarian or human vaccine. PMID:25104879

  12. Cyclic AMP Represents a Crucial Component of Treg Cell-Mediated Immune Regulation

    PubMed Central

    Klein, Matthias; Bopp, Tobias

    2016-01-01

    T regulatory (Treg) cells are one of the key players in the immune tolerance network, and a plethora of manuscripts have described their development and function in the course of the last two decades. Nevertheless, it is still a matter of debate as to which mechanisms and agents are employed by Treg cells, providing the basis of their suppressive potency. One of the important candidates is cyclic AMP (cAMP), which is long known as a potent suppressor at least of T cell activation and function. While this suppressive function by itself is widely accepted, the source and the mechanism of action of cAMP are less clear, and a multitude of seemingly contradictory data allow for, in principle, two different scenarios of cAMP-mediated suppression. In one scenario, Treg cells contain high amounts of cAMP and convey this small molecule via gap junction intercellular communication directly to the effector T cells (Teff) leading to their suppression. Alternatively, it was shown that Treg cells represent the origin of considerable amounts of adenosine, which trigger the adenylate cyclases in Teff cells via A2A and A2B receptors, thus strongly increasing intracellular cAMP. This review will present and discuss initial findings and recent developments concerning the function of cAMP for Treg cells and its impact on immune regulation. PMID:27621729

  13. CD8(+) T cell-mediated immunity during Trypanosoma cruzi infection: a path for vaccine development?

    PubMed

    Dos Santos Virgilio, Fernando; Pontes, Camila; Dominguez, Mariana Ribeiro; Ersching, Jonatan; Rodrigues, Mauricio Martins; Vasconcelos, José Ronnie

    2014-01-01

    MHC-restricted CD8(+) T cells are important during infection with the intracellular protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Experimental studies performed in the past 25 years have elucidated a number of features related to the immune response mediated by these T cells, which are important for establishing the parasite/host equilibrium leading to chronic infection. CD8(+) T cells are specific for highly immunodominant antigens expressed by members of the trans-sialidase family. After infection, their activation is delayed, and the cells display a high proliferative activity associated with high apoptotic rates. Although they participate in parasite control and elimination, they are unable to clear the infection due to their low fitness, allowing the parasite to establish the chronic phase when these cells then play an active role in the induction of heart immunopathology. Vaccination with a number of subunit recombinant vaccines aimed at eliciting specific CD8(+) T cells can reverse this path, thereby generating a productive immune response that will lead to the control of infection, reduction of symptoms, and reduction of disease transmission. Due to these attributes, activation of CD8(+) T lymphocytes may constitute a path for the development of a veterinarian or human vaccine.

  14. Cell-mediated immune response to unrelated proteins and unspecific inflammation blocked by orally tolerated proteins.

    PubMed

    Ramos, Gustavo C; Rodrigues, Claudiney M; Azevedo, Geraldo M; Pinho, Vanessa; Carvalho, Cláudia R; Vaz, Nelson M

    2009-03-01

    Oral tolerance promotes a generalized decrease in specific immune responsiveness to proteins previously encountered via the oral route. In addition, parenteral immunization with a tolerated protein also triggers a significant reduction in the primary responsiveness to a second unrelated antigen. This is generally explained by 'innocent bystander suppression', suggesting that the transient and episodic effects of inhibitory cytokines released by contact with the tolerated antigen would block responses to the second antigen. In disagreement with this view, we have previously shown that: (i) these inhibitory effects do not require concomitance or contiguity of the injections of the two proteins; (ii) that intravenous or intragastric exposures to the tolerated antigen are not inhibitory; and (iii) that the inhibitory effect, once triggered, persists in the absence of further contact with the tolerated protein, possibly by inhibition of secondary responsiveness (immunological memory). The present work confirms that immunological memory of the second unrelated antigen is hindered by exposure to the tolerated antigen and, in addition, shows that this exposure: (i) inhibits the inflammation triggered by an unrelated antigen through the double effect of inhibiting production of leucocytes in the bone marrow and blocking their migration to inflammed sites; and (ii) significantly blocks footpaw swelling triggered by carrageenan. Taken together, these results conclusively demonstrate that inhibitory effects of parenteral injection of tolerated antigens are much more general than suggested by the 'innocent bystander suppression' hypothesis.

  15. Anti-apoptotic seminal vesicle protein IV inhibits cell-mediated immunity.

    PubMed

    Fuggetta, M P; Lanzilli, G; Cottarelli, A; Ravagnan, G; Cartenì, M; De Maria, S; Metafora, B M; Metafora, V; Metafora, S

    2008-07-01

    The in vitro effect of seminal vesicle protein IV (SV-IV) on the cytotoxic activity of human natural or acquired cellular immunity has been investigated by standard immunological procedures, a (51)Cr-release cytotoxicity assay, and labeled-ligand binding experiments. The data obtained demonstrate that: (1) fluoresceinated or [(125)I]-labeled SV-IV binds specifically to the surface of human purified non-adherent mononuclear cells (NA-MNC); (2) SV-IV suppresses the cytotoxicity of natural killer (NK) cells against K562 target cells, that of IL-2-stimulated NK (LAK) cells against DAUDI target cells, and that of VEL antigen-sensitized cytotoxic T lymphocytes (CTLs) against VEL target cells; (3) treatment of K562 target cells alone with SV-IV decreases their susceptibility to NK-induced lysis. These findings indicate that the protein SV-IV has a marked in vitro inhibitory effect on NK, LAK and CTL cytotoxicity, providing a better understanding of its immune regulatory functions.

  16. Trypanosoma cruzi Adjuvants Potentiate T Cell-Mediated Immunity Induced by a NY-ESO-1 Based Antitumor Vaccine

    PubMed Central

    Junqueira, Caroline; Guerrero, Ana Tereza; Galvão-Filho, Bruno; Andrade, Warrison A.; Salgado, Ana Paula C.; Cunha, Thiago M.; Ropert, Catherine; Campos, Marco Antônio; Penido, Marcus L. O.; Mendonça-Previato, Lúcia; Previato, José Oswaldo; Ritter, Gerd; Cunha, Fernando Q.; Gazzinelli, Ricardo T.

    2012-01-01

    Immunological adjuvants that induce T cell-mediate immunity (TCMI) with the least side effects are needed for the development of human vaccines. Glycoinositolphospholipids (GIPL) and CpGs oligodeoxynucleotides (CpG ODNs) derived from the protozoa parasite Trypanosoma cruzi induce potent pro-inflammatory reaction through activation of Toll-Like Receptor (TLR)4 and TLR9, respectively. Here, using mouse models, we tested the T. cruzi derived TLR agonists as immunological adjuvants in an antitumor vaccine. For comparison, we used well-established TLR agonists, such as the bacterial derived monophosphoryl lipid A (MPL), lipopeptide (Pam3Cys), and CpG ODN. All tested TLR agonists were comparable to induce antibody responses, whereas significant differences were noticed in their ability to elicit CD4+ T and CD8+ T cell responses. In particular, both GIPLs (GTH, and GY) and CpG ODNs (B344, B297 and B128) derived from T. cruzi elicited interferon-gamma (IFN-γ) production by CD4+ T cells. On the other hand, the parasite derived CpG ODNs, but not GIPLs, elicited a potent IFN-γ response by CD8+ T lymphocytes. The side effects were also evaluated by local pain (hypernociception). The intensity of hypernociception induced by vaccination was alleviated by administration of an analgesic drug without affecting protective immunity. Finally, the level of protective immunity against the NY-ESO-1 expressing melanoma was associated with the magnitude of both CD4+ T and CD8+ T cell responses elicited by a specific immunological adjuvant. PMID:22567144

  17. Resveratrol enhances cell-mediated immune response to DMBA through TLR4 and prevents DMBA induced cutaneous carcinogenesis

    PubMed Central

    Yusuf, Nabiha; Nasti, Tahseen H; Meleth, Sreelatha; Elmets, Craig A

    2009-01-01

    Toll like receptors (TLRs) activate signals that are critically involved in innate immune responses and that contribute to the initiation of adaptive immune responses. Resveratrol (trans-3, 5,4-trihydroxystilbene), a polyphenol found in red grapes and in several other plant sources, is an effective chemopreventive agent in cutaneous chemical carcinogenesis. In this study, we investigated whether TLR4 was required for the chemopreventive action of resveratrol in DMBA skin carcinogenesis. For this purpose, mice with normal and deficient TLR4 function were compared when pretreated with resveratrol and then subjected to a DMBA-induced skin carcinogenesis protocol. There were fewer tumors/group (p<0.001) in resveratrol treated TLR4 competent C3H/HeN mice than in TLR4 deficient C3H/HeJ mice. In addition, the size of tumors in C3H/HeN mice was reduced in vivo and their survival in vitro was inhibited by resveratrol to a significantly greater extent than in C3H/HeJ mice. Resveratrol inhibited angiogenesis to a much greater extent in the TLR4 competent mice than in TLR4 deficient mice. IFN-γ and IL-12 levels were also increased in TLR4 competent mice compared to TLR4 deficient mice, and TLR4 competent C3H/HeN mice exhibited a greater increase in the cell-mediated immune response to DMBA. The results of this study indicate that TLR4 is an important mediator of resveratrol chemoprevention in DMBA skin tumorigenesis. PMID:19142898

  18. Trypanosoma cruzi adjuvants potentiate T cell-mediated immunity induced by a NY-ESO-1 based antitumor vaccine.

    PubMed

    Junqueira, Caroline; Guerrero, Ana Tereza; Galvão-Filho, Bruno; Andrade, Warrison A; Salgado, Ana Paula C; Cunha, Thiago M; Ropert, Catherine; Campos, Marco Antônio; Penido, Marcus L O; Mendonça-Previato, Lúcia; Previato, José Oswaldo; Ritter, Gerd; Cunha, Fernando Q; Gazzinelli, Ricardo T

    2012-01-01

    Immunological adjuvants that induce T cell-mediate immunity (TCMI) with the least side effects are needed for the development of human vaccines. Glycoinositolphospholipids (GIPL) and CpGs oligodeoxynucleotides (CpG ODNs) derived from the protozoa parasite Trypanosoma cruzi induce potent pro-inflammatory reaction through activation of Toll-Like Receptor (TLR)4 and TLR9, respectively. Here, using mouse models, we tested the T. cruzi derived TLR agonists as immunological adjuvants in an antitumor vaccine. For comparison, we used well-established TLR agonists, such as the bacterial derived monophosphoryl lipid A (MPL), lipopeptide (Pam3Cys), and CpG ODN. All tested TLR agonists were comparable to induce antibody responses, whereas significant differences were noticed in their ability to elicit CD4(+) T and CD8(+) T cell responses. In particular, both GIPLs (GTH, and GY) and CpG ODNs (B344, B297 and B128) derived from T. cruzi elicited interferon-gamma (IFN-γ) production by CD4(+) T cells. On the other hand, the parasite derived CpG ODNs, but not GIPLs, elicited a potent IFN-γ response by CD8(+) T lymphocytes. The side effects were also evaluated by local pain (hypernociception). The intensity of hypernociception induced by vaccination was alleviated by administration of an analgesic drug without affecting protective immunity. Finally, the level of protective immunity against the NY-ESO-1 expressing melanoma was associated with the magnitude of both CD4(+) T and CD8(+) T cell responses elicited by a specific immunological adjuvant.

  19. [Interpretation of the tuberculin test in children with CD4 lymphocyte cell mediated immunity changes].

    PubMed

    Piñeiro Pérez, R; Cilleruelo Ortega, M J; García López-Hortelano, M; García Ascaso, M; Medina Claros, A F; Mellado Peña, M J

    2014-01-01

    Immunosuppression could be a cause of a false negative tuberculin skin test (TST) result. A cross-sectional study was performed on a population of immigrants and internationally adopted children to analyse whether CD4 cell counts could modify the TST results. A total of 1074 children were included between January 2003 and December 2008. CD4 cell counts were performed on 884 children, in whom 5.3% had CD4 values <25%. There were no differences in TST results among children with normal and pathological CD4 cell counts. Several studies, including this one, have shown that there is no direct association between the CD4 value and the TST results. These results should be confirmed with larger series and with a higher percentage of children with CD4 values <25%. Copyright © 2012 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  20. Cell-mediated immune responses to a cloned Plasmodium falciparum antigen

    SciTech Connect

    Rollwagen, F.M.; Pacheco, N.D.; Wistar, R. Jr.

    1986-03-05

    A peptide fragment of the Plasmodium falciparum (P.f.) circumsporozoite protein (CSP) containing 32 repeats of the immunodominant tetrapeptide ASN-ALA-ASN-PRO (R32tet32) is currently being evaluated as a vaccine in man. This R32tet32 peptide, prepared by recombinant DNA technology from a cloned P.f. gene fragment, has been examined for its ability to stimulate T-cell proliferation in experimental animals. Groups of mice were injected with either R32tet32 emulsified in Freund's complete adjuvant (CFA), or live, or frozen-thawed P.f. sporozoites. Lymphocytes from such mice were cocultured with varying doses of R32tet32 or irrelevant antigen. Proliferation was assessed by /sup 3/H-thymidine uptake; serum antibody was analyzed by ELISA. A proliferative response was found in mice immunized with R32tet32+CFA as early as day 7 post-injection, and was persistent through at least day 23. No proliferation in response to R32tet32 was observed in lymphocytes taken from mice injected with live or frozen-thawed sporozoites. All three immunogens induced both IgM and IgG antibody to R32tet32. They conclude that exposure to live or frozen-thawed P.f. sporozoites alone is sufficient to generate T-cell helper activity for subsequent antibody production, but that antigen+CFA was necessary to generate significant T-cell proliferative activity.

  1. Iron oxide nanoparticles suppressed T helper 1 cell-mediated immunity in a murine model of delayed-type hypersensitivity

    PubMed Central

    Shen, Chien-Chang; Liang, Hong-Jen; Wang, Chia-Chi; Liao, Mei-Hsiu; Jan, Tong-Rong

    2012-01-01

    Background It was recently reported that iron oxide nanoparticles attenuated antigen-specific humoral responses and T cell cytokine expression in ovalbumin-sensitized mice. It is presently unclear whether iron oxide nanoparticles influence T helper 1 cell-mediated immunity. The present study aimed to investigate the effect of iron oxide nanoparticles on delayed-type hypersensitivity (DTH), whose pathophysiology requires the participation of T helper 1 cells and macrophages. Methods DTH was elicited by a subcutaneous challenge with ovalbumin to the footpads of mice sensitized with ovalbumin. Iron oxide nanoparticles (0.2–10 mg iron/kg) were administered intravenously 1 hour prior to ovalbumin sensitization. Local inflammatory responses were examined by footpad swelling and histological analysis. The expression of cytokines by splenocytes was measured by enzyme-linked immunosorbent assay. Results Administration of iron oxide nanoparticles, in a dose-dependent fashion, significantly attenuated inflammatory reactions associated with DTH, including the footpad swelling, the infiltration of T cells and macrophages, and the expression of interferon-γ, interleukin-6, and tumor necrosis factor-α in the inflammatory site. Iron oxide nanoparticles also demonstrated a suppressive effect on ovalbumin-stimulated production of interferon-γ by splenocytes and the phagocytic activity of splenic CD11b+ cells. Conclusion These results demonstrated that a single dose of iron oxide nanoparticles attenuated DTH reactions by suppressing the infiltration and functional activity of T helper 1 cells and macrophages in response to antigen stimulation. PMID:22701318

  2. Immunisation with ID83 fusion protein induces antigen-specific cell mediated and humoral immune responses in cattle

    PubMed Central

    Jones, Gareth J.; Steinbach, Sabine; Clifford, Derek; Baldwin, Susan L.; Ireton, Gregory C.; Coler, Rhea N.; Reed, Steven G.; Vordermeier, H. Martin

    2013-01-01

    In this study we have investigated the potential of mycobacterial proteins as candidate subunit vaccines for bovine tuberculosis. In addition, we have explored the use of TLR-ligands as potential adjuvants in cattle. In vitro screening assays with whole blood from M. bovis-infected and BCG-vaccinated cattle demonstrated that fusion protein constructs were most commonly recognised, and the ID83 fusion protein was selected for further immunisation studies. Furthermore, glucopyranosyl lipid A (GLA) and resiquimod (R848), agonists for TLR4 and TLR7/8 respectively, stimulated cytokine production (IL-12, TNF-α, MIP-1β and IL-10) in bovine dendritic cell cultures, and these were formulated as novel oil-in-water emulsions (GLA-SE and R848-SE) for immunisation studies. Immunisation with ID83 in a water-in-oil emulsion adjuvant (ISA70) induced both cell mediated and humoral immune responses, as characterised by antigen-specific IFN-γ production, cell proliferation, IgG1 and IgG2 antibody production. In comparison, ID83 immunisation with the novel adjuvants induced weaker (ID83/R848-SE) or no (ID83/GLA-SE) antigen-specific IFN-γ production and cell proliferation. However, both did induce ID83-specific antibody production, which was restricted to IgG1 antibody isotype. Overall, these results provide encouraging preliminary data for the further development of ID83 in vaccine strategies for bovine TB. PMID:24012566

  3. Inflammation in lung after acute myocardial infarction is induced by dendritic cell-mediated immune response.

    PubMed

    Hu, L J; Ren, W Y; Shen, Q J; Ji, H Y; Zhu, L

    2017-01-01

    The present study was performed to describe the changes of lung tissues in mice with acute myocardial infarction (AMI) and also explain the cell mechanism involved in inflammation in lung. AMI was established by left coronary ligation in mice. Then mice were divided into three groups: control group, MW1 group (sampling after surgery for one week) and MW2 group (sampling after surgery for two weeks). Afterwards, measurement of lung weight and lung histology, cell sorting in bronchoalveolar lavage (BAL) fluid and detection of several adhesive molecules, inflammatory molecules as well as enzyme associated with inflammation were performed. Moreover, dendritic cells (DCs) were isolated from bone marrow of C57B/L6 mice. After incubating with necrotic myocardium, the expression of antigen presenting molecules, co-stimulatory molecules and inflammatory molecules were detected by flow cytometry or immunohistochemistry in DCs. We also detected T-cell proliferation after incubating with necrotic myocardium-treated DCs. AMI induced pathological changes of lung tissue and increased inflammatory cell amount in BAL fluid. AMI also increased the expression of several inflammatory factors, adhesive molecules and enzymes associated with inflammation. CD11c and TLR9, which are DC surface markers, showed a significantly increased expression in mice with AMI. Additionally, necrotic myocardium significantly increased the expression of co-stimulatory factors including CD83 and CD80, inflammatory cytokines including TNF-α, IFN-γ and NF-κB in DCs. Furthermore, DCs treated with necrotic myocardium also significantly promoted T-cell proliferation. AMI induced inflammation in lung and these pathological changes were mediated by DC-associated immune response.

  4. γδ T Cell-Mediated Immune Responses in Disease and Therapy

    PubMed Central

    Latha, T. Sree; Reddy, Madhava C.; Durbaka, Prasad V. R.; Rachamallu, Aparna; Pallu, Reddanna; Lomada, Dakshayani

    2014-01-01

    The role of γδ T cells in immunotherapy has gained specific importance in the recent years because of their prominent function involving directly or indirectly in the rehabilitation of the diseases. γδ T cells represent a minor population of T cells that express a distinct T cell receptor (TCR) composed of γδ chains instead of αβ chains. Unlike αβ T cells, γδ T cells display a restricted TCR repertoire and recognize mostly unknown non-peptide antigens. γδ T cells act as a link between innate and adaptive immunity, because they lack precise major histocompatibility complex (MHC) restriction and seize the ability to recognize ligands that are generated during affliction. Skin epidermal γδ T cells recognize antigen expressed by damaged or stressed keratinocytes and play an indispensable role in tissue homeostasis and repair through secretion of distinct growth factors. γδ T cell based immunotherapy strategies possess great prominence in the treatment because of the property of their MHC-independent cytotoxicity, copious amount of cytokine release, and a immediate response in infections. Understanding the role of γδ T cells in pathogenic infections, wound healing, autoimmune diseases, and cancer might provide knowledge for the successful treatment of these diseases using γδ T cell based immunotherapy. Enhancing the human Vγ9Vδ2 T cells functions by administration of aminobisphosphonates like zoledronate, pamidronate, and bromohydrin pyrophosphate along with cytokines and monoclonal antibodies shows a hopeful approach for treatment of tumors and infections. The current review summarizes the role of γδ T cells in various human diseases and immunotherapeutic approaches using γδ T cells. PMID:25426120

  5. Cell-mediated responses of immunized vervet monkeys to defined Leishmania T-cell epitopes.

    PubMed Central

    Curry, A J; Jardim, A; Olobo, J O; Olafson, R W

    1994-01-01

    A population of vervet monkeys was immunized with killed parasites and infected with Leishmania major promastigotes either by needle or by infected-fly bite. The responses of recovered monkeys to mitogens, killed parasites, and molecularly defined T-cell epitopes were then compared with those of control animals. Peripheral blood mononuclear cells (PBMC) from both naive and recovered animals proliferated strongly in response to both B- and T-cell mitogens, although the responses of the recovered animals were less strong than those of the naive animals. Cells from recovered vervets, but not those from naive vervets, also proliferated in response to parasite antigens and synthetic T-cell epitopes. Likewise, cells from recovered animals released gamma interferon and either interleukin 2 (IL-2) or IL-4 into culture media in response to both of the above-mentioned antigens, whereas cells from control animals did not. The fact that no IL-5 could be measured following parasite antigen or synthetic T-cell epitope stimulation of PBMC suggested that cells proliferating in response to these molecules belonged to the Th1 subset. Phenotypic analysis of the PBMC showed a marked increase in T-cell but not B-cell populations in recovered animals. Among this population was an increased number of CD45R0+ memory cells. The data from this study are in keeping with the earlier finding that vervet monkeys provide an excellent model system for leishmaniasis. Further, these data support the contention that synthetic T-cell epitopes are prime candidates for molecularly defined Leishmania vaccines. PMID:7513306

  6. Mifepristone (RU486) restores humoral and T cell-mediated immune response in endotoxin immunosuppressed mice

    PubMed Central

    Rearte, B; Maglioco, A; Balboa, L; Bruzzo, J; Landoni, V I; Laborde, E A; Chiarella, P; Ruggiero, R A; Fernández, G C; Isturiz, M A

    2010-01-01

    Sepsis and septic shock can be caused by Gram-positive and -negative bacteria and other microorganisms. In the case of Gram-negative bacteria, endotoxin, a normal constituent of the bacterial wall, also known as lipopolysaccharide (LPS), has been considered as one of the principal agents causing the undesirable effects in this critical illness. The response to LPS involves a rapid secretion of proinflammatory cytokines such as tumour necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, interferon (IFN)-γ and the concomitant induction of anti-inflammatory mediators such as IL-10, transforming growth factor (TGF)-β or glucocorticoids, which render the host temporarily refractory to subsequent lethal doses of LPS challenge in a process known as LPS or endotoxin tolerance. Although protective from the development of sepsis or systemic inflammation, endotoxin tolerance has also been pointed out as the main cause of the non-specific humoral and cellular immunosuppression described in these patients. In this report we demonstrate, using a mouse model, that mifepristone (RU486), a known glucocorticoid receptor antagonist, could play an important role in the restoration of both adaptive humoral and cellular immune response in LPS immunosuppressed mice, suggesting the involvement of endogenous glucocorticoids in this phenomenon. On the other hand, using cyclophosphamide and gemcitabine, we demonstrated that regulatory/suppressor CD4+CD25+forkhead boxP3+ and GR-1+CD11b+ cells do not play a major role in the establishment or the maintenance of endotoxin tolerance, a central mechanism for inducing an immunosuppression state. PMID:20964639

  7. Triptolide regulates T cell-mediated immunity via induction of CD11c(low) dendritic cell differentiation.

    PubMed

    Yan, Yong-hong; Shang, Pei-zhong; Lu, Qing-jun; Wu, Xu

    2012-07-01

    Triptolide(TPT) isolated from one of the Chinese herbs, Tripterygium wilfordii Hook. F. (TWHF), are known to have a variety of immunomodulatory activities. This study was performed to investigate the effect of TPT on the differentiation of splenic DCs and its influence on T cell-mediated immunity regarding to DC subsets CD11c(low)I-a/e(low)CD45RB(+)(CD11c(low) DCs) and CD11c(high)I-a/e(high)CD45RB(-) (CD11c(high) DCs) in male C57BL/6 mice spleens in vitro. The percentage of CD11c(low) DCs was significantly increased after treatment with TPT compared to their counterparts (CD11c(high) DCs). It was found that unlike the gradually decreasing interleukin (IL)-12 secretion of CD11c(high) DCs induced by TPT, CD11c(low) DCs showed a obvious dose-dependent response between the increasing of IL-10 production and TPT stimulation. After treatment with anti-IL-12R or anti-IL-10 monoclonal antibody in CD4(+) T cells+CD11c(high) DCs or CD11c(low) DCs mixed lymphocyte reaction, the induction of these DCs on T cells was inhibited dramatically. These data demonstrated that TPT might induce the differentiation of splenic DCs to CD11c(low) DCs followed by shifting of Th1 to Th2 with enhancement of T lymphocyte immune function in vitro. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  8. Immunoregulatory mechanisms in Chagas disease: modulation of apoptosis in T-cell mediated immune responses.

    PubMed

    Chaves, Ana Thereza; de Assis Silva Gomes Estanislau, Juliana; Fiuza, Jacqueline Araújo; Carvalho, Andréa Teixeira; Ferreira, Karine Silvestre; Fares, Rafaelle Christine Gomes; Guimarães, Pedro Henrique Gazzinelli; de Souza Fagundes, Elaine Maria; Morato, Maria José; Fujiwara, Ricardo Toshio; da Costa Rocha, Manoel Otávio; Correa-Oliveira, Rodrigo

    2016-04-30

    Chronic Chagas disease presents different clinical manifestations ranging from asymptomatic (namely indeterminate) to severe cardiac and/or digestive. Previous results have shown that the immune response plays an important role, although no all mechanisms are understood. Immunoregulatory mechanisms such as apoptosis are important for the control of Chagas disease, possibly affecting the morbidity in chronic clinical forms. Apoptosis has been suggested to be an important mechanism of cellular response during T. cruzi infection. We aimed to further understand the putative role of apoptosis in Chagas disease and its relation to the clinical forms of the disease. Apoptosis of lymphocytes, under antigenic stimuli (soluble T. cruzi antigens - TcAg) where compared to that of non-stimulated cells. Apoptosis was evaluated using the expression of annexin and caspase 3(+) by T cells and the percentage of cells positive evaluated by flow cytometry. In addition activation and T cell markers were used for the identification of TCD4(+) and TCD8(+) subpopulations. The presence of intracellular and plasma cytokines were also evaluated. Analysis of the activation status of the peripheral blood cells showed that patients with Chagas disease presented higher levels of activation determined by the expression of activation markers, after TcAg stimulation. PCR array were used to evaluate the contribution of this mechanism in specific cell populations from patients with different clinical forms of human Chagas disease. Our results showed a reduced proliferative response associated a high expression of T CD4(+)CD62L(-) cells in CARD patients when compared with IND group and NI individuals. We also observed that both groups of patients presented a significant increase of CD4(+) and CD8(+) T cell subsets in undergoing apoptosis after in vitro stimulation with T. cruzi antigens. In CARD patients, both CD4(+) and CD8(+) T cells expressing TNF-α were highly susceptible to undergo apoptosis

  9. Combined local and systemic immunization is essential for durable T-cell mediated heterosubtypic immunity against influenza A virus

    PubMed Central

    Uddback, Ida E. M.; Pedersen, Line M. I.; Pedersen, Sara R.; Steffensen, Maria A.; Holst, Peter J.; Thomsen, Allan R.; Christensen, Jan P.

    2016-01-01

    The threat from unpredictable influenza virus pandemics necessitates the development of a new type of influenza vaccine. Since the internal proteins are highly conserved, induction of T cells targeting these antigens may provide the solution. Indeed, adenoviral (Ad) vectors expressing flu nucleoprotein have previously been found to induce short-term protection in mice. In this study we confirm that systemic (subcutaneous (s.c.) immunization rapidly induced heterosubtypic protection predominantly mediated by CD8 T cells, but within three months clinical protection completely disappeared. Local (intranasal (i.n.)) immunization elicited delayed, but more lasting protection despite relatively inefficient immunization. However, by far, the most robust protection was induced by simultaneous, combined (i.n. + s.c.) vaccination, and, notably, in this case clinical protection lasted at least 8 months without showing any evidence of fading. Interestingly, the superior ability of the latter group to resist reinfection correlated with a higher number of antigen-specific CD8 T cells in the spleen. Thus, detailed analysis of the underlying CD8 T cell responses highlights the importance of T cells already positioned in the lungs prior to challenge, but at the same time underscores an important back-up role for circulating antigen-specific cells with the capacity to expand and infiltrate the infected lungs. PMID:26831578

  10. Cold-pressed flaxseed oil reverses age-associated depression in a primary cell-mediated adaptive immune response in the mouse.

    PubMed

    Hillyer, L M; Sandiford, A M; Gray, C E; Woodward, Bill

    2006-02-01

    The objective of this investigation was to determine the influence of flaxseed oil on responses representative of primary humoral and cell-mediated adaptive immune competence in immunosenescent mice. Male and female C57BL/6J mice, 85 weeks old, were randomized between two complete purified diets differing only in oil source (cold-pressed safflower or flaxseed). After 8 weeks, humoral competence was assessed in six mice per group as the serum haemagglutinin titre to sheep red blood cells (SRBC) and cell-mediated competence was assessed, in an additional six mice per group, as the delayed hypersensitivity response to SRBC. A zero-time control group (88 weeks old) and a young adult positive control group (12 weeks old) were each tested similarly (six per immune response), revealing age-related depression in both antibody and cell-mediated competence at 88 weeks of age. After the 8-week experimental period, the antibody response of the two test groups of geriatric mice remained below the young adult level (P=0.04) and the cell-mediated response of the safflower oil group also continued to exhibit age-related depression (20 % of young adult level, P=0.0002). By contrast, the anti-SRBC delayed hypersensitivity response of the flaxseed group no longer differed from the response of the young adults but exceeded that of the safflower and zero-time control senescent groups (P=0.0002). Depression in primary cell-mediated competence, the most outstanding aspect of immunosenescence, can be addressed by means of a dietary source of 18 : 3n-3 without longer-chain PUFA.

  11. T cell-mediated antitumor immune response eliminates skin tumors induced by mouse papillomavirus, MmuPV1.

    PubMed

    Joh, Joongho; Chilton, Paula M; Wilcher, Sarah A; Zahin, Maryam; Park, Jino; Proctor, Mary L; Ghim, Shin-Je; Jenson, Alfred B

    2017-09-19

    Previous studies of naturally occurring mouse papillomavirus (PV) MmuPV1-induced tumors in B6.Cg-Foxn1(nu/nu) mice suggest that T cell deficiency is necessary and sufficient for the development of such tumors. To confirm this, MmuPV1-induced tumors were transplanted from T cell-deficient mice into immunocompetent congenic mice. Consequently, the tumors regressed and eventually disappeared. The elimination of MmuPV1-infected skin/tumors in immunocompetent mice was consistent with the induction of antitumor T cell immunity. This was confirmed by adoptive cell experiments using hyperimmune splenocytes collected from graft-recipient mice. In the present study, such splenocytes were injected into T cell-deficient mice infected with MmuPV1, and they eliminated both early-stage and fully formed tumors. We clearly show that anti-tumor T cell immunity activated during tumor regression in immunocompetent mice effectively eliminates tumors developing in T cell-deficient congenic mice. The results corroborate the notion that PV-induced tumors are strongly linked to the immune status of the host, and that PV antigens are major anti-tumor antigens. Successful anti-PV T cell responses should, therefore, lead to effective anti-tumor immune therapy in human PV-infected patients. Copyright © 2017. Published by Elsevier Inc.

  12. Immunisation with ID83 fusion protein induces antigen-specific cell mediated and humoral immune responses in cattle.

    PubMed

    Jones, Gareth J; Steinbach, Sabine; Clifford, Derek; Baldwin, Susan L; Ireton, Gregory C; Coler, Rhea N; Reed, Steven G; Vordermeier, H Martin

    2013-10-25

    In this study we have investigated the potential of mycobacterial proteins as candidate subunit vaccines for bovine tuberculosis. In addition, we have explored the use of TLR-ligands as potential adjuvants in cattle. In vitro screening assays with whole blood from Mycobacterium bovis-infected and BCG-vaccinated cattle demonstrated that fusion protein constructs were most commonly recognised, and the ID83 fusion protein was selected for further immunisation studies. Furthermore, glucopyranosyl lipid A (GLA) and resiquimod (R848), agonists for TLR4 and TLR7/8 respectively, stimulated cytokine production (IL-12, TNF-α, MIP-1β and IL-10) in bovine dendritic cell cultures, and these were formulated as novel oil-in-water emulsions (GLA-SE and R848-SE) for immunisation studies. Immunisation with ID83 in a water-in-oil emulsion adjuvant (ISA70) induced both cell mediated and humoral immune responses, as characterised by antigen-specific IFN-γ production, cell proliferation, IgG1 and IgG2 antibody production. In comparison, ID83 immunisation with the novel adjuvants induced weaker (ID83/R848-SE) or no (ID83/GLA-SE) antigen-specific IFN-γ production and cell proliferation. However, both did induce ID83-specific antibody production, which was restricted to IgG1 antibody isotype. Overall, these results provide encouraging preliminary data for the further development of ID83 in vaccine strategies for bovine TB. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  13. Investigational treatment suspension and enhanced cell-mediated immunity at rebound followed by drug-free remission of simian AIDS

    PubMed Central

    2013-01-01

    Background HIV infection persists despite antiretroviral treatment (ART) and is reignited as soon as therapies are suspended. This vicious cycle is fueled by the persistence of viral reservoirs that are invulnerable to standard ART protocols, and thus therapeutic agents able to target these reservoirs are needed. One such agent, auranofin, has recently been shown to decrease the memory T-cell reservoir in chronically SIVmac251-infected macaques. Moreover, auranofin could synergize with a fully suppressive ART protocol and induce a drug-free post-therapy containment of viremia. Results We administered buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis currently in clinical trials for cancer, in combination with auranofin to chronically SIVmac251-infected macaques under highly-intensified ART (H-iART). The ART/auranofin/BSO therapeutic protocol was followed, after therapy suspension, by a significant decrease of viral RNA and DNA in peripheral blood as compared to pre-therapy levels. Drug-free post-therapy control of the infection was achieved in animals with pre-therapy viral loads ranging from values comparable to average human set points to levels largely higher. This control was dependent on the presence CD8+ cells and associated with enhanced levels of cell-mediated immune responses. Conclusions The level of post-therapy viral set point reduction achieved in this study is the largest reported so far in chronically SIVmac251-infected macaques and may represent a promising strategy to improve over the current “ART for life” plight. PMID:23866829

  14. Role of IL28B Gene Polymorphism and Cell-Mediated Immunity in Spontaneous Resolution of Acute Hepatitis C

    PubMed Central

    Spada, Enea; Amoroso, Pietro; Taliani, Gloria; Zuccaro, Ornella; Chiriacò, Piergiorgio; Maio, Patrizia; Maio, Giuseppe; Esposito, Maria Luisa; Mariano, Corrado; Rinaldi, Roberto; Bellissima, Pietro; Tosti, Maria Elena; Del Porto, Paola; Francavilla, Ruggiero; Mellace, Vincenzo; Garbuglia, Anna Rosa; Folgori, Antonella; Mele, Alfonso; Buonocore, Salvatore; Lettieri, Gennaro; Pierri, Paola; Cosco, Lucio; Ferraro, Teresa; Scognamiglio, Paola; Capobianchi, Maria Rosaria; Baldi, Ubaldo; Montesano, Franco; Audino, Giulia; De Stefano, Caterina; Caterini, Antonio; Cuccia, Mario; Girelli, Gabriella; Perrone, Paola; Laurenti, Luca; Piccolella, Enza; Scotta, Cristiano; Cortese, Riccardo; Nicosia, Alfredo; Vitelli, Alessandra

    2013-01-01

    Background. A single-nucleotide polymorphism (SNP; rs12979860) near the IL28B gene has been associated with spontaneous and treatment-induced hepatitis C virus clearance. We investigated predictors of spontaneous disease resolution in a cohort of patients with acute hepatitis C (AHC), analyzing epidemiological, clinical and virological parameters together with IL28B.rs12979860 genotypes and cell-mediated immunity (CMI). Methods. Fifty-six symptomatic AHC patients were enrolled and followed prospectively. CMI was measured in 31 patients at multiple time points by interferon-γ enzyme-linked immunospot assay and was correlated to the IL28B.rs12979860 SNP. Results. Eighteen patients had a self-limiting AHC that was associated with female sex (P = .028), older age (P = .018), alanine aminotransferase level >1000 U/L (P = .027), total bilirubin level >7 mg/dL (P = .036), and IL28B.rs12979860 genotype CC (P = .030). In multivariate analysis, only CC genotype was independently associated with self-limiting AHC (odds ratio, 5.3; 95% confidence interval, 1.1–26.5). Patients with the CC genotype with self-limiting AHC had a stronger (P = .02) and broader (P = .013) CMI than patients with the CT genotype with chronically evolving AHC. In patients with chronically evolving disease, CC genotype was associated with a broader CMI compared to CT genotype (P = .028). A negative CMI was more frequently associated with CT genotype among persistently infected patients (P = .043) and with persistent infection among CT patients (P = .033). Conclusions. Self-limiting AHC was independently associated with CC genotype. The correlation between IL28B.rs12979860 genotypes and CMI is suggestive of a possible important role of CMI in favoring hepatitis C virus clearance in CC patients. PMID:23784926

  15. Comparative analyses of humoral and cell-mediated immune responses upon vaccination with different commercially available single-dose porcine circovirus type 2 vaccines.

    PubMed

    Seo, Hwi Won; Lee, Jeehoon; Han, Kiwon; Park, Changhoon; Chae, Chanhee

    2014-08-01

    The objective of this study was to compare the induction of humoral and cell-mediated immune responses by four commercially available single-dose porcine circovirus type 2 (PCV-2) vaccines. A total of 50 3-week-old piglets were assigned to five groups (10 pigs per group). Four commercial PCV-2 vaccines were administered according to the manufacturer's instructions and the piglets were observed for 154 days post vaccination (dpv). Inactivated chimeric PCV-1-2 vaccines induced higher levels of PCV-2-specific neutralizing antibodies (NA) and interferon-γ-secreting cells (IFN-γ-SC) in pigs than did the other three commercial PCV-2 vaccines. The proportions of CD4(+) cells were significantly higher in animals vaccinated with inactivated chimeric PCV-1-2 and PCV-2 vaccines than in animals vaccinated with the two subunit vaccines. To our knowledge, this is the first comparison of humoral and cell-mediated immunity induced by four commercial single-dose PCV-2 vaccines under the same conditions. The results of this study demonstrated quantitative differences in the induction of humoral and cell-mediated immunity following vaccination.

  16. Flow Cytometric and Cytokine ELISpot Approaches To Characterize the Cell-Mediated Immune Response in Ferrets following Influenza Virus Infection

    PubMed Central

    DiPiazza, Anthony; Richards, Katherine; Batarse, Frances; Lockard, Laura; Zeng, Hui; García-Sastre, Adolfo; Albrecht, Randy A.

    2016-01-01

    resemblances to humans. However, a lack of reagents has limited our understanding of the cell-mediated immune response following infection and vaccination. In this study, we used cross-reactive and ferret-specific antibodies to study the leukocyte composition and antigen-specific CD4 and CD8 T cell responses following influenza A/California/04/09 (H1N1) virus infection. These studies revealed strikingly distinct patterns of reactivity between CD4 and CD8 T cells, which were overlaid with differences in protein-specific responses between individual animals. Our results provide a first, in-depth look at the T cell repertoire in response to influenza infection and suggest that there is considerable heterogeneity at the MHC locus, which is akin to that in humans and an area of intense research interest. PMID:27356897

  17. Influence of Ganoderma lucidum (Curt.: Fr.) P. Karst. on T-cell-mediated immunity in normal and immunosuppressed mice line CBA/Ca.

    PubMed

    Nizhenkovska, Iryna V; Pidchenko, Vitalii T; Bychkova, Nina G; Bisko, Nina A; Rodnichenko, Angela Y; Kozyko, Natalya O

    2015-09-01

    The article presents the results of the investigation of the effect of biomass powder of the fungus Ganoderma lucidum on T-cell-mediated immunity in normal and immunosuppressed mice CBA/Ca. Delayed-type hypersensitivity assay was used. Experimental immunodeficiency was established with intraperitoneal injection of the immunosuppressant cyclophosphamide at a single dose of 150 mg/kg on the first day of the experiment. Results of the study show that the administration of biomass powder of Ganoderma lucidum in a dose of 0.5 mg/kg orally for 10 days increases the delayed-type hypersensitivity response in normal mice CBA/Ca. Administration of 0.5 mg/kg of biomass powder of the fungus Ganoderma lucidum for 10 days blocked the development of the T-cell-mediated immunosuppression, induced by administration of cyclophosphamide and restored the delayed-type hypersensitivity response in immunosuppressed mice. Key words: fungus Ganoderma lucidum cyclophosphamide immunodeficiency T-cell-mediated immunity delayed-type hypersensitivity.

  18. Recombinant Bivalent Fusion Protein rVE Induces CD4+ and CD8+ T-Cell Mediated Memory Immune Response for Protection Against Yersinia enterocolitica Infection

    PubMed Central

    Singh, Amit K.; Kingston, Joseph J.; Gupta, Shishir K.; Batra, Harsh V.

    2015-01-01

    Studies investigating the correlates of immune protection against Yersinia infection have established that both humoral and cell mediated immune responses are required for the comprehensive protection. In our previous study, we established that the bivalent fusion protein (rVE) comprising immunologically active regions of Y. pestis LcrV (100–270 aa) and YopE (50–213 aa) proteins conferred complete passive and active protection against lethal Y. enterocolitica 8081 challenge. In the present study, cohort of BALB/c mice immunized with rVE or its component proteins rV, rE were assessed for cell mediated immune responses and memory immune protection against Y. enterocolitica 8081. rVE immunization resulted in extensive proliferation of both CD4 and CD8 T cell subsets; significantly high antibody titer with balanced IgG1: IgG2a/IgG2b isotypes (1:1 ratio) and up-regulation of both Th1 (TNF-α, IFN-γ, IL-2, and IL-12) and Th2 (IL-4) cytokines. On the other hand, rV immunization resulted in Th2 biased IgG response (11:1 ratio) and proliferation of CD4+ T-cell; rE group of mice exhibited considerably lower serum antibody titer with predominant Th1 response (1:3 ratio) and CD8+ T-cell proliferation. Comprehensive protection with superior survival (100%) was observed among rVE immunized mice when compared to the significantly lower survival rates among rE (37.5%) and rV (25%) groups when IP challenged with Y. enterocolitica 8081 after 120 days of immunization. Findings in this and our earlier studies define the bivalent fusion protein rVE as a potent candidate vaccine molecule with the capability to concurrently stimulate humoral and cell mediated immune responses and a proof of concept for developing efficient subunit vaccines against Gram negative facultative intracellular bacterial pathogens. PMID:26733956

  19. Recombinant Bivalent Fusion Protein rVE Induces CD4+ and CD8+ T-Cell Mediated Memory Immune Response for Protection Against Yersinia enterocolitica Infection.

    PubMed

    Singh, Amit K; Kingston, Joseph J; Gupta, Shishir K; Batra, Harsh V

    2015-01-01

    Studies investigating the correlates of immune protection against Yersinia infection have established that both humoral and cell mediated immune responses are required for the comprehensive protection. In our previous study, we established that the bivalent fusion protein (rVE) comprising immunologically active regions of Y. pestis LcrV (100-270 aa) and YopE (50-213 aa) proteins conferred complete passive and active protection against lethal Y. enterocolitica 8081 challenge. In the present study, cohort of BALB/c mice immunized with rVE or its component proteins rV, rE were assessed for cell mediated immune responses and memory immune protection against Y. enterocolitica 8081. rVE immunization resulted in extensive proliferation of both CD4 and CD8 T cell subsets; significantly high antibody titer with balanced IgG1: IgG2a/IgG2b isotypes (1:1 ratio) and up-regulation of both Th1 (TNF-α, IFN-γ, IL-2, and IL-12) and Th2 (IL-4) cytokines. On the other hand, rV immunization resulted in Th2 biased IgG response (11:1 ratio) and proliferation of CD4+ T-cell; rE group of mice exhibited considerably lower serum antibody titer with predominant Th1 response (1:3 ratio) and CD8+ T-cell proliferation. Comprehensive protection with superior survival (100%) was observed among rVE immunized mice when compared to the significantly lower survival rates among rE (37.5%) and rV (25%) groups when IP challenged with Y. enterocolitica 8081 after 120 days of immunization. Findings in this and our earlier studies define the bivalent fusion protein rVE as a potent candidate vaccine molecule with the capability to concurrently stimulate humoral and cell mediated immune responses and a proof of concept for developing efficient subunit vaccines against Gram negative facultative intracellular bacterial pathogens.

  20. Humoral and T cell-mediated immune responses to bivalent killed bovine viral diarrhea virus vaccine in beef cattle.

    PubMed

    Platt, Ratree; Coutu, Christopher; Meinert, Todd; Roth, James A

    2008-03-15

    The objective of this research project was to evaluate the antibody and cell-mediated immune responses to a multivalent vaccine containing killed bovine viral diarrhea virus (BVDV) types 1 and 2. Twenty castrated male crossbred beef cattle (350-420kg body weight) seronegative to BVDV were randomly divided into two groups of 10 each. Group 1 served as negative mock-vaccinated control. Group 2 was vaccinated subcutaneously twice, 3 weeks apart, with modified live bovine herpesvirus 1, parainfluenza 3 virus and bovine respiratory syncytial virus diluted in diluent containing killed BVDV type 1 (strain 5960) and type 2 (strain 53637) in an adjuvant containing Quil A, Amphigen, and cholesterol. Serum samples were collected from all cattle at days -21, 0, and days 21, 28, 35, 56 and 70 post-vaccination. Standard serum virus neutralization tests were performed with BVDV type 1 (strain 5960) and type 2 (strain 125C). Anticoagulated blood samples were collected at day 0, and days 28, 35, 56 and 70 post-vaccination. Peripheral blood mononuclear cells (PBMCs) were isolated, stimulated with live BVDV type 1 (strain TGAN) and type 2 (strain 890) and cultured in vitro for 4 days. Supernatants of cultured cells were collected and saved for interferon gamma (IFNgamma) indirect enzyme-linked immunosorbent assay (ELISA). Four-color flow cytometry was performed to stain and identify cultured PBMC for three T cell surface markers (CD4, CD8, and gammadelta TCR) and to detect the activation marker CD25 (alpha chain of IL-2 receptor) expression. The net increase in %CD25+ cells (Delta%CD25+) of each T cell subset of individual cattle was calculated. The results of all post-vaccination weeks of each animal were plotted and the areas under the curve of each T cell subset were statistically analyzed and compared between groups. The mean area under the curve of the Delta%CD25+ data for days 0-70 of all subsets, except CD4-CD8+gammadelta TCR- (cytotoxic) T cell subset of both BVDV types 1 and

  1. Humoral and Cell-Mediated Immune Responses to Alternate Booster Schedules of Anthrax Vaccine Adsorbed in Humans

    PubMed Central

    Sabourin, Carol L.; Schiffer, Jarad M.; Niemuth, Nancy A.; Semenova, Vera A.; Li, Han; Rudge, Thomas L.; Brys, April M.; Mittler, Robert S.; Ibegbu, Chris C.; Wrammert, Jens; Ahmed, Rafi; Parker, Scott D.; Babcock, Janiine; Keitel, Wendy; Poland, Gregory A.; Keyserling, Harry L.; El Sahly, Hana; Jacobson, Robert M.; Marano, Nina; Plikaytis, Brian D.; Wright, Jennifer G.

    2016-01-01

    Protective antigen (PA)-specific antibody and cell-mediated immune (CMI) responses to annual and alternate booster schedules of anthrax vaccine adsorbed (AVA; BioThrax) were characterized in humans over 43 months. Study participants received 1 of 6 vaccination schedules: a 3-dose intramuscular (IM) priming series (0, 1, and 6 months) with a single booster at 42 months (4-IM); 3-dose IM priming with boosters at 18 and 42 months (5-IM); 3-dose IM priming with boosters at 12, 18, 30, and 42 months (7-IM); the 1970 licensed priming series of 6 doses (0, 0.5, 1, 6, 12, and 18 months) and two annual boosters (30 and 42 months) administered either subcutaneously (SQ) (8-SQ) or IM (8-IM); or saline placebo control at all eight time points. Antibody response profiles included serum anti-PA IgG levels, subclass distributions, avidity, and lethal toxin neutralization activity (TNA). CMI profiles included frequencies of gamma interferon (IFN-γ)- and interleukin 4 (IL-4)-secreting cells and memory B cells (MBCs), lymphocyte stimulation indices (SI), and induction of IFN-γ, IL-2, IL-4, IL-6, IL-1β, and tumor necrosis factor alpha (TNF-α) mRNA. All active schedules elicited high-avidity PA-specific IgG, TNA, MBCs, and T cell responses with a mixed Th1-Th2 profile and Th2 dominance. Anti-PA IgG and TNA were highly correlated (e.g., month 7, r2 = 0.86, P < 0.0001, log10 transformed) and declined in the absence of boosters. Boosters administered IM generated the highest antibody responses. Increasing time intervals between boosters generated antibody responses that were faster than and superior to those obtained with the final month 42 vaccination. CMI responses to the 3-dose IM priming remained elevated up to 43 months. (This study has been registered at ClinicalTrials.gov under registration no. NCT00119067.) PMID:26865594

  2. Tumor Necrosis Factor (TNF) Bioactivity at the Site of an Acute Cell-Mediated Immune Response Is Preserved in Rheumatoid Arthritis Patients Responding to Anti-TNF Therapy

    PubMed Central

    Byng-Maddick, Rachel; Turner, Carolin T.; Pollara, Gabriele; Ellis, Matthew; Guppy, Naomi J.; Bell, Lucy C. K.; Ehrenstein, Michael R.; Noursadeghi, Mahdad

    2017-01-01

    The impact of anti-tumor necrosis factor (TNF) therapies on inducible TNF-dependent activity in humans has never been evaluated in vivo. We aimed to test the hypothesis that patients responding to anti-TNF treatments exhibit attenuated TNF-dependent immune responses at the site of an immune challenge. We developed and validated four context-specific TNF-inducible transcriptional signatures to quantify TNF bioactivity in transcriptomic data. In anti-TNF treated rheumatoid arthritis (RA) patients, we measured the expression of these biosignatures in blood, and in skin biopsies from the site of tuberculin skin tests (TSTs) as a human experimental model of multivariate cell-mediated immune responses. In blood, anti-TNF therapies attenuated TNF bioactivity following ex vivo stimulation. However, at the site of the TST, TNF-inducible gene expression and genome-wide transcriptional changes associated with cell-mediated immune responses were comparable to that of RA patients receiving methotrexate only. These data demonstrate that anti-TNF agents in RA patients do not inhibit inducible TNF activity at the site of an acute inflammatory challenge in vivo, as modeled by the TST. We hypothesize instead that their therapeutic effects are limited to regulating TNF activity in chronic inflammation or by alternative non-canonical pathways. PMID:28824652

  3. Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: a randomized controlled trial in non-obese humans

    PubMed Central

    Meydani, Simin N.; Das, Sai K.; Pieper, Carl F.; Lewis, Michael R.; Klein, Sam; Dixit, Vishwa D.; Gupta, Alok K.; Villareal, Dennis T.; Bhapkar, Manjushri; Huang, Megan; Fuss, Paul J.; Roberts, Susan B.; Holloszy, John O.; Fontana, Luigi

    2016-01-01

    Calorie restriction (CR) inhibits inflammation and slows aging in many animal species, but in rodents housed in pathogen-free facilities, CR impairs immunity against certain pathogens. However, little is known about the effects of long-term moderate CR on immune function in humans. In this multi-center, randomized clinical trial to determine CR's effect on inflammation and cell-mediated immunity, 218 healthy non-obese adults (20-50 y), were assigned 25% CR (n=143) or an ad-libitum (AL) diet (n=75), and outcomes tested at baseline, 12, and 24 months of CR. CR induced a 10.4% weight loss over the 2-y period. Relative to AL group, CR reduced circulating inflammatory markers, including total WBC and lymphocyte counts, ICAM-1 and leptin. Serum CRP and TNF-α concentrations were about 40% and 50% lower in CR group, respectively. CR had no effect on the delayed-type hypersensitivity skin response or antibody response to vaccines, nor did it cause difference in clinically significant infections. In conclusion, long-term moderate CR without malnutrition induces a significant and persistent inhibition of inflammation without impairing key in vivo indicators of cell-mediated immunity. Given the established role of these pro-inflammatory molecules in the pathogenesis of multiple chronic diseases, these CR-induced adaptations suggest a shift toward a healthy phenotype. PMID:27410480

  4. Flow Cytometric and Cytokine ELISpot Approaches To Characterize the Cell-Mediated Immune Response in Ferrets following Influenza Virus Infection.

    PubMed

    DiPiazza, Anthony; Richards, Katherine; Batarse, Frances; Lockard, Laura; Zeng, Hui; García-Sastre, Adolfo; Albrecht, Randy A; Sant, Andrea J

    2016-09-01

    humans. However, a lack of reagents has limited our understanding of the cell-mediated immune response following infection and vaccination. In this study, we used cross-reactive and ferret-specific antibodies to study the leukocyte composition and antigen-specific CD4 and CD8 T cell responses following influenza A/California/04/09 (H1N1) virus infection. These studies revealed strikingly distinct patterns of reactivity between CD4 and CD8 T cells, which were overlaid with differences in protein-specific responses between individual animals. Our results provide a first, in-depth look at the T cell repertoire in response to influenza infection and suggest that there is considerable heterogeneity at the MHC locus, which is akin to that in humans and an area of intense research interest. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Sex-Specific Effects of High Yolk Androgen Levels on Constitutive and Cell-Mediated Immune Responses in Nestlings of an Altricial Passerine.

    PubMed

    Muriel, Jaime; Pérez-Rodríguez, Lorenzo; Ortiz-Santaliestra, Manuel E; Puerta, Marisa; Gil, Diego

    Avian embryos are exposed to yolk androgens that are incorporated into the egg by the ovulating female. These steroids can affect several aspects of embryo development, often resulting in increases in overall size or the speed of growth of different traits. However, several studies suggest that they also entail immune costs to the offspring. In this study, we explored whether variation in yolk androgen concentration affected several measures of the constitutive and cell-mediated immune axes in the spotless starling (Sturnus unicolor). Using a within-brood design, we injected different doses of androgens (testosterone and androstenedione) into the eggs. Our study showed that experimentally increased yolk androgens led to sex-specific immunosuppression in both the innate and adaptive axes of the immune system. Both cell-mediated immune response (CMI) and lysozyme activity decreased with increasing androgen levels injected into the egg in the case of male nestlings, whereas there were no effects on females. The effects that we found were always linear: no quadratic or threshold patterns were detected. We found no effects of the experimental treatment in hemolysis or agglutination capacity, but these measures were negatively correlated with CMI, suggesting negative correlation among different branches of the immune system. Blood (trypanosomes and hemosporidians) and intestinal (coccidia) parasites were not affected by the experimental increase of yolk androgen levels. Our results show that in our study species yolk androgens induce immunosuppression in some axes of the male nestling immune system. Further studies should analyze the proximate causes for these contrasting effects in different axes of the immune system and the reason for the differential impact on males and females.

  6. Active Immunization with Extracellular Vesicles Derived from Staphylococcus aureus Effectively Protects against Staphylococcal Lung Infections, Mainly via Th1 Cell-Mediated Immunity.

    PubMed

    Choi, Seng Jin; Kim, Min-Hye; Jeon, Jinseong; Kim, Oh Youn; Choi, Youngwoo; Seo, Jihye; Hong, Sung-Wook; Lee, Won-Hee; Jeon, Seong Gyu; Gho, Yong Song; Jee, Young-Koo; Kim, Yoon-Keun

    2015-01-01

    Staphylococcus aureus is an important pathogenic bacterium that causes various infectious diseases. Extracellular vesicles (EVs) released from S. aureus contain bacterial proteins, nucleic acids, and lipids. These EVs can induce immune responses leading to similar symptoms as during staphylococcal infection condition and have the potential as vaccination agent. Here, we show that active immunization (vaccination) with S. aureus-derived EVs induce adaptive immunity of antibody and T cell responses. In addition, these EVs have the vaccine adjuvant ability to induce protective immunity such as the up-regulation of co-stimulatory molecules and the expression of T cell polarizing cytokines in antigen-presenting cells. Moreover, vaccination with S. aureus EVs conferred protection against lethality induced by airway challenge with lethal dose of S. aureus and also pneumonia induced by the administration of sub-lethal dose of S. aureus. These protective effects were also found in mice that were adoptively transferred with splenic T cells isolated from S. aureus EV-immunized mice, but not in serum transferred mice. Furthermore, this protective effect of S. aureus EVs was significantly reduced by the absence of interferon-gamma, but not by the absence of interleukin-17. Together, the study herein suggests that S. aureus EVs are a novel vaccine candidate against S. aureus infections, mainly via Th1 cellular response.

  7. A human papillomavirus-associated disease with disseminated warts, depressed cell-mediated immunity, primary lymphedema, and anogenital dysplasia: WILD syndrome.

    PubMed

    Kreuter, Alexander; Hochdorfer, Bettina; Brockmeyer, Norbert H; Altmeyer, Peter; Pfister, Herbert; Wieland, Ulrike

    2008-03-01

    Epidermodysplasia verruciformis (EV) is a rare genodermatosis associated with infections with specific human papillomaviruses (HPVs) belonging to the beta genus of HPV. Patients with EV usually have a selective defect in cell-mediated immunity. Although skin cancer frequently develops in the sun-exposed cutaneous lesions of patients with EV, the anogenital area is usually not affected by squamous cell carcinomas related to mucosal HPV types. We report the case of a patient with clinical similarities to EV who also presented with primary lymphedema, anogenital dysplasias, and depressed cell-mediated immunity. Swab samples and biopsy specimens from various body sites collected over a 28-month period were screened by different protocols for DNA of the HPV groups alpha, beta, and mu/nu. Seventeen alpha-HPV types could be demonstrated. Interestingly, beta-HPVs (HPV-22 and HPV-23) were detectable only in plucked eyebrows and in 1 skin swab sample. None of the specimens from lesional biopsies carried beta-HPV. Consistently found alpha-HPV types included HPV types 6, 51, 52, 61, and 84 in the genitoanal region and HPV-57 in skin lesions. Histological and cytological evaluation revealed multifocal anogenital dysplasia and benign genital and cutaneous warts. To our knowledge, only 1 other similar case of an EV-like syndrome with impaired, cell-mediated immunity and primary lymphedema has been described in the literature. Based on the characteristic clinical and virological findings in the present case and the previously published case, we speculate that both patients could have a previously unknown syndrome that has clinical similarities to EV but notably differs in the associated HPV types. We suggest the acronym WILD (warts, immunodeficiency, lymphedema, dysplasia) to characterize this syndrome.

  8. Immune tolerance induced by platelet-targeted factor VIII gene therapy in hemophilia A mice is CD4 T cell mediated.

    PubMed

    Chen, Y; Luo, X; Schroeder, J A; Chen, J; Baumgartner, C K; Hu, J; Shi, Q

    2017-10-01

    Essentials The immune response is a significant concern in gene therapy. Platelet-targeted gene therapy can restore hemostasis and induce immune tolerance. CD4 T cell compartment is tolerized after platelet gene therapy. Preconditioning regimen affects immune tolerance induction in platelet gene therapy. Background Immune responses are a major concern in gene therapy. Our previous studies demonstrated that platelet-targeted factor VIII (FVIII) (2bF8) gene therapy together with in vivo drug selection of transduced cells can rescue the bleeding diathesis and induce immune tolerance in FVIII(null) mice. Objective To investigate whether non-selectable 2bF8 lentiviral vector (LV) for the induction of platelet-FVIII expression is sufficient to induce immune tolerance and how immune tolerance is induced after 2bF8LV gene therapy. Methods Platelet-FVIII expression was introduced by 2bF8LV transduction and transplantation. FVIII assays and tail bleeding tests were used to confirm the success of platelet gene therapy. Animals were challenged with rhF8 to explore if immune tolerance was induced after gene therapy. Treg cell analysis, T-cell proliferation assay and memory B-cell-mediated ELISPOT assay were used to investigate the potential mechanisms of immune tolerance. Results We showed that platelet-FVIII expression was sustained and the bleeding diathesis was restored in FVIII(null) mice after 2bF8LV gene therapy. None of the transduced recipients developed anti-FVIII inhibitory antibodies in the groups preconditioned with 660 cGy irradiation or busulfan plus ATG treatment even after rhF8 challenge. Treg cells significantly increased in 2bF8LV-transduced recipients and the immune tolerance developed was transferable. CD4(+) T cells from treated animals failed to proliferate in response to rhF8 re-stimulation, but memory B cells could differentiate into antibody secreting cells in 2bF8LV-transduced recipients. Conclusion 2bF8LV gene transfer without in vivo selection of

  9. Conventional and monocyte-derived CD11b(+) dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen.

    PubMed

    Plantinga, Maud; Guilliams, Martin; Vanheerswynghels, Manon; Deswarte, Kim; Branco-Madeira, Filipe; Toussaint, Wendy; Vanhoutte, Leen; Neyt, Katrijn; Killeen, Nigel; Malissen, Bernard; Hammad, Hamida; Lambrecht, Bart N

    2013-02-21

    Dendritic cells (DCs) are crucial for mounting allergic airway inflammation, but it is unclear which subset of DCs performs this task. By using CD64 and MAR-1 staining, we reliably separated CD11b(+) monocyte-derived DCs (moDCs) from conventional DCs (cDCs) and studied antigen uptake, migration, and presentation assays of lung and lymph node (LN) DCs in response to inhaled house dust mite (HDM). Mainly CD11b(+) cDCs but not CD103(+) cDCs induced T helper 2 (Th2) cell immunity in HDM-specific T cells in vitro and asthma in vivo. Studies in Flt3l(-/-) mice, lacking all cDCs, revealed that moDCs were also sufficient to induce Th2 cell-mediated immunity but only when high-dose HDM was given. The main function of moDCs was the production of proinflammatory chemokines and allergen presentation in the lung during challenge. Thus, we have identified migratory CD11b(+) cDCs as the principal subset inducing Th2 cell-mediated immunity in the LN, whereas moDCs orchestrate allergic inflammation in the lung.

  10. Endogenous Il10 alleviates the systemic antiviral cellular immune response and T cell-mediated immunopathology in select organs of acutely LCMV-infected mice.

    PubMed

    Jakobshagen, Kristin; Ward, Beate; Baschuk, Nikola; Huss, Sebastian; Brunn, Anna; Malecki, Monika; Fiolka, Michael; Rappl, Gunther; Corogeanu, Diana; Karow, Ulrike; Schiller, Petra; Abken, Hinrich; Heukamp, Lukas C; Deckert, Martina; Krönke, Martin; Utermöhlen, Olaf

    2015-11-01

    The immunoregulatory cytokine IL-10 suppresses T-cell immunity. The complementary question, whether IL-10 is also involved in limiting the collateral damage of vigorous T cell responses, has not been addressed in detail. Here, we report that the particularly strong virus-specific immune response during acute primary infection with the lymphocytic choriomeningitis virus (LCMV) in mice is significantly further increased in Il10-deficient mice, particularly regarding frequencies and cytotoxic activity of CD8(+) T cells. This increase results in exacerbating immunopathology in select organs, ranging from transient local swelling to an increased risk for mortality. Remarkably, LCMV-induced, T cell-mediated hepatitis is not affected by endogenous Il10. The alleviating effect of Il10 on LCMV-induced immunopathology was found to be operative in delayed-type hypersensitivity footpad-swelling reaction and in debilitating meningitis in mice of both the C57BL/6 and BALB/c strains. These strains are prototypic counterpoles for genetically imprinted type 1-biased versus type 2-biased T cell-mediated immune responses against various infectious pathogens. However, during acute LCMV infection, neither systemic cytokine patterns nor the impact of Il10 on LCMV-induced immunopathology differed conspicuously between these two strains of mice. This study documents a physiological role of Il10 in the regulation of a balanced T-cell response limiting immunopathological damage.

  11. Effects of feed supplementation with glycine chelate and iron sulfate on selected parameters of cell-mediated immune response in broiler chickens.

    PubMed

    Jarosz, Łukasz; Kwiecień, Małgorzata; Marek, Agnieszka; Grądzki, Zbigniew; Winiarska-Mieczan, Anna; Kalinowski, Marcin; Laskowska, Ewa

    2016-08-01

    Because little is known about the impact of chelated (Fe-Gly, Fe-Gly+F) and inorganic (FeSO4, FeSO4+F) iron products on immune response parameters in broiler chickens, the objective of the study was to determine the effects of inorganic and organic forms of iron on selected parameters of the cell-mediated immune response in broiler chickens by assessing the percentage of CD3(+)CD4(+), CD3(+)CD8(+), CD25(+), and MHC Class II lymphocytes, as well as the CD4(+)/CD8(+) ratio and IL-2 concentration in the peripheral blood. The experiments were conducted using 50day-old Ross 308 roosters. The test material was peripheral blood. Flow cytometry was used to determine selected cell-mediated immune response parameters. The results obtained indicate that the use of iron chelates in the diet of broiler chickens may stimulate cellular defense mechanisms. As a result of the experiment an increase was observed in the percentage of Th1, mainly T CD4(+) and T CD8(+). It was also noted that application of chelated iron can increase production of T CD8(+) cytotoxic cells and IL-2, which promotes the body's natural response to developing inflammation. There were no changes in T CD4(+), T CD8(+), T CD25(+) or MHC II lymphocyte subpopulations in the chickens following application of the inorganic form of iron.

  12. Detection of herpes simplex virus type 2 (HSV-2) -specific cell-mediated immune responses in guinea pigs during latent HSV-2 genital infection.

    PubMed

    Perry, Clarice L; Banasik, Brianne N; Gorder, Summer R; Xia, Jingya; Auclair, Sarah; Bourne, Nigel; Milligan, Gregg N

    2016-12-01

    Genital infections with herpes simplex virus type 2 (HSV-2) are a source of considerable morbidity and are a health concern for newborns exposed to virus during vaginal delivery. Additionally, HSV-2 infection diminishes the integrity of the vaginal epithelium resulting in increased susceptibility of individuals to infection with other sexually transmitted pathogens. Understanding immune protection against HSV-2 primary infection and immune modulation of virus shedding events following reactivation of the virus from latency is important for the development of effective prophylactic and therapeutic vaccines. Although the murine model of HSV-2 infection is useful for understanding immunity following immunization, it is limited by the lack of spontaneous reactivation of HSV-2 from latency. Genital infection of guinea pigs with HSV-2 accurately models the disease of humans including the spontaneous reactivation of HSV-2 from latency and provides a unique opportunity to examine virus-host interactions during latency. Although the guinea pig represents an accurate model of many human infections, relatively few reagents are available to study the immunological response to infection. To analyze the cell-mediated immune response of guinea pigs at extended periods of time after establishment of HSV-2 latency, we have modified flow-cytometry based proliferation assays and IFN-γ ELISPOT assays to detect and quantify HSV-specific cell-mediated responses during latent infection of guinea pigs. Here we demonstrate that a combination of proliferation and ELISPOT assays can be used to quantify and characterize effecter function of virus-specific immune memory responses during HSV-latency.

  13. The CD8+ T Cell-Mediated Immunity Induced by HPV-E6 Uploaded in Engineered Exosomes Is Improved by ISCOMATRIXTM Adjuvant

    PubMed Central

    Manfredi, Francesco; di Bonito, Paola; Ridolfi, Barbara; Anticoli, Simona; Arenaccio, Claudia; Chiozzini, Chiara; Baz Morelli, Adriana; Federico, Maurizio

    2016-01-01

    We recently described the induction of an efficient CD8+ T cell-mediated immune response against a tumor-associated antigen (TAA) uploaded in engineered exosomes used as an immunogen delivery tool. This immune response cleared tumor cells inoculated after immunization, and controlled the growth of tumors implanted before immunization. We looked for new protocols aimed at increasing the CD8+ T cell specific response to the antigen uploaded in engineered exosomes, assuming that an optimized CD8+ T cell immune response would correlate with a more effective depletion of tumor cells in the therapeutic setting. By considering HPV-E6 as a model of TAA, we found that the in vitro co-administration of engineered exosomes and ISCOMATRIXTM adjuvant, i.e., an adjuvant composed of purified ISCOPREPTM saponin, cholesterol, and phospholipids, led to a stronger antigen cross-presentation in both B- lymphoblastoid cell lines ( and monocyte-derived immature dendritic cells compared with that induced by the exosomes alone. Consistently, the co-inoculation in mice of ISCOMATRIXTM adjuvant and engineered exosomes induced a significant increase of TAA-specific CD8+ T cells compared to mice immunized with the exosomes alone. This result holds promise for effective usage of exosomes as well as alternative nanovesicles in anti-tumor therapeutic approaches. PMID:27834857

  14. Cell-mediated and humoral immune responses induced by scarification vaccination of human volunteers with a new lot of the live vaccine strain of Francisella tularensis.

    PubMed

    Waag, D M; Galloway, A; Sandstrom, G; Bolt, C R; England, M J; Nelson, G O; Williams, J C

    1992-09-01

    Tularemia is a disease caused by the facultative intracellular bacterium Francisella tularensis. We evaluated a new lot of live F. tularensis vaccine for its immunogenicity in human volunteers. Scarification vaccination induced humoral and cell-mediated immune responses. Indications of a positive immune response after vaccination included an increase in specific antibody levels, which were measured by enzyme-linked immunosorbent and immunoblot assays, and the ability of peripheral blood lymphocytes to respond to whole F. tularensis bacteria as recall antigens. Vaccination caused a significant rise (P less than 0.05) in immunoglobulin A (IgA), IgG, and IgM titers. Lymphocyte stimulation indices were significantly increased (P less than 0.01) in vaccinees 14 days after vaccination. These data verify that this new lot of live F. tularensis vaccine is immunogenic.

  15. Cell-mediated and humoral immune responses induced by scarification vaccination of human volunteers with a new lot of the live vaccine strain of Francisella tularensis.

    PubMed Central

    Waag, D M; Galloway, A; Sandstrom, G; Bolt, C R; England, M J; Nelson, G O; Williams, J C

    1992-01-01

    Tularemia is a disease caused by the facultative intracellular bacterium Francisella tularensis. We evaluated a new lot of live F. tularensis vaccine for its immunogenicity in human volunteers. Scarification vaccination induced humoral and cell-mediated immune responses. Indications of a positive immune response after vaccination included an increase in specific antibody levels, which were measured by enzyme-linked immunosorbent and immunoblot assays, and the ability of peripheral blood lymphocytes to respond to whole F. tularensis bacteria as recall antigens. Vaccination caused a significant rise (P less than 0.05) in immunoglobulin A (IgA), IgG, and IgM titers. Lymphocyte stimulation indices were significantly increased (P less than 0.01) in vaccinees 14 days after vaccination. These data verify that this new lot of live F. tularensis vaccine is immunogenic. Images PMID:1400988

  16. A suicidal DNA vaccine expressing the fusion protein of peste des petits ruminants virus induces both humoral and cell-mediated immune responses in mice.

    PubMed

    Wang, Yong; Yue, Xiaolin; Jin, Hongyan; Liu, Guangqing; Pan, Ling; Wang, Guijun; Guo, Hao; Li, Gang; Li, Yongdong

    2015-12-01

    Peste des petits ruminants (PPR), a highly contagious disease induced by PPR virus (PPRV), affects sheep and goats. PPRV fusion (F) protein is important for the induction of immune responses against PPRV. We constructed a Semliki Forest virus (SFV) replicon-vectored DNA vaccine ("suicidal DNA vaccine") and evaluated its immunogenicity in BALB/c mice. The F gene of PPRV was cloned and inserted into the SFV replicon-based vector pSCA1. The antigenicity of the resultant plasmid pSCA1/F was identified by indirect immunofluorescence and western blotting. BALB/c mice were then intramuscularly injected with pSCA1/F three times at 14-d intervals. Specific antibodies and virus-neutralizing antibodies against PPRV were quantified by indirect ELISA and microneutralization tests, respectively. Cell-mediated immune responses were examined by cytokine and lymphocyte proliferation assays. The pSCA1/F expressed F protein in vitro and induced specific and neutralizing antibody production, and lymphocyte proliferation in mice. Mice vaccinated with pSCA1/F had increased IL-2 and IL-10 levels after 24-h post first immunization. IFN-γ and TNF-α levels increased from that time point and gradually decreased thereafter. Thus, the Semliki Forest virus replicon-vectored DNA vaccine expressing the F protein of PPRV induced both humoral and cell-mediated immune responses in mice. This could be considered as a novel strategy for vaccine development against PPR. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Chronic active hepatitis induced by Helicobacter hepaticus in the A/JCr mouse is associated with a Th1 cell-mediated immune response.

    PubMed

    Whary, M T; Morgan, T J; Dangler, C A; Gaudes, K J; Taylor, N S; Fox, J G

    1998-07-01

    Helicobacter hepaticus infection in A/JCr mice results in chronic active hepatitis characterized by perivascular, periportal, and parenchymal infiltrates of mononuclear and polymorphonuclear cells. This study examined the development of hepatitis and the immune response of A/JCr mice to H. hepaticus infection. The humoral and cell-mediated T helper immune response was profiled by measuring the postinfection (p.i.) antibody response in serum, feces, and bile and by the production of cytokines and proliferative responses by splenic mononuclear cells to H. hepaticus antigens. Secretory immunoglobulin A (IgA) and systemic IgG2a antibody developed by 4 weeks p.i. and persisted through 12 months. Splenocytes from infected mice proliferated and produced more gamma interferon (IFN-gamma) than interleukin-4 (IL-4) or IL-5 when cultured with H. hepaticus outer membrane proteins. The predominantly IgG2a antibody response in serum and the in vitro production of IFN-gamma in excess of IL-4 or IL-5 are consistent with a Th1 immune response reported in humans and mice infected with Helicobacter pylori and Helicobacter felis, respectively. Mice infected with H. hepaticus developed progressively severe perivascular, periportal, and hepatic parenchymal lesions consisting of lymphohistiocytic and plasmacytic cellular infiltrates. In addition, transmural typhlitis was observed at 12 months p.i. The characterization of a cell-mediated Th1 immune response to H. hepaticus infection in the A/JCr mouse should prove valuable as a model for experimental regimens which manipulate the host response to Helicobacter.

  18. Chronic Active Hepatitis Induced by Helicobacter hepaticus in the A/JCr Mouse Is Associated with a Th1 Cell-Mediated Immune Response

    PubMed Central

    Whary, M. T.; Morgan, T. J.; Dangler, C. A.; Gaudes, K. J.; Taylor, N. S.; Fox, J. G.

    1998-01-01

    Helicobacter hepaticus infection in A/JCr mice results in chronic active hepatitis characterized by perivascular, periportal, and parenchymal infiltrates of mononuclear and polymorphonuclear cells. This study examined the development of hepatitis and the immune response of A/JCr mice to H. hepaticus infection. The humoral and cell-mediated T helper immune response was profiled by measuring the postinfection (p.i.) antibody response in serum, feces, and bile and by the production of cytokines and proliferative responses by splenic mononuclear cells to H. hepaticus antigens. Secretory immunoglobulin A (IgA) and systemic IgG2a antibody developed by 4 weeks p.i. and persisted through 12 months. Splenocytes from infected mice proliferated and produced more gamma interferon (IFN-γ) than interleukin-4 (IL-4) or IL-5 when cultured with H. hepaticus outer membrane proteins. The predominantly IgG2a antibody response in serum and the in vitro production of IFN-γ in excess of IL-4 or IL-5 are consistent with a Th1 immune response reported in humans and mice infected with Helicobacter pylori and Helicobacter felis, respectively. Mice infected with H. hepaticus developed progressively severe perivascular, periportal, and hepatic parenchymal lesions consisting of lymphohistiocytic and plasmacytic cellular infiltrates. In addition, transmural typhlitis was observed at 12 months p.i. The characterization of a cell-mediated Th1 immune response to H. hepaticus infection in the A/JCr mouse should prove valuable as a model for experimental regimens which manipulate the host response to Helicobacter. PMID:9632578

  19. On the long-term effects of methyl isocyanate on cell-mediated immunity in Bhopal gas-exposed long-term survivors and their offspring.

    PubMed

    Senthilkumar, Chinnu Sugavanam; Sah, Nand Kishore; Ganesh, Narayanan

    2017-04-01

    Methyl isocyanate (MIC) is a toxic industrial chemical that is documented as a potent respiratory toxicant. We investigated cell-mediated immunity (CMI) in the MIC-exposed long-term survivors and their offspring born after the Bhopal gas-leak tragedy in 1984. Several earlier reports show inconsistency in the assessment of immunological effects of MIC on the human population. In these studies, important factors including lifestyle attributes were overlooked. We incorporated these factors also in our study of the basic cell-mediated immune function in the Bhopal MIC-affected population. Twenty-seven years after exposure, we assessed the circulating T-lymphocyte frequency using E-Rosette assay. A total of 46 MIC-exposed healthy long-term survivors and their offspring were studied vis-a-vis parallel gender-age group-matched unexposed controls from Bhopal and various other regions of India. The influence of several lifestyle variabilities (smoking, alcohol intake, and tobacco chewing) on T-lymphocyte frequency was also taken into consideration. Our observations suggest that Erythrocyte-Rosette-forming cell (E-RFC) distribution frequency is largely insignificant in the MIC-affected population as compared to controls ( p > 0.05). In the MIC-affected tobacco chewers, there was a trend of suppression in CMI (relative decrease = 10.3%) as compared to nonchewers. Overall, our results show negligible long-term effect of MIC on CMI measured in terms of E-RFC frequency. These observations are not in agreement with earlier findings that immunosuppressive effects of MIC exposure persist in the T-cells of the affected population. However, atypical lymphocytes were frequently observed as E-RFC in the exposed females when compared to all other subgroups. Hematopoietic disorders (atypical lymphocytosis) in the MIC-affected population along with previous reports on the cytogenetic and humoral immune system linking cancer risk and chronic obstructive pulmonary disease (COPD) are

  20. Erlotinib inhibits T-cell-mediated immune response via down-regulation of the c-Raf/ERK cascade and Akt signaling pathway

    SciTech Connect

    Luo Qiong; Gu Yanhong; Zheng Wei; Wu Xingxin; Gong Fangyuan; Gu Liyun; Sun Yang; Xu Qiang

    2011-03-01

    Erlotinib is a potent inhibitor of epidermal growth factor receptor tyrosine kinase and has been demonstrated to treat advanced or metastatic non-small cell lung cancer to prolong survival after failure of first-line or second-line chemotherapy. However, little is known about its effects on immune system. In the present study, we aimed to investigate the immunosuppressive activity of erlotinib on T lymphocytes both in vitro and in vivo, and further explore its potential molecular mechanism. Erlotinib exerted a significant inhibition on the T cell proliferation and activation induced by concanavalin A, anti-CD3 plus anti-CD28, staphylococcal enterotoxin B or phorbol myristate acetate respectively in a concentration-dependent manner and it also inhibited the secretion of the proinflammatory cytokines such as IL-2 and IFN-{gamma} of activated T cells. Further study showed that erlotinib caused G0/G1 arrest and suppressed the phosphorylations of c-Raf, ERK and Akt in activated T cells. Moreover, erlotinib significantly ameliorated picryl chloride-induced ear contact dermatitis in a dose-dependent manner in vivo. In summary, these findings suggest that erlotinib may cause the impairment of T-cell-mediated immune response both in vitro and in vivo through inhibiting T cell proliferation and activation, which is closely associated with its potent down-regulation of the c-Raf/ERK cascade and Akt signaling pathway. - Graphical abstract: Erlotinib may cause the impairment of T-cell-mediated immune response both in vitro and in vivo through inhibiting T cell proliferation and activation, which is closely associated with its potent down-regulation of the c-Raf/ERK cascade and Akt signaling pathway. Display Omitted

  1. Antibiotics and immunity: effects of antibiotics on natural killer, antibody dependent cell-mediated cytotoxicity and antibody production.

    PubMed

    Ibrahim, M S; Maged, Z A; Haron, A; Khalil, R Y; Attallah, A M

    1987-12-01

    We studied the effects of antibiotics on natural killer (NK), antibody dependent cell-mediated cytotoxicity (ADCC) and immunoglobulin production. When human peripheral blood lymphocytes were incubated overnight with the antibiotic before the assay, nitrofurantoin significantly reduced NK but not ADCC activity. Nitrofurantoin also suppressed both spontaneous and interferon-enhanced NK activities in a dose-dependent fashion. Though it did not affect spontaneous ADCC activity, nitrofurantoin suppressed interferon enhancement of ADCC. Chloramphenicol significantly decreased the number of plaque forming cells in mice. In addition to chloramphenicol, tetracycline, rifampicin, cephalothin, polymyxin B and nitrofurantoin reduced mitogen-induced polycloned immunoglobulin synthesis. Results of this study may have clinical relevance, especially in treating immunocompromised patients.

  2. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial.

    PubMed

    Buchbinder, Susan P; Mehrotra, Devan V; Duerr, Ann; Fitzgerald, Daniel W; Mogg, Robin; Li, David; Gilbert, Peter B; Lama, Javier R; Marmor, Michael; Del Rio, Carlos; McElrath, M Juliana; Casimiro, Danilo R; Gottesdiener, Keith M; Chodakewitz, Jeffrey A; Corey, Lawrence; Robertson, Michael N

    2008-11-29

    Observational data and non-human primate challenge studies suggest that cell-mediated immune responses might provide control of HIV replication. The Step Study directly assessed the efficacy of a cell-mediated immunity vaccine to protect against HIV-1 infection or change in early plasma HIV-1 levels. We undertook a double-blind, phase II, test-of-concept study at 34 sites in North America, the Caribbean, South America, and Australia. We randomly assigned 3000 HIV-1-seronegative participants by computer-generated assignments to receive three injections of MRKAd5 HIV-1 gag/pol/nef vaccine (n=1494) or placebo (n=1506). Randomisation was prestratified by sex, adenovirus type 5 (Ad5) antibody titre at baseline, and study site. Primary objective was a reduction in HIV-1 acquisition rates (tested every 6 months) or a decrease in HIV-1 viral-load setpoint (early plasma HIV-1 RNA measured 3 months after HIV-1 diagnosis). Analyses were per protocol and modified intention to treat. The study was stopped early because it unexpectedly met the prespecified futility boundaries at the first interim analysis. This study is registered with ClinicalTrials.gov, number NCT00095576. In a prespecified interim analysis in participants with baseline Ad5 antibody titre 200 or less, 24 (3%) of 741 vaccine recipients became HIV-1 infected versus 21 (3%) of 762 placebo recipients (hazard ratio [HR] 1.2 [95% CI 0.6-2.2]). All but one infection occurred in men. The corresponding geometric mean plasma HIV-1 RNA was comparable in infected male vaccine and placebo recipients (4.61 vs 4.41 log(10) copies per mL, one tailed p value for potential benefit 0.66). The vaccine elicited interferon-gamma ELISPOT responses in 75% (267) of the 25% random sample of all vaccine recipients (including both low and high Ad5 antibody titres) on whose specimens this testing was done (n=354). In exploratory analyses of all study volunteers, irrespective of baseline Ad5 antibody titre, the HR of HIV-1 infection

  3. High Parasite Burdens Cause Liver Damage in Mice following Plasmodium berghei ANKA Infection Independently of CD8+ T Cell-Mediated Immune Pathology ▿

    PubMed Central

    Haque, Ashraful; Best, Shannon E.; Amante, Fiona H.; Ammerdorffer, Anne; de Labastida, Fabian; Pereira, Tamara; Ramm, Grant A.; Engwerda, Christian R.

    2011-01-01

    Infection of C57BL/6 mice with Plasmodium berghei ANKA induces a fatal neurological disease commonly referred to as experimental cerebral malaria. The onset of neurological symptoms and mortality depend on pathogenic CD8+ T cells and elevated parasite burdens in the brain. Here we provide clear evidence of liver damage in this model, which precedes and is independent of the onset of neurological symptoms. Large numbers of parasite-specific CD8+ T cells accumulated in the liver following P. berghei ANKA infection. However, systemic depletion of these cells at various times during infection, while preventing neurological symptoms, failed to protect against liver damage or ameliorate it once established. In contrast, rapid, drug-mediated removal of parasites prevented hepatic injury if administered early and quickly resolved liver damage if administered after the onset of clinical symptoms. These data indicate that CD8+ T cell-mediated immune pathology occurs in the brain but not the liver, while parasite-dependent pathology occurs in both organs during P. berghei ANKA infection. Therefore, we show that P. berghei ANKA infection of C57BL/6 mice is a multiorgan disease driven by the accumulation of parasites, which is also characterized by organ-specific CD8+ T cell-mediated pathology. PMID:21343349

  4. Subnormal expression of cell-mediated and humoral immune responses in progeny disposed toward a high incidence of tumors after in utero exposure to benzo(a)pyrene

    SciTech Connect

    Urso, P.; Gengozian, N.

    1984-01-01

    Pregnant mice were exposed to 150 ..mu..g benzol(a)pyrene (BaP) per gram of body weight during fetogenesis (d 11-17 of gestation) and the progeny were assayed for humoral and cell mediated immune responses at different time intervals after birth. Immature offspring (1-4 wk) were severely suppressed in their ability to produce antibody (plaque-) forming cells (PFC) against sheep red blood cells (SRBC) and in the ability of their lymphocytes to undergo a mixed lymphocyte response (MLR). Lymphocytes from these progeny showed a moderate to weak capacity to inhabit production of colony-forming units (CFU) in host spleens following transfer with semiallogeneic bone marrow (BM) cells into lethally x-irradiated recipients syngeneic to the BM (in vivo graft-versus-host response, GVHR). A severe and sustained suppression in the MLR and the PFC response occurred from the fifth month up to 18 mo. The in vivo GVHR, also subnormal later in life, was not as severely suppressed as the other two parameters. Tumor incidence in the BP-exposed progeny was 8- to 10-fold higher than in those encountering corn oil alone from 18 to 24 mo of age. These data show that in utero exposure to the chemical carcinogen BaP alters development of components needed for establishing competent hemoral and cell-mediated functions of the immune apparatus and leads to severe and sustained postnatal suppression of the defense mechanism. The immunodeficiency exhibited, particularly in the T-cell compartment (MLR, GVHR), before and during the increase in tumor frequency, may provide a favorable environment for the growth of nascent neoplasms induced by BaP. 30 references, 4 figures, 2 tables.

  5. Strong Cell-Mediated Immune Response to Human Cytomegalovirus Is Associated With Increased Risk of Fetal Infection in Primarily Infected Pregnant Women.

    PubMed

    Saldan, Alda; Forner, Gabriella; Mengoli, Carlo; Gussetti, Nadia; Palù, Giorgio; Abate, Davide

    2015-10-15

    Human cytomegalovirus (CMV) represents one of the leading causes of congenital infections worldwide. Early diagnosis of fetal infection and consequent rapid therapeutic intervention with immunoglobulin treatment may prevent fetal transmission and virus-related sequelae. In this study, the cell-mediated immunity and immunoglobulin avidity were evaluated as potential predictors of congenital transmission of the infection. CMV immunoglobulin G (IgG) avidity and CMV enzyme-linked immunospot (ELISpot) assays were employed in 80 pregnant women including 57 primary and 23 nonprimary CMV infections. Congenital infection was assessed using CMV DNA quantitative polymerase chain reaction on amniotic fluid or offspring urine. Logistic regression and receiver operating characteristic statistical methods were employed to determine the association with congenital infection. Low CMV IgG avidity (25%) alone correlated with a probability of congenital transmission of 18.2% (95% confidence interval, 7.7%-28.8%). In contrast to the expectations, an increase in CMV ELISpot levels was statistically associated with congenital transmission (P = .006). The combined use of CMV ELISpot and low CMV IgG avidity resulted in a higher level of association than either method alone with the incidence of fetal transmission (area under the curve, 0.8685). CMV-specific cell-mediated immunity represents a relevant marker in assessing the likelihood of congenital CMV transmission, particularly in combination with CMV IgG avidity. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Specific and nonspecific T-cell-mediated suppression of antihost immune reactivity in graft-versus-host reaction

    SciTech Connect

    Bril, H.; Molendijk-Lok, B.D.; Benner, R.

    1983-09-01

    Intravenous immunization of mice with irradiated (2000 rads) allogeneic lymphoid cells induces the generation of suppressor T cells. Such suppressor T cells are capable of suppressing the antihost immune reactivity during acute and delayed graft-versus-host reactions. These suppressor T cells are strictly antigen-specific as far as their activation is concerned, but also suppress the reaction against unrelated antigens presented by the irradiated host.

  7. Humoral and cell-mediated immune mechanisms in the production of pathology in avirulent Semliki Forest virus encephalitis.

    PubMed Central

    Berger, M L

    1980-01-01

    Seven days after peripheral inoculation with an avirulent strain of Semliki Forest virus, the brains of CBA and nude mice exhibited a mononuclear inflammation and spongiform degeneration. Mice that had received cyclophosphamide (150 mg/kg) 24 h after infection showed no pathology until day 11. However, immunofluorescence studies of the brains of immunosuppressed, infected mice demonstrated viral antigen within the soma and processes of neurons at earlier periods. The brain lesions could be reconstituted on day 7 in immunosuppressed, infected recipients with 6-day immune spleen cells. Immune spleen cells depleted of T lymphocytes, the non-immunoglobulin-bearing population deficient in B lymphocytes, or immune sera plus nonimmune bone marrow cells could also reconstitute the lesions. However, inflammation and spongiform changes were reduced when donor immune cells were depleted of either T or B lymphocytes. When both T and B lymphocytes were removed from the donor immune population, recipient brains did not show pathology. The results demonstrate that either antibody or immune T cells can trigger pathology, but there is also participation of nonimmune bone marrow-derived mononuclear cells, probably of the monocyte-macrophage lineage. Images Fig. 2 Fig. 3 Fig. 4 PMID:6254882

  8. [Partial deficiency of cell-mediated immunity in a child with chronic mucocutaneous candidiasis. Intercurrent meningeal and pulmonary cryptococcosis].

    PubMed

    Gerbeaux, J; Baculard, A; Tournier, G; Moulias, R; Goust, J M; Drouhet, E d; Saint-Martin, J

    1975-01-01

    The authors report a new case of partial immune deficiency of cellular immunity, associated with chronic mucocutaneous candidiasis in a 12 Years-old boy. The disease began very early during the first few weeks of life, with thrush in the mouth. This candidiasis then evolved intermittently and was still present. Numerous cutaneous, pulmonary and ear infections occured throughout this child's life. This morbid association led to a search for an immune deficiency. Humoral immunity was normal. Abnormalities of cellular immunity were as follows: apart from candidine skin anergy, there was a deficiency in the factor which inhibits leukocyte migration, secretion of a factor favouring this migration (MEF). It was also noted the presence of the patient's serum, of a factor inhibiting lymphocyte transformation in the presence of candidine. In spite of treatment with intravenous route, amphotericin B, followed by transfer factor, the oral candidiasis persisted together with the skin anergy to candidine. On the other hand, the serum inhibitory factor disappeared. Pulmonary cryptococcosis probably favoured by corticosteroid treatment, developed on this background of immune deficiency; as usual it spread to the meninges. Treatment associating intraveinous amphotericin B and 5 fluorocytosine oral and later intravenous, total duration 6 months, grave a recovery maintained on a 8 months follow up.

  9. Plasmodium chabaudi adami: interferon-gamma but not IL-2 is essential for the expression of cell-mediated immunity against blood-stage parasites in mice.

    PubMed

    Batchelder, Joan M; Burns, James M; Cigel, Francine K; Lieberg, Heather; Manning, Dean D; Pepper, Barbara J; Yañez, Deborah M; van der Heyde, Henri; Weidanz, William P

    2003-10-01

    Cell-mediated immunity (CMI) may be important in immunity against blood-stage malaria. Accordingly, we examined the role of type 1 cytokines in the resolution of Plasmodium chabaudi adami malaria in mice genetically modified to have type 1 cytokine gene defects. Parasitemia was prolonged in double knockout (IL-2(-/-), IFNgamma(-/-)) mice compared to control mice. Despite deficiencies in gammadelta T cell and B cell subsets, these mice produced anti-malarial antibodies and eventually cured their infections, possibly by antibody-mediated immunity. However, because acute P. c. adami parasitemia may also be suppressed by CMI, the requirements for IL-2 and IFNgamma were evaluated in mice lacking B cells and functional IL-2 or IFNgamma genes. Acute malaria in J(H)(-/-), IL-2(-/-) mice was prolonged, but eventually cured. In contrast, J(H)(-/-), IFNgamma(-/-) mice developed unremitting parasitemia. These data strongly suggest that IFNgamma, but not IL-2, plays an essential role in the expression of CMI against P. c. adami infections. This finding may prove useful in developing malarial vaccines aimed at inducing CMI.

  10. Novel Cell-Penetrating Peptide-Based Vaccine Induces Robust CD4+ and CD8+ T Cell-Mediated Antitumor Immunity.

    PubMed

    Derouazi, Madiha; Di Berardino-Besson, Wilma; Belnoue, Elodie; Hoepner, Sabine; Walther, Romy; Benkhoucha, Mahdia; Teta, Patrick; Dufour, Yannick; Yacoub Maroun, Céline; Salazar, Andres M; Martinvalet, Denis; Dietrich, Pierre-Yves; Walker, Paul R

    2015-08-01

    Vaccines that can coordinately induce multi-epitope T cell-mediated immunity, T helper functions, and immunologic memory may offer effective tools for cancer immunotherapy. Here, we report the development of a new class of recombinant protein cancer vaccines that deliver different CD8(+) and CD4(+) T-cell epitopes presented by MHC class I and class II alleles, respectively. In these vaccines, the recombinant protein is fused with Z12, a novel cell-penetrating peptide that promotes efficient protein loading into the antigen-processing machinery of dendritic cells. Z12 elicited an integrated and multi-epitopic immune response with persistent effector T cells. Therapy with Z12-formulated vaccines prolonged survival in three robust tumor models, with the longest survival in an orthotopic model of aggressive brain cancer. Analysis of the tumor sites showed antigen-specific T-cell accumulation with favorable modulation of the balance of the immune infiltrate. Taken together, the results offered a preclinical proof of concept for the use of Z12-formulated vaccines as a versatile platform for the development of effective cancer vaccines.

  11. Humoral and cell-mediated immunity to the Plasmodium falciparum ring-infected erythrocyte surface antigen in an adult population exposed to highly endemic malaria.

    PubMed Central

    Beck, H P; Felger, I; Genton, B; Alexander, N; al-Yaman, F; Anders, R F; Alpers, M

    1995-01-01

    A parasitological and immunological survey was carried out in an area in Papua New Guinea highly endemic for malaria. Two hundred fourteen adult individuals were selected for studies to assess their immune responses against the malaria vaccine candidate ring-infected erythrocyte surface antigen (RESA). Total immunoglobulin G (IgG) antibodies directed against RESA as well as specific IgG1, IgG2, and IgG3 antibodies were determined. Humoral responses directed against RESA were frequent in all IgG subclasses. Only IgG3 responses were found to be age dependent. Total anti-RESA IgG antibodies were not correlated with protection against malaria as measured by parasite prevalence, parasite density, or health center attendance. In contrast, cytophilic antibodies (IgG1 and IgG3) were associated with reduced Plasmodium falciparum prevalence and reduced health center attendance. T-cell proliferation in general was low and very infrequent. No correlation between humoral and cellular immune responses could be found. Parasite density, parasite prevalence, and health center visits tended to be reduced in individuals with good humoral and cell-mediated immune responses. PMID:7822028

  12. Hemagglutinin-based polyanhydride nanovaccines against H5N1 influenza elicit protective virus neutralizing titers and cell-mediated immunity

    PubMed Central

    Ross, Kathleen A; Loyd, Hyelee; Wu, Wuwei; Huntimer, Lucas; Ahmed, Shaheen; Sambol, Anthony; Broderick, Scott; Flickinger, Zachary; Rajan, Krishna; Bronich, Tatiana; Mallapragada, Surya; Wannemuehler, Michael J; Carpenter, Susan; Narasimhan, Balaji

    2015-01-01

    H5N1 avian influenza is a significant global concern with the potential to become the next pandemic threat. Recombinant subunit vaccines are an attractive alternative for pandemic vaccines compared to traditional vaccine technologies. In particular, polyanhydride nanoparticles encapsulating subunit proteins have been shown to enhance humoral and cell-mediated immunity and provide protection upon lethal challenge. In this work, a recombinant H5 hemagglutinin trimer (H53) was produced and encapsulated into polyanhydride nanoparticles. The studies performed indicated that the recombinant H53 antigen was a robust immunogen. Immunizing mice with H53 encapsulated into polyanhydride nanoparticles induced high neutralizing antibody titers and enhanced CD4+ T cell recall responses in mice. Finally, the H53-based polyanhydride nanovaccine induced protective immunity against a low-pathogenic H5N1 viral challenge. Informatics analyses indicated that mice receiving the nanovaccine formulations and subsequently challenged with virus were similar to naïve mice that were not challenged. The current studies provide a basis to further exploit the advantages of polyanhydride nanovaccines in pandemic scenarios. PMID:25565816

  13. T Follicular Helper Cell Plasticity Shapes Pathogenic T Helper 2 Cell-Mediated Immunity to Inhaled House Dust Mite.

    PubMed

    Ballesteros-Tato, André; Randall, Troy D; Lund, Frances E; Spolski, Rosanne; Leonard, Warren J; León, Beatriz

    2016-02-16

    Exposure to environmental antigens, such as house dust mite (HDM), often leads to T helper 2 (Th2) cell-driven allergic responses. However, the mechanisms underlying the development of these responses are incompletely understood. We found that the initial exposure to HDM did not lead to Th2 cell development but instead promoted the formation of interleukin-4 (IL-4)-committed T follicular helper (Tfh) cells. Following challenge exposure to HDM, Tfh cells differentiated into IL-4 and IL-13 double-producing Th2 cells that accumulated in the lung and recruited eosinophils. B cells were required to expand IL-4-committed Tfh cells during the sensitization phase, but did not directly contribute to disease. Impairment of Tfh cell responses during the sensitization phase or Tfh cell depletion prevented Th2 cell-mediated responses following challenge. Thus, our data demonstrate that Tfh cells are precursors of HDM-specific Th2 cells and reveal an unexpected role of B cells and Tfh cells in the pathogenesis of allergic asthma.

  14. Dim light at night interferes with the development of the short-day phenotype and impairs cell-mediated immunity in Siberian hamsters (Phodopus sungorus).

    PubMed

    Aubrecht, Taryn G; Weil, Zachary M; Nelson, Randy J

    2014-10-01

    Winter is a challenging time to survive and breed outside of the tropics. Animals use day length (photoperiod) to regulate seasonally appropriate adaptations in anticipation of challenging winter conditions. The net result of these photoperiod-mediated adjustments is enhanced immune function and increased survival. Thus, the ability to discriminate day length information is critical for survival and reproduction in small animals. However, during the past century, urban and suburban development has rapidly expanded and filled the night sky with light from various sources, obscuring crucial light-dark signals, which alters physiological interpretation of day lengths. Furthermore, reduced space, increased proximity to people, and the presence of light at night may act as stressors for small animals. Whereas acute stressors typically enhance immune responses, chronic exposure to stressors often impairs immune responses. Therefore, we hypothesized that the combination of dim light at night and chronic stress interferes with enhanced cell-mediated immunity observed during short days. Siberian hamsters (Phodopus sungorus) were assigned to short or long days with dark nights (0 lux) or dim (5 lux) light at night for 10 weeks. Following 2 weeks of chronic restraint (6 hr/day), a model of chronic stress, delayed type hypersensitivity (DTH) responses were assessed. Both dim light at night and restraint reduced the DTH response. Dim light at night during long nights produced an intermediate short day phenotype. These results suggest the constant presence of light at night could negatively affect survival of photoperiodic rodents by disrupting the timing of breeding and immune responses. © 2014 Wiley Periodicals, Inc.

  15. DNA Prime/Adenovirus Boost Malaria Vaccine Encoding P. falciparum CSP and AMA1 Induces Sterile Protection Associated with Cell-Mediated Immunity

    PubMed Central

    Chuang, Ilin; Sedegah, Martha; Cicatelli, Susan; Spring, Michele; Polhemus, Mark; Tamminga, Cindy; Patterson, Noelle; Guerrero, Melanie; Bennett, Jason W.; McGrath, Shannon; Ganeshan, Harini; Belmonte, Maria; Farooq, Fouzia; Abot, Esteban; Banania, Jo Glenna; Huang, Jun; Newcomer, Rhonda; Rein, Lisa; Litilit, Dianne; Richie, Nancy O.; Wood, Chloe; Murphy, Jittawadee; Sauerwein, Robert; Hermsen, Cornelus C.; McCoy, Andrea J.; Kamau, Edwin; Cummings, James; Komisar, Jack; Sutamihardja, Awalludin; Shi, Meng; Epstein, Judith E.; Maiolatesi, Santina; Tosh, Donna; Limbach, Keith; Angov, Evelina; Bergmann-Leitner, Elke; Bruder, Joseph T.; Doolan, Denise L.; King, C. Richter; Carucci, Daniel; Dutta, Sheetij; Soisson, Lorraine; Diggs, Carter; Hollingdale, Michael R.; Ockenhouse, Christian F.; Richie, Thomas L.

    2013-01-01

    Background Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. Methodology/Principal Findings The vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad). The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea), possibly related to immunization, was severe (Grade 3), preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27%) were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44–817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5–102) and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13–408; AMA1 348, range 88–1270) and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019). Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. Significance The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%). Protection was

  16. TMV-peptide fusion vaccines induce cell-mediated immune responses and tumor protection in two murine models.

    PubMed

    McCormick, Alison A; Corbo, Tina A; Wykoff-Clary, Sherri; Nguyen, Long V; Smith, Mark L; Palmer, Kenneth E; Pogue, Gregory P

    2006-09-29

    Fusion of peptides to viral carriers has proven an effective method for improving cellular immunity. In this study we explore the ability of a plant virus, Tobacco mosaic virus (TMV), to stimulate cellular immunity by interacting directly with immune cells. Fluorescently labeled TMV was incubated in vitro with murine spleen or lymph node cells, and near quantitative labeling of lymphocytes was achieved after 2 h, which persisted for up to 48 h. Direct TMV uptake and upregulation of the CD86 activation marker was measured in nearly all dendritic cells (DCs) by flow cytometry. To demonstrate that TMV can also provide functional antigen delivery and immune stimulation in vivo, two well-characterized T-cell epitopes that provide protection against tumor challenge in mice were fused to TMV coat protein by genetic manipulation, or by chemical conjugation. Vaccination of C57BL/6 mice elicited measurable cellular responses by interferon gamma (IFN gamma) ELISpot and resulted in significantly improved protection from tumor challenge in both the EG.7-Ova and B16 melanoma models. From these results we conclude that TMV was an effective antigen carrier for inducing cellular immune responses to less than 1 microg of peptide.

  17. The Escape of Cancer from T Cell-Mediated Immune Surveillance: HLA Class I Loss and Tumor Tissue Architecture

    PubMed Central

    Garrido, Federico; Perea, Francisco; Bernal, Mónica; Sánchez-Palencia, Abel; Aptsiauri, Natalia; Ruiz-Cabello, Francisco

    2017-01-01

    Tumor immune escape is associated with the loss of tumor HLA class I (HLA-I) expression commonly found in malignant cells. Accumulating evidence suggests that the efficacy of immunotherapy depends on the expression levels of HLA class I molecules on tumors cells. It also depends on the molecular mechanism underlying the loss of HLA expression, which could be reversible/“soft” or irreversible/“hard” due to genetic alterations in HLA, β2-microglobulin or IFN genes. Immune selection of HLA-I negative tumor cells harboring structural/irreversible alterations has been demonstrated after immunotherapy in cancer patients and in experimental cancer models. Here, we summarize recent findings indicating that tumor HLA-I loss also correlates with a reduced intra-tumor T cell infiltration and with a specific reorganization of tumor tissue. T cell immune selection of HLA-I negative tumors results in a clear separation between the stroma and the tumor parenchyma with leucocytes, macrophages and other mononuclear cells restrained outside the tumor mass. Better understanding of the structural and functional changes taking place in the tumor microenvironment may help to overcome cancer immune escape and improve the efficacy of different immunotherapeutic strategies. We also underline the urgent need for designing strategies to enhance tumor HLA class I expression that could improve tumor rejection by cytotoxic T-lymphocytes (CTL). PMID:28264447

  18. The Escape of Cancer from T Cell-Mediated Immune Surveillance: HLA Class I Loss and Tumor Tissue Architecture.

    PubMed

    Garrido, Federico; Perea, Francisco; Bernal, Mónica; Sánchez-Palencia, Abel; Aptsiauri, Natalia; Ruiz-Cabello, Francisco

    2017-02-27

    Tumor immune escape is associated with the loss of tumor HLA class I (HLA-I) expression commonly found in malignant cells. Accumulating evidence suggests that the efficacy of immunotherapy depends on the expression levels of HLA class I molecules on tumors cells. It also depends on the molecular mechanism underlying the loss of HLA expression, which could be reversible/"soft" or irreversible/"hard" due to genetic alterations in HLA, β2-microglobulin or IFN genes. Immune selection of HLA-I negative tumor cells harboring structural/irreversible alterations has been demonstrated after immunotherapy in cancer patients and in experimental cancer models. Here, we summarize recent findings indicating that tumor HLA-I loss also correlates with a reduced intra-tumor T cell infiltration and with a specific reorganization of tumor tissue. T cell immune selection of HLA-I negative tumors results in a clear separation between the stroma and the tumor parenchyma with leucocytes, macrophages and other mononuclear cells restrained outside the tumor mass. Better understanding of the structural and functional changes taking place in the tumor microenvironment may help to overcome cancer immune escape and improve the efficacy of different immunotherapeutic strategies. We also underline the urgent need for designing strategies to enhance tumor HLA class I expression that could improve tumor rejection by cytotoxic T-lymphocytes (CTL).

  19. Innate immune recognition of breast tumor cells mediates CCL22 secretion favoring Treg recruitment within tumor environment.

    PubMed

    Ménétrier-Caux, Christine; Faget, Julien; Biota, Cathy; Gobert, Michael; Blay, Jean-Yves; Caux, Christophe

    2012-08-01

    Regulatory T cells (Treg) have been reported of poor prognosis for overall survival in primary breast tumors (BT). As CCL22 plays a major role in Treg recruitment within primary BT we deciphered the mechanisms involved in the CCL22 production by breast epithelial tumor cells and propose herein the major role of their innate immune recognition in this production.

  20. The effect of declining exposure on T cell-mediated immunity to Plasmodium falciparum - an epidemiological "natural experiment".

    PubMed

    Bediako, Yaw; Ngoi, Joyce Mwongeli; Nyangweso, George; Wambua, Juliana; Opiyo, Michael; Nduati, Eunice Wambui; Bejon, Philip; Marsh, Kevin; Ndungu, Francis Maina

    2016-09-22

    Naturally acquired immunity to malaria may be lost with lack of exposure. Recent heterogeneous reductions in transmission in parts of Africa mean that large populations of previously protected people may lose their immunity while remaining at risk of infection. Using two ethnically similar long-term cohorts of children with historically similar levels of exposure to Plasmodium falciparum who now experience very different levels of exposure, we assessed the effect of decreased parasite exposure on antimalarial immunity. Peripheral blood mononuclear cells (PBMCs) from children in each cohort were stimulated with P. falciparum and their P. falciparum-specific proliferative and cytokine responses were compared. We demonstrate that, while P. falciparum-specific CD4(+) T cells are maintained in the absence of exposure, the proliferative capacity of these cells is altered considerably. P. falciparum-specific CD4(+) T cells isolated from children previously exposed, but now living in an area of minimal exposure ("historically exposed") proliferate significantly more upon stimulation than cells isolated from children continually exposed to the parasite. Similarly, PBMCs from historically exposed children expressed higher levels of pro-inflammatory cytokines and lower levels of anti-inflammatory cytokines after stimulation with P. falciparum. Notably, we found a significant positive association between duration since last febrile episode and P. falciparum-specific CD4(+) T cell proliferation, with more recent febrile episodes associated with lower proliferation. Considered in the context of existing knowledge, these data suggest a model explaining how immunity is lost in absence of continuing exposure to P. falciparum.

  1. Innate immune recognition of breast tumor cells mediates CCL22 secretion favoring Treg recruitment within tumor environment

    PubMed Central

    Ménétrier-Caux, Christine; Faget, Julien; Biota, Cathy; Gobert, Michael; Blay, Jean-Yves; Caux, Christophe

    2012-01-01

    Regulatory T cells (Treg) have been reported of poor prognosis for overall survival in primary breast tumors (BT). As CCL22 plays a major role in Treg recruitment within primary BT we deciphered the mechanisms involved in the CCL22 production by breast epithelial tumor cells and propose herein the major role of their innate immune recognition in this production. PMID:22934274

  2. Eimeria maxima recombinant Gam82 gametocyte antigen vaccine protects against coccidiosis and augments humoral and cell-mediated immunity

    USDA-ARS?s Scientific Manuscript database

    Intestinal infection with Eimeria, the etiologic agent of avian coccidiosis, stimulates protective immunity to subsequent colonization by the homologous parasite, whilst cross-protection against heterologous species is poor. As a first step toward the development of a broad specificity Eimeria vacci...

  3. Innate and adoptive immune cells contribute to natural resistance to systemic metastasis of B16 melanoma.

    PubMed

    Umeshappa, Channakeshava Sokke; Zhu, Yehan; Bhanumathy, Kalpana Kalyanasundaram; Omabe, Maxwell; Chibbar, Rajni; Xiang, Jim

    2015-03-01

    The greatest hurdle in cancer treatment is the metastasis of primary tumors to distant organs. Our knowledge on how different immune cells, in the absence of exogenous stimulation, prevent tumor metastasis in distant organs is poorly understood. Using a highly metastatic murine lung B16 melanoma cell line BL6-10, we employed naive mice that genetically lack CD4(+) or CD8(+) T cells, or are depleted of dendritic cells (DCs) or natural killer (NK) cells to understand the relative importance of these cells in metastasis prevention. Irrespective of the presence of naïve CD4(+) T, CD8(+) T, DCs, or NK cells, lungs, which act as primary site of predilection for B16 melanoma, readily developed numerous lung BL6-10 melanoma colonies. However, their absence led to B16 melanoma metastasis in variable proportions to distant organs, particularly livers, kidneys, adrenals, ovaries, and hearts. NK cells mediate prevention of BL6-10 metastasis to various organs, especially to livers. Mechanistically, CD40L signaling, a critical factor required for DC licensing and CD8(+) cytotoxic T lymphocyte (CTL) responses, was required for CD4(+) T cell-mediated prevention of systemic BL6-10 metastasis. These results suggest that the composition and functions of different immune cells in distant tissue microenvironments (distant organs other than primary sites of predilection) robustly mediate natural resistance against melanoma metastasis. Thus, harnessing these immune cells' responses in immunotherapeutics would considerably limit organ metastasis.

  4. ITE, a novel endogenous nontoxic aryl hydrocarbon receptor ligand, efficiently suppresses EAU and T-cell-mediated immunity.

    PubMed

    Nugent, Lindsey F; Shi, Guangpu; Vistica, Barbara P; Ogbeifun, Osato; Hinshaw, Samuel J H; Gery, Igal

    2013-11-13

    Ligands for aryl hydrocarbon receptor (AHR), such as dioxins, are highly toxic. One such ligand, TCDD, was found to exert potent immunosuppressive capacities in mice developing pathogenic autoimmune processes, including EAU, but its toxicity makes it unusable for humans. A recently identified endogenous AHR ligand, ITE, is also immunosuppressive, but is nontoxic and could therefore be useful for therapy in humans. Here, we tested ITE for its capacity to inhibit EAU and related immune responses. EAU was induced in B10.A mice by immunization with interphotoreceptor retinoid-binding protein (IRBP; 40 μg) in CFA. Treatment with ITE was by daily intraperitoneal injection of 0.2 mg. Disease severity was assessed by both fundoscopy and histological examination. Draining lymph node cells were tested for proliferation by thymidine uptake and for cytokine production and release by ELISA. In addition, the intracellular expression of cytokines and Foxp3 was determined by flow cytometry. Serum antibodies were measured by ELISA. Treatment with ITE efficiently inhibited the development of EAU in mice, as well as the cellular immune responses against IRBP and PPD. ITE treatment inhibited the expansion of both Th1 and Th17 subpopulations, as well as their release of the signature cytokines, IFN-gamma and IL-17. The treatment moderately increased, however, the proportion of Foxp3 expressing T-regulatory cells. Antibody production was not affected by the treatment. ITE, an endogenous AHR ligand, efficiently inhibits EAU development and related cellular immune responses. Being nontoxic, ITE may be considered for treatment of pathogenic immunity in humans.

  5. Cell-mediated immunity induced by chimeric tetravalent dengue vaccine in naive or flavivirus-primed subjects.

    PubMed

    Guy, Bruno; Nougarede, Nolwenn; Begue, Sarah; Sanchez, Violette; Souag, Nadia; Carre, Murielle; Chambonneau, Laurent; Morrisson, Dennis N; Shaw, David; Qiao, Ming; Dumas, Rafaele; Lang, Jean; Forrat, Remi

    2008-10-23

    Three independent, phase 1 clinical trials were conducted in Australia and in USA to assess the safety and immunogenicity of sanofi pasteur dengue vaccine candidates. In this context, Dengue 1-4 and Yellow Fever 17D-204 (YF 17D)-specific CD4 and CD8 cellular responses induced by tetravalent chimeric dengue vaccines (CYD) were analyzed in flavivirus-naive or flavivirus-immune patients. Tetravalent CYD vaccine did not trigger detectable changes in serum pro-inflammatory cytokines, whatever the vaccinees immune status, while inducing significant YF 17D NS3-specific CD8 responses and dengue serotype-specific T helper responses. These responses were dominated by serotype 4 in naive individuals, but a booster vaccination (dose #2) performed 4 months following dose #1 broadened serotype-specific responses. A similar, broader response was seen after primary tetravalent immunization in subjects with pre-existing dengue 1 or 2 immunity caused by prior monovalent live-attenuated dengue vaccination. In all three trials, the profile of induced response was similar, whatever the subjects' immune status, i.e. an absence of Th2 response, and an IFN-gamma/TNF-alpha ratio dominated by IFN-gamma, for both CD4 and CD8 responses. Our results also showed an absence of cross-reactivity between YF 17D or Dengue NS3-specific CD8 responses, and allowed the identification of 3 new CD8 epitopes in the YF 17D NS3 antigen. These data are consistent with the previously demonstrated excellent safety of these dengue vaccines in flavivirus-naive and primed individuals.

  6. [Adoption].

    ERIC Educational Resources Information Center

    Pawl, Jeree, Ed.; And Others

    1990-01-01

    This newsletter theme issue addresses adoption and the young child's life. Contributors suggest ways in which practitioners in many professions and settings can better understand and support adoptive families. The first article, "Adoption, 1990" by Barbara F. Nordhaus and Albert J. Solnit, reviews the history of adoption and notes obstacles to…

  7. The effect of feed supplementation with zinc chelate and zinc sulphate on selected humoral and cell-mediated immune parameters and cytokine concentration in broiler chickens.

    PubMed

    Jarosz, Łukasz; Marek, Agnieszka; Grądzki, Zbigniew; Kwiecień, Małgorzata; Kalinowski, Marcin

    2017-06-01

    The ability of poultry to withstand infectious disease caused by bacteria, viruses or protozoa depends upon the integrity of the immune system. Zinc is important for proper functioning of heterophils, mononuclear phagocytes and T lymphocytes. Numerous data indicate that the demand for zinc in poultry is not met in Poland due to its low content in feeds of vegetable origin. The aim of the study was to determine the effect of supplementation of inorganic (ZnSO4 and ZnSO4(+) phytase enzyme), and organic forms of zinc (Zn with glycine and Zn with glycine and phytase enzyme) on selected parameters of the cellular and humoral immune response in broiler chickens by evaluating the percentage of CD3(+)CD4(+), CD3(+)CD8(+), CD25(+), MHC Class II, and BU-1(+) lymphocytes, the phagocytic activity of monocytes and heterophils, and the concentration of IL-2, IL-10 and TNF-α in the peripheral blood. Flow cytometry was used to determine selected cell-mediated immune response parameters. Phagocytic activity in whole blood was performed using the commercial Phagotest kit (ORPEGEN-Pharma, Immuniq, Poland). The results showed that supplementation with zinc chelates causes activation of the cellular and humoral immune response in poultry, helping to maintain the balance between the Th1 and Th2 response and enhancing resistance to infections. In contrast with chelates, the use of zinc in the form of sulphates has no immunomodulatory effect and may contribute to the development of local inflammatory processes in the digestive tract, increasing susceptibility to infection. Copyright © 2016. Published by Elsevier Ltd.

  8. CD28 costimulation is required for the expression of T-cell-dependent cell-mediated immunity against blood-stage Plasmodium chabaudi malaria parasites.

    PubMed

    Rummel, Thomas; Batchelder, Joan; Flaherty, Patrick; LaFleur, GayeLyn; Nanavati, Payal; Burns, James M; Weidanz, William P

    2004-10-01

    Mice suppress the parasitemia of acute blood-stage Plasmodium chabaudi malaria by an antibody- or T-cell-dependent cell-mediated mechanism of immunity (AMI and CMI, respectively) or by both mechanisms. To determine whether CD28 costimulation is required for expression of these polar immune responses, we first compared the time courses of P. chabaudi malaria in CD28-deficient (CD28(-/-)) and CD28-intact (CD28(+/+)) mice. Acute infections in both knockout (KO) and control mice followed similar time courses, with the period of descending parasitemia being prolonged approximately 2 weeks in KO mice followed by intermittent low-grade chronic parasitemia. Infected CD28(-/-) mice produced primarily the immunoglobulin M antibody, which upon passive transfer provided partial protection against P. chabaudi challenge, suggesting that the elimination of blood-stage parasites by CD28(-/-) mice was achieved by AMI. To determine whether CD28(-/-) costimulation is required for the expression of CMI against the parasite, we compared the time courses of parasitemia in B-cell-deficient double-KO (J(H)(-/-) x CD28(-/-)) mice and control (J(H)(-/-) x CD28(+/+)) mice. Whereas control mice suppressed parasitemia to subpatent levels within approximately 2 weeks postinoculation, double-KO mice developed high levels of parasitemia of long-lasting duration. Although not required for the suppression of acute P. chabaudi parasitemia by AMI, CD28 costimulation is essential for the elimination of blood-stage parasites by CMI.

  9. Synthetic long peptide-based vaccine formulations for induction of cell mediated immunity: A comparative study of cationic liposomes and PLGA nanoparticles.

    PubMed

    Varypataki, Eleni Maria; Silva, Ana Luisa; Barnier-Quer, Christophe; Collin, Nicolas; Ossendorp, Ferry; Jiskoot, Wim

    2016-03-28

    Nanoparticulate formulations for synthetic long peptide (SLP)-cancer vaccines as alternative to clinically used Montanide ISA 51- and squalene-based emulsions are investigated in this study. SLPs were loaded into TLR ligand-adjuvanted cationic liposomes and PLGA nanoparticles (NPs) to potentially induce cell-mediated immune responses. The liposomal and PLGA NP formulations were successfully loaded with up to four different compounds and were able to enhance antigen uptake by dendritic cells (DCs) and subsequent activation of T cells in vitro. Subcutaneous vaccination of mice with the different formulations showed that the SLP-loaded cationic liposomes were the most efficient for the induction of functional antigen-T cells in vivo, followed by PLGA NPs which were as potent as or even more than the Montanide and squalene emulsions. Moreover, after transfer of antigen-specific target cells in immunized mice, liposomes induced the highest in vivo killing capacity. These findings, considering also the inadequate safety profile of the currently clinically used adjuvant Montanide ISA-51, make these two particulate, biodegradable delivery systems promising candidates as delivery platforms for SLP-based immunotherapy of cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Correlating liposomal adjuvant characteristics to in-vivo cell-mediated immunity using a novel Mycobacterium tuberculosis fusion protein: a multivariate analysis study.

    PubMed

    Kastner, Elisabeth; Hussain, M Jubair; Bramwell, Vincent W; Christensen, Dennis; Perrie, Yvonne

    2015-03-01

    In this study, we have used a chemometrics-based method to correlate key liposomal adjuvant attributes with in-vivo immune responses based on multivariate analysis. The liposomal adjuvant composed of the cationic lipid dimethyldioctadecylammonium bromide (DDA) and trehalose 6,6-dibehenate (TDB) was modified with 1,2-distearoyl-sn-glycero-3-phosphocholine at a range of mol% ratios, and the main liposomal characteristics (liposome size and zeta potential) was measured along with their immunological performance as an adjuvant for the novel, postexposure fusion tuberculosis vaccine, Ag85B-ESAT-6-Rv2660c (H56 vaccine). Partial least square regression analysis was applied to correlate and cluster liposomal adjuvants particle characteristics with in-vivo derived immunological performances (IgG, IgG1, IgG2b, spleen proliferation, IL-2, IL-5, IL-6, IL-10, IFN-γ). While a range of factors varied in the formulations, decreasing the 1,2-distearoyl-sn-glycero-3-phosphocholine content (and subsequent zeta potential) together built the strongest variables in the model. Enhanced DDA and TDB content (and subsequent zeta potential) stimulated a response skewed towards a cell mediated immunity, with the model identifying correlations with IFN-γ, IL-2 and IL-6. This study demonstrates the application of chemometrics-based correlations and clustering, which can inform liposomal adjuvant design. © 2015 Royal Pharmaceutical Society.

  11. Humoral, Mucosal, and Cell-Mediated Immunity Against Vaccine and Nonvaccine Genotypes After Administration of Quadrivalent Human Papillomavirus Vaccine to HIV-Infected Children

    PubMed Central

    Weinberg, Adriana; Song, Lin-Ye; Saah, Alfred; Brown, Martha; Moscicki, Anna B.; Meyer, William A.; Bryan, Janine; Levin, Myron J.

    2012-01-01

    Objectives. To characterize the immunogenicity of a quadrivalent human papillomavirus vaccine (QHPV) in human immunodeficiency virus (HIV)–infected children, we studied their immune responses to 3 or 4 doses. Methods. HIV-infected children aged 7–12 years with a CD4 cell percentage of ≥15% of lymphocytes, received 3 doses of QHPV with or without a fourth dose after 72 weeks. Type-specific and cross-reactive antibodies and cell-mediated immunity were measured. Results. Type-specific antibodies to HPV6, 11, and 16 were detected in 100% and ≥94% of children at 4 and 72 weeks, respectively, after the third QHPV dose. Corresponding numbers for HPV18 were 97% and 76%, respectively. A fourth QHPV dose increased seropositivity to ≥96% for all vaccine genotypes. Four weeks after the third QHPV dose, 67% of vaccinees seroconverted to HPV31, an HPV16-related genotype not in the vaccine; 69% and 39% of vaccinees developed mucosal HPV16 and 18 immunoglobulin G antibodies, respectively; and 60% and 52% of vaccinees developed cytotoxic T lymphocytes (CTLs) for HPV16 and 31, respectively. Conclusions. Three QHPV doses generated robust and persistent antibodies to HPV6, 11, and 16 but comparatively weaker responses to HPV18. A fourth dose increased antibodies against all vaccine genotypes in an anamnestic fashion. CTLs and mucosal antibodies against vaccine genotypes, as well as cross-reactive antibodies and CTL against nonvaccine genotypes, were detected. PMID:22859825

  12. [Characteristics of cell-mediated and humoral components of the immune response in the children presenting with chronic adenoiditis].

    PubMed

    Terskova, N V; Kamzalakova, N I; Vakhrushev, S G; Smbatian, A S

    2013-01-01

    The objective of the present study was to determine the magnitude of characteristics of immunity and estimate the immunological status of the children presenting with chronic adenoiditis (CA) at the stage of remission. The valid sample (n=158) was used to analyse the blood cellular spectrum and humoral characteristics in the children at the age from 2.5 to 10 years residing in the city of Krasnoyarsk. It was shown that the development of CA was associated with the activation of non-specific protective factors and consistent with the general physiological patterns. The total T-lymphocyte population significantly increased which excluded the T-cellular immunodepressive state. The reduction in the absolute and relative number of B-lymphocytes suggested insufficiency of the B cell-dependent component of the immune system in the children that was especially well-pronounced in the younger age group.

  13. Rhizopus oryzae hyphae are damaged by human natural killer (NK) cells, but suppress NK cell mediated immunity.

    PubMed

    Schmidt, Stanislaw; Tramsen, Lars; Perkhofer, Susanne; Lass-Flörl, Cornelia; Hanisch, Mitra; Röger, Frauke; Klingebiel, Thomas; Koehl, Ulrike; Lehrnbecher, Thomas

    2013-07-01

    Mucormycosis has a high mortality and is increasingly diagnosed in hematopoietic stem cell transplant (HSCT) recipients. In this setting, there is a growing interest to restore host defense to combat infections by adoptively transferring donor-derived immunocompetent cells. Natural killer (NK) cells exhibit antitumor and antiinfective activity, but the interaction with Mucormycetes is unknown. Our data demonstrate that both unstimulated and IL-2 prestimulated human NK cells damage Rhizopus oryzae hyphae, but do not affect resting conidia. The damage of the fungus is mediated, at least in part, by perforin. R. oryzae hyphae decrease the secretion of immunoregulatory molecules by NK cells, such as IFN-γ and RANTES, indicating an immunosuppressive effect of the fungus. Our data indicate that NK cells exhibit activity against Mucormycetes and future research should evaluate NK cells as a potential tool for adoptive immunotherapy in HSCT. Copyright © 2012 Elsevier GmbH. All rights reserved.

  14. Evidence of cell-mediated immune contrasuppression in lepromatous leprosy: modulation of a putative T contrasuppressor cell-subset.

    PubMed Central

    González-Amaro, R; Salazar-González, J F; Baranda, L; Abud-Mendoza, C; Moncada, B; García, R; Alcocer-Varela, J

    1988-01-01

    Some lepromatous leprosy (LL) patients are characterized by the presence of activated suppressor T cells that specifically inhibit the immune response to Mycobacterium leprae antigens. Immune contrasuppressor (CS) cell activity antagonize suppressor function. Whereas the former function has been extensively studied in leprosy, the latter has not been explored. We studied the peripheral blood mononuclear cells (PBMNC) of 20 patients with leprosy (10 lepromatous and 10 tuberculoid) and six healthy contacts. We found CS-like activity in the PBMNC from some LL patients when assayed in vitro using lepromin as antigen. This CS-like function was found in CD8+, vicia villosa adherent (VV+) T cells. CS-like activity was not detected in PBMNC from either tuberculoid patients or healthy contacts. Pre-treatment of CD8+, VV+ cells with either recombinant IL-2 (5 u/ml) or recombinant interferon-gamma (1,000 u/ml) did not modify significantly their putative CS function. However, in 50% of lepromatous patients the pre-incubation of CD8+, VV+ cells with both lymphokines together increased significantly the CS-like activity. These data suggest that the in vitro immune response to M. leprae in some LL patients can be augmented by either modifying numerically the contrasuppressor T cells or activating them with lymphokines. PMID:3133142

  15. PB1 as a potential target for increasing the breadth of T-cell mediated immunity to Influenza A.

    PubMed

    Uddbäck, Ida E M; Steffensen, Maria A; Pedersen, Sara R; Nazerai, Loulieta; Thomsen, Allan R; Christensen, Jan P

    2016-10-07

    Recently, we showed that combined intranasal and subcutaneous immunization with a non-replicating adenoviral vector expressing NP of influenza A, strain PR8, induced long-standing protection against a range of influenza A viruses. However, H-2(b) mice challenged with an influenza A strain mutated in the dominant NP366 epitope were not efficiently protected. To address this problem, we envision the use of a cocktail of adenovectors targeting different internal proteins of influenza A virus. Consequently, we investigated the possibility of using PB1 as a target for an adenovector-based vaccine against influenza A. Our results showed that PB1 is not as immunogenic as the NP protein. However, by tethering PB1 to the murine invariant chain we were able to circumvent this problem and raise quite high numbers of PB1-specific CD8(+) T cells in the circulation. Nevertheless, mice immunized against PB1 were not as efficiently protected against influenza A challenge as similarly NP-vaccinated animals. The reason for this is not a difference in the quality of the primed cells, nor in functional avidity. However, under similar conditions of immunization fewer PB1-specific cells were recruited to the airways, and surface expression of the dominant PB1 peptide, PB1703, was less stable than in the case of NP366.

  16. The effect of Beauveria bassiana infection on cell mediated and humoral immune response in house fly, Musca domestica L.

    PubMed

    Mishra, Sapna; Kumar, Peeyush; Malik, Anushree

    2015-10-01

    Entomopathogenic fungi that manifest infections by overcoming insect's immune response could be a successful control agent for the house fly, Musca domestica L. which is a major domestic, medical, and veterinary pest. In this study, the immune response of house fly to Beauveria bassiana infection was investigated to reveal fundamental aspects of house fly hemocyte biology, such as hemocyte numbers and size, which is poorly understood. The total hemocyte counts (THCs) in B. bassiana-infected house fly showed an initial increase (from 6 to 9 h), followed by subsequent decrease (9 to 12 h) with increase in time of infection. The THCs was slightly greater in infected flies than the non-infected ones. Insight into relative hemocyte counts depicted a significant increase in prohemocyte (PR) and decrease in granulocyte (GR) in infected house flies compared to non-infected ones. The relative cell area of hemocyte cells showed a noticeable increase in PR and intermediate cells (ICs), while a considerable reduction was observed for plasmatocyte (PL) and GR. The considerable variation in relative cell number and cell area in the B. bassiana-infected house flies indicated stress development during infection. The present study highlights changes occurring during B. bassiana invasion to house fly leading to establishment of infection along with facilitation in understanding of basic hemocyte biology. The results of the study is expected to help in better understanding of house fly immune response during fungal infection, so as to assist production of more efficient mycoinsecticides for house fly control using B. bassiana.

  17. PB1 as a potential target for increasing the breadth of T-cell mediated immunity to Influenza A

    PubMed Central

    Uddbäck, Ida E. M.; Steffensen, Maria A.; Pedersen, Sara R.; Nazerai, Loulieta; Thomsen, Allan R.; Christensen, Jan P.

    2016-01-01

    Recently, we showed that combined intranasal and subcutaneous immunization with a non-replicating adenoviral vector expressing NP of influenza A, strain PR8, induced long-standing protection against a range of influenza A viruses. However, H-2b mice challenged with an influenza A strain mutated in the dominant NP366 epitope were not efficiently protected. To address this problem, we envision the use of a cocktail of adenovectors targeting different internal proteins of influenza A virus. Consequently, we investigated the possibility of using PB1 as a target for an adenovector-based vaccine against influenza A. Our results showed that PB1 is not as immunogenic as the NP protein. However, by tethering PB1 to the murine invariant chain we were able to circumvent this problem and raise quite high numbers of PB1-specific CD8+ T cells in the circulation. Nevertheless, mice immunized against PB1 were not as efficiently protected against influenza A challenge as similarly NP-vaccinated animals. The reason for this is not a difference in the quality of the primed cells, nor in functional avidity. However, under similar conditions of immunization fewer PB1-specific cells were recruited to the airways, and surface expression of the dominant PB1 peptide, PB1703, was less stable than in the case of NP366. PMID:27713532

  18. Suppression of cell-mediated and humoral immune responses by an interleukin-2-immunoglobulin fusion protein in mice.

    PubMed Central

    Kunzendorf, U; Pohl, T; Bulfone-Paus, S; Krause, H; Notter, M; Onu, A; Walz, G; Diamantstein, T

    1996-01-01

    Interleukin-2 (IL-2) plays a pivotal role in the cellular and humoral immune responses directed against foreign antigens. We characterized the in vitro and in vivo properties of a chimeric protein consisting of mouse IL-2 fused to the mouse IgG2b Fc domains. This fusion protein binds to IL-2 and Fc receptors and supports IL-2-dependent cell proliferation but does not mediate lysis of IL-2 receptor-positive cells in the presence of murine complement in vitro. However, in vivo the IL2-IgG2b fusion protein suppresses both cellular and humoral immune responses after immunization with sheep erythrocytes. Surprisingly, delayed hypersensitivity is inhibited despite a dramatic increase of splenic CD3+ and NK1.1+ lymphocytes, indicating that altered homing of IL2-IgG2b-activated lymphocytes rather than cytolysis prevents these cells from accumulating in areas of inflammation. Although in vitro the IL2-IgG2b fusion protein does not alter proliferation of B cells in response to mitogenic stimulation, IgM production in response to sheep erythrocytes is profoundly inhibited in mice treated with the IL2-IgG2b fusion protein. Since no side effects are observed, the IL2-IgG2b fusion protein may expand the therapeutic repertoire of reagents used for the treatment of allograft rejection and autoimmune diseases. PMID:8636431

  19. Modulation of Cell-Mediated Immunity to Suppress High Fat Diet-Induced Obesity and Insulin Resistance.

    PubMed

    Yan, Linna; Song, Kexiu; Gao, Mingming; Qu, Shen; Liu, Dexi

    2016-02-01

    To assess the effect of immune modulators, cyclosporin A and fingolimod, on high fat diet-induced obesity and insulin resistance. C57BL/6 mice were fed a high fat diet and injected intraperitoneally with cyclosporine A, fingolimod, or vehicle twice weekly for 15 weeks. Body weight and food intake were manually measured every other day. Glucose tolerance test, insulin sensitivity, and body composition were examined and compared between the control and the immune modulator treated animals. Tissue samples were collected at the end of the experiment and examined for serum biochemistry, histology, and mRNA levels of marker genes for inflammation, and glucose and lipid metabolism in white and brown adipose tissues and in the liver. Cyclosporine A and fingolimod suppressed high fat diet-induced weight gain, reduced hepatic fat accumulation, and improved insulin sensitivity. The beneficial effects are associated with altered expression of F4/80, Cd68, Il-6, Tnf-α, and Mcp-1 genes, which are involved in macrophage-related chronic inflammation in adipose and hepatic tissues. Immune modulation represents an important intervention for obesity and obesity-associated insulin resistance.

  20. Comparative measurement of cell-mediated immune responses of swine to the M and N proteins of porcine reproductive and respiratory syndrome virus.

    PubMed

    Jeong, Hyun-Jeong; Song, Young-Jo; Lee, Sang-Won; Lee, Joong-Bok; Park, Seung-Yong; Song, Chang-Seon; Ha, Gun-Woo; Oh, Jin-Sik; Oh, Youn-Kyoung; Choi, In-Soo

    2010-04-01

    the induction of cell-mediated immunity.

  1. HLA-A2 Supertype-Restricted Cell-Mediated Immunity by Peripheral Blood Mononuclear Cells Derived from Malian Children with Severe or Uncomplicated Plasmodium falciparum Malaria and Healthy Controls

    DTIC Science & Technology

    2005-04-25

    into a study evaluating risk and protective factors for severe malaria. The study site of Bandiagara (population, 13,600) is located in Mali, West...the healthy controls. Responses to individual peptide pools were limited. These studies confirm the presence of adaptive cell-mediated immunity to...epitopes. However, whether these immune responses to TRAP, CSP, and Exp-1 malarial proteins play a substantial role in protection remains a matter of

  2. Genetic vaccines to potentiate the effective CD103+ dendritic cell-mediated cross-priming of antitumor immunity.

    PubMed

    Zhang, Yi; Chen, Guo; Liu, Zuqiang; Tian, Shenghe; Zhang, Jiying; Carey, Cara D; Murphy, Kenneth M; Storkus, Walter J; Falo, Louis D; You, Zhaoyang

    2015-06-15

    The development of effective cancer vaccines remains an urgent, but as yet unmet, clinical need. This deficiency is in part due to an incomplete understanding of how to best invoke dendritic cells (DC) that are crucial for the induction of tumor-specific CD8(+) T cells capable of mediating durable protective immunity. In this regard, elevated expression of the transcription factor X box-binding protein 1 (XBP1) in DC appears to play a decisive role in promoting the ability of DC to cross-present Ags to CD8(+) T cells in the therapeutic setting. Delivery of DNA vaccines encoding XBP1 and tumor Ag to skin DC resulted in increased IFN-α production by plasmacytoid DC (pDC) from skin/tumor draining lymph nodes and the cross-priming of Ag-specific CD8(+) T cell responses associated with therapeutic benefit. Antitumor protection was dependent on cross-presenting Batf3(+) DC, pDC, and CD8(+) T cells. CD103(+) DC from the skin/tumor draining lymph nodes of the immunized mice appeared responsible for activation of Ag-specific naive CD8(+) T cells, but were dependent on pDC for optimal effectiveness. Similarly, human XBP1 improved the capacity of human blood- and skin-derived DC to activate human T cells. These data support an important intrinsic role for XBP1 in DC for effective cross-priming and orchestration of Batf3(+) DC-pDC interactions, thereby enabling effective vaccine induction of protective antitumor immunity.

  3. Inactivation of PI(3)K p110δ breaks regulatory T-cell-mediated immune tolerance to cancer.

    PubMed

    Ali, Khaled; Soond, Dalya R; Piñeiro, Roberto; Hagemann, Thorsten; Pearce, Wayne; Lim, Ee Lyn; Bouabe, Hicham; Scudamore, Cheryl L; Hancox, Timothy; Maecker, Heather; Friedman, Lori; Turner, Martin; Okkenhaug, Klaus; Vanhaesebroeck, Bart

    2014-06-19

    Inhibitors against the p110δ isoform of phosphoinositide-3-OH kinase (PI(3)K) have shown remarkable therapeutic efficacy in some human leukaemias. As p110δ is primarily expressed in leukocytes, drugs against p110δ have not been considered for the treatment of solid tumours. Here we report that p110δ inactivation in mice protects against a broad range of cancers, including non-haematological solid tumours. We demonstrate that p110δ inactivation in regulatory T cells unleashes CD8(+) cytotoxic T cells and induces tumour regression. Thus, p110δ inhibitors can break tumour-induced immune tolerance and should be considered for wider use in oncology.

  4. The determination of in vivo envelope-specific cell-mediated immune responses in equine infectious anemia virus-infected ponies

    PubMed Central

    Liu, Chong; Cook, Frank R.; Cook, Sheila J.; Craigo, Jodi K.; Even, Deborah L.; Issel, Charles J.; Montelaro, Ronald C.; Horohov, David W.

    2013-01-01

    novel method for detecting in vivo cell-mediated immune responses to EIAV-specific peptides that is readily applicable to other host/pathogen systems. PMID:22795699

  5. The determination of in vivo envelope-specific cell-mediated immune responses in equine infectious anemia virus-infected ponies.

    PubMed

    Liu, Chong; Cook, Frank R; Cook, Sheila J; Craigo, Jodi K; Even, Deborah L; Issel, Charles J; Montelaro, Ronald C; Horohov, David W

    2012-08-15

    novel method for detecting in vivo cell-mediated immune responses to EIAV-specific peptides that is readily applicable to other host/pathogen systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Innate Lymphoid Cells Mediate Pulmonary Eosinophilic Inflammation, Airway Mucous Cell Metaplasia, and Type 2 Immunity in Mice Exposed to Ozone.

    PubMed

    Kumagai, Kazuyoshi; Lewandowski, Ryan P; Jackson-Humbles, Daven N; Buglak, Nicholas; Li, Ning; White, Kaylin; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2017-01-01

    Exposure to elevated levels of ambient ozone in photochemical smog is associated with eosinophilic airway inflammation and nonatopic asthma in children. In the present study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced nonatopic asthma by using lymphoid cell-sufficient C57BL/6 mice, ILC-sufficient Rag2(-/-) mice (devoid of T and B cells), and ILC-deficient Rag2(-/-)Il2rg(-/-) mice (depleted of all lymphoid cells including ILCs). Mice were exposed to 0 or 0.8 parts per million ozone for 1 day or 9 consecutive weekdays (4 hr/day). A single exposure to ozone caused neutrophilic inflammation, airway epithelial injury, and reparative DNA synthesis in all strains of mice, irrespective of the presence or absence of ILCs. In contrast, 9-day exposures induced eosinophilic inflammation and mucous cell metaplasia only in the lungs of ILC-sufficient mice. Repeated ozone exposures also elicited increased messenger RNA expression of transcripts associated with type 2 immunity and airway mucus production in ILC-sufficient mice. ILC-deficient mice repeatedly exposed to ozone had no pulmonary pathology or increased gene expression related to type 2 immunity. These results suggest a new paradigm for the biologic mechanisms underlying the development of a phenotype of childhood nonatopic asthma that has been linked to ambient ozone exposures.

  7. Contribution of IL-12A and IL-12B polymorphisms to Chlamydia trachomatis-specific cell-mediated immune responses.

    PubMed

    Öhman, H; Natividad, A; Bailey, R; Ragoussis, J; Johnson, L-L; Tiitinen, A; Halttunen, M; Paavonen, J; Surcel, H-M

    2015-03-01

    Inherited variance in the IL-12B gene is associated with susceptibility to Chlamydia trachomatis-induced tubal factor infertility and disease severity. In this study, our aim was to discover how polymorphisms in IL-12-coding genes influence C. trachomatis-induced immune responses and IL-12 production. The study population consisted of 240 women. IL-12A and IL-12B single nucleotide polymorphisms (SNPs) were determined from isolated DNA using the Sequenom system with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. We studied lymphocyte proliferative (LP) responses to C. trachomatis strains E and F elementary bodies (EBs) and recombinant chlamydial heat-shock protein 60 (CHSP60) antigen. IL-12p40 and IL-12p70 levels were measured using the BD Flex Set method. We found a statistically significant association between the C. trachomatis EB antigen-specific LP response and the rs2853694 SNP (P = 0.02). Our study demonstrates that the IL-12 cytokine family is involved in C. trachomatis-specific immune responses. Moreover, C. trachomatis-induced IL-12 production and the IL-12B rs2853694 SNP partially explain individual variation in the C. trachomatis LP response.

  8. EAU in the guinea pig: inhibition of cell-mediated immunity and Ia antigen expression by cyclosporin A.

    PubMed Central

    Liversidge, J; Thomson, A W; Sewell, H F; Forrester, J V

    1987-01-01

    Guinea pigs were immunized subcutaneously with highly purified bovine retinal S antigen (SAg) in complete Freund's adjuvant and treated from day 0 with cyclosporin A (CsA; 25 mg/kg by mouth) or drug vehicle. Skin tests carried out at 7 and 13 days showed maximal reactions to SAg at 24 h; at 13 days, however, strong, early, 'Arthus'-like responses to SAg were also recorded. CsA profoundly reduced DTH skin reactions to SAg and PPD, and prevented vitreal inflammation assessed at 17 days and retinal damage. Lymphocytes from the draining lymph nodes but not spleens of immunized guinea pigs showed a proliferative response to SAg which was suppressed by CsA administration. Responses to PHA, Con A or LPS were not so affected. Immunohistochemical staining (alkaline phosphatase-anti-alkaline phosphatase; APAAP) of the eye with newly available monoclonal antibodies to guinea pig T lymphocytes revealed a predominantly T cytotoxic/suppressor cell (Tc/s) infiltrate of the choroid and retina. CsA administration did not affect choroidal infiltration of Tc/s cells but markedly inhibited Ia antigen expression. Images Fig. 3 Fig. 4 Fig. 5 PMID:3478162

  9. Adoption

    MedlinePlus

    ... of Adoption It's natural for any adopted person, child or adult, to have complex feelings about being adopted. It's also natural to feel that "my parents are my parents" and not feel a desire to seek out more information about the identity of the birth family. Most of us (whether ...

  10. Adoptive immunity in mice challenged with L1210/DTIC clones.

    PubMed

    Canti, G; Ricci, L; Marelli, O; Franco, P; Nicolin, A

    1987-01-01

    New antigenic specificities, not detectable on parental cells, have been induced by many investigators in mouse lymphomas by treatment with the antitumor agent 5(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide (DTIC). The antigens are transmissible, after withdrawal of the drug treatment, as an inheritable character. The mechanism of induction, the molecular nature, and the number of the new antigenic specificities have not been completely elucidated. Four clones from murine leukemia L1210 isolated and expanded in vitro were treated in vivo with DTIC and the new sublines were studied in detail. The four drug-treated sublines studied exhibited strong immunogenicity since they were rejected by syngeneic animals. Immunosuppressed animals challenged with 10(7) A/DTIC or P/DTIC cells were reciprocally protected by the adoptive transfer of spleen cells from donors that had rejected a lethal challenge of A/DTIC or P/DTIC clone. In a similar fashion, the adoptive transfer of spleen cells obtained from animals that had rejected the Q/DTIC or the R/DTIC clones protected immunosuppressed mice challenged with Q/DTIC or R/DTIC cells. No antitumor activity was observed in cross-protective schedules other than those indicated. It was been concluded that (a) the L1210 leukemia line does not have antigenic cells, (b) four DTIC-treated clone sublines were rejected by compatible hosts, and (c) two mutually exclusive sets of antigens were expressed in four antigenic clone sublines.

  11. The effect of HLA homozygosity on rubella vaccine-induced humoral and cell-mediated immune responses

    PubMed Central

    Kennedy, Richard B.; Ovsyannikova, Inna G.; Vierkant, Robert A.; Jacobson, Robert M.; Poland, Gregory A.

    2009-01-01

    Human Leukocyte Antigen (HLA) genes play a critical role in host immunity including vaccine responses. HLA molecules present antigenic peptides to T cells and provide inhibitory signals to NK cells, and polymorphisms within HLA genes allows for binding and presentation of a diverse array of self and foreign peptides. Heterozygosity across HLA alleles has been found to play a positive role in host defense for a variety of infections. Homozygosity within one or more HLA loci may restrict this epitope repertoire and limit T cell responses to infection or vaccination. Here we report that homozygosity within the HLA DPB1 locus is associated with increased levels of rubella-specific IgG, an effect driven by a common allele DPB1*0401. We also show that homozygosity within different HLA class I and class II loci is correlated with variations (but not necessarily decreases) in IL-2, IL-5, and IL-10 secretion following rubella virus stimulation. PMID:19896518

  12. Development of Protective Inflammation and Cell-Mediated Immunity against Cryptococcus neoformans after Exposure to Hyphal Mutants

    PubMed Central

    Zhai, Bing; Wozniak, Karen L.; Masso-Silva, Jorge; Upadhyay, Srijana; Hole, Camaron; Rivera, Amariliz; Wormley, Floyd L.

    2015-01-01

    ABSTRACT Morphological switch is tightly coupled with the pathogenesis of many dimorphic fungal pathogens. Cryptococcus neoformans, the major causative agent of cryptococcal meningitis, mostly presents as the yeast form but is capable of switching to the hyphal form. The filamentous form has long been associated with attenuated virulence, yet the underlying mechanism remains elusive. We previously identified the master regulator Znf2 that controls the yeast-to-hypha transition in Cryptococcus. Activation of Znf2 promotes hyphal formation and abolishes fungal virulence in vivo. Here we demonstrated that the cryptococcal strain overexpressing ZNF2 elicited strong and yet temporally confined proinflammatory responses in the early stage of infection. In contrast, exacerbated inflammation in mice infected with the wild-type (WT) strain showed that they were unable to control the infection. Animals inoculated with this filamentous Cryptococcus strain had fewer pulmonary eosinophils and CD11c+ CD11b+ cells than animals inoculated with WT yeast. Moreover, mice infected with this strain developed protective Th1- or Th17-type T cell responses. These findings suggest that the virulence attenuation of the filamentous form is likely due to its elicitation of protective host responses. The antivirulence effect of Znf2 was independent of two previously identified factors downstream of Znf2. Interestingly, mucosal immunizations with high doses of ZNF2-overexpressing cells, either in the live or heat-killed form, offered 100% protection to the host from a subsequent challenge with the otherwise lethal clinical strain H99. Our results demonstrate that heat-resistant cellular components presented in cryptococcal cells with activated ZNF2 elicit protective host immune responses. These findings could facilitate future research on novel immunological therapies. PMID:26443458

  13. Vaccination with TAT-antigen fusion protein induces protective, CD8(+) T cell-mediated immunity against Leishmania major.

    PubMed

    Kronenberg, Katharina; Brosch, Sven; Butsch, Florian; Tada, Yayoi; Shibagaki, Naotaka; Udey, Mark C; von Stebut, Esther

    2010-11-01

    In murine leishmaniasis, healing is mediated by IFN-γ-producing CD4(+) and CD8(+) T cells. Thus, an efficacious vaccine should induce Th1 and Tc1 cells. Dendritic cells (DCs) pulsed with exogenous proteins primarily induce strong CD4-dependent immunity; induction of CD8 responses has proven to be difficult. We evaluated the immunogenicity of fusion proteins comprising the protein transduction domain of HIV-1 TAT and the Leishmania antigen LACK (Leishmania homolog of receptors for activated C kinase), as TAT-fusion proteins facilitate major histocompatibility complex class I-dependent antigen presentation. In vitro, TAT-LACK-pulsed DCs induced stronger proliferation of Leishmania-specific CD8(+) T cells compared with DCs incubated with LACK alone. Vaccination with TAT-LACK-pulsed DCs or fusion proteins plus adjuvant in vivo significantly improved disease outcome in Leishmania major-infected mice and was superior to vaccination with DCs treated with LACK alone. Vaccination with DC+TAT-LACK resulted in stronger proliferation of CD8(+) T cells when compared with immunization with DC+LACK. Upon depletion of CD4(+) or CD8(+) T cells, TAT-LACK-mediated protection was lost. TAT-LACK-pulsed IL-12p40-deficient DCs did not promote protection in vivo. In summary, these data show that TAT-fusion proteins are superior in activating Leishmania-specific Tc1 cells when compared with antigen alone and suggest that IL-12-dependent preferential induction of antigen-specific CD8(+) cells promotes significant protection against this important human pathogen.

  14. Stimulation of Natural Killer Cell-Mediated Tumor Immunity by an IL15/TGFβ-Neutralizing Fusion Protein.

    PubMed

    Ng, Spencer; Deng, Jiusheng; Chinnadurai, Raghavan; Yuan, Shala; Pennati, Andrea; Galipeau, Jacques

    2016-10-01

    The clinical efficacy of immune cytokines used for cancer therapy is hampered by elements of the immunosuppressive tumor microenvironment such as TGFβ. Here we demonstrate that FIST15, a recombinant chimeric protein composed of the T-cell-stimulatory cytokine IL15, the sushi domain of IL15Rα and a TGFβ ligand trap, can overcome immunosuppressive TGFβ to effectively stimulate the proliferation and activation of natural killer (NK) and CD8(+) T cells with potent antitumor properties. FIST15-treated NK and CD8(+) T cells produced more IFNγ and TNFα compared with treatment with IL15 and a commercially available TGFβ receptor-Fc fusion protein (sTβRII) in the presence of TGFβ. Murine B16 melanoma cells, which overproduce TGFβ, were lysed by FIST15-treated NK cells in vitro at doses approximately 10-fold lower than NK cells treated with IL15 and sTβRII. Melanoma cells transduced to express FIST15 failed to establish tumors in vivo in immunocompetent murine hosts and could only form tumors in beige mice lacking NK cells. Mice injected with the same cells were also protected from subsequent challenge by unmodified B16 melanoma cells. Finally, mice with pre-established B16 melanoma tumors responded to FIST15 treatment more strongly compared with tumors treated with control cytokines. Taken together, our results offer a preclinical proof of concept for the use of FIST15 as a new class of biological therapeutics that can coordinately neutralize the effects of immunosuppressive TGFβ in the tumor microenvironment while empowering tumor immunity. Cancer Res; 76(19); 5683-95. ©2016 AACR. ©2016 American Association for Cancer Research.

  15. Virus-stimulated neutrophils in the tumor microenvironment enhance T cell-mediated anti-tumor immunity

    PubMed Central

    Chang, Chin Yang; Tai, Jiayu A.; Li, Sumin; Nishikawa, Tomoyuki; Kaneda, Yasufumi

    2016-01-01

    The tumor microenvironment (TME) fosters tumors by attenuating anti-tumor immunity, reinforcing tumor cell survival and increasing angiogenesis. Among the constituents of the TME, here, we focused on tumor-associated neutrophils (TANs). First, we found that the combination of poly I:C and inactivated Sendai virus particles (hemagglutinating virus of Japan envelope; HVJ-E) synergistically suppressed tumor growth in the B16-F10 melanoma mouse model. In this model, poly I:C contributed to the recruitment of CD11b+Ly6G+ neutrophils to the TME, and co-injection of poly I:C and HVJ-E increased CD11b+Ly6G+FAS+ TAN in the TME. Depletion of neutrophils abolished the synergistic anti-tumor effect of HVJ-E and poly I:C in B16-F10 tumors. We revealed that C-X-C motif chemokine ligand 2 (CXCL2) is produced in the TME by poly I:C, but HVJ-E enhanced neutrophil infiltration of the TME does not occur. An anti-CXCL2 antibody inhibited the tumor suppression by HVJ-E+poly I:C. HVJ-E in combination with recombinant CXCL2 protein or CXCL2 pDNA suppressed mouse melanoma by increasing cytotoxic T lymphocyte activity against B16-F10 melanoma, which was abolished by an anti-Ly6G antibody. HVJ-E directly and indirectly increased FAS and ICAM-1 expression in cultured bone marrow-derived naïve neutrophils. Thus, HVJ-E activates anti-tumor immunity via anti-tumorigenic neutrophils in the TME. An HVJ-E vector containing the CXCL2 gene may be applicable as a novel cancer gene therapy strategy. PMID:27259252

  16. Selective inhibition of the gliadin-specific, cell-mediated immune response by transamidation with microbial transglutaminase.

    PubMed

    Lombardi, Emanuela; Bergamo, Paolo; Maurano, Francesco; Bozzella, Giuseppina; Luongo, Diomira; Mazzarella, Giuseppe; Rotondi Aufiero, Vera; Iaquinto, Gaetano; Rossi, Mauro

    2013-04-01

    CD is an immune-mediated enteropathy caused by the ingestion of wheat gluten. The modification of gluten by intestinal tTGase plays a crucial role in CD pathogenesis. In this study, we observed that extensive transamidation of wheat flour with K-C2H5 by mTGase yielded spf and K-gliadins fractions. By Western blot, we found that these modifications were associated with strongly reduced immune cross-reactivity. With the use of DQ8 tg mice as a model of gluten sensitivity, we observed a dramatic reduction in IFNγ production in gliadin-specific spleen cells challenged with spf and K-gliadins in vitro (n=12; median values: 813 vs. 29 and 99; control vs. spf and K-gliadins, P=0.012 for spf, and P=0.003 for K-gliadins). For spf, we also observed an increase in the IL-10/IFNγ protein ratio (n=12; median values: 0.3 vs. 4.7; control vs. spf, P=0.005). In intestinal biopsies from CD patients challenged in vitro with gliadins (n=10), we demonstrated further that K-gliadins dramatically reduced the levels of antigen-specific IFNγ mRNA in all specimens responsive to native gliadins (four of 10; P<0.05). As cytotoxic effects have been described for gliadins, we also studied GST and caspase-3 activities using the enterocytic Caco-2 cell line. We found that neither activities were modified by flour transamidation. Our results indicate that K-C2H5 cross-linking via mTGase specifically affects gliadin immunogenicity, reversing the inducible inflammatory response in models of gluten sensitivity without affecting other aspects of the biological activity of gliadins.

  17. A novel dengue virus serotype-2 nanovaccine induces robust humoral and cell-mediated immunity in mice.

    PubMed

    Hunsawong, Taweewun; Sunintaboon, Panya; Warit, Saradee; Thaisomboonsuk, Butsaya; Jarman, Richard G; Yoon, In-Kyu; Ubol, Sukathida; Fernandez, Stefan

    2015-03-30

    Dengue virus (DENV), a member of the Flaviviridae family, can be transmitted to humans through the bite of infected Aedes mosquitoes. The incidence of dengue has increased worldwide over the past few decades. Inadequate vector control, changing global ecology, increased urbanization, and faster global travel are factors enhancing the rapid spread of the virus and its vector. In the absence of specific antiviral treatments, the search for a safe and effective vaccine grows more imperative. Many strategies have been utilized to develop dengue vaccines. Here, we demonstrate the immunogenic properties of a novel dengue nanovaccine (DNV), composed of ultraviolet radiation (UV)-inactivated DENV-2, which has been loaded into the nanoparticles containing chitosan/Mycobacterium bovis Bacillus Calmette-Guerin cell wall components (CS/BCG-NPs). We investigated the immunogenicity of DNV in a Swiss albino mouse model. Inoculation with various concentrations of vaccine (0.3, 1, 3 and 10μg/dose) with three doses, 15-day apart, induced strong anti-dengue IgM and IgG antibodies in the mouse serum along with neutralizing antibody against DENV-2 reference strain (16681), a clinical-isolate strain (00745/10) and the mouse-adapted New Guinea-C (NGC) strain. Cytokine and chemokine secretion in the serum of DNV-immunized mice showed elevated levels of IFN-γ, IL-2, IL-5, IL-12p40, IL-12p70, IL-17, eotaxin and RANTES, all of which have varying immune functions. Furthermore, we observed a DNV dose-dependent increase in the frequencies of IFN-γ-producing CD4(+) and CD8(+) T cells after in vitro stimulation of nucleated cells. Based on these findings, DNV has the potential to become a candidate dengue vaccine.

  18. Validation of T-Track® CMV to assess the functionality of cytomegalovirus-reactive cell-mediated immunity in hemodialysis patients.

    PubMed

    Banas, Bernhard; Böger, Carsten A; Lückhoff, Gerhard; Krüger, Bernd; Barabas, Sascha; Batzilla, Julia; Schemmerer, Mathias; Köstler, Josef; Bendfeldt, Hanna; Rascle, Anne; Wagner, Ralf; Deml, Ludwig; Leicht, Joachim; Krämer, Bernhard K

    2017-03-07

    Uncontrolled cytomegalovirus (CMV) replication in immunocompromised solid-organ transplant recipients is a clinically relevant issue and an indication of impaired CMV-specific cell-mediated immunity (CMI). Primary aim of this study was to assess the suitability of the immune monitoring tool T-Track® CMV to determine CMV-reactive CMI in a cohort of hemodialysis patients representative of patients eligible for renal transplantation. Positive and negative agreement of T-Track® CMV with CMV serology was examined in 124 hemodialysis patients, of whom 67 (54%) revealed a positive CMV serostatus. Secondary aim of the study was to evaluate T-Track® CMV performance against two unrelated CMV-specific CMI monitoring assays, QuantiFERON®-CMV and a cocktail of six class I iTAg™ MHC Tetramers. Positive T-Track® CMV results were obtained in 90% (60/67) of CMV-seropositive hemodialysis patients. In comparison, 73% (45/62) and 77% (40/52) positive agreement with CMV serology was achieved using QuantiFERON®-CMV and iTAg™ MHC Tetramer. Positive T-Track® CMV responses in CMV-seropositive patients were dominated by pp65-reactive cells (58/67 [87%]), while IE-1-responsive cells contributed to an improved (87% to 90%) positive agreement of T-Track® CMV with CMV serology. Interestingly, T-Track® CMV, QuantiFERON®-CMV and iTAg™ MHC Tetramers showed 79% (45/57), 87% (48/55) and 93% (42/45) negative agreement with serology, respectively, and a strong inter-assay variability. Notably, T-Track® CMV was able to detect IE-1-reactive cells in blood samples of patients with a negative CMV serology, suggesting either a previous exposure to CMV that yielded a cellular but no humoral immune response, or TCR cross-reactivity with foreign antigens, both suggesting a possible protective immunity against CMV in these patients. T-Track® CMV is a highly sensitive assay, enabling the functional assessment of CMV-responsive cells in hemodialysis patients prior to renal transplantation. T

  19. Adoptive transfer of Tc1 or Tc17 cells elicits antitumor immunity against established melanoma through distinct mechanisms.

    PubMed

    Yu, Yu; Cho, Hyun-Ii; Wang, Dapeng; Kaosaard, Kane; Anasetti, Claudio; Celis, Esteban; Yu, Xue-Zhong

    2013-02-15

    Adoptive cell transfer (ACT) of ex vivo-activated autologous tumor-reactive T cells is currently one of the most promising approaches for cancer immunotherapy. Recent studies provided some evidence that IL-17-producing CD8(+) (Tc17) cells may exhibit potent antitumor activity, but the specific mechanisms have not been completely defined. In this study, we used a murine melanoma lung-metastasis model and tested the therapeutic effects of gp100-specific polarized type I CD8(+) cytotoxic T (Tc1) or Tc17 cells combined with autologous bone marrow transplantation after total body irradiation. Bone marrow transplantation combined with ACT of antitumor (gp100-specific) Tc17 cells significantly suppressed the growth of established melanoma, whereas Tc1 cells induced long-term tumor regression. After ACT, Tc1 cells maintained their phenotype to produce IFN-γ, but not IL-17. However, although Tc17 cells largely preserved their ability to produce IL-17, a subset secreted IFN-γ or both IFN-γ and IL-17, indicating the plasticity of Tc17 cells in vivo. Furthermore, after ACT, the Tc17 cells had a long-lived effector T cell phenotype (CD127(hi)/KLRG-1(low)) as compared with Tc1 cells. Mechanistically, Tc1 cells mediated antitumor immunity primarily through the direct effect of IFN-γ on tumor cells. In contrast, despite the fact that some Tc17 cells also secreted IFN-γ, Tc17-mediated antitumor immunity was independent of the direct effects of IFN-γ on the tumor. Nevertheless, IFN-γ played a critical role by creating a microenvironment that promoted Tc17-mediated antitumor activity. Taken together, these studies demonstrate that both Tc1 and Tc17 cells can mediate effective antitumor immunity through distinct effector mechanisms, but Tc1 cells are superior to Tc17 cells in mediating tumor regression.

  20. Rheumatoid arthritis and its association with HLA-DR antigens. I. Cell mediated immune response against connective tissue antigens.

    PubMed

    Vullo, C M; Pesoa, S A; Onetti, C M; Riera, C M

    1987-04-01

    HLA-DR antigens and cellular sensitivity to native bovine type I and type II collagen and proteoglycans were examined in patients with classic rheumatoid arthritis (RA) and normal individuals. Fifty eight percent of patients with RA (n = 88) and 28% of normals (n = 52) were DR4+ (pc less than 0.01). DR4 phenotype was significantly increased in patients with severe disease stages (III-IV), as defined by the ARA criteria, in contrast to those showing mild disease stages (I-II) (p less than 0.05). Furthermore, peripheral blood mononuclear cells from 55 patients and 30 controls were evaluated for the in vitro production of leukocyte inhibitory factor in response to native type I and type II collagen and proteoglycans. By using this assay, cells from the arthritic group exhibited a statistically significant response when stimulated with native type I collagen and proteoglycans. The cellular immune response was not associated with any particular HLA-DR antigens, or to the disease stage or severity.

  1. NK cells modulate the lung dendritic cell-mediated Th1/Th17 immunity during intracellular bacterial infection.

    PubMed

    Shekhar, Sudhanshu; Peng, Ying; Gao, Xiaoling; Joyee, Antony G; Wang, Shuhe; Bai, Hong; Zhao, Lei; Yang, Jie; Yang, Xi

    2015-10-01

    The impact of the interaction between NK cells and lung dendritic cells (LDCs) on the outcome of respiratory infections is poorly understood. In this study, we investigated the effect and mechanism of NK cells on the function of LDCs during intracellular bacterial lung infection of Chlamydia muridarum in mice. We found that the naive mice receiving LDCs from C. muridarum-infected NK-cell-depleted mice (NK-LDCs) showed more serious body weight loss, bacterial burden, and pathology upon chlamydial challenge when compared with the recipients of LDCs from infected sham-treated mice (NK+LDCs). Cytokine analysis of the local tissues of the former compared with the latter exhibited lower levels of Th1 (IFN-γ) and Th17 (IL-17), but higher levels of Th2 (IL-4), cytokines. Consistently, NK-LDCs were less efficient in directing C. muridarum-specific Th1 and Th17 responses than NK+LDCs when cocultured with CD4(+) T cells. In NK cell/LDC coculture experiments, the blockade of NKG2D receptor reduced the production of IL-12p70, IL-6, and IL-23 by LDCs. The neutralization of IFN-γ in the culture decreased the production of IL-12p70 by LDCs, whereas the blockade of TNF-α resulted in diminished IL-6 production. Our findings demonstrate that NK cells modulate LDC function to elicit Th1/Th17 immunity during intracellular bacterial infection.

  2. Targeted antigen delivery to dendritic cells elicits robust antiviral T cell-mediated immunity in the liver

    PubMed Central

    Volckmar, Julia; Gereke, Marcus; Ebensen, Thomas; Riese, Peggy; Philipsen, Lars; Lienenklaus, Stefan; Wohlleber, Dirk; Klopfleisch, Robert; Stegemann-Koniszewski, Sabine; Müller, Andreas J.; Gruber, Achim D.; Knolle, Percy; Guzman, Carlos A.; Bruder, Dunja

    2017-01-01

    Hepatotropic viruses such as hepatitis C virus cause life-threatening chronic liver infections in millions of people worldwide. Targeted in vivo antigen-delivery to cross-presenting dendritic cells (DCs) has proven to be extraordinarily efficient in stimulating antigen-specific T cell responses. To determine whether this approach would as well be suitable to induce local antiviral effector T cells in the liver we compared different vaccine formulations based on either the targeting of DEC-205 or TLR2/6 on cross-presenting DCs or formulations not involving in vivo DC targeting. As read-outs we used in vivo hepatotropic adenovirus challenge, histology and automated multidimensional fluorescence microscopy (MELC). We show that targeted in vivo antigen delivery to cross-presenting DCs is highly effective in inducing antiviral CTLs capable of eliminating virus-infected hepatocytes, while control vaccine formulation not involving DC targeting failed to induce immunity against hepatotropic virus. Moreover, we observed distinct patterns of CD8+ T cell interaction with virus-infected and apoptotic hepatocytes in the two DC-targeting groups suggesting that the different vaccine formulations may stimulate distinct types of effector functions. Our findings represent an important step toward the future development of vaccines against hepatotropic viruses and the treatment of patients with hepatic virus infection after liver transplantation to avoid reinfection. PMID:28266658

  3. PD-L1 Expression on Retrovirus-Infected Cells Mediates Immune Escape from CD8+ T Cell Killing.

    PubMed

    Akhmetzyanova, Ilseyar; Drabczyk, Malgorzata; Neff, C Preston; Gibbert, Kathrin; Dietze, Kirsten K; Werner, Tanja; Liu, Jia; Chen, Lieping; Lang, Karl S; Palmer, Brent E; Dittmer, Ulf; Zelinskyy, Gennadiy

    2015-10-01

    Cytotoxic CD8+ T Lymphocytes (CTL) efficiently control acute virus infections but can become exhausted when a chronic infection develops. Signaling of the inhibitory receptor PD-1 is an important mechanism for the development of virus-specific CD8+ T cell dysfunction. However, it has recently been shown that during the initial phase of infection virus-specific CD8+ T cells express high levels of PD-1, but are fully competent in producing cytokines and killing virus-infected target cells. To better understand the role of the PD-1 signaling pathway in CD8+ T cell cytotoxicity during acute viral infections we analyzed the expression of the ligand on retrovirus-infected cells targeted by CTLs. We observed increased levels of PD-L1 expression after infection of cells with the murine Friend retrovirus (FV) or with HIV. In FV infected mice, virus-specific CTLs efficiently eliminated infected target cells that expressed low levels of PD-L1 or that were deficient for PD-L1 but the population of PD-L1high cells escaped elimination and formed a reservoir for chronic FV replication. Infected cells with high PD-L1 expression mediated a negative feedback on CD8+ T cells and inhibited their expansion and cytotoxic functions. These findings provide evidence for a novel immune escape mechanism during acute retroviral infection based on PD-L1 expression levels on virus infected target cells.

  4. Th17 cell-mediated immune responses promote mast cell proliferation by triggering stem cell factor in keratinocytes.

    PubMed

    Cho, Kyung-Ah; Park, Minhwa; Kim, Yu-Hee; Woo, So-Youn

    2017-06-10

    Although mast cells are traditionally thought to function as effector cells in allergic responses, they have increasingly been recognized as important regulators of various immune responses. Mast cells mature locally; thus, tissue-specific influences are important for promoting mast cell accumulation and survival in the skin and the gastrointestinal tract. In this study, we determined the effects of keratinocytes on mast cell accumulation during Th17-mediated skin inflammation. We observed increases in dermal mast cells in imiquimod-induced psoriatic dermatitis in mice accompanied by the expression of epidermal stem cell factor (SCF), a critical mast cell growth factor. Similar to mouse epidermal keratinocytes, SCF was highly expressed in the human HaCaT keratinocyte cell line following stimulation with IL-17. Further, keratinocytes promoted mast cell proliferation following stimulation with IL-17 in vitro. However, the effects of keratinocytes on mast cells were significantly diminished in the presence of anti-CD117 (stem cell factor receptor) blocking antibodies. Taken together, our results revealed that the Th17-mediated inflammatory environment promotes mast cell accumulation through keratinocyte-derived SCF. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. IL-2 complex treatment amplifies CD8(+) T cell mediated immunity following herpes simplex virus-1 infection.

    PubMed

    Rajasagi, Naveen K; Rouse, Barry T

    2016-12-01

    CD8(+) T cells play an important role in controlling numerous virus infections and some tumors and therefore several strategies have been adopted to modulate CD8(+) T cell responses. One such approach includes treatment with IL-2 bound to a monoclonal antibody against IL-2 (IL-2 complex) which was shown to enhance CD8(+) T cell responses and provide protection against some cancers and pathogens. This report analyses the value of IL-2 complex therapy to protect against a cutaneous virus infection as occurs with herpes simplex virus-1 (HSV-1) infection. Treatment with IL-2 complex after infection reduced virus levels and lesion severity in a zosteriform model of HSV infection in mice. Furthermore, IL-2 complex treatment expanded HSV-1-gB epitope-specific CD8(+) T cells, IFN-γ and TNF-α producing CD8(+) T cells as well as cells that produced more than one cytokine. In addition, IL-2 complex therapy recipients showed enhanced cytolytic activity of CD8(+) T cells as shown by increased granzyme B expression and lytic granule release. Taken, together, these studies demonstrate that IL-2 complex therapy can be useful to boost protection against a cutaneous virus infection. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. Measurement of varicella-zoster virus (VZV)-specific cell-mediated immunity: comparison between VZV skin test and interferon-gamma enzyme-linked immunospot assay.

    PubMed

    Sadaoka, Kay; Okamoto, Shigefumi; Gomi, Yasuyuki; Tanimoto, Takeshi; Ishikawa, Toyokazu; Yoshikawa, Tetsushi; Asano, Yoshizo; Yamanishi, Koichi; Mori, Yasuko

    2008-11-01

    Cell-mediated immunity (CMI) is critical for the prevention and control of varicella-zoster virus (VZV)-related disease. To assess CMI to VZV, a varicella skin test and interferon-gamma enzyme-linked immunospot (ELISPOT) assay were both performed in healthy volunteers, and the results were compared. A total of 151 subjects were examined: 16 aged 20-29 years, 26 aged 30-39 years, 18 aged 40-49 years, 73 aged 50-59 years, and 18 aged 60-69 years. All were seropositive by a glycoprotein antigen-based enzyme-linked immunosorbent assay (gpELISA). Skin test reactivity was significantly correlated with the ELISPOT count, and both decreased with increasing age, indicating an age-dependent decline in CMI to VZV. In contrast, the antibody titer obtained by the gpELISA did not correlate with skin test reactivity. The results suggest that the skin test and ELISPOT assay are both reliable for assessing CMI to VZV and can easily be applied to screen individuals susceptible to the development of herpes zoster.

  7. Pregnant female lizards Iberolacerta cyreni adjust refuge use to decrease thermal costs for their body condition and cell-mediated immune response.

    PubMed

    Amo, Luisa; López, Pilar; Martín, José

    2007-02-01

    Lizards often respond to increased predation risk by increasing refuge use, but this strategy may entail a loss of thermoregulatory opportunities, which may lead to a loss of body condition. This may be especially important for pregnant oviparous female lizards, because they need to maintain optimal body temperatures as long as possible to maximize developmental embryos rate until laying. However, little is known about how increased time spent at low temperatures in refuges affects body condition and health state of pregnant female lizards. Furthermore, it is not clear how initial body condition affects refuge use. Female Iberian rock lizards forced to increase time spent at low temperatures showed lower body condition and tended to show lower cell-mediated immune responses than control females. Therefore, the loss of thermoregulatory opportunities seems to be an important cost for pregnant females. Nevertheless, thereafter, when we simulated two repeated predatory attacks, females modified refuge use in relation to their body condition, with females with worse condition decreasing time hidden after attacks. In conclusion, female lizards seemed able to compensate increased predation risk with flexible antipredatory strategies, thus minimizing costs for body condition and health state.

  8. Association of CMV-Specific T Cell-Mediated Immunity with CMV DNAemia and Development of CMV Disease in HIV-1-Infected Individuals.

    PubMed

    Aichelburg, Maximilian C; Weseslindtner, Lukas; Mandorfer, Mattias; Strassl, Robert; Rieger, Armin; Reiberger, Thomas; Puchhammer-Stöckl, Elisabeth; Grabmeier-Pfistershammer, Katharina

    2015-01-01

    Among HIV-1-infected individuals, cytomegalovirus (CMV) reactivation and disease occur in the setting of advanced immunosuppression. The value of a standardized assessment of CMV-specific T-cell mediated immunity by the CMV QuantiFERON assay (CMV-QFT) has not yet been thoroughly investigated in HIV-1-infected subjects. Prospective, longitudinal study in 153 HIV-1-infected subjects with a CD4+ T cell count < 350/μL who simultaneously underwent CMV-QFT, CMV serology testing and CMV-DNA quantification. Factors associated with CMV-QFT were evaluated. Clinical screening for CMV manifestations was then performed every 3 months. Among the 141 CMV IgG-seropositive individuals the CMV-QFT assay yielded reactive results in 84% (118/141), negative results in 15% (21/141) and indeterminate (negative mitogen IFN-gamma response) results in 1% (2/141) of subjects. The mean actual CD4+ T cell count was significantly higher in CMV-QFT reactive subjects, when compared to CMV-QFT non-reactive individuals (183 ± 102 vs. 126 ± 104 cells/μL, P = 0.015). A significantly lower proportion of CMV-QFT reactive vs. non-reactive patients displayed CMV DNAemia > 100 copies/mL (23% (27/118) vs. 48% (11/23), P = 0.02). Furthermore, a statistically significant inverse association between mitogen IFN-gamma response and CMV-DNAemia > 1000 copies/mL was observed (P < 0.001). During the observational period, 5 CMV end-organ manifestations were observed. In three of the CMV cases the CMV-QFT yielded indeterminate results. While CMV-QFT reactivity indicates CMV-specific immunity, indeterminate results due to negative mitogen IFN-gamma response might reflect HIV-1-induced immunodeficiency. Thus, dependency upon CD4+ T cell count should be considered when interpreting CMV-QFT results.

  9. Cell-Mediated Immunity Against Antigenically Drifted Influenza A(H3N2) Viruses in Children During a Vaccine Mismatch Season.

    PubMed

    Kim, Jin Hyang; Mishina, Margarita; Chung, Jessie R; Cole, Kelly Stefano; Nowalk, Mary Patricia; Martin, Judith M; Spencer, Sarah; Flannery, Brendan; Zimmerman, Richard K; Sambhara, Suryaprakash

    2016-10-01

    Emergence of antigenically drifted influenza A(H3N2) viruses resulted in reduced vaccine effectiveness in all age groups during the 2014-2015 influenza season. In children, inactivated influenza vaccine (IIV) elicited neutralizing antibodies (Abs) against drifted strains at significantly lower levels than against the vaccine strain. Little is known about the cross-reactivity of cell-mediated immunity against drifted strains in children. Children aged 3-17 years (n = 48) received IIV during the 2014-2015 influenza season. Peripheral blood mononuclear cells, collected before (on day 0) and after (on days 7 and 21) vaccination were evaluated for induction of cross-reactive plasmablasts, memory B cells, and cytokine-secreting CD4(+) and CD8(+) T cells against the vaccine and drifted A(H3N2) viruses by an enzyme-linked immunospot assay and flow cytometry. IIV increased frequencies of plasmablasts and memory B cells. The overall induction of the T-cell response was not significant. Both B-cell and T-cell responses showed significant cross-reactivity against A(H3N2) viruses. Age and preexisting immunity affected virus-specific plasmablast responses and fold-change of T-cell responses, respectively. The proportion of T-helper type 1-prone (ie, interferon γ- or tumor necrosis factor α-secreting) CD4(+) T cell responses also increased with age. In children aged 3-17 years, B- and T-cell responses following IIV receipt showed significant cross-reactivity against A(H3N2) viruses during a vaccine mismatch season. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  10. Transcriptomic Analysis of Persistent Infection with Foot-and-Mouth Disease Virus in Cattle Suggests Impairment of Apoptosis and Cell-Mediated Immunity in the Nasopharynx.

    PubMed

    Eschbaumer, Michael; Stenfeldt, Carolina; Smoliga, George R; Pacheco, Juan M; Rodriguez, Luis L; Li, Robert W; Zhu, James; Arzt, Jonathan

    2016-01-01

    In order to investigate the mechanisms of persistent foot-and-mouth disease virus (FMDV) infection in cattle, transcriptome alterations associated with the FMDV carrier state were characterized using a bovine whole-transcriptome microarray. Eighteen cattle (8 vaccinated with a recombinant FMDV A vaccine, 10 non-vaccinated) were challenged with FMDV A24 Cruzeiro, and the gene expression profiles of nasopharyngeal tissues collected between 21 and 35 days after challenge were compared between 11 persistently infected carriers and 7 non-carriers. Carriers and non-carriers were further compared to 2 naïve animals that had been neither vaccinated nor challenged. At a controlled false-discovery rate of 10% and a minimum difference in expression of 50%, 648 genes were differentially expressed between FMDV carriers and non-carriers, and most (467) had higher expression in carriers. Among these, genes associated with cellular proliferation and the immune response-such as chemokines, cytokines and genes regulating T and B cells-were significantly overrepresented. Differential gene expression was significantly correlated between non-vaccinated and vaccinated animals (biological correlation +0.97), indicating a similar transcriptome profile across these groups. Genes related to prostaglandin E2 production and the induction of regulatory T cells were overexpressed in carriers. In contrast, tissues from non-carrier animals expressed higher levels of complement regulators and pro-apoptotic genes that could promote virus clearance. Based on these findings, we propose a working hypothesis for FMDV persistence in nasopharyngeal tissues of cattle, in which the virus may be maintained by an impairment of apoptosis and the local suppression of cell-mediated antiviral immunity by inducible regulatory T cells.

  11. Cell-mediated immune responses to a varicella-zoster virus glycoprotein E vaccine using both a TLR agonist and QS21 in mice.

    PubMed

    Dendouga, Najoua; Fochesato, Michel; Lockman, Laurence; Mossman, Sally; Giannini, Sandra L

    2012-04-26

    Lack of adequate cell-mediated immunity (CMI) to varicella-zoster virus (VZV) has been associated with higher risks of developing herpes zoster (HZ) and associated post-herpetic neuralgia (PHN), and is of particular concern for older and immunocompromised individuals. Thus, the development of an effective HZ vaccine with a clinically acceptable safety profile that is capable of addressing decreased immunity would be highly desirable. In this study we compared the immunogenicity of different vaccine formulations containing VZV glycoprotein E (gE), an important target for CMI and antibody responses, in a VZV-primed mouse model. The formulations included recombinant gE, either unadjuvanted, or combined with aluminium salt or an Adjuvant System (AS01 or AS02), and CMI was used as the primary immunological endpoint. All adjuvanted vaccines induced gE- and/or VZV-specific CD4(+) T cell and antibody responses. A formulation of gE with an Adjuvant System containing the immunostimulants QS21 and 3-O-desacyl-4'-monophosphoryl lipid A (MPL) was shown to be more immunogenic than gE with aluminium salt or unadjuvanted gE (gE/saline). Both immunostimulants were shown to act synergistically in enhancing CMI responses. Formulations with AS01 elicited high frequencies of CD4(+) T cells producing IFN-γ and IL-2. These responses were dose-dependent with respect to both antigen and adjuvant. The gE/AS01(B) candidate vaccine induced higher frequencies of CD4(+) T cells producing IL-2 and/or IFN-γ than all other gE/AS01 formulations, supporting its use for clinical evaluations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Thiol dependent NF-κB suppression and inhibition of T-cell mediated adaptive immune responses by a naturally occurring steroidal lactone Withaferin A.

    PubMed

    Gambhir, Lokesh; Checker, Rahul; Sharma, Deepak; Thoh, M; Patil, Anand; Degani, M; Gota, Vikram; Sandur, Santosh K

    2015-12-01

    Withaferin A (WA), a steroidal lactone isolated from ayurvedic medicinal plant Withania somnifera, was shown to inhibit tumor growth by inducing oxidative stress and suppressing NF-κB pathway. However, its effect on T-cell mediated adaptive immune responses and the underlying mechanism has not been investigated. Since both T-cell responses and NF-κB pathway are known to be redox sensitive, the present study was undertaken to elucidate the effect of WA on adaptive immune responses in vitro and in vivo. WA inhibited mitogen induced T-cell and B-cell proliferation in vitro without inducing any cell death. It inhibited upregulation of T-cell (CD25, CD69, CD71 and CD54) and B-cell (CD80, CD86 and MHC-II) activation markers and secretion of Th1 and Th2 cytokines. WA induced oxidative stress by increasing the basal ROS levels and the immunosuppressive effects of WA were abrogated only by thiol anti-oxidants. The redox modulatory effects of WA in T-cells were attributed to its ability to directly interact with free thiols. WA inhibited NF-κB nuclear translocation in lymphocytes and prevented the direct binding of nuclear NF-κB to its consensus sequence. MALDI-TOF analysis using a synthetic NF-κB-p50 peptide containing Cys-62 residue suggested that WA can modify the cysteine residue of NF-κB. The pharmacokinetic studies for WA were also carried out and in vivo efficacy of WA was studied using mouse model of Graft-versus-host disease. In conclusion, WA is a potent inhibitor of T-cell responses and acts via a novel thiol dependent mechanism and inhibition of NF-κB pathway.

  13. Transcriptomic Analysis of Persistent Infection with Foot-and-Mouth Disease Virus in Cattle Suggests Impairment of Apoptosis and Cell-Mediated Immunity in the Nasopharynx

    PubMed Central

    Stenfeldt, Carolina; Smoliga, George R.; Pacheco, Juan M.; Rodriguez, Luis L.; Li, Robert W.; Zhu, James; Arzt, Jonathan

    2016-01-01

    In order to investigate the mechanisms of persistent foot-and-mouth disease virus (FMDV) infection in cattle, transcriptome alterations associated with the FMDV carrier state were characterized using a bovine whole-transcriptome microarray. Eighteen cattle (8 vaccinated with a recombinant FMDV A vaccine, 10 non-vaccinated) were challenged with FMDV A24 Cruzeiro, and the gene expression profiles of nasopharyngeal tissues collected between 21 and 35 days after challenge were compared between 11 persistently infected carriers and 7 non-carriers. Carriers and non-carriers were further compared to 2 naïve animals that had been neither vaccinated nor challenged. At a controlled false-discovery rate of 10% and a minimum difference in expression of 50%, 648 genes were differentially expressed between FMDV carriers and non-carriers, and most (467) had higher expression in carriers. Among these, genes associated with cellular proliferation and the immune response–such as chemokines, cytokines and genes regulating T and B cells–were significantly overrepresented. Differential gene expression was significantly correlated between non-vaccinated and vaccinated animals (biological correlation +0.97), indicating a similar transcriptome profile across these groups. Genes related to prostaglandin E2 production and the induction of regulatory T cells were overexpressed in carriers. In contrast, tissues from non-carrier animals expressed higher levels of complement regulators and pro-apoptotic genes that could promote virus clearance. Based on these findings, we propose a working hypothesis for FMDV persistence in nasopharyngeal tissues of cattle, in which the virus may be maintained by an impairment of apoptosis and the local suppression of cell-mediated antiviral immunity by inducible regulatory T cells. PMID:27643611

  14. Cell penetrable-mouse forkhead box P3 suppresses type 1 T helper cell-mediated immunity in a murine model of delayed-type hypersensitivity

    PubMed Central

    Liu, Xia; Wang, Jun; Wang, Hui; Zhou, Chen; Yu, Qihong; Yin, Lei; Wu, Weijiang; Xia, Sheng; Shao, Qixiang

    2017-01-01

    Forkhead box P3 (FOXP3), which is a transcription factor, has a primary role in the development and function of regulatory T cells, and thus contributes to homeostasis of the immune system. A previous study generated a cell-permeable fusion protein of mouse FOXP3 conjugated to a protein transduction domain (PTD-mFOXP3) that successfully blocked differentiation of type 17 T helper cells in vitro and alleviated experimental arthritis in mice. In the present study, the role of PTD-mFOXP3 in type 1 T helper (Th1) cell-mediated immunity was investigated and the possible mechanisms for its effects were explored. Under Th1 polarization conditions, cluster of differentiation 4+ T cells were treated with PTD-mFOXP3 and analyzed by flow cytometry in vitro, which revealed that PTD-mFOXP3 blocked Th1 differentiation in vitro. Mice models of delayed type hypersensitivity (DTH) reactions were generated by subcutaneous sensitization and challenge with ovalbumin (OVA) to the ears of mice. PTD-mFOXP3, which was administered via local subcutaneous injection, significantly reduced DTH-induced inflammation, including ear swelling (ear swelling, P<0.001; pinnae weight, P<0.05 or P<0.01 with 0.25 and 1.25 mg/kg PTD-mFOXP3, respectively), infiltration of T cells, and expression of interferon-γ at local inflammatory sites (mRNA level P<0.05) compared with the DTH group. The results of the present study demonstrated that PTD-mFOXP3 may attenuate DTH reactions by suppressing the infiltration and activity of Th1 cells.

  15. An antibody against the surfactant protein A (SP-A)-binding domain of the SP-A receptor inhibits T cell-mediated immune responses to Mycobacterium tuberculosis.

    PubMed

    Samten, Buka; Townsend, James C; Sever-Chroneos, Zvjezdana; Pasquinelli, Virginia; Barnes, Peter F; Chroneos, Zissis C

    2008-07-01

    Surfactant protein A (SP-A) suppresses lymphocyte proliferation and IL-2 secretion, in part, by binding to its receptor, SP-R210. However, the mechanisms underlying this effect are not well understood. Here, we studied the effect of antibodies against the SP-A-binding (neck) domain (alpha-SP-R210n) or nonbinding C-terminal domain (alpha-SP-R210ct) of SP-R210 on human peripheral blood T cell immune responses against Mycobacterium tuberculosis. We demonstrated that both antibodies bind to more than 90% of monocytes and 5-10% of CD3+ T cells in freshly isolated PBMC. Stimulation of PBMC from healthy tuberculin reactors [purified protein derivative-positive (PPD+)] with heat-killed M. tuberculosis induced increased antibody binding to CD3+ cells. Increased antibody binding suggested enhanced expression of SP-R210, and this was confirmed by Western blotting. The antibodies (alpha-SP-R210n) cross-linking the SP-R210 through the SP-A-binding domain markedly inhibited cell proliferation and IFN-gamma secretion by PBMC from PPD+ donors in response to heat-killed M. tuberculosis, whereas preimmune IgG and antibodies (alpha-SP-R210ct) cross-linking SP-R210 through the non-SP-A-binding, C-terminal domain had no effect. Anti-SP-R210n also decreased M. tuberculosis-induced production of TNF-alpha but increased production of IL-10. Inhibition of IFN-gamma production by alpha-SP-R210n was abrogated by the combination of neutralizing antibodies to IL-10 and TGF-beta1. Together, these findings support the hypothesis that SP-A, via SP-R210, suppresses cell-mediated immunity against M. tuberculosis via a mechanism that up-regulates secretion of IL-10 and TGF-beta1.

  16. Silica vesicles as nanocarriers and adjuvants for generating both antibody and T-cell mediated immune resposes to Bovine Viral Diarrhoea Virus E2 protein.

    PubMed

    Mody, Karishma T; Mahony, Donna; Zhang, Jun; Cavallaro, Antonino S; Zhang, Bing; Popat, Amirali; Mahony, Timothy J; Yu, Chengzhong; Mitter, Neena

    2014-12-01

    Bovine Viral Diarrhoea Virus (BVDV) is widely distributed in cattle industries and causes significant economic losses worldwide annually. A limiting factor in the development of subunit vaccines for BVDV is the need to elicit both antibody and T-cell-mediated immunity as well as addressing the toxicity of adjuvants. In this study, we have prepared novel silica vesicles (SV) as the new generation antigen carriers and adjuvants. With small particle size of 50 nm, thin wall (~6 nm), large cavity (~40 nm) and large entrance size (5.9 nm for SV-100 and 16 nm for SV-140), the SV showed high loading capacity (∼ 250 μg/mg) and controlled release of codon-optimised E2 (oE2) protein, a major immunogenic determinant of BVDV. The in vivo functionality of the system was validated in mice immunisation trials comparing oE2 plus Quil A (50 μg of oE2 plus 10 μg of Quil A, a conventional adjuvant) to the oE2/SV-140 (50 μg of oE2 adsorbed to 250 μg of SV-140) or oE2/SV-140 together with 10 μg of Quil A. Compared to the oE2 plus Quil A, which generated BVDV specific antibody responses at a titre of 10(4), the oE2/SV-140 group induced a 10 times higher antibody response. In addition, the cell-mediated response, which is essential to recognise and eliminate the invading pathogens, was also found to be higher [1954-2628 spot forming units (SFU)/million cells] in mice immunised with oE2/SV-140 in comparison to oE2 plus Quil A (512-1369 SFU/million cells). Our study has demonstrated that SV can be used as the next-generation nanocarriers and adjuvants for enhanced veterinary vaccine delivery.

  17. Intraoperative intravenous lidocaine exerts a protective effect on cell-mediated immunity in patients undergoing radical hysterectomy.

    PubMed

    Wang, Huan-Liang; Yan, Hong-Dan; Liu, Ya-Yang; Sun, Bao-Zhu; Huang, Rui; Wang, Xiao-Shuang; Lei, Wei-Fu

    2015-11-01

    Surgical procedures cause a decrease in lymphocyte proliferation rate, an increase in apoptosis and shifts the balance of T‑helper (Th)1/Th2 cells towards anti‑cell‑mediated immunity (CMI) Th2 dominance, which is relevant to the immunosuppressive effects of CMI, postoperative septic complications and the formation of tumor metastasis. Previous studies have revealed that lidocaine exhibits antibacterial actions; regulating inflammatory responses, reducing postoperative pain and affecting the duration spent in hospital. Thus, the present study hypothesized that lidocaine may exert a protective effect on the CMI of patients undergoing surgery for the removal of a primary tumor. A total of 30 adult female patients diagnosed with cervical cancer were recruited to the present study and were randomized into two groups. The lidocaine group received an intravenous bolus dose of 1.5 mg/kg lidocaine, followed by continuous infusion at 1.5 mg/kg/h until discharge from the operating room. The control group received the same volume of normal saline. A 10 ml sample of venous blood was drawn, and the lymphocytes were isolated using Ficoll‑paque 1 day prior to surgery, at discharge from the operating room and 48 h post‑surgery. The proliferation rate of the lymphocytes was assessed using a Cell Counting Kit‑8 assay and was found to be higher in the lidocaine group. The early apoptosis of lymphocytes was attenuated following lidocaine treatment at 48 h post‑surgery, as detected using flow cytometry with Annexin V‑fluorescein isothiocyanate/propidium iodide staining. The level of interferon (IFN)‑γ in the serum at 48 h was significantly decreased following surgery in the control group, compared with the pre‑surgical values (3.782 ± 0.282, vs. 4.089 ± 0.339 pg/ml, respectively) and the ratio of IFN‑γ to interleukin‑4 was well preserved in the lidocaine group. In conclusion, the present study demonstrated that the intraoperative systemic administration of

  18. In vitro VLA-4 blockade results in an impaired NK cell-mediated immune surveillance against melanoma.

    PubMed

    Gandoglia, Ilaria; Ivaldi, Federico; Carrega, Paolo; Armentani, Eric; Ferlazzo, Guido; Mancardi, Gianluigi; Kerlero de Rosbo, Nicole; Uccelli, Antonio; Laroni, Alice

    2017-01-01

    cells in the lower chamber, and that it was significantly reduced in presence of NTZ. Our results show that upon exposure to NTZ both cytolytic activity and migration toward melanoma cells were affected, suggesting that binding of NTZ to NK cells affects pathways involved in these NK-cell functions. We analyzed the expression of CD49d on NK cells from MS patients treated with NTZ and observed that it decreases with time of treatment. These data suggest that blockade of VLA-4 on NK-cell surface alters some key functions involved in the immune surveillance toward melanoma by NK cells and may provide a mechanistic explanation for the reported occurrence of melanoma in MS patients treated with NTZ.

  19. Adoption

    MedlinePlus

    ... biological families) and where they came from. This curiosity often becomes more intense as part of the ... adoptive family or feel close to them. This curiosity, which can feel quite intense, is a normal ...

  20. Measles Humoral and Cell-Mediated Immunity in Children Aged 5–10 Years After Primary Measles Immunization Administered at 6 or 9 Months of Age

    PubMed Central

    Gans, Hayley A.; Yasukawa, Linda L.; Sung, Phillip; Sullivan, Barbara; DeHovitz, Ross; Audet, Susette; Beeler, Judy; Arvin, Ann M.

    2013-01-01

    Background. Given the high infant measles mortality rate, there is interest in whether a measles immunization regimen beginning at <12 months of age provides lasting immunity. Methods. Measles-specific immune responses were evaluated in 70 children aged 5–10 years after primary measles vaccine administered at 6, 9, or 12 months. Results. At 5–10 years of age, the stimulation index for measles T-cell proliferation was 11.4 (SE, 1.3), 10.9 (SE, 1.5), and 14.4 (SE 2.1) when the first measles dose was given at 6, 9, or 12 months, respectively. Neutralizing antibody concentration (geometric mean titer [GMT]) in those immunized at 6 months of age was 125 mIU/mL (95% confidence interval [CI], 42–377) in the presence of passive antibodies (PAs) and 335 mIU/mL (95% CI, 211–531) in those without PAs; in those immunized at 9 months, GMTs were 186 mIU/mL (95% CI, 103–335) and 1080 mIU/mL (95% CI, 642–1827) in the presence and absence of PAs, respectively. The GMT was 707 mIU/mL (95% CI, 456–1095) when vaccine was administered at 12 months (P ≤ .04). Conclusions. Measles-specific T-cell responses were sustained at 5–10 years of age regardless of age at time of primary measles immunization. Neutralizing antibody concentrations were lower in cohorts given the first vaccine dose at 6 months of age and in the presence of PAs; however, responses could be boosted by subsequent doses. Starting measles vaccination at <12 months of age may be beneficial during measles outbreaks or in endemic areas. PMID:23300162

  1. Evaluation of VZV-specific cell-mediated immunity in adults infected with HIV-1 by using a simple IFN-γ release assay.

    PubMed

    Watanabe, Dai; Otani, Naruhito; Suzuki, Sachiko; Dohi, Hiromi; Hirota, Kazuyuki; Yonemoto, Hitoshi; Koizumi, Yusuke; Otera, Hiroshi; Yajima, Keishiro; Nishida, Yasuharu; Uehira, Tomoko; Shima, Masayuki; Shirasaka, Takuma; Okuno, Toshiomi

    2013-08-01

    The development of herpes zoster is associated with reduced varicella zoster virus (VZV)-specific cell-mediated immune (CMI) reactions. In this study, VZV-specific CMI reactions in 42 anti-VZV-IgG antibody-positive adults infected with HIV-1 were evaluated by measuring the IFN-γ production levels in whole blood in response to stimulation with ultraviolet light-inactivated live attenuated VZV vaccine. The median VZV-specific IFN-γ production level in all patients was 63 pg/ml. Antiretroviral therapy (ART)-naïve patients with an AIDS-defining illness (HIV classification category C) had significantly lower IFN-γ production than ART-naïve patients in categories A and B and patients receiving ART (P=0.0194 and P=0.0046, respectively). IFN-γ production increased significantly in patients within 1 month of the onset of recurrent VZV disease and at more than 1 year from onset, compared with patients who had never had recurrent VZV disease (P=0.0396 and P=0.0484, respectively). In multivariate analyses, category C and history of recurrent VZV disease were significant factors affecting IFN-γ production. Levels of IFN-γ were measured before and after ART in seven ART-naïve patients with no history of recurrent VZV disease, and no significant changes were observed. The results indicate that VZV-specific CMI reactions were reduced in patients with an AIDS-defining illness and enhanced in patients with a history of recurrent VZV disease, but not enhanced by ART alone. Vaccination may be necessary to inhibit the development of herpes zoster in patients receiving ART; this IFN-γ releasing assay is one useful method for evaluating VZV-specific CMI reactions in clinical settings. Copyright © 2013 Wiley Periodicals, Inc.

  2. Varicella-zoster virus-specific cell-mediated immunity and herpes zoster development in multiple myeloma patients receiving bortezomib- or thalidomide-based chemotherapy.

    PubMed

    Kim, Ji-Won; Min, Chang-Ki; Mun, Yeung-Chul; Park, Yong; Kim, Byung Soo; Nam, Seung-Hyun; Koh, Youngil; Kwon, Ji-Hyun; Choe, Pyoeng Gyun; Park, Wan Beom; Kim, Inho

    2015-12-01

    The incidence of herpes zoster is substantial during bortezomib treatment in patients with multiple myeloma (MM). This study aimed to elucidate the effect of chemotherapy with or without bortezomib in MM patients on their herpes zoster incidence and varicella zoster virus (VZV)-specific cell-mediated immunity (CMI). Peripheral blood mononuclear cells were collected at baseline and after 1 month of bortezomib-based or thalidomide-based chemotherapy and then analyzed using VZV-specific interferon-gamma (IFN-γ) enzyme-linked immunospot (ELISPOT) assay. The clinical data from these patients were analyzed in relation to the ELISPOT results. Of 58 patients analyzed, 39 patients received bortezomib and the other 19 patients, thalidomide. Among them, 5 patients developed herpes zoster during chemotherapy; all 5 were being treated with the bortezomib-based regimen and were not receiving prophylactic anti-viral agents. The median onset of herpes zoster was 32 days (range, 15-95 days) from the initiation of chemotherapy. Among patients who received bortezomib therapy, acyclovir prophylaxis significantly reduced the risk for herpes zoster (100-day cumulative incidence, 0% vs. 49.5%; p<0.001). Spot-forming cell (SFC) counts in the IFN-γ ELISPOT assay decreased from baseline after bortezomib (p=0.011) or thalidomide (p=0.096) treatment. Patients with baseline SFCs greater than 20/10(6) mononuclear cells exhibited significantly higher incidence of herpes zoster (100-day cumulative incidence, 34.8% vs. 0%; p=0.040). Bortezomib treatment significantly reduced VZV-specific CMI, and high baseline SFC counts in patients receiving this treatment without acyclovir prophylaxis were associated with a significantly increased risk for herpes zoster. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Ablation of interaction between IL-33 and ST2+ regulatory T cells increases immune cell-mediated hepatitis and activated NK cell liver infiltration.

    PubMed

    Noel, Gregory; Arshad, Muhammad Imran; Filliol, Aveline; Genet, Valentine; Rauch, Michel; Lucas-Clerc, Catherine; Lehuen, Agnès; Girard, Jean-Philippe; Piquet-Pellorce, Claire; Samson, Michel

    2016-08-01

    The IL-33/ST2 axis plays a protective role in T-cell-mediated hepatitis, but little is known about the functional impact of endogenous IL-33 on liver immunopathology. We used IL-33-deficient mice to investigate the functional effect of endogenous IL-33 in concanavalin A (Con A)-hepatitis. IL-33(-/-) mice displayed more severe Con A liver injury than wild-type (WT) mice, consistent with a hepatoprotective effect of IL-33. The more severe hepatic injury in IL-33(-/-) mice was associated with significantly higher levels of TNF-α and IL-1β and a larger number of NK cells infiltrating the liver. The expression of Th2 cytokines (IL-4, IL-10) and IL-17 was not significantly varied between WT and IL-33(-/-) mice following Con A-hepatitis. The percentage of CD25(+) NK cells was significantly higher in the livers of IL-33(-/-) mice than in WT mice in association with upregulated expression of CXCR3 in the liver. Regulatory T cells (Treg cells) strongly infiltrated the liver in both WT and IL-33(-/-) mice, but Con A treatment increased their membrane expression of ST2 and CD25 only in WT mice. In vitro, IL-33 had a significant survival effect, increasing the total number of splenocytes, including B cells, CD4(+) and CD8(+) T cells, and the frequency of ST2(+) Treg cells. In conclusion, IL-33 acts as a potent immune modulator protecting the liver through activation of ST2(+) Treg cells and control of NK cells. Copyright © 2016 the American Physiological Society.

  4. A novel methodology for quantitating the enhancement of cutaneous delayed-type hypersensitivity by IMREG-1: a measure of the immunopotentiation of cell-mediated immunity.

    PubMed

    Sizemore, R C; Kern, C H; Gottlieb, M S; Gottlieb, A A

    1995-09-01

    IMREG-1, a low-molecular-weight immunomodulator derived from normal human leukocyte dialysates, has been shown to enhance cutaneous delayed-type hypersensitivity (DTH) responses to recall antigens. Both IMREG-1 and the biologically active peptides (Tyr-Gly[YG] and Tyr-Gly-Gly[YGG]) identified therein are able to accelerate and enhance DTH in a concentration-dependent manner. In this study, we describe a novel methodology for analyzing and quantitating this response and demonstrate its use with data comparing drug to placebo. Subjects demonstrating prior sensitivity to a recall antigen (tetanus toxoid) received intradermal injections of tetanus toxoid alone (control) and either dilutions of IMREG-1 plus antigen, or placebo plus antigen, on the volar surface of the forearm. The response, as measured by area of erythema, was calculated and plotted as a function of time. The area under the resulting curve (AUC) was then determined by use of the trapezoidal rule, whereby the area of a trapezoid formed between each sequential pair of time points was calculated. The AUC computed for each site receiving a dilution of IMREG-1 or placebo (test) was compared with the AUC computed at the site that received antigen alone (control) by means of a test to control (T/C) ratio. The respective T/C ratios for designated dilutions of IMREG-1 or placebo provided a basis of comparison between responses to IMREG-1 and to placebo, while also controlling for individual sensitivity in response to antigen. We demonstrate in this study that the enhanced response to IMREG-1 plus antigen is statistically different from that seen with placebo plus antigen. This response, as a function to time, predominantly appears in the 12- to 24-hr period after injection, illustrating the ability of the immunomodulator to accelerate, enhance, and sustain a DTH response. We further conclude that the effect of IMREG-1 in this context is one of immunopotentiation of cell-mediated immunity.

  5. Cell-Mediated Immune Predictors of Vaccine Effect on Viral Load and CD4 Count in a Phase 2 Therapeutic HIV-1 Vaccine Clinical Trial.

    PubMed

    Huang, Yunda; Pantaleo, Giuseppe; Tapia, Gonzalo; Sanchez, Brittany; Zhang, Lily; Trondsen, Monica; Hovden, Arnt-Ove; Pollard, Richard; Rockstroh, Jürgen; Ökvist, Mats; Sommerfelt, Maja A

    2017-09-22

    In a placebo-controlled trial of the peptide-based therapeutic HIV-1 p24(Gag) vaccine candidate Vacc-4x, participants on combination antiretroviral therapy (cART) received six immunizations over 18weeks, followed by analytical treatment interruption (ATI) between weeks 28 and 52. Cell-mediated immune responses were investigated as predictors of Vacc-4x effect (VE) on viral load (VL) and CD4 count during ATI. All analyses of week 28 responses and fold-changes relative to baseline considered per-protocol participants (Vacc-4x:placebo=72:32) resuming cART after week 40. Linear regression models with interaction tests were used. VE was estimated as the Vacc-4x-placebo difference in log10-transformed VL (VE(VL)) or CD4 count (VE(CD4)). A lower fold-change of CD4+ T-cell proliferation was associated with VE(CD4) at week 48 (p=0.036, multiplicity adjusted q=0.036) and week 52 (p=0.040, q=0.080). A higher fold-change of IFN-γ in proliferation supernatants was associated with VE(VL) at week 44 (p=0.047, q=0.07). A higher fold-change of TNF-α was associated with VE(VL) at week 44 (p=0.045, q=0.070), week 48 (p=0.028, q=0.070), and week 52 (p=0.037, q=0.074). A higher fold-change of IL-6 was associated with VE(VL) at week 48 (p=0.017, q=0.036). TNF-α levels (>median) were associated with VE(CD4) at week 48 (p=0.009, q=0.009). These exploratory analyses highlight the potential value of investigating biomarkers in T-cell proliferation supernatants for VE in clinical studies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Short communication: Prevalence of digital dermatitis in Canadian dairy cattle classified as high, average, or low antibody- and cell-mediated immune responders.

    PubMed

    Cartwright, S L; Malchiodi, F; Thompson-Crispi, K; Miglior, F; Mallard, B A

    2017-10-01

    Lameness is a major animal welfare issue affecting Canadian dairy producers, and it can lead to production, reproduction, and health problems in dairy cattle herds. Although several different lesions affect dairy cattle hooves, studies show that digital dermatitis is the most common lesion identified in Canadian dairy herds. It has also been shown that dairy cattle classified as having high immune response (IR) have lower incidence of disease compared with those animals with average and low IR; therefore, it has been hypothesized that IR plays a role in preventing infectious hoof lesions. The objective of this study was to compare the prevalence of digital dermatitis in Canadian dairy cattle that were classified for antibody-mediated (AMIR) and cell-mediated (CMIR) immune response. Cattle (n = 329) from 5 commercial dairy farms in Ontario were evaluated for IR using a patented test protocol that captures both AMIR and CMIR. Individuals were classified as high, average, or low responders based on standardized residuals for AMIR and CMIR. Residuals were calculated using a general linear model that included the effects of herd, parity, stage of lactation, and stage of pregnancy. Hoof health data were collected from 2011 to 2013 by the farm's hoof trimmer using Hoof Supervisor software (KS Dairy Consulting Inc., Dresser, WI). All trim events were included for each animal, and lesions were assessed as a binary trait at each trim event. Hoof health data were analyzed using a mixed model that included the effects of herd, stage of lactation (at trim date), parity (at trim date), IR category (high, average, and low), and the random effect of animal. All data were presented as prevalence within IR category. Results showed that cows with high AMIR had significantly lower prevalence of digital dermatitis than cattle with average and low AMIR. No significant difference in prevalence of digital dermatitis was observed between high, average, and low CMIR cows. These results

  7. Reduced humoral immunity and atypical cell-mediated immunity in response to vaccination in cows naturally infected with bovine leukemia virus.

    PubMed

    Frie, Meredith C; Sporer, Kelly R; Wallace, Joseph C; Maes, Roger K; Sordillo, Lorraine M; Bartlett, Paul C; Coussens, Paul M

    2016-12-01

    Bovine leukemia virus (BLV) is a retrovirus that is widely distributed across US dairy herds: over 83% of herds are BLV-infected and within-herd infection rates can approach 50%. BLV infection reduces both animal longevity and milk production and can interfere with normal immune health. With such a high prevalence of BLV infection in dairy herds, it is essential to understand the circumstances by which BLV negatively affects the immune system of infected cattle. To address this question, BLV- and BLV+ adult, lactating Holstein dairy cows were vaccinated with Bovi-Shield GOLD(®) FP(®) 5 L5 HB and their immune response to vaccination was measured over the course of 28days. On day 0 prior to vaccination and days 7, 14 and 28 post-vaccination, fresh PBMCs were characterized for T and B cell ratios in the periphery. Plasma was collected to measure titers of IgM, IgG1 and IgG2 produced against bovine herpesvirus 1 (BHV1), Leptospira hardjo and L. pomona, as well as to characterize neutralizing antibody titers produced against BHV1 and bovine viral diarrhea virus types 1 and 2. On day 18 post-vaccination, PBMCs were cultured in the presence of BHV1 and flow cytometry was used to determine IFNγ production by CD4+, CD8+ and γδ T cells and to investigate CD25 and MHCII expression on B cells. BLV+ cows produced significantly lower titers of IgM against BHV1, L. hardjo and L. pomona and produced lower titers of IgG2 against BHV1. γδ T cells from BLV+ cows displayed a hyper reactive response to stimulation in vitro, although no differences were observed in CD4+ or CD8+ T cell activation. Finally, B cells from BLV+ cows exhibited higher CD25 expression and reduced MHCII expression in response to stimulation in vitro. All together, data from this study support the hypothesis that BLV+ cows fail to respond to vaccination as strongly as BLV- cows and, consequently, may have reduced protective immunity when compared to healthy BLV- cows. Copyright © 2016 Elsevier B.V. All

  8. Mechanisms of immunity in typhus infection: adoptive transfer of immunity to Rickettsia mooseri.

    PubMed Central

    Murphy, J R; Wisseman, C G; Fiset, P

    1979-01-01

    When nonimmune guinea pigs are inoculated intradermally (i.d.) with Rickettsia mooseri (R. typhi), the rickettsiae replicate at the site of inoculation, leading to the development of a grossly observable lesion. In contrast, guinea pigs which have recovered from R. mooseri infection are resistant to challenge and prevent both rickettsial growth and the formation of lesions. To study the mechanisms of this immunity, sera or splenic cells collected from nonimmune or immune guinea pigs were inoculated separetely into nonimmune recipients. Splenic cells collected from immune donors protected R. mooseri-naive recipients from i.d. challenge as measured by control of rickettsial growth and by prevention of development of lesions at i.d. sites of inoculation. In contrast, serum from immune and nonimmune doners failed to protect nonimmune recipients by either criterion. PMID:110699

  9. High mobility group box 1 protein suppresses T cell-mediated immunity via CD11c(low)CD45RB(high) dendritic cell differentiation.

    PubMed

    Liu, Qing-yang; Yao, Yong-ming; Yan, Yong-hong; Dong, Ning; Sheng, Zhi-yong

    2011-05-01

    High mobility group box 1 protein (HMGB1) has been identified as a late proinflammatory cytokine and plays a key role in immune regulation. However, it is not yet clear whether HMGB1 can induce the activation and differentiation of dendritic cell (DC) subsets and subsequently modulate immune function of T cells. This study was performed to investigate the effect of HMGB1 on the differentiation of splenic DCs and its influence on T cell-mediated immunity in terms of DC subsets CD11c(low)CD45RB(high) DCs and CD11c(high)CD45RB(low) DCs in male BALB/c mice spleens in vitro. MACS microbeads were used to isolate splenic DCs, CD11c(low)CD45RB(high) DCs, CD11c(high)CD45RB(low) DCs and CD4(+) T cells. The percentage of CD11c(low)CD45RB(high) DCs was significantly increased after treatment with HMGB1 compared to their counterparts (CD11c(high)CD45RB(low) DCs). It was found that unlike the gradually increasing interleukin (IL)-12 secretion of CD11c(high)CD45RB(low) DCs induced by HMGB1, CD11c(low)CD45RB(high) DCs showed a obvious dose-dependent response between IL-10 production and HMGB1 stimulation. In order to verify whether the alteration of CD4(+) T cells was mainly associated with the differentiation of splenic DCs mediated by HMGB1 to CD11c(low)CD45RB(high) DCs, anti-IL-12 receptor (IL-12R) or anti-IL-10R monoclonal antibody was used to inhibit the effect of CD11c(high)CD45RB(low) DCs or CD11c(low)CD45RB(high) DCs in CD4(+) T cells mixed lymphocyte reaction culture. After treatment with anti-IL-12R or anti-IL-10 monoclonal antibody in CD4(+) T cells+CD11c(high)CD45RB(low) DCs or CD11c(low)CD45RB(high) DCs mixed lymphocyte reaction, the induction of these DCs on T cells was inhibited dramatically. These data demonstrated that HMGB1 might induce the differentiation of splenic DCs to CD11c(low)CD45RB(high) DCs followed by shifting of Th1 to Th2 with enhancement of T lymphocyte immune function in vitro. Also, the effect of HMGB1 on T cell differentiation to Th2 was not

  10. B Cells Are Critical to T-cell-Mediated Antitumor Immunity Induced by a Combined Immune-Stimulatory/Conditionally Cytotoxic Therapy for Glioblastoma12

    PubMed Central

    Candolfi, Marianela; Curtin, James F; Yagiz, Kader; Assi, Hikmat; Wibowo, Mia K; Alzadeh, Gabrielle E; Foulad, David; Muhammad, AKM G; Salehi, Sofia; Keech, Naomi; Puntel, Mariana; Liu, Chunyan; Sanderson, Nicholas R; Kroeger, Kurt M; Dunn, Robert; Martins, Gislaine; Lowenstein, Pedro R; Castro, Maria G

    2011-01-01

    We have demonstrated that modifying the tumor microenvironment through intratumoral administration of adenoviral vectors (Ad) encoding the conditional cytotoxic molecule, i.e., HSV1-TK and the immune-stimulatory cytokine, i.e., fms-like tyrosine kinase 3 ligand (Flt3L) leads to T-cell-dependent tumor regression in rodent models of glioblastoma. We investigated the role of B cells during immune-mediated glioblastoma multiforme regression. Although treatment with Ad-TK+Ad-Flt3L induced tumor regression in 60% of wild-type (WT) mice, it completely failed in B-cell-deficient Igh6-/- mice. Tumor-specific T-cell precursors were detected in Ad-TK+Ad-Flt3L-treated WT mice but not in Igh6-/- mice. The treatment also failed in WT mice depleted of total B cells or marginal zone B cells. Because we could not detect circulating antibodies against tumor cells and the treatment was equally efficient in WT mice and in mice with B-cell-specific deletion of Prdm 1 (encoding Blimp-1), in which B cells are present but unable to fully differentiate into antibody-secreting plasma cells, tumor regression in this model is not dependent on B cells' production of tumor antigen-specific immunoglobulins. Instead, B cells seem to play a role as antigen-presenting cells (APCs). Treatment with Ad-TK+Ad-Flt3L led to an increase in the number of B cells in the cervical lymph nodes, which stimulated the proliferation of syngeneic T cells and induced clonal expansion of antitumor T cells. Our data show that B cells act as APCs, playing a critical role in clonal expansion of tumor antigen-specific T cells and brain tumor regression. PMID:22028620

  11. Comparative immunotoxicity of 2,2`-dichlorodiethyl sulfide and cyclophosphamide: Evaluation of L1210 tumor cell resistance, cell-mediated immunity, and humoral immunity. (Reannouncement with new availability information)

    SciTech Connect

    Blank, J.A.; Joiner, R.L.; Houchens, D.P.; Dill, G.S.; Hobson, D.W.

    1991-12-31

    The immunotoxicity of 2,2`-dichlorodiethyl sulfide (sulfur mustard, SM),on humoral and cell-mediated immunity was compared with that of the nitrogen mustard 2-(bis(2-chloroethyl) amino)tetrahydro- 2H-1,3,2-oxazophosphorine 2-oxide (cyclophosphamide, CP). SM and CP had similar effects on thymic and splenic weights, spleen cell number, and the formation of antibody producing cells to sheep red blood cells (sRBC) when examined 5 days after exposure, but differed in their effects on body weights. Although there were no differences in the delayed hypersensitivity response to keyhole limpet hemocyanin, CP and SM had different effects in the L1210 tumor cell allograft rejection assay. CP, but not SM, decreased the 28 day survival rate of allogeneic mice exposed to a sublethal L1210 tumor challenge. The differing effects on survival to the L1210 tumor challenge could not be attributed to a direct cytotoxic effect of SM on the L1210 tumor cells as SM did not increase the survival rate or mediansurvival time of syngeneic mice exposed to a lethal L1210 tumor cell challenge. In summary, SM and CP had immunosuppressive effects in the humoral immune assay. Although neither compound suppressed the delayed hypersensitivity response, CP was found to suppress host resistance to L1210 tumor cells.

  12. Restoration of Viral Immunity in Immunodeficient Humans by the Adoptive Transfer of T Cell Clones

    NASA Astrophysics Data System (ADS)

    Riddell, Stanley R.; Watanabe, Kathe S.; Goodrich, James M.; Li, Cheng R.; Agha, Mounzer E.; Greenberg, Philip D.

    1992-07-01

    The adoptive transfer of antigen-specific T cells to establish immunity is an effective therapy for viral infections and tumors in animal models. The application of this approach to human disease would require the isolation and in vitro expansion of human antigen-specific T cells and evidence that such T cells persist and function in vivo after transfer. Cytomegalovirus-specific CD8^+ cytotoxic T cell (CTL) clones could be isolated from bone marrow donors, propagated in vitro, and adoptively transferred to immunodeficient bone marrow transplant recipients. No toxicity developed and the clones provided persistent reconstitution of CD8^+ cytomegalovirus-specific CTL responses.

  13. Intramuscular Immunization of Mice with a Live-Attenuated Triple Mutant of Yersinia pestis CO92 Induces Robust Humoral and Cell-Mediated Immunity To Completely Protect Animals against Pneumonic Plague.

    PubMed

    Tiner, Bethany L; Sha, Jian; Ponnusamy, Duraisamy; Baze, Wallace B; Fitts, Eric C; Popov, Vsevolod L; van Lier, Christina J; Erova, Tatiana E; Chopra, Ashok K

    2015-12-01

    Earlier, we showed that the Δlpp ΔmsbB Δail triple mutant of Yersinia pestis CO92 with deleted genes encoding Braun lipoprotein (Lpp), an acyltransferase (MsbB), and the attachment invasion locus (Ail), respectively, was avirulent in a mouse model of pneumonic plague. In this study, we further evaluated the immunogenic potential of the Δlpp ΔmsbB Δail triple mutant and its derivative by different routes of vaccination. Mice were immunized via the subcutaneous (s.c.) or the intramuscular (i.m.) route with two doses (2 × 10(6) CFU/dose) of the above-mentioned triple mutant with 100% survivability of the animals. Upon subsequent pneumonic challenge with 70 to 92 50% lethal doses (LD(50)) of wild-type (WT) strain CO92, all of the mice survived when immunization occurred by the i.m. route. Since Ail has virulence and immunogenic potential, a mutated version of Ail devoid of its virulence properties was created, and the genetically modified ail replaced the native ail gene on the chromosome of the Δlpp ΔmsbB double mutant, creating a Δlpp ΔmsbB::ailL2 vaccine strain. This newly generated mutant was attenuated similarly to the Δlpp ΔmsbB Δail triple mutant when administered by the i.m. route and provided 100% protection to animals against subsequent pneumonic challenge. Not only were the two above-mentioned mutants cleared rapidly from the initial i.m. site of injection in animals with no histopathological lesions, the immunized mice did not exhibit any disease symptoms during immunization or after subsequent exposure to WT CO92. These two mutants triggered balanced Th1- and Th2-based antibody responses and cell-mediated immunity. A substantial increase in interleukin-17 (IL-17) from the T cells of vaccinated mice, a cytokine of the Th17 cells, further augmented their vaccine potential. Thus, the Δlpp ΔmsbB Δail and Δlpp ΔmsbB::ailL2 mutants represent excellent vaccine candidates for plague, with the latter mutant still retaining Ail immunogenicity but

  14. DNA Vaccine Encoding HPV16 Oncogenes E6 and E7 Induces Potent Cell-mediated and Humoral Immunity Which Protects in Tumor Challenge and Drives E7-expressing Skin Graft Rejection

    PubMed Central

    Chandra, Janin; Dutton, Julie L.; Li, Bo; Woo, Wai-Ping; Xu, Yan; Tolley, Lynn K.; Yong, Michelle; Wells, James W.; R. Leggatt, Graham; Finlayson, Neil

    2017-01-01

    We have previously shown that a novel DNA vaccine technology of codon optimization and the addition of ubiquitin sequences enhanced immunogenicity of a herpes simplex virus 2 polynucleotide vaccine in mice, and induced cell-mediated immunity when administered in humans at relatively low doses of naked DNA. We here show that a new polynucleotide vaccine using the same technology and encoding a fusion protein of the E6 and E7 oncogenes of high-risk human papillomavirus type 16 (HPV16) is immunogenic in mice. This vaccine induces long-lasting humoral and cell-mediated immunity and protects mice from establishment of HPV16-E7-expressing tumors. In addition, it suppresses growth of readily established tumors and shows enhanced efficacy when combined with immune checkpoint blockade targeted at PD-L1. This vaccine also facilitates rejection of HPV16-E7-expressing skin grafts that demonstrate epidermal hyperplasia with characteristics of cervical and vulvar intraepithelial neoplasia. Clinical studies evaluating the efficacy of this vaccine in patients with HPV16+ premalignancies are planned. PMID:28166181

  15. Impact of oral meloxicam and long-distance transport on cell-mediated and humoral immune responses in feedlot steers receiving modified live BVDV booster vaccination on arrival.

    PubMed

    Van Engen, N K; Platt, R; Roth, J A; Stock, M L; Engelken, T; Vann, R C; Wulf, L W; Busby, W D; Wang, C; Kalkwarf, E M; Coetzee, J F

    2016-07-01

    The objective of this study was to investigate the impact of oral meloxicam (MEL) and long-distance transportation on cell-mediated immunity (CMI) in preconditioned steers receiving a booster vaccination on arrival. We hypothesized that steers treated with MEL at 1mg/kg body weight, 6h before night-time transport, would be less immunocompromised on arrival (day 0) and after 7days, and that CMI following vaccination with a modified live bovine viral diarrhea virus (BVDV) recall antigen would be increased. Brahman crossbreed steers, 13-17 months of age (n=87), were randomly assigned to one of four treatment groups: MEL, transported (MTR) (n=22), MEL, non-transported (MNT) (n=22), lactose placebo, transported (CTR) (n=21), and lactose placebo, non-transported (CNT) (n=22). MTR and CTR steers were transported for approximately 16h non-stop on a truck from Mississippi to Iowa (approximately 1300km), whereas steers in the MNT and CNT groups remained in Mississippi as non-transported controls. Body weight was measured and jugular blood was collected at -1, 0, and 7days from all steers at the same time, regardless of location. Multi-parameter flow cytometry (MP-FCM) was used to identify T-cell subsets and detect the expression of three activation markers (CD25 [interleukin (IL)-2 receptor], intracellular interferon-gamma [IFNγ], and IL-4) after in vitro stimulation with BVDV recall antigen. Plasma cortisol concentration was measured on day -1, 0, and 7 as a marker of transport-associated stress. Serum antibody titer to BVDV was assessed on day -1 and day 7 post-booster vaccination. Whole-blood samples were analyzed using MP-FCM on days 0 and 7. Results were log transformed and analyzed using repeated measures of analysis of variance. Compared with non-transported controls, transport led to an increase in BVDV-induced expression of CD25, IFNγ, and IL-4 in CD4(+), CD8(+), and γδ(+) T-cell subsets (P<0.05). MEL treatment mitigated the transportation-associated increase in

  16. [Systemic Salmonella arizonae infections in patients with a deficiency of cell-mediated immunity. A report of 2 cases and a review of the literature].

    PubMed

    Carfagna, P; Brandimarte, C; Bianco, G; Galiè, M; Paris, A; Venditti, M

    1998-12-01

    Systemic infections induced by Salmonella arizonae have been described in patients with underlying cell-mediated immunodeficiencies, usually resident in southern countries of U.S. and in Mexico. This peculiar geographic distribution is probably due to the ingestion of meat or drugs from rattlesnakes, that Salmonella arizonae colonize in the intestinal tract and that live in the above areas. In this article we describe two cases of systemic Salmonella arizonae infections, that represent, to our knowledge, the first report in European literature.

  17. Soluble β-glucan from Grifola frondosa induces tumor regression in synergy with TLR9 agonist via dendritic cell-mediated immunity.

    PubMed

    Masuda, Yuki; Nawa, Daiki; Nakayama, Yoshiaki; Konishi, Morichika; Nanba, Hiroaki

    2015-12-01

    The maturation of dendritic cells into more-immunostimulatory dendritic cells by stimulation with different combinations of immunologic agents is expected to provide efficient, adoptive immunotherapy against cancer. Soluble β-glucan maitake D-fraction, extracted from the maitake mushroom Grifola frondosa, acts as a potent immunotherapeutic agent, eliciting innate and adoptive immune responses, thereby contributing to its antitumor activity. Here, we evaluated the efficacy of maitake D-fraction, in combination with a Toll-like receptor agonist, to treat tumors in a murine model. Our results showed that maitake D-fraction, in combination with the Toll-like receptor 9 agonist, cytosine-phosphate-guanine oligodeoxynucleotide, synergistically increased the expression of dendritic cell maturation markers and interleukin-12 production in dendritic cells, but it did not increase interleukin-10 production, generating strong effector dendritic cells with an augmented capacity for efficiently priming an antigen-specific, T helper 1-type T cell response. Maitake D-fraction enhances cytosine-phosphate-guanine oligodeoxynucleotide-induced dendritic cell maturation and cytokine responses in a dectin-1-dependent pathway. We further showed that a combination therapy using cytosine-phosphate-guanine oligodeoxynucleotide and maitake D-fraction was highly effective, either as adjuvants for dendritic cell vaccination or by direct administration against murine tumor. Therapeutic responses to direct administration were associated with increased CD11c(+) dendritic cells in the tumor site and the induction of interferon-γ-producing CD4(+) and CD8(+) T cells. Our results indicate that maitake D-fraction and cytosine-phosphate-guanine oligodeoxynucleotide synergistically activated dendritic cells, resulting in tumor regression via an antitumor T helper cell 1-type response. Our findings provide the basis for a potent antitumor therapy using a novel combination of immunologic agents for

  18. Harnessing innate and adaptive immunity for adoptive cell therapy of renal cell carcinoma.

    PubMed

    Geiger, Christiane; Nössner, Elfriede; Frankenberger, Bernhard; Falk, Christine S; Pohla, Heike; Schendel, Dolores J

    2009-06-01

    The development of immunotherapies for renal cell carcinoma (RCC) has been the subject of research for several decades. In addition to cytokine therapy, the benefit of various adoptive cell therapies has again come into focus in the past several years. Nevertheless, success in fighting this immunogenic tumor is still disappointing. RCC can attract a multitude of different effector cells of both the innate and adaptive immune system, including natural killer (NK) cells, gammadelta T cells, NK-like T cells, peptide-specific T cells, dendritic cells (DC), and regulatory T cells (Tregs). Based on intensive research on the biology and function of different immune cells, we now understand that individual cell types do not act in isolation but function within a complex network of intercellular interactions. These interactions play a pivotal role in the efficient activation and function of effector cells, which is a prerequisite for successful tumor elimination. This review provides a current overview of the diversity of effector cells having the capacity to recognize RCC. Aspects of the functions and anti-tumor properties that make them attractive candidates for adoptive cell therapies, as well as experience in clinical application are discussed. Improved knowledge of the biology of this immune network may help us to effectively harness various effector cells, placing us in a better position to develop new therapeutic strategies to successfully fight RCC.

  19. Cell-Mediated Drugs Delivery

    PubMed Central

    Batrakova, Elena V.; Gendelman, Howard E.; Kabanov, Alexander V.

    2011-01-01

    INTRODUCTION Drug targeting to sites of tissue injury, tumor or infection with limited toxicity is the goal for successful pharmaceutics. Immunocytes (including mononuclear phagocytes (dendritic cells, monocytes and macrophages), neutrophils, and lymphocytes) are highly mobile; they can migrate across impermeable barriers and release their drug cargo at sites of infection or tissue injury. Thus immune cells can be exploited as trojan horses for drug delivery. AREAS COVERED IN THIS REVIEW This paper reviews how immunocytes laden with drugs can cross the blood brain or blood tumor barriers, to facilitate treatments for infectious diseases, injury, cancer, or inflammatory diseases. The promises and perils of cell-mediated drug delivery are reviewed, with examples of how immunocytes can be harnessed to improve therapeutic end points. EXPERT OPINION Using cells as delivery vehicles enables targeted drug transport, and prolonged circulation times, along with reductions in cell and tissue toxicities. Such systems for drug carriage and targeted release represent a novel disease combating strategy being applied to a spectrum of human disorders. The design of nanocarriers for cell-mediated drug delivery may differ from those used for conventional drug delivery systems; nevertheless, engaging different defense mechanisms into drug delivery may open new perspectives for the active delivery of drugs. PMID:21348773

  20. Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: a randomized controlled trial in non obese humans

    USDA-ARS?s Scientific Manuscript database

    Calorie restriction (CR) inhibits inflammation and slows aging in many animal species, but in rodents housed in pathogen-free facilities, CR impairs immunity against certain pathogens. However, little is known about the effects of long-term moderate CR on immune function in humans. In this multi-cen...

  1. Montanide™ ISA 71 VG adjuvant enhances antibody and cell-mediated immune responses to profilin subunit antigen vaccination and promotes protection against Eimeria acervulina and Eimeria tenella.

    PubMed

    Jang, Seung I; Lillehoj, Hyun S; Lee, Sung Hyen; Lee, Kyung Woo; Lillehoj, Erik P; Bertrand, François; Dupuis, Laurent; Deville, Sébastien

    2011-01-01

    The present study was conducted to investigate the immunoenhancing effects of Montanide™ ISA 71 VG adjuvant on profilin subunit antigen vaccination. Broiler chickens were immunized subcutaneously with a purified Eimeria acervulina recombinant profilin protein, either alone or mixed with ISA 71 VG, and host immune responses were evaluated. After secondary immunization, antigen-specific antibody and T-cell responses were higher in the group which received profilin plus ISA 71 VG compared with the other groups. Furthermore, body weight gains and fecal oocyst shedding were evaluated following oral challenge infection with live E. acervulina or Eimeria tenella oocysts. Vaccination with profilin plus ISA 71 VG reduced oocyst shedding compared with animals immunized with profilin alone. These results demonstrate that the recombinant profilin subunit vaccine, when given in combination with Montanide™ ISA 71 VG, augments protective immunity against E. acervulina and E. tenella. Published by Elsevier Inc.

  2. Improved cell mediated immune responses after successful re-vaccination of non-responders to the hepatitis B virus surface antigen (HBsAg) vaccine using the combined hepatitis A and B vaccine.

    PubMed

    Nyström, Jessica; Cardell, Kristina; Björnsdottir, Thora Björg; Fryden, Aril; Hultgren, Catharina; Sällberg, Matti

    2008-11-05

    We successfully re-vaccinated hepatitis B virus (HBV) vaccine non-responders using a double dose of the combined hepatitis A virus (HAV) and HBV vaccine. The hope was to improve priming of hepatitis B surface antigen (HBsAg)-specific cell mediated immune response (CMI) by an increased antigen dose and a theoretical adjuvant-effect from the local presence of a HAV-specific CMI. A few non-responders had a detectable HBsAg-specific CMI before re-vaccination. An in vitro detectable HBsAg-specific CMI was primed equally effective in non-responders (58%) as in first time vaccine recipients (68%). After the third dose a weak, albeit significant, association was observed between the magnitude of HBsAg-specific proliferation and anti-HBs levels. This regimen improves the priming of HBsAg-specific CMIs and antibodies.

  3. Intramuscular injection of plasmid DNA encoding cottontail rabbit papillomavirus E1, E2, E6 and E7 induces T cell-mediated but not humoral immune responses in rabbits.

    PubMed

    Han, R; Reed, C A; Cladel, N M; Christensen, N D

    1999-03-17

    To test the efficacy of genetic vaccination against papillomavirus infection, plasmid DNA encoding cottontail rabbit papillomavirus (CRPV) E1, E2, E6, E7 or without insert were intramuscularly injected into five groups of rabbits. Peripheral blood mononuclear cells (PBMCs) showed specific proliferation upon in vitro stimulation with E1, E2, E6 or E7 proteins in a majority of vaccinated rabbits but Western blot analysis did not detect antibodies specific for these viral proteins in rabbit serum. All rabbits grew papillomas after virus challenge and none of the rabbits showed systemic papilloma regression. These observations showed that intramuscular injection of plasmid DNA encoding CRPV E1, E2, E6 or E7 induced CD4+ T cell-mediated but not humoral immune responses, and did not result in the protection of rabbits from virus infection.

  4. DNA Prime/Adenovirus Boost Malaria Vaccine Encoding P. falciparum CSP and AMA1 Induces Sterile Protection Associated with Cell-Mediated Immunity

    DTIC Science & Technology

    2013-02-14

    Vaccination of monkeys with recombinant Plasmodium falciparum apical membrane antigen 1 confers protection against blood-stage malaria . Infect Immun...circumsporozoite protein partially protects healthy malaria -naive adults against Plasmodium falciparum sporozoite challenge. Infect Immun 74: 5933–5942...Ballou WR, et al. (1986) Malaria transmitted to humans by mosquitoes infected from cultured Plasmodium falciparum . Am J Trop Med Hyg 35: 66–68. 37

  5. Role of Interleukin-17A in Cell-Mediated Protection against Staphylococcus aureus Infection in Mice Immunized with the Fibrinogen-Binding Domain of Clumping Factor A ▿

    PubMed Central

    Narita, Kouji; Hu, Dong-Liang; Mori, Fumiaki; Wakabayashi, Koichi; Iwakura, Yoichiro; Nakane, Akio

    2010-01-01

    Clumping factor A (ClfA) is a fibrinogen-binding cell wall-attached protein and an important virulence factor of Staphylococcus aureus. Previous studies reported that an immunization with the fibrinogen-binding domain of ClfA (ClfA40-559) protected animals against S. aureus infection. It was reported that some cytokines are involved in the pathogenesis of staphylococcal diseases and in host defense against S. aureus infection. However, the role of cytokines in the protective effect of ClfA40-559 as a vaccine has not been elucidated. In this study, we demonstrated that the spleen cells of ClfA40-559-immunized mice produced a large amount of interleukin-17A (IL-17A). The protective effect of immunization was exerted in wild-type mice but not in IL-17A-deficient mice. IL-17A mRNA expression was increased in the spleens and kidneys of immunized mice after infection. CXCL2 and CCL2 mRNA expression was increased in the spleens and kidneys, respectively. Consistent with upregulation of the mRNA expression, neutrophils infiltrated into the spleens extensively and macrophage infiltration was observed in the kidneys of immunized mice. These results suggest that immunization with ClfA40-559 induces the IL-17A-producing cells and that IL-17-mediated cellular immunity is involved in the protective effect induced by immunization with ClfA40-559 against S. aureus infection. PMID:20679443

  6. Involvement of CD8+ T cell-mediated immune responses in LcrV DNA vaccine induced protection against lethal Yersinia pestis challenge.

    PubMed

    Wang, Shixia; Goguen, Jon D; Li, Fusheng; Lu, Shan

    2011-09-09

    Yersinia pestis (Y. pestis) is the causative pathogen of plague, a highly fatal disease for which an effective vaccine, especially against mucosal transmission, is still not available. Like many bacterial infections, antigen-specific antibody responses have been traditionally considered critical, if not solely responsible, for vaccine-induced protection against Y. pestis. Studies in recent years have suggested the importance of T cell immune responses against Y. pestis infection but information is still limited about the details of Y. pestis antigen-specific T cell immune responses. In current report, studies are conducted to identify the presence of CD8+ T cell epitopes in LcrV protein, the leading antigen of plague vaccine development. Furthermore, depletion of CD8+ T cells in LcrV DNA vaccinated Balb/C mice led to reduced protection against lethal intranasal challenge of Y. pestis. These findings establish that an LcrV DNA vaccine is able to elicit CD8+ T cell immune responses against specific epitopes of this key plague antigen and that a CD8+ T cell immune response is involved in LcrV DNA vaccine-elicited protection. Future studies in plague vaccine development will need to examine if the presence of detectable T cell immune responses, in particular CD8+ T-cell immune responses, will enhance the protection against Y. pestis in higher animal species or humans. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Adoptive immunotherapy for cancer: the next generation of gene-engineered immune cells.

    PubMed

    Berry, L J; Moeller, M; Darcy, P K

    2009-10-01

    Adoptive cellular immunotherapy involving transfer of tumor-reactive T cells has shown some notable antitumor responses in a minority of cancer patients. In particular, transfer of tumor-infiltrating lymphocytes has resulted in long-term objective responses in patients with advanced melanoma. However, the inability to isolate sufficient numbers of tumor-specific T cells from most malignancies has restricted the broad utility of this approach. An emerging approach to circumvent this limitation involves the genetic modification of effector cells with T cell receptor (TCR) transgenes or chimeric single-chain variable fragment (scFv) receptors that can specifically redirect T cells to tumor. There has been much progress in the design of TCR and scFv receptors to enhance the antigen-specific activation of effector cells and their trafficking and persistence in vivo. Considerable effort has been directed toward improving the safety of this approach and reducing the immunogenicity of the receptor. This review discusses the latest developments in the field of adoptive immunotherapy using genetically modified immune cells that have been transduced with either TCR or scFv receptor transgenes and used in preclinical and clinical settings as anticancer agents.

  8. An Oral Salmonella-Based Vaccine Inhibits Liver Metastases by Promoting Tumor-Specific T-Cell-Mediated Immunity in Celiac and Portal Lymph Nodes: A Preclinical Study

    PubMed Central

    Vendrell, Alejandrina; Mongini, Claudia; Gravisaco, María José; Canellada, Andrea; Tesone, Agustina Inés; Goin, Juan Carlos; Waldner, Claudia Inés

    2016-01-01

    Primary tumor excision is one of the most widely used therapies of cancer. However, the risk of metastases development still exists following tumor resection. The liver is a common site of metastatic disease for numerous cancers. Breast cancer is one of the most frequent sources of metastases to the liver. The aim of this work was to evaluate the efficacy of the orally administered Salmonella Typhi vaccine strain CVD 915 on the development of liver metastases in a mouse model of breast cancer. To this end, one group of BALB/c mice was orogastrically immunized with CVD 915, while another received PBS as a control. After 24 h, mice were injected with LM3 mammary adenocarcinoma cells into the spleen and subjected to splenectomy. This oral Salmonella-based vaccine produced an antitumor effect, leading to a decrease in the number and volume of liver metastases. Immunization with Salmonella induced an early cellular immune response in mice. This innate stimulation rendered a large production of IFN-γ by intrahepatic immune cells (IHIC) detected within 24 h. An antitumor adaptive immunity was found in the liver and celiac and portal lymph nodes (LDLN) 21 days after oral bacterial inoculation. The antitumor immune response inside the liver was associated with increased CD4+ and dendritic cell populations as well as with an inflammatory infiltrate located around liver metastatic nodules. Enlarged levels of inflammatory cytokines (IFN-γ and TNF) were also detected in IHIC. Furthermore, a tumor-specific production of IFN-γ and TNF as well as tumor-specific IFN-γ-producing CD8 T cells (CD8+IFN-γ+) were found in the celiac and portal lymph nodes of Salmonella-treated mice. This study provides first evidence for the involvement of LDLN in the development of an efficient cellular immune response against hepatic tumors, which resulted in the elimination of liver metastases after oral Salmonella-based vaccination. PMID:26973649

  9. Design considerations for liposomal vaccines: Influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens

    PubMed Central

    Watson, Douglas S.; Endsley, Aaron N.; Huang, Leaf

    2012-01-01

    Liposomes (phospholipid bilayer vesicles) are versatile and robust delivery systems for induction of antibody and T lymphocyte responses to associated subunit antigens. In the last 15 years, liposome vaccine technology has matured and now several vaccines containing liposome-based adjuvants have been approved for human use or have reached late stages of clinical evaluation. Given the intensifying interest in liposome-based vaccines, it is important to understand precisely how liposomes interact with the immune system and stimulate immunity. It has become clear that the physicochemical properties of liposomal vaccines – method of antigen attachment, lipid composition, bilayer fluidity, particle charge, and other properties – exert dramatic effects on the resulting immune response. Here, we present a comprehensive review of the physicochemical properties of liposomal vaccines and how they influence immune responses. A discussion of novel and emerging immunomodulators that are suitable for inclusion in liposomal vaccines is also presented. Through a comprehensive analysis of the body of liposomal vaccine literature, we enumerate a series of principles that can guide the rational design of liposomal vaccines to elicit immune responses of a desired magnitude and quality. We also identify major unanswered questions in the field, pointing the direction for future study. PMID:22306376

  10. A study of the role of cell-mediated immunity in bluetongue virus infection in sheep, using cellular adoptive transfer techniques.

    PubMed

    Jeggo, M H; Wardley, R C; Brownlie, J

    1984-07-01

    The transfer of thoracic duct lymphocytes from sheep inoculated 14 days, but not 7 days previously with bluetongue virus into their monozygotic twin resulted in some protection from challenge with bluetongue virus. T cell enrichment of the 14 day thoracic duct lymphocyte population resulted in a similar effect, indicating the T cell basis of the observed protection. Animals recovered from infection with bluetongue virus type 3 and which received thoracic duct lymphocytes from an identical twin recently infected with the same bluetongue virus type were protected from challenge with bluetongue type 4. These observations suggest that T lymphocytes play an important role in protection against bluetongue virus.

  11. Anti-cancer Activity of Novel TM4SF5-Targeting Antibodies through TM4SF5 Neutralization and Immune Cell-Mediated Cytotoxicity

    PubMed Central

    Ahn, Hye-Mi; Ryu, Jihye; Song, Jin Myeong; Lee, Yunhee; Kim, Hye-Jin; Ko, Dongjoon; Choi, Inpyo; Kim, Sang Jick; Lee, Jung Weon; Kim, Semi

    2017-01-01

    The transmembrane four L6 family member 5 (TM4SF5) protein is a novel molecular target for the prevention and treatment of hepatocellular carcinoma. TM4SF5 is highly expressed in liver, colon, esophageal, and pancreatic cancers and is implicated in tumor progression. Here, we screened monoclonal antibodies that specifically bound to the extracellular loop 2 (EC2) of TM4SF5 from a phage-displayed murine antibody (single-chain variable fragment; scFv) library. We constructed and characterized chimeric antibodies, Ab27 and Ab79, of scFv fused with Fc domain of human IgG1. The affinity (KD) of Ab27 and Ab79 for soluble EC2 was approximately 9.2 nM and 16.9 nM, respectively, as determined by surface plasmon resonance analysis. Ab27 and Ab79 efficiently bound to native TM4SF5 on the cell surface were internalized into the cancer cells, leading to a decrease in cell surface TM4SF5. Ab27 and Ab79 inhibited the proliferation and invasion of TM4SF5-positive liver and colon cancer cells and reduced FAK and c-Src phosphorylation. Ab27 and Ab79 also enhanced anoikis sensitivity and reduced survivin. Ab27 mediated antibody-dependent cell-mediated cytotoxicity in vitro. Ab27 and Ab79 efficiently inhibited tumor growth in a liver cancer xenograft model. These results strongly support the further development of Ab27 as a novel anti-cancer agent in the clinic. PMID:28255353

  12. Insulin-like growth factors inhibit dendritic cell-mediated anti-tumor immunity through regulating ERK1/2 phosphorylation and p38 dephosphorylation.

    PubMed

    Huang, Ching-Ting; Chang, Ming-Cheng; Chen, Yu-Li; Chen, Tsung-Ching; Chen, Chi-An; Cheng, Wen-Fang

    2015-04-01

    Insulin-like growth factors (IGFs) can promote tumorigenesis via inhibiting the apoptosis of cancer cells. The relationship between IGFs and dendritic cell (DC)-mediated immunity were investigated. Advanced-stage ovarian carcinoma patients were first evaluated to show higher IGF-1 and IGF-2 concentrations in their ascites than early-stage patients. IGFs could suppress DCs' maturation, antigen presenting abilities, and the ability to activate antigen-specific CD8(+) T cell. IGF-treated DCs also secreted higher concentrations of IL-10 and TNF-α. IGF-treated DCs showed decreased ERK1/2 phosphorylation and reduced p38 dephosphorylation. The percentages of matured DCs in the ascites were significantly lower in the IGF-1 or IGF-2 highly-expressing WF-3 tumor-bearing mice. The IGF1R inhibitor - NVP-AEW541, could block the effects of IGFs to rescue DCs' maturation and to restore DC-mediated antigen-specific immunity through enhancing ERK1/2 phosphorylation and p38 dephosphorylation. IGFs can inhibit DC-mediated anti-tumor immunity through suppressing maturation and function and the IGF1R inhibitor could restore the DC-mediated anti-tumor immunity. Blockade of IGFs could be a potential strategy for cancer immunotherapy.

  13. The role of ISCOMATRIX bilayer composition to induce a cell mediated immunity and protection against leishmaniasis in BALB/c mice

    PubMed Central

    Mehravaran, Ahmad; Jaafari, Mahmoud Reza; Jalali, Seyed Amir; Khamesipour, Ali; Ranjbar, Reza; Hojatizade, Mansure; Badiee, Ali

    2016-01-01

    Objective(s): Development of new generation of vaccines against leishmaniasis is possible because long-term protection is usually seen after recovery from cutaneous leishmaniasis. ISCOMATRIX is particulate antigen delivery system composed of antigen, cholesterol, phospholipid and saponin. In this study, the role of ISCOMATRIX bilayer composition made by different phase transition temperature (Tc) to induce a type of immune response and protection against leishmaniasis was assessed. Materials and Methods: ISCOMATRIX formulations with different bilayer compositions consisting of EPC (Tc <0 °C), DMPC (Tc 23 °C) and DSPC (Tc 54 °C) were prepared. Different ISCOMATRIX formulations were mixed with soluble Leishmania antigens (SLA). BALB/c mice were immunized subcutaneously, three times with 2-week intervals. As criteria for protection, footpads swelling, parasite burden, determination of IgG isotypes and the level of IFN-γ and IL-4 were assessed. Results: Although the groups of mice immunized with ISCOMATRIX DMPC or ISCOMATRIX DSPC showed the smallest footpad swelling and least parasite burden compared with the buffer group, the difference was not significant. Moreover, the highest level of IFN- γ and IL-4 was observed in the splenocytes of mice immunized with ISCOMATRIX DMPC or ISCOMATRIX DSPC, respectively. After challenge, the mice immunized with ISCOMATRIX DSPC showed the highest elevation of IgG, IgG1 and IgG2a antibodies (P<0.01) compared with control group. However, our results indicated that ISCOMATRIX EPC, DMPC or DSPC generated a mixed Th1/Th2 response that was not protective. Conclusion: Our results showed that the adjuvanticity of prepared ISCOMATRIX doesn’t influence with different phospholipids at least in our mice model. PMID:27081463

  14. Metronomic cyclophosphamide enhances HPV16E7 peptide vaccine induced antigen-specific and cytotoxic T-cell mediated antitumor immune response.

    PubMed

    Weir, Genevieve M; Hrytsenko, Olga; Stanford, Marianne M; Berinstein, Neil L; Karkada, Mohan; Liwski, Robert S; Mansour, Marc

    In clinical trials, metronomic cyclophosphamide (CPA) is increasingly being combined with vaccines to reduce tumor-induced immune suppression. Previous strategies to modulate the immune system during vaccination have involved continuous administration of low dose chemotherapy, studies that have posed unique considerations for clinical trial design. Here, we evaluated metronomic CPA in combination with a peptide vaccine targeting HPV16E7 in an HPV16-induced tumor model, focusing on the cytotoxic T-cell response and timing of low dose metronomic CPA (mCPA) treatment relative to vaccination. Mice bearing C3 tumors were given metronomic CPA on alternating weeks in combination with immunization with a DepoVax vaccine containing HPV16E749-57 peptide antigen every 3 weeks. Only the combination therapy provided significant long-term control of tumor growth. The efficacy of the vaccine was uncompromised if given at the beginning or end of a cycle of metronomic CPA. Metronomic CPA had a pronounced lymphodepletive effect on the vaccine draining lymph node, yet did not reduce the development of antigen-specific CD8(+) T cells induced by vaccination. This enrichment correlated with increased cytotoxic activity in the spleen and increased expression of cytotoxic gene signatures in the tumor. Immunity could be passively transferred through CD8(+) T cells isolated from tumor-bearing mice treated with the combinatorial treatment regimen. A comprehensive survey of splenocytes indicated that metronomic CPA, in the absence of vaccination, induced transient lymphodepletion marked by a selective expansion of myeloid-derived suppressor cells. These results provide important insights into the multiple mechanisms of metronomic CPA induced immune modulation in the context of a peptide cancer vaccine that may be translated into more effective clinical trial designs.

  15. Measles Virus Neutralizing Antibody Response, Cell-Mediated Immunity, and Immunoglobulin G Antibody Avidity Before and After Receipt of a Third Dose of Measles, Mumps, and Rubella Vaccine in Young Adults.

    PubMed

    Fiebelkorn, Amy Parker; Coleman, Laura A; Belongia, Edward A; Freeman, Sandra K; York, Daphne; Bi, Daoling; Kulkarni, Ashwin; Audet, Susette; Mercader, Sara; McGrew, Marcia; Hickman, Carole J; Bellini, William J; Shivakoti, Rupak; Griffin, Diane E; Beeler, Judith

    2016-04-01

    Two doses of measles, mumps, and rubella (MMR) vaccine are 97% effective against measles, but waning antibody immunity to measles and failure of the 2-dose vaccine occur. We administered a third MMR dose (MMR3) to young adults and assessed immunogenicity over 1 year. Measles virus (MeV) neutralizing antibody concentrations, cell-mediated immunity (CMI), and immunoglobulin G (IgG) antibody avidity were assessed at baseline and 1 month and 1 year after MMR3 receipt. Of 662 subjects at baseline, 1 (0.2%) was seronegative for MeV-neutralizing antibodies (level, <8 mIU/mL), and 23 (3.5%) had low antibody levels (8-120 mIU/mL). One month after MMR3 receipt, 1 subject (0.2%) was seronegative, and 6 (0.9%) had low neutralizing antibodies, with only 21 of 662 (3.2%) showing a ≥ 4-fold rise in neutralizing antibodies. One year after MMR3 receipt, no subject was seronegative, and 10 of 617 (1.6%) had low neutralizing antibody levels. CMI analyses showed low levels of spot-forming cells after stimulation, suggesting the presence of T-cell memory, but the response was minimal after MMR3 receipt. MeV IgG avidity did not correlate with findings of neutralization analyses. Most subjects were seropositive before MMR3 receipt, and very few had a secondary immune response after MMR3 receipt. Similarly, CMI and avidity analyses showed minimal qualitative improvements in immune response after MMR3 receipt. We did not find compelling data to support a routine third dose of MMR vaccine. Published by Oxford University Press for the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  16. Enhanced early innate and T cell-mediated responses in subjects immunized with Anthrax Vaccine Adsorbed Plus CPG 7909 (AV7909).

    PubMed

    Minang, Jacob T; Inglefield, Jon R; Harris, Andrea M; Lathey, Janet L; Alleva, David G; Sweeney, Diane L; Hopkins, Robert J; Lacy, Michael J; Bernton, Edward W

    2014-11-28

    NuThrax™ (Anthrax Vaccine Adsorbed with CPG 7909 Adjuvant) (AV7909) is in development. Samples obtained in a phase Ib clinical trial were tested to confirm biomarkers of innate immunity and evaluate effects of CPG 7909 (PF-03512676) on adaptive immunity. Subjects received two intramuscular doses of commercial BioThrax(®) (Anthrax Vaccine Adsorbed, AVA), or two intramuscular doses of one of four formulations of AV7909. IP-10, IL-6, and C-reactive protein (CRP) levels were elevated 24-48 h after administration of AV7909 formulations, returning to baseline by Day 7. AVA (no CPG 7909) resulted in elevated IL-6 and CRP, but not IP-10. Another marker of CpG, transiently decreased absolute lymphocyte counts (ALCs), correlated with transiently increased IP-10. Cellular recall responses to anthrax protective antigen (PA) or PA peptides were assessed by IFN-γ ELISpot assay performed on cryopreserved PBMCs obtained from subjects prior to immunization and 7 days following the second immunization (study day 21). One-half of subjects that received AV7909 with low-dose (0.25mg/dose) CPG 7909 possessed positive Day 21 T cell responses to PA. In contrast, positive T cell responses occurred at an 11% average rate (1/9) for AVA-treated subjects. Differences in cellular responses due to dose level of CPG 7909 were not associated with differences in humoral anti-PA IgG responses, which were elevated for recipients of AV7909 compared to recipients of AVA. Serum markers at 24 or 48 h (i.e. % ALC decrease, or increase in IL-6, IP-10, or CRP) correlated with the humoral (antibody) responses 1 month later, but did not correlate with cellular ELISpot responses. In summary, biomarkers of early responses to CPG 7909 were confirmed, and adding a CpG adjuvant to a vaccine administered twice resulted in increased T cell effects relative to vaccine alone. Changes in early biomarkers correlated with subsequent adaptive humoral immunity but not cellular immunity. Copyright © 2014 The Authors

  17. Enhanced Early Innate and T Cell-mediated Responses in Subjects Immunized with Anthrax Vaccine Adsorbed Plus CPG 7909 (AV7909)

    PubMed Central

    Minang, Jacob T.; Inglefield, Jon R.; Harris, Andrea M.; Lathey, Janet L.; Alleva, David G.; Sweeney, Diane L.; Hopkins, Robert J; Lacy, Michael J.; Bernton, Edward W.

    2014-01-01

    NuThrax™ (Anthrax Vaccine Adsorbed with CPG 7909 Adjuvant) (AV7909) is in development. Samples obtained in a Phase Ib clinical trial were tested to confirm biomarkers of innate immunity and evaluate effects of CPG 7909 (PF-03512676) on adaptive immunity. Subjects received two intramuscular doses of commercial BioThrax® (Anthrax Vaccine Adsorbed, AVA), or two intramuscular doses of one of four formulations of AV7909. IP-10, IL-6, and C-reactive protein (CRP) levels were elevated 24 to 48 hours after administration of AV7909 formulations, returning to baseline by Day 7. AVA (no CPG 7909) resulted in elevated IL-6 and CRP, but not IP-10. Another marker of CpG, transiently decreased absolute lymphocyte counts (ALC), correlated with transiently increased IP-10. Cellular recall responses to anthrax Protective Antigen (PA) or PA peptides were assessed by IFN-gamma ELISpot assay performed on cryopreserved PBMCs obtained from subjects prior to immunization and 7 days following the second immunization (study day 21). One-half of subjects that received AV7909 with low-dose (0.25 mg/dose) CPG 7909 possessed positive Day 21 T cell responses to PA. In contrast, positive T cell responses occurred at an 11% average rate (1/9) for AVA-treated subjects. Differences in cellular responses due to dose level of CPG 7909 were not associated with differences in humoral anti-PA IgG responses, which were elevated for recipients of AV7909 compared to recipients of AVA. Serum markers at 24 or 48 hours (i.e. % ALC decrease, or increase in IL-6, IP-10, or CRP) correlated with the humoral (antibody) responses 1 month later, but did not correlate with cellular ELISpot responses. In summary, biomarkers of early responses to CPG 7909 were confirmed, and adding a CpG adjuvant to a vaccine administered twice resulted in increased T cell effects relative to vaccine alone. Changes in early biomarkers correlated with subsequent adaptive humoral immunity but not cellular immunity. PMID:24530403

  18. Combined meningococcal serogroup A and W135 outer-membrane vesicles activate cell-mediated immunity and long-term memory responses against non-covalent capsular polysaccharide A.

    PubMed

    Romeu, Belkis; Lastre, Miriam; García, Luis; Cedré, Bárbara; Mandariote, Aleida; Fariñas, Mildrey; Oliva, Reynaldo; Rosenqvist, Einar; Pérez, Oliver

    2014-01-01

    Outer-membrane vesicles (OMVs) have inherent adjuvant properties, and many vaccines use OMV as vaccine components. Utilizing the adjuvant properties of OMV could lead to the formulation of vaccines that are less expensive and potentially more immunogenic than covalently conjugated polysaccharide vaccines. We evaluated the adjuvant effect in Balb/c mice of combinations of OMV from Neisseria meningitidis serogroup A and W135 as compared to that of the non-covalently conjugated capsular polysaccharide A. Both antigens were adsorbed onto aluminum hydroxide. The mice were given a booster dose of plain polysaccharide A to stimulate an immunologic memory response. Subclasses determination and cytokine assays demonstrated the capacity of OMV to induce a IgG2a/IgG2b isotype profile and IFN-γ production, suggesting the induction of a Th1 pattern immune response. Lymphoproliferative responses to OMVs were high, with affinity maturation of antibodies observed. Bactericidal titers after the booster dose were also observed. Memory B cells and long-term memory T cells were also detected. The results of this study indicate that combined meningococcal serogroup A and W135 OMV can activate cell-mediated immunity and induce a long-term memory response.

  19. Susceptibility to anti-glomerular basement membrane disease and Goodpasture syndrome is linked to MHC class II genes and the emergence of T cell-mediated immunity in mice.

    PubMed Central

    Kalluri, R; Danoff, T M; Okada, H; Neilson, E G

    1997-01-01

    We developed a new mouse model of human anti-glomerular basement membrane (GBM) disease to better characterize the genetic determinants of cell-mediated injury. While all major histocompatibility complex (MHC) haplotypes (H-2a, k, s, b, and d) immunized with alpha3 NC1 domains of type IV collagen produce anti-alpha3(IV) NC1 antibodies that cross-react with human Goodpasture [anti-GBM/anti-alpha3(IV) NC1] autoantibodies, only a few strains developed nephritis and lung hemorrhage associated with Goodpasture syndrome. Crescentic glomerulonephritis and lung hemorrhage were MHC-restricted in haplotypes H-2s, b, and d (A beta/A alpha region in H-2s) and associated with the emergence of an IL-12/Th1-like T cell phenotype. Lymphocytes or anti-alpha3(IV) NC1 antibodies from nephritogenic strains transfer disease to syngeneic recipients. However, passive transfer of isogenic alpha3(IV) NC1 antibodies into -/- T cell receptor-deficient mice failed to produce nephritis. Finally, nephritis and its associated IL-12/Th1-like T cell response attenuate in disease-susceptible mice tolerized orally to alpha3(IV) collagen before immunization. Our findings suggest collectively, as a hypothesis, that anti-GBM antibodies in mice only facilitate disease in MHC haplotypes capable of generating nephritogenic lymphocytes with special T cell repertoires. PMID:9410904

  20. Susceptibility to anti-glomerular basement membrane disease and Goodpasture syndrome is linked to MHC class II genes and the emergence of T cell-mediated immunity in mice.

    PubMed

    Kalluri, R; Danoff, T M; Okada, H; Neilson, E G

    1997-11-01

    We developed a new mouse model of human anti-glomerular basement membrane (GBM) disease to better characterize the genetic determinants of cell-mediated injury. While all major histocompatibility complex (MHC) haplotypes (H-2a, k, s, b, and d) immunized with alpha3 NC1 domains of type IV collagen produce anti-alpha3(IV) NC1 antibodies that cross-react with human Goodpasture [anti-GBM/anti-alpha3(IV) NC1] autoantibodies, only a few strains developed nephritis and lung hemorrhage associated with Goodpasture syndrome. Crescentic glomerulonephritis and lung hemorrhage were MHC-restricted in haplotypes H-2s, b, and d (A beta/A alpha region in H-2s) and associated with the emergence of an IL-12/Th1-like T cell phenotype. Lymphocytes or anti-alpha3(IV) NC1 antibodies from nephritogenic strains transfer disease to syngeneic recipients. However, passive transfer of isogenic alpha3(IV) NC1 antibodies into -/- T cell receptor-deficient mice failed to produce nephritis. Finally, nephritis and its associated IL-12/Th1-like T cell response attenuate in disease-susceptible mice tolerized orally to alpha3(IV) collagen before immunization. Our findings suggest collectively, as a hypothesis, that anti-GBM antibodies in mice only facilitate disease in MHC haplotypes capable of generating nephritogenic lymphocytes with special T cell repertoires.

  1. Analysis of the mechanism of allograft rejection and cell-mediated immunity. I. Accelerated rejection of tumour allografts without augmented cytotoxicity in the spleen cells.

    PubMed Central

    Nanishi, F; Nomoto, K; Taniguchi, K; Kubo, C

    1980-01-01

    While immunization with allogeneic spleen cells did not generate positive cytotoxic activity, it produced accelerated rejection of subsequent tumour grafts carrying the same H-2 antigen. No augmented generation of cytotoxicity was detectable by 51Cr-release assay in the host spleen cells, even in the presence of accelerated rejection of tumour allografts. However, augmented cytotoxicity was generated in mixed lymphocyte culture and in peritoneal lymphocytes after an intraperitoneal boost. These results indicate that while immunization with allogeneic spleen cells does not generate mature cytotoxic T lymphocytes (CTL) detectable by the present assay, it may produce premature CTL that rapidly differentiate into mature CTL after direct contact with antigen at the site of graft rejection. The inability to generate a high degree of cytotoxicity in the spleen cells may be ascribed to the early development of CTL at the rejection site. The relationship between accelerated rejection of allogeneic tumour grafts and delayed-type hypersensitivity reactions is also discussed. PMID:7419243

  2. Antibody Titer Threshold Predicts Anti-Candidal Vaccine Efficacy Even though the Mechanism of Protection Is Induction of Cell-Mediated Immunity

    PubMed Central

    Spellberg, Brad; Ibrahim, Ashraf S.; Lin, Lin; Avanesian, Valentina; Fu, Yue; Lipke, Peter; Otoo, Henry; Ho, Tiffany; Edwards, John E.

    2009-01-01

    We previously reported that vaccination with Freund’s adjuvant plus the recombinant N-terminus of the candidal adhesin, Als3p (rAls3p-N), protects mice from disseminated candidiasis. Here we report that the rAls3p-N vaccine is effective when combined with aluminum hydroxide adjuvant. Antibody titers of ≥1:6400 accurately predicted protection from infection. Nevertheless, neither B lymphocytes nor serum from immunized animals transferred protection to vaccine-naive animals. In contrast, CD3+, CD4+, or CD8+ T lymphocytes from immunized animals transferred protection, and the vaccine was efficacious in IL-4–deficient mice but not in IFN-γ–deficient mice. These data have significant implications for the development and interpretation of vaccine surrogate markers. PMID:18419471

  3. Cytokines related to three major types of cell-mediated immunity in short- and long-term exposures to lead compounds.

    PubMed

    Dobrakowski, Michał; Boroń, Marta; Czuba, Zenon P; Kasperczyk, Aleksandra; Machoń-Grecka, Anna; Kasperczyk, Sławomir

    2016-11-01

    Many investigators have posited on the significant influence of lead on the immune system function. However, available data on this topic are not conclusive. Therefore, a study was undertaken to examine associations between lead exposure and levels of cytokines related to the T-helper (TH)-1, TH2, and TH17 types of immune response in humans. For these analyses, three population groups were examined: the first consisted of male workers exposed to lead for a short period of time (36-44 days); the second included male workers chronically exposed to lead (13 ± 10 years); and a control group that was composed of male administrative workers with blood lead levels (BLL) < 10 μg/dl. BLL were determined for all study subjects. Thereafter, serum samples were analyzed for the levels of interleukin (IL)-2 (IL-2), IL-4, IL-5, IL-12, IL-13, IL-17A, and interferon (IFN)-γ using a multi-analyte system. The results indicated that the levels of IFNγ IL-2, IL-12 (related to TH1 cells), IL-4, IL-5, IL-13 (related to TH2 cells), and IL-17A (related to TH17 cells) did not change after a short-term exposure to lead (compared to baseline). However, the levels of all of these cytokines were significantly higher in workers chronically exposed to lead than in the controls by 82%, 32%, 81%, 22%, 70%, 42%, and 17% (IFNγ, IL-2, IL-12, IL-4, IL-5, IL-13, IL-17A, respectively). From these studies, we conclude that in humans, a short-term exposure to lead does not affect levels of cytokines related to the TH1-, TH2-, and TH17-mediated immune responses, while chronic exposure modifies their levels. Taken together, these modifications do not evidence an ability of lead to promote specifically one type of immune response in an exposed host.

  4. The Efficacy of T Cell-Mediated Immune Responses Is Reduced by the Envelope Protein of the Chimeric HIV-1/SIV-KB9 Virus In Vivo1

    PubMed Central

    Stevceva, Liljana; Yoon, Victor; Carville, Angela; Pacheco, Beatriz; Santosuosso, Michael; Korioth-Schmitz, Birgit; Mansfield, Keith; Poznansky, Mark C.

    2014-01-01

    Gp120 is a critical component of the envelope of HIV-1. Its role in viral entry is well described. In view of its position on the viral envelope, gp120 is a part of the retrovirus that immune cells encounter first and has the potential to influence antiretroviral immune responses. We propose that high levels of gp120 are present in tissues and may contribute to the failure of the immune system to fully control and ultimately clear the virus. Herein, we show for the first time that lymphoid tissues from acutely HIV-1/SIV (SHIV)-KB9-infected macaques contain deposits of gp120 at concentrations that are high enough to induce suppressive effects on T cells, thus negatively regulating the antiviral CTL response and contributing to virus survival and persistence. We also demonstrate that SHIV-KB9 gp120 influences functional T cell responses during SHIV infection in a manner that suppresses degranulation and cytokine secretion by CTLs. Finally, we show that regulatory T cells accumulate in lymphoid tissues during acute infection and that they respond to gp120 by producing TGFβ, a known suppressant of cytotoxic T cell activity. These findings have significant implications for our understanding of the contribution of non-entry-related functions of HIV-1 gp120 to the pathogenesis of HIV/AIDS. PMID:18832708

  5. HIV-1 adenoviral vector vaccines expressing multi-trimeric BAFF and 4-1BBL enhance T cell mediated anti-viral immunity.

    PubMed

    Kanagavelu, Saravana; Termini, James M; Gupta, Sachin; Raffa, Francesca N; Fuller, Katherine A; Rivas, Yaelis; Philip, Sakhi; Kornbluth, Richard S; Stone, Geoffrey W

    2014-01-01

    Adenoviral vectored vaccines have shown considerable promise but could be improved by molecular adjuvants. Ligands in the TNF superfamily (TNFSF) are potential adjuvants for adenoviral vector (Ad5) vaccines based on their central role in adaptive immunity. Many TNFSF ligands require aggregation beyond the trimeric state (multi-trimerization) for optimal biological function. Here we describe Ad5 vaccines for HIV-1 Gag antigen (Ad5-Gag) adjuvanted with the TNFSF ligands 4-1BBL, BAFF, GITRL and CD27L constructed as soluble multi-trimeric proteins via fusion to Surfactant Protein D (SP-D) as a multimerization scaffold. Mice were vaccinated with Ad5-Gag combined with Ad5 expressing one of the SP-D-TNFSF constructs or single-chain IL-12p70 as adjuvant. To evaluate vaccine-induced protection, mice were challenged with vaccinia virus expressing Gag (vaccinia-Gag) which is known to target the female genital tract, a major route of sexually acquired HIV-1 infection. In this system, SP-D-4-1BBL or SP-D-BAFF led to significantly reduced vaccinia-Gag replication when compared to Ad5-Gag alone. In contrast, IL-12p70, SP-D-CD27L and SP-D-GITRL were not protective. Histological examination following vaccinia-Gag challenge showed a dramatic lymphocytic infiltration into the uterus and ovaries of SP-D-4-1BBL and SP-D-BAFF-treated animals. By day 5 post challenge, proinflammatory cytokines in the tissue were reduced, consistent with the enhanced control over viral replication. Splenocytes had no specific immune markers that correlated with protection induced by SP-D-4-1BBL and SP-D-BAFF versus other groups. IL-12p70, despite lack of anti-viral efficacy, increased the total numbers of splenic dextramer positive CD8+ T cells, effector memory T cells, and effector Gag-specific CD8+ T cells, suggesting that these markers are poor predictors of anti-viral immunity in this model. In conclusion, soluble multi-trimeric 4-1BBL and BAFF adjuvants led to strong protection from vaccinia

  6. In vivo targeting of human DC-SIGN drastically enhances CD8⁺ T-cell-mediated protective immunity.

    PubMed

    Hesse, Christina; Ginter, Wiebke; Förg, Theresa; Mayer, Christian T; Baru, Abdul Mannan; Arnold-Schrauf, Catharina; Unger, Wendy W J; Kalay, Hakan; van Kooyk, Yvette; Berod, Luciana; Sparwasser, Tim

    2013-10-01

    Vaccination is one of the oldest yet still most effective methods to prevent infectious diseases. However, eradication of intracellular pathogens and treatment of certain diseases like cancer requiring efficient cytotoxic immune responses remain a medical challenge. In mice, a successful approach to induce strong cytotoxic CD8⁺ T-cell (CTL) reactions is to target antigens to DCs using specific antibodies against surface receptors in combination with adjuvants. A major drawback for translating this strategy into one for the clinic is the lack of analogous targets in human DCs. DC-SIGN (DC-specific-ICAM3-grabbing-nonintegrin/CD209) is a C-type lectin receptor with potent endocytic capacity and a highly restricted expression on human immature DCs. Therefore, DC-SIGN represents an ideal candidate for DC targeting. Using transgenic mice that express human DC-SIGN under the control of the murine CD11c promoter (hSIGN mice), we explored the efficacy of anti-DC-SIGN antibodies to target antigens to DCs and induce protective immune responses in vivo. We show that anti-DC-SIGN antibodies conjugated to OVA induced strong and persistent antigen-specific CD4⁺ and CD8⁺ T-cell responses, which efficiently protected from infection with OVA-expressing Listeria monocytogenes. Thus, we propose DC targeting via DC-SIGN as a promising strategy for novel vaccination protocols against intracellular pathogens.

  7. Acute Morphine Administration Reduces Cell-Mediated Immunity and Induces Reactivation of Latent Herpes Simplex Virus Type 1 in BALB/c Mice

    PubMed Central

    Mojadadi, Shafi; Jamali, Abbas; Khansarinejad, Behzad; Soleimanjahi, Hoorieh; Bamdad, Taravat

    2009-01-01

    Acute morphine administration is known to alter the course of herpes simplex virus infection. In this study, the effect of acute morphine administration on the reactivation of latent herpes was investigated in a mouse model. Because of the important role of cytolytic T lymphocyte (CTL) activity in the inhibition of herpes simplex virus type 1 (HSV-1) reactivation, the effect of acute morphine administration on CTL responses was also evaluated. Furthermore, lymphocyte proliferation and IFN-γ production were evaluated for their roles in the induction of the CTL response. The findings showed that acute morphine administration significantly reduced CTL responses, lymphocyte proliferation, and IFN-γ production. Furthermore, acute morphine administration has been shown to reactivate latent HSV-1. Previous studies have shown that cellular immune responses have important roles in the inhibition of HSV reactivation. These findings suggest that suppression of a portion of the cellular immune response after acute morphine administration may constitute one part of the mechanism that induces HSV reactivation. PMID:19403060

  8. Role of uncoupling protein UCP2 in cell-mediated immunity: How macrophage-mediated insulitis is accelerated in a model of autoimmune diabetes

    PubMed Central

    Emre, Yalin; Hurtaud, Corinne; Karaca, Melis; Nubel, Tobias; Zavala, Flora; Ricquier, Daniel

    2007-01-01

    Infiltration of inflammatory cells into pancreatic islets of Langerhans and selective destruction of insulin-secreting β-cells are characteristics of type 1 diabetes. Uncoupling protein 2 (UCP2) is a mitochondrial protein expressed in immune cells. UCP2 controls macrophage activation by modulating the production of mitochondrial reactive oxygen species (ROS) and MAPK signaling. We investigated the role of UCP2 on immune cell activity in type 1 diabetes in Ucp2-deficient mice. Using the model of multiple low-dose streptozotocin (STZ)-induced diabetes, we found that autoimmune diabetes was strongly accelerated in Ucp2-KO mice, compared with Ucp2-WT mice with increased intraislet lymphocytic infiltration. Macrophages from STZ-treated Ucp2-KO mice had increased IL-1β and nitric oxide (NO) production, compared with WT macrophages. Moreover, more macrophages were recruited in islets of STZ-treated Ucp2-KO mice, compared with Ucp2-WT mice. This finding also was accompanied by increased NO/ROS-induced damage. Altogether, our data show that inflammation is stronger in Ucp2-KO mice and islets, leading to the exacerbated disease in these mice. Our results highlight the mitochondrial protein UCP2 as a new player in autoimmune diabetes. PMID:18006654

  9. Sub-chronic effects of nitrate in drinking water on red-legged partridge (Alectoris rufa): oxidative stress and T-cell mediated immune function.

    PubMed

    Rodríguez-Estival, Jaime; Martínez-Haro, Mónica; Martín-Hernando, M A Paz; Mateo, Rafael

    2010-07-01

    In order to evaluate the effects of nitrates on birds, we have exposed captive red-legged partridges to nitrates concentrations of 0 (control), 100 (dwell water in farming areas) or 500 mg/l (fertirrigation level). The cellular immune response, plasma biochemistry, methemoglobin concentration (metHb), and oxidative stress biomarkers in blood and tissues were studied after two weeks of exposure. Several blood parameters such as aspartate aminotransferase, creatinine phosphokinase and lactate dehydrogenase activities and magnesium level decreased with nitrate exposure, whereas alkaline phosphatase activity and creatinine level increased. The oxidant effect of nitrates was evidenced by the increase in blood metHb, accompanied by the lipid peroxidation of red blood cells, the increased levels of oxidized glutathione (GSH) in liver, and the generation of oxidative DNA damage in plasma lymphocytes. GSH in erythrocytes was negatively correlated with blood metHb. The cellular immune function was slightly lower at partridges exposed to nitrates. These results suggest that adverse effects of nitrates on birds occur at concentrations potentially present in the field.

  10. Characterization of the T-cell-mediated immune response against the Aspergillus fumigatus proteins Crf1 and catalase 1 in healthy individuals.

    PubMed

    Jolink, Hetty; Meijssen, Isabelle C; Hagedoorn, Renate S; Arentshorst, Mark; Drijfhout, Jan W; Mulder, Arend; Claas, Frans H J; van Dissel, Jaap T; Falkenburg, J H Frederik; Heemskerk, Mirjam H M

    2013-09-01

    Invasive aspergillosis is a serious infectious complication after allogeneic stem cell transplantation. One of the strategies to improve the management of aspergillosis is the adoptive transfer of antigen-specific T cells, the success of which depends on the development of a broad repertoire of antigen-specific T cells. In this study, we identified CD4+ T cells specific for the Aspergillus proteins Crf1 and catalase 1 in 18 of 24 healthy donors by intracellular staining for interferon γ and CD154. Crf1- and catalase 1-specific T cells were selected on the basis of CD137 expression and underwent single-cell expansion. Aspergillus-specific T-cell clones mainly exhibited a T-helper cell 1 phenotype and recognized a broad variety of T-cell epitopes. Five novel Crf1 epitopes, 2 previously described Crf1 epitopes, and 30 novel catalase 1 epitopes were identified. Ultimately, by using overlapping peptides of Aspergillus fumigatus proteins, Aspergillus-specific T-cell lines that have a broad specificity and favorable cytokine profile and are suitable for adoptive T-cell therapy can be generated in vitro.

  11. The Lung Is an Important Site for Priming CD4 T-Cell-Mediated Protective Immunity against Gastrointestinal Helminth Parasites▿ ‡

    PubMed Central

    Harvie, Marina; Camberis, Mali; Tang, Shiau-Choot; Delahunt, Brett; Paul, William; Le Gros, Graham

    2010-01-01

    The rodent hookworm Nippostrongylus brasiliensis typically infects its host by penetrating the skin and rapidly migrating to the lungs and gut. Following primary infection, immunocompetent mice become highly protected from reinfection with N. brasiliensis, with the numbers of worms gaining access to the lungs and gut being reduced by up to 90%. We used green fluorescent protein/interleukin-4 (IL-4) reporter mice and truncated infection studies to identify both the tissue site and mechanism(s) by which the host protects itself from reinfection with N. brasiliensis. Strikingly, we demonstrated that the lung is an important site for priming immune protection. Furthermore, a lung-initiated, CD4 T-cell-dependent, and IL-4- and STAT6-dependent response was sufficient to confer protection against reinfection. In conclusion, vaccination strategies which seek to break the cycle of reinfection and egg production by helminths such as hookworms can include strategies which directly stimulate Th2 responses in the lung. PMID:20605978

  12. Expression of Cationic Amino Acid Transporter 2 Is Required for Myeloid-Derived Suppressor Cell-Mediated Control of T Cell Immunity.

    PubMed

    Cimen Bozkus, Cansu; Elzey, Bennett D; Crist, Scott A; Ellies, Lesley G; Ratliff, Timothy L

    2015-12-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature cells that expand during benign and cancer-associated inflammation and are characterized by their ability to inhibit T cell immunity. Increased metabolism of l-Arginine (l-Arg), through the enzymes arginase 1 and NO synthase 2 (NOS2), is well documented as a major MDSC suppressive mechanism. Therefore, we hypothesized that restricting MDSC uptake of l-Arg is a critical control point to modulate their suppressor activity. Using murine models of prostate-specific inflammation and cancer, we have identified the mechanisms by which extracellular l-Arg is transported into MDSCs. We have shown that MDSCs recruited to localized inflammation and tumor sites upregulate cationic amino acid transporter 2 (Cat2), coordinately with Arg1 and Nos2. Cat2 expression is not induced in MDSCs in peripheral organs. CAT2 contributes to the transport of l-Arg in MDSCs and is an important regulator of MDSC suppressive function. MDSCs that lack CAT2 have significantly reduced suppressive ability ex vivo and display impaired capacity for regulating T cell responses in vivo as evidenced by increased T cell expansion and decreased tumor growth in Cat2(-/-) mice. The abrogation of suppressive function is due to low intracellular l-Arg levels, which leads to the impaired ability of NOS2 to catalyze l-Arg-dependent metabolic processes. Together, these findings demonstrate that CAT2 modulates MDSC function. In the absence of CAT2, MDSCs display diminished capacity for controlling T cell immunity in prostate inflammation and cancer models, where the loss of CAT2 results in enhanced antitumor activity.

  13. “Stealth” Adenoviruses Blunt Cell-Mediated and Humoral Immune Responses against the Virus and Allow for Significant Gene Expression upon Readministration in the Lung

    PubMed Central

    Croyle, Maria A.; Chirmule, Narendra; Zhang, Yi; Wilson, James M.

    2001-01-01

    Most of the early gene therapy trials for cystic fibrosis have been with adenovirus vectors. First-generation viruses with E1a and E1b deleted are limited by transient expression of the transgene and substantial inflammatory responses. Gene transfer is also significantly curtailed following a second dose of virus. In an effort to reduce adenovirus-associated inflammation, capsids of first-generation vectors were modified with various activated monomethoxypolyethylene glycols. Cytotoxic T-lymphocyte production was significantly reduced in C57BL/6 mice after a single intratracheal administration of modified vectors, and length of gene expression was extended from 4 to 42 days. T-cell subsets from mice exposed to the conjugated vectors demonstrated a marked decrease in Th1 responses and slight enhancement of Th2 responses compared to animals dosed with native virus. Neutralizing antibodies (NAB) against adenovirus capsid proteins were reduced in serum and bronchoalveolar lavage fluid of animals after a single dose of modified virus, allowing significant levels of gene expression upon rechallenge with native adenovirus. Modification with polyethylene glycol (PEG) also allowed substantial gene expression from the new vectors in animals previously immunized with unmodified virus. However, gene expression was significantly reduced after two doses of the same PEG-conjugated vector. Alternating the activation group of PEG between doses did produce significant gene expression upon readministration. This technology in combination with second-generation or helper-dependent adenovirus could produce dosing strategies which promote successful readministration of vector in clinical trials and marked expression in patients with significant anti-adenovirus NAB levels and reduce the possibility of immune reactions against viral vectors for gene therapy. PMID:11312351

  14. Radiation-induced matrix metalloproteinases limit natural killer cell-mediated anticancer immunity in NCI-H23 lung cancer cells.

    PubMed

    Heo, Woong; Lee, Young Shin; Son, Cheol Hun; Yang, Kwangmo; Park, You Soo; Bae, Jaeho

    2015-03-01

    Radiotherapy has been used to treat cancer for >100 years and is required by numerous patients with cancer. Ionizing radiation effectively inhibits the growth of cancer cells by inducing cell death and increasing anticancer immunity, through the induction of natural killer group 2 member D ligands (NKG2DLs); however, adverse effects have also been reported, including the promotion of metastasis. Matrix metalloproteinases (MMPs) are induced by ionizing radiation and have an important role in the invasion and metastasis of cancer cells. Previously, MMPs were demonstrated to increase the shedding of NKG2DLs, which may reduce the surface expression of NKG2DLs on cancer cells. As a consequence, the cancer cells may escape natural killer (NK)‑mediated anticancer immunity. In the present study, NCI‑H23 human non‑small cell lung cancer cells were used to investigate the combined effects of ionizing radiation and MMP inhibitors on the expression levels of NKG2DLs. Ionizing radiation increased the expression of MMP2 and ADAM metalloproteinase domain 10 protease, as well as NKG2DLs. The combined treatment of ionizing radiation and MMP inhibitors increased the surface expression levels of NKG2DLs and resulted in the increased susceptibility of the cancer cells to NK‑92 natural killer cells. Furthermore, soluble NKG2DLs were increased in the media by ionizing radiation and blocked by MMP inhibitors. The present study suggests that radiotherapy may result in the shedding of soluble NKG2DLs, through the induction of MMP2, and combined treatment with MMP inhibitors may minimize the adverse effects of radiotherapy.

  15. Multiplex-PCR-Based Screening and Computational Modeling of Virulence Factors and T-Cell Mediated Immunity in Helicobacter pylori Infections for Accurate Clinical Diagnosis

    PubMed Central

    Oktem-Okullu, Sinem; Tiftikci, Arzu; Saruc, Murat; Cicek, Bahattin; Vardareli, Eser; Tozun, Nurdan; Kocagoz, Tanil; Sezerman, Ugur; Yavuz, Ahmet Sinan; Sayi-Yazgan, Ayca

    2015-01-01

    The outcome of H. pylori infection is closely related with bacteria's virulence factors and host immune response. The association between T cells and H. pylori infection has been identified, but the effects of the nine major H. pylori specific virulence factors; cagA, vacA, oipA, babA, hpaA, napA, dupA, ureA, ureB on T cell response in H. pylori infected patients have not been fully elucidated. We developed a multiplex- PCR assay to detect nine H. pylori virulence genes with in a three PCR reactions. Also, the expression levels of Th1, Th17 and Treg cell specific cytokines and transcription factors were detected by using qRT-PCR assays. Furthermore, a novel expert derived model is developed to identify set of factors and rules that can distinguish the ulcer patients from gastritis patients. Within all virulence factors that we tested, we identified a correlation between the presence of napA virulence gene and ulcer disease as a first data. Additionally, a positive correlation between the H. pylori dupA virulence factor and IFN-γ, and H. pylori babA virulence factor and IL-17 was detected in gastritis and ulcer patients respectively. By using computer-based models, clinical outcomes of a patients infected with H. pylori can be predicted by screening the patient's H. pylori vacA m1/m2, ureA and cagA status and IFN-γ (Th1), IL-17 (Th17), and FOXP3 (Treg) expression levels. Herein, we report, for the first time, the relationship between H. pylori virulence factors and host immune responses for diagnostic prediction of gastric diseases using computer—based models. PMID:26287606

  16. Oral administration of Aloe vera gel, anti-microbial and anti-inflammatory herbal remedy, stimulates cell-mediated immunity and antibody production in a mouse model

    PubMed Central

    Bałan, Barbara Joanna; Niemcewicz, Marcin; Kocik, Janusz; Jung, Leszek; Skopiński, Piotr

    2014-01-01

    Introduction Aloe vera (L.) Burm. f. (Aloe barbadensis Mill) Liliaceae, succulent plant native to northern Africa, is presently cultivated in many regions of the world. Traditionally, its inner part of parenchyma, which contains aloe gel, was used for the treatment of minor wounds, inflammatory skin disorders, thermal and radiation burns and to alleviate chronic osteoarthritis pain. It also possesses some antimicrobial activity. Now, aloe gel is also increasingly consumed as a dietary supplement. Some data suggest its immunomodulatory properties. The aim of the study The aim of the study was to evaluate the influence of orally administered aloe gel on some parameters of cellular and humoral immunity viz. mitogen-induced proliferation of splenic lymphocytes and their chemokinetic activity, and anti-sheep red blood cells (SRBC) antibody production in Balb/c mice. Results Daily treatment of mice for 14 and 21 days with 50 µl or 150 µl of aloe gel dose resulted in enhanced chemokinetic activity and stronger response of their splenic lymphocytes to mitogen PHA and enhancement of anti-SRBC antibody production. PMID:26155113

  17. The evaluation of candidate biomarkers of cell-mediated immunity for the diagnosis of Mycobacterium bovis infection in African buffaloes (Syncerus caffer).

    PubMed

    Goosen, Wynand J; Cooper, David; Warren, Robin M; Miller, Michele A; van Helden, Paul D; Parsons, Sven D C

    2014-12-15

    We evaluated commercially available bovine enzyme linked immunosorbent assays (ELISA) and a human IP-10 ELISA to measure IP-10, MIG, MCP-1, MCP-2, MCP-3 and IL1-RA in buffalo plasma in order to identify sensitive markers of the immune response to Mycobacterium bovis-specific peptides. Additionally, we found that all coding mRNA sequences of these cytokines showed very high homology with their homologues in domestic cattle (97-99%) as did the derived amino acid sequences (97-99%). This high sequence homology between cattle and buffaloes supports the use of bovine ELISAs for the detection these cytokines in buffaloes. MCP-1 concentration showed a positive correlation with that of IFN-γ (p=0.0077) and appears to occur in far greater abundance in buffaloes when compared to humans. Using a bovine IP-10 ELISA, levels of this cytokine were found to be significantly increased in antigen-stimulated blood samples from M. bovis test positive buffaloes (p<0.0001) and IP-10 was detected in far greater abundance than IFN-γ. Measurement of IP-10 with this ELISA may prove to be a sensitive marker of M. bovis infection in African buffaloes.

  18. Effects of zinc sulfate supplementation on cell-mediated immune response in head and neck cancer patients treated with radiation therapy.

    PubMed

    Sangthawan, Duangjai; Phungrassami, Temsak; Sinkitjarurnchai, Wattana

    2015-01-01

    Zinc deficiency is an important factor that impairs cellular immunity and contributes to low T lymphocyte counts in head and neck cancers. Persistent T lymphopenia is clinically relevant in terms of tumor persistence and/or recurrence. The primary objective was to evaluate the impact of zinc sulfate supplementation on the absolute numbers of circulating T lymphocytes and T lymphocyte subpopulations. The secondary objectives were to evaluate overall survival, progression-free survival, and the adverse events of zinc sulfate. Seventy-two head and neck cancer patients were enrolled in a randomized, double-blind, placebo-controlled trial. Zinc sulfate 50 mg in 10 cc and an identically appearing placebo were self-administered 3 times daily at meal times. Blood samples were obtained for complete blood count, total T lymphocytes and T lymphocyte subpopulations before radiation therapy as baselines, at the fifth week during radiation therapy, and at the first month after completion of radiation therapy. The baseline characteristics of patients, tumors, and treatments and the baseline lymphocyte parameters were not significantly different between the 2 groups. Zinc sulfate supplementation during head and neck radiation therapy showed no increase in absolute numbers of circulating T lymphocytes, T lymphocyte subpopulations, or survival with acceptable side effects.

  19. Experimental studies of immunologically mediated enteropathy. Development of cell mediated immunity and intestinal pathology during a graft-versus-host reaction in irradiated mice.

    PubMed Central

    Mowat, A M; Felstein, M V; Borland, A; Parrott, D M

    1988-01-01

    The intestinal component of a graft-versus-host reaction (GvHR) provides a useful experimental model to elucidate the pathogenesis of clinical enteropathies which cause villus atrophy and crypt hyperplasia and which are associated with a local immune response. One to three days after induction of GvHR in heavily irradiated (CBAxBALB/c)F1 mice, a proliferative form of enteropathy developed. Compared with controls, these mice had increased counts of jejunal intraepithelial lymphocytes and had a four-fold increase in crypt cell production rate as well as an increase in crypt length. These changes were accompanied by a marked enhancement of splenic natural killer cell activity. After day three, the crypt cell production rate fell to zero and cytotoxic T lymphocytes (CTL) which could lyse targets of host origin appeared. In parallel, mice with GvHR developed significant villus shortening and their clinical condition deteriorated. Further experiments showed that increased counts of intraepithelial lymphocytes, villus atrophy and crypt hyperplasia also occurred in grafts of fetal CBA intestine implanted under the kidney capsule of (CBAxBALB/c)F1 mice with GvHR. As these grafts are syngeneic to the injected CBA spleen cells, they should not be attacked by anti-host cytotoxic T lymphocytes. We suggest that the proliferative and destructive components of enteropathy in GvHR are caused by lymphokines released by an anti-host delayed type hypersensitivity reaction. PMID:3294125

  20. Alleviation of collagen-induced arthritis by the benzoxathiole derivative BOT-4-one in mice: Implication of the Th1- and Th17-cell-mediated immune responses.

    PubMed

    Kim, Byung-Hak; Yoon, Bo Ruem; Kim, Eun Kyoung; Noh, Kum Hee; Kwon, Sun-Ho; Yi, Eun Hee; Lee, Hyun Gyu; Choi, Jung Sook; Kang, Seong Wook; Park, In-Chul; Lee, Won-Woo; Ye, Sang-Kyu

    2016-06-15

    Autoimmune rheumatoid arthritis is characterized by chronic inflammation and hyperplasia in the synovial joints. Although the cause of rheumatoid arthritis is largely unknown, substantial evidence has supported the importance of immune cells and inflammatory cytokines in the initiation and progression of this disease. Herein, we demonstrated that the benzoxathiole derivative 2-cyclohexylimino-6-methyl-6,7-dihydro-5H-benzo[1,3]oxathiol-4-one (BOT-4-one) alleviated type II collagen-induced arthritis in a mouse model. The levels of pro-inflammatory cytokines are elevated in both human patients with rheumatoid arthritis and mice with collagen-induced arthritis. BOT-4-one treatment reduced the levels of pro-inflammatory cytokines in mice and endotoxin-stimulated macrophages. BOT-4-one treatment suppressed the polarization of Th1- and Th17-cell subsets by inhibiting the expression and production of their lineage-specific master transcription factors and cytokines, as well as activation of signal transducer and activator of transcription proteins. In addition, BOT-4-one inhibited mitogen-activated protein kinase and NF-kappaB signaling as well as the transcriptional activities and DNA-binding of transcription factors, including activator protein-1, cAMP response element-binding protein and NF-kappaB. Our results suggest that BOT-4-one may have therapeutic potential for the treatment of chronic inflammation associated with autoimmune rheumatoid arthritis.

  1. The Effects of Reduced Gluten Barley Diet on Humoral and Cell-Mediated Systemic Immune Responses of Gluten-Sensitive Rhesus Macaques

    PubMed Central

    Sestak, Karol; Thwin, Hazel; Dufour, Jason; Aye, Pyone P.; Liu, David X.; Moehs, Charles P.

    2015-01-01

    Celiac disease (CD) affects approximately 1% of the general population while an estimated additional 6% suffers from a recently characterized, rapidly emerging, similar disease, referred to as non-celiac gluten sensitivity (NCGS). The only effective treatment of CD and NCGS requires removal of gluten sources from the diet. Since required adherence to a gluten-free diet (GFD) is difficult to accomplish, efforts to develop alternative treatments have been intensifying in recent years. In this study, the non-human primate model of CD/NCGS, e.g., gluten-sensitive rhesus macaque, was utilized with the objective to evaluate the treatment potential of reduced gluten cereals using a reduced gluten (RG; 1% of normal gluten) barley mutant as a model. Conventional and RG barleys were used for the formulation of experimental chows and fed to gluten-sensitive (GS) and control macaques to determine if RG barley causes a remission of dietary gluten-induced clinical and immune responses in GS macaques. The impacts of the RG barley diet were compared with the impacts of the conventional barley-containing chow and the GFD. Although remission of the anti-gliadin antibody (AGA) serum responses and an improvement of clinical diarrhea were noted after switching the conventional to the RG barley diet, production of inflammatory cytokines, e.g., interferon-gamma (IFN-γ), tumor necrosis factor (TNF) and interleukin-8 (IL-8) by peripheral CD4+ T helper lymphocytes, persisted during the RG chow treatment and were partially abolished only upon re-administration of the GFD. It was concluded that the RG barley diet might be used for the partial improvement of gluten-induced disease but its therapeutic value still requires upgrading—by co-administration of additional treatments. PMID:25756783

  2. Changes in humoral and cell-mediated immune responses and in skin and respiratory surfaces of catfish, Saccobranchus fossilis, following copper exposure

    SciTech Connect

    Khangarot, B.S.; Tripathi, D.M. )

    1991-12-01

    Immunologic responses and stereoscan analysis of the skin and gill surfaces were performed in the air-breathing catfish, Saccobranchus fossilis (Bloch) following sublethal exposure to copper. At 0.056, 0.1, and 0.32 mg/liter of Cu, a dose-dependent decrease in red and white blood cell counts, hemoglobin content, and packed cell volume values were observed at the end of experiment, i.e., 28 days. Fish exposed to Cu concentrations had lower antibody titer values, reduced numbers of splenic and kidney plaque-forming cells, and higher counts of splenic lymphocytes when compared to the control group. Cellular immune responses were evaluated by the rejection of eye allografts. Fish exposed to 0.32 mg/liter for 28 days showed 2-3 days delay in the eye-allograft rejection. Reduced phagocytic activity against sheep red blood cells was observed in Cu-treated fish. Exposure to 0.32 mg/liter of Cu for 7 days causes surface architectural abnormalities in the arrangement of microvilli on the surface of superficial epidermal cells of the skin. Hypersecretion of mucous, loss of shape, size, and structural arrangement of epidermal cells, and mucous goblet cells were observed following Cu exposure. An increased number of active tubular dilated mucous cells were also noticed. Accumulation of mucous suggests a molecular interaction between mucous glycoproteins and toxic Cu ions. Fish exposed to 0.32 mg/liter for 7 days showed edema, fusion of secondary gill lamellae at many places, and degeneration of epithelial cells. Marked ultrastructural alterations in the arrangement of microridges and intervening grooves of gill lamellae were noted. It is suggested that these degenerative changes in gill lamellae are responsible for respiratory and osmoregulatory dysfunction.

  3. The effects of reduced gluten barley diet on humoral and cell-mediated systemic immune responses of gluten-sensitive rhesus macaques.

    PubMed

    Sestak, Karol; Thwin, Hazel; Dufour, Jason; Aye, Pyone P; Liu, David X; Moehs, Charles P

    2015-03-06

    Celiac disease (CD) affects approximately 1% of the general population while an estimated additional 6% suffers from a recently characterized, rapidly emerging, similar disease, referred to as non-celiac gluten sensitivity (NCGS). The only effective treatment of CD and NCGS requires removal of gluten sources from the diet. Since required adherence to a gluten-free diet (GFD) is difficult to accomplish, efforts to develop alternative treatments have been intensifying in recent years. In this study, the non-human primate model of CD/NCGS, e.g., gluten-sensitive rhesus macaque, was utilized with the objective to evaluate the treatment potential of reduced gluten cereals using a reduced gluten (RG; 1% of normal gluten) barley mutant as a model. Conventional and RG barleys were used for the formulation of experimental chows and fed to gluten-sensitive (GS) and control macaques to determine if RG barley causes a remission of dietary gluten-induced clinical and immune responses in GS macaques. The impacts of the RG barley diet were compared with the impacts of the conventional barley-containing chow and the GFD. Although remission of the anti-gliadin antibody (AGA) serum responses and an improvement of clinical diarrhea were noted after switching the conventional to the RG barley diet, production of inflammatory cytokines, e.g., interferon-gamma (IFN-γ), tumor necrosis factor (TNF) and interleukin-8 (IL-8) by peripheral CD4+ T helper lymphocytes, persisted during the RG chow treatment and were partially abolished only upon re-administration of the GFD. It was concluded that the RG barley diet might be used for the partial improvement of gluten-induced disease but its therapeutic value still requires upgrading-by co-administration of additional treatments.

  4. Successful Therapy of Murine Visceral Leishmaniasis with Astrakurkurone, a Triterpene Isolated from the Mushroom Astraeus hygrometricus, Involves the Induction of Protective Cell-Mediated Immunity and TLR9

    PubMed Central

    Mallick, Suvadip; Dutta, Aritri; Chaudhuri, Ankur; Mukherjee, Debasri; Dey, Somaditya; Halder, Subhadra; Ghosh, Joydip; Mukherjee, Debarati; Sultana, Sirin Salma; Biswas, Gunjan; Lai, Tapan Kumar; Patra, Pradyumna; Sarkar, Indranil; Chakraborty, Sibani; Saha, Bhaskar; Acharya, Krishnendu

    2016-01-01

    In our previous report, we showed that astrakurkurone, a triterpene isolated from the Indian mushroom Astraeus hygrometricus (Pers.) Morgan, induced reactive oxygen species, leading to apoptosis in Leishmania donovani promastigotes, and also was effective in inhibiting intracellular amastigotes at the 50% inhibitory concentration of 2.5 μg/ml. The aim of the present study is to characterize the associated immunomodulatory potentials and cellular activation provided by astrakurkurone, leading to effective antileishmanial activity in vitro and in vivo. Astrakurkurone-mediated antileishmanial activity was evaluated by real-time PCR and flow cytometry. The involvement of Toll-like receptor 9 (TLR9) was studied by in vitro assay in the presence of a TLR9 agonist and antagonist and by in silico modeling of a three-dimensional structure of the ectodomain of TLR9 and its interaction with astrakurkurone. Astrakurkurone caused a significant increase in TLR9 expression of L. donovani-infected macrophages along with the activation of proinflammatory responses. The involvement of TLR9 in astrakurkurone-mediated amastigote killing has been evidenced from the fact that a TLR9 agonist (CpG, ODN 1826) in combination with astrakurkurone enhanced the amastigote killing, while a TLR9 antagonist (bafilomycin A1) alone or in combination with astrakurkurone curbed the amastigote killing, which could be further justified by in silico evidence of docking between mouse TLR9 and astrakurkurone. Astrakurkurone was found to reduce the parasite burden in vivo by inducing protective cytokines, gamma interferon and interleukin 17. Moreover, astrakurkurone was nontoxic toward peripheral blood mononuclear cells of immunocompromised patients with visceral leishmaniasis. Astrakurkurone, a nontoxic antileishmanial, enhances the immune efficiency of host cells, leading to parasite clearance in vitro and in vivo. PMID:26883702

  5. WI-1, a novel 120-kilodalton surface protein on Blastomyces dermatitidis yeast cells, is a target antigen of cell-mediated immunity in human blastomycosis.

    PubMed Central

    Klein, B S; Sondel, P M; Jones, J M

    1992-01-01

    A large body of experimental data has demonstrated the central role of T cells in acquired resistance to the dimorphic fungus Blastomyces dermatitidis. We examined the human T-cell response to WI-1, a 120-kDa B. dermatitidis yeast cell surface protein recently shown to be an immunodominant antigen of the B-cell response in infected humans. Peripheral blood lymphocytes from 10 blastomycosis patients studied proliferated in response to WI-1 (mean, 19,431 cpm) and to the standard, crude cell wall antigen, Blastomyces alkali- and water-soluble antigen (B-ASWS) (mean, 19,131 cpm); lymphocytes from 10 histoplasmosis patients and 10 normal control subjects did not respond to WI-1. WI-1 stimulation of patient lymphocytes and rechallenge with WI-1 or B-ASWS showed that the antigens share immunodominant epitopes. Of 100 WI-1-responsive T-cell clones derived from peripheral blood, 10 were studied in detail to assess the phenotype, function, and ligands recognized. The clones exhibit the CD3+ CD4+ phenotype of helper T cells; 2 of 10 clones (and 21% of antigen-stimulated peripheral blood lymphocytes) use the V beta 8 T-cell receptor gene element to respond to WI-1. All the clones proliferate in response to both WI-1 and B-ASWS but not other fungal antigens, and some mediate potent cytolytic effects on WI-1- and B-ASWS-labeled targets. WI-1 recognition requires antigen processing and presentation of epitopes in association with HLA-DR (to noncytolytic clones) and HLA-DP (to cytolytic clones). From these findings, we conclude that CD4+ T cells with regulatory and cytolytic properties are involved in the development of acquired resistance of B. dermatitidis, that the cells are directed against WI-1, and that the manner of display of WI-1 peptide epitopes in conjunction with major histocompatibility complex class II may influence the profile of the immune response. PMID:1383148

  6. Selective induction of cell-mediated immunity and protection of rhesus macaques from chronic SHIV{sub KU2} infection by prophylactic vaccination with a conserved HIV-1 envelope peptide-cocktail

    SciTech Connect

    Nehete, Pramod N.; Nehete, Bharti P.; Hill, Lori; Manuri, Pallavi R.; Baladandayuthapani, Veerabhadran; Feng Lei; Simmons, Johnny; Sastry, K. Jagannadha

    2008-01-05

    Infection of Indian-origin rhesus macaques by the simian human immunodeficiency virus (SHIV) is considered to be a suitable preclinical model for directly testing efficacy of vaccine candidates based on the HIV-1 envelope. We used this model for prophylactic vaccination with a peptide-cocktail comprised of highly conserved HIV-1 envelope sequences immunogenic/antigenic in macaques and humans. Separate groups of macaques were immunized with the peptide-cocktail by intravenous and subcutaneous routes using autologous dendritic cells (DC) and Freund's adjuvant, respectively. The vaccine elicited antigen specific IFN-{gamma}-producing cells and T-cell proliferation, but not HIV-neutralizing antibodies. The vaccinated animals also exhibited efficient cross-clade cytolytic activity against target cells expressing envelope proteins corresponding to HIV-1 strains representative of multiple clades that increased after intravenous challenge with pathogenic SHIV{sub KU2}. Virus-neutralizing antibodies were either undetectable or present only transiently at low levels in the control as well as vaccinated monkeys after infection. Significant control of plasma viremia leading to undetectable levels was achieved in majority of vaccinated monkeys compared to mock-vaccinated controls. Monkeys vaccinated with the peptide-cocktail using autologous DC, compared to Freund's adjuvant, and the mock-vaccinated animals, showed significantly higher IFN-{gamma} production, higher levels of vaccine-specific IFN-{gamma} producing CD4{sup +} cells and significant control of plasma viremia. These results support DC-based vaccine delivery and the utility of the conserved HIV-1 envelope peptide-cocktail, capable of priming strong cell-mediated immunity, for potential inclusion in HIV vaccination strategies.

  7. Increased expression of programmed death (PD)-1 and its ligand PD-L1 correlates with impaired cell-mediated immunity in high-risk human papillomavirus-related cervical intraepithelial neoplasia.

    PubMed

    Yang, Wen; Song, Yan; Lu, Yun-Long; Sun, Jun-Zhong; Wang, Hong-Wei

    2013-08-01

    Impaired local cellular immunity contributes to the pathogenesis of persistent high-risk human papillomavirus (HR-HPV) infection and related cervical intraepithelial neoplasia (CIN), but the underlying molecular mechanisms remain unclear. Recently, the programmed death 1/programmed death 1 ligand (PD-1/PD-L1; CD279/CD274) pathway was demonstrated to play a critical role in attenuating T-cell responses and promoting T-cell tolerance during chronic viral infections. In this study, we examined the expression of PD-1 and PD-L1 on cervical T cells and dendritic cells (DCs), respectively, from 40 women who were HR-HPV-negative (-) or HR-HPV-positive (+) with CIN grades 0, I and II-III. We also measured interferon-γ, interleukin-12 (IL-12) and IL-10 in cervical exudates. The most common HPV type was HPV 16, followed by HPV 18, 33, 51 and 58. PD-1 and PD-L1 expression on cervical T cells and DCs, respectively, was associated with HR-HPV positivity and increased in parallel with increasing CIN grade. The opposite pattern was observed for CD80 and CD86 expression on DCs, which decreased in HR-HPV+ patients in parallel with increasing CIN grade. Similarly, reduced levels of the T helper type 1 cytokines interferon-γ and IL-12 and increased levels of the T helper type 2 cytokine IL-10 in cervical exudates correlated with HR-HPV positivity and CIN grade. Our results suggest that up-regulation of the inhibitory PD-1/PD-L1 pathway may negatively regulate cervical cell-mediated immunity to HPV and contribute to the progression of HR-HPV-related CIN. These results may aid in the development of PD-1/PD-L1 pathway-based strategies for immunotherapy of HR-HPV-related CIN.

  8. Transmembrane TNF induces an efficient cell-mediated immunity and resistance to Mycobacterium bovis bacillus Calmette-Guérin infection in the absence of secreted TNF and lymphotoxin-alpha.

    PubMed

    Olleros, Maria L; Guler, Reto; Corazza, Nadia; Vesin, Dominique; Eugster, Hans-Pietro; Marchal, Gilles; Chavarot, Pierre; Mueller, Christoph; Garcia, Irene

    2002-04-01

    The contribution of a transmembrane (Tm) form of TNF to protective immunity against Mycobacterium bovis bacillus Calmette-Guérin (BCG) was studied in transgenic (tg) mice expressing a noncleavable Tm TNF but lacking the TNF/lymphotoxin-alpha (LT-alpha) locus (Tm TNF tg mice). These mice were as resistant to BCG infection as wild-type mice, whereas TNF/LT-alpha(-/-), TNF(-/-), and LT-alpha(-/-) mice succumbed. Tm TNF tg mice developed granulomas of smaller size but at 2- to 4-fold increased frequencies compared with wild-type mice. Granulomas were mainly formed by monocytes and activated macrophages expressing Tm TNF mRNA and accumulating acid phosphatase. NO synthase 2 activation as a key macrophage bactericidal mechanism was low during the acute phase of infection in Tm TNF tg mice but was still sufficient to limit bacterial growth and increased in late infection. While infection with virulent Mycobacterium tuberculosis resulted in very rapid death of TNF/LT-alpha(-/-) mice, it also resulted in survival of Tm TNF tg mice which presented an increase in the number of CFU in spleen (5-fold) and lungs (10-fold) as compared with bacterial load of wild-type mice. In conclusion, the Tm form of TNF induces an efficient cell-mediated immunity and total resistance against BCG even in the absence of LT-alpha and secreted TNF. However, Tm TNF-mediated protection against virulent M. tuberculosis infection can also be efficient but not as strong as in BCG infection, in which cognate cellular interactions may play a more predominant role in providing long-term surveillance and containment of BCG-infected macrophages.

  9. Passive adoptive transfer of antitumor immunity induced by laser-dye-immunoadjuvant treatment in a rat metastatic breast cancer model

    NASA Astrophysics Data System (ADS)

    Chen, Wei R.; Liu, Hong; Singhal, Anil K.; Nordquist, Robert E.

    2000-06-01

    The ideal cancer treatment modalities should not only cause tumor regression and eradication but also induce a systemic anti-tumor immunity. This is essential for control of metastatic tumors and for long-term tumor resistance. Laser immunotherapy using a laser, a laser-absorbing dye and an immunoadjuvant has induced such a long-term immunity in treatment of a mammary metastatic tumor. The successfully treated rats established total resistance to multiple subsequent tumor challenges. For further mechanistic studies of the antitumor immunity induced by this novel treatment modality, passive adoptive transfer was performed using splenocytes as immune cells. The spleen cells harvested from successfully treated tumor-bearing rats provided 100% immunity in the naive recipients. The passively protected first cohort rats were immune to tumor challenge with an increased tumor dose; their splenocytes also prevented the establishment of tumor in the second cohort of naive recipient rats. This immunity transfer was accomplished without the usually required T-cell suppression in recipients.

  10. Specific antitumour immunity of HIFU-activated cytotoxic T lymphocytes after adoptive transfusion in tumour-bearing mice.

    PubMed

    Ran, Li-Feng; Xie, Xun-Peng; Xia, Ji-Zhu; Xie, Fang-Lin; Fan, Yan-Min; Wu, Feng

    2016-01-01

    The aim of this study was to investigate the specific anti-tumour immunity of cytotoxic T lymphocytes (CTL) activated by high-intensity focused ultrasound (HIFU) after adoptive transfer in a murine tumour model. H22 tumour-bearing mice were treated by either HIFU or sham-HIFU, while naïve syngeneic mice were used as controls. They were sacrificed and the spleens were harvested 14 days after HIFU. T lymphocytes were obtained from the spleens, and then adoptively transferred into 40 mice each bearing a 3-day implanted H22 tumour. On day 14 after adoptive transfer, 10 mice were sacrificed in each group for assessment of the number of tumour-infiltrating T lymphocytes and interferon-gamma (IFN-γ) secreting cells. The remaining 30 mice were continuously observed for 60 days, and tumour growth, progression and survival were recorded. HIFU significantly increased peripheral blood CD3(+), CD4(+) levels and CD4(+)/CD8(+) ratio (P < 0.05), CTL cytotoxicity (P < 0.01) and IFN-γ and TNF-α secretion (P < 0.01) in H22 tumour-bearing mice. Adoptive transfer of HIFU-activated T lymphocytes into the autologous tumour-bearing mice induced a significant increase of tumour-infiltrating T lymphocytes and IFN-γ-secreting cells (P < 0.001). Compared to the control and sham-HIFU groups, HIFU-activated lymphocytes elicited significant inhibition of in vivo tumour growth (P < 0.01) and progression (P < 0.0001), and longer survival time in the tumour-bearing mice (P < 0.001). HIFU could enhance CTL's specific antitumour immunity. Adoptive transfer of HIFU-activated T lymphocytes could increase local antitumour immunity, and elicit stronger inhibition on tumour growth and progression, with more survival benefit in the autologous tumour-bearing mice.

  11. Efficacy of Adoptive Immune-cell Therapy in Patients with Advanced Gastric Cancer: A Retrospective Study.

    PubMed

    Takimoto, Rishu; Kamigaki, Takashi; Okada, Sachiko; Matsuda, Eriko; Ibe, Hiroshi; Oguma, Eri; Naitoh, Keiko; Makita, Kaori; Goto, Shigenori

    2017-07-01

    Conventional therapy for advanced gastric cancer (GC) has limited survival benefits. In this retrospective study, we aimed to investigate the efficacy of immune-cell therapy, using in vitro-activated T-lymphocytes with and without dendritic cells (DCs), in combination with standard therapies in terms of the survival of patients with advanced GC. A total of 242 patients who were diagnosed as having stage-IV GC were enrolled in this study to receive immune-cell therapy with or without standard therapies, such as chemotherapy, surgery, or radiation therapy. Overall survival was analyzed by the Kaplan-Meier with log-rank test and Cox regression methods. Immune-cell therapy increased median survival time (21.5 months) in patients with advanced GC. The patients who underwent surgery with or without chemotherapy as a prior treatment showed better prognosis than those who received other therapies (p<0.001). Patients who showed stable disease or a partial response to immune-cell therapy had a better prognosis than those with progressive disease (p<0.001). Multivariate analysis revealed that performance status, the type of immune-cell therapy, and prior treatment were independent prognostic factors for patients with GC. No serious adverse event was reported in immune-cell therapy. Immune-cell therapy might extend the survival of patients with advanced GC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates--Nrf2 activators and GSK-3 inhibitors.

    PubMed

    Maes, Michael; Fišar, Zdenĕk; Medina, Miguel; Scapagnini, Giovanni; Nowak, Gabriel; Berk, Michael

    2012-06-01

    This paper reviews new drug targets in the treatment of depression and new drug candidates to treat depression. Depression is characterized by aberrations in six intertwined pathways: (1) inflammatory pathways as indicated by increased levels of proinflammatory cytokines, e.g. interleukin-1 (IL-1), IL-6, and tumour necrosis factor α. (2) Activation of cell-mediated immune pathways as indicated by an increased production of interferon γ and neopterin. (3) Increased reactive oxygen and nitrogen species and damage by oxidative and nitrosative stress (O&NS), including lipid peroxidation, damage to DNA, proteins and mitochondria. (4) Lowered levels of key antioxidants, such as coenzyme Q10, zinc, vitamin E, glutathione, and glutathione peroxidase. (5) Damage to mitochondria and mitochondrial DNA and reduced activity of respiratory chain enzymes and adenosine triphosphate production. (6) Neuroprogression, which is the progressive process of neurodegeneration, apoptosis, and reduced neurogenesis and neuronal plasticity, phenomena that are probably caused by inflammation and O&NS. Antidepressants tend to normalize the above six pathways. Targeting these pathways has the potential to yield antidepressant effects, e.g. using cytokine antagonists, minocycline, Cox-2 inhibitors, statins, acetylsalicylic acid, ketamine, ω3 poly-unsaturated fatty acids, antioxidants, and neurotrophic factors. These six pathways offer new, pathophysiologically guided drug targets suggesting that novel therapies could be developed that target these six pathways simultaneously. Both nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activators and glycogen synthase kinase-3 (GSK-3) inhibitors target the six above-mentioned pathways. GSK-3 inhibitors have antidepressant effects in animal models of depression. Nrf2 activators and GSK-3 inhibitors have the potential to be advanced to phase-2 clinical trials to examine whether they augment the efficacy of antidepressants or are useful as monotherapy.

  13. Varicella-zoster virus-specific, cell-mediated immunity with interferon-gamma release assay after vaccination of college students with no or intermediate IgG antibody response.

    PubMed

    Terada, Kihei; Itoh, Yuri; Fujii, Akihide; Kitagawa, Seiko; Ogita, Satoko; Ouchi, Kazunobu

    2015-02-01

    This study measured Varicella-zoster virus (VZV) specific cell-mediated immunity (CMI) and antibodies to clarify immune response after vaccination in 68 college students with negative or intermediate IgG antibody status. The enrolled numbers of negative, intermediate, and positive VZV-IgG antibody were 27, 41, and 28 students, respectively. The positive rates of CMI were 3.7% (1/27), 41.5% (17/41), and 96.4% (27/28) before vaccination, respectively. After vaccination, the IgG antibody titers became significantly higher in the intermediate IgG group compared to those in the negative IgG group (P < 0.01), but CMI did not differ significantly between the two groups. Ninety-three percent (38/41) of the intermediate IgG antibody group and 41% (11/27) of the negative IgG antibody group became positive for the IgG antibody after vaccination (P < 0.0001). When subjects were divided into negative, intermediate, and positive CMI by interferon-gamma values before vaccination, the IgG antibody and interferon-gamma values increased significantly in the positive CMI group compared to the negative CMI group after vaccination (P < 0.01 and P < 0.01, respectively). All (17/17) of positive CMI group and 61% (27/44) of negative CMI group became positive for the IgG antibody after vaccination (P < 0.01). Ninety-four percent (16/17) of positive CMI group and 59% (28/44) of negative CMI group became positive for CMI after vaccination (P < 0.05). Ninety-six percent (22/23) of the subjects with a history of vaccination became IgG seropositive after a second dose of vaccination, but 22% (5/23) of them remained negative for CMI. CMI is valuable information to identify potential non-responders to vaccination and to predict risk of clinical VZV infection.

  14. Regulatory T cells attenuate Th17 cell-mediated nigrostriatal dopaminergic neurodegeneration in a model of Parkinson's disease

    PubMed Central

    Reynolds, Ashley D.; Stone, David K.; Hutter, Jessica A.L.; Benner, Eric J.; Mosley, R. Lee; Gendelman, Howard E.

    2010-01-01

    Nitrated alpha synuclein (N-α-syn) immunization elicits adaptive immune responses to novel antigenic epitopes that exacerbate neuroinflammation and nigrostriatal degeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson's disease (PD). We show that such neuroimmune degenerative activities, in significant measure, are Th17 cell-mediated with CD4+CD25+ regulatory T cell (Treg) dysfunction seen amongst populations of N-α-syn induced T cells. In contrast, purified vasoactive intestinal peptide (VIP)-induced and natural Treg reversed N-α-syn T cell nigrostriatal degeneration. Combinations of adoptively transferred N-α-syn and VIP immunocytes or natural Treg administered to MPTP mice attenuated microglial inflammatory responses and led to robust nigrostriatal protection. Taken together, these results demonstrate a putative mechanism for Treg control of N-α-syn-induced neurodestructive immunity and as such provide a sound rationale for future PD immunization strategies. PMID:20118279

  15. Mast Cell-Mediated Mechanisms of Nociception

    PubMed Central

    Aich, Anupam; Afrin, Lawrence B.; Gupta, Kalpna

    2015-01-01

    Mast cells are tissue-resident immune cells that release immuno-modulators, chemo-attractants, vasoactive compounds, neuropeptides and growth factors in response to allergens and pathogens constituting a first line of host defense. The neuroimmune interface of immune cells modulating synaptic responses has been of increasing interest, and mast cells have been proposed as key players in orchestrating inflammation-associated pain pathobiology due to their proximity to both vasculature and nerve fibers. Molecular underpinnings of mast cell-mediated pain can be disease-specific. Understanding such mechanisms is critical for developing disease-specific targeted therapeutics to improve analgesic outcomes. We review molecular mechanisms that may contribute to nociception in a disease-specific manner. PMID:26690128

  16. Mast Cell-Mediated Mechanisms of Nociception.

    PubMed

    Aich, Anupam; Afrin, Lawrence B; Gupta, Kalpna

    2015-12-04

    Mast cells are tissue-resident immune cells that release immuno-modulators, chemo-attractants, vasoactive compounds, neuropeptides and growth factors in response to allergens and pathogens constituting a first line of host defense. The neuroimmune interface of immune cells modulating synaptic responses has been of increasing interest, and mast cells have been proposed as key players in orchestrating inflammation-associated pain pathobiology due to their proximity to both vasculature and nerve fibers. Molecular underpinnings of mast cell-mediated pain can be disease-specific. Understanding such mechanisms is critical for developing disease-specific targeted therapeutics to improve analgesic outcomes. We review molecular mechanisms that may contribute to nociception in a disease-specific manner.

  17. The other way around: probiotic Lactobacillus acidophilus NP51 restrict progression of Mycobacterium avium subspecies paratuberculosis (MAP) infection in Balb/c mice via activiation of CD8 alpha+ immune cell-mediated immunity

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to examine the immune-modulating effects of feeding a novel probiotic Lactobacillus acidophilus strain NP51 to specific pathogen-free Balb/c mice challenged with Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne’s disease (JD) in rumi...

  18. Effects of injectable trace minerals on humoral and cell-mediated immune responses to Bovine viral diarrhea virus, Bovine herpes virus 1 and Bovine respiratory syncytial virus following administration of a modified-live virus vaccine in dairy calves.

    PubMed

    Palomares, R A; Hurley, D J; Bittar, J H J; Saliki, J T; Woolums, A R; Moliere, F; Havenga, L J; Norton, N A; Clifton, S J; Sigmund, A B; Barber, C E; Berger, M L; Clark, M J; Fratto, M A

    2016-10-01

    Our objective was to evaluate the effect of an injectable trace mineral (ITM) supplement containing zinc, manganese, selenium, and copper on the humoral and cell mediated immune (CMI) responses to vaccine antigens in dairy calves receiving a modified-live viral (MLV) vaccine containing BVDV, BHV1, PI3V and BRSV. A total of 30 dairy calves (3.5 months of age) were administered a priming dose of the MLV vaccine containing BHV1, BVDV1 & 2, BRSV, PI3V, and an attenuated-live Mannheimia-Pasteurella bacterin subcutaneously (SQ). Calves were randomly assigned to 1 of 2 groups: (1) administration of ITM SQ (ITM, n=15) or (2) injection of sterile saline SQ (Control; n=15). Three weeks later, calves received a booster of the same vaccine combination SQ, and a second administration of ITM, or sterile saline, according to the treatment group. Blood samples were collected on days 0, 7, 14, 21, 28, 42, 56, and 90 post-vaccination for determination of antibody titer, viral recall antigen-induced IFN-γ production, and viral antigen-induced proliferation by peripheral blood mononuclear cells (PBMC). Administration of ITM concurrently with MLV vaccination resulted in higher antibody titers to BVDV1 on day 28 after priming vaccination compared to the control group (P=0.03). Calves treated with ITM showed an earlier enhancement in PBMC proliferation to BVDV1 following vaccination compared to the control group. Proliferation of PBMC after BVDV stimulation tended to be higher on day 14 after priming vaccination in calves treated with ITM than in the control group (P=0.08). Calves that received ITM showed higher PBMC proliferation to BRSV stimulation on day 7 after priming vaccination compared to the control group (P=0.01). Moreover, calves in the ITM group also had an enhanced production IFN-γ by PBMC after stimulation with BRSV on day 21 after priming vaccination compared to day 0 (P<0.01). In conclusion, administration of ITM concurrently with MLV vaccination in dairy calves

  19. Adoptive transfer of tracer alloreactive CD4+ TCR-transgenic T cells alters the endogenous immune response to an allograft

    PubMed Central

    Miller, Michelle L.; Chen, Jianjun; Daniels, Melvin D.; McKeague, Matthew G.; Wang, Ying; Yin, Dengping; Vu, Vinh; Chong, Anita S.; Alegre, Maria-Luisa

    2016-01-01

    T cell receptor transgenic (TCR-Tg) T cells are often used as tracer populations of antigen-specific responses to extrapolate findings to endogenous T cells. The extent to which TCR-Tg T cells behave purely as tracer cells or modify the endogenous immune response is not clear. To test the impact of TCR-Tg T cell transfer on endogenous alloimmunity, recipient mice were seeded with CD4+ or CD8+ TCR-Tg or polyclonal T cells at the time of cardiac allograft transplantation. Only CD4+ TCR-Tg T cells accelerated rejection, and unexpectedly led to a dose-dependent decrease in both transferred and endogenous T cells infiltrating the graft. In contrast, recipients of CD4+ TCR-Tg cell exhibited enhanced endogenous donor-specific CD8+ T-cell activation in the spleen and accelerated alloantibody production. Introduction of CD4+ TCR-Tg T cells also perturbed the intra-graft accumulation of innate cell populations. Thus, transferred CD4+ TCR-Tg T cells alter many aspects of endogenous alloimmunity, suggesting that caution should be used when interpreting experiments utilizing these adoptively-transferred cells, as the overall nature of allograft rejection may be altered. These results may also have implications for adoptive CD4+ T cell immunotherapy in tumor and infectious clinical settings as cell infusion may have additional effects on natural immune responses. PMID:27063351

  20. Adoptive transfer of tracer alloreactive CD4(+) TCR-transgenic T cells alters the endogenous immune response to an allograft.

    PubMed

    Miller, Michelle L; Chen, Jianjun; Daniels, Melvin D; McKeague, Matthew G; Wang, Ying; Yin, Dengping; Vu, Vinh; Chong, Anita S; Alegre, Maria-Luisa

    2016-04-11

    T cell receptor transgenic (TCR-Tg) T cells are often used as tracer populations of antigen-specific responses to extrapolate findings to endogenous T cells. The extent to which TCR-Tg T cells behave purely as tracer cells or modify the endogenous immune response is not clear. To test the impact of TCR-Tg T cell transfer on endogenous alloimmunity, recipient mice were seeded with CD4(+) or CD8(+) TCR-Tg or polyclonal T cells at the time of cardiac allograft transplantation. Only CD4(+) TCR-Tg T cells accelerated rejection, and unexpectedly led to a dose-dependent decrease in both transferred and endogenous T cells infiltrating the graft. In contrast, recipients of CD4(+) TCR-Tg cell exhibited enhanced endogenous donor-specific CD8(+) T-cell activation in the spleen and accelerated alloantibody production. Introduction of CD4(+) TCR-Tg T cells also perturbed the intra-graft accumulation of innate cell populations. Thus, transferred CD4(+) TCR-Tg T cells alter many aspects of endogenous alloimmunity, suggesting that caution should be used when interpreting experiments utilizing these adoptively-transferred cells, as the overall nature of allograft rejection may be altered. These results may also have implications for adoptive CD4(+) T cell immunotherapy in tumor and infectious clinical settings as cell infusion may have additional effects on natural immune responses. This article is protected by copyright. All rights reserved.

  1. Prophylactic Herpes Simplex Virus 2 (HSV-2) Vaccines Adjuvanted with Stable Emulsion and Toll-Like Receptor 9 Agonist Induce a Robust HSV-2-Specific Cell-Mediated Immune Response, Protect against Symptomatic Disease, and Reduce the Latent Viral Reservoir.

    PubMed

    Hensel, Michael T; Marshall, Jason D; Dorwart, Michael R; Heeke, Darren S; Rao, Eileen; Tummala, Padmaja; Yu, Li; Cohen, Gary H; Eisenberg, Roselyn J; Sloan, Derek D

    2017-02-22

    glycoproteins necessary for HSV-2 viral entry as target antigens, and to which the dominant neutralizing antibody response is directed during natural infection. Individuals with asymptomatic infection have exhibited T-cell responses against specific HSV-2 antigens not observed in symptomatic individuals. We describe for the first time the immunogenicity profile in animal models of UL40, a novel HSV-2 T-cell antigen that has been correlated with asymptomatic HSV-2 disease. Additionally, vaccine candidates adjuvanted by a robust formulation of CpG oligonucleotide delivered in emulsion were superior to unadjuvanted or MPL/alum-adjuvanted formulations at eliciting a robust cell mediated immune response and blocking establishment of a latent viral reservoir in the guinea pig challenge model of HSV-2 infection.

  2. Extending the lifespan and efficacies of immune cells used in adoptive transfer for cancer immunotherapies-A review.

    PubMed

    Nayar, Sandeep; Dasgupta, Prokar; Galustian, Christine

    2015-04-01

    Cells used in adoptive cell-transfer immunotherapies against cancer include dendritic cells (DCs), natural-killer cells, and CD8(+) T-cells. These cells may have limited efficacy due to their lifespan, activity, and immunosuppressive effects of tumor cells. Therefore, increasing longevity and activity of these cells may boost their efficacy. Four cytokines that can extend immune effector-cell longevity are IL-2, IL-7, IL-21, and IL-15. This review will discuss current knowledge on effector-cell lifespans and the mechanisms by which IL-2, IL-7, IL-15, and IL-21 can extend effector-cell longevity. We will also discuss how lifespan and efficacy of these cells can be regulated to allow optimal clinical benefits.

  3. Hymenolepis nana: adoptive transfer of protective immunity and delayed type hypersensitivity response with mesenteric lymph node cells in mice.

    PubMed

    Asano, K; Muramatsu, K; Okamoto, K

    1991-01-01

    A marked degree of footpad swelling was observed in BALB/c mice infected with Hymenolepis nana eggs, when soluble egg antigen was injected into their footpads 4 to 21 days after the egg infection, indicating delayed type hypersensitivity responses in infected mice. Adoptive transfer with mesenteric lymph node cells from donor mice (BALB/c strain; +/+) infected with eggs 4 days before cell collection could confer this hypersensitivity to recipient nude mice (BALB/c strain; nu/nu). These mesenteric lymph node cells were then divided into two fractions, blast-enriched and blast-depleted cells, by density gradient centrifugation with Percoll. The recipients intravenously injected with the blast-depleted cell fraction showed a marked increase in footpad thickness, whereas the intravenous transfer of the blast-enriched cell fraction resulted in an insignificant increase in footpad thickness. The transfer of the blast-enriched cell fraction, but not of the blast-depleted cell fraction, conferred a strong adoptive immunity on syngeneic recipient nude mice, when the immunity transferred was assessed by examining cysticercoids developed in the intestinal villi on Day 4 of challenge infection. The lack of delayed type hypersensitivity response in mice that received the blast-enriched cell population was not due to a lack of the capacity of the cells to induce the response, because the cells were capable of inducing a significant increase in thickness of footpads of normal mice when these cells were locally injected into the footpad together with soluble egg antigen.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Natural killer cell-mediated lysis of autologous cells modified by gene therapy.

    PubMed

    Liberatore, C; Capanni, M; Albi, N; Volpi, I; Urbani, E; Ruggeri, L; Mencarelli, A; Grignani, F; Velardi, A

    1999-06-21

    This study investigated the role of natural killer (NK) cells as effectors of an immune response against autologous cells modified by gene therapy. T lymphocytes were transduced with LXSN, a retroviral vector adopted for human gene therapy that carries the selectable marker gene neo, and the autologous NK response was evaluated. We found that (i) infection with LXSN makes cells susceptible to autologous NK cell-mediated lysis; (ii) expression of the neo gene is responsible for conferring susceptibility to lysis; (iii) lysis of neo-expressing cells is clonally distributed and mediated only by NK clones that exhibit human histocompatibility leukocyte antigen (HLA)-Bw4 specificity and bear KIR3DL1, a Bw4-specific NK inhibitory receptor; and (iv) the targets are cells from HLA-Bw4(+) individuals. Finally, neo peptides anchoring to the Bw4 allele HLA-B27 interfered with KIR3DL1-mediated recognition of HLA-B27, i.e., they triggered NK lysis. Moreover, neo gene mutations preventing translation of two of the four potentially nonprotective peptides reduced KIR3DL1(+) NK clone-mediated autologous lysis. Thus, individuals expressing Bw4 alleles possess an NK repertoire with the potential to eliminate autologous cells modified by gene therapy. By demonstrating that NK cells can selectively detect the expression of heterologous genes, these observations provide a general model of the NK cell-mediated control of viral infections.

  5. Molecular imaging of cell-mediated cancer immunotherapy.

    PubMed

    Lucignani, Giovanni; Ottobrini, Luisa; Martelli, Cristina; Rescigno, Maria; Clerici, Mario

    2006-09-01

    New strategies based on the activation of a patient's immune response are being sought to complement present conventional exogenous cancer therapies. Elucidating the trafficking pathways of immune cells in vivo, together with their migratory properties in relation to their differentiation and activation status, is useful for understanding how the immune system interacts with cancer. Methods based on tissue sampling to monitor immune responses are inadequate for repeatedly characterizing the responses of the immune system in different organs. A solution to this problem might come from molecular and cellular imaging - a branch of biomedical sciences that combines biotechnology and imaging methods to characterize, in vivo, the molecular and cellular processes involved in normal and pathologic states. The general concepts of noninvasive imaging of targeted cells as well as the technology and probes applied to cell-mediated cancer immunotherapy imaging are outlined in this review.

  6. In vitro T cell-mediated killing of Pseudomonas aeruginosa. V. Generation of bactericidal T cells in nonresponder mice.

    PubMed

    Powderly, W G; Pier, G B; Markham, R B

    1987-04-01

    We have previously reported that BALB/c mice immunized with 10 micrograms of a Pseudomonas aeruginosa polysaccharide antigen (PS) and 100 micrograms vinblastine sulfate develop T cell-mediated protective immunity, but fail to generate an antibody response. Vinblastine functions in this system to remove a suppressor cell that normally inhibits expression of this form of immunity after PS immunization. T cells from CB.20 mice immunized with the 10 micrograms of PS and 100 micrograms vinblastine fail to kill P. aeruginosa in vitro. These mice are allotype congenic with BALB/c mice, differing at loci closely linked to the IgH-1 locus. Immunization of CB.20 mice with 10 micrograms PS and 100 micrograms vinblastine results in the appearance of T cells which suppress in vitro bactericidal activity of BALB/c T cells. In the current study we found that T cell-mediated bactericidal activity can be generated in CB.20 mice by increasing the dose of vinblastine given at the time of PS immunization. The phenotype of the CB.20 bactericidal T cell generated by high dose vinblastine is identical to that of the BALB/c bactericidal T cell, and the CB.20 bactericidal T cell can adoptively transfer protective immunity to granulocytopenic mice. After immunization of BALB/c and CB.20 mice with PS alone, approximately one log fewer CB.20 T cells than BALB/c T cells are required to suppress bacterial killing in vitro. Furthermore, the number of CB.20 T cells required to suppress in vitro bacterial killing is directly correlated with the dose of vinblastine administered at the time of immunization. Increasing the immunizing dose of PS overcomes suppressor activity and allows the generation of bactericidal T cells in BALB/c mice without a requirement for vinblastine. CB.20 mice fail to generate bactericidal T cells after immunization with high doses of PS. These results indicate that CB.20 and BALB/c mice both possess the full repertoire of T cells required to express bactericidal T cell

  7. Protection against Mycobacterium tuberculosis infection by adoptive immunotherapy. Requirement for T cell-deficient recipients

    SciTech Connect

    Orme, I.M.; Collins, F.M.

    1983-07-01

    The results of this study demonstrate that spleen cells taken from mice at the height of the primary immune response to intravenous infection with Mycobacterium tuberculosis possess the capacity to transfer adoptive protection to M. tuberculosis-infected recipients, but only if these recipients are first rendered T cell-deficient, either by thymectomy and gamma irradiation, or by sublethal irradiation. A similar requirement was necessary to demonstrate the adoptive protection of the lungs after exposure to an acute aerosol-delivered M. tuberculosis infection. In both infectious models successful adoptive immunotherapy was shown to be mediated by T lymphocytes, which were acquired in the donor animals in response to the immunizing infection. It is proposed that the results of this study may serve as a basic model for the subsequent analysis of the nature of the T cell-mediated immune response to both systemic and aerogenic infections with M. tuberculosis.

  8. With minimal systemic T-cell expansion, CD8+ T Cells mediate protection of rhesus macaques immunized with attenuated simian-human immunodeficiency virus SHIV89.6 from vaginal challenge with simian immunodeficiency virus.

    PubMed

    Genescà, Meritxell; Skinner, Pamela J; Hong, Jung Joo; Li, Jun; Lu, Ding; McChesney, Michael B; Miller, Christopher J

    2008-11-01

    The presence, at the time of challenge, of antiviral effector T cells in the vaginal mucosa of female rhesus macaques immunized with live-attenuated simian-human immunodeficiency virus 89.6 (SHIV89.6) is associated with consistent and reproducible protection from pathogenic simian immunodeficiency virus (SIV) vaginal challenge (18). Here, we definitively demonstrate the protective role of the SIV-specific CD8(+) T-cell response in SHIV-immunized monkeys by CD8(+) lymphocyte depletion, an intervention that abrogated SHIV-mediated control of challenge virus replication and largely eliminated the SIV-specific T-cell responses in blood, lymph nodes, and genital mucosa. While in the T-cell-intact SHIV-immunized animals, polyfunctional and degranulating SIV-specific CD8(+) T cells were present in the genital tract and lymphoid tissues from the day of challenge until day 14 postchallenge, strikingly, expansion of SIV-specific CD8(+) T cells in the immunized monkeys was minimal and limited to the vagina. Thus, protection from uncontrolled SIV replication in animals immunized with attenuated SHIV89.6 is primarily mediated by CD8(+) T cells that do not undergo dramatic systemic expansion after SIV challenge. These findings demonstrate that despite, and perhaps because of, minimal systemic expansion of T cells at the time of challenge, a stable population of effector-cytotoxic CD8(+) T cells can provide significant protection from vaginal SIV challenge.

  9. Mucosal priming of newborn mice with S. Typhi Ty21a expressing anthrax protective antigen (PA) followed by parenteral PA-boost induces B and T cell-mediated immunity that protects against infection bypassing maternal antibodies.

    PubMed

    Ramirez, Karina; Ditamo, Yanina; Galen, James E; Baillie, Les W J; Pasetti, Marcela F

    2010-08-23

    The currently licensed anthrax vaccine has several limitations and its efficacy has been proven only in adults. Effective immunization of newborns and infants requires adequate stimulation of their immune system, which is competent but not fully activated. We explored the use of the licensed live attenuated S. Typhi vaccine strain Ty21a expressing Bacillus anthracis protective antigen [Ty21a(PA)] followed PA-alum as a strategy for immunizing the pediatric population. Newborn mice primed with a single dose of Ty21a(PA) exhibited high frequencies of mucosal IgA-secreting B cells and IFN-gamma-secreting T cells during the neonatal period, none of which was detected in newborns immunized with a single dose of PA-alum. Priming with Ty21a(PA) followed by PA-boost resulted in high levels of PA-specific IgG, toxin neutralizing and opsonophagocytic antibodies and increased frequency of bone marrow IgG plasma cells and memory B cells compared with repeated immunization with PA-alum alone. Robust B and T cell responses developed even in the presence of maternal antibodies. The prime-boost protected against systemic and respiratory infection. Mucosal priming with a safe and effective S. Typhi-based anthrax vaccine followed by PA-boost could serve as a practical and effective prophylactic approach to prevent anthrax early in life.

  10. Mucosal priming of newborn mice with S. Typhi Ty21a expressing anthrax protective antigen (PA) followed by parenteral PA-boost induces B and T cell-mediated immunity that protects against infection bypassing maternal antibodies

    PubMed Central

    Ramirez, Karina; Ditamo, Yanina; Galen, James E.; Baillie, Les W. J.; Pasetti, Marcela F.

    2010-01-01

    The currently licensed anthrax vaccine has several limitations and its efficacy has been proven only in adults. Effective immunization of newborns and infants requires adequate stimulation of their immune system, which is competent but not fully activated. We explored the use of the licensed live attenuated S. Typhi vaccine strain Ty21a expressing Bacillus anthracis protective antigen [Ty21a(PA)] followed PA-alum as a strategy for immunizing the pediatric population. Newborn mice primed with a single dose of Ty21a(PA) exhibited high frequencies of mucosal IgA-secreting B cells and IFN-γ-secreting T cells during the neonatal period, none of which was detected in newborns immunized with a single dose of PA-alum. Priming with Ty21a(PA) followed by PA-boost resulted in high levels of PA-specific IgG, toxin-neutralizing and opsonophagocytic antibodies and increased frequency of bone marrow IgG plasma cells and memory B cells compared with repeated immunization with PA-alum alone. Robust B and T cell responses developed even in the presence of maternal antibodies. The prime-boost protected against systemic and respiratory infection. Mucosal priming with a safe and effective S. Typhi-based anthrax vaccine followed by PA-boost could serve as a practical and effective prophylactic approach to prevent anthrax early in life. PMID:20619377

  11. Vaccination of Mice Using the West Nile Virus E-Protein in a DNA Prime-Protein Boost Strategy Stimulates Cell-Mediated Immunity and Protects Mice against a Lethal Challenge

    PubMed Central

    De Filette, Marina; Soehle, Silke; Ulbert, Sebastian; Richner, Justin; Diamond, Michael S.; Sinigaglia, Alessandro; Barzon, Luisa; Roels, Stefan; Lisziewicz, Julianna; Lorincz, Orsolya; Sanders, Niek N.

    2014-01-01

    West Nile virus (WNV) is a mosquito-borne flavivirus that is endemic in Africa, the Middle East, Europe and the United States. There is currently no antiviral treatment or human vaccine available to treat or prevent WNV infection. DNA plasmid-based vaccines represent a new approach for controlling infectious diseases. In rodents, DNA vaccines have been shown to induce B cell and cytotoxic T cell responses and protect against a wide range of infections. In this study, we formulated a plasmid DNA vector expressing the ectodomain of the E-protein of WNV into nanoparticles by using linear polyethyleneimine (lPEI) covalently bound to mannose and examined the potential of this vaccine to protect against lethal WNV infection in mice. Mice were immunized twice (prime – boost regime) with the WNV DNA vaccine formulated with lPEI-mannose using different administration routes (intramuscular, intradermal and topical). In parallel a heterologous boost with purified recombinant WNV envelope (E) protein was evaluated. While no significant E-protein specific humoral response was generated after DNA immunization, protein boosting of DNA-primed mice resulted in a marked increase in total neutralizing antibody titer. In addition, E-specific IL-4 T-cell immune responses were detected by ELISPOT after protein boost and CD8+ specific IFN-γ expression was observed by flow cytometry. Challenge experiments using the heterologous immunization regime revealed protective immunity to homologous and virulent WNV infection. PMID:24503579

  12. Vaccination of Lewis rats with temperature-sensitive mutants of Mycoplasma pulmonis: adoptive transfer of immunity by spleen cells but not by sera.

    PubMed Central

    Lai, W C; Bennett, M; Lu, Y S; Pakes, S P

    1991-01-01

    Temperature-sensitive mutant vaccines protect rats against Mycoplasma pulmonis infection. The role of the humoral or cellular immune response in resistance to mycoplasma infection was investigated by adoptive-transfer experiments. Spleen cells from Lewis rats vaccinated but not challenged with wild-type organisms (vaccinated) and spleen cells from rats vaccinated (or not) and challenged were effective in preventing syngeneic recipients from developing respiratory disease. There was also a significant reduction in the incidence and number of challenging organisms in the respiratory system. In contrast, sera from the same donors had no detectable effect on the number of mycoplasmas recovered or on lesion development in the respiratory tract. We conclude that cellular immunity rather than humoral immunity generated in vaccinated rats confers protection against subsequent infection. PMID:1987049

  13. Montanide™ ISA 71 VG adjuvant enhances antibody and cell-mediated immune responses to profilin subunit antigen vaccination and promotes protection against Eimeria acervulina and Eimeria tenella. Experimental Parasitology

    USDA-ARS?s Scientific Manuscript database

    The present study was conducted to investigate the immunoenhancing effects of MontanideTM ISA 71 VG adjuvant on profilin subunit antigen vaccination. Broiler chickens were immunized subcutaneously with a purified Eimeria acervulina recombinant profilin protein, either alone or mixed with ISA 71 VG, ...

  14. The other way around: Probiotic lactobacillus acidophilus NP51 restricts progression of Mycobacterium avium subspecies paratuberculosis (MAP) infection in Balb/c mice through activation of CD8+ T cell-mediated immunity

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to examine immune effects of feeding novel probiotic Lactobacillus acidophilus strain NP51 to specific pathogen-free Balb/c mice challenged with Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne’s disease (JD). We hypothesized that fe...

  15. Memory T cells specific for murine cytomegalovirus re-emerge after multiple challenges and recapitulate immunity in various adoptive transfer scenarios.

    PubMed

    Quinn, Michael; Turula, Holly; Tandon, Mayank; Deslouches, Berthony; Moghbeli, Toktam; Snyder, Christopher M

    2015-02-15

    Reconstitution of CMV-specific immunity after transplant remains a primary clinical objective to prevent CMV disease, and adoptive immunotherapy of CMV-specific T cells can be an effective therapeutic approach. Because of viral persistence, most CMV-specific CD8(+) T cells become terminally differentiated effector phenotype CD8(+) T cells (TEFF). A minor subset retains a memory-like phenotype (memory phenotype CD8(+) T cells [TM]), but it is unknown whether these cells retain memory function or persist over time. Interestingly, recent studies suggest that CMV-specific CD8(+) T cells with different phenotypes have different abilities to reconstitute sustained immunity after transfer. The immunology of human CMV infections is reflected in the murine CMV (MCMV) model. We found that human CMV- and MCMV-specific T cells displayed shared genetic programs, validating the MCMV model for studies of CMV-specific T cells in vivo. The MCMV-specific TM population was stable over time and retained a proliferative capacity that was vastly superior to TEFF. Strikingly, after transfer, TM established sustained and diverse T cell populations even after multiple challenges. Although both TEFF and TM could protect Rag(-/-) mice, only TM persisted after transfer into immune replete, latently infected recipients and responded if recipient immunity was lost. Interestingly, transferred TM did not expand until recipient immunity was lost, supporting that competition limits the Ag stimulation of TM. Ultimately, these data show that CMV-specific TM retain memory function during MCMV infection and can re-establish CMV immunity when necessary. Thus, TM may be a critical component for consistent, long-term adoptive immunotherapy success.

  16. Enhancement of humoral and cell mediated immune response to HPV16 L1-derived peptides subsequent to vaccination with prophylactic bivalent HPV L1 virus-like particle vaccine in healthy females.

    PubMed

    Yokomine, Masato; Matsueda, Satoko; Kawano, Kouichiro; Sasada, Tetsuro; Fukui, Akimasa; Yamashita, Takuto; Komatsu, Nobukazu; Shichijo, Shigeki; Tasaki, Kazuto; Matsukuma, Ken; Itoh, Kyogo; Kamura, Toshiharu; Ushijima, Kimio

    2017-04-01

    Currently prophylactic HPV16/18 L1 virus-like particle (VLP) vaccines are employed with great success for the prevention of HPV infection. However, limited information is available regarding the immune responses against human papillomavirus (HPV) 16/18 L1 subsequent to HPV16/18 L1 VLP vaccination, primarily due to the lack of widely used assays for immune monitoring. The aim of the present study was to identify HPV16 L1-derived B and T cell epitopes for monitoring the immune responses after HPV16/18 L1 VLP vaccination in healthy females. The levels of immunoglobulin G (IgG), IgE, IgA and IgM reactive to HPV16 L1-derived peptides were measured by multiplex bead suspension assay. Following detailed B cell epitope mapping, T cell responses specific to HPV16 L1-derived peptides were evaluated by an IFN-γ ELISPOT assay. The levels of IgG, IgM and IgA reactive to 20-mer peptides (PTPSGSMVTSDAQIFNKPYW) at positions 293-312 and 300-319 of HPV16 L1 were significantly increased in the plasma after 2, 7, and 12 months after first vaccination. Detailed epitope mapping identified the amino acid sequence (TSDAQIFNKP) at position 301-310 of HPV16 L1 as an immunogenic B cell epitope. In addition, T cell responses to an HLA-A2- and HLA-A24-restricted epitope (QIFNKPYWL) at position 305-313 of HPV16 L1 were increased following immunization, suggesting that the HPV16/18 L1-VLP vaccination as able to induce specific immune responses in T and B cells simultaneously. The identified B and T cell epitopes may be useful as a biomarker for monitoring the immune responses subsequent to HPV16/18 L1 VLP vaccination. Thus, the present study may provide novel information to improve the understanding of the immune responses to HPV16 L1.

  17. Relationships between T-cell-mediated immune response and Pb, Zn, Cu, Cd, and as concentrations in blood of nestling white storks (Ciconia ciconia) and black kites (Milvus migrans) from Doñana (southwestern Spain) after the Aznalcóllar toxic spill.

    PubMed

    Baos, Raquel; Jovani, Roger; Forero, Manuela G; Tella, José L; Gómez, Gemma; Jiménez, Begoña; González, María J; Hiraldo, Fernando

    2006-04-01

    In the Aznalcóllar mining accident (April 1998), nearly six million cubic meters of toxic wastes were spilled in the surroundings of the Doñana National Park (southwestern Spain). The present study focused on the likely effects of metal pollution on the immune system of nestling white storks (Ciconia ciconia) and black kites (Milvus migrans) sampled in the nearby area. Using the phytohaemagglutinin skin test, we examined cell-mediated immune response (CMI) in relation to Pb, Zn, Cu, Cd, and As concentrations in blood of 281 nestling white storks and of 89 black kites. The former species was monitored along a four-year period (1999, 2001-2003), while black kites were sampled in 1999. Overall, average levels of heavy metals and As were relatively low when compared to those reported for birds in metal-polluted areas. Copper showed a negative effect on CMI in both species, although the relationship was significant only for white storks in 2002. We found no evidence that environmental exposure to Pb, Zn, As, and Cd had any effect on nestlings' CMI. Interannual consistency is revealed as an important factor, supporting the need of long-term studies when assessing the immunotoxic effects of metal exposure in the wild.

  18. Toll-like receptor-dependent IL-12 production by dendritic cells is required for activation of natural killer cell-mediated Type-1 immunity induced by Chrysanthemum coronarium L.

    PubMed

    Tanaka, Sachi; Koizumi, Shin-ichi; Masuko, Kazutaka; Makiuchi, Naoko; Aoyagi, Yuka; Quivy, Emi; Mitamura, Rieko; Kano, Tsutomu; Ohkuri, Takayuki; Wakita, Daiko; Chamoto, Kenji; Kitamura, Hidemitsu; Nishimura, Takashi

    2011-02-01

    Type-1 immunity has an essential role for our host defenses against cancer and outer pathogens such as bacteria and virus. We demonstrated here that the edible plant extract of Chrysanthemum coronarium L. (C. coronarium) remarkably activates Type-1 immunity in a Toll-like receptor (TLR)2-, TLR4-, and TLR9-dependent manner. In the present experiments, the extract of C. coronarium significantly induces interferon (IFN)-γ production by mouse spleen cells. In addition, the IFN-γ production by spleen cells was completely blocked by the addition of anti-Interleukin (IL)-12 monoclonal antibodies. We confirmed that NK1.1(+) natural killer (NK) cells, NKT cells, and CD11c(+) dendritic cells (DC) were immediately activated after the stimulation with the extract of C. coronarium and the IFN-γ production was abolished in NK1.1(+) cell-depleted spleen cells. The stimulation with the extract of C. coronarium caused DC maturation involving with up-regulations of surface expression levels of MHC class I, MHC class II, CD40, and CD86 as well as induction of IL-12 production. The IFN-γ production induced by the extract was significantly reduced in the spleen cells depleted CD11c(+) cells. Furthermore, the IFN-γ production after the stimulation was strongly reduced in TLR4- and partially in TLR2- and TLR9-deficient spleen cells. Thus, we demonstrated the cellular mechanism for the activation of Type-1 immunity via NK cells, NKT cells, and DC by the extract of C. coronarium. These findings strongly suggest that C. coronarium would be a promising immuno-improving adjuvant, which might be useful for prevention of infectious, cancer, and allergic diseases through the activation of Type-1 immunity. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. NLRP3 suppresses NK cell-mediated responses to carcinogen-induced tumors and metastases.

    PubMed

    Chow, Melvyn T; Sceneay, Jaclyn; Paget, Christophe; Wong, Christina S F; Duret, Helene; Tschopp, Jürg; Möller, Andreas; Smyth, Mark J

    2012-11-15

    The NLRP3 inflammasome acts as a danger signal sensor that triggers and coordinates the inflammatory response upon infectious insults or tissue injury and damage. However, the role of the NLRP3 inflammasome in natural killer (NK) cell-mediated control of tumor immunity is poorly understood. Here, we show in a model of chemical-induced carcinogenesis and a series of experimental and spontaneous metastases models that mice lacking NLRP3 display significantly reduced tumor burden than control wild-type (WT) mice. The suppression of spontaneous and experimental tumor metastases and methylcholanthrene (MCA)-induced sarcomas in mice deficient for NLRP3 was NK cell and IFN-γ-dependent. Focusing on the amenable B16F10 experimental lung metastases model, we determined that expression of NLRP3 in bone marrow-derived cells was necessary for optimal tumor metastasis. Tumor-driven expansion of CD11b(+)Gr-1(intermediate) (Gr-1(int)) myeloid cells within the lung tumor microenvironment of NLRP3(-/-) mice was coincident with increased lung infiltrating activated NK cells and an enhanced antimetastatic response. The CD11b(+)Gr-1(int) myeloid cells displayed a unique cell surface phenotype and were characterized by their elevated production of CCL5 and CXCL9 chemokines. Adoptive transfer of this population into WT mice enhanced NK cell numbers in, and suppression of, B16F10 lung metastases. Together, these data suggested that NLRP3 is an important suppressor of NK cell-mediated control of carcinogenesis and metastases and identify CD11b(+)Gr-1(int) myeloid cells that promote NK cell antimetastatic function.

  20. Immunity in Fish

    USDA-ARS?s Scientific Manuscript database

    The fish immune system has evolved with both non-specific (innate immunity) and acquired immune functions (humoral and cell mediated immunity) to eliminate invading foreign living and non-living agents. Fish possess a unique physical barrier (mucus and skin) that acts as the first line of defense a...

  1. Report of the 2014 Cent Gardes HIV Vaccine Conference-Part 2: Cell-mediated immunity, mucosal protection, and clinical trials: Fondation Mérieux Conference Center, Veyrier du Lac, France, 5-7 October, 2014.

    PubMed

    Girard, Marc P; Picot, Valentina; Longuet, Christophe; Nabel, Gary J

    2015-08-07

    The 2014 Cent Gardes Conference took place on October 5-7, 2014, at the Fondation Mérieux Conference Center, on the shores of the Annecy Lake and aimed to review the progress and promise of HIV vaccines. The elicitation of broadly neutralizing antibodies (bNAbs), their use in passive immunization, as well as their genetic delivery (vector immunoprophylaxis) by a recombinant Adenovirus-associated virus (AAV) vector were reviewed in a preceding article [1]. Approaches to the elicitation of long-lasting T cell or mucosal immunity were also discussed and are now reviewed here. The possibility of eliciting mucosal IgAs was discussed, since it was demonstrated that transcytosis-blocking IgAs can protect monkeys against repeated vaginal challenge with a pathogenic chimeric simian and human immunodeficiency virus (SHIV). The possibility of purging the HIV reservoirs from HIV-infected persons and developing a cure of the disease was also discussed. Copyright © 2015. Published by Elsevier Ltd.. All rights reserved.

  2. Impaired and imbalanced cellular immunological status assessed in advanced cancer patients and restoration of the T cell immune status by adoptive T-cell immunotherapy.

    PubMed

    Noguchi, Atsutaka; Kaneko, Toru; Naitoh, Keiko; Saito, Masashi; Iwai, Kazuro; Maekawa, Ryuji; Kamigaki, Takashi; Goto, Shigenori

    2014-01-01

    Recent progress has been made in understanding the mechanisms of antitumor immune responses, which may further clarify the immune status of cancer patients. In this study, we performed a detailed evaluation of the immunological status of 47 patients with advanced solid cancer, who had received no immunosuppressive treatment, and compared the results with 32 healthy subjects. Flow-cytometry data for peripheral blood were obtained using 19 monoclonal antibodies against various cell surface and intracellular molecules. Absolute numbers of T cells, several T cell subsets, B cells, and NK cells were significantly decreased in patients compared with healthy subjects. The percentage of CD27(+)CD45RA(+) T cells was lower and that of CD27(-)CD45RA(-) T cells was higher in patients compared with controls. Regulatory and type 2 helper T cells were elevated in patients relative to healthy subjects. The percentage of perforin(+) NK cells was significantly lower in patients than in controls. These results suggest a dysfunctional anti-tumor immune response in cancer patients. Furthermore, peripheral blood from 26 of 47 cancer patients was analyzed after adoptive T cell immunotherapy (ATI). ATI increased the number of T cell subsets, but not B and NK cells. The number and percentage of regulatory T cells decreased significantly. These results suggest that ATI can restore impaired and imbalanced T cell immune status.

  3. CD4 T Cells Mediate Both Positive and Negative Regulation of the Immune Response to HIV Infection: Complex Role of T Follicular Helper Cells and Regulatory T Cells in Pathogenesis

    PubMed Central

    Phetsouphanh, Chansavath; Xu, Yin; Zaunders, John

    2015-01-01

    HIV-1 infection results in chronic activation of cells in lymphoid tissue, including T cells, B-cells, and myeloid lineage cells. The resulting characteristic hyperplasia is an amalgam of proliferating host immune cells in the adaptive response, increased concentrations of innate response mediators due to viral and bacterial products, and homeostatic responses to inflammation. While it is generally thought that CD4 T cells are greatly depleted, in fact, two types of CD4 T cells appear to be increased, namely, regulatory T cells (Tregs) and T follicular helper cells (Tfh). These cells have opposing roles, but may both be important in the pathogenic process. Whether Tregs are failing in their role to limit lymphocyte activation is unclear, but there is no doubt now that Tfh are associated with B-cell hyperplasia and increased germinal center activity. Antiretroviral therapy may reduce the lymphocyte activation, but not completely, and therefore, there is a need for interventions that selectively enhance normal CD4 function without exacerbating Tfh, B-cell, or Treg dysfunction. PMID:25610441

  4. Immunizations

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Immunizations KidsHealth > For Teens > Immunizations Print A A A ... That Shot? en español Las vacunas Why Are Vaccinations Important? Measles, mumps, and whooping cough may seem ...

  5. Immunization

    MedlinePlus

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against things like measles, ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  6. Long-term Survival and Clinical Benefit from Adoptive T-cell Transfer in Stage IV Melanoma Patients Is Determined by a Four-Parameter Tumor Immune Signature.

    PubMed

    Melief, Sara M; Visconti, Valeria V; Visser, Marten; van Diepen, Merel; Kapiteijn, Ellen H W; van den Berg, Joost H; Haanen, John B A G; Smit, Vincent T H B M; Oosting, Jan; van der Burg, Sjoerd H; Verdegaal, Els M E

    2017-02-01

    The presence of tumor-infiltrating immune cells is associated with longer survival and a better response to immunotherapy in early-stage melanoma, but a comprehensive study of the in situ immune microenvironment in stage IV melanoma has not been performed. We investigated the combined influence of a series of immune factors on survival and response to adoptive cell transfer (ACT) in stage IV melanoma patients. Metastases of 73 stage IV melanoma patients, 17 of which were treated with ACT, were studied with respect to the number and functional phenotype of lymphocytes and myeloid cells as well as for expression of galectins-1, -3, and -9. Single factors associated with better survival were identified using Kaplan-Meier curves and multivariate Cox regression analyses, and those factors were used for interaction analyses. The results were validated using The Cancer Genome Atlas database. We identified four parameters that were associated with a better survival: CD8(+) T cells, galectin-9(+) dendritic cells (DC)/DC-like macrophages, a high M1/M2 macrophage ratio, and the expression of galectin-3 by tumor cells. The presence of at least three of these parameters formed an independent positive prognostic factor for long-term survival. Patients displaying this four-parameter signature were found exclusively among patients responding to ACT and were the ones with sustained clinical benefit. Cancer Immunol Res; 5(2); 170-9. ©2017 AACR.

  7. Genetic diversity predicts pathogen resistance and cell-mediated immunocompetence in house finches

    PubMed Central

    Hawley, Dana M; Sydenstricker, Keila V; Kollias, George V; Dhondt, André A

    2005-01-01

    Evidence is accumulating that genetic variation within individual hosts can influence their susceptibility to pathogens. However, there have been few opportunities to experimentally test this relationship, particularly within outbred populations of non-domestic vertebrates. We performed a standardized pathogen challenge in house finches (Carpodacus mexicanus) to test whether multilocus heterozygosity across 12 microsatellite loci predicts resistance to a recently emerged strain of the bacterial pathogen, Mycoplasma gallisepticum (MG). We simultaneously tested whether the relationship between heterozygosity and pathogen susceptibility is mediated by differences in cell-mediated or humoral immunocompetence. We inoculated 40 house finches with MG under identical conditions and assayed both humoral and cell-mediated components of the immune response. Heterozygous house finches developed less severe disease when infected with MG, and they mounted stronger cell-mediated immune responses to phytohaemagglutinin. Differences in cell-mediated immunocompetence may, therefore, partly explain why more heterozygous house finches show greater resistance to MG. Overall, our results underscore the importance of multilocus heterozygosity for individual pathogen resistance and immunity. PMID:17148199

  8. Immunization with soluble BDC 2.5 T cell receptor-immunoglobulin chimeric protein:antibody specificity and protection of nonobese diabetic mice against adoptive transfer of diabetes by maternal immunization

    PubMed Central

    1996-01-01

    The BDC 2.5 T cell clone is specific for pancreatic beta-cell antigen presented by I-Ag7, and greatly accelerates diabetes when injected into 10-21-d-old nonobese diabetic (NOD) mice. The BDC 2.5 T cell receptor (TCR) has been solubilized as a TCR-IgG1 chimeric protein. All NOD mice immunized against BDC 2.5 TCR-IgG1 produced antibodies recognizing TCR C alpha/C beta epitopes that were inaccessible on the T cell surface. 56% of the mice produced antibodies against the BDC 2.5 clonotype that specifically blocked antigen activation of BDC 2.5 cells. We have used the adoptive transfer model of diabetes to demonstrate that maternal immunization with soluble TCR protects young mice from diabetes induced by the BDC 2.5 T cell clone. PMID:8920864

  9. Achieving a Graded Immune Response: BTK Adopts a Range of Active/Inactive Conformations Dictated by Multiple Interdomain Contacts.

    PubMed

    Joseph, Raji E; Wales, Thomas E; Fulton, D Bruce; Engen, John R; Andreotti, Amy H

    2017-08-10

    Capturing the functionally relevant forms of dynamic, multidomain proteins is extremely challenging. Bruton's tyrosine kinase (BTK), a kinase essential for B and mast cell function, has stubbornly resisted crystallization in its full-length form. Here, nuclear magnetic resonance and hydrogen-deuterium exchange mass spectrometry show that BTK adopts a closed conformation in dynamic equilibrium with open, active conformations. BTK lacks the phosphotyrosine regulatory tail of the SRC kinases, yet nevertheless achieves a phosphotyrosine-independent C-terminal latch. The unique proline-rich region is an internal "on" switch pushing the autoinhibited kinase toward its active state. Newly identified autoinhibitory contacts in the BTK pleckstrin homology domain are sensitive to phospholipid binding, which induces large-scale allosteric changes. The multiplicity of these regulatory contacts suggests a clear mechanism for gradual or "analog" kinase activation as opposed to a binary "on/off" switch. The findings illustrate how previously modeled information for recalcitrant full-length proteins can be expanded and validated with a convergent multidisciplinary experimental approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Persistence, immune specificity, and functional ability of murine mutant ras epitope-specific CD4(+) and CD8(+) T lymphocytes following in vivo adoptive transfer.

    PubMed

    Bristol, J A; Schlom, J; Abrams, S I

    1999-05-25

    Adoptive T-cell transfer has been shown to be a potentially effective strategy for cellular immunotherapy in some murine models of disease. However, several issues remain unresolved regarding some of the basic features involved in effective adoptive transfer, such as the influence of specific peptide antigen (Ag) boost after T-cell transfer, the addition of IL-2 post-T-cell transfer, the trafficking of transferred T cells to lymphoid and nonlymphoid tissues, and the functional stability of recoverable CD4(+) and CD8(+) T cells. We investigated several of these parameters, particularly as they relate to the persistence and maintenance of effector functions of murine CD4(+) and/or CD8(+) T lymphocytes after adoptive cellular transfer into partially gamma-irradiated syngeneic hosts. Our laboratory previously identified murine (H-2(d)) immunogenic CD4(+) and CD8(+) T-cell peptide epitopes reflecting codon 12 ras mutations as tumor-specific Ag. Therefore, the model system chosen here employed epitope-specific MHC class II-restricted CD4(+) T cells and MHC class I-restricted CD8(+) T cells produced from previously immunized BALB/c mice. Between 2 and 7 days after T-cell transfer, recipient mice received various combinations of peptide boosts and/or IL-2 treatments. At different times after the T-cell transfer, spleen and lung tissues were analyzed phenotypically to monitor the persistence of the immune T cells and functionally (via proliferation or cytotoxicity assays) to assess the maintenance of peptide specificity. The results showed that immune donor T lymphocytes (uncultured immune T cells or cloned T cells) were recoverable from the spleens and lungs of recipient mice after transfer. The recovery of Ag-specific T-cell responses was greatest from recipient mice that received peptide boosts and IL-2 treatment. However, mice that received a peptide boost without IL-2 treatment responded nearly as well, which suggested that including a peptide boost after T

  11. Adoptive therapy of head and neck squamous cell carcinoma with antibody coated immune cells: a pilot clinical trial.

    PubMed

    Riechelmann, Herbert; Wiesneth, Markus; Schauwecker, Peter; Reinhardt, Peter; Gronau, Silke; Schmitt, Anita; Schroen, Carsten; Atz, Judith; Schmitt, Michael

    2007-09-01

    Catumaxomab is an antibody that binds with one arm epithelial cell adhesion molecule (EpCAM) positive tumors and with the other arm CD3+ T cells. Intravenous application of therapeutic antibodies may result in intravascular cytokine release. In this pilot trial we assessed whether cytokine release can be controlled by ex vivo cell opsonization and cytokine wash-out before administration of catumaxomab, preserving its anti-cancer activity. In addition, preliminary data on safety of and clinical response to catumaxomab coated autologous immune cells were acquired. Peripheral blood mononuclear cells (PBMNC) of four patients with recurrent head and neck carcinoma were collected by leukapheresis, incubated ex vivo with catumaxomab for 24 h and cleared from released cytokines. Each patient received an escalated number of antibody-coated PBMNC equivalent to 1 x 10(4), 1 x 10(5), 1 x 10(6) and 1 x 10(7) CD3(+) cells/kgBW intravenously at bi-weekly intervals. After opsonization, PBMNC released substantial amounts of interferon gamma (IFNgamma) and tumor necrosis factor alpha (TNFalpha) in vitro, which were removed before administration. Catumaxomab up-regulated CD25, CD69, and CD83 on PBMNC, and catumaxomab loaded PBMNC released IFNgamma and granzyme B when coincubated with EpCAM(+) BHY cells, suggesting cell activation and target directed biological activity. During the study period, one patient died of aspiration pneumonia and one patient needed a tracheotomy. Treatment related adverse events (AE) occurred at the highest cell dose in two patients, whereas 1 x 10(6) loaded CD3(+) cells/kgBW were well tolerated by all patients. One patient showed stable disease for 6 months and one patient is in complete remission for 27 months. Ex vivo opsonization of PBMNC with catumaxomab provided biologically active, tumor targeting cells. Extracorporeal PBMNC coating may be an option to control intravascular cytokine release induced by therapeutic antibodies.

  12. Adoptive immunity mediated by HLA-A*0201 restricted Asp f16 peptides-specific CD8+ T cells against Aspergillus fumigatus infection.

    PubMed

    Sun, Z; Zhu, P; Li, L; Wan, Z; Zhao, Z; Li, R

    2012-11-01

    Aspergillus fumigatus (A. fumigatus) is the most common pathogen of invasive aspergillosis (IA), a life-threatening infection in immunocompromised patients. Recent findings revealed that CD8+ T cells can mediate cytotoxic activity against A. fumigatus. Here, we bioinformatically identified three HLA-A*0201-restricted peptides from Asp f16, an A. fumigatus antigen which was previously shown to be involved in T cell immunity. Our immunological results demonstrated that these peptides can potently induce cytotoxic T lymphocyte (CTL) response in CD8+ T cells, thus, damaging the conidia and hyphae of A. fumigatus. Moreover, the Asp f16 peptides can also raise Th1 cell-like response, as measured by interferon-γ (IFN-γ) enzyme-linked immunosorbent spot (ELISPOT). Furthermore, we established an invasive pulmonary aspergillosis model in HLA-A*0201 transgenic mice. Adoptive transfer of Asp f16 peptides-specific CTL significantly extended the overall survival time in the A. fumigatus-infected immunocompromised mice. In conclusion, our results demonstrate that the Asp f16 peptides might provide immunity against invasive A. fumigatus infection.

  13. Enhanced neointima formation following arterial injury in immune deficient Rag-1-/- mice is attenuated by adoptive transfer of CD8 T cells.

    PubMed

    Dimayuga, Paul C; Chyu, Kuang-Yuh; Kirzner, Jonathan; Yano, Juliana; Zhao, Xiaoning; Zhou, Jianchang; Shah, Prediman K; Cercek, Bojan

    2011-01-01

    T cells modulate neointima formation after arterial injury but the specific T cell population that is activated in response to arterial injury remains unknown. The objective of the study was to identify the T cell populations that are activated and modulate neointimal thickening after arterial injury in mice. Arterial injury in wild type C57Bl6 mice resulted in T cell activation characterized by increased CD4(+)CD44(hi) and CD8(+)CD44(hi) T cells in the lymph nodes and spleens. Splenic CD8(+)CD25(+) T cells and CD8(+)CD28(+) T cells, but not CD4(+)CD25(+) and CD4(+)CD28(+) T cells, were also significantly increased. Adoptive cell transfer of CD4(+) or CD8(+) T cells from donor CD8-/- or CD4-/- mice, respectively, to immune-deficient Rag-1-/- mice was performed to determine the T cell subtype that inhibits neointima formation after arterial injury. Rag-1-/- mice that received CD8(+) T cells had significantly reduced neointima formation compared with Rag-1-/- mice without cell transfer. CD4(+) T cell transfer did not reduce neointima formation. CD8(+) T cells from CD4-/- mice had cytotoxic activity against syngeneic smooth muscle cells in vitro. The study shows that although both CD8(+) T cells and CD4(+) T cells are activated in response to arterial injury, adoptive cell transfer identifies CD8(+) T cells as the specific and selective cell type involved in inhibiting neointima formation.

  14. Interleukin 2 in cell-mediated immune responses

    SciTech Connect

    Paetkau, V.; Shaw, J.; Caplan, B.; Mills, G.B.; Lee, K.C.

    1980-01-01

    The lymphokine Interleukin 2(IL2) restores T cell responses in a number of in vitro systems where immunogenicity has been compromised. UV irradiation of the stimulating allogeneic cells in a mixed leukocyte culture eliminates the production of cytotoxic T lymphocytes and greatly reduces the DNA synthesis response. IL2 restores both parameters. UV-irradiated stimulators are also unable to induce the normal production of IL2 which is observed in a mixed leukocyte culture. The cytotoxic activity of allogeneically stimulated thymocytes is almost completely lost within 24 hours after removal of IL2 at 5 days, indicating that the lymphokine is continuously required to maintain CTL. Thymocytes in 4-day cultures do not adsorb IL2 unless they are simultaneously activated with a mitogen. Finally, IL2 does not adequately restore a secondary response to the purified protein derivative of tuberculin (PPD) in adherent-cell-depleted cultures, indicating that macrophages, in addition to being required for IL2 production, have other functions. These probably include the presentation of soluble antigens to responding cells.

  15. [Relationship between the immunomodulating effects of chorionic gonadotropin and the initial functional activity of the splenocytes mediating the adoptive immune response].

    PubMed

    Shirshev, S V; Kevorkov, N N

    1993-01-01

    CBA and (CBA x C57BL/6)F1 male mice were used in experiments. One h incubation of splenocytes with chorionic gonadotropin (CG) in doses 10 or 50 MU/ml statistically significantly reduced the count of antibody-producing cells detectable in the syngeneic transfer system. Addition of conA or recombinant human interleukin 2 to the splenocyte culture did not alter the processes of the formation of antibody-producing cells. Addition of CG simultaneously with conA resulted in discontinuation of the immunosuppression induced by a low hormone dose, whereas 50 MU/ml of CG in the presence of conA had a marked immunodepressant effect. Combination of interleukin 2 with CG lead either to immunosuppression cessation (10 MU/ml) or to more than twofold stimulation of the adoptive immune response (50 MU/ml). Voltaren, a cycloxygenase inhibitor, was used in some experiments to elucidate the degree of endogenic prostaglandin relationships with the mechanisms of CG immunomodulating effects. Cycloxygenase activity was found to be related to the immunosuppressive effect of CG low dose, whereas the costimulating effect of a high dose of the hormone in the presence of interleukin 2 was unrelated to endogenic prostaglandin synthesis.

  16. Immunization.

    ERIC Educational Resources Information Center

    Guerin, Nicole; And Others

    1986-01-01

    Contents of this double journal issue concern immunization and primary health care of children. The issue decribes vaccine storage and sterilization techniques, giving particular emphasis to the role of the cold chain, i.e., the maintenance of a specific temperature range to assure potency of vaccines as they are moved from a national storage…

  17. Immunization.

    ERIC Educational Resources Information Center

    Guerin, Nicole; And Others

    1986-01-01

    Contents of this double journal issue concern immunization and primary health care of children. The issue decribes vaccine storage and sterilization techniques, giving particular emphasis to the role of the cold chain, i.e., the maintenance of a specific temperature range to assure potency of vaccines as they are moved from a national storage…

  18. Adoptive parenting.

    PubMed

    Grotevant, Harold D; Lo, Albert Yh

    2017-06-01

    Challenges in adoptive parenting continue to emerge as adoption policies and practices evolve. We review three areas of research in adoptive parenting that reflect contemporary shifts in adoption. First, we highlight recent findings concerning openness in adoption contact arrangements, or contact between a child's families of birth and rearing. Second, we examine research regarding racial and cultural socialization in transracial and international adoptions. Finally, we review investigations of parenting experiences of lesbian and gay adoptive parents. Overall, parenting processes (e.g., supportive vs. problematic family interaction) are better predictors of child adjustment than are group differences (e.g., open vs. closed adoptions; adoption by heterosexual vs. same-sex parents). The distinctive needs of adopted children call for preparation of adoption-competent mental health, casework, education, and health care professionals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Engineering nanomaterials to address cell-mediated inflammation in atherosclerosis

    PubMed Central

    Allen, Sean; Liu, Yu-Gang; Scott, Evan

    2016-01-01

    Atherosclerosis is an inflammatory disorder with a pathophysiology driven by both innate and adaptive immunity and a primary cause of cardiovascular disease (CVD) worldwide. Vascular inflammation and accumulation of foam cells and their products induce maturation of atheromas, or plaques, which can rupture by metalloprotease action, leading to ischemic stroke or myocardial infarction. Diverse immune cell populations participate in all stages of plaque maturation, many of which directly influence plaque stability and rupture via inflammatory mechanisms. Current clinical treatments for atherosclerosis focus on lowering serum levels of low-density lipoprotein (LDL) using therapeutics such as statins, administration of antithrombotic drugs, and surgical intervention. Strategies that address cell-mediated inflammation are lacking, and consequently have recently become an area of considerable research focus. Nanomaterials have emerged as highly advantageous tools for these studies, as they can be engineered to target specific inflammatory cell populations, deliver therapeutics of wide-ranging solubilities and enhance analytical methods that include imaging and proteomics. Furthermore, the highly phagocytic nature of antigen presenting cells (APCs), a diverse cell population central to the initiation of immune responses and inflammation, make them particularly amenable to targeting and modulation by nanoscale particulates. Nanomaterials have therefore become essential components of vaccine formulations and treatments for inflammation-driven pathologies like autoimmunity, and present novel opportunities for immunotherapeutic treatments of CVD. Here, we review recent progress in the design and use of nanomaterials for therapeutic assessment and treatment of atherosclerosis. We will focus on promising new approaches that utilize nanomaterials for cell-specific imaging, gene therapy and immunomodulation. PMID:27135051

  20. Maximal T cell-mediated antitumor responses rely upon CCR5 expression in both CD4(+) and CD8(+) T cells.

    PubMed

    González-Martín, Alicia; Gómez, Lucio; Lustgarten, Joseph; Mira, Emilia; Mañes, Santos

    2011-08-15

    Immune responses against cancer rely upon leukocyte trafficking patterns that are coordinated by chemokines. CCR5, the receptor for chemotactic chemokines MIP1alpha, MIP1beta, and RANTES (CCL3, CCL4, CCL5), exerts major regulatory effects on CD4(+)- and CD8(+) T cell-mediated immunity. Although CCR5 and its ligands participate in the response to various pathogens, its relevance to tumoral immune control has been debated. Here, we report that CCR5 has a specific, ligand-dependent role in optimizing antitumor responses. In adoptive transfer studies, efficient tumor rejection required CCR5 expression by both CD4(+) and CD8(+) T cells. CCR5 activation in CD4(+) cells resulted in CD40L upregulation, leading to full maturation of antigen-presenting cells and enhanced CD8(+) T-cell crosspriming and tumor infiltration. CCR5 reduced chemical-induced fibrosarcoma incidence and growth, but did not affect the onset or progression of spontaneous breast cancers in tolerogenic Tg(MMTV-neu) mice. However, CCR5 was required for TLR9-mediated reactivation of antineu responses in these mice. Our results indicate that CCR5 boosts T-cell responses to tumors by modulating helper-dependent CD8(+) T-cell activation.

  1. Loss of PTEN promotes resistance to T cell-mediated immunotherapy

    PubMed Central

    Peng, Weiyi; Chen, Jie Qing; Liu, Chengwen; Malu, Shruti; Creasy, Caitlin; Tetzlaff, Michael T; Xu, Chunyu; McKenzie, Jodi A; Zhang, Chunlei; Liang, Xiaoxuan; Williams, Leila J; Deng, Wanleng; Chen, Guo; Mbofung, Rina; Lazar, Alexander J; Torres-Cabala, Carlos A; Cooper, Zachary A; Chen, Pei-Ling; Tieu, Trang N; Spranger, Stefani; Yu, Xiaoxing; Bernatchez, Chantale; Forget, Marie-Andree; Haymaker, Cara; Amaria, Rodabe; McQuade, Jennifer L; Glitza, Isabella C; Cascone, Tina; Li, Haiyan S; Kwong, Lawrence N; Heffernan, Timothy P; Hu, Jianhua; Bassett, Roland L; Bosenberg, Marcus W; Woodman, Scott E; Overwijk, Willem W; Lizée, Gregory; Roszik, Jason; Gajewski, Thomas F; Wargo, Jennifer A; Gershenwald, Jeffrey E; Radvanyi, Laszlo; Davies, Michael A; Hwu, Patrick

    2015-01-01

    T cell-mediated immunotherapies are promising cancer treatments. However, most patients still fail to respond to these therapies. The molecular determinants of immune resistance are poorly understood. We show that loss of PTEN in tumor cells in preclinical models of melanoma inhibits T cell-mediated tumor killing and decreases T cell trafficking into tumors. In patients, PTEN loss correlates with decreased T cell infiltration at tumor sites, reduced likelihood of successful T cell expansion from resected tumors, and inferior outcomes with PD-1 inhibitor therapy. PTEN loss in tumor cells increased the expression of immunosuppressive cytokines, resulting in decreased T cell infiltration in tumors, and inhibited autophagy, which decreased T cell-mediated cell death. Treatment with a selective PI3Kβ inhibitor improved the efficacy of both anti-PD-1 and anti-CTLA4 antibodies in murine models. Together these findings demonstrate that PTEN loss promotes immune resistance and support the rationale to explore combinations of immunotherapies and PI3K-AKT pathway inhibitors. PMID:26645196

  2. Activation of Akt as a mechanism for tumor immune evasion.

    PubMed

    Noh, Kyung Hee; Kang, Tae Heung; Kim, Jin Hee; Pai, Sara I; Lin, Ken Y; Hung, Chien-Fu; Wu, T-C; Kim, Tae Woo

    2009-03-01

    Immune evasion is an important reason why the immune system cannot control tumor growth. To elucidate the mechanism for tumor immune evasion, we generated an immune-resistant human papillomavirus type 16 (HPV-16) E7-expressing tumor cell line by subjecting a susceptible tumor cell line to multiple rounds of in vivo immune selection with an E7-specific vaccine. Comparison of parental and immune-resistant tumors revealed that Akt is highly activated in the immune-resistant tumors. Retroviral transfer of a constitutively active form of Akt into the parental tumor significantly increased its resistance against E7-specific CD8(+) T-cell mediated apoptosis. The observed resistance against apoptosis was found to be associated with the upregulation of antiapoptotic molecules. We also observed that intratumoral injection of an Akt inhibitor enhanced the therapeutic efficacy of E7-specific vaccine or E7-specific CD8(+) T-cell adoptive transfer against the immune-resistant tumors. Thus, our data indicate that the activation of PI3K/Akt pathway represents a new mechanism of immune escape and has important implications for the development of a novel strategy in cancer immunotherapy against immune-resistant tumor cells.

  3. Evidence for T Cell-dependent Immunity to Bacteroides fragilis in an Intraabdominal Abscess Model

    PubMed Central

    Onderdonk, Andrew B.; Markham, Richard B.; Zaleznik, Dori F.; Cisneros, Ronald L.; Kasper, Dennis L.

    1982-01-01

    It has been shown that active immunization of rats with the capsular polysaccharide of Bacteroides fragilis protects these animals against abscess development following intraperitoneal challenge with this species. Passive transfer of hyperimmune globulin from immunized animals to nonimmune recipients provided protection against B. fragilis bacteremia in challenged animals, but did not confer protection against abscess development. On the other hand, adoptive transfer of spleen cells from immunized animals to nonimmunized recipients resulted in protection against abscesses following challenge with B. fragilis. These data suggested that a T cell-dependent immune response was involved in protection against abscess development after immunization with B. fragilis capsular antigen. To determine the possible role of cell-mediated immunity prompted by the capsular antigen, inbred congenitally athymic OLA/Rnu rats and their phenotypically normal littermates were actively immunized. Despite the development of high titers of anti-B. fragilis capsular antibody, 100% of actively immunized athymic rats developed abscesses, as did 100% of unimmunized athymic control rats. However, no phenotypically normal littermate control rats that were actively immunized developed abscesses, while 100% of phenotypically normal unimmunized rats developed abscesses. Additional studies showed that adoptive transfer of T cell-enriched spleen cell preparations from Wistar/Lewis rats immunized with the capsular polysaccharide to nonimmune recipients also resulted in protection against B. fragilis-induced abscesses. We conclude that the protection afforded by immunization with B. fragilis capsule against intraabdominal abscesses caused by that organism is T cell-mediated and does not require the presence of serum antibody. PMID:6976357

  4. Carbonic anhydrase enzymes regulate mast cell-mediated inflammation.

    PubMed

    Henry, Everett K; Sy, Chandler B; Inclan-Rico, Juan M; Espinosa, Vanessa; Ghanny, Saleena S; Dwyer, Daniel F; Soteropoulos, Patricia; Rivera, Amariliz; Siracusa, Mark C

    2016-08-22

    Type 2 cytokine responses are necessary for the development of protective immunity to helminth parasites but also cause the inflammation associated with allergies and asthma. Recent studies have found that peripheral hematopoietic progenitor cells contribute to type 2 cytokine-mediated inflammation through their enhanced ability to develop into mast cells. In this study, we show that carbonic anhydrase (Car) enzymes are up-regulated in type 2-associated progenitor cells and demonstrate that Car enzyme inhibition is sufficient to prevent mouse mast cell responses and inflammation after Trichinella spiralis infection or the induction of food allergy-like disease. Further, we used CRISPR/Cas9 technology and illustrate that genetically editing Car1 is sufficient to selectively reduce mast cell development. Finally, we demonstrate that Car enzymes can be targeted to prevent human mast cell development. Collectively, these experiments identify a previously unrecognized role for Car enzymes in regulating mast cell lineage commitment and suggest that Car enzyme inhibitors may possess therapeutic potential that can be used to treat mast cell-mediated inflammation. © 2016 Henry et al.

  5. Natural killer cell mediated cytotoxic responses in the Tasmanian devil.

    PubMed

    Brown, Gabriella K; Kreiss, Alexandre; Lyons, A Bruce; Woods, Gregory M

    2011-01-01

    The Tasmanian devil (Sarcophilus harrisii), the world's largest marsupial carnivore, is under threat of extinction following the emergence of an infectious cancer. Devil facial tumour disease (DFTD) is spread between Tasmanian devils during biting. The disease is consistently fatal and devils succumb without developing a protective immune response. The aim of this study was to determine if Tasmanian devils were capable of forming cytotoxic antitumour responses and develop antibodies against DFTD cells and foreign tumour cells. The two Tasmanian devils immunised with irradiated DFTD cells did not form cytotoxic or humoral responses against DFTD cells, even after multiple immunisations. However, following immunisation with xenogenic K562 cells, devils did produce cytotoxic responses and antibodies against this foreign tumour cell line. The cytotoxicity appeared to occur through the activity of natural killer (NK) cells in an antibody dependent manner. Classical NK cell responses, such as innate killing of DFTD and foreign cancer cells, were not observed. Cells with an NK-like phenotype comprised approximately 4 percent of peripheral blood mononuclear cells. The results of this study suggest that Tasmanian devils have NK cells with functional cytotoxic pathways. Although devil NK cells do not directly recognise DFTD cancer cells, the development of antibody dependent cell-mediated cytotoxicity presents a potential pathway to induce cytotoxic responses against the disease. These findings have positive implications for future DFTD vaccine research.

  6. Natural Killer Cell Mediated Cytotoxic Responses in the Tasmanian Devil

    PubMed Central

    Brown, Gabriella K.; Kreiss, Alexandre; Lyons, A. Bruce; Woods, Gregory M.

    2011-01-01

    The Tasmanian devil (Sarcophilus harrisii), the world's largest marsupial carnivore, is under threat of extinction following the emergence of an infectious cancer. Devil facial tumour disease (DFTD) is spread between Tasmanian devils during biting. The disease is consistently fatal and devils succumb without developing a protective immune response. The aim of this study was to determine if Tasmanian devils were capable of forming cytotoxic antitumour responses and develop antibodies against DFTD cells and foreign tumour cells. The two Tasmanian devils immunised with irradiated DFTD cells did not form cytotoxic or humoral responses against DFTD cells, even after multiple immunisations. However, following immunisation with xenogenic K562 cells, devils did produce cytotoxic responses and antibodies against this foreign tumour cell line. The cytotoxicity appeared to occur through the activity of natural killer (NK) cells in an antibody dependent manner. Classical NK cell responses, such as innate killing of DFTD and foreign cancer cells, were not observed. Cells with an NK-like phenotype comprised approximately 4 percent of peripheral blood mononuclear cells. The results of this study suggest that Tasmanian devils have NK cells with functional cytotoxic pathways. Although devil NK cells do not directly recognise DFTD cancer cells, the development of antibody dependent cell-mediated cytotoxicity presents a potential pathway to induce cytotoxic responses against the disease. These findings have positive implications for future DFTD vaccine research. PMID:21957452

  7. Recognition of viral antigens in 6/94 virus-induced T-cell-mediated cytotoxicity.

    PubMed

    Pickel, K; Solvay, M J

    1979-01-24

    Distinct events in the virus-stimulated T-cell-mediated cytotoxicity (V-CMC) have been investigated: 1.) The induction of V-CMC is possible by immunizing mice with infectious as well as UV-inactivated virus (parainfluenza type 1 strain 6/94), or with virus-infected cells either compatible or imcompatible with the recipient. 2). Recognition of viral antigens by the effector cells occurs independently of the H2 environment: Fractionation of effector cells on columns loaded with virus-infected cells eliminates virus-specific cytotoxic cells. Effector cells and cells on the column need not share H-2 antigens. The findings are discussed with regard to the H2 restriction of the virus induced T-cells mediated cytotoxicity.

  8. RB mutation and RAS overexpression induce resistance to NK cell-mediated cytotoxicity in glioma cells.

    PubMed

    Orozco-Morales, Mario; Sánchez-García, Francisco Javier; Golán-Cancela, Irene; Hernández-Pedro, Norma; Costoya, Jose A; de la Cruz, Verónica Pérez; Moreno-Jiménez, Sergio; Sotelo, Julio; Pineda, Benjamín

    2015-01-01

    Several theories aim to explain the malignant transformation of cells, including the mutation of tumor suppressors and proto-oncogenes. Deletion of Rb (a tumor suppressor), overexpression of mutated Ras (a proto-oncogene), or both, are sufficient for in vitro gliomagenesis, and these genetic traits are associated with their proliferative capacity. An emerging hallmark of cancer is the ability of tumor cells to evade the immune system. Whether specific mutations are related with this, remains to be analyzed. To address this issue, three transformed glioma cell lines were obtained (Rb(-/-), Ras(V12), and Rb(-/-)/Ras(V12)) by in vitro retroviral transformation of astrocytes, as previously reported. In addition, Ras(V12) and Rb(-/-)/Ras(V12) transformed cells were injected into SCID mice and after tumor growth two stable glioma cell lines were derived. All these cells were characterized in terms of Rb and Ras gene expression, morphology, proliferative capacity, expression of MHC I, Rae1δ, and Rae1αβγδε, mult1, H60a, H60b, H60c, as ligands for NK cell receptors, and their susceptibility to NK cell-mediated cytotoxicity. Our results show that transformation of astrocytes (Rb loss, Ras overexpression, or both) induced phenotypical and functional changes associated with resistance to NK cell-mediated cytotoxicity. Moreover, the transfer of cell lines of transformed astrocytes into SCID mice increased resistance to NK cell-mediated cytotoxicity, thus suggesting that specific changes in a tumor suppressor (Rb) and a proto-oncogene (Ras) are enough to confer resistance to NK cell-mediated cytotoxicity in glioma cells and therefore provide some insight into the ability of tumor cells to evade immune responses.

  9. Resolution of cell-mediated airways diseases

    PubMed Central

    2010-01-01

    "Inflammation resolution" has of late become a topical research area. Activation of resolution phase mechanisms, involving select post-transcriptional regulons, transcription factors, 'autacoids', and cell phenotypes, is now considered to resolve inflammatory diseases. Critical to this discourse on resolution is the elimination of inflammatory cells through apoptosis and phagocytosis. For major inflammatory diseases such as asthma and COPD we propose an alternative path to apoptosis for cell elimination. We argue that transepithelial migration of airway wall leukocytes, followed by mucociliary clearance, efficiently and non-injuriously eliminates pro-inflammatory cells from diseased airway tissues. First, it seems clear that numerous infiltrated granulocytes and lymphocytes can be speedily transmitted into the airway lumen without harming the epithelial barrier. Then there are a wide range of 'unexpected' findings demonstrating that clinical improvement of asthma and COPD is not only associated with decreasing numbers of airway wall inflammatory cells but also with increasing numbers of these cells in the airway lumen. Finally, effects of inhibition of transepithelial migration support the present hypothesis. Airway inflammatory processes have thus been much aggravated when transepithelial exit of leukocytes has been inhibited. In conclusion, the present hypothesis highlights risks involved in drug-induced inhibition of transepithelial migration of airway wall leukocytes. It helps interpretation of common airway lumen data, and suggests approaches to treat cell-mediated airway inflammation. PMID:20540713

  10. The PHA Test Reflects Acquired T-Cell Mediated Immunocompetence in Birds

    PubMed Central

    Tella, José L.; Lemus, Jesús A.; Carrete, Martina; Blanco, Guillermo

    2008-01-01

    Background cological immunology requires techniques to reliably measure immunocompetence in wild vertebrates. The PHA-skin test, involving subcutaneous injection of a mitogen (phytohemagglutinin, PHA) and measurement of subsequent swelling as a surrogate of T-cell mediated immunocompetence, has been the test of choice due to its practicality and ease of use in the field. However, mechanisms involved in local immunological and inflammatory processes provoked by PHA are poorly known, and its use and interpretation as an acquired immune response is currently debated. Methodology Here, we present experimental work using a variety of parrot species, to ascertain whether PHA exposure produces larger secondary than primary responses as expected if the test reflects acquired immunocompetence. Moreover, we simultaneously quantified T-lymphocyte subsets (CD4+, CD5+ and CD8+) and plasma proteins circulating in the bloodstream, potentially involved in the immunological and inflammatory processes, through flow cytometry and electrophoresis. Principal Findings Our results showed stronger responses after a second PHA injection, independent of species, time elapsed and changes in body mass of birds between first and second injections, thus supporting the adaptive nature of this immune response. Furthermore, the concomitant changes in the plasma concentrations of T-lymphocyte subsets and globulins indicate a causal link between the activation of the T-cell mediated immune system and local tissue swelling. Conclusions/Significance These findings justify the widespread use of the PHA-skin test as a reliable evaluator of acquired T-cell mediated immunocompetence in diverse biological disciplines. Further experimental research should be aimed at evaluating the relative role of innate immunocompetence in wild conditions, where the access to dietary proteins varies more than in captivity, and to ascertain how PHA responses relate to particular host-parasite interactions. PMID:18820730

  11. Open Adoption

    ERIC Educational Resources Information Center

    Baran, Annette; And Others

    1976-01-01

    Adult adoptees are increasingly challenging the practice of sealing their birth records. The authors examine the historical roots of adoptive practices in this country and suggest that the time has come for open adoption to gain acceptance as an alternative. (Author)

  12. Histopathological analysis of infiltrating T cell subsets in acute T cell-mediated rejection in the kidney transplant.

    PubMed

    Salcido-Ochoa, Francisco; Hue, Susan Swee-Shan; Peng, Siyu; Fan, Zhaoxiang; Li, Reiko Lixiang; Iqbal, Jabed; Allen, John Carson; Loh, Alwin Hwai Liang

    2017-08-24

    To compare the differential immune T cell subset composition in patients with acute T cell-mediated rejection in the kidney transplant with subset composition in the absence of rejection, and to explore the association of their respective immune profiles with kidney transplant outcomes. A pilot cross-sectional histopathological analysis of the immune infiltrate was performed using immunohistochemistry in a cohort of 14 patients with acute T cell-mediated rejection in the kidney transplant and 7 kidney transplant patients with no rejection subjected to biopsy to investigate acute kidney transplant dysfunction. All patients were recruited consecutively from 2012 to 2014 at the Singapore General Hospital. Association of the immune infiltrates with kidney transplant outcomes at up to 54 mo of follow up was also explored prospectively. In comparison to the absence of rejection, acute T cell-mediated rejection in the kidney transplant was characterised by numerical dominance of cytotoxic T lymphocytes over Foxp3(+) regulatory T cells, but did not reach statistical significance owing to the small sample size in our pilot study. There was no obvious difference in absolute numbers of infiltrating cytotoxic T lymphocytes, Foxp3(+) regulatory T cells and Th17 cells between the two patient groups when quantified separately. Our exploratory analysis on associations of T cell subset quantifications with kidney transplant outcomes revealed that the degree of Th17 cell infiltration was significantly associated with shorter time to doubling of creatinine and shorter time to transplant loss. Although this was a small pilot study, results support our suspicion that in kidney transplant patients the immune balance in acute T cell-mediated rejection is tilted towards the pro-rejection forces and prompt larger and more sophisticated studies.

  13. B-Cell-Mediated Strategies to Fight Chronic Allograft Rejection

    PubMed Central

    Dalloul, Ali

    2013-01-01

    Solid organs have been transplanted for decades. Since the improvement in graft selection and in medical and surgical procedures, the likelihood of graft function after 1 year is now close to 90%. Nonetheless even well-matched recipients continue to need medications for the rest of their lives hence adverse side effects and enhanced morbidity. Understanding Immune rejection mechanisms, is of increasing importance since the greater use of living-unrelated donors and genetically unmatched individuals. Chronic rejection is devoted to T-cells, however the role of B-cells in rejection has been appreciated recently by the observation that B-cell depletion improve graft survival. By contrast however, B-cells can be beneficial to the grafted tissue. This protective effect is secondary to either the secretion of protective antibodies or the induction of B-cells that restrain excessive inflammatory responses, chiefly by local provision of IL-10, or inhibit effector T-cells by direct cellular interactions. As a proof of concept B-cell-mediated infectious transplantation tolerance could be achieved in animal models, and evidence emerged that the presence of such B-cells in transplanted patients correlate with a favorable outcome. Among these populations, regulatory B-cells constitute a recently described population. These cells may develop as a feedback mechanism to prevent uncontrolled reactivity to antigens and inflammatory stimuli. The difficult task for the clinician, is to quantify the respective ratios and functions of “tolerant” vs. effector B-cells within a transplanted organ, at a given time point in order to modulate B-cell-directed therapy. Several receptors at the B-cell membrane as well as signaling molecules, can now be targeted for this purpose. Understanding the temporal expansion of regulatory B-cells in grafted patients and the stimuli that activate them will help in the future to implement specific strategies aimed at fighting chronic allograft

  14. Long-term T-cell-mediated immunologic memory to hepatitis B vaccine in young adults following neonatal vaccination.

    PubMed

    Saffar, Hiva; Saffar, Mohammed Jafar; Ajami, Abolghasem; Khalilian, Ali Reza; Shams-Esfandabad, Kian; Mirabi, Araz Mohammad

    2014-09-01

    The long-term duration of cell-mediated immunity induced by neonatal hepatitis B virus (HBV) vaccination is unknown. Study was designed to determine the cellular immunity memory status among young adults twenty years after infantile HB immunization. Study subjects were party selected from a recent seroepidemiologic study in young adults, who had been vaccinated against HBV twenty years earlier. Just before and ten to 14 days after one dose of HBV vaccine booster injection, blood samples were obtained and sera concentration of cytokines (interleukin 2 and interferon) was measured. More than twofold increase after boosting was considered positive immune response. With regard to the serum level of antibody against HBV surface antigen (HBsAb) before boosting, the subjects were divided into four groups as follow: GI, HBsAb titer < 2; GII, titer 2 to 9.9; GIII, titer 10 to 99; and GIV, titers ≥ 100 IU/L. Mean concentration level (MCL) of each cytokines for each group at preboosting and postboosting and the proportion of responders in each groups were determined. Paired descriptive statistical analysis method (t test) was used to compare the MCL of each cytokines in each and between groups and the frequency of responders in each group. Before boosting, among 176 boosted individuals, 75 (42.6%) had HBsAb 10 IU/L and were considered seroprotected. Among 101 serosusceptible persons, more than 80% of boosted individuals showed more than twofold increase in cytokines concentration, which meant positive HBsAg-specific cell-mediated immunity. MCL of both cytokines after boosting in GIV were decreased more than twofold, possibly because of recent natural boosting. Findings showed that neonatal HBV immunization was efficacious in inducing long-term immunity and cell-mediated immune memory for up to two decades, and booster vaccination are not required. Further monitoring of vaccinated subjects for HBV infections are recommended.

  15. Long-Term T-Cell-Mediated Immunologic Memory to Hepatitis B Vaccine in Young Adults Following Neonatal Vaccination.

    PubMed Central

    Saffar, Hiva; Saffar, Mohammed Jafar; Ajami, Abolghasem; Khalilian, Ali Reza; Shams-Esfandabad, Kian; Mirabi, Araz Mohammad

    2014-01-01

    Background: The long-term duration of cell-mediated immunity induced by neonatal hepatitis B virus (HBV) vaccination is unknown. Objectives: Study was designed to determine the cellular immunity memory status among young adults twenty years after infantile HB immunization. Patients and Methods: Study subjects were party selected from a recent seroepidemiologic study in young adults, who had been vaccinated against HBV twenty years earlier. Just before and ten to 14 days after one dose of HBV vaccine booster injection, blood samples were obtained and sera concentration of cytokines (interleukin 2 and interferon) was measured. More than twofold increase after boosting was considered positive immune response. With regard to the serum level of antibody against HBV surface antigen (HBsAb) before boosting, the subjects were divided into four groups as follow: GI, HBsAb titer < 2; GII, titer 2 to 9.9; GIII, titer 10 to 99; and GIV, titers ≥ 100 IU/L. Mean concentration level (MCL) of each cytokines for each group at preboosting and postboosting and the proportion of responders in each groups were determined. Paired descriptive statistical analysis method (t test) was used to compare the MCL of each cytokines in each and between groups and the frequency of responders in each group. Results: Before boosting, among 176 boosted individuals, 75 (42.6%) had HBsAb 10 IU/L and were considered seroprotected. Among 101 serosusceptible persons, more than 80% of boosted individuals showed more than twofold increase in cytokines concentration, which meant positive HBsAg-specific cell-mediated immunity. MCL of both cytokines after boosting in GIV were decreased more than twofold, possibly because of recent natural boosting. Conclusions: Findings showed that neonatal HBV immunization was efficacious in inducing long-term immunity and cell-mediated immune memory for up to two decades, and booster vaccination are not required. Further monitoring of vaccinated subjects for HBV infections

  16. Adoptive transfer of cytomegalovirus-specific effector CD4+ T cells provides antiviral protection from murine CMV infection.

    PubMed

    Jeitziner, Sanja Mandaric; Walton, Senta M; Torti, Nicole; Oxenius, Annette

    2013-11-01

    Cytomegalovirus (CMV) infects a majority of the human population and establishes a life-long persistence. CMV infection is usually asymptomatic but the virus carries pathogenic potential and causes severe disease in immunocompromised individuals. T-cell-mediated immunity plays an essential role in control of CMV infection and adoptive transfer of CMV-specific CD8(+) T cells restores viral immunity in immunosuppressed patients but a role for CD4(+) T cells remains elusive. Here, we analyzed in adoptive transfer studies the features and antiviral functions of virus-specific CD4(+) T cells during primary murine CMV (MCMV) infection. MCMV-specific CD4(+) T cells expanded upon MCMV infection and displayed an effector phenotype and function. Adoptive transfer of in vivo activated MCMV-specific CD4(+) T cells to immune-compromised mice was protective during pathogenic MCMV infection and IFN-γ was a crucial mediator of this protective capacity. Moreover, co-transfer of low doses of both MCMV-specific CD4(+) T cells and CD8(+) T cells synergized in control of lytic viral replication in immune-compromised mice. Our data reveal a pivotal antiviral role for virus-specific CD4(+) T cells in protection from pathogenic CMV infection and provide evidence for their antiviral therapeutic potential.

  17. Evolving models of the immunopathogenesis of T-cell mediated drug allergy: the role of host, pathogens, and drug response

    PubMed Central

    White, Katie D.; Chung, Wen-Hung; Hung, Shuen-Iu; Mallal, Simon; Phillips, Elizabeth J.

    2015-01-01

    Immune-mediated adverse drug reactions (IM-ADRs) are an underrecognized source of preventable morbidity, mortality, and cost. Increasingly, genetic variation in the HLA loci is associated with risk of severe reactions, highlighting the importance of T-cell immune responses in the mechanisms of both B-cell mediated and primary T-cell mediated IM-ADRs. In this review, we summarize the role of host genetics, microbes and drugs in the development of IM-ADRs, expand upon the existing models of IM-ADR pathogenesis to address multiple unexplained observations, discuss the implications of this work in clinical practice today, and describe future applications for pre-clinical drug toxicity screening, drug design, and development. PMID:26254049

  18. Immunomodulatory activity of Zingiber officinale Roscoe, Salvia officinalis L. and Syzygium aromaticum L. essential oils: evidence for humor- and cell-mediated responses.

    PubMed

    Carrasco, Fábio Ricardo; Schmidt, Gustavo; Romero, Adriano Lopez; Sartoretto, Juliano Luiz; Caparroz-Assef, Silvana Martins; Bersani-Amado, Ciomar Aparecida; Cuman, Roberto Kenji Nakamura

    2009-07-01

    The immunomodulatory effect of ginger, Zingiber officinale (Zingiberaceae), sage, Salvia officinalis (Lamiaceae) and clove, Syzygium aromaticum (Myrtaceae), essential oils were evaluated by studying humor- and cell-mediated immune responses. Essential oils were administered to mice (once a day, orally, for a week) previously immunized with sheep red blood cells (SRBCs). Clove essential oil increased the total white blood cell (WBC) count and enhanced the delayed-type hypersensitivity (DTH) response in mice. Moreover, it restored cellular and humoral immune responses in cyclophosphamide-immunosuppressed mice in a dose-dependent manner. Ginger essential oil recovered the humoral immune response in immunosuppressed mice. Contrary to the ginger essential oil response, sage essential oil did not show any immunomodulatory activity. Our findings establish that the immunostimulatory activity found in mice treated with clove essential oil is due to improvement in humor- and cell-mediated immune response mechanisms.

  19. Adoptive immunotherapy for cancer.

    PubMed

    Ruella, Marco; Kalos, Michael

    2014-01-01

    Recent clinical success has underscored the potential for immunotherapy based on the adoptive cell transfer (ACT) of engineered T lymphocytes to mediate dramatic, potent, and durable clinical responses. This success has led to the broader evaluation of engineered T-lymphocyte-based adoptive cell therapy to treat a broad range of malignancies. In this review, we summarize concepts, successes, and challenges for the broader development of this promising field, focusing principally on lessons gleaned from immunological principles and clinical thought. We present ACT in the context of integrating T-cell and tumor biology and the broader systemic immune response.

  20. Archaeosome Vaccine Adjuvants Induce Strong Humoral, Cell-Mediated, and Memory Responses: Comparison to Conventional Liposomes and Alum†

    PubMed Central

    Krishnan, Lakshmi; Dicaire, Chantal J.; Patel, Girishchandra B.; Sprott, G. Dennis

    2000-01-01

    Ether glycerolipids extracted from various archaeobacteria were formulated into liposomes (archaeosomes) possessing strong adjuvant properties. Mice of varying genetic backgrounds, immunized by different parenteral routes with bovine serum albumin (BSA) entrapped in archaeosomes (∼200-nm vesicles), demonstrated markedly enhanced serum anti-BSA antibody titers. These titers were often comparable to those achieved with Freund's adjuvant and considerably more than those with alum or conventional liposomes (phosphatidylcholine-phosphatidylglycerol-cholesterol, 1.8:0.2:1.5 molar ratio). Furthermore, antigen-specific immunoglobulin G1 (IgG1), IgG2a, and IgG2b isotype antibodies were all induced. Association of BSA with the lipid vesicles was required for induction of a strong response, and >80% of the protein was internalized within most archaeosome types, suggesting efficient release of antigen in vivo. Encapsulation of ovalbumin and hen egg lysozyme within archaeosomes showed similar immune responses. Antigen-archaeosome immunizations also induced a strong cell-mediated immune response: antigen-dependent proliferation and substantial production of cytokines gamma interferon (Th1) and interleukin-4 (IL-4) (Th2) by spleen cells in vitro. In contrast, conventional liposomes induced little cell-mediated immunity, whereas alum stimulated only an IL-4 response. In contrast to alum and Freund's adjuvant, archaeosomes composed of Thermoplasma acidophilum lipids evoked a dramatic memory antibody response to the encapsulated protein (at ∼300 days) after only two initial immunizations (days 0 and 14). This correlated with increased antigen-specific cell cycling of CD4+ T cells: increase in synthetic (S) and mitotic (G2/M) and decrease in resting (G1) phases. Thus, archaeosomes may be potent vaccine carriers capable of facilitating strong primary and memory humoral, and cell-mediated immune responses to the entrapped antigen. PMID:10603368

  1. The role of antioxidation and immunomodulation in postnatal multipotent stem cell-mediated cardiac repair.

    PubMed

    Saparov, Arman; Chen, Chien-Wen; Beckman, Sarah A; Wang, Yadong; Huard, Johnny

    2013-08-06

    Oxidative stress and inflammation play major roles in the pathogenesis of coronary heart disease including myocardial infarction (MI). The pathological progression following MI is very complex and involves a number of cell populations including cells localized within the heart, as well as cells recruited from the circulation and other tissues that participate in inflammatory and reparative processes. These cells, with their secretory factors, have pleiotropic effects that depend on the stage of inflammation and regeneration. Excessive inflammation leads to enlargement of the infarction site, pathological remodeling and eventually, heart dysfunction. Stem cell therapy represents a unique and innovative approach to ameliorate oxidative stress and inflammation caused by ischemic heart disease. Consequently, it is crucial to understand the crosstalk between stem cells and other cells involved in post-MI cardiac tissue repair, especially immune cells, in order to harness the beneficial effects of the immune response following MI and further improve stem cell-mediated cardiac regeneration. This paper reviews the recent findings on the role of antioxidation and immunomodulation in postnatal multipotent stem cell-mediated cardiac repair following ischemic heart disease, particularly acute MI and focuses specifically on mesenchymal, muscle and blood-vessel-derived stem cells due to their antioxidant and immunomodulatory properties.

  2. Neoplasia in adoptively immunosuppressed rats. A possible model for tumorigenesis in transplant recipients

    SciTech Connect

    Dorsch, S.E.; Cook, E.P.

    1983-07-01

    An extremely high incidence of malignant tumors was observed in groups of rats that had previously been exposed to whole body irradiation, grafted with allogeneic tissue, and injected with lymphocytes capable of specifically suppressing the rejection of the grafted tissue. Neoplasia in these adoptively immunosuppressed rats had features in common with that in therapeutically immunosuppressed transplant recipients. Increased tumor incidence could not be accounted for on the basis of the effects of whole body irradiation or failure of immune surveillance, nor could it be a direct effect of lymphoid tissue stimulation. It is suggested that cell mediated suppressor responses play a critical role in tumorigenesis. The mechanism of this is not simply direct stimulation of lymphoid tissue proliferation.

  3. Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK–modified donor T cells after allogeneic hematopoietic cell transplantation

    PubMed Central

    Berger, Carolina; Flowers, Mary E.; Warren, Edus H.; Riddell, Stanley R.

    2006-01-01

    The introduction of an inducible suicide gene such as the herpes simplex virus thymidine kinase (HSV-TK) might allow exploitation of the antitumor activity of donor T cells after allogeneic hematopoietic cell transplantation (HCT) without graft versus host disease. However, HSV-TK is foreign, and immune responses to gene-modified T cells could lead to their premature elimination. We show that after the infusion of HSV-TK–modified donor T cells to HCT recipients, CD8+ and CD4+ T-cell responses to HSV-TK are rapidly induced and coincide with the disappearance of transferred cells. Cytokine flow cytometry using an overlapping panel of HSV-TK peptides allowed rapid detection and quantitation of HSV-TK–specific T cells in the blood and identified multiple immunogenic epitopes. Repeated infusion of modified T cells boosted the induced HSV-TK–specific T cells, which persisted as memory cells. These studies demonstrate the need for nonimmunogenic suicide genes and identify a strategy for detection of CD4+ and CD8+ T-cell responses to transgene products that should be generally applicable to monitoring patients on gene therapy trials. The potency of gene-modified T cells to elicit robust and durable immune responses imply this approach might be used for vaccination to elicit T-cell responses to viral or tumor antigens. PMID:16282341

  4. Origins of adaptive immunity.

    PubMed

    Liongue, Clifford; John, Liza B; Ward, Alister

    2011-01-01

    Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity.

  5. The Interaction between Regulatory T Cells and NKT Cells in the Liver: A CD1d Bridge Links Innate and Adaptive Immunity

    PubMed Central

    Webb, Tonya J.; Potter, James P.; Li, Zhiping

    2011-01-01

    Background/Aims Regulatory T cells (Tregs) and natural killer T (NKT) cells are two distinct lymphocyte subsets that independently regulate hepatic adaptive and innate immunity, respectively. In the current study, we examine the interaction between Tregs and NKT cells to understand the mechanisms of cross immune regulation by these cells. Methods The frequency and function of Tregs were evaluated in wild type and NKT cell deficient (CD1dko) mice. In vitro lymphocyte proliferation and apoptosis assays were performed with NKT cells co-cultured with Tregs. The ability of Tregs to inhibit NKT cells in vivo was examined by adoptive transfer of Tregs in a model of NKT cell mediated hepatitis. Results CD1dko mice have a significant reduction in hepatic Tregs. Although, the Tregs from CD1dko mice remain functional and can suppress conventional T cells, their ability to suppress activation induced NKT cell proliferation and to promote NKT cell apoptosis is greatly diminished. These effects are CD1d dependent and require cell to cell contact. Adoptive transfer of Tregs inhibits NKT cell-mediated liver injury. Conclusions NKT cells promote Tregs, and Tregs inhibit NKT cells in a CD1d dependent manner requiring cell to cell contact. These cross-talk immune regulations provide a linkage between innate and adaptive immunity. PMID:22073248

  6. [Bacterial proteases and bacterial resistance against human innate immunity factors].

    PubMed

    Tiurin, Iu A; Mustafin, I G; Fassakhov, R S

    2011-01-01

    The molecular and cell-mediated mechanisms that are developed by certain opportunistic and pathogenic bacteria and were obtained over the course of evolution to preserve resistance against principal components of human body innate immunity are summarized.

  7. A non-surgical approach for male germ cell mediated gene transmission through transgenesis

    PubMed Central

    Usmani, Abul; Ganguli, Nirmalya; Sarkar, Hironmoy; Dhup, Suveera; Batta, Suryaprakash R.; Vimal, Manoj; Ganguli, Nilanjana; Basu, Sayon; Nagarajan, P.; Majumdar, Subeer S.

    2013-01-01

    Microinjection of foreign DNA in male pronucleus by in-vitro embryo manipulation is difficult but remains the method of choice for generating transgenic animals. Other procedures, including retroviral and embryonic stem cell mediated transgenesis are equally complicated and have limitations. Although our previously reported technique of testicular transgenesis circumvented several limitations, it involved many steps, including surgery and hemicastration, which carried risk of infection and impotency. We improved this technique further, into a two step non-surgical electroporation procedure, for making transgenic mice. In this approach, transgene was delivered inside both testes by injection and modified parameters of electroporation were used for in-vivo gene integration in germ cells. Using variety of constructs, germ cell integration of the gene and its transmission in progeny was confirmed by PCR, slot blot and immunohistochemical analysis. This improved technique is efficient, requires substantially less time and can be easily adopted by various biomedical researchers. PMID:24305437

  8. Adoptive transfer of CD4(+)Foxp3(+) regulatory T cells to C57BL/6J mice during acute infection with Toxoplasma gondii down modulates the exacerbated Th1 immune response.

    PubMed

    Olguín, Jonadab E; Fernández, Jacquelina; Salinas, Nohemí; Juárez, Imelda; Rodriguez-Sosa, Miriam; Campuzano, Jaime; Castellanos, Carlos; Saavedra, Rafael

    2015-08-01

    Infection of C57BL/6J mice with the parasite Toxoplasma gondii triggers a powerful Th1 immune response that is detrimental to the host. During acute infection, a reduction in CD4(+)Foxp3(+) regulatory T cells (Treg) has been reported. We studied the role of Treg during T. gondii infection by adoptive transfer of cells purified from transgenic Foxp3(EGFP) mice to infected wild type animals. We found a less severe weight loss, a significant delayed mortality in infected Treg-transferred mice, and reduced pathology of the small intestine that were associated with lower IFN-γ and TNF-α levels. Nevertheless, higher cyst number and parasite load in brain were observed in these mice. Treg-transferred infected mice showed reduced levels of both IFN-γ and TNF-α in sera. A reduced number of CD4(+) T cells producing IFN-γ was detected in these mice, while IL-2 producing CD4(+) T cells were restored to levels nearly similar to uninfected mice. CD25 and CD69 expression of CD4(+) T cells were also down modulated. Our data show that the low Treg cell number are insufficient to modulate the activation of CD4(+) T cells and the production of high levels of IFN-γ. Thus, a delicate balance between an optimal immune response and its modulation by Treg cells must exist.

  9. Seasonal trade-offs in cell-mediated immunosenescence in ruffs (Philomachus pugnax).

    PubMed Central

    Lozano, George A; Lank, David B

    2003-01-01

    The immune system is an energetically expensive self-maintenance complex that, given the risks of parasitism, cannot be carelessly compromised. Life-history theory posits that trade-offs between fitness components, such as self-maintenance and reproduction, vary between genders and age classes depending on their expected residual lifetime reproductive success, and seasonally as energetic requirements change. Using ruff (Philomachus pugnax), a bird with two genetically distinct male morphs, we demonstrate here a decrease in male immunocompetence during the breeding season, greater variance in immune response among males than females, immunosenescence in both sexes and male morphs, and a seasonal shift in the age range required to detect senescence. Using a phytohaemagglutinin delayed hypersensitivity assay, we assessed cell-mediated immunity (CMI) of males of typical breeding age during the breeding and nonbreeding seasons, and of a larger sample that included females and birds of a greater age range during the non-breeding period. CMI was higher for breeding-aged males in May than in November, but the increase was not related to age or male morph. In November, mean CMI did not differ between the sexes, but the variance was higher for males than for females, and there were no differences in mean or variance between the two male morphs. For both sexes and male morphs, CMI was lower for young birds than for birds of typical breeding ages, and it declined again for older birds. In males, senescence was detected in the non-breeding season only when very old birds were included. These results, generally consistent with expectations from life-history theory, indicate that the immune system can be involved in multifarious trade-offs within a yearly cycle and along an individual's lifetime, and that specific predictions about means and variances in immune response should be considered in future immunoecological research. PMID:12816660

  10. Effect of Lactobacillus brevis KB290 on the cell-mediated cytotoxic activity of mouse splenocytes: a DNA microarray analysis.

    PubMed

    Fukui, Yuichiro; Sasaki, Erika; Fuke, Nobuo; Nakai, Yuji; Ishijima, Tomoko; Abe, Keiko; Yajima, Nobuhiro

    2013-11-14

    Lactic acid bacteria confer a variety of health benefits. Here, we investigate the mechanisms by which Lactobacillus brevis KB290 (KB290) enhances cell-mediated cytotoxic activity. Female BALB/c mice aged 9 weeks were fed a diet containing KB290 (3 × 10(9) colony-forming units/g) or starch for 1 d. The resulting cytotoxic activity of splenocytes against YAC-1 cells was measured using flow cytometry and analysed for gene expression using DNA microarray technology. KB290 enhanced the cell-mediated cytotoxic activity of splenocytes. DNA microarray analysis identified 327 up-regulated and 347 down-regulated genes that characterised the KB290 diet group. The up-regulated genes were significantly enriched in Gene Ontology terms related to immunity, and, especially, a positive regulation of T-cell-mediated cytotoxicity existed among these terms. Almost all the genes included in the term encoded major histocompatibility complex (MHC) class I molecules involved in the presentation of antigen to CD8(+) cytotoxic T cells. Marco and Signr1 specific to marginal zone macrophages (MZM), antigen-presenting cells, were also up-regulated. Flow cytometric analysis confirmed that the proportion of MZM was significantly increased by KB290 ingestion. Additionally, the over-represented Kyoto Encyclopedia of Genes and Genomes pathways among the up-regulated genes were those for natural killer (NK) cell-mediated cytotoxicity and antigen processing and presentation. The results for the selected genes associated with NK cells and CD8(+) cytotoxic T cells were confirmed by quantitative RT-PCR. These results suggest that enhanced cytotoxic activity could be caused by the activation of NK cells and/or of CD8(+) cytotoxic T cells stimulated via MHC class I presentation.

  11. Mechanism of T-cell mediated protection in newborn mice against a Chlamydia infection.

    PubMed

    Pal, Sukumar; de la Maza, Luis M

    2013-01-01

    To determine the immune components needed for protection of newborn mice against Chlamydia muridarum, animals born to Chlamydia-immunized and to sham-immunized dams were infected intranasally with C. muridarum at 2 post-natal days. T-cells isolated from immunized or sham-immunized adult mice were adoptively transferred to newborn mice at the time of infection. Also, to establish what cytokines are involved in protection, IFN-γ, TNF-α, IL-10, and IL-12 were passively transferred to newborn mice. To assess the Chlamydia burden in the lungs mice were euthanized at 12 post-natal days. When T-cells from immunized adult mice were transferred, mice born to and fed by immunized dams were significantly protected as evidenced by the reduced number of Chlamydia isolated from the lungs compared to mice born to and fed by sham-immunized dams. Transfer of IFN-γ and TNF-α also significantly reduced the number of Chlamydia in the lungs of mice born to immunized dams. Transfer of IL-10 or IL-12 did not result in a significant reduction of Chlamydia. In vitro T-cell proliferation data suggest that neonatal antigen presenting cells can present Chlamydia antigens to adult T-cells. In conclusion, maternal antibodies and Chlamydia specific T-cells or Th1 cytokines are required for protection of neonates against this pathogen.

  12. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells

    PubMed Central

    1982-01-01

    On the basis of preceding studies showing that tumor-induced, T cell- mediated immunosuppression serves as an obstacle to adoptive immunotherapy of the Meth A fibrosarcoma, it was predicted that cyclophosphamide treatment of tumor bearers would remove this obstacle and allow passively transferred immune T cells to cause tumor regression. It was found that infusion of immune spleen cells alone had no effect on tumor growth, and cyclophosphamide alone caused a temporary halt in tumor progression. In contrast, combination therapy consisting of intravenous injection of 100 mg/kg of cyclophosphamide followed 1 h later by intravenous infusion of tumor-immune spleen cells caused small, as well as large tumors, to completely and permanently regress. Tumor regression caused by combination therapy was completely inhibited by intravenous infusion of splenic T cells from donors with established tumors, but not by spleen cells from normal donors. These suppressor T cells were eliminated from the spleen by treating the tumor-bearing donors with 100 mg/kg of cyclophosphamide. Immune T cells, in contrast, were resistant to this dose of cyclophosphamide. These results show that failure of intravenously-infused, tumor- sensitized T cells to cause regression of the Meth A fibrosarcoma growing in its syngeneic or semi-syngeneic host is caused by the presence of a tumor-induced population of cyclophosphamide-sensitive suppressor T cells. PMID:6460831

  13. Strengthening Adoption Practice, Listening to Adoptive Families

    ERIC Educational Resources Information Center

    Atkinson, Anne; Gonet, Patricia

    2007-01-01

    In-depth interviews with 500 adoptive families who received postadoption services through Virginia's Adoptive Family Preservation (AFP) program paint a richly detailed picture of the challenges adoptive families face and what they need to sustain adoption for many years after finalization. Findings document the need for support in a variety of…

  14. Strengthening Adoption Practice, Listening to Adoptive Families

    ERIC Educational Resources Information Center

    Atkinson, Anne; Gonet, Patricia

    2007-01-01

    In-depth interviews with 500 adoptive families who received postadoption services through Virginia's Adoptive Family Preservation (AFP) program paint a richly detailed picture of the challenges adoptive families face and what they need to sustain adoption for many years after finalization. Findings document the need for support in a variety of…

  15. Cord blood T cells mediate enhanced antitumor effects compared with adult peripheral blood T cells.

    PubMed

    Hiwarkar, Prashant; Qasim, Waseem; Ricciardelli, Ida; Gilmour, Kimberly; Quezada, Sergio; Saudemont, Aurore; Amrolia, Persis; Veys, Paul

    2015-12-24

    Unrelated cord blood transplantation (CBT) without in vivo T-cell depletion is increasingly used to treat high-risk hematologic malignancies. Following T-replete CBT, naïve CB T cells undergo rapid peripheral expansion with memory-effector differentiation. Emerging data suggest that unrelated CBT, particularly in the context of HLA mismatch and a T-replete graft, may reduce leukemic relapse. To study the role of CB T cells in mediating graft-versus-tumor responses and dissect the underlying immune mechanisms for this, we compared the ability of HLA-mismatched CB and adult peripheral blood (PB) T cells to eliminate Epstein-Barr virus (EBV)-driven human B-cell lymphoma in a xenogeneic NOD/SCID/IL2rg(null) mouse model. CB T cells mediated enhanced tumor rejection compared with equal numbers of PB T cells, leading to improved survival in the CB group (P < .0003). Comparison of CB T cells that were autologous vs allogeneic to the lymphoma demonstrated that this antitumor effect was mediated by alloreactive rather than EBV-specific T cells. Analysis of tumor-infiltrating lymphocytes demonstrated that CB T cells mediated this enhanced antitumor effect by rapid infiltration of the tumor with CCR7(+)CD8(+) T cells and prompt induction of cytotoxic CD8(+) and CD4(+) T-helper (Th1) T cells in the tumor microenvironment. In contrast, in the PB group, this antilymphoma effect is impaired because of delayed tumoral infiltration of PB T cells and a relative bias toward suppressive Th2 and T-regulatory cells. Our data suggest that, despite being naturally programmed toward tolerance, reconstituting T cells after unrelated T-replete CBT may provide superior Tc1-Th1 antitumor effects against high-risk hematologic malignancies.

  16. Integrin αvβ8-Mediated TGF-β Activation by Effector Regulatory T Cells Is Essential for Suppression of T-Cell-Mediated Inflammation

    PubMed Central

    Worthington, John J.; Kelly, Aoife; Smedley, Catherine; Bauché, David; Campbell, Simon; Marie, Julien C.; Travis, Mark A.

    2015-01-01

    Summary Regulatory T (Treg) cells play a pivotal role in suppressing self-harmful T cell responses, but how Treg cells mediate suppression to maintain immune homeostasis and limit responses during inf