Science.gov

Sample records for cell-microelectronic sensing technique

  1. A cell-microelectronic sensing technique for profiling cytotoxicity of chemicals.

    PubMed

    Boyd, Jessica M; Huang, Li; Xie, Li; Moe, Birget; Gabos, Stephan; Li, Xing-Fang

    2008-05-12

    A cell-microelectronic sensing technique is developed for profiling chemical cytotoxicity and is used to study different cytotoxic effects of the same class chemicals using nitrosamines as examples. This technique uses three human cell lines (T24 bladder, HepG2 liver, and A549 lung carcinoma cells) and Chinese hamster ovary (CHO-K1) cells in parallel as the living components of the sensors of a real-time cell electronic sensing (RT-CES) method for dynamic monitoring of chemical toxicity. The RT-CES technique measures changes in the impedance of individual microelectronic wells that is correlated linearly with changes in cell numbers during t log phase of cell growth, thus allowing determination of cytotoxicity. Four nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosodiphenylamine (NDPhA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr), were examined and unique cytotoxicity profiles were detected for each nitrosamine. In vitro cytotoxicity values (IC(50)) for NDPhA (ranging from 0.6 to 1.9 mM) were significantly lower than the IC(50) values for the well-known carcinogen NDMA (15-95 mM) in all four cell lines. T24 cells were the most sensitive to nitrosamine exposure among the four cell lines tested (T24>CHO>A549>HepG2), suggesting that T24 may serve as a new sensitive model for cytotoxicity screening. Cell staining results confirmed that administration of the IC(50) concentration from the RT-CES experiments inhibited cell growth by 50% compared to the controls, indicating that the RT-CES method provides reliable measures of IC(50). Staining and cell-cycle analysis confirmed that NDPhA caused cell-cycle arrest at the G0/G1 phase, whereas NDMA did not disrupt the cell cycle but induced cell death, thus explaining the different cytotoxicity profiles detected by the RT-CES method. The parallel cytotoxicity profiling of nitrosamines on the four cell lines by the RT-CES method led to the discovery of the unique cytotoxicity of NDPhA causing cell

  2. Remote hydrogen sensing techniques

    NASA Technical Reports Server (NTRS)

    Perry, Cortes L.

    1992-01-01

    The objective of this project is to evaluate remote hydrogen sensing methodologies utilizing metal oxide semi-conductor field effect transistors (MOS-FET) and mass spectrometric (MS) technologies and combinations thereof.

  3. Vision sensing techniques in aeronautics and astronautics

    NASA Technical Reports Server (NTRS)

    Hall, E. L.

    1988-01-01

    The close relationship between sensing and other tasks in orbital space, and the integral role of vision sensing in practical aerospace applications, are illustrated. Typical space mission-vision tasks encompass the docking of space vehicles, the detection of unexpected objects, the diagnosis of spacecraft damage, and the inspection of critical spacecraft components. Attention is presently given to image functions, the 'windowing' of a view, the number of cameras required for inspection tasks, the choice of incoherent or coherent (laser) illumination, three-dimensional-to-two-dimensional model-matching, edge- and region-segmentation techniques, and motion analysis for tracking.

  4. Remote sensing as a mineral prospecting technique

    NASA Technical Reports Server (NTRS)

    Meneses, P. R. (Principal Investigator)

    1984-01-01

    Remote sensing and its application as an alternative technique to mineral resource exploration are reviewed. Emphasis is given here to the analysis of the three basic attributes of remote sensing, i.e., spatial attributes related to regional structural mapping, spectral attributes related to rock discrimination and seasonal attributes related to geobotanic anomalies mapping, all of which are employed in mineral exploration. Special emphasis is given to new developments of the Thematic Mapper of the LANDSAT-5, principally with reference to the application of the bands 1.6 and 2.2 microns to map hydrothermally altered rocks and the band of red and blue shift to geobotanical anomalies mapping.

  5. Introduction to the physics and techniques of remote sensing

    NASA Technical Reports Server (NTRS)

    Elachi, Charles

    1987-01-01

    This book presents a comprehensive overview of the basics behind remote-sensing physics, techniques, and technology. The physics of wave/matter interactions, techniques of remote sensing across the electromagnetic spectrum, and the concepts behind remote sensing techniques now established and future ones under development are discussed. Applications of remote sensing are described for a wide variety of earth and planetary atmosphere and surface sciences. Solid surface sensing across the electromagnetic spectrum, ocean surface sensing, basic principles of atmospheric sensing and radiative transfer, and atmospheric remote sensing in the microwave, millimeter, submillimeter, and infrared regions are examined.

  6. Computational intelligence techniques for tactile sensing systems.

    PubMed

    Gastaldo, Paolo; Pinna, Luigi; Seminara, Lucia; Valle, Maurizio; Zunino, Rodolfo

    2014-06-19

    Tactile sensing helps robots interact with humans and objects effectively in real environments. Piezoelectric polymer sensors provide the functional building blocks of the robotic electronic skin, mainly thanks to their flexibility and suitability for detecting dynamic contact events and for recognizing the touch modality. The paper focuses on the ability of tactile sensing systems to support the challenging recognition of certain qualities/modalities of touch. The research applies novel computational intelligence techniques and a tensor-based approach for the classification of touch modalities; its main results consist in providing a procedure to enhance system generalization ability and architecture for multi-class recognition applications. An experimental campaign involving 70 participants using three different modalities in touching the upper surface of the sensor array was conducted, and confirmed the validity of the approach.

  7. Bibliography of Remote Sensing Techniques Used in Wetland Research.

    DTIC Science & Technology

    1993-01-01

    remote sensing technology for detecting changes in wetland environments. This report documents a bibliographic search conducted as part of that work unit on applications of remote sensing techniques in wetland research. Results were used to guide research efforts on the use of remote sensing technology for wetland change detection and assessment. The citations are presented in three appendixes, organized by wetland type, sensor type, and author.... Change detection, Wetland assessment, Remote sensing ,

  8. Wind Predictability and Remote Sensing Techniques,

    DTIC Science & Technology

    The report presents the unclassified findings from the Investigation of Airborne Wind Sensing Systems conducted under AIRTASK A30303/323/70F17311002. Included is a summary of the current accuracy of wind speed and direction forecasts, a list of possible methods for remote sensing meteorological data, a list of areas of application of the given methods and a list of contacts made for information relevant to this evaluation. (Author)

  9. A comparison of force sensing techniques for planetary manipulation

    NASA Technical Reports Server (NTRS)

    Helmick, Daniel; Okon, Avi; DiCicco, Matt

    2006-01-01

    Five techniques for sensing forces with a manipulator are compared analytically and experimentally. The techniques compared are: a six-axis wrist force/torque sensor, joint torque sensors, link strain gauges, motor current sensors, and flexibility modeling. The accuracy and repeatability fo each technique is quantified and compared.

  10. Evaluation of reforestation using remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Filho, P. H.; Shimabukuro, Y. E.; Dossantos, J. R.

    1982-01-01

    The utilization of remotely sensed orbital data for forestry inventory. The study area (approximately 491,100 ha) encompasses the municipalities of Ribeirao Preto, Altinopolis, Cravinhos, Serra Azul, Luis Antonio, Sao Simao, Sant Rita do Passa Quatro and Santa Rosa do Viterbo (Sao Paulo State). Materials used were LANDSAT data from channels 5 and 7 (scale 1:250,000) and CCT's. Visual interpretation of the imagery showed that for 1977 a total of 37,766.00 ha and for 1979 38,003.75 ha were reforested with Pinus and Eucalyptus within the area under study. The results obtained show that LANDSAT data can be used efficiently in forestry inventory studies.

  11. Layered classification techniques for remote sensing applications

    NASA Technical Reports Server (NTRS)

    Swain, P. H.; Wu, C. L.; Landgrebe, D. A.; Hauska, H.

    1975-01-01

    The single-stage method of pattern classification utilizes all available features in a single test which assigns the unknown to a category according to a specific decision strategy (such as the maximum likelihood strategy). The layered classifier classifies the unknown through a sequence of tests, each of which may be dependent on the outcome of previous tests. Although the layered classifier was originally investigated as a means of improving classification accuracy and efficiency, it was found that in the context of remote sensing data analysis, other advantages also accrue due to many of the special characteristics of both the data and the applications pursued. The layered classifier method and several of the diverse applications of this approach are discussed.

  12. Fluorescence sensing techniques for vegetation assessment.

    PubMed

    Corp, Lawrence A; Middleton, Elizabeth M; McMurtrey, James E; Campbell, Petya K Entcheva; Butcher, L Maryn

    2006-02-10

    Active fluorescence (F) sensing systems have long been suggested as a means to identify species composition and determine physiological status of plants. Passive F systems for large-scale remote assessment of vegetation will undoubtedly rely on solar-induced F (SIF), and this information could potentially be obtained from the Fraunhofer line depth (FLD) principle. However, understanding the relationships between the information and knowledge gained from active and passive systems remains to be addressed. Here we present an approach in which actively induced F spectral data are used to simulate and project the magnitude of SIF that can be expected from near-ground observations within selected solar Fraunhofer line regions. Comparisons among vegetative species and nitrogen (N) supply treatments were made with three F approaches: the passive FLD principle applied to telluric oxygen (O2) bands from field-acquired canopy reflectance spectra, simulated SIF from actively induced laboratory emission spectra of leaves at a series of solar Fraunhofer lines ranging from 422 to 758 nm, and examination of two dual-F excitation algorithms developed from laboratory data. From these analyses we infer that SIF from whole-plant canopies can be simulated by use of laboratory data from active systems on individual leaves and that SIF has application for the large-scale assessment of vegetation.

  13. Offshore winds using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Peña, Alfredo; Bay Hasager, Charlotte; Gryning, Sven-Erik; Courtney, Michael; Antoniou, Ioannis; Mikkelsen, Torben; Sørensen, Paul

    2007-07-01

    Ground-based remote sensing instruments can observe winds at different levels in the atmosphere where the wind characteristics change with height: the range of heights where modern turbine rotors are operating. A six-month wind assessment campaign has been made with a LiDAR (Light Detection And Ranging) and a SoDAR (Sound Detection and Ranging) on the transformer/platform of the world's largest offshore wind farm located at the West coast of Denmark to evaluate their ability to observe offshore winds. The high homogeneity and low turbulence levels registered allow the comparison of LiDAR and SoDAR with measurements from cups on masts surrounding the wind farm showing good agreement for both the mean wind speed and the longitudinal component of turbulence. An extension of mean wind speed profiles from cup measurements on masts with LiDAR observations results in a good match for the free sectors at different wind speeds. The log-linear profile is fitted to the extended profiles (averaged over all stabilities and roughness lengths) and the deviations are small. Extended profiles of turbulence intensity are also shown for different wind speeds up to 161 m. Friction velocities and roughness lengths calculated from the fitted log-linear profile are compared with the Charnock model which seems to overestimate the sea roughness for the free sectors.

  14. Evaluation of a Temperature Remote Sensing Technique.

    DTIC Science & Technology

    1987-07-01

    concnional Raman for the technique is to monitor temperature in a super- spectroscopy , shich rCqttircs the ncastrement of rela- somio acrod,,namic test...where atomic col- spread of the absorption line. It is normalized such that lisions are infrequent, the Doppler effect determines the width of the...ex- Note: Only the intense modes were recorded cellent tool for high-resolution spectroscopy . at each temperature Coarse frequency tuning of the laser

  15. Monitoring marine pollution by airborne remote sensing techniques

    SciTech Connect

    Yuanfu, S.; Quanan, Z.

    1982-06-01

    In order to monitor marine pollution by airborne remote sensing techniques, some comprehensive test of airborne remote sensing, involving monitoring marine oil pollution, were performed at several bay areas of China. This paper presents some typical results of monitoring marine oil pollution. The features associated with the EM spectrum (visible, thermal infrared, and microwave) response of marine oil spills is briefly analyzed. It has been verified that the airborne oil surveillance systems manifested their advantages for monitoring the oil pollution of bay environments.

  16. Millimeter-wave/THz FMCW radar techniques for sensing applications

    NASA Astrophysics Data System (ADS)

    Mirando, D. Amal; Higgins, Michael D.; Wang, Fenggui; Petkie, Douglas T.

    2016-10-01

    Millimeter-wave and terahertz continuous-wave radar systems have been used to measure physiological signatures for biometric applications and for a variety of non-destructive evaluation applications, such as the detection of defects in materials. Sensing strategies for the simplest homodyne systems, such as a Michelson Interferometer, can be enhanced by using Frequency Modulated Continuous Wave (FMCW) techniques. This allows multiple objects or surfaces to be range resolved while monitoring the phase of the signal in a particular range bin. We will discuss the latest developments in several studies aimed at demonstrating how FMCW techniques can enhance mmW/THz sensing applications.

  17. Natural resource inventory for urban planning utilizing remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Foster, K. E.; Mackey, P. F.; Bonham, C. D.

    1972-01-01

    Remote sensing techniques were applied to the lower Pantano Wash area to acquire data for planning an ecological balance between the expanding Tucson metropolitan area and its environment. The types and distribution of vegetation are discussed along with the hydrologic aspects of the Wash.

  18. Detection of southern corn leaf blight by remote sensing techniques.

    NASA Technical Reports Server (NTRS)

    Bauer, M. E.; Swain, P. H.; Mroczynski, R. P.; Anuta, P. E.; Macdonald, R. B.

    1971-01-01

    Multispectral photographic and scanner data were collected over western Indiana in August and September 1970, to determine the detectability of southern corn leaf blight by remote sensing. Measurements were made at altitudes of 3000 to 7000 ft. Color, color IR, and multiband black and white photography were collected at altitudes from 3000 to 60,000 ft. Six levels of infection based on the amount of leaf damage were identified in the fields. Three levels of infection were detected with color IR photography by standard photo-interpretive techniques. Up to five levels of infection were distinguished by applying automatic pattern recognition techniques to the multispectral scanner data. The results illustrate the potential of remote sensing techniques in the detection of crop diseases.

  19. Development of carbon fiber-based piezoresistive linear sensing technique

    NASA Astrophysics Data System (ADS)

    Yang, Caiqian; Wu, Zhishen; Huang, Huang

    2009-03-01

    In this paper, the development of carbon fiber-based piezoresistive linear sensing technique and its application in civil engineering structures is studied and summarized. The sensing mechanism is based on the electrical conductivity and piezoresistivity of different types of carbon fibers. Firstly, the influences of values of signal currents and temperature on the sensing properties are studied to decide the suitable sensing current. Then, the linear temperature and strain sensing feasibility of different types of carbon fibers is addressed and discussed. Finally, the application of this kind of sensors is studied in monitoring the health of reinforced concrete (RC) and prestressed concrete (PC) structures. A good linearity of fractional change in electrical resistance (ER) (ΔR/R0)-strain and &DeltaR/R0-temperature is demonstrated. The &DeltaR/R0-strain and &DeltaR/R0-temperature curves of CFRP/HCFRP sensors can be well fitted with a line with a correlation coefficient larger than 0.978. All these reveal that carbon fibers reinforced polymer (CFRP) can be used as both piezoresistive linear strain and temperature sensors.

  20. Adaptive remote sensing techniques implementing swarms of mobile agents

    NASA Astrophysics Data System (ADS)

    Cameron, Stewart M.; Loubriel, Guillermo M.; Robinett, Rush D., III; Stantz, Keith M.; Trahan, Michael W.; Wagner, John S.

    1999-07-01

    Measurement and signal intelligence of the battlespace has created new requirements in information management, communication and interoperability as they effect surveillance and situational awareness. In many situations, stand-off remote-sensing and hazard-interdiction techniques over realistic operational areas are often impractical and difficult to characterize. An alternative approach is to implement adaptive remote-sensing techniques with swarms of mobile agents employing collective behavior for optimization of mapping signatures and positional orientation (registration). We have expanded intelligent control theory using physics-based collective behavior models and genetic algorithms to produce a uniquely powerful implementation of distributed ground-based measurement incorporating both local collective behavior, and niter-operative global optimization for sensor fusion and mission oversight. By using a layered hierarchical control architecture to orchestrate adaptive reconfiguration of semi-autonomous robotic agents, we can improve overall robustness and functionality in dynamic tactical environments without information bottlenecking.

  1. A satellite remote sensing technique for geological structure horizon mapping

    SciTech Connect

    Fraser, A.; Huggins, P.; Rees, J.

    1996-08-01

    A Satellite Remote Sensing Technique is demonstrated for generating near surface geological structure data. This technique enables the screening of large areas and targeting of seismic acquisition during hydrocarbon exploration. This is of particular advantage in terrains where surveying is logistically difficult. Landsat Thematic Mapper (TM) data and a high resolution Digital Elevation Model (DEM), are used to identify and map outcropping horizons. These are used to reconstruct the near surface structure. The technique is applied in Central Yemen which is characterised by a {open_quote}layer-cake{close_quote} geological and low dipping terrain. The results are validated using 2D seismic data. The near surface map images faults and structure not apparent in the raw data. Comparison with the structure map generated from a 2D seismic data indicates very good structural and fault correlation. The near surface map successfully highlights areas of potential closure at reservoir depths.

  2. LIFES: Laser Induced Fluorescence and Environmental Sensing. [remote sensing technique for marine environment

    NASA Technical Reports Server (NTRS)

    Houston, W. R.; Stephenson, D. G.; Measures, R. M.

    1975-01-01

    A laboratory investigation has been conducted to evaluate the detection and identification capabilities of laser induced fluorescence as a remote sensing technique for the marine environment. The relative merits of fluorescence parameters including emission and excitation profiles, intensity and lifetime measurements are discussed in relation to the identification of specific targets of the marine environment including crude oils, refined petroleum products, fish oils and algae. Temporal profiles displaying the variation of lifetime with emission wavelength have proven to add a new dimension of specificity and simplicity to the technique.

  3. Compressed Sensing Techniques Applied to Ultrasonic Imaging of Cargo Containers.

    PubMed

    López, Yuri Álvarez; Lorenzo, José Ángel Martínez

    2017-01-15

    One of the key issues in the fight against the smuggling of goods has been the development of scanners for cargo inspection. X-ray-based radiographic system scanners are the most developed sensing modality. However, they are costly and use bulky sources that emit hazardous, ionizing radiation. Aiming to improve the probability of threat detection, an ultrasonic-based technique, capable of detecting the footprint of metallic containers or compartments concealed within the metallic structure of the inspected cargo, has been proposed. The system consists of an array of acoustic transceivers that is attached to the metallic structure-under-inspection, creating a guided acoustic Lamb wave. Reflections due to discontinuities are detected in the images, provided by an imaging algorithm. Taking into consideration that the majority of those images are sparse, this contribution analyzes the application of Compressed Sensing (CS) techniques in order to reduce the amount of measurements needed, thus achieving faster scanning, without compromising the detection capabilities of the system. A parametric study of the image quality, as a function of the samples needed in spatial and frequency domains, is presented, as well as the dependence on the sampling pattern. For this purpose, realistic cargo inspection scenarios have been simulated.

  4. Magnetic sensing techniques for humanitarian ordnance detection and discrimination

    NASA Astrophysics Data System (ADS)

    Keranen, Joe; Billings, Steve; Schultz, Gregory; Miller, Jonathan

    2011-06-01

    Detection and discrimination of unexploded ordnance (UXO) in areas of prior conflict is of high importance to the international community and the United States government. For humanitarian applications, sensors and processing methods need to be robust, reliable, and easy to train and implement using indigenous UXO removal personnel. This paper focuses on magnetometer sensing techniques, processing, and operation for UXO detection and discrimination applications. Specifically, we discuss the collection, processing, and discrimination of data collected using the PACMAG man-portable system consisting of arrays of sensitive total-field magnetometers, global positioning (GPS) combined with digital odometers, and a data acquisition system. We outline preliminary standard operating procedures for optimal collection of UXO-induced magnetic fields and associated position data using either a GPS, or odometer when surveying in GPS-denied areas. Processing techniques such as gridding and filtering, target picking, and discrimination lead to estimates of target size and location. Emphasis is placed on simplifying the production of magnetometer hardware and software for use by minimally-trained personnel with no advanced knowledge of magnetic sensing and geophysics.

  5. Compressed Sensing Techniques Applied to Ultrasonic Imaging of Cargo Containers

    PubMed Central

    Álvarez López, Yuri; Martínez Lorenzo, José Ángel

    2017-01-01

    One of the key issues in the fight against the smuggling of goods has been the development of scanners for cargo inspection. X-ray-based radiographic system scanners are the most developed sensing modality. However, they are costly and use bulky sources that emit hazardous, ionizing radiation. Aiming to improve the probability of threat detection, an ultrasonic-based technique, capable of detecting the footprint of metallic containers or compartments concealed within the metallic structure of the inspected cargo, has been proposed. The system consists of an array of acoustic transceivers that is attached to the metallic structure-under-inspection, creating a guided acoustic Lamb wave. Reflections due to discontinuities are detected in the images, provided by an imaging algorithm. Taking into consideration that the majority of those images are sparse, this contribution analyzes the application of Compressed Sensing (CS) techniques in order to reduce the amount of measurements needed, thus achieving faster scanning, without compromising the detection capabilities of the system. A parametric study of the image quality, as a function of the samples needed in spatial and frequency domains, is presented, as well as the dependence on the sampling pattern. For this purpose, realistic cargo inspection scenarios have been simulated. PMID:28098841

  6. An integrated sensing technique for smart monitoring of water pipelines

    NASA Astrophysics Data System (ADS)

    Bernini, Romeo; Catapano, Ilaria; Soldovieri, Francesco; Crocco, Lorenzo

    2014-05-01

    Lowering the rate of water leakage from the network of underground pipes is one of the requirements that "smart" cities have to comply with. In fact, losses in the water supply infrastructure have a remarkable social, environmental and economic impact, which obviously conflicts with the expected efficiency and sustainability of a smart city. As a consequence, there is a huge interest in developing prevention policies based on state-of-art sensing techniques and possibly their integration, as well as in envisaging ad hoc technical solutions designed for the application at hand. As a contribution to this framework, in this communication we present an approach aimed to pursue a thorough non-invasive monitoring of water pipelines, with both high spatial and temporal resolution. This goal is necessary to guarantee that maintenance operations are performed timely, so to reduce the extent of the leakage and its possible side effects, and precisely, so to minimize the cost and the discomfort resulting from operating on the water supply network. The proposed approach integrates two sensing techniques that work at different spatial and temporal scales. The first one is meant to provide a continuous (in both space and time) monitoring of the pipeline and exploits a distributed optic fiber sensor based on the Brillouin scattering phenomenon. This technique provides the "low" spatial resolution information (at meter scale) needed to reveal the presence of a leak and call for interventions [1]. The second technique is based on the use of Ground Penetrating Radar (GPR) and is meant to provide detailed images of area where the damage has been detected. GPR systems equipped with suitable data processing strategies [2,3] are indeed capable of providing images of the shallow underground, where the pipes would be buried, characterized by a spatial resolution in the order of a few centimeters. This capability is crucial to address in the most proper way maintenance operations, by for

  7. Tunnel-Site Selection by Remote Sensing Techniques

    DTIC Science & Technology

    A study of the role of remote sensing for geologic reconnaissance for tunnel-site selection was commenced. For this study, remote sensing was defined...conventional remote sensing . Future research directions are suggested, and the extension of remote sensing to include airborne passive microwave

  8. Estimation of Insulator Contaminations by Means of Remote Sensing Technique

    NASA Astrophysics Data System (ADS)

    Han, Ge; Gong, Wei; Cui, Xiaohui; Zhang, Miao; Chen, Jun

    2016-06-01

    The accurate estimation of deposits adhering on insulators is critical to prevent pollution flashovers which cause huge costs worldwide. The traditional evaluation method of insulator contaminations (IC) is based sparse manual in-situ measurements, resulting in insufficient spatial representativeness and poor timeliness. Filling that gap, we proposed a novel evaluation framework of IC based on remote sensing and data mining. Varieties of products derived from satellite data, such as aerosol optical depth (AOD), digital elevation model (DEM), land use and land cover and normalized difference vegetation index were obtained to estimate the severity of IC along with the necessary field investigation inventory (pollution sources, ambient atmosphere and meteorological data). Rough set theory was utilized to minimize input sets under the prerequisite that the resultant set is equivalent to the full sets in terms of the decision ability to distinguish severity levels of IC. We found that AOD, the strength of pollution source and the precipitation are the top 3 decisive factors to estimate insulator contaminations. On that basis, different classification algorithm such as mahalanobis minimum distance, support vector machine (SVM) and maximum likelihood method were utilized to estimate severity levels of IC. 10-fold cross-validation was carried out to evaluate the performances of different methods. SVM yielded the best overall accuracy among three algorithms. An overall accuracy of more than 70% was witnessed, suggesting a promising application of remote sensing in power maintenance. To our knowledge, this is the first trial to introduce remote sensing and relevant data analysis technique into the estimation of electrical insulator contaminations.

  9. Integration of geological remote-sensing techniques in subsurface analysis

    USGS Publications Warehouse

    Taranik, James V.; Trautwein, Charles M.

    1976-01-01

    Geological remote sensing is defined as the study of the Earth utilizing electromagnetic radiation which is either reflected or emitted from its surface in wavelengths ranging from 0.3 micrometre to 3 metres. The natural surface of the Earth is composed of a diversified combination of surface cover types, and geologists must understand the characteristics of surface cover types to successfully evaluate remotely-sensed data. In some areas landscape surface cover changes throughout the year, and analysis of imagery acquired at different times of year can yield additional geological information. Integration of different scales of analysis allows landscape features to be effectively interpreted. Interpretation of the static elements displayed on imagery is referred to as an image interpretation. Image interpretation is dependent upon: (1) the geologist's understanding of the fundamental aspects of image formation, and (2.) his ability to detect, delineate, and classify image radiometric data; recognize radiometric patterns; and identify landscape surface characteristics as expressed on imagery. A geologic interpretation integrates surface characteristics of the landscape with subsurface geologic relationships. Development of a geologic interpretation from imagery is dependent upon: (1) the geologist's ability to interpret geomorphic processes from their static surface expression as landscape characteristics on imagery, (2) his ability to conceptualize the dynamic processes responsible for the evolution 6f interpreted geologic relationships (his ability to develop geologic models). The integration of geologic remote-sensing techniques in subsurface analysis is illustrated by development of an exploration model for ground water in the Tucson area of Arizona, and by the development of an exploration model for mineralization in southwest Idaho.

  10. Multivariate image processing technique for noninvasive glucose sensing

    NASA Astrophysics Data System (ADS)

    Webb, Anthony J.; Cameron, Brent D.

    2010-02-01

    A potential noninvasive glucose sensing technique was investigated for application towards in vivo glucose monitoring for individuals afflicted with diabetes mellitus. Three dimensional ray tracing simulations using a realistic iris pattern integrated into an advanced human eye model are reported for physiological glucose concentrations ranging between 0 to 500 mg/dL. The anterior chamber of the human eye contains a clear fluid known as the aqueous humor. The optical refractive index of the aqueous humor varies on the order of 1.5x10-4 for a change in glucose concentration of 100 mg/dL. The simulation data was analyzed with a developed multivariate chemometrics procedure that utilizes iris-based images to form a calibration model. Results from these simulations show considerable potential for use of the developed method in the prediction of glucose. For further demonstration, an in vitro eye model was developed to validate the computer based modeling technique. In these experiments, a realistic iris pattern was placed in an analog eye model in which the glucose concentration within the fluid representing the aqueous humor was varied. A series of high resolution digital images were acquired using an optical imaging system. These images were then used to form an in vitro calibration model utilizing the same multivariate chemometric technique demonstrated in the 3-D optical simulations. In general, the developed method exhibits considerable applicability towards its use as an in vivo platform for the noninvasive monitoring of physiological glucose concentration.

  11. Radial velocity data analysis with compressed sensing techniques

    NASA Astrophysics Data System (ADS)

    Hara, Nathan C.; Boué, G.; Laskar, J.; Correia, A. C. M.

    2017-01-01

    We present a novel approach for analysing radial velocity data that combines two features: all the planets are searched at once and the algorithm is fast. This is achieved by utilizing compressed sensing techniques, which are modified to be compatible with the Gaussian process framework. The resulting tool can be used like a Lomb-Scargle periodogram and has the same aspect but with much fewer peaks due to aliasing. The method is applied to five systems with published radial velocity data sets: HD 69830, HD 10180, 55 Cnc, GJ 876 and a simulated very active star. The results are fully compatible with previous analysis, though obtained more straightforwardly. We further show that 55 Cnc e and f could have been respectively detected and suspected in early measurements from the Lick Observatory and Hobby-Eberly Telescope available in 2004, and that frequencies due to dynamical interactions in GJ 876 can be seen.

  12. Remote sensing image denoising by using discrete multiwavelet transform techniques

    NASA Astrophysics Data System (ADS)

    Wang, Haihui; Wang, Jun; Zhang, Jian

    2006-01-01

    We present a new method by using GHM discrete multiwavelet transform in image denoising on this paper. The developments in wavelet theory have given rise to the wavelet thresholding method, for extracting a signal from noisy data. The method of signal denoising via wavelet thresholding was popularized. Multiwavelets have recently been introduced and they offer simultaneous orthogonality, symmetry and short support. This property makes multiwavelets more suitable for various image processing applications, especially denoising. It is based on thresholding of multiwavelet coefficients arising from the standard scalar orthogonal wavelet transform. It takes into account the covariance structure of the transform. Denoising of images via thresholding of the multiwavelet coefficients result from preprocessing and the discrete multiwavelet transform can be carried out by treating the output in this paper. The form of the threshold is carefully formulated and is the key to the excellent results obtained in the extensive numerical simulations of image denoising. We apply the multiwavelet-based to remote sensing image denoising. Multiwavelet transform technique is rather a new method, and it has a big advantage over the other techniques that it less distorts spectral characteristics of the image denoising. The experimental results show that multiwavelet based image denoising schemes outperform wavelet based method both subjectively and objectively.

  13. River flow forecasting in mountainous areas using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Ikweiri, Fathi Saleh

    The objective of this research is to develop a simple semi-distributed, physically based hydrologic model (SDPB_HM) for mountainous watershed areas. Most of the required watershed parameters in this developed model were acquired using remotely sensed imagery and digital terrain data. A modified technique to involve the use of the land cover properties in the Morton (1983) evapotranspiration model was proposed in this research. This new modified technique was proposed to overcome one of the major disadvantages of the Morton's evapotranspiration model for not having any allowances for the properties of different land cover types (Kite, 1997). The suitability of estimation the evapotranspiration using this modified technique was judged in this research by comparing its results with other average daily evapotranspiration data for an adjacent basin; Cross River Basin in the Rocky Mountain in British Columbia, Canada during year 1987. A new modified procedure for estimating maximum storage capacity in a basin that could estimate the retained rain or snowmelt water within the watershed area related to sink pixels on DTED was presented in this research. A simplified procedure for performing the geometric correction to satellite images based on the Oguro et al. (2001) technique that is used to register these images by utilizing a simulated shaded DTED overlaid with simulated streamlines network image was proposed in this work. A complete three-stage computer classifier (EBPANN) was built in this research that was aimed at minimizing the negative affect of overlapping spectral signatures. This developed computer classifier model was written in C computer program language and utilized in its procedures the error back-propagation neural network this proposed classifier technique was applied to classify a large part from Kananaskis Country area in the Rocky Mountains, Alberta, Canada. An enhanced method was employed in this work for dividing the watershed areas. This new

  14. Close-Range Sensing Techniques in Alpine Terrain

    NASA Astrophysics Data System (ADS)

    Rutzinger, M.; Höfle, B.; Lindenbergh, R.; Oude Elberink, S.; Pirotti, F.; Sailer, R.; Scaioni, M.; Stötter, J.; Wujanz, D.

    2016-06-01

    Early career researchers such as PhD students are a main driving force of scientific research and are for a large part responsible for research innovation. They work on specialized topics within focused research groups that have a limited number of members, but might also have limited capacity in terms of lab equipment. This poses a serious challenge for educating such students as it is difficult to group a sufficient number of them to enable efficient knowledge transfer. To overcome this problem, the Innsbruck Summer School of Alpine Research 2015 on close-range sensing techniques in Alpine terrain was organized in Obergurgl, Austria, by an international team from several universities and research centres. Of the applicants a group of 40 early career researchers were selected with interest in about ten types of specialized surveying tools, i.e. laser scanners, a remotely piloted aircraft system, a thermal camera, a backpack mobile mapping system and different grade photogrammetric equipment. During the one-week summer school, students were grouped according to their personal preference to work with one such type of equipment under guidance of an expert lecturer. All students were required to capture and process field data on a mountain-related theme like landslides or rock glaciers. The work on the assignments lasted the whole week but was interspersed with lectures on selected topics by invited experts. The final task of the summer school participants was to present and defend their results to their peers, lecturers and other colleagues in a symposium-like setting. Here we present the framework and content of this summer school which brought together scientists from close-range sensing and environmental and geosciences.

  15. Hyperspectral remote sensing techniques for early detection of plant diseases

    NASA Astrophysics Data System (ADS)

    Krezhova, Dora; Maneva, Svetla; Zdravev, Tomas

    Hyperspectral remote sensing is an emerging, multidisciplinary field with diverse applications in Earth observation. Nowadays spectral remote sensing techniques allow presymptomatic monitoring of changes in the physiological state of plants with high spectral resolution. Hyperspectral leaf reflectance and chlorophyll fluorescence proved to be highly suitable for identification of growth anomalies of cultural plants that result from the environmental changes and different stress factors. Hyperspectral technologies can find place in many scientific areas, as well as for monitoring of plants status and functioning to help in making timely management decisions. This research aimed to detect a presence of viral infection in young pepper plants (Capsicum annuum L.) caused by Cucumber Mosaic Virus (CMV) by using hyperspectral reflectance and fluorescence data and to assess the effect of some growth regulators on the development of the disease. In Bulgaria CMV is one of the widest spread pathogens, causing the biggest economical losses in crop vegetable production. Leaf spectral reflectance and fluorescence data were collected by a portable fibre-optics spectrometer in the spectral ranges 450÷850 nm and 600-900 nm. Greenhouse experiment with pepper plants of two cultivars, Sivria (sensitive to CMV) and Ostrion (resistant to CMV) were used. The plants were divided into six groups. The first group consisted of healthy (control) plants. At growth stage 4-6 expanded leaf, the second group was inoculated with CMV. The other four groups were treated with growth regulators: Spermine, MEIA (beta-monomethyl ester of itaconic acid), ВТН (benzo(1,2,3)thiadiazole-7-carbothioic acid-S-methyl ester) and Phytoxin. On the next day, the pepper plants of these four groups were inoculated with CMV. The viral concentrations in the plants were determined by the serological method DAS-ELISA. Statistical, first derivative and cluster analysis were applied and several vegetation indices were

  16. Water Vapor Remote Sensing Techniques: Radiometry and Solar Spectrometry

    NASA Astrophysics Data System (ADS)

    Somieski, A.; Buerki, B.; Cocard, M.; Geiger, A.; Kahle, H.-G.

    The high variability of atmospheric water vapor content plays an important role in space geodesy, climatology and meteorology. Water vapor has a strong influence on transatmospheric satellite signals, the Earth's climate and thus the weather forecasting. Several remote sensing techniques have been developed for the determination of inte- grated precipitable water vapor (IPWV). The Geodesy and Geodynamics Lab (GGL) utilizes the methods of Water Vapor Radiometry and Solar Spectrometry to quantify the amount of tropospheric water vapor and its temporal variations. The Water Vapor Radiometer (WVR) measures the radiation intensity of the atmosphere in a frequency band ranging from 20 to 32 GHz. The Solar Atmospheric MOnitoring Spectrome- ter (SAMOS) of GGL is designed for high-resolution measurements of water vapor absorption lines using solar radiation. In the framework of the ESCOMPTE (ExpÊrience sur Site pour COntraindre les Mod- Éles de Pollution atmosphÊrique et de Transport d'Emissions) field campaign these instruments have been operated near Marseille in 2001. They have aquired a long time series of integrated precipitable water vapor content (IPWV). The accuracy of IPWV measured by WVR and SAMOS is 1 kg/m2. Furthermore meteorological data from radiosondes were used to calculate the IPWV in order to provide comparisons with the results of WVR and SAMOS. The methods of Water Vapor Radiometry and So- lar Spectrometry will be discussed and first preliminary results retrieved from WVR, SAMOS and radiosondes during the ESCOMPTE field campaign will be presented.

  17. Estimation of ambient BVOC emissions using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Nichol, Janet; Wong, Man Sing

    2011-06-01

    The contribution of Biogenic Volatile Organic Compounds (BVOCs) to local air quality modelling is often ignored due to the difficulty of obtaining accurate spatial estimates of emissions. Yet their role in the formation of secondary aerosols and photochemical smog is thought to be significant, especially in hot tropical cities such as Hong Kong, which are situated downwind from dense forests. This paper evaluates Guenther et al.'s [Guenther, A., Hewitt, C.N., Erickson, D., Fall, R., Geron, C., Graedel, T.E., Harley, P., Klinger, L., Lerdau, M., McKay, W.A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., Zimmerman, P., 1995. A global model of natural volatile organic compound emissions. Journal of Geophysical Research 100, 8873-8892] global model of BVOC emissions, for application at a spatially detailed level to Hong Kong's tropical forested landscape using high resolution remote sensing and ground data. The emission estimates are based on a landscape approach which assigns emission rates directly to ecosystem types not to individual species, since unlike in temperate regions where one or two single species may dominate over large regions, Hong Kong's vegetation is extremely diverse with up to 300 different species in one hectare. The resulting BVOC emission maps are suitable for direct input to regional and local air quality models giving 10 m raster output on an hourly basis over the whole of the Hong Kong territory, an area of 1100 km 2. Due to the spatially detailed mapping of isoprene emissions over the study area, it was possible to validate the model output using field data collected at a precise time and place by replicating those conditions in the model. The field measurement of emissions used for validating the model was based on a canister sampling technique, undertaken under different climatic conditions for Hong Kong's main ecosystem types in both urban and rural areas. The model-derived BVOC flux distributions appeared to be

  18. Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications.

    USGS Publications Warehouse

    Clark, R.N.; Roush, T.L.

    1984-01-01

    Several methods for the analysis of remotely sensed reflectance data are compared, including empirical methods and scattering theories, both of which are important for solving remote sensing problems. The concept of the photon mean path length and the implications for use in modeling reflectance spectra are presented.-from Authors

  19. Integration of remote sensing and geophysical techniques for coastal monitoring

    NASA Astrophysics Data System (ADS)

    Simoniello, T.; Carone, M. T.; Loperte, A.; Satriani, A.; Imbrenda, V.; D'Emilio, M.; Guariglia, A.

    2009-04-01

    Coastal areas are of great environmental, economic, social, cultural and recreational relevance; therefore, the implementation of suitable monitoring and protection actions is fundamental for their preservation and for assuring future use of this resource. Such actions have to be based on an ecosystem perspective for preserving coastal environment integrity and functioning and for planning sustainable resource management of both the marine and terrestrial components (ICZM-EU initiative). We implemented an integrated study based on remote sensing and geophysical techniques for monitoring a coastal area located along the Ionian side of Basilicata region (Southern Italy). This area, between the Bradano and Basento river mouths, is mainly characterized by a narrow shore (10-30 m) of fine sandy formations and by a pine forest planted in the first decade of 50's in order to preserve the coast and the inland cultivated areas. Due to drought and fire events and saltwater intrusion phenomena, such a forest is affected by a strong decline with consequent environmental problems. Multispectral satellite data were adopted for evaluating the spatio-temporal features of coastal vegetation and the structure of forested patterns. The increase or decrease in vegetation activity was analyzed from trends estimated on a time series of NDVI (Normalized Difference Vegetation Index) maps. The fragmentation/connection levels of vegetated patterns was assessed form a set of landscape ecology metrics elaborated at different structure scales (patch, class and landscape) on satellite cover classifications. Information on shoreline changes were derived form a multi-source data set (satellite data, field-GPS surveys and Aerial Laser Scanner acquisitions) by taking also into account tidal effects. Geophysical campaigns were performed for characterizing soil features and limits of salty water infiltrations. Form vertical resistivity soundings (VES), soil resistivity maps at different a deeps (0

  20. RF switching network: a novel technique for IR sensing

    NASA Astrophysics Data System (ADS)

    Mechtel, Deborah M.; Jenkins, R. Brian; Joyce, Peter J.; Nelson, Charles L.

    2016-05-01

    Rapid sensing of near infrared (IR) energy on a composite structure would provide information that could mitigate damage to composite structures. This paper describes a novel technique that implements photoconductive sensors in a radio frequency (RF) switching network designed to locate in real time the position and intensity of IR radiation incident on a composite structure. In the implementation described here, photoconductive sensors act as rapid response switches in a two layer RF network embedded in an FR-4 laminate. To detect radiation, phosphorous doped silicon photoconductive sensors are inserted in GHz range RF transmission lines. Photoconductive sensors use semiconductor materials that are optically sensitive at material dependent wavelengths. Incident radiation at the appropriate wavelength produces hole-electron pairs, so that the semiconductor becomes a conductor. By permitting signal propagation only when a sensor is illuminated, the RF signals are selectively routed from the lower layer transmission lines to the upper layer lines, thereby pinpointing the location and strength of incident radiation on a structure. Simulations based on a high frequency 3D planar electromagnetics model are presented and compared to experimental results. Experimental results are described for GHz range RF signal control for 300 mW and 180 mW incident energy from 975 nm and 1060 nm wavelength lasers respectively, where upon illumination, RF transmission line signal output power doubled when compared to non-illuminated results. Experimental results are reported for 100 W incident energy from a 1060 nm laser. Test results illustrate that real-time signal processing would permit a structure or vehicle to be controlled in response to incident radiation

  1. Adaptive Remote-Sensing Techniques Implementing Swarms of Mobile Agents

    SciTech Connect

    Cameron, S.M.; Loubriel, G.M.; Rbinett, R.D. III; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1999-04-01

    This paper focuses on our recent work at Sandia National Laboratories toward engineering a physics-based swarm of mobile vehicles for distributed sensing applications. Our goal is to coordinate a sensor array that optimizes sensor coverage and multivariate signal analysis by implementing artificial intelligence and evolutionary computational techniques. These intelligent control systems integrate both globally operating decision-making systems and locally cooperative information-sharing modes using genetically-trained neural networks. Once trained, neural networks have the ability to enhance real-time operational responses to dynamical environments, such as obstacle avoidance, responding to prevailing wind patterns, and overcoming other natural obscurants or interferences (jammers). The swarm realizes a collective set of sensor neurons with simple properties incorporating interactions based on basic community rules (potential fields) and complex interconnecting functions based on various neural network architectures, Therefore, the swarm is capable of redundant heterogeneous measurements which furnishes an additional degree of robustness and fault tolerance not afforded by conventional systems, while accomplishing such cognitive tasks as generalization, error correction, pattern recognition, and sensor fission. The robotic platforms could be equipped with specialized sensor devices including transmit/receive dipole antennas, chemical or biological sniffers in combination with recognition analysis tools, communication modulators, and laser diodes. Our group has been studying the collective behavior of an autonomous, multi-agent system applied to emerging threat applications. To accomplish such tasks, research in the fields of robotics, sensor technology, and swarms are being conducted within an integrated program. Mission scenarios under consideration include ground penetrating impulse radar (GPR) for detection of under-ground structures, airborne systems, and plume

  2. Adaptive Remote-Sensing Techniques Implementing Swarms of Mobile Agents

    SciTech Connect

    Asher, R.B.; Cameron, S.M.; Loubriel, G.M.; Robinett, R.D.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-11-25

    In many situations, stand-off remote-sensing and hazard-interdiction techniques over realistic operational areas are often impractical "and difficult to characterize. An alternative approach is to implement an adap- tively deployable array of sensitive agent-specific devices. Our group has been studying the collective be- havior of an autonomous, multi-agent system applied to chedbio detection and related emerging threat applications, The current physics-based models we are using coordinate a sensor array for mukivanate sig- nal optimization and coverage as re,alized by a swarm of robots or mobile vehicles. These intelligent control systems integrate'glob"ally operating decision-making systems and locally cooperative learning neural net- works to enhance re+-timp operational responses to dynarnical environments examples of which include obstacle avoidance, res~onding to prevailing wind patterns, and overcoming other natural obscurants or in- terferences. Collectively',tkensor nefirons with simple properties, interacting according to basic community rules, can accomplish complex interconnecting functions such as generalization, error correction, pattern recognition, sensor fusion, and localization. Neural nets provide a greater degree of robusmess and fault tolerance than conventional systems in that minor variations or imperfections do not impair performance. The robotic platforms would be equipped with sensor devices that perform opticaI detection of biologicais in combination with multivariate chemical analysis tools based on genetic and neural network algorithms, laser-diode LIDAR analysis, ultra-wideband short-pulsed transmitting and receiving antennas, thermal im- a:ing sensors, and optical Communication technology providing robust data throughput pathways. Mission scenarios under consideration include ground penetrating radar (GPR) for detection of underground struc- tures, airborne systems, and plume migration and mitigation. We will describe our research in

  3. An overview of the development of remote sensing techniques for the screwworm eradication program

    NASA Technical Reports Server (NTRS)

    Barnes, C. M.; Forsberg, F. C.

    1975-01-01

    The current status of remote sensing techniques developed for the screwworm eradication program of the Mexican-American Screwworm Eradication Commission was reported. A review of the type of data and equipment used in the program is presented. Future applications of remote sensing techniques are considered.

  4. The definition of hydrologic model parameters using remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Ragan, R. M.; Salomonson, V. V.

    1978-01-01

    The reported investigation is concerned with the use of Landsat remote sensing to define input parameters for an array of hydrologic models which are used to synthesize streamflow and water quality parameters in the planning or management process. The ground truth sampling and problems involved in translating the remotely sensed information into hydrologic model parameters are discussed. Questions related to the modification of existing models for compatibility with remote sensing capabilities are also examined. It is shown that the input parameters of many models are presently overdefined in terms of the sensitivity and accuracy of the model. When this overdefinition is recognized many of the models currently considered to be incompatible with remote sensing capabilities can be modified to make possible use with sensors having rather low resolutions.

  5. A Touch Sensing Technique Using the Effects of Extremely Low Frequency Fields on the Human Body

    PubMed Central

    Elfekey, Hatem; Bastawrous, Hany Ayad; Okamoto, Shogo

    2016-01-01

    Touch sensing is a fundamental approach in human-to-machine interfaces, and is currently under widespread use. Many current applications use active touch sensing technologies. Passive touch sensing technologies are, however, more adequate to implement low power or energy harvesting touch sensing interfaces. This paper presents a passive touch sensing technique based on the fact that the human body is affected by the surrounding extremely low frequency (ELF) electromagnetic fields, such as those of AC power lines. These external ELF fields induce electric potentials on the human body—because human tissues exhibit some conductivity at these frequencies—resulting in what is called AC hum. We therefore propose a passive touch sensing system that detects this hum noise when a human touch occurs, thus distinguishing between touch and non-touch events. The effectiveness of the proposed technique is validated by designing and implementing a flexible touch sensing keyboard. PMID:27918416

  6. A Touch Sensing Technique Using the Effects of Extremely Low Frequency Fields on the Human Body.

    PubMed

    Elfekey, Hatem; Bastawrous, Hany Ayad; Okamoto, Shogo

    2016-12-02

    Touch sensing is a fundamental approach in human-to-machine interfaces, and is currently under widespread use. Many current applications use active touch sensing technologies. Passive touch sensing technologies are, however, more adequate to implement low power or energy harvesting touch sensing interfaces. This paper presents a passive touch sensing technique based on the fact that the human body is affected by the surrounding extremely low frequency (ELF) electromagnetic fields, such as those of AC power lines. These external ELF fields induce electric potentials on the human body-because human tissues exhibit some conductivity at these frequencies-resulting in what is called AC hum. We therefore propose a passive touch sensing system that detects this hum noise when a human touch occurs, thus distinguishing between touch and non-touch events. The effectiveness of the proposed technique is validated by designing and implementing a flexible touch sensing keyboard.

  7. Techniques for sensing methanol concentration in aqueous environments

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Valdez, Thomas I. (Inventor)

    2001-01-01

    An analyte concentration sensor that is capable of fast and reliable sensing of analyte concentration in aqueous environments with high concentrations of the analyte. Preferably, the present invention is a methanol concentration sensor device coupled to a fuel metering control system for use in a liquid direct-feed fuel cell.

  8. An unsupervised classification technique for multispectral remote sensing data.

    NASA Technical Reports Server (NTRS)

    Su, M. Y.; Cummings, R. E.

    1973-01-01

    Description of a two-part clustering technique consisting of (a) a sequential statistical clustering, which is essentially a sequential variance analysis, and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. This unsupervised composite technique was employed for automatic classification of two sets of remote multispectral earth resource observations. The classification accuracy by the unsupervised technique is found to be comparable to that by traditional supervised maximum-likelihood classification techniques.

  9. Investigation of remote sensing techniques of measuring soil moisture

    NASA Technical Reports Server (NTRS)

    Newton, R. W. (Principal Investigator); Blanchard, A. J.; Nieber, J. L.; Lascano, R.; Tsang, L.; Vanbavel, C. H. M.

    1981-01-01

    Major activities described include development and evaluation of theoretical models that describe both active and passive microwave sensing of soil moisture, the evaluation of these models for their applicability, the execution of a controlled field experiment during which passive microwave measurements were acquired to validate these models, and evaluation of previously acquired aircraft microwave measurements. The development of a root zone soil water and soil temperature profile model and the calibration and evaluation of gamma ray attenuation probes for measuring soil moisture profiles are considered. The analysis of spatial variability of soil information as related to remote sensing is discussed as well as the implementation of an instrumented field site for acquisition of soil moisture and meteorologic information for use in validating the soil water profile and soil temperature profile models.

  10. A forestry application simulation of man-machine techniques for analyzing remotely sensed data

    NASA Technical Reports Server (NTRS)

    Berkebile, J.; Russell, J.; Lube, B.

    1976-01-01

    The typical steps in the analysis of remotely sensed data for a forestry applications example are simulated. The example uses numerically-oriented pattern recognition techniques and emphasizes man-machine interaction.

  11. An integrated study of earth resources in the state of California using remote sensing techniques

    NASA Technical Reports Server (NTRS)

    1973-01-01

    University of California investigations to determine the usefulness of modern remote sensing techniques have concentrated on the water resources of the state. The studies consider in detail the supply, demand, and impact relationships.

  12. Remote Sensing Techniques as a Tool for Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Faisal, K.; AlAhmad, M.; Shaker, A.

    2012-07-01

    The disposal of the solid wastes in landfill sites should be properly monitored by analyzing samples from soil, water, and landfill gases within the landfill site. Nevertheless, ground monitoring systems require intensive efforts and cost. Furthermore, ground monitoring may be difficult to be achieved in large geographic extent. Remote sensing technology has been introduced for waste disposal management and monitoring effects of the landfill sites on the environment. In this paper, two case studies are presented in the Trail Road landfill, Ottawa, Canada and the Al-Jleeb landfill, Al-Farwanyah, Kuwait to evaluate the use of multi-temporal remote sensing images to monitor the landfill sites. The work objectives are: 1) to study the usability of multi-temporal Landsat images for landfill site monitoring by studying the land surface temperature (LST) in the Trail Road landfill, 2) to investigate the relationship between the LST and the amount of the landfill gas emitted in the Trail Road landfill, and 3) to use the multi-temporal LST images to detect the suspicious dumping areas within the Al-Jleeb landfill site. Free archive of multi-temporal Landsat images are obtained from the USGS EarthExplorer. The Landsat images are then atmospherically corrected and the LST images are derived from the thermal band of the corrected Landsat images. In the Trail Road landfill, the results reveal that the LST of the landfill site is always higher than the air temperature by 10°C in average as well as the surroundings. A correlation is also observed between the recorded emitted methane (CH4) from the ground monitoring stations and the LST derived from the Landsat images. Based on the findings in the Al-Jleeb landfill, five locations are identified as suspicious dumping areas by overlaying the highest LST contours generated from the multi-temporal LST images. The study demonstrates that the use of multi-temporal remote sensing images can provide supplementary information for

  13. The application of remote sensing techniques: Technical and methodological issues

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C.; Wagner, T. W.

    1974-01-01

    Capabilities and limitations of modern imaging electromagnetic sensor systems are outlined, and the products of such systems are compared with those of the traditional aerial photographic system. Focus is given to the interface between the rapidly developing remote sensing technology and the information needs of operational agencies, and communication gaps are shown to retard early adoption of the technology by these agencies. An assessment is made of the current status of imaging remote sensors and their potential for the future. Public sources of remote sensor data and several cost comparisons are included.

  14. Unified microwave moisture sensing technique for grain and seed

    NASA Astrophysics Data System (ADS)

    Trabelsi, Samir; Nelson, Stuart O.

    2007-04-01

    A unified method for moisture sensing in cereal grain and oilseed from a single calibration equation, which is obtained from measurement of dielectric properties at a single microwave frequency, is presented. The method is based on a complex permittivity calibration function that is independent of both bulk density and kind of material. Performance of the method was tested for soybeans, corn, wheat, sorghum, barley and oats at 7 GHz and about 23 °C. The standard error of calibration for moisture prediction from complex permittivity measurements was 0.8%.

  15. The application of remote sensing techniques to selected inter and intra urban data acquisition problems

    NASA Technical Reports Server (NTRS)

    Horton, F. E.

    1970-01-01

    The utility of remote sensing techniques to urban data acquisition problems in several distinct areas was identified. This endeavor included a comparison of remote sensing systems for urban data collection, the extraction of housing quality data from aerial photography, utilization of photographic sensors in urban transportation studies, urban change detection, space photography utilization, and an application of remote sensing techniques to the acquisition of data concerning intra-urban commercial centers. The systematic evaluation of variable extraction for urban modeling and planning at several different scales, and the model derivation for identifying and predicting economic growth and change within a regional system of cities are also studied.

  16. Remote sensing techniques for monitoring and managing irrigated lands

    NASA Astrophysics Data System (ADS)

    Allan, J. A.

    Agriculture in semi-arid tracts of the world depends on water to sustain its irrigation systems. Such agricultural systems either derive from government investments in the control of surface flow or they have been developed through the exploitation of groundwater sometimes by a large community of unsupervised individuals seeking to maximise their own advantage without concern for the resource upon which they depend in the medium and long term. In both cases government agencies need data on the area irrigated and the volume of water used. In countries with highly developed scientific and agricultural institutions the contribution of remote sensing, though significant, may only provide between five and ten per cent of the data required to guide regional and national managers. In countries without such institutions the proportion contributed by remote sensing can be very much higher, as shown in a recent study in North Africa. The paper will emphasise the importance of carefully structured sampling procedures, both to improve the areal estimates from satellite imagery and the estimates of water use based upon them. The role of satellite imagery in providing information on the status of water resources, on trends in water use and in the implementation of policies to extend or diminish irrigated land are discussed.

  17. Wave Propagation Through Inhomogeneities With Applications to Novel Sensing Techniques

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Tokars, R.; Varga, D.; Floyd B.

    2008-01-01

    The paper describes phenomena observed as a result of laser pencil beam interactions with abrupt interfaces including aerodynamic shocks. Based on these phenomena, a novel flow visualization technique based on a laser scanning pencil beam is introduced. The technique reveals properties of light interaction with interfaces including aerodynamic shocks that are not seen using conventional visualization. Various configurations of scanning beam devices including those with no moving parts, as well as results of "proof-of-concept" tests, are included.

  18. California nearshore surface currents. [monitoring by remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Pirie, D. M.; Murphy, M. J.; Edmisten, J. R.

    1975-01-01

    During the oceanic period from July to November, the southward flowing California current dominates the nearshore current patterns. Commencing about the middle of November and extending to mid-February, the Davidson current, a northward moving countercurrent, is the dominant inshore transporter of water and suspensates. The phenomenon of upwelling is prevalent during the period from the middle of February to the end of July. Thus, every year along the coast of California, there are three successive current seasons: the oceanic, the Davidson, and the upwelling. This paper is a discussion of the nature of these nearshore currents. In addition, the capabilities of various remote sensing platforms and systems for providing methods of monitoring the coastal processes associated with the current seasons of California are demonstrated herein.

  19. Head-mounted active noise control system with virtual sensing technique

    NASA Astrophysics Data System (ADS)

    Miyazaki, Nobuhiro; Kajikawa, Yoshinobu

    2015-03-01

    In this paper, we apply a virtual sensing technique to a head-mounted active noise control (ANC) system we have already proposed. The proposed ANC system can reduce narrowband noise while improving the noise reduction ability at the desired locations. A head-mounted ANC system based on an adaptive feedback structure can reduce noise with periodicity or narrowband components. However, since quiet zones are formed only at the locations of error microphones, an adequate noise reduction cannot be achieved at the locations where error microphones cannot be placed such as near the eardrums. A solution to this problem is to apply a virtual sensing technique. A virtual sensing ANC system can achieve higher noise reduction at the desired locations by measuring the system models from physical sensors to virtual sensors, which will be used in the online operation of the virtual sensing ANC algorithm. Hence, we attempt to achieve the maximum noise reduction near the eardrums by applying the virtual sensing technique to the head-mounted ANC system. However, it is impossible to place the microphone near the eardrums. Therefore, the system models from physical sensors to virtual sensors are estimated using the Head And Torso Simulator (HATS) instead of human ears. Some simulation, experimental, and subjective assessment results demonstrate that the head-mounted ANC system with virtual sensing is superior to that without virtual sensing in terms of the noise reduction ability at the desired locations.

  20. Detection of asphalt pavement cracks using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Mettas, Christodoulos; Agapiou, Athos; Themistocleous, Kyriacos; Neocleous, Kyriacos; Hadjimitsis, Diofantos G.

    2016-10-01

    Deterioration of asphalt road pavements is inevitable throughout its life cycle. There are several types of deterioration that take place on these surfaces, like surface defects and deformations. One of the most common asphalt defects is cracking. Fatigue, transverse, longitudinal, reflective, edge, block and slippage are types of cracking that can be observed anywhere in the world. Monitoring and preventative/periodic maintenance of these types of wears are two very important actions that have to take place to avoid "costly" solutions. This paper aims to introduce the spectral characteristics of uncracked (healthy) and cracked asphalt surfaces which can give a new asphalt crack index. This is performed through remote sensing applications in the area of asphalt pavements. Multispectral images can be elaborated using the index to enhance crack marks on asphalt surfaces. Ground spectral signatures were acquired from both uncracked and cracked asphalted areas of Cyprus (Limassol). Evaluation separability indices can be used to identify the optimum wavelength regions that can distinguish better the uncracked and cracked asphalt surfaces. The results revealed that the spectral sensitivity for the enhancement of cracked asphalt was detected using the Euclidean, Mahalanobis and Cosine Distance Indices in the Vis range (approximately at 450 nm) and in the SWIR 1 range (approximately at 1750 nm).

  1. The value of remote sensing techniques in supporting effective extrapolation across multiple marine spatial scales.

    PubMed

    Strong, James Asa; Elliott, Michael

    2017-03-15

    The reporting of ecological phenomena and environmental status routinely required point observations, collected with traditional sampling approaches to be extrapolated to larger reporting scales. This process encompasses difficulties that can quickly entrain significant errors. Remote sensing techniques offer insights and exceptional spatial coverage for observing the marine environment. This review provides guidance on (i) the structures and discontinuities inherent within the extrapolative process, (ii) how to extrapolate effectively across multiple spatial scales, and (iii) remote sensing techniques and data sets that can facilitate this process. This evaluation illustrates that remote sensing techniques are a critical component in extrapolation and likely to underpin the production of high-quality assessments of ecological phenomena and the regional reporting of environmental status. Ultimately, is it hoped that this guidance will aid the production of robust and consistent extrapolations that also make full use of the techniques and data sets that expedite this process.

  2. Noninvasive in vivo glucose sensing using an iris based technique

    NASA Astrophysics Data System (ADS)

    Webb, Anthony J.; Cameron, Brent D.

    2011-03-01

    Physiological glucose monitoring is important aspect in the treatment of individuals afflicted with diabetes mellitus. Although invasive techniques for glucose monitoring are widely available, it would be very beneficial to make such measurements in a noninvasive manner. In this study, a New Zealand White (NZW) rabbit animal model was utilized to evaluate a developed iris-based imaging technique for the in vivo measurement of physiological glucose concentration. The animals were anesthetized with isoflurane and an insulin/dextrose protocol was used to control blood glucose concentration. To further help restrict eye movement, a developed ocular fixation device was used. During the experimental time frame, near infrared illuminated iris images were acquired along with corresponding discrete blood glucose measurements taken with a handheld glucometer. Calibration was performed using an image based Partial Least Squares (PLS) technique. Independent validation was also performed to assess model performance along with Clarke Error Grid Analysis (CEGA). Initial validation results were promising and show that a high percentage of the predicted glucose concentrations are within 20% of the reference values.

  3. Remote sensing techniques for conservation and management of natural vegetation ecosystems

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Verdesio, J. J.; Dossantos, J. R.

    1981-01-01

    The importance of using remote sensing techniques, in the visible and near-infrared ranges, for mapping, inventory, conservation and management of natural ecosystems is discussed. Some examples realized in Brazil or other countries are given to evaluate the products from orbital platform (MSS and RBV imagery of LANDSAT) and aerial level (photography) for ecosystems study. The maximum quantitative and qualitative information which can be obtained from each sensor, at different level, are discussed. Based on the developed experiments it is concluded that the remote sensing technique is a useful tool in mapping vegetation units, estimating biomass, forecasting and evaluation of fire damage, disease detection, deforestation mapping and change detection in land-use. In addition, remote sensing techniques can be used in controling implantation and planning natural/artificial regeneration.

  4. Improved Battery State Estimation Using Novel Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Abdul Samad, Nassim

    Lithium-ion batteries have been considered a great complement or substitute for gasoline engines due to their high energy and power density capabilities among other advantages. However, these types of energy storage devices are still yet not widespread, mainly because of their relatively high cost and safety issues, especially at elevated temperatures. This thesis extends existing methods of estimating critical battery states using model-based techniques augmented by real-time measurements from novel temperature and force sensors. Typically, temperature sensors are located near the edge of the battery, and away from the hottest core cell regions, which leads to slower response times and increased errors in the prediction of core temperatures. New sensor technology allows for flexible sensor placement at the cell surface between cells in a pack. This raises questions about the optimal locations of these sensors for best observability and temperature estimation. Using a validated model, which is developed and verified using experiments in laboratory fixtures that replicate vehicle pack conditions, it is shown that optimal sensor placement can lead to better and faster temperature estimation. Another equally important state is the state of health or the capacity fading of the cell. This thesis introduces a novel method of using force measurements for capacity fade estimation. Monitoring capacity is important for defining the range of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Current capacity estimation techniques require a full discharge to monitor capacity. The proposed method can complement or replace current methods because it only requires a shallow discharge, which is especially useful in EVs and PHEVs. Using the accurate state estimation accomplished earlier, a method for downsizing a battery pack is shown to effectively reduce the number of cells in a pack without compromising safety. The influence on the battery performance (e

  5. Radio frequency switching network: a technique for infrared sensing

    NASA Astrophysics Data System (ADS)

    Mechtel, Deborah M.; Jenkins, R. Brian; Joyce, Peter J.; Nelson, Charles L.

    2016-10-01

    This paper describes a unique technique that implements photoconductive sensors in a radio frequency (RF) switching network designed to locate in real-time the position and intensity of IR radiation incident on a composite structure. In the implementation described here, photoconductive sensors act as rapid response switches in a two-layer RF network embedded in an FR-4 laminate. To detect radiation, phosphorous-doped silicon photoconductive sensors are inserted in GHz range RF transmission lines. By permitting signal propagation only when a sensor is illuminated, the RF signals are selectively routed from lower layer transmission lines to upper layer lines, thereby pinpointing the location and strength of incident radiation. Simulations based on a high frequency three-dimensional planar electromagnetics model are presented and compared to the experimental results. The experimental results are described for GHz range RF signal control for 300- and 180-mW incident energy from 975- to 1060-nm wavelength lasers, respectively, where upon illumination, RF transmission line signal output power doubled when compared to nonilluminated results. The experimental results are also reported for 100-W incident energy from a 1060-nm laser. Test results illustrate real-time signal processing would permit a structure to be controlled in response to incident radiation.

  6. Remote sensing of stress using electro-optics imaging technique

    NASA Astrophysics Data System (ADS)

    Chen, Tong; Yuen, Peter; Hong, Kan; Tsitiridis, Aristeidis; Kam, Firmin; Jackman, James; James, David; Richardson, Mark; Oxford, William; Piper, Jonathan; Thomas, Francis; Lightman, Stafford

    2009-09-01

    Emotional or physical stresses induce a surge of adrenaline in the blood stream under the command of the sympathetic nerve system, which, cannot be suppressed by training. The onset of this alleviated level of adrenaline triggers a number of physiological chain reactions in the body, such as dilation of pupil and an increased feed of blood to muscles etc. This paper reports for the first time how Electro-Optics (EO) technologies such as hyperspectral [1,2] and thermal imaging[3] methods can be used for the detection of stress remotely. Preliminary result using hyperspectral imaging technique has shown a positive identification of stress through an elevation of haemoglobin oxygenation saturation level in the facial region, and the effect is seen more prominently for the physical stressor than the emotional one. However, all results presented so far in this work have been interpreted together with the base line information as the reference point, and that really has limited the overall usefulness of the developing technology. The present result has highlighted this drawback and it prompts for the need of a quantitative assessment of the oxygenation saturation and to correlate it directly with the stress level as the top priority of the next stage of research.

  7. Introduction to This Special Issue on Geostatistics and Geospatial Techniques in Remote Sensing

    NASA Technical Reports Server (NTRS)

    Atkinson, Peter; Quattrochi, Dale A.; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    The germination of this special Computers & Geosciences (C&G) issue began at the Royal Geographical Society (with the Institute of British Geographers) (RGS-IBG) annual meeting in January 1997 held at the University of Exeter, UK. The snow and cold of the English winter were tempered greatly by warm and cordial discussion of how to stimulate and enhance cooperation on geostatistical and geospatial research in remote sensing 'across the big pond' between UK and US researchers. It was decided that one way forward would be to hold parallel sessions in 1998 on geostatistical and geospatial research in remote sensing at appropriate venues in both the UK and the US. Selected papers given at these sessions would be published as special issues of C&G on the UK side and Photogrammetric Engineering and Remote Sensing (PE&RS) on the US side. These issues would highlight the commonality in research on geostatistical and geospatial research in remote sensing on both sides of the Atlantic Ocean. As a consequence, a session on "Geostatistics and Geospatial Techniques for Remote Sensing of Land Surface Processes" was held at the RGS-IBG annual meeting in Guildford, Surrey, UK in January 1998, organized by the Modeling and Advanced Techniques Special Interest Group (MAT SIG) of the Remote Sensing Society (RSS). A similar session was held at the Association of American Geographers (AAG) annual meeting in Boston, Massachusetts in March 1998, sponsored by the AAG's Remote Sensing Specialty Group (RSSG). The 10 papers that make up this issue of C&G, comprise 7 papers from the UK and 3 papers from the LIS. We are both co-editors of each of the journal special issues, with the lead editor of each journal issue being from their respective side of the Atlantic. The special issue of PE&RS (vol. 65) that constitutes the other half of this co-edited journal series was published in early 1999, comprising 6 papers by US authors. We are indebted to the International Association for Mathematical

  8. The investigation of advanced remote sensing techniques for the measurement of aerosol characteristics

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Becher, J.

    1979-01-01

    Advanced remote sensing techniques and inversion methods for the measurement of characteristics of aerosol and gaseous species in the atmosphere were investigated. Of particular interest were the physical and chemical properties of aerosols, such as their size distribution, number concentration, and complex refractive index, and the vertical distribution of these properties on a local as well as global scale. Remote sensing techniques for monitoring of tropospheric aerosols were developed as well as satellite monitoring of upper tropospheric and stratospheric aerosols. Computer programs were developed for solving multiple scattering and radiative transfer problems, as well as inversion/retrieval problems. A necessary aspect of these efforts was to develop models of aerosol properties.

  9. Rapid Damage Assessment Using High-resolution Remote Sensing Imagery: Tools and Techniques

    SciTech Connect

    Vatsavai, Raju; Tuttle, Mark A; Bhaduri, Budhendra L; Bright, Eddie A; Cheriyadat, Anil M; Chandola, Varun; Graesser, Jordan B

    2011-01-01

    Accurate damage assessment caused by major natural and anthropogenic disasters is becoming critical due to increases in human and economic loss. This increase in loss of life and severe damages can be attributed to growing population, as well as human migration to disaster prone regions of the world. Rapid damage assessment and dissemination of accurate information is critical for creating an effective emergency response. Remote sensing and geographic information systems (GIS) based techniques and tools are important in disaster damage assessment and reporting activities. In this review, we will look into the state of the art techniques in damage assessment using remote sensing and GIS.

  10. Universal and efficient compressed sensing by spread spectrum and application to realistic Fourier imaging techniques

    NASA Astrophysics Data System (ADS)

    Puy, Gilles; Vandergheynst, Pierre; Gribonval, Rémi; Wiaux, Yves

    2012-12-01

    We advocate a compressed sensing strategy that consists of multiplying the signal of interest by a wide bandwidth modulation before projection onto randomly selected vectors of an orthonormal basis. First, in a digital setting with random modulation, considering a whole class of sensing bases including the Fourier basis, we prove that the technique is universal in the sense that the required number of measurements for accurate recovery is optimal and independent of the sparsity basis. This universality stems from a drastic decrease of coherence between the sparsity and the sensing bases, which for a Fourier sensing basis relates to a spread of the original signal spectrum by the modulation (hence the name "spread spectrum"). The approach is also efficient as sensing matrices with fast matrix multiplication algorithms can be used, in particular in the case of Fourier measurements. Second, these results are confirmed by a numerical analysis of the phase transition of the ℓ1-minimization problem. Finally, we show that the spread spectrum technique remains effective in an analog setting with chirp modulation for application to realistic Fourier imaging. We illustrate these findings in the context of radio interferometry and magnetic resonance imaging.

  11. Successful integration of remote sensing and ground based exploration techniques in an arid environment

    SciTech Connect

    Jones, R.F.E. ); Oehlers, M. )

    1995-03-06

    Twenty years ago, remote sensing promised to revolutionize exploration; unfortunately, many of the early promises made were unfulfilled and remote sensing tended to drop out of mainstream exploration. Both these extremes are unrealistic, and projects undertaken by Clyde in Yemen illustrate some of the ways remote sensing can become a successful and cost-effective part of an exploration program. Firstly, the remote sensed data, integrated with a minimum of ground control work, provided maps to use in subsequent fieldwork, a surface geology map, and a digital elevation model with its derived topographic contour maps. Secondly, the remote sensed data enabled the authors to create a structural contour map of a near surface horizon at a very low cost per square kilometer. Thirdly, the remote sensed data became a crucial planning tool for seismic operations to optimize data quality and minimize acquisition cost without having to resort to costly and time-consuming swath shooting or similar high-effort techniques. Finally, the surface geological map derived from the image interpretation enabled them to create geological cross sections along the shot seismic lines in a matter of hours without having a field geologist mapping along the lines. Remote sensing can provide highly cost-effective benefits to an exploration program in an arid region, and many of the applications can also be developed for use in areas with vegetation cover.

  12. Surveillance of Arthropod Vector-Borne Infectious Diseases Using Remote Sensing Techniques: A Review

    PubMed Central

    Kalluri, Satya; Gilruth, Peter; Rogers, David; Szczur, Martha

    2007-01-01

    Epidemiologists are adopting new remote sensing techniques to study a variety of vector-borne diseases. Associations between satellite-derived environmental variables such as temperature, humidity, and land cover type and vector density are used to identify and characterize vector habitats. The convergence of factors such as the availability of multi-temporal satellite data and georeferenced epidemiological data, collaboration between remote sensing scientists and biologists, and the availability of sophisticated, statistical geographic information system and image processing algorithms in a desktop environment creates a fertile research environment. The use of remote sensing techniques to map vector-borne diseases has evolved significantly over the past 25 years. In this paper, we review the status of remote sensing studies of arthropod vector-borne diseases due to mosquitoes, ticks, blackflies, tsetse flies, and sandflies, which are responsible for the majority of vector-borne diseases in the world. Examples of simple image classification techniques that associate land use and land cover types with vector habitats, as well as complex statistical models that link satellite-derived multi-temporal meteorological observations with vector biology and abundance, are discussed here. Future improvements in remote sensing applications in epidemiology are also discussed. PMID:17967056

  13. Optical technique for photovoltaic spatial current response measurements using compressive sensing and random binary projections

    NASA Astrophysics Data System (ADS)

    Cashmore, Matt. T.; Koutsourakis, George; Gottschalg, Ralph; Hall, Simon. R. G.

    2016-04-01

    Compressive sensing has been widely used in image compression and signal recovery techniques in recent years; however, it has received limited attention in the field of optical measurement. This paper describes the use of compressive sensing for measurements of photovoltaic (PV) solar cells, using fully random sensing matrices, rather than mapping an orthogonal basis set directly. Existing compressive sensing systems optically image the surface of the object under test, this contrasts with the method described, where illumination patterns defined by precalculated sensing matrices, probe PV devices. We discuss the use of spatially modulated light fields to probe a PV sample to produce a photocurrent map of the optical response. This allows for faster measurements than would be possible using traditional translational laser beam induced current techniques. Results produced to a 90% correlation to raster scanned measurements, which can be achieved with under 25% of the conventionally required number of data points. In addition, both crack and spot type defects are detected at resolutions comparable to electroluminescence techniques, with 50% of the number of measurements required for a conventional scan.

  14. Observations of the global structure of the stratosphere and mesosphere with sounding rockets and with remote sensing techniques from satellites

    NASA Technical Reports Server (NTRS)

    Heath, D. F.; Hilsenrath, E.; Krueger, A. J.; Nordberg, W.; Prabhakara, C.; Theon, J. S.

    1972-01-01

    Brief descriptions are given of the techniques involved in determining the global structure of the mesosphere and stratosphere based on sounding rocket observations and satellite remotely sensed measurements.

  15. The application of remote sensing techniques to the study of ophiolites

    NASA Astrophysics Data System (ADS)

    Khan, Shuhab D.; Mahmood, Khalid

    2008-08-01

    Satellite remote sensing methods are a powerful tool for detailed geologic analysis, especially in inaccessible regions of the earth's surface. Short-wave infrared (SWIR) bands are shown to provide spectral information bearing on the lithologic, structural, and geochemical character of rock bodies such as ophiolites, allowing for a more comprehensive assessment of the lithologies present, their stratigraphic relationships, and geochemical character. Most remote sensing data are widely available for little or no cost, along with user-friendly software for non-specialists. In this paper we review common remote sensing systems and methods that allow for the discrimination of solid rock (lithologic) components of ophiolite complexes and their structural relationships. Ophiolites are enigmatic rock bodies which associated with most, if not all, plate collision sutures. Ophiolites are ideal for remote sensing given their widely recognized diversity of lithologic types and structural relationships. Accordingly, as a basis for demonstrating the utility of remote sensing techniques, we briefly review typical ophiolites in the Tethyan tectonic belt. As a case study, we apply integrated remote sensing studies of a well-studied example, the Muslim Bagh ophiolite, located in Balochistan, western Pakistan. On this basis, we attempt to demonstrate how remote sensing data can validate and reconcile existing information obtained from field studies. The lithologic and geochemical diversity of Muslim Bagh are representative of Tethyan ophiolites. Despite it's remote location it has been extensively mapped and characterized by structural and geochemical studies, and is virtually free of vegetative cover. Moreover, integrating the remote sensing data with 'ground truth' information thus offers the potential of an improved template for interpreting remote sensing data sets of other ophiolites for which little or no field information is available.

  16. A solar energy estimation procedure using remote sensing techniques. [watershed hydrologic models

    NASA Technical Reports Server (NTRS)

    Khorram, S.

    1977-01-01

    The objective of this investigation is to design a remote sensing-aided procedure for daily location-specific estimation of solar radiation components over the watershed(s) of interest. This technique has been tested on the Spanish Creek Watershed, Northern California, with successful results.

  17. Distributed fiber optical HC leakage and pH sensing techniques for implementation into smart structures

    NASA Astrophysics Data System (ADS)

    Buerck, Jochen M.; Vogel, Bernhard H.; Roth, Siegmar; Ebrahimi, Sasan; Kraemer, Karl

    2004-07-01

    Interaction of target molecules with the evanescent wave of light guided in optical fibers is among the most promising sensing schemes for building up smart chemical sensor technologies. If the technique of optical time domain reflectometry (OTDR) is combined with silicone-clad quartz glass fibers distributed chemical sensing is possible. Hydrocarbon (HC) detection and location is done by automated identification of the position of the corresponding step drop (light loss) in the backscatter signal induced by local refractive index increase in the silicone cladding due to a penetrating HC compound. A commercially available mini-OTDR was adapted to sensing fibers of up to nearly 2-kilometer length and location of typical HC fuels could be demonstrated. The instrument is applicable for fuel leakage monitoring in large technical installations such as tanks or pipelines with spatial resolution down to 1 m. A similar technique using measurements in the Vis spectral range is being developed for health monitoring of large structures, e.g., for early detection of corrosion caused by water ingress and pH changes in reinforced concrete. Here, a pH indicator dye and a phase transfer reagent are immobilized in the originally hydrophobic fiber cladding, leading to a pH induced absorption increase and a step drop signal in the backscatter curve. The configuration of the distributed sensing cables, the instrumental setups, and examples for HC and pH sensing are presented.

  18. Development of techniques required for the application of a laser to three dimensional visual sensing

    NASA Technical Reports Server (NTRS)

    Ryan, Arthur M.; Gerhardt, Lester A.

    1991-01-01

    The ongoing vision research at the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) is directed toward identifying and addressing the relevant issues involved in applying visual sensing to space assembly tasks. A considerable amount of effort has been devoted to passive sensing techniques such as using multiple cameras to identify objects in a scene. To compliment the capabilities of the passive visual system in the CIRSSE robotics testbed, research is being conducted in active sensing techniques. This report is description of the research associated with the testbed's laser scanner and its application as an active sensing device. The report is comprised of five major topics. First is a brief description of the CIRSSE visual system and a summary of the active sensing research that has been conducted up to this point. Second, some of the methods currently used to calibrate CIRSSE's laser scanner are described as well as an appraisal of the effectiveness of these methods. Third, is a discussion of how the laser scanner can be employed in concert with a camera to provide a three dimensional point estimation capability. Fourth, there is a description of methods that can be used to detect the presence of the laser beam in a cluttered camera image. Finally, there is a summary of the current state of this research and a description of research planned for the future.

  19. Demonstration of distributed fiber-optic temperature sensing with PM fiber using polarization crosstalk analysis technique

    NASA Astrophysics Data System (ADS)

    Su, Hongxin; Zhao, Ziwei; Feng, Ting; Ding, Dongliang; Li, Zhihong; Yao, X. Steve

    2016-11-01

    Polarization crosstalk is a phenomenon that the powers of two orthogonal polarization modes propagating in a polarization maintaining (PM) fiber couple into each other. Because there is certain mathematical relationship between the polarization crosstalk signals and external perturbations such as stress and temperature variations, stress and temperature sensing in PM fiber can be simultaneously achieved by measuring the strengths and locations of polarization crosstalk signals. In this paper, we report what we believe the first distributed temperature sensing demonstration using polarization crosstalk analysis in PM fibers. Firstly, by measuring the spacing changes between two crosstalk peaks at different fiber length locations, we obtained the temperature sensing coefficient (TSC) of approximately -0.73 μm/(°C•m), which means that the spacing between two crosstalk peaks induced at two locations changes by 0.73 μm when the temperature changes by 1 °C over a fiber length of 1 meter. Secondly, in order to bring different temperature values at different axial locations along a PM fiber to verify the distributed temperature sensing, four heating-strips are used to heat different fiber sections of the PM fiber under test, and the temperatures measured by the proposed fiber sensing method according to the obtained TSC are almost consistent with those of heating-strips measured by a thermoelectric thermometer. As a new type of distributed fiber temperature sensing technique, we believe that our method will find broad applications in the near future.

  20. Novel technique for distributed fibre sensing based on coherent Rayleigh scattering measurements of birefringence

    NASA Astrophysics Data System (ADS)

    Lu, Xin; Soto, Marcelo A.; Thévenaz, Luc

    2016-05-01

    A novel distributed fibre sensing technique is described and experimentally validated, based on birefringence measurements using coherent Rayleigh scattering. It natively provides distributed measurements of temperature and strain with more than an order of magnitude higher sensitivity than Brillouin sensing, and requiring access to a single fibre-end. Unlike the traditional Rayleigh-based coherent optical time-domain reflectometry, this new method provides absolute measurements of the measurand and may lead to a robust discrimination between temperature and strain in combination with another technique. Since birefringence is purposely induced in the fibre by design, large degrees of freedom are offered to optimize and scale the sensitivity to a given quantity. The technique has been validated in 2 radically different types of birefringent fibres - elliptical-core and Panda polarization-maintaining fibres - with a good repeatability.

  1. Small molecule-sensing strategy and techniques for understanding the functionality of green tea.

    PubMed

    Fujimura, Yoshinori

    2015-01-01

    Various low-molecular-weight phytochemicals in green tea (Camellia sinensis L.), especially (-)-epigallocatechin-3-O-gallate (EGCG), are known to be involved in health promotion and disease risk reduction. However, the underlying mechanism has remained elusive because of the absence of an analytical technique that can easily detect the precise behavior of such a small molecule. Recently, we have identified a cell-surface EGCG-sensing receptor and the related signaling molecules that control the physiological functions of EGCG. We also developed a novel in situ label-free imaging technique for visualizing spatially resolved biotransformations based on simultaneous mapping of EGCG and its phase II metabolites. Furthermore, we established a chemometric method capable of evaluating the functionality of multicomponent green tea extracts by focusing on their compositional balances. This review highlights our proposed small molecule-sensing techniques for detecting the complex behavior of green tea components and linking such information to an enhanced understanding of green tea functionality.

  2. Classification of remotely sensed data using OCR-inspired neural network techniques. [Optical Character Recognition

    NASA Technical Reports Server (NTRS)

    Kiang, Richard K.

    1992-01-01

    Neural networks have been applied to classifications of remotely sensed data with some success. To improve the performance of this approach, an examination was made of how neural networks are applied to the optical character recognition (OCR) of handwritten digits and letters. A three-layer, feedforward network, along with techniques adopted from OCR, was used to classify Landsat-4 Thematic Mapper data. Good results were obtained. To overcome the difficulties that are characteristic of remote sensing applications and to attain significant improvements in classification accuracy, a special network architecture may be required.

  3. Remote sensing techniques for the detection of soil erosion and the identification of soil conservation practices

    NASA Technical Reports Server (NTRS)

    Pelletier, R. E.; Griffin, R. H.

    1985-01-01

    The following paper is a summary of a number of techniques initiated under the AgRISTARS (Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing) project for the detection of soil degradation caused by water erosion and the identification of soil conservation practices for resource inventories. Discussed are methods to utilize a geographic information system to determine potential soil erosion through a USLE (Universal Soil Loss Equation) model; application of the Kauth-Thomas Transform to detect present erosional status; and the identification of conservation practices through visual interpretation and a variety of enhancement procedures applied to digital remotely sensed data.

  4. Current achievements of nanoparticle applications in developing optical sensing and imaging techniques

    NASA Astrophysics Data System (ADS)

    Choi, Jong-ryul; Shin, Dong-Myeong; Song, Hyerin; Lee, Donghoon; Kim, Kyujung

    2016-11-01

    Metallic nanostructures have recently been demonstrated to improve the performance of optical sensing and imaging techniques due to their remarkable localization capability of electromagnetic fields. Particularly, the zero-dimensional nanostructure, commonly called a nanoparticle, is a promising component for optical measurement systems due to its attractive features, e.g., ease of fabrication, capability of surface modification and relatively high biocompatibility. This review summarizes the work to date on metallic nanoparticles for optical sensing and imaging applications, starting with the theoretical backgrounds of plasmonic effects in nanoparticles and moving through the applications in Raman spectroscopy and fluorescence biosensors. Various efforts for enhancing the sensitivity, selectivity and biocompatibility are summarized, and the future outlooks for this field are discussed. Convergent studies in optical sensing and imaging have been emerging field for the development of medical applications, including clinical diagnosis and therapeutic applications.

  5. Development and Experimental Verification of Key Techniques to Validate Remote Sensing Products

    NASA Astrophysics Data System (ADS)

    Li, X.; Wang, S. G.; Ge, Y.; Jin, R.; Liu, S. M.; Ma, M. G.; Shi, W. Z.; Li, R. X.; Liu, Q. H.

    2013-05-01

    Validation of remote sensing land products is a fundamental issue for Earth observation. Ministry of Science and Technology of the People's Republic of China (MOST) has launched a high-tech R&D Program named `Development and experimental verification of key techniques to validate remote sensing products' in 2011. This paper introduces the background, scientific objectives, research contents of this project and research result already achieved. The objectives of this project include (1) to build a technical specification for the validation of remote sensing products; (2) to investigate the performance, we will carry out a comprehensive remote sensing experiment on satellite - aircraft - ground truth and then modify Step 1 until reach the predefined requirement; (3) to establish a validation network of China for remote sensing products. In summer 2012, with support of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER), field observations have been successfully conducted in the central stream of the Heihe River Basin, a typical inland river basin in northwest China. A flux observation matrix composed of eddy covariance (EC) and large aperture scintillometer (LAS), in addition to a densely distributed eco-hydrological wireless sensor network have been established to capture multi-scale heterogeneities of evapotranspiration (ET), leaf area index (LAI), soil moisture and temperature. Airborne missions have been flown with the payloads of imaging spectrometer, light detection and ranging (LiDAR), infrared thermal imager and microwave radiometer that provide various scales of aerial remote sensing observations. Satellite images with high resolution have been collected and pre-processed, e.g. PROBA-CHRIS and TerraSAR-X. Simultaneously, ground measurements have been conducted over specific sampling plots and transects to obtain validation data sets. With this setup complex problems are addressed, e.g. heterogeneity, scaling, uncertainty, and eventually to

  6. Three-Dimensional Inverse Transport Solver Based on Compressive Sensing Technique

    NASA Astrophysics Data System (ADS)

    Cheng, Yuxiong; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi

    2013-09-01

    According to the direct exposure measurements from flash radiographic image, a compressive sensing-based method for three-dimensional inverse transport problem is presented. The linear absorption coefficients and interface locations of objects are reconstructed directly at the same time. It is always very expensive to obtain enough measurements. With limited measurements, compressive sensing sparse reconstruction technique orthogonal matching pursuit is applied to obtain the sparse coefficients by solving an optimization problem. A three-dimensional inverse transport solver is developed based on a compressive sensing-based technique. There are three features in this solver: (1) AutoCAD is employed as a geometry preprocessor due to its powerful capacity in graphic. (2) The forward projection matrix rather than Gauss matrix is constructed by the visualization tool generator. (3) Fourier transform and Daubechies wavelet transform are adopted to convert an underdetermined system to a well-posed system in the algorithm. Simulations are performed and numerical results in pseudo-sine absorption problem, two-cube problem and two-cylinder problem when using compressive sensing-based solver agree well with the reference value.

  7. High-accuracy current sensing circuit with current compensation technique for buck-boost converter

    NASA Astrophysics Data System (ADS)

    Rao, Yuan; Deng, Wan-Ling; Huang, Jun-Kai

    2015-03-01

    A novel on-chip current sensing circuit with current compensation technique suitable for buck-boost converter is presented in this article. The proposed technique can sense the full-range inductor current with high accuracy and high speed. It is mainly based on matched current mirror and does not require a large proportion of aspect ratio between the powerFET and the senseFET, thus it reduces the complexity of circuit design and the layout mismatch issue without decreasing the power efficiency. The circuit is fabricated with TSMC 0.25 µm 2P5M mixed-signal process. Simulation results show that the buck-boost converter can be operated at 200 kHz to 4 MHz switching frequency with an input voltage from 2.8 to 4.7 V. The output voltage is 3.6 V, and the maximum accuracy for both high and low side sensing current reaches 99% within the load current ranging from 200 to 600 mA.

  8. An optical fiber sensing technique for temperature distribution measurements in microwave heating

    NASA Astrophysics Data System (ADS)

    Wada, Daichi; Sugiyama, Jun-ichi; Zushi, Hiroaki; Murayama, Hideaki

    2015-08-01

    We introduce an optical fiber sensing technique that can measure the temperature distributions along a fiber during microwave heating. We used a long-length fiber Bragg grating (FBG) as an electromagnetic-immune sensor and interrogated temperature distributions along the FBG by an optical frequency domain reflectometry. Water in a glass tube with a length of 820 mm was heated in a microwave oven, and its temperature distribution along the glass tube was measured using the sensing system. The temperature distribution was obtained in 5 mm intervals. Infrared radiometry was also used to compare the temperature measurement results. Time and spatial variations of the temperature distribution profiles were monitored for several microwave input powers. The results clearly depict inhomogeneous temperature profiles. The applicability and effectiveness of the optical fiber distributed measurement technique in microwave heating are demonstrated.

  9. A novel self-sensing technique for tapping-mode atomic force microscopy

    SciTech Connect

    Ruppert, Michael G.; Moheimani, S. O. Reza

    2013-12-15

    This work proposes a novel self-sensing tapping-mode atomic force microscopy operation utilizing charge measurement. A microcantilever coated with a single piezoelectric layer is simultaneously used for actuation and deflection sensing. The cantilever can be batch fabricated with existing micro electro mechanical system processes. The setup enables the omission of the optical beam deflection technique which is commonly used to measure the cantilever oscillation amplitude. Due to the high amount of capacitive feedthrough in the measured charge signal, a feedforward control technique is employed to increase the dynamic range from less than 1 dB to approximately 35 dB. Experiments show that the conditioned charge signal achieves excellent signal-to-noise ratio and can therefore be used as a feedback signal for atomic force microscopy imaging.

  10. An indirect sensing technique for diesel fuel quantity control. Progress report, April 1--June 30, 1998

    SciTech Connect

    MacCarley, C.A.

    1998-08-31

    This reports on a project to develop an indirect sensing technique for diesel fuel quantity control. Development has continued on a vehicle-installed prototype for EPA certification and demonstration. Focus of development is on the use of this technology for retrofitting existing diesel vehicles to reduce emissions rather than exclusively upon deployment in the OEM market. Technical obstacles that have been encountered and their solutions and remaining project tasks are described.

  11. Optimization of the polarization remote-sensing techniques of the ocean

    NASA Astrophysics Data System (ADS)

    Krotkov, Nickolay A.; Kondranin, Timofei V.; Vasilkov, Alexander P.

    1992-12-01

    A numerical code has been developed to calculate Stokes parameters of the visible solar radiation, scattered in the atmosphere-ocean system. Mathematical modeling is used to examine spectral and angular (azimuth and zenith angle) variations of degree of polarization at sea level and at different heights in the atmosphere above the sea surface. On the basis of a developed computer code the efficiency of the polarization measurements for different optical passive remote sensing techniques of the ocean has been investigated. For the passive spectral measurements of the water bio-productivity (chlorophyll-a, dissolved organic matter, concentration of suspended particles) the polarizer can improve signal-to-background ratio. The magnitude of this effect and optimum direction of the polarizer depend upon height, viewing direction, and solar zenith angle. Within the framework of polarization remote sensing technique the influence of the observation height and viewing direction on the results of water turbidity measurements is investigated. Optimal viewing directions in such polarization passive remote sensing technique are discussed.

  12. High-quality correspondence imaging based on sorting and compressive sensing technique

    NASA Astrophysics Data System (ADS)

    Wu, Heng; Zhang, Xianmin; Gan, Jinqiang; Luo, Chunling; Ge, Peng

    2016-11-01

    We propose a high-quality imaging method based on correspondence imaging (CI) using a sorting and compressive sensing (CS) technique. Unlike the traditional CI, the positive and negative (PN) subsets are created by a sorting method, and the image of an object is then recovered from the PN subsets using a CS technique. We compare the performance of the proposed method with different ghost imaging (GI) algorithms using the data from a single-detector computational GI system. The results demonstrate that our method enjoys excellent imaging and anti-interference capabilities, and can further reduce the measurement numbers compared with the direct use of CS in GI.

  13. Generalized high-spectral-resolution lidar technique with a multimode laser for aerosol remote sensing.

    PubMed

    Cheng, Zhongtao; Liu, Dong; Zhang, Yupeng; Liu, Chong; Bai, Jian; Wang, Dan; Wang, Nanchao; Zhou, Yudi; Luo, Jing; Yang, Yongying; Shen, Yibing; Su, Lin; Yang, Liming

    2017-01-23

    High-spectral-resolution lidar (HSRL) is a powerful tool for atmospheric aerosol remote sensing. The current HSRL technique often requires a single longitudinal mode laser as the transmitter to accomplish the spectral discrimination of the aerosol and molecular scattering conveniently. However, single-mode laser is cumbersome and has very strict requirements for ambient stability, making the HSRL instrument not so robust in many cases. In this paper, a new HSRL concept, called generalized HSRL technique with a multimode laser (MML-gHSRL), is proposed, which can work using a multimode laser. The MML-gHSRL takes advantage of the period characteristic of the spectral function of the interferometric spectral discrimination filter (ISDF) thoroughly. By matching the free spectral range of the ISDF with the mode interval of the multimode laser, fine spectral discrimination for the lidar return from each longitudinal mode can be realized. Two common ISDFs, i.e., the Fabry-Perot interferometer (FPI) and field-widened Michelson interferometer (FWMI), are introduced to develop the MML-gHSRL, and their performance is quantitatively analyzed and compared. The MML-gHSRL is a natural but significant generalization for the current HSRL technique based on the IDSF. It is potential that this technique would be a good entrance to future HSRL developments, especially in airborne and satellite-borne aerosol remote sensing applications.

  14. Shape Sensing Techniques for Continuum Robots in Minimally Invasive Surgery: A Survey.

    PubMed

    Shi, Chaoyang; Luo, Xiongbiao; Qi, Peng; Li, Tianliang; Song, Shuang; Najdovski, Zoran; Ren, Hongliang; Fukuda, Toshio

    2016-10-27

    Continuum robots provide inherent structural compliance with high dexterity to access the surgical target sites along tortuous anatomical paths under constrained environments, and enable to perform complex and delicate operations through small incisions in minimally invasive surgery. These advantages enable their broad applications with minimal trauma, and make challenging clinical procedures possible with miniaturized instrumentation and high curvilinear access capabilities. However, their inherent deformable designs make it difficult to realize three-dimensional (3D) intraoperative real-time shape sensing to accurately model their shape. Solutions to this limitation can lead themselves to further develop closely associated techniques of closed-loop control, path planning, human-robot interaction and surgical manipulation safety concerns in minimally invasive surgery. Although extensive model-based research that relies on kinematics and mechanics has been performed, accurate shape sensing of continuum robots remains challenging, particularly in cases of unknown and dynamic payloads. This survey investigates the recent advances in alternative emerging techniques for 3D shape sensing in this field, and focuses on the following categories: fiber optic sensors based, electromagnetic tracking based and intraoperative imaging modalities based shape reconstruction methods. The limitations of existing technologies and prospects of new technologies are also discussed.

  15. Measurements of Absorbing Aerosols Using in Situ and Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Martins, J. V.; Martins, J. V.; Kaufman, Y.; Artaxo, P.; Andrea, C.; Yamasoe, M.; Remer, L.

    2001-12-01

    Reliable measurements of light absorption by aerosol particles are essential for an accurate assessment of the climate radiative forcing by aerosol particles. Depending on the absorption properties, the radiative forcing of the aerosols may change from a cooling to a heating effect. New techniques for the remote sensing of aerosol absorption over land and ocean are developed and applied in combination with in situ measurements for validation and addition of complementary information. Spectral measurements show the effects of aerosols on absorption of light from the UV to the near infrared. Depending on particle size and structure, there is a significant absorption component that must be accounted for the radiative forcing in the near infrared. Remote sensing results from MODIS and from the CLAMS field experiment, as well as in situ validation data will be discussed.

  16. Experimental Verification of Dispersed Fringe Sensing as a Segment Phasing Technique using the Keck Telescope

    NASA Technical Reports Server (NTRS)

    Shi, Fang; Chanan, Gary; Ohara, Catherine; Troy, Mitchell; Redding, David C.

    2004-01-01

    Dispersed fringe sensing (DFS) is an efficient and robust method for coarse phasing of segmented primary mirrors (from one quarter of a wavelength to as much as the depth of focus of a single segment, typically several tens of microns). Unlike phasing techniques currently used for ground-based segmented telescopes, DFS does not require the use of edge sensors in order to sense changes in the relative heights of adjacent segments; this makes it particularly well suited for phasing of space-borne segmented telescopes, such as the James Webb Space Telescope. We validate DFS by using it to measure the piston errors of the segments of one of the Keck telescopes. The results agree with those of the Shack-Hartmann-based phasing scheme currently in use at Keck to within 2% over a range of initial piston errors of +/-16 (mu)m.

  17. Multi-Technique Remote-Sensing Observations and Modelling of a Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Hardwick, S. A.; Bisi, M. M.; Davies, J.; Morgan, H.; Fallows, R.; Harrison, R. A.; Xiong, M.; Jensen, E. A.

    2012-12-01

    On 14 November 2011, SDO|AIA observed a filament eruption located around S25 to S30 and extended between W20 and W40 of disc centre. The resulting coronal mass ejection (CME) is studied in detail using radio, white-light, and EUV remote-sensing observations from STEREO, SOHO, SDO, and the new next-generation LOFAR radio telescope system. We present a detailed story of the CME as it travels through the heliosphere with its northern flank travelling in the ecliptic out towards Mars. Various models are fitted to the heliospheric white-light data and different portions of the CME are investigated as they propagate through the inner heliosphere. The validity of each model is discussed. This combination of remote-sensing observational and modelling techniques displays a valid framework for further detailed investigations of CMEs.

  18. Guided compressive sensing single-pixel imaging technique based on hierarchical model

    NASA Astrophysics Data System (ADS)

    Peng, Yang; Liu, Yu; Ren, Weiya; Tan, Shuren; Zhang, Maojun

    2016-04-01

    Single-pixel imaging has emerged a decade ago as an imaging technique that exploits the theory of compressive sensing. In this research, the problem of optimizing the measurement matrix in compressive sensing framework was addressed. Thus far, random measurement matrices are widely used because they provide small coherence. However, recent reports claim that measurement matrix can be optimized, thereby improving its performance. Based on such proposition, this study proposed an alternative approach of optimizing the measurement matrix in a hierarchical model. In particular, this study constructed the hierarchical model based on an increasing resolution grade by exploiting the guided information and the adaptive step size method. An image with a demanded resolution was then obtained using the l1-norm method. Subsequently, the performance of the introduced method was verified and compared with those of existing approaches via several experiments. Results of the tests indicated that the reconstruction quality of optimizing the measurement matrix was improved when the proposed method was used.

  19. Remote sensing and GIS techniques for selecting a sustainable scenario for Lake Koronia, Greece.

    PubMed

    Alexandridis, Thomas K; Takavakoglou, Vasileios; Crisman, Thomas L; Zalidis, George C

    2007-02-01

    During recent decades, Lake Koronia has undergone severe degradation as a result of human activities around the lake and throughout the basin. Surface and groundwater abstraction and pollution from agricultural, industrial, and municipal sources are the major sources of degradation. Planning a restoration project was hampered by lack of sufficient data, with gaps evident in both spatial and temporal dimensions. This study emphasized various remote sensing and geographic information system techniques, such as digital image processing and geographic overlay, to fill gaps using satellite imagery and other spatial environmental, hydrological, and hydrogeological data in the process of planning the restoration of Lake Koronia, following Ramsar guidelines. Current and historical remote sensing data were used to assess the current status and level of degradation, set constraints and define the ideotype for the restoration, and, finally, define and select the best restoration scenario.

  20. A Remote Sensing Technique For Combustion Gas Temperature Measurement In Black Liquor Recovery Boilers

    NASA Astrophysics Data System (ADS)

    Charagundla, S. R.; Semerjian, H. G.

    1986-10-01

    A remote sensing technique, based on the principles of emission spectroscopy, is being developed for temperature measurements in black liquor recovery boilers. Several tests have been carried out, both in the laboratory and at a number of recovery boilers, to characterize the emission spectra in the wavelength range of 300 nm to 800 nm. These tests have pointed out the potential for temperature measurements using the line intensity ratio technique based on a pair of emission lines at 404.4 nm and 766.5 nm observed in the recovery boiler combustion zone; these emission lines are due to potassium, a common constituent found in all the black liquors. Accordingly, a fiber optics based four-color system has been developed. This in-situ, nonintrusive temperature measurement technique, together with some of the more recent results, is described in this paper.

  1. Mapping Glauconite Unites with Using Remote Sensing Techniques in North East of Iran

    NASA Astrophysics Data System (ADS)

    Ahmadirouhani, R.; Samiee, S.

    2014-10-01

    Glauconite is a greenish ferric-iron silicate mineral with micaceous structure, characteristically formed in shallow marine environments. Glauconite has been used as a pigmentation agent for oil paint, contaminants remover in environmental studies and a source of potassium in plant fertilizers, and other industries. Koppeh-dagh basin is extended in Iran, Afghanistan and Turkmenistan countries and Glauconite units exist in this basin. In this research for enhancing and mapping glauconitic units in Koppeh-dagh structural zone in north east of Iran, remote sensing techniques such as Spectral Angle Mapper classification (SAM), band ratio and band composition methods on SPOT, ASTER and Landsat data in 3 steps were applied.

  2. Sensing and identification of carbon monoxide using carbon films fabricated by methane arc discharge decomposition technique

    PubMed Central

    2014-01-01

    Carbonaceous materials have recently received attention in electronic applications and measurement systems. In this work, we demonstrate the electrical behavior of carbon films fabricated by methane arc discharge decomposition technique. The current-voltage (I-V) characteristics of carbon films are investigated in the presence and absence of gas. The experiment reveals that the current passing through the carbon films increases when the concentration of CO2 gas is increased from 200 to 800 ppm. This phenomenon which is a result of conductance changes can be employed in sensing applications such as gas sensors. PMID:25177219

  3. Equipment and techniques for low-altitude aerial sensing of water-vapor concentration and movement

    USGS Publications Warehouse

    Howell, R.L.

    1969-01-01

    Progress in the development of equipment and techniques for making rapid measurements of moisture movement through the atmosphere over a large area is described. Airborne sensing elements measure relative humidity, temperature, and air currents. These data are telemetered to a ground-based station and recorded. A radar unit tracks the aircraft and electronically plots its position on a base map of the area being studied. Thus the distribution of atmospheric conditions can be directly related to the underlying terrain and vegetation features. ?? 1969 American Elsevier Publishing Company, Inc.

  4. Reliable Welding of HSLA Steels by Square Wave Pulsing Using an Advanced Sensing (EDAP) Technique.

    DTIC Science & Technology

    1986-04-30

    situation is the result of welding on A710 steel . (A similar effect on welding on HY80 ?) The following is offered by Woods and Milner (Ref. 12): "The...AD-R69 762 RELIABLE MELDING OF HSLA STEELS BY SQUARE MAVE PULSING 1/2 USING AN ADV NCED.. (U) APPLIED FUSION TECHNOLOGIES INC FORT COLLINS CO C...6 p . 0 Report 0001 AZ AD-A 168 762 I "RELIABLE WELDING OF HSLA STEELS BY SQUARE WAVE PULSING USING AN ADVANCED SENSING (EDAP) TECHNIQUE- Preliminary

  5. A satellite remote-sensing technique for geological horizon structure mapping

    SciTech Connect

    Fraser, A.J.; Huggins, P.; Cleverley, P.H.; Rees, J.L.

    1995-12-31

    A Satellite Remote Sensing technique is demonstrated which provides accurate and cost effective near-surface geological structure data. In the exploration phase the technique enables the rapid and inexpensive screening of open licences and the targeting of seismic acquisition, particularly important in terrains of difficult data acquisition. This paper describes the satellite data used, the technique of horizon surface data extraction and the analysis of a case study from Yemen. Landsat Thematic Mapper (TM) data and a high resolution digital elevation model (DEM), generated from stereo SPOT panchromatic images, are used in conjunction to identify a number of outcropping horizons and map their spatial position and height. Geological contacts are identified and digitised from the Landsat TM data and the elevations of these points taken from the digital elevation data. The extracted x,y,z co-ordinates are then gridded to construct a horizon structure map. The technique is applied to an area of central Yemen which is characterised by a near-surface {open_quote}layer cake{close_quote} geological structure in an extremely low dipping terrain (Less than 1{degrees}). The remote sensing interpretation is validated by comparison with 2D seismic across the area. Regional flexural structures with bed dips of as little as 0.25{degrees} can be mapped. Trend analysis and residual calculations on the horizon structure map show the techniques ability to identify and quantify horizon deformation related to faulting. Surface geological structure was successfully interpolated into the subsurface indicating potential fault closure at reservoir target depths.

  6. Geographic techniques and recent applications of remote sensing to landscape-water quality studies

    USGS Publications Warehouse

    Griffith, J.A.

    2002-01-01

    This article overviews recent advances in studies of landscape-water quality relationships using remote sensing techniques. With the increasing feasibility of using remotely-sensed data, landscape-water quality studies can now be more easily performed on regional, multi-state scales. The traditional method of relating land use and land cover to water quality has been extended to include landscape pattern and other landscape information derived from satellite data. Three items are focused on in this article: 1) the increasing recognition of the importance of larger-scale studies of regional water quality that require a landscape perspective; 2) the increasing importance of remotely sensed data, such as the imagery-derived normalized difference vegetation index (NDVI) and vegetation phenological metrics derived from time-series NDVI data; and 3) landscape pattern. In some studies, using landscape pattern metrics explained some of the variation in water quality not explained by land use/cover. However, in some other studies, the NDVI metrics were even more highly correlated to certain water quality parameters than either landscape pattern metrics or land use/cover proportions. Although studies relating landscape pattern metrics to water quality have had mixed results, this recent body of work applying these landscape measures and satellite-derived metrics to water quality analysis has demonstrated their potential usefulness in monitoring watershed conditions across large regions.

  7. Utilizing the cochlea as a bio-inspired compressive sensing technique

    NASA Astrophysics Data System (ADS)

    Peckens, C. A.; Lynch, J. P.

    2013-10-01

    Structural monitoring for civil infrastructure is a rapidly developing field that has made significant advancements over the last decade. However, a number of performance bottlenecks remain including challenges with cost-effectively scaling monitoring systems up to large nodal counts. Due to the many parallels between biological sensory systems and engineered sensing systems, the biological nervous system can offer potential solutions to the current deficiencies of structural monitoring systems. The nervous system is capable of real-time processing and data transmission of external stimuli through an extremely condensed format with very basic processing units. This study explores the mammalian auditory system for inspiration because it achieves efficient data acquisition processes that outperform existing engineered sensing systems. Specifically, the auditory system realizes this through three steps: (1) real-time decomposition of a convoluted time-based signal into frequency components, (2) information compression for each component, and (3) efficient high-speed data transmission to the auditory cortex. In this paper, these three main mechanisms are explored and a bio-inspired structural monitoring system is proposed. The functionality of the proposed system is compared to traditional data compression techniques (wavelet transforms and compressed sensing) on various vibratory signals. While the wavelet transform is able to outperform the proposed sensor by minimizing signal reconstruction errors, the proposed bio-inspired sensor achieves similar compression rates but, unlike the others, does so using real-time processing.

  8. Integrating remote sensing techniques at Cuprite, Nevada: AVIRIS, Thematic Mapper, and field spectroscopy

    NASA Technical Reports Server (NTRS)

    Hill, Bradley; Nash, Greg; Ridd, Merrill; Hauff, Phoebe L.; Ebel, Phil

    1992-01-01

    The Cuprite mining district in southwestern Nevada has become a test site for remote sensing studies with numerous airborne scanners and ground sensor data sets collected over the past fifteen years. Structurally, the Cuprite region can be divided into two areas with slightly different alteration and mineralogy. These zones lie on either side of a postulated low-angle structural discontinuity that strikes nearly parallel to US Route 95. Hydrothermal alternation at Cuprite was classified into three major zones: silicified, opalized, and argillized. These alteration types form a bulls-eye pattern east of the highway and are more linear on the west side of the highway making a striking contrast from the air and the imagery. Cuprite is therefore an ideal location for remote sensing research as it exhibits easily identified hydrothermal zoning, is relatively devoid of vegetation, and contains a distinctive spectrally diagnostic mineral suite including the ammonium feldspar buddingtonite, several types of alunite, different jarosites, illite, kaolinite, smectite, dickite, and opal. This present study brings a new dimension to these previous remote sensing and ground data sets compiled for Cuprite. The development of a higher resolution field spectrometer now provides the capability to combine extensive in-situ mineralogical data with a new geologic field survey and detailed Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) images. The various data collection methods and the refinement of the integrated techniques are discussed.

  9. Comprehensive studies of the dynamics of geosystems with the use of remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Vasilev, L. N.; Kaczyński, R.; Ney, B. I.

    The described research programme for comprehensive studies of changes occuring within geosystems is a part of scientific activity of INTERKOSMOS, which will be executed mainly with the use of remote sensing methods and techniques. The main aim of the programme is to get an insight into the seasonal rithm of environmental changes on both regional and global level. The work will consist of gathering systematized information concerning quantitative and qualitative relations between various components of the environment. The application of remote sensing methods enables the acquisition of such environmental data in dynamic setting. Research will be conducted for areas comprising distinct geosystems and will lead to the detection of diurnal, seasonal and yearly dynamics of geosystems as well as long-term trends. Except cognitive, the programme will also serve the methodological purpose. The first aim will be realized with respect to individual geosystems; the resulting sets of data will consist of matrixes of statistical data characterizing relations between various components of geosystems. The methodological aim will be achieved through the process of practical verification of the preliminary assumptions. Information will be collected from different data acquisition levels namely from satellite and aerial platforms and through ground measurements. Different types of data, such as multispectral photography (SALYUT, KOSMOS), multispectral scanner images (LANDSAT THEMATIC MAPPER, SPOT), infrared photography, radar imagery and spectrometric measurements will be gathered during simultaneous data acquisition projects. All types of observations will be timed in accordance with the natural rithm of the observed phenomena. The paper contains the description of geosystems under anthropogenic stress based on the previous research of the authors. The presented multifactor characteristics of soil and crops is a part of completed studies on agricultural geosystems. The results of

  10. Quantification of Virus Particles Using Nanopore-Based Resistive-Pulse Sensing Techniques

    PubMed Central

    Yang, Lu; Yamamoto, Takatoki

    2016-01-01

    Viruses have drawn much attention in recent years due to increased recognition of their important roles in virology, immunology, clinical diagnosis, and therapy. Because the biological and physical properties of viruses significantly impact their applications, quantitative detection of individual virus particles has become a critical issue. However, due to various inherent limitations of conventional enumeration techniques such as infectious titer assays, immunological assays, and electron microscopic observation, this issue remains challenging. Thanks to significant advances in nanotechnology, nanostructure-based electrical sensors have emerged as promising platforms for real-time, sensitive detection of numerous bioanalytes. In this paper, we review recent progress in nanopore-based electrical sensing, with particular emphasis on the application of this technique to the quantification of virus particles. Our aim is to provide insights into this novel nanosensor technology, and highlight its ability to enhance current understanding of a variety of viruses. PMID:27713738

  11. Application of Remote Sensing Techniques for Appraising Changes in Wildlife Habitat

    NASA Technical Reports Server (NTRS)

    Nelson, H. K.; Klett, A. T.; Johnston, J. E.

    1971-01-01

    An attempt was made to investigate the potential of airborne, multispectral, line scanner data acquisition and computer-implemented automatic recognition techniques for providing useful information about waterfowl breeding habitat in North Dakota. The spectral characteristics of the components of a landscape containing waterfowl habitat can be detected with airborne scanners. By analyzing these spectral characteristics it is possible to identify and map the landscape components through analog and digital processing methods. At the present stage of development multispectral remote sensing techniques are not ready for operational application to surveys of migratory bird habitat and other such resources. Further developments are needed to: (1) increase accuracy; (2) decrease retrieval and processing time; and (3) reduce costs.

  12. Optical sensing of peroxide using ceria nanoparticles via fluorescence quenching technique

    NASA Astrophysics Data System (ADS)

    Shehata, Nader; Samir, Effat; Gaballah, Soha; Salah, Mohammed

    2016-07-01

    This study introduces the application of ceria nanoparticles (NPs) as an optical sensor for peroxide using fluorescence quenching technique. Our synthesized ceria NPs have the ability to adsorb peroxides via its oxygen vacancies. Ceria NPs solution with added variable concentrations of hydrogen peroxides is exposed through near-UV excitation and the detected visible fluorescent emission is found to be at ˜520 nm. The fluorescent intensity peak is found to be reduced with increasing the peroxide concentrations due to static fluorescence quenching technique. The relative intensity change of the visible fluorescent emission has been reduced to more than 50% at added peroxide concentrations up to 10 wt. %. In order to increase ceria peroxides sensing sensitivity, lanthanide elements such as samarium (Sm) are used as ceria NPs dopant. This research work could be applied further in optical sensors of radicals in biomedical engineering and environmental monitoring.

  13. Groundwater resources development in hard rock terrain - an approach using remote sensing and GIS techniques

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Jagannathan; Mani, Arul; Jayaraman, Venkatakrishnan; Manivel, M.

    To demonstrate the capabilities of remote sensing and Geographic Information System (GIS) techniques for groundwater resources development in hard rock terrains, specifically for the demarcation of suitable sites for artificial recharge of groundwater aquifers, a study was carried out in the Kallar Basin, which is located in parts of the Salem and Tiruchirapalli districts, Tamil Nadu, India. Thematic maps defining lithology, lineaments, landforms, landuse, drainage density, thickness of weathered zone, thickness of fractured zone, hydrological soils, and well yield were prepared from data collected by the Indian Remote Sensing Satellite (IRS) -1C and by conventional methods. All the thematic layers were integrated using a GIS-based model developed specifically for this purpose, enabling a map showing artificial recharge zones to be generated. The exact type of artificial recharge structure, eg, check dam, nallabund, gully plugging and percolation pond, suitable for replenishing groundwater was identified by superposing a drainage network map over an artificial recharge zones map. The GIS-based demarcation of artificial zones developed in the study was based on logical conditions and reasoning, so that the same techniques (with appropriate modifications) could be adopted elsewhere, especially in hard rock terrain, where the occurrence of groundwater is restricted and subject to greater complexity.

  14. Differential Radiometers Using Fabry-Perot Interferometric Technique for Remote Sensing of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Georgieva, Elena M.; Heaps,William S.; Wilson, Emily L.

    2007-01-01

    A new type of remote sensing radiometer based upon the Fabry-Perot interferometric technique has been developed at NASA's Goddard Space Flight Center and tested from both ground and aircraft platform. The sensor uses direct or reflected sunlight and has channels for measuring column concentration of carbon dioxide at 1570 nm, oxygen lines sensitive to pressure and temperature at 762 and 768 nm, and water vapor (940 nm). A solid Fabry-Perot etalon is used as a tunable narrow bandpass filter to restrict the measurement to the gas of interest's absorption bands. By adjusting the temperature of the etalon, which changes the index of refraction of its material, the transmission fringes can be brought into nearly exact correspondence with absorption lines of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosphere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The technique is applicable to different chemical species. We have performed simulations and instrument design studies for CH4, "Cot isotope, and CO detection. Index Terms- Absorbing media, Atmospheric measurements, Fabry-Perot interferometers, Optical interferometry, Remote sensing.

  15. Temperature Compensation of Oxygen Sensing Films Utilizing a Dynamic Dual Lifetime Calculation Technique

    PubMed Central

    Collier, Bradley B.; McShane, Michael J.

    2014-01-01

    With advances to chemical sensing, methods for compensation of errors introduced by interfering analytes are needed. In this work, a dual lifetime calculation technique was developed to enable simultaneous monitoring of two luminescence decays. Utilizing a windowed time-domain luminescence approach, the response of two luminophores is separated temporally. The ability of the dual dynamic rapid lifetime determination (DDRLD) approach to determine the response of two luminophores simultaneously was investigated through mathematical modeling and experimental testing. Modeling results indicated that lifetime predictions will be most accurate when the ratio of the lifetimes from each luminophore is at least three and the ratio of intensities is near unity. In vitro experiments were performed using a porphyrin that is sensitive to both oxygen and temperature, combined with a temperature-sensitive inorganic phosphor used for compensation of the porphyrin response. In static experiments, the dual measurements were found to be highly accurate when compared to single-luminophore measurements—statistically equivalent for the long lifetime emission and an average difference of 2% for the short lifetimes. Real-time testing with dynamic windowing was successful in demonstrating dual lifetime measurements and temperature compensation of the oxygen sensitive dye. When comparing the actual oxygen and temperature values with predictions made using a dual calibration approach, an overall difference of less than 1% was obtained. Thus, this method enables rapid, accurate extraction of multiple lifetimes without requiring computationally intense curve fitting, providing a significant advancement toward multi-analyte sensing and imaging techniques. PMID:26566384

  16. On the Estimation of Forest Resources Using 3D Remote Sensing Techniques and Point Cloud Data

    NASA Astrophysics Data System (ADS)

    Karjalainen, Mika; Karila, Kirsi; Liang, Xinlian; Yu, Xiaowei; Huang, Guoman; Lu, Lijun

    2016-08-01

    In recent years, 3D capable remote sensing techniques have shown great potential in forest biomass estimation because of their ability to measure the forest canopy structure, tree height and density. The objective of the Dragon3 forest resources research project (ID 10667) and the supporting ESA young scientist project (ESA contract NO. 4000109483/13/I-BG) was to study the use of satellite based 3D techniques in forest tree height estimation, and consequently in forest biomass and biomass change estimation, by combining satellite data with terrestrial measurements. Results from airborne 3D techniques were also used in the project. Even though, forest tree height can be estimated from 3D satellite SAR data to some extent, there is need for field reference plots. For this reason, we have also been developing automated field plot measurement techniques based on Terrestrial Laser Scanning data, which can be used to train and calibrate satellite based estimation models. In this paper, results of canopy height models created from TerraSAR-X stereo and TanDEM-X INSAR data are shown as well as preliminary results from TLS field plot measurement system. Also, results from the airborne CASMSAR system to measure forest canopy height from P- and X- band INSAR are presented.

  17. Comparison of remote sensing image processing techniques to identify tornado damage areas from Landsat TM data

    USGS Publications Warehouse

    Myint, S.W.; Yuan, M.; Cerveny, R.S.; Giri, C.P.

    2008-01-01

    Remote sensing techniques have been shown effective for large-scale damage surveys after a hazardous event in both near real-time or post-event analyses. The paper aims to compare accuracy of common imaging processing techniques to detect tornado damage tracks from Landsat TM data. We employed the direct change detection approach using two sets of images acquired before and after the tornado event to produce a principal component composite images and a set of image difference bands. Techniques in the comparison include supervised classification, unsupervised classification, and objectoriented classification approach with a nearest neighbor classifier. Accuracy assessment is based on Kappa coefficient calculated from error matrices which cross tabulate correctly identified cells on the TM image and commission and omission errors in the result. Overall, the Object-oriented Approach exhibits the highest degree of accuracy in tornado damage detection. PCA and Image Differencing methods show comparable outcomes. While selected PCs can improve detection accuracy 5 to 10%, the Object-oriented Approach performs significantly better with 15-20% higher accuracy than the other two techniques. ?? 2008 by MDPI.

  18. Comparison of Remote Sensing Image Processing Techniques to Identify Tornado Damage Areas from Landsat TM Data

    PubMed Central

    Myint, Soe W.; Yuan, May; Cerveny, Randall S.; Giri, Chandra P.

    2008-01-01

    Remote sensing techniques have been shown effective for large-scale damage surveys after a hazardous event in both near real-time or post-event analyses. The paper aims to compare accuracy of common imaging processing techniques to detect tornado damage tracks from Landsat TM data. We employed the direct change detection approach using two sets of images acquired before and after the tornado event to produce a principal component composite images and a set of image difference bands. Techniques in the comparison include supervised classification, unsupervised classification, and object-oriented classification approach with a nearest neighbor classifier. Accuracy assessment is based on Kappa coefficient calculated from error matrices which cross tabulate correctly identified cells on the TM image and commission and omission errors in the result. Overall, the Object-oriented Approach exhibits the highest degree of accuracy in tornado damage detection. PCA and Image Differencing methods show comparable outcomes. While selected PCs can improve detection accuracy 5 to 10%, the Object-oriented Approach performs significantly better with 15-20% higher accuracy than the other two techniques. PMID:27879757

  19. Lighter-Than-Air Blimps As a Testbed For River Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Fonstad, M. A.

    2010-12-01

    River science has seen a methodological revolution during the past decade as new platforms, sensors, and processing algorithms have allowed the remote collection of river data with ever-increasing ease, accuracy, precision, and extent. Recently, hand-held, low cost lighter-than-air blimps have been suggested as an important platform for river remote sensing, particularly when high-resolution and low-cost imaging is required. Because blimps are small, inexpensive, and relatively simple to operate in the field, they allow rapid river remote sensing trials, particularly over shorter river reaches. Unlike most airborne or satellite approaches, hand-held blimps can also be used to do very rapid repeat imaging. Field experiments show that such hand-held platforms are not as stable as most airborne and satellite platforms, and they have far reduced lift, allowing only very small and simple camera systems. They are also susceptible to become entangled in near-channel trees, and almost always have the problem of inclusion of the operator somewhere in resulting image. These issues notwithstanding, the simple adjustment of blimp tether length can easily allow adjustment of ground resolution to extremely high levels, and programmable cameras can allow versatility in automatic camera shutter intervals, shutter speeds, and other image constraints. We utilize low-altitude helikite platforms to test the potential for remote sensing (a) well geometrically-controlled measurements of water surface configuration, (b) submerged and near-channel sediment sizes, (c) water depth, and (d) surface velocity. The velocity imaging techniques include the use of natural and artificial particle image velocimetry (PIV) features, with velocity extracted using either the principles of motion blur or from sequential images. In addition, we use these low-cost, mobile platforms to test the brightness and color effects of shadows cast upon the water surface, and use these results to suggest potential

  20. Laboratory insights into the detection of surface biosignatures by remote-sensing techniques

    NASA Astrophysics Data System (ADS)

    Poch, O.; Pommerol, A.; Jost, B.; Roditi, I.; Frey, J.; Thomas, N.

    2014-03-01

    With the progress of direct imaging techniques, it will be possible in the short or long-term future to retrieve more efficiently the information on the physical properties of the light reflected by rocky exoplanets (Traub et al., 2010). The search for visible-infrared absorption bands of peculiar gases (O2, CH4 etc.) in this light could give clues for the presence of life (Kaltenegger and Selsis, 2007). Even more uplifting would be the direct detection of life itself, on the surface of an exoplanet. Considering this latter possibility, what is the potential of optical remote-sensing methods to detect surface biosignatures? Reflected light from the surface of the Earth exhibits a strong surface biosignature in the form of an abrupt change of reflectance between the visible and infrared range of the spectrum (Seager et al., 2005). This spectral feature called "vegetation red-edge" is possibly the consequence of biological evolution selecting the right chemical structures enabling the plants to absorb the visible energy, while preventing them from overheating by reflecting more efficiently the infrared. Such red-edge is also found in primitive photosynthetic bacteria, cyanobacteria, that colonized the surface of the Earth ocean and continents billions of years before multicellular plants (Knacke, 2003). If life ever arose on an Earth-like exoplanet, one could hypothesize that some form of its surface-life evolves into similar photo-active organisms, also exhibiting a red-edge. In this paper, we will present our plan and preliminary results of a laboratory study aiming at precising the potentiality of remote sensing techniques in detecting such surface biosignatures. Using equipment that has been developed in our team for surface photometry studies (Pommerol 2011, Jost 2013, Pommerol 2013), we will investigate the reflectance spectra and bidirectional reflectance function of soils containing bacteria such as cyanobacteria, in various environmental conditions. We will

  1. Quantifying the change in soil moisture modeling uncertainty from remote sensing observations using Bayesian inference techniques

    NASA Astrophysics Data System (ADS)

    Harrison, Kenneth W.; Kumar, Sujay V.; Peters-Lidard, Christa D.; Santanello, Joseph A.

    2012-11-01

    Operational land surface models (LSMs) compute hydrologic states such as soil moisture that are needed for a range of important applications (e.g., drought, flood, and weather prediction). The uncertainty in LSM parameters is sufficiently great that several researchers have proposed conducting parameter estimation using globally available remote sensing data to identify best fit local parameter sets. However, even with in situ data at fine modeling scales, there can be significant remaining uncertainty in LSM parameters and outputs. Here, using a new uncertainty estimation subsystem of the NASA Land Information System (LIS) (described herein), a Markov chain Monte Carlo (MCMC) technique is applied to conduct Bayesian analysis for the accounting of parameter uncertainties. The Differential Evolution Markov Chain (DE-MC) MCMC algorithm was applied, for which a new parallel implementation was developed. A case study is examined that builds on previous work in which the Noah LSM was calibrated to passive (L-band) microwave remote sensing estimates of soil moisture for the Walnut Gulch Experimental Watershed. In keeping with prior related studies, the parameters subjected to the analysis were restricted to the soil hydraulic properties (SHPs). The main goal is to estimate SHPs and soil moisture simulation uncertainty before and after consideration of the remote sensing data. The prior SHP uncertainty is based on the original source of the standard SHP lookup tables for the Noah LSM. Conclusions are drawn regarding the value and viability of Bayesian analysis over alternative approaches (e.g., parameter estimation, lookup tables) and further research needs are identified.

  2. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques

    PubMed Central

    Gholizadeh, Mohammad Haji; Melesse, Assefa M.; Reddi, Lakshmi

    2016-01-01

    Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water’s surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD). PMID:27537896

  3. Use of remote-sensing techniques to survey the physical habitat of large rivers

    USGS Publications Warehouse

    Edsall, Thomas A.; Behrendt, Thomas E.; Cholwek, Gary; Frey, Jeffery W.; Kennedy, Gregory W.; Smith, Stephen B.; Edsall, Thomas A.; Behrendt, Thomas E.; Cholwek, Gary; Frey, Jeffrey W.; Kennedy, Gregory W.; Smith, Stephen B.

    1997-01-01

    Remote-sensing techniques that can be used to quantitatively characterize the physical habitat in large rivers in the United States where traditional survey approaches typically used in small- and medium-sized streams and rivers would be ineffective or impossible to apply. The state-of-the-art remote-sensing technologies that we discuss here include side-scan sonar, RoxAnn, acoustic Doppler current profiler, remotely operated vehicles and camera systems, global positioning systems, and laser level survey systems. The use of these technologies will permit the collection of information needed to create computer visualizations and hard copy maps and generate quantitative databases that can be used in real-time mode in the field to characterize the physical habitat at a study location of interest and to guide the distribution of sampling effort needed to address other habitat-related study objectives. This report augments habitat sampling and characterization guidance provided by Meador et al. (1993) and is intended for use primarily by U.S. Geological Survey National Water Quality Assessment program managers and scientists who are documenting water quality in streams and rivers of the United States.

  4. Realization of daily evapotranspiration in arid ecosystems based on remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Elhag, Mohamed; Bahrawi, Jarbou A.

    2017-03-01

    Daily evapotranspiration is a major component of water resources management plans. In arid ecosystems, the quest for an efficient water budget is always hard to achieve due to insufficient irrigational water and high evapotranspiration rates. Therefore, monitoring of daily evapotranspiration is a key practice for sustainable water resources management, especially in arid environments. Remote sensing techniques offered a great help to estimate the daily evapotranspiration on a regional scale. Existing open-source algorithms proved to estimate daily evapotranspiration comprehensively in arid environments. The only deficiency of these algorithms is the course scale of the used remote sensing data. Consequently, the adequate downscaling algorithm is a compulsory step to rationalize an effective water resources management plan. Daily evapotranspiration was estimated fairly well using an Advance Along-Track Scanner Radiometer (AATSR) in conjunction with (MEdium Resolution Imaging Spectrometer) MERIS data acquired in July 2013 with 1 km spatial resolution and 3 days of temporal resolution under a surface energy balance system (SEBS) model. Results were validated against reference evapotranspiration ground truth values using standardized Penman-Monteith method with R2 of 0.879. The findings of the current research successfully monitor turbulent heat fluxes values estimated from AATSR and MERIS data with a temporal resolution of 3 days only in conjunction with reliable meteorological data. Research verdicts are necessary inputs for a well-informed decision-making processes regarding sustainable water resource management.

  5. Exploring social sensing techniques for measuring rainfall and flood response in urban environments

    NASA Astrophysics Data System (ADS)

    Koole, Wouter; Sips, Robert-Jan; ten Veldhuis, Marie-claire

    2016-04-01

    Extreme rainfall is expected to occur more often in the future as a result of climate change. To be able to react to this, urban water managers need to accurately know vulnerable spots in the city, as well as the potential impact to society. Currently, detailed information about rainfall intensities in cities, and effects of intense storm events on urban societies is lacking. In this study, we will present first results of social sensing experiments to measure rainfall and flooding using a smartphone app. Users of the app are asked to submit rainfall reports by selecting an rainfall class from a pre-defined list of (6) classes, to register time and location and to make a photo of the rainfall. Rainfall photos will be used in a future experiment for automated retrieval of rainfall classes using computer vision techniques. With the experiments we aim to validate rainfall observations made by lay people and to evaluate factors that influence the willingness of users to contribute observations. The results show that users consistently distinguish heavy and extreme rainfall from drizzle and mild rainfall, but have difficulty in making more detailed distinctions. The main factor driving willingness to contribute to the social rainfall sensing experiments is the perceived usefulness of rainfall reporting.

  6. Nondestructive, in-process inspection of inertia friction welding : an investigation into a new sensing technique.

    SciTech Connect

    Hartman, D. A.; Cola, M. J.; Dave, V. R.; Dozhier, N. G.; Carpenter, R. W.

    2002-01-01

    This paper investigates the capabilities of a new sensor for in-process monitoring of quality during friction welding. The non-contact sensor is composed of microphones that are mounted in an aluminum ring which surrounds the weld joint. The sensor collects the acoustical energy (in the form of sound pressure) that is emitted during the plastic deformation and phase transformations (if applicable) in friction welding processes. The focus in this preliminary investigation is to search for and identify features within the acoustical emission that are indicative of bond quality. Bar-to-bar inertia friction welding (one form of friction welding) of copper to 304L stainless steel is used in this proof-of-concept study. This material combination exhibits only marginal weldability and is ideally suited for validating the capabilities of this new sensing technique. A probabilistic neural network is employed in this work to analyze the acoustical emission's frequency spectrum in an attempt to classify acceptable, conditional, and unacceptable welds. Our preliminary findings indicate that quality-based process features do exist within the frequency spectrum of the acoustical signature. The results from this analysis are presented. Future work in improving the sensing and interpretation of the data is discussed in an effort to develop a robust method of quality-based, in-process monitoring of friction welds.

  7. Remote sensing of row crop structure and component temperatures using directional radiometric temperatures and inversion techniques

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.

    1983-01-01

    A physically based sensor response model of a row crop was used as the mathematical framework from which several inversion strategies were tested for extracting row structure information and component temperatures using a series of sensor view angles. The technique was evaluated on ground-based radiometric thermal infrared data of a cotton row crop that covered 48 percent of the ground in the vertical projection. The results showed that the accuracies of the predicted row heights and widths, vegetation temperatures, and soil temperatures of the cotton row crop were on the order of 5 cm, 1 deg, and 2 deg C, respectively. The inversion techniques can be applied to directional sensor data from aircraft platforms and even space platforms if the effects of atmospheric absorption and emission can be corrected. In theory, such inversion techniques can be applied to a wide variety of vegetation types and thus can have significant implications for remote sensing research and applications in disciplines that deal with incomplete vegetation canopies.

  8. Noninvasive glucose sensing in scattering media using OCT, PAS, and TOF techniques

    NASA Astrophysics Data System (ADS)

    Alarousu, Erkki; Hast, Jukka T.; Kinnunen, Matti T.; Kirillin, Mikhail Y.; Myllyla, Risto A.; Plucinski, Jerzy; Popov, Alexey P.; Priezzhev, Alexander V.; Prykari, Tuukka; Saarela, Juha; Zhao, Zuomin

    2004-08-01

    In this paper, optical measurement techniques, which enable non-invasive measurement, are superimposed to glucose sensing in scattering media. Used measurement techniques are Optical Coherence Tomography (OCT), Photoacoustic spectroscopy (PAS) and laser pulse Time-of-Flight (TOF) measurement using a streak camera. In parallel with measurements, a Monte-Carlo (MC) simulation models have been developed. Experimental in vitro measurements were performed using Intralipid fat emulsion as a tissue simulating phantom for OCT and TOF measurements. In PAS measurements, a pork meat was used as a subject but also preliminary in vivo measurements were done. OCT measurement results show that the slope of the OCT signal's envelope changes as a function of glucose content in the scattering media. TOF measurements show that the laser pulse full width of half maximum (FWHM) changes a little as function of glucose content. An agreement with MC-simulations and measurements with Intralipid was also found. Measurement results of PAS technique show that changes in glucose content in the pork meat tissue can be measured. In vivo measurements with a human volunteer show that other factors such as physiological change, blood circulation and body temperature drift may interfere the PA response of glucose.

  9. Feasibility of estimating rice planting area of hilly region in southern China using remote sensing technique

    NASA Astrophysics Data System (ADS)

    Lai, Geying; Yang, Xingwei

    1998-08-01

    The objective of the study (Zhejiang province as study area) was to estimate rice planting area of hilly region in southern part of China by remote sensing technique with NOAA/AVHRR data. The research contents mainly concerned contrast tests on practical approaches, both digital elevation model (DEM) and digital slope model (DSM) derived from the digital relief map were used for the purpose of improving the classification accuracy of AVHRR imagery in large-area hilly region. The results indicated that the accuracy of maximum-likelihood (MLH) classification could satisfy the professional requirements of estimating rice planting area and fuzzy supervised classification based on unmixing AVHRR imagery has better classification accuracy and stability than MLH. In addition, the results through using both DEM and DSM as ancillary categorization data suggests DSM may improve the results of extracting paddy field signatures from AVHRR, particularly may improve the spatial accuracy, while DEM contribute nothing to improve the accuracy mentioned above.

  10. Formulaton of a general technique for predicting pneumatic attenuation errors in airborne pressure sensing devices

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.

    1988-01-01

    Presented is a mathematical model, derived from the Navier-Stokes equations of momentum and continuity, which may be accurately used to predict the behavior of conventionally mounted pneumatic sensing systems subject to arbitrary pressure inputs. Numerical techniques for solving the general model are developed. Both step and frequency response lab tests were performed. These data are compared against solutions of the mathematical model. The comparisons show excellent agreement. The procedures used to obtain the lab data are described. In-flight step and frequency response data were obtained. Comparisons with numerical solutions of the mathematical model show good agreement. Procedures used to obtain the flight data are described. Difficulties encountered with obtaining the flight data are discussed.

  11. Experimental Verification of Dispersed Fringe Sensing as a Segment Phasing Technique using the Keck Telescope

    NASA Technical Reports Server (NTRS)

    Shi, Fang; Ohara, Catherine M.; Chanan, Gary; Troy, Mitch; Redding, Dave C.

    2004-01-01

    Dispersed Fringe Sensing (DFS) is an efficient and robust method for coarse phasing of segmented primary mirrors (from a quarter of a wavelength up to the depth of focus of a single segment, typically several tens of microns). Unlike phasing techniques currently used for ground-based segmented telescopes; this makes it particularly well-suited to the phasing of space-borne segmented telescopes, such as the James Webb Space Telescopes (JWST). In this work we validate DFS by using it to measure the pistons of the segments of one of the Keck telescopes; the results agree with those of the Shack-Hartmann based phasing scheme currently in use at Keck to within 2% over a range of initial piston errors of +/-16 microns.

  12. Formulation of a General Technique for Predicting Pneumatic Attenuation Errors in Airborne Pressure Sensing Devices

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.

    1988-01-01

    Presented is a mathematical model derived from the Navier-Stokes equations of momentum and continuity, which may be accurately used to predict the behavior of conventionally mounted pneumatic sensing systems subject to arbitrary pressure inputs. Numerical techniques for solving the general model are developed. Both step and frequency response lab tests were performed. These data are compared with solutions of the mathematical model and show excellent agreement. The procedures used to obtain the lab data are described. In-flight step and frequency response data were obtained. Comparisons with numerical solutions of the math model show good agreement. Procedures used to obtain the flight data are described. Difficulties encountered with obtaining the flight data are discussed.

  13. Comparison of multispectral remote-sensing techniques for monitoring subsurface drain conditions. [Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Goettelman, R. C.; Grass, L. B.; Millard, J. P.; Nixon, P. R.

    1983-01-01

    The following multispectral remote-sensing techniques were compared to determine the most suitable method for routinely monitoring agricultural subsurface drain conditions: airborne scanning, covering the visible through thermal-infrared (IR) portions of the spectrum; color-IR photography; and natural-color photography. Color-IR photography was determined to be the best approach, from the standpoint of both cost and information content. Aerial monitoring of drain conditions for early warning of tile malfunction appears practical. With careful selection of season and rain-induced soil-moisture conditions, extensive regional surveys are possible. Certain locations, such as the Imperial Valley, Calif., are precluded from regional monitoring because of year-round crop rotations and soil stratification conditions. Here, farms with similar crops could time local coverage for bare-field and saturated-soil conditions.

  14. Application of remote sensing techniques to the geology of the bonanza volcanic center

    NASA Technical Reports Server (NTRS)

    Marrs, R. W.

    1973-01-01

    A program is reported for evaluating remote sensing as an aid to geologic mapping for the past four years. Data tested in this evaluation include color and color infrared photography, multiband photography, low sun-angle photography, thermal infrared scanner imagery, and side-looking airborne radar. The relative utility of color and color infrared photography was tested as it was used to refine geologic maps in previously mapped areas, as field photos while mapping in the field, and in making photogeologic maps prior to field mapping. The latter technique served as a test of the maximum utility of the photography. In this application the photography was used successfully to locate 75% of all faults in a portion of the geologically complex Bonanza volcanic center and to map and correctly identify 93% of all Quaternary deposits and 62% of all areas of Tertiary volcanic outcrop in the area.

  15. Remote sensing of temperature profiles in vegetation canopies using multiple view angles and inversion techniques

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.

    1981-01-01

    A mathematical method is presented which allows the determination of vertical temperature profiles of vegetation canopies from multiple sensor view angles and some knowledge of the vegetation geometric structure. The technique was evaluated with data from several wheat canopies at different stages of development, and shown to be most useful in the separation of vegetation and substrate temperatures with greater accuracy in the case of intermediate and dense vegetation canopies than in sparse ones. The converse is true for substrate temperatures. Root-mean-square prediction accuracies of temperatures for intermediate-density wheat canopies were 1.8 C and 1.4 C for an exact and an overdeterminate system, respectively. The findings have implication for remote sensing research in agriculture, geology or other earth resources disciplines.

  16. A Study of Flood Evacuation Center Using GIS and Remote Sensing Technique

    NASA Astrophysics Data System (ADS)

    Mustaffa, A. A.; Rosli, M. F.; Abustan, M. S.; Adib, R.; Rosli, M. I.; Masiri, K.; Saifullizan, B.

    2016-07-01

    This research demonstrated the use of Remote Sensing technique and GIS to determine the suitability of an evacuation center. This study was conducted in Batu Pahat areas that always hit by a series of flood. The data of Digital Elevation Model (DEM) was obtained by ASTER database that has been used to delineate extract contour line and elevation. Landsat 8 image was used for classification purposes such as land use map. Remote Sensing incorporate with GIS techniques was used to determined the suitability location of the evacuation center from contour map of flood affected areas in Batu Pahat. GIS will calculate the elevation of the area and information about the country of the area, the road access and percentage of the affected area. The flood affected area map may provide the suitability of the flood evacuation center during the several levels of flood. The suitability of evacuation centers can be determined based on several criteria and the existing data of the evacuation center will be analysed. From the analysis among 16 evacuation center listed, there are only 8 evacuation center suitable for the usage during emergency situation. The suitability analysis was based on the location and the road access of the evacuation center toward the flood affected area. There are 10 new locations with suitable criteria of evacuation center proposed on the study area to facilitate the process of rescue and evacuating flood victims to much safer and suitable locations. The results of this study will help in decision making processes and indirectly will help organization such as fire-fighter and the Department of Social Welfare in their work. Thus, this study can contribute more towards the society.

  17. Mapping aboveground woody biomass using forest inventory, remote sensing and geostatistical techniques.

    PubMed

    Yadav, Bechu K V; Nandy, S

    2015-05-01

    Mapping forest biomass is fundamental for estimating CO₂ emissions, and planning and monitoring of forests and ecosystem productivity. The present study attempted to map aboveground woody biomass (AGWB) integrating forest inventory, remote sensing and geostatistical techniques, viz., direct radiometric relationships (DRR), k-nearest neighbours (k-NN) and cokriging (CoK) and to evaluate their accuracy. A part of the Timli Forest Range of Kalsi Soil and Water Conservation Division, Uttarakhand, India was selected for the present study. Stratified random sampling was used to collect biophysical data from 36 sample plots of 0.1 ha (31.62 m × 31.62 m) size. Species-specific volumetric equations were used for calculating volume and multiplied by specific gravity to get biomass. Three forest-type density classes, viz. 10-40, 40-70 and >70% of Shorea robusta forest and four non-forest classes were delineated using on-screen visual interpretation of IRS P6 LISS-III data of December 2012. The volume in different strata of forest-type density ranged from 189.84 to 484.36 m(3) ha(-1). The total growing stock of the forest was found to be 2,024,652.88 m(3). The AGWB ranged from 143 to 421 Mgha(-1). Spectral bands and vegetation indices were used as independent variables and biomass as dependent variable for DRR, k-NN and CoK. After validation and comparison, k-NN method of Mahalanobis distance (root mean square error (RMSE) = 42.25 Mgha(-1)) was found to be the best method followed by fuzzy distance and Euclidean distance with RMSE of 44.23 and 45.13 Mgha(-1) respectively. DRR was found to be the least accurate method with RMSE of 67.17 Mgha(-1). The study highlighted the potential of integrating of forest inventory, remote sensing and geostatistical techniques for forest biomass mapping.

  18. Inversion Techniques for Retrieving Detailed Aerosol Properties from Remote Sensing Observations: Achievements and Perspectives

    NASA Astrophysics Data System (ADS)

    Dubovik, O.

    2010-12-01

    The ability of aerosol particles to interact strongly with electromagnetic radiation makes aerosol one of most climatically important atmospheric component. Remote sensing using the same ability for characterizing properties of atmospheric aerosol is probably the most adequate observational approach for accessing aerosol effect in climatic studies. Indeed, the satellite remote sensing is unique technique allowing monitoring of time variability of the aerosol at regional and global scales. Compare to in situ and laboratory measurements, remote methods do not use aerosol sampling and allow accessing the properties of unperturbed ambient aerosol in the atmospheres. However, interpretation of the remote sensing observations involves data inversion that, in practice, often appears to be a sophisticated procedure leading to rather ambiguous results. Numerous publications offer a wide diversity of approaches suggesting somewhat different inversion methods. Such uncertainty in methodological guidance leads to excessive dependence of retrieval algorithms on the personalized input and preferences of the developer. This presentation highlights a continues effort on developing a concept clarifying the differences between various methods and outlining unified principles addressing such important aspects of inversion optimization as accounting for errors in the data used, inverting the data with different levels of accuracy, accounting for a priori and ancillary information, estimating retrieval errors, etc. The developed concept uses the principles of statistical estimation and suggests a generalized multi-term Least Square type formulation that complementarily unites advantages of a variety of practical inversion approaches, such as Phillips-Tikhonov-Twomey constrained inversion, Kalman filter, Newton-Gauss and Levenberg-Marquardt iterations, optimal estimation, etc. The concept will be demonstrated by successful implementations in several challenging aerosol remote sensing

  19. Advancements in sensing and perception using structured lighting techniques :an LDRD final report.

    SciTech Connect

    Novick, David Keith; Padilla, Denise D.; Davidson, Patrick A. Jr.; Carlson, Jeffrey J.

    2005-09-01

    This report summarizes the analytical and experimental efforts for the Laboratory Directed Research and Development (LDRD) project entitled ''Advancements in Sensing and Perception using Structured Lighting Techniques''. There is an ever-increasing need for robust, autonomous ground vehicles for counterterrorism and defense missions. Although there has been nearly 30 years of government-sponsored research, it is undisputed that significant advancements in sensing and perception are necessary. We developed an innovative, advanced sensing technology for national security missions serving the Department of Energy, the Department of Defense, and other government agencies. The principal goal of this project was to develop an eye-safe, robust, low-cost, lightweight, 3D structured lighting sensor for use in broad daylight outdoor applications. The market for this technology is wide open due to the unavailability of such a sensor. Currently available laser scanners are slow, bulky and heavy, expensive, fragile, short-range, sensitive to vibration (highly problematic for moving platforms), and unreliable for outdoor use in bright sunlight conditions. Eye-safety issues are a primary concern for currently available laser-based sensors. Passive, stereo-imaging sensors are available for 3D sensing but suffer from several limitations : computationally intensive, require a lighted environment (natural or man-made light source), and don't work for many scenes or regions lacking texture or with ambiguous texture. Our approach leveraged from the advanced capabilities of modern CCD camera technology and Center 6600's expertise in 3D world modeling, mapping, and analysis, using structured lighting. We have a diverse customer base for indoor mapping applications and this research extends our current technology's lifecycle and opens a new market base for outdoor 3D mapping. Applications include precision mapping, autonomous navigation, dexterous manipulation, surveillance and

  20. Irrigated rice area estimation using remote sensing techniques: Project's proposal and preliminary results. [Rio Grande do Sul, Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Deassuncao, G. V.; Moreira, M. A.; Novaes, R. A.

    1984-01-01

    The development of a methodology for annual estimates of irrigated rice crop in the State of Rio Grande do Sul, Brazil, using remote sensing techniques is proposed. The project involves interpretation, digital analysis, and sampling techniques of LANDSAT imagery. Results are discussed from a preliminary phase for identifying and evaluating irrigated rice crop areas in four counties of the State, for the crop year 1982/1983. This first phase involved just visual interpretation techniques of MSS/LANDSAT images.

  1. Mapping Tamarix: New techniques for field measurements, spatial modeling and remote sensing

    NASA Astrophysics Data System (ADS)

    Evangelista, Paul H.

    peak growing months. These studies demonstrate that new techniques can further our understanding of tamarisk's impacts on ecosystem processes, predict potential distribution and new invasions, and improve our ability to detect occurrence using remote sensing techniques. Collectively, the results of my studies may increase our ability to map tamarisk distributions and better quantify its impacts over multiple spatial and temporal scales.

  2. High performance optical encryption based on computational ghost imaging with QR code and compressive sensing technique

    NASA Astrophysics Data System (ADS)

    Zhao, Shengmei; Wang, Le; Liang, Wenqiang; Cheng, Weiwen; Gong, Longyan

    2015-10-01

    In this paper, we propose a high performance optical encryption (OE) scheme based on computational ghost imaging (GI) with QR code and compressive sensing (CS) technique, named QR-CGI-OE scheme. N random phase screens, generated by Alice, is a secret key and be shared with its authorized user, Bob. The information is first encoded by Alice with QR code, and the QR-coded image is then encrypted with the aid of computational ghost imaging optical system. Here, measurement results from the GI optical system's bucket detector are the encrypted information and be transmitted to Bob. With the key, Bob decrypts the encrypted information to obtain the QR-coded image with GI and CS techniques, and further recovers the information by QR decoding. The experimental and numerical simulated results show that the authorized users can recover completely the original image, whereas the eavesdroppers can not acquire any information about the image even the eavesdropping ratio (ER) is up to 60% at the given measurement times. For the proposed scheme, the number of bits sent from Alice to Bob are reduced considerably and the robustness is enhanced significantly. Meantime, the measurement times in GI system is reduced and the quality of the reconstructed QR-coded image is improved.

  3. Application of remote sensing techniques to hydrography with emphasis on bathymetry. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Meireles, D. S.

    1980-01-01

    Remote sensing techniques are utilized for the determination of hydrographic characteristics, with emphasis in bathymetry. Two sensor systems were utilized: the Metric Camera Wild RC-10 and the Multispectral Scanner of LANDSAT Satellite (MSS-LANDSAT). From photographs of the metric camera, data of photographic density of points with known depth are obtained. A correlation between the variables density x depth is calculated through a regression straight line. From this line, the depth of points with known photographic density is determined. The LANDSAT MSS images are interpreted automatically in the Iterative Multispectral Analysis System (I-100) with the obtention of point subareas with the same gray level. With some simplifications done, it is assumed that the depth of a point is directly related with its gray level. Subareas with points of the same depth are then determined and isobathymetric curves are drawn. The coast line is obtained through the sensor systems already mentioned. Advantages and limitations of the techniques and of the sensor systems utilized are discussed and the results are compared with ground truth.

  4. Urban Mapping and Growth Prediction using Remote Sensing and GIS Techniques, Pune, India

    NASA Astrophysics Data System (ADS)

    Sivakumar, V.

    2014-11-01

    This study aims to map the urban area in and around Pune region between the year 1991 and 2010, and predict its probable future growth using remote sensing and GIS techniques. The Landsat TM and ETM+ satellite images of 1991, 2001 and 2010 were used for analyzing urban land use class. Urban class was extracted / mapped using supervised classification technique with maximum likelihood classifier. The accuracy assessment was carried out for classified maps. The achieved overall accuracy and Kappa statistics were 86.33 % & 0.76 respectively. Transition probability matrix and area change were obtained using different classified images. A plug-in was developed in QGIS software (open source) based on Markov Chain model algorithm for predicting probable urban growth for the future year 2021. Based on available data set, the result shows that urban area is expected to grow much higher in the year 2021 when compared to 2010. This study provides an insight into understanding of urban growth and aids in subsequent infrastructure planning, management and decision-making.

  5. Geobotanical discrimination of ultramafic parent materials An evaluation of remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Mouat, D. A.; Morrissey, L. A.; Horn, E. M.

    1984-01-01

    Color and color infrared aerial photography and imagery acquired from a Daedalus DEI-1260 multispectral airborne scanner were employed in an investigation to discriminate ultramafic rock types in a test site in southwest Oregon. An analysis of the relationships between vegetation characteristics and parent materials was performed using a vegetation classification and map developed for the project, lithologic information derived from published geologic maps of the region, and terrain information gathered in the field. Several analytical methods, including visual image analysis, band ratioing, principal components analysis, and contrast enhancement and subsequent color composite generation were used in the investigation. There was a close correspondence between vegetation types and major rock types. These were readily discriminated by the remote sensing techniques. It was found that ultramafic rock types were separable from non-ultramafic rock types and serpentine was distinguishable from non-serpentinized peridotite. Further investigations involving spectroradiometric and digital classification techniques are being performed to further identify rock types and to discriminate chromium and nickel-bearing rock types.

  6. Transfer of microstructure pattern of CNTs onto flexible substrate using hot press technique for sensing applications

    SciTech Connect

    Mishra, Prabhash; Harsh

    2013-08-01

    Graphical abstract: - Highlights: • Successfully transfer of microstructure patterned CNTs on PET substrate. • Demonstrate as resistor-based NH{sub 3} gas sensor in the sub-ppm range. • Excellent photodetector having instantaneous response and recovery characteristics. • An effective technique to grow and produce flexible electronic device. - Abstract: In this work, we report the successful and efficient transfer process of two- dimensional (2-D) vertically aligned carbon nanotubes (CNTs) onto polyethylene terephthalate (PET) substrate by hot pressing method with an aim to develop flexible sensor devices. Carbon nanotubes are synthesized by cold wall thermal chemical vapor deposition using patterned SiO{sub 2} substrate under low pressure. The height of the pattern of CNTs is controlled by reaction time. The entire growth and transfer process is carried out within 30 min. Strong adhesion between the nanotube and polyethylene terephthalate substrate was observed in the post-transferred case. Raman spectroscopy and scanning electron microscope (SEM) studies are used to analyze the microstructure of carbon nanotube film before and after hot pressing. This technique shows great potential for the fabrication of flexible sensing devices. We report for the first time, the application of patterned microstructure developed by this technique in the development of gas sensor and optoelectronic device. Surface resistive mode is used for detection of ammonia (NH{sub 3}) gas in the sub-ppm range. An impressive photoconducting response is also observed in the visible wavelength. The reproducibility of the sample was checked and the results indicate the possibility of use of carbon nanotube as gas sensor, photodetector, CCDs etc.

  7. Yangon River Geomorphology Identification and its Enviromental Imapacts Analsysi by Optical and Radar Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Lwin, A.; Khaing, M. M.

    2012-07-01

    The Yangon river, also known as the Rangoon river, is about 40 km long (25miles), and flows from southern Myanmar as an outlet of the Irrawaddy (Ayeyarwady) river into the Ayeyarwady delta. The Yangon river drains the Pegu Mountains; both the Yangon and the Pathein rivers enter the Ayeyarwady at the delta. Fluvial geomorphology is based primarily on rivers of manageable dimensions. The emphasis is on geomorphology, sedimentology of Yangon river and techniques for their identification and management. Present techniques such as remote sensing have made it easier to investigate and interpret in details analysis of river geomorphology. In this paper, attempt has been made the complicated issues of geomorphology, sedimentation patterns and management of river system and evolution studied. The analysis was carried out for the impact of land use/ land cover (LULC) changes on stream flow patterns. The hydrologic response to intense, flood producing rainfall events bears the signatures of the geomorphic structure of the channel network and of the characteristic slope lengths defining the drainage density of the basin. The interpretation of the hydrologic response as the travel time distribution of a water particle randomly injected in a distributed manner across the landscape inspired many geomorphic insights. In 2008, Cyclone Nargis was seriously damaged to mangrove area and its biodiversity system in and around of Yangon river terraces. A combination of digital image processing techniques was employed for enhancement and classification process. It is observed from the study that middle infra red band (0.77mm - 0.86mm) is highly suitable for mapping mangroves. Two major classes of mangroves, dense and open mangroves were delineated from the digital data.

  8. Propagation Limitations in Remote Sensing.

    DTIC Science & Technology

    Contents: Multi-sensors and systems in remote sensing ; Radar sensing systems over land; Remote sensing techniques in oceanography; Influence of...propagation media and background; Infrared techniques in remote sensing ; Photography in remote sensing ; Analytical studies in remote sensing .

  9. Multiplexing technique using amplitude-modulated chirped fibre Bragg gratings with applications in two-parameter sensing

    NASA Astrophysics Data System (ADS)

    Wong, Allan C. L.; Childs, Paul A.; Peng, Gang-Ding

    2007-11-01

    A multiplexing technique using amplitude-modulated chirped fibre Bragg gratings (AMCFBGs) is presented. This technique realises the multiplexing of spectrally overlapped AMCFBGs with identical centre Bragg wavelength and bandwidth. Since it is fully compatible with the wavelength division multiplexing scheme, the number of gratings that can be multiplexed can be increased by several times. The discrete wavelet transform is used to demodulate such multiplexed signal. A wavelet denoising technique is applied to the multiplexed signal in conjunction with the demodulation. Strain measurements are performed to experimentally demonstrate the feasibility of this multiplexing technique. The absolute error and crosstalk are measured. An application to simultaneous two-parameter sensing is also demonstrated.

  10. The investigation of advanced remote sensing, radiative transfer and inversion techniques for the measurement of atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Deepak, Adarsh; Wang, Pi-Huan

    1985-01-01

    The research program is documented for developing space and ground-based remote sensing techniques performed during the period from December 15, 1977 to March 15, 1985. The program involved the application of sophisticated radiative transfer codes and inversion methods to various advanced remote sensing concepts for determining atmospheric constituents, particularly aerosols. It covers detailed discussions of the solar aureole technique for monitoring columnar aerosol size distribution, and the multispectral limb scattered radiance and limb attenuated radiance (solar occultation) techniques, as well as the upwelling scattered solar radiance method for determining the aerosol and gaseous characteristics. In addition, analytical models of aerosol size distribution and simulation studies of the limb solar aureole radiance technique and the variability of ozone at high altitudes during satellite sunrise/sunset events are also described in detail.

  11. AHIMSA - Ad hoc histogram information measure sensing algorithm for feature selection in the context of histogram inspired clustering techniques

    NASA Technical Reports Server (NTRS)

    Dasarathy, B. V.

    1976-01-01

    An algorithm is proposed for dimensionality reduction in the context of clustering techniques based on histogram analysis. The approach is based on an evaluation of the hills and valleys in the unidimensional histograms along the different features and provides an economical means of assessing the significance of the features in a nonparametric unsupervised data environment. The method has relevance to remote sensing applications.

  12. Spatial and functional characterization, identification and assessment of isolated wetlands in Alachua County, Florida, USA - GIS and remote sensing techniques

    EPA Science Inventory

    In this study, Geographic Information Systems (GIS) and remote sensing mapping techniques were developed to identify the locations of isolated wetlands in Alachua County, FL, a 2510 sq km area in north-central Florida with diverse geology and numerous isolated wetlands. The resul...

  13. Environmental modelling of Omerli catchment area in Istanbul, Turkey using remote sensing and GIS techniques.

    PubMed

    Coskun, H Gonca; Alparslan, Erhan

    2009-06-01

    Omerli Reservoir is one of the major drinking water reservoirs of Greater Metropolis Istanbul, providing 40% of the overall water demand. Istanbul where is one of the greatest metropolitan areas of the world with a population over 10 million and a rate of population increase about twice that of Turkey. As a result of population growth and industrial development, Omerli watershed is highly affected by the wastewater discharges from the residential areas and industrial plants. The main objective of this study is to investigate the temporal assessment of the land-use/cover of the Omerli Watershed and the water quality changes in the Reservoir. It is not possible to adequately control urbanization and other pollution sources affecting the water quality. Responses of these detrimental effects are due to rapidly increasing population, unplanned and illegal housing, and irrelevant industries at the protection zones of the watershed, together with insufficient infrastructure. The study is focused on the assessment of urbanization in relation to land use and water quality using Remote Sensing (RS) and Geographic Information Systems (GIS) techniques for all the four protection zones of the Reservoir and a time variant analyzing model is obtained. IRS-1C LISS and IRS-1C PAN, LANDSAT-5 TM satellite data of 1997, 1998, 2000, 2001 and 2006 are analyzed by confirmation through the ground truth data. RS data have been transferred into UTM coordinate system and image enhancement and classification techniques were used. Raster data were converted to vector data that belongs to study area to analyze in GIS for the purpose of planning and decision-making on protected watersheds.

  14. Detecting Subsurface Agricultural Tile Drainage using GIS and Remote Sensing Technique

    NASA Astrophysics Data System (ADS)

    Budhathoki, M.; Gokkaya, K.; Tank, J. L.; Christopher, S. F.; Hanrahan, B.

    2015-12-01

    Subsurface tile drainage is a common practice in many of the row crop dominated agricultural lands in the Upper Midwest, which increases yield by making the soil more productive. It is reported that nearly half of all cropland in Indiana benefits from some sort of artificial drainage. However, subsurface tile has a significant negative impact on surface water quality by providing a fast means of transport for nutrients from fertilizers. Therefore, generating spatial data of tile drainage in the field is important and useful for agricultural landscape and hydrological studies. Subsurface tile drains in Indiana's croplands are not widely mapped. In this study, we will delineate subsurface tile drainage in agricultural land in Shatto Ditch watershed, located in Kosciusko County, Indiana. We will use geo-spatial methodology, which was purposed by earlier researchers to detect tile drainage. We will use aerial color-infrared and satellite imagery along with Light Detection and Ranging (LiDAR) data. In order to map tile lines with possible accuracy, we will use GIS-based analysis in combination with remotely sensed data. This research will be comprised of three stages: 1) masking out the potential drainage area using a decision tree rule based on land cover information, soil drainage category, surface slope, and satellite image differencing technique, 2) delineate tile lines using image processing techniques, and 3) check the accuracy of mapped tile lines with ground control points. To our knowledge, this study will be the first to check the accuracy of mapping with ground truth data. Based on the accuracy of results, we will extend the methodology to greater spatial scales. The results are expected to contribute to better characterizing and controlling water pollution sources in Indiana, which is a major environmental problem.

  15. An ameliorative technique for distributed Brillouin-based fiber optics sensing

    NASA Astrophysics Data System (ADS)

    Yang, Xing-hong; Li, Yong-qian; Yang, Zhi; Yoshino, Toshihiko

    2008-12-01

    This paper reports an ameliorative technique for distributed fiber optics sensing based on Brillouin optical time-domain reflectometry (BOTDR) and Brillouin optical-fiber time-domain analysis (BOTDA). Because the electro-optic modulator in BOTDR system has a finite extinction ratio, the pulsed laser always contains a CW component, which is hereafter called leakage. The frequency of the leakage is pv which is the same as that of the pulse, and the frequency of the Stokes wave is sv. The frequency of the acoustic wave bv at each point along the fiber matches the beat frequency of the leakage and the Stokes wave. As a result, when given an appropriate extinction ratio, the leakage will have a biggish effect on the Stokes wave, which is the same as the function between the continuous wave and the Stokes in BOTDA system. The Stokes component in spontaneous Brillouin scattering (SPBS) is amplified by the leakage along the distance when it backs to the laser end, which is the well known stimulated Brillouin scattering (SBS) phenomena. So long as the distance from the point where the SPBS engender to the laser end is long, the intensity of the SBS signal is relatively large owing to the longer amplified interval. In BOTDR system, when setting the extinction ratio at 20dB, using the SBS signal we can achieve a SNR which is approximately 5 dB greater than that of traditional system and the dynamic range performance 3 dB greater. Utilizing this new technique in BOTDR system it also has an ascendency compared with BOTDA system in respect that it access to only one end of the fiber with probe pulse light.

  16. Coastal geomorphological change monitoring by remote sensing techniques in Nouakchott, Mauritania

    NASA Astrophysics Data System (ADS)

    Wu, Weicheng; Courel, Marie-Francoise; Le Rhun, Jeannine

    2003-03-01

    Since the construction of a harbour, Port de l'Amitie, an important importation gate for Nouakchott in 1987, the previous coast dynamic equilibrium had been destroyed and thus a significant littoral geomorphological change has occurred, which has produced a severe degradation of the littoral and urban environment. Our research is focused on this coastal environmental change monitoring and its potential evolution estimation by remote sensing techniques using multi-temporal SPOT images and Markov chain analysis. The objectives of this study are to understand coastline evolution particularities, measure geomorphological change rates, evaluate life-span of the harbour, produce useful data for the government to control the environment degradation and provide reference for the future similar coastal engineering. According to our research, the north beach of the harbour has extended by 0.92km2 (91.6ha) from 1989 to 2001 and the accretion will probably reach its maximum limit in about 13.4 +/- 0.5 years (in 2014-2015) and the harbour will arrive at the end of service. The south sandbar has been eroded by 1.34km2 (134ha) and the coastline has landward retreated at the maximum by 362m. Another 0.91km2 of land will be nibbled by seawater in the next 10 years. This erosion has caused several times inundation into the suburb and urban areas, provoking a deterioration of the urban environment.

  17. Feasibility study for locating archaeological village sites by satellite remote sensing techniques. [multispectral photography of Alaska

    NASA Technical Reports Server (NTRS)

    Cook, J. P. (Principal Investigator); Stringer, W. J.

    1974-01-01

    The author has identified the following significant results. The objective is to determine the feasibility of detecting large Alaskan archaeological sites by satellite remote sensing techniques and mapping such sites. The approach used is to develop digital multispectral signatures of dominant surface features including vegetation, exposed soils and rock, hydrological patterns and known archaeological sites. ERTS-1 scenes are then printed out digitally in a map-like array with a letter reflecting the most appropriate classification representing each pixel. Preliminary signatures were developed and tested. It was determined that there was a need to tighten up the archaeological site signature by developing accurate signatures for all naturally-occurring vegetation and surface conditions in the vicinity of the test area. These second generation signatures have been tested by means of computer printouts and classified tape displays on the University of Alaska CDU-200 and by comparison with aerial photography. It has been concluded that the archaeological signatures now in use are as good as can be developed. Plans are to print out signatures for the entire test area and locate on topographic maps the likely locations of archaeological sites within the test area.

  18. Estimation of flooded area in the Bahr El-Jebel basin using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Shamseddin, M. A. H.; Hata, T.; Tada, A.; Bashir, M. A.; Tanakamaru, T.

    2006-07-01

    In spite of the importance of Sudd (swamp) area estimation for any hydrological project in the southern Sudan, yet, no abroad agreement on its size, due to the inaccessibility and civil war. In this study, remote sensing techniques are used to estimate the Bahr El-Jebel flooded area. MODIS-Terra (Moderate Resolution Imaging Spectroradiometer) level 1B satellite images are analyzed on basis of the unsupervised classification method. The annual mean of Bahr El-Jebel flooded area has been estimated at 20 400 km2, which is 96% of Sutcliffe and Park (1999) estimation on basis of water balance model prediction. And only, 53% of SEBAL (Surface Energy Balance Algorithm for Land) model estimation. The accuracy of the classification is 71%. The study also found the swelling and shrinkage pattern of Sudd area throughout the year is following the trends of Lake Victoria outflow patterns. The study has used two evaporation methods (open water evaporation and SEBAL model) to estimate the annual storage volume of Bahr El-Jebel River by using a water balance model. Also the storage changes due time is generated throughout the study years.

  19. Development of an Electrochemical Sensing Technique for Rapid Genotyping of Hepatitis B Virus

    PubMed Central

    Chen, Jinyuan; Weng, Shaohuang; Chen, Qingqiong; Liu, Ailin; Wang, Fengqing; Chen, Jing; Yi, Qiang; Liu, Qicai; Lin, Xinhua

    2014-01-01

    Objective To develop a convenient; sensitive; accurate; and economical technique for genotyping of hepatitis B viruses (HBVs). Methods The mercapto-modified B1; B2; C1; and C2-specific genotyping probes consisted of two probes for each HBV genotype that served as a double verification system. These probes were fixed on the surface of No. 1; 2; 3; and 4 gold electrodes; respectively; via Au-S bonds. Different charge generated by the binding of RuHex to phosphate groups of the DNA backbone before and after hybridization was used for distinguishing the different genotypes. Results During hybridization with genotype B; the charges detected at the No. 1 and 2 electrodes were significantly increased; while the charge at the No. 3 and 4 electrodes did not change significantly. During hybridization with genotype C; the charges detected at No. 3 and 4 electrodes were significantly increased; while the signals remained unchanged at the No. 1 and 2 electrodes. During hybridization with mixed genotypes (B and C); the charges detected at all four electrodes were significantly increased. The linear range of detection was 10−7 to 10−10 mol/L and the sensitivity for detecting mixed B (10%) or C (10%). Conclusions Rapid genotyping of HBVs based on electrochemical sensing is simple, has good specificity; and can greatly reduce the cost. This method can be used for sensitive detection of mixed B and C HBV genotypes. PMID:24658623

  20. Inverse transport problem solvers based on regularized and compressive sensing techniques

    SciTech Connect

    Cheng, Y.; Cao, L.; Wu, H.; Zhang, H.

    2012-07-01

    According to the direct exposure measurements from flash radiographic image, regularized-based method and compressive sensing (CS)-based method for inverse transport equation are presented. The linear absorption coefficients and interface locations of objects are reconstructed directly at the same time. With a large number of measurements, least-square method is utilized to complete the reconstruction. Owing to the ill-posedness of the inverse problems, regularized algorithm is employed. Tikhonov method is applied with an appropriate posterior regularization parameter to get a meaningful solution. However, it's always very costly to obtain enough measurements. With limited measurements, CS sparse reconstruction technique Orthogonal Matching Pursuit (OMP) is applied to obtain the sparse coefficients by solving an optimization problem. This paper constructs and takes the forward projection matrix rather than Gauss matrix as measurement matrix. In the CS-based algorithm, Fourier expansion and wavelet expansion are adopted to convert an underdetermined system to a well-posed system. Simulations and numerical results of regularized method with appropriate regularization parameter and that of CS-based agree well with the reference value, furthermore, both methods avoid amplifying the noise. (authors)

  1. Dynamic drought risk assessment using crop model and remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Sun, H.; Su, Z.; Lv, J.; Li, L.; Wang, Y.

    2017-02-01

    Drought risk assessment is of great significance to reduce the loss of agricultural drought and ensure food security. The normally drought risk assessment method is to evaluate its exposure to the hazard and the vulnerability to extended periods of water shortage for a specific region, which is a static evaluation method. The Dynamic Drought Risk Assessment (DDRA) is to estimate the drought risk according to the crop growth and water stress conditions in real time. In this study, a DDRA method using crop model and remote sensing techniques was proposed. The crop model we employed is DeNitrification and DeComposition (DNDC) model. The drought risk was quantified by the yield losses predicted by the crop model in a scenario-based method. The crop model was re-calibrated to improve the performance by the Leaf Area Index (LAI) retrieved from MODerate Resolution Imaging Spectroradiometer (MODIS) data. And the in-situ station-based crop model was extended to assess the regional drought risk by integrating crop planted mapping. The crop planted area was extracted with extended CPPI method from MODIS data. This study was implemented and validated on maize crop in Liaoning province, China.

  2. Impacts of soil sealing on potential agriculture in Egypt using remote sensing and GIS techniques

    NASA Astrophysics Data System (ADS)

    Mohamed, Elsayed Said; Belal, Abdelaziz; Shalaby, Adel

    2015-10-01

    This paper highlights the impacts of soil sealing on the agricultural soils in Nile Delta using remote sensing and GIS. The current work focuses on two aims. The first aim is to evaluate soil productivity lost to urban sprawl, which is a significant cause of soil sealing in Nile Delta. The second aim is to evaluate the Land Use and Land Cover Changes (LU LC) from 2001 to 2013 in El-Gharbia governorate as a case study. Three temporal data sets of images from two different sensors: Landsat 7 Enhanced Thematic Mapper (ETM+) with 30 m resolution acquired in 2001 and Landsat 8 acquired in 2013 with 30 m resolution, and Egypt sat acquired in 2010 with 7.8 m resolution, consequently were used. Four different supervised classification techniques (Maximum Likelihood (ML), Minimum Distance, Neural Networks (NN); and Support Vector Machine (SVM) were applied to monitor the changes of LULC in the investigated area. The results showed that the agricultural soils of the investigated area are characterized by high soil productivity depending on its chemical and physical properties. During 2010-2013, soil sealing took place on 1397 ha from the study area which characterized by soil productivity classes ranging between I and II. It is expected that the urban sprawl will be increased to 12.4% by 2020 from the study area, which means that additional 3400 ha of productive soils will be lost from agriculture. However, population growth is the most significant factor effecting urban sprawl in Nile Delta.

  3. Development of mathematical techniques for the assimilation of remote sensing data into atmospheric models

    NASA Technical Reports Server (NTRS)

    Seinfeld, J. H. (Principal Investigator)

    1982-01-01

    The problem of the assimilation of remote sensing data into mathematical models of atmospheric pollutant species was investigated. The problem is posed in terms of the matching of spatially integrated species burden measurements to the predicted three dimensional concentration fields from atmospheric diffusion models. General conditions are derived for the "reconstructability' of atmospheric concentration distributions from data typical of remote sensing applications, and a computational algorithm (filter) for the processing of remote sensing data is developed.

  4. Development of mathematical techniques for the assimilation of remote sensing data into atmospheric models

    NASA Technical Reports Server (NTRS)

    Seinfeld, J. H. (Principal Investigator)

    1982-01-01

    The problem of the assimilation of remote sensing data into mathematical models of atmospheric pollutant species was investigated. The data assimilation problem is posed in terms of the matching of spatially integrated species burden measurements to the predicted three-dimensional concentration fields from atmospheric diffusion models. General conditions were derived for the reconstructability of atmospheric concentration distributions from data typical of remote sensing applications, and a computational algorithm (filter) for the processing of remote sensing data was developed.

  5. Water impact studies. [impact of remote sensing techniques on management storage, flow, and delivery of California water

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.

    1973-01-01

    An investigation has begun into the potential impact of using modern remote sensing techniques as an aid in managing, even on a day-to-day basis, the storage, flow, and delivery of water made available through the California Water Project. It is obvious that the amount of this impact depends upon the extent to which remote sensing is proven to be useful in improving predictions of both the amount of water that will be available and the amount that will be needed. It is also proposed to investigate the potential impact of remote sensing techniques as an aid in monitoring, and perhaps even in directing, changes in land use and life style being brought about through the increased availability of water in central and southern California as a result of the California Water Project. The impact of remote sensing can be of appreciable significance only if: (1) the induced changes are very substantial ones; (2) remote sensing is found, in this context, to be very useful and potentially very cost effective; and (3) resource managers adopt this new technology. Analyses will be conducted of the changing economic bases and the new land use demands resulting from increased water availability in central and southern California.

  6. Comparing the effects of Different Remote Sensing Techniques for Extracting Deciduous Broadleaf Phenology

    NASA Astrophysics Data System (ADS)

    Ilushin, D.; Richardson, A. D.; Toomey, M. P.; Pless, R.; Shapiro, A.

    2013-12-01

    Vegetation phenology, annual life cycles of plants, provides a key feedback with climate variability and change and is an important parameter in land surface models used to predict global climate. As such, there is a need to track the rhythm of the seasons with more detail. Common remote sensing methods used to track phenology are limited by their coarse temporal and/or spatial resolutions. Alternatively, I look to explore the usability of publicly available 'webcams' as an indicator of phenological trends. More specifically, I address the question of how this new measurement relates to that of satellite imagery, a common technique for remote sensing of phenology. I have used a subset of images from publically available, geo-referenced webcams from the Archive of Many Outdoor Scenes, a repository maintained by faculty at Washington University in St. Louis, as my test data. From the GCC (Greenness Chromatic Coordinate, or average greenness) time series produced from each of the 685 cameras used, I extract the phenological transition dates calculated for both spring and fall using curve fitting or threshold methods and compared these values to corresponding dates extracted from satellite imagery. Firstly, I look to the efficacy of reproducing reliable dates of phenological transition from data with missing information, with preliminary results showing that up to twenty percent of data can be missing while still resulting in reliable results. Next, I determine the relationship of differing date extraction methods on the webcams to find out their utility in arriving at dates that correspond with visual cues of phenological dates. These phenologically derived dates are further compared with their corresponding satellite imagery dates to find whether or not there exist prevailing biases between measurements calculated using the near-infrared and visual spectrum versus solely the visual spectrum. Lastly, the resulting information is compared geospatially to look for both

  7. Applications of remote sensing techniques to county land use and flood hazard mapping

    NASA Technical Reports Server (NTRS)

    Clark, R. B.; Conn, J. S.; Miller, D. A.; Mouat, D. A.

    1975-01-01

    The application of remote sensing in Arizona is discussed. Land use and flood hazard mapping completed by the Applied Remote Sensing Program is described. Areas subject to periodic flood inundation are delineated and land use maps monitoring the growth within specific counties are provided.

  8. Morphotectonics of the Jamini River basin, Bundelkhand Craton, Central India; using remote sensing and GIS technique

    NASA Astrophysics Data System (ADS)

    Prakash, K.; Mohanty, T.; Pati, J. K.; Singh, S.; Chaubey, K.

    2016-12-01

    Morphological and morphotectonic analyses have been used to obtain information that influence hydrographic basins, predominantly these are modifications of tectonic elements and the quantitative description of landforms. Discrimination of morphotectonic indices of active tectonics of the Jamini river basin consists the analyses of asymmetry factor, ruggedness number, basin relief, gradient, basin elongation ratio, drainage density analysis, and drainage pattern analysis, which have been completed for each drainage basin using remote sensing and GIS techniques. The Jamini river is one of the major tributaries of the Betwa river in central India. The Jamini river basin is divided into five subwatersheds viz. Jamrar, Onri, Sainam, Shahzad and Baragl subwatershed. The quantitative approach of watershed development of the Jamini river basin, and its four sixth (SW1-SW4) and one fifth (SW5) order subwatersheds, was carried out using Survey of India toposheets (parts of 54I, 54K, 54L, 54O, and 54P), Landsat 7 ETM+, ASTER (GDEM) data, and field data. The Jamini river has low bifurcation index which is a positive marker of tectonic imprint on the hydrographic network. The analyses show that the geomorphological progression of the study area was robustly influenced by tectonics. The analysis demonstrates to extensional tectonics system with the following alignments: NE-SW, NW-SE, NNE-SSW, ENE-WSW, E-W, and N-S. Three major trends are followed by lower order streams viz. NE-SW, NW-SE, and E-W directions which advocate that these tectonic trends were active at least up to the Late Pleistocene. The assessment of morphotectonic indices may be used to evaluate the control of active faults on the hydrographic system. The analysis points out westward tilting of the drainage basins with strong asymmetry in some reaches, marked elongation ratio of subwatersheds, and lower order streams having close alignment with lineaments (active faults). The study facilitated to considerate the

  9. Droplet sensing using small and compact high-Q planar resonator based on impedance matching technique.

    PubMed

    Lee, Hee-Jo; Yook, Jong-Gwan

    2016-09-01

    In this paper, we demonstrate the sensing feasibility of the proposed high-Q resonator using a phosphate-buffered saline droplet at microwave frequencies. In the experimental results, the resonant frequency, signal level, and Q-factor of the S21-parameter with and without a 1-μl droplet were changed to about 230 MHz, 32 dB, and 1500, respectively. The resonator system was found to be suitable for droplet sensing with a small volume due to its small and compact scheme. This resonator system is expected to play an important role in droplet sensing with different dielectric constants.

  10. Droplet sensing using small and compact high-Q planar resonator based on impedance matching technique

    NASA Astrophysics Data System (ADS)

    Lee, Hee-Jo; Yook, Jong-Gwan

    2016-09-01

    In this paper, we demonstrate the sensing feasibility of the proposed high-Q resonator using a phosphate-buffered saline droplet at microwave frequencies. In the experimental results, the resonant frequency, signal level, and Q-factor of the S21-parameter with and without a 1-μl droplet were changed to about 230 MHz, 32 dB, and 1500, respectively. The resonator system was found to be suitable for droplet sensing with a small volume due to its small and compact scheme. This resonator system is expected to play an important role in droplet sensing with different dielectric constants.

  11. Alignment signal extraction of the optically degenerate RSE interferometer using the wave front sensing technique

    NASA Astrophysics Data System (ADS)

    Sato, S.; Kawamura, S.

    2008-07-01

    The alignment sensing and control scheme of the resonant sideband extraction interferometer is still an unsettled issue for the next-generation gravitational wave antennas. The issue is that it is difficult to extract separate error signals for all 12 angular degrees of freedom, which is mainly arising from the complexity of the optical system and cavity 'degeneracy'. We have suggested a new sensing scheme giving reasonably separated signals which is fully compatible with the length sensing scheme. The key of this idea is to resolve the 'degeneracy' of the optical cavities. By choosing an appropriate Gouy phase for the degenerate cavities, alignment error signals with much less admixtures can be extracted.

  12. The application of remote sensing techniques to inter and intra urban analysis

    NASA Technical Reports Server (NTRS)

    Horton, F. E.

    1972-01-01

    This is an effort to assess the applicability of air and spaceborne photography toward providing data inputs to urban and regional planning, management, and research. Through evaluation of remote sensing inputs to urban change detection systems, analyzing an effort to replicate an existing urban land use data file using remotely sensed data, estimating population and dwelling units from imagery, and by identifying and evaluating a system of urban places ultilizing space photography, it was determined that remote sensing can provide data concerning land use, changes in commercial structure, data for transportation planning, housing quality, residential dynamics, and population density.

  13. Monitoring soil moisture patterns in alpine meadows using ground sensor networks and remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Bertoldi, Giacomo; Brenner, Johannes; Notarnicola, Claudia; Greifeneder, Felix; Nicolini, Irene; Della Chiesa, Stefano; Niedrist, Georg; Tappeiner, Ulrike

    2015-04-01

    Soil moisture content (SMC) is a key factor for numerous processes, including runoff generation, groundwater recharge, evapotranspiration, soil respiration, and biological productivity. Understanding the controls on the spatial and temporal variability of SMC in mountain catchments is an essential step towards improving quantitative predictions of catchment hydrological processes and related ecosystem services. The interacting influences of precipitation, soil properties, vegetation, and topography on SMC and the influence of SMC patterns on runoff generation processes have been extensively investigated (Vereecken et al., 2014). However, in mountain areas, obtaining reliable SMC estimations is still challenging, because of the high variability in topography, soil and vegetation properties. In the last few years, there has been an increasing interest in the estimation of surface SMC at local scales. On the one hand, low cost wireless sensor networks provide high-resolution SMC time series. On the other hand, active remote sensing microwave techniques, such as Synthetic Aperture Radars (SARs), show promising results (Bertoldi et al. 2014). As these data provide continuous coverage of large spatial extents with high spatial resolution (10-20 m), they are particularly in demand for mountain areas. However, there are still limitations related to the fact that the SAR signal can penetrate only a few centimeters in the soil. Moreover, the signal is strongly influenced by vegetation, surface roughness and topography. In this contribution, we analyse the spatial and temporal dynamics of surface and root-zone SMC (2.5 - 5 - 25 cm depth) of alpine meadows and pastures in the Long Term Ecological Research (LTER) Area Mazia Valley (South Tyrol - Italy) with different techniques: (I) a network of 18 stations; (II) field campaigns with mobile ground sensors; (III) 20-m resolution RADARSAT2 SAR images; (IV) numerical simulations using the GEOtop hydrological model (Rigon et al

  14. Applying remote sensing and GIS techniques in solving rural county information needs

    NASA Technical Reports Server (NTRS)

    Johannsen, Chris J.; Fernandez, R. Norberto; Lozano-Garcia, D. Fabian

    1992-01-01

    The project designed was to acquaint county government officials and their clientele with remote sensing and GIS products that contain information about land conditions and land use. Other users determined through the course of this project were federal agencies working at the county level, agricultural businesses and others in need of spatial information. The specific project objectives were: (1) to investigate the feasibility of using remotely sensed data to identify and quantify specific land cover categories and conditions for purposes of tax assessment, cropland area measurements and land use evaluation; (2) to investigate the use of satellite remote sensing data as an aid in assessing soil management practices; and (3) to evaluate the use of remotely sensed data to assess soil resources and conditions which affect productivity.

  15. New remote sensing techniques facilitate study of earth's far-flung volcanos

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter J.; Pieri, David C.

    1990-01-01

    The study of volcanos using remote sensing is discussed. The dynamics of volcanic eruptions and the interactions between volcanos and the atmosphere and ecosphere are examined. Remote sensing equipment can effectively detect mud flows, pyroclastic falls, debris avalanches, lava flows, and hazards to aircraft from eruption plumes. Consideration is given to the use of thermal IR imaging, weather satellites, and polar-orbiting satellites to study such features as lava flow, silica content, and SO2 distribution.

  16. Multiple-image encryption by space multiplexing based on compressive sensing and the double-random phase-encoding technique.

    PubMed

    Deepan, B; Quan, C; Wang, Y; Tay, C J

    2014-07-10

    In this paper, a new multiple-image encryption and decryption technique that utilizes the compressive sensing (CS) concept along with a double-random phase encryption (DRPE) has been proposed. The space multiplexing method is employed for integrating multiple-image data. The method, which results in a nonlinear encryption system, is able to overcome the vulnerability of classical DRPE. The CS technique and space multiplexing are able to provide additional key space in the proposed method. A numerical experiment of the proposed method is implemented and the results show that the proposed method has good accuracy and is more robust than classical DRPE. The proposed system is also employed against chosen-plaintext attacks and it is found that the inclusion of compressive sensing enhances robustness against the attacks.

  17. Laboratory and Field Application of River Depth Estimation Techniques Using Remotely Sensed Data: Annual Report Year 1

    DTIC Science & Technology

    2013-09-30

    Estimation Techniques Using Remotely Sensed Data: Annual Report Year 1 Jonathan M. Nelson US Geological Survey National Research Program Geomorphology ...NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US Geological Survey National Research Program, Geomorphology and Sediment Transport Laboratory...Survey Geomorphology and Sediment Transport Laboratory (GSTL). The IR camera was mounted on a rack ~1m above the surface of the flow and oriented so that

  18. Experimental validation of a millimeter wave radar technique to remotely sense atmospheric pressure at the Earth's surface

    NASA Technical Reports Server (NTRS)

    Flower, D. A.; Peckham, G. E.; Bradford, W. J.

    1984-01-01

    Experiments with a millimeter wave radar operating on the NASA CV-990 aircraft which validate the technique for remotely sensing atmospheric pressure at the Earth's surface are described. Measurements show that the precise millimeter wave observations needed to deduce pressure from space with an accuracy of 1 mb are possible, that sea surface reflection properties agree with theory and that the measured variation of differential absorption with altitude corresponds to that expected from spectroscopic models.

  19. Development of a remote sensing technique to study the hydrology of earth stock tanks on a semiarid watershed

    NASA Technical Reports Server (NTRS)

    Cluff, C. B.; Lovely, C. J.

    1974-01-01

    The stock tanks considered are relatively small earthen reservoirs, built in tributary stream channels and drainageways. A remote sensing technique is developed for obtaining quantitative data on water levels and water losses from stock tanks. Details of the used approaches are discussed along with some difficulties which would have to be overcome in order to determine the effects of the stock tanks on stream flow.

  20. Application of Remote Sensing Technique to Suspended Sediment Estimation of Pinan River, Eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, Y. S.; Chang, C. P.

    2014-12-01

    Because of the rapid compression between the Eurasian Plate and the Philippine Sea Plate, the Central Range of the Taiwan Island continued to quickly uplift. Moreover, because of being located in the subtropical area, Taiwan has abundant rainfall, and has distinct wet and dry season. Typhoons which almost brought violent rain, struck Taiwan average four times a year during the summer. This extreme tectonic and weather condition makes that a large number of sediments easily to be taken away from the mountainous area and output to the downstream estuary in a short time. These eroded sediments can be classified into two categories. One is bedrock sediments, and the other is suspended sediments which could be detected by the satellite remote sensing technique. In previous studies, some suspended sediment concentration (SSC) predictions were carried out by using optical satellites imagery in different areas. As we know, the more suspension sediment in water can directly reflect the higher reflectance of solar radiation. In addition, the exact form of the relationship between SSC and reflectance also depends on the mineralogy, color, and size of the sediments. Therefore, most studies developed unique relationships by relating field measurements of SSC to reflectance data from satellite imagery. The Pinan River is the largest river in eastern Taiwan. It rises in the Central Range and flows through Taitung County for 84 kilometers. Statistically, in Taiwan, more than 40 percent typhoons struck and landed from the Pinan River watershed. Abundant rainfall coupled with short channel caused plenty of sediments output from the Pinan River. In this study, we focus on Pinan River estuary by using SSC field data which was got from the Hydrological Year Book of Taiwan published by Water Resources Agency every year. Because of lack of field data, we got daily river discharge to establish the Rating Curve and predict daily SSC. Moreover, we also used FORMOSAT-2 imagery in band 3 and

  1. Monitoring changes in riverine forests of Sindh-Pakistan using remote sensing and GIS techniques

    NASA Astrophysics Data System (ADS)

    Siddiqui, M. N.; Jamil, Z.; Afsar, J.

    Depletion in the forest area threatens the sustainability of agricultural production systems and en-dangers the economy of the country. Every year extensive areas of arable agricultural and forestlands are degraded and turned into wastelands over time, due to natural causes or human interventions. Depletion in forest cover, therefore, has an important impact on socio-economic development and ecological balance. High population growth rate in Pakistan is one of the main causes for rapid deterioration of the physical environment and natural resource base. In view of this, it was felt necessary to carryout landuse studies focusing on mapping the past and present conditions and the extent of forests and rangelands using satellite remote sensing (SRS) and Geographic Information System (GIS) technologies. The SRS and GIS technologies provide a possible means of monitoring and mapping the changes occurring in natural resources and the environment on a continuous basis. The riverine forests of Sindh mostly growing along the river Indus in the flood plains are spread over an area of 241,000 ha but are disappearing very rapidly. Construction of dams/barrages on the upper reaches of the river Indus for hydroelectric power and irrigation works have significantly reduced the discharge of fresh water into the lower Indus basin and as a result 100,000 acres of forests have disappeared. Furthermore, heavy floods that occurred in 1978, 1988, 1992 and 1997, altered the course of the River Indus in many places, especially in the lower reaches, this has also damaged the riverine forests of Sindh. An integrated approach involving analysis of SRS data from 1977 to 1998 and GIS technique have been used to evaluate the geographic extent and distribution of the riverine forests of Sindh and to monitor temporal changes in the forest cover between 1977 and 1990; 1990 and 1998; and 1977 and 1998. The integrated landuse forest cover maps have shown not only the temporal changes that occur in

  2. A fast auto-focusing technique for the long focal lens TDI CCD camera in remote sensing applications

    NASA Astrophysics Data System (ADS)

    Wang, Dejiang; Ding, Xu; Zhang, Tao; Kuang, Haipeng

    2013-02-01

    The key issue in automatic focus adjustment for long focal lens TDI CCD camera in remote sensing applications is to achieve the optimum focus position as fast as possible. Existing auto-focusing techniques consume too much time as the mechanical focusing parts of the camera move in steps during the searching procedure. In this paper, we demonstrate a fast auto-focusing technique, which employs the internal optical elements and the TDI CCD itself to directly sense the deviations in back focal distance of the lens and restore the imaging system to a best-available focus. It is particularly advantageous for determination of the focus, due to that the relative motion between the TDI CCD and the focusing element can proceed without interruption. Moreover, the theoretical formulas describing the effect of imaging motion on the focusing precision and the effective focusing range are also developed. Finally, an experimental setup is constructed to evaluate the performance of the proposed technique. The results of the experiment show a ±5 μm precision of auto-focusing in a range of ±500 μmdefocus, and the searching procedure could be accomplished within 0.125 s, which leads to remarkable improvement on the real-time imaging capability for high resolution TDI CCD camera in remote sensing applications.

  3. Use of remote sensing techniques for inventorying and planning utilization of land resources in South Dakota

    NASA Technical Reports Server (NTRS)

    Myers, V. I.; Frazee, C. J.; Rusche, A. E.; Moore, D. G.; Nelson, G. D.; Westin, F. C.

    1974-01-01

    The basic procedures for interpreting remote sensing imagery to rapidly develop general soils and land use inventories were developed and utilized in Pennington County, South Dakota. These procedures and remote sensing data products were illustrated and explained to many user groups, some of whom are interested in obtaining similar data. The general soils data were integrated with land soils data supplied by the county director of equalization to prepare a land value map. A computer print-out of this map indicating a land value for each quarter section is being used in tax reappraisal of Pennington County. The land use data provided the land use planners with the present use of land in Pennington County. Additional uses of remote sensing applications are also discussed including tornado damage assessment, hail damage evaluation, and presentation of soil and land value information on base maps assembled from ERTS-1 imagery.

  4. Development of satellite remote sensing techniques as an economic tool for forestry industry

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.; Jadkowski, Mark A.

    1989-01-01

    A cooperative commercial development project designed to focus on cost-effective and practical applications of satellite remote sensing in forest management is discussed. The project, initiated in September, 1988 is being executed in three phases: (1) development of a forest resource inventory and geographic information system (GIS) updating systems; (2) testing and evaluation of remote-sensing products against forest industry specifications; and (3) integration of remote-sensing services and products in an operational setting. An advisory group represented by eleven major forest-product companies will provide direct involvement of the target market. The advisory group will focus on the following questions: Does the technology work for them? How can it be packaged to provide the needed forest-management information? Can the products and information be provided in a cost-effective manner?

  5. Remote-Sensing Technique for Determination of the Volume Absorption Coefficient of Turbid Water

    NASA Astrophysics Data System (ADS)

    Sydor, Michael; Arnone, Robert A.; Gould, Richard W., Jr.; Terrie, Gregory E.; Ladner, Sherwin D.; Wood, Christoper G.

    1998-07-01

    We use remote-sensing reflectance from particulate R rs to determine the volume absorption coefficient a of turbid water in the 400 700-nm spectral region. The calculated and measured values of a ( ) show good agreement for 0 . 5 a 10 (m 1 ). To determine R rs from a particulate, we needed to make corrections for remote-sensing reflectance owing to surface roughness S rs . We determined the average spectral distribution of S rs from the difference in total remote-sensing reflectance measured with and without polarization. The spectral shape of S rs showed an excellent fit to theoretical formulas for glare based on Rayleigh and aerosol scattering from the atmosphere.

  6. Remote sensing techniques applied to multispectral recognition of the Aranjuez pilot zone

    NASA Technical Reports Server (NTRS)

    Lemos, G. L.; Salinas, J.; Rebollo, M.

    1977-01-01

    A rectangular (7 x 14 km) area 40 km S of Madrid was remote-sensed with a three-stage recognition process. Ground truth was established in the first phase, airborne sensing with a multispectral scanner and photographic cameras were used in the second phase, and Landsat satellite data were obtained in the third phase. Agronomic and hydrological photointerpretation problems are discussed. Color, black/white, and labeled areas are displayed for crop recognition in the land-use survey; turbidity, concentrations of pollutants and natural chemicals, and densitometry of the water are considered in the evaluation of water resources.

  7. Improved Target Detection in Urban Structures Using Distributed Sensing and Fast Data Acquisition Techniques

    DTIC Science & Technology

    2013-04-01

    Trans. Signal Process., vol. 57, no. 6, pp. 2275-2284, 2009. [83] A. Gurbuz, J. IVIcClellan, and W. Scott, "Compressive sensing for subsurface ... imaging using ground penetrating radar," Signal Pracess., vol. 89, no. 10, pp. 1959 -1972, 2009. [84] A. Gurbuz, J. McClellan, and W. Scott, "A

  8. Theory and analysis of statistical discriminant techniques as applied to remote sensing data

    NASA Technical Reports Server (NTRS)

    Odell, P. L.

    1973-01-01

    Classification of remote earth resources sensing data according to normed exponential density statistics is reported. The use of density models appropriate for several physical situations provides an exact solution for the probabilities of classifications associated with the Bayes discriminant procedure even when the covariance matrices are unequal.

  9. Estimation of land remote sensing satellites productivity based on the simulation technique

    NASA Astrophysics Data System (ADS)

    Kurenkov, Vladimir I.; Kucherov, Alexander S.; Yakischik, Artem A.

    2017-01-01

    The problem of estimating land remote sensing satellites productivity is considered. Here, productivity is treated as a number of separate survey objects taken in a definite time. Appropriate mathematical models have been developed. Some results obtained with the help of the software worked out in Delphi programming support environment are presented.

  10. Predicting Species Cover of Marine Macrophyte and Invertebrate Species Combining Hyperspectral Remote Sensing, Machine Learning and Regression Techniques

    PubMed Central

    Kotta, Jonne; Kutser, Tiit; Teeveer, Karolin; Vahtmäe, Ele; Pärnoja, Merli

    2013-01-01

    In order to understand biotic patterns and their changes in nature there is an obvious need for high-quality seamless measurements of such patterns. If remote sensing methods have been applied with reasonable success in terrestrial environment, their use in aquatic ecosystems still remained challenging. In the present study we combined hyperspectral remote sensing and boosted regression tree modelling (BTR), an ensemble method for statistical techniques and machine learning, in order to test their applicability in predicting macrophyte and invertebrate species cover in the optically complex seawater of the Baltic Sea. The BRT technique combined with remote sensing and traditional spatial modelling succeeded in identifying, constructing and testing functionality of abiotic environmental predictors on the coverage of benthic macrophyte and invertebrate species. Our models easily predicted a large quantity of macrophyte and invertebrate species cover and recaptured multitude of interactions between environment and biota indicating a strong potential of the method in the modelling of aquatic species in the large variety of ecosystems. PMID:23755113

  11. Strain-induced vibration and temperature sensing BOTDA system combined frequency sweeping and slope-assisted techniques.

    PubMed

    Hu, Junhui; Xia, Lan; Yang, Li; Quan, Wenwen; Zhang, Xuping

    2016-06-13

    A BOTDA sensing scheme combined frequency sweeping and slope-assisted techniques is proposed and experimentally demonstrated for simultaneously temperature and strain-induced vibration sensing. In this scheme, during sweeping Brillouin gain spectrum (BGS) for temperature measurement, we simultaneously perform FFT to the time-domain traces whose probe-pump frequency difference (PPFD) is within the FWHM of the BGS at each position of fiber, and the location and the frequency of the strain-induced vibration event can be acquired based on SA-BOTDA technique. In this way, the vibration can be continuously measured at each selected working frequency point during the BGS scanning process and multiple measurements of vibration event can be completed in one whole BGS scanning process. Meanwhile, double sidebands probe method is employed to reduce the nonlocal effects. In our experiment, a temperature event and two vibration events with the frequency of 7.00Hz or 10.00Hz are simultaneously measured near the end of 10.6km long sensing fiber in a traditional BOTDA system. The system shows 1.2°C temperature accuracy and 0.67Hz frequency resolution, as well as a 3m spatial resolution. The proposed method may find some potential applications where both the strain-induced vibration frequency and temperature are the diagnostic objects.

  12. Multi-scale characterization of rock mass discontinuities and rock slope geometry using terrestrial remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Sturzenegger, Matthieu

    Terrestrial remote sensing techniques including both digital photogrammetry and laser scanning, represent useful complements to conventional field mapping and rock mass discontinuity characterization. Several studies have highlighted practical advantages at close-range (< 300 m), including the ability to map inaccessible rock exposures and hazard reduction related to both traffic and rockfall along investigated outcrops. In addition, several authors have demonstrated their potential to provide adequate quantification of discontinuity parameters. Consequently, their incorporation into rock slope stability investigations and design projects has grown substantially over recent years. As these techniques are increasingly applied by geologists and geological engineers, it is important that their use be properly evaluated. Furthermore, guidelines to optimize their application are required in a similar manner to standardization of conventional discontinuity mapping techniques. An important thesis objective is to develop recommendations for optimal applications of terrestrial remote sensing techniques for discontinuity characterization, based on a quantitative evaluation of various registration approaches, sampling bias and extended manual mapping of 3D digital models. It is shown that simple registration networks can provide adequate measurement of discontinuity geometry for engineering purposes. The bias associated with remote sensing mapping is described. The advantages of these techniques over conventional mapping are demonstrated, including reliable discontinuity orientation measurements. Persistence can be precisely quantified instead of approximately estimated, resulting in a new class for extremely persistent discontinuities being suggested. Secondary roughness and curvature can also be considered at larger scales. The techniques are suitable for the definition of discontinuity sets, and the estimation of both trace intensity and block size/shape, if sampling bias

  13. Analytical techniques for the study of some parameters of multispectral scanner systems for remote sensing

    NASA Technical Reports Server (NTRS)

    Wiswell, E. R.; Cooper, G. R. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. The concept of average mutual information in the received spectral random process about the spectral scene was developed. Techniques amenable to implementation on a digital computer were also developed to make the required average mutual information calculations. These techniques required identification of models for the spectral response process of scenes. Stochastic modeling techniques were adapted for use. These techniques were demonstrated on empirical data from wheat and vegetation scenes.

  14. Structural, magnetic and gas sensing properties of nanosized copper ferrite powder synthesized by sol gel combustion technique

    NASA Astrophysics Data System (ADS)

    Sumangala, T. P.; Mahender, C.; Barnabe, A.; Venkataramani, N.; Prasad, Shiva

    2016-11-01

    Stoichiometric nano sized copper ferrite particles were synthesized by sol gel combustion technique. They were then calcined at various temperatures ranging from 300-800 °C and were either furnace cooled or quenched in liquid nitrogen. A high magnetisation value of 48.2 emu/g signifying the cubic phase of copper ferrite, was obtained for sample quenched to liquid nitrogen temperature from 800 °C. The ethanol sensing response of the samples was studied and a maximum of 86% response was obtained for 500 ppm ethanol in the case of a furnace cooled sample calcined at 800 °C. The chemical sensing is seen to be correlated with the c/a ratio and is best in the case of tetragonal copper ferrite.

  15. Remote-sensing based technique to account for sub-grid scale variability of land surface properties

    NASA Technical Reports Server (NTRS)

    Crosson, William L.; Laymon, Charles A.

    1995-01-01

    A method has been presented for the representation of sub-grid scale variability of surface properties within a land surface processes model. The method uses remotely-sensed data to directly or indirectly estimate probability density functions (PDF's) or key surface variables. Application of this technique in a coupled land surface-atmosphere model requires only grid-scale values of the variables of interest, obtained from low-resolution satellite imagery or surface/remote sensing data assimilation. The PDF's of each controlling surface property are superimposed on the respective grid-scale values to simulate sub-grid scale heterogeneity. Sensitivity studies will be carried out to ascertain the relative importance of the heterogeneity of several variables, and the degree to which non-linear property-process interactions impact large-scale fluxes.

  16. Utilization of combined remote sensing techniques to detect environmental variables influencing malaria vector densities in rural West Africa

    PubMed Central

    2012-01-01

    Introduction The use of remote sensing has found its way into the field of epidemiology within the last decades. With the increased sensor resolution of recent and future satellites new possibilities emerge for high resolution risk modeling and risk mapping. Methods A SPOT 5 satellite image, taken during the rainy season 2009 was used for calculating indices by combining the image's spectral bands. Besides the widely used Normalized Difference Vegetation Index (NDVI) other indices were tested for significant correlation against field observations. Multiple steps, including the detection of surface water, its breeding appropriateness for Anopheles and modeling of vector imagines abundance, were performed. Data collection on larvae, adult vectors and geographic parameters in the field, was amended by using remote sensing techniques to gather data on altitude (Digital Elevation Model = DEM), precipitation (Tropical Rainfall Measurement Mission = TRMM), land surface temperatures (LST). Results The DEM derived altitude as well as indices calculations combining the satellite's spectral bands (NDTI = Normalized Difference Turbidity Index, NDWI Mac Feeters = Normalized Difference Water Index) turned out to be reliable indicators for surface water in the local geographic setting. While Anopheles larvae abundance in habitats is driven by multiple, interconnected factors - amongst which the NDVI - and precipitation events, the presence of vector imagines was found to be correlated negatively to remotely sensed LST and positively to the cumulated amount of rainfall in the preceding 15 days and to the Normalized Difference Pond Index (NDPI) within the 500 m buffer zone around capture points. Conclusions Remotely sensed geographical and meteorological factors, including precipitations, temperature, as well as vegetation, humidity and land cover indicators could be used as explanatory variables for surface water presence, larval development and imagines densities. This modeling

  17. Revised radiometric calibration technique for LANDSAT-4 Thematic Mapper data by the Canada Centre for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Murphy, J.; Butlin, T.; Duff, P.; Fitzgerald, A.

    1984-01-01

    Observations of raw image data, raw radiometric calibration data, and background measurements extracted from the raw data streams on high density tape reveal major shortcomings in a technique proposed by the Canadian Center for Remote Sensing in 1982 for the radiometric correction of TM data. Results are presented which correlate measurements of the DC background with variations in both image data background and calibration samples. The effect on both raw data and data corrected using the earlier proposed technique is explained and the correction required for these factors as a function of individual scan line number for each detector is described. How the revised technique can be incorporated into an operational environment is demonstrated.

  18. Revised Radiometric Calibration Technique for LANDSAT-4 Thematic Mapper Data by the Canada Centre for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Murphy, J.; Butlin, T.; Duff, P.; Fitzgerald, A.

    1984-01-01

    A technique for the radiometric correction of LANDSAT-4 Thematic Mapper data was proposed by the Canada Center for Remote Sensing. Subsequent detailed observations of raw image data, raw radiometric calibration data and background measurements extracted from the raw data stream on High Density Tape highlighted major shortcomings in the proposed method which if left uncorrected, can cause severe radiometric striping in the output product. Results are presented which correlate measurements of the DC background with variations in both image data background and calibration samples. The effect on both raw data and on data corrected using the earlier proposed technique is explained, and the correction required for these factors as a function of individual scan line number for each detector is described. It is shown how the revised technique can be incorporated into an operational environment.

  19. Reflectance spectroscopy - Quantitative analysis techniques for remote sensing applications. [in planetary surface geology

    NASA Technical Reports Server (NTRS)

    Clark, R. N.; Roush, T. L.

    1984-01-01

    The empirical methods and scattering theories that are important for solving remote sensing problems are among the methods for remotely sensed reflectance data analysis presently compared. In the case of the photon mean optical path length concept's implications for reflectance spectra modeling, it is shown that the mean optical path length in a particulate surface is in roughly inverse proportion to the square root of the absorption coefficient. Absorption bands, which are Gaussian in shape when plotted as true absorptance vs photon energy, are also Gaussians in apparent absorptance, although they have a smaller intensity. An apparent continuum in a reflectance spectrum is modeled as a mathematical function that is used to isolate a particular absorption feature for analysis, and it is noted that this continuum should be removed by dividing it into the reflectance spectrum.

  20. Engineering studies related to geodetic and oceanographic remote sensing using short pulsed techniques. [using laser probe

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Theoretical basis is presented for a feasibility study of measuring global ocean surface current pattern from satellites and aircraft. The analysis is supported by some preliminary laboratory experiments. Since the ultimate goal is to establish an operational routine for monitoring the global current pattern, a nondisturbing remote sensing device using a laser probe was developed. Detailed construction of the measuring system and the results of some preliminary observations are also presented.

  1. Use hyperspectral remote sensing technique to monitoring pine wood nomatode disease preliminary

    NASA Astrophysics Data System (ADS)

    Qin, Lin; Wang, Xianghong; Jiang, Jing; Yang, Xianchang; Ke, Daiyan; Li, Hongqun; Wang, Dingyi

    2016-10-01

    The pine wilt disease is a devastating disease of pine trees. In China, the first discoveries of the pine wilt disease on 1982 at Dr. Sun Yat-sen's Mausoleum in Nanjing. It occurred an area of 77000 hm2 in 2005, More than 1540000 pine trees deaths in the year. Many districts of Chongqing in Three Gorges Reservoir have different degrees of pine wilt disease occurrence. It is a serious threat to the ecological environment of the reservoir area. Use unmanned airship to carry high spectrum remote sensing monitoring technology to develop the study on pine wood nematode disease early diagnosis and early warning and forecasting in this study. The hyper spectral data and the digital orthophoto map data of Fuling District Yongsheng Forestry had been achieved In September 2015. Using digital image processing technology to deal with the digital orthophoto map, the number of disease tree and its distribution is automatic identified. Hyper spectral remote sensing data is processed by the spectrum comparison algorithm, and the number and distribution of disease pine trees are also obtained. Two results are compared, the distribution area of disease pine trees are basically the same, indicating that using low air remote sensing technology to monitor the pine wood nematode distribution is successful. From the results we can see that the hyper spectral data analysis results more accurate and less affected by environmental factors than digital orthophoto map analysis results, and more environment variable can be extracted, so the hyper spectral data study is future development direction.

  2. Analysis of multispectral signatures and investigation of multi-aspect remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Hieber, R. H.; Sarno, J. E.

    1974-01-01

    Two major aspects of remote sensing with multispectral scanners (MSS) are investigated. The first, multispectral signature analysis, includes the effects on classification performance of systematic variations found in the average signals received from various ground covers as well as the prediction of these variations with theoretical models of physical processes. The foremost effects studied are those associated with the time of day airborne MSS data are collected. Six data collection runs made over the same flight line in a period of five hours are analyzed, it is found that the time span significantly affects classification performance. Variations associated with scan angle also are studied. The second major topic of discussion is multi-aspect remote sensing, a new concept in remote sensing with scanners. Here, data are collected on multiple passes by a scanner that can be tilted to scan forward of the aircraft at different angles on different passes. The use of such spatially registered data to achieve improved classification of agricultural scenes is investigated and found promising. Also considered are the possibilities of extracting from multi-aspect data, information on the condition of corn canopies and the stand characteristics of forests.

  3. Realizing parameterless automatic classification of remote sensing imagery using ontology engineering and cyberinfrastructure techniques

    NASA Astrophysics Data System (ADS)

    Sun, Ziheng; Fang, Hui; Di, Liping; Yue, Peng

    2016-09-01

    It was an untouchable dream for remote sensing experts to realize total automatic image classification without inputting any parameter values. Experts usually spend hours and hours on tuning the input parameters of classification algorithms in order to obtain the best results. With the rapid development of knowledge engineering and cyberinfrastructure, a lot of data processing and knowledge reasoning capabilities become online accessible, shareable and interoperable. Based on these recent improvements, this paper presents an idea of parameterless automatic classification which only requires an image and automatically outputs a labeled vector. No parameters and operations are needed from endpoint consumers. An approach is proposed to realize the idea. It adopts an ontology database to store the experiences of tuning values for classifiers. A sample database is used to record training samples of image segments. Geoprocessing Web services are used as functionality blocks to finish basic classification steps. Workflow technology is involved to turn the overall image classification into a total automatic process. A Web-based prototypical system named PACS (Parameterless Automatic Classification System) is implemented. A number of images are fed into the system for evaluation purposes. The results show that the approach could automatically classify remote sensing images and have a fairly good average accuracy. It is indicated that the classified results will be more accurate if the two databases have higher quality. Once the experiences and samples in the databases are accumulated as many as an expert has, the approach should be able to get the results with similar quality to that a human expert can get. Since the approach is total automatic and parameterless, it can not only relieve remote sensing workers from the heavy and time-consuming parameter tuning work, but also significantly shorten the waiting time for consumers and facilitate them to engage in image

  4. Validation of satellite data through the remote sensing techniques and the inclusion of them into agricultural education pilot programs

    NASA Astrophysics Data System (ADS)

    Papadavid, Georgios; Kountios, Georgios; Bournaris, T.; Michailidis, Anastasios; Hadjimitsis, Diofantos G.

    2016-08-01

    Nowadays, the remote sensing techniques have a significant role in all the fields of agricultural extensions as well as agricultural economics and education but they are used more specifically in hydrology. The aim of this paper is to demonstrate the use of field spectroscopy for validation of the satellite data and how combination of remote sensing techniques and field spectroscopy can have more accurate results for irrigation purposes. For this reason vegetation indices are used which are mostly empirical equations describing vegetation parameters during the lifecycle of the crops. These numbers are generated by some combination of remote sensing bands and may have some relationship to the amount of vegetation in a given image pixel. Due to the fact that most of the commonly used vegetation indices are only concerned with red-near-infrared spectrum and can be divided to perpendicular and ratio based indices the specific goal of the research is to illustrate the effect of the atmosphere to those indices, in both categories. In this frame field spectroscopy is employed in order to derive the spectral signatures of different crops in red and infrared spectrum after a campaign of ground measurements. The main indices have been calculated using satellite images taken at interval dates during the whole lifecycle of the crops by using a GER 1500 spectro-radiomete. These indices was compared to those extracted from satellite images after applying an atmospheric correction algorithm -darkest pixel- to the satellite images at a pre-processing level so as the indices would be in comparable form to those of the ground measurements. Furthermore, there has been a research made concerning the perspectives of the inclusion of the above mentioned remote satellite techniques to agricultural education pilot programs.

  5. Use of acoustic velocity methodology and remote sensing techniques to measure unsteady flow on the lower Yazoo River in Mississippi

    USGS Publications Warehouse

    Turnipseed, D. Phil; Cooper, Lance M.; Davis, Angela A.

    1998-01-01

    Methodologies have been developed for computing continuous discharge during varied, non-uniform low and medium flows on the Yazoo River at the U.S. Geological Survey streamgage below Steele Bayou near Long Lake, Mississippi, using acoustic signal processing and conventional streamgaging techniques. Procedures were also developed to compute locations of discharges during future high flow events when the stream reach is subject to hi-directional and reverse flow caused by rising stages on the Mississippi River using a combination of acoustic equipment and remote sensing technology. A description of the study area is presented. Selected results of these methods are presented for the period from March through September 1997.

  6. A technique for conditioning and calibrating force-sensing resistors for repeatable and reliable measurement of compressive force.

    PubMed

    Hall, Rick S; Desmoulin, Geoffrey T; Milner, Theodore E

    2008-12-05

    Miniature sensors that could measure forces applied by the fingers and hand without interfering with manual dexterity or range of motion would have considerable practical value in ergonomics and rehabilitation. In this study, techniques have been developed to use inexpensive pressure-sensing resistors (FSRs) to accurately measure compression force. The FSRs are converted from pressure-sensing to force-sensing devices. The effects of nonlinear response properties and dependence on loading history are compensated by signal conditioning and calibration. A fourth-order polynomial relating the applied force to the current voltage output and a linearly weighted sum of prior outputs corrects for sensor hysteresis and drift. It was found that prolonged (>20h) shear force loading caused sensor gain to change by approximately 100%. Shear loading also had the effect of eliminating shear force effects on sensor output, albeit only in the direction of shear loading. By applying prolonged shear loading in two orthogonal directions, the sensors were converted into pure compression sensors. Such preloading of the sensor is, therefore, required prior to calibration. The error in compression force after prolonged shear loading and calibration was consistently <5% from 0 to 30N and <10% from 30 to 40N. This novel method of calibrating FSRs for measuring compression force provides an inexpensive tool for biomedical and industrial design applications where measurements of finger and hand force are needed.

  7. Formulation of a minimum variance deconvolution technique for compensation of pneumatic distortion in pressure sensing devices

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.

    1990-01-01

    Increasingly, aircraft system designs require that aerodynamic parameters derived from pneumatic measurements be employed as control-system feedbacks. Such high frequency pressure measurements' accuracy is compromised by pressure distortion due to frictional attenuation and pneumatic resonance within the sensing system. A pneumatic distortion model is here formulated and reduced to a low-order state-variable model which retains most of the full model's dynamic characteristics. This reduced-order model is coupled with standard results from minimum variance estimation theory to develop an algorithm to compensate for pneumatic-distortion effects.

  8. The technique flows of target detection using thermal infrared hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Wu, Wen Huan; Yu, Hong; Huang, Shu Tao

    2016-10-01

    In this work, the workflow of airborne thermal infrared hyperspectral technology in the actual application process is reviewed. Using the Thermal Airborne Spectrographic Imager (TASI-600), a hyperspectral thermal infrared imager manufactured by ITRES Research Limited as a case study, the work process including instrument calibration, collecting the region information of interest, data processing and analysis is elaborated. The value and effect using thermal infrared data obtained through TASI-600 is demonstrated. This work provides ideas and references for further study and investigation on the application of airborne thermal infrared hyperspectral remote sensing.

  9. A regression technique for evaluation and quantification for water quality parameters from remote sensing data

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Kuo, C. Y.

    1979-01-01

    The objective of this paper is to define optical physics and/or environmental conditions under which the linear multiple-regression should be applicable. An investigation of the signal-response equations is conducted and the concept is tested by application to actual remote sensing data from a laboratory experiment performed under controlled conditions. Investigation of the signal-response equations shows that the exact solution for a number of optical physics conditions is of the same form as a linearized multiple-regression equation, even if nonlinear contributions from surface reflections, atmospheric constituents, or other water pollutants are included. Limitations on achieving this type of solution are defined.

  10. Electrical Impedance Spectroscopy-Based Defect Sensing Technique in Estimating Cracks

    PubMed Central

    Zhang, Tingting; Zhou, Liangdong; Ammari, Habib; Seo, Jin Keun

    2015-01-01

    A defect sensing method based on electrical impedance spectroscopy is proposed to image cracks and reinforcing bars in concrete structures. The method utilizes the frequency-dependent behavior of thin insulating cracks: low-frequency electrical currents are blocked by insulating cracks, whereas high-frequency currents can pass through thin cracks to probe the conducting bars. From various frequency-dependent electrical impedance tomography (EIT) images, we can show its advantage in terms of detecting both thin cracks with their thickness and bars. We perform numerical simulations and phantom experiments to support the feasibility of the proposed method. PMID:26007713

  11. Comparison of data inversion techniques for remotely sensed wide-angle observations of Earth emitted radiation

    NASA Technical Reports Server (NTRS)

    Green, R. N.

    1981-01-01

    The shape factor, parameter estimation, and deconvolution data analysis techniques were applied to the same set of Earth emitted radiation measurements to determine the effects of different techniques on the estimated radiation field. All three techniques are defined and their assumptions, advantages, and disadvantages are discussed. Their results are compared globally, zonally, regionally, and on a spatial spectrum basis. The standard deviations of the regional differences in the derived radiant exitance varied from 7.4 W-m/2 to 13.5 W-m/2.

  12. Advanced Sensing and Control Techniques to Facilitate Semi-Autonomous Decommissioning of Hazardous Sites - Final Report

    SciTech Connect

    Schalkoff, R.J.

    2000-12-01

    This report summarizes work after 4 years of a 3-year project (no-cost extension of the above-referenced project for a period of 12 months granted). The fourth generation of a vision sensing head for geometric and photometric scene sensing has been built and tested. Estimation algorithms for automatic sensor calibration updating under robot motion have been developed and tested. We have modified the geometry extraction component of the rendering pipeline. Laser scanning now produces highly accurate points on segmented curves. These point-curves are input to a NURBS (non-uniform rational B-spline) skinning procedure to produce interpolating surface segments. The NURBS formulation includes quadrics as a sub-class, thus this formulation allows much greater flexibility without the attendant instability of generating an entire quadric surface. We have also implemented correction for diffuse lighting and specular effects. The QRobot joint level control was extended to a complete semi-autonomous robot control system for D and D operations. The imaging and VR subsystems have been integrated and tested.

  13. Use of Geophysical and Remote Sensing Techniques During the Comprehensive Test Ban Treaty Organization's Integrated Field Exercise 2014

    NASA Astrophysics Data System (ADS)

    Labak, Peter; Sussman, Aviva; Rowlands, Aled; Chiappini, Massimo; Malich, Gregor; MacLeod, Gordon; Sankey, Peter; Sweeney, Jerry; Tuckwell, George

    2016-04-01

    The Integrated Field Exercise of 2014 (IFE14) was a field event held in the Hashemite Kingdom of Jordan (with concurrent activities in Austria) that tested the operational and technical capabilities of a Comprehensive Test Ban Treaty's (CTBT) on-site inspection (OSI). During an OSI, up to 40 inspectors search a 1000km2 inspection area for evidence of a nuclear explosion. Over 250 experts from ~50 countries were involved in IFE14 (the largest simulation of an OSI to date) and worked from a number of different directions, such as the Exercise Management and Control Teams to execute the scenario in which the exercise was played, to those participants performing as members of the Inspection Team (IT). One of the main objectives of IFE14 was to test Treaty allowed inspection techniques, including a number of geophysical and remote sensing methods. In order to develop a scenario in which the simulated exercise could be carried out, a number of physical features in the IFE14 inspection area were designed and engineered by the Scenario Task Force Group (STF) that the IT could detect by applying the geophysical and remote sensing inspection technologies, as well as other techniques allowed by the CTBT. For example, in preparation for IFE14, the STF modeled a seismic triggering event that was provided to the IT to prompt them to detect and localize aftershocks in the vicinity of a possible explosion. Similarly, the STF planted shallow targets such as borehole casings and pipes for detection by other geophysical methods. In addition, airborne technologies, which included multi-spectral imaging, were deployed such that the IT could identify freshly exposed surfaces, imported materials and other areas that had been subject to modification. This presentation will introduce the CTBT and OSI, explain the IFE14 in terms of goals specific to geophysical and remote sensing methods, and show how both the preparation for and execution of IFE14 meet those goals.

  14. Integrated Evaluation of Urban Development Suitability Based on Remote Sensing and GIS Techniques - A Case Study in Jingjinji Area, China.

    PubMed

    Dong, Jiang; Zhuang, Dafang; Xu, Xinliang; Ying, Lei

    2008-09-25

    Jingjinji area (namely Beijing, Tianjin and He Bei Province) is one of the three largest regional economic communities in China. Urban expansion has sped up in the past 20 years in this area due to the rapid economic and population growth. Evaluating the landuse suitability for urban growth on a regional scale is an urgent need, because the most suitable areas and the most suitable scale of urban growth can thus be determined accordingly. In order to meet this requirement, remote sensing and geographic information system (GIS) techniques were adopted, and an integrated evaluating model was developed supported by AHP method. The integrated urban development suitability index (UDSI) was calculated using this model. According to the UDSI result, the spatial distribution of urban development suitability and its driving forces were analyzed. Urban boundaries in 1995, 2000 and 2005, which were derived from Landsat TM/ETM+ satellite data, were overlaid on the UDSI map, and the suitable urban develop tendency in this area were discussed. The result of this study indicated that integrated evaluation of urban development could be conducted in an operational way using remote sensing data, GIS spatial analysis technique and AHP modeling method.

  15. Detection of terrain indices related to soil salinity and mapping salt-affected soils using remote sensing and geostatistical techniques.

    PubMed

    Triki Fourati, Hela; Bouaziz, Moncef; Benzina, Mourad; Bouaziz, Samir

    2017-04-01

    Traditional surveying methods of soil properties over landscapes are dramatically cost and time-consuming. Thus, remote sensing is a proper choice for monitoring environmental problem. This research aims to study the effect of environmental factors on soil salinity and to map the spatial distribution of this salinity over the southern east part of Tunisia by means of remote sensing and geostatistical techniques. For this purpose, we used Advanced Spaceborne Thermal Emission and Reflection Radiometer data to depict geomorphological parameters: elevation, slope, plan curvature (PLC), profile curvature (PRC), and aspect. Pearson correlation between these parameters and soil electrical conductivity (ECsoil) showed that mainly slope and elevation affect the concentration of salt in soil. Moreover, spectral analysis illustrated the high potential of short-wave infrared (SWIR) bands to identify saline soils. To map soil salinity in southern Tunisia, ordinary kriging (OK), minimum distance (MD) classification, and simple regression (SR) were used. The findings showed that ordinary kriging technique provides the most reliable performances to identify and classify saline soils over the study area with a root mean square error of 1.83 and mean error of 0.018.

  16. Advances in atmospheric light scattering theory and remote-sensing techniques

    NASA Astrophysics Data System (ADS)

    Videen, Gorden; Sun, Wenbo; Gong, Wei

    2017-02-01

    This issue focuses especially on characterizing particles in the Earth-atmosphere system. The significant role of aerosol particles in this system was recognized in the mid-1970s [1]. Since that time, our appreciation for the role they play has only increased. It has been and continues to be one of the greatest unknown factors in the Earth-atmosphere system as evidenced by the most recent Intergovernmental Panel on Climate Change (IPCC) assessments [2]. With increased computational capabilities, in terms of both advanced algorithms and in brute-force computational power, more researchers have the tools available to address different aspects of the role of aerosols in the atmosphere. In this issue, we focus on recent advances in this topical area, especially the role of light scattering and remote sensing. This issue follows on the heels of four previous topical issues on this subject matter that have graced the pages of this journal [3-6].

  17. A capacitive displacement sensing technique for early detection of unbalanced loads in a washing machine.

    PubMed

    Ramasubramanian, Melur K; Tiruthani, Karthik

    2009-01-01

    Horizontal axis washing machines are water and energy efficient and becoming popular in the USA. Unlike a vertical axis washer, these do not have an agitator and depend solely on tumbling for the agitation of laundry during the wash cycle. However, due to the constant shifting of laundry during washing, the load distribution is often unbalanced during the high speed spin cycle. We present a displacement-based sensing method to detect unbalance early while the spin rate (rpm) is well below the resonance frequency so that corrective actions may be taken prior to the high speed spin cycle. Experimental and analytical characterizations of the sensor configuration are presented. Results show that the displacement sensor is more appropriate than an accelerometer for this application and offer the potential for a simple, reliable, low cost detection of unbalance.

  18. Compressed sensing techniques for arbitrary frequency-sparse signals in structural health monitoring

    NASA Astrophysics Data System (ADS)

    Duan, Zhongdong; Kang, Jie

    2014-03-01

    Structural health monitoring requires collection of large number sample data and sometimes high frequent vibration data for detecting the damage of structures. The expensive cost for collecting the data is a big challenge. The recent proposed Compressive Sensing method enables a potentially large reduction in the sampling, and it is a way to meet the challenge. The Compressed Sensing theory requires sparse signal, meaning that the signals can be well-approximated as a linear combination of just a few elements from a known discrete basis or dictionary. The signal of structure vibration can be decomposed into a few sinusoid linear combinations in the DFT domain. Unfortunately, in most cases, the frequencies of decomposed sinusoid are arbitrary in that domain, which may not lie precisely on the discrete DFT basis or dictionary. In this case, the signal will lost its sparsity, and that makes recovery performance degrades significantly. One way to improve the sparsity of the signal is to increase the size of the dictionary, but there exists a tradeoff: the closely-spaced DFT dictionary will increase the coherence between the elements in the dictionary, which in turn decreases recovery performance. In this work we introduce three approaches for arbitrary frequency signals recovery. The first approach is the continuous basis pursuit (CBP), which reconstructs a continuous basis by introducing interpolation steps. The second approach is a semidefinite programming (SDP), which searches the sparest signal on continuous basis without establish any dictionary, enabling a very high recovery precision. The third approach is spectral iterative hard threshold (SIHT), which is based on redundant DFT dictionary and a restricted union-of-subspaces signal model, inhibiting closely spaced sinusoids. The three approaches are studied by numerical simulation. Structure vibration signal is simulated by a finite element model, and compressed measurements of the signal are taken to perform

  19. Spatial and Temporal knowledge representation techniques for traditional machine learning classifiers applied to remote sensing data.

    NASA Astrophysics Data System (ADS)

    Cervone, G.; Kafatos, M.

    2005-12-01

    Formulating general hypotheses from limited observations is one of the fundamental principles of scientific discovery. The data mining approach consists, among others, in generating new knowledge analyzing massive amounts of data and using background knowledge. Knowledge representation is one of the fundamental topics of data mining, because the representation language dictates which algorithms to use, as well as the effective usefulness of the learned hypotheses. Programs that use richer representation languages have the advantage of generating hypotheses that are compact and easy to understand, and the disadvantage of being more complex, slower and ususally with more control parameters. On the other hand, programs that use simpler representaiton languages overcome these shortcomings, but fail to generate hypotheses that can be easily interpreted and used for problem solving and decision making. Symbolic machine learning methods, such as decision rule classifiers, use a complex representation language which can be used to describe difficult concepts, and allow to cope with spatial and temporal data, such as remote sensing data. Because data are usually collected as a sequence of observations over time and in specific locations, very often it is necessary to find relations not only in the data per se, but also in the temporal and spatial distribution of the observations. Due to the increasingly large amount of spatial and temporal data collected and analyzed in several fields such as remote sensing, geographical information systems (GIS), bioinformatics, medicine, bank transactions, etc, spatial and temporal knowledge representaion has become a problem of crucial importance. Present research investigates methods to use existing symbolic machine learning classifiers with temporal and spatial data. The data are converted in a representation language which is suitable to learn spatial and temporal relationship without modifying the existing algorithms. Results from

  20. Study on the techniques of valuation of ecosystem services based on remote sensing in Anxin County

    NASA Astrophysics Data System (ADS)

    Wang, Hongyan; Li, Zengyuan; Gao, Zhihai; Wang, Bengyu; Bai, Lina; Wu, Junjun; Sun, Bin; Wang, Zhibo

    2014-05-01

    The farmland ecosystem is an important component of terrestrial ecosystems and has a fundamental role in the human life. The wetland is an unique and versatile ecological system. It is important for rational development and sustainable utilization of farmland and wetland resources to study on the measurement of valuation of farmland and wetland ecosystem services. It also has important significance for improving productivity. With the rapid development of remote sensing technology, it has become a powerful tool for evaluation of the value of ecosystem services. The land cover types in Anxin County mainly was farmland and wetland, the indicator system for ecosystem services valuation was brought up based on the remote sensing data of high spatial resolution ratio(Landsat-5 TM data and SPOT-5 data), the technology system for measurement of ecosystem services value was established. The study results show that the total ecosystem services value in 2009 in Anxin was 4.216 billion yuan, and the unit area value was between 8489 yuan/hm2 and 329535 yuan/hm2. The value of natural resources, water conservation value in farmland ecosystem and eco-tourism value in wetland ecosystem were higher than the other, total of the three values reached 2.858 billion yuan, and the percentage of the total ecosystem services values in Anxin was 67.79%. Through the statistics in the nine towns and three villages of Anxin County, the juantou town has the highest services value, reached 0.736 billion yuan. Scientific and comprehensive evaluation of the ecosystem services can conducive to promoting the understanding of the importance of the ecosystem. The research results had significance to ensure the sustainable use of wetland resources and the guidance of ecological construction in Anxin County.

  1. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    NASA Astrophysics Data System (ADS)

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10-4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10-4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the

  2. Flood Vulnerability Analysis of the part of Karad Region, Satara District, Maharashtra using Remote Sensing and Geographic Information System technique

    NASA Astrophysics Data System (ADS)

    Warghat, Sumedh R.; Das, Sandipan; Doad, Atul; Mali, Sagar; Moon, Vishal S.

    2012-07-01

    Karad City is situated on the bank of confluence of river Krishna & Koyana, which is severely flood prone area. The floodwaters enter the city through the roads and disrupt the infrastructure in the whole city. Furthermore, due to negligence of the authorities and unplanned growth of the city, the people living in the city have harnessed the natural flow of water by constructing unnecessary embankments in the river Koyna. Due to this reason now river koyna is flowing in the form of a narrow channel, which very easily over-flows during very minor flooding.Flood Vulnerabilty Analysis has been done for the karad region of satara district, maharashtra using remote sensing and geographic information system technique. The aim of this study is to identify flood vulnerability zone by using GIS and RS technique and an attempt has been to demonstrat the application of remote sensing and GIS in order to map flood vulnerabilty area by utilizing ArcMap, and Erdas software. Flood vulnerabilty analysis of part the Karad Regian of Satara District, Maharashtra has been carried out with the objectives - Identify the Flood Prone area in the Koyana and Krishna river basin, Calculate surface runoff and Delineate flood sensitive areas. Delineate classified hazard Map, Evaluate the Flood affected area, Prepare the Flood Vulnerability Map by utilizing Remote Sensing and GIS technique. (C.J. Kumanan;S.M. Ramasamy)The study is based on GIS and spatial technique is used for analysis and understanding of flood problem in Karad Tahsil. The flood affected areas of the different magnitude has been identified and mapped using Arc GIS software. The analysis is useful for local planning authority for identification of risk areas and taking proper decision in right moment. In the analysis causative factors for flooding in watershed are taken into account as annual rainfall, size of watershed, basin slope, drainage density of natural channels and land use. (Dinand Alkema; Farah Aziz.)This study of

  3. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    SciTech Connect

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-15

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s (18.0 l/min) for the mono-directional sensor and a measurement range of {+-}3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s ({+-}18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed

  4. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.

    PubMed

    Battista, L; Sciuto, S A; Scorza, A

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono

  5. Scanning laser Doppler Technique for velocity profile sensing on a moving surface.

    PubMed

    Sriram, P; Hanagud, S; Craig, J; Komerath, N M

    1990-06-01

    A scanning laser Doppler technique based on Chebyshev demodulation has been developed for the rapid measurement of spatially distributed velocity profiles. Scan frequencies up to 100 Hz can be used over scan lengths up to 270 mm. The Doppler signals are processed in the conventional manner using a frequency counter. The analog velocity output from the counter is post-processed to obtain the velocity profile. The Chebyshev demodulation post-processing technique for processing the velocity signals from solid surfaces has been introduced. The data processing technique directly yields the spatial velocity distribution in approximate functional form through frequency domain analysis of the scanning LDV velocity output. Results from a rotating disk setup are presented to illustrate the concept.

  6. A Fourier-based compressed sensing technique for accelerated CT image reconstruction using first-order methods.

    PubMed

    Choi, Kihwan; Li, Ruijiang; Nam, Haewon; Xing, Lei

    2014-06-21

    As a solution to iterative CT image reconstruction, first-order methods are prominent for the large-scale capability and the fast convergence rate [Formula: see text]. In practice, the CT system matrix with a large condition number may lead to slow convergence speed despite the theoretically promising upper bound. The aim of this study is to develop a Fourier-based scaling technique to enhance the convergence speed of first-order methods applied to CT image reconstruction. Instead of working in the projection domain, we transform the projection data and construct a data fidelity model in Fourier space. Inspired by the filtered backprojection formalism, the data are appropriately weighted in Fourier space. We formulate an optimization problem based on weighted least-squares in the Fourier space and total-variation (TV) regularization in image space for parallel-beam, fan-beam and cone-beam CT geometry. To achieve the maximum computational speed, the optimization problem is solved using a fast iterative shrinkage-thresholding algorithm with backtracking line search and GPU implementation of projection/backprojection. The performance of the proposed algorithm is demonstrated through a series of digital simulation and experimental phantom studies. The results are compared with the existing TV regularized techniques based on statistics-based weighted least-squares as well as basic algebraic reconstruction technique. The proposed Fourier-based compressed sensing (CS) method significantly improves both the image quality and the convergence rate compared to the existing CS techniques.

  7. Morphostructural characterization of the western edge of the Huila Plateau (SW Angola), based on remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Lopes, Fernando Carlos; Pereira, Alcides José; Mantas, Vasco Manuel; Mpengo, Horácio Kativa

    2016-05-01

    Recognition of the main morphostructural features of the western edge of the Huila Plateau (SW Angola) can be done by using remote sensing techniques associated with field work. A digital elevation model (DEM) of the area was built for this purpose. This model is based on altimeter data acquired from the Aster sensor, on which image processing techniques such as enhancement techniques, contrast change and filtering were applied. Other techniques, such as RGB colour composition, were also tested. The processed satellite images were interpreted by visual process and the results were then compared with available geological maps (scale 1: 1 000 000). To facilitate both analysis and interpretation, the edge of the plateau was divided into three sectors: northern (or Chongoroi Edge), central (or Humpata Edge) and southern (or Oncocua Edge). For each sector, the main morphological aspects and main lineament systems were identified and characterized. In the specific case of the central sector, these parameters were also confirmed by field work. This study shows that the morphology of the western edge of the plateau is dominated by N50°W-N60°W, N60°E and N-S trending main tectonic systems. These results have important implications in terms of geological mapping and regional tectonics as well as in land-use planning and other areas, such as hydrogeology or geotechnics.

  8. Integrating Remote Sensing Data with Directional Two- Dimensional Wavelet Analysis and Open Geospatial Techniques for Efficient Disaster Monitoring and Management.

    PubMed

    Lin, Yun-Bin; Lin, Yu-Pin; Deng, Dong-Po; Chen, Kuan-Wei

    2008-02-19

    In Taiwan, earthquakes have long been recognized as a major cause oflandslides that are wide spread by floods brought by typhoons followed. Distinguishingbetween landslide spatial patterns in different disturbance regimes is fundamental fordisaster monitoring, management, and land-cover restoration. To circumscribe landslides,this study adopts the normalized difference vegetation index (NDVI), which can bedetermined by simply applying mathematical operations of near-infrared and visible-redspectral data immediately after remotely sensed data is acquired. In real-time disastermonitoring, the NDVI is more effective than using land-cover classifications generatedfrom remotely sensed data as land-cover classification tasks are extremely time consuming.Directional two-dimensional (2D) wavelet analysis has an advantage over traditionalspectrum analysis in that it determines localized variations along a specific direction whenidentifying dominant modes of change, and where those modes are located in multi-temporal remotely sensed images. Open geospatial techniques comprise a series ofsolutions developed based on Open Geospatial Consortium specifications that can beapplied to encode data for interoperability and develop an open geospatial service for sharing data. This study presents a novel approach and framework that uses directional 2Dwavelet analysis of real-time NDVI images to effectively identify landslide patterns andshare resulting patterns via open geospatial techniques. As a case study, this study analyzedNDVI images derived from SPOT HRV images before and after the ChiChi earthquake(7.3 on the Richter scale) that hit the Chenyulan basin in Taiwan, as well as images aftertwo large typhoons (Xangsane and Toraji) to delineate the spatial patterns of landslidescaused by major disturbances. Disturbed spatial patterns of landslides that followed theseevents were successfully delineated using 2D wavelet analysis, and results of patternrecognitions of landslides were

  9. Making Quality Sense: A Guide to Quality, Tools and Techniques, Awards and the Thinking Behind Them.

    ERIC Educational Resources Information Center

    Owen, Jane

    This document is intended to guide further education colleges and work-based learning providers through some of the commonly used tools, techniques, and theories of quality management. The following are among the topics discussed: (1) various ways of defining quality; methods used by organizations to achieve quality (quality control, quality…

  10. Virtual Sensors: Using Data Mining Techniques to Efficiently Estimate Remote Sensing Spectra

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok N.; Oza, Nikunj; Stroeve, Julienne

    2004-01-01

    Various instruments are used to create images of the Earth and other objects in the universe in a diverse set of wavelength bands with the aim of understanding natural phenomena. These instruments are sometimes built in a phased approach, with some measurement capabilities being added in later phases. In other cases, there may not be a planned increase in measurement capability, but technology may mature to the point that it offers new measurement capabilities that were not available before. In still other cases, detailed spectral measurements may be too costly to perform on a large sample. Thus, lower resolution instruments with lower associated cost may be used to take the majority of measurements. Higher resolution instruments, with a higher associated cost may be used to take only a small fraction of the measurements in a given area. Many applied science questions that are relevant to the remote sensing community need to be addressed by analyzing enormous amounts of data that were generated from instruments with disparate measurement capability. This paper addresses this problem by demonstrating methods to produce high accuracy estimates of spectra with an associated measure of uncertainty from data that is perhaps nonlinearly correlated with the spectra. In particular, we demonstrate multi-layer perceptrons (MLPs), Support Vector Machines (SVMs) with Radial Basis Function (RBF) kernels, and SVMs with Mixture Density Mercer Kernels (MDMK). We call this type of an estimator a Virtual Sensor because it predicts, with a measure of uncertainty, unmeasured spectral phenomena.

  11. Coadding Techniques for Image-based Wavefront Sensing for Segmented-mirror Telescopes

    NASA Technical Reports Server (NTRS)

    Smith, Scott; Aronstein, David; Dean, Bruce; Acton, Scott

    2007-01-01

    Image-based wavefront sensing algorithms are being used to characterize optical performance for a variety of current and planned astronomical telescopes. Phase retrieval recovers the optical wavefront that correlates to a series of diversity-defocused point-spread functions (PSFs), where multiple frames can be acquired at each defocus setting. Multiple frames of data can be coadded in different ways; two extremes are in "image-plane space," to average the frames for each defocused PSF and use phase retrieval once on the averaged images, or in "pupil-plane space," to use phase retrieval on every set of PSFs individually and average the resulting wavefronts. The choice of coadd methodology is particularly noteworthy for segmented-mirror telescopes that are subject to noise that causes uncorrelated motions between groups of segments. Using data collected on and simulations of the James Webb Space Telescope Testbed Telescope (TBT) commissioned at Ball Aerospace, we show how different sources of noise (uncorrelated segment jitter, turbulence, and common-mode noise) and different parts of the optical wavefront, segment and global aberrations, contribute to choosing the coadd method. Of particular interest, segment piston is more accurately recovered in "image-plane space" coadding, while segment tip/tilt is recovered in "pupil-plane space" coadding.

  12. Co-adding techniques for image-based wavefront sensing for segmented-mirror telescopes

    NASA Astrophysics Data System (ADS)

    Smith, J. S.; Aronstein, David L.; Dean, Bruce H.; Acton, D. S.

    2007-09-01

    Image-based wavefront sensing algorithms are being used to characterize the optical performance for a variety of current and planned astronomical telescopes. Phase retrieval recovers the optical wavefront that correlates to a series of diversity-defocused point-spread functions (PSFs), where multiple frames can be acquired at each defocus setting. Multiple frames of data can be co-added in different ways; two extremes are in "image-plane space," to average the frames for each defocused PSF and use phase retrieval once on the averaged images, or in "pupil-plane space," to use phase retrieval on each PSF frame individually and average the resulting wavefronts. The choice of co-add methodology is particularly noteworthy for segmented-mirror telescopes that are subject to noise that causes uncorrelated motions between groups of segments. Using models and data from the James Webb Space Telescope (JWST) Testbed Telescope (TBT), we show how different sources of noise (uncorrelated segment jitter, turbulence, and common-mode noise) and different parts of the optical wavefront, segment and global aberrations, contribute to choosing the co-add method. Of particular interest, segment piston is more accurately recovered in "image-plane space" co-adding, while segment tip/tilt is recovered in "pupil-plane space" co-adding.

  13. Fast and low-dose computed laminography using compressive sensing based technique

    SciTech Connect

    Abbas, Sajid Park, Miran Cho, Seungryong

    2015-03-31

    Computed laminography (CL) is well known for inspecting microstructures in the materials, weldments and soldering defects in high density packed components or multilayer printed circuit boards. The overload problem on x-ray tube and gross failure of the radio-sensitive electronics devices during a scan are among important issues in CL which needs to be addressed. The sparse-view CL can be one of the viable option to overcome such issues. In this work a numerical aluminum welding phantom was simulated to collect sparsely sampled projection data at only 40 views using a conventional CL scanning scheme i.e. oblique scan. A compressive-sensing inspired total-variation (TV) minimization algorithm was utilized to reconstruct the images. It is found that the images reconstructed using sparse view data are visually comparable with the images reconstructed using full scan data set i.e. at 360 views on regular interval. We have quantitatively confirmed that tiny structures such as copper and tungsten slags, and copper flakes in the reconstructed images from sparsely sampled data are comparable with the corresponding structure present in the fully sampled data case. A blurring effect can be seen near the edges of few pores at the bottom of the reconstructed images from sparsely sampled data, despite the overall image quality is reasonable for fast and low-dose NDT.

  14. Modelling submerged coastal environments: Remote sensing technologies, techniques, and comparative analysis

    NASA Astrophysics Data System (ADS)

    Dillon, Chris

    Built upon remote sensing and GIS littoral zone characterization methodologies of the past decade, a series of loosely coupled models aimed to test, compare and synthesize multi-beam SONAR (MBES), Airborne LiDAR Bathymetry (ALB), and satellite based optical data sets in the Gulf of St. Lawrence, Canada, eco-region. Bathymetry and relative intensity metrics for the MBES and ALB data sets were run through a quantitative and qualitative comparison, which included outputs from the Benthic Terrain Modeller (BTM) tool. Substrate classification based on relative intensities of respective data sets and textural indices generated using grey level co-occurrence matrices (GLCM) were investigated. A spatial modelling framework built in ArcGIS(TM) for the derivation of bathymetric data sets from optical satellite imagery was also tested for proof of concept and validation. Where possible, efficiencies and semi-automation for repeatable testing was achieved using ArcGIS(TM) ModelBuilder. The findings from this study could assist future decision makers in the field of coastal management and hydrographic studies. Keywords: Seafloor terrain characterization, Benthic Terrain Modeller (BTM), Multi-beam SONAR, Airborne LiDAR Bathymetry, Satellite Derived Bathymetry, ArcGISTM ModelBuilder, Textural analysis, Substrate classification.

  15. Species identification of mixed algal bloom in the Northern Arabian Sea using remote sensing techniques.

    PubMed

    Dwivedi, R; Rafeeq, M; Smitha, B R; Padmakumar, K B; Thomas, Lathika Cicily; Sanjeevan, V N; Prakash, Prince; Raman, Mini

    2015-02-01

    Oceanic waters of the Northern Arabian Sea experience massive algal blooms during winter-spring (mid Feb-end Mar), which prevail for at least for 3 months covering the entire northern half of the basin from east to west. Ship cruises were conducted during winter-spring of 2001-2012 covering different stages of the bloom to study the biogeochemistry of the region. Phytoplankton analysis indicated the presence of green tides of dinoflagellate, Noctiluca scintillans (=N. miliaris), in the oceanic waters. Our observations indicated that diatoms are coupled and often co-exist with N. scintillans, making it a mixed-species ecosystem. In this paper, we describe an approach for detection of bloom-forming algae N. scintillans and its discrimination from diatoms using Moderate Resolution Imaging Spectroradiometer (MODIS)-Aqua data in a mixed-species environment. In situ remote sensing reflectance spectra were generated using Satlantic™ hyperspectral radiometer for the bloom and non-bloom waters. Spectral shapes of the reflectance spectra for different water types were distinct, and the same were used for species identification. Scatter of points representing different phytoplankton classes on a derivative plot revealed four diverse clusters, viz. N. scintillans, diatoms, non-bloom oceanic, and non-bloom coastal waters. The criteria developed for species discrimination were implemented on MODIS data and validated using inputs from a recent ship cruise conducted in March 2013.

  16. Fast and low-dose computed laminography using compressive sensing based technique

    NASA Astrophysics Data System (ADS)

    Abbas, Sajid; Park, Miran; Cho, Seungryong

    2015-03-01

    Computed laminography (CL) is well known for inspecting microstructures in the materials, weldments and soldering defects in high density packed components or multilayer printed circuit boards. The overload problem on x-ray tube and gross failure of the radio-sensitive electronics devices during a scan are among important issues in CL which needs to be addressed. The sparse-view CL can be one of the viable option to overcome such issues. In this work a numerical aluminum welding phantom was simulated to collect sparsely sampled projection data at only 40 views using a conventional CL scanning scheme i.e. oblique scan. A compressive-sensing inspired total-variation (TV) minimization algorithm was utilized to reconstruct the images. It is found that the images reconstructed using sparse view data are visually comparable with the images reconstructed using full scan data set i.e. at 360 views on regular interval. We have quantitatively confirmed that tiny structures such as copper and tungsten slags, and copper flakes in the reconstructed images from sparsely sampled data are comparable with the corresponding structure present in the fully sampled data case. A blurring effect can be seen near the edges of few pores at the bottom of the reconstructed images from sparsely sampled data, despite the overall image quality is reasonable for fast and low-dose NDT.

  17. Soil salinity mapping and hydrological drought indices assessment in arid environments based on remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Elhag, Mohamed; Bahrawi, Jarbou A.

    2017-03-01

    Vegetation indices are mostly described as crop water derivatives. The normalized difference vegetation index (NDVI) is one of the oldest remote sensing applications that is widely used to evaluate crop vigor directly and crop water relationships indirectly. Recently, several NDVI derivatives were exclusively used to assess crop water relationships. Four hydrological drought indices are examined in the current research study. The water supply vegetation index (WSVI), the soil-adjusted vegetation index (SAVI), the moisture stress index (MSI) and the normalized difference infrared index (NDII) are implemented in the current study as an indirect tool to map the effect of different soil salinity levels on crop water stress in arid environments. In arid environments, such as Saudi Arabia, water resources are under pressure, especially groundwater levels. Groundwater wells are rapidly depleted due to the heavy abstraction of the reserved water. Heavy abstractions of groundwater, which exceed crop water requirements in most of the cases, are powered by high evaporation rates in the designated study area because of the long days of extremely hot summer. Landsat 8 OLI data were extensively used in the current research to obtain several vegetation indices in response to soil salinity in Wadi ad-Dawasir. Principal component analyses (PCA) and artificial neural network (ANN) analyses are complementary tools used to understand the regression pattern of the hydrological drought indices in the designated study area.

  18. Remote sensing techniques for mapping range sites and estimating range yield

    NASA Technical Reports Server (NTRS)

    Benson, L. A.; Frazee, C. J.; Waltz, F. A.; Reed, C.; Carey, R. L.; Gropper, J. L.

    1974-01-01

    Image interpretation procedures for determining range yield and for extrapolating range information were investigated for an area of the Pine Ridge Indian Reservation in southwestern South Dakota. Soil and vegetative data collected in the field utilizing a grid sampling design and digital film data from color infrared film and black and white films were analyzed statistically using correlation and regression techniques. The pattern recognition techniques used were K-class, mode seeking, and thresholding. The herbage yield equation derived for the detailed test site was used to predict yield for an adjacent similar field. The herbage yield estimate for the adjacent field was 1744 lbs. of dry matter per acre and was favorably compared to the mean yield of 1830 lbs. of dry matter per acre based upon ground observations. Also an inverse relationship was observed between vegetative cover and the ratio of MSS 5 to MSS 7 of ERTS-1 imagery.

  19. Vibration monitoring of a helicopter blade model using the optical fiber distributed strain sensing technique.

    PubMed

    Wada, Daichi; Igawa, Hirotaka; Kasai, Tokio

    2016-09-01

    We demonstrate a dynamic distributed monitoring technique using a long-length fiber Bragg grating (FBG) interrogated by optical frequency domain reflectometry (OFDR) that measures strain at a speed of 150 Hz, spatial resolution of 1 mm, and measurement range of 20 m. A 5 m FBG is bonded to a 5.5 m helicopter blade model, and vibration is applied by the step relaxation method. The time domain responses of the strain distributions are measured, and the blade deflections are calculated based on the strain distributions. Frequency response functions are obtained using the time domain responses of the calculated deflection induced by the preload release, and the modal parameters are retrieved. Experimental results demonstrated the dynamic monitoring performances and the applicability to the modal analysis of the OFDR-FBG technique.

  20. Optical sensing of peroxide using ceria nanoparticles via fluorescence quenching technique

    NASA Astrophysics Data System (ADS)

    Shehata, N.; Samir, E.; Gaballah, S.

    2016-04-01

    This study introduces the application of small ceria nanoparticles (NPs) as optical sensor for peroxide using fluorescence quenching technique. Our synthesized ceria nanoparticles have the ability to adsorb peroxides via its oxygen vacancies. Ceria nanoparticles (NPs) solution with added variable concentrations of hydrogen peroxides is exposed through near UV excitation and the detected visible fluorescent emission is found to be at 520nm, with reduced peak intensity peaks with increasing the peroxide concentrations due to static fluorescence quenching technique. The relative intensity change of the visible fluorescent emission has been reduced to more than 50% at added peroxide concentrations up to 10 wt.%. This research work could be applied further in optical sensors of radicals in biomedical engineering and environmental monitoring.

  1. Evaluation of remote sensing and automatic data techniques for characterization of wetlands. [Atchafalaya River Basin, Louisiana

    NASA Technical Reports Server (NTRS)

    Cartmill, R. H.

    1974-01-01

    This investigation has been conducted in the Atchafalaya River Basin of South Central Louisiana. This is a humid area of heavily forested swamps with a large volume of flow mostly from a diversion of the lower Mississippi River. Techniques to obtain enlarged imagery from computer compatible tapes of ERTS data without photographic enlargement is explained and illustrated. Techniques of extraction of environmental information from single bands and multiband pattern recognition procedures are explained and evaluated. A comparison of pattern recognition classifications of the Atchafalaya Basin by aircraft multispectral scanner and ERTS MSS data is made. Data for this comparison were gathered within three weeks of each other in the winter of 1973. Scorecards of the accuracy of the classifications are presented. Recommendations are made concerning the utilization of each sensor platform to perform specific tasks of wetlands characterization.

  2. A preliminary study of air-pollution measurement by active remote-sensing techniques

    NASA Technical Reports Server (NTRS)

    Wright, M. L.; Proctor, E. K.; Gasiorek, L. S.; Liston, E. M.

    1975-01-01

    Air pollutants are identified, and the needs for their measurement from satellites and aircraft are discussed. An assessment is made of the properties of these pollutants and of the normal atmosphere, including interactions with light of various wavelengths and the resulting effects on transmission and scattering of optical signals. The possible methods for active remote measurement are described; the relative performance capabilities of double-ended and single-ended systems are compared qualitatively; and the capabilities of the several single-ended or backscattering techniques are compared quantitatively. The differential-absorption lidar (DIAL) technique is shown to be superior to the other backscattering techniques. The lidar system parameters and their relationships to the environmental factors and the properties of pollutants are examined in detail. A computer program that models both the atmosphere (including pollutants) and the lidar system is described. The performance capabilities of present and future lidar components are assessed, and projections are made of prospective measurement capabilities for future lidar systems. Following a discussion of some important operational factors that affect both the design and measurement capabilities of airborne and satellite-based lidar systems, the extensive analytical results obtained through more than 1000 individual cases analyzed with the aid of the computer program are summarized and discussed. The conclusions are presented. Recommendations are also made for additional studies to investigate cases that could not be explored adequately during this study.

  3. Expanding applications for surface-contaminant sensing using the laser interrogation of surface agents (LISA) technique

    NASA Astrophysics Data System (ADS)

    Ponsardin, Patrick L.; Higdon, N. S.; Chyba, Thomas H.; Armstrong, Wayne T.; Sedlacek, Arthur J., III; Christesen, Steven D.; Wong, Anna

    2004-02-01

    Laser Interrogation of Surface Agents (LISA) is a UV-Raman technique that provides short-range standoff detection and identification of surface-deposited chemical agents. ITT Industries, Advanced Engineering and Sciences Division, is currently developing and expanding the LISA technology under several programs that span a variety of missions for homeland defense. We will present and discuss some of these applications, while putting in perspective the overall evolution undergone by the technique within the last years. These applications include LISA-Recon (now called the Joint Contaminated Surface Detector--JCSD) which was developed under a cost-sharing arrangement with the U.S. Army Soldier and Biological Chemical Command (SBCCOM) for incorporation on the Army"s future reconnaissance vehicles, and designed to demonstrate single-shot on-the-move measurements of chemical contaminants at concentration levels below the Army's requirements. In parallel, LISA-Shipboard is being developed to optimize the sensor technique for detection of surface contaminants in the operational environment of a ship. The most recently started activity is LISA-Inspector that is being developed to provide a transportable sensor in a 'cart-like' configuration.

  4. Techniques of the environmental observer: India's earth remote sensing program in the age of global information

    NASA Astrophysics Data System (ADS)

    Denicola, Lane A.

    This research examines the emergence in India of earth remote sensing (ERS), a principal medium for environmental analysis, communication, and policy-making. ERS---the science and "craft" of analyzing images of terrestrial phenomena collected by aircraft or satellite---constitutes an information technology whose predominance in environmental discourse has grown continuously since first proposed for such applications by American researchers in 1962. Raising many thorny issues in information access and control, the use and popularization of ERS has intensified dramatically since the mid-1980s. In Westernized discourse (both popular and expert), space research and industry are often depicted at a double-remove from the so-called "developing world," where exotic technologies and esoteric goals are overshadowed by patent human needs and a lack of basic infrastructure. Yet advocates hail the utility of ERS in socially relevant applications, and India has amassed upwards of five decades of experience in space, with systems and products rivaled today only by those of the United States and China. A multi-sited ethnography of a nascent visual medium, the dissertation triangulates on its topic by tracing three analytical threads: (1) a diachronic analysis of Indian ERS satellites as an allegory of statehood and participation in the global present, (2) a synchronic analysis of ERS imagery as a discursive artifact and global information commodity, and (3) an analysis of interpretive practice as observed through a single class of Indian and foreign students at the Indian Institute of Remote Sensing (IIRS), considered here as an "interpretive community" of environmental experts. The dissertation is the result of four years of research with ERS students, faculty, researchers, users and administrators in the U.S., the U.K., Turkey and India. In particular, I conducted nine months of ethnographic fieldwork in India in 2002 and 2005, the latter half of which was spent in participant

  5. Hyperspectral Remote Sensing Techniques in Predicting Phycocyanin Concentrations in Cyanobacteria: A Comprehensive Study

    NASA Astrophysics Data System (ADS)

    Mishra, S.; Mishra, D. R.; Schluchter, W. M.

    2009-12-01

    The purpose of this research was to evaluate the performance of existing spectral band ratio algorithms and develop a novel algorithm to quantify phycocyanin (PC) in cyanobacteria using hyperspectral remotely-sensed data. We performed four spectroscopic experiments on two different laboratory cultured cyanobacterial species and found that the existing band ratio algorithms are highly sensitive to chlorophylls, making them inaccurate in predicting cyanobacterial abundance in the presence of other chlorophyll-containing organisms. Our results also show that the widely used 654 nm reflectance peak in existing algorithms is highly sensitive to changes in chlorophyll-a concentration and offers poor PC predictive ability. We present a novel spectral band ratio algorithm that is least sensitive to the presence of chlorophyll. The newly developed band ratio model showed promising results by yielding low root mean squared error (RMSE, 15,260 cells mL-1) and significantly low relative root mean squared error (RMS, 101%) as compared to the existing band ratio algorithms. Natural logarithmic transformation of the new model yielded the lowest RMSE (13,885 cells mL-1) and a high coefficient of determination (0.95) between measured and predicted PC concentration. We also show that the new algorithm is species independent and accurately retrieves PC concentration in the presence of varying amount of chlorophyll-a in the system. Band setting of the model confirms that it can be used for retrieval of PC using hyperspectral sensors such as Hyperion as well as data acquired by other airborne sensors. Figure (A, B, C) Percent reflectance spectra of Synechocystis PCC 6803 from Exp I, II, III respectively. (D) Percent reflectance spectra of Anabaena from Exp IV. Data collected from these experiments were included in the evaluation of existing PC predictive models and the calibration and validation of the new spectral band ratio model.

  6. Micro - Watershed Development Plans Using Remote Sensing & GIS Techniques Panoli Village, Ahmednagar, Maharashtra, Iindia

    NASA Astrophysics Data System (ADS)

    Purushothuman, S.

    2013-05-01

    Sustainable development aims at maintaining the equilibrium between the human needs and economic developments within the parameters of environmental conservation through efficient use of natural resources to ensure tradeoff between desired productions - consumption levels. The well-known Brundtland Commission defined sustainability as a "development that meets the needs of the present without compromising the ability of future generations to meet their own needs. In essence, the sustainable development is a process of change in which the exploitation of resources, the direction of investments, the orientation of technological development and instrumental changes, all are in harmony". The sustainable development of natural resources is based on maintaining the fragile ecosystem balance between the productivity functions and conservation practices through monitoring and identification of problem areas, agricultural practices, crop rotation, use of bio-fertilizers, energy efficient farming methods and reclamation of underutilized lands. Sustainable development requires a holistic approach towards natural resources after taking into account the precarious environmental conditions. Watershed development has become the main involvement in natural resource management in India. This Dissertation demonstrates the use of Remote Sensing and GIS-based modeling framework for local-level planning, incorporating the sustainability aspects of Micro-watershed development. A case study has been taken in Panoli Village, Parner Taluka, Ahmanagar District, Maharashtra state to demonstrate the implementation of these new technologies for watershed prioritization and sustainable development. Watershed development and its management is achieved through the combination of database within the watershed boundaries of a drainage area to optimally develop land, water and plant resources to meet the basic minimum needs of the people in a sustained manner.;

  7. Proximal Sensing of Plant-Pathogen Interactions in Spring Barley with Three Fluorescence Techniques

    PubMed Central

    Leufen, Georg; Noga, Georg; Hunsche, Mauricio

    2014-01-01

    In the last years fluorescence spectroscopy has come to be viewed as an essential approach in key research fields of applied plant sciences. However, the quantity and particularly the quality of information produced by different equipment might vary considerably. In this study we investigate the potential of three optical devices for the proximal sensing of plant-pathogen interactions in four genotypes of spring barley. For this purpose, the fluorescence lifetime, the image-resolved multispectral fluorescence and selected indices of a portable multiparametric fluorescence device were recorded at 3, 6, and 9 days after inoculation (dai) from healthy leaves as well as from leaves inoculated with powdery mildew (Blumeria graminis) or leaf rust (Puccinia hordei). Genotype-specific responses to pathogen infections were revealed already at 3 dai by higher fluorescence mean lifetimes in the spectral range from 410 to 560 nm in the less susceptible varieties. Noticeable pathogen-induced modifications were also revealed by the ‘Blue-to-Far-Red Fluorescence Ratio’ and the ‘Simple Fluorescence Ratio’. Particularly in the susceptible varieties the differences became more evident in the time-course of the experiment i.e., following the pathogen development. The relevance of the blue and green fluorescence to exploit the plant-pathogen interaction was demonstrated by the multispectral fluorescence imaging system. As shown, mildewed leaves were characterized by exceptionally high blue fluorescence, contrasting the values observed in rust inoculated leaves. Further, we confirm that the intensity of green fluorescence depends on the pathogen infection and the stage of disease development; this information might allow a differentiation of both diseases. Moreover, our results demonstrate that the detection area might influence the quality of the information, although it had a minor impact only in the current study. Finally, we highlight the relevance of different excitation

  8. Application of multispectral remote sensing techniques for dismissed mine sites monitoring and rehabilitation

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Serranti, Silvia

    2007-09-01

    Mining activities, expecially those operated in open air (open pit), present a deep impact on the sourrondings. Such an impact, and the related problems, are directly related to the correct operation of the activities, and usually strongly interact with the environment. Impact can be mainly related to the following issues: high volumes of handled material, ii) generation of dust, noise and vibrations, water pollution, visual impact and, finally, mining area recovery at the end of exploitation activities. All these aspects can be considered very important, and must be properly evaluated and monitored. Environmental impact control is usually carried out during and after the end of the mining activities, adopting methods related to the detection, collection, analysis of specific environmental indicators and with their further comparison with reference thresholding values stated by official regulations. Aim of the study was to investigate, and critically evaluate, the problems related to development of an integrated set of procedures based on the collection and the analysis of remote sensed data in order to evaluate the effect of rehabilitation of land contaminated by extractive industry activities. Starting from the results of these analyses, a monitoring and registration of the environmental impact of such operations was performed by the application and the integration of modern information technologies, as the previous mentioned Earth Observation (EO), with Geographic Information Systems (GIS). The study was developed with reference to different dismissed mine sites in India, Thailand and China. The results of the study have been utilized as input for the construction of a knowledge based decision support system finalized to help in the identification of the appropriate rehabilitation technologies for all those dismissed area previously interested by extractive industry activities. The work was financially supported within the framework of the Project ASIA IT&C - CN

  9. The microbial habitability of weathered volcanic glass inferred from continuous sensing techniques.

    PubMed

    Bagshaw, Elizabeth A; Cockell, Charles S; Magan, Naresh; Wadham, Jemma L; Venugopalan, T; Sun, Tong; Mowlem, Matt; Croxford, Anthony J

    2011-09-01

    Basaltic glasses (hyaloclastite) are a widespread habitat for life in volcanic environments, yet their interior physical conditions are poorly characterized. We investigated the characteristics of exposed weathered basaltic glass from a surface outcrop in Iceland, using microprobes capable of continuous sensing, to determine whether the physical conditions in the rock interior are hospitable to microbial life. The material provided thermal protection from freeze-thaw and rapid temperature fluctuations, similar to data reported for other rock types. Water activity experiments showed that at moisture contents less than 13% wet weight, the glass and its weathering product, palagonite, had a water activity below levels suitable for bacterial growth. In pore spaces, however, these higher moisture conditions might be maintained for many days after a precipitation event. Gas exchange between the rock interior and exterior was rapid (< 10 min) when the rocks were dry, but when saturated with water, equilibration took many hours. During this period, we demonstrated the potential for low oxygen conditions within the rock caused by respiratory stimulation of the heterotrophic community within. These conditions might exist within subglacial environments during the formation of the rocks or in micro-environments in the interior of exposed rocks. The experiments showed that microbial communities at the site studied here could potentially be active for 39% of the year, if the depth of the community within the outcrop maintains a balance between access to liquid water and adequate protection from freezing. In the absence of precipitation, the interior of weathered basaltic glass is an extreme and life-limiting environment for microorganisms on Earth and other planets.

  10. Assessment of practicality of remote sensing techniques for a study of the effects of strip mining in Alabama

    NASA Technical Reports Server (NTRS)

    Hughes, T. H.; Dillion, A. C., III; White, J. R., Jr.; Drummond, S. E., Jr.; Hooks, W. G.

    1975-01-01

    Because of the volume of coal produced by strip mining, the proximity of mining operations, and the diversity of mining methods (e.g. contour stripping, area stripping, multiple seam stripping, and augering, as well as underground mining), the Warrior Coal Basin seemed best suited for initial studies on the physical impact of strip mining in Alabama. Two test sites, (Cordova and Searles) representative of the various strip mining techniques and environmental problems, were chosen for intensive studies of the correlation between remote sensing and ground truth data. Efforts were eventually concentrated in the Searles Area, since it is more accessible and offers a better opportunity for study of erosional and depositional processes than the Cordova Area.

  11. Research on giant magnetostrictive actuator online nonlinear modeling based on data driven principle with grating sensing technique

    NASA Astrophysics Data System (ADS)

    Han, Ping

    2017-01-01

    A novel Giant Magnetostrictive Actuator (GMA) experimental system with Fiber Bragg Grating (FBG) sensing technique and its modeling method based on data driven principle are proposed. The FBG sensors are adopted to gather the multi-physics fields' status data of GMA considering the strong nonlinearity of the Giant Magnetostrictive Material and GMA micro-actuated structure. The feedback features are obtained from the raw dynamic status data, which are preprocessed by data fill and abnormal value detection algorithms. Correspondingly the Least Squares Support Vector Machine method is utilized to realize GMA online nonlinear modeling with data driven principle. The model performance and its relative algorithms are experimentally evaluated. The model can regularly run in the frequency range from 10 to 1000 Hz and temperature range from 20 to 100 °C with the minimum prediction error stable in the range from -1.2% to 1.1%.

  12. Mining remote sensing image data: an integration of fuzzy set theory and image understanding techniques for environmental change detection

    NASA Astrophysics Data System (ADS)

    Eklund, Peter W.; You, Jane; Deer, Peter

    2000-04-01

    This paper presents an image understanding approach to mine remotely sensed image data from different source dates for environmental change detection. It is focused on the immediate needs for knowledge discovery from large sets of image data for environmental monitoring. In contrast to the traditional approaches for change detection, we introduce a wavelet-based hierarchical scheme which integrates fuzzy set theory and image understanding techniques for knowledge discovery of the remote image data. The proposed approach includes algorithms for hierarchical change detection, region representations and classification. The effectiveness of the proposed algorithms is demonstrated throughout the completion of three tasks, namely hierarchial detection of change by fuzzy post classification comparisons, localization of change by B-spline based region representation, and categorization of change by hierarchial texture classification.

  13. E-tracers: A New Technique for Wireless Sensing Under Ice Sheets

    NASA Astrophysics Data System (ADS)

    Burrow, S.; Wadham, J. L.; Salter, M.; Barnes, R.

    2009-12-01

    A significant hurdle to the understanding of ice sheet basal hydrology and its coupling with ice motion is the difficulty in making in-situ measurements along a flow path. While dye tracing techniques may be used in small glaciers to determine transit times of surface melt water through the sub-glacial system, they provide no information on in situ conditions (e.g. pressure) and are ineffective at ice-sheet scale where dilution is high. The use of tethered sensor packages is complicated by the long lengths (~100’s m) and torturous path of the moulins and conduits within ice sheets. Recent attempts to pass solid objects (rubber ducks) and other sensor packages through glacial moulins have confirmed the difficultly in deploying sensors into the sub glacial environment. Here, we report the first successful deployment and recovery of compact, electronic units to moulins up to 7 km from the margin of a large land-terminating Greenland outlet. The technique uses RF (Radio Frequency) location to create an electronic tracer (an ‘e-tracer’) enabling a data-logging sensor package to be located in the pro-glacial flood plain once it has passed through the ice sheet. A number of individual packages are used in each deployment mitigating for the risk that some may become stuck within the moulin or lodge in an inaccessible part of the floodplain. In preliminary tests on the Leverett glacier in West Greenland during August 2009 we have demonstrated that this technique can be used to locate and retrieve dummy sensor packages: 50% and 20% of the dummy sensor packages introduced to moulins at 1 and 7 km from the ice sheet terminus respectively, emerged in the sub-glacial stream. It was possible to effectively detect the e-tracer units (which broadcast on 151MHz with 10mW of power) over a horizontal range of up to 5km across the pro-glacial floodplain and locate them to a high accuracy, allowing visual recognition and manual recovery. These performance statistics give this

  14. Remote Sensing Techniques as a Tool for Geothermal Exploration: the Case Study of Blawan Ijen, East Java

    NASA Astrophysics Data System (ADS)

    Pasqua, Claudio; Verdoya, Massimo

    2014-05-01

    The use of remote sensing techniques in the initial phase of geothermal surveys represents a very cost-effective tool, which can contribute to a successful exploration program. Remote sensing allows the analysis of large surfaces and can lead to a significant improvement of the identification of surface thermal anomalies, through the use of thermal infra red data (TIR), as well as of zones of widespread and recent faulting, which can reflect larger permeability of geological formations. Generally, the fractures analysis from remote sensing can be fundamental to clarify the structural setting of an area. In a regional volcanic framework, it can also help in defining the spatial and time evolution of the different volcanic apparatuses. This paper describes the main results of a remote sensing study, conducted in the Blawan-Ijen volcanic area (East Java), which is at present subject of geothermal exploration. This area is characterized by the presence of a 15 km wide caldera originated by a collapsed strato volcano. This event was followed by the emplacement of several peri-calderic and intra-calderic volcanoes, among which G. Raung, as testified by the frequent occurrence of shallow earthquakes and by H2S emission and sulfur deposition, and G. Kawah Ijen, occurring at the eastern rim of the caldera, are still active. The summit of G. Kawah Ijen volcano consists of two interlocking craters forming an E-W elongated depression filled up by a hyperacidic lake. Along the southern shore of the lake, a small rhyolitic dome occurs, which exhibits strong fumarolic activity with temperature of as much as 600 °C. We performed an analysis based on the combined interpretation of Landsat ETM+7, Aster and Synthetic Aperture Radar (SAR) images, focused on the identification of subsurface high permeability zones. The main trends of the linear features as derived from the fractures analysis, as well as their relation with the distribution of volcanic centres, were identified

  15. Estimating primary productivity of tropical oil palm in Malaysia using remote sensing technique and ancillary data

    NASA Astrophysics Data System (ADS)

    Kanniah, K. D.; Tan, K. P.; Cracknell, A. P.

    2014-10-01

    The amount of carbon sequestration by vegetation can be estimated using vegetation productivity. At present, there is a knowledge gap in oil palm net primary productivity (NPP) at a regional scale. Therefore, in this study NPP of oil palm trees in Peninsular Malaysia was estimated using remote sensing based light use efficiency (LUE) model with inputs from local meteorological data, upscaled leaf area index/fractional photosynthetically active radiation (LAI/fPAR) derived using UK-DMC 2 satellite data and a constant maximum LUE value from the literature. NPP values estimated from the model was then compared and validated with NPP estimated using allometric equations developed by Corley and Tinker (2003), Henson (2003) and Syahrinudin (2005) with diameter at breast height, age and the height of the oil palm trees collected from three estates in Peninsular Malaysia. Results of this study show that oil palm NPP derived using a light use efficiency model increases with respect to the age of oil palm trees, and it stabilises after ten years old. The mean value of oil palm NPP at 118 plots as derived using the LUE model is 968.72 g C m-2 year-1 and this is 188% - 273% higher than the NPP derived from the allometric equations. The estimated oil palm NPP of young oil palm trees is lower compared to mature oil palm trees (<10 years old), as young oil palm trees contribute to lower oil palm LAI and therefore fPAR, which is an important variable in the LUE model. In contrast, it is noted that oil palm NPP decreases with respect to the age of oil palm trees as estimated using the allomeric equations. It was found in this study that LUE models could not capture NPP variation of oil palm trees if LAI/fPAR is used. On the other hand, tree height and DBH are found to be important variables that can capture changes in oil palm NPP as a function of age.

  16. On the detection of adobe buried archaeological structures using multiscale remote sensing techniques : Piramide Naranja in Cahuachi (Peru)

    NASA Astrophysics Data System (ADS)

    Masini, N.; Rizzo, E.; Lasaponara, R.; Orefici, G.

    2009-04-01

    The detection of buried adobe structures is a crucial issue for the remote sensing (ground, aerial and satellite) applied to archaeology for the widespread of sun-dried earth as building material in several ancient civilizations in Central and Southern America, Middle East and North Africa. Moreover it is complex, due to the subtle contrast existing between the archaeological features and the surrounding, especially in arid setting, as in the case of the well know Nazca Ceremonial Centre of Cahuachi, located in the desert of Nazca (Southern Peru) . During the last two decades of excavations adobe monuments dating back from the 6th century B.C. to the 4th century A.D have been highlighted by the Centro de Estudios Arqueológicos Precolombinos (CEAP), an italian-peruvian mission directed by Giuseppe Orefici. Actually, the archaeologists are excavating and restoring the core of the Ceremonial centre where is located a great pyramid (kown as Gran Piramide). Beginning from 2007 the two institutes of CNR, IMAA and IBAM, have been involved by CEAP, in order to provide a scientific and technological support for the archaeological research. Therefore, a multi-scale approach based on the integration of aerial and satellite remote sensing with geophysical techniques was employed in order to provide data useful for archaeological excavations. The abstract refers to the last investigations performed on a mound, known as "Piramide Naranja", during the 2008. The processing of an aerial imagery time series and two QuickBird satellite images acquired in 2002 and 2005, allowed for identifying some features related to shallow and buried structures. Such features were verified by means of geophysical prospections, performed by using the magnetometric method which observed changes in the magnetic field within the first few metres beneath the subsurface detecting buried walls and anomalies linked to ceramic deposits referable to possible tombs. Finally, the integration of all data

  17. An integrated study of earth resources in the state of California using remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. A weighted stratified double sample design using hardcopy LANDSAT-1 and ground data was utilized in developmental studies for snow water content estimation. Study results gave a correlation coefficient of 0.80 between LANDSAT sample units estimates of snow water content and ground subsamples. A basin snow water content estimate allowable error was given as 1.00 percent at the 99 percent confidence level with the same budget level utilized in conventional snow surveys. Several evapotranspiration estimation models were selected for efficient application at each level of data to be sampled. An area estimation procedure for impervious surface types of differing impermeability adjacent to stream channels was developed. This technique employs a double sample of 1:125,000 color infrared hightflight transparency data with ground or large scale photography.

  18. Remote sensing of OH in the atmosphere using the technique of laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Wang, C. C.

    1983-01-01

    The use of a laser-induced fluorescence technique for the sensitive measurement of the atmospheric hydroxyl radical is discussed. Results of laboratory studies of the fluorescence and other spectroscopic properties of OH which allow the calculation of OH concentrations from the returned signals for various altitudes, water vapor contents and temperatures are presented. The experimental setup used for airborne OH measurements is then described, with particular attention given to the use of a telescope for excitation and light collection in a coaxial configuration and the periodic tuning of the exciting radiation necessary to obtain an OH signal in the presence of strong solar and nonresonant fluorescence backgrounds. The best detection limit obtained to date with the system is noted to be about 700,000 OH/cu cm, and it is expected that, with planned improvements in detection and tuning schemes, limits in the neighborhood of 1,000,000 OH/cu cm will be achieved routinely.

  19. Review of passive-blind detection in digital video forgery based on sensing and imaging techniques

    NASA Astrophysics Data System (ADS)

    Tao, Junjie; Jia, Lili; You, Ying

    2016-01-01

    Advances in digital video compression and IP communication technologies raised new issues and challenges concerning the integrity and authenticity of surveillance videos. It is so important that the system should ensure that once recorded, the video cannot be altered; ensuring the audit trail is intact for evidential purposes. This paper gives an overview of passive techniques of Digital Video Forensics which are based on intrinsic fingerprints inherent in digital surveillance videos. In this paper, we performed a thorough research of literatures relevant to video manipulation detection methods which accomplish blind authentications without referring to any auxiliary information. We presents review of various existing methods in literature, and much more work is needed to be done in this field of video forensics based on video data analysis and observation of the surveillance systems.

  20. Spectrum sensing of trace C(2)H(2) detection in differential optical absorption spectroscopy technique.

    PubMed

    Chen, Xi; Dong, Xiaopeng

    2014-09-10

    An improved algorithm for trace C(2)H(2) detection is presented in this paper. The trace concentration is accurately calculated by focusing on the absorption spectrum from the frequency domain perspective. The advantage of the absorption spectroscopy frequency domain algorithm is its anti-interference capability. First, the influence of the background noise on the minimum detectable concentration is greatly reduced. Second, the time-consuming preprocess of spectra calibration in the differential optical absorption spectroscopy technique is skipped. Experimental results showed the detection limit of 50 ppm is achieved at a lightpath length of 0.2 m. This algorithm can be used in real-time spectrum analysis with high accuracy.

  1. Using passive, thermal remote sensing techniques for detecting subsurface gravel accumulations in vegetated, unconsolidated sedimentary terrains

    NASA Technical Reports Server (NTRS)

    Burns, Gregory S.; Scholen, Douglas E.

    1989-01-01

    Multiband radiometric data from an airborne imaging thermal scanner are being studied for use in finding buried gravel deposits. The techniques are based on measuring relative differences in the thermal properties between gravel-laden targets and the surrounding gravelless background. These properties are determined from modeling the spectral radiant emittance recorded over both types of surfaces in conjunction with ground measurements of the most significant heat flows above and below the surface. Thermodynamic properties of sampled materials from control sites are determined, and diurnal and annual subsurface heat waves are recorded. Thermal models that account for heat exchange at the surface, as well as varying levels of soil moisture, humidity, and vegetation, are needed for adaptation and modification to simulate the physical and radiative environments of this region.

  2. New dielectric sensors and sensing techniques for soil and snow moisture measurements.

    PubMed

    Stacheder, Markus; Koeniger, Franz; Schuhmann, Rainer

    2009-01-01

    Measurements of material moisture are essential in fields such as agriculture or civil engineering. Electromagnetic techniques, more precisely dielectric methods, have gained wide acceptance in the last decades. Frequency or Time Domain methods take advantage of the high dielectric permittivity of water compared to dry materials. This paper presents four new dielectric sensors for the determination of soil or snow water content. After a short introduction into the principles, both the hardware and operating mode of each sensor are described. Field test results show the advantages and potentials such as automatic measurement and profiling, state-of-ground detection or large-scale determination. From the results it follows that the presented sensors offer promising new tools for modern environmental research.

  3. Detecting river sediments to assess hazardous materials at volcanic lake using advanced remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Saepuloh, Asep; Fitrianingtyas, Chintya

    2016-05-01

    The Toba Caldera formed from large depression of Quaternary volcanism is a remarkable feature at the Earth surface. The last Toba super eruptions were recorded around 73 ka and produced the Youngest Toba Tuff about 2,800 km3. Since then, there is no record of significant volcanic seismicity at Toba Volcanic Complex (TVC). However, the hydrothermal activities are still on going as presented by the existence of hot springs and alteration zones at the northwest caldera. The hydrothermal fluids probably containing some chemical compositions mixed with surficial water pollutant and contaminated the Toba Lake. Therefore, an environmental issues related to the existence of chemical composition and degradation of water clearness in the lake had been raised in the local community. The pollutant sources are debatable between natural and anthropogenic influences because some human activities grow rapidly at and around the lake such as hotels, tourisms, husbandry, aquaculture, as well as urbanization. Therefore, obtaining correct information about the source materials floating at the surface of the Toba Lake is crucial for environmental and hazard mitigation purposes. Overcoming the problem, we presented this paper to assess the source possibility of floating materials at Toba Lake, especially from natural sources such as hydrothermal activities of TVC and river stream sediments. The Spectral Angle Mapper (SAM) techniques using atmospherically corrected of Landsat-8 and colour composite of Polarimetric Synthetic Aperture Radar (PolSAR) were used to map the distribution of floating materials. The seven ground truth points were used to confirm the correctness of proposed method. Based on the SAM and PolSAR techniques, we could detect the interface of hydrothermal fluid at the lake surfaces. Various distributions of stream sediment were also detected from the river mouth to the lake. The influence possibilities of the upwelling process from the bottom floor of Toba Lake were also

  4. Study of Influence of Effluent on Ground Water Using Remote Sensing, GIS and Modeling Techniques

    NASA Astrophysics Data System (ADS)

    Pathak, S.; Bhadra, B. K.; Sharma, J. R.

    2012-07-01

    The area lies in arid zone of western Rajasthan having very scanty rains and very low ground water reserves. Some of the other problems that are faced by the area are disposal of industrial effluent posing threat to its sustainability of water resource. Textiles, dyeing and printing industries, various mechanical process and chemical/synthetic dyes are used and considerable wastewater discharged from these textile units contains about high amount of the dyes into the adjoining drainages. This has caused degradation of water quality in this water scarce semi-arid region of the country. Pali city is located South-West, 70 Kms from Jodhpur in western Rajasthan (India). There are four Common Effluent Treatment Plant (CETP) treating wastewater to meet the pollutant level permissible to river discharge, a huge amount of effluent water of these factories directly meets the into the river Bandi - a tributary of river Luni. In order to monitor the impact of industrial effluents on the environment, identifying the extent of the degradation and evolving possible means of minimizing the impacts studies on quality of effluents, polluted river water and water of adjoining wells, the contamination migration of the pollutants from the river to ground water were studied. Remote sensing analysis has been carried out using Resourcesat -1 multispectral satellite data along with DEM derived from IRS P5 stereo pair. GIS database generated of various thematic layers viz. base layer - inventorying all waterbodies in the vicinity, transport network and village layer, drainage, geomorphology, structure, land use. Analysis of spatial distribution of the features and change detection in land use/cover carried out. GIS maps have been used to help factor in spatial location of source and hydro-geomorphological settings. DEM & elevation contour helped in delineation of watershed and identifying flow modelling boundaries. Litholog data analysis carried out for aquifer boundaries using specialized

  5. A study and evaluation of image analysis techniques applied to remotely sensed data

    NASA Technical Reports Server (NTRS)

    Atkinson, R. J.; Dasarathy, B. V.; Lybanon, M.; Ramapriyan, H. K.

    1976-01-01

    An analysis of phenomena causing nonlinearities in the transformation from Landsat multispectral scanner coordinates to ground coordinates is presented. Experimental results comparing rms errors at ground control points indicated a slight improvement when a nonlinear (8-parameter) transformation was used instead of an affine (6-parameter) transformation. Using a preliminary ground truth map of a test site in Alabama covering the Mobile Bay area and six Landsat images of the same scene, several classification methods were assessed. A methodology was developed for automatic change detection using classification/cluster maps. A coding scheme was employed for generation of change depiction maps indicating specific types of changes. Inter- and intraseasonal data of the Mobile Bay test area were compared to illustrate the method. A beginning was made in the study of data compression by applying a Karhunen-Loeve transform technique to a small section of the test data set. The second part of the report provides a formal documentation of the several programs developed for the analysis and assessments presented.

  6. Optimal spatial sampling techniques for ground truth data in microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Rao, R. G. S.; Ulaby, F. T.

    1977-01-01

    The paper examines optimal sampling techniques for obtaining accurate spatial averages of soil moisture, at various depths and for cell sizes in the range 2.5-40 acres, with a minimum number of samples. Both simple random sampling and stratified sampling procedures are used to reach a set of recommended sample sizes for each depth and for each cell size. Major conclusions from statistical sampling test results are that (1) the number of samples required decreases with increasing depth; (2) when the total number of samples cannot be prespecified or the moisture in only one single layer is of interest, then a simple random sample procedure should be used which is based on the observed mean and SD for data from a single field; (3) when the total number of samples can be prespecified and the objective is to measure the soil moisture profile with depth, then stratified random sampling based on optimal allocation should be used; and (4) decreasing the sensor resolution cell size leads to fairly large decreases in samples sizes with stratified sampling procedures, whereas only a moderate decrease is obtained in simple random sampling procedures.

  7. Applying satellite remote sensing technique in disastrous rainfall systems around Taiwan

    NASA Astrophysics Data System (ADS)

    Liu, Gin-Rong; Chen, Kwan-Ru; Kuo, Tsung-Hua; Liu, Chian-Yi; Lin, Tang-Huang; Chen, Liang-De

    2016-05-01

    Many people in Asia regions have been suffering from disastrous rainfalls year by year. The rainfall from typhoons or tropical cyclones (TCs) is one of their key water supply sources, but from another perspective such TCs may also bring forth unexpected heavy rainfall, thereby causing flash floods, mudslides or other disasters. So far we cannot stop or change a TC route or intensity via present techniques. Instead, however we could significantly mitigate the possible heavy casualties and economic losses if we can earlier know a TC's formation and can estimate its rainfall amount and distribution more accurate before its landfalling. In light of these problems, this short article presents methods to detect a TC's formation as earlier and to delineate its rainfall potential pattern more accurate in advance. For this first part, the satellite-retrieved air-sea parameters are obtained and used to estimate the thermal and dynamic energy fields and variation over open oceans to delineate the high-possibility typhoon occurring ocean areas and cloud clusters. For the second part, an improved tropical rainfall potential (TRaP) model is proposed with better assumptions then the original TRaP for TC rainfall band rotations, rainfall amount estimation, and topographic effect correction, to obtain more accurate TC rainfall distributions, especially for hilly and mountainous areas, such as Taiwan.

  8. Romantic versus scientific perspective: the ruins of Radlin palace in Wielkopolska region in the light of remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Wilgocka, Aleksandra; Ruciński, Dominik; RÄ czkowski, Włodzimierz

    2015-06-01

    Although ruins of palace in Radlin, localized in Wielkopolska Region (Poland), could have been a great inspiration for romantic landscape painters, they were hardly considered as the subject of artistic interest. Nevertheless they stand as a marker in a landscape as a romantic background for the village on one hand and a memento for the neighbouring graveyard on another. Small scale excavations carried out in late 1950s with historical maps and analysis of still standing remains gave a general idea about wings order, localisation of main entrance and communication routs inside courtyard. Those early research thereby were the first step to change the meaning of this place from romantic to more scientific. New remote sensing technology allows move even further into scientific direction. The ruins in Radlin have been included into project ArchEO - archaeological applications of Earth Observation techniques. The main aim of the project in case of Radlin is an attempt to answer the question to what extent very high resolution optical satellite imagery might allow better understanding the spatial structure of the place. The various processing techniques were applied to facilitate the detection of archaeological features' impact on the vegetation condition. It enabled to assess the usefulness of satellite based data in recognizing specific archaeological remains. Thus, potential and limitations of satellite imagery versus other sources of spatial information like historic maps, excavation results, aerial photographs and Lidar will be discussed.

  9. Comparing Remote Sensing Techniques in Detecting Salmonid Habitat, Salmon River, Oregon

    NASA Astrophysics Data System (ADS)

    Shintani, C. M.

    2015-12-01

    Many restoration projects in the Pacific Northwest are implemented to improve habitat quality, quantity, and complexity for fish. Although numerous engineered log structures have been constructed in the hopes of achieving these goals, relatively few projects have been rigorously monitored to determine their success. This research seeks to compare the utility and application between photogrammetric and spectral depth approaches in detecting fish habitat in order to determine which method is more accurate and affordable for monitoring channel bathymetry. While each of these techniques has been individually studied, previous research has not directly compared and quantified their differences. Channel bathymetry data were collected by combining pre- and post-restoration digital photographs of the Salmon River in Northeast Clackamas County, Oregon, using structure-from-motion (SfM). The resulting 3D point cloud will be used to estimate water depths using photogrammetry and spectral depth. The photogrammetric method applies a refraction correction to the extracted water depth from the SfM topography to derive water depth. A regression between the surveyed water depth values and digital number values of surface pixels will derive depth. The resulting water depths from these two methods will be compared to the surveyed water depths for their accuracy and precision, particularly in critical salmonid habitats. The quantification of these differences will be an important contribution to river restoration science as it will allow for more accurate measurement and monitoring of changes in fish habitat. In the future, these data will be used in an eco-hydraulic River2D model to simulate changes in salmonid habitat availability after restoration.

  10. Efficiencies of Rotational Raman, and Rayleigh Techniques for Laser Remote Sensing of the Atmospheric Temperature

    NASA Technical Reports Server (NTRS)

    Ivanova, I. D.; Gurdev, L. L.; Mitev, V. M.

    1992-01-01

    Various lidar methods have been developed for measuring the atmospheric temperature, making use of the temperature dependant characteristics of rotational Raman scattering (RRS) from nitrogen and oxygen, and Rayleigh or Rayleigh-Brillowin scattering (RS or RBS). These methods have various advantages and disadvantages as compared to each other but their potential accuracies are principal characteristics of their efficiency. No systematic attempt has been undertaken so far to compare the efficiences, in the above meaning, of different temperature lidar methods. Two RRS techniques have been compared. Here, we do such a comparison using two methods based on the detection and analysis of RS (RBS) spectra. Four methods are considered here for measuring the atmospheric temperature. One of them (Schwiesow and Lading, 1981) is based on an analysis of the RS linewidth with two Michelson interferometers (MI) in parallel. The second method (Shimisu et al., 1986) employs a high-resolution analysis of the RBS line shape. The third method (Cooney, 1972) employs the temperature dependance of the RRS spectrum envelope. The fourth method (Armstrong, 1974) makes use of a scanning Fabry-Perot interferometer (FPI) as a comb filter for processing the periodic RRS spectrum of the nitrogen. Let us denote the corresponding errors in measuring the temperature by sigma(sub MI), sigma(sub HR), sigma(sub ENV), and sigma(sub FPI). Let us also define the ratios chi(sub 1) = sigma(sub MI)/sigma(sub ENV), chi(sub 2) = sigma(sub HR)/sigma(sub ENV), and chi(sub 3) = sigma(sub FPI)/sigma(sub ENV) interpreted as relative errors with respect to sigma(sub ENV).

  11. An Integrated Use of Experimental, Modeling and Remote Sensing Techniques to Investigate Carbon and Phosphorus Dynamics in the Humid Tropics

    NASA Technical Reports Server (NTRS)

    Townsend, Alan R.; Asner, Gregory P.; Bustamante, Mercedes M. C.

    2001-01-01

    Moist tropical forests comprise one of the world's largest and most diverse biomes, and exchange more carbon, water, and energy with the atmosphere than any other ecosystem. In recent decades, tropical forests have also become one of the globe's most threatened biomes, subjected to exceptionally high rates of deforestation and land degradation. Thus, the importance of and threats to tropical forests are undeniable, yet our understanding of basic ecosystem processes in both intact and disturbed portions of the moist tropics remains poorer than for almost any other major biome. Our approach in this project was to take a multi-scale, multi-tool approach to address two different problems. First, we wanted to test if land-use driven changes in the cycles of probable limiting nutrients in forest systems were a key driver in the frequently observed pattern of declining pasture productivity and carbon stocks. Given the enormous complexity of land use change in the tropics, in which one finds a myriad of different land use types and intensities overlain on varying climates and soil types, we also wanted to see if new remote sensing techniques would allow some novel links between parameters which could be sensed remotely, and key biogeochemical variables which cannot. Second, we addressed to general questions about the role of tropical forests in the global carbon cycle. First, we used a new approach for quantifying and minimizing non-biological artifacts in the NOAA/NASA AVHRR Pathfinder time series of surface reflectance data so that we could address potential links between Amazonian forest dynamics and ENSO cycles. Second, we showed that the disequilibrium in C-13 exchanged between land and atmosphere following tropical deforestation probably has a significant impact on the use of 13-CO2 data to predict regional fluxes in the global carbon cycle.

  12. Structural Analysis for Gold Mineralization Using Remote Sensing and Geochemical Techniques in a GIS Environment: Island of Lesvos, Hellas

    SciTech Connect

    Rokos, D. Argialas, D. Mavrantza, R. St Seymour, K.; Vamvoukakis, C.; Kouli, M.; Lamera, S.; Paraskevas, H.; Karfakis, I.; Denes, G

    2000-12-15

    Exploration for epithermal Au has been active lately in the Aegean Sea of the eastern Mediterranean Basin, both in the islands of the Quaternary arc and in those of the back-arc region. The purpose of this study was the structural mapping and analysis for a preliminary investigation of possible epithermal gold mineralization, using remotely sensed data and techniques, structural and field data, and geochemical information, for a specific area on the Island of Lesvos. Therefore, Landsat-TM and SPOT-Pan satellite images and the Digital Elevation Model (DEM) of the study area were processed digitally using spatial filtering techniques for the enhancement and recognition of the geologically significant lineaments, as well as algebraic operations with band ratios and Principal Component Analysis (PCA), for the identification of alteration zones. Statistical rose diagrams and a SCHMIDT projection Stereo Net were generated from the lineament maps and the collected field data (dip and strike measurements of faults, joints, and veins), respectively. The derived lineament map and the band ratio images were manipulated in a GIS environment, in order to study the relation of the tectonic pattern to both the alteration zoning and the geomorphology of the volcanic field of the study area. Target areas of high interest for possible mineralization also were specified using geochemical techniques, such as X-Ray Diffraction (XRD) analysis, trace-element, and fluid-inclusion analysis. Finally, preliminary conclusions were derived about possible mineralization, the type (high or low sulfidation), and the extent of mineralization, by combining the structural information with geochemical information.

  13. Sun Photometer Laser and Lamp Based Radiometric Calibrations; Comparison with the Langley Technique and Implications on Remote Sensing

    NASA Astrophysics Data System (ADS)

    Souaidia, N.; Pietras, C.; Brown, S. W.; Lykke, K. R.; Frouin, R.; Deschamps, P.; Fargion, G.; Johnson, B. C.

    2002-12-01

    Satellite-based remote sensing of the earth is a valuable data source for biological and oceanic studies. However when using remote sensing, it is necessary to correct the measured signal for atmospheric effects. As aerosols play a major role in atmospheric scattering, correcting algorithms based on Aerosol Optical Thickness (AOT) data have been developed to describe the scattering of radiation by aerosols. AOT data are collected by filter radiometers measuring the solar irradiance. The AOT is then retrieved applying the Beer-Bouger-Lambert Law to those measurements. Two radiometers, called Satellite Validation for Marine Biology and Aerosol Determination (SimbadA), were calibrated in this study. These instruments measure the upwelling radiance from the ocean as well as the solar irradiance, providing information on both marine reflectance and AOT. The goals of this study were to calibrate the radiometers using independent methods, evaluate the uncertainties for each method, and assess the influence of the results in terms of the science requirements. The radiometers were calibrated in irradiance and radiance mode using a monochromatic, laser-illuminated integrating sphere, in radiance mode using two different lamp-illuminated integrating spheres, and in irradiance mode using the Langley technique. First, a limited characterization of the instrument was conducted. The instrument's temporal stability and its spectral out-of-band response were evaluated. The instrument was then calibrated in radiance mode using a laser-illuminated integrating sphere that overfilled its field of view (FOV). The absolute radiance responsivity from this calibration was compared to results from measurements of two calibrated lamp illuminated spheres. The first comparison, with the NIST portable radiometric source (NPR), was a validation as good agreement between the two methods has been reported in previous studies. The second comparison was with the Hardy sphere from the Goddard Space

  14. Mapping of groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India, using remote sensing and GIS techniques.

    PubMed

    Thilagavathi, N; Subramani, T; Suresh, M; Karunanidhi, D

    2015-04-01

    This study proposes to introduce the remote sensing and geographic information system (GIS) techniques in mapping the groundwater potential zones. Remote sensing and GIS techniques have been used to map the groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India. Charnockites and fissile hornblende biotite gneiss are the major rock types in this region. Dunites and peridodites are the ultramafic rocks which cut across the foliation planes of the gneisses and are highly weathered. It comprises magnesite and chromite deposits which are excavated by five mining companies by adopting bench mining. The thickness of weathered and fracture zone varies from 2.2 to 50 m in gneissic formation and 5.8 to 55 m in charnockite. At the contacts of gneiss and charnockite, the thickness ranges from 9.0 to 90.8 m favoring good groundwater potential. The mine lease area is underlined by fractured and sheared hornblende biotite gneiss where groundwater potential is good. Water catchment tanks in this area of 5 km radius are small to moderate in size and are only seasonal. They remain dry during summer seasons. As perennial water resources are remote, the domestic and agricultural activities in this region depend mainly upon the groundwater resources. The mines are located in gently slope area, and accumulation of water is not observed except in mine pits even during the monsoon period. Therefore, it is essential to map the groundwater potential zones for proper management of the aquifer system. Satellite imageries were also used to extract lineaments, hydrogeomorphic landforms, drainage patterns, and land use, which are the major controlling factors for the occurrence of groundwater. Various thematic layers pertaining to groundwater existence such as geology, geomorphology, land use/land cover, lineament, lineament density, drainage, drainage density, slope, and soil were generated using GIS tools. By integrating all the above thematic layers based on the ranks and

  15. An integrated study of earth resources in the state of California using remote sensing techniques. [planning and management of water resources

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.; Churchman, C. W.; Burgy, R. H.; Schubert, G.; Estes, J. E.; Bowden, L. W.; Algazi, R.; Coulson, K. L. (Principal Investigator)

    1973-01-01

    The University of California has been conducting an investigation which seeks to determine the usefulness of modern remote sensing techniques for studying various components of California's earth resources complex. Most of the work has concentrated on California's water resources, but with some attention being given to other earth resources as well and to the interplay between them and California's water resources.

  16. A Comparison of Two Above-Ground Biomass Estimation Techniques Integrating Satellite-Based Remotely Sensed Data and Ground Data for Tropical and Semiarid Forests in Puerto Rico

    EPA Science Inventory

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA)...

  17. Applying aerial digital photography as a spectral remote sensing technique for macrophytic cover assessment in small rural streams

    NASA Astrophysics Data System (ADS)

    Anker, Y.; Hershkovitz, Y.; Gasith, A.; Ben-Dor, E.

    2011-12-01

    Although remote sensing of fluvial ecosystems is well developed, the tradeoff between spectral and spatial resolutions prevents its application in small streams (<3m width). In the current study, a remote sensing approach for monitoring and research of small ecosystem was developed. The method is based on differentiation between two indicative vegetation species out of the ecosystem flora. Since when studied, the channel was covered mostly by a filamentous green alga (Cladophora glomerata) and watercress (Nasturtium officinale), these species were chosen as indicative; nonetheless, common reed (Phragmites australis) was also classified in order to exclude it from the stream ROI. The procedure included: A. For both section and habitat scales classifications, acquisition of aerial digital RGB datasets. B. For section scale classification, hyperspectral (HSR) dataset acquisition. C. For calibration, HSR reflectance measurements of specific ground targets, in close proximity to each dataset acquisition swath. D. For habitat scale classification, manual, in-stream flora grid transects classification. The digital RGB datasets were converted to reflectance units by spectral calibration against colored reference plates. These red, green, blue, white, and black EVA foam reference plates were measured by an ASD field spectrometer and each was given a spectral value. Each spectral value was later applied to the spectral calibration and radiometric correction of spectral RGB (SRGB) cube. Spectral calibration of the HSR dataset was done using the empirical line method, based on reference values of progressive grey scale targets. Differentiation between the vegetation species was done by supervised classification both for the HSR and for the SRGB datasets. This procedure was done using the Spectral Angle Mapper function with the spectral pattern of each vegetation species as a spectral end member. Comparison between the two remote sensing techniques and between the SRGB

  18. The possibility of using photogrammetric and remote sensing techniques to model lavaka (gully erosion) development in Madagascar

    NASA Astrophysics Data System (ADS)

    Raveloson, Andrea; Székely, Balázs; Molnár, Gábor; Rasztovits, Sascha

    2013-04-01

    Gully erosion is a worldwide problem for it has a number of undesirable effects and their development is hard to follow. Madagascar is one of the most affected countries for its highlands are densely covered with gullies named lavakas. Lavaka formation and development seems to be triggered by many regional and local causes but the actual reasons are still poorly understood. Furthermore lavakas differ from normal gullies due to their enormous size and special shape. Field surveys are time consuming and data from two-dimensional measurements and pictures (even aerial) might lack major information for morphologic studies. Therefore close range surveying technologies should be used to get three-dimensional information about these unusual and complex features. This contribution discusses which remote sensing and photogrammetric techniques are adequate to survey the development of lavakas, their volume change and sediment budget. Depending on the types and properties (such as volume, depth, shape, vegetation) of the lavaka different methods will be proposed showing pros and cons of each one of them. Our goal is to review techniques to model, survey and analyze lavakas development to better understand the cause of their formation, special size and shape. Different methods are evaluated and compared from field survey through data processing, analyzing cost-effectiveness, potential errors and accuracy for each one of them. For this purpose we will also consider time- and cost-effectiveness of the softwares able to render the images into 3D model as well as the resolution and accuracy of the outputs. Further studies will concentrate on using the three dimensional models of lavakas which will be later on used for geomorphological studies in order to understand their special shape and size. This is ILARG-contribution #07.

  19. Monitoring the urban expansion of Athens using remote sensing and GIS techniques in the last 35 years

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, Konstantinos; Pavlopoulos, Kosmas; Chalkias, Christos; Manou, Dora

    2005-10-01

    During the last thirty-five years the capital of Greece has suffered from an enormous internal immigration. Its population has overpassed the five millions and today almost the half population of Greece is squeezed in Athens metropolitan area. Because of the significant increase of population, the urban expansion in the basin of Athens was also excessive and in some cases catastrophic. Buildings have covered all the free places, new roads have been constructed, the drainage networks have been covered or disappeared and a lot of changes have been occurred to the landforms. The construction of the new airport (Elefterios Venizelos) at the beginning of this decade created a new commercial and urban pole at the eastern part of Athens and the constructive activity has been moved to new areas around the airport. Our aim was to detect and map all the changes that occurred in the urban area, estimate the urban expansion rate and the human interferences in the natural landscape, using GIS and remote sensing techniques. We have used satellite images from three different periods (1973, 1992, 2002) and topographic maps of 1:25.000 scale. The spatial resolution of all the satellite images ranges from 5 to 10 meters and is it acceptable for the monitoring and mapping of the urban growth. Supervised classification and on screen digitizing methods have been used in order to map the changes. Finally the qualitative and quantitative results of this study are presented in this paper.

  20. Application of remote-sensing techniques to hydrologic studies in selected coal-mine areas of southeastern Kansas

    USGS Publications Warehouse

    Kenny, J.F.; McCauley, J.R.

    1983-01-01

    Disturbances resulting from intensive coal mining in the Cherry Creek basin of southeastern Kansas were investigated using color and color-infrared aerial photography in conjunction with water-quality data from simultaneously acquired samples. Imagery was used to identify the type and extent of vegetative cover on strip-mined lands and the extent and success of reclamation practices. Drainage patterns, point sources of acid mine drainage, and recharge areas for underground mines were located for onsite inspection. Comparison of these interpretations with water-quality data illustrated differences between the eastern and western parts of the Cherry Creek basin. Contamination in the eastern part is due largely to circulation of water from unreclaimed strip mines and collapse features through the network of underground mines and subsequent discharge of acidic drainage through seeps. Contamination in the western part is primarily caused by runoff and seepage from strip-mined lands in which surfaces have frequently been graded and limed but are generally devoid of mature stands of soil-anchoring vegetation. The successful use of aerial photography in the study of Cherry Creek basin indicates the potential of using remote-sensing techniques in studies of other coal-mined regions. (USGS)

  1. Remote sensing and GIS techniques for evaluation of groundwater quality in municipal corporation of Hyderabad (Zone-V), India.

    PubMed

    Asadi, S S; Vuppala, Padmaja; Reddy, M Anji

    2007-03-01

    Groundwater quality in Hyderabad has special significance and needs great attention of all concerned since it is the major alternate source of domestic, industrial and drinking water supply. The present study monitors the ground water quality, relates it to the land use / land cover and maps such quality using Remote sensing and GIS techniques for a part of Hyderabad metropolis. Thematic maps for the study are prepared by visual interpretation of SOI toposheets and linearly enhanced fused data of IRS-ID PAN and LISS-III imagery on 1:50,000 scale using AutoCAD and ARC/INFO software. Physico-chemical analysis data of the groundwater samples collected at predetermined locations forms the attribute database for the study, based on which, spatial distribution maps of major water quality parameters are prepared using curve fitting method in Arc View GIS software. Water Quality Index (WQI) was then calculated to find the suitability of water for drinking purpose. The overall view of the water quality index of the present study area revealed that most of the study area with >50 standard rating of water quality index exhibited poor, very poor and unfit water quality except in places like Banjara Hills, Erragadda and Tolichowki. Appropriate methods for improving the water quality in affected areas have been suggested.

  2. Femtosecond laser fabricated multimode fiber sensors interrogated by optical-carrier-based microwave interferometry technique for distributed strain sensing

    NASA Astrophysics Data System (ADS)

    Hua, Liwei; Song, Yang; Huang, Jie; Cheng, Baokai; Zhu, Wenge; Xiao, Hai

    2016-03-01

    A multimode fiber (MMF) based cascaded intrinsic Fabry-Perot interferometers (IFPIs) system is presented and the distributed strain sensing has been experimentally demonstrated by using such system. The proposed 13 cascaded IFPIs have been formed by 14 cascaded reflectors that have been fabricated on a grade index MMF. Each reflector has been made by drawing a line on the center of the cross-section of the MMF through a femtosecond laser. The distance between any two adjacent reflectors is around 100 cm. The optical carrier based microwave interferometry (OCMI) technique has been used to interrogate the MMF based cascaded FPIs system by reading the optical interference information in the microwave domain. The location along with the shift of the interference fringe pattern for each FPI can be resolved though signal processing based on the microwave domain information. The multimode interference showed very little influence to the microwave domain signals. By using such system the strain of 10-4 for each FPI sensor and the spatial resolution of less than 5 cm for the system can be easily achieved.

  3. Assessment of the capability of remote sensing and GIS techniques for monitoring reclamation success in coal mine degraded lands.

    PubMed

    Karan, Shivesh Kishore; Samadder, Sukha Ranjan; Maiti, Subodh Kumar

    2016-11-01

    The objective of the present study is to monitor reclamation activity in mining areas. Monitoring of these reclaimed sites in the vicinity of mining areas and on closed Over Burden (OB) dumps is critical for improving the overall environmental condition, especially in developing countries where area around the mines are densely populated. The present study evaluated the reclamation success in the Block II area of Jharia coal field, India, using Landsat satellite images for the years 2000 and 2015. Four image processing methods (support vector machine, ratio vegetation index, enhanced vegetation index, and normalized difference vegetation index) were used to quantify the change in vegetation cover between the years 2000 and 2015. The study also evaluated the relationship between vegetation health and moisture content of the study area using remote sensing techniques. Statistical linear regression analysis revealed that Normalized Difference Vegetation Index (NDVI) coupled with Normalized Difference Moisture Index (NDMI) is the best method for vegetation monitoring in the study area when compared to other indices. A strong linear relationship (r(2) > 0.86) was found between NDVI and NDMI. An increase of 21% from 213.88 ha in 2000 to 258.9 ha in 2015 was observed in the vegetation cover of the reclaimed sites for an open cast mine, indicating satisfactory reclamation activity. NDVI results indicated that vegetation health also improved over the years.

  4. A Low-Power and In Situ Annealing Mitigation Technique for Fast Neutrons Irradiation of Integrated Temperature Sensing Diodes

    SciTech Connect

    Francis, Laurent A.; Andre, Nicolas; Gerard, Pierre; Flandre, Denis; Ali, S. Zeeshan; Udrea, Florin

    2015-07-01

    High doses of fast neutrons is detrimental to the performance of most common solid-state devices such as diodes and transistors. The ionizing effect is observed in particular for diodes used as simple integrated temperature sensors, or thermo-diodes, when their junction voltage is measured at constant current bias. In this work, we present a low-power and in situ mitigation technique based on Silicon-on-Insulator (SOI) micro-hot-plates to recover thermo-diodes. The basic operating principle consists in annealing the temperature-sensitive diodes integrated on the membrane during or after their irradiation in order to restore similar sensing characteristics over time. We measured thermo-diodes integrated to micro-hot-plates during their irradiation by fast neutrons (23 MeV peak) with total doses about 2.97±0.08 kGy. The membrane annealing is taking place at 450 deg. C using 40 mW of electrical power. Thanks to the annealing, the diode keeps a total measurement error below 0.5 deg. C. In this harsh radiation environment and beside the good tolerance of the thermo-diodes and the membrane materials to the total ionizing dose, the thermo-diode located on the heating membrane keeps a constant sensitivity. The demonstrated resistance of micro-hot-plates and the integrated thermo-diodes to fast neutron radiations can extend their use in nuclear plants and for radiation detectors. (authors)

  5. A comparison of the ethanol sensing properties of α-iron oxide nanostructures prepared via the sol-gel and electrospinning techniques

    NASA Astrophysics Data System (ADS)

    Leonardi, S. G.; Mirzaei, A.; Bonavita, A.; Santangelo, S.; Frontera, P.; Pantò, F.; Antonucci, P. L.; Neri, G.

    2016-02-01

    Haematite (α-Fe2O3) nanostructures were synthesized via a Pechini sol-gel method (PSG) and an electrospinning (ES) technique. Their texture and morphology were investigated by scanning and transmission electron microscopy. α-Fe2O3 nanoparticles were obtained by the PSG method, whereas fibrous structures consisting of interconnected particles were synthesized through the ES technique. The crystallinity of the α-Fe2O3 nanostructures was also studied by means of x-ray diffraction and Raman spectroscopy. Gas-sensing devices were fabricated by printing the synthesized samples on ceramic substrates provided with interdigitated Pt electrodes. The sensors were tested towards low concentrations of ethanol in air in the temperature range (200-400°C). The results show that the α-Fe2O3 nanostructures exhibit somewhat different gas-sensing properties and, interestingly, their sensing behaviour is strongly temperature-dependent. The availability of active sites for oxygen chemisorption and the diffusion of the analyte gas within the sensing layer structure are hypothesized to be the key factors responsible for the different sensing behaviour observed.

  6. A comparison of the ethanol sensing properties of α-iron oxide nanostructures prepared via the sol-gel and electrospinning techniques.

    PubMed

    Leonardi, S G; Mirzaei, A; Bonavita, A; Santangelo, S; Frontera, P; Pantò, F; Antonucci, P L; Neri, G

    2016-02-19

    Haematite (α-Fe2O3) nanostructures were synthesized via a Pechini sol-gel method (PSG) and an electrospinning (ES) technique. Their texture and morphology were investigated by scanning and transmission electron microscopy. α-Fe2O3 nanoparticles were obtained by the PSG method, whereas fibrous structures consisting of interconnected particles were synthesized through the ES technique. The crystallinity of the α-Fe2O3 nanostructures was also studied by means of x-ray diffraction and Raman spectroscopy. Gas-sensing devices were fabricated by printing the synthesized samples on ceramic substrates provided with interdigitated Pt electrodes. The sensors were tested towards low concentrations of ethanol in air in the temperature range (200-400 °C). The results show that the α-Fe2O3 nanostructures exhibit somewhat different gas-sensing properties and, interestingly, their sensing behaviour is strongly temperature-dependent. The availability of active sites for oxygen chemisorption and the diffusion of the analyte gas within the sensing layer structure are hypothesized to be the key factors responsible for the different sensing behaviour observed.

  7. Application of remote sensing techniques to study the neotectonics in the northwestern Himalayan fold-and-thrust belt, Pakistan

    NASA Astrophysics Data System (ADS)

    Chen, Lize

    The northwestern Himalayan foreland fold-and-thrust belt in Pakistan is characterized by a gentle slope, extraordinary width, and abrupt lateral structural variations at the front of this belt. To understand the structures and the formation mechanism of the structural reentrants, remote sensing and seismic interpretation techniques are used to study the surface and subsurface geology. Geomorphic features are extracted from the Shuttle Radar Topography Mission (SRTM) DEM data. Structures are interpreted from Landsat ETM+ images and published maps. These data suggest that the varying resistance under the fold-and-thrust belt is the main cause of the distinct topographic and structural features. ASTER data are used to map the detailed lithology and structures in the Kalabagh Fault Zone, which is the largest lateral structure connecting the Salt Range and the Surghar Range at leading edge of the fold-and-thrust belt. Combining surface geology with seismic interpretations, cross sections are constructed to understand the fault geometry. Salt is found to have played an important role in the development of the Kalabagh Fault. InSAR observations are used to estimate the slip rate, and slip direction along the Kalalabagh Fault Zone. The deformation style interpreted from the interferogram is in concordance with the analogue modeling results. Integration of the geomorphologic analysis, structures, current deformation, and previous studies suggests that the foreland fold-and-thrust belt can be divided into three thrust wedges propagating on decollements with different rheological properties. The viscous salt decollement allows the Salt Range to propagate further southwards than the Surghar Range. The Kalabagh Fault accommodates different shortening between these wedges.

  8. A novel approach to model exposure of coastal-marine ecosystems to riverine flood plumes based on remote sensing techniques.

    PubMed

    Álvarez-Romero, Jorge G; Devlin, Michelle; Teixeira da Silva, Eduardo; Petus, Caroline; Ban, Natalie C; Pressey, Robert L; Kool, Johnathan; Roberts, Jason J; Cerdeira-Estrada, Sergio; Wenger, Amelia S; Brodie, Jon

    2013-04-15

    Increased loads of land-based pollutants are a major threat to coastal-marine ecosystems. Identifying the affected marine areas and the scale of influence on ecosystems is critical to assess the impacts of degraded water quality and to inform planning for catchment management and marine conservation. Studies using remotely-sensed data have contributed to our understanding of the occurrence and influence of river plumes, and to our ability to assess exposure of marine ecosystems to land-based pollutants. However, refinement of plume modeling techniques is required to improve risk assessments. We developed a novel, complementary, approach to model exposure of coastal-marine ecosystems to land-based pollutants. We used supervised classification of MODIS-Aqua true-color satellite imagery to map the extent of plumes and to qualitatively assess the dispersal of pollutants in plumes. We used the Great Barrier Reef (GBR), the world's largest coral reef system, to test our approach. We combined frequency of plume occurrence with spatially distributed loads (based on a cost-distance function) to create maps of exposure to suspended sediment and dissolved inorganic nitrogen. We then compared annual exposure maps (2007-2011) to assess inter-annual variability in the exposure of coral reefs and seagrass beds to these pollutants. We found this method useful to map plumes and qualitatively assess exposure to land-based pollutants. We observed inter-annual variation in exposure of ecosystems to pollutants in the GBR, stressing the need to incorporate a temporal component into plume exposure/risk models. Our study contributes to our understanding of plume spatial-temporal dynamics of the GBR and offers a method that can also be applied to monitor exposure of coastal-marine ecosystems to plumes and explore their ecological influences.

  9. Plankton Biomass Models Based on GIS and Remote Sensing Technique for Predicting Marine Megafauna Hotspots in the Solor Waters

    NASA Astrophysics Data System (ADS)

    Putra, MIH; Lewis, SA; Kurniasih, EM; Prabuning, D.; Faiqoh, E.

    2016-11-01

    Geographic information system and remote sensing techniques can be used to assist with distribution modelling; a useful tool that helps with strategic design and management plans for MPAs. This study built a pilot model of plankton biomass and distribution in the waters off Solor and Lembata, and is the first study to identify marine megafauna foraging areas in the region. Forty-three samples of zooplankton were collected every 4 km according to the range time and station of aqua MODIS. Generalized additive model (GAM) we used to modelling zooplankton biomass response from environmental properties.Thirty one samples were used to build a model of inverse distance weighting (IDW) (cell size 0.01°) and 12 samples were used as a control to verify the models accuracy. Furthermore, Getis-Ord Gi was used to identify the significance of the hotspot and cold-spot for foraging area. The GAM models was explain 88.1% response of zooplankton biomass and percent to full moon, phytopankton biomassbeing strong predictors. The sampling design was essential in order to build highly accurate models. Our models 96% accurate for phytoplankton and 88% accurate for zooplankton. The foraging behaviour was significantly related to plankton biomass hotspots, which were two times higher compared to plankton cold-spots. In addition, extremely steep slopes of the Lamakera strait support strong upwelling with highly productive waters that affect the presence of marine megafauna. This study detects that the Lamakera strait provides the planktonic requirements for marine megafauna foraging, helping to explain why this region supports such high diversity and abundance of marine megafauna.

  10. Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing.

    PubMed

    Rivest, Jessy B; Jain, Prashant K

    2013-01-07

    Cation exchange is an age-old technique for the chemical conversion of liquids or extended solids by place-exchanging the cations in an ionic material with a different set of cations. The technique is undergoing a major revival with the advent of high-quality nanocrystals: researchers are now able to overcome the limitations in bulk systems and fully exploit cation exchange for materials synthesis and discovery via rapid, low-temperature transformations in the solid state. In this tutorial review, we discuss cation exchange as a promising materials synthesis and discovery tool. Exchange on the nanoscale exhibits some unique attributes: rapid kinetics at room temperature (orders of magnitude faster than in the bulk) and the tuning of reactivity via control of nanocrystal size, shape, and surface faceting. These features make cation exchange a convenient tool for accessing nanocrystal compositions and morphologies for which conventional synthesis may not be established. A simple exchange reaction allows extension of nanochemistry to a larger part of the periodic table, beyond the typical gamut of II-VI, IV-VI, and III-V materials. Cation exchange transformations in nanocrystals can be topotactic and size- and shape-conserving, allowing nanocrystals synthesized by conventional methods to be used as templates for production of compositionally novel, multicomponent, or doped nanocrystals. Since phases and compositions resulting from an exchange reaction can be kinetically controlled, rather than governed by the phase diagram, nanocrystals of metastable and hitherto inaccessible compositions are attainable. Outside of materials synthesis, applications for cation exchange exist in water purification, chemical staining, and sensing. Since nanoscale cation exchange occurs rapidly at room temperature, it can be integrated with sensitive environments such as those in biological systems. Cation exchange is already allowing access to a variety of new materials and processes

  11. Differential Radiometers Using Fabry-Perot Interferometric Technique for Remote Sensing Determination of Various Atmospheric Trace Gases

    NASA Technical Reports Server (NTRS)

    Georgieva, E. M.; Heaps, W. S.; Wilson, E. L.

    2007-01-01

    New type of remote sensing instrument based upon the Fabry-Perot inte rferometric technique has been developed at NASA's Goddard Space Flight Center. Fabry-Perot interferometry (FPI) is a well known, powerful spectroscopic technique and one of its many applications is to be use d to measure greenhouse gases and also some harmful species in the at mosphere. With this technique, absorption of particular species is me asured and related to its concentration. A solid Fabry-Perot etalon is used as a frequency filter to restrict the measurement to particular absorption bands of the gas of interest. With adjusting the thicknes s of the etalon that separation (in frequency) of the transmitted fri nges can be made equal to the almost constant separation of the gas a bsorption lines. By adjusting the temperature of the etalon, which changes the index of refi-action of its material, the transmission fring es can be brought into nearly exact correspondence with absorption li nes of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosph ere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The instrument that we have dev eloped detects the absorption of various atmospheric trace gases in d irect or reflected sunlight. Our instrument employing Fabry-Perot interferometer makes use of two features to achieve high sensitivity. The first is high spectral resolution enabling one to match the width of an atmospheric absorption feature by the instrumental band pass. The second is high optical throughput enabled by using multiple spectral lines simultaneously. For any species that one wishes to measure, thi s first feature is available while the use of multiple spectral features can be employed only for species with suitable spectra and freedom from interfering species in the same wavelength region. We have deve loped an instrument for use as ground based

  12. Fiber Loop Ringdown — a Time-Domain Sensing Technique for Multi-Function Fiber Optic Sensor Platforms: Current Status and Design Perspectives

    PubMed Central

    Wang, Chuji

    2009-01-01

    Fiber loop ringdown (FLRD) utilizes an inexpensive telecommunications light source, a photodiode, and a section of single-mode fiber to form a uniform fiber optic sensor platform for sensing various quantities, such as pressure, temperature, strain, refractive index, chemical species, biological cells, and small volume of fluids. In FLRD, optical losses of a light pulse in a fiber loop induced by changes in a quantity are measured by the light decay time constants. FLRD measures time to detect a quantity; thus, FLRD is referred to as a time-domain sensing technique. FLRD sensors have near real-time response, multi-pass enhanced high-sensitivity, and relatively low cost (i.e., without using an optical spectral analyzer). During the last eight years since the introduction of the original form of fiber ringdown spectroscopy, there has been increasing interest in the FLRD technique in fiber optic sensor developments, and new application potential is being explored. This paper first discusses the challenging issues in development of multi-function, fiber optic sensors or sensor networks using current fiber optic sensor sensing schemes, and then gives a review on current fiber optic sensor development using FLRD technique. Finally, design perspectives on new generation, multi-function, fiber optic sensor platforms using FLRD technique are particularly presented. PMID:22408471

  13. Fiber loop ringdown - a time-domain sensing technique for multi-function fiber optic sensor platforms: current status and design perspectives.

    PubMed

    Wang, Chuji

    2009-01-01

    Fiber loop ringdown (FLRD) utilizes an inexpensive telecommunications light source, a photodiode, and a section of single-mode fiber to form a uniform fiber optic sensor platform for sensing various quantities, such as pressure, temperature, strain, refractive index, chemical species, biological cells, and small volume of fluids. In FLRD, optical losses of a light pulse in a fiber loop induced by changes in a quantity are measured by the light decay time constants. FLRD measures time to detect a quantity; thus, FLRD is referred to as a time-domain sensing technique. FLRD sensors have near real-time response, multi-pass enhanced high-sensitivity, and relatively low cost (i.e., without using an optical spectral analyzer). During the last eight years since the introduction of the original form of fiber ringdown spectroscopy, there has been increasing interest in the FLRD technique in fiber optic sensor developments, and new application potential is being explored. This paper first discusses the challenging issues in development of multi-function, fiber optic sensors or sensor networks using current fiber optic sensor sensing schemes, and then gives a review on current fiber optic sensor development using FLRD technique. Finally, design perspectives on new generation, multi-function, fiber optic sensor platforms using FLRD technique are particularly presented.

  14. Streamlined environmental remediation characterization using remote sensing techniques: Case studies for the US Department of Energy, Oak Ridge Operations

    SciTech Connect

    Carden, D.M.; Smyre, J.L.; Evers, T.K.; King, A.L.

    1996-07-01

    This paper provides an overview of the DOE Oak Ridge Operations Remote Sensing Program and discusses how data from this program have assisted the environmental restoration program in streamlining site-characterization activities. Three case studies are described where remote sensing imagery has provided a more focused understanding of site problems with a resultant reduction in the need for costly and time-consuming, ground-based sampling approaches.

  15. Integration of remote sensing and ground-based techniques for the study of land degradation phenomena in coastal areas.

    NASA Astrophysics Data System (ADS)

    Imbrenda, Vito; Coluzzi, Rosa; Calamita, Giuseppe; Luigia Giannossi, Maria; D'Emilio, Mariagrazia; Lanfredi, Maria; Makris, John; Palombo, Angelo; Pascucci, Simone; Santini, Federico; Margiotta, Salvatore; Emanuela Bonomo, Agnese; De Martino, Gregory; Perrone, Angela; Rizzo, Enzo; Pignatti, Stefano; Summa, Vito; Simoniello, Tiziana

    2015-04-01

    Land degradation processes, such as salinization and waterlogging, are increasingly affecting extensive areas devoted to agriculture threatening the sustainability of farming practices. Soil salinization typically appears as an excess accumulation of salt generally pronounced at the soil surface. Commonly, soil salinity is defined and measured by means of laboratory measurements of the electrical conductivity of liquid extracted from saturated soil-paste or different soil-water suspensions. Lab measurements are generally time consuming, costly, destructive, untimely for practical situations where the determination of the causes and/or the assessment of management practices are of interest. Recently, emerging survey techniques proved to be powerful tools to support soil salinity appraisal reducing costs and increasing the amount of spatial information. In the frame of PRO-LAND project (PO-FESR Basilicata 2007-2013) the research activities have been focused on the study of a complex salinization phenomenon occurring in a coastal environment of the Basilicata region (Southern Italy) as a result of natural and anthropic disturbances. The study area is located in the southernmost part of the Bradanic Trough along the sandy Ionian coastal plain. The hydrogeological conditions affect shallowness of the aquifer (45-50 cm below the ground) allowing the occurrence of seawater intrusion. Moreover, during last century, human activities, i.e. built-up of dams, the emergence of farms and industries, played a relevant role in the alteration of soil and groundwater quality of the area. In this work, both ground-based and remote sensing data were used. First, a geophysical mapping of electrical conductivity was carried out using a multi-frequency portable electro-magnetic induction (EMI) sensor. Based on the geophysical mapping and on optimization sampling approach, a number of locations were identified to collect soil samples for the geomineralogical characterization. Airborne

  16. Sensing interrogation technique for fiber-optic interferometer type of sensors based on a single-passband RF filter.

    PubMed

    Chen, Hao; Zhang, Shiwei; Fu, Hongyan; Zhou, Bin; Chen, Nan

    2016-02-08

    In this paper, a sensing interrogation system for fiber-optic interferometer type of sensors by using a single-passband radio-frequency (RF) filter has been proposed and experimentally demonstrated. The fiber-optic interferometer based sensors can give continuous optical sampling, and along with dispersive medium a single-passband RF frequency response can be achieved. The sensing parameter variation on the fiber-optic interferometer type of sensors will affect their free spectrum range, and thus the peak frequency of the RF filter. By tracking the central frequency of the passband the sensing parameter can be demodulated. As a demonstration, in our experiment a fiber Mach-Zehnder interferometer (FMZI) based temperature sensor has been interrogated. By tracking the peak frequency of the passband the temperature variation can be monitored. In our experiment, the sensing responsivity of 10.5 MHz/°C, 20.0 MHz/°C and 41.2 MHz/°C, when the lengths of sensing fiber are 1 m, 2 m and 4 m have been achieved.

  17. Context predictor based sparse sensing technique and smart transmission architecture for IoT enabled remote health monitoring applications.

    PubMed

    Sai Kiran, M P R; Rajalakshmi, P; Acharyya, Amit

    2014-01-01

    In hyperconnectivity scenario, managing the amount of data acquired from sensors in the Body Area Networks (BANs) is one of the major issues. In this paper we propose an on-chip context predictor based sparse sensing technology with smart transmission architecture which makes use of confidence interval calculation from the features that present in the data, thereby achieving statistical guarantee. The proposed architecture uses intelligent sparse sensing, which eradicates the collection of redundant data, thereby reducing the amount of data generated. For the performance analysis, we considered ECG data acquisition and transmission system. The proposed architecture when applied on the data collected from 10 patients reduces the duty cycle of the sensing unit to 27.99%, by achieving an energy saving of 72% and the mean deviation of sampled data from the original data is 2%.

  18. An information system design for watershed-wide modeling of water loss to the atmosphere using remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Khorram, S.

    1977-01-01

    Results are presented of a study intended to develop a general location-specific remote-sensing procedure for watershed-wide estimation of water loss to the atmosphere by evaporation and transpiration. The general approach involves a stepwise sequence of required information definition (input data), appropriate sample design, mathematical modeling, and evaluation of results. More specifically, the remote sensing-aided system developed to evaluate evapotranspiration employs a basic two-stage two-phase sample of three information resolution levels. Based on the discussed design, documentation, and feasibility analysis to yield timely, relatively accurate, and cost-effective evapotranspiration estimates on a watershed or subwatershed basis, work is now proceeding to implement this remote sensing-aided system.

  19. Evaluation of water-use efficiency in foxtail millet (Setaria italica) using visible-near infrared and thermal spectral sensing techniques.

    PubMed

    Wang, Meng; Ellsworth, Patrick Z; Zhou, Jianfeng; Cousins, Asaph B; Sankaran, Sindhuja

    2016-05-15

    Water limitations decrease stomatal conductance (g(s)) and, in turn, photosynthetic rate (A(net)), resulting in decreased crop productivity. The current techniques for evaluating these physiological responses are limited to leaf-level measures acquired by measuring leaf-level gas exchange. In this regard, proximal sensing techniques can be a useful tool in studying plant biology as they can be used to acquire plant-level measures in a high-throughput manner. However, to confidently utilize the proximal sensing technique for high-throughput physiological monitoring, it is important to assess the relationship between plant physiological parameters and the sensor data. Therefore, in this study, the application of rapid sensing techniques based on thermal imaging and visual-near infrared spectroscopy for assessing water-use efficiency (WUE) in foxtail millet (Setaria italica (L.) P. Beauv) was evaluated. The visible-near infrared spectral reflectance (350-2500 nm) and thermal (7.5-14 µm) data were collected at regular intervals from well-watered and drought-stressed plants in combination with other leaf physiological parameters (transpiration rate-E, A(net), g(s), leaf carbon isotopic signature-δ(13)C(leaf), WUE). Partial least squares regression (PLSR) analysis was used to predict leaf physiological measures based on the spectral data. The PLSR modeling on the hyperspectral data yielded accurate and precise estimates of leaf E, gs, δ(13)C(leaf), and WUE with coefficient of determination in a range of 0.85-0.91. Additionally, significant differences in average leaf temperatures (~1°C) measured with a thermal camera were observed between well-watered plants and drought-stressed plants. In summary, the visible-near infrared reflectance data, and thermal images can be used as a potential rapid technique for evaluating plant physiological responses such as WUE.

  20. Optical techniques for sensing and measurement in hostile environments; Proceedings of the Meeting, Orlando, FL, May 21, 22, 1987

    NASA Astrophysics Data System (ADS)

    Gillespie, Calvin H.; Greenwell, Roger A.

    1987-01-01

    Papers are presented on referencing in fiber optic sensing systems, optical fiber chemical sensing networks, and the radiation response of new pure silica fibers. Also considered are a comparison of gamma, neutron, and proton irradiations of multimode fibers, a pinhole camera for hot environment viewing of electron beam materials processing, and the utilization of optical image data from the advanced test accelerator. Other topics include the application of an interferometer spectrometer aboard the Space Shuttle with a payload specialist in the control loop, hydrogen chloride measurements in launch-vehicle exhaust clouds, and a rocket-borne telescoped Fourier transform spectrometer operating at 10 K.

  1. Monitoring land-use change by combining participatory land-use maps with standard remote sensing techniques: Showcase from a remote forest catchment on Mindanao, Philippines

    NASA Astrophysics Data System (ADS)

    Mialhe, François; Gunnell, Yanni; Ignacio, J. Andres F.; Delbart, Nicolas; Ogania, Jenifer L.; Henry, Sabine

    2015-04-01

    This paper combines participatory activities (PA) with remote sensing analysis into an integrated methodology to describe and explain land-cover changes. A remote watershed on Mindanao (Philippines) is used to showcase the approach, which hypothesizes that the accuracy of expert knowledge gained from remote sensing techniques can be further enhanced by inputs from vernacular knowledge when attempting to understand complex land mosaics and past land-use changes. Six participatory sessions based on focus-group discussions were conducted. These were enhanced by community-based land-use mapping, resulting in a final total of 21 participatory land-use maps (PLUMs) co-produced by a sample of stakeholders with different sociocultural and ecological perspectives. In parallel, seven satellite images (Landsat MSS, Landsat TM, Landsat ETM+, and SPOT4) were classified following standard techniques and provided snapshots for the years 1976, 1996, and 2010. Local knowledge and collective memory contributed to define and qualify relevant land-use classes. This also provided information about what had caused the land-use changes in the past. Results show that combining PA with remote-sensing analysis provides a unique understanding of land-cover change because the two methods complement and validate one another. Substantive qualitative information regarding the chronology of land-cover change was obtained in a short amount of time across an area poorly covered by scientific literature. The remote sensing techniques contributed to test and to quantify verbal reports of land-use and land-cover change by stakeholders. We conclude that the method is particularly relevant to data-poor areas or conflict zones where rapid reconnaissance work is the only available option. It provides a preliminary but accurate baseline for capturing land changes and for reporting their causes and consequences. A discussion of the main challenges encountered (i.e. how to combine different systems of

  2. Potential of a New Technique for Remote Sensing of Hydrocarbon Accumulations and Blind Uranium Deposits: Buried Lif Thermoluminescence Dosimeters

    NASA Technical Reports Server (NTRS)

    Siegel, F. R.; Vaz, J. E.; Lindholm, R. C.

    1982-01-01

    Buried thermoluminescence dosimeters may be useful in remote sensing of petroleum and natural gas accumulations and blind uranium deposits. They act as integrating detectors that smooth out the effects of environmental variations that affect other measuring systems and result in irregularities and poor repeatability in measurements made during gas and radiometric surveys.

  3. A vision-based driver nighttime assistance and surveillance system based on intelligent image sensing techniques and a heterogamous dual-core embedded system architecture.

    PubMed

    Chen, Yen-Lin; Chiang, Hsin-Han; Chiang, Chuan-Yen; Liu, Chuan-Ming; Yuan, Shyan-Ming; Wang, Jenq-Haur

    2012-01-01

    This study proposes a vision-based intelligent nighttime driver assistance and surveillance system (VIDASS system) implemented by a set of embedded software components and modules, and integrates these modules to accomplish a component-based system framework on an embedded heterogamous dual-core platform. Therefore, this study develops and implements computer vision and sensing techniques of nighttime vehicle detection, collision warning determination, and traffic event recording. The proposed system processes the road-scene frames in front of the host car captured from CCD sensors mounted on the host vehicle. These vision-based sensing and processing technologies are integrated and implemented on an ARM-DSP heterogamous dual-core embedded platform. Peripheral devices, including image grabbing devices, communication modules, and other in-vehicle control devices, are also integrated to form an in-vehicle-embedded vision-based nighttime driver assistance and surveillance system.

  4. A Vision-Based Driver Nighttime Assistance and Surveillance System Based on Intelligent Image Sensing Techniques and a Heterogamous Dual-Core Embedded System Architecture

    PubMed Central

    Chen, Yen-Lin; Chiang, Hsin-Han; Chiang, Chuan-Yen; Liu, Chuan-Ming; Yuan, Shyan-Ming; Wang, Jenq-Haur

    2012-01-01

    This study proposes a vision-based intelligent nighttime driver assistance and surveillance system (VIDASS system) implemented by a set of embedded software components and modules, and integrates these modules to accomplish a component-based system framework on an embedded heterogamous dual-core platform. Therefore, this study develops and implements computer vision and sensing techniques of nighttime vehicle detection, collision warning determination, and traffic event recording. The proposed system processes the road-scene frames in front of the host car captured from CCD sensors mounted on the host vehicle. These vision-based sensing and processing technologies are integrated and implemented on an ARM-DSP heterogamous dual-core embedded platform. Peripheral devices, including image grabbing devices, communication modules, and other in-vehicle control devices, are also integrated to form an in-vehicle-embedded vision-based nighttime driver assistance and surveillance system. PMID:22736956

  5. Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques.

    PubMed

    Gao, Yongnian; Gao, Junfeng; Yin, Hongbin; Liu, Chuansheng; Xia, Ting; Wang, Jing; Huang, Qi

    2015-03-15

    Remote sensing has been widely used for ater quality monitoring, but most of these monitoring studies have only focused on a few water quality variables, such as chlorophyll-a, turbidity, and total suspended solids, which have typically been considered optically active variables. Remote sensing presents a challenge in estimating the phosphorus concentration in water. The total phosphorus (TP) in lakes has been estimated from remotely sensed observations, primarily using the simple individual band ratio or their natural logarithm and the statistical regression method based on the field TP data and the spectral reflectance. In this study, we investigated the possibility of establishing a spatial modeling scheme to estimate the TP concentration of a large lake from multi-spectral satellite imagery using band combinations and regional multivariate statistical modeling techniques, and we tested the applicability of the spatial modeling scheme. The results showed that HJ-1A CCD multi-spectral satellite imagery can be used to estimate the TP concentration in a lake. The correlation and regression analysis showed a highly significant positive relationship between the TP concentration and certain remotely sensed combination variables. The proposed modeling scheme had a higher accuracy for the TP concentration estimation in the large lake compared with the traditional individual band ratio method and the whole-lake scale regression-modeling scheme. The TP concentration values showed a clear spatial variability and were high in western Lake Chaohu and relatively low in eastern Lake Chaohu. The northernmost portion, the northeastern coastal zone and the southeastern portion of western Lake Chaohu had the highest TP concentrations, and the other regions had the lowest TP concentration values, except for the coastal zone of eastern Lake Chaohu. These results strongly suggested that the proposed modeling scheme, i.e., the band combinations and the regional multivariate

  6. An integrated study of earth resources in the state of California using remote sensing techniques. [water and forest management

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.

    1974-01-01

    Progress and results of an integrated study of California's water resources are discussed. The investigation concerns itself primarily with the usefulness of remote sensing of relation to two categories of problems: (1) water supply; and (2) water demand. Also considered are its applicability to forest management and timber inventory. The cost effectiveness and utility of remote sensors such as the Earth Resources Technology Satellite for water and timber management are presented.

  7. SU-C-213-04: Application of Depth Sensing and 3D-Printing Technique for Total Body Irradiation (TBI) Patient Measurement and Treatment Planning

    SciTech Connect

    Lee, M; Suh, T; Han, B; Xing, L; Jenkins, C

    2015-06-15

    Purpose: To develop and validate an innovative method of using depth sensing cameras and 3D printing techniques for Total Body Irradiation (TBI) treatment planning and compensator fabrication. Methods: A tablet with motion tracking cameras and integrated depth sensing was used to scan a RANDOTM phantom arranged in a TBI treatment booth to detect and store the 3D surface in a point cloud (PC) format. The accuracy of the detected surface was evaluated by comparison to extracted measurements from CT scan images. The thickness, source to surface distance and off-axis distance of the phantom at different body section was measured for TBI treatment planning. A 2D map containing a detailed compensator design was calculated to achieve uniform dose distribution throughout the phantom. The compensator was fabricated using a 3D printer, silicone molding and tungsten powder. In vivo dosimetry measurements were performed using optically stimulated luminescent detectors (OSLDs). Results: The whole scan of the anthropomorphic phantom took approximately 30 seconds. The mean error for thickness measurements at each section of phantom compare to CT was 0.44 ± 0.268 cm. These errors resulted in approximately 2% dose error calculation and 0.4 mm tungsten thickness deviation for the compensator design. The accuracy of 3D compensator printing was within 0.2 mm. In vivo measurements for an end-to-end test showed the overall dose difference was within 3%. Conclusion: Motion cameras and depth sensing techniques proved to be an accurate and efficient tool for TBI patient measurement and treatment planning. 3D printing technique improved the efficiency and accuracy of the compensator production and ensured a more accurate treatment delivery.

  8. Assessing Natural Disaster Impacts and Recovery Using Multifrequency, Fully-Polarimetric Synthetic Aperture Radar (SAR) and Optical Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Weissel, J. K.; Czuchlewski, K. R.; Kim, Y.

    2002-12-01

    Many natural disasters involving landslides, volcanic eruptions, fires, or floods entail terrain resurfacing, followed by subsequent recovery. Modern satellite and airborne remote sensing technologies, which combine broad spatial coverage and high spatial resolution with time-sequential site revisit capability, can provide important information on the extent and duration of major landscape disturbance. In humid climate settings, these hazards temporarily remove or replace a natural vegetation cover and in doing so, modify the physical properties of the land surface. In optical remote sensing, removal of vegetation alters surface albedo in the visible -- near infrared (V-NIR) waveband, particularly the high reflectance from vegetation in the NIR. For SAR remote sensing, removal of vegetation cover causes a change in dominant microwave scattering mechanism for the areas affected. SAR has operational advantages over optical sensors for rapid disaster assessment because of its day/night acquisition capability, the ability to ``see through'' smoke, clouds and dust, and the side-looking viewing geometry, which is an advantage whenever data collection directly above the site would prove dangerous. We show how multifrequency, fully-polarimetric airborne SAR data can be ``inverted'' for parameters that reflect scattering mechanism signatures diagnostic of different surface cover types. We apply a uniform approach to map landslides resulting from the 1999 Mw 7.6 Chi-Chi earthquake in Taiwan, volcanic flows from the major 1996 eruption of Manam volcano in Papua New Guinea, and the extent of damage from the summer 2002 Rodeo -- Chediski wildfire in Arizona. In addition, earlier work has shown that multifrequency SAR polarimetric backscatter is sensitive to total above-ground biomass. This attribute can be exploited to calculate vegetation loss during a disaster and for assessment of regrowth during the recovery phase.

  9. Use of remote sensing techniques for geological hazard surveys in vegetated urban regions. [multispectral imagery for lithological mapping

    NASA Technical Reports Server (NTRS)

    Stow, S. H.; Price, R. C.; Hoehner, F.; Wielchowsky, C.

    1976-01-01

    The feasibility of using aerial photography for lithologic differentiation in a heavily vegetated region is investigated using multispectral imagery obtained from LANDSAT satellite and aircraft-borne photography. Delineating and mapping of localized vegetal zones can be accomplished by the use of remote sensing because a difference in morphology and physiology results in different natural reflectances or signatures. An investigation was made to show that these local plant zones are affected by altitude, topography, weathering, and gullying; but are controlled by lithology. Therefore, maps outlining local plant zones were used as a basis for lithologic map construction.

  10. Comparative analysis of property taxation policies within Greece and Cyprus evaluating the use of GIS, CAMA, and remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Dimopoulos, Thomas; Labropoulos, Tassos; Hadjimitsis, Diofantos G.

    2014-08-01

    This paper aims to examine how CAMA, GIS and Remote Sensing are integrated to assist property taxation. Real property tax apart from its fiscal dimension is directly linked to geographic location. The value of the land and other immovable features such as buildings and structures is determined from specific parameters. All these immovable assets are visible and have specific geographic location & coordinates, materials, occupied area, land-use & utility, ownership & occupancy status and finally a specific value (ad valorem property taxation system) according to which the property tax is levied to taxpayers. Of high importance in the tax imposing procedure is that the use of CAMA, GIS and Remote Sensing tools is capable of providing effective and efficient collection of this property value determining data. Furthermore, these tools can track changes during a property's lifecycle such parcel subdivision into plots, demolition of a building and development of a new one or track a change in the planning zone. The integration of these systems also supports a full range of business processes on revenue mobilization ranging from billing to taxpayers objections management.

  11. Measuring urban sprawl on geospatial indices characterized by leap frog development using remote sensing and GIS techniques

    NASA Astrophysics Data System (ADS)

    Noor, N. M.; Asmawi, M. Z.; Rusni, N. A.

    2014-02-01

    Characterizing urban sprawl using spatial measures requires a concise definition of what constitutes sprawling urban spatial patterns. This research attempts to study a measurement of defining sprawl by using leapfrog development index through remote sensing and GIS approach. The IKONOS pan-sharpened and SPOT-5 with 1 and 2.5 meter resolution were used and combined with Geographical information system (GIS) database to analyze the geospatial indicators using the leapfrog development index. Kuantan city has been selected as a study area to examine the leapfrog development based on land use pattern for year 2012. The findings show Kuantan has identified as non-sprawling cities with result from characterization in leapfrog development that has been tested. However, the gap between sprawl and non-sprawling was very low. It is anticipated this research will provide a new direction in sprawl nationally that address finding of sprawl at the atomic level and present a robust analytical approach for characterizing urban development in city scale at once promoting a city via GIS & Remote Sensing technology respectively towards Digital and Green cities.

  12. A turn-on fluorescence-sensing technique for glucose determination based on graphene oxide-DNA interaction.

    PubMed

    Zhang, Hao; Huang, Hui; Lin, Zihan; Su, Xingguang

    2014-11-01

    Graphene is a two-dimensional carbon nanomaterial one atom thick. Interactions between graphene oxide (GO) and ssDNA containing different numbers of bases have been proved to be remarkably different. In this paper we propose a novel approach for turn-on fluorescence sensing determination of glucose. Hydrogen peroxide (H2O2) is produced by glucose oxidase-catalysed oxidation of glucose. In the presence of ferrous iron (Fe(2+)) the hydroxyl radical (•OH) is generated from H2O2 by the Fenton reaction. This attacks FAM-labelled long ssDNA causing irreversible cleavage, as a result of the oxidative effect of •OH, producing an FAM-linked DNA fragment. Because of the weak interaction between GO and short FAM-linked DNA fragments, restoration of DNA fluorescence can be achieved by addition of glucose. Due to the excellent fluorescence quenching efficiency of GO and the specific catalysis of glucose oxidase, the sensitivity and selectivity of this method for GO-DNA sensing are extremely high. The linear range is from 0.5 to 10 μmol L(-1) and the detection limit for glucose is 0.1 μmol L(-1). The method has been successfully used for analysis of glucose in human serum.

  13. Assessing high altitude glacier thickness, volume and area changes using field, GIS and remote sensing techniques: the case of Nevado Coropuna (Peru)

    NASA Astrophysics Data System (ADS)

    Peduzzi, P.; Herold, C.; Silverio, W.

    2010-08-01

    Higher temperatures and changes in precipitation patterns have induced an acute decrease in Andean glaciers, thus leading to additional stress on water supply. To adapt to climate changes, local governments need information on the rate of glacier area and volume losses and on current ice thickness. Remote sensing analyses of Coropuna glacier (Peru) delineate an acute glaciated area decline between 1955 and 2008. We tested how volume changes can be estimated with remote sensing and GIS techniques using digital elevation models derived from both topographic maps and satellite images. Ice thickness was measured in 2004 using a Ground Penetrating Radar coupled with a Ground Positioning System during a field expedition. It provided profiles of ice thickness on different slopes, orientations and altitudes. These were used to model the current glacier volume using Geographical Information System and statistical multiple regression techniques. The results revealed a significant glacier volume loss; however the uncertainty is higher than the measured volume loss. We also provided an estimate of the remaining volume. The field study provided the scientific evidence needed by COPASA, a local Peruvian NGO, and GTZ, the German international cooperation agency, in order to alert local governments and communities and guide them in adopting new climate change adaptation policies.

  14. Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers.

    PubMed

    Weng, Yi; Ip, Ezra; Pan, Zhongqi; Wang, Ting

    2015-04-06

    Recently there is a growing interest in developing few-mode fiber (FMF) based distributed sensors, which can attain higher spatial resolution and sensitivity compared with the conventional single-mode approaches. However, current techniques require two lightwaves injected into both ends of FMF, resulting in their complicated setup and high cost, which causes a big issue for geotechnical and petroleum applications. In this paper, we present a single-end FMF-based distributed sensing system that allows simultaneous temperature and strain measurement by Brillouin optical time-domain reflectometry (BOTDR) and heterodyne detection. Theoretical analysis and experimental assessment of multi-parameter discriminative measurement techniques applied to distributed FMF sensors are presented. Experimental results confirm that FM-BOTDR has similar performance with two-end methods such as FM-BOTDA, but with simpler setup and lower cost. The temperature-induced expansion strain (TIES) in response to different modes is discussed as well. Furthermore, we optimized the FMF design by exploiting modal profile and doping concentration, which indicates up to fivefold enhancement in measurement accuracy. This novel distributed FM-sensing system endows with good sensitivity characteristics and can prevent catastrophic failure in many applications.

  15. Biophotonic endoscopy: a review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer

    PubMed Central

    Coda, Sergio; Siersema, Peter D.; Stamp, Gordon W. H.; Thillainayagam, Andrew V.

    2015-01-01

    Detection, characterization, and staging constitute the fundamental elements in the endoscopic diagnosis of gastrointestinal diseases, but histology still remains the diagnostic gold standard. New developments in endoscopic techniques may challenge histopathology in the near future. An ideal endoscopic technique should combine a wide-field, “red flag” screening technique with an optical contrast or microscopy method for characterization and staging, all simultaneously available during the procedure. In theory, biophotonic advances have the potential to unite these elements to allow in vivo “optical biopsy.” These techniques may ultimately offer the potential to increase the rates of detection of high risk lesions and the ability to target biopsies and resections, and so reduce the need for biopsy, costs, and uncertainty for patients. However, their utility and sensitivity in clinical practice must be evaluated against those of conventional histopathology. This review describes some of the most recent applications of biophotonics in endoscopic optical imaging and metrology, along with their fundamental principles and the clinical experience that has been acquired in their deployment as tools for the endoscopist. Particular emphasis has been placed on translational label-free optical techniques, such as fluorescence spectroscopy, fluorescence lifetime imaging microscopy (FLIM), two-photon and multi-photon microscopy, second harmonic generation (SHG) and third harmonic generation (THG) imaging, optical coherence tomography (OCT), diffuse reflectance, Raman spectroscopy, and molecular imaging. PMID:26528489

  16. Integrating Remote Sensing Data with Directional Two-Dimensional Wavelet Analysis and Open Geospatial Techniques for Efficient Disaster Monitoring and Management

    PubMed Central

    Lin, Yun-Bin; Lin, Yu-Pin; Deng, Dong-Po; Chen, Kuan-Wei

    2008-01-01

    In Taiwan, earthquakes have long been recognized as a major cause of landslides that are wide spread by floods brought by typhoons followed. Distinguishing between landslide spatial patterns in different disturbance regimes is fundamental for disaster monitoring, management, and land-cover restoration. To circumscribe landslides, this study adopts the normalized difference vegetation index (NDVI), which can be determined by simply applying mathematical operations of near-infrared and visible-red spectral data immediately after remotely sensed data is acquired. In real-time disaster monitoring, the NDVI is more effective than using land-cover classifications generated from remotely sensed data as land-cover classification tasks are extremely time consuming. Directional two-dimensional (2D) wavelet analysis has an advantage over traditional spectrum analysis in that it determines localized variations along a specific direction when identifying dominant modes of change, and where those modes are located in multi-temporal remotely sensed images. Open geospatial techniques comprise a series of solutions developed based on Open Geospatial Consortium specifications that can be applied to encode data for interoperability and develop an open geospatial service for sharing data. This study presents a novel approach and framework that uses directional 2D wavelet analysis of real-time NDVI images to effectively identify landslide patterns and share resulting patterns via open geospatial techniques. As a case study, this study analyzed NDVI images derived from SPOT HRV images before and after the ChiChi earthquake (7.3 on the Richter scale) that hit the Chenyulan basin in Taiwan, as well as images after two large typhoons (xangsane and Toraji) to delineate the spatial patterns of landslides caused by major disturbances. Disturbed spatial patterns of landslides that followed these events were successfully delineated using 2D wavelet analysis, and results of pattern recognitions

  17. A comparison of cover calculation techniques for relating point-intercept vegetation sampling to remote sensing imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate and timely spatial predictions of vegetation cover from remote imagery are an important data source for natural resource management. High-quality in situ data are needed to develop and validate these products. Point-intercept sampling techniques are a common method for obtaining quantitativ...

  18. Notes for the improvement of a remote sensing multispectral data non-supervised classification and mapping technique

    NASA Technical Reports Server (NTRS)

    Dalton, C. C.

    1973-01-01

    Examined are: (1) the sequential clustering technique for the unsupervised automatic classification and mapping of earth resources satellite data, (2) theoretical analysis of the tests which were used, and (3) derivation of an alternative set of tests and their necessary algorithm.

  19. A noble technique a using force-sensing resistor for immobilization-device quality assurance: A feasibility study

    NASA Astrophysics Data System (ADS)

    Cho, Min-Seok; Kim, Tae-Ho; Kang, Seong-Hee; Kim, Dong-Su; Kim, Kyeong-Hyeon; Shin, Dong-Seok; Noh, Yu-Yun; Koo, Hyun-Jae; Cheon, Geum Seong; Suh, Tae Suk; Kim, Siyong

    2016-03-01

    Many studies have reported that a patient can move even when an immobilization device is used. Researchers have developed an immobilization-device quality-assurance (QA) system that evaluates the validity of immobilization devices. The QA system consists of force-sensing-resistor (FSR) sensor units, an electric circuit, a signal conditioning device, and a control personal computer (PC) with in-house software. The QA system is designed to measure the force between an immobilization device and a patient's skin by using the FSR sensor unit. This preliminary study aimed to evaluate the feasibility of using the QA system in radiation-exposure situations. When the FSR sensor unit was irradiated with a computed tomography (CT) beam and a treatment beam from a linear accelerator (LINAC), the stability of the output signal, the image artifact on the CT image, and changing the variation on the patient's dose were tested. The results of this study demonstrate that this system is promising in that it performed within the error range (signal variation on CT beam < 0.30 kPa, root-mean-square error (RMSE) of the two CT images according to presence or absence of the FSR sensor unit < 15 HU, signal variation on the treatment beam < 0.15 kPa, and dose difference between the presence and the absence of the FSR sensor unit < 0.02%). Based on the obtained results, we will volunteer tests to investigate the clinical feasibility of the QA system.

  20. Application of GIS and Remote Sensing Techniques in Multitemporal Analyses of Soil Properties in the Foreland of the Carpathians

    NASA Astrophysics Data System (ADS)

    Glowienka, Ewa; Michalowska, Krystyna; Pekala, Agnieszka; Hejmanowska, Beata

    2016-10-01

    The paper presents a spatial and temporal analysis of the distribution of the soil salinity and its pH level of south-east Poland depending on selected environmental factors. The area under examination (Carpathian Foredeep, Carpathians flysch) is distinguished by its specific hydrological and geological conditions (the Vistula and the San valley). The research works were performed in relation to parameters that had been measured in-situ in 1995, 2000, 2005, and 2010. Using specialist GIS software, proper interpolation procedures were performed, which enabled visualization in the form of raster and vector maps for the spatial distribution of the examined soil properties. Moreover, an analysis of remote sensing data was completed. Based on the analysis, it was discovered that the biggest changes in all examined soil parameters took place in 2010 - changes in the soil salinity and its pH level, as well as in the content of potassium (K) and sodium (Na). Those changes occurred mainly in the north and south parts of the examined area. The underlying reason for those changes might have been the flood, which hit the region in June 2010.

  1. Application of remote sensing techniques in land-use planning: Flood-plain delineation. [Cochise County, Arizona

    NASA Technical Reports Server (NTRS)

    Altenstadter, J. (Principal Investigator); Clark, R. B.

    1974-01-01

    The delineation of areas subject to inundation by means of remotely-sensed data acquisition represents a considerable saving in personnel time. Repeated input from aerial sensor sources provides the planner with a potent tool for the formation of a data base and for the monitoring of land use patterns over a period of time. The primary output of this project was a set of base map overlays at a scale of 1:62,500 delineating areas which require special regulations when proposed for land use involving human habitation or certain classes of storage. A secondary product of the study was county-wide maps of watershed configurations and of soil hydrologic groups. Further research is anticipated to extend the mapping of watershed areas outside the political boundaries of Cochise County, which will provide data for subsequent rainfall-runoff relationship studies in the area. All of the data provided will be incorporated into the Cochise County composite computer mapping project now operational. Results of this project have improved the pool of information available to the planning staff of Cochise County.

  2. Characterization of sediments in the Clinch River, Tennessee, using remote sensing and multi-dimensional GIS techniques

    SciTech Connect

    Levine, D.A.; Hargrove, W.W.; Hoffman, F.

    1995-12-31

    Remotely-sensed hydro-acoustic data were used as input to spatial extrapolation tools in a GIS to develop two- and three-dimensional models of sediment densities in the Clinch River arm of Watts Bar Reservoir, Tennessee. This work delineated sediment deposition zones to streamline sediment sampling and to provide a tool for estimating sediment volumes and extrapolating contaminant concentrations throughout the system. The Clinch River arm of Watts Bar Reservoir has been accumulating sediment-bound contaminants from three Department of Energy (DOE) facilities on the Oak Ridge Reservation, Tennessee. Public concern regarding human and ecological health resulted in Watts Bar Reservoir being placed on the National Priorities List for SUPERFUND. As a result, DOE initiated and is funding the Clinch River Environmental Restoration Program (CR-ERP) to perform a remedial investigation to determine the nature and extent of sediment contamination in the Watts Bar Reservoir and the Clinch River and to quantify any human or ecological health risks. The first step in characterizing Clinch River sediments was to determine the locations of deposition zones. It was also important to know the sediment type distribution within deposition zones because most sediment-bound contaminants are preferentially associated to fine particles. A dual-frequency hydro-acoustic survey was performed to determine: (1) depth to the sediment water interface, (2) depth of the sediment layer, and (3) sediment characteristics (density) with depth (approximately 0.5-foot intervals). An array of geophysical instruments was used to meet the objectives of this investigation.

  3. Biological pH sensing based on the environmentally friendly Raman technique through a polyaniline probe.

    PubMed

    Li, Songyang; Liu, Zhiming; Su, Chengkang; Chen, Haolin; Fei, Xixi; Guo, Zhouyi

    2017-02-01

    The biological pH plays an important role in various cellular processes. In this work, a novel strategy is reported for biological pH sensing by using Raman spectroscopy and polyaniline nanoparticles (PANI NPs) as the pH-sensitive Raman probe. It is found that the Raman spectrum of PANI NPs is strongly dependent on the pH value. The intensities of Raman spectral bands at 1225 and 1454 cm(-1) increase obviously with pH value varying from 5.5 to 8.0, which covers the range of regular biological pH variation. The pH-dependent Raman performance of PANI NPs, as well as their robust Raman signals and sensitivities to pH, was well retained after the nanoparticles incorporated into living 4T1 breast adenocarcinoma cells. The data indicate that such PANI NPs can be used as an effective biological pH sensor. Most interestingly, the PANI spherical nanostructures can be acquired by a low-cost, metal-free, and one-pot oxidative polymerization, which gives them excellent biocompatibility for further biological applications.

  4. Comparison of the resulting error in data fusion techniques when used with remote sensing, earth observation, and in-situ data sets for water quality applications

    NASA Astrophysics Data System (ADS)

    Ziemba, Alexander; El Serafy, Ghada

    2016-04-01

    Ecological modeling and water quality investigations are complex processes which can require a high level of parameterization and a multitude of varying data sets in order to properly execute the model in question. Since models are generally complex, their calibration and validation can benefit from the application of data and information fusion techniques. The data applied to ecological models comes from a wide range of sources such as remote sensing, earth observation, and in-situ measurements, resulting in a high variability in the temporal and spatial resolution of the various data sets available to water quality investigators. It is proposed that effective fusion into a comprehensive singular set will provide a more complete and robust data resource with which models can be calibrated, validated, and driven by. Each individual product contains a unique valuation of error resulting from the method of measurement and application of pre-processing techniques. The uncertainty and error is further compounded when the data being fused is of varying temporal and spatial resolution. In order to have a reliable fusion based model and data set, the uncertainty of the results and confidence interval of the data being reported must be effectively communicated to those who would utilize the data product or model outputs in a decision making process[2]. Here we review an array of data fusion techniques applied to various remote sensing, earth observation, and in-situ data sets whose domains' are varied in spatial and temporal resolution. The data sets examined are combined in a manner so that the various classifications, complementary, redundant, and cooperative, of data are all assessed to determine classification's impact on the propagation and compounding of error. In order to assess the error of the fused data products, a comparison is conducted with data sets containing a known confidence interval and quality rating. We conclude with a quantification of the performance

  5. Natural and environmental vulnerability analysis through remote sensing and GIS techniques: a case study of Indigirka River basin, Eastern Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Boori, Mukesh S.; Choudhary, Komal; Kupriyanov, Alexander; Sugimoto, Atsuko; Evers, Mariele

    2016-10-01

    The aim of this research work is to understand natural and environmental vulnerability situation and its cause such as intensity, distribution and socio-economic effect in the Indigirka River basin, Eastern Siberia, Russia. This paper identifies, assess and classify natural and environmental vulnerability using landscape pattern from multidisciplinary approach, based on remote sensing and Geographical Information System (GIS) techniques. A model was developed by following thematic layers: land use/cover, vegetation, wetland, geology, geomorphology and soil in ArcGIS 10.2 software. According to numerical results vulnerability classified into five levels: low, sensible, moderate, high and extreme vulnerability by mean of cluster principal. Results are shows that in natural vulnerability maximum area covered by moderate (29.84%) and sensible (38.61%) vulnerability and environmental vulnerability concentrated by moderate (49.30%) vulnerability. So study area has at medial level vulnerability. The results found that the methodology applied was effective enough in the understanding of the current conservation circumstances of the river basin in relation to their environment with the help of remote sensing and GIS. This study is helpful for decision making for eco-environmental recovering and rebuilding as well as predicting the future development.

  6. Drought index forecasting using remote sensing and long-range forecast data based on machine learning techniques

    NASA Astrophysics Data System (ADS)

    Rhee, Jinyoung; Im, Jungho

    2016-04-01

    Three machine learning models based on Decision Tree, Random Forest, and Extremely Randomized Trees were developed and compared to spatial interpolation based on multiquadric spline to forecast drought indices of the 6-month Standardized Precipitation Index (SPI6) and the 6-month Standardized Precipitation Evapotranspiration (SPEI6) in ungauged areas. Input variables of the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI), daytime Land Surface Temperature, and nighttime Land Surface Temperature were used to represent the initial condition and the Multivariate ENSO Index and the Arctic Oscillation Index were included in order to consider large-scale atmospheric circulation. Six-month accumulated precipitation and potential evapotranspiration ending the target month were also included as input variables. The long-range forecast data were used to fill the 6-month precipitation and potential evapotranspiration during future periods and compared to the cases that use climatological data as baseline results. Classification of drought categories were performed and evaluated for the locations of 61 of Automated Synoptic Observing System gauges in South Korea. In conclusion, machine learning-based methods performed better than the interpolation method, and the methods using climatology data outperformed the methods based on long-range forecast. Although the contribution of long-range forecast for drought forecasting was not yet large, the application of machine learning modelling using remote sensing data contributed to the enhancement of drought forecasting skill. Drought forecasting based on the long-range forecast is expected to outperform the performance based on climatological data as the skill of the long-range forecast improves.

  7. Techniques for the remote sensing of space plasma in the heliosphere via energetic neutral atoms - A review

    NASA Technical Reports Server (NTRS)

    Hsieh, K. C.; Curtis, C. C.; Fan, C. Y.; Gruntman, M. A.

    1992-01-01

    A survey is conducted for state-of-the-art techniques for detecting energetic neutral atoms (ENAs) in the 100-300 keV range, in regions from the heliospheric boundary to the auroral zones where the solar wind plays a crucial role. While ENA spectrometry allows sampling of the mass and energy distributions of a distant plasma, ENA imaging gives a global view of the structures and dynamics of an extended plasma. The ENA instrument designs discussed share many components which exhibit excellent flight performance as elements in charged-particle analyzers for space missions.

  8. Comments on "comparison between orthogonal subspace projection and background subtraction techniques applied to remote-sensing data".

    PubMed

    Johnson, Steven

    2007-07-01

    Ben-David and Ren [Appl. Opt. 44, 3846 (2005)] discussed methods of estimating the concentration of chemical vapor plumes in hyperspectral images. The authors of that paper concluded that a technique called orthogonal subspace projection (OSP) produces better concentration estimates than background subtraction when certain stochastic noise conditions are present in the data. While that conclusion is correct, it is worth noting that the data can be whitened to improve the performance of the background subtraction method. In particular, if the noise is multivariate Gaussian, then whitening will ensure that the background subtraction method is superior to OSP.

  9. Application of remote sensing techniques to understand the mechanisms behind the Caspian Sea lake-level fluctuations

    NASA Astrophysics Data System (ADS)

    Ozyavas, Aziz

    The Caspian Sea has exhibited significantly wide range of water-level fluctuations in its history. The primary factor for these oscillations has been overwhelmingly ascribed to climate-induced variations; geologic-related processes have been suggested to be trivial and negligible. This work processed TopexPoseidon data to estimate Lake-level heights for the Caspian Sea from the beginning of 1993 to August 2005. In order to improve the accuracy, the new Gravity Recovery and Climate Experiment orbits data, new Sea State Bias model, and Topex Microwave Radiometer drift correction were applied to the default altimetry data. The Caspian Sea hydrologic budget from 1998 to 2005 was also calculated using remote sensing and ground-based data. The National Center for Environmental Prediction Department of Energy Reanalysis 2 meteorological data provided all the variables necessary for the Penman method to estimate evaporation over the Caspian Sea. The Tropical Rainfall Measuring Mission rainfall data was utilized to estimate precipitation onto the Caspian Sea. This study reveals that lake-level changes from 1998 to 2005 are essentially controlled by meteorological factors based on the fact that a relatively minor difference between the water budget residuals and CSLL changes in the Caspian Sea. Moreover, the trend observed in the Caspian Sea lake level over the last several decades is closely correlated with Lake Van and Lake Urmia. However, the relatively higher dissimilarity present in 2000 and 2001 could imply that the Caspian Sea needs to lose some of its water to attain water balance. The two significant earthquakes with normal fault focal mechanisms and magnitudes of 6.8 and 6.5 Mw could be responsible for the Caspian Sea lake-level decline in 2000 and 2001. The contribution of submarine mud volcano eruptions to increase Caspian Sea lake level is likely to be negligible on the basis of submarine mud volcanic eruptions in 2003. Both the crustal deformation based on the

  10. Structural modeling of the Zagros fold-and-thrust belt (Iraq) combining field work and remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Reif, D.; Grasemann, B.; Faber, R.; Lockhart, D.

    2009-04-01

    contacts) from digital elevation models. The minimum vegetation cover in the investigated area allows an accurate picking of geological planes from the digital elevation model, which has been draped with LANDSAT and ASTER satellite images in order to enhance the contrast of lithological contacts. Geological planes of finite extent are interpolated in the Fault Trace module by virtual planes, which can be translated and rotated in any spatial direction. Comparison of measured data from the field with interpolated spatial orientations from the remote sensing data demonstrate that the calculated dip and strike values can be reproduced within the measurements error of a geological field compass.

  11. Aggregation and Disaggregation Techniques Applied on Remotely Sensed Data to Obtain Optimum Resolution for Surface Energy Fluxes Estimation

    NASA Astrophysics Data System (ADS)

    Agam, N.; Kustas, W. P.; Li, F.; Anderson, M. C.

    2006-05-01

    results indicate that disaggregation of the currently available lower resolution LST to field scale sub-pixel resolutions for enabling surface energy flux monitoring for this region (LST range ~20-45C) can induce RMSE of 0.7-2.1C, increasing with resolution. This suggests higher resolution LST data is still valuable at all times and crucial under certain conditions. Errors in flux calculations at the different resolutions will be presented. * Kustas W.P., et al. 2003. Remote Sensing of Environment, 85, 429-440.

  12. Robust IR Remote Sensing Technique of the Total Column of Trace Gases Including Carbon Dioxide and Methane

    NASA Technical Reports Server (NTRS)

    Georgieva, E. M.; Heaps, W. S.

    2011-01-01

    Progress on the development of a differential radiometer based upon the Fabry-Perot interferometer (FPI) for methane (CH4) and carbon dioxide (C02) detection in the atmosphere is presented. Methane measurements are becoming increasingly important as a component of NASA's programs to understand the global carbon cycle and quantifY the threat of global warming. Methane is the third most important greenhouse gas in the Earth's radiation budget (after water vapor and carbon dioxide) and the second most important anthropogenic contributor to global warming. The importance of global warming and air quality to society caused the National Research Council to recommend that NASA develop the following missions [1]: ASCENDS (Active Sensing of C02 Emissions over Nights, Days, and Seasons), GEOCAPE (Geostationary Coastal and Air Pollution Events), and GACM (Global Atmosphere Composition Mission). Though methane measurements are not specifically called out in these missions, ongoing environmental changes have raised the importance of understanding the methane budget. In the decadal survey is stated that "to close the carbon budget, we would also address methane, but the required technology is not obvious at this time. If appropriate and cost-effective methane technology becomes available, we strongly recommend adding a methane capability". In its 2007 report the International Panel on Climate Change identified methane as a key uncertainty in our understanding saying that the causes of recent changes in the growth rate of atmospheric CH4 are not well understood. What we do know is that methane arises from a number of natural sources including wet lands and the oceans plus man made sources from agriculture, as well as coal and petroleum production and distribution. It has recently been pointed out that large amount of methane are frozen in the permafrost of Canada and Siberia. There is a fear that melting of this permafrost driven by global warming may release large amounts of

  13. Stress inversion of heterogeneous fault-slip data with unknown slip sense - an OFA clustering technique tested on artificial and real data

    NASA Astrophysics Data System (ADS)

    Hansen, J.-A.; Bergh, S. G.; Osmundsen, P. T.; Redfield, T.

    2012-04-01

    Mesozoic to early Cenozoic brittle fault zones are exposed in crystalline basement rocks in the Lofoten and Vesterålen area, North Norway. These fault zones contain abundant striated fracture planes, and may convey important information about the kinematic and dynamic evolution of adjacent fault-bounded rift basins offshore. However, determining slip sense is difficult as offset markers are rare and one has to rely on fault plane morphology. The fault-slip data does, in addition, show clear evidence of being heterogeneous. The linear part of Fry's σ-space inversion method do not depend on slip sense and may, in conjunction with the Objective Function Algorithm (OFA), be used to separate heterogeneous fault-slip data and calculate respective stress tensors. However, tests on artificial data show that the inversions corresponding with the lowest obtained value of the objective function give erroneous results when errors are introduced in the dataset. The method also fails in determining the number of superimposed tensors. We show that by contouring principal stress orientations from the OFA after e.g. 1000 runs, using all solutions with an objective function value below mean and different initial subdivisions, we get more reliable orientations for the principal stresses active during faulting. The method can also be used to evaluate the number of superimposed tensors in the heterogeneous dataset as an overestimation of tensors does not generate significant artificial clusters of principal stress orientations. We refer to this technique as OFA clustering. Initial results using OFA clustering on field data from the Lofoten and Vesterålen area give principal stress orientations in agreement with plate reconstructions and the orientations of the main boundary faults offshore. Since no pre-classification of the fault-slip data is needed, all data points are used with no filtering, and slip sense is not required, the OFA clustering technique is a robust method for

  14. A Geostatistical Data Fusion Technique for Merging Remote Sensing and Ground-Based Observations of Aerosol Optical Thickness

    NASA Technical Reports Server (NTRS)

    Chatterjee, Abhishek; Michalak, Anna M.; Kahn, Ralph A.; Paradise, Susan R.; Braverman, Amy J.; Miller, Charles E.

    2010-01-01

    Particles in the atmosphere reflect incoming sunlight, tending to cool the Earth below. Some particles, such as soot, also absorb sunlight, which tens to warm the ambient atmosphere. Aerosol optical depth (AOD) is a measure of the amount of particulate matter in the atmosphere, and is a key input to computer models that simulate and predict Earth's changing climate. The global AOD products from the Multi-angle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS), both of which fly on the NASA Earth Observing System's Terra satellite, provide complementary views of the particles in the atmosphere. Whereas MODIS offers global coverage about four times as frequent as MISR, the multi-angle data makes it possible to separate the surface and atmospheric contributions to the observed top-of-atmosphere radiances, and also to more effectively discriminate particle type. Surface-based AERONET sun photometers retrieve AOD with smaller uncertainties than the satellite instruments, but only at a few fixed locations. So there are clear reasons to combine these data sets in a way that takes advantage of their respective strengths. This paper represents an effort at combining MISR, MODIS and AERONET AOD products over the continental US, using a common spatial statistical technique called kriging. The technique uses the correlation between the satellite data and the "ground-truth" sun photometer observations to assign uncertainty to the satellite data on a region-by-region basis. The larger fraction of the sun photometer variance that is duplicated by the satellite data, the higher the confidence assigned to the satellite data in that region. In the Western and Central US, MISR AOD correlation with AERONET are significantly higher than those with MODIS, likely due to bright surfaces in these regions, which pose greater challenges for the single-view MODIS retrievals. In the east, MODIS correlations are higher, due to more frequent sampling

  15. A practical method of determining water current velocities and diffusion coefficients in coastal waters by remote sensing techniques

    NASA Technical Reports Server (NTRS)

    James, W. P.

    1971-01-01

    A simplified procedure is presented for determining water current velocities and diffusion coefficients. Dye drops which form dye patches in the receiving water are made from an aircraft. The changes in position and size of the patches are recorded from two flights over the area. The simplified data processing procedure requires only that the ground coordinates about the dye patches be determined at the time of each flight. With an automatic recording coordinatograph for measuring coordinates and a computer for processing the data, this technique provides a practical method of determining circulation patterns and mixing characteristics of large aquatic systems. This information is useful in assessing the environmental impact of waste water discharges and for industrial plant siting.

  16. Challenging the distributed temperature sensing technique for estimating groundwater discharge to streams through controlled artificial point source experiment

    NASA Astrophysics Data System (ADS)

    Lauer, F.; Frede, H.-G.; Breuer, L.

    2012-04-01

    Spatially confined groundwater discharge can contribute significantly to stream discharge. Distributed fibre optic temperature sensing (DTS) of stream water has been successfully used to localize- and quantify groundwater discharge from this type "point sources" (PS) in small first-order streams. During periods when stream and groundwater temperatures differ PS appear as abrupt step in longitudinal stream water temperature distribution. Based on stream temperature observation up- and downstream of a point source and estimated or measured groundwater temperature the proportion of groundwater inflow to stream discharge can be quantified using simple mixing models. However so far this method has not been quantitatively verified, nor has a detailed uncertainty analysis of the method been conducted. The relative accuracy of this method is expected to decrease nonlinear with decreasing proportions of lateral inflow. Furthermore it depends on the temperature differences (ΔT) between groundwater and surface water and on the accuracy of temperature measurement itself. The latter could be affected by different sources of errors. For example it has been shown that a direct impact of solar radiation on fibre optic cables can lead to errors in temperature measurements in small streams due to low water depth. Considerable uncertainty might also be related to the determination of groundwater temperature through direct measurements or derived from the DTS signal. In order to directly validate the method and asses it's uncertainty we performed a set of artificial point source experiments with controlled lateral inflow rates to a natural stream. The experiments were carried out at the Vollnkirchener Bach, a small head water stream in Hessen, Germany in November and December 2011 during a low flow period. A DTS system was installed along a 1.2 km sub reach of the stream. Stream discharge was measured using a gauging flume installed directly upstream of the artificial PS. Lateral

  17. Using remote sensing and GIS techniques to estimate discharge and recharge fluxes for the Death Valley regional groundwater flow system, USA

    USGS Publications Warehouse

    D'Agnese, F. A.; Faunt, C.C.; Turner, A.K.; ,

    1996-01-01

    The recharge and discharge components of the Death Valley regional groundwater flow system were defined by techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were used to calculate discharge volumes for these area. An empirical method of groundwater recharge estimation was modified to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.The recharge and discharge components of the Death Valley regional groundwater flow system were defined by remote sensing and GIS techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. This map provided a basis for subsequent evapotranspiration and infiltration estimations. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were then used to calculate discharge volumes for these areas. A previously used empirical method of groundwater recharge estimation was modified by GIS methods to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter

  18. Analysis of anthropogenic impacts on the hydrological state of a Pleistocene catchment area using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Leuschner, Annette; Merz, Christoph; Steidl, Jörg; van Gasselt, Stephan

    2016-04-01

    The water budget of a catchment area can be depicted by the complex interaction between topography and discharge as well as anthropogenic and climatic impacts. Over the last decades, the Pleistocene lowlands of North-Eastern Germany have experienced extensive anthropogenic modifications. The hydrological system has been significantly altered by the installation of artificial drainage, such as surface ditches and subsurface tile drains. It has been shown, that artificial drainage systems provide pathways for diffuse nutrients and pollutants leaching into surface and also subsurface water bodies, which is especially pronounced in lowland areas. The detection of these transport paths is important for obtaining an understanding of the regional water and substance balance and the development of strategies to improve hydrological conditions. Unfortunately, detailed data about locations of historic artificial drainage are rare or not available at all. The aim of this study was to identify the extensive anthropogenic modifications, like artificial drainage networks and land use changes, over the last decades with the aid of photogrammetric data and multispectral imagery. The detection of anthropogenic modifications is based on the method of Tetzlaff, et al. (2009), who developed an approach by interpreting aerial photographs for drained areas. We used color-infrared (CIR) aerial photographs, in order to apply different spectral techniques for obtaining information about water content and vitality status of plant cover. Although this method is sensitive to daily variations of soil moisture and plant growth as response to climate conditions, and the type of drainage pipe installation technique, we were able to identify different locations of artificial drainage. Complementary to this approach we utilized spectral classification methods for land cover in order to extract different land cover categories, and evaporation rates, depending on the land cover and surface

  19. A novel sensing technique for measurement of magnitude and polarity of electrostatic charge distribution across individual particles.

    PubMed

    Hussain, Tariq; Kaialy, Waseem; Deng, Tong; Bradley, Mike S A; Nokhodchi, Ali; Armour-Chélu, David

    2013-01-30

    Electrostatic charge is generated during powder handling due to particle-particle and particle-wall collisions, rubbing, sliding, and rolling. In case of bipolar charge generation, the electrostatic forces may significantly change the inner forces and increase powder adhesion and cause a serious problem in material handling process. Therefore, the knowledge of distribution of charge across the individual particles is helpful to identify the role of triboelectrification and the effects of various relevant variables especially change in the contact materials, environmental conditions during processing, etc. A novel approach based on inductive sensor has been developed to detect the either polarity of charged particle and to characterise the bipolar charge distribution in the population of particulate material. To achieve this, an amplification unit configured as a pure integrator and signal processing techniques has been used to de-noise and correct the baseline of signal and MATLAB algorithm developed for peak detection. The polarity of charged particles obtained by this method is calibrated with Faraday pail method and the results are promising. Experimental study has been carried out by using two distinct populations of oppositely charged particles (glass beads-PVC, olivine sand, and silica sand). The obtained results indicate that the method is able to detect the distribution of polarities of charged particles.

  20. New optical sensing technique of tissue viability and blood flow based on nanophotonic iterative multi-plane reflectance measurements

    PubMed Central

    Yariv, Inbar; Haddad, Menashe; Duadi, Hamootal; Motiei, Menachem; Fixler, Dror

    2016-01-01

    Physiological substances pose a challenge for researchers since their optical properties change constantly according to their physiological state. Examination of those substances noninvasively can be achieved by different optical methods with high sensitivity. Our research suggests the application of a novel noninvasive nanophotonics technique, ie, iterative multi-plane optical property extraction (IMOPE) based on reflectance measurements, for tissue viability examination and gold nanorods (GNRs) and blood flow detection. The IMOPE model combines an experimental setup designed for recording light intensity images with the multi-plane iterative Gerchberg-Saxton algorithm for reconstructing the reemitted light phase and calculating its standard deviation (STD). Changes in tissue composition affect its optical properties which results in changes in the light phase that can be measured by its STD. We have demonstrated this new concept of correlating the light phase STD and the optical properties of a substance, using transmission measurements only. This paper presents, for the first time, reflectance based IMOPE tissue viability examination, producing a decrease in the computed STD for older tissues, as well as investigating their organic material absorption capability. Finally, differentiation of the femoral vein from adjacent tissues using GNRs and the detection of their presence within blood circulation and tissues are also presented with high sensitivity (better than computed tomography) to low quantities of GNRs (<3 mg). PMID:27785024

  1. Understanding the 2007-2008 eruption of Anak Krakatau Volcano by combining remote sensing technique and seismic data

    NASA Astrophysics Data System (ADS)

    Agustan; Kimata, Fumiaki; Pamitro, Yoga Era; Abidin, Hasanuddin Z.

    2012-02-01

    One of the most violent volcanic eruptions in recorded history is the Krakatau eruption on August 27, 1883. This caldera-forming eruption destroyed two thirds of the Krakatau volcanic island in the Sunda Strait resulting in the remaining three small islands later known as the Krakatau complex. From 1927 to 1929, eruptions in the center of Krakatau complex have produced a new volcano named Anak Krakatau, which continuously builds its body through eruptions until now. One eruption event took place between 2007 and 2008 with several eruptions that lasted in total from the end of October 2007 to August 2008. Eruptions were characterized by Strombolian activity with ash columns 1 km high, as well as pyroclastic and lava flows. We monitored the ground deformation of Anak Krakatau Volcano by interfering PALSAR data from June 2007 to February 2009. The result of InSAR technique shows a complex pattern of ground deformation. Inflation up to 4 cm, together with subsidence around the crater, was measured for almost three months before the eruption with a volume increase of approximately 1 × 10 6 m 3. After the eruption, the southwest side of the volcanic cone subsided by 18 cm, whereas the northeast side of the cone uplifted 12 cm in almost two years. The observed ground deformation after the eruption can be explained by 4 m of tensile opening along a dipping rectangular tensile dislocation buried in an elastic half-space, approximately 400 m below sea level.

  2. Evaluation of remote-sensing techniques to measure decadal-scale changes of Hofsjokull ice cap, Iceland

    USGS Publications Warehouse

    Hall, D.K.; Williams, R.S.; Barton, J.S.; Sigurdsson, O.; Smith, L.C.; Garvin, J.B.

    2000-01-01

    Dynamic surficial changes and changes in the position of the firn line and the areal extent of Hofsjökull ice cap, Iceland, were studied through analysis of a time series (1973–98) of synthetic-aperture radar (SAR) and Landsat data. A digital elevation model of Hofsjökull, which was constructed using SAR interferometry, was used to plot the SAR backscatter coefficient (σ°) vs elevation and air temperature along transects across the ice cap. Seasonal and daily σ° patterns are caused by freezing or thawing of the ice-cap surface, and abrupt changes in σ° are noted when the air temperature ranges from ∼−5° to 0°C. Late-summer 1997 σ° (SAR) and reflectance (Landsat) boundaries agree and appear to be coincident with the firn line and a SAR σ° boundary that can be seen in the January 1998 SAR image. In January 1994 through 1998, the elevation of this σ° boundary on the ice capwas quite stable, ranging from 1000 to 1300 m, while the equilibrium-line altitude, as measured on the ground, varied considerably. Thus the equilibrium line may be obscured by firn from previous years. Techniques are established to measure long-term changes in the elevation of the firn line and changes in the position of the ice margin.

  3. A new technique for landslide mapping from a large-scale remote sensed image: A case study of Central Nepal

    NASA Astrophysics Data System (ADS)

    Yu, Bo; Chen, Fang

    2017-03-01

    This paper presents a new technique for landslide mapping from large-scale Landsat8 images. The method introduces saliency enhancement to enhance the landslide regions, making the landslides salient objects in the image. Morphological operations are applied to the enhanced image to remove most background objects. Afterwards, digital elevation model is applied to further remove the ground objects of plain areas according to the height of landscape, since most landslides occur in mountainous areas. Final landslides are extracted by the proposal regions from selective search. The study area covers 2°x2°, making it more similar with practical cases, such as emergency response and landslide inventory mappings. The proposed method performs satisfactorily by detecting 99.1% of the landslides in the image, and obtains an overall accuracy of 99.8% in the landslides/background classification problem, which gets further validated in another Landsat8 image of a different site. The experiment shows that the proposed method is feasible for landslide detection from large-scale area, which may contribute to the further landslide-related research.

  4. Diachronic analysis of salt-affected areas using remote sensing techniques: the case study of Biskra area, Algeria

    NASA Astrophysics Data System (ADS)

    Afrasinei, Gabriela M.; Melis, Maria T.; Buttau, Cristina; Bradd, John M.; Arras, Claudio; Ghiglieri, Giorgio

    2015-10-01

    In the Wadi Biskra arid and semi-arid area, sustainable development is limited by land degradation, such as secondary salinization of soils. As an important high quality date production region of Algeria, it needs continuous monitoring of desertification indicators, since the bio-physical setting defines it as highly exposed to climate-related risks. For this particular study, for which little ground truth data was possible to acquire, we set up an assessment of appropriate methods for the identification and change detection of salt-affected areas, involving image interpretation and processing techniques employing Landsat imagery. After a first phase consisting of a visual interpretation study of the land cover types, two automated classification approaches were proposed and applied for this specific study: decision tree classification and principal components analysis (PCA) of Knepper ratios. Five of the indices employed in the Decision Tree construction were set up within the current study, among which we propose a salinity index (SMI) for the extraction of highly saline areas. The results of the 1984 to 2014 diachronic analysis of salt - affected areas variation were supported by the interpreted land cover map for accuracy estimation. Connecting the outputs with auxiliary bio-physical and socio-economic data, comprehensive results are discussed, which were indispensable for the understanding of land degradation dynamics and vulnerability to desertification. One aspect that emerged was the fact that the expansion of agricultural land in the last three decades may have led and continue to contribute to a secondary salinization of soils. This study is part of the WADIS-MAR Demonstration Project, funded by the European Commission through the Sustainable Water Integrated Management (SWIM) Program (www.wadismar.eu).

  5. Improvement on the structural, failure and movements analysis of the Randa rockslide and the surrounding area using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Vega Orozco, Carmen; Jaboyedoff, Michel; Pedrazzini, Andrea

    2010-05-01

    The Randa rockslide is one of the most studied rockslide in the world. The structural and the failure mechanism of the 1991 rock slide are now better understood. A potential unstable mass is still present in the upper part of the scar and is presently monitored by different techniques. The present study focused on the application of the high resolution digital elevation model (HRDEM) to analyze at regional and local scale rock instabilities. In particular, the structural and the morphometric characteristics lead to a preliminary susceptibility analysis. First, a regional study have carried out in order to define the main structural sets influencing the slope stability and the slope morphology of the hanging wall close to the Randa rockslide. The main discontinuity sets and their variability have been analysed on the different locations. Failure mechanisms and morphometric analysis have been carried out in order to define the most susceptible zone. The results have been successively compared to field and orthophoto observations. Second, a detailed of the structural setting of the Randa scar has been carried out and compared to previous studies (Sartori et al., 2003). Ground deformations, detected by PSInSAR data in the upper part of the Randa rockslide have been analyzed and interpreted. Using the available structural and geomorphological observations the volume of the 1991 rockslide event has been re-evaluated using DEM reconstruction and using the Sloping Local Base Level method. Based on displacement maps and structural observations the volume the new potential unstable area has been also estimated. The potential mechanisms affecting this area, postulated since the beginning of the first geodetic system (Jaboyedoff et al., 2004), have been discussed and verified with the new available displacements data (Gischig et al., 2009).

  6. Modified Conditional Merging technique: a new method to estimate a rainfall field combining remote sensed data and raingauge observations

    NASA Astrophysics Data System (ADS)

    Pignone, Flavio; Rebora, Nicola; Silvestro, Francesco

    2015-04-01

    The estimation of the rainfall field, especially its spatial distribution and position, is a crucial task both for rainfall nowcasting and for modeling catchment response to rainfall. Some studies of literature about multisensor datafusion prove that combining data from different sensors (especially raingauges and radar) represents the best way to obtain an enhanced ad more reliable estimation of QPE and of the associated river discharge. Sinclair and Peagram (2004) have proposed the Conditional Merging (CM) technique, a merging algorithm which extract the information content from the observed data and use it within an interpolation method to obtain the rainfall maps. The raingauges provide a punctual measure of the observed "real" rainfall while the remote sensors (radar network or satellite constellation) supply rainfall estimation maps which give an idea of the spatial correlation structure of the observed field. In this work is studied an enhanced algorithm based on CM, called Modified Conditional Merging, which can be used in real-time to produce the optimal rainfall maps. The area of interest, where the CM has been applied, is Italy, where are both available a dense network of raingauge measurements (about 3000 stations) and a QPE estimated by the Italian Radar composite. The main innovation respect to classical CM is to estimate the structure of covariance and the length of spatial correlation λ, for every raingauge, directly from the cumulated radar rainfall fields. The advantages of this method is to estimate the local characteristic of the domain to obtain information at smaller scale, very useful for convective events. A cross-validation of the new method was done and several statistical scores were applied on the results. The validation on a large number of Italian past event along with its operational use are presented and discussed.

  7. A methodological framework for the assessment and monitoring of forest degradation under the REDD+ programme based on remote sensing techniques and field data

    NASA Astrophysics Data System (ADS)

    Romero Sanchez, Martin Enrique

    In this thesis, a methodological framework for the assessment and monitoring of forest degradation based on remote sensing techniques and field data, as part of the REDD+ programme, is presented. The framework intends to support the implementation of a national Monitoring, Verification and Report (MRV) system in developing countries. The framework proposed an operational definition of forest degradation and a set of indicators, namely Canopy Cover (CC), Aboveground Biomass (AGB) and Net Primary Productivity (NPP), derived from remote sensing data. The applicability of the framework is tested in a sub-deciduous tropical forest in the Southeast of Mexico. The results from the application of the methodological framework showed that the higher rates of forest degradation, 1596-2865 ha˙year-1, occur in areas with high population density. Estimations of aboveground biomass in these degraded areas span from 1 to 24 Mg˙ha-1, with a rate of carbon fixation ranging from 130 to 246 gC˙m2˙year. The results also showed that 43 % of the forests of the study area remain with no evident signs of degradation, as detected by the indicators selected, during the period evaluated. The integration of the different elements conforming the methodological framework for the assessment and monitoring of forest degradation enabled the identification of areas that maintain a stable condition and areas that change over the period evaluated. The methodology outlined in this thesis also allows for the identification of the temporal and spatial distributions of forest degradation based on the indicators selected, and it is expected to serve as the basis for operations of the REDD+ programme with the appropriate adaptations to the area in turn.

  8. Remote sensing techniques and in situ fluorometry as alternative methods for the determination of algae pigments in lakes - application to Lake Constance and small lakes

    NASA Astrophysics Data System (ADS)

    Wolf, Thomas; Heege, Thomas; Schenk, Karin; Stark, Markus; Stich, Hans-Bernd

    2014-05-01

    Satellite based remote sensing techniques were used in order to assess the variability of Chlorophyll-a distributions in Lake Constance and additionally within some smaller lakes in the South of Germany. For Lake Constance we used for most investigations spatially medium resolved satellite scanners with a higher spectral resolution whereas in the case of smaller lakes having a size of 1 … 10 km spatially highly resolved satellite scanners were used having a lower spectral resolution. The satellite imagery allowed for a higher spatial as well temporal resolution of information about Chlorophyll-a distribution in these lakes compared to classical methodologies as water sampling and subsequent species analysis using microscopes and/or HPLC analysis for accessory algae pigments. We found - depending on weather and hydrodynamic conditions - highly variable Chlorophyll-a distributions under some circumstances whereas there are as well time periods when almost perfectly homogeneous distributions of Chlorophyll-a where detected in Lake Constance. Additionally we used HPLC analysis in order to validate the satellite remote sensing results showing good agreement between in situ measured and remote sensing values for Chlorophyll-a. During some measurement campaigns in Lake Constance we used an in situ fluorometer probe (BBE FluoroProbe) in order to determine the spatial fluctuations of Chlorophyll-a and additional accessory algae pigments. These algae pigments were measured along horizontal transects using a temporal sampling interval of about dt=2 … 10 seconds giving a high spatial sampling frequency in the order O[10 … 50]m. Based on these horizontal records we can get further insight into the spatial fluctuations of algae pigments and their spatial patterns in Lake Constance. Characteristics of these patterns can be quantified using some patchiness state vector (psv) summarizing different specific features of the algae distribution into some vector quantity. Special

  9. Au/Cr-ZnO-Ni structured metal-insulator-metal diode fabrication using Langmuir-Blodgett technique for infrared sensing

    NASA Astrophysics Data System (ADS)

    Azad, Ibrahim; Ram, Manoj K.; Goswami, D. Yogi; Stefanakos, Elias

    2016-05-01

    The thin nanolayer film of ZnO was synthesized through Langmuir-Blodgett (LB) organic precursor film. The zinc stearate monolayer was formed at air-water interface using zinc acetate as a subphase. The zinc stearate monolayers were deposited on silicon (Si), glass, and gold (Au)/chromium (Cr) plated Silicon (Si) substrates using LB technique. Later, the zinc stearate multilayers LB films on various substrates were annealed at two different temperatures (300oC and 550oC) for the fabrication of zinc oxide (ZnO) nanolayer film. The zinc stearate monolayers as well zinc oxide (ZnO) nanolayer films were characterized using atomic force microscopy (AFM) and X-ray diffraction techniques. The X-ray diffraction measurement has shown the hexagonal wurtzite structure of the ZnO nanolayer on the substrate. The average surface roughness was estimated to be 1.076 nm using AFM technique. The metal-insulator-metal (MIM) diode structure was realized by sandwiching ZnO nanolayer film between thin layer of Gold (Au)/Chromium (Cr) and Nickel (Ni) on silicon substrates. The electron tunneling conduction mechanism is understood through the current-voltage (I-V) characteristics of MIM diode. The highest measured sensitivity magnitude of 20 in inverse of voltage (V-1) with rectification ratio of nearly 10 at +/-400 mV in MIM diode is an indicative of its potential application in infrared sensing applications. However, the thin film of ZnO synthesized using LB film as an insulating layer in metal-insulator-metal diode structure was studied for the first time.

  10. Assessment of the vegetation cover in a burned area 22-years ago using remote sensing techniques and GIS analysis (Sierra de las Nieves, South of Spain).

    NASA Astrophysics Data System (ADS)

    Martínez-Murillo, Juan F.; Remond, Ricardo; Ruiz-Sinoga, José D.

    2015-04-01

    The study aim was to characterize the vegetation cover in a burned area 22-years ago considering the previous situation to wildfire in 1991 and the current one in 2013. The objectives were to: (i) compare the current and previous vegetation cover to widlfire; (ii) evaluate whether the current vegetation has recovered the previous cover to wildfire; and (iii) determine the spatial variability of vegetation recovery after 22-years since the wildfire. The study area is located in Sierra de las Nieves, South of Spain. It corresponds to an area affected by a wildfire in August 8th, 1991. The burned area was equal to 8156 ha. The burn severity was spatially very high. The main geographic features of the burned area are: mountainous topography (altitudes ranging from 250 m to 1500 m; slope gradient >25%; exposure mainly southfacing); igneous (peridotites), metamorphic (gneiss) and calcareous rocks (limestones); and predominant forest land use (Pinus pinaster sp. woodlands, 10%; pinus opened forest + shrubland, 40%; shrubland, 35%; and bare soil + grassland, 15%). Remote sensing techniques and GIS analysis has been applied to achieve the objectives. Landsat 5 and Landsat 8 images were used: July 13th, 1991 and July 1st, 2013, for the previous wildfire situation and 22-years after, respectively. The 1990 CORINE land cover was also considered to map 1991 land uses prior the wildfire. Likewise, the Andalucía Regional Government wildfire historic records were used to select the burned area and its geographical limit. 1991 and 2013 land cover map were obtained by means of object-oriented classifications. Also, NDVI and PVI1 vegetation indexes were calculated and mapped for both years. Finally, some images transformations and kernel density images were applied to determine the most recovered areas and to map the spatial concentration of bare soil and pine cover areas in 1991 and 2013, respectively. According to the results, the combination of remote sensing and GIS analysis let

  11. Additional development of remote sensing techniques for observing morphology, microphysics, and radiative properties of clouds and tests using a new, robust CO{sub 2} lidar. Annual progress report, August 15, 1994--August 30, 1995

    SciTech Connect

    Eberhard, W.L.; Intrieri, J.M.; Brewer, W.A.

    1996-04-01

    The bulk morphology and microphysical characteristics of a cloud are both important in determining the cloud`s effect on radiative transfer. A better understanding of all these properties, and the links among them, are needed for developing adequate parameterizations of these components in climate models. The objective of this project is to develop remote sensing techniques for observing key cloud properties, including the linkages. The research has technique development and instrument development prongs.

  12. Integration of multianalyte sensing functions on a capillary-assembled microchip: simultaneous determination of ion concentrations and enzymatic activities by a "drop-and-sip" technique.

    PubMed

    Henares, Terence G; Takaishi, Masayuki; Yoshida, Naoya; Terabe, Shigeru; Mizutani, Fumio; Sekizawa, Ryuichi; Hisamoto, Hideaki

    2007-02-01

    A general and simple implementation of simultaneous multiparametric sensing in a single microchip is presented by using a capillary-assembled microchip (CAs-CHIP) integrated with the plural different reagent-release capillaries (RRCs), acting as various biochemical sensors. A novel "drop-and-sip" technique of fluid handling is performed with a microliter droplet of a model sample solution containing proteases (trypsin, chymotrypsin, thrombin, elastase) and divalent cations (Ca2+, Zn2+, Mg2+) that passes through the microchannel with the aid of a micropipette as a vacuum pump, concurrently filling each RRC via capillary force. To avert the evaporation of the nanoliter sample volume in each capillary, PDMS oil is dropped on the outlet hole of the CAs-CHIP exploiting the capillary force that results in spontaneous sealing of all the RRCs. In addition, this high-speed sample introduction alleviates the possibility of protein adsorption and capillary cross-contamination, allowing a reliable and multianalyte determination of a sample containing many different proteases and divalent cations by using the fluorescence image analysis. Presented results suggested the possible application of this microchip in the field of drug discovery and systems biology.

  13. Using Remote Sensing and GIS Techniques to Detect Changes to the Prince Alfred Hamlet Conservation Area in the Western Cape, South Africa

    NASA Astrophysics Data System (ADS)

    Duncan, P.; Lewarne, M.

    2016-06-01

    Understanding and identifying the spatial-temporal changes in the natural environment is crucial for monitoring and evaluating conservation efforts, as well as understanding the impact of human activities on natural resources, informing responsible land management, and promoting better decision-making. Conservation areas are often under pressure from expanding farming and related industry, invasive alien vegetation, and an ever-increasing human settlement footprint. This study focuses on detecting changes to the Prince Alfred Hamlet commonage, near Ceres in the Cape Floral Kingdom. It was chosen for its high conservation value and significance as a critical water source area. The study area includes a fast-growing human settlement footprint in a highly productive farming landscape. There are conflicting development needs as well as risks to agricultural production, and both of these threaten the integrity of the ecosystems which supply underlying services to both demands on the land. Using a multi-disciplinary approach and high-resolution satellite imagery, land use and land cover changes can be detected and classified, and the results used to support the conservation of biodiversity and wildlife, and protect our natural resources. The aim of this research is to study the efficacy of using remote sensing and GIS techniques to detect changes to critical conservation areas where disturbances can be understood, and therefore better managed and mitigated before these areas are degraded beyond repair.

  14. Mapping land-cover and mangrove structures with remote sensing techniques: a contribution to a synoptic GIS in support of coastal management in North Brazil.

    PubMed

    Krause, Gesche; Bock, Michael; Weiers, Stefan; Braun, Gerald

    2004-09-01

    This article deals with the development and application of a cartographic database for a synoptic Geographic Information System (GIS). Its purpose is the storage and evaluation of the heterogeneous datasets of the interdisciplinary scientific research program MADAM (Mangrove Dynamics and Management), which aims to develop recommendations for a tailored integrated coastal management scheme for the mangrove ecosystem at Braganca (North Brazil). The article describes the integration of remote sensing data, aerial photographs, as well as point data provided by fieldwork from different scientific fields. Using various innovative processing techniques and different scale-resolution levels, an assessment of temporal-spatial changes of the mangrove peninsula and the adjacent rural socioeconomic impact area, the type of mangrove structure, as well as a land-use cover analyses was undertaken. The definition of the spatial level of detail was found to be a major issue in the development of the GIS, as well as during the processing and analysis procedures. A division between strong and weak patterns in the mangrove ecosystem could be made, which implies different management measures and sets of specific interdisciplinary studies and monitoring at hierarchical scales.

  15. Concordia Multi-Process Atmospheric Studies (CoMPASs): study of the vertical structure of the Antarctic atmosphere with a synergy of different remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Bianchini, Giovanni; Argenitini, Stefania; Baldi, Massimo; Cairo, Francesco; Calzolari, Francescopiero; Casasanta, Giampietro; Conidi, Alessandro; Del Guasta, Massimo; Di Natale, Gianluca; Federico, Stefano; Lupi, Angelo; Mazzola, Mauro; De Muro, Mauro; Palchetti, Luca; Petenko, Igor; Petkov, Boyan; Snels, Marcel; Trivellone, Giuliano; Viola, Angelo; Viterbini, Maurizio

    2014-05-01

    Concordia station, in the Dome C region, Antarctica, is the ideal site for the study of micro-physical, meteorological and chemical processes in unperturbed and extreme conditions: the relative absence of perturbations at the mesoscale allows highly representative observations of the atmosphere inside of the polar vortex, as well as the possibility of studying the micro-meteorological "asymptotic" conditions in the boundary layer. Given these privileged conditions, the interaction between the different processes will be especially noticeable. The CoMPASs (Concordia Multi-Process Atmospheric Studies) project has been developed in order to identify and characterize these feedbacks and interactions between processes, spanning across three different atmospheric regions: the boundary layer, the troposphere and the stratosphere. The main research themes follow the vertical structure of the atmosphere: - Characterization of the atmospheric boundary layer (ABL) in terms of dynamics, turbulence and radiation, especially during the winter period, in which the ABL has peculiar properties in terms of reduced thickness and extreme sensitivity to external forcing. - Study of the clouds in the free troposphere, which, in the region of Dome C, shows a remarkable variability, both daily and seasonal, and therefore requires continuous monitoring to quantify its interactions with the neighbouring atmospheric layers. - Study of the stratospheric processes within the Antarctic polar vortex, as ozone chemistry and polar stratospheric clouds, carried out throughout the year in order to constantly follow the evolution of the vortex itself. CoMPASs makes use of a strong observational component, deploying an array of different instruments all characterized by the vertical remote sensing measurement technique: stratospheric and tropospheric lidars, UV and middle/far-infrared spectroradiometers, and a high-resolution mini-sodar. The turbulence in the surface layer will be monitored with fast

  16. Assessment of the soil water balance by the combination of cosmic ray neutron sensing and eddy covariance technique in an irrigated citrus orchard (Marrakesh, Morocco)

    NASA Astrophysics Data System (ADS)

    Mroos, Katja; Baroni, Gabriele; Er-Raki, Salah; Francke, Till; Khabba, Said; Jarlan, Lionel; Hanich, Lahoucine; Oswald, Sascha E.

    2014-05-01

    Irrigation water requirement plays a crucial role in many agricultural areas and especially in arid and semi-arid landscapes. Improvements in the water management and the performance of the irrigation systems require a correct evaluation of the hydrological processes involved. However, some difficulties can arise due to the heterogeneity of the soil-plant system and of the irrigation scheme. To overcome these limitations, in this study, the soil water balance is analyzed by the combination of the Eddy Covariance technique (EC) and Cosmic Ray neutron Sensing (CRS). EC provides the measurement of the actual evapotranspiration over the area as it was presented in many field conditions. Moreover CRS showed to be a valuable approach to measure the root zone soil moisture integrated in a footprint of ~30 ha. In this way, the combination of the two methodologies should provide a better analysis of the soil water balance at field scale, as opposed to point observations, e.g. by TDR, evaporimeter and fluxmeter. Then, this could increase the capability to assess the irrigation efficiency and the agricultural water management. The study is conducted in a citrus orchard situated in a semi-arid region, 30 km southwest of Marrakesh (Morocco). The site is flat and planted with trees of same age growing in parallel rows with drip irrigation lines and application of fertilizer and pesticides. The original soil seems modified on the surface by the agricultural use, creating differences between trees, rows and lines. In addition, the drip irrigation creates also a spatial variability of the water flux distribution in the field, making this site an interesting area to test the methodology. Particular attention is given to the adaptation of the standard soil sampling campaign used for the calibration of the CRS and the introduction of a weighing function. Data were collected from June to December 2013, which corresponds to the high plant transpiration. Despite the intention of the

  17. Synergy of tectonic geomorphology, applied geophysics and remote sensing techniques reveals new data for active extensional tectonism in NW Peloponnese (Greece)

    NASA Astrophysics Data System (ADS)

    Fountoulis, Ioannis; Vassilakis, Emmanuel; Mavroulis, Spyridon; Alexopoulos, John; Dilalos, Spyridon; Erkeki, Athanasia

    2015-05-01

    In tectonically active areas, such as in the northwest Peloponnese of western Greece, geomorphic processes are strongly influenced by active faulting; in many cases such faults cannot be easily identified. In this paper we apply multidisciplinary analysis (morphotectonic indices, neotectonic mapping, geophysical surveys and remote sensing techniques) to map the recently-recognized east-west trending Pineios River normal fault zone with a high degree of accuracy, and to better understand its contribution to the evolution of the ancient region of Elis during Holocene time. Fault activity seems to be related to frequent changes in river flow patterns and to displacements of the nearby shoreline. We argue that fault activity is the main reason for migration of Pineios river mouth as documented for several time periods during historical time. Quantitative constraints on deformation caused by the faulting were applied through the application of the morphotectonic indices proposed in this paper, including drainage network asymmetry and sinuosity, and mountain front sinuosity, all of which indicate that this is a highly active structure. Slip rates calculated to be as high as 0.48 mm/yr for the last 209 ka (based on previously published dating) were verified by applied geophysical methods. The fault surface discontinuity was identified at depth using vertical electrical resistivity measurements and depositional layers of different resistivity were found to be clearly offset. Displacement increases toward the west, reaching an observed maximum of 110 m. The most spectacular landform alteration due to surface deformation is the north-south migration of the river estuary into completely different open sea areas during the late Quaternary, mainly during the Holocene. The sediment transport path has been altered several times due to these changes in river geometry with and the most recent seeming to have occurred almost 2000 years ago. The river estuary migrated to its

  18. Assessment of the Accuracy of the Conventional Ray-Tracing Technique: Implications in Remote Sensing and Radiative Transfer Involving Ice Clouds.

    NASA Technical Reports Server (NTRS)

    Bi, Lei; Yang, Ping; Liu, Chao; Yi, Bingqi; Baum, Bryan A.; Van Diedenhoven, Bastiaan; Iwabuchi, Hironobu

    2014-01-01

    A fundamental problem in remote sensing and radiative transfer simulations involving ice clouds is the ability to compute accurate optical properties for individual ice particles. While relatively simple and intuitively appealing, the conventional geometric-optics method (CGOM) is used frequently for the solution of light scattering by ice crystals. Due to the approximations in the ray-tracing technique, the CGOM accuracy is not well quantified. The result is that the uncertainties are introduced that can impact many applications. Improvements in the Invariant Imbedding T-matrix method (II-TM) and the Improved Geometric-Optics Method (IGOM) provide a mechanism to assess the aforementioned uncertainties. The results computed by the II-TMþIGOM are considered as a benchmark because the IITM solves Maxwell's equations from first principles and is applicable to particle size parameters ranging into the domain at which the IGOM has reasonable accuracy. To assess the uncertainties with the CGOM in remote sensing and radiative transfer simulations, two independent optical property datasets of hexagonal columns are developed for sensitivity studies by using the CGOM and the II-TMþIGOM, respectively. Ice cloud bulk optical properties obtained from the two datasets are compared and subsequently applied to retrieve the optical thickness and effective diameter from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Additionally, the bulk optical properties are tested in broadband radiative transfer (RT) simulations using the general circulation model (GCM) version of the Rapid Radiative Transfer Model (RRTMG) that is adopted in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM, version 5.1). For MODIS retrievals, the mean bias of uncertainties of applying the CGOM in shortwave bands (0.86 and 2.13 micrometers) can be up to 5% in the optical thickness and as high as 20% in the effective diameter, depending on cloud optical

  19. Remote Sensing Center

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The applications are reported of new remote sensing techniques for earth resources surveys and environmental monitoring. Applications discussed include: vegetation systems, environmental monitoring, and plant protection. Data processing systems are described.

  20. Satellite based remote sensing technique as a tool for real time monitoring of leaf retention in natural rubber plantations affected by abnormal leaf fall disease

    NASA Astrophysics Data System (ADS)

    Pradeep, B.; Meti, S.; James, J.

    2014-11-01

    Most parts of the traditional natural rubber growing regions of India, extending from Kanyakumari district of Tamil Nadu in the South to Kasaragod district of Kerala in the North received excess and prolonged rains during 2013. This led to severe incidence of Abnormal Leaf Fall (ALF) disease caused by the fungus, Phytophthora sp. The present study demonstrated the first time use of satellite remote sensing technique to monitor ALF disease by estimating Leaf Area Index (LAI) in natural rubber holdings in near real time. Leaf retention was monitored in between April and December 2012 and 2013 by estimating LAI using MODIS 15A2 product covering rubber holdings spread across all districts in the traditional rubber growing region of the country that was mapped using Resourcesat LISS III 2012 and 2013 data. It was found that as the monsoon advanced, LAI decreased substantially in both years, but the reduction was much more substantial and prolonged in many districts during 2013 than 2012 reflecting increased leaf fall due to ALF disease in 2013. The decline was more pronounced in central and northern Kerala than in the South. Kanyakumari district of Tamil Nadu is generally known to be free from ALF disease, but there was considerable leaf loss due to ALF in June 2012 and June and July 2013 even as the monsoon was unusually severe in 2013. Weighted mean LAI during for the entire period of April to December was estimated as a weighted average of LAI and per cent of total area under rubber in each district in the study area for the two years. This was markedly less in 2013 than 2012. The implications of poor leaf retention for biomass production (net primary productivity), carbon sequestration and rubber yield are discussed.

  1. A comparison of two above-ground biomass estimation techniques integrating satellite-based remotely sensed data and ground data for tropical and semiarid forests in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Iiames, J. S.; Riegel, J.; Lunetta, R.

    2013-12-01

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA) program. The U.S. Environmental Protection Agency (EPA) estimated above-ground forest biomass implementing methodology first posited by the Woods Hole Research Center developed for conterminous United States (National Biomass and Carbon Dataset [NBCD2000]). For EPA's effort, spatial predictor layers for above-ground biomass estimation included derived products from the U.S. Geologic Survey (USGS) National Land Cover Dataset 2001 (NLCD) (landcover and canopy density), the USGS Gap Analysis Program (forest type classification), the USGS National Elevation Dataset, and the NASA Shuttle Radar Topography Mission (tree heights). In contrast, the U.S. Forest Service (USFS) biomass product integrated FIA ground-based data with a suite of geospatial predictor variables including: (1) the Moderate Resolution Imaging Spectrometer (MODIS)-derived image composites and percent tree cover; (2) NLCD land cover proportions; (3) topographic variables; (4) monthly and annual climate parameters; and (5) other ancillary variables. Correlations between both data sets were made at variable watershed scales to test level of agreement. Notice: This work is done in support of EPA's Sustainable Healthy Communities Research Program. The U.S EPA funded and conducted the research described in this paper. Although this work was reviewed by the EPA and has been approved for publication, it may not necessarily reflect official Agency policy. Mention of any trade names or commercial products does not constitute endorsement or recommendation for use.

  2. Advanced Remote Sensing Research

    USGS Publications Warehouse

    Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna

    2008-01-01

    'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).

  3. Monitoring land use changes in the Upper Ganga Basin, India by using Remote Sensing and GIS techniques on Landsat 5 TM data

    NASA Astrophysics Data System (ADS)

    Tsarouchi, Georgia-Marina; Buytaert, Wouter

    2013-04-01

    The Green Revolution represents one of the largest environmental changes in India over the last century. The Upper Ganga basin is experiencing rapid rates of change of land use and irrigation practices. In combination with exploitation of groundwater resources in the northern Indian plains, this causes variations in recharge and fundamentally affects surface and groundwater resources, threatening India's water supplies. In this study, we have developed a methodology to map and investigate land-use change by applying Remote Sensing and Geographic Information Systems (GIS) techniques on 30m resolution multi-temporal Landsat 5 Thematic Mapper (TM) data for 1984, 1998 and 2010. Firstly, an automated protocol was applied to effectively correct the images for radiometric effects and remove atmospheric interference during the pre-processing analysis of satellite images. Afterwards, maximum likelihood supervised classifications were carried out on Landsat 5 TM colour composites of 1984, 1998 and 2010 with the aid of ground truth data. Post-classification change detection techniques were applied to Landsat images in order to map land cover changes in the Upper Ganga basin. Change vectors of NDVI and Tasseled Cap brightness, greenness and wetness of Landsat Thematic Mapper (TM) images are compared with those values from the initial date of imagery to detect change from no change. Ground truth information and historic images were used to assess the accuracy of the classification results. We find that most of the land-use change is conversion from forest and barren land to agricultural areas. Results indicate that between 1984 and 2010 agricultural areas have increased by more than 150% while forest areas decreased by 28%. The classification accuracy is also examined. Results confirm the importance of field-based accuracy assessment to identify problems in a land-use map and to improve area estimates for each class. The results quantify the land cover change patterns in the

  4. Optimizing nitrogen management for soft red winter wheat yield, grain protein, and grain quality using precision agriculture and remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Farrer, Dianne Carter

    The purpose of this research was to improve the management of soft red winter wheat (Triticum aestivum L.) in North Carolina. There were three issues addressed; the quality of the grain as affected by delayed harvest, explaining grain protein variability through nitrogen (N) management, and developing N recommendations at growth stage (GS) 30 using aerial color infrared (CIR) photography. The impact of delayed harvest on grain yield, test weight, grain protein, and 20 milling and baking quality parameters was studied in three trials in 2002 and three trials in 2003. Yield was significantly reduced in three out of five trials due to dry, warm environments, possibly indicating shattering. Test weights were significantly reduced in five out of six trials and were positively correlated to the number of precipitation events and to the number of days between harvests, indicating the negative effects of wetting and drying cycles. Grain protein was not affected by delayed harvest. Of the 20 quality parameters investigated, flour falling number, clear flour, and farinograph breakdown times were significantly reduced due to delayed harvest, while grain deoxynivalenol (DON) levels increased with a delayed harvest. Grain protein content in soft red winter wheat is highly variable across years and environments. A second study examined the effects of different nitrogen (N) fertilizer rates and times of application on grain protein variability. Seven different environments were utilized in this study. Though environment contributed about 23% of grain protein variability, the majority of that variability (52%) was attributed to N management. It was found that as grain protein levels increased at higher N rates, so did overall protein variability as indicated by the three stability indexes employed. In addition, applying the majority of total N at growth stage (GS) 30 decreased grain protein stability. Site-specific N management systems using remote sensing techniques can

  5. A Novel Technique for Maximum Power Point Tracking of a Photovoltaic Based on Sensing of Array Current Using Adaptive Neuro-Fuzzy Inference System (ANFIS)

    NASA Astrophysics Data System (ADS)

    El-Zoghby, Helmy M.; Bendary, Ahmed F.

    2016-10-01

    Maximum Power Point Tracking (MPPT) is now widely used method in increasing the photovoltaic (PV) efficiency. The conventional MPPT methods have many problems concerning the accuracy, flexibility and efficiency. The MPP depends on the PV temperature and solar irradiation that randomly varied. In this paper an artificial intelligence based controller is presented through implementing of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to obtain maximum power from PV. The ANFIS inputs are the temperature and cell current, and the output is optimal voltage at maximum power. During operation the trained ANFIS senses the PV current using suitable sensor and also senses the temperature to determine the optimal operating voltage that corresponds to the current at MPP. This voltage is used to control the boost converter duty cycle. The MATLAB simulation results shows the effectiveness of the ANFIS with sensing the PV current in obtaining the MPPT from the PV.

  6. A Thermal-Based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Robust remote sensing methodologies for mapping instantaneous land-surface CO2 fluxes over a range of spatial scales are required to reconcile “top-down” (e.g., atmospheric) and “bottom-up” (e.g., scaled leaf) models of land-atmosphere carbon exchange. This study investigates the implementation of ...

  7. Boundary Layer Remote Sensing with Combined Active and Passive Techniques: GPS Radio Occultation and High-Resolution Stereo Imaging (WindCam) Small Satellite Concept

    NASA Technical Reports Server (NTRS)

    Mannucci, A.J.; Wu, D.L.; Teixeira, J.; Ao, C.O.; Xie, F.; Diner, D.J.; Wood, R.; Turk, Joe

    2012-01-01

    Objective: significant progress in understanding low-cloud boundary layer processes. This is the Single largest uncertainty in climate projections. Radio occultation has unique features suited to boundary layer remote sensing (1) Cloud penetrating (2) Very high vertical resolution (approximately 50m-100m) (3) Sensitivity to thermodynamic variables

  8. Development of steady-state electrical-heating fluorescence-sensing (SEF) technique for thermal characterization of one dimensional (1D) structures by employing graphene quantum dots (GQDs) as temperature sensors

    NASA Astrophysics Data System (ADS)

    Wan, Xiang; Li, Changzheng; Yue, Yanan; Xie, Danmei; Xue, Meixin; Hu, Niansu

    2016-11-01

    A fluorescence signal has been demonstrated as an effective implement for micro/nanoscale temperature measurement which can be realized by either direct fluorescence excitation from materials or by employing nanoparticles as sensors. In this work, a steady-state electrical-heating fluorescence-sensing (SEF) technique is developed for the thermal characterization of one-dimensional (1D) materials. In this method, the sample is suspended between two electrodes and applied with steady-state Joule heating. The temperature response of the sample is monitored by collecting a simultaneous fluorescence signal from the sample itself or nanoparticles uniformly attached on it. According to the 1D heat conduction model, a linear temperature dependence of heating powers is obtained, thus the thermal conductivity of the sample can be readily determined. In this work, a standard platinum wire is selected to measure its thermal conductivity to validate this technique. Graphene quantum dots (GQDs) are employed as the fluorescence agent for temperature sensing. Parallel measurement by using the transient electro-thermal (TET) technique demonstrates that a small dose of GQDs has negligible influence on the intrinsic thermal property of platinum wire. This SEF technique can be applied in two ways: for samples with a fluorescence excitation capability, this method can be implemented directly; for others with weak or no fluorescence excitation, a very small portion of nanoparticles with excellent fluorescence excitation can be used for temperature probing and thermophysical property measurement.

  9. Applied Remote Sensing Program (ARSP)

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Foster, K. E.; Mouat, D. A.; Miller, D. A.; Conn, J. S.

    1976-01-01

    The activities and accomplishments of the Applied Remote Sensing Program during FY 1975-1976 are reported. The principal objective of the Applied Remote Sensing Program continues to be designed projects having specific decision-making impacts as a principal goal. These projects are carried out in cooperation and collaboration with local, state and federal agencies whose responsibilities lie with planning, zoning and environmental monitoring and/or assessment in the application of remote sensing techniques. The end result of the projects is the use by the involved agencies of remote sensing techniques in problem solving.

  10. The Role of Combination Techniques in Maximizing the Utility of Precipitation Estimates from Several Multi-Purpose Remote-Sensing Systems

    NASA Technical Reports Server (NTRS)

    Huffman, George J.; Adler, Robert F.; Bolvin, David T.; Curtis, Scott; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Multi-purpose remote-sensing products from various satellites have proved crucial in developing global estimates of precipitation. Examples of these products include low-earth-orbit and geosynchronous-orbit infrared (leo- and geo-IR), Outgoing Longwave Radiation (OLR), Television Infrared Operational Satellite (TIROS) Operational Vertical Sounder (TOVS) data, and passive microwave data such as that from the Special Sensor Microwave/ Imager (SSM/I). Each of these datasets has served as the basis for at least one useful quasi-global precipitation estimation algorithm; however, the quality of estimates varies tremendously among the algorithms for the different climatic regions around the globe.

  11. Physical fundamentals of remote sensing

    NASA Astrophysics Data System (ADS)

    Schanda, E.

    The physical principles describing the propagation of EM waves in the atmosphere and their interactions with matter are discussed as they apply to remote sensing, in an introductory text intended for graduate science students, environmental-science researchers, and remote-sensing practitioners. The emphasis is on basic effects rather than an specific remote-sensing techniques or observational results. Chapters are devoted to basic relations, the spectral lines of atmospheric gases, the spectral properties of condensed matter, and radiative transfer.

  12. Water area variations in seasonal lagoons from the Biosphere Reserve of "La Mancha Húmeda" (Spain) determined by remote sensing classification methods and data mining techniques

    NASA Astrophysics Data System (ADS)

    Dona, Carolina; Niclòs, Raquel; Chang, Ni-Bin; Caselles, Vicente; Sánchez, Juan Manuel; Camacho, Antonio

    2015-04-01

    La Mancha Húmeda is a wetland-rich area located in central Spain that was designated as a Biosphere reserve in 1980. This area includes several dozens of temporal lagoons, mostly saline, whose water level fluctuates and usually become dry during the warmest season. Water inflows into these lagoons come from both runoff of very small catchment and, in some cases, from groundwater although some of them also receive wastewater from nearby towns. Most lack surface outlets and they behave as endorheic systems, with the main water withdrawal due to evaporation causing salt accumulation in the lake beds. Under several law protection coverage additional to that of Biosphere Reserve, including Ramsar and Natura 2000 sites, management plans are being developed in order to accomplish the goals enforced by the European Water Framework Directive and the Habitats Directive, which establish that all EU countries have to achieve a good ecological status and a favorable conservation status of these sites, and especially of their water bodies. A core task to carry out the management plans is the understanding of the hydrological trend of these lagoons with a sound monitoring scheme. To do so, an estimation of the temporal evolution of the flooded area for each lagoon, and its relationship with meteorological patterns, which can be achieved using remote sensing technologies, is a key procedure. The current study aims to develop a remote sensing methodology capable of estimating the changing water coverage areas in each lagoon with satellite remote sensing images and ground truth data sets. ETM+ images onboard Landsat-7 were used to fulfill this goal. These images are useful to monitor small-to-medium size water bodies due to its 30-m spatial resolution. In this work several methods were applied to estimate the wet and dry pixels, such as water and vegetation indexes, single bands, supervised classification methods and genetic programming. All of the results were compared with ground

  13. EDITORIAL: Integrated non-invasive sensing techniques and geophysical methods for the study and conservation of architectural, archaeological and artistic heritage Integrated non-invasive sensing techniques and geophysical methods for the study and conservation of architectural, archaeological and artistic heritage

    NASA Astrophysics Data System (ADS)

    Masini, N.; Soldovieri, F.

    2011-09-01

    In the last two decades, the use of non-invasive methods for the study and conservation of cultural heritage, from artefacts and historical sites to recent architectural structures, has gained increasing interest. This is due to several reasons: (i) the improvement of performance and information resolution of sensors and devices; (ii) the increasing availability of user-friendly data/image analysis, and processing software and routines; (iii) the ever greater awareness of archaeologists and conservators of the benefits of these technologies, in terms of reduction of costs, time and the risk associated with direct and destructive investigations of archaeological sites (excavation) and monuments (i.e. masonry coring). The choice of diagnostic strategy depends on the spatial and physical characteristics of the cultural objects or sites, the aim of the investigation (knowledge, conservation, restoration) and the issues to be addressed (monitoring, decay assessment, etc). This makes the set up and validation of ad hoc procedures based on data processing and post-processing methods necessary, generally developed to address issues in other fields of application. This methodological perspective based on an integrated and multi-scale approach characterizes the papers of this special issue, which is focused on integrated non-invasive sensing techniques and geophysical methods for the study and conservation of architectural, archaeological and artistic heritage. In particular, attention is given to the advanced application of the synthetic aperture radar (SAR) from the satellite-based platform for deformation monitoring thanks to the innovative differential SAR interferometry (DInSAR) technique; Zeni et al show the significant possibilities of the proposed methodology in achieving a global vision not only of cultural heritage but also of the embedding territory. This collection also deals with the application of non-invasive diagnostics to archaeological prospecting, and

  14. Dynamic Monitoring of Soil and Water Losses Using Remote Sensing and GIS Techniques: a Case Study of Jialing River, Yangtze River, China

    NASA Astrophysics Data System (ADS)

    Li, C.; Zhu, Y. J.; Li, G. E.; Zhu, Y. Q.; Li, R. H.; Wang, L.; Wu, Y. J.

    2016-06-01

    Water and soil loss problems are serious in China, especially in the upper and middle reaches of big rivers. This paper dynamically observed water and soil loss in key control regions in Jialing River Basin. Based on remotely sensed images, the method used in this paper is a combination of field investigation and indoor artificial interpretation under the technologies of RS and GIS. The method was proven to be effective of improving the accuracy of interpreting. The result shows the land use types of the researched regions and how they changed among the previous years. Evaluation of water and soil conservation was made. This result can provide references for further policy-making and water and soil loss controlling.

  15. Hyperspectral remote sensing techniques applied to the noninvasive investigation of mural paintings: a feasibility study carried out on a wall painting by Beato Angelico in Florence

    NASA Astrophysics Data System (ADS)

    Cucci, Costanza; Picollo, Marcello; Chiarantini, Leandro; Sereni, Barbara

    2015-06-01

    Nowadays hyperspectral imaging is a well-established methodology for the non-invasive diagnostics of polychrome surfaces, and is increasingly utilized in museums and conservation laboratories for documentation purposes and in support of restoration procedures. However, so far the applications of hyperspectral imaging have been mainly limited to easel paintings or paper-based artifacts. Indeed, specifically designed hyperspectral imagers, are usually used for applications in museum context. These devices work at short-distances from the targets and cover limited size surfaces. Instead, almost still unexplored remain the applications of hyperspectral imaging to the investigations of frescoes and large size mural paintings. For this type of artworks a remote sensing approach, based on sensors capable of acquiring hyperspectral data from distances of the order of tens of meters, is needed. This paper illustrates an application of hyperspectral remote sensing to an important wall-painting by Beato Angelico, located in the San Marco Museum in Florence. Measurements were carried out using a re-adapted version of the Galileo Avionica Multisensor Hyperspectral System (SIM-GA), an avionic hyperspectral imager originally designed for applications from mobile platforms. This system operates in the 400-2500 nm range with over 700 channels, thus guaranteeing acquisition of high resolution hyperspectral data exploitable for materials identification and mapping. In the present application, the SIM-GA device was mounted on a static scanning platform for ground-based applications. The preliminary results obtained on the Angelico's wall-painting are discussed, with highlights on the main technical issues addressed to optimize the SIM-GA system for new applications on cultural assets.

  16. Application of remote sensing

    NASA Technical Reports Server (NTRS)

    Graff, W. J. (Compiler)

    1973-01-01

    Remote sensing and aerial photographic interpretation are discussed along with the specific imagery techniques used for this research. The method used to select sites, the results of data analyses for the Houston metropolitan area, and the location of dredging sites along the Houston Ship Channel are presented. The work proposed for the second year of the project is described.

  17. Remote sensing in Virginia agriculture

    NASA Technical Reports Server (NTRS)

    Pettry, D. E.; Newhouse, M. E.; Dunton, E. M., Jr.; Scott, J. H., Jr.

    1972-01-01

    An experimental investigation, designed to develop and evaluate multispectral sensing techniques used in sensing agricultural crops, is described. Initial studies were designed to detect plant species and associated diseases, soil variations, and cultural practices under natural environment conditions. In addition, crop varieties, age, spacing, plant height, percentage of ground cover, and plant vigor are determined.

  18. Remote Sensing and the Earth.

    ERIC Educational Resources Information Center

    Brosius, Craig A.; And Others

    This document is designed to help senior high school students study remote sensing technology and techniques in relation to the environmental sciences. It discusses the acquisition, analysis, and use of ecological remote data. Material is divided into three sections and an appendix. Section One is an overview of the basics of remote sensing.…

  19. Additional development of remote sensing techniques for observing morphology, microphysics, and radiative properties of clouds and tests using a new, robust CO{sub 2} lidar. Final report

    SciTech Connect

    Eberhard, W.L.; Brewer, W.A.; Intrieri, J.M.

    1998-09-28

    A three-year project with a goal of advancing CO{sub 2} lidar technology and measurement techniques for cloud studies was successfully completed. An eyesafe, infrared lidar with good sensitivity and improved Doppler accuracy was designed, constructed, and demonstrated. Dual-wavelength operation was achieved. A major leap forward in robustness was demonstrated. CO{sub 2} lidars were operated as part of two Intensive Operations Periods at the Southern Great Plains CART site. The first used an older lidar and was intended primarily for measurement technique development. The second used the new lidar and was primarily a demonstration and evaluation of its performance. Progress was demonstrated in the development, evaluation, and application of measurement techniques using CO{sub 2} lidar.

  20. Data analysis techniques

    NASA Technical Reports Server (NTRS)

    Park, Steve

    1990-01-01

    A large and diverse number of computational techniques are routinely used to process and analyze remotely sensed data. These techniques include: univariate statistics; multivariate statistics; principal component analysis; pattern recognition and classification; other multivariate techniques; geometric correction; registration and resampling; radiometric correction; enhancement; restoration; Fourier analysis; and filtering. Each of these techniques will be considered, in order.

  1. Remote Sensing.

    ERIC Educational Resources Information Center

    Williams, Richard S., Jr.; Southworth, C. Scott

    1983-01-01

    The Landsat Program became the major event of 1982 in geological remote sensing with the successful launch of Landsat 4. Other 1982 remote sensing accomplishments, research, publications, (including a set of Landsat worldwide reference system index maps), and conferences are highlighted. (JN)

  2. The computer treatment of remotely sensed data: An introduction to techniques which have geologic applications. [image enhancement and thematic classification in Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Paradella, W. R.; Vitorello, I.

    1982-01-01

    Several aspects of computer-assisted analysis techniques for image enhancement and thematic classification by which LANDSAT MSS imagery may be treated quantitatively are explained. On geological applications, computer processing of digital data allows, possibly, the fullest use of LANDSAT data, by displaying enhanced and corrected data for visual analysis and by evaluating and assigning each spectral pixel information to a given class.

  3. Using of Remote Sensing Techniques for Monitoring the Earthquakes Activities Along the Northern Part of the Syrian Rift System (LEFT-LATERAL),SYRIA

    NASA Astrophysics Data System (ADS)

    Dalati, Moutaz

    Earthquake mitigation can be achieved with a better knowledge of a region's infra-and substructures. High resolution Remote Sensing data can play a significant role to implement Geological mapping and it is essential to learn about the tectonic setting of a region. It is an effective method to identify active faults from different sources of Remote Sensing and compare the capability of some satellite sensors in active faults survey. In this paper, it was discussed a few digital image processing approaches to be used for enhancement and feature extraction related to faults. Those methods include band ratio, filtering and texture statistics . The experimental results show that multi-spectral images have great potentials in large scale active faults investigation. It has also got satisfied results when deal with invisible faults. Active Faults have distinct features in satellite images. Usually, there are obvious straight lines, circular structures and other distinct patterns along the faults locations. Remotely Sensed imagery Landsat ETM and SPOT XS /PAN are often used in active faults mapping. Moderate and high resolution satellite images are the best choice, because in low resolution images, the faults features may not be visible in most cases. The area under study is located Northwest of Syria that is part of one of the very active deformation belt on the Earth today. This area and the western part of Syria are located along the great rift system (Left-Lateral or African- Syrian Rift System). Those areas are tectonically active and caused a lot of seismically events. The AL-Ghab graben complex is situated within this wide area of Cenozoic deformation. The system formed, initially, as a result of the break up of the Arabian plate from the African plate. This action indicates that these sites are active and in a continual movement. In addition to that, the statistic analysis of Thematic Mapper data and the features from a digital elevation model ( DEM )produced from

  4. The kinaesthetic senses.

    PubMed

    Proske, Uwe; Gandevia, Simon C

    2009-09-01

    This review of kinaesthesia, the senses of limb position and limb movement, has been prompted by recent new observations on the role of motor commands in position sense. They make it necessary to reassess the present-day views of the underlying neural mechanisms. Peripheral receptors which contribute to kinaesthesia are muscle spindles and skin stretch receptors. Joint receptors do not appear to play a major role at most joints. The evidence supports the existence of two separate senses, the sense of limb position and the sense of limb movement. Receptors such as muscle spindle primary endings are able to contribute to both senses. While limb position and movement can be signalled by both skin and muscle receptors, new evidence has shown that if limb muscles are contracting, an additional cue is provided by centrally generated motor command signals. Observations using neuroimaging techniques indicate the involvement of both the cerebellum and parietal cortex in a multi-sensory comparison, involving operation of a forward model between the feedback during a movement and its expected profile, based on past experience. Involvement of motor command signals in kinaesthesia has implications for interpretations of certain clinical conditions.

  5. Local bleaching thresholds established by remote sensing techniques vary among reefs with deviating bleaching patterns during the 2012 event in the Arabian/Persian Gulf.

    PubMed

    Shuail, Dawood; Wiedenmann, Jörg; D'Angelo, Cecilia; Baird, Andrew H; Pratchett, Morgan S; Riegl, Bernhard; Burt, John A; Petrov, Peter; Amos, Carl

    2016-04-30

    A severe bleaching event affected coral communities off the coast of Abu Dhabi, UAE in August/September, 2012. In Saadiyat and Ras Ghanada reefs ~40% of the corals showed signs of bleaching. In contrast, only 15% of the corals were affected on Delma reef. Bleaching threshold temperatures for these sites were established using remotely sensed sea surface temperature (SST) data recorded by MODIS-Aqua. The calculated threshold temperatures varied between locations (34.48 °C, 34.55 °C, 35.05 °C), resulting in site-specific deviations in the numbers of days during which these thresholds were exceeded. Hence, the less severe bleaching of Delma reef might be explained by the lower relative heat stress experienced by this coral community. However, the dominance of Porites spp. that is associated with the long-term exposure of Delma reef to elevated temperatures, as well as the more pristine setting may have additionally contributed to the higher coral bleaching threshold for this site.

  6. Modeling tropical land-use and land-cover change related to sugarcane crops using remote sensing and soft computing techniques

    NASA Astrophysics Data System (ADS)

    Vicente, L. E.; Koga-Vicente, A.; Friedel, M. J.; Zullo, J.; Victoria, D.; Gomes, D.; Bayma, G.

    2013-12-01

    Agriculture is closely related to land-use/cover changes (LUCC). The increase in demand for ethanol necessitates the expansion of areas occupied by corn and sugar cane. In São Paulo state, the conversion of this land raises concern for impacts on food security, such as the decrease in traditional food crop production areas. We used remote sensing data to train and evaluate future land-cover scenarios using a machine-learning algorithm. The land cover classification procedure was based on Landsat 5 TM images, obtained from the Global Land Survey, covering three time periods over twenty years (1990 - 2010). Landsat images were segmented into homogeneous objects, which represent areas on the ground with similar spatial and spectral characteristics. These objects are related to the distinct land cover types that occur in each municipality. Based on the object shape, texture and spectral characteristics, land use/cover was visually identified, considering the following classes: sugarcane plantations, pasture lands, natural cover, forest plantation, permanent crop, short cycle crop, water bodies and urban areas. Results for the western regions of São Paulo state indicate that sugarcane crop area advanced mostly upon pasture areas with few areas of food crops being replaced by sugarcane.

  7. An information system for the utility of the ephemeral tributaries west of the Nile Valley in Sudan. Based on remote sensing and geological techniques

    SciTech Connect

    Al Biely, A.I.; Mohamed, A.H.A.; Khidir, S.O.

    1996-08-01

    Interpretation of landsat MSS and TM satellite and NOAA-AVHRR images, climatological data and conventional geological methods were integrated in this study to arrive at a rigorous scientific geoinformation system that could assist the on-going endeavours to rehabilitate areas west of the Nile Valley. The study area, which repetitively suffered severe spells of drought, extends between latitudes 12{degrees}N-18{degrees}N and longitudes 27{degrees}E-32{degrees}E. The area considered abodes four major ephemeral tributaries of the River Nile, they are Wadi Howar, Wadi El Milk, Wadi El Mugaddam and Khor Abu Habil. Visual interpretation of remotely sensed data coupled with geological investigations revealed that these ephemeral tributaries are structurally controlled and their lower courses are buried under extensive sand sheets, that block their channels from reaching the Nile Valley. Sites where those tributaries disappear could constitute huge reservoirs of groundwater that could be utilized to harness desert encroachment and to plan rehabilitation projects. It is envisaged that, surface and subsurface hydrological engineering constructions in favourable sites, across those tributaries may lead to permanent surface water ponding. The performed study demonstrated the possibility of combating the environmental degradation on the area under consideration through carefully designed rehabilitation and development projects based on the integration of available data in a geoinformation system.

  8. Analyzing suitability for urban expansion under rapid coastal urbanization with remote sensing and GIS techniques: a case study of Lianyungang, China

    NASA Astrophysics Data System (ADS)

    Zhao, Wenjun; Zhu, Xiaodong; Reenberg, Anette; Sun, Xiang

    2010-10-01

    Beginning in 2000, Lianyungang's urbanization entered a period of rapid growth, spatially as well as economically. Rapid and intensive expansion of "construction land" imposed increasing pressures on regional environment. With the support of remote sensing data and GIS tools, this paper reports a "present-capacity-potential" integrated suitability analysis framework, in order to characterize and evaluate the suitability of urban expansion in Lianyungang. We found that during the rapid coastal urbanization process from 2000 to 2008, the characteristics of physical expansion in the study area were characterized by a combination of high-density expansion and sprawling development. The land use conversion driven by urbanization and industrialization has not occurred only in city districts, but also the surrounding areas that were spatially absorbed by urban growth, while closely associated and greatly influenced by the explosive growth of industrial establishment. The over-consumption of land resources in the areas with low environmental carrying capacity, particularly in the eastern coastal area, should be strictly controlled. Compared to conventional land suitability analysis methods, the proposed integrated approach could better review the potential environmental impacts of urban expansion and provide guidance for decision makers.

  9. Development of alternative data analysis techniques for improving the accuracy and specificity of natural resource inventories made with remote sensing data

    NASA Technical Reports Server (NTRS)

    Lillesand, T. M. (Principal Investigator)

    1981-01-01

    The applicability of digital LANDSAT data in updating the Minnesota Lake Land Management Information System and in assessing the trophic status of lakes was investigated. Data from various combinations of training, classification, and geometric correction techniques were compared to a photointerpreted reference data set consisting of ground-verified samples and six randomly selected photographs covering approximately one quarter of the study area. For a reconnaissance inventory, the training via polygons selected from aerial photographs with a canonical analysis minimum distance classifier is the most accurate and efficient analysis technique. The applications test project resulted in disappointing thematic classification results per se, but did contribute to the development of mechanisms for implementing a LANDSAT data processing capability in the State Planning Agency on a permanent basis.

  10. Advanced laser remote sensing

    SciTech Connect

    Schultz, J.; Czuchlewski, S.; Karl, R.

    1996-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Remote measurement of wind velocities is critical to a wide variety of applications such as environmental studies, weather prediction, aircraft safety, the accuracy of projectiles, bombs, parachute drops, prediction of the dispersal of chemical and biological warfare agents, and the debris from nuclear explosions. Major programs to develop remote sensors for these applications currently exist in the DoD and NASA. At present, however, there are no real-time, three-dimensional wind measurement techniques that are practical for many of these applications and we report on two new promising techniques. The first new technique uses an elastic backscatter lidar to track aerosol patterns in the atmosphere and to calculate three dimensional wind velocities from changes in the positions of the aerosol patterns. This was first done by Professor Ed Eloranta of the University of Wisconsin using post processing techniques and we are adapting Professor Eloranta`s algorithms to a real-time data processor and installing it in an existing elastic backscatter lidar system at Los Alamos (the XM94 helicopter lidar), which has a compatible data processing and control system. The second novel wind sensing technique is based on radio-frequency (RF) modulation and spatial filtering of elastic backscatter lidars. Because of their compactness and reliability, solid state lasers are the lasers of choice for many remote sensing applications, including wind sensing.

  11. Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  12. Coupling a hydro-maritime model and remotely sensed techniques to assess the shoreline positioning uncertainty: the Marsala coast study case

    NASA Astrophysics Data System (ADS)

    Manno, Giorgio; Lo Re, Carlo; Ciraolo, Giuseppe; Maltese, Antonino

    2010-10-01

    The severe erosion phenomena affecting the Mediterranean coasts are strictly related to geophysical characteristics and socio-economic pressures. This suggests the need of monitoring and modelling the phenomenon in order to quantify its strength. In fact, the shoreline position, as well as its temporal evolution, provides important information for designing defence structures and for the development of a coastal management plan. The shoreline has a dynamic nature as it changes both in the short and long period. Those changes are caused by geo-morphological (e.g. bars and barrier island development etc.) and hydrodynamic (wave motion, tides and flows) processes, as well as by sudden and fast events such as sea storms, earthquakes and tsunamis. The research examines the uncertainty in positioning the shoreline coupling remotely sensed images and a hydro-maritime model. Although the assessment accuracy strongly relies on data availability and consistency, the resulting assessment of the shoreline erosion and accretion is crucial for an overall understanding of the hydro-maritime geo-morphological interaction. The study case is the Marsala coastline (western coast of Sicily, Italy), named 12th island physiographic unit. It is characterized by a low coast with sandy sediments from Holocene age. These sediments are in continuity of sedimentation on whitish debris composed by organogenic limestone from Pleistocene age. The diachronic analysis was carried out on both emerged and submerged parts of the beach and involves two distinct phases. In the first phase, geo-morphological in situ data have been compared with maps and georeferenced remote sensing images referred to the period 1994-2006. It allowed the identification of shoreline indicators [2] such as the beach cross-section and the shoreline positioning including its spatial and temporal variations. It should be noted that the comparison between EO (Earth Observation) images and cartographic maps is subjected to

  13. Estimation of Urban Growth Impact on River Ecosystems through Remote Sensing and GIS Techniques: A Case Study of the Cahaba Watershed Area

    NASA Astrophysics Data System (ADS)

    Caliskan, S.; Campbell, K.; Cowart, K.; Foreman, M.; Keyes, D. E.; Olson, J.; Padgett-Vasquez, S.

    2011-12-01

    Landscape transformations are the most widespread and potential threat to watershed ecosystems. Different land transformations such as urbanization, deforestation, and expansion of agricultural areas impact land cover, hydrology, and terrestrial and aquatic linkages in the watershed. The Cahaba River, located in Alabama, is among the most biologically diverse rivers in North America, and supplies water to 20% of Alabama residents. The largest metropolitan area in Alabama, the city of Birmingham, is found within the upper sub-watersheds of the Cahaba River watershed. As the city and its population grow there has also been an increase in environmental concern over the recent declines of aquatic species, a rise in endangered wildlife, and issues of water quality, in particular surface runoff and sedimentation. The main objective of this research is to assess the land use and land cover changes and their impacts on the biodiversity and different aquatic habitat species on the Cahaba Watershed. To investigate the land cover changes, LandSAT 5 TM scenes from 2001, 2006 and 2010 were used to derive vegetation cover changes and apply spatio-temporal analyses. The second objective of the study is to establish a GIS model to integrate the social and physical factors impacting the biodiversity with remotely sensed data. The final objective is to apply statistical analyses to investigate the habitat degradation with results of the GIS model. Findings and end products will be vital to policy makers for the Cahaba River Society, City of Birmingham, and Alabama Department of Environmental Management in development of conservation strategies and new land-use plans pertaining to the Cahaba River watershed.

  14. Reconstructing landslide dynamics and characteristics using remote sensing data (photogrammetry, LiDAR and seismic data): comparison between different techniques and complementary data analysis

    NASA Astrophysics Data System (ADS)

    Torné, Marta; Guinau, Marta; Tapia, Mar; Perez, Cristina; Jesús Royan, Manuel; Echeverria, Anna; Roig, Pere; Suriñach, Emma

    2015-04-01

    The purpose of this study is to characterize the rock planar landslide that occurred in the village of La Riba (Catalonia) on May 5th 2013, using different techniques such as photogrammetry, terrestrial LiDAR data, and seismic data. Advantages and disadvantages of these techniques were evaluated. Back-analysis and characterization of landslides allow us to better understand their behaviour. This information could be used to protect areas affected by similar hazards. Remote techniques are an excellent tool to obtain data and to reduce the exposure of technicians in unstable (or inaccessible) areas. After the May 5th natural landslide, a controlled blasting was carried out to stabilize the slope. Using this programmed blasting as a benchmark, two photogrammetric models and two terrestrial LiDAR data models corresponding to the pre and post blast were made to compute the rock volume involved in the blast. The blasting process was recorded with two HD video cameras and by two temporary seismic stations deployed close to the site. Both the seismic and video records enabled us to reconstruct the details of the blasted landslide. The volumes obtained from seismic data were compared with the total volumes computed by LiDAR and photogrammetry. Moreover, information about the natural landslide was obtained from the records of a permanent seismic station 10 km from the site. Data such as the estimated fallen volume, the landslide mechanism and time of occurrence are information that would otherwise not be obtained. Six discontinuity families were detected and characterized in the rock slope using the photogrammetric and LiDAR models with a software developed by the Institut de Recerca de Geomodels of the Universitat de Barcelona. Similar results were obtained from the two models, but the higher point density of the LiDAR data enabled us to detect more discontinuity surfaces and in greater detail. The volume involved in the blast was calculated using two methods: 1) the

  15. Remote sensing for agriculture, ecosystems, and hydrology

    SciTech Connect

    Engman, E.T.

    1998-12-31

    This volume contains the proceedings of SPIE`s remote sensing symposium which was held September 22--24, 1998, in Barcelona, Spain. Topics of discussion include the following: calibration techniques for soil moisture measurements; remote sensing of grasslands and biomass estimation of meadows; evaluation of agricultural disasters; monitoring of industrial and natural radioactive elements; and remote sensing of vegetation and of forest fires.

  16. Techniques for assessing water resource potentials in the developing countries: with emphasis on streamflow, erosion and sediment transport, water movement in unsaturated soils, ground water, and remote sensing in hydrologic applications

    USGS Publications Warehouse

    Taylor, George C.

    1971-01-01

    . Nuclear methodology in hydrologic applications is generally more complex than the conventional and hence requires a high level of technical expertise for effective use. Application of nuclear techniques to hydrologic problems in the developing countries is likely to be marginal for some years to come, owing to the higher costs involved and expertise required. Nuclear techniques, however, would seem to have particular promise in studies of water movement in unsaturated soils and of erosion and sedimentation where conventional techniques are inadequate, inefficient and in some cases costly. Remote sensing offers great promise for synoptic evaluations of water resources and hydrologic processes, including the transient phenomena of the hydrologic cycle. Remote sensing is not, however, a panacea for deficiencies in hydrologic data programs in the developing countries. Rather it is a means for extending and augmenting on-the-ground observations ans surveys (ground truth) to evaluated water resources and hydrologic processes on a regionall or even continental scale. With respect to economic growth goals in developing countries, there are few identifiable gaps in existing hydrologic instrumentation and methodology insofar as appraisal, development and management of available water resources are concerned. What is needed is acceleration of institutional development and professional motivation toward more effective use of existing and proven methodology. Moreover, much sophisticated methodology can be applied effectively in the developing countries only when adequate levels of indigenous scientific skills have been reached and supportive institutional frameworks are evolved to viability.

  17. In-Situ and Remote-Sensing Data Fusion Using Machine Learning Techniques to Infer Urban and Fire Related Pollution Plumes

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Segal-Rozenhaimer, M.; Schmid, B.; Redemann, J.; Livingston, J. M.; Flynn, C.J.; Johnson, R. R.; Dunagan, S. E.; Shinozuka, Y.; Kacenelenbogen, M.; Chatfield, R. B.

    2014-01-01

    Airmass type characterization is key in understanding the relative contribution of various emission sources to atmospheric composition and air quality and can be useful in bottom-up model validation and emission inventories. However, classification of pollution plumes from space is often not trivial. Sub-orbital campaigns, such as SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) give us a unique opportunity to study atmospheric composition in detail, by using a vast suite of in-situ instruments for the detection of trace gases and aerosols. These measurements allow identification of spatial and temporal atmospheric composition changes due to various pollution plumes resulting from urban, biogenic and smoke emissions. Nevertheless, to transfer the knowledge gathered from such campaigns into a global spatial and temporal context, there is a need to develop workflow that can be applicable to measurements from space. In this work we rely on sub-orbital in-situ and total column remote sensing measurements of various pollution plumes taken aboard the NASA DC-8 during 2013 SEAC4RS campaign, linking them through a neural-network (NN) algorithm to allow inference of pollution plume types by input of columnar aerosol and trace-gas measurements. In particular, we use the 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) airborne measurements of wavelength dependent aerosol optical depth (AOD), particle size proxies, O3, NO2 and water vapor to classify different pollution plumes. Our method relies on assigning a-priori ground-truth labeling to the various plumes, which include urban pollution, different fire types (i.e. forest and agriculture) and fire stage (i.e. fresh and aged) using cluster analysis of aerosol and trace-gases in-situ and auxiliary (e.g. trajectory) data and the training of a NN scheme to fit the best prediction parameters using 4STAR measurements as input. We explore our

  18. Investigation of techniques for inventorying forested regions. Volume 2: Forestry information system requirements and joint use of remotely sensed and ancillary data

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Cicone, R. C.; Malila, W. A.; Crist, E. P.

    1977-01-01

    The author has identified the following significant results. Effects of terrain topography in mountainous forested regions on LANDSAT signals and classifier training were found to be significant. The aspect of sloping terrain relative to the sun's azimuth was the major cause of variability. A relative insolation factor could be defined which, in a single variable, represents the joint effects of slope and aspect and solar geometry on irradiance. Forest canopy reflectances were bound, both through simulation, and empirically, to have nondiffuse reflectance characteristics. Training procedures could be improved by stratifying in the space of ancillary variables and training in each stratum. Application of the Tasselled-Cap transformation for LANDSAT data acquired over forested terrain could provide a viable technique for data compression and convenient physical interpretations.

  19. The GNSS polarimetric radio-occultation technique to sense precipitation events: a new concept to be tested aboard PAZ Low Earth Satellite

    NASA Astrophysics Data System (ADS)

    Tomás, Sergio; Oliveras, Santi; Cardellach, Estel; Rius, Antonio

    2013-04-01

    The Radio Occultation and Heavy Precipitation (ROHP) experiment, to be conducted aboard the Spanish PAZ satellite, consists of a radio occultation (RO) mission provided with dual-polarization capabilities. The research with polarimetric RO data has the goal of assessing the capabilities and limitations of this technique to infer profiles of heavy precipitation. The technique aims to provide vertical profiles of precipitation simultaneously to the vertical profiles of thermodynamic parameters (standard RO products) perfectly collocated both in space and time. If successful, the polarimetric RO will represent the first technique able to provide these complementary information on precipitation. This is a relevant input for studies on heavy and violent rainfall events, which being poorly represented by the current-generation of Numerical Weather Prediction and General Circulation Models appear to be difficult to forecast on all time-scales. The Low Earth Orbiter hosting this experiment, to be launched in 2013, will orbit at 500 km altitude in a near-Polar orbit. The Radio Occulation payload includes a RO GNSS receiver and a dual polarization (H/V) limb oriented antenna to capture the signals of setting GNSS transmitters. NOAA and UCAR participate in the ground-segment of the radiometric experiment to enable near-real time dissemination of the level-1 standard RO products. The space-based GNSS RO technique scans the atmosphere vertically at fine resolution (close to 300 meter in the troposphere) by precisely measure the delay between a GNSS transmitter and a GNSS receiver aboard a Low Earth Orbiter, when the former is setting below or rising above the Earth limb. The standard, thermodynamical, products are extracted from the excess delay induced by the atmosphere at different layers. This presentation will not focus on this well-established application, but a novel concept using polarimetry to also retrieve rain information. The precipitation-measurement principle is

  20. Remote sensing of atmospheric water vapor, liquid water, and wind speed at the ocean surface by passive microwave techniques from the Nimbus 5 satellite

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Wilheit, T. T.

    1979-01-01

    The microwave brightness temperature measurements for Nimbus 5 electrically scanned microwave radiometer (ESMR) and Nimbus-E microwave spectrometer (NEMS) are used to retrieve the atmospheric water vapor, liquid water, and wind speed by a quasi-statistical retrieval technique. It is shown that the brightness temperature can be utilized to yield these parameters under various weather conditions. Observations at 19.35, 22.235, and 31.4 GHz were input to the regression equations. The retrieved values of these parameters for portions of two Nimbus 5 orbits are presented. Then comparison between the retrieved parameters and the available observations on the total water vapor content and the surface wind speed are made.

  1. Remote sensing of atmospheric water vapor, liquid water and wind speed at the ocean surface by passive microwave techniques from the Nimbus-5 satellite

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Wilheit, T. T.

    1977-01-01

    The microwave brightness temperature measurements for Nimbus-5 electrically scanned microwave radiometer and Nimbus E microwave spectrometer are used to retrieve the atmospheric water vapor, liquid water and wind speed by a quasi-statistical retrieval technique. It is shown that the brightness temperature can be utilized to yield these parameters under various weather conditions. Observations at 19.35 GHz, 22.235 GHz and 31.4 GHz were input to the regression equations. The retrieved values of these parameters for portions of two Nimbus-5 orbits are presented. Then comparison between the retrieved parameters and the available observations on the total water vapor content and the surface wind speed are made. The estimated errors for retrieval are approximately 0.15 g/sq cm for water vapor content, 6.5 mg/sq cm for liquid water content and 6.6 m/sec for surface wind speed.

  2. 3-D visualisation of palaeoseismic trench stratigraphy and trench logging using terrestrial remote sensing and GPR - combining techniques towards an objective multiparametric interpretation

    NASA Astrophysics Data System (ADS)

    Schneiderwind, S.; Mason, J.; Wiatr, T.; Papanikolaou, I.; Reicherter, K.

    2015-09-01

    Two normal faults on the Island of Crete and mainland Greece were studied to create and test an innovative workflow to make palaeoseismic trench logging more objective, and visualise the sedimentary architecture within the trench wall in 3-D. This is achieved by combining classical palaeoseismic trenching techniques with multispectral approaches. A conventional trench log was firstly compared to results of iso cluster analysis of a true colour photomosaic representing the spectrum of visible light. Passive data collection disadvantages (e.g. illumination) were addressed by complementing the dataset with active near-infrared backscatter signal image from t-LiDAR measurements. The multispectral analysis shows that distinct layers can be identified and it compares well with the conventional trench log. According to this, a distinction of adjacent stratigraphic units was enabled by their particular multispectral composition signature. Based on the trench log, a 3-D-interpretation of GPR data collected on the vertical trench wall was then possible. This is highly beneficial for measuring representative layer thicknesses, displacements and geometries at depth within the trench wall. Thus, misinterpretation due to cutting effects is minimised. Sedimentary feature geometries related to earthquake magnitude can be used to improve the accuracy of seismic hazard assessments. Therefore, this manuscript combines multiparametric approaches and shows: (i) how a 3-D visualisation of palaeoseismic trench stratigraphy and logging can be accomplished by combining t-LiDAR and GRP techniques, and (ii) how a multispectral digital analysis can offer additional advantages and a higher objectivity in the interpretation of palaeoseismic and stratigraphic information. The multispectral datasets are stored allowing unbiased input for future (re-)investigations.

  3. Development and Sensing Properties Study of Underwater Assembled Water Depth-Inclination Sensors for a Multi-Component Mooring System, Using a Self-Contained Technique

    PubMed Central

    Wu, Wenhua; Feng, Jiaguo; Xie, Bin; Tang, Da; Yue, Qianjin; Xie, Ribin

    2016-01-01

    Prototype monitoring techniques play an important role in the safety guarantee of mooring systems in marine engineering. In general, the complexities of harsh ocean environmental conditions bring difficulties to the traditional monitoring methods of application, implementation and maintenance. Large amounts of existing mooring systems still lack valid monitoring strategies. In this paper, an underwater monitoring method which may be used to achieve the mechanical responses of a multi-point catenary mooring system, is present. A novel self-contained assembled water depth-inclination (D-I) sensor is designed and manufactured. Several advanced technologies, such as standalone, low power consumption and synchronism, are considered to satisfy the long-term implementation requirements with low cost during the design process. The design scheme of the water resistance barrel and installation clamp, which satisfies the diver installation, are also provided in the paper. An on-site test has previously been carried out on a production semisubmersible platform in the South China Sea. The prototype data analyses, including the D-I value in the time domain (including the data recorded during the mooring retraction and release process) and spectral characteristics, are presented to reveal the accuracy, feasibility and stability of the sensor in terms of fitting for the prototype monitoring of catenary mooring systems, especially for in-service aging platforms. PMID:27854357

  4. Application of Spectral Analysis Techniques in the Intercomparison of Aerosol Data: 1. an EOF Approach to the Spatial-Temporal Variability of Aerosol Optical Depth Using Multiple Remote Sensing Data Sets

    NASA Technical Reports Server (NTRS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2013-01-01

    Many remote sensing techniques and passive sensors have been developed to measure global aerosol properties. While instantaneous comparisons between pixel-level data often reveal quantitative differences, here we use Empirical Orthogonal Function (EOF) analysis, also known as Principal Component Analysis, to demonstrate that satellite-derived aerosol optical depth (AOD) data sets exhibit essentially the same spatial and temporal variability and are thus suitable for large-scale studies. Analysis results show that the first four EOF modes of AOD account for the bulk of the variance and agree well across the four data sets used in this study (i.e., Aqua MODIS, Terra MODIS, MISR, and SeaWiFS). Only SeaWiFS data over land have slightly different EOF patterns. Globally, the first two EOF modes show annual cycles and are mainly related to Sahara dust in the northern hemisphere and biomass burning in the southern hemisphere, respectively. After removing the mean seasonal cycle from the data, major aerosol sources, including biomass burning in South America and dust in West Africa, are revealed in the dominant modes due to the different interannual variability of aerosol emissions. The enhancement of biomass burning associated with El Niño over Indonesia and central South America is also captured with the EOF technique.

  5. Basic Remote Sensing Investigations for Beach Reconnaissance.

    DTIC Science & Technology

    Progress is reported on three tasks designed to develop remote sensing beach reconnaissance techniques applicable to the benthic, beach intertidal...and beach upland zones. Task 1 is designed to develop remote sensing indicators of important beach composition and physical parameters which will...ultimately prove useful in models to predict beach conditions. Task 2 is designed to develop remote sensing techniques for survey of bottom features in

  6. Remote sensing. [land use mapping

    NASA Technical Reports Server (NTRS)

    Jinich, A.

    1979-01-01

    Various imaging techniques are outlined for use in mapping, land use, and land management in Mexico. Among the techniques discussed are pattern recognition and photographic processing. The utilization of information from remote sensing devices on satellites are studied. Multispectral band scanners are examined and software, hardware, and other program requirements are surveyed.

  7. Remote Sensing in Environmental Education.

    ERIC Educational Resources Information Center

    Huber, Thomas P.

    1983-01-01

    Describes general concepts of remote sensing and provides three examples of how its techniques have been used in the context of environmental issues. Examples focus on the use of this data gathering technique in the visible (aerial photography), near infrared, and thermal infrared ranges. (JN)

  8. Mapping and analyzing Conservation Reserve Program (CRP) enrollment patterns from 1991 to 2011 in Nelson County, North Dakota, using remote sensing and GIS techniques

    NASA Astrophysics Data System (ADS)

    Roehrdanz, Nicholas L.

    Since its inception in 1985, the federally managed Conservation Reserve Program (CRP) has contributed to land-use/land-cover change (LUCC) in areas throughout North Dakota. Concurrently, the Devils Lake Basin and surrounding Prairie Pothole Region (PPR) in North Dakota has experienced pervasive lake and wetland flooding. Unsurprisingly, a clustering of CRP enrollment in certain counties within the basin has occurred, seemingly coinciding with the flooding. Analysis of historical county-level CRP enrollment data pertaining to counties in North Dakota revealed that Nelson County, which is partially within the basin, has developed as a CRP hotspot in the state and has had the greatest increase in the density of CRP acreage amongst the counties in the region. We hypothesize that this high enrollment is the response of farmers losing arable lands and/or field access to the rising waters in the region, thus making CRP enrollment an economically viable option. This study uses Landsat data and GIS analysis to document LUCC and the forces driving it associated with CRP grassland and pervasive lake and wetland flooding in Nelson County. Because CRP field locations are not available from the federal government, we used multi-temporal classification techniques (three scenes per year) to derive land-cover maps from Landsat Thematic Mapper data for five growing seasons (1984, 1991, 1998, 2005, and 2011). We mapped CRP grassland at more than 90% accuracy with validation data derived from interpretation of historical aerial photography and, in the case of 2011, data gathered in the field. LUCC change analysis was done using raster GIS. We found an increase in the amount of CRP grassland in the study area between 1991 (19,688 ha) and 2005 (35,612 ha) and then a decline to 2011 (27,856 ha). Spatial analysis revealed a clustering of CRP in 1991 in the Sheyenne and Goose river valleys, likely attributable to those lands being considered of greater conservation importance. By 1998, a

  9. Using remote sensing techniques and field-based structural analysis to explore new gold and associated mineral sites around Al-Hajar mine, Asir terrane, Arabian Shield

    NASA Astrophysics Data System (ADS)

    Sonbul, Abdullah R.; El-Shafei, Mohamed K.; Bishta, Adel Z.

    2016-05-01

    Modern earth resource satellites provide huge amounts of digital imagery at different resolutions. These satellite imageries are considered one of the most significant sources of data for mineral exploration. Image processing techniques were applied to the exposed rocks around the Al-Aqiq area of the Asir terrane in the southern part of the Arabian Shield. The area under study has two sub-parallel N-S trending metamorphic belts of green-schist facies. The first belt is located southeast of Al-Aqiq, where the Al-Hajar Gold Mine is situated. It is essentially composed of metavolcanics and metasedimentary rocks, and it is intruded by different plutonic rocks of primarily diorite, syenite and porphyritic granite. The second belt is located northwest of Al-Aqiq, and it is composed of metavolcanics and metasedimentary rocks and is intruded by granite bodies. The current study aimed to distinguish the lithological units, detect and map the alteration zones, and extract the major fault lineaments around the Al-Hajar gold prospect. Digital satellite imageries, including Landsat 7 ETM + multispectral and panchromatic and SPOT-5 were used in addition to field verification. Areas with similar spectral signatures to the prospect were identified in the nearby metamorphic belt; it was considered as a target area and was inspected in the field. The relationships between the alteration zones, the mineral deposits and the structural elements were used to locate the ore-bearing zones in the subsurface. The metasedimentary units of the target area showed a dextral-ductile shearing top-to-the-north and the presence of dominant mineralized quartz vein-system. The area to the north of the Al-Hajar prospect showed also sub-parallel shear zones along which different types of alterations were detected. Field-based criteria such as hydrothermal breccia, jasper, iron gossans and porphyritic granite strongly indicate the presence of porphyry-type ore deposits in Al-Hajar metamorphic belt that

  10. Numbers Sense

    ERIC Educational Resources Information Center

    Kathotia, Vinay

    2009-01-01

    This article reports on work undertaken by schools as part of Qualifications and Curriculum Authority's (QCA's) "Engaging mathematics for all learners" project. The goal was to use in the classroom, materials and approaches from a Royal Institution (Ri) Year 10 master-class, "Number Sense", which was inspired by examples from…

  11. Pervasive sensing

    NASA Astrophysics Data System (ADS)

    Nagel, David J.

    2000-11-01

    The coordinated exploitation of modern communication, micro- sensor and computer technologies makes it possible to give global reach to our senses. Web-cameras for vision, web- microphones for hearing and web-'noses' for smelling, plus the abilities to sense many factors we cannot ordinarily perceive, are either available or will be soon. Applications include (1) determination of weather and environmental conditions on dense grids or over large areas, (2) monitoring of energy usage in buildings, (3) sensing the condition of hardware in electrical power distribution and information systems, (4) improving process control and other manufacturing, (5) development of intelligent terrestrial, marine, aeronautical and space transportation systems, (6) managing the continuum of routine security monitoring, diverse crises and military actions, and (7) medicine, notably the monitoring of the physiology and living conditions of individuals. Some of the emerging capabilities, such as the ability to measure remotely the conditions inside of people in real time, raise interesting social concerns centered on privacy issues. Methods for sensor data fusion and designs for human-computer interfaces are both crucial for the full realization of the potential of pervasive sensing. Computer-generated virtual reality, augmented with real-time sensor data, should be an effective means for presenting information from distributed sensors.

  12. High-temperature piezoelectric sensing.

    PubMed

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2013-12-20

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  13. High-Temperature Piezoelectric Sensing

    PubMed Central

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2014-01-01

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented. PMID:24361928

  14. Compressive Sensing for Quantum Imaging

    NASA Astrophysics Data System (ADS)

    Howland, Gregory A.

    This thesis describes the application of compressive sensing to several challenging problems in quantum imaging with practical and fundamental implications. Compressive sensing is a measurement technique that compresses a signal during measurement such that it can be dramatically undersampled. Compressive sensing has been shown to be an extremely efficient measurement technique for imaging, particularly when detector arrays are not available. The thesis first reviews compressive sensing through the lens of quantum imaging and quantum measurement. Four important applications and their corresponding experiments are then described in detail. The first application is a compressive sensing, photon-counting lidar system. A novel depth mapping technique that uses standard, linear compressive sensing is described. Depth maps up to 256 x 256 pixel transverse resolution are recovered with depth resolution less than 2.54 cm. The first three-dimensional, photon counting video is recorded at 32 x 32 pixel resolution and 14 frames-per-second. The second application is the use of compressive sensing for complementary imaging---simultaneously imaging the transverse-position and transverse-momentum distributions of optical photons. This is accomplished by taking random, partial projections of position followed by imaging the momentum distribution on a cooled CCD camera. The projections are shown to not significantly perturb the photons' momenta while allowing high resolution position images to be reconstructed using compressive sensing. A variety of objects and their diffraction patterns are imaged including the double slit, triple slit, alphanumeric characters, and the University of Rochester logo. The third application is the use of compressive sensing to characterize spatial entanglement of photon pairs produced by spontaneous parametric downconversion. The technique gives a theoretical speedup N2/log N for N-dimensional entanglement over the standard raster scanning technique

  15. Experiences of a WEB based test site platform for landslide susceptibility and the use of remote sensing interferometric techniques for monitoring landslide movements in Sweden

    NASA Astrophysics Data System (ADS)

    Löfroth, H.; Hultén, C.; Ledwith, M.; Nisser-Larsson, M.; Righini, G.

    2009-04-01

    prerequisites for landslides. Susceptibility map 1b is a map showing built up areas considered to have unsatisfactory stability. The results from Stage 2 of the Swedish methodology are normally presented as cross-sections representing calculated factors of safety. Within susceptibility map 2, the results have been visualised though stability classes division. The stability classes are based on the calculated factors of safety from the detailed stability investigations in representative sections. In addition to these susceptibility maps, a proposal for the prioritization of landslide susceptible areas has been developed. The proposal is in the form of a table for prioritization. This priority table is based on the stability conditions assessed in sub-stage 1b of the Swedish methodology, i.e. susceptibility map 1b. The Differential Interferometric SAR (DIFSAR) method for movement detection has not previously been used in Sweden. From a Swedish point of view, participation in the Preview project has given the opportunity to evaluate this method with respect to detecting early movements of deep seated, rapid landslides in clay and silt (typical to Scandinavia). Based on the DIFSAR analysis of the landslide in Vagnhärad in 1997, it has not been possible to detect any movements prior to the actual landslide. One possible explanation is that landslides in Sweden often occur rapidly and are fast moving. However, the analysis indicated other small movements within the Vagnhärad area. The DIFSAR analysis of the Sundsvall area was hindered by the lack of coherent points within the area of the two landslides. This is primarily due to the lack of permanent structures, as radar benchmarks, (e.g. houses or buildings) in the vicinity. The results from the DIFSAR analysis of these landslides exposed the difficulties in detecting the minor movements prior to slides in clay and silt in Sweden. However, the DIFSAR technique has potential in Sweden for applications pertaining to other ground

  16. Physical Principles of Remote Sensing

    NASA Astrophysics Data System (ADS)

    Rees, W. G.

    2001-09-01

    Substantially revised and expanded, this new edition includes a discussion of the radiative transfer equation, atmospheric sounding techniques and interferometric radar, an expanded list of problems (with solutions), and a discussion of the Global Positioning System (GPS). This book forms the basis of an introductory course in remote sensing. The main readership will be students and researchers in remote sensing, geography, cartography, surveying, meteorology, earth sciences and environmental sciences generally, as well as physicists, mathematicians and engineers.

  17. Generalizing distributed sensing networks

    SciTech Connect

    Kuespert, J.; Kutscher, D.

    1996-11-01

    Recent research in airborne oil spill remote sensing [FBFG94] leads towards modular systems that consist of several distinct sensors to combine the capabilities of the different sensor classes. The Medusa project [GHW96] is an example of a distributed system. It exhibits a distributed architecture to provide a maximum of flexibility, concurrency and safety and must clearly be rated as a classical distributed application from a computer science point of view. This article describes the {open_quotes}sensor description system{close_quotes} (SDS). SDS allows the developer of sensing systems to minimize the effort of integrating his particular subsystem into an existing application. By applying formal methods to the integration process a developer is able to describe the abstract properties of his sensing system like parameter values, generated data format, applicable methods on the data etc. and can thus rely on the SDS tools to produce the required software backends automatically: A graphical user interface for parameter control, an online visualization, data transfer facilities to a database and finally the evaluation and interpretation facility. Ibis technique puts future sensing enterprises in a position where different classes of sensors can easily be combined almost off-the-shelf to build powerful systems in very short turnaround times. 10 refs., 7 figs.

  18. Conversational sensing

    NASA Astrophysics Data System (ADS)

    Preece, Alun; Gwilliams, Chris; Parizas, Christos; Pizzocaro, Diego; Bakdash, Jonathan Z.; Braines, Dave

    2014-05-01

    Recent developments in sensing technologies, mobile devices and context-aware user interfaces have made it pos- sible to represent information fusion and situational awareness for Intelligence, Surveillance and Reconnaissance (ISR) activities as a conversational process among actors at or near the tactical edges of a network. Motivated by use cases in the domain of Company Intelligence Support Team (CoIST) tasks, this paper presents an approach to information collection, fusion and sense-making based on the use of natural language (NL) and controlled nat- ural language (CNL) to support richer forms of human-machine interaction. The approach uses a conversational protocol to facilitate a ow of collaborative messages from NL to CNL and back again in support of interactions such as: turning eyewitness reports from human observers into actionable information (from both soldier and civilian sources); fusing information from humans and physical sensors (with associated quality metadata); and assisting human analysts to make the best use of available sensing assets in an area of interest (governed by man- agement and security policies). CNL is used as a common formal knowledge representation for both machine and human agents to support reasoning, semantic information fusion and generation of rationale for inferences, in ways that remain transparent to human users. Examples are provided of various alternative styles for user feedback, including NL, CNL and graphical feedback. A pilot experiment with human subjects shows that a prototype conversational agent is able to gather usable CNL information from untrained human subjects.

  19. Remote sensing for urban planning

    NASA Technical Reports Server (NTRS)

    Davis, Bruce A.; Schmidt, Nicholas; Jensen, John R.; Cowen, Dave J.; Halls, Joanne; Narumalani, Sunil; Burgess, Bryan

    1994-01-01

    Utility companies are challenged to provide services to a highly dynamic customer base. With factory closures and shifts in employment becoming a routine occurrence, the utility industry must develop new techniques to maintain records and plan for expected growth. BellSouth Telecommunications, the largest of the Bell telephone companies, currently serves over 13 million residences and 2 million commercial customers. Tracking the movement of customers and scheduling the delivery of service are major tasks for BellSouth that require intensive manpower and sophisticated information management techniques. Through NASA's Commercial Remote Sensing Program Office, BellSouth is investigating the utility of remote sensing and geographic information system techniques to forecast residential development. This paper highlights the initial results of this project, which indicate a high correlation between the U.S. Bureau of Census block group statistics and statistics derived from remote sensing data.

  20. Lidar: A laser technique for remote sensing

    NASA Technical Reports Server (NTRS)

    Wilkerson, T. D.; Hickman, G. D.

    1978-01-01

    Experimental airborne lidar systems proved to be useful for shallow water bathymetric measurements, and detection and identification of oil slicks and algae. Dye fluorescence applications using organic dyes was studied. The possibility of remotely inducing dye flourescence by means of pulsed lasers opens up several hydrospheric applications for measuring water currents, water temperature, and salinity. Aerosol measurements by lidar are also discussed.

  1. Infrared sensing techniques for adaptive robotic welding

    SciTech Connect

    Lin, T.T.; Groom, K.; Madsen, N.H.; Chin, B.A.

    1986-01-01

    The objective of this research is to investigate the feasibility of using infrared sensors to monitor the welding process. Data were gathered using an infrared camera which was trained on the molten metal pool during the welding operation. Several types of process perturbations which result in weld defects were then intentionally induced and the resulting thermal images monitored. Gas tungsten arc using ac and dc currents and gas metal arc welding processes were investigated using steel, aluminum and stainless steel plate materials. The thermal images obtained in the three materials and different welding processes revealed nearly identical patterns for the same induced process perturbation. Based upon these results, infrared thermography is a method which may be very applicable to automation of the welding process.

  2. River channel monitoring of the Red River of the Texas and Oklahoma state boundary, U.S.A., using remote sensing techniques and the legal implications on riparian boundaries

    NASA Astrophysics Data System (ADS)

    Edwards, William David

    The study focuses on the Red River, partially forming the border of Arkansas, Oklahoma, and Texas in the United States of America. This river was chosen because of its volatility in migration and its impact on land value. The river can be relatively wide in areas, where the gradient is low, forming braided streams up to a mile wide. As land becomes more valuable, having a more readily and accurately defined boundary will become more important. Rivers serve as a natural boundary. Early in American cadastral systems, many descriptions used these natural features to make it easy to recognize by the public. Natural river boundaries migrate and change courses causing difficulties with land management. Riparian boundaries move with the changing channel of the river. Due to hydrogeological processes which contribute to accretion, erosion, reliction, and sometimes avulsion makes describing the sinuosity of riparian boundaries difficult. Riparian boundary descriptions usually are the product of a terrestrial land survey. The value of the land usually dictated the precision used by the land surveyor during the field data acquisition. Technological advances in the instrumentation used by the land surveyor have enabled both higher precision and accuracy in surveying data along with computers and software advancement to calculate the area of the land and more accurate management of the land. With the ability to provide specific analysis of land features through the development of geographic information system (GIS) software incorporating accurate terrain models, riparian boundaries can be easier to manage. Boundary definitions become more reliable with improved terrain information and numerical models. This research uses GIS software tools to delineate the gradient boundary along the river from elevation models derived from remote sensing instruments, also evaluate possible areas where potential avulsionary cut-off by the river using the same remote sensing data. If an area has

  3. An overview of GNSS remote sensing

    NASA Astrophysics Data System (ADS)

    Yu, Kegen; Rizos, Chris; Burrage, Derek; Dempster, Andrew G.; Zhang, Kefei; Markgraf, Markus

    2014-12-01

    The Global Navigation Satellite System (GNSS) signals are always available, globally, and the signal structures are well known, except for those dedicated to military use. They also have some distinctive characteristics, including the use of L-band frequencies, which are particularly suited for remote sensing purposes. The idea of using GNSS signals for remote sensing - the atmosphere, oceans or Earth surface - was first proposed more than two decades ago. Since then, GNSS remote sensing has been intensively investigated in terms of proof of concept studies, signal processing methodologies, theory and algorithm development, and various satellite-borne, airborne and ground-based experiments. It has been demonstrated that GNSS remote sensing can be used as an alternative passive remote sensing technology. Space agencies such as NASA, NOAA, EUMETSAT and ESA have already funded, or will fund in the future, a number of projects/missions which focus on a variety of GNSS remote sensing applications. It is envisaged that GNSS remote sensing can be either exploited to perform remote sensing tasks on an independent basis or combined with other techniques to address more complex applications. This paper provides an overview of the state of the art of this relatively new and, in some respects, underutilised remote sensing technique. Also addressed are relevant challenging issues associated with GNSS remote sensing services and the performance enhancement of GNSS remote sensing to accurately and reliably retrieve a range of geophysical parameters.

  4. HORIZON SENSING

    SciTech Connect

    Larry G. Stolarczyk

    2003-03-18

    With the aid of a DOE grant (No. DE-FC26-01NT41050), Stolar Research Corporation (Stolar) developed the Horizon Sensor (HS) to distinguish between the different layers of a coal seam. Mounted on mining machine cutter drums, HS units can detect or sense the horizon between the coal seam and the roof and floor rock, providing the opportunity to accurately mine the section of the seam most desired. HS also enables accurate cutting of minimum height if that is the operator's objective. Often when cutting is done out-of-seam, the head-positioning function facilitates a fixed mining height to minimize dilution. With this technology, miners can still be at a remote location, yet cut only the clean coal, resulting in a much more efficient overall process. The objectives of this project were to demonstrate the feasibility of horizon sensing on mining machines and demonstrate that Horizon Sensing can allow coal to be cut cleaner and more efficiently. Stolar's primary goal was to develop the Horizon Sensor (HS) into an enabling technology for full or partial automation or ''agile mining''. This technical innovation (R&D 100 Award Winner) is quickly demonstrating improvements in productivity and miner safety at several prominent coal mines in the United States. In addition, the HS system can enable the cutting of cleaner coal. Stolar has driven the HS program on the philosophy that cutting cleaner coal means burning cleaner coal. The sensor, located inches from the cutting bits, is based upon the physics principles of a Resonant Microstrip Patch Antenna (RMPA). When it is in proximity of the rock-coal interface, the RMPA impedance varies depending on the thickness of uncut coal. The impedance is measured by the computer-controlled electronics and then sent by radio waves to the mining machine. The worker at the machine can read the data via a Graphical User Interface, displaying a color-coded image of the coal being cut, and direct the machine appropriately. The Horizon Sensor

  5. Role of remote sensing in documenting living resources

    NASA Technical Reports Server (NTRS)

    Wagner, P. E.; Anderson, R. R.; Brun, B.; Eisenberg, M.; Genys, J. B.; Lear, D. W., Jr.; Miller, M. H.

    1978-01-01

    Specific cases of known or potentially useful applications of remote sensing in assessing biological resources are discussed. It is concluded that the more usable remote sensing techniques relate to the measurement of population fluctuations in aquatic systems. Sensing of the flora and the fauna of the Bay is considered with emphasis on direct sensing of aquatic plant populations and of water quality. Recommendations for remote sensing projects are given.

  6. Mississippi Sound Remote Sensing Study

    NASA Technical Reports Server (NTRS)

    Atwell, B. H.

    1973-01-01

    The Mississippi Sound Remote Sensing Study was initiated as part of the research program of the NASA Earth Resources Laboratory. The objective of this study is development of remote sensing techniques to study near-shore marine waters. Included within this general objective are the following: (1) evaluate existing techniques and instruments used for remote measurement of parameters of interest within these waters; (2) develop methods for interpretation of state-of-the-art remote sensing data which are most meaningful to an understanding of processes taking place within near-shore waters; (3) define hardware development requirements and/or system specifications; (4) develop a system combining data from remote and surface measurements which will most efficiently assess conditions in near-shore waters; (5) conduct projects in coordination with appropriate operating agencies to demonstrate applicability of this research to environmental and economic problems.

  7. Remote sensing of Italian volcanos

    NASA Technical Reports Server (NTRS)

    Bianchi, R.; Casacchia, R.; Coradini, A.; Duncan, A. M.; Guest, J. E.; Kahle, A.; Lanciano, P.; Pieri, D. C.; Poscolieri, M.

    1990-01-01

    The results of a July 1986 remote sensing campaign of Italian volcanoes are reviewed. The equipment and techniques used to acquire the data are described and the results obtained for Campi Flegrei and Mount Etna are reviewed and evaluated for their usefulness for the study of active and recently active volcanoes.

  8. Applied Remote Sensing Program (ARSP)

    NASA Technical Reports Server (NTRS)

    Mouat, D. A.; Johnson, J. D.; Foster, K. E.

    1977-01-01

    Descriptions of projects engaged by the Applied Remote Sensors Program in the state of Arizona are contained in an annual report for the fiscal year 1976-1977. Remote sensing techniques included thermal infrared imagery in analog and digital form and conversion of data into thermograms. Delineation of geologic areas, surveys of vegetation and inventory of resources were also presented.

  9. Money Sense Makes a Difference.

    ERIC Educational Resources Information Center

    Varcoe, Karen P.; Wright, Joan

    1990-01-01

    Assesses the degree to which clients completing the Money Sense program adopted its family resource management techniques. Finds that, among 190 low income clients from rural California counties and military bases, there were significant positive changes in food shopping and money management behaviors and significant decreases in financial…

  10. Determination of Movement Sense in Mylonites.

    ERIC Educational Resources Information Center

    Simpson, Carol

    1986-01-01

    Describes how mylonite samples can be used to determine the sense of shear. Several sample collection techniques are presented. Criteria for shear sense determination are outlined and discussed so that they can be recognized and interpreted by students familiar with the use of a compass and a petrographic microscope. (TW)

  11. Energy-Efficient Sensing in Wireless Sensor Networks Using Compressed Sensing

    PubMed Central

    Razzaque, Mohammad Abdur; Dobson, Simon

    2014-01-01

    Sensing of the application environment is the main purpose of a wireless sensor network. Most existing energy management strategies and compression techniques assume that the sensing operation consumes significantly less energy than radio transmission and reception. This assumption does not hold in a number of practical applications. Sensing energy consumption in these applications may be comparable to, or even greater than, that of the radio. In this work, we support this claim by a quantitative analysis of the main operational energy costs of popular sensors, radios and sensor motes. In light of the importance of sensing level energy costs, especially for power hungry sensors, we consider compressed sensing and distributed compressed sensing as potential approaches to provide energy efficient sensing in wireless sensor networks. Numerical experiments investigating the effectiveness of compressed sensing and distributed compressed sensing using real datasets show their potential for efficient utilization of sensing and overall energy costs in wireless sensor networks. It is shown that, for some applications, compressed sensing and distributed compressed sensing can provide greater energy efficiency than transform coding and model-based adaptive sensing in wireless sensor networks. PMID:24526302

  12. Energy-efficient sensing in wireless sensor networks using compressed sensing.

    PubMed

    Razzaque, Mohammad Abdur; Dobson, Simon

    2014-02-12

    Sensing of the application environment is the main purpose of a wireless sensor network. Most existing energy management strategies and compression techniques assume that the sensing operation consumes significantly less energy than radio transmission and reception. This assumption does not hold in a number of practical applications. Sensing energy consumption in these applications may be comparable to, or even greater than, that of the radio. In this work, we support this claim by a quantitative analysis of the main operational energy costs of popular sensors, radios and sensor motes. In light of the importance of sensing level energy costs, especially for power hungry sensors, we consider compressed sensing and distributed compressed sensing as potential approaches to provide energy efficient sensing in wireless sensor networks. Numerical experiments investigating the effectiveness of compressed sensing and distributed compressed sensing using real datasets show their potential for efficient utilization of sensing and overall energy costs in wireless sensor networks. It is shown that, for some applications, compressed sensing and distributed compressed sensing can provide greater energy efficiency than transform coding and model-based adaptive sensing in wireless sensor networks.

  13. Remote Sensing in Agriculture: An Introductory Review.

    ERIC Educational Resources Information Center

    Curran, Paul J.

    1987-01-01

    Discusses the use of remote sensing techniques to obtain locational, estimated, and mapped information at the scales varying from individual fields and farms, to entire continents and the world. (AEM)

  14. Remote Raman measurement techniques

    NASA Technical Reports Server (NTRS)

    Leonard, D. A.

    1981-01-01

    The use of laser Raman measurement techniques in remote sensing applications is surveyed. A feasibility index is defined as a means to characterize the practicality of a given remote Raman measurement application. Specific applications of Raman scattering to the measurement of atmospheric water vapor profiles, methane plumes from liquid natural gas spills, and subsurface ocean temperature profiles are described. This paper will survey the use of laser Raman measurement techniques in remote sensing applications using as examples specific systems that the Computer Genetics Corporation (CGC) group has developed and engineered.

  15. Sensing the gas metal arc welding process

    NASA Technical Reports Server (NTRS)

    Carlson, N. M.; Johnson, J. A.; Smartt, H. B.; Watkins, A. D.; Larsen, E. D.; Taylor, P. L.; Waddoups, M. A.

    1994-01-01

    Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-by-pass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.

  16. Use of remote sensing in agriculture

    NASA Technical Reports Server (NTRS)

    Pettry, D. E.; Powell, N. L.; Newhouse, M. E.

    1974-01-01

    Remote sensing studies in Virginia and Chesapeake Bay areas to investigate soil and plant conditions via remote sensing technology are reported ant the results given. Remote sensing techniques and interactions are also discussed. Specific studies on the effects of soil moisture and organic matter on energy reflection of extensively occurring Sassafras soils are discussed. Greenhouse and field studies investigating the effects of chlorophyll content of Irish potatoes on infrared reflection are presented. Selected ground truth and environmental monitoring data are shown in summary form. Practical demonstrations of remote sensing technology in agriculture are depicted and future use areas are delineated.

  17. Applications of remote sensing to watershed management

    NASA Technical Reports Server (NTRS)

    Rango, A.

    1975-01-01

    Aircraft and satellite remote sensing systems which are capable of contributing to watershed management are described and include: the multispectral scanner subsystem on LANDSAT and the basic multispectral camera array flown on high altitude aircraft such as the U-2. Various aspects of watershed management investigated by remote sensing systems are discussed. Major areas included are: snow mapping, surface water inventories, flood management, hydrologic land use monitoring, and watershed modeling. It is indicated that technological advances in remote sensing of hydrological data must be coupled with an expansion of awareness and training in remote sensing techniques of the watershed management community.

  18. Wavefront Sensing via High Speed DSP

    NASA Technical Reports Server (NTRS)

    Smith, J. Scott; Dean, Bruce

    2004-01-01

    Future light-weighted and segmented primary mirror systems require active optical control to maintain mirror positioning and figure to within nanometer tolerances. Current image-based wavefront sensing approaches rely on post-processing techniques to return an estimate of the aberrated optical wavefront with accuracies to the nanometer level. But the lag times between wavefront sensing, and then control, contributes to a significant latency in the wavefront sensing implementation. In this analysis we demonstrate accelerated image-based wavefront sensing performance using multiple digital signal processors (DSP's). The computational architecture is discussed as well as the heritage leading to the approach.

  19. Sensing the gas metal arc welding process

    SciTech Connect

    Carlson, N.M.; Johnson, J.A.; Smartt, H.B.; Watkins, A.D.; Larsen, E.D.; Taylor, P.L. ); Waddoups, M.A. )

    1992-01-01

    Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-bypass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.

  20. Sensing the gas metal arc welding process

    SciTech Connect

    Carlson, N.M.; Johnson, J.A.; Smartt, H.B.; Watkins, A.D.; Larsen, E.D.; Taylor, P.L.; Waddoups, M.A.

    1992-10-01

    Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-bypass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.

  1. Compressed sensing for phase retrieval.

    PubMed

    Newton, Marcus C

    2012-05-01

    To date there are several iterative techniques that enjoy moderate success when reconstructing phase information, where only intensity measurements are made. There remains, however, a number of cases in which conventional approaches are unsuccessful. In the last decade, the theory of compressed sensing has emerged and provides a route to solving convex optimisation problems exactly via ℓ(1)-norm minimization. Here the application of compressed sensing to phase retrieval in a nonconvex setting is reported. An algorithm is presented that applies reweighted ℓ(1)-norm minimization to yield accurate reconstruction where conventional methods fail.

  2. Nanostructured Substrates for Optical Sensing

    PubMed Central

    Kemling, Jonathan W.; Qavi, Abraham J.; Bailey, Ryan C.

    2011-01-01

    Sensors that change color have the advantages of versatility, ease of use, high sensitivity, and low cost. The recent development of optically based chemical sensing platforms has increasingly employed substrates manufactured with advanced processing or fabrication techniques to provide precise control over shape and morphology of the sensor micro- and nano-structure. New sensors have resulted with improved capabilities for a number of sensing applications, including the detection of biomolecules and environmental monitoring. This perspective focuses on recent optical sensor devices that utilize nanostructured substrates. PMID:22174955

  3. Remote Sensing of Aquatic Plants.

    DTIC Science & Technology

    1979-10-01

    remote sensing methods for identification and assessment of expanses of aquatic plants. Both materials and techniques are examined for cost effectiveness and capability to sense aquatic plants on both the local and regional scales. Computer simulation of photographic responses was employed; Landsat, high-altitude photography, side-looking airborne radar, and low-altitude photography were examined to determine the capabilities of each for identifying and assessing aquatic plants. Results of the study revealed Landsat to be the most cost effective for regional surveys,

  4. Remote sensing for exploration - An overview

    NASA Technical Reports Server (NTRS)

    Goetz, A. F. H.; Rock, B. N.; Rowan, L. C.

    1983-01-01

    The use of remote sensing in resource exploration is reviewed, with emphasis placed on new developments in high spectral resolution remote-sensing techniques for mineralogic and vegetation mapping. Topics discussed include aerial photography and satellite remote sensing, concepts and principles of spectral data collection, spectral properties of rocks and minerals, spectral properties of vegetation, and botanical aspects of geochemical stress. The discussion also covers applications of Landsat multispectral scanner data to lithologic and geobotanic studies and the future development of data acquisition and data interpretation techniques.

  5. First observations of tropospheric δD data observed by ground- and space-based remote sensing and surface in-situ measurement techniques at MUSICA's principle reference station (Izaña Observatory, Spain)

    NASA Astrophysics Data System (ADS)

    González, Yenny; Schneider, Matthias; Christner, Emanuel; Rodríguez, Omaira E.; Sepúlveda, Eliezer; Dyroff, Christoph; Wiegele, Andreas

    2013-04-01

    The main goal of the project MUSICA (Multiplatform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) is the generation of a quasi global tropospheric water vapor isototopologue dataset of a good and well-documented quality. Therefore, new ground- and space-based remote sensing observations (NDACC-FTIR and IASI/METOP) are combined with in-situ measurements. This work presents the first comparison between in-situ and remote sensing observations made at the Izaña Atmospheric Research Centre (Tenerife, Canary Islands, Spain). The in-situ measurements are made by a Picarro L2120-i water vapor isotopologue analyzer. At Izaña the in-situ data are affected by local small-scale mixing processes: during daylight, the thermally buoyant upslope flow prompts the mixing between the Marine Boundary Layer (MBL) and the low Free Troposphere (FT). However, the remote sensors detect δD values averaged over altitudes that are more representative for the free troposphere. This difference has to be considered for the comparison. In general, a good agreement between the MUSICA remote sensing and the in situ H2O-versus-δD plots is found, which demonstrates that the MUSICA δD remote sensing products add scientifically valuable information to the H2O data.

  6. RF Jitter Modulation Alignment Sensing

    NASA Astrophysics Data System (ADS)

    Ortega, L. F.; Fulda, P.; Diaz-Ortiz, M.; Perez Sanchez, G.; Ciani, G.; Voss, D.; Mueller, G.; Tanner, D. B.

    2017-01-01

    We will present the numerical and experimental results of a new alignment sensing scheme which can reduce the complexity of alignment sensing systems currently used, while maintaining the same shot noise limited sensitivity. This scheme relies on the ability of electro-optic beam deflectors to create angular modulation sidebands in radio frequency, and needs only a single-element photodiode and IQ demodulation to generate error signals for tilt and translation degrees of freedom in one dimension. It distances itself from current techniques by eliminating the need for beam centering servo systems, quadrant photodetectors and Gouy phase telescopes. RF Jitter alignment sensing can be used to reduce the complexity in the alignment systems of many laser optical experiments, including LIGO and the ALPS experiment.

  7. Remote Sensing of Environmental Pollution

    NASA Technical Reports Server (NTRS)

    North, G. W.

    1971-01-01

    Environmental pollution is a problem of international scope and concern. It can be subdivided into problems relating to water, air, or land pollution. Many of the problems in these three categories lend themselves to study and possible solution by remote sensing. Through the use of remote sensing systems and techniques, it is possible to detect and monitor, and in some cases, identify, measure, and study the effects of various environmental pollutants. As a guide for making decisions regarding the use of remote sensors for pollution studies, a special five-dimensional sensor/applications matrix has been designed. The matrix defines an environmental goal, ranks the various remote sensing objectives in terms of their ability to assist in solving environmental problems, lists the environmental problems, ranks the sensors that can be used for collecting data on each problem, and finally ranks the sensor platform options that are currently available.

  8. Structured IR illumination for relative depth sensing in virtual interfaces

    NASA Astrophysics Data System (ADS)

    Kress, Bernard; Raulot, Victorien; Grossman, Michel

    2012-06-01

    Depth mapping or depth sensing has become a popular field, applied not only to automotive sensing for collision avoidance (radar) but also to gesture sensing for gaming and virtual interfaces (optical). Popular gesture sensing devices such as the Kinect from Microsoft's Xbox gaming device produce a full absolute depth map, which is in most cases not adapted to the task on hand (relative gesture sensing). We propose in this paper a new gesture sensing technique through structured IR illumination to provide a relative depth mapping rather than an absolute one, and this reducing the requirements on computing power and therefore enabling this technology for wearable computing such as see through display.

  9. [Thematic Issue: Remote Sensing.

    ERIC Educational Resources Information Center

    Howkins, John, Ed.

    1978-01-01

    Four of the articles in this publication discuss the remote sensing of the Earth and its resources by satellites. Among the topics dealt with are the development and management of remote sensing systems, types of satellites used for remote sensing, the uses of remote sensing, and issues involved in using information obtained through remote…

  10. Lensless Imaging and Sensing.

    PubMed

    Ozcan, Aydogan; McLeod, Euan

    2016-07-11

    High-resolution optical microscopy has traditionally relied on high-magnification and high-numerical aperture objective lenses. In contrast, lensless microscopy can provide high-resolution images without the use of any focusing lenses, offering the advantages of a large field of view, high resolution, cost-effectiveness, portability, and depth-resolved three-dimensional (3D) imaging. Here we review various approaches to lensless imaging, as well as its applications in biosensing, diagnostics, and cytometry. These approaches include shadow imaging, fluorescence, holography, superresolution 3D imaging, iterative phase recovery, and color imaging. These approaches share a reliance on computational techniques, which are typically necessary to reconstruct meaningful images from the raw data captured by digital image sensors. When these approaches are combined with physical innovations in sample preparation and fabrication, lensless imaging can be used to image and sense cells, viruses, nanoparticles, and biomolecules. We conclude by discussing several ways in which lensless imaging and sensing might develop in the near future.

  11. Differentially Private Distributed Sensing

    SciTech Connect

    Fink, Glenn A.

    2016-12-11

    The growth of the Internet of Things (IoT) creates the possibility of decentralized systems of sensing and actuation, potentially on a global scale. IoT devices connected to cloud networks can offer Sensing and Actuation as a Service (SAaaS) enabling networks of sensors to grow to a global scale. But extremely large sensor networks can violate privacy, especially in the case where IoT devices are mobile and connected directly to the behaviors of people. The thesis of this paper is that by adapting differential privacy (adding statistically appropriate noise to query results) to groups of geographically distributed sensors privacy could be maintained without ever sending all values up to a central curator and without compromising the overall accuracy of the data collected. This paper outlines such a scheme and performs an analysis of differential privacy techniques adapted to edge computing in a simulated sensor network where ground truth is known. The positive and negative outcomes of employing differential privacy in distributed networks of devices are discussed and a brief research agenda is presented.

  12. A generalized sense of number

    PubMed Central

    Arrighi, Roberto; Togoli, Irene; Burr, David C.

    2014-01-01

    Much evidence has accumulated to suggest that many animals, including young human infants, possess an abstract sense of approximate quantity, a number sense. Most research has concentrated on apparent numerosity of spatial arrays of dots or other objects, but a truly abstract sense of number should be capable of encoding the numerosity of any set of discrete elements, however displayed and in whatever sensory modality. Here, we use the psychophysical technique of adaptation to study the sense of number for serially presented items. We show that numerosity of both auditory and visual sequences is greatly affected by prior adaptation to slow or rapid sequences of events. The adaptation to visual stimuli was spatially selective (in external, not retinal coordinates), pointing to a sensory rather than cognitive process. However, adaptation generalized across modalities, from auditory to visual and vice versa. Adaptation also generalized across formats: adapting to sequential streams of flashes affected the perceived numerosity of spatial arrays. All these results point to a perceptual system that transcends vision and audition to encode an abstract sense of number in space and in time. PMID:25377454

  13. A generalized sense of number.

    PubMed

    Arrighi, Roberto; Togoli, Irene; Burr, David C

    2014-12-22

    Much evidence has accumulated to suggest that many animals, including young human infants, possess an abstract sense of approximate quantity, a number sense. Most research has concentrated on apparent numerosity of spatial arrays of dots or other objects, but a truly abstract sense of number should be capable of encoding the numerosity of any set of discrete elements, however displayed and in whatever sensory modality. Here, we use the psychophysical technique of adaptation to study the sense of number for serially presented items. We show that numerosity of both auditory and visual sequences is greatly affected by prior adaptation to slow or rapid sequences of events. The adaptation to visual stimuli was spatially selective (in external, not retinal coordinates), pointing to a sensory rather than cognitive process. However, adaptation generalized across modalities, from auditory to visual and vice versa. Adaptation also generalized across formats: adapting to sequential streams of flashes affected the perceived numerosity of spatial arrays. All these results point to a perceptual system that transcends vision and audition to encode an abstract sense of number in space and in time.

  14. Compressively sensed complex networks.

    SciTech Connect

    Dunlavy, Daniel M.; Ray, Jaideep; Pinar, Ali

    2010-07-01

    The aim of this project is to develop low dimension parametric (deterministic) models of complex networks, to use compressive sensing (CS) and multiscale analysis to do so and to exploit the structure of complex networks (some are self-similar under coarsening). CS provides a new way of sampling and reconstructing networks. The approach is based on multiresolution decomposition of the adjacency matrix and its efficient sampling. It requires preprocessing of the adjacency matrix to make it 'blocky' which is the biggest (combinatorial) algorithm challenge. Current CS reconstruction algorithm makes no use of the structure of a graph, its very general (and so not very efficient/customized). Other model-based CS techniques exist, but not yet adapted to networks. Obvious starting point for future work is to increase the efficiency of reconstruction.

  15. Sensing at the nanoscale

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Hierold, Christofer

    2013-11-01

    properties are an important indicator for sensing. In search of a better understanding of these systems Zhang et al from Southern Illinois University inspect the role of Joule heating, exothermal reactions and heat dissipation in gas sensing using nanowires [7]. The mechanisms behind electrical chemical sensors are also further scrutinized in a kinetics study by Joan Ramon Morante from the University of Barcelona in Spain. 'In spite of the growing commercial success many basic issues remain still open and under discussion limiting the broad use of this technology,' he explains. He discusses surface chemical reaction kinetics and the experimental results for different representative gas molecules to gain an insight into the chemical to electrical transduction mechanisms taking place [8]. Perhaps one of the most persistent targets in sensing research is increasing the sensitivity. Gauging environmental health issues around the commercial use of nanomaterials places high demands on low-level detection and spurred a collaboration of researchers in the UK, Croatia and Canada to look into the use of particle-impact voltammetry for detecting nanoparticles in environmental media [9]. At the University of Illinois Urbana-Champaign in the US, researchers have applied wave transform analysis techniques to the oscillations of an atomic force microscopy cantilever and tailored a time-frequency-domain filter to identify the region of highest vibrational energy [10]. The approach allows them to improve the signal to noise ratio by a factor 32 on current high-performance devices. In addition, researchers in Korea report how doping NiO nanofibres can improve the sensitivity to a number of gases, including ethanol, where the response was enhanced by as much as a factor of 217.86 [11]. Biomedicine is one of the largest industries for the application of nanotechnology in sensing. Demonstrating the state of the art, researchers in China use silicon wafers decorated with gold nanoparticles for

  16. Mississippi Sound remote sensing study

    NASA Technical Reports Server (NTRS)

    Atwell, B. H.; Thomann, G. C.

    1972-01-01

    Remote sensing techniques are being developed to study near shore marine waters in the Mississippi Sound. Specific elements of the investigation include: (1) evaluation of existing techniques and instrument capabilities for remote measurement of parameters which characterize near shore water; (2) integration of these parameters into a system which will make possible the definition of circulation characteristics; (3) conduct of applications experiments; and (4) definition of hardware development requirements and/or system specifications. Efforts have emphasized: (1) development of a satisfactory system of gathering ground truth over the entire area of Mississippi Sound to aid in evaluating remotely sensed data; (2) conduct of two data acquisition experiments; (3) analysis of individual sensor data from completed flights; and (4) pursuit of methods which will allow interrelations between data from individual sensors in order to add another dimension to the study.

  17. Remote sensing of natural resources: Quarterly literature review

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A quarterly review of technical literature concerning remote sensing techniques is presented. The format contains indexed and abstracted materials with emphasis on data gathering techniques performed or obtained remotely from space, aircraft, or ground-based stations. Remote sensor applications including the remote sensing of natural resources are presented.

  18. Remote sensing aids geologic mapping

    NASA Technical Reports Server (NTRS)

    Knepper, D. H., Jr.; Marrs, R. W.

    1972-01-01

    Remote sensing techniques were applied to general geologic mapping along the Rio Grande rift zone in central Colorado. A geologic map of about 1,100 square miles was prepared utilizing (1) prior published and unpublished maps, (2) detailed and reconnaissance field maps made for this study, and (3) remote sensor data interpretations. The map is used for interpretation of the complex Cenozoic tectonic and geomorphic histories of the area.

  19. Fiber optic sensing systems using high frequency resonant sensing heads with intensity sensors

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Maitland, Duncan J., IV

    1989-01-01

    Optical fibers have an inherent capability of transmitting high bandwidth analog and digital signals. To apply this property of fiber optics to remote sensing, special sensing heads as well as signal processing electronics have to be developed. In systems employing intensity modulating sensors, there is also a need for a referencing technique to compensate for changes in the transmission of the connecting fibers and light source intensity. Fiber optic sensing systems incorporated in sensing heads of a special configuration are discussed. Different modes of operation as well as resonant conditions are explained. Theoretical and experimental analyses are also given.

  20. Fiber optic sensing systems using high frequency resonant sensing heads with intensity sensors

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Maitland, Duncan J., IV

    1988-01-01

    Optical fibers have an inherent capability of transmitting high bandwidth analog and digital signals. To apply this property of fiber optics to remote sensing, special sensing heads as well as signal processing electronics have to be developed. In systems employing intensity modulating sensors, there is also a need for a referencing technique to compensate for changes in the transmission of the connecting fibers and light source intensity. Fiber optic sensing systems incorporated in sensing heads of a special configuration are discussed. Different modes of operation as well as resonant conditions are explained. Theoretical and experimental analyses are also given.

  1. Microwave remote sensing laboratory design

    NASA Technical Reports Server (NTRS)

    Friedman, E.

    1979-01-01

    Application of active and passive microwave remote sensing to the study of ocean pollution is discussed. Previous research efforts, both in the field and in the laboratory were surveyed to derive guidance for the design of a laboratory program of research. The essential issues include: choice of radar or radiometry as the observational technique; choice of laboratory or field as the research site; choice of operating frequency; tank sizes and material; techniques for wave generation and appropriate wavelength spectrum; methods for controlling and disposing of pollutants used in the research; and pollutants other than oil which could or should be studied.

  2. Remote sensing of ecology, biodiversity and conservation: a review from the perspective of remote sensing specialists.

    PubMed

    Wang, Kai; Franklin, Steven E; Guo, Xulin; Cattet, Marc

    2010-01-01

    Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS).

  3. Remote Sensing of Ecology, Biodiversity and Conservation: A Review from the Perspective of Remote Sensing Specialists

    PubMed Central

    Wang, Kai; Franklin, Steven E.; Guo, Xulin; Cattet, Marc

    2010-01-01

    Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS). PMID:22163432

  4. UAV Cooperation Architectures for Persistent Sensing

    SciTech Connect

    Roberts, R S; Kent, C A; Jones, E D

    2003-03-20

    With the number of small, inexpensive Unmanned Air Vehicles (UAVs) increasing, it is feasible to build multi-UAV sensing networks. In particular, by using UAVs in conjunction with unattended ground sensors, a degree of persistent sensing can be achieved. With proper UAV cooperation algorithms, sensing is maintained even though exceptional events, e.g., the loss of a UAV, have occurred. In this paper a cooperation technique that allows multiple UAVs to perform coordinated, persistent sensing with unattended ground sensors over a wide area is described. The technique automatically adapts the UAV paths so that on the average, the amount of time that any sensor has to wait for a UAV revisit is minimized. We also describe the Simulation, Tactical Operations and Mission Planning (STOMP) software architecture. This architecture is designed to help simulate and operate distributed sensor networks where multiple UAVs are used to collect data.

  5. Mobile Sensing Systems

    PubMed Central

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-01-01

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high. PMID:24351637

  6. Mobile sensing systems.

    PubMed

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-12-16

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.

  7. Non-invasive sensing for food reassurance.

    PubMed

    Xiaobo, Zou; Xiaowei, Huang; Povey, Malcolm

    2016-03-07

    Consumers and governments are increasingly interested in the safety, authenticity and quality of food commodities. This has driven attention towards non-invasive sensing techniques used for rapid analyzing these commodities. This paper provides an overview of the state of the art in, and available alternatives for, food assurance based on non-invasive sensing techniques. The main food quality traits of interest using non-invasive sensing techniques are sensory characteristics, chemical composition, physicochemical properties, health-protecting properties, nutritional characteristics and safety. A wide range of non-invasive sensing techniques, from optical, acoustical, electrical, to nuclear magnetic, X-ray, biosensor, microwave and terahertz, are organized according to physical principle. Some of these techniques are now in a period of transition between experimental and applied utilization and several sensors and instruments are reviewed. With continued innovation and attention to key challenges, such non-invasive sensors and biosensors are expected to open up new exciting avenues in the field of portable and wearable wireless sensing devices and connecting with mobile networks, thus finding considerable use in a wide range of food assurance applications. The need for an appropriate regulatory framework is emphasized which acts to exclude unwanted components in foods and includes needed components, with sensors as part of a reassurance framework supporting regulation and food chain management. The integration of these sensor modalities into a single technological and commercial platform offers an opportunity for a paradigm shift in food reassurance.

  8. Tropospheric Passive Remote Sensing

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr. (Editor)

    1982-01-01

    The long term role of airborne/spaceborne passive remote sensing systems for tropospheric air quality research and the identification of technology advances required to improve the performance of passive remote sensing systems were discussed.

  9. Low Light Level TV Techniques.

    PubMed

    Gildea, J

    1970-10-01

    As the science of low light level sensing becomes better understood, the demand for systems with this capability has increased considerably in recent years. Low light level television systems are part of these low light sensing devices in which interest has grown. Development of low light level TV systems has, in turn, stimulated technical advances in new tube types with improved performance, development of electronic techniques which enhance the over-all performance, and design techniques which make the system more versatile and adaptable. A general look at some of these developments and techniques gives insight into the versatility and adaptability of low light level TV.

  10. Subsea downhole optical sensing

    NASA Astrophysics Data System (ADS)

    McStay, D.; Shiach, G.; McAvoy, S.

    2009-07-01

    The potential for subsea downhole optical fibre sensing to optimize hydrocarbon production and hence contribute to enhanced oil recovery is described. The components of susbea downhole optical sensing systems are reviewed and the performance of a new subsea optical fibre feed-through for downhole optical fibre sensing reported.

  11. Agricultural Production Monitoring in the Sahel Using Remote Sensing: Present Possibilities and Research Needs

    DTIC Science & Technology

    1993-01-01

    during the agricultural season. Satellite remote sensing can contribute significantly to such a system by collecting information on crops and on...well as techniques to derive biophysical variables from remotely-sensed data. Finally, the integration of these remote - sensing techniques with crop

  12. High resolution derivative spectra in remote sensing

    NASA Technical Reports Server (NTRS)

    Demetriades-Shah, Tanvir H.; Steven, Michael D.; Clark, Jeremy A.

    1990-01-01

    The use of derivative spectra is an established technique in analytical chemistry for the elimination of background signals and for resolving overlapping spectral features. Application of this technique for tackling analogous problems such as interference from soil background reflectance in the remote sensing of vegetation or for resolving complex spectra of several target species within individual pixels in remote sensing is proposed. Methods for generating derivatives of high spectral resolution data are reviewed. Results of experiments to test the use of derivatives for monitoring chlorosis in vegetation show that derivative spectral indices are superior to conventional broad-band spectral indices such as the near-infrared/red reflectance ratio. Conventional broad-band indices are sensitive to both leaf cover as well as leaf color. New derivative spectral indices which were able to monitor chlorosis unambiguously were identified. Potential areas for the application of this technique in remote sensing are considered.

  13. Remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Schmugge, T.

    1976-01-01

    The surface emissivity and reflectivity of soil are strong functions of its moisture content. Changes in emissivity, observed by passive microwave techniques (radiometry), and changes in reflectivity, observed by active microwave techniques (radar), can provide information on the moisture content of the 0 to 5 cm surface layer. In addition, the thermal inertia of the surface layer, which can be remotely sensed by observing the diurnal range of surface temperature, is an indicator of soil moisture content. The thermal infrared approach to remote sensing of soil moisture has little utility in the presence of cloud cover, but provides soil moisture data at high spatial resolutions and thermal data which are a potentially useful indicator of crop status. Microwave techniques can penetrate cloud covers. The passive technique has been demonstrated by both aircraft and spacecraft instruments, but spatial resolution is limited by the size of the antenna which can be flown. Active microwave systems offer the possibility of better spatial resolution, but have yet to be demonstrated from aircraft or spacecraft platforms.

  14. Plant gravity sensing

    NASA Technical Reports Server (NTRS)

    Sack, F. D.

    1991-01-01

    This review of plant gravity sensing examines sensing in organ gravitropism, sensing in single-cell gravitropism, and nongravitropic sensing. Topics related to sensing in organ gravitropism are (1) identification of the gravitropic susceptors, including intracellular asymmetry in equilibrium position and after reorientation, susceptor signal-to-noise ratio, signal integration over threshold stimulation periods, intracellular asymmetry and gravitropic competence, and starch deficiency and gravitropic competence; (2) possible root statocytes and receptors, including identification of presumptive statocytes, cytology, and possible receptors and models of sensing; and (3) negatively gravitropic organs, including identification and distribution of presumptive statocytes and cytology and possible receptors. Topics related to nongravitropic sensing include gravitaxis, reaction wood, gravimorphogenesis, other gravity-influenced organ movements, and cytoplasmic streaming.

  15. Plant gravity sensing.

    PubMed

    Sack, F D

    1991-01-01

    This review of plant gravity sensing examines sensing in organ gravitropism, sensing in single-cell gravitropism, and nongravitropic sensing. Topics related to sensing in organ gravitropism are (1) identification of the gravitropic susceptors, including intracellular asymmetry in equilibrium position and after reorientation, susceptor signal-to-noise ratio, signal integration over threshold stimulation periods, intracellular asymmetry and gravitropic competence, and starch deficiency and gravitropic competence; (2) possible root statocytes and receptors, including identification of presumptive statocytes, cytology, and possible receptors and models of sensing; and (3) negatively gravitropic organs, including identification and distribution of presumptive statocytes and cytology and possible receptors. Topics related to nongravitropic sensing include gravitaxis, reaction wood, gravimorphogenesis, other gravity-influenced organ movements, and cytoplasmic streaming.

  16. Sense and clinical sensibility.

    PubMed

    Billow, Richard M

    2013-10-01

    I call attention to the metapsychology of sense, and the role sense plays-phenomenologically and symbolically-in the life of the clinician and the group. Each group member asserts influence in taking a role as the perceiver and the perceived, the senser and the sensed. We reach for sense, for without sense reference, we cannot grasp or even talk about psychic reality. It serves as sign and symbol, as metaphor, analogy, illustration, and model. Sense fixes experience yet may fixate experience and interfere with developing abstract thoughts. Clinical vignettes illustrate how the leader may utilize his or her particular clinical sensibility to reach the group and focus attention, to link sense to psychic qualities: to the personality of the members, the group culture and process, and the live clinical interaction.

  17. The sense of consciousness.

    PubMed

    Tannenbaum, A S

    2001-08-21

    I propose that consciousness might be understood as the property of a system that functions as a sense in the biological meaning of that term. The theory assumes that, as a complex system, the sense of consciousness is not a fixed structure but implies structure with variations and that it evolved, as many new functions do, through the integration of simpler systems. The recognized exteroceptive and enteroceptive senses provide information about the organism's environment and about the organism itself that are important to adaptation. The sense of consciousness provides information about the brain and thus about the organism and its environment. It senses other senses and processes in the brain, selecting and relating components into a form that "makes sense"-where making sense is defined as being useful to the organism in its adaptation to the environment. The theory argues that this highly adaptive organizing function evolved with the growing complexity of the brain and that it might have helped resolve discrepancies created at earlier stages. Neural energies in the brain that are the input to the sense of consciousness, along with the processing subsystem of which they are a part, constitute the base of consciousness. Consciousness itself is an emergent effect of an organizing process achieved through the sense of consciousness. The sense of consciousness thus serves an organizing function although it is not the only means of organization in the brain. Its uniqueness lies in the character of the organization it creates with consciousness as a property of that organization. The paper relates the theory to several general conceptions-interactionism, epiphenomenalism and identity theory-and illustrates a number of testable hypotheses. Viewing consciousness as a property of a sense provides a degree of conceptual integration. Much of what we know about the evolution and role of the conventionally recognized senses should help us understand the evolution and role of

  18. Microwave photonic distributed sensing in harsh environment

    NASA Astrophysics Data System (ADS)

    Cheng, Baokai; Hua, Liwei; Zhu, Wenge; Song, Yang; Yuan, Lei; Li, Yanjun; Xiao, Hai

    2016-05-01

    We report a new distributed fiber optic sensing technique using optical carrier based microwave interferometry. The concept has been demonstrated using different types of optical fibers including singlemode fiber, multimode fiber, single crystal sapphire fiber and polymer fiber. Using the microwave-photonic technique, many fiber interferometers with the same or different optical path differences were interrogated and their locations could be unambiguously determined. The distributed sensing capability was demonstrated using cascaded low-finesse Fabry-Perot interferometers fabricated by fs laser micromachining. Spatially continuous, fully distributed temperature and strain measurements were used as examples to demonstrate the capability of the proposed concept.

  19. Compressive Sensing with Optical Chaos

    NASA Astrophysics Data System (ADS)

    Rontani, D.; Choi, D.; Chang, C.-Y.; Locquet, A.; Citrin, D. S.

    2016-12-01

    Compressive sensing (CS) is a technique to sample a sparse signal below the Nyquist-Shannon limit, yet still enabling its reconstruction. As such, CS permits an extremely parsimonious way to store and transmit large and important classes of signals and images that would be far more data intensive should they be sampled following the prescription of the Nyquist-Shannon theorem. CS has found applications as diverse as seismology and biomedical imaging. In this work, we use actual optical signals generated from temporal intensity chaos from external-cavity semiconductor lasers (ECSL) to construct the sensing matrix that is employed to compress a sparse signal. The chaotic time series produced having their relevant dynamics on the 100 ps timescale, our results open the way to ultrahigh-speed compression of sparse signals.

  20. Radar Attitude Sensing System (RASS)

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The initial design and fabrication efforts for a radar attitude sensing system (RASS) are covered. The design and fabrication of the RASS system is being undertaken in two phases, 1B1 and 1B2. The RASS system as configured under phase 1B1 contains the solid state transmitter and local oscillator, the antenna system, the receiving system, and the altitude electronics. RASS employs a pseudo-random coded cw signal and receiver correlation techniques to measure range. The antenna is a planar, phased array, monopulse type, whose beam is electronically steerable using diode phase shifters. The beam steering computer and attitude sensing circuitry are to be included in Phase 1B2 of the program.

  1. Compressive Sensing with Optical Chaos

    PubMed Central

    Rontani, D.; Choi, D.; Chang, C.-Y.; Locquet, A.; Citrin, D. S.

    2016-01-01

    Compressive sensing (CS) is a technique to sample a sparse signal below the Nyquist-Shannon limit, yet still enabling its reconstruction. As such, CS permits an extremely parsimonious way to store and transmit large and important classes of signals and images that would be far more data intensive should they be sampled following the prescription of the Nyquist-Shannon theorem. CS has found applications as diverse as seismology and biomedical imaging. In this work, we use actual optical signals generated from temporal intensity chaos from external-cavity semiconductor lasers (ECSL) to construct the sensing matrix that is employed to compress a sparse signal. The chaotic time series produced having their relevant dynamics on the 100 ps timescale, our results open the way to ultrahigh-speed compression of sparse signals. PMID:27910863

  2. Sensing Super-Position: Human Sensing Beyond the Visual Spectrum

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Schipper, John F.

    2007-01-01

    The coming decade of fast, cheap and miniaturized electronics and sensory devices opens new pathways for the development of sophisticated equipment to overcome limitations of the human senses. This paper addresses the technical feasibility of augmenting human vision through Sensing Super-position by mixing natural Human sensing. The current implementation of the device translates visual and other passive or active sensory instruments into sounds, which become relevant when the visual resolution is insufficient for very difficult and particular sensing tasks. A successful Sensing Super-position meets many human and pilot vehicle system requirements. The system can be further developed into cheap, portable, and low power taking into account the limited capabilities of the human user as well as the typical characteristics of his dynamic environment. The system operates in real time, giving the desired information for the particular augmented sensing tasks. The Sensing Super-position device increases the image resolution perception and is obtained via an auditory representation as well as the visual representation. Auditory mapping is performed to distribute an image in time. The three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. This paper details the approach of developing Sensing Super-position systems as a way to augment the human vision system by exploiting the capabilities of Lie human hearing system as an additional neural input. The human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns. The known capabilities of the human hearing system to learn and understand complicated auditory patterns provided the basic motivation for developing an image-to-sound mapping system. The

  3. Hybrid Arrays for Chemical Sensing

    NASA Astrophysics Data System (ADS)

    Kramer, Kirsten E.; Rose-Pehrsson, Susan L.; Johnson, Kevin J.; Minor, Christian P.

    In recent years, multisensory approaches to environment monitoring for chemical detection as well as other forms of situational awareness have become increasingly popular. A hybrid sensor is a multimodal system that incorporates several sensing elements and thus produces data that are multivariate in nature and may be significantly increased in complexity compared to data provided by single-sensor systems. Though a hybrid sensor is itself an array, hybrid sensors are often organized into more complex sensing systems through an assortment of network topologies. Part of the reason for the shift to hybrid sensors is due to advancements in sensor technology and computational power available for processing larger amounts of data. There is also ample evidence to support the claim that a multivariate analytical approach is generally superior to univariate measurements because it provides additional redundant and complementary information (Hall, D. L.; Linas, J., Eds., Handbook of Multisensor Data Fusion, CRC, Boca Raton, FL, 2001). However, the benefits of a multisensory approach are not automatically achieved. Interpretation of data from hybrid arrays of sensors requires the analyst to develop an application-specific methodology to optimally fuse the disparate sources of data generated by the hybrid array into useful information characterizing the sample or environment being observed. Consequently, multivariate data analysis techniques such as those employed in the field of chemometrics have become more important in analyzing sensor array data. Depending on the nature of the acquired data, a number of chemometric algorithms may prove useful in the analysis and interpretation of data from hybrid sensor arrays. It is important to note, however, that the challenges posed by the analysis of hybrid sensor array data are not unique to the field of chemical sensing. Applications in electrical and process engineering, remote sensing, medicine, and of course, artificial

  4. Remote sensing research in geographic education: An alternative view

    NASA Technical Reports Server (NTRS)

    Wilson, H.; Cary, T. K.; Goward, S. N.

    1981-01-01

    It is noted that within many geography departments remote sensing is viewed as a mere technique a student should learn in order to carry out true geographic research. This view inhibits both students and faculty from investigation of remotely sensed data as a new source of geographic knowledge that may alter our understanding of the Earth. The tendency is for geographers to accept these new data and analysis techniques from engineers and mathematicians without questioning the accompanying premises. This black-box approach hinders geographic applications of the new remotely sensed data and limits the geographer's contribution to further development of remote sensing observation systems. It is suggested that geographers contribute to the development of remote sensing through pursuit of basic research. This research can be encouraged, particularly among students, by demonstrating the links between geographic theory and remotely sensed observations, encouraging a healthy skepticism concerning the current understanding of these data.

  5. Piezoresistive sensing of bistable micro mechanism state

    NASA Astrophysics Data System (ADS)

    Anderson, Jeffrey K.; Howell, Larry L.; Wittwer, Jonathan W.; McLain, Timothy W.

    2006-05-01

    The objective of this work is to demonstrate the feasibility of on-chip sensing of bistable mechanism state using the piezoresistive properties of polysilicon, thus eliminating the need for electrical contacts. Changes in position are detected by observing changes in resistance across the mechanism. Sensing the state of bistable mechanisms is critical for various applications, including high-acceleration sensing arrays and alternative forms of nonvolatile memory. A fully compliant bistable micro mechanism was designed, fabricated and tested to demonstrate the feasibility of this sensing technique. Testing results from two fabrication processes, SUMMiT IV and MUMPs, are presented. The SUMMiT mechanism was then integrated into various Wheatstone bridge configurations to investigate their potential advantages and to demonstrate various design layouts. Repeatable and detectable results were found with independent mechanisms and with those integrated into Wheatstone bridges.

  6. REMOTE SENSING IN OCEANOGRAPHY.

    DTIC Science & Technology

    remote sensing from satellites. Sensing of oceanographic variables from aircraft began with the photographing of waves and ice. Since then remote measurement of sea surface temperatures and wave heights have become routine. Sensors tested for oceanographic applications include multi-band color cameras, radar scatterometers, infrared spectrometers and scanners, passive microwave radiometers, and radar imagers. Remote sensing has found its greatest application in providing rapid coverage of large oceanographic areas for synoptic and analysis and

  7. Learning Circulant Sensing Kernels

    DTIC Science & Technology

    2012-08-01

    Nowak. Toeplitz compressed sensing matrices with applications to sparse channel estimation . Submitted to IEEE Transactions on Information Theory , 2008...11] J. Haupt, W.U. Bajwa, G. Raz, and R. Nowak. Toeplitz compressed sensing matrices with applications to sparse channel estimation . Information...Y. Li, N. Nguyen, W. Yin, and Z. Han. High resolution OFDM channel estimation with low speed ADC using compressive sensing . IEEE ICC 2011 Signal

  8. Learning Circulant Sensing Kernels

    DTIC Science & Technology

    2014-03-01

    Compressive sensing based high resolution channel estimation for OFDM system. To appear in IEEE Journal of Selected Topics in Signal Processing, Special...and R. D. Nowak. Toeplitz compressed sensing ma- trices with applications to sparse channel estimation . Submitted to IEEE Transactions on Information...various applications. For compressive sens- ing, recent work has used random Toeplitz and circulant sensing matrices and proved their efficiency in theory

  9. Magnetic sensing via ultrasonic excitation

    NASA Astrophysics Data System (ADS)

    Yamada, Hisato; Takashima, Kazuya; Ikushima, Kenji; Toida, Hiraku; Sato, Michitaka; Ishizawa, Yoshiichi

    2013-04-01

    We present ultrasonic techniques for magnetic measurements. Acoustically modulated magnetization is investigated with sensitive rf detection by narrowband loop antennas. Magnetization on the surface of ferromagnetic metals is temporally modulated with the rf frequency of the irradiated ultrasonic waves, and the near-field components emitted from the focal point of the ultrasonic beam are detected. Based on the principle of the acoustically stimulated electromagnetic (ASEM) response, magnetic sensing and tomography are demonstrated by ultrasonic scanning. We show that ASEM imaging combines good acoustic resolution with magnetic contrast. The sensitivity of this method is estimated to be about 6 G/Hz1/2 in our current setup.

  10. [A review of classification methods of remote sensing imagery].

    PubMed

    Jia, Kun; Li, Qiang-Zi; Tian, Yi-Chen; Wu, Bing-Fang

    2011-10-01

    Remote sensing data classification is an important way of information extraction and a hot research topic of remote sensing technique. Classification method of remote sensing data is an important issue, and effective selection of appropriate classifier is especially significant for improving classification accuracy. Along with the development of remote sensing technique, traditional parametric classifier is difficult to meet accuracy requirement, leading to the rapid development of intelligent algorithm based non-parametric classifiers. Recently, combined classifiers become a new hot topic for its ability of utilizing complement information of single classifier. In the present paper, characters and advantages of different classifiers as well as the research prospect are analyzed. The paper provides a scientific reference for the development of remote sensing data classification technique.

  11. Satellite remote sensing. An introduction

    SciTech Connect

    Harris, R.

    1987-01-01

    Satellite remote sensing, which is the monitoring, evaluation and prediction of the resources and features of the Earth's surface and its atmosphere from satellites, is an exciting, fast-growing technique used by environmental scientists to improve their knowledge of our planet. The non-military and non-communications satellites launched by the US, USSR, and the European Community produce digital images of the Earth's surface and its atmosphere. These images are used to search for undiscovered mineral resources, to conduct population, land use and resource censuses, to control pests and pollution, to illustrate weather movements on television and much more. This introductory book examines the physical basis of remote sensing-the sensors and satellites used to collect data, and the methods used to process these data as well as the application of satellite remote sensing in the study of vegetation, land use, geology, soils, the atmosphere and the hydrosphere. The last chapter looks at the future: space stations, international coordination, etc.

  12. Laser Spectroscopy for Atmospheric and Environmental Sensing

    PubMed Central

    Fiddler, Marc N.; Begashaw, Israel; Mickens, Matthew A.; Collingwood, Michael S.; Assefa, Zerihun; Bililign, Solomon

    2009-01-01

    Lasers and laser spectroscopic techniques have been extensively used in several applications since their advent, and the subject has been reviewed extensively in the last several decades. This review is focused on three areas of laser spectroscopic applications in atmospheric and environmental sensing; namely laser-induced fluorescence (LIF), cavity ring-down spectroscopy (CRDS), and photoluminescence (PL) techniques used in the detection of solids, liquids, aerosols, trace gases, and volatile organic compounds (VOCs). PMID:22303184

  13. Remote Sensing Via Satellite: The Canadian Experience

    ERIC Educational Resources Information Center

    Classen, Hans George

    1974-01-01

    Describes the joint effort of Canada and NASA in monitoring the Canadian environment using remote-sensing techniques. The project involves the Earth Resources Technology Satellite and has been used to observe seasonal changes, extent of snow cover, crop growth, sea ice, and land use patterns. (GS)

  14. Data compression in remote sensing applications

    NASA Technical Reports Server (NTRS)

    Sayood, Khalid

    1992-01-01

    A survey of current data compression techniques which are being used to reduce the amount of data in remote sensing applications is provided. The survey aspect is far from complete, reflecting the substantial activity in this area. The purpose of the survey is more to exemplify the different approaches being taken rather than to provide an exhaustive list of the various proposed approaches.

  15. Ocean Remote Sensing Using Ambient Noise

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Ocean Remote Sensing Using Ambient Noise Michael G...frequency sound propagation in the ocean , and the effects of environmental variability on signal stability and coherence. We seek to understand the...fundamental limits to signal processing imposed by ocean variability to enable advanced signal processing techniques, including matched field processing

  16. Summary of 1971 land remote sensing investigations

    NASA Technical Reports Server (NTRS)

    Mooneyhan, D. W.

    1972-01-01

    Techniques to provide land use up-date information using remotely sensed data and automatic data processing technology are being developed. The approach utilizes multispectral scanners, the associated data analysis station, and the pattern recognition programs to identify and classify land surface characteristics, including wetlands, and to convert these data to demonstration type experiments in the various disciplines.

  17. Bringing remote sensing technology to the user community

    NASA Technical Reports Server (NTRS)

    Lindenlaub, J. C.; Davis, S. M.; Morrison, D. B.

    1975-01-01

    The procedures and services available for educating and training potential users of remote sensing technology are discussed along with approaches for achieving an in-house capability for the analysis of remotely sensed data using numerical techniques based on pattern recognition principles. Cost estimates are provided where appropriate.

  18. Multiplexed Sensing and Imaging with Colloidal Nano- and Microparticles

    NASA Astrophysics Data System (ADS)

    Carregal-Romero, Susana; Caballero-Díaz, Encarnación; Beqa, Lule; Abdelmonem, Abuelmagd M.; Ochs, Markus; Hühn, Dominik; Suau, Bartolome Simonet; Valcarcel, Miguel; Parak, Wolfgang J.

    2013-06-01

    Sensing and imaging with fluorescent, plasmonic, and magnetic colloidal nano- and microparticles have improved during the past decade. In this review, we describe the concepts and applications of how these techniques can be used in the multiplexed mode, that is, sensing of several analytes in parallel or imaging of several labels in parallel.

  19. Background and principle applications of remote sensing in Mexico

    NASA Technical Reports Server (NTRS)

    Perez, J. A. D.

    1978-01-01

    Remote sensing, or the collection of information from objectives at a distance, crystallizes the interest in implementing techniques which assist in the search for solutions to the problems raised by the detection, exploitation, and conservation of the natural resources of the earth. An attempt is made to present an overview of the studies and achievements which have been obtained with remote sensing in Mexico.

  20. Sensing applications of rare-earth doped luminescent materials

    SciTech Connect

    Allison, S.W.; Cates, M.R.; Simpson, M.L.; Noel, B.W.; Turley, D.; Gillies, G.T.

    1988-01-01

    We are developing sensing techniques using phosphors and luminescing crystals. While their use in temperature sensing is becoming well known, there exists the potential to exploit them for other diagnostics. Examples are stress/strain, heat flux, skin friction, pressure, laser-beam profiling, aerodynamic flow, and radiation. We describe our recent results in these areas. 16 refs., 7 figs.