Science.gov

Sample records for cell-surface f1-atp synthase

  1. Simulation of proton movement in FoF1-ATP synthase by quantum-mechanical approach

    NASA Astrophysics Data System (ADS)

    Ivontsin, L. A.; Mashkovtseva, E. V.; Nartsissov, Ya R.

    2017-01-01

    Quantum-mechanical approach is applied to the description of proton transport through FoF1-ATP synthase which is the crucial process in ATP synthesis. Proton was described as a particle located in potential wells formed by charged centers along the half-channels. Energy spectra of bounded states were calculated using Bohr-Sommerfeld quantization, and the initial population of each quantum level was determined by Boltzman distribution. Water molecules were stochastically distributed in an inlet half-channel taking into account atomic radii. Characteristic time of proton transition between the charged centers (amino acid or water molecule) was estimated and it revealed the critical areas needed to be full with water. All possible pathways were analyzed in Monte-Carlo simulation which allows calculating of a mean time of proton transfer trough the inlet half-channel (23 ms).

  2. 3D-localization microscopy and tracking of FoF1-ATP synthases in living bacteria

    NASA Astrophysics Data System (ADS)

    Renz, Anja; Renz, Marc; Klütsch, Diana; Deckers-Hebestreit, Gabriele; Börsch, Michael

    2015-03-01

    FoF1-ATP synthases are membrane-embedded protein machines that catalyze the synthesis of adenosine triphosphate. Using photoactivation-based localization microscopy (PALM) in TIR-illumination as well as structured illumination microscopy (SIM), we explore the spatial distribution and track single FoF1-ATP synthases in living E. coli cells under physiological conditions at different temperatures. For quantitative diffusion analysis by mean-squared-displacement measurements, the limited size of the observation area in the membrane with its significant membrane curvature has to be considered. Therefore, we applied a 'sliding observation window' approach (M. Renz et al., Proc. SPIE 8225, 2012) and obtained the one-dimensional diffusion coefficient of FoF1-ATP synthase diffusing on the long axis in living E. coli cells.

  3. Modulation of F0F1-ATP synthase activity by cyclophilin D regulates matrix adenine nucleotide levels

    PubMed Central

    Chinopoulos, Christos; Konràd, Csaba; Kiss, Gergely; Metelkin, Eugeniy; Töröcsik, Beata; Zhang, Steven F.; Starkov, Anatoly A.

    2011-01-01

    Cyclophilin D was recently shown to bind to and decrease the activity of F0F1-ATP synthase in submitochondrial particles and permeabilized mitochondria (Giorgio et al. 2009, J Biol Chem, 284:33982). Cyclophilin D binding decreased both the ATP synthesis and hydrolysis rates. Here, we reaffirm these findings by demonstrating that in intact mouse liver mitochondria energized by ATP, absence of cyclophilin D or presence of cyclosporin A led to a decrease in the extent of uncoupler-induced depolarization. Accordingly, in substrate-energized mitochondria an increase in F0F1-ATP synthase activity mediated by a relief of inhibition by cyclophilin D was evident as slightly increased respiration rates during arsenolysis. However, the modulation of F0F1-ATP synthase by cyclophilin D did not increase the ANT-mediated ATP efflux rate in energized mitochondria or the ATP influx rate in de-energized mitochondria. The lack of effect of cyclophilin D on the ANT-mediated adenine nucleotide exchange rate was attributed to the ~2.2 times lower flux control coefficient of the F0F1-ATP synthase than that of ANT, deduced from measurements of adenine nucleotide flux rates in intact mitochondria. These findings were further supported by a recent kinetic model of the mitochondrial phosphorylation system, suggesting that a ~30% change in F0F1-ATP synthase activity in fully energized or fully deenergized mitochondria affects ADP-ATP exchange rate mediated by the ANT in the range of 1.38-1.7%. We conclude that in mitochondria exhibiting intact inner membranes, the absence of cyclophilin D or inhibition of its binding to F0F1-ATP synthase by cyclosporin A will affect only matrix adenine nucleotides levels. PMID:21281446

  4. Mitochondrial F0F1-ATP synthase is a molecular target of 3-iodothyronamine, an endogenous metabolite of thyroid hormone

    PubMed Central

    Cumero, S; Fogolari, F; Domenis, R; Zucchi, R; Mavelli, I; Contessi, S

    2012-01-01

    BACKGROUND AND PURPOSE 3-iodothyronamine (T1AM) is a metabolite of thyroid hormone acting as a signalling molecule via non-genomic effectors and can reach intracellular targets. Because of the importance of mitochondrial F0F1-ATP synthase as a drug target, here we evaluated interactions of T1AM with this enzyme. EXPERIMENTAL APPROACH Kinetic analyses were performed on F0F1-ATP synthase in sub-mitochondrial particles and soluble F1-ATPase. Activity assays and immunodetection of the inhibitor protein IF1 were used and combined with molecular docking analyses. Effects of T1AM on H9c2 cardiomyocytes were measured by in situ respirometric analysis. KEY RESULTS T1AM was a non-competitive inhibitor of F0F1-ATP synthase whose binding was mutually exclusive with that of the inhibitors IF1 and aurovertin B. Both kinetic and docking analyses were consistent with two different binding sites for T1AM. At low nanomolar concentrations, T1AM bound to a high-affinity region most likely located within the IF1 binding site, causing IF1 release. At higher concentrations, T1AM bound to a low affinity-region probably located within the aurovertin binding cavity and inhibited enzyme activity. Low nanomolar concentrations of T1AM increased ADP-stimulated mitochondrial respiration in cardiomyocytes, indicating activation of F0F1-ATP synthase consistent with displacement of endogenous IF1,, reinforcing the in vitro results. CONCLUSIONS AND IMPLICATIONS Effects of T1AM on F0F1-ATP synthase were twofold: IF1 displacement and enzyme inhibition. By targeting F0F1-ATP synthase within mitochondria, T1AM might affect cell bioenergetics with a positive effect on mitochondrial energy production at low, endogenous, concentrations. T1AM putative binding locations overlapping with IF1 and aurovertin binding sites are described. PMID:22452346

  5. Diffusion properties of single FoF1-ATP synthases in a living bacterium unraveled by localization microscopy

    NASA Astrophysics Data System (ADS)

    Renz, Marc; Rendler, Torsten; Börsch, Michael

    2012-03-01

    FoF1-ATP synthases in Escherichia coli (E. coli) bacteria are membrane-bound enzymes which use an internal protondriven rotary double motor to catalyze the synthesis of adenosine triphosphate (ATP). According to the 'chemiosmotic hypothesis', a series of proton pumps generate the necessary pH difference plus an electric potential across the bacterial plasma membrane. These proton pumps are redox-coupled membrane enzymes which are possibly organized in supercomplexes, as shown for the related enzymes in the mitochondrial inner membrane. We report diffusion measurements of single fluorescent FoF1-ATP synthases in living E. coli by localization microscopy and single enzyme tracking to distinguish a monomeric enzyme from a supercomplex-associated form in the bacterial membrane. For quantitative mean square displacement (MSD) analysis, the limited size of the observation area in the membrane with a significant membrane curvature had to be considered. The E. coli cells had a diameter of about 500 nm and a length of about 2 to 3 μm. Because the surface coordinate system yielded different localization precision, we applied a sliding observation window approach to obtain the diffusion coefficient D = 0.072 μm2/s of FoF1-ATP synthase in living E. coli cells.

  6. Microscopy of single F(o) F(1) -ATP synthases--the unraveling of motors, gears, and controls.

    PubMed

    Börsch, Michael

    2013-03-01

    Optical microscopy of single F(1) -ATPase and F(o) F(1) -ATP synthases started 15 years ago. Direct demonstration of ATP-driven subunit rotation by videomicroscopy became the new exciting tool to analyze the conformational changes of this enzyme during catalysis. Stimulated by these experiments, technical improvements for higher time resolution, better angular resolution, and reduced viscous drag were developed rapidly. Optics and single-molecule enzymology were entangled to benefit both biochemists and microscopists. Today, several single-molecule microscopy methods are established including controls for the precise nanomanipulation of individual enzymes in vitro. Förster resonance energy transfer, which has been used for simultaneous monitoring of conformational changes of different parts of this rotary motor, is one of them and may become the tool for the analysis of single F(o) F(1) -ATP synthases in membranes of living cells. Here, breakthrough experiments are critically reviewed and challenges are discussed for the future microscopy of single ATP synthesizing enzymes at work.

  7. Acetylation and phosphorylation control both local and global stability of the chloroplast F1 ATP synthase

    PubMed Central

    Schmidt, Carla; Beilsten-Edmands, Victoria; Mohammed, Shabaz; Robinson, Carol V.

    2017-01-01

    ATP synthases (ATPases) are enzymes that produce ATP and control the pH in the cell or cellular compartments. While highly conserved over different species, ATPases are structurally well-characterised but the existence and functional significance of many post-translational modifications (PTMs) is not well understood. We combined a range of mass spectrometric techniques to unravel the location and extent of PTMs in the chloroplast ATP synthase (cATPase) purified from spinach leaves. We identified multiple phosphorylation and acetylation sites and found that both modifications stabilise binding of ε and δ subunits. Comparing cross-linking of naturally modified cATPase with the in vitro deacetylated enzyme revealed a major conformational change in the ε subunit in accord with extended and folded forms of the subunit. Locating modified residues within the catalytic head we found that phosphorylated and acetylated residues are primarily on α/β and β/α interfaces respectively. By aligning along different interfaces the higher abundance acetylated residues are proximal to the regulatory sites while the lower abundance phosphorylation sites are more densely populated at the catalytic sites. We propose that modifications in the catalytic head, together with the conformational change in subunit ε, work in synergy to fine-tune the enzyme during adverse conditions. PMID:28276484

  8. Evidence for the Synthesis of ATP by an F0F1 ATP Synthase in Membrane Vesicles from Halorubrum Saccharovorum

    NASA Technical Reports Server (NTRS)

    Faguy, David; Lawson, Darion; Hochstein, Lawrence I.; Chang, Sherwood (Technical Monitor)

    1996-01-01

    Vesicles prepared in a buffer containing ADP, Mg(2+) and Pi synthesized ATP at an initial rate of 2 nmols/min/mg protein after acidification of the bulk medium (pH 8 (right arrow) 4). The intravesicular ATP concentration reached a steady state after about 30 seconds and slowly declined thereafter. ATP synthesis was inhibited by low concentrations of dicyclohexylcarbodiimide and m-chlorophenylhydrazone indicating that synthesis took place in response to the proton gradient. NEM and PCMS, which inhibit vacuolar ATPases and the vacuolar-like ATPases of extreme halophiles, did not affect ATP synthesis, and, in fact, produced higher steady state levels of ATP. This suggested that two ATPase activities were present, one which catalyzed ATP synthesis and one that caused its hydrolysis. Azide, a specific inhibitor of F0F1 ATP Synthases, inhibited halobacterial ATP synthesis. The distribution of acridine orange as imposed by a delta pH demonstrated that azide inhibition was not due to the collapse of the proton gradient due to azide acting as a protonophore. Such an effect was observed, but only at azide concentrations higher than those that inhibited ATP synthesis. These results confirm the earler observations with cells of H. saccharovorum and other extreme halophiles that ATP synthesis is inconsistent with the operation of a vacuolar-like ATPase. Therefore, the observation that a vacuolar-like enzyme is responsible for ATP synthesis (and which serves as the basis for imputing ATP synthesis to the vacuolar-like ATPases of the extreme halophiles, and the Archaea in general) should be taken with some degree of caution.

  9. Fo-driven Rotation in the ATP Synthase Direction against the Force of F1 ATPase in the FoF1 ATP Synthase*

    PubMed Central

    Martin, James; Hudson, Jennifer; Hornung, Tassilo; Frasch, Wayne D.

    2015-01-01

    Living organisms rely on the FoF1 ATP synthase to maintain the non-equilibrium chemical gradient of ATP to ADP and phosphate that provides the primary energy source for cellular processes. How the Fo motor uses a transmembrane electrochemical ion gradient to create clockwise torque that overcomes F1 ATPase-driven counterclockwise torque at high ATP is a major unresolved question. Using single FoF1 molecules embedded in lipid bilayer nanodiscs, we now report the observation of Fo-dependent rotation of the c10 ring in the ATP synthase (clockwise) direction against the counterclockwise force of ATPase-driven rotation that occurs upon formation of a leash with Fo stator subunit a. Mutational studies indicate that the leash is important for ATP synthase activity and support a mechanism in which residues aGlu-196 and cArg-50 participate in the cytoplasmic proton half-channel to promote leash formation. PMID:25713065

  10. Binding of the immunomodulatory drug Bz-423 to mitochondrial FoF1-ATP synthase in living cells by FRET acceptor photobleaching

    NASA Astrophysics Data System (ADS)

    Starke, Ilka; Johnson, Kathryn M.; Petersen, Jan; Gräber, Peter; Opipari, Anthony W.; Glick, Gary D.; Börsch, Michael

    2016-03-01

    Bz-423 is a promising new drug for treatment of autoimmune diseases. This small molecule binds to subunit OSCP of the mitochondrial enzyme FoF1-ATP synthase and modulates its catalytic activities. We investigate the binding of Bz-423 to mitochondria in living cells and how subunit rotation in FoF1-ATP synthase, i.e. the mechanochemical mechanism of this enzyme, is affected by Bz-423. Therefore, the enzyme was marked selectively by genetic fusion with the fluorescent protein EGFP to the C terminus of subunit γ. Imaging the threedimensional arrangement of mitochondria in living yeast cells was possible at superresolution using structured illumination microscopy, SIM. We measured uptake and binding of a Cy5-labeled Bz-423 derivative to mitochondrial FoF1-ATP synthase in living yeast cells using FRET acceptor photobleaching microscopy. Our data confirmed the binding of Cy5-labeled Bz-423 to the top of the F1 domain of the enzyme in mitochondria of living Saccharomyces cerevisiae cells.

  11. Observing single FoF1-ATP synthase at work using an improved fluorescent protein mNeonGreen as FRET donor

    NASA Astrophysics Data System (ADS)

    Heitkamp, Thomas; Deckers-Hebestreit, Gabriele; Börsch, Michael

    2016-02-01

    Adenosine triphosphate (ATP) is the universal chemical energy currency for cellular activities provided mainly by the membrane enzyme FoF1-ATP synthase in bacteria, chloroplasts and mitochondria. Synthesis of ATP is accompanied by subunit rotation within the enzyme. Over the past 15 years we have developed a variety of single-molecule FRET (smFRET) experiments to monitor catalytic action of individual bacterial enzymes in vitro. By specifically labeling rotating and static subunits within a single enzyme we were able to observe three-stepped rotation in the F1 motor, ten-stepped rotation in the Fo motor and transient elastic deformation of the connected rotor subunits. However, the spatial and temporal resolution of motor activities measured by smFRET were limited by the photophysics of the FRET fluorophores. Here we evaluate the novel FRET donor mNeonGreen as a fusion to FoF1-ATP synthase and compare it to the previously used fluorophore EGFP. Topics of this manuscript are the biochemical purification procedures and the activity measurements of the fully functional mutant enzyme.

  12. Optimized green fluorescent protein fused to FoF1-ATP synthase for single-molecule FRET using a fast anti-Brownian electrokinetic trap

    NASA Astrophysics Data System (ADS)

    Dienerowitz, Maria; Ilchenko, Mykhailo; Su, Bertram; Deckers-Hebestreit, Gabriele; Mayer, Günter; Henkel, Thomas; Heitkamp, Thomas; Börsch, Michael

    2016-02-01

    Observation times of freely diffusing single molecules in solution are limited by the photophysics of the attached fluorescence markers and by a small observation volume in the femtolitre range that is required for a sufficient signal-to-background ratio. To extend diffusion-limited observation times through a confocal detection volume, A. E. Cohen and W. E. Moerner have invented and built the ABELtrap -- a microfluidic device to actively counteract Brownian motion of single nanoparticles with an electrokinetic trap. Here we present a version of an ABELtrap with a laser focus pattern generated by electro-optical beam deflectors and controlled by a programmable FPGA chip. This ABELtrap holds single fluorescent nanoparticles for more than 100 seconds, increasing the observation time of fluorescent nanoparticles compared to free diffusion by a factor of 10000. To monitor conformational changes of individual membrane proteins in real time, we record sequential distance changes between two specifically attached dyes using Förster resonance energy transfer (smFRET). Fusing the a-subunit of the FoF1-ATP synthase with mNeonGreen results in an improved signal-to-background ratio at lower laser excitation powers. This increases our measured trap duration of proteoliposomes beyond 2 s. Additionally, we observe different smFRET levels attributed to varying distances between the FRET donor (mNeonGreen) and acceptor (Alexa568) fluorophore attached at the a- and c-subunit of the FoF1-ATP synthase respectively.

  13. The function of mitochondrial F(O)F(1) ATP-synthase from the whiteleg shrimp Litopenaeus vannamei muscle during hypoxia.

    PubMed

    Martinez-Cruz, O; Calderon de la Barca, A M; Uribe-Carvajal, S; Muhlia-Almazan, A

    2012-08-01

    The effect of hypoxia and re-oxygenation on the mitochondrial complex F(O)F(1)-ATP synthase was investigated in the whiteleg shrimp Litopenaeus vannamei. A 660 kDa protein complex isolated from mitochondria of the shrimp muscle was identified as the ATP synthase complex. After 10h at hypoxia (1.5-2.0 mg oxygen/L), the concentration of L-lactate in plasma increased significantly, but the ATP amount and the concentration of ATPβ protein remained unaffected. Nevertheless, an increase of 70% in the ATPase activity was detected, suggesting that the enzyme may be regulated at a post-translational level. Thus, during hypoxia shrimp are able to maintain ATP amounts probably by using some other energy sources as phosphoarginine when an acute lack of energy occurs. During re-oxygenation, the ATPase activity decreased significantly and the ATP production continued via the electron transport chain and oxidative phosphorylation. The results obtained showed that shrimp faces hypoxia partially by hydrolyzing the ATP through the reaction catalyzed by the mitochondrial ATPase which increases its activity.

  14. Age-associated oxidative modifications of mitochondrial α-subunit of F1 ATP synthase from mouse skeletal muscles.

    PubMed

    Das, N; Jana, C K

    2015-01-01

    The objective of this study was to investigate the pattern of age-associated oxidative post-translational modifications in the skeletal muscles of a mammalian species and to address whether the modifications result in the loss of function of the oxidatively modified protein(s). Accordingly, proteins in the mitochondrial matrix of the hind limb of C57BL/6Nnia mice were examined for modifications by carbonylation--an established marker of oxidative post-translational modifications--by Western blotting using anti-2,4-dinitrophenyl antibodies and tritiated sodium borohydride methods. An age-associated increase in carbonylation of mitochondrial matrix proteins was observed, but not all proteins were equally susceptible. A 55 kDa protein, identified as the α-subunit of the F1 complex of ATP synthase (ATP phosphohydrolase [H(+)-transporting]), had approximately 17% and 27% higher levels of protein carbonyls in adult and old animals, respectively, in comparison to the young controls as estimated using tritiated sodium borohydride. In addition, an age-associated decline in its activity was observed, with approximately 9% and 28% decrease in the activity in the adult and old animals, respectively, in comparison to young controls. It may be concluded that such oxidative post-translational modifications and the resultant attenuation of the protein activity may contribute to the age-related energy loss and muscular degeneracy.

  15. Production and characterization of a novel monoclonal antibody against Vibrio parahaemolyticus F0F1 ATP synthase's delta subunit and its application for rapid identification of the pathogen.

    PubMed

    Sakata, Junko; Kawatsu, Kentaro; Iwasaki, Tadashi; Tanaka, Katsuhiro; Takenaka, Shigeo; Kumeda, Yuko; Kodama, Hiroshi

    2012-01-01

    We raised monoclonal antibodies (MAbs) against Vibrio parahaemolyticus cell extracts. One of the MAbs, designated MAb-VP34, reacted in enzyme-linked immunosorbent assays (ELISAs) with 140 V. parahaemolyticus strains, regardless of serotype or origin. MAb-VP34 did not detectably react with 96 strains belonging to 27 other Vibrio species (except for Vibrio natriegens) or with 29 non-Vibrio species. These results show that MAb-VP34 is highly specific for V. parahaemolyticus. Western blotting and mass spectrometry analyses revealed that MAb-VP34 recognized V. parahaemolyticus F(0)F(1) ATP synthase's delta subunit. Using MAb-VP34, a rapid and simple immunodot blotting assay (VP-Dot) was developed to determine whether bacterial colonies growing on selective agar, represented V. parahaemolyticus. To evaluate VP-Dot, 20 V. parahaemolyticus strains and 19 non-related strains were tested. The results indicated that VP-Dot is a reliable tool for identification of V. parahaemolyticus colonies. The simple VP-Dot procedure took 40min, indicating that the MAb-VP34 based immunological method will greatly reduce labor, time, and costs required to verify V. parahaemolyticus colonies as compared with the conventional biochemical test.

  16. Coupling of proton flow to ATP synthesis in Rhodobacter capsulatus: F(0)F(1)-ATP synthase is absent from about half of chromatophores.

    PubMed

    Feniouk, B A; Cherepanov, D A; Junge, W; Mulkidjanian, A Y

    2001-11-01

    F(0)F(1)-ATP synthase (H(+)-ATP synthase, F(0)F(1)) utilizes the transmembrane protonmotive force to catalyze the formation of ATP from ADP and inorganic phosphate (P(i)). Structurally the enzyme consists of a membrane-embedded proton-translocating F(0) portion and a protruding hydrophilic F(1) part that catalyzes the synthesis of ATP. In photosynthetic purple bacteria a single turnover of the photosynthetic reaction centers (driven by a short saturating flash of light) generates protonmotive force that is sufficiently large to drive ATP synthesis. Using isolated chromatophore vesicles of Rhodobacter capsulatus, we monitored the flash induced ATP synthesis (by chemoluminescence of luciferin/luciferase) in parallel to the transmembrane charge transfer through F(0)F(1) (by following the decay of electrochromic bandshifts of intrinsic carotenoids). With the help of specific inhibitors of F(1) (efrapeptin) and of F(0) (venturicidin), we decomposed the kinetics of the total proton flow through F(0)F(1) into (i) those coupled to the ATP synthesis and (ii) the de-coupled proton escape through F(0). Taking the coupled proton flow, we calculated the H(+)/ATP ratio; it was found to be 3.3+/-0.6 at a large driving force (after one saturating flash of light) but to increase up to 5.1+/-0.9 at a smaller driving force (after a half-saturating flash). From the results obtained, we conclude that our routine chromatophore preparations contained three subsets of chromatophore vesicles. Chromatophores with coupled F(0)F(1) dominated in fresh material. Freezing/thawing or pre-illumination in the absence of ADP and P(i) led to an increase in the fraction of chromatophores with at least one de-coupled F(0)(F(1)). The disclosed fraction of chromatophores that lacked proton-conducting F(0)(F(1)) (approx. 40% of the total amount) remained constant upon these treatments.

  17. Purification, characterization and reconstitution into membranes of the oligomeric c-subunit ring of thermophilic F(o)F(1)-ATP synthase expressed in Escherichia coli.

    PubMed

    Yumen, Ikuko; Iwasaki, Iku; Suzuki, Toshiharu; Todokoro, Yasuto; Tanaka, Kentaro; Okada, Osamu; Fujiwara, Toshimichi; Yoshida, Masasuke; Akutsu, Hideo

    2012-04-01

    F(o)F(1)-ATP synthase catalyzes ATP synthesis coupled with proton-translocation across the membrane. The membrane-embedded F(o) portion is responsible for the H(+) translocation coupled with rotation of the oligomeric c-subunit ring, which induces rotation of the γ subunit of F(1). For solid-state NMR measurements, F(o)F(1) of thermophilic Bacillus PS3 (TF(o)F(1)) was overexpressed in Escherichia coli and the intact c-subunit ring (TF(o)c-ring) was isolated by new procedures. One of the key improvement in this purification was the introduction of a His residue to each c-subunit that acts as a virtual His(10)-tag of the c-ring. After solubilization from membranes by sodium deoxycholate, the c-ring was purified by Ni-NTA affinity chromatography, followed by anion-exchange chromatography. The intactness of the isolated c-ring was confirmed by high-resolution clear native PAGE, sedimentation analysis, and H(+)-translocation activity. The isotope-labeled intact TF(o)c-ring was successfully purified in such an amount as enough for solid-state NMR measurements. The isolated TF(o)c-rings were reconstituted into lipid membranes. A solid-state NMR spectrum at a high quality was obtained with this membrane sample, revealing that this purification procedure was suitable for the investigation by solid-state NMR. The purification method developed here can also be used for other physicochemical investigations.

  18. Cross-reconstitution of the F0F1-ATP synthases of chloroplasts and Escherichia coli with special emphasis on subunit delta.

    PubMed

    Engelbrecht, S; Deckers-Hebestreit, G; Altendorf, K; Junge, W

    1989-05-01

    F0F1-ATP synthases catalyse ATP formation from ADP and Pi by using the free energy supplied by the transmembrane electrochemical potential of the proton. The delta subunit of F1 plays an important role at the interface between the channel portion F0 and the catalytic portion F1. In chloroplasts it can plug the protonic conductance of CF0 and in Escherichia coli it is required for binding of EF1 to EF0. We wanted to know whether or not delta of one species was effective between F0 and F1 of the other species and vice versa. To this end the respective coupling membrane (thylakoids, everted vesicles from E. coli) was (partially) depleted of F1 and purified F1, F1(-delta), and delta were added in various combinations to the F1-depleted membranes. The efficiency or reconstitution was measured in thylakoids via the rate of phenazinemethosulfate-mediated cyclic photophosphorylation and in E. coli everted vesicles via the degree of 9-amino-6-chloro-2-methoxyacridine fluorescence quenching. Addition of CF1 to partially CF1-depleted thylakoid vesicles restored photophosphorylation to the highest extent. CF1(-delta)+chloroplast delta, EF1, EF1(-delta)+E. coli delta were also effective but to lesser extent. CF1(-delta)+E. coli delta and EF1(-delta)+chloroplast delta restored photophosphorylation to a small but still significant extent. With F1-depleted everted vesicles prepared by repeated EDTA treatment of E. coli membranes, addition of CF1, CF1 (-delta)+chloroplast delta and CF1(-delta)+E. coli delta gave approximately half the extent of 9-amino-6-chloro-2-methoxyacridine fluorescence quenching as compared to EF1 or EF1(-delta)+E. coli delta by energization of the vesicles with NADH, while Ef1(-delta)+chloroplast delta was ineffective. All 'mixed' combinations were probably reconstitutively active only by plugging the protonic leak through the exposed F0 (structural reconstitution) rather than by catalytic activity. Nevertheless, the cross-reconstitution is stunning in view

  19. Dependence on the F0F1-ATP synthase for the activities of the hydrogen-oxidizing hydrogenases 1 and 2 during glucose and glycerol fermentation at high and low pH in Escherichia coli.

    PubMed

    Trchounian, Karen; Pinske, Constanze; Sawers, R Gary; Trchounian, Armen

    2011-12-01

    Escherichia coli has four [NiFe]-hydrogenases (Hyd); three of these, Hyd-1, Hyd-2 and Hyd-3 have been characterized well. In this study the requirement for the F(0)F(1)-ATP synthase for the activities of the hydrogen-oxidizing hydrogenases Hyd-1 and Hyd-2 was examined. During fermentative growth on glucose at pH 7.5 an E. coli F(0)F(1)-ATP synthase mutant (DK8) lacked hydrogenase activity. At pH 5.5 hydrogenase activity was only 20% that of the wild type. Using in-gel activity staining, it could be demonstrated that both Hyd-1 and Hyd-2 were essentially inactive at these pHs, indicating that the residual activity at pH 5.5 was due to the hydrogen-evolving Hyd-3 enzyme. During fermentative growth in the presence of glycerol, hydrogenase activity in the mutant was highest at pH 7.5 attaining a value of 0.76 U/mg, or ~50% of wild type activity, and Hyd-2 was only partially active at this pH, while Hyd-1 was inactive. Essentially no hydrogenase activity was measured at pH 5.5 during growth with glycerol. At this pH the mutant had a hydrogenase activity that was maximally only ~10% of wild type activity with either carbon substrate but a weak activity of both Hyd-1 and Hyd-2 could be detected. Taken together, these results demonstrate for the first time that the activity of the hydrogen-oxidizing hydrogenases in E. coli depends on an active F(0)F(1)-ATP synthase during growth at high and low pH.

  20. TCDD decreases ATP levels and increases reactive oxygen production through changes in mitochondrial F0F1-ATP synthase and ubiquinone

    PubMed Central

    Shertzer, Howard G.; Genter, Mary Beth; Shen, Dongxiao; Nebert, Daniel W.; Chen, Ying; Dalton, Timothy P.

    2007-01-01

    Mitochondria generate ATP and participate in signal transduction and cellular pathology and/or cell death. TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) decreases hepatic ATP levels and generates mitochondrial oxidative DNA damage, which is exacerbated by increasing mitochondrial glutathione redox state and by inner-membrane hyperpolarization. This study identifies mitochondrial targets of TCDD that initiate and sustain reactive oxygen production and decreased ATP levels. One week after treating mice with TCDD, liver ubiquinone (Q) levels were significantly decreased, while rates of succinoxidase and Q-cytochrome c oxidoreductase activities were increased. However, the expected increase in Q reduction state following TCDD treatment did not occur; instead, Q was more oxidized. These results could be explained by an ATP synthase defect, a premise supported by the unusual finding that TCDD lowers ATP/O ratios without concomitant changes in respiratory control ratios. Such results suggest either a futile cycle in ATP synthesis, or hydrolysis of newly-synthesized ATP prior to release. The TCDD-mediated decrease in Q, concomitant with an increase in respiration, increases complex 3 redox-cycling. This acts in concert with glutathione to increase membrane potential and reactive oxygen production. The proposed defect in ATP synthase explains both the greater respiratory rates and the lower tissue ATP levels. PMID:17109908

  1. Astakine LvAST binds to the β subunit of F1-ATP synthase and likely plays a role in white shrimp Litopeneaus vannamei defense against white spot syndrome virus.

    PubMed

    Liang, Gao-Feng; Liang, Yan; Xue, Qinggang; Lu, Jin-Feng; Cheng, Jun-Jun; Huang, Jie

    2015-03-01

    Cytokines play a critical role in innate and adaptive immunity. Astakines represent a group of invertebrate cytokines that are related to vertebrate prokineticin and function in promoting hematopoiesis in crustaceans. We have identified an astakine from the white shrimp Litopeneaus vannamei and named it LvAST in a previous research. In the present research, we investigated the interactions among LvAST, the envelope protein VP37 of white spot syndrome virus (i.e., WSSV), and the β subunit of F1-ATP synthase (ATPsyn-β) of the white shrimp (i.e., BP53) using binding assays and co-precipitations. We also examined the effects of LvAST on shrimp susceptibility to WSSV. We found that LvAST and VP37 competitively bound to BP53, but did not bind to each other. Shrimps that had been injected with recombinant LvAST exhibited significantly lower mortality and longer survival time in experimental infections by WSSV. In contrast, shrimps whose LvAST gene expression had been inhibited by RNA interference showed significantly higher WSSV infection intensity and shorter survival time following viral challenges. These results suggested that LvAST and WSSV both likely use ATPsyn-β as a receptor and LvAST plays a role in shrimp defense against WSSV infection. This represented the first research showing the involvement of astakines in host antiviral immunity.

  2. ATP synthesis in Halobacterium saccharovorum: evidence that synthesis may be catalysed by an F0F1-ATP synthase

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.

    1992-01-01

    Halobacterium saccharovorum synthesized ATP in response to a pH shift from 8 to 6.2. Synthesis was inhibited by carbonyl cyanide m-chloro-phenylhydrazone, dicyclohexylcarbodiimide, and azide. Nitrate, an inhibitor of the membrane-bound ATPase previously isolated from this organism, did not inhibit ATP synthesis. N-Ethymaleimide, which also inhibited this ATPase, stimulated the production of ATP. These observations suggested that H. saccharovorum synthesized and hydrolysed ATP using different enzymes and that the vacuolar-like ATPase activity previously described in H. saccharovorum was an ATPase whose function is yet to be identified.

  3. Targeting glucosylceramide synthase induction of cell surface globotriaosylceramide (Gb3) in acquired cisplatin-resistance of lung cancer and malignant pleural mesothelioma cells

    SciTech Connect

    Tyler, Andreas; Johansson, Anders; Karlsson, Terese; Gudey, Shyam Kumar; Brännström, Thomas; Grankvist, Kjell; Behnam-Motlagh, Parviz

    2015-08-01

    Background: Acquired resistance to cisplatin treatment is a caveat when treating patients with non-small cell lung cancer (NSCLC) and malignant pleural mesothelioma (MPM). Ceramide increases in response to chemotherapy, leading to proliferation arrest and apoptosis. However, a tumour stress activation of glucosylceramide synthase (GCS) follows to eliminate ceramide by formation of glycosphingolipids (GSLs) such as globotriaosylceramide (Gb3), the functional receptor of verotoxin-1. Ceramide elimination enhances cell proliferation and apoptosis blockade, thus stimulating tumor progression. GSLs transactivate multidrug resistance 1/P-glycoprotein (MDR1) and multidrug resistance-associated protein 1 (MRP1) expression which further prevents ceramide accumulation and stimulates drug efflux. We investigated the expression of Gb3, MDR1 and MRP1 in NSCLC and MPM cells with acquired cisplatin resistance, and if GCS activity or MDR1 pump inhibitors would reduce their expression and reverse cisplatin-resistance. Methods: Cell surface expression of Gb3, MDR1 and MRP1 and intracellular expression of MDR1 and MRP1 was analyzed by flow cytometry and confocal microscopy on P31 MPM and H1299 NSCLC cells and subline cells with acquired cisplatin resistance. The effect of GCS inhibitor PPMP and MDR1 pump inhibitor cyclosporin A for 72 h on expression and cisplatin cytotoxicity was tested. Results: The cisplatin-resistant cells expressed increased cell surface Gb3. Cell surface Gb3 expression of resistant cells was annihilated by PPMP whereas cyclosporin A decreased Gb3 and MDR1 expression in H1299 cells. No decrease of MDR1 by PPMP was noted in using flow cytometry, whereas a decrease of MDR1 in H1299 and H1299res was indicated with confocal microscopy. No certain co-localization of Gb3 and MDR1 was noted. PPMP, but not cyclosporin A, potentiated cisplatin cytotoxicity in all cells. Conclusions: Cell surface Gb3 expression is a likely tumour biomarker for acquired cisplatin

  4. Transcriptional control of the F0F1-ATP synthase operon of Corynebacterium glutamicum: SigmaH factor binds to its promoter and regulates its expression at different pH values

    PubMed Central

    Barriuso-Iglesias, Mónica; Barreiro, Carlos; Sola-Landa, Alberto; Martín, Juan F

    2013-01-01

    Corynebacterium glutamicum used in the amino acid fermentation industries is an alkaliphilic microorganism. Its F0F1-ATPase operon (atpBEFHAGDC) is expressed optimally at pH 9.0 forming a polycistronic (7.5 kb) and a monocistronic (1.2 kb) transcripts both starting upstream of the atpB gene. Expression of this operon is controlled by the SigmaH factor. The sigmaH gene (sigH) was cloned and shown to be co-transcribed with a small gene, cg0877, encoding a putative anti-sigma factor. A mutant deleted in the sigH gene expressed the atpBEFHAGDC operon optimally at pH 7.0 at difference of the wild-type strain (optimal expression at pH 9.0). These results suggested that the SigmaH factor is involved in pH control of expression of the F0F1 ATPase operon. The SigmaH protein was expressed in Escherichia coli fused to the GST (glutathione-S-transferase) and purified to homogeneity by affinity chromatography on a GSTrap HP column. The fused protein was identified by immunodetection with anti-GST antibodies. DNA-binding studies by electrophoretic mobility shift assays showed that the SigH protein binds to a region of the atpB promoter containing the sigmaH recognition sequence (−35)TTGGAT…18nt…GTTA(−10). SigmaH plays an important role in the cascade of control of pH stress in Corynebacterium. PMID:23298179

  5. Transcriptional control of the F0F1-ATP synthase operon of Corynebacterium glutamicum: SigmaH factor binds to its promoter and regulates its expression at different pH values.

    PubMed

    Barriuso-Iglesias, Mónica; Barreiro, Carlos; Sola-Landa, Alberto; Martín, Juan F

    2013-03-01

    Corynebacterium glutamicum used in the amino acid fermentation industries is an alkaliphilic microorganism. Its F(0)F(1)-ATPase operon (atpBEFHAGDC) is expressed optimally at pH 9.0 forming a polycistronic (7.5 kb) and a monocistronic (1.2 kb) transcripts both starting upstream of the atpB gene. Expression of this operon is controlled by the SigmaH factor. The sigmaH gene (sigH) was cloned and shown to be co-transcribed with a small gene, cg0877, encoding a putative anti-sigma factor. A mutant deleted in the sigH gene expressed the atpBEFHAGDC operon optimally at pH 7.0 at difference of the wild-type strain (optimal expression at pH 9.0). These results suggested that the SigmaH factor is involved in pH control of expression of the F(0) F(1) ATPase operon. The SigmaH protein was expressed in Escherichia coli fused to the GST (glutathione-S-transferase) and purified to homogeneity by affinity chromatography on a GSTrap HP column. The fused protein was identified by immunodetection with anti-GST antibodies. DNA-binding studies by electrophoretic mobility shift assays showed that the SigH protein binds to a region of the atpB promoter containing the sigmaH recognition sequence (-35)TTGGAT…18nt…GTTA(-10). SigmaH plays an important role in the cascade of control of pH stress in Corynebacterium.

  6. Integrated Approach To Producing High-Purity Trehalose from Maltose by the Yeast Yarrowia lipolytica Displaying Trehalose Synthase (TreS) on the Cell Surface.

    PubMed

    Li, Ning; Wang, Hengwei; Li, Lijuan; Cheng, Huiling; Liu, Dawen; Cheng, Hairong; Deng, Zixin

    2016-08-10

    An alternative strategy that integrated enzyme production, trehalose biotransformation, and bioremoval in one bioreactor was developed in this study, thus simplifying the traditional procedures used for trehalose production. The trehalose synthase gene from a thermophilic archaea, Picrophilus torridus, was first fused to the YlPir1 anchor gene and then inserted into the genome of Yarrowia lipolytica, thus yielding an engineered yeast strain. The trehalose yield reached 73% under optimal conditions. The thermal and pH stabilities of the displayed enzyme were improved compared to those of its free form purified from recombinant Escherichia coli. After biotransformation, the glucose byproduct and residual maltose were directly fermented to ethanol by a Saccharomyces cerevisiae strain. Ethanol can be separated by distillation, and high-purity trehalose can easily be obtained from the fermentation broth. The results show that this one-pot procedure is an efficient approach to the economical production of trehalose from maltose.

  7. Bioelectrochemistry of cell surfaces

    NASA Astrophysics Data System (ADS)

    Dolowy, Krzysztof

    This paper deals with processes and phenomena of cell surface bioelectrochemistry in which charges do not move across the cell membrane. First, electrochemical properties of the cell membrane and the cell medium interface are described, and different electric potentials present in biological systems are defined. Methods of cell electrophoresis are then discussed. It is shown that none of the simple electrochemical models of the cell membrane can explain the dependence of cell electrophoretic mobility upon ionic strength and other electrochemical properties of the cell membrane, such as the difference in cell membrane charge as determined electrochemically and biochemically, or the effect of neuraminidase, pH, or membrane potential change on cell electrophoretic mobility. Thus, it is apparent that conclusions drawn from electrophoretic mobility data on the basis of simple models are false. The more complex multilayer-electrochemical model of the cell membrane is then described and shown to explain most electrochemical properties of the cell membrane. Next, different electrochemical techniques that were applied to study cell surfaces are described. It is shown that colloid titration, isoelectric focusing, and partition of cells between two immiscible phases is dependent not only on electrical properties of the cell membrane, but also on the energy of adsorption at cell surfaces of organic molecules used in these methods. Powder electrodes, cell polarography, conductometric titration, and Donnan potential methods are described and it is shown that these methods also produce results of doubtful value and are also often misinterpreted. The contact potential difference method produces results difficult to interpret and only electro-osmotic measurements and potential sensitive molecules are valuable methods. The colloid particle interaction theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO) as applied to cell interactions is discussed. It is shown that the

  8. The human ATP synthase beta subunit gene: sequence analysis, chromosome assignment, and differential expression.

    PubMed

    Neckelmann, N; Warner, C K; Chung, A; Kudoh, J; Minoshima, S; Fukuyama, R; Maekawa, M; Shimizu, Y; Shimizu, N; Liu, J D

    1989-11-01

    In humans, the functional F0F1-ATP synthase beta subunit gene is located on chromosome 12 in the p13----qter region. Other partially homologous sequences have been detected on chromosomes 2 and 17. The bona fide beta subunit gene has 10 exons encoding a leader peptide of 49 amino acids and a mature protein of 480 amino acids. Thirteen Alu family DNA repeats are found upstream from the gene and in four introns. The gene has four "CCAAT" sequences upstream and in close proximity to the transcriptional initiation site. A 13-bp motif is found in the 5' nontranscribed region of both the beta subunit gene and an ADP/ATP translocator gene that is expressed in high levels in cardiac and skeletal muscle. Analysis of the beta subunit mRNA levels reveals marked differences among tissues. The highest levels are found in heart, lower levels in skeletal muscle, and the lowest levels in liver and kidney. These findings suggest that the tissue-specific levels of ATP synthase beta subunit mRNA may be generated through transcriptional control.

  9. ATP synthase.

    PubMed

    Junge, Wolfgang; Nelson, Nathan

    2015-01-01

    Oxygenic photosynthesis is the principal converter of sunlight into chemical energy. Cyanobacteria and plants provide aerobic life with oxygen, food, fuel, fibers, and platform chemicals. Four multisubunit membrane proteins are involved: photosystem I (PSI), photosystem II (PSII), cytochrome b6f (cyt b6f), and ATP synthase (FOF1). ATP synthase is likewise a key enzyme of cell respiration. Over three billion years, the basic machinery of oxygenic photosynthesis and respiration has been perfected to minimize wasteful reactions. The proton-driven ATP synthase is embedded in a proton tight-coupling membrane. It is composed of two rotary motors/generators, FO and F1, which do not slip against each other. The proton-driven FO and the ATP-synthesizing F1 are coupled via elastic torque transmission. Elastic transmission decouples the two motors in kinetic detail but keeps them perfectly coupled in thermodynamic equilibrium and (time-averaged) under steady turnover. Elastic transmission enables operation with different gear ratios in different organisms.

  10. Furrowing in altered cell surfaces.

    PubMed

    Rappaport, R

    1976-02-01

    Understanding the process which established the cell division mechanism requires analysis of the role of the responding surface as well as that of stimulatory subsurface structures. Cell surface was altered by the expansion which occurs during exovate formation. Exovates appear on the surface of fertilized Arbacia lixula, Paracentrotus lividus and Echinarachnius parma eggs in response to extreme flattening. They result from cytoplasmic outflow initiated in a very restricted portion of the egg surface. Observations of the formation process in pigmented A. lixula eggs revealed that the original surface may be expanded about 100 fold as the exovate swells. When exovates formed 15-30 minutes after fertilization contain the mitotic apparatus, they divide synchronously with flattened controls. If nucleated exovates are established after the beginning of first cleavage, furrows appear in ten minutes. Exovates established after the beginning of second cleavage develop furrows four minutes after the entrance of the the mitsotic apparatus. Cytoplasm beneath damaged exovate surfaces sometimes develops partial constrictions independently of the surface in the plane the furrow would have occupied. These results suggest that normal surface structure is unnecessary for furrow establishment and function.

  11. Detection of Cell Surface Dopamine Receptors

    PubMed Central

    Xiao, Jiping; Bergson, Clare

    2014-01-01

    Dopamine receptors are a class of metabotropic G protein-coupled receptors. Plasma membrane expression is a key determinant of receptor signaling, and one that is regulated both by extra and intracellular cues. Abnormal dopamine receptor signaling is implicated in several neuropsychiatric disorders, including schizophrenia and attention deficit hyperactivity disorder, as well as drug abuse. Here, we describe in detail the application of two complementary applications of protein biotinylation and enzyme-linked immunoabsorbant assay (ELISA) for detecting and quantifying levels of dopamine receptors expressed on the cell surface. In the biotinylation method, cell surface receptors are labeled with Sulfo-NHS-biotin. The charge on the sulfonyl facilitates water solubility of the reactive biotin compound and prevents its diffusion across the plasma membrane. In the ELISA method, cells surface labeling is achieved with antibodies specific to extracellular epitopes on the receptors, and by fixing the cells without detergent such that the plasma membrane remains intact. PMID:23296774

  12. Vesicle trafficking and cell surface membrane patchiness.

    PubMed Central

    Tang, Q; Edidin, M

    2001-01-01

    Membrane proteins and lipids often appear to be distributed in patches on the cell surface. These patches are often assumed to be membrane domains, arising from specific molecular associations. However, a computer simulation (Gheber and Edidin, 1999) shows that membrane patchiness may result from a combination of vesicle trafficking and dynamic barriers to lateral mobility. The simulation predicts that the steady-state patches of proteins and lipids seen on the cell surface will decay if vesicle trafficking is inhibited. To test this prediction, we compared the apparent sizes and intensities of patches of class I HLA molecules, integral membrane proteins, before and after inhibiting endocytic vesicle traffic from the cell surface, either by incubation in hypertonic medium or by expression of a dominant-negative mutant dynamin. As predicted by the simulation, the apparent sizes of HLA patches increased, whereas their intensities decreased after endocytosis and vesicle trafficking were inhibited. PMID:11423406

  13. Functional dynamics of cell surface membrane proteins

    NASA Astrophysics Data System (ADS)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.

  14. Chloroplast ATP synthase contains one single copy of subunit delta that is indispensable for photophosphorylation.

    PubMed

    Engelbrecht, S; Schürmann, K; Junge, W

    1989-01-15

    F0F1 ATP synthases synthesize ATP in their F1 portion at the expense of free energy supplied by proton flow which enters the enzyme through their channel portion F0. The smaller subunits of F1, especially subunit delta, may act as energy transducers between these rather distant functional units. We have previously shown that chloroplast delta, when added to thylakoids partially depleted of the coupling factor CF1, can reconstitute photophosphorylation by inhibiting proton leakage through exposed coupling factor CF0. In view of controversies in the literature, we reinvestigated two further aspects related to subunit delta, namely (a) its stoichiometry in CF0CF1 and (b) whether or not delta is required for photophosphorylation. By rocket immunoelectrophoresis of thylakoid membranes and calibration against purified delta, we confirmed a stoichiometry of one delta per CF0CF1. In CF1-depleted thylakoids photophosphorylation could be reconstituted not only by adding CF1 and subunit delta but, surprisingly, also by CF1 (-delta). We found that the latter was attributable to a contamination of CF1 (-delta) preparations with integral CF1. To lesser extent CF1 (-delta) acted by complementary rebinding to CF0 channels that were closed because they contained delta [CF0(+delta)]. This added catalytic capacity to proton-tight thylakoid vesicles. The ability of subunit delta to control proton flow through CF0 and the absolute requirement for delta in restoration of photophosphorylation suggest an essential role of this small subunit at the interface between the large portions of ATP synthase: delta may be part of the coupling site between electrochemical, conformational and chemical events in this enzyme.

  15. A membrane reservoir at the cell surface

    PubMed Central

    Figard, Lauren; Sokac, Anna Marie

    2014-01-01

    Cell surface expansion is a necessary part of cell shape change. One long-standing hypothesis proposes that membrane for this expansion comes from the flattening out of cell surface projections such as microvilli and membrane folds. Correlative EM data of cells undergoing phagocytosis, cytokinesis, and morphogenesis has hinted at the existence of such an unfolding mechanism for decades; but unfolding has only recently been confirmed using live-cell imaging and biophysical approaches. Considering the wide range of cells in which plasma membrane unfolding has now been reported, it likely represents a fundamental mechanism of cell shape change. PMID:24844289

  16. Structure and functions of fungal cell surfaces

    NASA Technical Reports Server (NTRS)

    Nozawa, Y.

    1984-01-01

    A review with 24 references on the biochemistry, molecular structure, and function of cell surfaces of fungi, especially dermatophytes: the chemistry and structure of the cell wall, the effect of polyene antibiotics on the morphology and function of cytoplasmic membranes, and the chemical structure and function of pigments produced by various fungi are discussed.

  17. The Proton-Driven Rotor of ATP Synthase: Ohmic Conductance (10 fS), and Absence of Voltage Gating

    PubMed Central

    Feniouk, Boris A.; Kozlova, Maria A.; Knorre, Dmitry A.; Cherepanov, Dmitry A.; Mulkidjanian, Armen Y.; Junge, Wolfgang

    2004-01-01

    The membrane portion of F0F1-ATP synthase, F0, translocates protons by a rotary mechanism. Proton conduction by F0 was studied in chromatophores of the photosynthetic bacterium Rhodobacter capsulatus. The discharge of a light-induced voltage jump was monitored by electrochromic absorption transients to yield the unitary conductance of F0. The current-voltage relationship of F0 was linear from 7 to 70 mV. The current was extremely proton-specific (>107) and varied only slightly (≈threefold) from pH 6 to 10. The maximum conductance was ≈10 fS at pH 8, equivalent to 6240 H+ s−1 at 100-mV driving force, which is an order-of-magnitude greater than of coupled F0F1. There was no voltage-gating of F0 even at low voltage, and proton translocation could be driven by ΔpH alone, without voltage. The reported voltage gating in F0F1 is thus attributable to the interaction of F0 with F1 but not to F0 proper. We simulated proton conduction by a minimal rotary model including the rotating c-ring and two relay groups mediating proton exchange between the ring and the respective membrane surface. The data fit attributed pK values of ≈6 and ≈10 to these relays, and placed them close to the membrane/electrolyte interface. PMID:15189903

  18. Detection of cell surface dopamine receptors.

    PubMed

    Xiao, Jiping; Bergson, Clare

    2013-01-01

    Dopamine receptors are a class of metabotropic G protein-coupled receptors. Plasma membrane expression is a key determinant of receptor signaling, and one that is regulated both by extra and intracellular cues. Abnormal dopamine receptor signaling is implicated in several neuropsychiatric disorders, including schizophrenia and attention deficit hyperactivity disorder, as well as drug abuse. Here, we describe in detail the application of two complementary applications of protein biotinylation and enzyme-linked immunoabsorbent assay (ELISA) for detecting and quantifying levels of dopamine receptors expressed on the cell surface. In the biotinylation method, cell surface receptors are labeled with Sulfo-NHS-biotin. The charge on the sulfonyl facilitates water solubility of the reactive biotin compound and prevents its diffusion across the plasma membrane. In the ELISA method, surface labeling is achieved with antibodies specific to extracellular epitopes on the receptors, and by fixing the cells without detergent such that the plasma membrane remains intact.

  19. Specialized cell surface structures in cellulolytic bacteria.

    PubMed

    Lamed, R; Naimark, J; Morgenstern, E; Bayer, E A

    1987-08-01

    The cell surface topology of various gram-negative and -positive, anaerobic and aerobic, mesophilic and thermophilic, cellulolytic and noncellulolytic bacteria was investigated by scanning electron microscopic visualization using cationized ferritin. Characteristic protuberant structures were observed on cells of all cellulolytic strains. These structures appeared to be directly related to the previously described exocellular cellulase-containing polycellulosomes of Clostridium thermocellum YS (E. A. Bayer and R. Lamed, J. Bacteriol. 167:828-836, 1986). Immunochemical evidence and lectin-binding studies suggested a further correlation on the molecular level among cellulolytic bacteria. The results indicate that such cell surface cellulase-containing structures may be of general consequence to the bacterial interaction with and degradation of cellulose.

  20. Specialized cell surface structures in cellulolytic bacteria.

    PubMed Central

    Lamed, R; Naimark, J; Morgenstern, E; Bayer, E A

    1987-01-01

    The cell surface topology of various gram-negative and -positive, anaerobic and aerobic, mesophilic and thermophilic, cellulolytic and noncellulolytic bacteria was investigated by scanning electron microscopic visualization using cationized ferritin. Characteristic protuberant structures were observed on cells of all cellulolytic strains. These structures appeared to be directly related to the previously described exocellular cellulase-containing polycellulosomes of Clostridium thermocellum YS (E. A. Bayer and R. Lamed, J. Bacteriol. 167:828-836, 1986). Immunochemical evidence and lectin-binding studies suggested a further correlation on the molecular level among cellulolytic bacteria. The results indicate that such cell surface cellulase-containing structures may be of general consequence to the bacterial interaction with and degradation of cellulose. Images PMID:3301817

  1. Bacterial cell surface structures in Yersinia enterocolitica.

    PubMed

    Białas, Nataniel; Kasperkiewicz, Katarzyna; Radziejewska-Lebrecht, Joanna; Skurnik, Mikael

    2012-06-01

    Yersinia enterocolitica is a widespread member of the family of Enterobacteriaceae that contains both non-virulent and virulent isolates. Pathogenic Y. enterocolitica strains, especially belonging to serotypes O:3, O:5,27, O:8 and O:9 are etiologic agents of yersiniosis in animals and humans. Y. enterocolitica cell surface structures that play a significant role in virulence have been subject to many investigations. These include outer membrane (OM) glycolipids such as lipopolysaccharide (LPS) and enterobacterial common antigen (ECA) and several cell surface adhesion proteins present only in virulent Y. enterocolitica, i.e., Inv, YadA and Ail. While the yadA gene is located on the Yersinia virulence plasmid the Ail, Inv, LPS and ECA are chromosomally encoded. These structures ensure the correct architecture of the OM, provide adhesive properties as well as resistance to antimicrobial peptides and to host innate immune response mechanisms.

  2. Reversibility of cell surface label rearrangement

    PubMed Central

    1976-01-01

    Cell surface labeling can cause rearrangements of randomly distributed membrane components. Removal of the label bound to the cell surface allows the membrane components to return to their original random distribution, demonstrating that label is necessary to maintain as well as to induce rearrangements. With scanning electron microscopy, the rearrangement of concanavalin A (con A) and ricin binding sites on LA-9 cells has been followed by means of hemocyanin, a visual label. The removal of con A from its binding sites at the cell surface with alpha- methyl mannoside, and the return of these sites to their original distribution are also followed in this manner. There are labeling differences with con A and ricin. Under some conditions, however, the same rearrangements are seen with both lectins. The disappearance of labeled sites from areas of ruffling activity is a major feature of the rearrangements seen. Both this ruffling activity and the rearrangement of label are sensitive to cytochalasin B, and ruffling activity, perhaps along with other cytochalasin-sensitive structure, may play a role in the rearrangements of labeled sites. PMID:1025154

  3. Probes for anionic cell surface detection

    DOEpatents

    Smith, Bradley D.

    2013-03-05

    Embodiments of the present invention are generally directed to compositions comprising a class of molecular probes for detecting the presence of anionic cell surfaces. Embodiments include compositions that are enriched for these compositions and preparations, particularly preparations suitable for use as laboratory/clinical reagents and diagnostic indicators, either alone or as part of a kit. An embodiment of the invention provides for a highly selective agent useful in the discernment and identification of dead or dying cells, such as apoptotic cells, in a relatively calcium-free environment. An embodiment of the invention provides a selective agent for the identification of bacteria in a mixed population of bacterial cells and nonbacterial cells.

  4. Cell surface receptors for CCN proteins.

    PubMed

    Lau, Lester F

    2016-06-01

    The CCN family (CYR61; CTGF; NOV; CCN1-6; WISP1-3) of matricellular proteins in mammals is comprised of six homologous members that play important roles in development, inflammation, tissue repair, and a broad range of pathological processes including fibrosis and cancer. Despite considerable effort to search for a high affinity CCN-specific receptor akin to growth factor receptors, no such receptor has been found. Rather, CCNs bind several groups of multi-ligand receptors as characteristic of other matricellular proteins. The most extensively documented among CCN-binding receptors are integrins, including αvβ3, αvβ5, α5β1, α6β1, αIIbβ3, αMβ2, and αDβ2, which mediate diverse CCN functions in various cell types. CCNs also bind cell surface heparan sulfate proteoglycans (HSPGs), low density liproprotein receptor-related proteins (LRPs), and the cation-independent mannose-6-phosphate (M6P) receptor, which are endocytic receptors that may also serve as co-receptors in cooperation with other cell surface receptors. CCNs have also been reported to bind FGFR-2, Notch, RANK, and TrkA, potentially altering the affinities of these receptors for their ligands. The ability of CCNs to bind a multitude of receptors in various cell types may account for the remarkable versatility of their functions, and underscore the diverse signaling pathways that mediate their activities.

  5. Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria

    PubMed Central

    Whitney, J.C.; Howell, P.L.

    2014-01-01

    The biosynthesis and export of bacterial cell-surface polysaccharides is known to occur through several distinct mechanisms. Recent advances in the biochemistry and structural biology of several proteins in synthase-dependent polysaccharide secretion systems have identified key conserved components of this pathway in Gram-negative bacteria. These components include an inner-membrane-embedded polysaccharide synthase, a periplasmic tetratricopeptide repeat (TPR)-containing scaffold protein, and an outer-membrane β-barrel porin. There is also increasing evidence that many synthase-dependent systems are post-translationally regulated by the bacterial second messenger bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP). Here, we compare these core proteins in the context of the alginate, cellulose, and poly-β-D-N-acetylglucosamine (PNAG) secretion systems. PMID:23117123

  6. Sub-Cellular Localization and Complex Formation by Aminoacyl-tRNA Synthetases in Cyanobacteria: Evidence for Interaction of Membrane-Anchored ValRS with ATP Synthase.

    PubMed

    Santamaría-Gómez, Javier; Ochoa de Alda, Jesús A G; Olmedo-Verd, Elvira; Bru-Martínez, Roque; Luque, Ignacio

    2016-01-01

    tRNAs are charged with cognate amino acids by aminoacyl-tRNA synthetases (aaRSs) and subsequently delivered to the ribosome to be used as substrates for gene translation. Whether aminoacyl-tRNAs are channeled to the ribosome by transit within translational complexes that avoid their diffusion in the cytoplasm is a matter of intense investigation in organisms of the three domains of life. In the cyanobacterium Anabaena sp. PCC 7120, the valyl-tRNA synthetase (ValRS) is anchored to thylakoid membranes by means of the CAAD domain. We have investigated whether in this organism ValRS could act as a hub for the nucleation of a translational complex by attracting other aaRSs to the membranes. Out of the 20 aaRSs, only ValRS was found to localize in thylakoid membranes whereas the other enzymes occupied the soluble portion of the cytoplasm. To investigate the basis for this asymmetric distribution of aaRSs, a global search for proteins interacting with the 20 aaRSs was conducted. The interaction between ValRS and the FoF1 ATP synthase complex here reported is of utmost interest and suggests a functional link between elements of the gene translation and energy production machineries.

  7. Sub-Cellular Localization and Complex Formation by Aminoacyl-tRNA Synthetases in Cyanobacteria: Evidence for Interaction of Membrane-Anchored ValRS with ATP Synthase

    PubMed Central

    Santamaría-Gómez, Javier; Ochoa de Alda, Jesús A. G.; Olmedo-Verd, Elvira; Bru-Martínez, Roque; Luque, Ignacio

    2016-01-01

    tRNAs are charged with cognate amino acids by aminoacyl-tRNA synthetases (aaRSs) and subsequently delivered to the ribosome to be used as substrates for gene translation. Whether aminoacyl-tRNAs are channeled to the ribosome by transit within translational complexes that avoid their diffusion in the cytoplasm is a matter of intense investigation in organisms of the three domains of life. In the cyanobacterium Anabaena sp. PCC 7120, the valyl-tRNA synthetase (ValRS) is anchored to thylakoid membranes by means of the CAAD domain. We have investigated whether in this organism ValRS could act as a hub for the nucleation of a translational complex by attracting other aaRSs to the membranes. Out of the 20 aaRSs, only ValRS was found to localize in thylakoid membranes whereas the other enzymes occupied the soluble portion of the cytoplasm. To investigate the basis for this asymmetric distribution of aaRSs, a global search for proteins interacting with the 20 aaRSs was conducted. The interaction between ValRS and the FoF1 ATP synthase complex here reported is of utmost interest and suggests a functional link between elements of the gene translation and energy production machineries. PMID:27375579

  8. Functions of red cell surface proteins.

    PubMed

    Daniels, G

    2007-11-01

    The external membrane of the red cell contains numerous proteins that either cross the lipid bilayer one or more times or are anchored to it through a lipid tail. Many of these proteins express blood group activity. The functions of some of these proteins are known; in others their function can only be surmised from the protein structure or from limited experimental evidence. They are loosely divided into four categories based on their functions: membrane transporters; adhesion molecules and receptors; enzymes; and structural proteins that link the membrane with the membrane skeleton. Some of the proteins carry out more than one of these functions. Some proteins may complete their major functions during erythropoiesis or may only be important under adverse physiological conditions. Furthermore, some might be evolutionary relics and may no longer have significant functions. Polymorphisms or rare changes in red cell surface proteins are often responsible for blood groups. The biological significance of these polymorphisms or the selective pressures responsible for their stability within populations are mostly not known, although exploitation of the proteins by pathogenic micro-organisms has probably played a major role.

  9. Cell Surface Markers in Colorectal Cancer Prognosis

    PubMed Central

    Belov, Larissa; Zhou, Jerry; Christopherson, Richard I.

    2011-01-01

    The classification of colorectal cancers (CRC) is currently based largely on histologically determined tumour characteristics, such as differentiation status and tumour stage, i.e., depth of tumour invasion, involvement of regional lymph nodes and the occurrence of metastatic spread to other organs. These are the conventional prognostic factors for patient survival and often determine the requirement for adjuvant therapy after surgical resection of the primary tumour. However, patients with the same CRC stage can have very different disease-related outcomes. For some, surgical removal of early-stage tumours leads to full recovery, while for others, disease recurrence and metastasis may occur regardless of adjuvant therapy. It is therefore important to understand the molecular processes that lead to disease progression and metastasis and to find more reliable prognostic markers and novel targets for therapy. This review focuses on cell surface proteins that correlate with tumour progression, metastasis and patient outcome, and discusses some of the challenges in finding prognostic protein markers in CRC. PMID:21339979

  10. Glycopeptide capture for cell surface proteomics.

    PubMed

    Lee, M C Gilbert; Sun, Bingyun

    2014-05-09

    Cell surface proteins, including extracellular matrix proteins, participate in all major cellular processes and functions, such as growth, differentiation, and proliferation. A comprehensive characterization of these proteins provides rich information for biomarker discovery, cell-type identification, and drug-target selection, as well as helping to advance our understanding of cellular biology and physiology. Surface proteins, however, pose significant analytical challenges, because of their inherently low abundance, high hydrophobicity, and heavy post-translational modifications. Taking advantage of the prevalent glycosylation on surface proteins, we introduce here a high-throughput glycopeptide-capture approach that integrates the advantages of several existing N-glycoproteomics means. Our method can enrich the glycopeptides derived from surface proteins and remove their glycans for facile proteomics using LC-MS. The resolved N-glycoproteome comprises the information of protein identity and quantity as well as their sites of glycosylation. This method has been applied to a series of studies in areas including cancer, stem cells, and drug toxicity. The limitation of the method lies in the low abundance of surface membrane proteins, such that a relatively large quantity of samples is required for this analysis compared to studies centered on cytosolic proteins.

  11. Cell surface fluctuations studied with defocusing microscopy

    NASA Astrophysics Data System (ADS)

    Agero, U.; Monken, C. H.; Ropert, C.; Gazzinelli, R. T.; Mesquita, O. N.

    2003-05-01

    cell surface, increases the relaxation time of cytoskeleton fluctuations, and increases the phagocytosis time. Our results suggest that the methods developed in this work can be of utility to assess the importance of cytoskeleton motility in the dynamics of cellular processes such as phagocytosis exhibited by macrophages.

  12. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, Rodney Bruce; Wildung, Mark Raymond; Burke, Charles Cullen; Gershenzon, Jonathan

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  13. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  14. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis

    SciTech Connect

    Mahal, L.K.; Yareme, K.J.; Bertozzi, C.R.

    1997-05-16

    Cell surface oligosaccharide can be engineered to display unusual functional groups for the selective chemical remodeling of cell surfaces. An unnatural derivative of N-acetyl-mannosamine, which has a ketone group, was converted to the corresponding sialic acid and incorporated into cell surface oligosaccharide metabolically, resulting in the cell surface display of ketone groups. The ketone group on the cell surface can then be covalently ligated under physiological conditions with molecules carrying a complementary reactive functional group such as the hydrazide. Cell surface reactions of this kind should prove useful in the introduction of new recognition epitopes, such as peptides, oligosaccharide, or small organic molecules, onto cell surfaces and in the subsequent modulation of cell-cell or cell-small molecule binding events. The versatility of this technology was demonstrated by an example of selective drug delivery. Cells were decorated with biotin through selective conjugation to ketone groups, and selectively killed in the presence of a ricin A chain-avidin conjugate. 30 refs., 4 figs.

  15. Calreticulin: Roles in Cell-Surface Protein Expression

    PubMed Central

    Jiang, Yue; Dey, Sandeepa; Matsunami, Hiroaki

    2014-01-01

    In order to perform their designated functions, proteins require precise subcellular localizations. For cell-surface proteins, such as receptors and channels, they are able to transduce signals only when properly targeted to the cell membrane. Calreticulin is a multi-functional chaperone protein involved in protein folding, maturation, and trafficking. However, evidence has been accumulating that calreticulin can also negatively regulate the surface expression of certain receptors and channels. In these instances, depletion of calreticulin enhances cell-surface expression and function. In this review, we discuss the role of calreticulin with a focus on its negative effects on the expression of cell-surface proteins. PMID:25230046

  16. Cell surface engineering of yeast for applications in white biotechnology.

    PubMed

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2011-01-01

    Cell surface engineering is a promising strategy for the molecular breeding of whole-cell biocatalysts. By using this strategy, yeasts can be constructed by the cell surface display of functional proteins; these yeasts are referred to as arming yeasts. Because reactions using arming yeasts as whole-cell biocatalysts occur on the cell surface, materials that cannot enter the cell can be used as reaction substrates. Numerous arming yeasts have therefore been constructed for a wide range of uses such as biofuel production, synthesis of valuable chemicals, adsorption or degradation of environmental pollutants, recovery of rare metal ions, and biosensors. Here, we review the science of yeast cell surface modification as well as current applications and future opportunities.

  17. Hybrid polyketide synthases

    SciTech Connect

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  18. A Mass Spectrometric-Derived Cell Surface Protein Atlas

    PubMed Central

    Bausch-Fluck, Damaris; Hofmann, Andreas; Bock, Thomas; Frei, Andreas P.; Cerciello, Ferdinando; Jacobs, Andrea; Moest, Hansjoerg; Omasits, Ulrich; Gundry, Rebekah L.; Yoon, Charles; Schiess, Ralph; Schmidt, Alexander; Mirkowska, Paulina; Härtlová, Anetta; Van Eyk, Jennifer E.; Bourquin, Jean-Pierre; Aebersold, Ruedi; Boheler, Kenneth R.; Zandstra, Peter; Wollscheid, Bernd

    2015-01-01

    Cell surface proteins are major targets of biomedical research due to their utility as cellular markers and their extracellular accessibility for pharmacological intervention. However, information about the cell surface protein repertoire (the surfaceome) of individual cells is only sparsely available. Here, we applied the Cell Surface Capture (CSC) technology to 41 human and 31 mouse cell types to generate a mass-spectrometry derived Cell Surface Protein Atlas (CSPA) providing cellular surfaceome snapshots at high resolution. The CSPA is presented in form of an easy-to-navigate interactive database, a downloadable data matrix and with tools for targeted surfaceome rediscovery (http://wlab.ethz.ch/cspa). The cellular surfaceome snapshots of different cell types, including cancer cells, resulted in a combined dataset of 1492 human and 1296 mouse cell surface glycoproteins, providing experimental evidence for their cell surface expression on different cell types, including 136 G-protein coupled receptors and 75 membrane receptor tyrosine-protein kinases. Integrated analysis of the CSPA reveals that the concerted biological function of individual cell types is mainly guided by quantitative rather than qualitative surfaceome differences. The CSPA will be useful for the evaluation of drug targets, for the improved classification of cell types and for a better understanding of the surfaceome and its concerted biological functions in complex signaling microenvironments. PMID:25894527

  19. Mammalian ceramide synthases.

    PubMed

    Levy, Michal; Futerman, Anthony H

    2010-05-01

    In mammals, ceramide, a key intermediate in sphingolipid metabolism and an important signaling molecule, is synthesized by a family of six ceramide synthases (CerS), each of which synthesizes ceramides with distinct acyl chain lengths. There are a number of common biochemical features between the CerS, such as their catalytic mechanism, and their structure and intracellular localization. Different CerS also display remarkable differences in their biological properties, with each of them playing distinct roles in processes as diverse as cancer and tumor suppression, in the response to chemotherapeutic drugs, in apoptosis, and in neurodegenerative diseases.

  20. Monoterpene synthases from common sage (Salvia officinalis)

    DOEpatents

    Croteau, Rodney Bruce; Wise, Mitchell Lynn; Katahira, Eva Joy; Savage, Thomas Jonathan

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  1. Expanding the diversity of unnatural cell surface sialic acids

    SciTech Connect

    Luchansky, Sarah J.; Goon, Scarlett; Bertozzi, Carolyn R.

    2003-10-30

    Novel chemical reactivity can be introduced onto cell surfaces through metabolic oligosaccharide engineering. This technique exploits the substrate promiscuity of cellular biosynthetic enzymes to deliver unnatural monosaccharides bearing bioorthogonal functional groups into cellular glycans. For example, derivatives of N-acetylmannosamine (ManNAc) are converted by the cellular biosynthetic machinery into the corresponding sialic acids and subsequently delivered to the cell surface in the form of sialoglycoconjugates. Analogs of N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc) are also metabolized and incorporated into cell surface glycans, likely through the sialic acid and GalNAc salvage pathways, respectively. Furthermore, GlcNAc analogs can be incorporated into nucleocytoplasmic proteins in place of {beta}-O-GlcNAc residues. These pathways have been exploited to integrate unique electrophiles such as ketones and azides into the target glycoconjugate class. These functional groups can be further elaborated in a chemoselective fashion by condensation with hydrazides and by Staudinger ligation, respectively, thereby introducing detectable probes onto the cell. In conclusion, sialic acid derivatives are efficient vehicles for delivery of bulky functional groups to cell surfaces and masking of their hydroxyl groups improves their cellular uptake and utilization. Furthermore, the successful introduction of photoactivatable aryl azides into cell surface glycans opens up new avenues for studying sialic acid-binding proteins and elucidating the role of sialic acid in essential processes such as signaling and cell adhesion.

  2. Advances in cell surface glycoengineering reveal biological function.

    PubMed

    Nischan, Nicole; Kohler, Jennifer J

    2016-08-01

    Cell surface glycans are critical mediators of cell-cell, cell-ligand, and cell-pathogen interactions. By controlling the set of glycans displayed on the surface of a cell, it is possible to gain insight into the biological functions of glycans. Moreover, control of glycan expression can be used to direct cellular behavior. While genetic approaches to manipulate glycosyltransferase gene expression are available, their utility in glycan engineering has limitations due to the combinatorial nature of glycan biosynthesis and the functional redundancy of glycosyltransferase genes. Biochemical and chemical strategies offer valuable complements to these genetic approaches, notably by enabling introduction of unnatural functionalities, such as fluorophores, into cell surface glycans. Here, we describe some of the most recent developments in glycoengineering of cell surfaces, with an emphasis on strategies that employ novel chemical reagents. We highlight key examples of how these advances in cell surface glycan engineering enable study of cell surface glycans and their function. Exciting new technologies include synthetic lipid-glycans, new chemical reporters for metabolic oligosaccharide engineering to allow tandem and in vivo labeling of glycans, improved chemical and enzymatic methods for glycoproteomics, and metabolic glycosyltransferase inhibitors. Many chemical and biochemical reagents for glycan engineering are commercially available, facilitating their adoption by the biological community.

  3. Enhancement of Biological Reactions on Cell Surfaces via Macromolecular Crowding

    PubMed Central

    Chapanian, Rafi; Kwan, David H.; Constantinescu, Iren; Shaikh, Fathima A.; Rossi, Nicholas A.A.; Withers, Stephen G.; Kizhakkedathu, Jayachandran N.

    2016-01-01

    The reaction of macromolecules such as enzymes and antibodies with cell surfaces is often an inefficient process, requiring large amounts of expensive reagent. Here we report a general method based on macromolecular crowding with a range of neutral polymers to enhance such reactions, using red blood cells (RBCs) as a model system. Rates of conversion of Type A and B red blood cells to universal O type by removal of antigenic carbohydrates with selective glycosidases are increased up to 400-fold in the presence of crowders. Similar enhancements are seen for antibody binding. We further explore the factors underlying these enhancements using confocal microscopy and fluorescent recovery after bleaching (FRAP) techniques with various fluorescent protein fusion partners. Increased cell-surface concentration due to volume exclusion, along with two-dimensionally confined diffusion of enzymes close to the cell surface, appear to be the major contributing factors. PMID:25140641

  4. Cell surface engineering of industrial microorganisms for biorefining applications.

    PubMed

    Tanaka, Tsutomu; Kondo, Akihiko

    2015-11-15

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, biofuel/biochemical production should be promoted for replacing fossil-based industrial processes. Utilization of abundant lignocellulosic biomass as a feedstock has recently become an attractive option. In this review, we focus on recent efforts of cell surface display using industrial microorganisms such as Escherichia coli and yeast. Cell surface display is used primarily for endowing cellulolytic activity on the host cells, and enables direct fermentation to generate useful fuels and chemicals from lignocellulosic biomass. Cell surface display systems are systematically summarized, and the drawbacks/perspectives as well as successful application of surface display for industrial biotechnology are discussed.

  5. Mechanisms of acetohydroxyacid synthases.

    PubMed

    Chipman, David M; Duggleby, Ronald G; Tittmann, Kai

    2005-10-01

    Acetohydroxyacid synthases are thiamin diphosphate- (ThDP-) dependent biosynthetic enzymes found in all autotrophic organisms. Over the past 4-5 years, their mechanisms have been clarified and illuminated by protein crystallography, engineered mutagenesis and detailed single-step kinetic analysis. Pairs of catalytic subunits form an intimate dimer containing two active sites, each of which lies across a dimer interface and involves both monomers. The ThDP adducts of pyruvate, acetaldehyde and the product acetohydroxyacids can be detected quantitatively after rapid quenching. Determination of the distribution of intermediates by NMR then makes it possible to calculate individual forward unimolecular rate constants. The enzyme is the target of several herbicides and structures of inhibitor-enzyme complexes explain the herbicide-enzyme interaction.

  6. Regulation of tissue factor coagulant activity on cell surfaces

    PubMed Central

    RAO, L.V.M.; PENDURTHI, U.R.

    2012-01-01

    Summary Tissue factor (TF) is a transmembrane glycoprotein and an essential component of factor VIIa-TF enzymatic complex that triggers activation of the coagulation cascade. Formation of TF-FVIIa complexes on cell surfaces not only trigger the coagulation cascade but also transduce cell signaling via activation of protease-activated receptors. Tissue factor is expressed constitutively on cell surfaces of a variety of extravascular cell types, including fibroblasts and pericytes in and surrounding blood vessel walls and epithelial cells but generally absent on cells that come in contact with blood directly. However, TF expression could be induced in some blood cells, such as monocytes and endothelial cells, following an injury or pathological stimuli. Tissue factor is essential for hemostasis, but aberrant expression of TF leads to thrombosis. Therefore, a proper regulation of TF activity is critical for the maintenance of hemostatic balance and health in general. TF-FVIIa coagulant activity at the cell surface is influenced not only by TF protein expression levels but also independently by a variety of mechanisms, including alterations in membrane phospholipid composition and cholesterol content, thiol-dependent modifications of TF allosteric disulfide bond, and other post-translational modifications of TF. In this article, we critically review key literature on mechanisms by which TF coagulant activity is regulated at the cell surface in the absence of changes in TF protein levels with specific emphasis on recently published data and provide the authors’ perspective on the subject. PMID:23006890

  7. Roles for E-cadherin cell surface regulation in cancer

    PubMed Central

    Petrova, Yuliya I.; Schecterson, Leslayann; Gumbiner, Barry M.

    2016-01-01

    The loss of E-cadherin expression in association with the epithelial–mesenchymal transition (EMT) occurs frequently during tumor metastasis. However, metastases often retain E-cadherin expression, an EMT is not required for metastasis, and metastases can arise from clusters of tumor cells. We demonstrate that the regulation of the adhesive activity of E-cadherin present at the cell surface by an inside-out signaling mechanism is important in cancer. First, we find that the metastasis of an E-cadherin–expressing mammary cell line from the mammary gland to the lung depends on reduced E-cadherin adhesive function. An activating monoclonal antibody to E-cadherin that induces a high adhesive state significantly reduced the number of cells metastasized to the lung without affecting the growth in size of the primary tumor in the mammary gland. Second, we find that many cancer-associated germline missense mutations in the E-cadherin gene in patients with hereditary diffuse gastric cancer selectively affect the mechanism of inside-out cell surface regulation without inhibiting basic E-cadherin adhesion function. This suggests that genetic deficits in E-cadherin cell surface regulation contribute to cancer progression. Analysis of these mutations also provides insights into the molecular mechanisms underlying cadherin regulation at the cell surface. PMID:27582386

  8. Structure of a bacterial cell surface decaheme electron conduit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits...

  9. An update on cell surface proteins containing extensin-motifs.

    PubMed

    Borassi, Cecilia; Sede, Ana R; Mecchia, Martin A; Salgado Salter, Juan D; Marzol, Eliana; Muschietti, Jorge P; Estevez, Jose M

    2016-01-01

    In recent years it has become clear that there are several molecular links that interconnect the plant cell surface continuum, which is highly important in many biological processes such as plant growth, development, and interaction with the environment. The plant cell surface continuum can be defined as the space that contains and interlinks the cell wall, plasma membrane and cytoskeleton compartments. In this review, we provide an updated view of cell surface proteins that include modular domains with an extensin (EXT)-motif followed by a cytoplasmic kinase-like domain, known as PERKs (for proline-rich extensin-like receptor kinases); with an EXT-motif and an actin binding domain, known as formins; and with extracellular hybrid-EXTs. We focus our attention on the EXT-motifs with the short sequence Ser-Pro(3-5), which is found in several different protein contexts within the same extracellular space, highlighting a putative conserved structural and functional role. A closer understanding of the dynamic regulation of plant cell surface continuum and its relationship with the downstream signalling cascade is a crucial forthcoming challenge.

  10. The cell surface environment for pathogen recognition and entry

    PubMed Central

    Stow, Jennifer L; Condon, Nicholas D

    2016-01-01

    The surface of mammalian cells offers an interface between the cell interior and its surrounding milieu. As part of the innate immune system, macrophages have cell surface features optimised for probing and sampling as they patrol our tissues for pathogens, debris or dead cells. Their highly dynamic and constantly moving cell surface has extensions such as lamellipodia, filopodia and dorsal ruffles that help detect pathogens. Dorsal ruffles give rise to macropinosomes for rapid, high volume non-selective fluid sampling, receptor internalisation and plasma membrane turnover. Ruffles can also generate phagocytic cups for the receptor-mediated uptake of pathogens or particles. The membrane lipids, actin cytoskeleton, receptors and signalling proteins that constitute these cell surface domains are discussed. Although the cell surface is designed to counteract pathogens, many bacteria, viruses and other pathogens have evolved to circumvent or hijack these cell structures and their underlying machinery for entry and survival. Nevertheless, these features offer important potential for developing vaccines, drugs and preventative measures to help fight infection. PMID:27195114

  11. Phosphanilic Acid Inhibits Dihydropteroate Synthase

    DTIC Science & Technology

    1989-11-01

    dihydropteroate synthases of P. aeruginosa and E . coli were about equally susceptible to inhibition by PA. These results suggest that cells of P. aeruginosa...are more permeable to PA than cells of E . coli . Although a weak inhibitor, PA acted on dihydropteroate synthase in the same manner as the sulfonamides...with which PA is structurally related. Inhibition of E . coli by PA in a basal salts-glucose medium was prevented by p-aminobenzoic acid (pABA). However

  12. Bacterial nitric oxide synthases.

    PubMed

    Crane, Brian R; Sudhamsu, Jawahar; Patel, Bhumit A

    2010-01-01

    Nitric oxide synthases (NOSs) are multidomain metalloproteins first identified in mammals as being responsible for the synthesis of the wide-spread signaling and protective agent nitric oxide (NO). Over the past 10 years, prokaryotic proteins that are homologous to animal NOSs have been identified and characterized, both in terms of enzymology and biological function. Despite some interesting differences in cofactor utilization and redox partners, the bacterial enzymes are in many ways similar to their mammalian NOS (mNOS) counterparts and, as such, have provided insight into the structural and catalytic properties of the NOS family. In particular, spectroscopic studies of thermostable bacterial NOSs have revealed key oxyheme intermediates involved in the oxidation of substrate L-arginine (Arg) to product NO. The biological functions of some bacterial NOSs have only more recently come to light. These studies disclose new roles for NO in biology, such as taking part in toxin biosynthesis, protection against oxidative stress, and regulation of recovery from radiation damage.

  13. CD44 is the principal cell surface receptor for hyaluronate.

    PubMed

    Aruffo, A; Stamenkovic, I; Melnick, M; Underhill, C B; Seed, B

    1990-06-29

    CD44 is a broadly distributed cell surface protein thought to mediate cell attachment to extracelular matrix components or specific cell surface ligands. We have created soluble CD44-immunoglobulin fusion proteins and characterized their reactivity with tissue sections and lymph node high endothelial cells in primary culture. The CD44 target on high endothelial cells is sensitive to enzymes that degrade hyaluronate, and binding of soluble CD44 is blocked by low concentrations of hyaluronate or high concentrations of chondroitin 4- and 6-sulfates. A mouse anti-hamster hyaluonate receptor antibody reacts with COS cells expressing hamster CD44 cDNA. In sections of all tissues examined, including lymph nodes and Peyer's patches, predigestion with hyaluronidase eliminated CD44 binding.

  14. Cell surface engineering of microorganisms towards adsorption of heavy metals.

    PubMed

    Li, Peng-Song; Tao, Hu-Chun

    2015-06-01

    Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed.

  15. Synthetically functionalized retroviruses produced from the bioorthogonally engineered cell surface.

    PubMed

    Wong, Shirley; Kwon, Young Jik

    2011-02-16

    Conjugation of desired molecules onto retroviral surfaces through the ease of the bioorthogonal functionalization method was demonstrated. Oxidation of surface sialic acids using periodate and further p-anisidine-catalyzed conjugation with aminooxy-bearing molecules were used to directly label retroviral envelope with a fluorescent dye. The retroviral particles that were produced from a bioorthogonally functionalized virus producing cell surface and further tethered with magnetic nanoparticles were efficiently purified by simple magnetic column separation and capable of magnet-directed transduction.

  16. Cell-surface markers for colon adenoma and adenocarcinoma.

    PubMed

    Sewda, Kamini; Coppola, Domenico; Enkemann, Steven; Yue, Binglin; Kim, Jongphil; Lopez, Alexis S; Wojtkowiak, Jonathan W; Stark, Valerie E; Morse, Brian; Shibata, David; Vignesh, Shivakumar; Morse, David L

    2016-04-05

    Early detection of colorectal cancer (CRC) is crucial for effective treatment. Among CRC screening techniques, optical colonoscopy is widely considered the gold standard. However, it is a costly and invasive procedure with a low rate of compliance. Our long-term goal is to develop molecular imaging agents for the non-invasive detection of CRC by molecular imaging-based colonoscopy using CT, MRI or fluorescence. To achieve this, cell surface targets must be identified and validated. Here, we report the discovery of cell-surface markers that distinguish CRC from surrounding tissues that could be used as molecular imaging targets. Profiling of mRNA expression microarray data from patient tissues including adenoma, adenocarcinoma, and normal gastrointestinal tissues was used to identify potential CRC specific cell-surface markers. Of the identified markers, six were selected for further validation (CLDN1, GPR56, GRM8, LY6G6D/F, SLCO1B3 and TLR4). Protein expression was confirmed by immunohistochemistry of patient tissues. Except for SLCO1B3, diffuse and low expression was observed for each marker in normal colon tissues. The three markers with the greatest protein overexpression were CLDN1, LY6G6D/F and TLR4, where at least one of these markers was overexpressed in 97% of the CRC samples. GPR56, LY6G6D/F and SLCO1B3 protein expression was significantly correlated with the proximal tumor location and with expression of mismatch repair genes. Marker expression was further validated in CRC cell lines. Hence, three cell-surface markers were discovered that distinguish CRC from surrounding normal tissues. These markers can be used to develop imaging or therapeutic agents targeted to the luminal surface of CRC.

  17. Mapping cell surface adhesion by rotation tracking and adhesion footprinting

    NASA Astrophysics Data System (ADS)

    Li, Isaac T. S.; Ha, Taekjip; Chemla, Yann R.

    2017-03-01

    Rolling adhesion, in which cells passively roll along surfaces under shear flow, is a critical process involved in inflammatory responses and cancer metastasis. Surface adhesion properties regulated by adhesion receptors and membrane tethers are critical in understanding cell rolling behavior. Locally, adhesion molecules are distributed at the tips of membrane tethers. However, how functional adhesion properties are globally distributed on the individual cell’s surface is unknown. Here, we developed a label-free technique to determine the spatial distribution of adhesive properties on rolling cell surfaces. Using dark-field imaging and particle tracking, we extract the rotational motion of individual rolling cells. The rotational information allows us to construct an adhesion map along the contact circumference of a single cell. To complement this approach, we also developed a fluorescent adhesion footprint assay to record the molecular adhesion events from cell rolling. Applying the combination of the two methods on human promyelocytic leukemia cells, our results surprisingly reveal that adhesion is non-uniformly distributed in patches on the cell surfaces. Our label-free adhesion mapping methods are applicable to the variety of cell types that undergo rolling adhesion and provide a quantitative picture of cell surface adhesion at the functional and molecular level.

  18. Structure of a Bacterial Cell Surface Decaheme Electron Conduit

    SciTech Connect

    Clarke, Thomas A.; Edwards, Marcus; Gates, Andrew J.; Hall, Andrea; White, Gaye; Bradley, Justin; Reardon, Catherine L.; Shi, Liang; Beliaev, Alex S.; Marshall, Matthew J.; Wang, Zheming; Watmough, Nicholas; Fredrickson, Jim K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.

    2011-05-23

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves deca-heme cytochromes that are located on the bacterial cell surface at the termini of trans-outermembrane (OM) electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular inter-cytochrome electron exchange along ‘nanowire’ appendages. We present a 3.2 Å crystal structure of one of these deca-heme cytochromes, MtrF, that allows the spatial organization of the ten hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65 Å octa-heme chain transects the length of the protein and is bisected by a planar 45 Å tetra-heme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g. minerals), soluble substrates (e.g. flavins) and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.

  19. Establishment of cell surface engineering and its development.

    PubMed

    Ueda, Mitsuyoshi

    2016-07-01

    Cell surface display of proteins/peptides has been established based on mechanisms of localizing proteins to the cell surface. In contrast to conventional intracellular and extracellular (secretion) expression systems, this method, generally called an arming technology, is particularly effective when using yeasts as a host, because the control of protein folding that is often required for the preparation of proteins can be natural. This technology can be employed for basic and applied research purposes. In this review, I describe various strategies for the construction of engineered yeasts and provide an outline of the diverse applications of this technology to industrial processes such as the production of biofuels and chemicals, as well as bioremediation and health-related processes. Furthermore, this technology is suitable for novel protein engineering and directed evolution through high-throughput screening, because proteins/peptides displayed on the cell surface can be directly analyzed using intact cells without concentration and purification. Functional proteins/peptides with improved or novel functions can be created using this beneficial, powerful, and promising technique.

  20. Cell Surface Vimentin Is an Attachment Receptor for Enterovirus 71

    PubMed Central

    Du, Ning; Cong, Haolong; Tian, Hongchao; Zhang, Hua; Zhang, Wenliang; Song, Lei

    2014-01-01

    ABSTRACT Enterovirus 71 (EV71) is a highly transmissible pathogenic agent that causes severe central nervous system diseases in infected infants and young children. Here, we reported that EV71 VP1 protein could bind to vimentin intermediate filaments expressed on the host cell surface. Soluble vimentin or an antibody against vimentin could inhibit the binding of EV71 to host cells. Accompanied with the reduction of vimentin expression on the cell surface, the binding of EV71 to cells was remarkably decreased. Further evidence showed that the N terminus of vimentin is responsible for the interaction between EV71 and vimentin. These results indicated that vimentin on the host cell surface may serve as an attachment site that mediated the initial binding and subsequently increased the infectivity of EV71. IMPORTANCE This study delivers important findings on the roles of vimentin filaments in relation to EV71 infection and provides information that not only improves our understanding of EV71 pathogenesis but also presents us with potentially new strategies for the treatment of diseases caused by EV71 infections. PMID:24623428

  1. Structure of a bacterial cell surface decaheme electron conduit.

    PubMed

    Clarke, Thomas A; Edwards, Marcus J; Gates, Andrew J; Hall, Andrea; White, Gaye F; Bradley, Justin; Reardon, Catherine L; Shi, Liang; Beliaev, Alexander S; Marshall, Matthew J; Wang, Zheming; Watmough, Nicholas J; Fredrickson, James K; Zachara, John M; Butt, Julea N; Richardson, David J

    2011-06-07

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular intercytochrome electron exchange along "nanowire" appendages. We present a 3.2-Å crystal structure of one of these decaheme cytochromes, MtrF, that allows the spatial organization of the 10 hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65-Å octaheme chain transects the length of the protein and is bisected by a planar 45-Å tetraheme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g., minerals), soluble substrates (e.g., flavins), and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.

  2. Mapping cell surface adhesion by rotation tracking and adhesion footprinting

    PubMed Central

    Li, Isaac T. S.; Ha, Taekjip; Chemla, Yann R.

    2017-01-01

    Rolling adhesion, in which cells passively roll along surfaces under shear flow, is a critical process involved in inflammatory responses and cancer metastasis. Surface adhesion properties regulated by adhesion receptors and membrane tethers are critical in understanding cell rolling behavior. Locally, adhesion molecules are distributed at the tips of membrane tethers. However, how functional adhesion properties are globally distributed on the individual cell’s surface is unknown. Here, we developed a label-free technique to determine the spatial distribution of adhesive properties on rolling cell surfaces. Using dark-field imaging and particle tracking, we extract the rotational motion of individual rolling cells. The rotational information allows us to construct an adhesion map along the contact circumference of a single cell. To complement this approach, we also developed a fluorescent adhesion footprint assay to record the molecular adhesion events from cell rolling. Applying the combination of the two methods on human promyelocytic leukemia cells, our results surprisingly reveal that adhesion is non-uniformly distributed in patches on the cell surfaces. Our label-free adhesion mapping methods are applicable to the variety of cell types that undergo rolling adhesion and provide a quantitative picture of cell surface adhesion at the functional and molecular level. PMID:28290531

  3. Diverse specificity of cellulosome attachment to the bacterial cell surface

    PubMed Central

    Brás, Joana L. A.; Pinheiro, Benedita A.; Cameron, Kate; Cuskin, Fiona; Viegas, Aldino; Najmudin, Shabir; Bule, Pedro; Pires, Virginia M. R.; Romão, Maria João; Bayer, Edward A.; Spencer, Holly L.; Smith, Steven; Gilbert, Harry J.; Alves, Victor D.; Carvalho, Ana Luísa; Fontes, Carlos M. G. A.

    2016-01-01

    During the course of evolution, the cellulosome, one of Nature’s most intricate multi-enzyme complexes, has been continuously fine-tuned to efficiently deconstruct recalcitrant carbohydrates. To facilitate the uptake of released sugars, anaerobic bacteria use highly ordered protein-protein interactions to recruit these nanomachines to the cell surface. Dockerin modules located within a non-catalytic macromolecular scaffold, whose primary role is to assemble cellulosomal enzymatic subunits, bind cohesin modules of cell envelope proteins, thereby anchoring the cellulosome onto the bacterial cell. Here we have elucidated the unique molecular mechanisms used by anaerobic bacteria for cellulosome cellular attachment. The structure and biochemical analysis of five cohesin-dockerin complexes revealed that cell surface dockerins contain two cohesin-binding interfaces, which can present different or identical specificities. In contrast to the current static model, we propose that dockerins utilize multivalent modes of cohesin recognition to recruit cellulosomes to the cell surface, a mechanism that maximises substrate access while facilitating complex assembly. PMID:27924829

  4. Engineering novel cell surface chemistry for selective tumor cell targeting

    SciTech Connect

    Bertozzi, C.R. |

    1997-12-31

    A common feature of many different cancers is the high expression level of the two monosaccharides sialic acid and fucose within the context of cell-surface associated glycoconjugates. A correlation has been made between hypersialylation and/or hyperfucosylation and the highly metastatic phenotype. Thus, a targeting strategy based on sialic acid or fucose expression would be a powerful tool for the development of new cancer cell-selective therapies and diagnostic agents. We have discovered that ketone groups can be incorporated metabolically into cell-surface associated sialic acids. The ketone is can be covalently ligated with hydrazide functionalized proteins or small molecules under physiological conditions. Thus, we have discovered a mechanism to selectively target hydrazide conjugates to highly sialylated cells such as cancer cells. Applications of this technology to the generation of novel cancer cell-selective toxins and MRI contrast reagents will be discussed, in addition to progress towards the use of cell surface fucose residues as vehicles for ketone expression.

  5. Transmembrane myosin chitin synthase involved in mollusc shell formation produced in Dictyostelium is active

    SciTech Connect

    Schoenitzer, Veronika; Eichner, Norbert; Clausen-Schaumann, Hauke; Weiss, Ingrid M.

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Dictyostelium produces the 264 kDa myosin chitin synthase of bivalve mollusc Atrina. Black-Right-Pointing-Pointer Chitin synthase activity releases chitin, partly associated with the cell surface. Black-Right-Pointing-Pointer Membrane extracts of transgenic slime molds produce radiolabeled chitin in vitro. Black-Right-Pointing-Pointer Chitin producing Dictyostelium cells can be characterized by atomic force microscopy. Black-Right-Pointing-Pointer This model system enables us to study initial processes of chitin biomineralization. -- Abstract: Several mollusc shells contain chitin, which is formed by a transmembrane myosin motor enzyme. This protein could be involved in sensing mechanical and structural changes of the forming, mineralizing extracellular matrix. Here we report the heterologous expression of the transmembrane myosin chitin synthase Ar-CS1 of the bivalve mollusc Atrina rigida (2286 amino acid residues, M.W. 264 kDa/monomer) in Dictyostelium discoideum, a model organism for myosin motor proteins. Confocal laser scanning immunofluorescence microscopy (CLSM), chitin binding GFP detection of chitin on cells and released to the cell culture medium, and a radiochemical activity assay of membrane extracts revealed expression and enzymatic activity of the mollusc chitin synthase in transgenic slime mold cells. First high-resolution atomic force microscopy (AFM) images of Ar-CS1 transformed cellulose synthase deficient D. discoideumdcsA{sup -} cell lines are shown.

  6. Analysis of Cell Surface Proteome Changes via Label-free, Quantitative Mass Spectrometry*S⃞

    PubMed Central

    Schiess, Ralph; Mueller, Lukas N.; Schmidt, Alexander; Mueller, Markus; Wollscheid, Bernd; Aebersold, Ruedi

    2009-01-01

    We present a mass spectrometry-based strategy for the specific detection and quantification of cell surface proteome changes. The method is based on the label-free quantification of peptide patterns acquired by high mass accuracy mass spectrometry using new software tools and the cell surface capturing technology that selectively enriches glycopeptides exposed to the cell exterior. The method was applied to monitor dynamic protein changes in the cell surface glycoproteome of Drosophila melanogaster cells. The results led to the construction of a cell surface glycoprotein atlas consisting of 202 cell surface glycoproteins of D. melanogaster Kc167 cells and indicated relative quantitative changes of cell surface glycoproteins in four different cellular states. Furthermore we specifically investigated cell surface proteome changes upon prolonged insulin stimulation. The data revealed insulin-dependent cell surface glycoprotein dynamics, including insulin receptor internalization, and linked these changes to intracellular signaling networks. PMID:19036722

  7. Cell-surface prion protein interacts with glycosaminoglycans.

    PubMed

    Pan, Tao; Wong, Boon-Seng; Liu, Tong; Li, Ruliang; Petersen, Robert B; Sy, Man-Sun

    2002-11-15

    We used ELISA and flow cytometry to study the binding of prion protein PrP to glycosaminoglycans (GAGs). We found that recombinant human PrP (rPrP) binds GAGs including chondroitin sulphate A, chondroitin sulphate B, hyaluronic acid, and heparin. rPrP binding to GAGs occurs via the N-terminus, a region known to bind divalent cations. Additionally, rPrP binding to GAGs is enhanced in the presence of Cu2+ and Zn2+, but not Ca2+ and Mn2+. rPrP binds heparin strongest, and the binding is inhibited by certain heparin analogues, including heparin disaccharide and sulphate-containing monosaccharides, but not by acetylated heparin. Full-length normal cellular prion protein (PrPC), but not N-terminally truncated PrPC species, from human brain bind GAGs in a similar Cu2+/Zn2+-enhanced fashion. We found that GAGs specifically bind to a synthetic peptide corresponding to amino acid residues 23-35 in the N-terminus of rPrP. We further demonstrated that while both wild-type PrPC and an octapeptide-repeat-deleted mutant PrP produced by transfected cells bound heparin at the cell surface, the PrP N-terminal deletion mutant and non-transfectant control failed to bind heparin. Binding of heparin to wild-type PrPC on the cell surface results in a reduction of the level of cell-surface PrPC. These results provide strong evidence that PrPC is a surface receptor for GAGs.

  8. Cell Surface Nucleolin Facilitates Enterovirus 71 Binding and Infection

    PubMed Central

    Su, Pei-Yi; Wang, Ya-Fang; Huang, Sheng-Wen; Lo, Yu-Chih; Wang, Ya-Hui; Wu, Shang-Rung; Shieh, Dar-Bin; Wang, Jen-Ren; Lai, Ming-Der

    2015-01-01

    ABSTRACT Because the pathogenesis of enterovirus 71 (EV71) remains mostly ambiguous, identifying the factors that mediate viral binding and entry to host cells is indispensable to ultimately uncover the mechanisms that underlie virus infection and pathogenesis. Despite the identification of several receptors/attachment molecules for EV71, the binding, entry, and infection mechanisms of EV71 remain unclear. Herein, we employed glycoproteomic approaches to identify human nucleolin as a novel binding receptor for EV71. Glycoproteins purified by lectin chromatography from the membrane extraction of human cells were treated with sialidase, followed by immunoprecipitation with EV71 particles. Among the 16 proteins identified by tandem mass spectrometry analysis, cell surface nucleolin attracted our attention. We found that EV71 interacted directly with nucleolin via the VP1 capsid protein and that an antinucleolin antibody reduced the binding of EV71 to human cells. In addition, the knockdown of cell surface nucleolin decreased EV71 binding, infection, and production in human cells. Furthermore, the expression of human nucleolin on the cell surface of a mouse cell line increased EV71 binding and conferred EV71 infection and production in the cells. These results strongly indicate that human nucleolin can mediate EV71 binding to and infection of cells. Our findings also demonstrate that the use of glycoproteomic approaches is a reliable methodology to discover novel receptors for pathogens. IMPORTANCE Outbreaks of EV71 have been reported in Asia-Pacific countries and have caused thousands of deaths in young children during the last 2 decades. The discovery of new EV71-interacting molecules to understand the infection mechanism has become an emergent issue. Hence, this study uses glycoproteomic approaches to comprehensively investigate the EV71-interacting glycoproteins. Several EV71-interacting glycoproteins are identified, and the role of cell surface nucleolin in

  9. Targeting Cell Surface Proteins in Molecular Photoacoustic Imaging to Detect Ovarian Cancer Early

    DTIC Science & Technology

    2012-07-01

    10-1-0422 TITLE: Targeting Cell Surface Proteins in Molecular Photoacoustic Imaging to Detect Ovarian Cancer Early PRINCIPAL...molecular imaging 7 cdrescher@fhcrc.org Targeting Cell Surface Proteins in Molecular Photoacoustic Imaging to Detect Ovarian Cancer Early Page 3...Targeting Cell Surface Proteins in Molecular Photoacoustic Imaging to Detect Ovarian Cancer Early Charles W Drescher, MD, Principle Investigator

  10. Distribution of cell surface saccharides on pancreatic cells

    PubMed Central

    Maylie-Pfenninger, M; Jamieson, JD

    1979-01-01

    We describe here a simple, general procedure for the purification of a variety of lectins, and for the preparation of lectin-ferritin conjugates of defined molar composition and binding properties to be used as probes for cell surface saccharides. The technique uses a “universal” affinity column for lectins and their conjugates, which consists of hog sulfated gastric mucin glycopeptides covalently coupled to agarose. The procedure involes: (a) purification of lectins by chromatography of aqueous extracts of seeds or other lectin-containing fluids over the affinity column, followed by desorption of the desired lectin with its hapten suge; (b) iodination of the lectin to serve as a marker during subsequent steps; (c) conjugation of lectin to ferritin with glutaraldehyde; (d) collection of active lectin-ferritin conjugates by affinity chromatography; and (e) separation of monomeric lectin-ferritin conjugates from larger aggregates and unconjugated lectin by gel chromatography. Based on radioactivity and absorbancy at 310 nm for lectin and ferritin, respectively, the conjugates consist of one to two molecules of lectin per ferrritin molecule. Binding studies of native lectins and their ferritin conjugates to dispersed pancreatic acinar cells showed that the conjugation procedure does not significantly alter either the affinity constant of the lectin for its receptor on the cell surface or the number of sites detected. PMID:422653

  11. Bacterial Cell Surface Adsorption of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Jiao, Y.; Park, D.; Reed, D.; Fujita, Y.; Yung, M.; Anderko, A.; Eslamimanesh, A.

    2015-12-01

    Rare earth elements (REE) play a critical role in many emerging clean energy technologies, including high-power magnets, wind turbines, solar panels, hybrid/electric vehicle batteries and lamp phosphors. In order to sustain demand for such technologies given current domestic REE shortages, there is a need to develop new approaches for ore processing/refining and recycling of REE-containing materials. To this end, we have developed a microbially-mediated bioadsorption strategy with application towards enrichment of REE from complex mixtures. Specifically, the bacterium Caulobacter crescentus was genetically engineered to display lanthanide binding tags (LBTs), short peptides that possess high affinity and specificity for rare earth elements, on its cell surface S-layer protein. Under optimal conditions, LBT-displayed cells adsorbed greater than 5-fold more REE than control cells lacking LBTs. Competition binding experiments with a selection of REEs demonstrated that our engineered cells could facilitate separation of light- from heavy- REE. Importantly, binding of REE onto our engineered strains was much more favorable compared to non-REE metals. Finally, REE bound to the cell surface could be stripped off using citrate, providing an effective and non-toxic REE recovery method. Together, this data highlights the potential of our approach for selective REE enrichment from REE containing mixtures.

  12. Cell Surface Measurements in Hydrocarbon and Carbohydrate Fermentations

    PubMed Central

    Neufeld, R. J.; Zajic, J. E.; Gerson, D. F.

    1980-01-01

    Acinetobacter calcoaceticus was grown in 11-liter batch fermentations with hexadecane or sodium citrate as the sole source of carbon. Surface and interfacial tension measurements of the microbial broth indicated that surface-active compounds were being produced only during growth on the hydrocarbon substrate. Contact angle measurements of an aqueous drop on a smooth lawn of cells in a hexadecane bath indicated a highly hydrophobic surface of the cells in the initial stages of the hydrocarbon fermentation (120° contact angle). At this stage, the entire cell population was bound to the hydrocarbon-aqueous interface. The contact angle dropped rapidly to approximately 45° after 14 h into the fermentation. This coincided with a shift of the cell population to the aqueous phase. Thus, the cells demonstrated more hydrophilic characteristics in the later stages of the fermentation. Contact angles on cells grown on sodium citrate ranged from 18 to 24° throughout the fermentation. The cells appear to be highly hydrophilic during growth on a soluble substrate. From the contact angle and aqueous-hydrocarbon interfacial tension, the surface free energy of the cells was calculated along with the cell-aqueous and cell-hydrocarbon interfacial tension. The results of these measurements were useful in quantitatively evaluating the hydrophobic nature of the cell surface during growth on hydrocarbons and comparing it with the hydrophilic nature of the cell surface during growth on a soluble substrate. PMID:16345526

  13. Neutrophil cell surface receptors and their intracellular signal transduction pathways☆

    PubMed Central

    Futosi, Krisztina; Fodor, Szabina; Mócsai, Attila

    2013-01-01

    Neutrophils play a critical role in the host defense against bacterial and fungal infections, but their inappropriate activation also contributes to tissue damage during autoimmune and inflammatory diseases. Neutrophils express a large number of cell surface receptors for the recognition of pathogen invasion and the inflammatory environment. Those include G-protein-coupled chemokine and chemoattractant receptors, Fc-receptors, adhesion receptors such as selectins/selectin ligands and integrins, various cytokine receptors, as well as innate immune receptors such as Toll-like receptors and C-type lectins. The various cell surface receptors trigger very diverse signal transduction pathways including activation of heterotrimeric and monomeric G-proteins, receptor-induced and store-operated Ca2 + signals, protein and lipid kinases, adapter proteins and cytoskeletal rearrangement. Here we provide an overview of the receptors involved in neutrophil activation and the intracellular signal transduction processes they trigger. This knowledge is crucial for understanding how neutrophils participate in antimicrobial host defense and inflammatory tissue damage and may also point to possible future targets of the pharmacological therapy of neutrophil-mediated autoimmune or inflammatory diseases. PMID:23994464

  14. Sucrose Synthase: Expanding Protein Function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sucrose synthase (SUS: EC 2.4.1.13), a key enzyme in plant sucrose catabolism, is uniquely able to mobilize sucrose into multiple pathways involved in metabolic, structural, and storage functions. Our research indicates that the biological function of SUS may extend beyond its catalytic activity. Th...

  15. Autonomous Molecular Cascades for Evaluation of Cell Surfaces

    PubMed Central

    Rudchenko, Maria; Taylor, Steven; Pallavi, Payal; Dechkovskaia, Alesia; Khan, Safana; Butler, Vincent P.; Rudchenko, Sergei; Stojanovic, Milan N.

    2013-01-01

    Molecular automata are mixtures of molecules that undergo precisely defined structural changes in response to sequential interactions with inputs1–4. Previously studied nucleic acid-based-automata include game-playing molecular devices (MAYA automata3,5) and finite-state automata for analysis of nucleic acids6 with the latter inspiring circuits for the analysis of RNA species inside cells7,8. Here, we describe automata based on strand-displacement9,10 cascades directed by antibodies that can analyze cells by using their surface markers as inputs. The final output of a molecular automaton that successfully completes its analysis is the presence of a unique molecular tag on the cell surface of a specific subpopulation of lymphocytes within human blood cells. PMID:23892986

  16. Only scratching the cell surface: extracellular signals in cerebrum development.

    PubMed

    Hébert, Jean M

    2013-08-01

    Numerous roles have been identified for extracellular signals such as Fibroblast Growth Factors (FGFs), Transforming Growth Factor-βs (TGFβs), Wingless-Int proteins (WNTs), and Sonic Hedgehog (SHH) in assigning fates to cells during development of the cerebrum. However, several fundamental questions remain largely unexplored. First, how does the same extracellular signal instruct precursor cells in different locations or at different stages to adopt distinct fates? And second, how does a precursor cell integrate multiple signals to adopt a specific fate? Answers to these questions require knowing the mechanisms that underlie each cell type's competence to respond to certain extracellular signals. This brief review provides illustrative examples of potential mechanisms that begin to bridge the gap between cell surface and cell fate during cerebrum development.

  17. Mechanotransduction across the cell surface and through the cytoskeleton

    NASA Technical Reports Server (NTRS)

    Wang, N.; Butler, J. P.; Ingber, D. E.

    1993-01-01

    Mechanical stresses were applied directly to cell surface receptors with a magnetic twisting device. The extracellular matrix receptor, integrin beta 1, induced focal adhesion formation and supported a force-dependent stiffening response, whereas nonadhesion receptors did not. The cytoskeletal stiffness (ratio of stress to strain) increased in direct proportion to the applied stress and required intact microtubules and intermediate filaments as well as microfilaments. Tensegrity models that incorporate mechanically interdependent struts and strings that reorient globally in response to a localized stress mimicked this response. These results suggest that integrins act as mechanoreceptors and transmit mechanical signals to the cytoskeleton. Mechanotransduction, in turn, may be mediated simultaneously at multiple locations inside the cell through force-induced rearrangements within a tensionally integrated cytoskeleton.

  18. SPARC regulates collagen interaction with cardiac fibroblast cell surfaces.

    PubMed

    Harris, Brett S; Zhang, Yuhua; Card, Lauren; Rivera, Lee B; Brekken, Rolf A; Bradshaw, Amy D

    2011-09-01

    Cardiac tissue from mice that do not express secreted protein acidic and rich in cysteine (SPARC) have reduced amounts of insoluble collagen content at baseline and in response to pressure overload hypertrophy compared with wild-type (WT) mice. However, the cellular mechanism by which SPARC affects myocardial collagen is not clearly defined. Although expression of SPARC by cardiac myocytes has been detected in vitro, immunohistochemistry of hearts demonstrated SPARC staining primarily associated with interstitial fibroblastic cells. Primary cardiac fibroblasts isolated from SPARC-null and WT mice were assayed for collagen I synthesis by [(3)H]proline incorporation into procollagen and by immunoblot analysis of procollagen processing. Bacterial collagenase was used to discern intracellular from extracellular forms of collagen I. Increased amounts of collagen I were found associated with SPARC-null versus WT cells, and the proportion of total collagen I detected on SPARC-null fibroblasts without propeptides [collagen-α(1)(I)] was higher than in WT cells. In addition, the amount of total collagen sensitive to collagenase digestion (extracellular) was greater in SPARC-null cells than in WT cells, indicating an increase in cell surface-associated collagen in the absence of SPARC. Furthermore, higher levels of collagen type V, a fibrillar collagen implicated in collagen fibril initiation, were found in SPARC-null fibroblasts. The absence of SPARC did not result in significant differences in proliferation or in decreased production of procollagen I by cardiac fibroblasts. We conclude that SPARC regulates collagen in the heart by modulating procollagen processing and interactions with fibroblast cell surfaces. These results are consistent with decreased levels of interstitial collagen in the hearts of SPARC-null mice being due primarily to inefficient collagen deposition into the extracellular matrix rather than to differences in collagen production.

  19. Cell-surface translational dynamics of nicotinic acetylcholine receptors

    PubMed Central

    Barrantes, Francisco J.

    2014-01-01

    Synapse efficacy heavily relies on the number of neurotransmitter receptors available at a given time. In addition to the equilibrium between the biosynthetic production, exocytic delivery and recycling of receptors on the one hand, and the endocytic internalization on the other, lateral diffusion and clustering of receptors at the cell membrane play key roles in determining the amount of active receptors at the synapse. Mobile receptors traffic between reservoir compartments and the synapse by thermally driven Brownian motion, and become immobilized at the peri-synaptic region or the synapse by: (a) clustering mediated by homotropic inter-molecular receptor–receptor associations; (b) heterotropic associations with non-receptor scaffolding proteins or the subjacent cytoskeletal meshwork, leading to diffusional “trapping,” and (c) protein-lipid interactions, particularly with the neutral lipid cholesterol. This review assesses the contribution of some of these mechanisms to the supramolecular organization and dynamics of the paradigm neurotransmitter receptor of muscle and neuronal cells -the nicotinic acetylcholine receptor (nAChR). Currently available information stemming from various complementary biophysical techniques commonly used to interrogate the dynamics of cell-surface components is critically discussed. The translational mobility of nAChRs at the cell surface differs between muscle and neuronal receptors in terms of diffusion coefficients and residence intervals at the synapse, which cover an ample range of time regimes. A peculiar feature of brain α7 nAChR is its ability to spend much of its time confined peri-synaptically, vicinal to glutamatergic (excitatory) and GABAergic (inhibitory) synapses. An important function of the α7 nAChR may thus be visiting the territories of other neurotransmitter receptors, differentially regulating the dynamic equilibrium between excitation and inhibition, depending on its residence time in each domain. PMID

  20. Substrate recognition by the cell surface palmitoyl transferase DHHC5.

    PubMed

    Howie, Jacqueline; Reilly, Louise; Fraser, Niall J; Vlachaki Walker, Julia M; Wypijewski, Krzysztof J; Ashford, Michael L J; Calaghan, Sarah C; McClafferty, Heather; Tian, Lijun; Shipston, Michael J; Boguslavskyi, Andrii; Shattock, Michael J; Fuller, William

    2014-12-09

    The cardiac phosphoprotein phospholemman (PLM) regulates the cardiac sodium pump, activating the pump when phosphorylated and inhibiting it when palmitoylated. Protein palmitoylation, the reversible attachment of a 16 carbon fatty acid to a cysteine thiol, is catalyzed by the Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases. The cell surface palmitoyl acyltransferase DHHC5 regulates a growing number of cellular processes, but relatively few DHHC5 substrates have been identified to date. We examined the expression of DHHC isoforms in ventricular muscle and report that DHHC5 is among the most abundantly expressed DHHCs in the heart and localizes to caveolin-enriched cell surface microdomains. DHHC5 coimmunoprecipitates with PLM in ventricular myocytes and transiently transfected cells. Overexpression and silencing experiments indicate that DHHC5 palmitoylates PLM at two juxtamembrane cysteines, C40 and C42, although C40 is the principal palmitoylation site. PLM interaction with and palmitoylation by DHHC5 is independent of the DHHC5 PSD-95/Discs-large/ZO-1 homology (PDZ) binding motif, but requires a ∼ 120 amino acid region of the DHHC5 intracellular C-tail immediately after the fourth transmembrane domain. PLM C42A but not PLM C40A inhibits the Na pump, indicating PLM palmitoylation at C40 but not C42 is required for PLM-mediated inhibition of pump activity. In conclusion, we demonstrate an enzyme-substrate relationship for DHHC5 and PLM and describe a means of substrate recruitment not hitherto described for this acyltransferase. We propose that PLM palmitoylation by DHHC5 promotes phospholipid interactions that inhibit the Na pump.

  1. SIRT3 Deacetylates Ceramide Synthases

    PubMed Central

    Novgorodov, Sergei A.; Riley, Christopher L.; Keffler, Jarryd A.; Yu, Jin; Kindy, Mark S.; Macklin, Wendy B.; Lombard, David B.; Gudz, Tatyana I.

    2016-01-01

    Experimental evidence supports the role of mitochondrial ceramide accumulation as a cause of mitochondrial dysfunction and brain injury after stroke. Herein, we report that SIRT3 regulates mitochondrial ceramide biosynthesis via deacetylation of ceramide synthase (CerS) 1, 2, and 6. Reciprocal immunoprecipitation experiments revealed that CerS1, CerS2, and CerS6, but not CerS4, are associated with SIRT3 in cerebral mitochondria. Furthermore, CerS1, -2, and -6 are hyperacetylated in the mitochondria of SIRT3-null mice, and SIRT3 directly deacetylates the ceramide synthases in a NAD+-dependent manner that increases enzyme activity. Investigation of the SIRT3 role in mitochondrial response to brain ischemia/reperfusion (IR) showed that SIRT3-mediated deacetylation of ceramide synthases increased enzyme activity and ceramide accumulation after IR. Functional studies demonstrated that absence of SIRT3 rescued the IR-induced blockade of the electron transport chain at the level of complex III, attenuated mitochondrial outer membrane permeabilization, and decreased reactive oxygen species generation and protein carbonyls in mitochondria. Importantly, Sirt3 gene ablation reduced the brain injury after IR. These data support the hypothesis that IR triggers SIRT3-dependent deacetylation of ceramide synthases and the elevation of ceramide, which could inhibit complex III, leading to increased reactive oxygen species generation and brain injury. The results of these studies highlight a novel mechanism of SIRT3 involvement in modulating mitochondrial ceramide biosynthesis and suggest an important role of SIRT3 in mitochondrial dysfunction and brain injury after experimental stroke. PMID:26620563

  2. Atomic Force Microscopy in Microbiology: New Structural and Functional Insights into the Microbial Cell Surface

    PubMed Central

    2014-01-01

    ABSTRACT Microbial cells sense and respond to their environment using their surface constituents. Therefore, understanding the assembly and biophysical properties of cell surface molecules is an important research topic. With its ability to observe living microbial cells at nanometer resolution and to manipulate single-cell surface molecules, atomic force microscopy (AFM) has emerged as a powerful tool in microbiology. Here, we survey major breakthroughs made in cell surface microbiology using AFM techniques, emphasizing the most recent structural and functional insights. PMID:25053785

  3. Targeting Prostate Cancer Stemlike Cells Through Cell Surface-Expressed GRP78

    DTIC Science & Technology

    2015-10-01

    the cell surface GRP78-expressing subpopulation of cells supports nuclear Akt/GSK-3/ Snail -1 signaling. These findings are important because they are...original tasks outlined in the approved statement of work. 15. SUBJECT TERMS prostate cancer, cell surface GRP78, cancer stem cell, Snail -1 16. SECURITY...associated with cell surface GRP78 (Akt/GSK-3/ Snail -1) were upregulated in GRP78(+) relative to GRP78(-) prostate cancer cells. Our results in this

  4. Cell Surface Proteome of Dental Pulp Stem Cells Identified by Label-Free Mass Spectrometry

    PubMed Central

    Niehage, Christian; Karbanová, Jana; Steenblock, Charlotte

    2016-01-01

    Multipotent mesenchymal stromal cells (MSCs) are promising tools for regenerative medicine. They can be isolated from different sources based on their plastic-adherence property. The identification of reliable cell surface markers thus becomes the Holy Grail for their prospective isolation. Here, we determine the cell surface proteomes of human dental pulp-derived MSCs isolated from single donors after culture expansion in low (2%) or high (10%) serum-containing media. Cell surface proteins were tagged on intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin, which allows their enrichment by streptavidin pull-down. For the proteomic analyses, we first compared label-free methods to analyze cell surface proteomes i.e. composition, enrichment and proteomic differences, and we developed a new mathematical model to determine cell surface protein enrichment using a combinatorial gene ontology query. Using this workflow, we identified 101 cluster of differentiation (CD) markers and 286 non-CD cell surface proteins. Based on this proteome profiling, we identified 14 cell surface proteins, which varied consistently in abundance when cells were cultured under low or high serum conditions. Collectively, our analytical methods provide a basis for identifying the cell surface proteome of dental pulp stem cells isolated from single donors and its evolution during culture or differentiation. Our data provide a comprehensive cell surface proteome for the precise identification of dental pulp-derived MSC populations and their isolation for potential therapeutic intervention. PMID:27490675

  5. Characterization and use of crystalline bacterial cell surface layers

    NASA Astrophysics Data System (ADS)

    Sleytr, Uwe B.; Sára, Margit; Pum, Dietmar; Schuster, Bernhard

    2001-10-01

    Crystalline bacterial cell surface layers (S-layers) are one of the most common outermost cell envelope components of prokaryotic organisms (archaea and bacteria). S-layers are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. S-layers as the most abundant of prokaryotic cellular proteins are appealing model systems for studying the structure, synthesis, genetics, assembly and function of proteinaceous supramolecular structures. The wealth of information existing on the general principle of S-layers have revealed a broad application potential. The most relevant features exploited in applied S-layer research are: (i) pores passing through S-layers show identical size and morphology and are in the range of ultrafiltration membranes; (ii) functional groups on the surface and in the pores are aligned in well-defined positions and orientations and accessible for chemical modifications and binding functional molecules in very precise fashion; (iii) isolated S-layer subunits from a variety of organisms are capable of recrystallizing as closed monolayers onto solid supports (e.g., metals, polymers, silicon wafers) at the air-water interface, on lipid films or onto the surface of liposomes; (iv) functional domains can be incorporated in S-layer proteins by genetic engineering. Thus, S-layer technologies particularly provide new approaches for biotechnology, biomimetics, molecular nanotechnology, nanopatterning of surfaces and formation of ordered arrays of metal clusters or nanoparticles as required for nanoelectronics.

  6. Human Diversity in a Cell Surface Receptor that Inhibits Autophagy.

    PubMed

    Chaudhary, Anu; Leite, Mara; Kulasekara, Bridget R; Altura, Melissa A; Ogahara, Cassandra; Weiss, Eli; Fu, Wenqing; Blanc, Marie-Pierre; O'Keeffe, Michael; Terhorst, Cox; Akey, Joshua M; Miller, Samuel I

    2016-07-25

    Mutations in genes encoding autophagy proteins have been associated with human autoimmune diseases, suggesting that diversity in autophagy responses could be associated with disease susceptibility or severity. A cellular genome-wide association study (GWAS) screen was performed to explore normal human diversity in responses to rapamycin, a microbial product that induces autophagy. Cells from several human populations demonstrated variability in expression of a cell surface receptor, CD244 (SlamF4, 2B4), that correlated with changes in rapamycin-induced autophagy. High expression of CD244 and receptor activation with its endogenous ligand CD48 inhibited starvation- and rapamycin-induced autophagy by promoting association of CD244 with the autophagy complex proteins Vps34 and Beclin-1. The association of CD244 with this complex reduced Vps34 lipid kinase activity. Lack of CD244 is associated with auto-antibody production in mice, and lower expression of human CD244 has previously been implicated in severity of human rheumatoid arthritis and systemic lupus erythematosus, indicating that increased autophagy as a result of low levels of CD244 may alter disease outcomes.

  7. Cell Surface Protein Detection to Assess Receptor Internalization

    PubMed Central

    Czarnecka, Magdalena; Kitlinska, Joanna

    2017-01-01

    The migration of membrane receptors upon exposure to different stimulants/inhibitors is of great importance. Among others, the internalization of membrane receptors affects their accessibility to ligands and cell responsiveness to environmental cues. Experimentally, receptor internalization can be used as a measure of their activation. In our studies, we employed this approach to explore cross-talk between a seven transmembrane domain receptor for neuropeptide Y (NPY), Y5R, and a tyrosine kinase receptor for brain-derived neurotrophic factor (BDNF), TrkB. To this end, we measured the internalization of Y5R upon stimulation with the TrkB ligand, BDNF. Upon treatment with BDNF, the cells were exposed to a membrane impermeable, biotinylation reagent that selectively labels surface proteins. Subsequently, the biotinylated membrane proteins were affinity-purified on columns with avidin resins and analyzed by Western blot. Differences in the fraction of receptors present on the cell surface of control and ligand-treated cells served as a measure of their internalization and response to particular stimuli.

  8. Encephalitis and antibodies to synaptic and neuronal cell surface proteins

    PubMed Central

    Lancaster, Eric; Martinez-Hernandez, Eugenia

    2011-01-01

    The identification of encephalitis associated with antibodies against cell surface and synaptic proteins, although recent, has already had a substantial impact in clinical neurology and neuroscience. The target antigens are receptors and proteins that have critical roles in synaptic transmission and plasticity, including the NMDA receptor, the AMPA receptor, the GABAB receptor, and the glycine receptor. Other autoantigens, such as leucine-rich glioma-inactivated 1 and contactin-associated protein-like 2, form part of trans-synaptic complexes and neuronal cell adhesion molecules involved in fine-tuning synaptic transmission and nerve excitability. Syndromes resulting from these immune responses resemble those of pharmacologic or genetic models in which the antigens are disrupted. For some immune responses, there is evidence that the antibodies alter the structure and function of the antigen, suggesting a direct pathogenic effect. These disorders are important because they can affect children and young adults, are severe and protracted, occur with or without tumor association, and respond to treatment but may relapse. This review provides an update on these syndromes and autoantigens with special emphasis on clinical diagnosis and treatment. PMID:21747075

  9. Cells under siege: Viral glycoprotein interactions at the cell surface

    PubMed Central

    Bowden, Thomas A.; Jones, E. Yvonne; Stuart, David I.

    2011-01-01

    As obligate parasites, viruses are required to enter and replicate within their host, a process which employs many of their proteins to hijack natural cellular processes. High resolution X-ray crystallographic analysis has proven to be an ideal method to visualize the mechanisms by which such virus-host interactions occur and has revealed the innovative capacity of viruses to adapt efficiently to their hosts. In this review, we draw upon recently elucidated paramyxovirus-, arenavirus-, and poxvirus-host protein complex crystal structures to reveal both the capacity of viruses to appropriate one component of a physiological protein–protein binding event (often modifying it to out-compete the host-protein), and the ability to utilize novel binding sites on host cell surface receptors. The structures discussed shed light on a number of biological processes ranging from viral entry to virulence and host antagonism. Drawn together they reveal the common strategies which viruses have evolved to interact with their natural host. The structures also support molecular level rationales for how viruses can be transmitted to unrelated organisms and thus pose severe health risks. PMID:21440638

  10. Sorption of heavy metals by prepared bacterial cell surfaces

    SciTech Connect

    Churchill, S.A.; Walters, J.V.; Churchill, P.F.

    1995-10-01

    Prepared biomass from two Gram-negative and one Gram-positive bacterial strains was examined for single, binary, and quaternary mixtures of polyvalent metal cation binding to cell surfaces. The biosorption of {sub 24}Cr{sup 3+}, {sub 27}Co{sup 2+}, {sub 28}Ni{sup 2+}, and {sub 29}Cu{sup 2+} for each bacterial cell type was evaluated using a batch equilibrium method. The binding of each metal by all three bacterial cells could be described by the Freundlich sorption model. The isotherm binding constants suggest that E. coli cells are the most efficient at binding copper, chromium, and nickel; and M. luteus adsorbs cobalt most efficiently. The K-values for copper bound to P. aeruginosa and E. coli are > 2-fold and > 8-fold greater, respectively, than previous reported for intact cells. The general metal-affinity series observed was Cr{sup 3+} > Cu{sup 2+} > Ni{sup 2+} > Co{sup 2+}. There was a marked lower affinity of all biosorbents for Co{sup 2+} and Ni{sup 2+}. M. luteus and E. coli had a strong preference for Co{sup 2+} over Ni{sup 2+}. Metal-binding enhancement could be ascribed to increased cell barrier surface porosity to metal-bearing solutions.

  11. Antifouling property of highly oleophobic substrates for solar cell surfaces

    NASA Astrophysics Data System (ADS)

    Fukada, Kenta; Nishizawa, Shingo; Shiratori, Seimei

    2014-03-01

    Reduction of solar cell conversion efficiency by bird spoor or oil smoke is a common issue. Maintaining the surface of solar cells clean to retain the incident light is of utmost importance. In this respect, there has been growing interest in the area of superhydrophobicity for developing water repelling and self-cleaning surfaces. This effect is inspired by lotus leaves that have micro papillae covered with hydrophobic wax nanostructures. Superhydrophobic surfaces on transparent substrates have been developed for removing contaminants from solar cell surfaces. However, oil cannot be removed by superhydrophobic effect. In contrast, to prevent bird spoor, a highly oleophobic surface is required. In a previous study, we reported transparent-type fabrics comprising nanoparticles with a nano/micro hierarchical structure that ensured both oleophobicity and transparency. In the current study, we developed new highly oleophobic stripes that were constructed into semi-transparent oleophobic surfaces for solar cells. Solar cell performance was successfully maintained; the total transmittance was a key factor for determining conversion efficiency.

  12. Development of a novel mammalian cell surface antibody display platform.

    PubMed

    Zhou, Chen; Jacobsen, Frederick W; Cai, Ling; Chen, Qing; Shen, Weyen David

    2010-01-01

    Antibody display systems have been successfully applied to screen, select and characterize antibody fragments. These systems typically use prokaryotic organisms such as phage and bacteria or lower eukaryotic organisms, such as yeast. These organisms possess either no or different post-translational modification functions from mammalian cells and prefer to display small antibody fragments instead of full-length IgGs. We report here a novel mammalian cell-based antibody display platform that displays full-length functional antibodies on the surface of mammalian cells. Through recombinase-mediated DNA integration, each host cell contains one copy of the gene of interest in the genome. Utilizing a hot-spot integration site, the expression levels of the gene of interest are high and comparable between clones, ensuring a high signal to noise ratio. Coupled with fluorescence-activated cell sorting (FACS) technology, our platform is high throughput and can distinguish antibodies with very high antigen binding affinities directly on the cell surface. Single-round FACS can enrich high affinity antibodies by more than 500 fold. Antibodies with significantly improved neutralizing activity have been identified from a randomly mutagenized library, demonstrating the power of this platform in screening and selecting antibody therapeutics.

  13. Diffusion-limited reactions on the cell surface

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Manoj; Tauber, Uwe; Forsten-Williams, Kimberly

    2003-03-01

    Fibroblast growth factors (FGF) stimulates proliferation of many cell types, and are crucial in such processes as eg. wound healing. Cells have specific receptor (R) protein molecules on their surface which bind FGF for this purpose. FGF is also bound by Heparan Sulfate Proteoglycan (HSPG) molecules which are present on the cell surface. In isolation, both these complexes are unstable, with half-life of the order of 10-20 minutes, wheras in intact cells, the half-life of FGF-R complex is nearly 5 hours! To account for this increased stability, it has been proposed that R-FGF complex combines with HSPG via surface diffusion and forms the triad R-FGF-HSPG. We examine the feasibility of this reaction using the well-known Smoluchowski theory and Monte Carlo simulations. Our results support the triad formation theory, and are in qualitative agreement with experimental results. We also discuss the effects of slowing down of surface diffusion of these molecules by such factors as eg. the cytosekeletal network and anchored proteins.

  14. RPE cell surface proteins in normal and dystrophic rats

    SciTech Connect

    Clark, V.M.; Hall, M.O.

    1986-02-01

    Membrane-bound proteins in plasma membrane enriched fractions from cultured rat RPE were analyzed by two-dimensional gel electrophoresis. Membrane proteins were characterized on three increasingly specific levels. Total protein was visualized by silver staining. A maximum of 102 separate proteins were counted in silver-stained gels. Glycoproteins were labeled with 3H-glucosamine or 3H-fucose and detected by autoradiography. Thirty-eight fucose-labeled and 61-71 glucosamine-labeled proteins were identified. All of the fucose-labeled proteins were labeled with glucosamine-derived radioactivity. Proteins exposed at the cell surface were labeled by lactoperoxidase-catalyzed radioiodination prior to preparation of membranes for two-dimensional analysis. Forty separate 125I-labeled surface proteins were resolved by two-dimensional electrophoresis/autoradiography. Comparison with the glycoprotein map showed that a number of these surface labeled proteins were glycoproteins. Two-dimensional maps of total protein, fucose-labeled, and glucosamine-labeled glycoproteins, and 125I-labeled surface proteins of membranes from dystrophic (RCS rdy-p+) and normal (Long Evans or RCS rdy+p+) RPE were compared. No differences in the total protein or surface-labeled proteins were observed. However, the results suggest that a 183K glycoprotein is more heavily glycosylated with glucosamine and fucose in normal RPE membranes as compared to membranes from dystrophic RPE.

  15. Topological and functional relationship of subunits F1-gamma and F0I-PVP(b) in the mitochondrial H+-ATP synthase.

    PubMed

    Gaballo, A; Zanotti, F; Solimeo, A; Papa, S

    1998-12-15

    Diamide treatment of the F0F1-ATP synthase in "inside out" submitochondrial particles (ESMP) in the absence of a respiratory Delta mu H+ as well as of isolated Fo reconstituted with F1 or F1-gamma subunit results in direct disulfide cross-linking between cysteine 197 in the carboxy-terminal region of the F0I-PVP(b) subunit and cysteine 91 at the carboxyl end of a small alpha-helix of subunit F1-gamma, both located in the stalk. The F0I-PVP(b) and F1-gamma cross-linking cause dramatic enhancement of oligomycin-sensitive decay of Delta mu H+. In ESMP and MgATP particles the cross-linking is accompanied by decoupling of respiratory ATP synthesis. These effects are consistent with the view that F0I-PVP(b) and F1-gamma are components of the stator and rotor of the proposed rotary motor, respectively. The fact that the carboxy-terminal region of F0I-PVP(b) and the short alpha-helix of F1-gamma can form a direct disulfide bridge shows that these two protein domains are, at least in the resting state of the enzyme, in direct contact. In isolated F0, diamide also induces cross-linking of OSCP with another subunit of F0, but this has no significant effect on proton conduction. When ESMP are treated with diamide in the presence of Delta mu H+ generated by respiration, neither cross-linking between F0I-PVP(b) and F1-gamma subunits nor the associated effects on proton conduction and ATP synthesis is observed. Cross-linking is restored in respiring ESMP by Delta mu H+ collapsing agents as well as by DCCD or oligomycin. These observations indicate that the torque generated by Delta mu H+ decay through Fo induces a relative motion and/or a separation of the F0I-PVP(b) subunit and F1-gamma which places the single cysteine residues, present in each of the two subunits, at a distance at which they cannot be engaged in disulfide bridging.

  16. Acetohydroxyacid synthases: evolution, structure, and function.

    PubMed

    Liu, Yadi; Li, Yanyan; Wang, Xiaoyuan

    2016-10-01

    Acetohydroxyacid synthase, a thiamine diphosphate-dependent enzyme, can condense either two pyruvate molecules to form acetolactate for synthesizing L-valine and L-leucine or pyruvate with 2-ketobutyrate to form acetohydroxybutyrate for synthesizing L-isoleucine. Because the key reaction catalyzed by acetohydroxyacid synthase in the biosynthetic pathways of branched-chain amino acids exists in plants, fungi, archaea, and bacteria, but not in animals, acetohydroxyacid synthase becomes a potential target for developing novel herbicides and antimicrobial compounds. In this article, the evolution, structure, and catalytic mechanism of acetohydroxyacid synthase are summarized.

  17. Hyaluronan synthesis induces microvillus-like cell surface protrusions.

    PubMed

    Kultti, Anne; Rilla, Kirsi; Tiihonen, Riikka; Spicer, Andrew P; Tammi, Raija H; Tammi, Markku I

    2006-06-09

    Hyaluronan synthases (HASs) are plasma membrane enzymes that simultaneously elongate, bind, and extrude the growing hyaluronan chain directly into extracellular space. In cells transfected with green fluorescent protein (GFP)-tagged Has3, the dorsal surface was decorated by up to 150 slender, 3-20-microm-long microvillus-type plasma membrane protrusions, which also contained filamentous actin, the hyaluronan receptor CD44, and lipid raft microdomains. Enzymatic activity of HAS was required for the growth of the microvilli, which were not present in cells transfected with other GFP proteins or inactive GFP-Has3 mutants or in cells incubated with exogenous soluble hyaluronan. The microvilli induced by HAS3 were gradually withered by introduction of an inhibitor of hyaluronan synthesis and rapidly retracted by hyaluronidase digestion, whereas they were not affected by competition with hyaluronan oligosaccharides and disruption of the CD44 gene, suggesting independence of hyaluronan receptors. The data bring out the novel concept that the glycocalyx created by dense arrays of hyaluronan chains, tethered to HAS during biosynthesis, can induce and maintain prominent microvilli.

  18. An efficient delivery of DAMPs on the cell surface by the unconventional secretion pathway

    SciTech Connect

    Zhu, Haiyan; Wang, Lan; Ruan, Yuanyuan; Zhou, Lei; Zhang, Dongmei; Min, Zhihui; Xie, Jianhui; Yu, Min; Gu, Jianxin

    2011-01-21

    Research highlights: {yields} Hsp60 transported to cell surface through the classical secretory pathway was modified with N-glycosylation. {yields} HSAPB-N18 could efficiently deliver Hsp60 to the cell surface via the unconventional secretory pathway. {yields} Cell surface Hsp60 delivered by HASPB-N18 has a proper conformation. {yields} HASPB-N18 is an efficient delivery signal for other DAMP molecules such as Hsp70 and HMGB1. -- Abstract: Damage-associated molecular patterns (DAMPs) are signals released from dying cells evoking the immune system response in several inflammatory disorders. In normal situations, many of DAMPs are nuclear or cytosolic proteins with defined intracellular function, but they could be found on the cell surface following tissue injury. The biological function of the translocated DAMPs is still not well known and an efficient delivery of these molecules on the cell surface is required to clarify their biological effects. In this study, we demonstrated that an unclassical secretory signal peptide, N-terminal 18 amino acids of HASPB (HASPB-N18), could efficiently deliver Hsp60, Hsp70, and HMGB1 on the cell surface. Furthermore, the delivery of these molecules on the cell surface by HASPB-N18 is not limited to a special cell line because several cell lines could use this delivery signal to deliver these molecules on the cell surface. Moreover, we demonstrated that Hsp60 on the cell surface delivered by HASPB-N18 could be recognized by a soluble form of LOX-1, which implies that DAMPs on the cell surface delivered by HASPB-N18 have a proper conformation during transport. Therefore, delivery of DAMPs by HASPB-N18 is a reliable model to further understand the biological significance of DAMPs on the cell surface.

  19. Producing biofuels using polyketide synthases

    DOEpatents

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  20. Quantification of macrophage cell surface molecules in rheumatoid arthritis.

    PubMed Central

    Hessian, P A; Highton, J; Palmer, D G

    1989-01-01

    The response of macrophages to stimulation by interferon-gamma (IFN-gamma) in vitro is characterized by an increase in the cell surface expression of MHC class II HLA-DR antigen (HLA-DR) and the high-affinity Fc-receptor for immunoglobulin G (FcRI) while the expression of the C3b-receptor (CR1) is reduced. Based on these observations, we have examined further the possibility that IFN-gamma may modulate the activation of mononuclear phagocytes (Mph) in patients with rheumatoid arthritis (RA). As reported by others, we found low levels of IFN-gamma in the synovial fluid of these patients (less than 0.3 IU/ml using radioimmunoassay). As an alternative means of establishing whether Mph are influenced by levels of IFN-gamma too low to measure directly, we have quantified the expression of membrane associated HLA-DR, FcRI and CR1 on cell populations isolated from synovial fluid and peripheral blood. The expression of these molecules by Mph is known to be influenced by IFN-gamma. We found that Mph isolated from the synovial fluid of patients with RA showed a significantly increased HLA-DR expression. Significantly less CR1 was associated with the synovial fluid Mph than with peripheral blood monocytes. However the expression of the FcRI by the synovial fluid Mph and peripheral blood monocyte populations was similar. The quantitative changes in HLA-DR and CR1 expression by synovial fluid Mph (but not those of FcRI) were consistent with those seen following IFN-gamma activation of monocytes in vitro. While these results indicate that IFN-gamma may have a role in activating the Mph present in synovial fluid, the apparent independent regulation of FcRI observed suggests other mediators may also be involved. PMID:2527651

  1. Polyester synthases: natural catalysts for plastics.

    PubMed Central

    Rehm, Bernd H A

    2003-01-01

    Polyhydroxyalkanoates (PHAs) are biopolyesters composed of hydroxy fatty acids, which represent a complex class of storage polyesters. They are synthesized by a wide range of different Gram-positive and Gram-negative bacteria, as well as by some Archaea, and are deposited as insoluble cytoplasmic inclusions. Polyester synthases are the key enzymes of polyester biosynthesis and catalyse the conversion of (R)-hydroxyacyl-CoA thioesters to polyesters with the concomitant release of CoA. These soluble enzymes turn into amphipathic enzymes upon covalent catalysis of polyester-chain formation. A self-assembly process is initiated resulting in the formation of insoluble cytoplasmic inclusions with a phospholipid monolayer and covalently attached polyester synthases at the surface. Surface-attached polyester synthases show a marked increase in enzyme activity. These polyester synthases have only recently been biochemically characterized. An overview of these recent findings is provided. At present, 59 polyester synthase structural genes from 45 different bacteria have been cloned and the nucleotide sequences have been obtained. The multiple alignment of the primary structures of these polyester synthases show an overall identity of 8-96% with only eight strictly conserved amino acid residues. Polyester synthases can been assigned to four classes based on their substrate specificity and subunit composition. The current knowledge on the organization of the polyester synthase genes, and other genes encoding proteins related to PHA metabolism, is compiled. In addition, the primary structures of the 59 PHA synthases are aligned and analysed with respect to highly conserved amino acids, and biochemical features of polyester synthases are described. The proposed catalytic mechanism based on similarities to alpha/beta-hydrolases and mutational analysis is discussed. Different threading algorithms suggest that polyester synthases belong to the alpha/beta-hydrolase superfamily, with

  2. Coupling Binding to Catalysis – Using Yeast Cell Surface Display to Select Enzymatic Activities

    PubMed Central

    Zhang, Keya; Bhuripanyo, Karan; Wang, Yiyang; Yin, Jun

    2015-01-01

    Summary We find yeast cell surface display can be used to engineer enzymes by selecting the enzyme library for high affinity binding to reaction intermediates. Here we cover key steps of enzyme engineering on the yeast cell surface including library design, construction, and selection based on magnetic and fluorescence activated cell sorting. PMID:26060080

  3. Influence of carbon source on cell surface topology of Thermomonospora curvata.

    PubMed Central

    Hostalka, F; Moultrie, A; Stutzenberger, F

    1992-01-01

    The appearance of cell surface protuberances in Thermomonospora curvata correlated with cell-bound exoenzymes which could be removed by brief sonication. Mycelia grown on cellulose or xylan had numerous protuberances and retained 20 to 25% of endoglucanase and endoxylanase at cell surfaces, while those grown on pectin or starch had few protuberances and negligible bound pectinase or amylase. Images PMID:1400256

  4. Evidence for cell surface control of macronuclear DNA synthesis in Stentor.

    PubMed

    de Terra, N

    1975-11-27

    In cell grafts, Stentor macronuclei associated with separate regions of cell surface can be made asynchronous with regard to morphology and DNA synthesis even though they demonstrably share a common endoplasm. These results suggest a mechanism for nuclear differentiation within a single cytoplasmic compartment, based on cell surface differences.

  5. Coupling Binding to Catalysis: Using Yeast Cell Surface Display to Select Enzymatic Activities.

    PubMed

    Zhang, Keya; Bhuripanyo, Karan; Wang, Yiyang; Yin, Jun

    2015-01-01

    We find yeast cell surface display can be used to engineer enzymes by selecting the enzyme library for high affinity binding to reaction intermediates. Here we cover key steps of enzyme engineering on the yeast cell surface including library design, construction, and selection based on magnetic and fluorescence-activated cell sorting.

  6. Cell surface expression of glycosylated, nonglycosylated, and truncated forms of a cytoplasmic protein pyruvate kinase.

    PubMed

    Hiebert, S W; Lamb, R A

    1988-09-01

    The soluble cytoplasmic protein pyruvate kinase (PK) has been expressed at the cell surface in a membrane-anchored form (APK). The hybrid protein contains the NH2-terminal signal/anchor domain of a class II integral membrane protein (hemagglutinin/neuraminidase, of the paramyxovirus SV5) fused to the PK NH2 terminus. APK contains a cryptic site that is used for N-linked glycosylation but elimination of this site by site-specific mutagenesis does not prevent cell surface localization. Truncated forms of the APK molecule, with up to 80% of the PK region of APK removed, can also be expressed at the cell surface. These data suggest that neither the complete PK molecule nor its glycosylation are necessary for intracellular transport of PK to the cell surface, and it is possible that specific signals may not be needed in the ectodomain of this hybrid protein to specify cell surface localization.

  7. Molecular evolution and sequence divergence of plant chalcone synthase and chalcone synthase-Like genes.

    PubMed

    Han, Yingying; Zhao, Wenwen; Wang, Zhicui; Zhu, Jingying; Liu, Qisong

    2014-06-01

    Plant chalcone synthase (CHS) and CHS-Like (CHSL) proteins are polyketide synthases. In this study, we evaluated the molecular evolution of this gene family using representative types of CHSL genes, including stilbene synthase (STS), 2-pyrone synthase (2-PS), bibenzyl synthase (BBS), acridone synthase (ACS), biphenyl synthase (BIS), benzalacetone synthase, coumaroyl triacetic acid synthase (CTAS), and benzophenone synthase (BPS), along with their CHS homologs from the same species of both angiosperms and gymnosperms. A cDNA-based phylogeny indicated that CHSLs had diverse evolutionary patterns. STS, ACS, and 2-PS clustered with CHSs from the same species (late diverged pattern), while CTAS, BBS, BPS, and BIS were distant from their CHS homologs (early diverged pattern). The amino-acid phylogeny suggested that CHS and CHSL proteins formed clades according to enzyme function. The CHSs and CHSLs from Polygonaceae and Arachis had unique evolutionary histories. Synonymous mutation rates were lower in late diverged CHSLs than in early diverged ones, indicating that gene duplications occurred more recently in late diverged CHSLs than in early diverged ones. Relative rate tests proved that late diverged CHSLs had unequal rates to CHSs from the same species when using fatty acid synthase, which evolved from the common ancestor with the CHS superfamily, as the outgroup, while the early diverged lineages had equal rates. This indicated that late diverged CHSLs experienced more frequent mutation than early diverged CHSLs after gene duplication, allowing obtaining new functions in relatively short period of time.

  8. Murine Immunoprotective Activity of Klebsiella pneumoniae Cell Surface Preparations: Comparative Study with Ribosomal Preparations

    PubMed Central

    Fournier, Jean-Michel; Jolivet-Reynaud, Colette; Riottot, Marie-Madeleine; Jouin, Hélène

    1981-01-01

    Cell surface preparations and ribosomal preparations were extracted from Klebsiella pneumoniae. Agar gel diffusion with antisera to cell surface preparations or ribosomal preparations indicated common antigenic components among the preparations. Lipopolysaccharide and capsular polysaccharide were identified in the cell surface preparations. These results and the previous identification of lipopolysaccharide and capsular polysaccharide in ribosomal preparations suggest that these antigens are responsible for the immunochemical cross-reactivity observed among these two bacterial extracts. Active protection could be induced in mice by these two preparations. On a dry-weight basis, cell surface preparations provided better immunoprotective activity than did ribosomal preparations. However, the 50% protective dose of both preparations is practically the same on the basis of their capsular polysaccharide content. These results are consistent with the hypothesis that the immunoprotective moiety of ribosomal preparations is the contaminating cell surface antigens. Furthermore, the low level of nucleotidic components detected in purified cell surface preparations led us to infer that the immunoprotective activity of capsular polysaccharide may not be dependent on the adjuvant activity of ribonucleic acid. The involvement of capsular polysaccharide in the immunoprotective capacity of cell surface preparations is demonstrated either by using a degradation of this antigen by K. pneumoniae bacteriophage K2-associated glycanase or by using a preparation extracted from a noncapsulated mutant of K. pneumoniae. Nevertheless, the low protective ability of purified capsular polysaccharides is in contrast to its greater activity when induced in bacterial cell surface preparations. The protective activity of K. pneumoniae capsular polysaccharide may be dependent on its association with other surface antigenic components present in cell surface preparations or may be dependent on its

  9. A Novel Cytoplasmic Tail Motif Regulates Mouse Corin Expression on the Cell Surface

    PubMed Central

    Li, Hui; Zhang, Yue; Wang, Lina; Dong, Ningzheng; Qi, Xiaofei; Wu, Qingyu

    2015-01-01

    Type II transmembrane serine proteases (TTSPs) are important in many biological processes. Cell surface expression is critical for TTSP activation and function. To date, the mechanism underlying TTSP cell surface expression is poorly understood. Corin is a TTSP and acts as the pro-atrial natriuretic peptide convertase that is essential for sodium homeostasis and normal blood pressure. In this study, we investigated how cytoplasmic tail sequences may regulate corin expression and activation on the cell surface. By site-directed mutagenesis, we made mouse corin proteins with truncations or point-mutations in the cytoplasmic tail. We expressed the mutants in transfected HEK293 cells and analyzed corin cell surface expression and activation by Western blotting and flow cytometry. We found that corin truncation mutants lacking a Lys-Phe-Gln sequence at residues 71–73 had higher levels of cell surface expression and activation compared with that in wild-type corin. When Lys-71, Phe-72 and Gln-73 residues were mutated together, but not individually, in corin with the full-length cytoplasmic tail, increased levels of cell surface expression and zymogen activation were also observed. These results indicate that residues Lys-71, Phe-72 and Gln-73 serve as a novel retention motif in the intracellular pathway to regulate corin cell surface expression and activation. PMID:26241673

  10. Crystal structure of riboflavin synthase

    SciTech Connect

    Liao, D.-I.; Wawrzak, Z.; Calabrese, J.C.; Viitanen, P.V.; Jordan, D.B.

    2010-03-05

    Riboflavin synthase catalyzes the dismutation of two molecules of 6,7-dimethyl-8-(1'-D-ribityl)-lumazine to yield riboflavin and 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine. The homotrimer of 23 kDa subunits has no cofactor requirements for catalysis. The enzyme is nonexistent in humans and is an attractive target for antimicrobial agents of organisms whose pathogenicity depends on their ability to biosynthesize riboflavin. The first three-dimensional structure of the enzyme was determined at 2.0 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on the Escherichia coli protein containing selenomethionine residues. The homotrimer consists of an asymmetric assembly of monomers, each of which comprises two similar {beta} barrels and a C-terminal {alpha} helix. The similar {beta} barrels within the monomer confirm a prediction of pseudo two-fold symmetry that is inferred from the sequence similarity between the two halves of the protein. The {beta} barrels closely resemble folds found in phthalate dioxygenase reductase and other flavoproteins. The three active sites of the trimer are proposed to lie between pairs of monomers in which residues conserved among species reside, including two Asp-His-Ser triads and dyads of Cys-Ser and His-Thr. The proposed active sites are located where FMN (an analog of riboflavin) is modeled from an overlay of the {beta} barrels of phthalate dioxygenase reductase and riboflavin synthase. In the trimer, one active site is formed, and the other two active sites are wide open and exposed to solvent. The nature of the trimer configuration suggests that only one active site can be formed and be catalytically competent at a time.

  11. Functionalized Magnetic Nanoparticles for the Detection and Quantitative Analysis of Cell Surface Antigen

    PubMed Central

    Shahbazi-Gahrouei, Daryoush; Abdolahi, Mohammad; Zarkesh-Esfahani, Sayyed Hamid; Laurent, Sophie; Sermeus, Corine; Gruettner, Cordula

    2013-01-01

    Cell surface antigens as biomarkers offer tremendous potential for early diagnosis, prognosis, and therapeutic response in a variety of diseases such as cancers. In this research, a simple, rapid, accurate, inexpensive, and easily available in vitro assay based on magnetic nanoparticles and magnetic cell separation principle was applied to identify and quantitatively analyze the cell surface antigen expression in the case of prostate cancer cells. Comparing the capability of the assay with flow cytometry as a gold standard method showed similar results. The results showed that the antigen-specific magnetic cell separation with antibody-coated magnetic nanoparticles has high potential for quantitative cell surface antigen detection and analysis. PMID:23484112

  12. Proteomic analysis and identification of cell surface-associated proteins of Clostridium chauvoei.

    PubMed

    Jayaramaiah, Usharani; Singh, Neetu; Thankappan, Sabarinath; Mohanty, Ashok Kumar; Chaudhuri, Pallab; Singh, Vijendra Pal; Nagaleekar, Viswas Konasagara

    2016-06-01

    Blackleg is a highly fatal disease of cattle and sheep, caused by Clostridium chauvoei, a Gram positive, anaerobic, spore forming bacteria. Cell surface-associated proteins play a major role in inducing the protective immunity. However, the identity of a majority of cell surface-associated proteins of C. chauvoei is not known. In the present investigation, we have used SDS-PAGE, 2D-gel electrophoresis and Western blotting followed by mass spectrometry to identify cell surface-associated proteins of C. chauvoei. Among the identified proteins, which have shown to offer protective antigencity in other bacteria, Enolase, Chaperonin, Ribosomal protein L10, Glycosyl Hydrolase and Flavoprotein were characterized by sequencing and their overexpression in Escherichia coli. In conclusion, cell surface-associated proteins were identified using proteomic approach and the genes for the immunoreactive proteins were expressed, which may prove to be potential diagnostic or vaccine candidates.

  13. Isolation of cell surface proteins for mass spectrometry-based proteomics.

    PubMed

    Elschenbroich, Sarah; Kim, Yunee; Medin, Jeffrey A; Kislinger, Thomas

    2010-02-01

    Defining the cell surface proteome has profound importance for understanding cell differentiation and cell-cell interactions, as well as numerous pathogenic abnormalities. Owing to their hydrophobic nature, plasma membrane proteins that reside on the cell surface pose analytical challenges and, despite efforts to overcome difficulties, remain under-represented in proteomic studies. Limitations in the classically employed ultracentrifugation-based approaches have led to the invention of more elaborate techniques for the purification of cell surface proteins. Three of these methods--cell surface coating with cationic colloidal silica beads, biotinylation and chemical capture of surface glycoproteins--allow for marked enrichment of this subcellular proteome, with each approach offering unique advantages and characteristics for different experiments. In this article, we introduce the principles of each purification method and discuss applications from the recent literature.

  14. Mechanical guidance through cell-cell and cell-surface contact during multicellular streaming

    NASA Astrophysics Data System (ADS)

    Wang, Chenlu; Driscoll, Meghan; Gupta, Satyandra K.; Parent, Carole; Losert, Wolfgang

    2014-03-01

    During collective cell migration, mechanical forces arise from the extracellular matrix (ECM) through cell-surface contact and from other cells through cell-cell contact. These forces regulate the motion of migrating cell groups. To determine how these mechanical interactions balance during cell migration, we measured the shape dynamics of Dictyostelium discoideum cells at the multicellular streaming stage. We found that cells can coordinate their motion by synchronizing protrusion waves that travel along their membranes when they form proper cell-cell adhesion and cell-surface adhesion. In addition, our experiments on live actin labeled cells show that intracellular actin polymerization actively responds to the change of cell-cell/surface adhesion and helps to stabilize multicellular migration streams. Our finding suggests that the coordination of motion between neighboring cells in collective migration requires a balance between cell-cell adhesion and cell-surface adhesion, and that the cell cytoskeleton plays an important role in this balance.

  15. Microbial cell surface characteristics: Elucidating attachment/detachment using hydrophobicity and electrokinetic measurements

    EPA Science Inventory

    The surface properties of microorganisms play an important role in their behavior within the environment. Electrophoretic mobility and cell surface hydrophobicity of bacterial cells influence their initial interaction with surfaces and mediate their stability within an aqueous su...

  16. LapF and Its Regulation by Fis Affect the Cell Surface Hydrophobicity of Pseudomonas putida

    PubMed Central

    Lahesaare, Andrio; Ainelo, Hanna; Teppo, Annika; Kivisaar, Maia; Heipieper, Hermann J.; Teras, Riho

    2016-01-01

    The ability of bacteria to regulate cell surface hydrophobicity is important for the adaptation to different environmental conditions. The hydrophobicity of cell surface can be determined by several factors, including outer membrane and surface proteins. In this study, we report that an adhesin LapF influences cell surface hydrophobicity of Pseudomonas putida. Cells lacking LapF are less hydrophobic than wild-type cells in stationary growth phase. Moreover, the overexpression of the global regulator Fis decreases surface hydrophobicity by repressing the expression of lapF. Flow cytometry analysis revealed that bacteria producing LapF are more viable when confronted with methanol (a hydrophilic compound) but are more susceptible to 1-octanol (a hydrophobic compound). Thus, these results revealed that LapF is the hydrophobicity factor for the cell surface of P. putida. PMID:27812186

  17. Cell surface markers of cancer stem cells: diagnostic macromolecules and targets for drug delivery.

    PubMed

    Andrews, Timothy E; Wang, Dan; Harki, Daniel A

    2013-04-01

    The recognition that the persistence of cancer stem cells (CSCs) in patients following chemotherapy can result in disease relapse underscores the necessity to develop therapeutics against those cells. CSCs display a unique repertoire of cell surface macromolecules, which have proven essential for their characterization and isolation. Additionally, CSC-specific cell surface macromolecules or markers provide targets for the development of specific agents to destroy them. In this review, we compiled those cell surface molecules that have been validated as CSC markers for many common blood and solid tumors. We describe the unique chemical and structural features of the most common cell surface markers, as well as recent efforts to deliver chemotherapeutic agents into CSCs by targeting those macromolecules.

  18. Cell-Surface Phenol Soluble Modulins Regulate Staphylococcus aureus Colony Spreading

    PubMed Central

    Kizaki, Hayato; Omae, Yosuke; Tabuchi, Fumiaki; Saito, Yuki; Sekimizu, Kazuhisa

    2016-01-01

    Staphylococcus aureus produces phenol-soluble modulins (PSMs), which are amphipathic small peptides with lytic activity against mammalian cells. We previously reported that PSMα1–4 stimulate S. aureus colony spreading, the phenomenon of S. aureus colony expansion on the surface of soft agar plates, whereas δ-toxin (Hld, PSMγ) inhibits colony-spreading activity. In this study, we revealed the underlying mechanism of the opposing effects of PSMα1–4 and δ-toxin in S. aureus colony spreading. PSMα1–4 and δ-toxin are abundant on the S. aureus cell surface, and account for 18% and 8.5% of the total amount of PSMα1–4 and δ-toxin, respectively, in S. aureus overnight cultures. Knockout of PSMα1–4 did not affect the amount of cell surface δ-toxin. In contrast, knockout of δ-toxin increased the amount of cell surface PSMα1–4, and decreased the amount of culture supernatant PSMα1–4. The δ-toxin inhibited PSMα3 and PSMα2 binding to the S. aureus cell surface in vitro. A double knockout strain of PSMα1–4 and δ-toxin exhibited decreased colony spreading compared with the parent strain. Expression of cell surface PSMα1–4, but not culture supernatant PSMα1–4, restored the colony-spreading activity of the PSMα1-4/δ-toxin double knockout strain. Expression of δ-toxin on the cell surface or in the culture supernatant did not restore the colony-spreading activity of the PSMα1-4/δ-toxin double knockout strain. These findings suggest that cell surface PSMα1–4 promote S. aureus colony spreading, whereas δ-toxin suppresses colony-spreading activity by inhibiting PSMα1–4 binding to the S. aureus cell surface. PMID:27723838

  19. Cell/surface interactions and adhesion on bioactive glass 45S5.

    PubMed

    Levy, S; Van Dalen, M; Agonafer, S; Soboyejo, W O

    2007-01-01

    This paper examines the effects of surface texture (smooth versus rough) on cell/surface interactions on the bioactive glass, 45S5. The cell surface interactions associated with cell spreading are studied using cell culture experiments. Subsequent energy dispersive x-ray spectroscopy is also used to reveal the distributions of calcium, phosphorous, sodium and oxygen on the surfaces of the bioactive glasses. The implications of the results are then discussed for the applications of textured bioactive glasses in medicine.

  20. Targeting Prostate Cancer Stemlike Cells through Cell Surface-Expressed GRP78

    DTIC Science & Technology

    2014-10-01

    inhibit sphere growth of GRP78-sorted prostate cancer cells. 15. SUBJECT TERMS prostate cancer, cell surface GRP78, cancer stem cell, Snail -1 16...domains of cell surface GRP78 on Akt/GSK-3/ Snail -1 signaling. RESULTS/DISCUSSION: We are delayed in performing the experiments because of our delay in...addressing Task 6 (originally scheduled for year 1, moved to year 2; see above). Task 7: OBJECTIVE: Using Snail -1 shRNAs, assess the

  1. Genetics Home Reference: GM3 synthase deficiency

    MedlinePlus

    ... GM3 synthase deficiency is characterized by recurrent seizures (epilepsy) and problems with brain development. Within the first ... Testing (1 link) Genetic Testing Registry: Amish infantile epilepsy syndrome Other Diagnosis and Management Resources (2 links) ...

  2. Chitin synthase inhibitors as antifungal agents.

    PubMed

    Chaudhary, Preeti M; Tupe, Santosh G; Deshpande, Mukund V

    2013-02-01

    Increased risk of fungal diseases in immunocompromised patients, emerging fungal pathogens, limited repertoire of antifungal drugs and resistance development against the drugs demands for development of new and effective antifungal agents. With greater knowledge of fungal metabolism efforts are being made to inhibit specific enzymes involved in different biochemical pathways for the development of antifungal drugs. Chitin synthase is one such promising target as it is absent in plants and mammals. Nikkomycin Z, a chitin synthase inhibitor is under clinical development. Chitin synthesis in fungi, chitin synthase as a target for antifungal agent development, different chitin synthase inhibitors isolated from natural sources, randomly synthesized and modified from nikkomycin and polyoxin are discussed in this review.

  3. Enhanced cell surface polymer grafting in concentrated and nonreactive aqueous polymer solutions.

    PubMed

    Rossi, Nicholas A A; Constantinescu, Iren; Brooks, Donald E; Scott, Mark D; Kizhakkedathu, Jayachandran N

    2010-03-17

    Macromolecular cell surface modification techniques have shown tremendous utility in various biomedical applications. However, a major drawback concerns inefficient cell surface modification caused by the poor association of hydrophilic macromolecules with cell surfaces. Here, a novel, highly efficient, and universal strategy in which nonreactive "additive" macromolecules are used to modulate the grafting efficiency of cell surface reactive, hydrophilic macromolecules is described. Unprecedented enhanced cell surface modifications by up to 10-fold were observed when various concentrations of a suitable "additive" polymer was present with a constant and low concentration of a "reactive" macromolecule. The importance of this increased efficiency and the possible mechanisms involved are discussed. The cell compatible technique is demonstrated in the case of four different cell types--red blood cells (RBC), leukocytes, platelets, and Jurkat cells. A practical application of grafting macromolecules to cell surfaces in concentrated polymer solutions is demonstrated by the enhanced camouflage of RBC surface antigens for the development of RhD null RBC. In principle, the technique can be adapted to various macromolecular systems and cell types, with significant potential for biomedical applications such as live cell based technologies.

  4. Amyloid-beta oligomers increase the localization of prion protein at the cell surface.

    PubMed

    Caetano, Fabiana A; Beraldo, Flavio H; Hajj, Glaucia N M; Guimaraes, Andre L; Jürgensen, Sofia; Wasilewska-Sampaio, Ana Paula; Hirata, Pedro H F; Souza, Ivana; Machado, Cleiton F; Wong, Daisy Y-L; De Felice, Fernanda G; Ferreira, Sergio T; Prado, Vania F; Rylett, R Jane; Martins, Vilma R; Prado, Marco A M

    2011-05-01

    In Alzheimer's disease, the amyloid-β peptide (Aβ) interacts with distinct proteins at the cell surface to interfere with synaptic communication. Recent data have implicated the prion protein (PrP(C)) as a putative receptor for Aβ. We show here that Aβ oligomers signal in cells in a PrP(C)-dependent manner, as might be expected if Aβ oligomers use PrP(C) as a receptor. Immunofluorescence, flow cytometry and cell surface protein biotinylation experiments indicated that treatment with Aβ oligomers, but not monomers, increased the localization of PrP(C) at the cell surface in cell lines. These results were reproduced in hippocampal neuronal cultures by labeling cell surface PrP(C). In order to understand possible mechanisms involved with this effect of Aβ oligomers, we used live cell confocal and total internal reflection microscopy in cell lines. Aβ oligomers inhibited the constitutive endocytosis of PrP(C), but we also found that after Aβ oligomer-treatment PrP(C) formed more clusters at the cell surface, suggesting the possibility of multiple effects of Aβ oligomers. Our experiments show for the first time that Aβ oligomers signal in a PrP(C)-dependent way and that they can affect PrP(C) trafficking, increasing its localization at the cell surface.

  5. Quantitative comparison of a human cancer cell surface proteome between interphase and mitosis

    PubMed Central

    Özlü, Nurhan; Qureshi, Mohammad H; Toyoda, Yusuke; Renard, Bernhard Y; Mollaoglu, Gürkan; Özkan, Nazlı E; Bulbul, Selda; Poser, Ina; Timm, Wiebke; Hyman, Anthony A; Mitchison, Timothy J; Steen, Judith A

    2015-01-01

    The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface-exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty-eight surface and surface-associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis-selective cell surface localization of protocadherin PCDH7, a member of a family with anti-adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti-mitotic cancer chemotherapy. PMID:25476450

  6. Quantitative comparison of a human cancer cell surface proteome between interphase and mitosis.

    PubMed

    Özlü, Nurhan; Qureshi, Mohammad H; Toyoda, Yusuke; Renard, Bernhard Y; Mollaoglu, Gürkan; Özkan, Nazlı E; Bulbul, Selda; Poser, Ina; Timm, Wiebke; Hyman, Anthony A; Mitchison, Timothy J; Steen, Judith A

    2015-01-13

    The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface-exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty-eight surface and surface-associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis-selective cell surface localization of protocadherin PCDH7, a member of a family with anti-adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti-mitotic cancer chemotherapy.

  7. Terpene synthases from Cannabis sativa

    PubMed Central

    Booth, Judith K.; Page, Jonathan E.

    2017-01-01

    Cannabis (Cannabis sativa) plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence. Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties. Transcriptome analysis of trichomes of the cannabis hemp variety ‘Finola’ revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS) were identified in subfamilies TPS-a and TPS-b. Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of ‘Finola’ resin, including major compounds such as β-myrcene, (E)-β-ocimene, (-)-limonene, (+)-α-pinene, β-caryophyllene, and α-humulene. Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties. PMID:28355238

  8. Inhibitors of specific ceramide synthases.

    PubMed

    Schiffmann, Susanne; Hartmann, Daniela; Fuchs, Sina; Birod, Kerstin; Ferreiròs, Nerea; Schreiber, Yannick; Zivkovic, Aleksandra; Geisslinger, Gerd; Grösch, Sabine; Stark, Holger

    2012-02-01

    Ceramide synthases (CerSs) are key enzymes in the biosynthesis of ceramides and display a group of at least six different isoenzymes (CerS1-6). Ceramides itself are bioactive molecules. Ceramides with different N-acyl side chains (C(14:0)-Cer - C(26:0)-Cer) possess distinct roles in cell signaling. Therefore, the selective inhibition of specific CerSs which are responsible for the formation of a specific ceramide holds promise for a number of new clinical treatment strategies, e.g., cancer. Here, we identified four of hitherto unknown functional inhibitors of CerSs derived from the FTY720 (Fingolimod) lead structure and showed their inhibitory effectiveness by two in vitro CerS activity assays. Additionally, we tested the substances in two cell lines (HCT-116 and HeLa) with different ceramide patterns. In summary, the in vitro activity assays revealed out that ST1058 and ST1074 preferentially inhibit CerS2 and CerS4, while ST1072 inhibits most potently CerS4 and CerS6. Importantly, ST1060 inhibits predominately CerS2. First structure-activity relationships and the potential biological impact of these compounds are discussed.

  9. Malate synthase a membrane protein

    SciTech Connect

    Chapman, K.D.; Turley, R.B.; Hermerath, C.A.; Carrapico, F.; Trelease, R.N.

    1987-04-01

    Malate synthase (MS) is generally regarded as a peripheral membrane protein, and believed by some to be ontogenetically associated with ER. However, immuno- and cyto-chemical in situ localizations show MS throughout the matrix of cotton (and cucumber) glyoxysomes, not specifically near their boundary membranes, nor in ER. Only a maximum of 50% MS can be solubilized from cotton glyoxysomes with 1% Triton X-100, 2mM Zwittergen 14, or 10mM DOC +/- salts. Cotton MS does not incorporate /sup 3/H-glucosamine in vivo, nor does it react with Con A on columns or blots. Cotton MS banded with ER in sucrose gradients (20-40%) in Tricine after 3h, but not after 22h in Tricine or Hepes, or after 3h in Hepes or K-phosphate. Collectively the authors data are inconsistent with physiologically meaningful MS-membrane associations in ER or glyoxysomes. It appears that experimentally-induced aggregates of MS migrate in ER gradients and occur in isolated glyoxysomes. These data indicate that ER is not involved in synthesis or modification of cottonseed MS prior to its import into the glyoxysomal matrix.

  10. Cell surface expression of biologically active influenza C virus HEF glycoprotein expressed from cDNA.

    PubMed

    Pekosz, A; Lamb, R A

    1999-10-01

    The hemagglutinin, esterase, and fusion (HEF) glycoprotein of influenza C virus possesses receptor binding, receptor destroying, and membrane fusion activities. The HEF cDNAs from influenza C/Ann Arbor/1/50 (HEF-AA) and influenza C/Taylor/1223/47 (HEF-Tay) viruses were cloned and expressed, and transport of HEF to the cell surface was monitored by susceptibility to cleavage by exogenous trypsin, indirect immunofluorescence microscopy, and flow cytometry. Previously it has been found in studies with the C/Johannesburg/1/66 strain of influenza C virus (HEF-JHB) that transport of HEF to the cell surface is severely inhibited, and it is thought that the short cytoplasmic tail, Arg-Thr-Lys, is involved in blocking HEF cell surface expression (F. Oeffner, H.-D. Klenk, and G. Herrler, J. Gen. Virol. 80:363-369, 1999). As the cytoplasmic tail amino acid sequences of HEF-AA and HEF-Tay are identical to that of HEF-JHB, the data indicate that cell surface expression of HEF-AA and HEF-Tay is not inhibited by this amino acid sequence. Furthermore, the abundant cell surface transport of HEF-AA and HEF-Tay indicates that their cell surface expression does not require coexpression of another viral protein. The HEF-AA and HEF-Tay HEF glycoproteins bound human erythrocytes, promoted membrane fusion in a low-pH and trypsin-dependent manner, and displayed esterase activity, indicating that the HEF glycoprotein alone mediates all three known functions at the cell surface.

  11. Alteration in cell surface properties of Burkholderia spp. during surfactant-aided biodegradation of petroleum hydrocarbons.

    PubMed

    Mohanty, Sagarika; Mukherji, Suparna

    2012-04-01

    Chemical surfactants may impact microbial cell surface properties, i.e., cell surface hydrophobicity (CSH) and cell surface charge, and may thus affect the uptake of components from non-aqueous phase liquids (NAPLs). This work explored the impact of Triton X-100, Igepal CA 630, and Tween 80 (at twice the critical micelle concentration, CMC) on the cell surface characteristics of Burkholderia cultures, Burkholderia cepacia (ES1, aliphatic degrader) and Burkholderia multivorans (NG1, aromatic degrader), when grown on a six-component model NAPL. In the presence of Triton X-100, NAPL biodegradation was enhanced from 21% to 60% in B. cepacia and from 18% to 53% in B. multivorans. CSH based on water contact angle (50-52°) was in the same range for both strains while zeta potential at neutral pH was -38 and -31 mV for B. cepacia and B. multivorans, respectively. In the presence of Triton X-100, their CSH increased to greater than 75° and the zeta potential decreased. This induced a change in the mode of uptake and initiated aliphatic hydrocarbon degradation by B. multivorans and increased the rate of aliphatic hydrocarbon degradation in B. cepacia. Igepal CA 630 and Tween 80 also altered the cell surface properties. For B. cepacia grown in the presence of Triton X-100 at two and five times its CMC, CSH increased significantly in the log growth phase. Growth in the presence of the chemical surfactants also affected the abundance of chemical functional groups on the cell surface. Cell surface changes had maximum impact on NAPL degradation in the presence of emulsifying surfactants, Triton X-100 and Igepal CA630.

  12. Anomalous cell surface structure of sickle cell anemia erythrocytes as demonstrated by cell surface labeling and endo-beta-galactosidase treatment

    SciTech Connect

    Fukuda, M.; Fukuda, M.N.; Hakomori, S.; Papayannopoulou, T.

    1981-01-01

    Erythrocyte surface glycoproteins from patients with various types of sickle cell anemia have been analyzed and compared with those from normal individuals. By hemagglutination with various anti-carbohydrate antibodies, sickle cells showed profound increase of i antigens and moderate increase of GlcNAc beta 1 leads to 3Gal beta 1 leads to 3 Glc structure, whereas antigenicity toward globosidic structure was unchanged. In parallel to these findings, erythrocytes of sickle cell patients have additional sialylated lactosaminoglycan in Band 3. Thus, it can be concluded that erythrocytes of sickle cell patients are characterized by an altered cell surface structure which does not appear to be due to topographical changes of cell surface membrane. It is possible that the anemia or the ''stress'' hematopoiesis in these patients is responsible for these changes.

  13. Characterization of fucosyltransferase activity during mouse spermatogenesis: Evidence for a cell surface fucosyltransferase

    SciTech Connect

    Cardullo, R.A.; Armant, D.R.; Millette, C.F. )

    1989-02-21

    Fucosyltransferase activity was quantified in mouse germ cells at different stages of spermatogenesis. Specifically, fucosyltransferase activities of pachytene spermatocytes, round spermatids, and cauda epididymal sperm were compared. Fucosyltranferase activity of mixed germ cells displayed an apparent V{sub max} of 17 pmol (mg of protein){sup {minus}1} min{sup {minus}1} and an apparent K{sub m} of approximately 13 {mu}M for GDP-L-({sup 14}C)fucose in the presence of saturating amounts of asialofetuin at 33{degree}C. Under these conditions, cellular fucosyltransferase activity was found to increase during spermatogenesis. In agreement with assays of intact cells, examination of subcellular fractions indicated that a large fraction of fucosyltransferase activity was associated with the cell surface. The fraction of fucosyltransferase activity that was associated with the cell surface progressively increased throughout spermatogenesis and epididymal maturation so that nearly all of the fucosyltransferase in epididymal sperm was on the cell surface. Specifically, by comparison of activities in the presence and absence of the detergent NP-40, the fraction of fucosyltransferase activity that was associated with the cell surface in pachytene spermatocytes, round spermatids, and epididymal sperm was 0.36, 0.5, and 0.85, respectively. These results suggest that a cell surface fucosyltransferase may be important during differentiation of spermatogenic cells in the testis as well as during epididymal maturation and fertilization.

  14. Cell surface of sea urchin micromeres and primary mesenchyme. [Arbacia punctulata; Strongylocentrotus drobachiensis; Strongylocentrotus purpuratus

    SciTech Connect

    DeSimone, D.W.

    1985-01-01

    The cell surface and extracellular matrix (ECM) of the sea urchin embryo were studied during the early morphogenetic events involved in the differentiation of the micromere cell lineage. Sixteen-cell and early cleavage stage blastomeres were isolated and the protein composition of their cell surfaces examined by /sup 125/I-labelling followed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Micromere-specific cell surface proteins are reported for Arbacia punctulata, Strongylocentrotus droebachiensis, and Strongylocentrotus purpuratus. Cell surface glycoproteins were characterized on the basis of lectin binding specificity with a novel lectin affinity transfer technique. Using this procedure, cell-type specific surface proteins, which are also lectin-binding specific, can be detected. In addition, fluorescein conjugated lectins were microinjected into the blastocoels of living S. drobachiensis and Lytechinus pictus embryos and the patterns of lectin bindings observed by fluorescence microscopy. The evidence presented in this thesis suggests that the differentiation of the primary mesenchyme cells is correlated with changes in the molecular composition of the cell-surface and the ECM.

  15. Investigating biomolecular recognition at the cell surface using atomic force microscopy.

    PubMed

    Wang, Congzhou; Yadavalli, Vamsi K

    2014-05-01

    Probing the interaction forces that drive biomolecular recognition on cell surfaces is essential for understanding diverse biological processes. Force spectroscopy has been a widely used dynamic analytical technique, allowing measurement of such interactions at the molecular and cellular level. The capabilities of working under near physiological environments, combined with excellent force and lateral resolution make atomic force microscopy (AFM)-based force spectroscopy a powerful approach to measure biomolecular interaction forces not only on non-biological substrates, but also on soft, dynamic cell surfaces. Over the last few years, AFM-based force spectroscopy has provided biophysical insight into how biomolecules on cell surfaces interact with each other and induce relevant biological processes. In this review, we focus on describing the technique of force spectroscopy using the AFM, specifically in the context of probing cell surfaces. We summarize recent progress in understanding the recognition and interactions between macromolecules that may be found at cell surfaces from a force spectroscopy perspective. We further discuss the challenges and future prospects of the application of this versatile technique.

  16. Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells

    PubMed Central

    Xiong, Jimin; Menicanin, Danijela; Marino, Victor

    2016-01-01

    The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC) compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein “spots” were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population. PMID:27579043

  17. Hedgehog-regulated ubiquitination controls smoothened trafficking and cell surface expression in Drosophila.

    PubMed

    Li, Shuang; Chen, Yongbin; Shi, Qing; Yue, Tao; Wang, Bing; Jiang, Jin

    2012-01-01

    Hedgehog transduces signal by promoting cell surface expression of the seven-transmembrane protein Smoothened (Smo) in Drosophila, but the underlying mechanism remains unknown. Here we demonstrate that Smo is downregulated by ubiquitin-mediated endocytosis and degradation, and that Hh increases Smo cell surface expression by inhibiting its ubiquitination. We find that Smo is ubiquitinated at multiple Lysine residues including those in its autoinhibitory domain (SAID), leading to endocytosis and degradation of Smo by both lysosome- and proteasome-dependent mechanisms. Hh inhibits Smo ubiquitination via PKA/CK1-mediated phosphorylation of SAID, leading to Smo cell surface accumulation. Inactivation of the ubiquitin activating enzyme Uba1 or perturbation of multiple components of the endocytic machinery leads to Smo accumulation and Hh pathway activation. In addition, we find that the non-visual β-arrestin Kurtz (Krz) interacts with Smo and acts in parallel with ubiquitination to downregulate Smo. Finally, we show that Smo ubiquitination is counteracted by the deubiquitinating enzyme UBPY/USP8. Gain and loss of UBPY lead to reciprocal changes in Smo cell surface expression. Taken together, our results suggest that ubiquitination plays a key role in the downregulation of Smo to keep Hh pathway activity off in the absence of the ligand, and that Hh-induced phosphorylation promotes Smo cell surface accumulation by inhibiting its ubiquitination, which contributes to Hh pathway activation.

  18. Remote Control of Tissue Interactions via Engineered Photo-switchable Cell Surfaces

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Pulsipher, Abigail; Dutta, Debjit; Lamb, Brian M.; Yousaf, Muhammad N.

    2014-09-01

    We report a general cell surface molecular engineering strategy via liposome fusion delivery to create a dual photo-active and bio-orthogonal cell surface for remote controlled spatial and temporal manipulation of microtissue assembly and disassembly. Cell surface tailoring of chemoselective functional groups was achieved by a liposome fusion delivery method and quantified by flow cytometry and characterized by a new cell surface lipid pull down mass spectrometry strategy. Dynamic co-culture spheroid tissue assembly in solution and co-culture tissue multilayer assembly on materials was demonstrated by an intercellular photo-oxime ligation that could be remotely cleaved and disassembled on demand. Spatial and temporal control of microtissue structures containing multiple cell types was demonstrated by the generation of patterned multilayers for controlling stem cell differentiation. Remote control of cell interactions via cell surface engineering that allows for real-time manipulation of tissue dynamics may provide tools with the scope to answer fundamental questions of cell communication and initiate new biotechnologies ranging from imaging probes to drug delivery vehicles to regenerative medicine, inexpensive bioreactor technology and tissue engineering therapies.

  19. SCAMP 37, a new marker within the general cell surface recycling system.

    PubMed Central

    Brand, S H; Castle, J D

    1993-01-01

    Secretory carrier membrane proteins (SCAMPs) are widely distributed as components of post-Golgi membranes that function as recycling carriers to the cell surface. In fibroblasts, SCAMPs are concentrated in compartments involved in the endocytosis and recycling of cell surface receptors while in neurons and other cell types having regulated transport pathways, SCAMPs are also components of regulated carriers (synaptic vesicles, secretion granules and transporter vesicles). Their presence in multiple pathways distinguishes them from proteins (e.g. recycling cell surface receptors and synaptic vesicle proteins) which are concentrated in selected pathways. The SCAMPs also do not appear to reside beyond the boundaries of these pathways. This distribution suggests that SCAMPs are general markers of membranes that function in cell surface recycling. The primary sequence of SCAMP 37 reveals a novel polypeptide containing a series of structural motifs, including a calcium binding domain, a leucine zipper and two zinc fingers. The very broad tissue distribution, subcellular localization and sequence analysis all predict that SCAMPs play a fundamental role in cell surface recycling. Images PMID:8404846

  20. Differential Labeling of Cell-surface and Internalized Proteins after Antibody Feeding of Live Cultured Neurons

    PubMed Central

    Munro, Kathryn M.; Kennedy, Matthew J.; Gunnersen, Jenny M.

    2014-01-01

    In order to demonstrate the cell-surface localization of a putative transmembrane receptor in cultured neurons, we labeled the protein on the surface of live neurons with a specific primary antibody raised against an extracellular portion of the protein. Given that receptors are trafficked to and from the surface, if cells are permeabilized after fixation then both cell-surface and internal protein will be detected by the same labeled secondary antibody. Here, we adapted a method used to study protein trafficking (“antibody feeding”) to differentially label protein that had been internalized by endocytosis during the antibody incubation step and protein that either remained on the cell surface or was trafficked to the surface during this period. The ability to distinguish these two pools of protein was made possible through the incorporation of an overnight blocking step with highly-concentrated unlabeled secondary antibody after an initial incubation of unpermeabilized neurons with a fluorescently-labeled secondary antibody. After the blocking step, permeabilization of the neurons allowed detection of the internalized pool with a fluorescent secondary antibody labeled with a different fluorophore. Using this technique we were able to obtain important information about the subcellular location of this putative receptor, revealing that it was, indeed, trafficked to the cell-surface in neurons. This technique is broadly applicable to a range of cell types and cell-surface proteins, providing a suitable antibody to an extracellular epitope is available. PMID:24561550

  1. Chemical remodeling of cell-surface sialic acids through a palladium-triggered bioorthogonal elimination reaction.

    PubMed

    Wang, Jie; Cheng, Bo; Li, Jie; Zhang, Zhaoyue; Hong, Weiyao; Chen, Xing; Chen, Peng R

    2015-04-27

    We herein report a chemical decaging strategy for the in situ generation of neuramic acid (Neu), a unique type of sialic acid, on live cells by the use of a palladium-mediated bioorthogonal elimination reaction. Palladium nanoparticles (Pd NPs) were found to be a highly efficient and biocompatible depropargylation catalyst for the direct conversion of metabolically incorporated N-(propargyloxycarbonyl)neuramic acid (Neu5Proc) into Neu on cell-surface glycans. This conversion chemically mimics the enzymatic de-N-acetylation of N-acetylneuramic acid (Neu5Ac), a proposed mechanism for the natural occurrence of Neu on cell-surface glycans. The bioorthogonal elimination was also exploited for the manipulation of cell-surface charge by unmasking the free amine at C5 to neutralize the negatively charged carboxyl group at C1 of sialic acids.

  2. Pharmacological induction of cell surface GRP78 contributes to apoptosis in triple negative breast cancer cells

    PubMed Central

    Hardy, Britta

    2014-01-01

    Breast cancer tumor with triple-negative receptors (estrogen, progesterone and Her 2, receptors) is the most aggressive and deadly subtype, with high rates of disease recurrence and poor survival. Here, we show that induction in cell surface GRP78 by doxorubicin and tunicamycin was associated with CHOP/GADD153 upregulation and increase in apoptosis in triple negative breast cancer tumor cells. GRP78 is a major regulator of the stress induced unfolded protein response pathway and CHOP/GADD153 is a pro-apoptotic transcription factor associated exclusively with stress induced apoptosis. The blocking of cell surface GRP78 by anti-GRP78 antibody prevented apoptosis, suggesting that induction of cell surface GRP78 by doxorubicin and tunicamycin is required for apoptosis. A better understanding of stress induction of apoptotic signaling in triple negative breast cancer cells may help to define new therapeutic strategies. PMID:25360516

  3. Cellular membrane enrichment of self-assembling D-peptides for cell surface engineering.

    PubMed

    Wang, Huaimin; Wang, Youzhi; Han, Aitian; Cai, Yanbin; Xiao, Nannan; Wang, Ling; Ding, Dan; Yang, Zhimou

    2014-06-25

    We occasionally found that several self-assembling peptides containing D-amino acids would be preferentially enriched in cellular membranes at self-assembled stages while distributed evenly in the cytoplasma of cells at unassembled stages. Self-assembling peptides containing only Lamino acids distributed evenly in cytoplasma of cells at both self-assembled and unassembled stages. The self-assembling peptides containing D-amino acids could therefore be applied for engineering cell surface with peptides. More importantly, by integrating a protein binding peptide (a PDZ domain binding hexapeptide of WRESAI) with the self-assembling peptide containing D-amino acids, protein could also be introduced to the cell surface. This study not only provided a novel approach to engineer cell surface, but also highlighted the unusual properties and potential applications of self-assembling peptides containing D-amino acids in regenerative medicine, drug delivery, and tissue engineering.

  4. Cell surface differences of Naegleria fowleri and Naegleria lovaniensis exposed with surface markers.

    PubMed

    González-Robles, Arturo; Castañón, Guadalupe; Cristóbal-Ramos, Ana Ruth; Hernández-Ramírez, Verónica Ivonne; Omaña-Molina, Maritza; Martínez-Palomo, Adolfo

    2007-12-01

    Differences in the distribution of diverse cell surface coat markers were found between Naegleria fowleri and Naegleria lovaniensis. The presence of carbohydrate-containing components in the cell coat of the two species was detected by selective staining with ruthenium red and alcian blue. Using both markers, N. fowleri presented a thicker deposit than N. lovaniensis. The existence of exposed mannose or glucose residues was revealed by discriminatory agglutination with the plant lectin Concanavalin A. These sugar residues were also visualized at the cell surface of these parasites either by transmission electron microscopy or by fluorescein-tagged Concanavalin A. Using this lectin cap formation was induced only in N. fowleri. The anionic sites on the cell surface detected by means of cationized ferritin were more apparent in N. fowleri. Biotinylation assays confirmed that even though the two amoebae species have some analogous plasma membrane proteins, there is a clear difference in their composition.

  5. Significance of nano- and microtopography for cell-surface interactions in orthopaedic implants.

    PubMed

    Jäger, M; Zilkens, C; Zanger, K; Krauspe, R

    2007-01-01

    Cell-surface interactions play a crucial role for biomaterial application in orthopaedics. It is evident that not only the chemical composition of solid substances influence cellular adherence, migration, proliferation and differentiation but also the surface topography of a biomaterial. The progressive application of nanostructured surfaces in medicine has gained increasing interest to improve the cytocompatibility and osteointegration of orthopaedic implants. Therefore, the understanding of cell-surface interactions is of major interest for these substances. In this review, we elucidate the principle mechanisms of nano- and microscale cell-surface interactions in vitro for different cell types onto typical orthopaedic biomaterials such as titanium (Ti), cobalt-chrome-molybdenum (CoCrMo) alloys, stainless steel (SS), as well as synthetic polymers (UHMWPE, XLPE, PEEK, PLLA). In addition, effects of nano- and microscaled particles and their significance in orthopaedics were reviewed. The significance for the cytocompatibility of nanobiomaterials is discussed critically.

  6. Interaction of Biofunctionalized Nanoparticles with Receptors on Cell Surfaces: MC Simulations

    NASA Astrophysics Data System (ADS)

    Dormidontova, Elena; Wang, Shihu

    2015-03-01

    One of the areas of active development of modern nanomedicine is drug/gene delivery and imaging application of nanoparticles functionalized by ligands, aptamers or antibodies capable of specific interactions with cell surface receptors. Being a complex multifunctional system different structural aspects of nanoparticles affect their interactions with cell surfaces and the surface properties of cells can be different (e.g. density, distribution and mobility of receptors). Computer simulations allow a systematic investigation of the influence of multiple factors and provide a unified platform for the comparison. Using Monte Carlo simulations we investigate the influence of the nanoparticle properties (nanoparticle size, polymer tether length, polydispersity, density, ligand energy, valence and density) on nanoparticle-cell surface interactions and make predictions regarding favorable nanoparticle design for achieving multiple ligand-receptor binding. We will also discuss the implications of nanoparticle design on the selectivity of attachment to cells with high receptor density while ``ignoring'' cells with a low density of receptors.

  7. Significance of Nano- and Microtopography for Cell-Surface Interactions in Orthopaedic Implants

    PubMed Central

    Jäger, M.; Zilkens, C.; Zanger, K.; Krauspe, R.

    2007-01-01

    Cell-surface interactions play a crucial role for biomaterial application in orthopaedics. It is evident that not only the chemical composition of solid substances influence cellular adherence, migration, proliferation and differentiation but also the surface topography of a biomaterial. The progressive application of nanostructured surfaces in medicine has gained increasing interest to improve the cytocompatibility and osteointegration of orthopaedic implants. Therefore, the understanding of cell-surface interactions is of major interest for these substances. In this review, we elucidate the principle mechanisms of nano- and microscale cell-surface interactions in vitro for different cell types onto typical orthopaedic biomaterials such as titanium (Ti), cobalt-chrome-molybdenum (CoCrMo) alloys, stainless steel (SS), as well as synthetic polymers (UHMWPE, XLPE, PEEK, PLLA). In addition, effects of nano- and microscaled particles and their significance in orthopaedics were reviewed. The significance for the cytocompatibility of nanobiomaterials is discussed critically. PMID:18274618

  8. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    SciTech Connect

    Takabe, Piia; Bart, Geneviève; Ropponen, Antti; Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna

    2015-09-10

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma.

  9. Phosphatidylserine Synthase Controls Cell Elongation Especially in the Uppermost Internode in Rice by Regulation of Exocytosis

    PubMed Central

    Chen, Jun; Shen, Jinbo; Zhang, Baocai; Ren, Yulong; Ding, Yu; Zhou, Yihua; Zhang, Huan; Zhou, Kunneng; Wang, Jiu-Lin; Lei, Cailin; Zhang, Xin; Guo, Xiuping; Gao, He; Bao, Yiqun; Wan, Jian-Min

    2016-01-01

    The uppermost internode is one of the fastest elongating organs in rice, and is expected to require an adequate supply of cell-wall materials and enzymes to the cell surface to enhance mechanical strength. Although it has been reported that the phenotype of shortened uppermost internode 1 (sui1) is caused by mutations in PHOSPHATIDYLSERINE SYNTHASE (OsPSS), the underlying mechanism remains unclear. Here we show that the OsPSS-1, as a gene expressed predominantly in elongating cells, regulates post-Golgi vesicle secretion to intercellular spaces. Mutation of OsPSS-1 leads to compromised delivery of CESA4 and secGFP towards the cell surface, resulting in weakened intercellular adhesion and disorganized cell arrangement in parenchyma. The phenotype of sui1-4 is caused largely by the reduction in cellulose contents in the whole plant and detrimental delivery of pectins in the uppermost internode. We found that OsPSS-1 and its potential product PS (phosphatidylserine) localized to organelles associated with exocytosis. These results together suggest that OsPSS-1 plays a potential role in mediating cell expansion by regulating secretion of cell wall components. PMID:27055010

  10. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion.

    PubMed

    Takabe, Piia; Bart, Geneviève; Ropponen, Antti; Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna

    2015-09-10

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells.

  11. A membrane reservoir at the cell surface: unfolding the plasma membrane to fuel cell shape change.

    PubMed

    Figard, Lauren; Sokac, Anna Marie

    2014-01-01

    Cell surface expansion is a necessary part of cell shape change. One long-standing hypothesis proposes that membrane for this expansion comes from the flattening out of cell surface projections such as microvilli and membrane folds. Correlative EM data of cells undergoing phagocytosis, cytokinesis, and morphogenesis has hinted at the existence of such an unfolding mechanism for decades; but unfolding has only recently been confirmed using live-cell imaging and biophysical approaches. Considering the wide range of cells in which plasma membrane unfolding has now been reported, it likely represents a fundamental mechanism of cell shape change.

  12. Characterization of antibody binding to cell surface antigens using a plasma membrane-bound plate assay.

    PubMed

    Vater, C A; Reid, K; Bartle, L M; Goldmacher, V S

    1995-01-01

    A procedure has been developed for measuring antibody binding to cell surface antigens using an immobilized plasma membrane fraction. In this method, isolated plasma membranes are dried onto wells of a 96-well microtiter plate and incubated with antibodies that recognize a cell surface protein. Bound antibody is detected indirectly using an enzyme-linked or fluorescently tagged second antibody. Alternatively, the primary antibody itself can be labeled and its binding can be detected directly. The assay is simple and fast and provides several advantages over whole cell binding assays currently in widespread use.

  13. Targeting Prostate Cancer Stem-Like Cells Through Cell Surface-Expressed GRP78

    DTIC Science & Technology

    2013-10-01

    hypothesis that cell surface GRP78 drives cancer stem-like behavior by activating an Akt/GSK-3/ Snail -1 signaling axis in prostate cancer stem-like...investigate the hypothesis that cell surface GRP78 drives cancer stem-like behavior by activating an Akt/GSK-3/ Snail -1 signaling axis in prostate cancer stem...investigate these signaling pathways in year 2. Task 4: Investigate the relative expression of Snail -1, a GSK-3 target, in adherent prostate cancer cells

  14. Labeling Cell Surface GPIs and GPI-Anchored Proteins through Metabolic Engineering with Artificial Inositol Derivatives.

    PubMed

    Lu, Lili; Gao, Jian; Guo, Zhongwu

    2015-08-10

    Glycosylphosphatidylinositol (GPI) anchoring of proteins to the cell surface is important for various biological processes, but GPI-anchored proteins are difficult to study. An effective strategy was developed for the metabolic engineering of cell-surface GPIs and GPI-anchored proteins by using inositol derivatives carrying an azido group. The azide-labeled GPIs and GPI-anchored proteins were then tagged with biotin on live cells through a click reaction, which allows further elaboration with streptavidin-conjugated dyes or other molecules. The strategy can be used to label GPI-anchored proteins with various tags for biological studies.

  15. Identification of novel sesterterpene/triterpene synthase from Bacillus clausii.

    PubMed

    Sato, Tsutomu; Yamaga, Hiroaki; Kashima, Shoji; Murata, Yusuke; Shinada, Tetsuro; Nakano, Chiaki; Hoshino, Tsutomu

    2013-05-10

    Basic enzyme: The tetraprenyl-β-curcumene synthase homologue from the alkalophilic Bacillus clausii catalyses conversions of a geranylfarnesyl diphosphate and a hexaprenyl diphosphate into novel head-to-tail acyclic sesterterpene and triterpene. Tetraprenyl-β-curcumene synthase homologues represent a new family of terpene synthases that form not only sesquarterpene but also sesterterpene and triterpene.

  16. Producing dicarboxylic acids using polyketide synthases

    DOEpatents

    Katz, Leonard; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-05-26

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  17. Lessons from 455 Fusarium polyketide synthases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In fungi, polyketide synthases (PKSs) synthesize a structurally diverse array of secondary metabolites (SMs) with a range of biological activities. The most studied SMs are toxic to animals and/or plants, alter plant growth, have beneficial pharmaceutical activities, and/or are brightly colored pigm...

  18. Producing dicarboxylic acids using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-10-29

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  19. Monocyte cell surface glycosaminoglycans positively modulate IL-4-induced differentiation toward dendritic cells.

    PubMed

    den Dekker, Els; Grefte, Sander; Huijs, Tonnie; ten Dam, Gerdy B; Versteeg, Elly M M; van den Berk, Lieke C J; Bladergroen, Bellinda A; van Kuppevelt, Toin H; Figdor, Carl G; Torensma, Ruurd

    2008-03-15

    IL-4 induces the differentiation of monocytes toward dendritic cells (DCs). The activity of many cytokines is modulated by glycosaminoglycans (GAGs). In this study, we explored the effect of GAGs on the IL-4-induced differentiation of monocytes toward DCs. IL-4 dose-dependently up-regulated the expression of DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), CD80, CD206, and CD1a. Monocytes stained positive with Abs against heparan sulfate (HS) and chondroitin sulfate (CS) B (CSB; dermatan sulfate), but not with Abs that recognize CSA, CSC, and CSE. Inhibition of sulfation of monocyte/DC cell surface GAGs by sodium chlorate reduced the reactivity of sulfate-recognizing single-chain Abs. This correlated with hampered IL-4-induced DC differentiation as evidenced by lower expression of DC-SIGN and CD1a and a decreased DC-induced PBL proliferation, suggesting that sulfated monocyte cell surface GAGs support IL-4 activity. Furthermore, removal of cell surface chondroitin sulfates by chondroitinase ABC strongly impaired IL-4-induced STAT6 phosphorylation, whereas removal of HS by heparinase III had only a weak inhibitory effect. IL-4 bound to heparin and CSB, but not to HS, CSA, CSC, CSD, and CSE. Binding of IL-4 required iduronic acid, an N-sulfate group (heparin) and specific O sulfates (CSB and heparin). Together, these data demonstrate that monocyte cell surface chondroitin sulfates play an important role in the IL-4-driven differentiation of monocytes into DCs.

  20. Glucocorticoids and the cell surface of human glioma cells: relationship to cytostasis.

    PubMed

    Mackie, A E; Freshney, R I; Akturk, F; Hunt, G

    1988-12-01

    The glucocorticoid hormones methyl prednisolone and dexamethasone were shown to be cytostatic, but not cytotoxic, at high cell densities for early passage and continuous cell lines from human glioma at 0.25 microM and above, in the presence or absence of serum. In the absence of serum both steroids at 2.5 nM increased the saturation density close to the level reached in serum. Examination of the iodinated glycoproteins of the cell surface by gel electrophoresis did not reveal any consistent change. However, gel exclusion chromatography of protease digests of the cell surface and of material released into the medium showed an increase in incorporation of 3H-glucosamine in pronase digests after treatment with methyl prednisolone. Ion exchange chromatography showed that sulphated glycosaminoglycans, particularly heparan sulphate, increased and hyaluronic acid decreased in response to steroids, and there was increased retention of GAGs on the cell surface relative to the released fraction. It was concluded that glucocorticoid hormones modify the cell surface of human glioma cells and that this may contribute to enhanced cell intraction and lead to increased density limitation of cell proliferation.

  1. Glucocorticoids and the cell surface of human glioma cells: relationship to cytostasis.

    PubMed Central

    Mackie, A. E.; Freshney, R. I.; Akturk, F.; Hunt, G.

    1988-01-01

    The glucocorticoid hormones methyl prednisolone and dexamethasone were shown to be cytostatic, but not cytotoxic, at high cell densities for early passage and continuous cell lines from human glioma at 0.25 microM and above, in the presence or absence of serum. In the absence of serum both steroids at 2.5 nM increased the saturation density close to the level reached in serum. Examination of the iodinated glycoproteins of the cell surface by gel electrophoresis did not reveal any consistent change. However, gel exclusion chromatography of protease digests of the cell surface and of material released into the medium showed an increase in incorporation of 3H-glucosamine in pronase digests after treatment with methyl prednisolone. Ion exchange chromatography showed that sulphated glycosaminoglycans, particularly heparan sulphate, increased and hyaluronic acid decreased in response to steroids, and there was increased retention of GAGs on the cell surface relative to the released fraction. It was concluded that glucocorticoid hormones modify the cell surface of human glioma cells and that this may contribute to enhanced cell intraction and lead to increased density limitation of cell proliferation. PMID:3254724

  2. Amyloid Precursor Protein Enhances Nav1.6 Sodium Channel Cell Surface Expression*

    PubMed Central

    Liu, Chao; Tan, Francis Chee Kuan; Xiao, Zhi-Cheng; Dawe, Gavin S.

    2015-01-01

    Amyloid precursor protein (APP) is commonly associated with Alzheimer disease, but its physiological function remains unknown. Nav1.6 is a key determinant of neuronal excitability in vivo. Because mouse models of gain of function and loss of function of APP and Nav1.6 share some similar phenotypes, we hypothesized that APP might be a candidate molecule for sodium channel modulation. Here we report that APP colocalized and interacted with Nav1.6 in mouse cortical neurons. Knocking down APP decreased Nav1.6 sodium channel currents and cell surface expression. APP-induced increases in Nav1.6 cell surface expression were Go protein-dependent, enhanced by a constitutively active Go protein mutant, and blocked by a dominant negative Go protein mutant. APP also regulated JNK activity in a Go protein-dependent manner. JNK inhibition attenuated increases in cell surface expression of Nav1.6 sodium channels induced by overexpression of APP. JNK, in turn, phosphorylated APP. Nav1.6 sodium channel surface expression was increased by T668E and decreased by T668A, mutations of APP695 mimicking and preventing Thr-668 phosphorylation, respectively. Phosphorylation of APP695 at Thr-668 enhanced its interaction with Nav1.6. Therefore, we show that APP enhances Nav1.6 sodium channel cell surface expression through a Go-coupled JNK pathway. PMID:25767117

  3. Adherence of Candida albicans and Candida parapsilosis to epithelial cells correlates with fungal cell surface carbohydrates.

    PubMed

    Lima-Neto, Reginaldo G; Beltrão, Eduardo I C; Oliveira, Patrícia C; Neves, Rejane P

    2011-01-01

    Many studies have described the adherence of Candida albicans to epithelial cells but little is known about Candida parapsilosis adhesion and its role in host cell surface recognition. This study was designed to evaluate the correlation between the adherence of 20 C. albicans and 12 C. parapsilosis strains to human buccal epithelial cells and the expression of fungal cell surface carbohydrates using lectin histochemistry. Adherence assays were carried out by incubating epithelial cells in yeast suspensions (10(7) cells ml(-1) ) and peroxidase conjugated lectins (Con A, WGA, UEA I and PNA at 25 μg ml(-1) ) were used for lectin histochemistry. The results showed that adherence was overall greater for C. albicans than for C. parapsilosis (P < 0.01) and that the individual strain differences correlated with a high content of cell surface α-l-fucose residues as indicated by the UEA I staining pattern. Based on the saccharide specificity of the lectins used, these results suggest that l-fucose residues on cell surface glycoconjugates may represent recognition molecules for interactions between the yeast strain studied and the host (r = 0.6985, P = 0.0045). In addition, our results indicated the presence of α-d-glucose/α-d-mannose, N-acetyl-D-glucosamine/N-acetylneuraminic acid and D-galactose/N-acetyl-D-galactosamine in fungal cell wall.

  4. A cell-surface-anchored ratiometric i-motif sensor for extracellular pH detection.

    PubMed

    Ying, Le; Xie, Nuli; Yang, Yanjing; Yang, Xiaohai; Zhou, Qifeng; Yin, Bincheng; Huang, Jin; Wang, Kemin

    2016-06-14

    A FRET-based sensor is anchored on the cell surface through streptavidin-biotin interactions. Due to the excellent properties of the pH-sensitive i-motif structure, the sensor can detect extracellular pH with high sensitivity and excellent reversibility.

  5. Cell surface energy, contact angles and phase partition. II. Bacterial cells in biphasic aqueous mixtures.

    PubMed

    Gerson, D F; Akit, J

    1980-11-04

    Partition coefficients in biphasic mixtures of poly(ethylene glycol) and Dextran are compared to cell surface energies obtained from contact angles of each liquid phase on cell layers. Linear relationships are observed between these two independent measurements for a variety of bacterial cells. The results demonstrate the importance of interfacial phenomena and contact angles in the phase-partition process.

  6. Highly Sensitive Detection of Target Biomolecules on Cell Surface Using Gold Nanoparticle Conjugated with Aptamer Probe

    NASA Astrophysics Data System (ADS)

    Kim, Hyonchol; Terazono, Hideyuki; Hayashi, Masahito; Takei, Hiroyuki; Yasuda, Kenji

    2012-06-01

    A method of gold nanoparticle (Au NP) labeling with backscattered electron (BE) imaging of field emission scanning electron microscopy (FE-SEM) was applied for specific detection of target biomolecules on a cell surface. A single-stranded DNA aptamer, which specifically binds to the target molecule on a human acute lymphoblastic leukemia cell, was conjugated with a 20 nm Au NP and used as a probe to label its target molecule on the cell. The Au NP probe was incubated with the cell, and the interaction was confirmed using BE imaging of FE-SEM through direct counting of the number of Au NPs attached on the target cell surface. Specific Au NP-aptamer probes were observed on a single cell surface and their spatial distributions including submicron-order localizations were also clearly visualized, whereas the nonspecific aptamer probes were not observed on it. The aptamer probe can be potentially dislodged from the cell surface with treatment of nucleases, indicating that Au NP-conjugated aptamer probes can be used as sensitive and reversible probes to label target biomolecules on cells.

  7. New Monoclonal Antibodies to Defined Cell Surface Proteins on Human Pluripotent Stem Cells.

    PubMed

    O'Brien, Carmel M; Chy, Hun S; Zhou, Qi; Blumenfeld, Shiri; Lambshead, Jack W; Liu, Xiaodong; Kie, Joshua; Capaldo, Bianca D; Chung, Tung-Liang; Adams, Timothy E; Phan, Tram; Bentley, John D; McKinstry, William J; Oliva, Karen; McMurrick, Paul J; Wang, Yu-Chieh; Rossello, Fernando J; Lindeman, Geoffrey J; Chen, Di; Jarde, Thierry; Clark, Amander T; Abud, Helen E; Visvader, Jane E; Nefzger, Christian M; Polo, Jose M; Loring, Jeanne F; Laslett, Andrew L

    2017-03-01

    The study and application of human pluripotent stem cells (hPSCs) will be enhanced by the availability of well-characterized monoclonal antibodies (mAbs) detecting cell-surface epitopes. Here, we report generation of seven new mAbs that detect cell surface proteins present on live and fixed human ES cells (hESCs) and human iPS cells (hiPSCs), confirming our previous prediction that these proteins were present on the cell surface of hPSCs. The mAbs all show a high correlation with POU5F1 (OCT4) expression and other hPSC surface markers (TRA-160 and SSEA-4) in hPSC cultures and detect rare OCT4 positive cells in differentiated cell cultures. These mAbs are immunoreactive to cell surface protein epitopes on both primed and naive state hPSCs, providing useful research tools to investigate the cellular mechanisms underlying human pluripotency and states of cellular reprogramming. In addition, we report that subsets of the seven new mAbs are also immunoreactive to human bone marrow-derived mesenchymal stem cells (MSCs), normal human breast subsets and both normal and tumorigenic colorectal cell populations. The mAbs reported here should accelerate the investigation of the nature of pluripotency, and enable development of robust cell separation and tracing technologies to enrich or deplete for hPSCs and other human stem and somatic cell types. Stem Cells 2017;35:626-640.

  8. Glucose transport and cell surface GLUT-4 protein in skeletal muscle of the obese Zucker rat.

    PubMed

    Etgen, G J; Wilson, C M; Jensen, J; Cushman, S W; Ivy, J L

    1996-08-01

    The relationship between 3-O-methyl-D-glucose transport and 2-N-4-(1-azi-2,2,2-trifluoroethyl)-benzoyl-1, 3-bis-(D-mannos-4-yloxy)-2-propylamine (ATB-BMPA)-labeled cell surface GLUT-4 protein was assessed in fast-twitch (epitrochlearis) and slow-twitch (soleus) muscles of lean and obese (fa/fa) Zucker rats. In the absence of insulin, glucose transport as well as cell surface GLUT-4 protein was similar in both epitrochlearis and soleus muscles of lean and obese rats. In contrast, insulin-stimulated glucose transport rates were significantly higher for lean than obese rats in both soleus (0.74 +/- 0.05 vs. 0.40 +/- 0.02 mumol.g-1.10 min-1) and epitrochlearis (0.51 +/- 0.05 vs. 0.17 +/- 0.02 mumol.g-1.10 min-1) muscles. The ability of insulin to enhance glucose transport in fast- and slow-twitch muscles from both lean and obese rats corresponded directly with changes in cell surface GLUT-4 protein. Muscle contraction elicited similar increases in glucose transport in lean and obese rats, with the effect being more pronounced in fast-twitch (0.70 +/- 0.07 and 0.77 +/- 0.04 mumol.g-1.10 min-1 for obese and lean, respectively) than in slow-twitch muscle (0.36 +/- 0.03 and 0.40 +/- 0.02 mumol.g-1.10 min-1 for obese and lean, respectively). The contraction-induced changes in glucose transport directly corresponded with the observed changes in cell surface GLUT-4 protein. Thus the reduced glucose transport response to insulin in skeletal muscle of the obese Zucker rat appears to result directly from an inability to effectively enhance cell surface GLUT-4 protein.

  9. Selective labelling of cell-surface proteins using CyDye DIGE Fluor minimal dyes.

    PubMed

    Hagner-McWhirter, Asa; Winkvist, Maria; Bourin, Stephanie; Marouga, Rita

    2008-11-26

    Surface proteins are central to the cell's ability to react to its environment and to interact with neighboring cells. They are known to be inducers of almost all intracellular signaling. Moreover, they play an important role in environmental adaptation and drug treatment, and are often involved in disease pathogenesis and pathology (1). Protein-protein interactions are intrinsic to signaling pathways, and to gain more insight in these complex biological processes, sensitive and reliable methods are needed for studying cell surface proteins. Two-dimensional (2-D) electrophoresis is used extensively for detection of biomarkers and other targets in complex protein samples to study differential changes. Cell surface proteins, partly due to their low abundance (1 2% of cellular proteins), are difficult to detect in a 2-D gel without fractionation or some other type of enrichment. They are also often poorly represented in 2-D gels due to their hydrophobic nature and high molecular weight (2). In this study, we present a new protocol for intact cells using CyDye DIGE Fluor minimal dyes for specific labeling and detection of this important group of proteins. The results showed specific labeling of a large number of cell surface proteins with minimal labeling of intracellular proteins. This protocol is rapid, simple to use, and all three CyDye DIGE Fluor minimal dyes (Cy 2, Cy 3 and Cy 5) can be used to label cell-surface proteins. These features allow for multiplexing using the 2-D Fluorescence Difference Gel Electrophoresis (2-D DIGE) with Ettan DIGE technology and analysis of protein expression changes using DeCyder 2-D Differential Analysis Software. The level of cell-surface proteins was followed during serum starvation of CHO cells for various lengths of time (see Table 1). Small changes in abundance were detected with high accuracy, and results are supported by defined statistical methods.

  10. ProtEx: a novel technology to display exogenous proteins on the cell surface for immunomodulation.

    PubMed

    Singh, Narendra P; Yolcu, Esma S; Askenasy, Nadir; Shirwan, Haval

    2005-11-01

    Gene therapy as an immunomodulatory approach has the potential to treat various inherited and acquired immune-based human diseases. However, its clinical application has several challenges, varying from the efficiency of gene transfer, control of gene expression, cell and tissue targeting, and safety concerns associated with the introduction of exogenous DNA into cells/tissues. Gene therapy is also a time- and labor-intensive procedure. As an alternative, we recently developed a novel technology, ProtEx, that allows for rapid, efficient, and durable display of exogenous proteins on the surface of cells, tissues, and organs without detectable toxicity. This technology exploits the strong binding affinity (Kd = 10(-15) M) of streptavidin with biotin and involves generation of chimeric molecules composed of the extracellular portions of immunological proteins of interest and a modified form of streptavidin, biotinylation of biological surfaces, and decoration of the modified surface with chimeric proteins. Biotin persists on the cell surface for weeks both in vitro and in vivo, thereby providing a platform to display exogenous proteins with extended cell surface kinetics. Two chimeric proteins, rat FasL (SA-FasL) and human CD80 (CD80-SA), were generated and tested for cell surface display and immunomodulatory functions. SA-FasL and CD80-SA molecules persisted on the surface of various cell types for extended periods, varying from days to weeks in vitro and in vivo. The cell surface kinetics, however, were protein and cell type dependent. SA-FasL showed potent apoptotic activity against Fas+ cells as a soluble protein or displayed on the cell surface and effectively blocked alloreactive responses. The display of CD80-SA on the surface of tumor cells, however, converted them into antigen-presenting cells for effective stimulation of autologous and allogeneic T-cell responses. ProtEx technology, therefore, represents a practical and effective alternative to DNA

  11. Characteristic Changes in Cell Surface Glycosylation Accompany Intestinal Epithelial Cell (IEC) Differentiation: High Mannose Structures Dominate the Cell Surface Glycome of Undifferentiated Enterocytes.

    PubMed

    Park, Dayoung; Brune, Kristin A; Mitra, Anupam; Marusina, Alina I; Maverakis, Emanual; Lebrilla, Carlito B

    2015-11-01

    Changes in cell surface glycosylation occur during the development and differentiation of cells and have been widely correlated with the progression of several diseases. Because of their structural diversity and sensitivity to intra- and extracellular conditions, glycans are an indispensable tool for analyzing cellular transformations. Glycans present on the surface of intestinal epithelial cells (IEC) mediate interactions with billions of native microorganisms, which continuously populate the mammalian gut. A distinct feature of IECs is that they differentiate as they migrate upwards from the crypt base to the villus tip. In this study, nano-LC/ESI QTOF MS profiling was used to characterize the changes in glycosylation that correspond to Caco-2 cell differentiation. As Caco-2 cells differentiate to form a brush border membrane, a decrease in high mannose type glycans and a concurrent increase in fucosylated and sialylated complex/hybrid type glycans were observed. At day 21, when cells appear to be completely differentiated, remodeling of the cell surface glycome ceases. Differential expression of glycans during IEC maturation appears to play a key functional role in regulating the membrane-associated hydrolases and contributes to the mucosal surface innate defense mechanisms. Developing methodologies to rapidly identify changes in IEC surface glycans may lead to a rapid screening approach for a variety of disease states affecting the GI tract.

  12. Geranyl diphosphate synthase large subunit, and methods of use

    DOEpatents

    Croteau, Rodney B.; Burke, Charles C.; Wildung, Mark R.

    2001-10-16

    A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.

  13. Polymorphisms of methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR), methionine synthase reductase (MTRR), and thymidylate synthase (TYMS) in multiple myeloma risk.

    PubMed

    Lima, Carmen S P; Ortega, Manoela M; Ozelo, Margareth C; Araujo, Renato C; De Souza, Cármino A; Lorand-Metze, Irene; Annichino-Bizzacchi, Joyce M; Costa, Fernando F

    2008-03-01

    We tested whether the polymorphisms of the methylenetetrahydrofolate reductase gene, MTHFR C677T and A1298C, the methionine synthase gene, MTR A2756G, the methionine synthase reductase gene, MTRR A66G, and the thymidylate synthase gene, TYMS 2R-->3R, involved in folate and methionine metabolism, altered the risk for multiple myeloma (MM). Genomic DNA from 123MM patients and 188 controls was analysed by polymerase chain reaction and restriction digestion for the polymorphism analyses. The frequency of the MTR 2756 AG plus GG genotype was higher in patients than in controls (39.8% versus 23.4%, P=0.001). Individual carriers of the variant allele G had a 2.31 (95% CI: 1.38-3.87)-fold increased risk for MM compared with others. In contrast, similar frequencies of the MTHFR, the MTRR and the TYMS genotypes were seen in patients and controls. These results suggest, for the first time, a role for the MTR A2756G polymorphism in MM risk in our country, but should be confirmed by large-scale epidemiological studies with patients and controls age matched.

  14. Nanoscale analysis of caspofungin-induced cell surface remodelling in Candida albicans

    NASA Astrophysics Data System (ADS)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Alsteens, David; Jackson, Desmond N.; Lipke, Peter N.; Dufrêne, Yves F.

    2013-01-01

    The advent of fungal pathogens that are resistant to the classic repertoire of antifungal drugs has increased the need for new therapeutic agents. A prominent example of such a novel compound is caspofungin, known to alter cell wall biogenesis by inhibiting β-1,3-d-glucan synthesis. Although much progress has been made in understanding the mechanism of action of caspofungin, little is known about its influence on the biophysical properties of the fungal cells. Here, we use atomic force microscopy (AFM) to demonstrate that caspofungin induces major remodelling of the cell surface properties of Candida albicans. Caspofungin causes major morphological and structural alterations of the cells, which correlate with a decrease of the cell wall mechanical strength. Moreover, we find that the drug induces the massive exposure of the cell adhesion protein Als1 on the cell surface and leads to increased cell surface hydrophobicity, two features that trigger cell aggregation. This behaviour is not observed in yeast species lacking Als1, demonstrating the key role that the protein plays in determining the aggregation phenotype of C. albicans. The results show that AFM opens up new avenues for understanding the molecular bases of microbe-drug interactions and for developing new therapeutic agents.The advent of fungal pathogens that are resistant to the classic repertoire of antifungal drugs has increased the need for new therapeutic agents. A prominent example of such a novel compound is caspofungin, known to alter cell wall biogenesis by inhibiting β-1,3-d-glucan synthesis. Although much progress has been made in understanding the mechanism of action of caspofungin, little is known about its influence on the biophysical properties of the fungal cells. Here, we use atomic force microscopy (AFM) to demonstrate that caspofungin induces major remodelling of the cell surface properties of Candida albicans. Caspofungin causes major morphological and structural alterations of the

  15. Characterization of maize roothairless6 which encodes a D-type cellulose synthase and controls the switch from bulge formation to tip growth

    PubMed Central

    Li, Li; Hey, Stefan; Liu, Sanzhen; Liu, Qiang; McNinch, Colton; Hu, Heng-Cheng; Wen, Tsui-Jung; Marcon, Caroline; Paschold, Anja; Bruce, Wesley; Schnable, Patrick S.; Hochholdinger, Frank

    2016-01-01

    Root hairs are tubular extensions of the epidermis. Root hairs of the monogenic recessive maize mutant roothairless 6 (rth6) are arrested after bulge formation during the transition to tip growth and display a rough cell surface. BSR-Seq in combination with Seq-walking and subsequent analyses of four independently generated mutant alleles established that rth6 encodes CSLD5 a plasma membrane localized 129 kD D-type cellulose synthase with eight transmembrane domains. Cellulose synthases are required for the biosynthesis of cellulose, the most abundant biopolymer of plant cell walls. Phylogenetic analyses revealed that RTH6 is part of a monocot specific clade of D-type cellulose synthases. D-type cellulose synthases are highly conserved in the plant kingdom with five gene family members in maize and homologs even among early land plants such as the moss Physcomitrella patens or the clubmoss Selaginella moellendorffii. Expression profiling demonstrated that rth6 transcripts are highly enriched in root hairs as compared to all other root tissues. Moreover, in addition to the strong knock down of rth6 expression in young primary roots of the mutant rth6, the gene is also significantly down-regulated in rth3 and rth5 mutants, while it is up-regulated in rth2 mutants, suggesting that these genes interact in cell wall biosynthesis. PMID:27708345

  16. Probing the PI3K/Akt/mTor pathway using 31P-NMR spectroscopy: routes to glycogen synthase kinase 3

    PubMed Central

    Phyu, Su M.; Tseng, Chih-Chung; Fleming, Ian N.; Smith, Tim A. D.

    2016-01-01

    Akt is an intracellular signalling pathway that serves as an essential link between cell surface receptors and cellular processes including proliferation, development and survival. The pathway has many downstream targets including glycogen synthase kinase3 which is a major regulatory kinase for cell cycle transit as well as controlling glycogen synthase activity. The Akt pathway is frequently up-regulated in cancer due to overexpression of receptors such as the epidermal growth factor receptor, or mutation of signalling pathway kinases resulting in inappropriate survival and proliferation. Consequently anticancer drugs have been developed that target this pathway. MDA-MB-468 breast and HCT8 colorectal cancer cells were treated with inhibitors including LY294002, MK2206, rapamycin, AZD8055 targeting key kinases in/associated with Akt pathway and the consistency of changes in 31P-NMR-detecatable metabolite content of tumour cells was examined. Treatment with the Akt inhibitor MK2206 reduced phosphocholine levels in MDA-MB-468 cells. Treatment with either the phosphoinositide-3-kinase inhibitor, LY294002 and pan-mTOR inhibitor, AZD8055 but not pan-Akt inhibitor MK2206 increased uridine-5′-diphosphate-hexose cell content which was suppressed by co-treatment with glycogen synthase kinase 3 inhibitor SB216763. This suggests that there is an Akt-independent link between phosphoinositol-3-kinase and glycogen synthase kinase3 and demonstrates the potential of 31P-NMR to probe intracellular signalling pathways. PMID:27811956

  17. Optimum design of amphiphilic polymers bearing hydrophobic groups for both cell surface ligand presentation and intercellular cross-linking.

    PubMed

    Takeo, Masafumi; Li, Cuicui; Matsuda, Masayoshi; Nagai, Hiroko; Hatanaka, Wataru; Yamamoto, Tatsuhiro; Kishimura, Akihiro; Mori, Takeshi; Katayama, Yoshiki

    2015-01-01

    Amphiphilic polymers bearing hydrophobic alkyl groups are expected to be applicable for both ligand presentation on the cell surface and intercellular crosslinking. To explore the optimum design for each application, we synthesized eight different acyl-modified dextrans with varying molecular weight, alkyl length, and alkyl modification degree. We found that the behenate-modified polymers retained on the cell surface longer than the palmitate-modified ones. Since the polymers were also modified with biotin, streptavidin can be presented on the cell surface through biotin-streptavidin recognition. The duration of streptavidin on the cell surface is longer in the behenate-modified polymer than the palmitate-modified one. As for the intercellular crosslinking, the palmitate-modified polymers were more efficient than the behenate-modified polymers. The findings in this research will be helpful to design the acyl-modified polymers for the cell surface engineering.

  18. Caffeine synthase and related methyltransferases in plants.

    PubMed

    Misako, Kato; Kouichi, Mizuno

    2004-05-01

    Caffeine (1,3,7-trimethylxanthine) is a purine alkaloid present in high concentrations in tea and coffee and it is also found in a number of beverages such as coca cola. It is necessary to elucidate the caffeine biosynthetic pathway and to clone the genes related to the production of caffeine not only to determine the metabolism of the purine alkaloid but also to control the content of caffeine in tea and coffee. The available data support the operation of a xanthosine-->7-methylxanthosine-->7-methylxanthine-->theobromine-->caffeine pathway as the major route to caffeine. Since the caffeine biosynthetic pathway contains three S-adenosyl-L-methionine (SAM) dependent methylation steps, N-methyltransferases play important roles. This review focuses on the enzymes and genes involved in the methylation of purine ring. Caffeine synthase, the SAM-dependent methyltransferase involved in the last two steps of caffeine biosynthesis, was originally purified from young tea leaves (Camellia sinensis). The isolated cDNA, termed TCS1, consists of 1,483 base pairs and encodes a protein of 369 amino acids. Subsequently, the homologous genes that encode caffeine biosynthetic enzymes from coffee (Coffea arabica) were isolated. The recombinant proteins are classified into the three types on the basis of their substrate specificity i.e. 7-methylxanthosine synthase, theobromine synthase and caffeine synthase. The predicted amino acid sequences of caffeine biosynthetic enzymes derived from C. arabica exhibit more than 80% homology with those of the clones and but show only 40% homology with TCS1 derived from C. sinensis. In addition, they share 40% homology with the amino acid sequences of salicylic carboxyl methyltransferase, benzoic acid carboxyl methyltransferase and jasmonic acid carboxyl methyltransferase which belong to a family of motif B' methyltransferases which are novel plant methyltransferases with motif B' instead of motif B as the conserved region.

  19. An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles

    SciTech Connect

    Zhang, Xiaojun; Chen, Yuan; Chen, Yong

    2014-03-28

    Highlights: • Air drying induced the transformation of cell-surface membrane vesicles into pits. • An AFM-based pit-measuring method was developed to measure cell-surface vesicles. • Our method detected at least two populations of cell-surface membrane vesicles. - Abstract: Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM) has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (<500 nm in diameter peaking at ∼250 nm) and a microscale population (from 500 nm to ∼2 μm peaking at ∼0.8 μm), whereas confocal microscopy only detected the microscale population. The AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release.

  20. Spatiotemporal regulation of chemical reaction kinetics of cell surface molecules by active remodeling of cortical actin

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Bhaswati; Chaudhuri, Abhishek; Gowrishankar, Kripa; Mayor, Satyajit; Rao, Madan

    2010-03-01

    Cell surface proteins such as lipid tethered GPI-anchored proteins and Ras-proteins are distributed as monomers and nanoclusters on the surface of living cells. Recent work from our laboratory suggests that the spatial distribution and dynamics of formation and breakup of these nanoclusters is controlled by the active remodeling dynamics of the underlying cortical actin. To explain these observations, we propose a novel mechanism of nanoclustering, involving the transient binding to and advection along constitutively occuring ``asters'' of cortical actin. Here we study the consequences of such active actin based clustering, in the context of chemical reactions involving conformational changes of cell surface proteins. We find that active remodeling of cortical actin, can give rise to a dramatic increase in the reaction efficiency and output levels. In general, such actin driven clustering of membrane proteins could be a cellular mechanism to spatiotemporally regulate and amplify local chemical reaction rates, in the context of signalling and endocytosis.

  1. Functional mapping of cell surface proteins with localized stimulation of single cells

    NASA Astrophysics Data System (ADS)

    Sun, Bingyun; Chiu, Daniel T.

    2003-11-01

    This paper describes the development of using individual micro and nano meter-sized vesicles as delivery vessels to functionally map the distribution of cell surface proteins at the level of single cells. The formation of different sizes of vesicles from tens of nanometers to a few micrometers in diameter that contain the desired molecules is addressed. An optical trap is used to manipulate the loaded vesicle to specific cell morphology of interest, and a pulsed UV laser is used to photo-release the stimuli onto the cell membrane. Carbachol activated cellular calcium flux, upon binding to muscarinic acetylcholine receptors, is studied by this method, and the potential of using this method for the functional mapping of localized proteins on the cell surface membrane is discussed.

  2. The plasma membrane flattens out to fuel cell surface growth during Drosophila cellularization

    PubMed Central

    Figard, Lauren; Xu, Heng; Garcia, Hernan G.; Golding, Ido; Sokac, Anna Marie

    2014-01-01

    Summary Cell shape change demands cell surface growth, but how growth is fueled and choreographed is still debated. Here, we use cellularization, the first complete cytokinetic event in Drosophila embryos, to show that cleavage furrow ingression is kinetically coupled to the loss of surface microvilli. We modulate furrow kinetics with RNAi against the Rho1-GTPase regulator slam, and show that furrow ingression controls the rate of microvillar depletion. Finally, we directly track microvillar membrane and see it move along the cell surface and into ingressing furrows, independent of endocytosis. Together, our results demonstrate that the kinetics of the ingressing furrow regulate the utilization of a microvillar membrane reservoir. Since the membrane of the furrow and microvilli are contiguous, we suggest that ingression drives unfolding of the microvilli and incorporation of microvillar membrane into the furrow. We conclude that plasma membrane folding/unfolding can contribute to the cell shape changes that promote embryonic morphogenesis. PMID:24316147

  3. Manipulating Neuronal Circuits with Endogenous and Recombinant Cell-Surface Tethered Modulators

    PubMed Central

    Holford, Mandë; Auer, Sebastian; Laqua, Martin; Ibañez-Tallon, Ines

    2009-01-01

    Neuronal circuits depend on the precise regulation of cell-surface receptors and ion channels. An ongoing challenge in neuroscience research is deciphering the functional contribution of specific receptors and ion channels using engineered modulators. A novel strategy, termed “tethered toxins”, was recently developed to characterize neuronal circuits using the evolutionary derived selectivity of venom peptide toxins and endogenous peptide ligands, such as lynx1 prototoxins. Herein, the discovery and engineering of cell-surface tethered peptides is reviewed, with particular attention given to their cell-autonomy, modular composition, and genetic targeting in different model organisms. The relative ease with which tethered peptides can be engineered, coupled with the increasing number of neuroactive venom toxins and ligand peptides being discovered, imply a multitude of potentially innovative applications for manipulating neuronal circuits and tissue-specific cell networks, including treatment of disorders caused by malfunction of receptors and ion channels. PMID:19915728

  4. Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans

    PubMed Central

    1992-01-01

    The role of cell surface heparan sulfate in herpes simplex virus (HSV) infection was investigated using CHO cell mutants defective in various aspects of glycosaminoglycan synthesis. Binding of radiolabeled virus to the cells and infection were assessed in mutant and wild-type cells. Virus bound efficiently to wild-type cells and initiated an abortive infection in which immediate-early or alpha viral genes were expressed, despite limited production of late viral proteins and progeny virus. Binding of virus to heparan sulfate-deficient mutant cells was severely impaired and mutant cells were resistant to HSV infection. Intermediate levels of binding and infection were observed for a CHO cell mutant that produced undersulfated heparan sulfate. These results show that heparan sulfate moieties of cell surface proteoglycans serve as receptors for HSV. PMID:1310996

  5. SERS imaging of cell-surface biomolecules metabolically labeled with bioorthogonal Raman reporters.

    PubMed

    Xiao, Ming; Lin, Liang; Li, Zefan; Liu, Jie; Hong, Senlian; Li, Yaya; Zheng, Meiling; Duan, Xuanming; Chen, Xing

    2014-08-01

    Live imaging of biomolecules with high specificity and sensitivity as well as minimal perturbation is essential for studying cellular processes. Here, we report the development of a bioorthogonal surface-enhanced Raman scattering (SERS) imaging approach that exploits small Raman reporters for visualizing cell-surface biomolecules. The cells were cultured and imaged by SERS microscopy on arrays of Raman-enhancing nanoparticles coated on silicon wafers or glass slides. The Raman reporters including azides, alkynes, and carbondeuterium bonds are small in size and spectroscopically bioorthogonal (background-free). We demonstrated that various cell-surface biomolecules including proteins, glycans, and lipids were metabolically incorporated with the corresponding precursors bearing a Raman reporter and visualized by SERS microscopy. The coupling of SERS microscopy with bioorthogonal Raman reporters expands the capabilities of live-cell microscopy beyond the modalities of fluorescence and label-free imaging.

  6. Polyamino acid display on cell surfaces enhances salt and alcohol tolerance of Escherichia coli.

    PubMed

    Suzuki, Hirokazu; Ishii, Jun; Kondo, Akihiko; Yoshida, Ken-Ichi

    2015-02-01

    Microbes employ cell membranes for reducing exogenous stresses. Polyamino acid display on microbial cell surfaces and their effects on microbial chemical stress tolerance were examined. Growth analysis revealed that displays of polyarginine, polyaspartate and polytryptophan substantially enhanced tolerance of Escherichia coli to NaCl. A titration assay indicated that polyarginine and polyaspartate altered cell surface charges, implying tolerance enhancement via ion atmosphere and/or ionic bond network formations for electrostatic ion repulsion. The enhancement by polytryptophan may have arisen from surface hydrophobicity increase for hydrophobic ion exclusion, because of a strong correlation between hydrophobic characters of amino acids and their effects on tolerance enhancement. The display also enhanced tolerance to other salts and/or alcohols in E. coli and to NaCl in Saccharomyces cerevisiae. Thus polyamino acid display has the potential as an approach for conferring chemical stress tolerance on various microbes.

  7. Contribution of Cell Surface Hydrophobicity in the Resistance of Staphylococcus aureus against Antimicrobial Agents

    PubMed Central

    Lather, Puja; Mohanty, A. K.; Jha, Pankaj; Garsa, Anita Kumari

    2016-01-01

    Staphylococcus aureus is found in a wide variety of habitats, including human skin, where many strains are commensals that may be clinically significant or contaminants of food. To determine the physiological characteristics of resistant strain of Staphylococcus aureus against pediocin, a class IIa bacteriocin, a resistant strain was compared with wild type in order to investigate the contribution of hydrophobicity to this resistance. Additional clumping of resistant strain relative to wild type in light microscopy was considered as an elementary evidence of resistance attainment. A delay in log phase attainment was observed in resistant strain compared to the wild type strain. A significant increase in cell surface hydrophobicity was detected for resistant strain in both hexadecane and xylene indicating the contribution of cell surface hydrophobicity as adaptive reaction against antimicrobial agents. PMID:26966577

  8. Mammalian carboxylesterase (CES) releases GPI-anchored proteins from the cell surface upon lipid raft fluidization.

    PubMed

    Orihashi, Kaoru; Tojo, Hiromasa; Okawa, Katsuya; Tashima, Yuko; Morita, Takashi; Kondoh, Gen

    2012-03-01

    Mammalian carboxylesterase (CES) is well known as a biotransformation enzyme for prodrugs and xenobiotics. Here, we purified CES as a GPI-anchored protein (GPI-AP)-releasing factor (GPIase) that releases such protein from the cell surface. All five isoforms of CES showed this activity to various degrees. When the serine residue of the catalytic triad for esterase was replaced by alanine, esterase activity was completely disrupted, while full GPIase activity remained, suggesting that these two activities are exhibited via different mechanisms. CES6, a new class of mammalian CES, exhibited the highest GPIase activity and released specific GPI-APs from the cell surface after lipid raft fluidization. The released product contained a GPI component, indicating that GPI-AP was released by cleavage in GPI. These results revealed for the first time that CES recognizes and catalyzes macromolecule GPI-AP as well as small molecules.

  9. Chrysanthemyl Diphosphate Synthase Operates in Planta as a Bifunctional Enzyme with Chrysanthemol Synthase Activity*

    PubMed Central

    Yang, Ting; Gao, Liping; Hu, Hao; Stoopen, Geert; Wang, Caiyun; Jongsma, Maarten A.

    2014-01-01

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1′-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12–0.16 μg h−1 g−1 fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate. PMID:25378387

  10. Structure of a modular polyketide synthase

    PubMed Central

    Dutta, Somnath; Whicher, Jonathan R.; Hansen, Douglas A.; Hale, Wendi A.; Chemler, Joseph A.; Congdon, Grady R.; Narayan, Alison R.; Håkansson, Kristina; Sherman, David H.; Smith, Janet L.

    2014-01-01

    Polyketide natural products constitute a broad class of compounds with diverse structural features and biological activities. Their biosynthetic machinery, represented by type I polyketide synthases, has an architecture in which successive modules catalyze two-carbon linear extensions and keto group processing reactions on intermediates covalently tethered to carrier domains. We employed electron cryo-microscopy to visualize a full-length module and determine sub-nanometer resolution 3D reconstructions that revealed an unexpectedly different architecture compared to the homologous dimeric mammalian fatty acid synthase. A single reaction chamber provides access to all catalytic sites for the intra-module carrier domain. In contrast, the carrier from the preceding module uses a separate entrance outside the reaction chamber to deliver the upstream polyketide intermediate for subsequent extension and modification. This study reveals for the first time the structural basis for both intra-module and inter-module substrate transfer in polyketide synthases, and establishes a new model for molecular dissection of these multifunctional enzyme systems. PMID:24965652

  11. Threonine Synthase of Lemna paucicostata Hegelm. 6746

    PubMed Central

    Giovanelli, John; Veluthambi, K.; Thompson, Gregory A.; Mudd, S. Harvey; Datko, Anne H.

    1984-01-01

    Threonine synthase (TS) was purified approximately 40-fold from Lemna paucicostata, and some of its properties determined by use of a sensitive and specific assay. During the course of its purification, TS was separated from cystathionine γ-synthase, establishing the separate identity of these enzymes. Compared to cystathionine γ-synthase, TS is relatively insensitive to irreversible inhibition by propargylglycine (both in vitro and in vivo) and to gabaculine, vinylglycine, or cysteine in vitro. TS is highly specific for O-phospho-l-homoserine (OPH) and water (hydroxyl ion). Nucleophilic attack by hydroxyl ion is restricted to carbon-3 of OPH and proceeds sterospecifically to form threonine rather than allo-threonine. The Km for OPH, determined at saturating S-adenosylmethionine (AdoMet), is 2.2 to 6.9 micromolar, two orders of magnitude less than values reported for TS from other plant tissues. AdoMet markedly stimulates the enzyme in a reversible and cooperative manner, consistent with its proposed role in regulation of methionine biosynthesis. Cysteine (1 millimolar) caused a slight (26%) reversible inhibition of the enzyme. Activities of TS isolated from Lemna were inversely related to the methionine nutrition of the plants. Down-regulation of TS by methionine may help to limit the overproduction of threonine that could result from allosteric stimulation of the enzyme by AdoMet. No evidence was obtained for feedback inhibition, repression, or covalent modification of TS by threonine and/or isoleucine. PMID:16663833

  12. Oligosaccharide Binding in Escherichia coli Glycogen Synthase

    SciTech Connect

    Sheng, Fang; Yep, Alejandra; Feng, Lei; Preiss, Jack; Geiger, James H.

    2010-11-17

    Glycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure. Four bound oligosaccharides are observed, one in the interdomain cleft (G6a) and three on the N-terminal domain surface (G6b, G6c, and G6d). Extending from the center of the enzyme to the interdomain cleft opening, G6a mostly interacts with the highly conserved N-terminal domain residues lining the cleft of GS. The surface-bound oligosaccharides G6c and G6d have less interaction with enzyme and exhibit a more curled, helixlike structural arrangement. The observation that oligosaccharides bind only to the N-terminal domain of GS suggests that glycogen in vivo probably binds to only one side of the enzyme to ensure unencumbered interdomain movement, which is required for efficient, continuous glucan-chain synthesis.

  13. Progress towards clinically useful aldosterone synthase inhibitors.

    PubMed

    Cerny, Matthew A

    2013-01-01

    Owing to the high degree of similarity between aldosterone synthase (CYP11B2) and cortisol synthase (CYP11B1), the design of selective inhibitors of one or the other of these two enzymes was, at one time, thought to be impossible. Through development of novel enzyme screening assays and significant medicinal chemistry efforts, highly potent inhibitors of CYP11B2 have been identified with selectivities approaching 1000-fold between the two enzymes. Many of these molecules also possess selectivity against other steroidogenic cytochromes P450 (e.g. CYP17A1 and CYP19A1) as well as hepatic drug metabolizing P450s. Though not as well developed or explored, inhibitors of CYP11B1, with selectivities approaching 50-fold, have also been identified. The therapeutic benefits of affecting the renin-angiotensin-aldosterone system have been well established with the therapeutically useful angiotensin-converting enzymes inhibitors, angiotensin receptor blockers, and mineralocorticoid receptor antagonists. Data regarding the additional benefits of an aldosterone synthase inhibitor (ASi) are beginning to emerge from animal models and human clinical trials. Despite great promise and much progress, additional challenges still exist in the path towards development of a therapeutically useful ASi.

  14. Organic Nitrogen Utilization by Phytoplankton: The Role of Cell-Surface Deaminases

    DTIC Science & Technology

    1989-06-01

    inhibited by cell-impermeable protein Marler 1966: Zika 1984). This highly re- modification reagents. A cell-surface redox en- active species may have a...from wet and dry deposition ( Zika sured in cultures of I. carterae could be et al. 1982; Thompson and Zafiriou 1983), generalized, marine phytoplankton...would be an is generated in photochemical reactions important sourceofthe hydrogen peroxide found (Cooper and Zika 1983), and can also be in the manne

  15. Adhesion of phospholipid vesicles to Chinese hamster fibroblasts: Role of cell surface proteins

    PubMed Central

    Pagano, RE; Takeichi, M

    1977-01-01

    The adhesion of artificially generated lipid membrane vesicles to Chinese hamster V79 fibroblasts in suspension was used as a model system for studying membrane interactions. Below their gel-liquid crystalline phase transition temperature, vesicles comprised of dipalmitoyl lecithin (DPL) or dimyristoyl lecithin (DML) absorbed to the surfaces of EDTA- dissociated cells. These adherent vesicles could not be removed by repeated washings of the treated cells but could be released into the medium by treatment with trypsin. EM autoradiographic studies of cells treated with[(3)H]DML or [(3)H]DPL vesicles showed that most of the radioactive lipids were confined to the cell periphery. Scanning electron microscopy and fluorescence microscopy further confirmed the presence of adherent vesicles at the cell surface. Adhesion of DML or DPL vesicles to EDTA-dissociated cells modified the lactoperoxidase-catalyzed iodination pattern of the cell surface proteins; the inhibition of labeling of two proteins with an approximately 60,000- dalton mol wt was particularly evident. Incubation of cells wit h (3)H-lipid vesicles followed by sodium dodecyl sulfate (SDS)- polyacrylamide gel electrophoresis showed that some of the (3)H-lipid migrated preferentially with these approximately 60,000-mol wt proteins. Studies of the temperature dependence of vesicle uptake and subsequent release by trypsin showed that DML or DPL vesicle adhesion to EDTA- dissociated cells increased with decreasing temperatures. In contrast, cells trypsinized before incubation with vesicles showed practically no temperature dependence of vesicle uptake. These results suggest two pathways for adhesion of lipid vesicles to the cell surface-a temperature-sensitive one involving cell surface proteins, and a temperature-independent one. These findings are discussed in terms of current models for cell-cell interactions. PMID:407233

  16. Modeling the Excess Cell Surface Stored in a Complex Morphology of Bleb-Like Protrusions

    PubMed Central

    Wessler, Timothy; Yang, Xiaofeng; Chen, Alex; Roach, Nathan; Elston, Timothy C.; Wang, Qi; Jacobson, Ken; Forest, M. Gregory

    2016-01-01

    Cells transition from spread to rounded morphologies in diverse physiological contexts including mitosis and mesenchymal-to-amoeboid transitions. When these drastic shape changes occur rapidly, cell volume and surface area are approximately conserved. Consequently, the rounded cells are suddenly presented with a several-fold excess of cell surface whose area far exceeds that of a smooth sphere enclosing the cell volume. This excess is stored in a population of bleb-like protrusions (BLiPs), whose size distribution is shown by electron micrographs to be skewed. We introduce three complementary models of rounded cell morphologies with a prescribed excess surface area. A 2D Hamiltonian model provides a mechanistic description of how discrete attachment points between the cell surface and cortex together with surface bending energy can generate a morphology that satisfies a prescribed excess area and BLiP number density. A 3D random seed-and-growth model simulates efficient packing of BLiPs over a primary rounded shape, demonstrating a pathway for skewed BLiP size distributions that recapitulate 3D morphologies. Finally, a phase field model (2D and 3D) posits energy-based constitutive laws for the cell membrane, nematic F-actin cortex, interior cytosol, and external aqueous medium. The cell surface is equipped with a spontaneous curvature function, a proxy for the cell surface-cortex couple, that is a priori unknown, which the model “learns” from the thin section transmission electron micrograph image (2D) or the “seed and growth” model image (3D). Converged phase field simulations predict self-consistent amplitudes and spatial localization of pressure and stress throughout the cell for any posited stationary morphology target and cell compartment constitutive properties. The models form a general framework for future studies of cell morphological dynamics in a variety of biological contexts. PMID:27015526

  17. Conformational variation between allelic variants of cell-surface ovine prion protein.

    PubMed

    Thackray, Alana M; Yang, Sujeong; Wong, Edmond; Fitzmaurice, Tim J; Morgan-Warren, Robert J; Bujdoso, Raymond

    2004-07-01

    The distribution of prion infectivity and PrPSc between peripheral lymphoid tissues suggests their possible haematogenic spread during the progression of natural scrapie in susceptible sheep. Since ovine PBMCs (peripheral blood mononuclear cells) express PrPC, they have the potential to carry or harbour disease-associated forms of PrP. To detect the possible presence of disease-associated PrP on the surface of blood cells, an understanding is required of the conformations that normal ovine cell-surface PrPC may adopt. In the present study, we have used monoclonal antibodies that recognize epitopes in either the N- or C-terminal portions of PrP to probe the conformations of PrPC on ovine PBMCs by flow cytometry. Although PBMCs from scrapie-susceptible and -resistant genotypes of sheep expressed similar levels of cell-surface PrPC, as judged by their reactivity with N-terminal-specific anti-PrP monoclonal antibodies, there was considerable genotypic heterogeneity in the region between helix-1 and residue 171. Cells from PrP-VRQ (V136R154Q171) sheep showed uniform reactivity with monoclonal antibodies that bound to epitopes around helix-1, whereas cells from PrP-ARQ (A136R154Q171) and PrP-ARR (A136R154R171) sheep showed variable binding. The region between b-strand-2 and residue 171, which includes a YYR motif, was buried or obscured in cell-surface PrPC on PBMCs from scrapie-susceptible and -resistant sheep. However, an epitope of PrPC that is influenced by residue 171 was more exposed on PBMCs from PrP-VRQ sheep than on PBMCs from the PrP-ARQ genotype. Our results highlight conformational variation between scrapie-susceptible and -resistant forms of cell-surface PrPC and also between allelic variants of susceptible genotypes.

  18. Association of Actinobacillus actinomycetemcomitans leukotoxin with nucleic acids on the bacterial cell surface.

    PubMed Central

    Ohta, H; Hara, H; Fukui, K; Kurihara, H; Murayama, Y; Kato, K

    1993-01-01

    Actinobacillus actinomycetemcomitans, a periodontopathic gram-negative bacterium, produces a leukotoxin that is a member of the RTX cytotoxin family. Although genes may function in toxin secretion, the leukotoxin is not secreted extracellularly but remains associated with the bacterial cell surface. We report here that this toxin-cell surface association is mediated by nucleic acids and directly demonstrate that the extracellular secretion of toxin occurs in growing cultures with increased ionic strength of medium. All examinations were performed with freshly harvested A. actinomycetemcomitans 301-b from anaerobic fructose-limited chemostat cultures. The occurrence of cell surface-localized DNA was shown by directly digesting whole cells with the restriction endonuclease EcoRI or HindIII, which yielded many DNA fragments. The cell surface DNA constituted about 20% of the total cellular DNA. The leukotoxin was released from the whole cells by digestion with DNase I as well as restriction endonucleases. Because the leukotoxin binds ionically to DNA, it is dependent on the ionic strength of buffers or media. Accordingly, the toxin was released from cells suspended in saline at pH 7.5 in the presence of increasing amounts of MgCl2 (0 to 10 mM) or NaCl (0 to 50 mM). Moreover, a considerable quantity of leukotoxin was detected in the culture supernatant of fructose-limited chemostat cultures when sodium succinate solution was pumped into the steady state as an additional salt (30 and then 50 mM). This toxin-DNA association was also found in well-characterized strains including not only the leukotoxin-producing ATCC 29522 but also the toxin production-variable ATCC 29523 and the non-leukotoxin-producing ATCC 33384 when these strains were grown in the chemostat culture. Images PMID:8406888

  19. Behavior of two Tannerella forsythia strains and cell surface mutants in multispecies oral biofilms.

    PubMed

    Bloch, Susanne; Thurnheer, Thomas; Murakami, Yukitaka; Belibasakis, Georgios N; Schäffer, Christina

    2017-04-05

    As a member of subgingival multispecies biofilms, Tannerella forsythia is commonly associated with periodontitis. The bacterium has a characteristic cell surface (S-) layer modified with a unique O-glycan. Both the S-layer and the O-glycan were analyzed in this study for their role in biofilm formation by employing an in vitro multispecies biofilm model mimicking the situation in the oral cavity. Different T. forsythia strains and mutants with characterized defects in cell surface composition were incorporated into the model, together with nine species of select oral bacteria. The influence of the T. forsythia S-layer and attached glycan on the bacterial composition of the biofilms was analyzed quantitatively using colony forming unit counts and quantitative real-time PCR, as well as qualitatively by fluorescence in situ hybridization and confocal laser scanning microscopy. This revealed that changes of the T. forsythia cell surface did not affect the quantitative composition of the multispecies consortium, with the exception of Campylobacter rectus cell numbers. The localization of T. forsythia within the bacterial agglomeration varied depending on changes in the S-layer glycan, and this also affected its aggregation with Porphyromonas gingivalis. This suggests a selective role for the glycosylated T. forsythia S-layer in the positioning of this species within the biofilm, its co-localization with P. gingivalis, and the prevalence of C. rectus. These findings might translate into a potential role of T. forsythia cell surface structures in the virulence of this species when interacting with host tissues and immune system, from within or beyond the biofilm. This article is protected by copyright. All rights reserved.

  20. The Mesenchymal Precursor Cell Marker Antibody STRO-1 Binds to Cell Surface Heat Shock Cognate 70.

    PubMed

    Fitter, Stephen; Gronthos, Stan; Ooi, Soo Siang; Zannettino, Andrew C W

    2016-12-27

    Since its discovery more than 25 years ago, the STRO-1 antibody has played a fundamental role in defining the hierarchical nature of mesenchymal precursor cells (MPC) and their progeny. STRO-1 antibody binding remains a hallmark of immature pluripotent MPC. Despite the significance of STRO-1 in the MPC field, the identity of the antigen has remained elusive. Using a combination of two-dimensional gel electrophoresis, coupled with Western blotting and Tandem mass spectroscopy, we have identified the STRO-1 antigen as heat shock cognate 70 (HSC70;HSPA8). STRO-1 binds to immune-precipitated HSC70 and siRNA-mediated knock down of HSPA8 reduced STRO-1 binding. STRO-1 surface binding does not correlate with HSC70 expression and sequestration of cholesterol reduces STRO-1 surface binding, suggesting that the plasma membrane lipid composition may be an important determinant in the presentation of HSC70 on the cell surface. HSC70 is present on the surface of STRO-1(+) but not STRO-1(-) cell lines as assessed by cell surface biotinylation and recombinant HSC70 blocks STRO-1 binding to the cell surface. The STRO-1 epitope on HSC70 was mapped to the ATPase domain using a series of deletion mutants in combination with peptide arrays. Deletion of the first four amino acids of the consensus epitope negated STRO-1 binding. Notably, in addition to HSC70, STRO-1 cross-reacts with heat shock protein 70 (HSP70), however all the clonogenic cell activity is restricted to the STRO-1(BRIGHT) /HSP70(-) fraction. These results provide important insight into the properties that define multipotent MPC and provide the impetus to explore the role of cell surface HSC70 in MPC biology. Stem Cells 2016.

  1. Ultrastructural and biochemical studies of two dynamically expressed cell surface determinants on Candida albicans.

    PubMed Central

    Brawner, D L; Cutler, J E

    1986-01-01

    Variability in the expression of two different cell surface carbohydrate determinants was examined with two agglutinating immunoglobulin M monoclonal antibodies (H9 and C6) and immunoelectron microscopy during growth of three strains of Candida albicans. A single strain of Candida parapsilosis did not express either antigen at any time during growth. Antigens were detected on the surface of C. albicans by agglutination tests with either H9 or C6 over a 48-h growth period. The difference in specificities of the monoclonal antibodies was demonstrated by Ouchterlony double-diffusion tests with solubilized antigens and by variabilities in the reactivity of the agglutinins among yeast strains. The antigenic determinants were isolated by specific immunoprecipitation and protease digestion and characterized by methods including high-pressure liquid chromatography, gas-liquid chromatography, and mass spectroscopy with both chemical and electron ionization. These determinants both contain mannose and glucose. In the case of antigen H9, an additional carbohydrate was detected with gas chromatography and mass spectroscopy. The location of antigens on individual cells was determined by indirect labeling of the determinants, first reacting cells with H9 or C6 followed by goat anti-mouse antibody conjugated with 20-nm colloidal gold particles. Transmission electron microscopy was used to examine cells. The antigens that were reactive with the monoclonal antibodies were associated with a flocculent surface layer. Expression of this layer and expression of the antigens is a dynamic process which is growth phase and strain dependent. The antigens were not expressed on very young cells and disappeared from the cell surface of most C. albicans strains with age. The use of monoclonal antibody to cell surface determinants may allow characterization of cell surface antigens of C. albicans and be helpful in establishing receptors which mediate adherence. Images PMID:3510174

  2. Isolation of pigmented and nonpigmented mutants of Serratia marcescens with reduced cell surface hydrophobicity

    SciTech Connect

    Rosenberg, M.

    1984-10-01

    Enrichment for nonhydrophobic mutants of Serratia marcescens yielded two types: (i) a nonpigmented mutant which exhibited partial hydrophobic characteristics compared with the wild type, as determined by adherence to hexadecane and polystyrene; and (ii) a pigmented, nonhydrophobic mutant whose colonies were translucent with respect to those of the wild type. The data suggest that the pronounced cell surface hydrophobicity of the wild type is mediated by a combination of several surface f

  3. Hydrogen-bonded LbL Shells for Living Cell Surface Engineering

    DTIC Science & Technology

    2011-03-21

    phospholipids into the lipid bilayer membrane, and cell decoration with/inclusion into biodegradable gel microparti- cles.7–11 However, for these strategies...polymer membrane. The poly(allylamine hydrochloride)/poly(styrene sulfonate) ( PAH /PSS) coating is the mostly explored poly- electrolyte pair used to...this approach for cell surface engineering.42,43 As suggested, overall toxicity of the PAH /PSS LbL shells originates from the positive charge of

  4. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    SciTech Connect

    Gou, Ke-Mian; Chang, Chia-Chun; Shen, Qing-Ji; Sung, Li-Ying; Liu, Ji-Long

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.

  5. Cell surface sialylation affects binding of enterovirus 71 to rhabdomyosarcoma and neuroblastoma cells

    PubMed Central

    2012-01-01

    Background Enterovirus 71 (EV71) is a major causative agent of hand-foot-and-mouth disease (HFMD), and infection of EV71 to central nerve system (CNS) may result in a high mortality in children less than 2 years old. Although there are two highly glycosylated membrane proteins, SCARB2 and PSGL-1, which have been identified as the cellular and functional receptors of EV71, the role of glycosylation in EV71 infection is still unclear. Results We demonstrated that the attachment of EV71 to RD and SK-N-SH cells was diminished after the removal of cell surface sialic acids by neuraminidase. Sialic acid specific lectins, Maackia amurensis (MAA) and Sambucus Nigra (SNA), could compete with EV71 and restrained the binding of EV71 significantly. Preincubation of RD cells with fetuin also reduced the binding of EV71. In addition, we found that SCARB2 was a sialylated glycoprotein and interaction between SCARB2 and EV71 was retarded after desialylation. Conclusions In this study, we demonstrated that cell surface sialic acids assist in the attachment of EV71 to host cells. Cell surface sialylation should be a key regulator that facilitates the binding and infection of EV71 to RD and SK-N-SH cells. PMID:22853823

  6. Nanoscale analysis of caspofungin-induced cell surface remodelling in Candida albicans

    PubMed Central

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Alsteens, David; Jackson, Desmond N.; Lipke, Peter N.; Dufrêne, Yves F.

    2013-01-01

    The advent of fungal pathogens that are resistant to the classic repertoire of antifungal drugs has increased the need for new therapeutic agents. A prominent example of such novel compound is caspofungin, known to alter cell wall biogenesis by inhibiting β-1,3 D-glucan synthesis. Although much progress has been made in understanding the mechanism of action of caspofungin, little is known about its influence on the biophysical properties of the fungal cells. Here, we use atomic force microscopy to demonstrate that caspofungin induces major remodeling of the cell surface properties of Candida albicans. Caspofungin causes major morphological and structural alterations of the cells, which correlate with a decrease of the cell wall mechanical strength. Moreover, we find that the drug induces the massive exposure of the cell adhesion protein Als1 on the cell surface and leads to increased cell surface hydrophobicity, two features that trigger cell aggregation. This behaviour is not observed in yeast species lacking Als1, demonstrating the key role that the protein plays in determining the aggregation phenotype of C. albicans. The results show that AFM opens up new avenues for understanding the molecular bases of microbe-drug interactions and for developing new therapeutic agents. PMID:23262781

  7. Separation and reformation of cell surface dopamine receptor oligomers visualized in cells.

    PubMed

    O'Dowd, Brian F; Ji, Xiaodong; Alijaniaram, Mohammad; Nguyen, Tuan; George, Susan R

    2011-05-11

    We previously showed that dopamine receptors existed as homo- and heterooligomers, in cells and in brain tissue. We developed a method designed to study the formation and regulation of G protein coupled receptor (GPCR) oligomers in cells, using a GPCR into which a nuclear localization sequence (NLS) had been inserted. Unlike wildtype GPCRs, in the presence of agonist/antagonist ligands the GPCR-NLS is retained at the cell surface, and following ligand removal, the GPCR-NLS translocated from the cell surface. The D(1) dopamine receptor expressed with either D(2)-NLS or D(1-)NLS receptors translocated to the nucleus, indicating hetero- or homo-oligomerization with the NLS-containing receptor. Using these tools, we now demonstrate that D(1)-D(2) dopamine heterooligomers can be disrupted and the component receptors separated by dopamine and selective agonists that occupied one or both binding pockets. Subsequent agonist removal allowed the reformation of the heterooligomer. D(1) receptor homooligomers could also be disrupted by agonist, but at higher concentrations than that required for the disruption of the D(1)-D(2) heteromer. Dopamine D(1) or D(2) receptor antagonists had no effect on the integrity of the homo- or heterooligomer. We have also determined that the D(1)-D(2) heterooligomer contains D(1) homooligomers. These studies indicate that the populations of dopamine receptor oligomers at the cell surface are subject to conformational changes following agonist occupancy and are likely dynamically regulated following agonist activation.

  8. Vimentin and desmin possess GlcNAc-binding lectin-like properties on cell surfaces.

    PubMed

    Ise, Hirohiko; Kobayashi, Satoshi; Goto, Mitsuaki; Sato, Takao; Kawakubo, Masatomo; Takahashi, Masafumi; Ikeda, Uichi; Akaike, Toshihiro

    2010-07-01

    Vimentin and desmin are intermediate filament proteins found in various mesenchymal and skeletal muscle cells, respectively. These proteins play an important role in the stabilization of the cytoplasmic architecture. Here, we found, using artificial biomimicking glycopolymers, that vimentin and desmin possess N-acetylglucosamine (GlcNAc)-binding lectin-like properties on the cell surfaces of various vimentin- and desmin-expressing cells such as cardiomyocytes and vascular smooth muscle cells. The rod II domain of these proteins was demonstrated to be localized to the cell surface and to directly bind to the artificial biomimicking GlcNAc-bearing polymer, by confocal laser microscopy and surface plasmon resonance analysis. These glycopolymers strongly interact with lectins and are useful tools for the analysis of lectin-carbohydrate interactions, since glycopolymers binding to lectins can induce the clustering of lectins due to multivalent glycoside ligand binding. Moreover, immunocytochemistry and pull-down assay with His-tagged vimentin-rod II domain protein showed that the vimentin-rod II domain interacts with O-GlcNAc proteins. These results suggest that O-GlcNAc proteins might be one candidate for physiological GlcNAc-bearing ligands with which vimentin and desmin interact. These findings demonstrate a novel function of vimentin and desmin that does not involve stabilization of the cytoplasmic architecture by which these proteins interact with physiological GlcNAc-bearing ligands such as O-GlcNAc proteins on the cell surface through their GlcNAc-binding lectin-like properties.

  9. Detection of CXCR4 receptors on cell surface using a fluorescent metal nanoshell

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Fu, Yi; Li, Ge; Zhao, Richard Y.; Lakowicz, Joseph R.

    2011-01-01

    Fluorescence cell imaging can be used for disease diagnosis and cellular signal transduction. Using a metal nanoshell as molecular imaging agent, we develop a cellular model system to detect CXCR4 chemokine receptor on T-lymphatic cell surface. These metal nanoshells are observed to express enhanced emission intensity and shortened lifetimes due to the near-field interactions. They are covalently bound with anti-CXCR4 monoclonal antibodies for immunoreactions with the target sites of the CXCR4 receptors on the CEM-SS cells. The fluorescence intensity and lifetime cell images are recorded with a time-resolved confocal microscopy. As expected, the emission signals from the metal nanoshells are clearly isolated from the cellular autofluorescence due to strong intensities and distinctive lifetimes. The number of emission spots on the single cell image is estimated by direct count to the emission signals. Analyzing a pool of cell images, a maximal count number is obtained in a range of 200+/-50. Because there is an average of ~6000 binding sites on the cell surface, we estimate that one emission spot from the metal nanoshell may represent ~30 CXCR5 receptors. In addition, the CXCR4 receptors are estimated to distribute on ~70% area of the cell surface.

  10. Sustained neurotensin exposure promotes cell surface recruitment of NTS2 receptors

    SciTech Connect

    Perron, Amelie; Sharif, Nadder; Gendron, Louis; Lavallee, Mariette; Stroh, Thomas; Mazella, Jean; Beaudet, Alain . E-mail: abeaudet@frsq.gouv.qc.ca

    2006-05-12

    In this study, we investigated whether persistent agonist stimulation of NTS2 receptors gives rise to down-regulation, in light of reports that their activation induced long-lasting effects. To address this issue, we incubated COS-7 cells expressing the rat NTS2 with neurotensin (NT) for up to 24 h and measured resultant cell surface [{sup 125}I]-NT binding. We found that NTS2-expressing cells retained the same surface receptor density despite efficient internalization mechanisms. This preservation was neither due to NTS2 neosynthesis nor recycling since it was not blocked by cycloheximide or monensin. However, it appeared to involve translocation of spare receptors from internal stores, as NT induced NTS2 migration from trans-Golgi network to endosome-like structures. This stimulation-induced regulation of cell surface NTS2 receptors was even more striking in rat spinal cord neurons. Taken together, these results suggest that sustained NTS2 activation promotes recruitment of intracellular receptors to the cell surface, thereby preventing functional desensitization.

  11. Impact of Alkyl Polyglucosides Surfactant Lutensol GD 70 on Modification of Bacterial Cell Surface Properties.

    PubMed

    Smułek, Wojciech; Kaczorek, Ewa; Zgoła-Grzeskowiak, Agnieszka; Cybulski, Zefiryn

    Alkyl polyglucosides, due to their low toxicity and environmental compatibility, could be used in biodegradation of hydrophobic compounds. In this study, the influence of Lutensol GD 70 on the cell hydrophobicity and zeta potential was measured. The particle size distribution and surfactant biodegradation were also investigated. Microbacterium sp. strain E19, Pseudomonas stutzeri strain 9, and the same strain cultivated in stress conditions were used in studies. Adding surfactant to the diesel oil system resulted in an increase of the cell surface hydrophobicity and the formation of cell aggregates (a high polydispersity index). The correlation between cell hydrophobicity and zeta potential in examined samples was not found. The results showed a significant influence of Lutensol GD 70 on the changes in cell surface properties. Moreover, a high biodegradation of a surfactant (over 50 %) by tested strains was observed. The biodegradation of Lutensol GD 70 depends on the length of both polar and nonpolar chains. A long-term contact with diesel oil of stressed strain modifies not only cell surface properties but also its ability to a surfactant biodegradation.

  12. Human Corin Isoforms with Different Cytoplasmic Tails That Alter Cell Surface Targeting*

    PubMed Central

    Qi, Xiaofei; Jiang, Jingjing; Zhu, Mingqing; Wu, Qingyu

    2011-01-01

    Corin is a cardiac serine protease that activates natriuretic peptides. It consists of an N-terminal cytoplasmic tail, a transmembrane domain, and an extracellular region with a C-terminal trypsin-like protease domain. The transmembrane domain anchors corin on the surface of cardiomyocytes. To date, the function of the corin cytoplasmic tail remains unknown. By examining the difference between human and mouse corin cytoplasmic tails, analyzing their gene sequences, and verifying mRNA expression in hearts, we show that both human and mouse corin genes have alternative exons encoding different cytoplasmic tails. Human corin isoforms E1 and E1a have 45 and 15 amino acids, respectively, in their cytoplasmic tails. In transfected HEK 293 cells and HL-1 cardiomyocytes, corin isoforms E1 and E1a were expressed at similar levels. Compared with isoform E1a, however, isoform E1 was more active in processing natriuretic peptides. By cell surface labeling, glycosidase digestion, Western blotting, and flow cytometry, we found that corin isoform E1 was activated more readily as a result of more efficient cell surface targeting. By mutagenesis, we identified a DDNN motif in the cytoplasmic tail of isoform E1 (which is absent in isoform E1a) that promotes corin surface targeting in both HEK 293 and HL-1 cells. Our data indicate that the sequence in the cytoplasmic tail plays an important role in corin cell surface targeting and zymogen activation. PMID:21518754

  13. Display of Fibrobacter succinogenes β-glucanase on the cell surface of Lactobacillus reuteri.

    PubMed

    Huang, Shu-Jung; Chen, Ming-Ju; Yueh, Pei-Ying; Yu, Bi; Zhao, Xin; Liu, Je-Ruei

    2011-03-09

    The aim of this study was to display a rumen bacterial β-glucanase on the cell surface of a probiotic Lactobacillus reuteri strain. The β-glucan degrading ability and the adhesion capability of the genetically modified strain were evaluated. The β-glucanase (Glu) from Fibrobacter succinogenes was fused to the C-terminus of collagen-binding protein (Cnb) from L. reuteri and then expressed by L. reuteri Pg4 as a recombinant Cnb-Glu-His(6) fusion protein. Confocal immunofluorescence microscopy and flow cytometric analysis of the transformed strain L. reuteri pNZ-cnb/glu demonstrated that Cnb-Glu-His(6) fusion protein was displayed on its cell surface. In addition, L. reuteri pNZ-cnb/glu acquired the capacity to break down barley β-glucan and showed higher adhesion capability, in comparison with the parental strain L. reuteri Pg4. To the best of the authors' knowledge, this is the first report of successful display of fibrolytic enzymes on the cell surface of intestinal lactobacilli.

  14. Yeast cell surface display for lipase whole cell catalyst and its applications

    SciTech Connect

    Liu, Yun; Zhang, Rui; Lian, Zhongshuai; Wang, Shihui; Wright, Aaron T.

    2014-08-01

    The cell surface display technique allows for the expression of target proteins or peptides on the microbial cell surface by fusing an appropriate protein as an anchoring motif. Yeast display systems, such as Pichia pastoris, Yarowia lipolytica and Saccharomyces cerevisiae, are ideal, alternative and extensive display systems with the advantage of simple genetic manipulation and post-translational modification of expressed heterologous proteins. Engineered yeasts show high performance characteristics and variant utilizations. Herein, we comprehensively summarize the variant factors affecting lipase whole cell catalyst activity and display efficiency, including the structure and size of target proteins, screening anchor proteins, type and chain length of linkers, and the appropriate matching rules among the above-mentioned display units. Furthermore, we also address novel approaches to enhance stability and activity of recombinant lipases, such as VHb gene co-expression, multi-enzyme co-display technique, and the micro-environmental interference and self-assembly techniques. Finally, we represent the variety of applications of whole cell surface displayed lipases on yeast cells in non-aqueous phases, including synthesis of esters, PUFA enrichment, resolution of chiral drugs, organic synthesis and biofuels. We demonstrate that the lipase surface display technique is a powerful tool for functionalizing yeasts to serve as whole cell catalysts, and increasing interest is providing an impetus for broad application of this technique.

  15. S-Nitrosothiols increases cystic fibrosis transmembrane regulator expression and maturation in the cell surface.

    PubMed

    Zaman, Khalequz; Bennett, Deric; Fraser-Butler, Maya; Greenberg, Zivi; Getsy, Paulina; Sattar, Abdus; Smith, Laura; Corey, Deborah; Sun, Fei; Hunt, John; Lewis, Stephen J; Gaston, Benjamin

    2014-01-24

    S-nitrosothiols (SNOs) are endogenous signaling molecules with a broad spectrum of beneficial airway effects. SNOs are normally present in the airway, but levels tend to be low in cystic fibrosis (CF) patients. We and others have demonstrated that S-nitrosoglutathione (GSNO) increases the expression, maturation, and function of wild-type and mutant F508del cystic fibrosis transmembrane conductance regulator (CFTR) in human bronchial airway epithelial (HBAE) cells. We hypothesized that membrane permeable SNOs, such as S-nitrosoglutathione diethyl ester (GNODE) and S-nitroso-N-acetyl cysteine (SNOAC) may be more efficient in increasing the maturation of CFTR. HBAE cells expressing F508del CFTR were exposed to GNODE and SNOAC. The effects of these SNOs on the expression and maturation of F508del CFTR were determined by cell surface biotinylation and Western blot analysis. We also found for the first time that GNODE and SNOAC were effective at increasing CFTR maturation at the cell surface. Furthermore, we found that cells maintained at low temperature increased cell surface stability of F508del CFTR whereas the combination of low temperature and SNO treatment significantly extended the half-life of CFTR. Finally, we showed that SNO decreased the internalization rate of F508del CFTR in HBAE cells. We anticipate identifying the novel mechanisms, optimal SNOs, and lowest effective doses which could benefit cystic fibrosis patients.

  16. Lipopolysaccharide transport to the cell surface: biosynthesis and extraction from the inner membrane

    PubMed Central

    Simpson, Brent W.; May, Janine M.; Sherman, David J.; Kahne, Daniel; Ruiz, Natividad

    2015-01-01

    The cell surface of most Gram-negative bacteria is covered with lipopolysaccharide (LPS). The network of charges and sugars provided by the dense packing of LPS molecules in the outer leaflet of the outer membrane interferes with the entry of hydrophobic compounds into the cell, including many antibiotics. In addition, LPS can be recognized by the immune system and plays a crucial role in many interactions between bacteria and their animal hosts. LPS is synthesized in the inner membrane of Gram-negative bacteria, so it must be transported across their cell envelope to assemble at the cell surface. Over the past two decades, much of the research on LPS biogenesis has focused on the discovery and understanding of Lpt, a multi-protein complex that spans the cell envelope and functions to transport LPS from the inner membrane to the outer membrane. This paper focuses on the early steps of the transport of LPS by the Lpt machinery: the extraction of LPS from the inner membrane. The accompanying paper (May JM, Sherman DJ, Simpson BW, Ruiz N, Kahne D. 2015 Phil. Trans. R. Soc. B 370, 20150027. (doi:10.1098/rstb.2015.0027)) describes the subsequent steps as LPS travels through the periplasm and the outer membrane to its final destination at the cell surface. PMID:26370941

  17. Single-molecule imaging of cell surfaces using near-field nanoscopy.

    PubMed

    Hinterdorfer, Peter; Garcia-Parajo, Maria F; Dufrêne, Yves F

    2012-03-20

    Living cells use surface molecules such as receptors and sensors to acquire information about and to respond to their environments. The cell surface machinery regulates many essential cellular processes, including cell adhesion, tissue development, cellular communication, inflammation, tumor metastasis, and microbial infection. These events often involve multimolecular interactions occurring on a nanometer scale and at very high molecular concentrations. Therefore, understanding how single-molecules localize, assemble, and interact on the surface of living cells is an important challenge and a difficult one to address because of the lack of high-resolution single-molecule imaging techniques. In this Account, we show that atomic force microscopy (AFM) and near-field scanning optical microscopy (NSOM) provide unprecedented possibilities for mapping the distribution of single molecules on the surfaces of cells with nanometer spatial resolution, thereby shedding new light on their highly sophisticated functions. For single-molecule recognition imaging by AFM, researchers label the tip with specific antibodies or ligands and detect molecular recognition signals on the cell surface using either adhesion force or dynamic recognition force mapping. In single-molecule NSOM, the tip is replaced by an optical fiber with a nanoscale aperture. As a result, topographic and optical images are simultaneously generated, revealing the spatial distribution of fluorescently labeled molecules. Recently, researchers have made remarkable progress in the application of near-field nanoscopy to image the distribution of cell surface molecules. Those results have led to key breakthroughs: deciphering the nanoscale architecture of bacterial cell walls; understanding how cells assemble surface receptors into nanodomains and modulate their functional state; and understanding how different components of the cell membrane (lipids, proteins) assemble and communicate to confer efficient functional

  18. Cell Surface Glycan Alterations in Epithelial Mesenchymal Transition Process of Huh7 Hepatocellular Carcinoma Cell

    PubMed Central

    Kang, Xiaonan; Sun, Chun; Jiang, Kai; Huang, Li; Lu, Yu; Sui, Jingzhe; Qin, Xue; Liu, Yinkun

    2013-01-01

    Background and Objective Due to recurrence and metastasis, the mortality of Hepatocellular carcinoma (HCC) is high. It is well known that the epithelial mesenchymal transition (EMT) and glycan of cell surface glycoproteins play pivotal roles in tumor metastasis. The goal of this study was to identify HCC metastasis related differential glycan pattern and their enzymatic basis using a HGF induced EMT model. Methodology HGF was used to induce HCC EMT model. Lectin microarray was used to detect the expression of cell surface glycan and the difference was validated by lectin blot and fluorescence cell lectin-immunochemistry. The mRNA expression levels of glycotransferases were determined by qRT-PCR. Results After HGF treatment, the Huh7 cell lost epithelial characteristics and obtained mesenchymal markers. These changes demonstrated that HGF could induce a typical cell model of EMT. Lectin microarray analysis identified a decreased affinity in seven lectins ACL, BPL, JAC, MPL, PHA-E, SNA, and SBA to the glycan of cell surface glycoproteins. This implied that glycan containing T/Tn-antigen, NA2 and bisecting GlcNAc, Siaα2-6Gal/GalNAc, terminal α or βGalNAc structures were reduced. The binding ability of thirteen lectins, AAL, LCA, LTL, ConA, NML, NPL, DBA, HAL, PTL II, WFL, ECL, GSL II and PHA-L to glycan were elevated, and a definite indication that glycan containing terminal αFuc and ± Sia-Le, core fucose, α-man, gal-β(α) GalNAc, β1,6 GlcNAc branching and tetraantennary complex oligosaccharides structures were increased. These results were further validated by lectin blot and fluorescence cell lectin-immunochemistry. Furthermore, the mRNA expression level of Mgat3 decreased while that of Mgat5, FucT8 and β3GalT5 increased. Therefore, cell surface glycan alterations in the EMT process may coincide with the expression of glycosyltransferase. Conclusions The findings of this study systematically clarify the alterations of cell surface glycan in cancer EMT, and

  19. Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis.

    PubMed

    Hyatt, David C; Croteau, Rodney

    2005-07-15

    Two monoterpene synthases, (-)-pinene synthase and (-)-camphene synthase, from grand fir (Abies grandis) produce different product mixtures despite having highly homologous amino acid sequences and, presumably, very similar three-dimensional structures. The major product of (-)-camphene synthase, (-)-camphene, and the major products of (-)-pinene synthase, (-)-alpha-pinene, and (-)-beta-pinene, arise through distinct mechanistic variations of the electrophilic reaction cascade that is common to terpenoid synthases. Structural modeling followed by directed mutagenesis in (-)-pinene synthase was used to replace selected amino acid residues with the corresponding residues from (-)-camphene synthase in an effort to identify the amino acids responsible for the catalytic differences. This approach produced an enzyme in which more than half of the product was channeled through an alternative pathway. It was also shown that several (-)-pinene synthase to (-)-camphene synthase amino acid substitutions were necessary before catalysis was significantly altered. The data support a model in which the collective action of many key amino acids, located both in and distant from the active site pocket, regulate the course of the electrophilic reaction cascade.

  20. Geranyl diphosphate synthase molecules, and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney Bruce; Burke, Charles Cullen

    2008-06-24

    In one aspect, the present invention provides isolated nucleic acid molecules that each encode a geranyl diphosphate synthase protein, wherein each isolated nucleic acid molecule hybridizes to a nucleic acid molecule consisting of the sequence set forth in SEQ ID NO:1 under conditions of 5.times.SSC at 45.degree. C. for one hour. The present invention also provides isolated geranyl diphosphate synthase proteins, and methods for altering the level of expression of geranyl diphosphate synthase protein in a host cell.

  1. Divinyl ether synthase gene, and protein and uses thereof

    DOEpatents

    Howe, Gregg A.; Itoh, Aya

    2006-12-26

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  2. Divinyl ether synthase gene and protein, and uses thereof

    DOEpatents

    Howe, Gregg A.; Itoh, Aya

    2011-09-13

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  3. Cellulose synthase interacting protein: a new factor in cellulose synthesis.

    PubMed

    Gu, Ying; Somerville, Chris

    2010-12-01

    Cellulose is the most abundant biopolymer on earth. The great abundance of cellulose places it at the forefront as a primary source of biomass for renewable biofuels. However, the knowledge of how plant cells make cellulose remains very rudimentary. Cellulose microfibrils are synthesized at the plasma membrane by hexameric protein complexes, also known as cellulose synthase complexes. The only known components of cellulose synthase complexes are cellulose synthase (CESA) proteins until the recent identification of a novel component. CSI1, which encodes CESA interacting protein 1 (CSI1) in Arabidopsis. CSI1, as the first non-CESA proteins associated with cellulose synthase complexes, opens up many opportunities.

  4. Cell-surface area codes: mobile-element related gene switches generate precise and heritable cell-surface displays of address molecules that are used for constructing embryos.

    PubMed

    Dreyer, W J; Roman-Dreyer, J

    1999-01-01

    We present an updated area code hypothesis supporting the proposal that cell surface display of seven-transmembrane olfactory receptors, protocadherins and other cell surface receptors provide codes that enable cells to find their correct partners as they sculpture embryos. The genetic mechanisms that program the expression of such displays have been largely unknown until very recently. However, increasing evidence now suggests that precise developmental control of the expression of these genes during embryogenesis is achieved in part by permanent and heritable changes in DNA. Using the developing immune system as a model, we discuss two different types of developmentally programmed genetic switches, each of which relies on recombination mechanisms related to mobile elements. We review new evidence suggesting the involvement of mobile element related switch mechanisms in the generation of protocadherin molecules, and their possible involvement in the control of expressions of olfactory receptors. As both recombinase and reverse transcriptase mechanisms play a role in the switching of the immunoglobulin genes, we searched the databases of expressed sequence tags (dbEST) for expression of related genes in other tissues. We present data revealing that transposases and reverse transcriptases are widely expressed in most tissues. We also searched these databases for expression of env (envelope) gene products, stimulated by provocative results suggesting that these molecules might function as cellular address receptors. We found that env genes are also expressed in large numbers in normal human tissues. One must assume that these three different types of mobile-element-related messenger RNA molecules (transposases, reverse transcriptases, and env proteins) are expressed for use in functions of value in the various tissues and have been preserved in the genome because of their selective advantages. We conclude that it is possible that many specific cell lineage decisions

  5. Ex-vivo tissue classification of cell surface receptor concentrations using kinetic modeling

    NASA Astrophysics Data System (ADS)

    Sinha, Lagnojita; Wang, Yu; Yang, Cynthia; Khan, Altaz; Liu, Jonathan T.; Tichauer, Kenneth M.

    2015-03-01

    One of the major challenges in the complete resection of cancer is the difficulty of distinctly classifying tumor and healthy tissue. This paper investigates the capability of competing kinetic modeling approaches for identifying different tissue types based on differential cell-surface receptor expressions. These approaches require fresh resected tissues to be stained with a mixture of two probes: one targeted to a cancer specific cell-surface receptor, and another left "untargeted" to account for nonspecific retention of the targeted agent, with subsequent repeated rinsing and imaging of the probe concentrations. Analysis of the results were carried out in simulations and in animal experiments for the cancer target, epidermal growth factor receptor (EGFR), a cell surface receptor overexpressed by many cancers. In the animal experiments, subcutaneous xenografts of human glioma (U251; moderate EGFR) and human epidermoid (A431; high EGFR) tumors, grown in six athymic mice, were excised and stained with an EGFR targeted surface-enhanced Raman scattering nanoparticle (SERS NP) and untargeted SERS NP pair. The salient finding in this study was that significant non-specific retention was observed for the EGFR targeted probe [anti-EGFR antibody labeled with a surface-enhanced Raman scattering (SERS) nanoparticle], but could be corrected for by the equivalent non-specific retention of the untargeted probe (isotype control antibody labeled with a different SERS nanoparticle). Once this non-specific binding was accounted for, the kinetic model was able to predict the expected differences in EGFR concentration among different tissue types: healthy, U251, and A431 in accordance with an ex vivo flow cytometry analysis, successfully classifying different tissue types.

  6. Expression of Hypoxia-Inducible Cell-Surface Transmembrane Carbonic Anhydrases in Human Cancer

    PubMed Central

    Ivanov, Sergey; Liao, Shu-Yuan; Ivanova, Alla; Danilkovitch-Miagkova, Alla; Tarasova, Nadezhda; Weirich, Gregor; Merrill, Marsha J.; Proescholdt, Martin A.; Oldfield, Edward H.; Lee, Joshua; Zavada, Jan; Waheed, Abdul; Sly, William; Lerman, Michael I.; Stanbridge, Eric J.

    2001-01-01

    An acidic extracellular pH is a fundamental property of the malignant phenotype. In von Hippel-Lindau (VHL)-defective tumors the cell surface transmembrane carbonic anhydrase (CA) CA9 and CA12 genes are overexpressed because of the absence of pVHL. We hypothesized that these enzymes might be involved in maintaining the extracellular acidic pH in tumors, thereby providing a conducive environment for tumor growth and spread. Using Northern blot analysis and immunostaining with specific antibodies we analyzed the expression of CA9 and CA12 genes and their products in a large sample of cancer cell lines, fresh and archival tumor specimens, and normal human tissues. Expression was also analyzed in cultured cells under hypoxic conditions. Expression of CA IX and CA XII in normal adult tissues was detected only in highly specialized cells and for most tissues their expression did not overlap. Analysis of RNA samples isolated from 87 cancer cell lines and 18 tumors revealed high-to-moderate levels of expression of CA9 and CA12 in multiple cancers. Immunohistochemistry revealed high-to-moderate expression of these enzymes in various normal tissues and multiple common epithelial tumor types. The immunostaining was seen predominantly on the cell surface membrane. The expression of both genes was markedly induced under hypoxic conditions in tumors and cultured tumor cells. We conclude that the cell surface trans-membrane carbonic anhydrases CA IX and CA XII are overexpressed in many tumors suggesting that this is a common feature of cancer cells that may be required for tumor progression. These enzymes may contribute to the tumor microenvironment by maintaining extracellular acidic pH and helping cancer cells grow and metastasize. Our studies show an important causal link between hypoxia, extracellular acidification, and induction or enhanced expression of these enzymes in human tumors. PMID:11238039

  7. Lactobacillus fermentum AGR1487 cell surface structures and supernatant increase paracellular permeability through different pathways

    PubMed Central

    Sengupta, Ranjita; Anderson, Rachel C; Altermann, Eric; McNabb, Warren C; Ganesh, Siva; Armstrong, Kelly M; Moughan, Paul J; Roy, Nicole C

    2015-01-01

    Lactobacillus fermentum is commonly found in food products, and some strains are known to have beneficial effects on human health. However, our previous research indicated that L. fermentum AGR1487 decreases in vitro intestinal barrier integrity. The hypothesis was that cell surface structures of AGR1487 are responsible for the observed in vitro effect. AGR1487 was compared to another human oral L. fermentum strain, AGR1485, which does not cause the same effect. The examination of phenotypic traits associated with the composition of cell surface structures showed that compared to AGR1485, AGR1487 had a smaller genome, utilized different sugars, and had greater tolerance to acid and bile. The effect of the two strains on intestinal barrier integrity was determined using two independent measures of paracellular permeability of the intestinal epithelial Caco-2 cell line. The transepithelial electrical resistance (TEER) assay specifically measures ion permeability, whereas the mannitol flux assay measures the passage of uncharged molecules. Both live and UV-inactivated AGR1487 decreased TEER across Caco-2 cells implicating the cell surfaces structures in the effect. However, only live AGR1487, and not UV-inactivated AGR1487, increased the rate of passage of mannitol, implying that a secreted component(s) is responsible for this effect. These differences in barrier integrity results are likely due to the TEER and mannitol flux assays measuring different characteristics of the epithelial barrier, and therefore imply that there are multiple mechanisms involved in the effect of AGR1487 on barrier integrity. PMID:25943073

  8. Cell surface alpha 2,6 sialylation affects adhesion of breast carcinoma cells.

    PubMed

    Lin, Shaoqiang; Kemmner, Wolfgang; Grigull, Sabine; Schlag, Peter M

    2002-05-15

    Tumor-associated alterations of cell surface glycosylation play a crucial role in the adhesion and metastasis of carcinoma cells. The aim of this study was to examine the effect of alpha 2,6-sialylation on the adhesion properties of breast carcinoma cells. To this end mammary carcinoma cells, MDA-MB-435, were sense-transfected with sialyltransferase ST6Gal-I cDNA or antisense-transfected with a part of the ST6Gal-I sequence. Sense transfectants showed an enhanced ST6Gal-I mRNA expression and enzyme activity and an increased binding of the lectin Sambucus nigra agglutinin (SNA), specific for alpha 2,6-linked sialic acid. Transfection with ST6Gal-I in the antisense direction resulted in less enzyme activity and SNA reactivity. A sense-transfected clone carrying increased amounts of alpha 2,6-linked sialic acid adhered preferentially to collagen IV and showed reduced cell-cell adhesion and enhanced invasion capacity. In contrast, antisense transfection led to less collagen IV adhesion but enhanced homotypic cell-cell adhesion. In another approach, inhibition of ST6Gal-I enzyme activity by application of soluble antisense-oligodeoxynucleotides was studied. Antisense treatment resulted in reduced ST6 mRNA expression and cell surface 2,6-sialylation and significantly decreased collagen IV adhesion. Our results suggest that cell surface alpha 2,6-sialylation contributes to cell-cell and cell-extracellular matrix adhesion of tumor cells. Inhibition of sialytransferase ST6Gal-I by antisense-oligodeoxynucleotides might be a way to reduce the metastatic capacity of carcinoma cells.

  9. Calcium influences sensitivity to growth inhibition induced by a cell surface sialoglycopeptide

    NASA Technical Reports Server (NTRS)

    Betz, N. A.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    While studies concerning mitogenic factors have been an important area of research for many years, much less is understood about the mechanisms of action of cell surface growth inhibitors. We have purified an 18 kDa cell surface sialoglycopeptide growth inhibitor (CeReS-18) which can reversibly inhibit the proliferation of diverse cell types. The studies discussed in this article show that three mouse keratinocyte cell lines exhibit sixty-fold greater sensitivity than other fibroblasts and epithelial-like cells to CeReS-18-induced growth inhibition. Growth inhibition induced by CeReS-18 treatment is a reversible process, and the three mouse keratinocyte cell lines exhibited either single or multiple cell cycle arrest points, although a predominantly G0/G1 cell cycle arrest point was exhibited in Swiss 3T3 fibroblasts. The sensitivity of the mouse keratinocyte cell lines to CeReS-18-induced growth inhibition was not affected by the degree of tumorigenic progression in the cell lines and was not due to differences in CeReS-18 binding affinity or number of cell surface receptors per cell. However, the sensitivity of both murine fibroblasts and keratinocytes could be altered by changing the extracellular calcium concentration, such that increased extracellular calcium concentrations resulted in decreased sensitivity to CeReS-18-induced proliferation inhibition. Thus the increased sensitivity of the murine keratinocyte cell lines to CeReS-18 could be ascribed to the low calcium concentration used in their propagation. Studies are currently under way investigating the role of calcium in CeReS-18-induced growth arrest. The CeReS-18 may serve as a very useful tool to study negative growth control and the signal transduction events associated with cell cycling.

  10. Enterovirus 71 Uses Cell Surface Heparan Sulfate Glycosaminoglycan as an Attachment Receptor

    PubMed Central

    Tan, Chee Wah; Poh, Chit Laa; Sam, I-Ching

    2013-01-01

    Enterovirus 71 (EV-71) infections are usually associated with mild hand, foot, and mouth disease in young children but have been reported to cause severe neurological complications with high mortality rates. To date, four EV-71 receptors have been identified, but inhibition of these receptors by antagonists did not completely abolish EV-71 infection, implying that there is an as yet undiscovered receptor(s). Since EV-71 has a wide range of tissue tropisms, we hypothesize that EV-71 infections may be facilitated by using receptors that are widely expressed in all cell types, such as heparan sulfate. In this study, heparin, polysulfated dextran sulfate, and suramin were found to significantly prevent EV-71 infection. Heparin inhibited infection by all the EV-71 strains tested, including those with a single-passage history. Neutralization of the cell surface anionic charge by polycationic poly-d-lysine and blockage of heparan sulfate by an anti-heparan sulfate peptide also inhibited EV-71 infection. Interference with heparan sulfate biosynthesis either by sodium chlorate treatment or through transient knockdown of N-deacetylase/N-sulfotransferase-1 and exostosin-1 expression reduced EV-71 infection in RD cells. Enzymatic removal of cell surface heparan sulfate by heparinase I/II/III inhibited EV-71 infection. Furthermore, the level of EV-71 attachment to CHO cell lines that are variably deficient in cell surface glycosaminoglycans was significantly lower than that to wild-type CHO cells. Direct binding of EV-71 particles to heparin-Sepharose columns under physiological salt conditions was demonstrated. We conclude that EV-71 infection requires initial binding to heparan sulfate as an attachment receptor. PMID:23097443

  11. Characterization of atrial natriuretic peptide degradation by cell-surface peptidase activity on endothelial cells

    NASA Technical Reports Server (NTRS)

    Frost, S. J.; Whitson, P. A.

    1993-01-01

    Atrial natriuretic peptide (ANP) is a fluid-regulating peptide hormone that promotes vasorelaxation, natriuresis, and diuresis. The mechanisms for the release of ANP and for its clearance from the circulation play important roles in modulating its biological effects. Recently, we have reported that the cell surface of an endothelial cell line, CPA47, could degrade 125I-ANP in the presence of EDTA. In this study, we have characterized this degradation of 125I-ANP. The kinetics of ANP degradation by the surface of CPA47 cells were first order, with a Km of 320 +/- 60 nM and Vmax of 35 +/- 14 pmol of ANP degraded/10 min/10(5) cells at pH 7.4. ANP is degraded by the surface of CPA47 cells over a broad pH range from 7.0-8.5. Potato carboxypeptidase inhibitor and bestatin inhibited 125I-ANP degradation, suggesting that this degradative activity on the surface of CPA47 cells has exopeptidase characteristics. The selectivity of CPA47 cell-surface degradation of ANP was demonstrated when 125I-ANP degradation was inhibited in the presence of neuropeptide Y and angiotensin I and II but not bradykinin, bombesin, endothelin-1, or substance P. The C-terminal amino acids phe26 and tyr28 were deduced to be important for ANP interaction with the cell-surface peptidase(s) based on comparison of the IC50 of various ANP analogues and other natriuretic peptides for the inhibition of ANP degradation. These data suggest that a newly characterized divalent cation-independent exopeptidase(s) that selectively recognizes ANP and some other vasoactive peptides exists on the surface of endothelial cells.

  12. Cell-surface Attachment of Bacterial Multienzyme Complexes Involves Highly Dynamic Protein-Protein Anchors*

    PubMed Central

    Cameron, Kate; Najmudin, Shabir; Alves, Victor D.; Bayer, Edward A.; Smith, Steven P.; Bule, Pedro; Waller, Helen; Ferreira, Luís M. A.; Gilbert, Harry J.; Fontes, Carlos M. G. A.

    2015-01-01

    Protein-protein interactions play a pivotal role in the assembly of the cellulosome, one of nature's most intricate nanomachines dedicated to the depolymerization of complex carbohydrates. The integration of cellulosomal components usually occurs through the binding of type I dockerin modules located at the C terminus of the enzymes to cohesin modules located in the primary scaffoldin subunit. Cellulosomes are typically recruited to the cell surface via type II cohesin-dockerin interactions established between primary and cell-surface anchoring scaffoldin subunits. In contrast with type II interactions, type I dockerins usually display a dual binding mode that may allow increased conformational flexibility during cellulosome assembly. Acetivibrio cellulolyticus produces a highly complex cellulosome comprising an unusual adaptor scaffoldin, ScaB, which mediates the interaction between the primary scaffoldin, ScaA, through type II cohesin-dockerin interactions and the anchoring scaffoldin, ScaC, via type I cohesin-dockerin interactions. Here, we report the crystal structure of the type I ScaB dockerin in complex with a type I ScaC cohesin in two distinct orientations. The data show that the ScaB dockerin displays structural symmetry, reflected by the presence of two essentially identical binding surfaces. The complex interface is more extensive than those observed in other type I complexes, which results in an ultra-high affinity interaction (Ka ∼1012 m). A subset of ScaB dockerin residues was also identified as modulating the specificity of type I cohesin-dockerin interactions in A. cellulolyticus. This report reveals that recruitment of cellulosomes onto the cell surface may involve dockerins presenting a dual binding mode to incorporate additional flexibility into the quaternary structure of highly populated multienzyme complexes. PMID:25855788

  13. Cell surface glycopeptides from human intestinal epithelial cell lines derived from normal colon and colon adenocarcinomas

    SciTech Connect

    Youakim, A.; Herscovics, A.

    1985-11-01

    The cell surface glycopeptides from an epithelial cell line (CCL 239) derived from normal human colon were compared with those from three cell lines (HCT-8R, HCT-15, and CaCo-2) derived independently from human colonic adenocarcinomas. Cells were incubated with D-(2-TH)mannose or L-(5,6-TH)fucose for 24 h and treated with trypsin to release cell surface components which were then digested exhaustively with Pronase and fractionated on Bio-Gel P-6 before and after treatment with endo-beta-N-acetylglucosaminidase H. The most noticeable difference between the labeled glycopeptides from the tumor and CCL 239 cells was the presence in the former of an endo-beta-N-acetylglucosaminidase H-resistant high molecular weight glycopeptide fraction which was eluted in the void volume of Bio-Gel P-6. This fraction was obtained with both labeled mannose and fucose as precursors. However, acid hydrolysis of this fraction obtained after incubation with (2-TH)mannose revealed that as much as 60-90% of the radioactivity was recovered as fucose. Analysis of the total glycopeptides (cell surface and cell pellet) obtained after incubation with (2-TH)mannose showed that from 40-45% of the radioactivity in the tumor cells and less than 10% of the radioactivity in the CCL 239 cells was recovered as fucose. After incubation of the HCT-8R cells with D-(1,6-TH)glucosamine and L-(1- UC)fucose, strong acid hydrolysis of the labeled glycopeptide fraction excluded from Bio-Gel P-6 produced TH-labeled N-acetylglucosamine and N-acetylgalactosamine.

  14. Cell surface alteration in Epstein-Barr virus-transformed cells from patients with extreme insulin resistance

    SciTech Connect

    Gorden, D.L.; Robert, A.; Moncada, V.Y.; Taylor, S.I.; Muehlhauser, J.C.; Carpentier, J.L. )

    1990-08-01

    An abnormality was detected in the morphology of the cell surface of Epstein-Barr virus-transformed lymphocytes of patients with genetic forms of insulin resistance. In cells from two patients with leprechaunism and two patients with type A extreme insulin resistance, scanning electron microscopy demonstrated a decrease in the percentage of the cell surface occupied by microvilli in cells from the patients with leprechaunism and type A insulin resistance compared with control cells. When cells from a healthy control subject and one of the patients with leprechaunism (Lep/Ark-1) were incubated with {sup 125}I-labeled insulin, there was a decrease in the percentage of {sup 125}I-insulin associated with microvilli on the cell surface. Thus, the decreased localization of insulin receptors with the microvillous region of the cell surface was in proportion to the decrease in microvilli.

  15. Characterization of the Cell Surface Properties of Drinking Water Pathogens by Microbial Adhesion to Hydrocarbon and Electrophoretic Mobility Measurements

    EPA Science Inventory

    The surface characteristics of microbial cells directly influence their mobility and behavior within aqueous environments. The cell surface hydrophobicity (CSH) and electrophoretic mobility (EPM) of microbial cells impact a number of interactions and processes including aggregati...

  16. Hierarchical Assembly of Model Cell Surfaces: Synthesis of Mucin Mimetic Polymers and their Display on Supported Bilayers

    PubMed Central

    Rabuka, David; Parthasarathy, Raghuveer; Lee, Goo Soo; Chen, Xing; Groves, Jay T.; Bertozzi, Carolyn R.

    2008-01-01

    Molecular level analysis of cell surface phenomena could benefit from model systems comprising structurally-defined components. Here we present the first step toward bottom-up assembly of model cell surfaces – the synthesis of mucin mimetics and their incorporation into artificial membranes. Natural mucins are densely glycosylated O-linked glycoproteins that serve numerous functions on cell surfaces. Their large size and extensive glycosylation makes the synthesis of these biopolymers impractical. We designed synthetically tractable glycosylated polymers that possess rod-like extended conformations similar to natural mucins. The glycosylated polymers were end-functionalized with lipid groups and embedded into supported lipid bilayers where they interact with protein receptors in a structure-dependent manner. Furthermore, their dynamic behavior in synthetic membranes mirrored that of natural biomolecules. This system provides a unique framework with which to study the behavior of mucin-like macromolecules in a controlled, cell surface-mimetic environment. PMID:17425309

  17. A new class of carriers that transport selective cargo from the trans Golgi network to the cell surface

    PubMed Central

    Wakana, Yuichi; van Galen, Josse; Meissner, Felix; Scarpa, Margherita; Polishchuk, Roman S; Mann, Matthias; Malhotra, Vivek

    2012-01-01

    We have isolated a membrane fraction enriched in a class of transport carriers that form at the trans Golgi network (TGN) and are destined for the cell surface in HeLa cells. Protein kinase D (PKD) is required for the biogenesis of these carriers that contain myosin II, Rab6a, Rab8a, and synaptotagmin II, as well as a number of secretory and plasma membrane-specific cargoes. Our findings reveal a requirement for myosin II in the migration of these transport carriers but not in their biogenesis per se. Based on the cargo secreted by these carriers we have named them CARTS for CARriers of the TGN to the cell Surface. Surprisingly, CARTS are distinct from the carriers that transport vesicular stomatitis virus (VSV)-G protein and collagen I from the TGN to the cell surface. Altogether, the identification of CARTS provides a valuable means to understand TGN to cell surface traffic. PMID:22909819

  18. Glycoprotein mucin molecular brush on cancer cell surface acting as mechanical barrier against drug delivery

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Shah, Aalok A.; Campbell, Robert B.; Wan, Kai-tak

    2010-12-01

    Uptake of cytotoxic drugs by typical tumor cells is limited by the dense dendritic network of oligosaccharide mucin chains that forms a mechanical barrier. Atomic force microscopy is used to directly measure the force needed to pierce the mucin layer to reach the cell surface. Measurements are analyzed by de Gennes' steric reptation theory. Multidrug resistant ovarian tumor cells shows significantly larger penetration load compared to the wide type. A pool of pancreatic, lung, colorectal, and breast cells are also characterized. The chemotherapeutic agent, benzyl-α-GalNac, for inhibiting glycosylation is shown to be effective in reducing the mechanical barrier.

  19. Endocytosis of wheat germ agglutinin binding sites from the cell surface into a tubular endosomal network.

    PubMed

    Raub, T J; Koroly, M J; Roberts, R M

    1990-04-01

    By using fluorescence and electron microscopy, the endocytic pathway encountered by cell surface components after they had bound wheat germ agglutinin (WGA) was visualized. The majority of these components are thought to consist of sialylated glycoproteins (HMWAG) that represent a subpopulation of the total cell surface proteins but most of the externally disposed plasma membrane proteins of the cell. Examination of semi-thin sections by medium- and high-voltage electron microscopy revealed the three-dimensional organization of vesicular and tubular endosomes. Binding of either fluorescein isothiocyanate-, horseradish peroxidase-, or ferritin-conjugated WGA to cells at 4 degrees C showed that the HMWAG were distributed uniformly over the cell surface. Warming of surface-labeled cells to 37 degrees C resulted in the endocytosis of WGA into peripheral endosomes via invagination of regions of both coated and uncoated membrane. The peripheral endosome appeared as isolated complexes comprising a vesicular element (300-400 nm diam.) surrounded by and continuous with tubular cisternae (45-60 nm diam.), which did not interconnect the endosomes. After 30 min or more label also became localized in a network of anastomosing tubules (45-60 nm diam.) that were located in the centrosomal region of the cell. Endocytosed WGA-HMWAG complexes did not become associated with cisternae of the Golgi apparatus, although tubular and vesicular endosomes were noted in the vicinity of the trans-Golgi region. The accumulation of WGA-HMWAG in the endosomes within the centrosomal region was inhibited when cells were incubated at 18 degrees C. None of these compartments contained acid phosphatase activity, a result that is consistent with other data that the HMWAG do not pass through lysosomes initially. The kinetics of labeling were consistent with the interpretation that recycling of most of the WGA binding surface glycoproteins occurred rapidly from early peripheral endosomes followed by the

  20. Cell surface display system for Lactococcus lactis: a novel development for oral vaccine.

    PubMed

    Raha, A R; Varma, N R S; Yusoff, K; Ross, E; Foo, H L

    2005-07-01

    The food-grade Lactococcus lactis is a potential vector to be used as a live vehicle for the delivery of heterologous proteins for vaccine and pharmaceutical purposes. We constructed a plasmid vector pSVac that harbors a 255-bp single-repeat sequence of the cell wall-binding protein region of the AcmA protein. The recombinant plasmid was transformed into Escherichia coli and expression of the gene fragment was driven by the T7 promoter of the plasmid. SDS-PAGE showed the presence of the putative AcmA' fragment and this was confirmed by Western blot analysis. The protein was isolated and purified using a His-tag affinity column. When mixed with a culture of L. lactis MG1363, ELISA and immunofluorescence assays showed that the cell wall-binding fragment was anchored onto the outer surface of the bacteria. This indicated that the AcmA' repeat unit retained the active site for binding onto the cell wall surface of the L. lactis cells. Stability assays showed that the fusion proteins (AcmA/A1, AcmA/A3) were stably docked onto the surface for at least 5 days. The AcmA' fragment was also shown to be able to strongly bind onto the cell surface of naturally occurring lactococcal strains and Lactobacillus and, with less strength, the cell surface of Bacillus sphericus. The new system designed for cell surface display of recombinant proteins on L. lactis was evaluated for the expression and display of A1 and A3 regions of the VP1 protein of enterovirus 71 (EV71). The A1 and A3 regions of the VP1 protein of EV71 were cloned upstream to the cell wall-binding domains of AcmA protein and successfully expressed as AcmA/A1 and AcmA/A3. Whole-cell ELISA showed the successful display of VP1 protein epitopes of EV71 on the surface of L. lactis. The success of the anchoring system developed in this study for docking the A1 and A3 epitopes of VP1 onto the surface of L. lactis cells opens up the possibilities of peptide and protein display for not only Lactococcus but also for other gram

  1. Shuttling of the autoantigen La between nucleus and cell surface after uv irradiation of human keratinocytes

    SciTech Connect

    Bachmann, M.; Chang, S.; Slor, H.; Kukulies, J.; Mueller, W.E. )

    1990-12-01

    During the past years we have established that the nuclear autoantigen La shuttles between the nucleus and the cytoplasm in tumor cells after inhibition of transcription or virus infection. We reinvestigated this shuttling using primary human keratinocytes from both healthy donors and patients with xeroderma pigmentosum. Ultraviolet irradiation resulted in both an inhibition of transcription and a translocation of La protein from the nucleus to the cytoplasm. After a prolonged inhibition of transcription La protein relocated into the nucleus and assembled with nuclear storage regions. The uv-induced shuttling included a translocation to the cell surface, where La protein colocalized with epidermal growth factor receptors.

  2. Fibrillar organization of fibronectin is expressed coordinately with cell surface gangliosides in a variant murine fibroblast

    PubMed Central

    1986-01-01

    NCTC 2071A cells, a line of transformed murine fibroblasts, grow in serum-free medium, are deficient in gangliosides, synthesize fibronectin, but do not retain and organize it on the cell surface. When the cells are exposed to exogenous gangliosides, fibrillar strands of fibronectin become attached to the cell surface. A morphologically distinct variant of NCTC 2071A cells was observed to both retain cell surface fibronectin and organize it into a fibrillar network when the cells were stained with anti-fibronectin antibodies and a fluorescent second antibody. A revertant cell type appeared to resemble the parental NCTC 2071A cells in terms of morphology and fibronectin organization. All three cell types were subjected to mild NaIO4 oxidation and reduction with KB3H4 of very high specific radioactivity in order to label the sialic acid residues of surface gangliosides. The variant had much more surface gangliosides than the parental, particularly more complex gangliosides corresponding to GM1 and GD1a. The surface gangliosides of the revertant were intermediate between the parental and the variant. By using sialidase, which hydrolyzes GD1a to GM1, and 125I-labeled cholera toxin, which binds specifically to GM1, the identity and levels of these gangliosides were confirmed in the three cell types. When variant cells were exposed to sialidase for 2 d, there appeared to be little change in fibronectin organization. Concomitant treatment of the cells with the B subunit of cholera toxin, which bound to all the surface GM1 including that generated by the sialidase, however, eliminated the fibrillar network of fibronectin. In addition, exposure of the variant cells to a 70,000-mol-wt fragment of fibronectin, which lacks the cell attachment domain but contains a matrix assembly domain, inhibited the formation of fibers. Finally, all three cell types were assayed for their ability to attach to and spread on fibronectin-coated surfaces; no significant differences were found

  3. Analysis of cell surface alterations in Legionella pneumophila cells treated with human apolipoprotein E.

    PubMed

    Palusinska-Szysz, Marta; Zdybicka-Barabas, Agnieszka; Cytryńska, Małgorzata; Wdowiak-Wróbel, Sylwia; Chmiel, Elżbieta; Gruszecki, Wiesław I

    2015-03-01

    Binding of human apolipoprotein E (apoE) to Legionella pneumophila lipopolysaccharide was analysed at the molecular level by Fourier-transform infrared spectroscopy, thereby providing biophysical evidence for apoE-L. pneumophila lipopolysaccharide interaction. Atomic force microscopy imaging of apoE-exposed L. pneumophila cells revealed alterations in the bacterial cell surface topography and nanomechanical properties in comparison with control bacteria. The changes induced by apoE binding to lipopolysaccharide on the surface of L. pneumophila cells may participate in: (1) impeding the penetration of host cells by the bacteria; (2) suppression of pathogen intracellular growth and eventually; and (3) inhibition of the development of infection.

  4. Inhibition of experimental ascending urinary tract infection by an epithelial cell-surface receptor analogue

    NASA Astrophysics Data System (ADS)

    Edén, C. Svanborg; Freter, R.; Hagberg, L.; Hull, R.; Hull, S.; Leffler, H.; Schoolnik, G.

    1982-08-01

    It has been shown that the establishment of urinary tract infection by Escherichia coli is dependent on attachment of the bacteria to epithelial cells1-4. The attachment involves specific epithelial cell receptors, which have been characterized as glycolipids5-10. Reversible binding to cell-surface mannosides may also be important4,11-13. This suggests an approach to the treatment of infections-that of blocking bacterial attachment with cell membrane receptor analogues. Using E. coli mutants lacking one or other of the two binding specificities (glycolipid and mannose), we show here that glycolipid analogues can block in vitro adhesion and in vivo urinary tract infection.

  5. Modification of cell surface properties of Pseudomonas alcaligenes S22 during hydrocarbon biodegradation.

    PubMed

    Kaczorek, Ewa; Moszyńska, Sylwia; Olszanowski, Andrzej

    2011-04-01

    Biodegradation of water insoluble hydrocarbons can be significantly increased by the addition of natural surfactants one. Very promising option is the use of saponins. The obtained results indicated that in this system, after 21 days, 92% biodegradation of diesel oil could be achieved using Pseudomonas alcaligenes. No positive effect on the biodegradation process was observed using synthetic surfactant Triton X-100. The kind of carbon source influences the cell surface properties of microorganisms. Modification of the surface cell could be observed by control of the sedimentation profile. This analytical method is a new approach in microbiological analysis.

  6. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle

    PubMed Central

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G.; Köllner, Tobias G.

    2016-01-01

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene–producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon–intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors. PMID:26936952

  7. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle.

    PubMed

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G; Köllner, Tobias G

    2016-03-15

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene-producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon-intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors.

  8. A monoclonal antibody (Mc178-Ab) targeted to the ecto-ATP synthase β-subunit-induced cell apoptosis via a mechanism involving the MAPKase and Akt pathways.

    PubMed

    Wang, Wen-Juan; Ma, Zhan; Liu, Yi-Wen; He, Yi-Qing; Wang, Ying-Zhi; Yang, Cui-Xia; Du, Yan; Zhou, Mu-Qing; Gao, Feng

    2012-03-01

    Ecto-ATP synthase has been considered to be an effective target for cancer recently. As inhibitors of ecto-ATP synthase were found to be cytotoxic for tumor cells, a monoclonal antibody (Mc178-Ab) against ecto-ATP synthase was generated in our previous study that exhibited both anti-angiogenic and anti-tumorigenic effects. However, the mechanism of action of Mc178-Ab and its downstream pathways for anti-tumor effects remain unclear. In this research, we intended to investigate the mechanism of the anti-tumor action of Mc178-Ab. The expressions of cell surface ATP synthase on A549 and CHO cells were confirmed by flow cytometry and confocal microscope. Proliferation and apoptosis were examined after the treatment with Mc178-Ab. In order to examine the activity of ecto-ATP synthase changed by Mc178-Ab, extracellular ATP generation and intracellular pH levels were assessed. The phosphorylation of the signaling molecules, MAPKase and Akt, was analyzed by western blot. Cell proliferation was blocked, and apoptosis was induced in A549 cells treated with Mc178-Ab, as determined by MTT assay and flow cytometry analysis of Annexin-V/PI staining separately. The intracellular pH level and extracellular ATP generation were also decreased after Mc178-Ab treatment. Finally, western blot data revealed that the phosphorylation of JNK and p38 was increased, while the phosphorylation of ERK and Akt was decreased in A549 cells treated with Mc178-Ab. Compared with A549 cells, Mc178-Ab had less effect on CHO cells. The decreased intracellular pH levels and the altered concentration of extracellular ATP may contribute to the mechanisms of the effect of Mc178-Ab on A549 and CHO cells. The results also suggested that the anti-tumor effect of Mc178-Ab was associated with MAPKase and Akt pathways.

  9. Evidence that cell surface heparan sulfate is involved in the high affinity thrombin binding to cultured porcine aortic endothelial cells.

    PubMed Central

    Shimada, K; Ozawa, T

    1985-01-01

    It has been postulated that thrombin binds to endothelial cells through, at least in part, cell surface glycosaminoglycans such as heparan sulfate, which could serve as antithrombin cofactor on the endothelium. In the present study, we have directly evaluated the binding of 125I-labeled bovine thrombin to cultured porcine aortic endothelial cells. The thrombin binding to the cell surface was rapid, reversible, and displaced by enzymatically inactive diisopropylphosphoryl-thrombin. The concentration of thrombin at half-maximal binding was approximately 20 nM. Both specific and nonspecific binding of 125I-thrombin to the endothelial cell surface was partially inhibited in the presence of protamine sulfate, after the removal of cell surface heparan sulfate by the treatment of cells with crude Flavobacterium heparinum enzyme or purified heparitinase. The binding as a function of the concentration of thrombin revealed that the maximal amount of specific binding was reduced by approximately 50% with little alteration in binding affinity by these enzymatic treatments. The reversibility and active-site independence as well as the rate of the binding did not change after heparitinase treatment. Whereas removal of chondroitin sulfates by chondroitin ABC lyase treatment of cells did not affect the binding, identical enzymatic treatments of [35S]sulfate-labeled cells showed that either heparan sulfate or chondroitin sulfate was selectively and completely removed from the cell surface by heparitinase or chondroitin ABC lyase treatment, respectively. Furthermore, proteolysis of cell surface proteins by the purified glycosaminoglycan lyases was excluded by the identical enzymatic treatments of [3H]leucine-labeled or cell surface radioiodinated cells. Our results provide the first direct evidence that heparan sulfate on the cell surface is involved in the high-affinity, active site-independent thrombin binding by endothelial cells, and also suggest the presence of thrombin

  10. Acetylation of prostaglandin synthase by aspirin.

    PubMed Central

    Roth, G J; Stanford, N; Majerus, P W

    1975-01-01

    When microsomes of sheep or bovine seminal vesicles are incubated with [acetyl-3H]aspirin (acetyl salicylic acid), 200 Ci/mol, we observe acetylation of a single protein, as measured by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The protein has a molecular weight of 85,000 and corresponds to a similar acetylated protein found in the particulate fraction of aspirin-treated human platelets. The aspirin-mediated acetylation reaction proceeds with the same time course and at the same concentration as does the inhibition of prostaglandin synthase (cyclo-oxygenase) (EC 1.14.99.1; 8,11,14-eicosatrienoate, hydrogen-donor:oxygen oxidoreductase) by the drug. At 100 muM aspirin, 50% inhibition of prostaglandin synthase and 50% of maximal acetylation are observed after 15 min at 37 degrees. Furthermore, the substrate for cyclo-oxygenase, arachidonic acid, inhibits protein acetylation by aspirin at concentrations (50% inhibition at 10-30 muM) which correlate with the Michaelis constant of arachidonic acid as a substrate for cyclooxygenase. Arachidonic acid analogues and indomethacin inhibit the acetylation reaction in proportion to their effectiveness as cyclo-oxygenase inhibitors. The results suggest that aspirin acts as an active-site acetylating agent for the enzyme cyclo-oxygenase. This action of aspirin may account for its anti-inflammatory and anti-platelet action. PMID:810797

  11. Activities and regulation of peptidoglycan synthases.

    PubMed

    Egan, Alexander J F; Biboy, Jacob; van't Veer, Inge; Breukink, Eefjan; Vollmer, Waldemar

    2015-10-05

    Peptidoglycan (PG) is an essential component in the cell wall of nearly all bacteria, forming a continuous, mesh-like structure, called the sacculus, around the cytoplasmic membrane to protect the cell from bursting by its turgor. Although PG synthases, the penicillin-binding proteins (PBPs), have been studied for 70 years, useful in vitro assays for measuring their activities were established only recently, and these provided the first insights into the regulation of these enzymes. Here, we review the current knowledge on the glycosyltransferase and transpeptidase activities of PG synthases. We provide new data showing that the bifunctional PBP1A and PBP1B from Escherichia coli are active upon reconstitution into the membrane environment of proteoliposomes, and that these enzymes also exhibit DD-carboxypeptidase activity in certain conditions. Both novel features are relevant for their functioning within the cell. We also review recent data on the impact of protein-protein interactions and other factors on the activities of PBPs. As an example, we demonstrate a synergistic effect of multiple protein-protein interactions on the glycosyltransferase activity of PBP1B, by its cognate lipoprotein activator LpoB and the essential cell division protein FtsN.

  12. Biodegradation and surfactant-mediated biodegradation of diesel fuel by 218 microbial consortia are not correlated to cell surface hydrophobicity.

    PubMed

    Owsianiak, Mikołaj; Szulc, Alicja; Chrzanowski, Łukasz; Cyplik, Paweł; Bogacki, Mariusz; Olejnik-Schmidt, Agnieszka K; Heipieper, Hermann J

    2009-09-01

    In this study, we elucidated the role of cell surface hydrophobicity (microbial adhesion to hydrocarbons method, MATH) and the effect of anionic rhamnolipids and nonionic Triton X-100 surfactants on biodegradation of diesel fuel employing 218 microbial consortia isolated from petroleum-contaminated soils. Applied enrichment procedure with floating diesel fuel as a sole carbon source in liquid cultures resulted in consortia of varying biodegradation potential and diametrically different cell surface properties, suggesting that cell surface hydrophobicity is a conserved parameter. Surprisingly, no correlations between cell surface hydrophobicity and biodegradation of diesel fuel were found. Nevertheless, both surfactants altered cell surface hydrophobicity of the consortia in similar manner: increased for the hydrophilic and decreased for the hydrophobic cultures. In addition to this, the surfactants exhibited similar influence on diesel fuel biodegradation: Increase was observed for initially slow-degrading cultures and the opposite for fast degraders. This indicates that in the surfactant-mediated biodegradation, effectiveness of surfactants depends on the specification of microorganisms and not on the type of surfactant. In contrary to what was previously reported for pure strains, cell surface hydrophobicity, as determined by MATH, is not a good descriptor of biodegrading potential for mixed cultures.

  13. CD133 protein N-glycosylation processing contributes to cell surface recognition of the primitive cell marker AC133 epitope.

    PubMed

    Mak, Anthony B; Blakely, Kim M; Williams, Rashida A; Penttilä, Pier-Andrée; Shukalyuk, Andrey I; Osman, Khan T; Kasimer, Dahlia; Ketela, Troy; Moffat, Jason

    2011-11-25

    The AC133 epitope expressed on the CD133 glycoprotein has been widely used as a cell surface marker of numerous stem cell and cancer stem cell types. It has been recently proposed that posttranslational modification and regulation of CD133 may govern cell surface AC133 recognition. Therefore, we performed a large scale pooled RNA interference (RNAi) screen to identify genes involved in cell surface AC133 expression. Gene hits could be validated at a rate of 70.5% in a secondary assay using an orthogonal RNAi system, demonstrating that our primary RNAi screen served as a powerful genetic screening approach. Within the list of hits from the primary screen, genes involved in N-glycan biosynthesis were significantly enriched as determined by Ingenuity Canonical Pathway analyses. Indeed, inhibiting biosynthesis of the N-glycan precursor using the small molecule tunicamycin or inhibiting its transfer to CD133 by generating N-glycan-deficient CD133 mutants resulted in undetectable cell surface AC133. Among the screen hits involved in N-glycosylation were genes involved in complex N-glycan processing, including the poorly characterized MGAT4C, which we demonstrate to be a positive regulator of cell surface AC133 expression. Our study identifies a set of genes involved in CD133 N-glycosylation as a direct contributing factor to cell surface AC133 recognition and provides biochemical evidence for the function and structure of CD133 N-glycans.

  14. Subcellular localization and regulation of coenzyme A synthase.

    PubMed

    Zhyvoloup, Alexander; Nemazanyy, Ivan; Panasyuk, Ganna; Valovka, Taras; Fenton, Tim; Rebholz, Heike; Wang, Mong-Lien; Foxon, Richard; Lyzogubov, Valeriy; Usenko, Vasylij; Kyyamova, Ramziya; Gorbenko, Olena; Matsuka, Genadiy; Filonenko, Valeriy; Gout, Ivan T

    2003-12-12

    CoA synthase mediates the last two steps in the sequence of enzymatic reactions, leading to CoA biosynthesis. We have recently identified cDNA for CoA synthase and demonstrated that it encodes a bifunctional enzyme possessing 4'-phosphopantetheine adenylyltransferase and dephospho-CoA kinase activities. Molecular cloning of CoA synthase provided us with necessary tools to study subcellular localization and the regulation of this bifunctional enzyme. Transient expression studies and confocal microscopy allowed us to demonstrate that full-length CoA synthase is associated with the mitochondria, whereas the removal of the N-terminal region relocates the enzyme to the cytosol. In addition, we showed that the N-terminal sequence of CoA synthase (amino acids 1-29) exhibits a hydrophobic profile and targets green fluorescent protein exclusively to mitochondria. Further analysis, involving subcellular fractionation and limited proteolysis, indicated that CoA synthase is localized on the mitochondrial outer membrane. Moreover, we demonstrate for the first time that phosphatidylcholine and phosphatidylethanolamine, which are the main components of the mitochondrial outer membrane, are potent activators of both enzymatic activities of CoA synthase in vitro. Taken together, these data provide the evidence that the final stages of CoA biosynthesis take place on mitochondria and the activity of CoA synthase is regulated by phospholipids.

  15. Cell Surface-Specific N-Glycan Profiling in Breast Cancer

    PubMed Central

    Yao, Yuanfei; Maitikabili, Alaiyi; Qu, Youpeng; Shi, Shuliang; Chen, Cuiying; Li, Yu

    2013-01-01

    Aberrant changes in specific glycans have been shown to be associated with immunosurveillance, tumorigenesis, tumor progression and metastasis. In this study, the N-glycan profiling of membrane proteins from human breast cancer cell lines and tissues was detected using modified DNA sequencer-assisted fluorophore-assisted carbohydrate electrophoresis (DSA-FACE). The N-glycan profiles of membrane proteins were analyzed from 7 breast cancer cell lines and MCF 10A, as well as from 100 pairs of breast cancer and corresponding adjacent tissues. The results showed that, compared with the matched adjacent normal tissue samples, two biantennary N-glycans (NA2 and NA2FB) were significantly decreased (p <0.0001) in the breast cancer tissue samples, while the triantennary glycan (NA3FB) and a high-mannose glycan (M8) were dramatically increased (p = 0.001 and p <0.0001, respectively). Moreover, the alterations in these specific N-glycans occurred through the oncogenesis and progression of breast cancer. These results suggested that the modified method based on DSA-FACE is a high-throughput detection technology that is suited for analyzing cell surface N-glycans. These cell surface-specific N-glycans may be helpful in recognizing the mechanisms of tumor cell immunologic escape and could be potential targets for new breast cancer drugs. PMID:24009699

  16. Structural insights into alginate binding by bacterial cell-surface protein.

    PubMed

    Temtrirath, Kanate; Murata, Kousaku; Hashimoto, Wataru

    2015-03-02

    A gram-negative Sphingomonas sp. strain A1 inducibly forms a mouth-like pit on the cell surface in the presence of alginate and directly incorporates polymers into the cytoplasm via the pit and ABC transporter. Among the bacterial proteins involved in import of alginate, a cell-surface EfeO-like Algp7 shows an ability to bind alginate, suggesting its contribution to accumulate alginate in the pit. Here, we show identification of its positively charged cluster involved in alginate binding using X-ray crystallography, docking simulation, and site-directed mutagenesis. The tertiary structure of Algp7 was determined at a high resolution (1.99Å) by molecular replacement, although no alginates were included in the structure. Thus, an in silico model of Algp7/oligoalginate was constructed by docking simulation using atomic coordinates of Algp7 and alginate oligosaccharides, where some charged residues were found to be potential candidates for alginate binding. Site-directed mutagenesis was conducted and five purified mutants K68A, K69A, E194A, N221A, and K68A/K69A were subjected to a binding assay. UV absorption difference spectroscopy along with differential scanning fluorimetry analysis indicated that K68A/K69A exhibited a significant reduction in binding affinity with alginate than wild-type Algp7. Based on these data, Lys68/Lys69 residues of Algp7 probably play an important role in binding alginate.

  17. Selection of Antibodies Interfering with Cell Surface Receptor Signaling Using Embryonic Stem Cell Differentiation.

    PubMed

    Melidoni, Anna N; Dyson, Michael R; McCafferty, John

    2016-01-01

    Antibodies able to bind and modify the function of cell surface signaling components in vivo are increasingly being used as therapeutic drugs. The identification of such "functional" antibodies from within large antibody pools is, therefore, the subject of intense research. Here we describe a novel cell-based expression and reporting system for the identification of functional antibodies from antigen-binding populations preselected with phage display. The system involves inducible expression of the antibody gene population from the Rosa-26 locus of embryonic stem (ES) cells, followed by secretion of the antibodies during ES cell differentiation. Target antigens are cell-surface signaling components (receptors or ligands) with a known effect on the direction of cell differentiation (FGFR1 mediating ES cell exit from self renewal in this particular protocol). Therefore, inhibition or activation of these components by functional antibodies in a few elite clones causes a shift in the differentiation outcomes of these clones, leading to their phenotypic selection. Functional antibody genes are then recovered from positive clones and used to produce the purified antibodies, which can be tested for their ability to affect cell fates exogenously. Identified functional antibody genes can be further introduced in different stem cell types. Inducible expression of functional antibodies has a temporally controlled protein-knockdown capability, which can be used to study the unknown role of the signaling pathway in different developmental contexts. Moreover, it provides a means for control of stem cell differentiation with potential in vivo applications.

  18. Cell surface glycoproteins of CHO cells. I. Internalization and rapid recycling

    SciTech Connect

    Raub, T.J.; Denny, J.B.; Roberts, R.M.

    1986-01-01

    The major cell surface proteins of Chinese hamster ovary (CHO) cells have been investigated after reacting cells at 4/sup 0/C with the membrane-impermeant reagent, trinitrobenzenesulfonate (TNBS). Immunoprecipitation and subsequent two-dimensional, sodiumdodecyl sulfate, polyacrylamide gel electrophoresis (SDS-PAGE) of proteins from derivatized cells that had been labelled previously with (/sup 3/H)D-glucosamine or (/sup 3/H)L-leucine showed that TNBS reacted with most of the high molecular weight (HMW) acidic glycoproteins that became labelled with iodine by the lactoperoxidase technique and that bind the lectin, wheat germ agglutinin (WGA). After warming the cells to allow endocytosis to proceed, molecule haptenized with trinitrophenol (TNP) groups were followed radio-chemically by means of (/sup 125/I)anti-DNP antibodies. Within 15 min at 37/sup 0/C, a steady-state between surface and cytoplasmic label was reached, with about 65% of the hapten located internally. Recycling of internalized TNP groups back to the cell surface also occurred rapidly (t/sub 1/2/ approx. 5 min). Our results are consistent with the view that the majority of plasma membrane glycoproteins are continuously being internalized and recycled at a high rate.

  19. A cell-surface-anchored ratiometric fluorescent probe for extracellular pH sensing.

    PubMed

    Ke, Guoliang; Zhu, Zhi; Wang, Wei; Zou, Yuan; Guan, Zhichao; Jia, Shasha; Zhang, Huimin; Wu, Xuemeng; Yang, Chaoyong James

    2014-09-10

    Accurate sensing of the extracellular pH is a very important yet challenging task in biological and clinical applications. This paper describes the development of an amphiphilic lipid-DNA molecule as a simple yet useful cell-surface-anchored ratiometric fluorescent probe for extracellular pH sensing. The lipid-DNA probe, which consists of a hydrophobic diacyllipid tail and a hydrophilic DNA strand, is modified with two fluorescent dyes; one is pH-sensitive as pH indicator and the other is pH-insensitive as an internal reference. The lipid-DNA probe showed sensitive and reversible response to pH change in the range of 6.0-8.0, which is suitable for most extracellular studies. In addition, based on simple hydrophobic interactions with the cell membrane, the lipid-DNA probe can be easily anchored on the cell surface with negligible cytotoxicity, excellent stability, and unique ratiometric readout, thus ensuring its accurate sensing of extracellular pH. Finally, this lipid-DNA-based ratiometric pH indicator was successfully used for extracellular pH sensing of cells in 3D culture environment, demonstrating the potential applications of the sensor in biological and medical studies.

  20. Cell surface expression of v-fms-coded glycoproteins is required for transformation.

    PubMed Central

    Roussel, M F; Rettenmier, C W; Look, A T; Sherr, C J

    1984-01-01

    The viral oncogene v-fms encodes a transforming glycoprotein with in vitro tyrosine-specific protein kinase activity. Although most v-fms-coded molecules remain internally sequestered in transformed cells, a minor population of molecules is transported to the cell surface. An engineered deletion mutant lacking 348 base pairs of the 3.0-kilobase-pair v-fms gene encoded a polypeptide that was 15 kilodaltons smaller than the wild-type v-fms gene product. The in-frame deletion of 116 amino acids was adjacent to the transmembrane anchor peptide located near the middle of the predicted protein sequence and 432 amino acids from the carboxyl terminus. The mutant polypeptide acquired N-linked oligosaccharide chains, was proteolytically processed in a manner similar to the wild-type glycoprotein, and exhibited an associated tyrosine-specific protein kinase activity in vitro. However, the N-linked oligosaccharides of the mutant glycoprotein were not processed to complex carbohydrate chains, and the glycoprotein was not detected at the cell surface. Cells expressing high levels of the mutant glycoprotein did not undergo morphological transformation and did not form colonies in semisolid medium. The transforming activity of the v-fms gene product therefore appears to be mediated through target molecules on the plasma membrane. Images PMID:6390182

  1. BHK21 fibroblast aggregation inhibited by glycopeptides from the cell surface.

    PubMed

    Vicker, M G

    1976-06-01

    Glycopeptides were removed by trypsinization from the surface of baby hamster kidney cells (line BHK21-C13), digested by pronase and separated into 2 fractions by exclusion chromatography. The addition of small amounts of either glycopeptide fraction to shaken suspensions of lightly trypsinzied cells inhibited their rapid aggregation, but one fraction was more active than the other and in higher concentrations it was able to inhibit aggregation completely. After this fraction was purified by high-voltage electrophoresis one subfraction also inhibited aggregation. The effect of the glycopeptides increased following their pretreatment with neuraminidase, but preincubation with periodiate or galactose oxidase destroyed all activity. Galactose oxidase also inhibited cell aggregation directly. Similar glycopeptides from virus-transformed BHK21 cells, oligosaccharides and intact and desialysed human urinary glycoproteins had comparatively little or no effect on BHK21 cell aggregation. The results suggest terminal beta-galactosides and possible alpha-galactosides, and to some extent a particular substructure of cell surface heteroglycans are necessary for their inhibitory activity. The parent, plasma membrane of glycoproteins might serve as adhesive binding sites in cell cohesion, but some evidence indicates cell surface sialyl- and galactosyltransferases may not ordinarily act as their complementary binding receptors.

  2. Murine Polyomavirus Cell Surface Receptors Activate Distinct Signaling Pathways Required for Infection

    PubMed Central

    O’Hara, Samantha D.

    2016-01-01

    ABSTRACT Virus binding to the cell surface triggers an array of host responses, including activation of specific signaling pathways that facilitate steps in virus entry. Using mouse polyomavirus (MuPyV), we identified host signaling pathways activated upon virus binding to mouse embryonic fibroblasts (MEFs). Pathways activated by MuPyV included the phosphatidylinositol 3-kinase (PI3K), FAK/SRC, and mitogen-activated protein kinase (MAPK) pathways. Gangliosides and α4-integrin are required receptors for MuPyV infection. MuPyV binding to both gangliosides and the α4-integrin receptors was required for activation of the PI3K pathway; however, either receptor interaction alone was sufficient for activation of the MAPK pathway. Using small-molecule inhibitors, we confirmed that the PI3K and FAK/SRC pathways were required for MuPyV infection, while the MAPK pathway was dispensable. Mechanistically, the PI3K pathway was required for MuPyV endocytosis, while the FAK/SRC pathway enabled trafficking of MuPyV along microtubules. Thus, MuPyV interactions with specific cell surface receptors facilitate activation of signaling pathways required for virus entry and trafficking. Understanding how different viruses manipulate cell signaling pathways through interactions with host receptors could lead to the identification of new therapeutic targets for viral infection. PMID:27803182

  3. Label-fracture: a method for high resolution labeling of cell surfaces.

    PubMed

    Pinto da Silva, P; Kan, F W

    1984-09-01

    We introduce here a technique, "label-fracture," that allows the observation of the distribution of a cytochemical label on a cell surface. Cell surfaces labeled with an electron-dense marker (colloidal gold) are freeze-fractured and the fracture faces are replicated by plantinum/carbon evaporation. The exoplasmic halves of the membrane, apparently stabilized by the deposition of the Pt/C replica, are washed in distilled water. The new method reveals the surface distribution of the label coincident with the Pt/C replica of the exoplasmic fracture face. Initial applications indicate high resolution (less than or equal to 15 nm) and exceedingly low background. "Label-fracture" provides extensive views of the distribution of the label on membrane surfaces while preserving cell shape and relating to the freeze-fracture morphology of exoplasmic fracture faces. The regionalization of wheat germ agglutinin receptors on the plasma membranes of boar sperm cells is illustrated. The method and the interpretation of its results are straightforward. Label-fracture is appropriate for routine use as a surface labeling technique.

  4. A dual phosphorylation switch controls 14-3-3-dependent cell surface expression of TASK-1

    PubMed Central

    Kilisch, Markus; Lytovchenko, Olga; Arakel, Eric C.; Bertinetti, Daniela; Schwappach, Blanche

    2016-01-01

    ABSTRACT The transport of the K+ channels TASK-1 and TASK-3 (also known as KCNK3 and KCNK9, respectively) to the cell surface is controlled by the binding of 14-3-3 proteins to a trafficking control region at the extreme C-terminus of the channels. The current model proposes that phosphorylation-dependent binding of 14-3-3 sterically masks a COPI-binding motif. However, the direct effects of phosphorylation on COPI binding and on the binding parameters of 14-3-3 isoforms are still unknown. We find that phosphorylation of the trafficking control region prevents COPI binding even in the absence of 14-3-3, and we present a quantitative analysis of the binding of all human 14-3-3 isoforms to the trafficking control regions of TASK-1 and TASK-3. Surprisingly, the affinities of 14-3-3 proteins for TASK-1 are two orders of magnitude lower than for TASK-3. Furthermore, we find that phosphorylation of a second serine residue in the C-terminus of TASK-1 inhibits 14-3-3 binding. Thus, phosphorylation of the trafficking control region can stimulate or inhibit transport of TASK-1 to the cell surface depending on the target serine residue. Our findings indicate that control of TASK-1 trafficking by COPI, kinases, phosphatases and 14-3-3 proteins is highly dynamic. PMID:26743085

  5. Involvement of Cell Surface Structures in Size-Independent Grazing Resistance of Freshwater Actinobacteria▿ †

    PubMed Central

    Tarao, Mitsunori; Jezbera, Jan; Hahn, Martin W.

    2009-01-01

    We compared the influences of grazing by the bacterivorous nanoflagellate Poterioochromonas sp. strain DS on ultramicrobacterial Actinobacteria affiliated with the Luna-2 cluster and ultramicrobacterial Betaproteobacteria of the species Polynucleobacter cosmopolitanus. These bacteria were almost identical in size (<0.1 μm3) and shape. Predation on a Polynucleobacter strain resulted in a reduction of >86% relative to the initial bacterial cell numbers within 20 days, while in comparable predation experiments with nine actinobacterial strains, no significant decrease of cell numbers by predation was observed over the period of ≥39 days. The differences in predation mortality between the actinobacterial strains and the Polynucleobacter strain clearly demonstrated size-independent grazing resistance for the investigated Actinobacteria. Importantly, this size-independent grazing resistance is shared by all nine investigated Luna-2 strains and thus represents a group-specific trait. We investigated if an S-layer, previously observed in an ultrastructure study, was responsible for the grazing resistance of these strains. Experiments aiming for removal of the S-layer or modification of cell surface proteins of one of the grazing-resistant strains by treatment with lithium chloride, EDTA, or formaldehyde resulted in 4.2- to 5.2-fold higher grazing rates in comparison to the levels for untreated cells. These results indicate the protective role of a proteinaceous cell surface structure in the size-independent grazing resistance of the actinobacterial Luna-2 strains, which can be regarded as a group-specific trait. PMID:19502450

  6. Characterization of cell-surface receptors for monoclonal-nonspecific suppressor factor (MNSF)

    SciTech Connect

    Nakamura, M.; Ogawa, H.; Tsunematsu, T. )

    1990-10-15

    Monoclonal-nonspecific suppressor factor (MNSF) is a lymphokine derived from murine T cell hybridoma. The target tissues are both LPS-stimulated B cells and Con A-stimulated T cells. Since the action of MNSF may be mediated by its binding to specific cell surface receptors, we characterized the mode of this binding. The purified MNSF was labeled with {sup 125}I, using the Bolton-Hunter reagent. The labeled MNSF bound specifically to a single class of receptor (300 receptors per cell) on mitogen-stimulated murine B cells or T cells with an affinity of 16 pM at 24{degrees}C, in the presence of sodium azide. Competitive experiments showed that MNSF bound to the specific receptor and that the binding was not shared with IL2, IFN-gamma, and TNF. Various cell types were surveyed for the capacity to specifically bind {sup 125}I-MNSF. {sup 125}I-MNSF bound to MOPC-31C (a murine plasmacytoma line) and to EL4 (a murine T lymphoma line). The presence of specific binding correlates with the capacity of the cells to respond to MNSF. These data support the view that like other polypeptide hormones, the action of MNSF is mediated by specific cell surface membrane receptor protein. Identification of these receptors will provide insight into the apparently diverse activities of MNSF.

  7. Regulation of collagen fibrillogenesis by cell-surface expression of kinase dead DDR2.

    PubMed

    Blissett, Angela R; Garbellini, Derek; Calomeni, Edward P; Mihai, Cosmin; Elton, Terry S; Agarwal, Gunjan

    2009-01-23

    The assembly of collagen fibers, the major component of the extracellular matrix (ECM), governs a variety of physiological processes. Collagen fibrillogenesis is a tightly controlled process in which several factors, including collagen binding proteins, have a crucial role. Discoidin domain receptors (DDR1 and DDR2) are receptor tyrosine kinases that bind to and are phosphorylated upon collagen binding. The phosphorylation of DDRs is known to activate matrix metalloproteases, which in turn cleave the ECM. In our earlier studies, we established a novel mechanism of collagen regulation by DDRs; that is, the extracellular domain (ECD) of DDR2, when used as a purified, soluble protein, inhibits collagen fibrillogenesis in-vitro. To extend this novel observation, the current study investigates how the DDR2-ECD, when expressed as a membrane-anchored, cell-surface protein, affects collagen fibrillogenesis by cells. We generated a mouse osteoblast cell line that stably expresses a kinase-deficient form of DDR2, termed DDR2/-KD, on its cell surface. Transmission electron microscopy, fluorescence microscopy, and hydroxyproline assays demonstrated that the expression of DDR2/-KD reduced the rate and abundance of collagen deposition and induced significant morphological changes in the resulting fibers. Taken together, our observations extend the functional roles that DDR2 and possibly other membrane-anchored, collagen-binding proteins can play in the regulation of cell adhesion, migration, proliferation and in the remodeling of the extracellular matrix.

  8. GABAB receptor cell surface export is controlled by an endoplasmic reticulum gatekeeper

    PubMed Central

    Doly, Stéphane; Shirvani, Hamasseh; Gäta, Gabriel; Meye, Frank; Emerit, Michel-Boris; Enslen, Hervé; Achour, Lamia; Pardo-Lopez, Liliana; Kwon, Yang Seung; Armand, Vincent; Gardette, Robert; Giros, Bruno; Gassmann, Martin; Bettler, Bernhard; Mameli, Manuel; Darmon, Michèle; Marullo, Stefano

    2016-01-01

    Summary Endoplasmic reticulum (ER) release and cell surface export of many G protein-coupled receptors (GPCRs), are tightly regulated. For GABAB receptors of GABA, the major mammalian inhibitory neurotransmitter, the ligand-binding GB1 subunit is maintained in the ER by unknown mechanisms in the absence of hetero-dimerization with the GB2 subunit. We report that GB1 retention is regulated by a specific gatekeeper, PRAF2. This ER resident transmembrane protein binds to GB1, preventing its progression in the biosynthetic pathway. GB1 release occurs upon competitive displacement from PRAF2 by GB2. PRAF2 concentration, relative to that of GB1 and GB2, tightly controls cell surface receptor density and controls GABAB function in neurons. Experimental perturbation of PRAF2 levels in vivo caused marked hyperactivity disorders in mice. These data reveal an unanticipated major impact of specific ER gate-keepers on GPCR function and identify PRAF2 as a new molecular target with therapeutic potential for psychiatric and neurological diseases involving GABAB function. PMID:26033241

  9. Interaction of Human Tumor Viruses with Host Cell Surface Receptors and Cell Entry

    PubMed Central

    Schäfer, Georgia; Blumenthal, Melissa J.; Katz, Arieh A.

    2015-01-01

    Currently, seven viruses, namely Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpes virus (KSHV), high-risk human papillomaviruses (HPVs), Merkel cell polyomavirus (MCPyV), hepatitis B virus (HBV), hepatitis C virus (HCV) and human T cell lymphotropic virus type 1 (HTLV-1), have been described to be consistently associated with different types of human cancer. These oncogenic viruses belong to distinct viral families, display diverse cell tropism and cause different malignancies. A key to their pathogenicity is attachment to the host cell and entry in order to replicate and complete their life cycle. Interaction with the host cell during viral entry is characterized by a sequence of events, involving viral envelope and/or capsid molecules as well as cellular entry factors that are critical in target cell recognition, thereby determining cell tropism. Most oncogenic viruses initially attach to cell surface heparan sulfate proteoglycans, followed by conformational change and transfer of the viral particle to secondary high-affinity cell- and virus-specific receptors. This review summarizes the current knowledge of the host cell surface factors and molecular mechanisms underlying oncogenic virus binding and uptake by their cognate host cell(s) with the aim to provide a concise overview of potential target molecules for prevention and/or treatment of oncogenic virus infection. PMID:26008702

  10. Cell surface display of functional human MHC class II proteins: yeast display versus insect cell display

    PubMed Central

    Wen, Fei; Sethi, Dhruv K.; Wucherpfennig, Kai W.; Zhao, Huimin

    2011-01-01

    Reliable and robust systems for engineering functional major histocompatibility complex class II (MHCII) proteins have proved elusive. Availability of such systems would enable the engineering of peptide-MHCII (pMHCII) complexes for therapeutic and diagnostic applications. In this paper, we have developed a system based on insect cell surface display that allows functional expression of heterodimeric DR2 molecules with or without a covalently bound human myelin basic protein (MBP) peptide, which is amenable to directed evolution of DR2–MBP variants with improved T cell receptor (TCR)-binding affinity. This study represents the first example of functional display of human pMHCII complexes on insect cell surface. In the process of developing this pMHCII engineering system, we have also explored the potential of using yeast surface display for the same application. Our data suggest that yeast display is a useful system for analysis and engineering of peptide binding of MHCII proteins, but not suitable for directed evolution of pMHC complexes that bind with low affinity to self-reactive TCRs. PMID:21752831

  11. Multienzyme decorated polysaccharide amplified electrogenerated chemiluminescence biosensor for cytosensing and cell surface carbohydrate profiling.

    PubMed

    Zhang, Ling; Wang, Yangzhong; Tian, Qianqian; Liu, Yang; Li, Jinghong

    2017-03-15

    A novel ECL biosensor for cytosensing and cell surface carbohydrate expression evaluation was developed, by the integration of the peptide modified interface for highly specific carbohydrate recognition and sodium alginate loaded glucose oxidase as the signal probe with high signal amplification efficiency. A cysteine-terminated peptide self-assembled on the electrode through Au-S bond to construct a functional interface for cell capture, with decent biocompatibility and high affinity for the human breast cancer cell MCF-7. Concanavalin A lectin modified gold nanoparticles specifically recognized the cell surface carbohydrates and were absorbed on the electrode, followed by the immobilization of multiple glucose oxidase conjugated sodium alginate, which could remarkably increase the sensitivity of the biosensor with enhanced catalysis. The as-proposed ECL cytosensor was successfully applied for the detection of the MCF-7 tumor cells, whose glycans on the cell membranes are over-expressed. A low detection limit of 150cellsmL(-1) was obtained, with a wide dynamic linear range from 5.0×10(2) to 5.0×10(5)cellsmL(-1). Due to the excellent sensitivity, stability and biocompatibility, the ECL biosensor would be promising in reliable diagnostics of glycan relevant biomarkers for cancer and other diseases.

  12. Formation of nanofilms on cell surfaces to improve the insertion efficiency of a nanoneedle into cells

    SciTech Connect

    Amemiya, Yosuke; Kawano, Keiko; Matsusaki, Michiya; Akashi, Mitsuru; Nakamura, Noriyuki; Nakamura, Chikashi

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer We examined the insertion efficiency of nanoneedles into fibroblast and neural cells. Black-Right-Pointing-Pointer Nanofilms formed on cell surfaces improved the insertion efficiency of nanoneedles. Black-Right-Pointing-Pointer Nanofilms improved the insertion efficiency even in Y27632-treated cells. -- Abstract: A nanoneedle, an atomic force microscope (AFM) tip etched to 200 nm in diameter and 10 {mu}m in length, can be inserted into cells with the aid of an AFM and has been used to introduce functional molecules into cells and to analyze intracellular information with minimal cell damage. However, some cell lines have shown low insertion efficiency of the nanoneedle. Improvement in the insertion efficiency of a nanoneedle into such cells is a significant issue for nanoneedle-based cell manipulation and analysis. Here, we have formed nanofilms composed of extracellular matrix molecules on cell surfaces and found that the formation of the nanofilms improved insertion efficiency of a nanoneedle into fibroblast and neural cells. The nanofilms were shown to improve insertion efficiency even in cells in which the formation of actin stress fibers was inhibited by the ROCK inhibitor Y27632, suggesting that the nanofilms with the mesh structure directly contributed to the improved insertion efficiency of a nanoneedle.

  13. Dynamics of putative raft-associated proteins at the cell surface

    PubMed Central

    Kenworthy, Anne K.; Nichols, Benjamin J.; Remmert, Catha L.; Hendrix, Glenn M.; Kumar, Mukesh; Zimmerberg, Joshua; Lippincott-Schwartz, Jennifer

    2004-01-01

    Lipid rafts are conceptualized as membrane microdomains enriched in cholesterol and glycosphingolipid that serve as platforms for protein segregation and signaling. The properties of these domains in vivo are unclear. Here, we use fluorescence recovery after photobleaching to test if raft association affects a protein's ability to laterally diffuse large distances across the cell surface. The diffusion coefficients (D) of several types of putative raft and nonraft proteins were systematically measured under steady-state conditions and in response to raft perturbations. Raft proteins diffused freely over large distances (>4 μm), exhibiting Ds that varied 10-fold. This finding indicates that raft proteins do not undergo long-range diffusion as part of discrete, stable raft domains. Perturbations reported to affect lipid rafts in model membrane systems or by biochemical fractionation (cholesterol depletion, decreased temperature, and cholesterol loading) had similar effects on the diffusional mobility of raft and nonraft proteins. Thus, raft association is not the dominant factor in determining long-range protein mobility at the cell surface. PMID:15173190

  14. Dynamics of putative raft-associated proteins at the cell surface.

    PubMed

    Kenworthy, Anne K; Nichols, Benjamin J; Remmert, Catha L; Hendrix, Glenn M; Kumar, Mukesh; Zimmerberg, Joshua; Lippincott-Schwartz, Jennifer

    2004-06-07

    Lipid rafts are conceptualized as membrane microdomains enriched in cholesterol and glycosphingolipid that serve as platforms for protein segregation and signaling. The properties of these domains in vivo are unclear. Here, we use fluorescence recovery after photobleaching to test if raft association affects a protein's ability to laterally diffuse large distances across the cell surface. The diffusion coefficients (D) of several types of putative raft and nonraft proteins were systematically measured under steady-state conditions and in response to raft perturbations. Raft proteins diffused freely over large distances (> 4 microm), exhibiting Ds that varied 10-fold. This finding indicates that raft proteins do not undergo long-range diffusion as part of discrete, stable raft domains. Perturbations reported to affect lipid rafts in model membrane systems or by biochemical fractionation (cholesterol depletion, decreased temperature, and cholesterol loading) had similar effects on the diffusional mobility of raft and nonraft proteins. Thus, raft association is not the dominant factor in determining long-range protein mobility at the cell surface.

  15. Cell surface redox potential as a mechanism of defense against photosensitizers in fungi.

    PubMed

    Sollod, C C; Jenns, A E; Daub, M E

    1992-02-01

    The phytotoxin cercosporin, a singlet oxygen-generating photosensitizer, is toxic to plants, mice, and many fungi, yet the fungi that produce it, Cercospora spp., are resistant. We hypothesize that resistance to cercosporin may result from a reducing environment at the cell surface. Twenty tetrazolium dyes differing in redox potential were used as indicators of cell surface redox potential of seven fungal species differing in resistance to cercosporin. Resistant fungi were able to reduce significantly more dyes than were sensitive fungi. A correlation between dye reduction and cercosporin resistance was also observed when resistance levels of Cercospora species were manipulated by growth on different media. The addition of the reducing agents ascorbate, cysteine, and reduced glutathione (GSH) to growth media decreased cercosporin toxicity for sensitive fungi. None of these agents directly reduced cercosporin at the concentrations at which they protected fungi. Spectral and thin-layer chromatographic analyses of cercosporin solutions containing the different reducing agents indicated that GSH, but not cysteine or ascorbate, reacted with cercosporin. Resistant and sensitive fungi did not differ in endogenous levels of cysteine, GSH, or total thiols. On the basis of data from this and other studies, this report presents a model which proposes that cercosporin resistance results from the production of reducing power at the surfaces of resistant cells, leading to transient reduction and detoxification of the cercosporin molecule.

  16. Interaction of human tumor viruses with host cell surface receptors and cell entry.

    PubMed

    Schäfer, Georgia; Blumenthal, Melissa J; Katz, Arieh A

    2015-05-22

    Currently, seven viruses, namely Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpes virus (KSHV), high-risk human papillomaviruses (HPVs), Merkel cell polyomavirus (MCPyV), hepatitis B virus (HBV), hepatitis C virus (HCV) and human T cell lymphotropic virus type 1 (HTLV-1), have been described to be consistently associated with different types of human cancer. These oncogenic viruses belong to distinct viral families, display diverse cell tropism and cause different malignancies. A key to their pathogenicity is attachment to the host cell and entry in order to replicate and complete their life cycle. Interaction with the host cell during viral entry is characterized by a sequence of events, involving viral envelope and/or capsid molecules as well as cellular entry factors that are critical in target cell recognition, thereby determining cell tropism. Most oncogenic viruses initially attach to cell surface heparan sulfate proteoglycans, followed by conformational change and transfer of the viral particle to secondary high-affinity cell- and virus-specific receptors. This review summarizes the current knowledge of the host cell surface factors and molecular mechanisms underlying oncogenic virus binding and uptake by their cognate host cell(s) with the aim to provide a concise overview of potential target molecules for prevention and/or treatment of oncogenic virus infection.

  17. Adsorption of glycosaminoglycans to the cell surface is responsible for cellular donnan effects.

    PubMed

    Hagenfeld, Daniel; Kathagen, Nadine; Prehm, Peter

    2014-07-01

    In previous publications, we showed that extracellular glycosaminoglycans reduced the membrane potential, caused cell blebbing and swelling and decreased the intracellular pH independently of cell surface receptors. These phenomena were explained by Donnan effects. The effects were so large that they could not be attributed to glycosaminoglycans in solution. Therefore, we tested the hypothesis that glycosaminoglycans were concentrated on the cell membrane and analysed the mechanism of adsorption by fluorescent hyaluronan, chondroitin sulphate and heparin. The influence of the CD44 receptor was evaluated by comparing CD44 expressing human fibroblasts with CD44 deficient HEK cells. Higher amounts of glycosaminoglycans adsorbed to fibroblasts than to HEK cells. When the membrane potential was annihilated by substituting NaCl by KCl in the medium, adsorption was reduced and intracellular pH decrease was abolished. To eliminate other cellular interfering factors, potential-dependent adsorption was demonstrated for hyaluronan which adsorbed to inert gold foils in physiological salt concentrations at pH 7.2 and surface potentials up to 120 mV. From these results, we conclude that large cellular Donnan effects of glycosaminoglycans results from receptor mediated, hydrophobic and ionic adsorption to cell surfaces.

  18. Characterizing Spatial Organization of Cell Surface Receptors in Human Breast Cancer with STORM

    NASA Astrophysics Data System (ADS)

    Lyall, Evan; Chapman, Matthew R.; Sohn, Lydia L.

    2012-02-01

    Regulation and control of complex biological functions are dependent upon spatial organization of biological structures at many different length scales. For instance Eph receptors and their ephrin ligands bind when opposing cells come into contact during development, resulting in spatial organizational changes on the nanometer scale that lead to changes on the macro scale, in a process known as organ morphogenesis. One technique able to probe this important spatial organization at both the nanometer and micrometer length scales, including at cell-cell junctions, is stochastic optical reconstruction microscopy (STORM). STORM is a technique that localizes individual fluorophores based on the centroids of their point spread functions and then reconstructs a composite image to produce super resolved structure. We have applied STORM to study spatial organization of the cell surface of human breast cancer cells, specifically the organization of tyrosine kinase receptors and chemokine receptors. A better characterization of spatial organization of breast cancer cell surface proteins is necessary to fully understand the tumorigenisis pathways in the most common malignancy in United States women.

  19. Differential carbohydrate binding and cell surface glycosylation of human cancer cell lines.

    PubMed

    Arndt, Nadia X; Tiralongo, Joe; Madge, Paul D; von Itzstein, Mark; Day, Christopher J

    2011-09-01

    Currently there is only a modest level knowledge of the glycosylation status of immortalised cell lines that are commonly used in cancer biology as well as their binding affinities to different glycan structures. Through use of glycan and lectin microarray technology, this study has endeavoured to define the different bindings of cell surface carbohydrate structures to glycan-binding lectins. The screening of breast cancer MDA-MB435 cells, cervical cancer HeLa cells and colon cancer Caco-2, HCT116 and HCT116-FM6 cells was conducted to determine their differential bindings to a variety of glycan and lectin structures printed on the array slides. An inverse relationship between the number of glycan structures recognised and the variety of cell surface glycosylation was observed. Of the cell lines tested, it was found that four bound to sialylated structures in initial screening. Secondary screening in the presence of a neuraminidase inhibitor (4-deoxy-4-guanidino-Neu5Ac2en) significantly reduced sialic acid binding. The array technology has proven to be useful in determining the glycosylation signatures of various cell-lines as well as their glycan binding preferences. The findings of this study provide the groundwork for further investigation into the numerous glycan-lectin interactions that are exhibited by immortalised cell lines.

  20. High-density single-molecule analysis of cell surface dynamics in C. elegans embryos

    PubMed Central

    Robin, Francois B.; McFadden, William M.; Yao, Baixue; Munro, Edwin M.

    2014-01-01

    We describe a general, versatile and non-invasive method to image single molecules near the cell surface that can be applied to any GFP-tagged protein in C. elegans embryos. We exploit tunable expression via RNAi and a dynamically exchanging monomer pool to achieve fast continuous single-molecule imaging at optimal densities with signal-to-noise ratios adequate for robust single particle tracking (SPT) analysis. We also introduce and validate a new method called smPReSS that infers exchange rates from quantitative analysis of single molecule photobleaching kinetics, without using SPT. Combining SPT and smPReSS allows spatially and temporally resolved measurements of protein mobility and exchange kinetics. We use these methods (a) to resolve distinct mobility states and spatial variation in exchange rates of the polarity protein Par-6 and (b) to measure spatiotemporal modulation of actin filament assembly and disassembly. The introduction of these methods in a powerful model system offers a promising new avenue to investigate dynamic mechanisms that pattern the embryonic cell surface. PMID:24727651

  1. Identification of novel pancreatic adenocarcinoma cell-surface targets by gene expression profiling and tissue microarray

    PubMed Central

    Morse, David L.; Balagurunathan, Yoga; Hostetter, Galen; Trissal, Maria; Tafreshi, Narges K.; Burke, Nancy; Lloyd, Mark; Enkemann, Steven; Coppola, Domenico; Hruby, Victor; Gillies, Robert J.; Han, Haiyong

    2010-01-01

    Pancreatic cancer has a high mortality rate, which is generally related to the initial diagnosis coming at late stage disease combined with a lack of effective treatment options. Novel agents that selectively detect pancreatic cancer have potential for use in the molecular imaging of cancer, allowing for non-invasive determination of tumor therapeutic response and molecular characterization of the disease. Such agents may also be used for the targeted delivery of therapy to tumor cells while decreasing systemic effects. Using complementary assays of mRNA expression profiling to determine elevated expression in pancreatic cancer tissues relative to normal pancreas tissues, and validation of protein expression by immunohistochemistry on tissue microarray, we have identified cell-surface targets with potential for imaging and therapeutic agent development. Expression profiles of 2177 cell-surface genes for 28 pancreatic tumor specimens and 4 normal pancreas tissue samples were evaluated. Expression in normal tissues was evaluated using array data from 103 samples representing 28 organ sites as well as mining published data. One-hundred seventy unique targets were highly expressed in 2 or more of the pancreatic tumor specimens and were not expressed in the normal pancreas samples. Two targets (TLR2 and ABCC3) were further validated for protein expression by tissue microarray (TMA) based immunohistochemistry. These validated targets have potential for the development of diagnostic imaging and therapeutic agents for pancreatic cancer. PMID:20510208

  2. MARCH1 regulates insulin sensitivity by controlling cell surface insulin receptor levels

    PubMed Central

    Nagarajan, Arvindhan; Petersen, Max C.; Nasiri, Ali R.; Butrico, Gina; Fung, Annie; Ruan, Hai-Bin; Kursawe, Romy; Caprio, Sonia; Thibodeau, Jacques; Bourgeois-Daigneault, Marie-Claude; Sun, Lisha; Gao, Guangping; Bhanot, Sanjay; Jurczak, Michael J.; Green, Michael R.; Shulman, Gerald I.; Wajapeyee, Narendra

    2016-01-01

    Insulin resistance is a key driver of type 2 diabetes (T2D) and is characterized by defective insulin receptor (INSR) signalling. Although surface INSR downregulation is a well-established contributor to insulin resistance, the underlying molecular mechanisms remain obscure. Here we show that the E3 ubiquitin ligase MARCH1 impairs cellular insulin action by degrading cell surface INSR. Using a large-scale RNA interference screen, we identify MARCH1 as a negative regulator of INSR signalling. March1 loss-of-function enhances, and March1 overexpression impairs, hepatic insulin sensitivity in mice. MARCH1 ubiquitinates INSR to decrease cell surface INSR levels, but unlike other INSR ubiquitin ligases, MARCH1 acts in the basal state rather than after insulin stimulation. Thus, MARCH1 may help set the basal gain of insulin signalling. MARCH1 expression is increased in white adipose tissue of obese humans, suggesting that MARCH1 contributes to the pathophysiology of T2D and could be a new therapeutic target. PMID:27577745

  3. Exogenous cathepsin G upregulates cell surface MHC class I molecules on immune and glioblastoma cells

    PubMed Central

    Giese, Madleen; Turiello, Nadine; Molenda, Nicole; Palesch, David; Meid, Annika; Schroeder, Roman; Basilico, Paola; Benarafa, Charaf; Halatsch, Marc-Eric; Zimecki, Michal; Westhoff, Mike-Andrew; Wirtz, Christian Rainer; Burster, Timo

    2016-01-01

    Major histocompatibility complex (MHC) class I molecules present antigenic peptides to cytotoxic T cells. During an adaptive immune response, MHC molecules are regulated by several mechanisms including lipopolysaccharide (LPS) and interferon gamma (IFN-g). However, it is unclear whether the serine protease cathepsin G (CatG), which is generally secreted by neutrophils at the site of inflammation, might regulate MHC I molecules. We identified CatG, and to a higher extend CatG and lactoferrin (LF), as an exogenous regulator of cell surface MHC I expression of immune cells and glioblastoma stem cells. In addition, levels of MHC I molecules are reduced on dendritic cells from CatG deficient mice compared to their wild type counterparts. Furthermore, cell surface CatG on immune cells, including T cells, B cells, and NK cells triggers MHC I on THP-1 monocytes suggesting a novel mechanism for CatG to facilitate intercellular communication between infiltrating cells and the respective target cell. Subsequently, our findings highlight the pivotal role of CatG as a checkpoint protease which might force target cells to display their intracellular MHC I:antigen repertoire. PMID:27806341

  4. Functional Assembly of Minicellulosomes on the Saccharomyces cerevisiae Cell Surface for Cellulose Hydrolysis and Ethanol Production▿

    PubMed Central

    Tsai, Shen-Long; Oh, Jeongseok; Singh, Shailendra; Chen, Ruizhen; Chen, Wilfred

    2009-01-01

    We demonstrated the functional display of a miniscaffoldin on the Saccharomyces cerevisiae cell surface consisting of three divergent cohesin domains from Clostridium thermocellum (t), Clostridium cellulolyticum (c), and Ruminococcus flavefaciens (f). Incubation with Escherichia coli lysates containing an endoglucanase (CelA) fused with a dockerin domain from C. thermocellum (At), an exoglucanase (CelE) from C. cellulolyticum fused with a dockerin domain from the same species (Ec), and an endoglucanase (CelG) from C. cellulolyticum fused with a dockerin domain from R. flavefaciens (Gf) resulted in the assembly of a functional minicellulosome on the yeast cell surface. The displayed minicellulosome retained the synergistic effect for cellulose hydrolysis. When a β-glucosidase (BglA) from C. thermocellum tagged with the dockerin from R. flavefaciens was used in place of Gf, cells displaying the new minicellulosome exhibited significantly enhanced glucose liberation and produced ethanol directly from phosphoric acid-swollen cellulose. The final ethanol concentration of 3.5 g/liter was 2.6-fold higher than that obtained by using the same amounts of added purified cellulases. The overall yield was 0.49 g of ethanol produced per g of carbohydrate consumed, which corresponds to 95% of the theoretical value. This result confirms that simultaneous and synergistic saccharification and fermentation of cellulose to ethanol can be efficiently accomplished with a yeast strain displaying a functional minicellulosome containing all three required cellulolytic enzymes. PMID:19684173

  5. Cargo binding promotes KDEL receptor clustering at the mammalian cell surface

    NASA Astrophysics Data System (ADS)

    Becker, Björn; Shaebani, M. Reza; Rammo, Domenik; Bubel, Tobias; Santen, Ludger; Schmitt, Manfred J.

    2016-06-01

    Transmembrane receptor clustering is a ubiquitous phenomenon in pro- and eukaryotic cells to physically sense receptor/ligand interactions and subsequently translate an exogenous signal into a cellular response. Despite that receptor cluster formation has been described for a wide variety of receptors, ranging from chemotactic receptors in bacteria to growth factor and neurotransmitter receptors in mammalian cells, a mechanistic understanding of the underlying molecular processes is still puzzling. In an attempt to fill this gap we followed a combined experimental and theoretical approach by dissecting and modulating cargo binding, internalization and cellular response mediated by KDEL receptors (KDELRs) at the mammalian cell surface after interaction with a model cargo/ligand. Using a fluorescent variant of ricin toxin A chain as KDELR-ligand (eGFP-RTAH/KDEL), we demonstrate that cargo binding induces dose-dependent receptor cluster formation at and subsequent internalization from the membrane which is associated and counteracted by anterograde and microtubule-assisted receptor transport to preferred docking sites at the plasma membrane. By means of analytical arguments and extensive numerical simulations we show that cargo-synchronized receptor transport from and to the membrane is causative for KDELR/cargo cluster formation at the mammalian cell surface.

  6. A high throughput method for quantification of cell surface bound and internalized chitosan nanoparticles.

    PubMed

    Tammam, Salma N; Azzazy, Hassan M E; Lamprecht, Alf

    2015-11-01

    Chitosan has become a popular polymer for drug delivery. It's hydro solubility and mild formulation conditions have made it an attractive polymer for macromolecular delivery. Accurate quantification of internalized chitosan nanoparticles (NPs) is imperative for fair assessment of the nano-formulation where it is important to determine the exact amount of drug actually being delivered into the cell, especially for macromolecular drugs where cellular entry is limited by molecule size and/or charge. The preferential affinity of wheat germ agglutinin tagged with fluorescein isothiocyanate (WGA-FITC) to chitosan is exploited in the development of a simple and rapid method for the differentiation between and quantification of cell surface bound and internalized chitosan NPs. The percentage of cell surface bound NPs could be easily determined and corrected NP uptake could be calculated accordingly. The developed method is applicable in several cell lines and has successfully been tested with NPs with different sizes (25 and 150nm) and with very low NP concentrations (20μg/mL). The method will allow for the correct evaluation of chitosan NP uptake and could be further used to evaluate chitosan based nanomedicine and provide guidelines on how to modify NPs for enhanced internalization, and improved drug delivery.

  7. A secreted form of the human lymphocyte cell surface molecule CD8 arises from alternative splicing

    SciTech Connect

    Giblin, P.; Kavathas, P. ); Ledbetter, J.A. )

    1989-02-01

    The human lymphocyte differentiation antigen CD8 is encoded by a single gene that gives rise to a 33- to 34-kDa glycoprotein expressed on the cell surface as a dimer and in higher molecular mass forms. The authors demonstrate that the mRNA is alternatively spliced so that an exon encoding a transmembrane domain is deleted. This gives rise to a 30-kDa molecule that is secreted and exists primarily as a monomer. mRNA corresponding to both forms is present in peripheral blood lymphocytes, Con A-activated peripheral blood lymphocytes, and three CD8{sup +} T-cell lines, with the membrane form being the major species. However, differences in the ratio of mRNA for membrane CD8 and secreted CD8 exist. In addition, the splicing pattern observed differs from the pattern found for the mouse CD8 gene. This mRNA is also alternatively spliced, but an exon encoding a cytoplasmic region is deleted, giving rise to a cell surface molecule that differs in its cytoplasmic tail from the protein encoded by the longer mRNA. Neither protein is secreted. This is one of the first examples of a different splicing pattern between two homologous mouse and human genes giving rise to very different proteins. This represents one mechanism of generating diversity during speciation.

  8. Cell-surface metalloprotease ADAM12 is internalized by a clathrin- and Grb2-dependent mechanism.

    PubMed

    Stautz, Dorte; Leyme, Anthony; Grandal, Michael Vibo; Albrechtsen, Reidar; van Deurs, Bo; Wewer, Ulla; Kveiborg, Marie

    2012-11-01

    ADAM12 (A Disintegrin And Metalloprotease 12), a member of the ADAMs family of transmembrane proteins, is involved in ectodomain shedding, cell-adhesion and signaling, with important implications in cancer. Therefore, mechanisms that regulate the levels and activity of ADAM12 at the cell-surface are possibly crucial in these contexts. We here investigated internalization and subsequent recycling or degradation of ADAM12 as a potentially important regulatory mechanism. Our results show that ADAM12 is constitutively internalized primarily via the clathrin-dependent pathway and is subsequently detected in both early and recycling endosomes. The protease activity of ADAM12 does not influence this internalization mechanism. Analysis of essential elements for internalization established that proline-rich regions in the cytoplasmic domain of ADAM12, previously shown to interact with Src-homology 3 domains, were necessary for proper internalization. These sites in the ADAM12 cytoplasmic domain interacted with the adaptor protein growth factor receptor-bound protein 2 (Grb2) and knockdown of Grb2 markedly reduced ADAM12 internalization. These studies establish that internalization is indeed a mechanism that regulates ADAM cell surface levels and show that ADAM12 internalization involves the clathrin-dependent pathway and Grb2.

  9. Proapoptotic Peptide-Mediated Cancer Therapy Targeted to Cell Surface p32

    PubMed Central

    Agemy, Lilach; Kotamraju, Venkata R; Friedmann-Morvinski, Dinorah; Sharma, Shweta; Sugahara, Kazuki N; Ruoslahti, Erkki

    2013-01-01

    Antiangiogenic therapy is a promising new treatment modality for cancer, but it generally produces only transient tumor regression. We have previously devised a tumor-targeted nanosystem, in which a pentapeptide, CGKRK, delivers a proapoptotic peptide into the mitochondria of tumor blood vessel endothelial cells and tumor cells. The treatment was highly effective in glioblastoma mouse models completely refractory to other antiangiogenic treatments. Here, we identify p32/gC1qR/HABP, a mitochondrial protein that is also expressed at the cell surface of activated (angiogenic) endothelial cells and tumor cells, as a receptor for the CGKRK peptide. The results demonstrate the ability of p32 to cause internalization of a payload bound to p32 into the cytoplasm. We also show that nardilysin, a protease capable of cleaving CGKRK, plays a role in the internalization of a p32-bound payload. As p32 is overexpressed and surface displayed in breast cancers, we studied the efficacy of the nanosystem in this cancer. We show highly significant treatment results in an orthotopic model of breast cancer. The specificity of cell surface p32 for tumor-associated cells, its ability to carry payloads to mitochondria, and the efficacy of the system in important types of cancer make the nanosystem a promising candidate for further development. PMID:23959073

  10. Mating pheromone-induced alteration of cell surface proteins in the heterobasidiomycetous yeast Tremella mesenterica.

    PubMed

    Miyakawa, T; Kadota, T; Okubo, Y; Hatano, T; Tsuchiya, E; Fukui, S

    1984-06-01

    Mating pheromone-induced alteration of the cell surface proteins of haploid cells, presumed to play crucial roles in the specific cell-cell interactions during sexual conjugation of Tremella mesenterica , was investigated. Exposed surface proteins were revealed by lactoperoxidase-catalyzed iodination in combination with polyacrylamide gel electrophoresis and autoradiography. From comparison of the molecular species of 125I-labeled surface proteins of the vegetative and the gamete (mating pheromone-treated) cells of the two compatible mating types (ab and AB), it was suggested that a striking change in cell surface structure occurs during the differentiation; although labeled protein species of the vegetative cells of the two mating types were indistinguishable, several new species, both mating type specific and nonspecific, appeared in the gamete cells. Turnover of the labeled proteins of the vegetative cells was negligible, whereas that of the gamete cells was rapid with release of low-molecular-weight labeled proteins in the medium. A role for the labeled surface proteins of the gamete cells in the cell-cell interactions during sexual conjugation was suggested by the following: the surface changes were induced by mating pheromone; the labeled proteins were preferentially localized on the surface of the mating tube; the labeled species appeared sequentially during the differentiation; and mating type-specific species were present in both mating types.

  11. Nonthermal atmospheric plasma rapidly disinfects multidrug-resistant microbes by inducing cell surface damage.

    PubMed

    Kvam, Erik; Davis, Brian; Mondello, Frank; Garner, Allen L

    2012-04-01

    Plasma, a unique state of matter with properties similar to those of ionized gas, is an effective biological disinfectant. However, the mechanism through which nonthermal or "cold" plasma inactivates microbes on surfaces is poorly understood, due in part to challenges associated with processing and analyzing live cells on surfaces rather than in aqueous solution. Here, we employ membrane adsorption techniques to visualize the cellular effects of plasma on representative clinical isolates of drug-resistant microbes. Through direct fluorescent imaging, we demonstrate that plasma rapidly inactivates planktonic cultures, with >5 log(10) kill in 30 s by damaging the cell surface in a time-dependent manner, resulting in a loss of membrane integrity, leakage of intracellular components (nucleic acid, protein, ATP), and ultimately focal dissolution of the cell surface with longer exposure time. This occurred with similar kinetic rates among methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Candida albicans. We observed no correlative evidence that plasma induced widespread genomic damage or oxidative protein modification prior to the onset of membrane damage. Consistent with the notion that plasma is superficial, plasma-mediated sterilization was dramatically reduced when microbial cells were enveloped in aqueous buffer prior to treatment. These results support the use of nonthermal plasmas for disinfecting multidrug-resistant microbes in environmental settings and substantiate ongoing clinical applications for plasma devices.

  12. Flow cytometric analysis of DNA binding and cleavage by cell surface-displayed homing endonucleases.

    PubMed

    Volná, Petra; Jarjour, Jordan; Baxter, Sarah; Roffler, Steve R; Monnat, Raymond J; Stoddard, Barry L; Scharenberg, Andrew M

    2007-01-01

    LAGLIDADG homing endonucleases (LHEs) cleave 18-24 bp DNA sequences and are promising enzymes for applications requiring sequence-specific DNA cleavage amongst genome-sized DNA backgrounds. Here, we report a method for cell surface display of LHEs, which facilitates analysis of their DNA binding and cleavage properties by flow cytometry. Cells expressing surface LHEs can be stained with fluorescently conjugated double-stranded oligonucleotides (dsOligos) containing their respective target sequences. The signal is absolutely sequence specific and undetectable with dsOligos carrying single base-pair substitutions. LHE-dsOligo interactions facilitate rapid enrichment and viable recovery of rare LHE expressing cells by both fluorescence-activated cell sorting (FACS) and magnetic cell sorting (MACS). Additionally, dsOligos conjugated with unique fluorophores at opposite termini can be tethered to the cell surface and used to detect DNA cleavage. Recapitulation of DNA binding and cleavage by surface-displayed LHEs provides a high-throughput approach to library screening that should facilitate rapid identification and analysis of enzymes with novel sequence specificities.

  13. Argininosuccinate synthase: at the center of arginine metabolism.

    PubMed

    Haines, Ricci J; Pendleton, Laura C; Eichler, Duane C

    2011-01-01

    The levels of L-arginine, a cationic, semi-essential amino acid, are often controlled within a cell at the level of local availability through biosynthesis. The importance of this temporal and spatial control of cellular L-arginine is highlighted by the tissue specific roles of argininosuccinate synthase (argininosuccinate synthetase) (EC 6.3.4.5), as the rate-limiting step in the conversion of L-citrulline to L-arginine. Since its discovery, the function of argininosuccinate synthase has been linked almost exclusively to hepatic urea production despite the fact that alternative pathways involving argininosuccinate synthase were defined, such as its role in providing arginine for creatine and for polyamine biosynthesis. However, it was the discovery of nitric oxide that meaningfully extended our understanding of the metabolic importance of non-hepatic argininosuccinate synthase. Indeed, our knowledge of the number of tissues that manage distinct pools of arginine under the control of argininosuccinate synthase has expanded significantly.

  14. A Comparative Analysis of Acyl-Homoserine Lactone Synthase Assays.

    PubMed

    Shin, Daniel; Frane, Nicole D; Brecht, Ryan M; Keeler, Jesse; Nagarajan, Rajesh

    2015-12-01

    Quorum sensing is cell-to-cell communication that allows bacteria to coordinate attacks on their hosts by inducing virulent gene expression, biofilm production, and other cellular functions, including antibiotic resistance. AHL synthase enzymes synthesize N-acyl-l-homoserine lactones, commonly referred to as autoinducers, to facilitate quorum sensing in Gram-negative bacteria. Studying the synthases, however, has proven to be a difficult road. Two assays, including a radiolabeled assay and a colorimetric (DCPIP) assay are well-documented in literature to study AHL synthases. In this paper, we describe additional methods that include an HPLC-based, C-S bond cleavage and coupled assays to investigate this class of enzymes. In addition, we compare and contrast each assay for both acyl-CoA- and acyl-ACP-utilizing synthases. The expanded toolkit described in this study should facilitate mechanistic studies on quorum sensing signal synthases and expedite discovery of antivirulent compounds.

  15. Ubiquitination and filamentous structure of cytidine triphosphate synthase

    PubMed Central

    Pai, Li-Mei; Wang, Pei-Yu; Lin, Wei-Cheng; Chakraborty, Archan; Yeh, Chau-Ting; Lin, Yu-Hung

    2016-01-01

    ABSTRACT Living organisms respond to nutrient availability by regulating the activity of metabolic enzymes. Therefore, the reversible post-translational modification of an enzyme is a common regulatory mechanism for energy conservation. Recently, cytidine-5′-triphosphate (CTP) synthase was discovered to form a filamentous structure that is evolutionarily conserved from flies to humans. Interestingly, induction of the formation of CTP synthase filament is responsive to starvation or glutamine depletion. However, the biological roles of this structure remain elusive. We have recently shown that ubiquitination regulates CTP synthase activity by promoting filament formation in Drosophila ovaries during endocycles. Intriguingly, although the ubiquitination process was required for filament formation induced by glutamine depletion, CTP synthase ubiquitination was found to be inversely correlated with filament formation in Drosophila and human cell lines. In this article, we discuss the putative dual roles of ubiquitination, as well as its physiological implications, in the regulation of CTP synthase structure. PMID:27116391

  16. Functional Contribution of Chorismate Synthase, Anthranilate Synthase, and Chorismate Mutase to Penetration Resistance in Barley-Powdery Mildew Interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant processes resulting from primary or secondary metabolism have been hypothesized to contribute to defense against microbial attack. Barley chorismate synthase (HvCS), anthranilate synthase alpha subunit 2 (HvASa2) and chorismate mutase 1 (HvCM1) occupy pivotal branch-points downstream of the s...

  17. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage.

    PubMed

    Gokay, Nevzat Selim; Yilmaz, Ibrahim; Komur, Baran; Demiroz, Ahu Senem; Gokce, Alper; Dervisoglu, Sergülen; Gokay, Banu Vural

    2016-01-01

    The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg), inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg), or nitric oxide precursor L-arginine (200 mg/kg). After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P = 0.044) positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders.

  18. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    PubMed Central

    Gokay, Nevzat Selim; Yilmaz, Ibrahim; Demiroz, Ahu Senem; Gokce, Alper; Dervisoglu, Sergülen; Gokay, Banu Vural

    2016-01-01

    The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg), inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg), or nitric oxide precursor L-arginine (200 mg/kg). After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P = 0.044) positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders. PMID:27382570

  19. Conversion of anthranilate synthase into isochorismate synthase: implications for the evolution of chorismate-utilizing enzymes.

    PubMed

    Plach, Maximilian G; Löffler, Patrick; Merkl, Rainer; Sterner, Reinhard

    2015-09-14

    Chorismate-utilizing enzymes play a vital role in the biosynthesis of metabolites in plants as well as free-living and infectious microorganisms. Among these enzymes are the homologous primary metabolic anthranilate synthase (AS) and secondary metabolic isochorismate synthase (ICS). Both catalyze mechanistically related reactions by using ammonia and water as nucleophiles, respectively. We report that the nucleophile specificity of AS can be extended from ammonia to water by just two amino acid exchanges in a channel leading to the active site. The observed ICS/AS bifunctionality demonstrates that a secondary metabolic enzyme can readily evolve from a primary metabolic enzyme without requiring an initial gene duplication event. In a general sense, these findings add to our understanding how nature has used the structurally predetermined features of enzyme superfamilies to evolve new reactions.

  20. Identification of cystathionine γ-synthase and threonine synthase from Cicer arietinum and Lens culinaris.

    PubMed

    Morneau, Dominique J K; Jaworski, Allison F; Aitken, Susan M

    2013-04-01

    In plants, cystathionine γ-synthase (CGS) and threonine synthase (TS) compete for the branch-point metabolite O-phospho-L-homoserine. These enzymes are potential targets for metabolic engineering studies, aiming to alter the flux through the competing methionine and threonine biosynthetic pathways, with the goal of increasing methionine production. Although CGS and TS have been characterized in the model organisms Escherichia coli and Arabidopsis thaliana, little information is available on these enzymes in other, particularly plant, species. The functional CGS and TS coding sequences from the grain legumes Cicer arietinum (chickpea) and Lens culinaris (lentil) identified in this study share approximately 80% amino acid sequence identity with the corresponding sequences from Glycine max. At least 7 active-site residues of grain legume CGS and TS are conserved in the model bacterial enzymes, including the catalytic base. Putative processing sites that remove the targeting sequence and result in functional TS were identified in the target species.

  1. Cell Surface Profiling Using High-Throughput Flow Cytometry: A Platform for Biomarker Discovery and Analysis of Cellular Heterogeneity

    PubMed Central

    Gedye, Craig A.; Hussain, Ali; Paterson, Joshua; Smrke, Alannah; Saini, Harleen; Sirskyj, Danylo; Pereira, Keira; Lobo, Nazleen; Stewart, Jocelyn; Go, Christopher; Ho, Jenny; Medrano, Mauricio; Hyatt, Elzbieta; Yuan, Julie; Lauriault, Stevan; Kondratyev, Maria; van den Beucken, Twan; Jewett, Michael; Dirks, Peter; Guidos, Cynthia J.; Danska, Jayne; Wang, Jean; Wouters, Bradly; Neel, Benjamin; Rottapel, Robert; Ailles, Laurie E.

    2014-01-01

    Cell surface proteins have a wide range of biological functions, and are often used as lineage-specific markers. Antibodies that recognize cell surface antigens are widely used as research tools, diagnostic markers, and even therapeutic agents. The ability to obtain broad cell surface protein profiles would thus be of great value in a wide range of fields. There are however currently few available methods for high-throughput analysis of large numbers of cell surface proteins. We describe here a high-throughput flow cytometry (HT-FC) platform for rapid analysis of 363 cell surface antigens. Here we demonstrate that HT-FC provides reproducible results, and use the platform to identify cell surface antigens that are influenced by common cell preparation methods. We show that multiple populations within complex samples such as primary tumors can be simultaneously analyzed by co-staining of cells with lineage-specific antibodies, allowing unprecedented depth of analysis of heterogeneous cell populations. Furthermore, standard informatics methods can be used to visualize, cluster and downsample HT-FC data to reveal novel signatures and biomarkers. We show that the cell surface profile provides sufficient molecular information to classify samples from different cancers and tissue types into biologically relevant clusters using unsupervised hierarchical clustering. Finally, we describe the identification of a candidate lineage marker and its subsequent validation. In summary, HT-FC combines the advantages of a high-throughput screen with a detection method that is sensitive, quantitative, highly reproducible, and allows in-depth analysis of heterogeneous samples. The use of commercially available antibodies means that high quality reagents are immediately available for follow-up studies. HT-FC has a wide range of applications, including biomarker discovery, molecular classification of cancers, or identification of novel lineage specific or stem cell markers. PMID:25170899

  2. Heterologous expression in Saccharopolyspora erythraea of a pentaketide synthase derived from the spinosyn polyketide synthase.

    PubMed

    Martin, Christine J; Timoney, Máire C; Sheridan, Rose M; Kendrew, Steven G; Wilkinson, Barrie; Staunton, James C; Leadlay, Peter F

    2003-12-07

    A truncated version of the spinosyn polyketide synthase comprising the loading module and the first four extension modules fused to the erythromycin thioesterase domain was expressed in Saccharopolyspora erythraea. A novel pentaketide lactone product was isolated, identifying cryptic steps of spinosyn biosynthesis and indicating the potential of this approach for the biosynthetic engineering of spinosyn analogues. A pathway for the formation of the tetracyclic spinosyn aglycone is proposed.

  3. The Rotary Mechanism of the ATP Synthase

    PubMed Central

    Nakamoto, Robert K.; Scanlon, Joanne A. Baylis; Al-Shawi, Marwan K.

    2008-01-01

    The FOF1 ATP synthase is a large complex of at least 22 subunits, more than half of which are in the membranous FO sector. This nearly ubiquitous transporter is responsible for the majority of ATP synthesis in oxidative and photo-phosphorylation, and its overall structure and mechanism have remained conserved throughout evolution. Most examples utilize the proton motive force to drive ATP synthesis except for a few bacteria, which use a sodium motive force. A remarkable feature of the complex is the rotary movement of an assembly of subunits that plays essential roles in both transport and catalytic mechanisms. This review addresses the role of rotation in catalysis of ATP synthesis/hydrolysis and the transport of protons or sodium. PMID:18515057

  4. Nitric Oxide Synthases and Atrial Fibrillation

    PubMed Central

    Bonilla, Ingrid M.; Sridhar, Arun; Györke, Sandor; Cardounel, Arturo J.; Carnes, Cynthia A.

    2012-01-01

    Oxidative stress has been implicated in the pathogenesis of atrial fibrillation. There are multiple systems in the myocardium which contribute to redox homeostasis, and loss of homeostasis can result in oxidative stress. Potential sources of oxidants include nitric oxide synthases (NOS), which normally produce nitric oxide in the heart. Two NOS isoforms (1 and 3) are normally expressed in the heart. During pathologies such as heart failure, there is induction of NOS 2 in multiple cell types in the myocardium. In certain conditions, the NOS enzymes may become uncoupled, shifting from production of nitric oxide to superoxide anion, a potent free radical and oxidant. Multiple lines of evidence suggest a role for NOS in the pathogenesis of atrial fibrillation. Therapeutic approaches to reduce atrial fibrillation by modulation of NOS activity may be beneficial, although further investigation of this strategy is needed. PMID:22536189

  5. Endothelial nitric oxide synthase in the microcirculation

    PubMed Central

    Shu, Xiaohong; Keller, T.C. Stevenson; Begandt, Daniela; Butcher, Joshua T.; Biwer, Lauren; Keller, Alexander S.; Columbus, Linda; Isakson, Brant E.

    2015-01-01

    Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO) - a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells. PMID:26390975

  6. Endothelial nitric oxide synthase in the microcirculation.

    PubMed

    Shu, Xiaohong; Keller, T C Stevenson; Begandt, Daniela; Butcher, Joshua T; Biwer, Lauren; Keller, Alexander S; Columbus, Linda; Isakson, Brant E

    2015-12-01

    Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)--a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells.

  7. Interaction of Uranium with Bacterial Cell Surfaces: Inferences from Phosphatase-Mediated Uranium Precipitation

    PubMed Central

    Kulkarni, Sayali; Misra, Chitra Seetharam; Gupta, Alka; Ballal, Anand

    2016-01-01

    ABSTRACT Deinococcus radiodurans and Escherichia coli expressing either PhoN, a periplasmic acid phosphatase, or PhoK, an extracellular alkaline phosphatase, were evaluated for uranium (U) bioprecipitation under two specific geochemical conditions (GCs): (i) a carbonate-deficient condition at near-neutral pH (GC1), and (ii) a carbonate-abundant condition at alkaline pH (GC2). Transmission electron microscopy revealed that recombinant cells expressing PhoN/PhoK formed cell-associated uranyl phosphate precipitate under GC1, whereas the same cells displayed extracellular precipitation under GC2. These results implied that the cell-bound or extracellular location of the precipitate was governed by the uranyl species prevalent at that particular GC, rather than the location of phosphatase. MINTEQ modeling predicted the formation of predominantly positively charged uranium hydroxide ions under GC1 and negatively charged uranyl carbonate-hydroxide complexes under GC2. Both microbes adsorbed 6- to 10-fold more U under GC1 than under GC2, suggesting that higher biosorption of U to the bacterial cell surface under GC1 may lead to cell-associated U precipitation. In contrast, at alkaline pH and in the presence of excess carbonate under GC2, poor biosorption of negatively charged uranyl carbonate complexes on the cell surface might have resulted in extracellular precipitation. The toxicity of U observed under GC1 being higher than that under GC2 could also be attributed to the preferential adsorption of U on cell surfaces under GC1. This work provides a vivid description of the interaction of U complexes with bacterial cells. The findings have implications for the toxicity of various U species and for developing biological aqueous effluent waste treatment strategies. IMPORTANCE The present study provides illustrative insights into the interaction of uranium (U) complexes with recombinant bacterial cells overexpressing phosphatases. This work demonstrates the effects of aqueous

  8. The Biological Function of the Prion Protein: A Cell Surface Scaffold of Signaling Modules

    PubMed Central

    Linden, Rafael

    2017-01-01

    The prion glycoprotein (PrPC) is mostly located at the cell surface, tethered to the plasma membrane through a glycosyl-phosphatydil inositol (GPI) anchor. Misfolding of PrPC is associated with the transmissible spongiform encephalopathies (TSEs), whereas its normal conformer serves as a receptor for oligomers of the β-amyloid peptide, which play a major role in the pathogenesis of Alzheimer’s Disease (AD). PrPC is highly expressed in both the nervous and immune systems, as well as in other organs, but its functions are controversial. Extensive experimental work disclosed multiple physiological roles of PrPC at the molecular, cellular and systemic levels, affecting the homeostasis of copper, neuroprotection, stem cell renewal and memory mechanisms, among others. Often each such process has been heralded as the bona fide function of PrPC, despite restricted attention paid to a selected phenotypic trait, associated with either modulation of gene expression or to the engagement of PrPC with a single ligand. In contrast, the GPI-anchored prion protein was shown to bind several extracellular and transmembrane ligands, which are required to endow that protein with the ability to play various roles in transmembrane signal transduction. In addition, differing sets of those ligands are available in cell type- and context-dependent scenarios. To account for such properties, we proposed that PrPC serves as a dynamic platform for the assembly of signaling modules at the cell surface, with widespread consequences for both physiology and behavior. The current review advances the hypothesis that the biological function of the prion protein is that of a cell surface scaffold protein, based on the striking similarities of its functional properties with those of scaffold proteins involved in the organization of intracellular signal transduction pathways. Those properties are: the ability to recruit spatially restricted sets of binding molecules involved in specific signaling

  9. Knowledge discovery of cell-cell and cell-surface interactions

    NASA Astrophysics Data System (ADS)

    Su, Jing

    High-throughput cell culture is an emerging technology that shows promise as a tool for research in tissue engineering, drug discovery, and medical diagnostics. An important, but overlooked, challenge is the integration of experimental methods with information processing suitable for handling large databases of cell-cell and cell-substrate interactions. In this work the traditional global descriptions of cell behaviors and surface characteristics was shown insufficient for investigating short-distance cell-to-cell and cell-to-surface interactions. Traditional summary metrics cannot distinguish information of cell near neighborhood from the average, global features, thus often is not suitable for studying distance-sensitive cell behaviors. The problem of traditional summary metrics was addressed by introducing individual-cell based local metrics that emphasize cell local environment. An individual-cell based local data analysis method was established. Contact inhibition of cell proliferation was used as a benchmark for the effectiveness of the local metrics and the method. Where global, summary metrics were unsuccessful, the local metrics successfully and quantitatively distinguished the contact inhibition effects of MC3T3-E1 cells on PLGA, PCL, and TCPS surfaces. In order to test the new metrics and analysis method in detail, a model of cell contact inhibition was proposed. Monte Carlo simulation was performed for validating the individual-cell based local data analysis method as well as the cell model itself. The simulation results well matched with the experimental observations. The parameters used in the cell model provided new descriptions of both cell behaviors and surface characteristics. Based on the viewpoint of individual cells, the local metrics and local data analysis method were extended to the investigation of cell-surface interactions, and a new high-throughput screening and knowledge discovery method on combinatorial libraries, local cell

  10. Cell Surface Glycoside Hydrolases of Streptococcus gordonii Promote Growth in Saliva

    PubMed Central

    Zhou, Yuan; Zhang, Luxia; Shah, Nehal; Palmer, Robert J.; Cisar, John O.

    2016-01-01

    ABSTRACT The growth of the oral commensal Streptococcus gordonii in saliva may depend on a number of glycoside hydrolases (GHs), including three cell wall-anchored proteins that are homologs of pneumococcal β-galactosidase (BgaA), β-N-acetylglucosaminidase (StrH), and endo-β-N-acetylglucosaminidase D (EndoD). In the present study, we introduced unmarked in-frame deletions into the corresponding genes of S. gordonii DL1, verified the presence (or absence) of the encoded proteins on the resulting mutant strains, and compared these strains with wild-type strain DL1 for growth and glycan foraging in saliva. The overnight growth of wild-type DL1 was reduced 3- to 10-fold by the deletion of any one or two genes and approximately 20-fold by the deletion of all three genes. The only notable change in the salivary proteome associated with this reduction of growth was a downward shift in the apparent molecular masses of basic proline-rich glycoproteins (PRG), which was accompanied by the loss of lectin binding sites for galactose-specific Erythrina cristagalli agglutinin (ECA) and mannose-specific Galanthus nivalis agglutinin (GNA). The binding of ECA to PRG was also abolished in saliva cultures of mutants that expressed cell surface BgaA alone or together with either StrH or EndoD. However, the subsequent loss of GNA binding was seen only in saliva cocultures of different mutants that together expressed all three cell surface GHs. The findings indicate that the growth of S. gordonii DL1 in saliva depends to a significant extent on the sequential actions of first BgaA and then StrH and EndoD on N-linked glycans of PRG. IMPORTANCE The ability of oral bacteria to grow on salivary glycoproteins is critical for dental plaque biofilm development. Little is known, however, about how specific salivary components are attacked and utilized by different members of the biofilm community, such as Streptococcus gordonii. Streptococcus gordonii DL1 has three cell wall

  11. A Single Amino Acid Substitution Converts Benzophenone Synthase into Phenylpyrone Synthase*

    PubMed Central

    Klundt, Tim; Bocola, Marco; Lütge, Maren; Beuerle, Till; Liu, Benye; Beerhues, Ludger

    2009-01-01

    Benzophenone metabolism provides a number of plant natural products with fascinating chemical structures and intriguing pharmacological activities. Formation of the carbon skeleton of benzophenone derivatives from benzoyl-CoA and three molecules of malonyl-CoA is catalyzed by benzophenone synthase (BPS), a member of the superfamily of type III polyketide synthases. A point mutation in the active site cavity (T135L) transformed BPS into a functional phenylpyrone synthase (PPS). The dramatic change in both substrate and product specificities of BPS was rationalized by homology modeling. The mutation may open a new pocket that accommodates the phenyl moiety of the triketide intermediate but limits polyketide elongation to two reactions, resulting in phenylpyrone formation. 3-Hydroxybenzoyl-CoA is the second best starter molecule for BPS but a poor substrate for PPS. The aryl moiety of the triketide intermediate may be trapped in the new pocket by hydrogen bond formation with the backbone, thereby acting as an inhibitor. PPS is a promising biotechnological tool for manipulating benzoate-primed biosynthetic pathways to produce novel compounds. PMID:19710020

  12. CLYBL is a polymorphic human enzyme with malate synthase and β-methylmalate synthase activity

    PubMed Central

    Strittmatter, Laura; Li, Yang; Nakatsuka, Nathan J.; Calvo, Sarah E.; Grabarek, Zenon; Mootha, Vamsi K.

    2014-01-01

    CLYBL is a human mitochondrial enzyme of unknown function that is found in multiple eukaryotic taxa and conserved to bacteria. The protein is expressed in the mitochondria of all mammalian organs, with highest expression in brown fat and kidney. Approximately 5% of all humans harbor a premature stop polymorphism in CLYBL that has been associated with reduced levels of circulating vitamin B12. Using comparative genomics, we now show that CLYBL is strongly co-expressed with and co-evolved specifically with other components of the mitochondrial B12 pathway. We confirm that the premature stop polymorphism in CLYBL leads to a loss of protein expression. To elucidate the molecular function of CLYBL, we used comparative operon analysis, structural modeling and enzyme kinetics. We report that CLYBL encodes a malate/β-methylmalate synthase, converting glyoxylate and acetyl-CoA to malate, or glyoxylate and propionyl-CoA to β-methylmalate. Malate synthases are best known for their established role in the glyoxylate shunt of plants and lower organisms and are traditionally described as not occurring in humans. The broader role of a malate/β-methylmalate synthase in human physiology and its mechanistic link to vitamin B12 metabolism remain unknown. PMID:24334609

  13. Enhanced gastric nitric oxide synthase activity in duodenal ulcer patients.

    PubMed Central

    Rachmilewitz, D; Karmeli, F; Eliakim, R; Stalnikowicz, R; Ackerman, Z; Amir, G; Stamler, J S

    1994-01-01

    Nitric oxide, the product of nitric oxide synthase in inflammatory cells, may have a role in tissue injury through its oxidative metabolism. Nitric oxide may have a role in the pathogenesis of duodenal ulcer and may be one of the mechanisms responsible for the association between gastric infection with Helicobacter pylori and peptic disease. In this study, calcium independent nitric oxide synthase activity was detected in human gastric mucosa suggesting expression of the inducible isoform. In 17 duodenal ulcer patients gastric antral and fundic nitric oxide synthase activity was found to be two and 1.5-fold respectively higher than its activity in the antrum and fundus of 14 normal subjects (p < 0.05). H pylori was detected in the antrum of 15 of 17 duodenal ulcer patients and only in 7 of 14 of the control subjects. Antral nitric oxide synthase activity in H pylori positive duodenal ulcer patients was twofold higher than in H pylori positive normal subjects (p < 0.05). In duodenal ulcer patients antral and fundic nitric oxide synthase activity resumed normal values after induction of ulcer healing with ranitidine. Eradication of H pylori did not further affect gastric nitric oxide synthase activity. These findings suggest that in duodenal ulcer patients stimulated gastric mucosal nitric oxide synthase activity, though independent of the H pylori state, may contribute to the pathogenesis of the disease. PMID:7525417

  14. Purification and Characterization of Chorismate Synthase from Euglena gracilis 1

    PubMed Central

    Schaller, Andreas; van Afferden, Manfred; Windhofer, Volker; Bülow, Sven; Abel, Gernot; Schmid, Jürg; Amrhein, Nikolaus

    1991-01-01

    Chorismate synthase was purified 1200-fold from Euglena gracilis. The molecular mass of the native enzyme is in the range of 110 to 138 kilodaltons as judged by gel filtration. The molecular mass of the subunit was determined to be 41.7 kilodaltons by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Purified chorismate synthase is associated with an NADPH-dependent flavin mononucleotide reductase that provides in vivo the reduced flavin necessary for catalytic activity. In vitro, flavin reduction can be mediated by either dithionite or light. The enzyme obtained from E. gracilis was compared with chorismate synthases purified from a higher plant (Corydalis sempervirens), a bacterium (Escherichia coli), and a fungus (Neurospora crassa). These four chorismate synthases were found to be very similar in terms of cofactor specificity, kinetic properties, isoelectric points, and pH optima. All four enzymes react with polyclonal antisera directed against chorismate synthases from C. sempervirens and E. coli. The closely associated flavin mononucleotide reductase that is present in chorismate synthase preparations from E. gracilis and N. crassa is the main difference between those synthases and the monofunctional enzymes from C. sempervirens and E. coli. ImagesFigure 2Figure 3 PMID:16668543

  15. Regulation of phosphatidylserine synthase from Saccharomyces cerevisiae by phospholipid precursors.

    PubMed Central

    Poole, M A; Homann, M J; Bae-Lee, M S; Carman, G M

    1986-01-01

    The addition of ethanolamine or choline to inositol-containing growth medium of Saccharomyces cerevisiae wild-type cells resulted in a reduction of membrane-associated phosphatidylserine synthase (CDPdiacylglycerol:L-serine O-phosphatidyltransferase, EC 2.7.8.8) activity in cell extracts. The reduction of activity did not occur when inositol was absent from the growth medium. Under the growth conditions where a reduction of enzyme activity occurred, there was a corresponding qualitative reduction of enzyme subunit as determined by immunoblotting with antiserum raised against purified phosphatidylserine synthase. Water-soluble phospholipid precursors did not effect purified phosphatidylserine synthase activity. Phosphatidylserine synthase (activity and enzyme subunit) was not regulated by the availability of water-soluble phospholipid precursors in S. cerevisiae VAL2C(YEp CHO1) and the opi1 mutant. VAL2C(YEp CHO1) is a plasmid-bearing strain that over produces phosphatidylserine synthase activity, and the opi1 mutant is an inositol biosynthesis regulatory mutant. The results of this study suggest that the regulation of phosphatidylserine synthase by the availability of phospholipid precursors occurs at the level of enzyme formation and not at the enzyme activity level. Furthermore, the regulation of phosphatidylserine synthase is coupled to inositol synthesis. Images PMID:3023284

  16. EXAFS study on the cause of enrichment of heavy REEs on bacterial cell surfaces

    NASA Astrophysics Data System (ADS)

    Takahashi, Yoshio; Yamamoto, Mika; Yamamoto, Yuhei; Tanaka, Kazuya

    2010-10-01

    Rare earth element (REE) pattern is a unique geochemical tracer and has been measured for various natural materials. Among these, the REE distribution pattern between bacteria and water exhibits anomalous enrichment in the heavy REE (HREE) part, which can act as a signature of bacteria-related materials in natural samples. In this study, the REE binding site on the cell surface of a Gram-positive bacterium ( Bacillus subtilis) responsible for HREE enrichment has been identified using extended X-ray absorption fine structure (EXAFS) coupled with a study of the variation in REE distribution patterns. The EXAFS data showed that the HREEs form complexes with multiple phosphate site (including phosphoester site) with a larger coordination number (CN) at lower REE-bacteria ratios ([REE]/[bac]), while light and middle REEs form complexes to the phosphate site with a lower CN. The fraction coordinated to carboxylate increased for all REEs with increasing [REE]/[bac] ratio. On the other hand, the enrichment of HREE in the REE distribution patterns of the bacteria was less marked with increasing [REE]/[bac] ratio. This result is consistent with the EXAFS data, because the REE pattern of surface complex with multiple phosphate in a reference material exhibits a monotonous increase for heavier REE, while phosphate surface complex with a low CN and a carboxylate site reach a maximum around Sm and Eu. Based on these results, it is clear that the REE are primarily bound to the phosphate site and subsequently to the carboxylate site on the bacterial cell surface. Regarding the pH dependence in the range (3 < pH < 7), both the EXAFS and REE pattern data indicate that the fraction of REE-carboxylate increased as the pH increases. The results above obtained for B. subtilis were also valid for Escherichia coli, a Gram-negative bacterium, showing that similar phosphate and carboxylate sites are also available in the cell walls of E. coli, or other Gram negative bacteria. In all our

  17. Effects of sodium on cell surface and intracellular TH-naloxone binding sites

    SciTech Connect

    Pollack, A.E.; Wooten, G.F.

    1987-07-27

    The binding of the opiate antagonist TH-naloxone was examined in rat whole brain homogenates and in crude subcellular fractions of these homogenates (nuclear, synaptosomal, and mitochondrial fractions) using buffers that approximated intra- (low sodium concentration) and extracellular (high sodium concentration) fluids. Saturation studies showed a two-fold decrease in the dissociation constant (Kd) in all subcellular fractions examined in extracellular buffer compared to intracellular buffer. In contrast, there was no significant effect of the buffers on the Bmax. Thus, TH-naloxone did not distinguish between binding sites present on cell surface and intracellular tissues in these two buffers. These results show that the sodium effect of opiate antagonist binding is probably not a function of altered selection of intra- and extracellular binding sites. 17 references, 2 tables.

  18. Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface

    PubMed Central

    Siegrist, M. Sloan; Swarts, Benjamin M.; Fox, Douglas M.; Lim, Shion An; Bertozzi, Carolyn R.

    2015-01-01

    The cell surface is the essential interface between a bacterium and its surroundings. Composed primarily of molecules that are not directly genetically encoded, this highly dynamic structure accommodates the basic cellular processes of growth and division as well as the transport of molecules between the cytoplasm and the extracellular milieu. In this review, we describe aspects of bacterial growth, division and secretion that have recently been uncovered by metabolic labeling of the cell envelope. Metabolite derivatives can be used to label a variety of macromolecules, from proteins to non-genetically-encoded glycans and lipids. The embedded metabolite enables precise tracking in time and space, and the versatility of newer chemoselective detection methods offers the ability to execute multiple experiments concurrently. In addition to reviewing the discoveries enabled by metabolic labeling of the bacterial cell envelope, we also discuss the potential of these techniques for translational applications. Finally, we offer some guidelines for implementing this emerging technology. PMID:25725012

  19. HIV-1 Vpu targets cell surface markers CD4 and BST-2 through distinct mechanisms

    PubMed Central

    Andrew, Amy; Strebel, Klaus

    2010-01-01

    Vpu is a small integral membrane protein encoded by HIV-1 and some SIV isolates. The protein is known to induce degradation of the viral receptor molecule CD4 and to enhance the release of newly formed virions from the cell surface. Vpu accomplishes these two functions through two distinct mechanisms. In the case of CD4, Vpu acts as a molecular adaptor to connect CD4 to an E3 ubiquitin ligase complex resulting in CD4 degradation by cellular proteasomes. This requires signals located in Vpu's cytoplasmic domain. Enhancement of virus release on the other hand involves the neutralization of a cellular host factor, BST-2 (also known as CD317, HM1.24, or tetherin) and requires Vpu's TM domain. The current review discusses recent advances on the role of Vpu in controlling degradation of CD4 and in regulating virus release. PMID:20858517

  20. Active Currents and Stresses on the cell surface: Clustering, Instabilities and Budding

    NASA Astrophysics Data System (ADS)

    Rao, Madan

    2011-03-01

    We study the contractile dynamics of a collection of active polar filaments, such as actin, on a two dimensional substrate, using a continuum hydrodynamic description in the presence of spatiotemporal noise. The steady states, characterized by a variety of phases generically consisting of a transient collection of inward pointing asters. We next study the dynamics of particles advected along these active filaments. This is relevant to the dynamics and organization of a large class of cell surface molecules. We make several predictions regarding the statistics of fluctuations of these passive advective particles which we confirm using fluorescence based experiments. We then show how such active patterning of filaments can give rise to membrane stresses leading to membrane shape deformations. In collaboration with Kripa Gowrishankar and Satyajit Mayor.

  1. Expression of cell surface antigens on mast cells: mast cell phenotyping.

    PubMed

    Hauswirth, Alexander W; Florian, Stefan; Schernthaner, Gerit-Holger; Krauth, Maria-Theresa; Sonneck, Karoline; Sperr, Wolfgang R; Valent, Peter

    2006-01-01

    During the past few decades, a number of functionally important cell surface antigens have been detected on human mast cells (MCs). These antigens include the stem cell factor receptor (SCFR/CD117), the high-affinity immunoglobulin E receptor, adhesion molecules, and activation-linked membrane determinants. Several of these antigens (CD2, CD25, CD35, CD88, CD203c) appear to be upregulated on MCs in patients with systemic mastocytosis and therefore are used as diagnostic markers. Quantitative measurement of these markers on MCs is thus of diagnostic value and is usually performed by multicolor-based flow cytometry techniques utilizing a PE- or APC-labeled antibody against CD117 for MCs detection. This chapter gives an overview about the methods of staining of MC in various tissues with special reference to novel diagnostic markers applied in patients with suspected systemic mastocytosis.

  2. A Genetically Encoded Alkyne Directs Palladium-Mediated Protein Labeling on Live Mammalian Cell Surface

    PubMed Central

    2015-01-01

    The merging of site-specific incorporation of small bioorthogonal functional groups into proteins via amber codon suppression with bioorthogonal chemistry has created exciting opportunities to extend the power of organic reactions to living systems. Here we show that a new alkyne amino acid can be site-selectively incorporated into mammalian proteins via a known orthogonal pyrrolysyl-tRNA synthetase/tRNACUA pair and directs an unprecedented, palladium-mediated cross-coupling reaction-driven protein labeling on live mammalian cell surface. A comparison study with the alkyne-encoded proteins in vitro indicated that this terminal alkyne is better suited for the palladium-mediated cross-coupling reaction than the copper-catalyzed click chemistry. PMID:25347611

  3. Mapping cellular hierarchy by single cell analysis of the cell surface repertoire

    PubMed Central

    Guo, Guoji; Luc, Sidinh; Marco, Eugenio; Lin, Ta-Wei; Peng, Cong; Kerenyi, Marc A.; Beyaz, Semir; Kim, Woojin; Xu, Jian; Das, Partha Pratim; Neff, Tobias; Zou, Keyong; Yuan, Guo-Cheng; Orkin, Stuart H.

    2013-01-01

    SUMMARY Stem cell differentiation pathways are most often studied at the population level, whereas critical decisions are executed at the level of single cells. We have established a highly multiplexed, quantitative PCR assay to profile in an unbiased manner a panel of all commonly used cell surface markers (280 genes) from individual cells. With this method we analyzed over 1500 single cells throughout the mouse hematopoietic system, and illustrate its utility for revealing important biological insights. The comprehensive single cell dataset permits mapping of the mouse hematopoietic stem cell (HSC) differentiation hierarchy by computational lineage progression analysis. Further profiling of 180 intracellular regulators enabled construction of a genetic network to assign the earliest differentiation event during hematopoietic lineage specification. Analysis of acute myeloid leukemia elicited by MLL-AF9 uncovered a distinct cellular hierarchy containing two independent self-renewing lineages with different clonal activities. The strategy has broad applicability in other cellular systems. PMID:24035353

  4. Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface.

    PubMed

    Siegrist, M Sloan; Swarts, Benjamin M; Fox, Douglas M; Lim, Shion An; Bertozzi, Carolyn R

    2015-03-01

    The cell surface is the essential interface between a bacterium and its surroundings. Composed primarily of molecules that are not directly genetically encoded, this highly dynamic structure accommodates the basic cellular processes of growth and division as well as the transport of molecules between the cytoplasm and the extracellular milieu. In this review, we describe aspects of bacterial growth, division and secretion that have recently been uncovered by metabolic labeling of the cell envelope. Metabolite derivatives can be used to label a variety of macromolecules, from proteins to non-genetically-encoded glycans and lipids. The embedded metabolite enables precise tracking in time and space, and the versatility of newer chemoselective detection methods offers the ability to execute multiple experiments concurrently. In addition to reviewing the discoveries enabled by metabolic labeling of the bacterial cell envelope, we also discuss the potential of these techniques for translational applications. Finally, we offer some guidelines for implementing this emerging technology.

  5. Wnt family proteins are secreted and associated with the cell surface.

    PubMed Central

    Smolich, B D; McMahon, J A; McMahon, A P; Papkoff, J

    1993-01-01

    Members of the Wnt gene family are proposed to function in both normal development and differentiation as well as in mammary tumorigenesis. To understand the function of Wnt proteins in these two processes, we present here a biochemical characterization of seven Wnt family members. For these studies, AtT-20 cells, a neuroendocrine cell line previously shown to efficiently process and secrete Wnt-1, was transfected with expression vectors encoding Wnt family members. All of the newly characterized Wnt proteins are glycosylated, secreted proteins that are tightly associated with the cell surface or extracellular matrix. We have also identified native Wnt proteins in retinoic acid-treated P19 embryonal carcinoma cells, and they exhibit the same biochemical characteristics as the recombinant proteins. These data suggest that Wnt family members function in cell to cell signaling in a fashion similar to Wnt-1. Images PMID:8167409

  6. Cell surface expression and function of an HLA class II molecule with class I domain configuration

    PubMed Central

    1993-01-01

    Recombinant major histocompatibility complex (MHC) class II molecules were expressed with extracellular polypeptide domains reorganized to form heavy (H) and light (L) chains (alpha 1-beta 1-beta 2 and alpha 2) analogous to class I. Accurate protein folding and dimerization is demonstrated by the ability of this 3+1-DR1 construct to bind class II- restricted peptides and stimulate CD4+ T cells. Cell surface expression of a functional class II molecule consisting of H and L chains supports the validity of current class II models and affirms the evolutionary relatedness of class I/II. MHC functions that differ between class I/II may be influenced by domain configuration, and the use of domain- shifted constructs will allow examination of this possibility. PMID:8340763

  7. Flow cytometry detection of planktonic cells with polycyclic aromatic hydrocarbons sorbed to cell surfaces.

    PubMed

    Cerezo, Maria I; Linden, Matthew; Agustí, Susana

    2017-02-17

    Polycyclic aromatic hydrocarbons are very important components of oil pollution. These pollutants tend to sorb to cell surfaces, exerting toxic effects on organisms. Our study developed a flow cytometric method for the detection of PAHs sorbed to phytoplankton by exploiting their spectral characteristics. We discriminated between cells with PAHs from cells free of PAHs. Clear discrimination was observed with flow cytometer provided with 375 or 405nm lasers in addition to the standard 488nm laser necessary to identify phytoplankton. Using this method, we measured the relationship between the percentages of phytoplankton organisms with PAHs, with the decrease in the growth rate. Moreover, the development of this method could be extended to facilitate the study of PAHs impact on cell cultures from a large variety of organisms.

  8. Labeling cell-surface proteins via antibody quantum dot streptavidin conjugates.

    PubMed

    Mason, John N; Tomlinson, Ian D; Rosenthal, Sandra J; Blakely, Randy D

    2005-01-01

    The quantum dot is a novel fluorescent platform that has the potential to become an alternative to conventional organic dyes used to label biological probes such as antibodies or ligands. Compared to typical fluorescent organic dyes, cadmium selenide/zinc sulfide core-shell nanocrystals, or quantum dots, have greater photostability, resist metabolic and chemical degradation, are nontoxic, and display broad emission and narrow excitation bands. When conjugated to generic adaptor molecules such as streptavidin, quantum dots can be used to label different biotinylated antibodies or ligands without having to customize the quantum dot surface chemistry for each antibody or ligand. In this chapter, we outline the methodology for using streptavidin quantum dots to label biotinylated antibodies that target cell-surface ectodomain proteins on both living and fixed cells.

  9. The viscoelastic properties of microvilli are dependent upon the cell-surface molecule.

    PubMed

    Python, Johanne L; Wilson, Kristal O; Snook, Jeremy H; Guo, Bin; Guilford, William H

    2010-07-02

    We studied at nanometer resolution the viscoelastic properties of microvilli and tethers pulled from myelogenous cells via P-selectin glycoprotein ligand 1 (PSGL-1) and found that in contrast to pure membrane tethers, the viscoelastic properties of microvillus deformations are dependent upon the cell-surface molecule through which load is applied. A laser trap and polymer bead coated with anti-PSGL-1 (KPL-1) were used to apply step loads to microvilli. The lengthening of the microvillus in response to the induced step loads was fitted with a viscoelastic model. The quasi-steady state force on the microvillus at any given length was approximately fourfold lower in cells treated with cytochalasin D or when pulled with concanavalin A-coated rather than KPL-1-coated beads. These data suggest that associations between PSGL-1 and the underlying actin cytoskeleton significantly affect the early stages of leukocyte deformation under flow.

  10. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy

    SciTech Connect

    Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin; Lohse, Samuel E.; Lee, Chang-Soo; Torelli, Marco; Hamers, Robert J.; Murphy, Catherine; Orr, Galya; Haynes, Christy L.

    2014-01-01

    A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate efficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localization patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells.

  11. High cell-surface density of HER2 deforms cell membranes

    PubMed Central

    Chung, Inhee; Reichelt, Mike; Shao, Lily; Akita, Robert W.; Koeppen, Hartmut; Rangell, Linda; Schaefer, Gabriele; Mellman, Ira; Sliwkowski, Mark X.

    2016-01-01

    Breast cancers (BC) with HER2 overexpression (referred to as HER2 positive) progress more aggressively than those with normal expression. Targeted therapies against HER2 can successfully delay the progression of HER2-positive BC, but details of how this overexpression drives the disease are not fully understood. Using single-molecule biophysical approaches, we discovered a new effect of HER2 overexpression on disease-relevant cell biological changes in these BC. We found HER2 overexpression causes deformation of the cell membranes, and this in turn disrupts epithelial features by perturbing cell–substrate and cell–cell contacts. This membrane deformation does not require receptor signalling activities, but results from the high levels of HER2 on the cell surface. Our finding suggests that early-stage morphological alterations of HER2-positive BC cells during cancer progression can occur in a physical and signalling-independent manner. PMID:27599456

  12. Engineering the Substrate Specificity of the DhbE Adenylation Domain by Yeast Cell Surface Display

    PubMed Central

    Zhang, Keya; Nelson, Kathryn M.; Bhuripanyo, Karan; Grimes, Kimberly D.; Zhao, Bo; Aldrich, Courtney C.; Yin, Jun

    2013-01-01

    SUMMARY The adenylation (A) domains of nonribosomal peptide synthetases (NRPSs) activate aryl acids or amino acids to launch their transfer through the NRPS assembly line for the biosynthesis of many medicinally important natural products. In order to expand the substrate pool of NRPSs, we developed a method based on yeast cell surface display to engineer the substrate specificities of the A-domains. We acquired A-domain mutants of DhbE that have 11- and 6-fold increases in kcat/Km with nonnative substrates 3-hydroxybenzoic acid and 2-aminobenzoic acid, respectively and corresponding 3- and 33-fold decreases in kcat/Km values with the native substrate 2,3-dihydroxybenzoic acid, resulting in a dramatic switch in substrate specificity of up to 200-fold. Our study demonstrates that yeast display can be used as a high throughput selection platform to reprogram the “nonribosomal code” of A-domains. PMID:23352143

  13. Bidirectional Bacterial Gliding Motility Powered by the Collective Transport of Cell Surface Proteins

    NASA Astrophysics Data System (ADS)

    Wada, Hirofumi; Nakane, Daisuke; Chen, Hsuan-Yi

    2013-12-01

    The gliding motility of Flavobacterium johnsoniae is driven by moving surface adhesive proteins. Recently, these motility components were observed to travel along a closed loop on the cell surface. The mechanism by which such moving surface adhesins give rise to cell motion remains unknown. On the basis of the unique motility properties of F. johnsoniae, we present a generic model for bidirectional motion of rigidly coupled adhesins, which are propelled in opposite directions. Using analytical and numerical methods, we demonstrate that, for a sufficiently large adhesin speed, bidirectional motion arises from spontaneous symmetry breaking. The model also predicts that, close to the bifurcation point, a weak asymmetry in the binding dynamics is sufficient to facilitate directed motility, indicating that the direction of motion could be sensitively regulated internally in response to inhomogeneity of the environment.

  14. Theoretical analysis of cell separation based on cell surface marker density.

    PubMed

    Chalmers, J J; Zborowski, M; Moore, L; Mandal, S; Fang, B B; Sun, L

    1998-07-05

    A theoretical analysis was performed to determine the number of fractions a multidisperse, immunomagnetically labeled cell population can be separated into based on the surface marker (antigen) density. A number of assumptions were made in this analysis: that there is a proportionality between the number of surface markers on the cell surface and the number of immunomagnetic labels bound; that this surface marker density is independent of the cell diameter; and that there is only the presence of magnetic and drag forces acting on the cell. Due to the normal distribution of cell diameters, a "randomizing" effect enters into the analysis, and an analogy between the "theoretical plate" analysis of distillation, adsorption, and chromatography can be made. Using the experimentally determined, normal distribution of cell diameters for human lymphocytes and a breast cancer cell line, and fluorescent activated cell screening data of specific surface marker distributions, examples of theoretical plate calculations were made and discussed.

  15. Subcellular localization of the homocitrate synthase in Penicillium chrysogenum.

    PubMed

    Bañuelos, O; Casqueiro, J; Steidl, S; Gutiérrez, S; Brakhage, A; Martín, J F

    2002-01-01

    There are conflicting reports regarding the cellular localization in Saccharomyces cerevisiae and filamentous fungi of homocitrate synthase, the first enzyme in the lysine biosynthetic pathway. The homocitrate synthase (HS) gene (lys1) of Penicillium chrysogenum was disrupted in three transformants (HS(-)) of the Wis 54-1255 pyrG strain. The three mutants named HS1(-), HS2(-) and HS3(-) all lacked homocitrate synthase activity and showed lysine auxotrophy, indicating that there is a single gene for homocitrate synthase in P. chrysogenum. The lys1 ORF was fused in frame to the gene for the green fluorescent protein (GFP) gene of the jellyfish Aequorea victoria. Homocitrate synthase-deficient mutants transformed with a plasmid containing the lys1-GFP fusion recovered prototrophy and showed similar levels of homocitrate synthase activity to the parental strain Wis 54-1255, indicating that the hybrid protein retains the biological function of wild-type homocitrate synthase. Immunoblotting analysis revealed that the HS-GFP fusion protein is maintained intact and does not release the GFP moiety. Fluorescence microscopy analysis of the transformants showed that homocitrate synthase was mainly located in the cytoplasm in P. chrysogenum; in S. cerevisiae the enzyme is targeted to the nucleus. The control nuclear protein StuA was properly targeted to the nucleus when the StuA (targeting domain)-GFP hybrid protein was expressed in P. chrysogenum. The difference in localization of homocitrate synthase between P. chrysogenum and S. cerevisiae suggests that this protein may play a regulatory function, in addition to its catalytic function, in S. cerevisiae but not in P. chrysogenum.

  16. Mechanism of Bacterial Cell-Surface Attachment Revealed by the Structure of Cellulosomal Type II Cohesin-dockerin Complex

    SciTech Connect

    Adams,J.; Pal, G.; Jia, Z.; Smith, S.

    2006-01-01

    Bacterial cell-surface attachment of macromolecular complexes maintains the microorganism in close proximity to extracellular substrates and allows for optimal uptake of hydrolytic byproducts. The cellulosome is a large multienzyme complex used by many anaerobic bacteria for the efficient degradation of plant cell-wall polysaccharides. The mechanism of cellulosome retention to the bacterial cell surface involves a calcium-mediated protein-protein interaction between the dockerin (Doc) module from the cellulosomal scaffold and a cohesin (Coh) module of cell-surface proteins located within the proteoglycan layer. Here, we report the structure of an ultra-high-affinity (K{sub a} = 1.44 x 10{sup 10} M{sup 1-}) complex between type II Doc, together with its neighboring X module from the cellulosome scaffold of Clostridium thermocellum, and a type II Coh module associated with the bacterial cell surface. Identification of X module-Doc and X module-Coh contacts reveal roles for the X module in Doc stability and enhanced Coh recognition. This extremely tight interaction involves one face of the Coh and both helices of the Doc and comprises significant hydrophobic character and a complementary extensive hydrogen-bond network. This structure represents a unique mechanism for cell-surface attachment in anaerobic bacteria and provides a rationale for discriminating between type I and type II Coh modules.

  17. Profound Re-Organization of Cell Surface Proteome in Equine Retinal Pigment Epithelial Cells in Response to In Vitro Culturing

    PubMed Central

    Szober, Christoph M.; Hauck, Stefanie M.; Euler, Kerstin N.; Fröhlich, Kristina J. H.; Alge-Priglinger, Claudia; Ueffing, Marius; Deeg, Cornelia A.

    2012-01-01

    The purpose of this study was to characterize the cell surface proteome of native compared to cultured equine retinal pigment epithelium (RPE) cells. The RPE plays an essential role in visual function and represents the outer blood-retinal barrier. We are investigating immunopathomechanisms of equine recurrent uveitis, an autoimmune inflammatory disease in horses leading to breakdown of the outer blood-retinal barrier and influx of autoreactive T-cells into affected horses’ vitrei. Cell surface proteins of native and cultured RPE cells from eye-healthy horses were captured by biotinylation, analyzed by high resolution mass spectrometry coupled to liquid chromatography (LC MS/MS), and the most interesting candidates were validated by PCR, immunoblotting and immunocytochemistry. A total of 112 proteins were identified, of which 84% were cell surface membrane proteins. Twenty-three of these proteins were concurrently expressed by both cell states, 28 proteins exclusively by native RPE cells. Among the latter were two RPE markers with highly specialized RPE functions: cellular retinaldehyde-binding protein (CRALBP) and retinal pigment epithelium-specific protein 65kDa (RPE65). Furthermore, 61 proteins were only expressed by cultured RPE cells and absent in native cells. As we believe that initiating events, leading to the breakdown of the outer blood-retinal barrier, take place at the cell surface of RPE cells as a particularly exposed barrier structure, this differential characterization of cell surface proteomes of native and cultured equine RPE cells is a prerequisite for future studies. PMID:23203049

  18. Evaluation of adhesion capacity, cell surface traits and immunomodulatory activity of presumptive probiotic Lactobacillus strains.

    PubMed

    Kotzamanidis, Charalambos; Kourelis, Andreas; Litopoulou-Tzanetaki, Evanthia; Tzanetakis, Nikolaos; Yiangou, Minas

    2010-06-15

    Twelve lactobacilli previously isolated from newborn infants' gastrointestinal tract and Feta cheese were further characterized by pulse field gel eletrophoresis (PFGE). All strains exhibited distinct PFGE genotypic patterns with the exception of DC421 and DC423 strains possessing identical patterns. The strains DC421, 2035 and 2012 were found to posses certain cell surface traits such as hydrophobicity, autoaggregation and/or high adhesive capacity suggesting potential immunomodulatory activity. However, application of the dorsal mouse air pouch system revealed that only the DC421, DC429 and 2035 strains exhibited strong immunostimulatory activity such as increased chemotaxis of polymorphonuclear (PMN) cells in association with increased phagocytosis and cytokine production. The same strains also induced immunomodulatory activity in the gut associated lymphoid tissue in mice in the absence of any inflammatory response. All strains induced IgA production while reduced TNFalpha production by small intestine cells. The strains DC421 and DC429 exerted their effect on the intestine through Toll-like receptor TLR2/TLR4/TLR9 mediated signalling events leading to secretion of a certain profile of cytokines in which gamma interferon (IFN-gamma), interleukin (IL)-5, IL-6 and IL-10 are included. The strain 2035 induced similar cytokine profile through the synergy of TLR2/TLR4. This study further supports the eligibility of the air pouch model to discriminate presumptive probiotic Lactobacillus strains exhibiting immunostimulatory activity in the gut. Furthermore, evidence is provided that the cell surface traits examined may not be the only criteria but an alternative and important component of a complex mechanism that enables a microorganism to interact with the host gut to exert its immunoregulatory activity.

  19. Atomic force microscope based near-field imaging for probing cell surface interactions

    NASA Astrophysics Data System (ADS)

    Amini, Sina

    Near-membrane and trans-membrane proteins and their interactions with the extracellular matrix (ECM) can yield valuable information about cell dynamics. However, advances in the field of nanoscale cellular processes have been hindered, in part, due to limits imposed by current technology. In this work, a novel evanescent field (EF) imaging technique is designed, modeled, created and tested for near-field imaging in the apical surface of cells. This technique and Forster resonance energy transfer (FRET) were used to investigate interactions between integrins on the cell surface and the ECM protein, fibronectin. The goal was to monitor changes in the integrin density at the cell surface as a function of clustering after binding to fibronectin on the microsphere surface. For the EF technique, quantum dot (QD)-embedded polystyrene microspheres were used to couple light into whispering gallery modes (WGMs) inside the microspheres; the resulting EF at the surface of the microsphere was used as a near-field excitation source with ~50 nm axial resolution for exciting fluorescently-labeled integrins. For FRET measurements (~10 nm axial resolution), QDs (donors) were coated on the surface of microspheres and energy transfer to red fluorescent protein (RFP)-integrin constructs (acceptors) studied. In both techniques, the QD-modified microspheres were mounted on atomic force microscope (AFM) cantilevers, functionalized with fibronectin, and brought into contact with fluorescently-labeled HeLa or vascular smooth muscle (VSM) cells. The results obtained from both methods show the clustering and activity of the integrins and are in good agreement with each other. Amsterdam discrete dipole approximation (ADDA) was used to study the effects of inhomogeneous surrounding refractive index on the quality factor and position of the WGMs due to the attachment of a microsphere to an AFM cantilever. WGMs of various QD-embedded microspheres mounted on AFM cantilevers were experimentally

  20. Cell-Surface Receptors Transactivation Mediated by G Protein-Coupled Receptors

    PubMed Central

    Cattaneo, Fabio; Guerra, Germano; Parisi, Melania; De Marinis, Marta; Tafuri, Domenico; Cinelli, Mariapia; Ammendola, Rosario

    2014-01-01

    G protein-coupled receptors (GPCRs) are seven transmembrane-spanning proteins belonging to a large family of cell-surface receptors involved in many intracellular signaling cascades. Despite GPCRs lack intrinsic tyrosine kinase activity, tyrosine phosphorylation of a tyrosine kinase receptor (RTK) occurs in response to binding of specific agonists of several such receptors, triggering intracellular mitogenic cascades. This suggests that the notion that GPCRs are associated with the regulation of post-mitotic cell functions is no longer believable. Crosstalk between GPCR and RTK may occur by different molecular mechanism such as the activation of metalloproteases, which can induce the metalloprotease-dependent release of RTK ligands, or in a ligand-independent manner involving membrane associated non-receptor tyrosine kinases, such as c-Src. Reactive oxygen species (ROS) are also implicated as signaling intermediates in RTKs transactivation. Intracellular concentration of ROS increases transiently in cells stimulated with GPCR agonists and their deliberated and regulated generation is mainly catalyzed by enzymes that belong to nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family. Oxidation and/or reduction of cysteine sulfhydryl groups of phosphatases tightly controls the activity of RTKs and ROS-mediated inhibition of cellular phosphatases results in an equilibrium shift from the non-phosphorylated to the phosphorylated state of RTKs. Many GPCR agonists activate phospholipase C, which catalyze the hydrolysis of phosphatidylinositol 4,5-bis-phosphate to produce inositol 1,4,5-triphosphate and diacylglicerol. The consequent mobilization of Ca2+ from endoplasmic reticulum leads to the activation of protein kinase C (PKC) isoforms. PKCα mediates feedback inhibition of RTK transactivation during GPCR stimulation. Recent data have expanded the coverage of transactivation to include Serine/Threonine kinase receptors and Toll-like receptors. Herein, we

  1. Cell surface characteristics enable encrustation-free survival of neutrophilic iron-oxidizing bacteria

    NASA Astrophysics Data System (ADS)

    Saini, G.; Chan, C. S.

    2011-12-01

    Microbial growth in mineralizing environments depends on the cells' ability to evade surface precipitation. Cell-mineral interactions may be required for metabolism, but if unmoderated, cells could become encrusted, which would limit diffusion of nutrients and waste across cell walls. A combination of cell surface charge and hydrophobicity could enable the survival of microbes in such environments by inhibiting mineral attachment. To investigate this mechanism, we characterized the surfaces of two neutrophilic iron-oxidizing bacteria (FeOB): Mariprofundus ferrooxydans, a Zetaproteobacterium from Fe(II)-rich submarine hydrothermal vents and a Betaproteobacterium Gallionellales strain R-1, recently isolated from a ferrous groundwater seep. Both bacteria produce iron oxyhydroxides, yet successfully escape surface encrustation while inhabiting milieu where iron minerals are also produced by abiotic processes. SEM-EDX and TEM-EELS analyses of cultured bacteria revealed no iron on the cell surfaces. Zeta potential measurements showed that these bacteria have very small negative surface charge (0 to -4 mV) over a pH range of 4-9, indicating near-neutrally charged surfaces. Water contact angle measurements and thermodynamic calculations demonstrate that both bacteria and abiotically-formed Fe oxhydroxides are hydrophilic. Extended-DLVO calculations showed that hydrophilic repulsion between cells and minerals dominates over electrostatic and Lifshitz-van der Waals interactions. This leads to overall repulsion between microbes and minerals, thus preventing surface encrustation. Low surface charge and hydrophilicity (determined by microbial adhesion to hydrocarbon assay) were common features for both live and azide-inhibited cells, which shows that surface characteristics do not depend on active metabolism. It is remarkable that these two phylogenetically-distant bacteria from different environments employ similar adaptations to prevent surface mineralization. Our results

  2. A cell surface receptor complex for collagen type I recognizes the Arg- Gly-Asp sequence

    PubMed Central

    1987-01-01

    To isolate collagen-binding cell surface proteins, detergent extracts of surface-iodinated MG-63 human osteosarcoma cells were chromatographed on affinity matrices of either type I collagen- Sepharose or Sepharose carrying a collagen-like triple-helical peptide. The peptide was designed to be triple helical and to contain the sequence Arg-Gly-Asp, which has been implicated as the cell attachment site of fibronectin, vitronectin, fibrinogen, and von Willebrand factor, and is also present in type I collagen. Three radioactive polypeptides having apparent molecular masses of 250 kD, 70 kD, and 30 kD were distinguishable in that they showed affinity toward the collagen and collagen-like peptide affinity columns, and could be specifically eluted from these columns with a solution of an Arg-Gly- Asp-containing peptide, Gly-Arg-Gly-Asp-Thr-Pro. These collagen-binding polypeptides associated with phosphatidylcholine liposomes, and the resulting liposomes bound specifically to type I collagen or the collagen-like peptide but not to fibronectin or vitronectin or heat- denatured collagen. The binding of these liposomes to type I collagen could be inhibited with the peptide Gly-Arg-Gly-Asp-Thr-Pro and with EDTA, but not with a variant peptide Gly-Arg-Gly-Glu-Ser-Pro. We conclude from these data that these three polypeptides are membrane molecules that behave as a cell surface receptor (or receptor complex) for type I collagen by interacting with it through the Arg-Gly-Asp tripeptide adhesion signal. The lack of binding to denatured collagen suggests that the conformation of the Arg-Gly-Asp sequence is important in the recognition of collagen by the receptor complex. PMID:3469204

  3. Identification of yeast proteins necessary for cell-surface function of a potassium channel.

    PubMed

    Haass, Friederike A; Jonikas, Martin; Walter, Peter; Weissman, Jonathan S; Jan, Yuh-Nung; Jan, Lily Y; Schuldiner, Maya

    2007-11-13

    Inwardly rectifying potassium (Kir) channels form gates in the cell membrane that regulate the flow of K(+) ions into and out of the cell, thereby influencing the membrane potential and electrical signaling of many cell types, including neurons and cardiomyocytes. Kir-channel function depends on other cellular proteins that aid in the folding of channel subunits, assembly into tetrameric complexes, trafficking of quality-controlled channels to the plasma membrane, and regulation of channel activity at the cell surface. We used the yeast Saccharomyces cerevisiae as a model system to identify proteins necessary for the functional expression of a mammalian Kir channel at the cell surface. A screen of 376 yeast strains, each lacking one nonessential protein localized to the early secretory pathway, identified seven deletion strains in which functional expression of the Kir channel at the plasma membrane was impaired. Six deletions were of genes with known functions in trafficking and lipid biosynthesis (sur4Delta, csg2Delta, erv14Delta, emp24Delta, erv25Delta, and bst1Delta), and one deletion was of an uncharacterized gene (yil039wDelta). We provide genetic and functional evidence that Yil039wp, a conserved, phosphoesterase domain-containing protein, which we named "trafficking of Emp24p/Erv25p-dependent cargo disrupted 1" (Ted1p), acts together with Emp24p/Erv25p in cargo exit from the endoplasmic reticulum (ER). The seven yeast proteins identified in our screen likely impact Kir-channel functional expression at the level of vesicle budding from the ER and/or the local lipid environment at the plasma membrane.

  4. Electric field-directed fibroblast locomotion involves cell surface molecular reorganization and is calcium independent

    PubMed Central

    1994-01-01

    Directional cellular locomotion is thought to involve localized intracellular calcium changes and the lateral transport of cell surface molecules. We have examined the roles of both calcium and cell surface glycoprotein redistribution in the directional migration of two murine fibroblastic cell lines, NIH 3T3 and SV101. These cell types exhibit persistent, cathode directed motility when exposed to direct current electric fields. Using time lapse phase contrast microscopy and image analysis, we have determined that electric field-directed locomotion in each cell type is a calcium independent process. Both exhibit cathode directed motility in the absence of extracellular calcium, and electric fields cause no detectable elevations or gradients of cytosolic free calcium. We find evidence suggesting that galvanotaxis in these cells involves the lateral redistribution of plasma membrane glycoproteins. Electric fields cause the lateral migration of plasma membrane concanavalin A receptors toward the cathode in both NIH 3T3 and SV101 fibroblasts. Exposure of directionally migrating cells to Con A inhibits the normal change of cell direction following a reversal of electric field polarity. Additionally, when cells are plated on Con A- coated substrata so that Con A receptors mediate cell-substratum adhesion, cathode-directed locomotion and a cathodal accumulation of Con A receptors are observed. Immunofluorescent labeling of the fibronectin receptor in NIH 3T3 fibroblasts suggests the recruitment of integrins from large clusters to form a more diffuse distribution toward the cathode in field-treated cells. Our results indicate that the mechanism of electric field directed locomotion in NIH 3T3 and SV101 fibroblasts involves the lateral redistribution of plasma membrane glycoproteins involved in cell-substratum adhesion. PMID:7929557

  5. Nutrient-deprived cancer cells preferentially use sialic acid to maintain cell surface glycosylation.

    PubMed

    Badr, Haitham A; AlSadek, Dina M M; Mathew, Mohit P; Li, Chen-Zhong; Djansugurova, Leyla B; Yarema, Kevin J; Ahmed, Hafiz

    2015-11-01

    Cancer is characterized by abnormal energy metabolism shaped by nutrient deprivation that malignant cells experience during various stages of tumor development. This study investigated the response of nutrient-deprived cancer cells and their non-malignant counterparts to sialic acid supplementation and found that cells utilize negligible amounts of this sugar for energy. Instead cells use sialic acid to maintain cell surface glycosylation through complementary mechanisms. First, levels of key metabolites (e.g., UDP-GlcNAc and CMP-Neu5Ac) required for glycan biosynthesis are maintained or enhanced upon Neu5Ac supplementation. In concert, sialyltransferase expression increased at both the mRNA and protein levels, which facilitated increased sialylation in biochemical assays that measure sialyltransferase activity as well as at the whole cell level. In the course of these experiments, several important differences emerged that differentiated the cancer cells from their normal counterparts including resistant to sialic acid-mediated energy depletion, consistently more robust sialic acid-mediated glycan display, and distinctive cell surface vs. internal vesicle display of newly-produced sialoglycans. Finally, the impact of sialic acid supplementation on specific markers implicated in cancer progression was demonstrated by measuring levels of expression and sialylation of EGFR1 and MUC1 as well as the corresponding function of sialic acid-supplemented cells in migration assays. These findings both provide fundamental insight into the biological basis of sialic acid supplementation of nutrient-deprived cancer cells and open the door to the development of diagnostic and prognostic tools.

  6. Acid base properties of cyanobacterial surfaces. II: Silica as a chemical stressor influencing cell surface reactivity

    NASA Astrophysics Data System (ADS)

    Lalonde, S. V.; Smith, D. S.; Owttrim, G. W.; Konhauser, K. O.

    2008-03-01

    Bacteria grow in complex solutions where the adsorption of aqueous species and nucleation of mineral phases on the cell surface may interfere with membrane-dependent homeostatic functions. While previous investigations have provided evidence that bacteria may alter their surface chemical properties in response to environmental stimuli, to our knowledge no effort has been made to evaluate surface compositional changes resulting from non-nutritional chemical stresses within a quantitative framework applicable to surface complexation modeling. We consider here the influence of exposure to silica on cyanobacterial surface chemistry, particularly in light of the propensity for cyanobacteria to become silicified in geothermal environments. Using data modeled from over 50 potentiometric titrations of the unsheathed cyanobacterium Anabaena sp. strain PCC 7120, we find that both abiotic geochemical and biotic biochemical-assimilatory factors have important and different effects on cell surface chemistry. Changes in functional group distribution that resulted from growth by different nitrogen assimilation pathways were greatest in the absence of dissolved silica and less important in its presence. Furthermore, out of the three nitrogen assimilation pathways investigated, in terms of surface functional group distribution, nitrate-reducing cultures were least sensitive, and ammonium-assimilating cultures were most sensitive, to changes in media silica concentration. When functional group distributions were plotted as a function of silica concentration, it appears that, with higher silica concentrations, basic groups (p Ka > 7) increase in concentration relative to acidic groups (p Ka < 7), and the total ligand densities (on a per-weight basis) decreased. The results imply a decrease in both the magnitude and density of surface charge as the net result of growth at high silica concentrations. Thus, Anabaena sp. appears to actively respond to growth in silicifying solutions by

  7. Regulation of Cell Surface CB2 Receptor during Human B Cell Activation and Differentiation.

    PubMed

    Castaneda, Julie T; Harui, Airi; Roth, Michael D

    2017-03-31

    Cannabinoid receptor type 2 (CB2) is the primary receptor pathway mediating the immunologic consequences of cannabinoids. We recently reported that human peripheral blood B cells express CB2 on both the extracellular membrane and at intracellular sites, where-as monocytes and T cells only express intracellular CB2. To better understand the pattern of CB2 expression by human B cells, we examined CD20(+) B cells from three tissue sources. Both surface and intracellular expression were present and uniform in cord blood B cells, where all cells exhibited a naïve mature phenotype (IgD(+)/CD38(Dim)). While naïve mature and quiescent memory B cells (IgD(-)/CD38(-)) from tonsils and peripheral blood exhibited a similar pattern, tonsillar activated B cells (IgD(-)/CD38(+)) expressed little to no surface CB2. We hypothesized that regulation of the surface CB2 receptor may occur during B cell activation. Consistent with this, a B cell lymphoma cell line known to exhibit an activated phenotype (SUDHL-4) was found to lack cell surface CB2 but express intracellular CB2. Furthermore, in vitro activation of human cord blood resulted in a down-regulation of surface CB2 on those B cells acquiring the activated phenotype but not on those retaining IgD expression. Using a CB2 expressing cell line (293 T/CB2-GFP), confocal microscopy confirmed the presence of both cell surface expression and multifocal intracellular expression, the latter of which co-localized with endoplasmic reticulum but not with mitochondria, lysosomes, or nucleus. Our findings suggest a dynamic multi-compartment expression pattern for CB2 in B cells that is specifically modulated during the course of B cell activation.

  8. Identification of Cell Surface Proteins as Potential Immunotherapy Targets in 12 Pediatric Cancers

    PubMed Central

    Orentas, Rimas J.; Yang, James J.; Wen, Xinyu; Wei, Jun S.; Mackall, Crystal L.; Khan, Javed

    2012-01-01

    Technological advances now allow us to rapidly produce CARs and other antibody-derived therapeutics targeting cell surface receptors. To maximize the potential of these new technologies, relevant extracellular targets must be identified. The Pediatric Oncology Branch of the NCI curates a freely accessible database of gene expression data for both pediatric cancers and normal tissues, through which we have defined discrete sets of over-expressed transcripts in 12 pediatric cancer subtypes as compared to normal tissues. We coupled gene expression profiles to current annotation databases (i.e., Affymetrix, Gene Ontology, Entrez Gene), in order to categorize transcripts by their sub-cellular location. In this manner we generated a list of potential immune targets expressed on the cell surface, ranked by their difference from normal tissue. Global differences from normal between each of the pediatric tumor types studied varied, indicating that some malignancies expressed transcript sets that were more highly diverged from normal tissues than others. The validity of our approach is seen by our findings for pre-B cell ALL, where targets currently in clinical trials were top-ranked hits (CD19, CD22). For some cancers, reagents already in development could potentially be applied to a new disease class, as exemplified by CD30 expression on sarcomas. Moreover, several potential new targets shared among several pediatric solid tumors are herein identified, such as MCAM (MUC18), metadherin (MTDH), and glypican-2 (GPC2). These targets have been identified at the mRNA level and are yet to be validated at the protein level. The safety of targeting these antigens has yet to be demonstrated and therefore the identified transcripts should be considered preliminary candidates for new CAR and therapeutic antibody targets. Prospective candidate targets will be evaluated by proteomic analysis including Westerns and immunohistochemistry of normal and tumor tissues. PMID:23251904

  9. Contribution of choline-binding proteins to cell surface properties of Streptococcus pneumoniae.

    PubMed

    Swiatlo, Edwin; Champlin, Franklin R; Holman, Steven C; Wilson, W William; Watt, James M

    2002-01-01

    Nonspecific interactions related to physicochemical properties of bacterial cell surfaces, such as hydrophobicity and electrostatic charge, are known to have important roles in bacterium-host cell encounters. Streptococcus pneumoniae (pneumococcus) expresses multiple, surface-exposed, choline-binding proteins (CBPs) which have been associated with adhesion and virulence. The purpose of this study was to determine the contribution of CBPs to the surface characteristics of pneumococci and, consequently, to learn how CBPs may affect nonspecific interactions with host cells. Pneumococcal strains lacking CBPs were derived by adapting bacteria to a defined medium that substituted ethanolamine for choline. Such strains do not anchor CBPs to their surface. Cell surface hydrophobicity was tested for the wild-type and adapted strains by using a biphasic hydrocarbon adherence assay, and electrostatic charge was determined by zeta potential measurement. Adherence of pneumococci to human-derived cells was assessed by fluorescence-activated cell sorter analysis. Strains lacking both capsule and CBPs were significantly more hydrophobic than nonencapsulated strains with a normal complement of CBPs. The effect of CBPs on hydrophobicity was attenuated in the presence of capsule. Removal of CBPs conferred a greater electronegative net surface charge than that which cells with CBPs possessed, regardless of the presence of capsule. Strains that lack CBPs were poorly adherent to human monocyte-like cells when compared with wild-type bacteria with a full complement of CBPs. These results suggest that CBPs contribute significantly to the hydrophobic and electrostatic surface characteristics of pneumococci and may facilitate adherence to host cells partially through nonspecific, physicochemical interactions.

  10. CRF binding protein facilitates the presence of CRF type 2α receptor on the cell surface

    PubMed Central

    Slater, Paula G.; Cerda, Cledi A.; Pereira, Luis A.; Andrés, María E.; Gysling, Katia

    2016-01-01

    Corticotropin releasing factor binding protein (CRF-BP) was originally recognized as CRF sequestering protein. However, its differential subcellular localization in different brain nuclei suggests that CRF-BP may have additional functions. There is evidence that CRF-BP potentiates CRF and urocortin 1 actions through CRF type 2 receptors (CRF2R). CRF2R is a G protein-coupled receptor (GPCR) that is found mainly intracellularly as most GPCRs. The access of GPCRs to the cell surface is tightly regulated by escort proteins. We hypothesized that CRF-BP binds to CRF2R, exerting an escort protein role. We analyzed the colocalization of CRF-BP and CRF2R in cultured rat mesencephalic neurons, and the localization and interaction of heterologous expressed CRF-BP and CRF2αR in yeast, human embryonic kidney 293, and rat pheochromocytoma 12 cells. Our results showed that CRF-BP and CRF2R naturally colocalize in the neurites of cultured mesencephalic neurons. Heterologous expression of each protein showed that CRF-BP was localized mainly in secretory granules and CRF2αR in the endoplasmic reticulum. In contrast, CRF-BP and CRF2αR colocalized when both proteins are coexpressed. Here we show that CRF-BP physically interacts with the CRF2αR but not the CRF2βR isoform, increasing CRF2αR on the cell surface. Thus, CRF-BP emerges as a GPCR escort protein increasing the understanding of GPCR trafficking. PMID:27035969

  11. CRF binding protein facilitates the presence of CRF type 2α receptor on the cell surface.

    PubMed

    Slater, Paula G; Cerda, Cledi A; Pereira, Luis A; Andrés, María E; Gysling, Katia

    2016-04-12

    Corticotropin releasing factor binding protein (CRF-BP) was originally recognized as CRF sequestering protein. However, its differential subcellular localization in different brain nuclei suggests that CRF-BP may have additional functions. There is evidence that CRF-BP potentiates CRF and urocortin 1 actions through CRF type 2 receptors (CRF2R). CRF2R is a G protein-coupled receptor (GPCR) that is found mainly intracellularly as most GPCRs. The access of GPCRs to the cell surface is tightly regulated by escort proteins. We hypothesized that CRF-BP binds to CRF2R, exerting an escort protein role. We analyzed the colocalization of CRF-BP and CRF2R in cultured rat mesencephalic neurons, and the localization and interaction of heterologous expressed CRF-BP and CRF2αR in yeast, human embryonic kidney 293, and rat pheochromocytoma 12 cells. Our results showed that CRF-BP and CRF2R naturally colocalize in the neurites of cultured mesencephalic neurons. Heterologous expression of each protein showed that CRF-BP was localized mainly in secretory granules and CRF2αR in the endoplasmic reticulum. In contrast, CRF-BP and CRF2αR colocalized when both proteins are coexpressed. Here we show that CRF-BP physically interacts with the CRF2αR but not the CRF2βR isoform, increasing CRF2αR on the cell surface. Thus, CRF-BP emerges as a GPCR escort protein increasing the understanding of GPCR trafficking.

  12. Regulation of Kv2.1 K+ conductance by cell surface channel density

    PubMed Central

    Fox, Philip D.; Loftus, Rob J.; Tamkun, Michael M.

    2013-01-01

    The Kv2.1 voltage-gated K+ channel is found both freely diffusing over the plasma membrane and concentrated in micron-sized clusters localized to the soma, proximal dendrites and axon initial segment of hippocampal neurons. In transfected HEK cells, Kv2.1 channels within cluster microdomains are non-conducting. Using TIRF microscopy the number of GFP-tagged Kv2.1 channels on the HEK cell surface was compared to K+ channel conductance measured by whole-cell voltage-clamp of the same cell. This approach indicated that as channel density increases non-clustered channels cease conducting. At the highest density observed, only 4% of all channels were conducting. Mutant Kv2.1 channels that fail to cluster also possessed the non-conducting state with 17% conducting K+ at higher surface densities. The non-conducting state was specific to Kv2.1 as Kv1.4 was always conducting regardless of the cell-surface expression level. Anti-Kv2.1 immuno-fluorescence intensity, standardized to Kv2.1 surface density in transfected HEK cells, was used to determine the expression levels of endogenous Kv2.1 in cultured rat hippocampal neurons. Endogenous Kv2.1 levels were compared to the number of conducting channels determined by whole-cell voltage clamp. Only 13 and 27% of the endogenous Kv2.1 was conducting in neurons cultured for 14 and 20 days, respectively. Together these data indicate that the non-conducting state depends primarily on surface density as opposed to cluster location and that this non-conducting state also exists for native Kv2.1 found in cultured hippocampal neurons. This excess of Kv2.1 protein relative to K+ conductance further supports a non-conducting role for Kv2.1 in excitable tissues. PMID:23325261

  13. Palmitoylation is not required for trafficking of human anion exchanger 1 to the cell surface.

    PubMed Central

    Cheung, Joanne C; Reithmeier, Reinhart A F

    2004-01-01

    AE1 (anion exchanger 1) is a glycoprotein found in the plasma membrane of erythrocytes, where it mediates the electroneutral exchange of chloride and bicarbonate, a process important in CO2 removal from tissues. It had been previously shown that human AE1 purified from erythrocytes is covalently modified at Cys-843 in the membrane domain with palmitic acid. In this study, the role of Cys-843 in human AE1 trafficking was investigated by expressing various AE1 and Cys-843Ala (C843A) mutant constructs in transiently transfected HEK-293 cells. The AE1 C843A mutant was expressed to a similar level to AE1. The rate of N-glycan conversion from high-mannose into complex form in a glycosylation mutant (N555) of AE1 C843A, and thus the rate of trafficking from the endoplasmic reticulum to the Golgi, were comparable with that of AE1 (N555). Like AE1, AE1 C843A could be biotinylated at the cell surface, indicating that a cysteine residue at position 843 is not required for cell-surface expression of the protein. The turnover rate of AE1 C843A was not significantly different from AE1. While other proteins could be palmitoylated, labelling of transiently transfected HEK-293 cells or COS7 cells with [3H]palmitic acid failed to produce any detectable AE1 palmitoylation. These results suggest that AE1 is not palmitoylated in HEK-293 or COS7 cells and can traffic to the plasma membrane. PMID:14640982

  14. Nutrient-deprived cancer cells preferentially use sialic acid to maintain cell surface glycosylation

    PubMed Central

    Badr, Haitham A.; AlSadek, Dina M.M.; Mathew, Mohit P.; Li, Chen-Zhong; Djansugurova, Leyla B.; Yarema, Kevin J.; Ahmed, Hafiz

    2015-01-01

    Cancer is characterized by abnormal energy metabolism shaped by nutrient deprivation that malignant cells experience during various stages of tumor development. This study investigated the response of nutrient-deprived cancer cells and their non-malignant counterparts to sialic acid supplementation and found that cells utilize negligible amounts of this sugar for energy. Instead cells use sialic acid to maintain cell surface glycosylation through complementary mechanisms. First, levels of key metabolites (e.g., UDP-GlcNAc and CMP-Neu5Ac) required for glycan biosynthesis are maintained or enhanced upon Neu5Ac supplementation. In concert, sialyltransferase expression increased at both the mRNA and protein levels, which facilitated increased sialylation in biochemical assays that measure sialyltransferase activity as well as at the whole cell level. In the course of these experiments, several important differences emerged that differentiated the cancer cells from their normal counterparts including resistant to sialic acid-mediated energy depletion, consistently more robust sialic acid-mediated glycan display, and distinctive cell surface vs. internal vesicle display of newly-produced sialoglycans. Finally, the impact of sialic acid supplementation on specific markers implicated in cancer progression was demonstrated by measuring levels of expression and sialylation of EGFR1 and MUC1 as well as the corresponding function of sialic acid-supplemented cells in migration assays. These findings both provide fundamental insight into the biological basis of sialic acid supplementation of nutrient-deprived cancer cells and open the door to the development of diagnostic and prognostic tools. PMID:26295436

  15. Inhibition of Established Micrometastases by Targeted Drug Delivery via Cell Surface Associated GRP78

    PubMed Central

    Miao, Yu Rebecca; Eckhardt, Bedrich L.; Cao, Yuan; Pasqualini, Renata; Argani, Pedram; Arap, Wadih; Ramsay, Robert G.; Anderson, Robin L.

    2015-01-01

    Purpose The major cause of morbidity in breast cancer is development of metastatic disease, for which few effective therapies exist. Since tumor cell dissemination is often an early event in breast cancer progression and can occur prior to diagnosis, new therapies need to focus on targeting established metastatic disease in secondary organs. We report an effective therapy based on targeting cell surface-localized glucose regulated protein 78 (GRP78). GRP78 is expressed normally in the endoplasmic reticulum, but many tumors and disseminated tumor cells are subjected to environmental stresses and exhibit elevated levels of GRP78, some of which is localized at the plasma membrane. Experimental Design and Results Here we show that matched primary tumors and metastases from patients who died from advanced breast cancer also express high levels of GRP78. We utilized a peptidomimetic targeting strategy that employs a known GRP78-binding peptide fused to a pro-apoptotic moiety (designated BMTP78) and show that it can selectively kill breast cancer cells that express surface-localized GRP78. Further, in preclinical metastasis models, we demonstrate that administration of BMTP78 can inhibit primary tumor growth as well as prolong overall survival by reducing the extent of outgrowth of established lung and bone micrometastases. Conclusions The data presented here provide strong evidence that it is possible to induce cell death in established micrometastases by peptide mediated targeting of cell surface localized GRP in advanced breast cancers. The significance to patients with advanced breast cancer of a therapy that can reduce established metastatic disease should not be underestimated. PMID:23470966

  16. Dynamitin affects cell-surface expression of voltage-gated sodium channel Nav1.5.

    PubMed

    Chatin, Benoît; Colombier, Pauline; Gamblin, Anne Laure; Allouis, Marie; Le Bouffant, Françoise

    2014-11-01

    The major cardiac voltage-gated sodium channel Nav1.5 associates with proteins that regulate its biosynthesis, localization, activity and degradation. Identification of partner proteins is crucial for a better understanding of the channel regulation. Using a yeast two-hybrid screen, we identified dynamitin as a Nav1.5-interacting protein. Dynamitin is part of the microtubule-binding multiprotein complex dynactin. When overexpressed it is a potent inhibitor of dynein/kinesin-mediated transport along the microtubules by disrupting the dynactin complex and dissociating cargoes from microtubules. The use of deletion constructs showed that the C-terminal domain of dynamitin is essential for binding to the first intracellular interdomain of Nav1.5. Co-immunoprecipitation assays confirmed the association between Nav1.5 and dynamitin in mouse heart extracts. Immunostaining experiments showed that dynamitin and Nav1.5 co-localize at intercalated discs of mouse cardiomyocytes. The whole-cell patch-clamp technique was applied to test the functional link between Nav1.5 and dynamitin. Dynamitin overexpression in HEK-293 (human embryonic kidney 293) cells expressing Nav1.5 resulted in a decrease in sodium current density in the membrane with no modification of the channel-gating properties. Biotinylation experiments produced similar information with a reduction in Nav1.5 at the cell surface when dynactin-dependent transport was inhibited. The present study strongly suggests that dynamitin is involved in the regulation of Nav1.5 cell-surface density.

  17. In vivo gene transfer targeting in pancreatic adenocarcinoma with cell surface antigens

    PubMed Central

    2012-01-01

    Background Pancreatic ductal adenocarcinoma is a deadly malignancy resistant to current therapies. It is critical to test new strategies, including tumor-targeted delivery of therapeutic agents. This study tested the possibility to target the transfer of a suicide gene in tumor cells using an oncotropic lentiviral vector. Results Three cell surface markers were evaluated to target the transduction of cells by lentiviruses pseudotyped with a modified glycoprotein from Sindbis virus. Only Mucin-4 and the Claudin-18 proteins were found efficient for targeted lentivirus transductions in vitro. In subcutaneous xenografts of human pancreatic cancer cells models, Claudin-18 failed to achieve efficient gene transfer but Mucin-4 was found very potent. Human pancreatic tumor cells were modified to express a fluorescent protein detectable in live animals by bioimaging, to perform a direct non invasive and costless follow up of the tumor growth. Targeted gene transfer of a bicistronic transgene bearing a luciferase gene and the herpes simplex virus thymidine kinase gene into orthotopic grafts was carried out with Mucin-4 oncotropic lentiviruses. By contrast to the broad tropism VSV-G carrying lentivirus, this oncotropic lentivirus was found to transduce specifically tumor cells, sparing normal pancreatic cells in vivo. Transduced cells disappeared after ganciclovir treatment while the orthotopic tumor growth was slowed down. Conclusion This work considered for the first time three aspect of pancreatic adenocarcinoma targeted therapy. First, lentiviral transduction of human pancreatic tumor cells was possible when cells were grafted orthotopically. Second, we used a system targeting the tumor cells with cell surface antigens and sparing the normal cells. Finally, the TK/GCV anticancer system showed promising results in vivo. Importantly, the approach presented here appeared to be a safer, much more specific and an as efficient way to perform gene delivery in pancreatic tumors

  18. Peroxisomal and mitochondrial citrate synthase in CAM plants.

    PubMed

    Zafra, M F; Segovia, J L; Alejandre, M J; García-Peregrín, E

    1981-12-01

    Citrate synthase wa studied for the first time in peroxisomes and mitochondria of crassulacean acid metabolism plants. Cellular organelles were isolated from Agave americana leaves by sucrose density gradient centrifugation and characterized by the use of catalase and cytochrome oxidase as marker enzymes, respectively. 48,000 X g centrifugation caused the breakdown of the cellular organelles. The presence of a glyoxylate cycle enzyme (citrate synthase) and a glycollate pathway enzyme (catalase) in the same organelles, besides the absence of another glyoxalate cycle enzyme (malate synthase) is reported for the first time, suggesting that peroxisomal and glyoxysomal proteins are synthesized at the same time and housed in he same organelle.

  19. Geranylfarnesyl diphosphate synthase from Methanosarcina mazei: Different role, different evolution

    SciTech Connect

    Ogawa, Takuya; Yoshimura, Tohru; Hemmi, Hisashi

    2010-02-26

    The gene of (all-E) geranylfarnesyl diphosphate synthase that is responsible for the biosynthesis of methanophenazine, an electron carrier utilized for methanogenesis, was cloned from a methanogenic archaeon Methanosarcina mazei Goe1. The properties of the recombinant enzyme and the results of phylogenetic analysis suggest that the enzyme is closely related to (all-E) prenyl diphosphate synthases that are responsible for the biosynthesis of respiratory quinones, rather than to the enzymes involved in the biosynthesis of archaeal membrane lipids, including (all-E) geranylfarnesyl diphosphate synthase from a thermophilic archaeon.

  20. O-Nucleoside, S-Nucleoside, and N-Nucleoside Probes of Lumazine Synthase and Riboflavin Synthase

    PubMed Central

    Talukdar, Arindam; Zhao, Yujie; Lv, Wei; Bacher, Adelbert; Illarionov, Boris; Fischer, Markus; Cushman, Mark

    2012-01-01

    Lumazine synthase catalyzes the penultimate step in the biosynthesis of riboflavin, while riboflavin synthase catalyzes the last step. O-Nucleoside, S-nucleoside and N-nucleoside analogues of hypothetical lumazine biosynthetic intermediates have been synthesized in order to obtain structure and mechanism probes of these two enzymes, as well as inhibitors of potential value as antibiotics. Methods were devised for the selective cleavage of benzyl protecting groups in the presence of other easily reduced functionality by controlled hydrogenolysis over Lindlar catalyst. The deprotection reaction was performed in the presence of other reactive functionality including nitro groups, alkenes, and halogens. The target compounds were tested as inhibitors of lumazine synthase and riboflavin synthase obtained from a variety of microorganisms. In general, the S-nucleosides and N-nucleosides were more potent than the corresponding O-nucleosides as lumazine synthase and riboflavin synthase inhibitors, while the C-nucleosides were the least potent. A series of molecular dynamics simulations followed by free energy calculations using the Poisson-Boltzmann/surface area (MM-PBSA) method were carried out in order to rationalize the results of ligand binding to lumazine synthase, and the results provide insight into the dynamics of ligand binding as well as the molecular forces stabilizing the intermediates in the enzyme-catalyzed reaction. PMID:22780198

  1. Human Immunodeficiency Virus Type 1 Nef-Induced CD4 Cell Surface Downregulation Is Inhibited by Ikarugamycin

    PubMed Central

    Luo, Tianci; Fredericksen, Brenda L.; Hasumi, Keiji; Endo, Akira; Garcia, J. Victor

    2001-01-01

    One well-characterized in vitro function of Nef is its ability to remove CD4, the human immunodeficiency virus (HIV) receptor, from the cell surface. Nef accomplishes this by accelerating the internalization and degradation of CD4. Current models propose that Nef promotes CD4 internalization via an increased association of CD4 with clathrin-coated pits (CCP). Here, we investigated the effect of a naturally occurring antiprotozoan antibiotic, ikarugamycin (IKA), on CD4 cell surface expression in human monocytic cells stably expressing HIV type 1 SF2 Nef. IKA was able to efficiently restore CD4 cell surface expression in Nef-expressing cells without affecting either CD4 synthesis or Nef expression. In addition, we demonstrate that IKA is also capable of efficiently blocking CD4 down-modulation in response to phorbol myristate acetate. Our data suggest that IKA may be an efficient and useful inhibitor of CCP-dependent endocytosis. PMID:11160755

  2. Proteomic Analyses Reveal Common Promiscuous Patterns of Cell Surface Proteins on Human Embryonic Stem Cells and Sperms

    PubMed Central

    Gu, Bin; Zhang, Jiarong; Wu, Ying; Zhang, Xinzong; Tan, Zhou; Lin, Yuanji; Huang, Xiao; Chen, Liangbiao; Yao, Kangshou; Zhang, Ming

    2011-01-01

    Background It has long been proposed that early embryos and reproductive organs exhibit similar gene expression profiles. However, whether this similarity is propagated to the protein level remains largely unknown. We have previously characterised the promiscuous expression pattern of cell surface proteins on mouse embryonic stem (mES) cells. As cell surface proteins also play critical functions in human embryonic stem (hES) cells and germ cells, it is important to reveal whether a promiscuous pattern of cell surface proteins also exists for these cells. Methods and Principal Findings Surface proteins of hES cells and human mature sperms (hSperms) were purified by biotin labelling and subjected to proteomic analyses. More than 1000 transmembrane or secreted cell surface proteins were identified on the two cell types, respectively. Proteins from both cell types covered a large variety of functional categories including signal transduction, adhesion and transporting. Moreover, both cell types promiscuously expressed a wide variety of tissue specific surface proteins, and some surface proteins were heterogeneously expressed. Conclusions/Significance Our findings indicate that the promiscuous expression of functional and tissue specific cell surface proteins may be a common pattern in embryonic stem cells and germ cells. The conservation of gene expression patterns between early embryonic cells and reproductive cells is propagated to the protein level. These results have deep implications for the cell surface signature characterisation of pluripotent stem cells and germ cells and may lead the way to a new area of study, i.e., the functional significance of promiscuous gene expression in pluripotent and germ cells. PMID:21559292

  3. Red-cell glycophorin A-band 3 interactions associated with the movement of band 3 to the cell surface.

    PubMed Central

    Young, M T; Beckmann, R; Toye, A M; Tanner, M J

    2000-01-01

    We have examined the mechanism by which glycophorin A (GPA) facilitates the movement of the human red-cell anion exchanger (band 3, AE1) to the cell surface. GPA itself forms stable dimers in membranes and detergent solution. Four mutants of human GPA with impaired dimerization were prepared (L75I, I76A, G79L and G83L). All four GPA mutants enhanced band 3 translocation to the Xenopus oocyte plasma membrane in the same way as wild-type GPA, showing that the GPA monomer is sufficient to mediate this process. Cell-surface expression of the natural band 3 mutant G701D has an absolute requirement for GPA. GPA monomers also rescued the cell-surface expression of this mutant band 3. Taking into account other evidence, we infer that the site of GPA interaction with band 3 is located outside the GPA dimerization interface but within the GPA transmembrane span. The results of examination of the cell-surface expression of GPA and band 3 in different K562 erythroleukaemia cell clones stably transfected with band 3 are consistent with the movement of GPA and band 3 to the cell surface together. We discuss the pathways by which band 3 moves to the cell surface in the presence and the absence of GPA, concluding that GPA has a role in enhancing the folding and maturation of band 3. We propose that GPA functions in erythroid cells to assist with the incorporation of large amounts of properly folded band 3 into the membrane within a limited time span during erythroid maturation. PMID:10926825

  4. Bioactive proteinase 3 on the cell surface of human neutrophils: quantification, catalytic activity, and susceptibility to inhibition.

    PubMed

    Campbell, E J; Campbell, M A; Owen, C A

    2000-09-15

    Although proteinase 3 (PR3) is known to have the potential to promote inflammation and injure tissues, the biologic forms and function of PR3 in polymorphonuclear neutrophils (PMN) from healthy donors have received little attention. In this paper, we show that PMN contain 3.24 +/- SD 0.24 pg of PR3 per cell, and that the mean concentration of PR3 in azurophil granules of PMN is 13.4 mM. Low levels of PR3 are detectable on the cell surface of unstimulated PMN. Exposure of PMN to cytokines or chemoattractants alone induces modest (1.5- to 2.5-fold) increases in cell surface-bound PR3. In contrast, brief priming of PMN with cytokines, followed by activation with a chemoattractant, induces rapid and persistent, 5- to 6-fold increases in cell surface expression of PR3, while causing minimal free release of PR3. Membrane-bound PR3 on PMN is catalytically active against Boc-Alanine-Alanine-Norvaline-thiobenzyl ester and fibronectin, but in marked contrast to soluble PR3, membrane-bound PR3 is resistant to inhibition by physiologic proteinase inhibitors. PR3 appears to bind to the cell surface of PMN via a charge-dependent mechanism because exposure of fixed, activated PMN to solutions having increasing ionic strength results in elution of PR3, HLE, and CG, and there is a direct relationship between their order of elution and their isoelectric points. These data indicate that rapidly inducible PR3 expressed on the cell surface of PMN is an important bioactive form of the proteinase. If PR3 expression on the cell surface of PMN is dysregulated, it is well equipped to amplify tissue injury directly, and also indirectly via the generation of autoantibodies.

  5. Cell surface localization and release of the candidate tumor suppressor Ecrg4 from polymorphonuclear cells and monocytes activate macrophages

    PubMed Central

    Baird, Andrew; Coimbra, Raul; Dang, Xitong; Lopez, Nicole; Lee, Jisook; Krzyzaniak, Michael; Winfield, Robert; Potenza, Bruce; Eliceiri, Brian P.

    2012-01-01

    We identified fresh human leukocytes as an abundant source of the candidate epithelial tumor suppressor gene, Ecrg4, an epigenetically regulated gene, which unlike other tumor suppressor genes, encodes an orphan-secreted, ligand-like protein. In human cell lines, Ecrg4 gene expression was low, Ecrg4 protein undetectable, and Ecrg4 promoter hypermethylation high (45–90%) and reversible by the methylation inhibitor 5-AzaC. In contrast, Ecrg4 gene expression in fresh, normal human PBMCs and PMNs was 600–800 times higher than in cultured cell lines, methylation of the Ecrg4 promoter was low (<3%), and protein levels were readily detectable in lysates and on the cell surface. Flow cytometry, immunofluorescent staining, and cell surface biotinylation established that full-length, 14-kDa Ecrg4 was localized on PMN and monocyte cell surfaces, establishing that Ecrg4 is a membrane-anchored protein. LPS treatment induced processing and release of Ecrg4, as detected by flow and immunoblotting, whereas an effect of fMLF treatment on Ecrg4 on the PMN cell surface was detected on the polarized R2 subpopulation of cells. This loss of cell surface Ecrg4 was associated with the detection of intact and processed Ecrg4 in the conditioned media of fresh leukocytes and was shown to be associated with the inflammatory response that follows severe, cutaneous burn injury. Furthermore, incubation of macrophages with a soluble Ecrg4-derived peptide increased the P-p65, suggesting that processing of an intact sentinel Ecrg4 on quiescent circulating leukocytes leads to processing from the cell surface following injury and macrophage activation. PMID:22396620

  6. Glucocorticoid-regulated localization of cell surface glycoproteins in rat hepatoma cells is mediated within the Golgi complex

    PubMed Central

    1988-01-01

    Glucocorticoid hormones regulate the post-translational maturation and sorting of cell surface and extracellular mouse mammary tumor virus (MMTV) glycoproteins in M1.54 cells, a stably infected rat hepatoma cell line. Exposure to monensin significantly reduced the proteolytic maturation and externalization of viral glycoproteins resulting in a stable cellular accumulation of a single 70,000-Mr glycosylated polyprotein (designated gp70). Cell surface- and intracellular-specific immunoprecipitations of monensin-treated cells revealed that gp70 can be localized to the cell surface only in the presence of 1 microM dexamethasone, while in uninduced cells gp70 is irreversibly sequestered in an intracellular compartment. Analysis of oligosaccharide processing kinetics demonstrated that gp70 acquired resistance to endoglycosidase H with a half-time of 65 min in the presence or absence of hormone. In contrast, gp70 was inefficiently galactosylated after a 60-min lag in uninduced cells while rapidly acquiring this carbohydrate modification in the presence of dexamethasone. Furthermore, in the absence or presence of monensin, MMTV glycoproteins failed to be galactosylated in hormone-induced CR4 cells, a complement-selected sorting variant defective in the glucocorticoid-regulated compartmentalization of viral glycoproteins to the cell surface. Since dexamethasone had no apparent global effects on organelle morphology or production of total cell surface-galactosylated species, we conclude that glucocorticoids induce the localization of cell surface MMTV glycoproteins by regulating a highly selective step within the Golgi apparatus after the acquisition of endoglycosidase H- resistant oligosaccharide side chains but before or at the site of galactose attachment. PMID:2836430

  7. Labeling cell surface GPIs and GPI-anchored proteins through cell metabolic engineering with artificial inositol derivatives**

    PubMed Central

    Guo, Zhongwu

    2015-01-01

    Protein GPI anchorage to the cell surface is important for various biological processes, but GPI-anchored proteins are difficult to study. This paper developed an effective strategy for metabolic engineering of cell surface GPIs and GPI-anchored proteins by using inositol derivatives carrying an azido group. The azide-labeled GPIs and GPI-anchored proteins on live cells were then tagged with biotin via click reaction and with a fluorescent molecule. The strategy can be used to label GPI-anchored proteins with various tags for biological studies. PMID:26102235

  8. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth.

    PubMed

    Ahmad, Zulfiqar; Laughlin, Thomas F; Kady, Ismail O

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase.

  9. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth

    PubMed Central

    Ahmad, Zulfiqar; Laughlin, Thomas F.; Kady, Ismail O.

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase. PMID:25996607

  10. Rare structural variants of human and murine uroporphyrinogen I synthase

    SciTech Connect

    Meisler, M.H.; Carter, M.L.C.

    1980-05-01

    An isoelectric focusing method for detection of structural variants of the enzyme uroporphyrinogen I synthase (porphobilinogen ammonia-lyase (polymerizing), EC 4.3.1.8) in mammalian tissues has been developed. Mouse and human erythrocytes contain one or two major isozymes of uroporphyrinogen I synthase, respectively. Other tissues contain a set of more acidic isozymes that are encoded by the same structural gene as the erythrocyte isozymes. Mouse populations studied with this method were monomorphic for uroporphyrinogen I synthase, with the exception of one feral mouse population. The pedigree of a human family with a rare structural variant is consistent with autosomal linkage of the structural gene. This system provides a convenient isozyme marker for genetic studies and will facilitate determination of the chromosomal location of the uroporphyrinogen I synthase locus.

  11. Biosynthesis of riboflavin: an unusual riboflavin synthase of Methanobacterium thermoautotrophicum.

    PubMed Central

    Eberhardt, S; Korn, S; Lottspeich, F; Bacher, A

    1997-01-01

    Riboflavin synthase was purified by a factor of about 1,500 from cell extract of Methanobacterium thermoautotrophicum. The enzyme had a specific activity of about 2,700 nmol mg(-1) h(-1) at 65 degrees C, which is relatively low compared to those of riboflavin synthases of eubacteria and yeast. Amino acid sequences obtained after proteolytic cleavage had no similarity with known riboflavin synthases. The gene coding for riboflavin synthase (designated ribC) was subsequently cloned by marker rescue with a ribC mutant of Escherichia coli. The ribC gene of M. thermoautotrophicum specifies a protein of 153 amino acid residues. The predicted amino acid sequence agrees with the information gleaned from Edman degradation of the isolated protein and shows 67% identity with the sequence predicted for the unannotated reading frame MJ1184 of Methanococcus jannaschii. The ribC gene is adjacent to a cluster of four genes with similarity to the genes cbiMNQO of Salmonella typhimurium, which form part of the cob operon (this operon contains most of the genes involved in the biosynthesis of vitamin B12). The amino acid sequence predicted by the ribC gene of M. thermoautotrophicum shows no similarity whatsoever to the sequences of riboflavin synthases of eubacteria and yeast. Most notably, the M. thermoautotrophicum protein does not show the internal sequence homology characteristic of eubacterial and yeast riboflavin synthases. The protein of M. thermoautotrophicum can be expressed efficiently in a recombinant E. coli strain. The specific activity of the purified, recombinant protein is 1,900 nmol mg(-1) h(-1) at 65 degrees C. In contrast to riboflavin synthases from eubacteria and fungi, the methanobacterial enzyme has an absolute requirement for magnesium ions. The 5' phosphate of 6,7-dimethyl-8-ribityllumazine does not act as a substrate. The findings suggest that riboflavin synthase has evolved independently in eubacteria and methanobacteria. PMID:9139911

  12. Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase.

    PubMed

    Bergstrom, J D; Bostedor, R G; Masarachia, P J; Reszka, A A; Rodan, G

    2000-01-01

    Alendronate, a nitrogen-containing bisphosphonate, is a potent inhibitor of bone resorption used for the treatment and prevention of osteoporosis. Recent findings suggest that alendronate and other N-containing bisphosphonates inhibit the isoprenoid biosynthesis pathway and interfere with protein prenylation, as a result of reduced geranylgeranyl diphosphate levels. This study identified farnesyl disphosphate synthase as the mevalonate pathway enzyme inhibited by bisphosphonates. HPLC analysis of products from a liver cytosolic extract narrowed the potential targets for alendronate inhibition (IC(50) = 1700 nM) to isopentenyl diphosphate isomerase and farnesyl diphosphate synthase. Recombinant human farnesyl diphosphate synthase was inhibited by alendronate with an IC(50) of 460 nM (following 15 min preincubation). Alendronate did not inhibit isopentenyl diphosphate isomerase or GGPP synthase, partially purified from liver cytosol. Recombinant farnesyl diphosphate synthase was also inhibited by pamidronate (IC(50) = 500 nM) and risedronate (IC(50) = 3.9 nM), negligibly by etidronate (IC50 = 80 microM), and not at all by clodronate. In osteoclasts, alendronate inhibited the incorporation of [(3)H]mevalonolactone into proteins of 18-25 kDa and into nonsaponifiable lipids, including sterols. These findings (i) identify farnesyl diphosphate synthase as the selective target of alendronate in the mevalonate pathway, (ii) show that this enzyme is inhibited by other N-containing bisphosphonates, such as risendronate, but not by clodronate, supporting a different mechanism of action for different bisphosphonates, and (iii) document in purified osteoclasts alendronate inhibition of prenylation and sterol biosynthesis.

  13. Human Isoprenoid Synthase Enzymes as Therapeutic Targets

    NASA Astrophysics Data System (ADS)

    Park, Jaeok; Matralis, Alexios; Berghuis, Albert; Tsantrizos, Youla

    2014-07-01

    The complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids in the human body, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently, pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies.

  14. Human isoprenoid synthase enzymes as therapeutic targets

    PubMed Central

    Park, Jaeok; Matralis, Alexios N.; Berghuis, Albert M.; Tsantrizos, Youla S.

    2014-01-01

    In the human body, the complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins, and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP, and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies. PMID:25101260

  15. Concerted versus Stepwise Mechanism in Thymidylate Synthase

    PubMed Central

    2015-01-01

    Thymidylate synthase (TSase) catalyzes the intracellular de novo formation of thymidylate (a DNA building block) in most living organisms, making it a common target for chemotherapeutic and antibiotic drugs. Two mechanisms have been proposed for the rate-limiting hydride transfer step in TSase catalysis: a stepwise mechanism in which the hydride transfer precedes the cleavage of the covalent bond between the enzymatic cysteine and the product and a mechanism where both happen concertedly. Striking similarities between the enzyme-bound enolate intermediates formed in the initial and final step of the reaction supported the first mechanism, while QM/MM calculations favored the concerted mechanism. Here, we experimentally test these two possibilities using secondary kinetic isotope effect (KIE), mutagenesis study, and primary KIEs. The findings support the concerted mechanism and demonstrate the critical role of an active site arginine in substrate binding, activation of enzymatic nucleophile, and the hydride transfer studied here. The elucidation of this reduction/substitution sheds light on the critical catalytic step in TSase and may aid future drug or biomimetic catalyst design. PMID:24949852

  16. Nitric oxide synthase in the pineal gland.

    PubMed

    López-Figueroa, M O; Møller, M

    1996-10-01

    The recent discovery of nitric oxide (NO) as a biological messenger molecule with unique characteristics has opened a new field in pineal research. This free radical gas is synthesized by the enzyme nitric oxide synthase (NOS) from L-arginine. The activation of adrenoreceptors in the membrane of the pinealocytes mediates the increase in NO through a mechanism that involves G proteins. In the pinealocyte, NO stimulates guanylyl cyclase resulting in an increased intracellular content of cGMP. The role of cGMP in pineal metabolism, however, is still enigmatic. Using enzyme histochemistry and immunohistochemistry, the presence of NOS has been confirmed in the pineal gland of some species. In the rat and especially in the sheep, NOS is located in nerve fibres innervating the gland. These nerve fibres also contain the neuropeptides vasoactive intestinal peptide (VIP) and peptide histidine isoleucine (PHI), and are probably of parasympathetic origin. In cell cultures and tissue sections NOS immunoreactivity has been shown to be present in pinealocytes of the rat and bovine but not in the sheep. Finally, NOS is also present in the endothelial cells of the blood vessels of the pineal gland. Accordingly, in the mammalian pineal gland, NO is synthesized in both presynaptic nerve fibers and pinealocytes, as well as in blood vessels. However, the anatomical location of NO synthesis varies considerably among species. NO released in the pineal gland, might influence both the pineal metabolism and the blood flow of the gland.

  17. Electric Field Driven Torque in ATP Synthase

    PubMed Central

    Miller, John H.; Rajapakshe, Kimal I.; Infante, Hans L.; Claycomb, James R.

    2013-01-01

    FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring. PMID:24040370

  18. Nitric Oxide Synthases in Heart Failure

    PubMed Central

    Carnicer, Ricardo; Crabtree, Mark J.; Sivakumaran, Vidhya

    2013-01-01

    Abstract Significance: The regulation of myocardial function by constitutive nitric oxide synthases (NOS) is important for the maintenance of myocardial Ca2+ homeostasis, relaxation and distensibility, and protection from arrhythmia and abnormal stress stimuli. However, sustained insults such as diabetes, hypertension, hemodynamic overload, and atrial fibrillation lead to dysfunctional NOS activity with superoxide produced instead of NO and worse pathophysiology. Recent Advances: Major strides in understanding the role of normal and abnormal constitutive NOS in the heart have revealed molecular targets by which NO modulates myocyte function and morphology, the role and nature of post-translational modifications of NOS, and factors controlling nitroso-redox balance. Localized and differential signaling from NOS1 (neuronal) versus NOS3 (endothelial) isoforms are being identified, as are methods to restore NOS function in heart disease. Critical Issues: Abnormal NOS signaling plays a key role in many cardiac disorders, while targeted modulation may potentially reverse this pathogenic source of oxidative stress. Future Directions: Improvements in the clinical translation of potent modulators of NOS function/dysfunction may ultimately provide a powerful new treatment for many hearts diseases that are fueled by nitroso-redox imbalance. Antioxid. Redox Signal. 18, 1078–1099. PMID:22871241

  19. Inducible nitric oxide synthase in the myocard.

    PubMed

    Buchwalow, I B; Schulze, W; Karczewski, P; Kostic, M M; Wallukat, G; Morwinski, R; Krause, E G; Müller, J; Paul, M; Slezak, J; Luft, F C; Haller, H

    2001-01-01

    Recognition of significance of nitric oxide synthases (NOS) in cardiovascular regulations has led to intensive research and development of therapies focused on NOS as potential therapeutic targets. However, the NOS isoform profile of cardiac tissue and subcellular localization of NOS isoforms remain a matter of debate. The aim of this study was to investigate the localization of an inducible NOS isoform (NOS2) in cardiomyocytes. Employing a novel immunocytochemical technique of a catalyzed reporter deposition system with tyramide and electron microscopical immunocytochemistry complemented with Western blotting and RT-PCR, we detected NOS2 both in rat neonatal and adult cultured cardiomyocytes and in the normal myocard of adult rats as well as in the human myocard of patients with dilative cardiomyopathy. NOS2 was targeted predominantly to a particulate component of the cardiomyocyte--along contractile fibers, in the plasma membrane including T-tubules, as well as in the nuclear envelope, mitochondria and Golgi complex. Our results point to an involvement of NOS2 in maintaining cardiac homeostasis and contradict to the notion that NOS2 is expressed in cardiac tissue only in response to various physiological and pathogenic factors. NOS2 targeting to mitochondria and contractile fibers suggests a relationship of NO with contractile function and energy production in the cardiac muscle.

  20. Undecaprenyl diphosphate synthase inhibitors: antibacterial drug leads.

    PubMed

    Sinko, William; Wang, Yang; Zhu, Wei; Zhang, Yonghui; Feixas, Ferran; Cox, Courtney L; Mitchell, Douglas A; Oldfield, Eric; McCammon, J Andrew

    2014-07-10

    There is a significant need for new antibiotics due to the rise in drug resistance. Drugs such as methicillin and vancomycin target bacterial cell wall biosynthesis, but methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) have now arisen and are of major concern. Inhibitors acting on new targets in cell wall biosynthesis are thus of particular interest since they might also restore sensitivity to existing drugs, and the cis-prenyl transferase undecaprenyl diphosphate synthase (UPPS), essential for lipid I, lipid II, and thus, peptidoglycan biosynthesis, is one such target. We used 12 UPPS crystal structures to validate virtual screening models and then assayed 100 virtual hits (from 450,000 compounds) against UPPS from S. aureus and Escherichia coli. The most promising inhibitors (IC50 ∼2 μM, Ki ∼300 nM) had activity against MRSA, Listeria monocytogenes, Bacillus anthracis, and a vancomycin-resistant Enterococcus sp. with MIC or IC50 values in the 0.25-4 μg/mL range. Moreover, one compound (1), a rhodanine with close structural similarity to the commercial diabetes drug epalrestat, exhibited good activity as well as a fractional inhibitory concentration index (FICI) of 0.1 with methicillin against the community-acquired MRSA USA300 strain, indicating strong synergism.

  1. Structures of human constitutive nitric oxide synthases

    PubMed Central

    Li, Huiying; Jamal, Joumana; Plaza, Carla; Pineda, Stephanie Hai; Chreifi, Georges; Jing, Qing; Cinelli, Maris A.; Silverman, Richard B.; Poulos, Thomas L.

    2014-01-01

    Mammals produce three isoforms of nitric oxide synthase (NOS): neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS). The overproduction of NO by nNOS is associated with a number of neurodegenerative disorders; therefore, a desirable therapeutic goal is the design of drugs that target nNOS but not the other isoforms. Crystallography, coupled with computational approaches and medicinal chemistry, has played a critical role in developing highly selective nNOS inhibitors that exhibit exceptional neuroprotective properties. For historic reasons, crystallography has focused on rat nNOS and bovine eNOS because these were available in high quality; thus, their structures have been used in structure–activity–relationship studies. Although these constitutive NOSs share more than 90% sequence identity across mammalian species for each NOS isoform, inhibitor-binding studies revealed that subtle differences near the heme active site in the same NOS isoform across species still impact enzyme–inhibitor interactions. Therefore, structures of the human constitutive NOSs are indispensible. Here, the first structure of human neuronal NOS at 2.03 Å resolution is reported and a different crystal form of human endothelial NOS is reported at 1.73 Å resolution. PMID:25286850

  2. Structure of Leishmania major cysteine synthase

    PubMed Central

    Fyfe, Paul K.; Westrop, Gareth D.; Ramos, Tania; Müller, Sylke; Coombs, Graham H.; Hunter, William N.

    2012-01-01

    Cysteine biosynthesis is a potential target for drug development against parasitic Leishmania species; these protozoa are responsible for a range of serious diseases. To improve understanding of this aspect of Leishmania biology, a crystallographic and biochemical study of L. major cysteine synthase has been undertaken, seeking to understand its structure, enzyme activity and modes of inhibition. Active enzyme was purified, assayed and crystallized in an orthorhombic form with a dimer in the asymmetric unit. Diffraction data extending to 1.8 Å resolution were measured and the structure was solved by molecular replacement. A fragment of γ-poly-d-glutamic acid, a constituent of the crystallization mixture, was bound in the enzyme active site. Although a d-­glutamate tetrapeptide had insignificant inhibitory activity, the enzyme was competitively inhibited (K i = 4 µM) by DYVI, a peptide based on the C-­terminus of the partner serine acetyltransferase with which the enzyme forms a complex. The structure surprisingly revealed that the cofactor pyridoxal phosphate had been lost during crystallization. PMID:22750854

  3. Anthranilate synthase subunit organization in Chromobacterium violaceum.

    PubMed

    Carminatti, C A; Oliveira, I L; Recouvreux, D O S; Antônio, R V; Porto, L M

    2008-09-16

    Tryptophan is an aromatic amino acid used for protein synthesis and cellular growth. Chromobacterium violaceum ATCC 12472 uses two tryptophan molecules to synthesize violacein, a secondary metabolite of pharmacological interest. The genome analysis of this bacterium revealed that the genes trpA-F and pabA-B encode the enzymes of the tryptophan pathway in which the first reaction is the conversion of chorismate to anthranilate by anthranilate synthase (AS), an enzyme complex. In the present study, the organization and structure of AS protein subunits from C. violaceum were analyzed using bioinformatics tools available on the Web. We showed by calculating molecular masses that AS in C. violaceum is composed of alpha (TrpE) and beta (PabA) subunits. This is in agreement with values determined experimentally. Catalytic and regulatory sites of the AS subunits were identified. The TrpE and PabA subunits contribute to the catalytic site while the TrpE subunit is involved in the allosteric site. Protein models for the TrpE and PabA subunits were built by restraint-based homology modeling using AS enzyme, chains A and B, from Salmonella typhimurium (PDB ID 1I1Q).

  4. Immunological studies of the embryonic muscle cell surface. Antiserum to the prefusion myoblast

    PubMed Central

    1979-01-01

    Xenogeneic antisera raised in rabbits have been used to detect compositional changes at the cell surfaces of differentiating embryonic chick skeletal muscle. In this report, we present the serological characterization of antiserum (Anti-M-24) against muscle tissue and developmental stage-specific cell surface antigens of the prefusion myoblast. Cells from primary cultures of 12-d-old embryonic chick hindlimb muscle were injected into rabbits, and the resulting antisera were selectively absorbed to obtain immunological specificity. Cytotoxicity and immunohistochemical assays were used to test this antiserum. Absorption with embryonic or adult chick heart, brain, retina, liver, erythrocytes, or skeletal muscle fibroblasts failed to remove all reactivity of Anti-M-24 for myogenic cells at all stages of development. After absorption with embryonic myotubes, however, Anti-M- 24 no longer reacted with differentiated myofibers, but did react with prefusion myoblasts. The myoblast surface antigens detected with Anti-M- 24 are components of the muscle cell membrane: (a) these macromolecules are free to diffuse laterally within the myoblast membrane; (b) Anti-M- 24, in the presence of complement, induced lysis of the muscle cell membrane; and (c) intact monolayers of viable myoblasts completely absorbed reactivity of Anti-M-24 for myoblasts. These antigens are not loosely adsorbed culture medium components or an artifact of tissue culture because: (a) absorption of Anti-M-24 with homogenized embryonic muscle removed all antibodies to cultured myoblasts; (b) Anti-M-24 reacted with myoblast surfaces in vivo; and (c) absorption of Anti-M-24 with culture media did not affect the titer of this antiserum for myoblasts. We conclude that myogenic cells at all stages of development possess externally exposed antigens which are undetected on other embryonic and adult chick tissues. In addition, myoblasts exhibit surface antigenic determinants that are either masked, absent, or present

  5. Expression of functionally relevant cell surface markers in dibutyltin-exposed human natural killer cells.

    PubMed

    Odman-Ghazi, Sabah O; Hatcher, Frank; Whalen, Margaret M

    2003-07-25

    Butyltin (BT) compounds are known for their worldwide contamination. Dibutyltin (DBT) is used as a stabilizer in plastic products, and as a deworming agent in poultry. Poultry products have been shown to contain measurable levels of DBT. Drinking water has also been reported to contain BTs due to leaching from PVC pipes. We, and others, have found measurable levels of DBT in human blood. BTs appear to increase the risk of cancer and other viral infections in exposed individuals. In previous studies we have shown that the tumor killing function of natural killer (NK) lymphocytes was greatly diminished after as little as a 1 h exposure to DBT and the inhibition continued even after removal of the compound. We also showed that there was a significant decrease in NK cell lysis of K562 target cells after an exposure to 1.5 microM DBT for 24 h. This 24 h exposure also decreased the ability of NK cells to bind to tumor cells. Loss of binding function was not seen when NK cells were exposed to 5-10 microM DBT for 1 h. However, NK cells exposed to 5 microM DBT for 1 h and then incubated in DBT-free media for 24, 48, or 96 h, showed a significant loss of tumor-binding function within 24 h. The effects of DBT exposure on seven cell surface molecules that are involved in NK-cell interactions with target cells were investigated. The results indicated that the exposure of NK cells to 1.5 microM DBT for 24 h decreased the expression of CD2, CD11a, CD16, CD11c. There was no decrease in expression of any of the markers studied when NK cells were exposed to 5 microM DBT for 1 h, consistent with the fact that a 1-h exposure had no effect on the ability of NK cells to bind tumor cells. However, when NK cells were exposed to 5 microM DBT for 1 h followed by 24, 48 or 96 h incubations in DBT-free media there was decreased expression of several of the cells surface molecules with the most dramatic decreases being in CD16 and CD56.

  6. Effect of chronologic age on induction of cystathionine synthase, uroporphyrinogen I synthase, and glucose-6-phosphate dehydrogenase activities in lymphocytes.

    PubMed Central

    Gartler, S M; Hornung, S K; Motulsky, A G

    1981-01-01

    The activities of cystathionine synthase [L-serine hydro-lyase (adding homocysteine), EC 4.2.1.22], uroporphyrinogen I synthase [porphobilinogen ammonia-lyase (polymerizing), EC 4.3.1.8], and glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate:NADP+ 1-oxidoreductase, EC 1.1.1.49) have been measured in phytohemagglutinin-stimulated lymphocytes of young and old human subjects. A significant decrease in activity with age was observed for cystathionine synthase and uroporphyrinogen I synthase but not for glucose-6-phosphate dehydrogenase. These changes could not be related to declining phytohemagglutinin response with aging. Age-related decreases in activity of some enzymes may be relevant for an understanding of the biology of aging. False assignment of heterozygosity, and even homozygosity, for certain genetic disorders, such as homocystinuria, may result when low enzyme levels are detected in the lymphocytes of older people. PMID:6940198

  7. Expression of a Fungal Hydrophobin in the Saccharomyces cerevisiae Cell Wall: Effect on Cell Surface Properties and Immobilization

    PubMed Central

    Nakari-Setälä, Tiina; Azeredo, Joana; Henriques, Mariana; Oliveira, Rosário; Teixeira, José; Linder, Markus; Penttilä, Merja

    2002-01-01

    The aim of this work was to modify the cell surface properties of Saccharomyces cerevisiae by expression of the HFBI hydrophobin of the filamentous fungus Trichoderma reesei on the yeast cell surface. The second aim was to study the immobilization capacity of the modified cells. Fusion to the Flo1p flocculin was used to target the HFBI moiety to the cell wall. Determination of cell surface characteristics with contact angle and zeta potential measurements indicated that HFBI-producing cells are more apolar and slightly less negatively charged than the parent cells. Adsorption of the yeast cells to different commercial supports was studied. A twofold increase in the binding affinity of the hydrophobin-producing yeast to hydrophobic silicone-based materials was observed, while no improvement in the interaction with hydrophilic carriers could be seen compared to that of the parent cells. Hydrophobic interactions between the yeast cells and the support are suggested to play a major role in attachment. Also, a slight increase in the initial adsorption rate of the hydrophobin yeast was observed. Furthermore, due to the engineered cell surface, hydrophobin-producing yeast cells were efficiently separated in an aqueous two-phase system by using a nonionic polyoxyethylene detergent, C12-18EO5. PMID:12089019

  8. High-throughput screening of improved protease inhibitors using a yeast cell surface display system and a yeast cell chip.

    PubMed

    Aoki, Wataru; Yoshino, Yuichi; Morisaka, Hironobu; Tsunetomo, Keiji; Koyo, Hirotaka; Kamiya, Shinji; Kawata, Noriyuki; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2011-01-01

    Protease-targeted inhibitors have been promising pharmaceuticals. Here, we combined a yeast cell surface display system with a yeast cell chip for the high-throughput screening of protease inhibitors, and succeeded in improving the activity of a protease inhibitor.

  9. Cell Surface Enzyme Attachment Is Mediated by Family 37 Carbohydrate-Binding Modules, Unique to Ruminococcus albus▿ ‡

    PubMed Central

    Ezer, Anat; Matalon, Erez; Jindou, Sadanari; Borovok, Ilya; Atamna, Nof; Yu, Zhongtang; Morrison, Mark; Bayer, Edward A.; Lamed, Raphael

    2008-01-01

    The rumen bacterium Ruminococcus albus binds to and degrades crystalline cellulosic substrates via a unique cellulose degradation system. A unique family of carbohydrate-binding modules (CBM37), located at the C terminus of different glycoside hydrolases, appears to be responsible both for anchoring these enzymes to the bacterial cell surface and for substrate binding. PMID:18931104

  10. Kinesin-5/Eg5 is important for transport of CARTS from the trans-Golgi network to the cell surface

    PubMed Central

    Villeneuve, Julien; van Galen, Josse; Cruz-Garcia, David; Tagaya, Mitsuo

    2013-01-01

    Here we report that the kinesin-5 motor Klp61F, which is known for its role in bipolar spindle formation in mitosis, is required for protein transport from the Golgi complex to the cell surface in Drosophila S2 cells. Disrupting the function of its mammalian orthologue, Eg5, in HeLa cells inhibited secretion of a protein called pancreatic adenocarcinoma up-regulated factor (PAUF) but, surprisingly, not the trafficking of vesicular stomatitis virus G protein (VSV-G) to the cell surface. We have previously reported that PAUF is transported from the trans-Golgi network (TGN) to the cell surface in specific carriers called CARTS that exclude VSV-G. Inhibition of Eg5 function did not affect the biogenesis of CARTS; however, their migration was delayed and they accumulated near the Golgi complex. Altogether, our findings reveal a surprising new role of Eg5 in nonmitotic cells in the facilitation of the transport of specific carriers, CARTS, from the TGN to the cell surface. PMID:23857769

  11. [Growth peculiarities and properties of Bacillus subtilis IMV B-7023 cell surface in the medium with glycerophosphate].

    PubMed

    Roĭ, A A; Gordienko, A S; Kurdish, I K

    2009-01-01

    It is established that, depending on the amount of the basic elements of carbon and phosphorus nutrition in the cultivation medium, Bacillus subtilis IMV B-7023 can use glycerophosphate as a source of carbon, carbon and phosphorus, or phosphorus. The found differences in bacterium physiology correlate with the change of cell surface properties.

  12. Synthesis and application of water-soluble, photoswitchable cyanine dyes for bioorthogonal labeling of cell-surface carbohydrates.

    PubMed

    Mertsch, Alexander; Letschert, Sebastian; Memmel, Elisabeth; Sauer, Markus; Seibel, Jürgen

    2016-09-01

    The synthesis of cyanine dyes addressing absorption wavelengths at 550 and 648 nm is reported. Alkyne functionalized dyes were used for bioorthogonal click reactions by labeling of metabolically incorporated sugar-azides on the surface of living neuroblastoma cells, which were applied to direct stochastic optical reconstruction microscopy (dSTORM) for the visualization of cell-surface glycans in the nm-range.

  13. Cell-surface modification of non-GMO without chemical treatment by novel GMO-coupled and -separated cocultivation method.

    PubMed

    Miura, Natsuko; Aoki, Wataru; Tokumoto, Naoki; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2009-02-01

    We developed a novel method to coat living non-genetically modified (GM) cells with functional recombinant proteins. First, we prepared GM yeast to secrete constructed proteins that have two domains: a functional domain and a binding domain that recognizes other cells. Second, we cocultivated GM and non-GM yeasts that share and coutilize the medium containing recombinant proteins produced by GM yeasts using a filter-membrane-separated cultivation reactor. We confirmed that GM yeast secreted enhanced green fluorescent protein (EGFP) fusion proteins to culture medium. After cocultivation, EGFP fusion proteins produced by GM yeast were targeted to non-GM yeast (Saccharomyces cerevisiae BY4741DeltaCYC8 strain) cell surface. Yeast cell-surface engineering is a useful method that enables the coating of GM yeast cell surface with recombinant proteins to produce highly stable and accumulated protein particles. The results of this study suggest that development of cell-surface engineering from GM organisms (GMOs) to living non-GMOs by our novel cocultivation method is possible.

  14. Cell-surface changes in cadmium-resistant Euglena: Studies using lectin-binding techniques and flow cytometry

    SciTech Connect

    Bonaly, J.; Brochiero, E.

    1994-01-01

    Most in vitro studies on contaminants focus on the short-term effects of pollutants on cells, without regard to long-term effects and the ability of cells or microorganisms to develop a specific resistance to a pollutant. Cadmium is ubiquitous environmental contaminant. This heavy metal enters the aquatic environment mainly through vapor emissions and fallout during smelting operations. Diverse mechanisms of algal resistance to toxic metals are known. Among these, the most general mechanism is the development of metal-binding proteins. In cadmium-resistant unicellular Euglena gracilis Z algae cells, the metal did not appear to be sequestered on soluble metal-binding ligands. Previous experiments have shown that resistance development is related to a diminution of cadmium penetration into cells, implicating cell surface or membrane alteration. This research investigates the mechanisms of development of cadmium resistance in Euglena cells at the cell-surface level. Sugar chains of glycoproteins and glycolipids are a predominant feature of the surface of cells. Moreover, the cell-response to environmental changes is often orchestrated through surface macromolecules such as glycoproteins. In this study, we applied this lectin method to investigate surface carbohydrate expression during and after resistance development. Our interest was twofold: (1) to learn more about the carbohydrate composition of the cell-surface of Euglena; and (2) to determine whether transition from wild cells to Cd-resistant cells changes the expression of cell-surface carbohydrates. 13 refs., 2 figs., 1 tab.

  15. Obtaining control of cell surface functionalizations via Pre-targeting and Supramolecular host guest interactions

    NASA Astrophysics Data System (ADS)

    Rood, Mark T. M.; Spa, Silvia J.; Welling, Mick M.; Ten Hove, Jan Bart; van Willigen, Danny M.; Buckle, Tessa; Velders, Aldrik H.; van Leeuwen, Fijs W. B.

    2017-01-01

    The use of mammalian cells for therapeutic applications is finding its way into modern medicine. However, modification or “training” of cells to make them suitable for a specific application remains complex. By envisioning a chemical toolbox that enables specific, but straight-forward and generic cellular functionalization, we investigated how membrane-receptor (pre)targeting could be combined with supramolecular host-guest interactions based on β-cyclodextrin (CD) and adamantane (Ad). The feasibility of this approach was studied in cells with membranous overexpression of the chemokine receptor 4 (CXCR4). By combining specific targeting of CXCR4, using an adamantane (Ad)-functionalized Ac-TZ14011 peptide (guest; KD = 56 nM), with multivalent host molecules that entailed fluorescent β-CD-Poly(isobutylene-alt-maleic-anhydride)-polymers with different fluorescent colors and number of functionalities, host-guest cell-surface modifications could be studied in detail. A second set of Ad-functionalized entities enabled introduction of additional surface functionalities. In addition, the attraction between CD and Ad could be used to drive cell-cell interactions. Combined we have shown that supramolecular interactions, that are based on specific targeting of an overexpressed membrane-receptor, allow specific and stable, yet reversible, surface functionalization of viable cells and how this approach can be used to influence the interaction between cells and their surroundings.

  16. Calmodulin Regulates Ca2+-sensing Receptor-mediated Ca2+ Signaling and Its Cell Surface Expression*

    PubMed Central

    Huang, Yun; Zhou, Yubin; Wong, Hing-Cheung; Castiblanco, Adriana; Chen, Yanyi; Brown, Edward M.; Yang, Jenny J.

    2010-01-01

    The Ca2+-sensing receptor (CaSR) is a member of family C of the GPCRs responsible for sensing extracellular Ca2+ ([Ca2+]o) levels, maintaining extracellular Ca2+ homeostasis, and transducing Ca2+ signaling from the extracellular milieu to the intracellular environment. In the present study, we have demonstrated a Ca2+-dependent, stoichiometric interaction between CaM and a CaM-binding domain (CaMBD) located within the C terminus of CaSR (residues 871–898). Our studies suggest a wrapping around 1–14-like mode of interaction that involves global conformational changes in both lobes of CaM with concomitant formation of a helical structure in the CaMBD. More importantly, the Ca2+-dependent association between CaM and the C terminus of CaSR is critical for maintaining proper responsiveness of intracellular Ca2+ responses to changes in extracellular Ca2+ and regulating cell surface expression of the receptor. PMID:20826781

  17. Leukocyte cell surface proteinases: regulation of expression, functions, and mechanisms of surface localization.

    PubMed

    Owen, Caroline A

    2008-01-01

    A number of proteinases are expressed on the surface of leukocytes including members of the serine, metallo-, and cysteine proteinase superfamilies. Some proteinases are anchored to the plasma membrane of leukocytes by a transmembrane domain or a glycosyl phosphatidyl inositol (GPI) anchor. Other proteinases bind with high affinity to classical receptors, or with lower affinity to integrins, proteoglycans, or other leukocyte surface molecules. Leukocyte surface levels of proteinases are regulated by: (1) cytokines, chemokines, bacterial products, and growth factors which stimulate synthesis and/or release of proteinases by cells; (2) the availability of surface binding sites for proteinases; and/or (3) internalization or shedding of surface-bound proteinases. The binding of proteinases to leukocyte surfaces serves many functions including: (1) concentrating the activity of proteinases to the immediate pericellular environment; (2) facilitating pro-enzyme activation; (3) increasing proteinase stability and retention in the extracellular space; (4) regulating leukocyte function by proteinases signaling through cell surface binding sites or other surface proteins; and (5) protecting proteinases from inhibition by extracellular proteinase inhibitors. There is strong evidence that membrane-associated proteinases on leukocytes play critical roles in wound healing, inflammation, extracellular matrix remodeling, fibrinolysis, and coagulation. This review will outline the biology of membrane-associated proteinases expressed by leukocytes and their roles in physiologic and pathologic processes.

  18. Cell surface profiling with peptide libraries yields ligand arrays that classify breast tumor subtypes.

    PubMed

    Dane, Karen Y; Gottstein, Claudia; Daugherty, Patrick S

    2009-05-01

    Cancer heterogeneity renders risk stratification and therapy decisions challenging. Thus, genomic and proteomic methodologies have been used in an effort to identify biomarkers that can differentiate tumor subtypes to improve therapeutic outcome. Here, we report a generally applicable strategy to generate tumor type-specific peptide ligand arrays. Peptides that specifically recognize breast tumor-derived cell lines (MDA-MB-231, MCF-7, and T47-D) were identified using cell-displayed peptide libraries carrying an intrinsic fluorescent marker allowing for sorting and characterization with quantitative flow cytometry. Tumor cell specificity was achieved by depleting libraries of ligands binding to normal mammary epithelial cells (HMEC and MCF-10A). Although integrin binding RGD motifs were favored by some cell lines, screening with RGD competitors yielded several novel consensus motifs exhibiting improved tumor specificity. The resultant peptide array contained multiple consensus motifs exhibiting strong similarity to breast tumor-associated proteins. Profiling a panel of breast cancer cell lines with the peptide array revealed receptor expression patterns distinctive for luminal or basal tumor subtypes. In addition, peptide displaying bacteria and peptide functionalized microparticles enabled fluorescent labeling of tumor cells and frozen tumor tissue sections. Our results indicate that cell surface profiling using highly specific breast tumor cell binding ligands may provide an efficient route for tumor subtype classification, biomarker identification, and for the development of targeted diagnostics and therapeutics.

  19. The Behavior of Lipid Debris Left on Cell Surfaces from Microbubble Based Ultrasound Molecular Imaging

    PubMed Central

    Ibsen, Stuart; Shi, Guixin; Schutt, Carolyn; Shi, Linda; Suico, Kyle-David; Benchimol, Michael; Serra, Viviana; Simberg, Dmitri; Berns, Michael; Esener, Sadik

    2014-01-01

    Lipid monolayer coated microbubbles are currently being developed to identify vascular regions that express certain surface proteins as part of the new technique of ultrasound molecular imaging. The microbubbles are functionalized with targeting ligands which bind to the desired cells holding the microbubbles in place as the remaining unbound microbubbles are eliminated from circulation. Subsequent scanning with ultrasound can detect the highly reflectant microbubbles that are left behind. The ultrasound scanning and detection process results in the destruction of the microbubble, creating lipid fragments from the monolayer. Here we demonstrate that microbubbles targeted to 4T1 murine breast cancer cells and human umbilical cord endothelial cells leave behind adhered fragments of the lipid monolayer after exposure to ultrasound with peak negative pressures of 0.18 and 0.8 MPa. Most of the observed fragments were large enough to be resistant to receptor mediated endocytosis. The fragments were not observed to incorporate into the lipid membrane of the cell over a period of 96 min. They were not observed to break into smaller pieces or significantly change shape but they were observed to undergo translation and rotation across the cell surface as the cells migrated over the substrate. These large fragments will apparently remain on the surface of the targeted cells for significant periods of time and need to be considered for their potential effects on blood flow through the microcapillaries and potential for immune system recognition. PMID:25059435

  20. Fixation and stabilization of Escherichia coli cells displaying genetically engineered cell surface proteins.

    PubMed

    Freeman, A; Abramov, S; Georgiou, G

    1996-12-05

    A large biotechnological potential is inherent in the display of proteins (e.g., enzymes, single-chain antibodies, on the surface of bacterial cells) (Georgiou et al., 1993). Applications such as immobilized whole-cell biocatalysts or cellular adsorbents require cell fixation to prevent disintegration, stabilization of the anchored protein from leakage, denaturation or proteolysis, and total loss of cell viability, preventing medium and potential product contamination with cells. In this article we describe the adaptation of a simple two-stage chemical crosslinking procedure based on "bi-layer encagement" (Tor et al., 1989) for stabilizing Escherichia coli cells expressing an Lpp-OmpA (46-159)-beta-lactamase fusion that displays beta-lactamase on the cell surface. Bilayer crosslinking and coating the bacteria with a polymeric matrix is accomplished by treating the cells first with either glutaraldehyde or polyglutaraldehyde, followed by secondary crosslinking with polyacrylamide hydrazide. These treatments resulted in a 5- to 25-fold reduction of the thermal inactivation rate constant at 55 degrees C of surface anchored beta-lactamase and completely prevented the deterioration of the cells for at least a week of storage at 4 degrees C. The stabilization procedure developed paves the way to scalable biotechnological applications of E. coli displaying surface anchored proteins as whole-cell biocatalysts and adsorbents.

  1. Derivatization and photolysis of a photoaffinity reagent for probing protein and cell surface interactions

    SciTech Connect

    Murphy, H.; Harris, H.W. Jr.

    1986-05-01

    The synthesis of the novel, heterobifunctional, cleavable, photoactivable crosslinking reagent, N-(4-(p-azido-m-(/sup 125/I) iodophenylazo)benzoyl)-3-aminopropyl-N'-oxysulfosuccinimide has been described by Denny and Blobel. This reagent is desirable because after photolysis and azo bond cleavage the /sup 125/I is transferred from the reagent to the crosslinked molecule. The authors demonstrate that using the reported synthesis 99% of the desired reagent is destroyed during the chloramine-T iodination step. They report a synthesis revision which produces high yields of the uniodinated (U) reagent. The derivatized reagent may be used in its iodinated (I) or U forms. To study the U reagent, a horseradish peroxidase (HRP) molecule is derivatized with nine reagent molecules. The derivatized HRP has 70% of its original enzymatic activity. After photolysis, 14% of this activity is retained and SDS-PAGE electrophoresis shows a crosslinked complex of HRP molecules. After endocytosis by cells, photolysis attaches the soluble derivatized HRP to membranes allowing them to be traced in the electron microscope. To study the I reagent, an amino-dextran (MW 73-400) molecule is derivatized with three U reagent molecules. The U reagent molecules are then iodinated by the chloramine-T method. With photolysis and cleavage, the /sup 125/I labeled reagent on dextran transfers its label to bovine serum albumin or ovalbumin. The authors conclude this reagent is a versatile probe for study of protein or cell surface topography.

  2. Quantum Efficiency Loss after PID Stress: Wavelength Dependence on Cell Surface and Cell Edge

    SciTech Connect

    Oh, Jaewon; Bowden, Stuart; TamizhMani, GovindaSamy; Hacke, Peter

    2015-06-14

    It is known that the potential induced degradation (PID) stress of conventional p-base solar cells affects power, shunt resistance, junction recombination, and quantum efficiency (QE). One of the primary solutions to address the PID issue is a modification of chemical and physical properties of antireflection coating (ARC) on the cell surface. Depending on the edge isolation method used during cell processing, the ARC layer near the edges may be uniformly or non-uniformly damaged. Therefore, the pathway for sodium migration from glass to the cell junction could be either through all of the ARC surface if surface and edge ARC have low quality or through the cell edge if surface ARC has high quality but edge ARC is defective due to certain edge isolation process. In this study, two PID susceptible cells from two different manufacturers have been investigated. The QE measurements of these cells before and after PID stress were performed at both surface and edge. We observed the wavelength dependent QE loss only in the first manufacturer's cell but not in the second manufacturer's cell. The first manufacturer's cell appeared to have low quality ARC whereas the second manufacturer's cell appeared to have high quality ARC with defective edge. To rapidly screen a large number of cells for PID stress testing, a new but simple test setup that does not require laminated cell coupon has been developed and is used in this investigation.

  3. Intestinal epithelial cell surface glycosylation in mice. I. Effect of high-protein diet.

    PubMed

    Gupta, R; Jaswal, V M; Meenu Mahmood, A

    1992-01-01

    The effects of variation in dietary protein content have been investigated on brush border glycosylation and enzyme activities in mice small intestine. The comparison of different parameters was made between the mice fed 30% (high protein, HP) and 18% protein (pair-fed, PF, and ad libitum-fed) for 21 days. The activities of brush border sucrase, lactase, p-nitrophenyl (PNP)-beta-D-glucosidase and PNP-beta-D-galactosidase were reduced in the HP diet-fed mice compared to PF and ad libitum-fed controls. Alkaline phosphatase and leucine amino-peptidase activities were significantly enhanced while gamma-glutamyl transpeptidase activity was unaltered under these conditions. Total hexoses and sialic acid content in the brush borders were reduced significantly in the test group compared to the controls while hexosamine and fucose contents remained essentially similar in different groups. The results on the binding of wheat germ agglutinin and Ulex europaeus agglutininI to microvillus membranes corroborated the chemical analysis data on sialic acid and fucose contents of the membranes. Peanut agglutinin binding was enhanced in mice from the HP group. Incorporation of (14C)-mannose into membranes was significantly less in HP diet-fed mice. These results indicate that the feeding of HP diet to mice brings about marked alterations in small intestinal epithelial cell surface glycosylation and enzyme functions.

  4. Enhancing the antitumor efficacy of a cell-surface death ligand by covalent membrane display.

    PubMed

    Nair, Pradeep M; Flores, Heather; Gogineni, Alvin; Marsters, Scot; Lawrence, David A; Kelley, Robert F; Ngu, Hai; Sagolla, Meredith; Komuves, Laszlo; Bourgon, Richard; Settleman, Jeffrey; Ashkenazi, Avi

    2015-05-05

    TNF superfamily death ligands are expressed on the surface of immune cells and can trigger apoptosis in susceptible cancer cells by engaging cognate death receptors. A recombinant soluble protein comprising the ectodomain of Apo2 ligand/TNF-related apoptosis-inducing ligand (Apo2L/TRAIL) has shown remarkable preclinical anticancer activity but lacked broad efficacy in patients, possibly owing to insufficient exposure or potency. We observed that antibody cross-linking substantially enhanced cytotoxicity of soluble Apo2L/TRAIL against diverse cancer cell lines. Presentation of the ligand on glass-supported lipid bilayers enhanced its ability to drive receptor microclustering and apoptotic signaling. Furthermore, covalent surface attachment of Apo2L/TRAIL onto liposomes--synthetic lipid-bilayer nanospheres--similarly augmented activity. In vivo, liposome-displayed Apo2L/TRAIL achieved markedly better exposure and antitumor activity. Thus, covalent synthetic-membrane attachment of a cell-surface ligand enhances efficacy, increasing therapeutic potential. These findings have translational implications for liposomal approaches as well as for Apo2L/TRAIL and other clinically relevant TNF ligands.

  5. Fibronectin biosynthesis and cell-surface expression by cardiac and non-cardiac endothelial cells.

    PubMed Central

    Johnson, C. M.; Helgeson, S. C.

    1993-01-01

    We examined the biosynthesis and surface expression of fibronectin, an adhesive glycoprotein, in several types of cultured porcine endothelial cells: pulmonary artery, thoracic aorta, coronary artery, aortic valve, and mitral valve. We used immunocytochemical staining to compare the levels of fibronectin present in these same tissues in vivo. Using endogenous radiolabeling, we found that all cell types except aortic valve endothelial cells synthesized and released into the culture media substantial quantities of fibronectin. Using radioiodination of intact cells, we found that, whereas both thoracic aorta and pulmonary artery cells had measurable fibronectin on the surface, aortic valve, mitral valve, and coronary artery cells had little cell-surface fibronectin present. Immunocytochemical staining showed that all endothelial regions except aortic valve had substantial quantities of immunoreactive fibronectin in vivo. These data suggest that the aortic valve endothelium may be distinct from other endothelia. Such differences could be important for the pathogenesis of valvular disease. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8494044

  6. Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering

    PubMed Central

    Rogozhnikov, Dmitry; O’Brien, Paul J.; Elahipanah, Sina; Yousaf , Muhammad N.

    2016-01-01

    There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity. PMID:28008983

  7. Modeling multivalent ligand-receptor interactions with steric constraints on configurations of cell surface receptor aggregates

    SciTech Connect

    Monine, Michael; Posner, Richard; Savage, Paul; Faeder, James; Hlavacek, William S

    2008-01-01

    Signal transduction generally involves multivalent protein-protein interactions, which can produce various protein complexes and post-translational modifications. The reaction networks that characterize these interactions tend to be so large as to challenge conventional simulation procedures. To address this challenge, a kinetic Monte Carlo (KMC) method has been developed that can take advantage of a model specification in terms of reaction rules for molecular interactions. A set of rules implicitly defines the reactions that can occur as a result of the interactions represented by the rules. With the rule-based KMC method, explicit generation of the underlying chemical reaction network implied by rules is avoided. Here, we apply and extend this method to characterize the interactions of a trivalent ligand with a bivalent cell-surface receptor. This system is also studied experimentally. We consider the following kinetic models: an equivalent-site model, an extension of this model, which takes into account steric constraints on the configurations of receptor aggregates, and finally, a model that accounts for cyclic receptor aggregates. Simulation results for the equivalent-site model are consistent with an equilibrium continuum model. Using these models, we investigate the effects of steric constraints and the formation of cyclic aggregates on the kinetics and equilibria of small and large aggregate formation and the percolation phase transition that occurs in this system.

  8. Ubiquitin-like epitopes associated with Candida albicans cell surface receptors.

    PubMed Central

    Sepulveda, P; Lopez-Ribot, J L; Gozalbo, D; Cervera, A; Martinez, J P; Chaffin, W L

    1996-01-01

    We have recently reported the cloning of a Candida albicans polyubiquitin gene and the presence of ubiquitin in the cell wall of this fungus. The polyubiquitin cDNA clone was isolated because of its reactivity with antibodies generated against the candidal 37-kDa laminin-binding protein. In the present study, we have further investigated the relationship between ubiquitin and cell wall components displaying receptor-like activities, including the 37-kDa laminin receptor, the 58-kDa fibrinogen-binding mannoprotein, and the candidal C3d receptor. Two-dimensional electrophoretic analysis and immunoblot experiments with antibodies against ubiquitin and the individually purified receptor-like molecules confirmed that these cell surface components are ubiquitinated. In an enzyme-linked immunosorbent assay, polyclonal antisera to each receptor reacted with ubiquitin, thus demonstrating that the purified receptor preparations used as immunogens contained ubiquitin-like epitopes. It is proposed that ubiquitin may play a role in modulating the activity of these receptors and in the interaction of C. albicans cells with host structures. PMID:8926122

  9. Inhibition of cell surface mediated plasminogen activation by a monoclonal antibody against alpha-Enolase.

    PubMed

    López-Alemany, Roser; Longstaff, Colin; Hawley, Stephen; Mirshahi, Massoud; Fábregas, Pere; Jardí, Merce; Merton, Elizabeth; Miles, Lindsey A; Félez, Jordi

    2003-04-01

    Localization of plasmin activity on leukocyte surfaces plays a critical role in fibrinolysis as well as in pathological and physiological processes in which cells must degrade the extracellular matrix in order to migrate. The binding of plasminogen to leukocytic cell lines induces a 30- to 80-fold increase in the rate of plasminogen activation by tissue-type (tPA) and urokinase-type (uPA) plasminogen activators. In the present study we have examined the role of alpha-enolase in plasminogen activation on the cell surface. We produced and characterized a monoclonal antibody (MAb) 11G1 against purified alpha-enolase, which abrogated about 90% of cell-dependent plasminogen activation by either uPA or tPA on leukocytoid cell lines of different lineages: B-lymphocytic, T-lymphocytic, granulocytic, and monocytic cells. In addition, MAb 11G1 also blocked enhancement of plasmin formation by peripheral blood neutrophils and monocytes. In contrast, MAb 11G1 did not affect plasmin generation in the presence of fibrin, indicating that this antibody did not interact with fibrinolytic components in the absence of cells. These data suggest that, although leukocytic cells display several molecules that bind plasminogen, alpha-enolase is responsible for the majority of the promotion of plasminogen activation on the surfaces of leukocytic cells.

  10. A Gravity-Responsive Time-Keeping Protein of the Plant and Animal Cell Surface

    NASA Technical Reports Server (NTRS)

    Morre, D. James

    2003-01-01

    The hypothesis under investigation was that a ubiquinol (NADH) oxidase protein of the cell surface with protein disulfide-thiol interchange activity (= NOX protein) is a plant and animal time-keeping ultradian (period of less than 24 h) driver of both cell enlargement and the biological clock that responds to gravity. Despite considerable work in a large number of laboratories spanning several decades, this is, to my knowledge, our work is the first demonstration of a time-keeping biochemical reaction that is both gravity-responsive and growth-related and that has been shown to determine circadian periodicity. As such, the NOX protein may represent both the long-sought biological gravity receptor and the core oscillator of the cellular biological clock. Completed studies have resulted in 12 publications and two issued NASA-owned patents of the clock activity. The gravity response and autoentrainment were characterized in cultured mammalian cells and in two plant systems together with entrainment by light and small molecules (melatonin). The molecular basis of the oscillatory behavior was investigated using spectroscopic methods (Fourier transform infrared and circular dichroism) and high resolution electron microscopy. We have also applied these findings to an understanding of the response to hypergravity. Statistical methods for analysis of time series phenomena were developed (Foster et al., 2003).

  11. New Insights into VacA Intoxication Mediated through Its Cell Surface Receptors

    PubMed Central

    Yahiro, Kinnosuke; Hirayama, Toshiya; Moss, Joel; Noda, Masatoshi

    2016-01-01

    Helicobacter pylori (H. pylori), a major cause of gastroduodenal diseases, produces VacA, a vacuolating cytotoxin associated with gastric inflammation and ulceration. The C-terminal domain of VacA plays a crucial role in receptor recognition on target cells. We have previously identified three proteins (i.e., RPTPα, RPTPβ, and LRP1) that serve as VacA receptors. These receptors contribute to the internalization of VacA into epithelial cells, activate signal transduction pathways, and contribute to cell death and gastric ulceration. In addition, other factors (e.g., CD18, sphingomyelin) have also been identified as cell-surface, VacA-binding proteins. Since we believe that, following interactions with its host cell receptors, VacA participates in events leading to disease, a better understanding of the cellular function of VacA receptors may provide valuable information regarding the mechanisms underlying the pleiotropic actions of VacA and the pathogenesis of H. pylori-mediated disease. In this review, we focus on VacA receptors and their role in events leading to cell damage. PMID:27187473

  12. Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC133.

    PubMed

    Shmelkov, Sergey V; Jun, Lin; St Clair, Ryan; McGarrigle, Deirdre; Derderian, Christopher A; Usenko, Jaroslav K; Costa, Carla; Zhang, Fan; Guo, Xinzheng; Rafii, Shahin

    2004-03-15

    AC133 is a member of a novel family of cell surface proteins with 5 transmembrane domains. The function of AC133 is unknown. Although AC133 mRNA is detected in different tissues, its expression in the hematopoietic system is restricted to CD34+ stem cells. AC133 is also expressed on stem cells of other tissues, including endothelial progenitor cells. However, despite the potential importance of AC133 to the field of stem cell biology, nothing is known about the transcriptional regulation of AC133 expression. In this report we showed that the human AC133 gene has at least 9 distinctive 5'-untranslated region (UTR) exons, resulting in the formation of at least 7 alternatively spliced 5'-UTR isoforms of AC133 mRNA, which are expressed in a tissue-dependent manner. We found that transcription of these AC133 isoforms is controlled by 5 alternative promoters, and we demonstrated their activity on AC133-expressing cell lines using a luciferase reporter system. We also showed that in vitro methylation of 2 of these AC133 promoters completely suppresses their activity, suggesting that methylation plays a role in their regulation. Identification of tissue-specific AC133 promoters may provide a novel method to isolate tissue-specific stem and progenitor cells.

  13. Heavy metal removal from multicomponent system by sulfate reducing bacteria: Mechanism and cell surface characterization.

    PubMed

    Kiran, M Gopi; Pakshirajan, Kannan; Das, Gopal

    2017-02-15

    This study evaluated the combined effect of Cd(II), Cu(II), Ni(II), Fe(III), Pb(II) and Zn(II) on each other removal by anaerobic biomass under sulfate reducing condition. Statistically valid Plackett-Burman design of experiments was employed to carry out this mixture study. The results obtained showed a maximum removal of Cu(II) (98.9%), followed by Ni(II) (97%), Cd(II) (94.8%), Zn(II) (94.6%), Pb(II) (94.4%) and Fe(III) (93.9%). Analysis of variance (ANOVA) of the sulfate and chemical oxygen demand (COD) reduction revealed that the effect due to copper was highly significant (P value<0.05) on sulfate and COD removal. To establish the role of sulfate reducing bacteria (SRB) in the metal removal process, surface morphology and composition of the metal loaded biomass were analyzed by transmission electron microscopy (TEM) equipped with energy dispersive spectroscopy (EDS) and by field emission scanning electron microscopy (FESEM) integrated with energy dispersive X-ray spectroscopy (EDX). The results obtained revealed that the metal precipitates are associated with the outer and inner cell surface of the SRB as a result of the sulfide generated by SRB.

  14. Role of vimA in cell surface biogenesis in Porphyromonas gingivalis

    PubMed Central

    Osbourne, Devon O.; Aruni, Wilson; Roy, Francis; Perry, Christopher; Sandberg, Lawrence; Muthiah, Arun; Fletcher, Hansel M.

    2010-01-01

    The Porphyromonas gingivalis vimA gene has been previously shown to play a significant role in the biogenesis of gingipains. Further, in P. gingivalis FLL92, a vimA-defective mutant, there was increased auto-aggregation, suggesting alteration in membrane surface proteins. In order to determine the role of the VimA protein in cell surface biogenesis, the surface morphology of P. gingivalis FLL92 was further characterized. Transmission electron microscopy demonstrated abundant fimbrial appendages and a less well defined and irregular capsule in FLL92 compared with the wild-type. In addition, atomic force microscopy showed that the wild-type had a smoother surface compared with FLL92. Western blot analysis using anti-FimA antibodies showed a 41 kDa immunoreactive protein band in P. gingivalis FLL92 which was missing in the wild-type P. gingivalis W83 strain. There was increased sensitivity to globomycin and vancomycin in FLL92 compared with the wild-type. Outer membrane fractions from FLL92 had a modified lectin-binding profile. Furthermore, in contrast with the wild-type strain, nine proteins were missing from the outer membrane fraction of FLL92, while 20 proteins present in that fraction from FLL92 were missing in the wild-type strain. Taken together, these results suggest that the VimA protein affects capsular synthesis and fimbrial phenotypic expression, and plays a role in the glycosylation and anchorage of several surface proteins. PMID:20378652

  15. The cell surface receptor Slamf6 modulates innate immune responses during Citrobacter rodentium-induced colitis.

    PubMed

    van Driel, Boaz; Wang, Guoxing; Liao, Gongxian; Halibozek, Peter J; Keszei, Marton; O'Keeffe, Michael S; Bhan, Atul K; Wang, Ninghai; Terhorst, Cox

    2015-09-01

    The homophilic cell surface receptors CD150 (Slamf1) and CD352 (Slamf6) are known to modulate adaptive immune responses. Although the Th17 response was enhanced in Slamf6(-/-) C57BL/6 mice upon oral infection with Citrobacter rodentium, the pathologic consequences are indistinguishable from an infection of wild-type C57BL/6 mice. Using a reporter-based binding assay, we show that Slamf6 can engage structures on the outer cell membrane of several Gram(-) bacteria. Therefore, we examined whether Slamf6, like Slamf1, is also involved in innate responses to bacteria and regulates peripheral inflammation by assessing the outcome of C. rodentium infections in Rag(-/-) mice. Surprisingly, the pathology and immune responses in the lamina propria of C. rodentium-infected Slamf6(-/-) Rag(-/-) mice were markedly reduced as compared with those of Rag(-/-) mice. Infiltration of inflammatory phagocytes into the lamina propria was consistently lower in Slamf6(-/-) Rag(-/-) mice than in Rag(-/-) animals. Concomitant with the reduced systemic translocation of the bacteria was an enhanced production of IL-22, suggesting that Slamf6 suppresses a mucosal protective program. Furthermore, administering a mAb (330) that inhibits bacterial interactions with Slamf6 to Rag(-/-) mice ameliorated the infection compared with a control antibody. We conclude that Slamf6-mediated interactions of colonic innate immune cells with specific Gram(-) bacteria reduce mucosal protection and enhance inflammation, contributing to lethal colitis that is caused by C. rodentium infections in Rag(-/-) mice.

  16. Heparanase Facilitates Cell Adhesion and Spreading by Clustering of Cell Surface Heparan Sulfate Proteoglycans

    PubMed Central

    Levy-Adam, Flonia; Feld, Sari; Suss-Toby, Edith; Vlodavsky, Israel; Ilan, Neta

    2008-01-01

    Heparanase is a heparan sulfate (HS) degrading endoglycosidase participating in extracellular matrix degradation and remodeling. Apart of its well characterized enzymatic activity, heparanase was noted to exert also enzymatic-independent functions. Non-enzymatic activities of heparanase include enhanced adhesion of tumor-derived cells and primary T-cells. Attempting to identify functional domains of heparanase that would serve as targets for drug development, we have identified heparin binding domains of heparanase. A corresponding peptide (residues Lys158-Asp171, termed KKDC) was demonstrated to physically associate with heparin and HS, and to inhibit heparanase enzymatic activity. We hypothesized that the pro-adhesive properties of heparanase are mediated by its interaction with cell surface HS proteoglycans, and utilized the KKDC peptide to examine this possibility. We provide evidence that the KKDC peptide interacts with cell membrane HS, resulting in clustering of syndecan-1 and syndecan-4. We applied classical analysis of cell morphology, fluorescent and time-lapse microscopy and demonstrated that the KKDC peptide efficiently stimulates the adhesion and spreading of various cell types, mediated by PKC, Src, and the small GTPase Rac1. These results support, and further substantiate the notion that heparanase function is not limited to its enzymatic activity. PMID:18545691

  17. Identification of a cell-surface antigen selectively expressed on the natural killer cell

    PubMed Central

    1977-01-01

    We have studied the cell-surface phenotype of natural killer (NK) cells of NZB and B6 mice which react to an MuLV+ lymphoid tumor. (a) NK cells do not express Thy1, Ly2, or Ig surface markers. (b) NK cells express an antigen recognized by C3H anti-CE antiserum ('anti-Ly1.2 antiserum'). Inasmuch as NK activity of spleen cells from B6 and B6/Ly1.1 congenic strains were both equally sensitive to C3H anti-CE antiserum, the NK antigen is distinct from Ly1.2. This point was confirmed by the observation that alphaNK activity was removed by absorption of C3H anti-CE antiserum with spleen cells from either B6 or B6/Ly1.1 congenic strains. Absorption of C3H alphaCE serum with BALB/c thymocytes and spleen cells (which are Ly1.2+NK-) removed anti-Ly1.2 activity and left anti-NK activity intact. This absorption step could be circumvented by inserting the BALB/c genotype into the recipient immunized to CE cells (i.e., (C3H X BALB/c)F1 alphaCE spleen cells). This antiserum, provisionally termed 'anti-NK', defines a new subclass of lymphocytes which may play a central role in the immunosurveillance against tumors. PMID:187714

  18. Obtaining control of cell surface functionalizations via Pre-targeting and Supramolecular host guest interactions.

    PubMed

    Rood, Mark T M; Spa, Silvia J; Welling, Mick M; Ten Hove, Jan Bart; van Willigen, Danny M; Buckle, Tessa; Velders, Aldrik H; van Leeuwen, Fijs W B

    2017-01-06

    The use of mammalian cells for therapeutic applications is finding its way into modern medicine. However, modification or "training" of cells to make them suitable for a specific application remains complex. By envisioning a chemical toolbox that enables specific, but straight-forward and generic cellular functionalization, we investigated how membrane-receptor (pre)targeting could be combined with supramolecular host-guest interactions based on β-cyclodextrin (CD) and adamantane (Ad). The feasibility of this approach was studied in cells with membranous overexpression of the chemokine receptor 4 (CXCR4). By combining specific targeting of CXCR4, using an adamantane (Ad)-functionalized Ac-TZ14011 peptide (guest; KD = 56 nM), with multivalent host molecules that entailed fluorescent β-CD-Poly(isobutylene-alt-maleic-anhydride)-polymers with different fluorescent colors and number of functionalities, host-guest cell-surface modifications could be studied in detail. A second set of Ad-functionalized entities enabled introduction of additional surface functionalities. In addition, the attraction between CD and Ad could be used to drive cell-cell interactions. Combined we have shown that supramolecular interactions, that are based on specific targeting of an overexpressed membrane-receptor, allow specific and stable, yet reversible, surface functionalization of viable cells and how this approach can be used to influence the interaction between cells and their surroundings.

  19. Control of synaptic connectivity by a network of Drosophila IgSF cell surface proteins

    PubMed Central

    Nagarkar-Jaiswal, Sonal; Lee, Pei-Tseng; Jeon, Mili; Birnbaum, Michael E.; Bellen, Hugo J.; Garcia, K. Christopher; Zinn, Kai

    2015-01-01

    Summary We have defined a network of interacting Drosophila cell surface proteins in which a 21-member IgSF subfamily, the Dprs, binds to a 9-member subfamily, the DIPs. The structural basis of the Dpr-DIP interaction code appears to be dictated by shape complementarity within the Dpr-DIP binding interface. Each of the 6 dpr and DIP genes examined here is expressed by a unique subset of larval and pupal neurons. In the neuromuscular system, interactions between Dpr11 and DIP-γ affect presynaptic terminal development, trophic factor responses, and neurotransmission. In the visual system, dpr11 is selectively expressed by R7 photoreceptors that use Rh4 opsin (yR7s). Their primary synaptic targets, Dm8 amacrine neurons, express DIP-γ. In dpr11 or DIP-γ mutants, yR7 terminals extend beyond their normal termination zones in layer M6 of the medulla. DIP-γ is also required for Dm8 survival or differentiation. Our findings suggest that Dpr-DIP interactions are important determinants of synaptic connectivity. PMID:26687361

  20. Inhibition of immune opsonin-independent phagocytosis by antibody to a pulmonary macrophage cell surface antigen

    SciTech Connect

    Parod, R.J.; Godleski, J.J.; Brain J.D.

    1986-03-15

    Unlike other hamster phagoycytes, hamster pulmonary macrophages (PM) avidly ingest albumin-coated latex particles in the absence of serum. They also possess a highly specific cell surface antigen. To evaluate the relationship between these two characteristics, PM were incubated with mouse monoclonal antibody directed against the PM antigen. After unbound antibody was removed, the amount of bound antibody and the phagocytic capability of PM were measured by flow cytometry and fluorescence microscopy. Maximum antibody binding produced a 25% inhibition of ingestion. Particle attachment was not affected. This effect was antigen specific, since neither a nonspecific mouse myeloma protein of the same subclass nor a mouse antibody that bound to another hamster surface antigen had any effect on binding or ingestion. If antigen-specific F(ab')/sub 2/ fragments were introduced both before and during the period of phagocytosis, the inhibition of particle ingestion approached 100%. Particle binding increased at low F(ab')/sub 2/ concentrations but declined at higher concentrations. Because calcium may play a role in the ingestion process, the effect of antibody on /sup 45/Ca uptake was evaluated. It was observed that antigen-specific F(ab')/sub 2/ fragments stimulated /sup 45/Ca uptake, whereas control antibodies did not. These results suggest that the antigen reacting with the anti-hamster PM monoclonal antibody is involved in immune opsonin-independent phagocytosis and that calcium participates in this phagocytic process.

  1. Molecular Recognition by a Polymorphic Cell Surface Receptor Governs Cooperative Behaviors in Bacteria

    PubMed Central

    Dey, Arup; Wall, Daniel

    2013-01-01

    Cell-cell recognition is a fundamental process that allows cells to coordinate multicellular behaviors. Some microbes, such as myxobacteria, build multicellular fruiting bodies from free-living cells. However, how bacterial cells recognize each other by contact is poorly understood. Here we show that myxobacteria engage in recognition through interactions between TraA cell surface receptors, which leads to the fusion and exchange of outer membrane (OM) components. OM exchange is shown to be selective among 17 environmental isolates, as exchange partners parsed into five major recognition groups. TraA is the determinant of molecular specificity because: (i) exchange partners correlated with sequence conservation within its polymorphic PA14-like domain and (ii) traA allele replacements predictably changed partner specificity. Swapping traA alleles also reprogrammed social interactions among strains, including the regulation of motility and conferred immunity from inter-strain killing. We suggest that TraA helps guide the transition of single cells into a coherent bacterial community, by a proposed mechanism that is analogous to mitochondrial fusion and fission cycling that mixes contents to establish a homogenous population. In evolutionary terms, traA functions as a rare greenbeard gene that recognizes others that bear the same allele to confer beneficial treatment. PMID:24244178

  2. Obtaining control of cell surface functionalizations via Pre-targeting and Supramolecular host guest interactions

    PubMed Central

    Rood, Mark T. M.; Spa, Silvia J.; Welling, Mick M.; ten Hove, Jan Bart; van Willigen, Danny M.; Buckle, Tessa; Velders, Aldrik H.; van Leeuwen, Fijs W. B.

    2017-01-01

    The use of mammalian cells for therapeutic applications is finding its way into modern medicine. However, modification or “training” of cells to make them suitable for a specific application remains complex. By envisioning a chemical toolbox that enables specific, but straight-forward and generic cellular functionalization, we investigated how membrane-receptor (pre)targeting could be combined with supramolecular host-guest interactions based on β-cyclodextrin (CD) and adamantane (Ad). The feasibility of this approach was studied in cells with membranous overexpression of the chemokine receptor 4 (CXCR4). By combining specific targeting of CXCR4, using an adamantane (Ad)-functionalized Ac-TZ14011 peptide (guest; KD = 56 nM), with multivalent host molecules that entailed fluorescent β-CD-Poly(isobutylene-alt-maleic-anhydride)-polymers with different fluorescent colors and number of functionalities, host-guest cell-surface modifications could be studied in detail. A second set of Ad-functionalized entities enabled introduction of additional surface functionalities. In addition, the attraction between CD and Ad could be used to drive cell-cell interactions. Combined we have shown that supramolecular interactions, that are based on specific targeting of an overexpressed membrane-receptor, allow specific and stable, yet reversible, surface functionalization of viable cells and how this approach can be used to influence the interaction between cells and their surroundings. PMID:28057918

  3. A lectin-based cell microarray approach to analyze the mammalian granulosa cell surface glycosylation profile.

    PubMed

    Accogli, Gianluca; Desantis, Salvatore; Martino, Nicola Antonio; Dell'Aquila, Maria Elena; Gemeiner, Peter; Katrlík, Jaroslav

    2016-10-01

    The high complexity of glycome, the repertoire of glycans expressed in a cell or in an organism, is difficult to analyze and the use of new technologies has accelerated the progress of glycomics analysis. In the last decade, the microarray approaches, and in particular glycan and lectin microarrays, have provided new insights into evaluation of cell glycosylation status. Here we present a cell microarray method based on cell printing on microarray slides for the analysis of the glycosylation pattern of the cell glycocalyx. In order to demonstrate the reliability of the developed method, the glycome profiles of equine native uncultured mural granulosa cells (uGCs) and in vitro cultured mural granulosa cells (cGCs) were determined and compared. The method consists in the isolation of GCs, cell printing into arrays on microarray slide, incubation with a panel of biotinylated lectins, reaction with fluorescent streptavidin and signal intensity detection by a microarray scanner. Cell microarray technology revealed that glycocalyx of both uGCs and cGCs contains N-glycans, sialic acid terminating glycans, N-acetylglucosamine and O-glycans. The comparison of uGCs and cGCs glycan signals indicated an increase in the expression of sialic acids, N-acetylglucosamine, and N-glycans in cGCs. Glycan profiles determined by cell microarray agreed with those revealed by lectin histochemistry. The described cell microarray method represents a simple and sensitive procedure to analyze cell surface glycome in mammalian cells.

  4. Class I major histocompatibility proteins as cell surface receptors for simian virus 40.

    PubMed

    Atwood, W J; Norkin, L C

    1989-10-01

    Class I major histocompatibility complex proteins appear to be the major cell surface receptors for simian virus 40 (SV40), as implied by the following observations. Adsorption of SV40 to LLC-MK2 rhesus monkey kidney cells specifically inhibited binding of a monoclonal antibody (MAb) against class I human lymphocyte antigen (HLA) proteins. Conversely, pretreatment of LLC-MK2 cells with anti-HLA MAbs inhibited infection by SV40. The ability of anti-HLA to inhibit infection was greatly reduced when the order of addition of the anti-HLA and the virus was reversed. Infection was also inhibited by preincubating SV40 with purified soluble class I protein. Finally, human lymphoblastoid cells of the Daudi line, which do not express class I major histocompatibility complex proteins, were infected at relatively low levels with SV40 virions. In a control experiment, we found that pretreatment of cells with a MAb specific for the leukocytic-function-associated antigen LFA-3 actually enhanced infection. This finding may also support the premise that class I major histocompatibility complex proteins are receptors for SV40.

  5. Bioadsorption of Rare Earth Elements through Cell Surface Display of Lanthanide Binding Tags.

    PubMed

    Park, Dan M; Reed, David W; Yung, Mimi C; Eslamimanesh, Ali; Lencka, Malgorzata M; Anderko, Andrzej; Fujita, Yoshiko; Riman, Richard E; Navrotsky, Alexandra; Jiao, Yongqin

    2016-03-01

    With the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb(3+) could be effectively recovered using citrate, consistent with thermodynamic speciation calculations that predicted strong complexation of Tb(3+) by citrate. No reduction in Tb(3+) adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.

  6. The Prc and RseP proteases control bacterial cell-surface signalling activity.

    PubMed

    Bastiaansen, Karlijn C; Ibañez, Aurelia; Ramos, Juan L; Bitter, Wilbert; Llamas, María A

    2014-08-01

    Extracytoplasmic function (ECF) sigma factors play a key role in the regulation of vital functions in the bacterial response to the environment. In Gram-negative bacteria, activity of these sigma factors is often controlled by cell-surface signalling (CSS), a regulatory system that also involves an outer membrane receptor and a transmembrane anti-sigma factor. To get more insight into the molecular mechanism behind CSS regulation, we have focused on the unique Iut system of Pseudomonas putida. This system contains a hybrid protein containing both a cytoplasmic ECF sigma domain and a periplasmic anti-sigma domain, apparently leading to a permanent interaction between the sigma and anti-sigma factor. We show that the Iut ECF sigma factor regulates the response to aerobactin under iron deficiency conditions and is activated by a proteolytic pathway that involves the sequential action of two proteases: Prc, which removes the periplasmic anti-sigma domain, and RseP, which subsequently removes the transmembrane domain and thereby generates the ECF active transcriptional form. We furthermore demonstrate the role of these proteases in the regulation of classical CSS systems in which the sigma and anti-sigma factors are two different proteins.

  7. Cell Surface CD74-MIF Interactions Drive Melanoma Survival in Response to Interferon-γ.

    PubMed

    Tanese, Keiji; Hashimoto, Yuuri; Berkova, Zuzana; Wang, Yuling; Samaniego, Felipe; Lee, Jeffrey E; Ekmekcioglu, Suhendan; Grimm, Elizabeth A

    2015-11-01

    Melanoma is believed to be a highly immunogenic tumor and recent developments in immunotherapies are promising. IFN-γ produced by immune cells has a crucial role in tumor immune surveillance; however, it has also been reported to be pro-tumorigenic. In the current study, we found that IFN-γ enhances the expression of CD74, which interacts with its ligand, macrophage migration inhibitory factor (MIF), and thereby activates the PI3K/AKT pathway in melanoma, promoting tumor survival. IFN-γ increased phosphorylation of AKT Ser473 and upregulated total cell surface expression of CD74 in human melanoma cell lines tested. CD74 was highly expressed in melanoma tissues. Moreover, the expression of CD74 on tumor cells correlated with plasma IFN-γ levels in melanoma patient samples. In our analysis of melanoma cell lines, all produced MIF constitutively. Blockade of CD74-MIF interaction reduced AKT phosphorylation and expression of pro-tumorigenic molecules, including IL-6, IL-8, and BCL-2. Inhibition of CD74-MIF interaction significantly suppressed tumor growth in the presence of IFN-γ in our xenograft mouse model. Thus, we conclude that IFN-γ promotes melanoma cell survival by regulating CD74-MIF signaling, suggesting that targeting the CD74-MIF interaction under IFN-γ-stimulatory conditions would be an effective therapeutic approach for melanoma.

  8. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering.

    PubMed

    Hasunuma, Tomohisa; Kondo, Akihiko

    2012-01-01

    To build an energy and material secure future, a next generation of renewable fuels produced from lignocellulosic biomass is required. Although lignocellulosic biomass, which represents an abundant, inexpensive and renewable source for bioethanol production, is of great interest as a feedstock, the complicated ethanol production processes involved make the cost of producing bioethanol from it higher compared to corn starch and cane juice. Therefore, consolidated bioprocessing (CBP), which combines enzyme production, saccharification and fermentation in a single step, has gained increased recognition as a potential bioethanol production system. CBP requires a highly engineered microorganism developed for several different process-specific characteristics. The dominant strategy for engineering a CBP biocatalyst is to express multiple components of a cellulolytic system from either fungi or bacteria in the yeast Saccharomyces cerevisiae. The development of recombinant yeast strains displaying cellulases and hemicellulases on the cell surface represents significant progress toward realization of CBP. Regardless of the process used for biomass hydrolysis, CBP-enabling microorganisms encounter a variety of toxic compounds produced during biomass pretreatment that inhibit microbial growth and ethanol yield. Systems biology approaches including disruptome screening, transcriptomics, and metabolomics have been recently exploited to gain insight into the molecular and genetic traits involved in tolerance and adaptation to the fermentation inhibitors. In this review, we focus on recent advances in development of yeast strains with both the ability to directly convert lignocellulosic material to ethanol and tolerance in the harsh environments containing toxic compounds in the presence of ethanol.

  9. Iron at the cell surface controls DNA synthesis in CCl 39 cells.

    PubMed

    Alcain, F J; Löw, H; Crane, F L

    1994-08-30

    Treatment of CCl 39 cells with the impermeable iron II chelator bathophenanthroline disulfonate (BPS) inhibits both DNA synthesis and transplasma membrane electron transport. The inhibition persists when the BPS is removed, and the extract from 10(6) cells contains up to 1.28 nmoles iron II chelated to BPS. The BPS iron II chelate itself is not inhibitory. Both DNA synthesis and electron transport are restored by addition of microM iron II or iron III compounds to extracted cells. Other impermeable chelators for iron II give similar inhibition, whereas the iron III-specific Tiron or copper-specific bathocuproine sulfonate do not inhibit. The inhibition differs from the permeable iron III chelator inhibition of ribonucleotide reductase, because inhibition of DNA synthesis by the permeable chelators is reversed when chelator is removed. The response to growth factors also differs, with no impermeable chelator inhibition on 10% fetal calf serum contrasting to inhibition by permeable chelators. DNA synthesis with both activation of tyrosine kinase with EGF plus insulin or by thrombin or ceruloplasmin led to protein kinase C activation as inhibited by the impermeable chelators. It is proposed that an iron available on the cell surface is required for DNA synthesis and plasma membrane electron transport.

  10. Comparison of cell-surface glycoproteins of rat hepatomas and embryonic rat liver.

    PubMed Central

    van Beek, W. P.; Emmelot, P.; Homburg, C.

    1977-01-01

    Cell-surface glycoprotein of 3 rat hepatoma strains and late-embryonic liver was metabolically labelled in vivo with [3H]- or [14C]-fucose. Trypsinization of the cells and exhaustive pronase digestion of combined hepatoma-liver trypsinates followed by gel filtration over Sephadex-Biogel mixtures, yielded elution profiles that contained more early-eluting (high-mol.-wt.) glycopeptides for hepatomas than for liver. At least 3 factors were identified which acted to augment the fraction of early-eluting tumour glycopeptides: (a) increase of neuraminidase-sensitive sialic acid, (b) increase of neuraminidase-insensitive sialic acid that was sensitive to mild HCl hydrolysis, and (c) presence of sugar sulphate groups contributing to a restricted extent, relative to possible unknown factor(s). Whether (a), (b) or (c) operated depended on the hepatoma strain or its mode of growth. Notwithstanding these differences in the nature of the increase in early-eluting glycopeptides, the increase itself appears not to be due to growth per se, nor to an embryonic expression, but rather may serve as a marker of tumourigenicity. PMID:199223

  11. Control of Synaptic Connectivity by a Network of Drosophila IgSF Cell Surface Proteins.

    PubMed

    Carrillo, Robert A; Özkan, Engin; Menon, Kaushiki P; Nagarkar-Jaiswal, Sonal; Lee, Pei-Tseng; Jeon, Mili; Birnbaum, Michael E; Bellen, Hugo J; Garcia, K Christopher; Zinn, Kai

    2015-12-17

    We have defined a network of interacting Drosophila cell surface proteins in which a 21-member IgSF subfamily, the Dprs, binds to a nine-member subfamily, the DIPs. The structural basis of the Dpr-DIP interaction code appears to be dictated by shape complementarity within the Dpr-DIP binding interface. Each of the six dpr and DIP genes examined here is expressed by a unique subset of larval and pupal neurons. In the neuromuscular system, interactions between Dpr11 and DIP-γ affect presynaptic terminal development, trophic factor responses, and neurotransmission. In the visual system, dpr11 is selectively expressed by R7 photoreceptors that use Rh4 opsin (yR7s). Their primary synaptic targets, Dm8 amacrine neurons, express DIP-γ. In dpr11 or DIP-γ mutants, yR7 terminals extend beyond their normal termination zones in layer M6 of the medulla. DIP-γ is also required for Dm8 survival or differentiation. Our findings suggest that Dpr-DIP interactions are important determinants of synaptic connectivity.

  12. Dysregulated expression of cell surface glycoprotein CDCP1 in prostate cancer

    PubMed Central

    Yang, Lifang; Dutta, Sucharita M.; Troyer, Dean A.; Lin, Jefferson B.; Lance, Raymond A.; Nyalwidhe, Julius O.; Drake, Richard R; Semmes, O. John

    2015-01-01

    CUB-domain-containing protein 1 (CDCP1) is a trans-membrane protein regulator of cell adhesion with a potent pro-migratory function in tumors. Given that proteolytic cleavage of the ectodomain correlates with outside-in oncogenic signaling, we characterized glycosylation in the context of cellular processing and expression of CDCP1 in prostate cancer. We detected 135 kDa full-length and proteolytic processed 70 kDa species in a panel of PCa cell models. The relative expression of full-length CDCP1 correlated with the metastatic potential of syngeneic cell models and an increase in surface membrane expression of CDCP1 was observed in tumor compared to adjacent normal prostate tissues. We demonstrated that glycosylation of CDCP1 is a prerequisite for protein stability and plasma membrane localization, and that the expression level and extent of N-glycosylation of CDCP1 correlated with metastatic status. Interestingly, complex N-linked glycans with sialic acid chains were restricted to the N-terminal half of the ectodomain and absent in the truncated species. Characterization of the extracellular expression of CDCP1 identified novel circulating forms and revealed that extracellular vesicles provide additional processing pathways. Employing immunoaffinity mass spectrometry, we detected elevated levels of circulating CDCP1 in patient urine with high-risk disease. Our results establish that differential glycosylation, cell surface presentation and extracellular expression of CDCP1 are hallmarks of PCa progression. PMID:26497208

  13. Nanoscale biophysical properties of the cell surface galactosaminogalactan from the fungal pathogen Aspergillus fumigatus

    NASA Astrophysics Data System (ADS)

    Beaussart, Audrey; El-Kirat-Chatel, Sofiane; Fontaine, Thierry; Latgé, Jean-Paul; Dufrêne, Yves F.

    2015-09-01

    Many fungal pathogens produce cell surface polysaccharides that play essential roles in host-pathogen interactions. In Aspergillus fumigatus, the newly discovered polysaccharide galactosaminogalactan (GAG) mediates adherence to a variety of substrates through molecular mechanisms that are poorly understood. Here we use atomic force microscopy to unravel the localization and adhesion of GAG on living fungal cells. Using single-molecule imaging with tips bearing anti-GAG antibodies, we found that GAG is massively exposed on wild-type (WT) germ tubes, consistent with the notion that this glycopolymer is secreted by the mycelium of A. fumigatus, while it is lacking on WT resting conidia and on germ tubes from a mutant (Δuge3) deficient in GAG. Imaging germ tubes with tips bearing anti-β-glucan antibodies shows that exposure of β-glucan is strongly increased in the Δuge3 mutant, indicating that this polysaccharide is masked by GAG during hyphal growth. Single-cell force measurements show that expression of GAG on germ tubes promotes specific adhesion to pneumocytes and non-specific adhesion to hydrophobic substrates. These results provide a molecular foundation for the multifunctional adhesion properties of GAG, thus suggesting it could be used as a potential target in anti-adhesion therapy and immunotherapy. Our methodology represents a powerful approach for characterizing the nanoscale organization and adhesion of cell wall polysaccharides during fungal morphogenesis, thereby contributing to increase our understanding of their role in biofilm formation and immune responses.

  14. Neisseria lactamica selectively induces mitogenic proliferation of the naive B cell pool via cell surface Ig.

    PubMed

    Vaughan, Andrew T; Brackenbury, Louise S; Massari, Paola; Davenport, Victoria; Gorringe, Andrew; Heyderman, Robert S; Williams, Neil A

    2010-09-15

    Neisseria lactamica is a commensal bacteria that colonizes the human upper respiratory tract mucosa during early childhood. In contrast to the closely related opportunistic pathogen Neisseria meningitidis, there is an absence of adaptive cell-mediated immunity to N. lactamica during the peak age of carriage. Instead, outer membrane vesicles derived from N. lactamica mediate a B cell-dependent proliferative response in mucosal mononuclear cells that is associated with the production of polyclonal IgM. We demonstrate in this study that this is a mitogenic human B cell response that occurs independently of T cell help and any other accessory cell population. The ability to drive B cell proliferation is a highly conserved property and is present in N. lactamica strains derived from diverse clonal complexes. CFSE staining of purified human tonsillar B cells demonstrated that naive IgD(+) and CD27(-) B cells are selectively induced to proliferate by outer membrane vesicles, including the innate CD5(+) subset. Neither purified lipooligosaccharide nor PorB from N. lactamica is likely to be responsible for this activity. Prior treatment of B cells with pronase to remove cell-surface Ig or treatment with BCR-specific Abs abrogated the proliferative response to N. lactamica outer membrane vesicles, suggesting that this mitogenic response is dependent upon the BCR.

  15. Bioadsorption of rare earth elements through cell surface display of lanthanide binding tags

    SciTech Connect

    Park, Dan M.; Reed, David W.; Yung, Mimi C.; Eslamimanesh, Ali; Lencka, Malgorzata M.; Anderko, Andrzej; Fujita, Yoshiko; Riman, Richard E.; Navrotsky, Alexandra; Jiao, Yongqin

    2016-02-02

    In this study, with the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb3+ could be effectively recovered using citrate, consistent with thermodynamic speciation calculations that predicted strong complexation of Tb3+ by citrate. No reduction in Tb3+ adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.

  16. Association of gross virus-associated cell-surface antigen with liposomes.

    PubMed Central

    Sakai, F.; Gerlier, D.; Doré, J. F.

    1980-01-01

    Gross Cell-Surface Antigen (GCSAa) was obtained from W/Fu (C58NT)D lymphoma cells by Nonidet P40(NP40) or 3M KCl extraction and further purified by Sephadex G200 filtration. GCSAa was associated with lipids (dipalmitoylphosphatidycholine, cholesterol and dicetylphosphate, in molar ratios of 7:2:1) to form multilamellar liposomes. The amount of protein associated with liposomes was found to be proportional to the protein concentration of the sensitizing cellular extract and to the amount of phospholipids used and, under defined conditions, 22-55% of the protein of the cellular extract could be associated with liposomes. Analysis of disrupted sensitized liposomes showed that the GCSAa-specific activity of the liposome-associated proteins was quite similar to that of the proteins of the sensitizing cellular extract. Ultracentrifugation of disrupted liposomes showed that about 75% of the liposome-associated GCSAa activity was firmly associated with lipids and that little GCSAa was trapped within aqueous compartments between lipidic lamellae. 1.8--8.0% of the liposome-associated GCSAa was expressed at the liposome surface. No striking differences in degree of GCSAa association were found between liposomes sensitized by NP40 or by 3M KCl extracts. Storage experiments at +4 degrees C showed that GCSAa-sensitized liposomes were fairly stable. Images Fig. 2 PMID:7370162

  17. Cell-surface signaling in Pseudomonas: stress responses, iron transport, and pathogenicity.

    PubMed

    Llamas, María A; Imperi, Francesco; Visca, Paolo; Lamont, Iain L

    2014-07-01

    Membrane-spanning signaling pathways enable bacteria to alter gene expression in response to extracytoplasmic stimuli. Many such pathways are cell-surface signaling (CSS) systems, which are tripartite molecular devices that allow Gram-negative bacteria to transduce an extracellular stimulus into a coordinated transcriptional response. Typically, CSS systems are composed of the following: (1) an outer membrane receptor, which senses the extracellular stimulus; (2) a cytoplasmic membrane-spanning protein involved in signal transduction from the periplasm to the cytoplasm; and (3) an extracytoplasmic function (ECF) sigma factor that initiates expression of the stimulus-responsive gene(s). Members of genus Pseudomonas provide a paradigmatic example of how CSS systems contribute to the global control of gene expression. Most CSS systems enable self-regulated uptake of iron via endogenous (pyoverdine) or exogenous (xenosiderophores, heme, and citrate) carriers. Some are also implicated in virulence, biofilm formation, and cell-cell interactions. Incorporating insights from the well-characterized alginate regulatory circuitry, this review will illustrate common themes and variations at the level of structural and functional properties of Pseudomonas CSS systems. Control of the expression and activity of ECF sigma factors are central to gene regulation via CSS, and the variety of intrinsic and extrinsic factors influencing these processes will be discussed.

  18. Depletion of high molecular weight dextran from the red cell surface measured by particle electrophoresis.

    PubMed

    Rad, Samar; Gao, Jie; Meiselman, Herbert J; Baskurt, Oguz K; Neu, Björn

    2009-02-01

    The reversible aggregation of human red blood cells (RBC) by proteins or polymers continues to be of biological and biophysical interest, yet the mechanistic details governing the process are still being explored. A depletion model has been proposed for aggregation by the neutral polyglucose dextran and its applicability at high molecular weights has been recently documented. In the present study the depletion of high molecular weight dextrans on the red cell surface was measured as a function of polymer molecular mass (40 kDa-28 MDa), ionic strength (5 and 15 mM NaCl) and polymer concentration (< or =0.9 g/dL). The experimental data clearly indicate an increasing depletion effect with increasing molecular weight: the effects of medium viscosity on RBC mobility were markedly overestimated by the Helmholtz-Smoluchowski relation, with the difference increasing with dextran molecular mass. These results agree with the concept of polymer depletion near the RBC surface and lend strong support to a "depletion model" mechanism for dextran-mediated RBC aggregation. Our findings provide important new insight into polymer-RBC interactions and suggest the usefulness of this model for fundamental studies of cell-cell affinity and for the development of new agents to stabilize or destabilize specific bio-fluids.

  19. Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering

    NASA Astrophysics Data System (ADS)

    Rogozhnikov, Dmitry; O’Brien, Paul J.; Elahipanah, Sina; Yousaf, Muhammad N.

    2016-12-01

    There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity.

  20. Binding motifs of CBP2 a potential cell surface target for carcinoma cells.

    PubMed

    Sauk, J J; Coletta, R D; Norris, K; Hebert, C

    2000-05-01

    Previously we have shown (Hebert et al. [1999] J. Cell Biochem. 73:248-258) that among many cell lines the CBP2 gene product, Hsp47, eludes its retention receptor, erd2P, resulting in the appearance of Hsp47 on the cell surface associated with the tetraspanin protein CD9. Since Hsp47 possesses a highly restricted binding cleft, random peptide display libraries were used to characterize peptides binding to Hsp47 and then to target this protein on carcinoma cell lines in vitro. Comparison of the clones obtained from panning revealed little specific homology based on sequence alone. To determine whether carcinoma cells expressing Hsp47 could selectively take up the selected bacteriophages, traditional immunofluorescence and confocal microscopy were employed. These studies revealed that phage-displaying Hsp47 binding peptides bound to cell lines expressing Hsp47 and that the peptides were rapidly taken up to a location coincident with Hsp47 staining. These observations were confirmed by cytometric analyses. These data indicate that CBP2 product may provide a molecular target for chemotherapy and/or imaging of malignancies.

  1. Recruitment of Factor H to the Streptococcus suis Cell Surface is Multifactorial.

    PubMed

    Roy, David; Grenier, Daniel; Segura, Mariela; Mathieu-Denoncourt, Annabelle; Gottschalk, Marcelo

    2016-07-07

    Streptococcus suis is an important bacterial swine pathogen and a zoonotic agent. Recently, two surface proteins of S. suis, Fhb and Fhbp, have been described for their capacity to bind factor H-a soluble complement regulatory protein that protects host cells from complement-mediated damages. Results obtained in this study showed an important role of host factor H in the adhesion of S. suis to epithelial and endothelial cells. Both Fhb and Fhbp play, to a certain extent, a role in such increased factor H-dependent adhesion. The capsular polysaccharide (CPS) of S. suis, independently of the presence of its sialic acid moiety, was also shown to be involved in the recruitment of factor H. However, a triple mutant lacking Fhb, Fhbp and CPS was still able to recruit factor H resulting in the degradation of C3b in the presence of factor I. In the presence of complement factors, the double mutant lacking Fhb and Fhbp was similarly phagocytosed by human macrophages and killed by pig blood when compared to the wild-type strain. In conclusion, this study suggests that recruitment of factor H to the S. suis cell surface is multifactorial and redundant.

  2. Recruitment of Factor H to the Streptococcus suis Cell Surface is Multifactorial

    PubMed Central

    Roy, David; Grenier, Daniel; Segura, Mariela; Mathieu-Denoncourt, Annabelle; Gottschalk, Marcelo

    2016-01-01

    Streptococcus suis is an important bacterial swine pathogen and a zoonotic agent. Recently, two surface proteins of S. suis, Fhb and Fhbp, have been described for their capacity to bind factor H—a soluble complement regulatory protein that protects host cells from complement-mediated damages. Results obtained in this study showed an important role of host factor H in the adhesion of S. suis to epithelial and endothelial cells. Both Fhb and Fhbp play, to a certain extent, a role in such increased factor H-dependent adhesion. The capsular polysaccharide (CPS) of S. suis, independently of the presence of its sialic acid moiety, was also shown to be involved in the recruitment of factor H. However, a triple mutant lacking Fhb, Fhbp and CPS was still able to recruit factor H resulting in the degradation of C3b in the presence of factor I. In the presence of complement factors, the double mutant lacking Fhb and Fhbp was similarly phagocytosed by human macrophages and killed by pig blood when compared to the wild-type strain. In conclusion, this study suggests that recruitment of factor H to the S. suis cell surface is multifactorial and redundant. PMID:27399785

  3. Bioadsorption of rare earth elements through cell surface display of lanthanide binding tags

    DOE PAGES

    Park, Dan M.; Reed, David W.; Yung, Mimi C.; ...

    2016-02-02

    In this study, with the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb3+ could be effectively recovered using citrate,more » consistent with thermodynamic speciation calculations that predicted strong complexation of Tb3+ by citrate. No reduction in Tb3+ adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.« less

  4. The effect of the state of differentiation on labeling of epidermal cell surface glycoproteins

    SciTech Connect

    Brysk, M.M.; Snider, J.M.

    1982-05-01

    Epidermal cells were grown in a medium in which the Ca++ concentration controlled the stage of differentiation. Cell surface molecules of differentiated and undifferentiated cells were compared by lactoperoxidase-catalyzed iodination, by the interaction with /sup 125/I-lectins, and by the metabolic incorporation of L-(/sup 3/H)-fucose. Molecular weights of the labeled components were determined by SDS-PAGE and autoradiography. After lactoperoxidase iodination, most of the radioactivity was found in polypeptide bands of 79,000, 65,000 and 56,000 daltons. The 79,000 band is the most intense for undifferentiated cells but disappears as differentiation proceeds. The 56,000 band is present in normal cells at all stages of differentiation but is absent from neoplastic cells. Glycoproteins reacted with /sup 125/I-lectins were found at 180,000, 130,000 and 85,000 daltons. The 130,000 band was the most prominent for differentiated cells labeled with wheat germ agglutinin but was essentially absent from the undifferentiated cells. With Ricinus communis agglutinin, this band was weaker for undifferentiated than for differentiated cells but was the most intense for both. After metabolic incorporation of tritiated fucose, radioactive glycoproteins were found at 130,000 and 85,000 daltons, with comparable intensities for differentiated and undifferentiated cells.

  5. Biomechanics of cell rolling: shear flow, cell-surface adhesion, and cell deformability.

    PubMed

    Dong, C; Lei, X X

    2000-01-01

    The mechanics of leukocyte (white blood cell; WBC) deformation and adhesion to endothelial cells (EC) has been investigated using a novel in vitro side-view flow assay. HL-60 cell rolling adhesion to surface-immobilized P-selectin was used to model the WBC-EC adhesion process. Changes in flow shear stress, cell deformability, or substrate ligand strength resulted in significant changes in the characteristic adhesion binding time, cell-surface contact and cell rolling velocity. A 2-D model indicated that cell-substrate contact area under a high wall shear stress (20 dyn/cm2) could be nearly twice of that under a low stress (0.5 dyn/cm2) due to shear flow-induced cell deformation. An increase in contact area resulted in more energy dissipation to both adhesion bonds and viscous cytoplasm, whereas the fluid energy that inputs to a cell decreased due to a flattened cell shape. The model also predicted a plateau of WBC rolling velocity as flow shear stresses further increased. Both experimental and computational studies have described how WBC deformation influences the WBC-EC adhesion process in shear flow.

  6. Autotransporter-based cell surface display in Gram-negative bacteria.

    PubMed

    Nicolay, Toon; Vanderleyden, Jos; Spaepen, Stijn

    2015-02-01

    Cell surface display of proteins can be used for several biotechnological applications such as the screening of protein libraries, whole cell biocatalysis and live vaccine development. Amongst all secretion systems and surface appendages of Gram-negative bacteria, the autotransporter secretion pathway holds great potential for surface display because of its modular structure and apparent simplicity. Autotransporters are polypeptides made up of an N-terminal signal peptide, a secreted or surface-displayed passenger domain and a membrane-anchored C-terminal translocation unit. Genetic replacement of the passenger domain allows for the surface display of heterologous passengers. An autotransporter-based surface expression module essentially consists of an application-dependent promoter system, a signal peptide, a passenger domain of interest and the autotransporter translocation unit. The passenger domain needs to be compatible with surface translocation although till now no general rules have been determined to test this compatibility. The autotransporter technology for surface display of heterologous passenger domains is critically discussed for various applications.

  7. Thrombomucin, a Novel Cell Surface Protein that Defines Thrombocytes and Multipotent Hematopoietic Progenitors

    PubMed Central

    McNagny, Kelly M.; Pettersson, Inger; Rossi, Fabio; Flamme, Ingo; Shevchenko, Andrej; Mann, Matthias; Graf, Thomas

    1997-01-01

    MEP21 is an avian antigen specifically expressed on the surface of Myb-Ets–transformed multipotent hematopoietic precursors (MEPs) and of normal thrombocytes. Using nanoelectrospray tandem mass spectrometry, we have sequenced and subsequently cloned the MEP21 cDNA and named the gene thrombomucin as it encodes a 571–amino acid protein with an extracellular domain typical of the mucin family of proteoglycans. Thrombomucin is distantly related to CD34, the best characterized and most used human hematopoietic stem cell marker. It is also highly homologous in its transmembrane/intracellular domain to podocalyxinlike protein–1, a rabbit cell surface glycoprotein of kidney podocytes. Single cell analysis of yolk sac cells from 3-d-old chick embryos revealed that thrombomucin is expressed on the surface of both lineage-restricted and multipotent progenitors. In the bone marrow, thrombomucin is also expressed on mono- and multipotent progenitors, showing an overlapping but distinct expression pattern from that of the receptor-type stem cell marker c-kit. These observations strengthen the notion that the Myb-Ets oncoprotein can induce the proliferation of thrombomucin-positive hematopoietic progenitors that have retained the capacity to differentiate along multiple lineages. They also suggest that thrombomucin and CD34 form a family of stem cell–specific proteins with possibly overlapping functions in early hematopoietic progenitors. PMID:9298993

  8. Effects of rhamnolipids on cell surface hydrophobicity of PAH degrading bacteria and the biodegradation of phenanthrene.

    PubMed

    Zhao, Zhenyong; Selvam, Ammaiyappan; Wong, Jonathan Woon-Chung

    2011-03-01

    The effects of rhamnolipids produced by Pseudomonas aeruginosa ATCC9027 on the cell surface hydrophobicity (CSH) and the biodegradation of phenanthrene by two thermophilic bacteria, Bacillus subtilis BUM and P. aeruginosa P-CG3, and mixed inoculation of these two strains were investigated. Rhamnolipids significantly reduced the CSH of the hydrophobic BUM and resulted in a noticeable lag period in the biodegradation. However, they significantly increased the CSH and enhanced the biodegradation for the hydrophilic P-CG3. In the absence of rhamnolipids, a mixed inoculation of BUM and P-CG3 removed 82.2% of phenanthrene within 30 days and the major contributor of the biodegradation was BUM (rapid degrader) while the growth of P-CG3 (slow degrader) was suppressed. Addition of rhamnolipids promoted the surfactant-mediated-uptake of phenanthrene by P-CG3 but inhibited the uptake through direct contact by BUM. This resulted in the domination of P-CG3 during the initial stage of biodegradation and enhanced the biodegradation to 92.7%.

  9. Phosphorylation and chronic agonist treatment atypically modulate GABAB receptor cell surface stability.

    PubMed

    Fairfax, Benjamin P; Pitcher, Julie A; Scott, Mark G H; Calver, Andrew R; Pangalos, Menelas N; Moss, Stephen J; Couve, Andrés

    2004-03-26

    GABA(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. The dynamic control of the cell surface stability of GABA(B) receptors is likely to be of fundamental importance in the modulation of receptor signaling. Presently, however, this process is poorly understood. Here we demonstrate that GABA(B) receptors are remarkably stable at the plasma membrane showing little basal endocytosis in cultured cortical and hippocampal neurons. In addition, we show that exposure to baclofen, a well characterized GABA(B) receptor agonist, fails to enhance GABA(B) receptor endocytosis. Lack of receptor internalization in neurons correlates with an absence of agonist-induced phosphorylation and lack of arrestin recruitment in heterologous systems. We also demonstrate that chronic exposure to baclofen selectively promotes endocytosis-independent GABA(B) receptor degradation. The effect of baclofen can be attenuated by activation of cAMP-dependent protein kinase or co-stimulation of beta-adrenergic receptors. Furthermore, we show that increased degradation rates are correlated with reduced receptor phosphorylation at serine 892 in GABA(B)R2. Our results support a model in which GABA(B)R2 phosphorylation specifically stabilizes surface GABA(B) receptors in neurons. We propose that signaling pathways that regulate cAMP levels in neurons may have profound effects on the tonic synaptic inhibition by modulating the availability of GABA(B) receptors.

  10. The behavior of lipid debris left on cell surfaces from microbubble based ultrasound molecular imaging.

    PubMed

    Ibsen, Stuart; Shi, Guixin; Schutt, Carolyn; Shi, Linda; Suico, Kyle-David; Benchimol, Michael; Serra, Viviana; Simberg, Dmitri; Berns, Michael; Esener, Sadik

    2014-12-01

    Lipid monolayer coated microbubbles are currently being developed to identify vascular regions that express certain surface proteins as part of the new technique of ultrasound molecular imaging. The microbubbles are functionalized with targeting ligands which bind to the desired cells holding the microbubbles in place as the remaining unbound microbubbles are eliminated from circulation. Subsequent scanning with ultrasound can detect the highly reflectant microbubbles that are left behind. The ultrasound scanning and detection process results in the destruction of the microbubble, creating lipid fragments from the monolayer. Here we demonstrate that microbubbles targeted to 4T1 murine breast cancer cells and human umbilical cord endothelial cells leave behind adhered fragments of the lipid monolayer after exposure to ultrasound with peak negative pressures of 0.18 and 0.8MPa. Most of the observed fragments were large enough to be resistant to receptor mediated endocytosis. The fragments were not observed to incorporate into the lipid membrane of the cell over a period of 96min. They were not observed to break into smaller pieces or significantly change shape but they were observed to undergo translation and rotation across the cell surface as the cells migrated over the substrate. These large fragments will apparently remain on the surface of the targeted cells for significant periods of time and need to be considered for their potential effects on blood flow through the microcapillaries and potential for immune system recognition.

  11. Systemic alteration of cell-surface and secreted glycoprotein expression in malignant breast cancer cell lines.

    PubMed

    Timpe, Leslie C; Yen, Roger; Haste, Nicole V; Litsakos-Cheung, Christina; Yen, Ten-Yang; Macher, Bruce A

    2013-11-01

    Breast cancer cell lines express fewer transmembrane and secreted glycoproteins than nonmalignant ones. The objective of these experiments was to characterize the changes in the expression of several hundred glycoproteins quantitatively. Secreted and cell-surface glycoproteins were isolated using a glycoprotein capture protocol and then identified by tandem mass spectrometry. Glycoproteins expressed by a group of cell lines originating from malignant tumors of the breast were compared with those expressed by a nonmalignant set. The average number of spectral counts (proportional to relative protein abundance) and the total number of glycopeptides in the malignant samples were reduced to about two-thirds of the level in the nonmalignant samples. Most glycoproteins were expressed at a different level in the malignant samples, with nearly as many increasing as decreasing. The glycoproteins with reduced expression accounted for a larger change in spectral counts, and hence for the net loss of spectral counts in the malignant lines. Similar results were found when the glycoproteins were studied via identified glycosylation sites only, or through identified sites together with non-glycopeptides. The overall reduction is largely due to the loss of integrins, laminins and other proteins that form or interact with the basement membrane.

  12. Real-time analysis of cell-surface adhesive interactions using thickness shear mode resonator.

    PubMed

    Hong, Soonjin; Ergezen, Ertan; Lec, Ryszard; Barbee, Kenneth A

    2006-12-01

    The cell adhesion process and the molecular interactions that determine its kinetics were investigated using a thickness shear mode (TSM) sensor. The goal of this study was to correlate sensor readings with the progression of cell adhesion. In particular, the specific effects of receptor-mediated adhesion, the glycocalyx, and surface charge on initial cell-surface attachment and steady-state adhesion of endothelial cells were investigated. We found a strong correlation between resistance changes (DeltaR) and the development of cell adhesion strength by comparing the sensor readings with independently assessed cell adhesion. The result showed that integrin binding determines the kinetics of initial cell attachment while heparan sulfate proteoglycan (HSPG) modulates steady-state adhesion strength. Coating the sensor surface with the positively charged poly-d-lysine (PDL) enhanced the initial interaction with substratum. These data confirm our current understanding of the contribution of these three phenomena to the adhesion process. The real-time monitoring capability of this technique with high temporal resolution provides more detailed information on the kinetics of the different stages of the adhesion process. This technique has the potential to facilitate the evaluation of biomaterials and surface treatments used for implants and tissue-engineering scaffolds for their bioactive effects on the cell adhesion process.

  13. Functional analysis of sucrose phosphate synthase (SPS) and sucrose synthase (SS) in sugarcane (Saccharum) cultivars.

    PubMed

    Verma, A K; Upadhyay, S K; Verma, P C; Solomon, S; Singh, S B

    2011-03-01

    Sucrose phosphate synthase (SPS; EC 2.4.1.14) and sucrose synthase (SS; EC 2.4.1.13) are key enzymes in the synthesis and breakdown of sucrose in sugarcane. The activities of internodal SPS and SS, as well as transcript expression were determined using semi-quantitative RT-PCR at different developmental stages of high and low sucrose accumulating sugarcane cultivars. SPS activity and transcript expression was higher in mature internodes compared with immature internodes in all the studied cultivars. However, high sugar cultivars showed increased transcript expression and enzyme activity of SPS compared to low sugar cultivars at all developmental stages. SS activity was higher in immature internodes than in mature internodes in all cultivars; SS transcript expression showed a similar pattern. Our studies demonstrate that SPS activity was positively correlated with sucrose and negatively correlated with hexose sugars. However, SS activity was negatively correlated with sucrose and positively correlated with hexose sugars. The present study opens the possibility for improvement of sugarcane cultivars by increasing expression of the respective enzymes using transgene technology.

  14. Cloning and characterization of squalene synthase and cycloartenol synthase from Siraitia grosvenorii.

    PubMed

    Zhao, Huan; Tang, Qi; Mo, Changming; Bai, Longhua; Tu, Dongping; Ma, Xiaojun

    2017-03-01

    Mogrosides and steroid saponins are tetracyclic triterpenoids found in Siraitia grosvenorii. Squalene synthase (SQS) and cycloartenol synthase (CAS) are key enzymes in triterpenoid and steroid biosynthesis. In this study, full-length cDNAs of SgSQS and SgCAS were cloned by a rapid amplification of cDNA-ends with polymerase chain reaction (RACE-PCR) approach. The SgSQS cDNA has a 1254 bp open reading frame (ORF) encoding 417 amino acids, and the SgCAS cDNA contains a 2298 bp ORF encoding 765 amino acids. Bioinformatic analysis showed that the deduced SgSQS protein has two transmembrane regions in the C-terminal. Both SgSQS and SgCAS have significantly higher levels in fruits than in other tissues, suggesting that steroids and mogrosides are competitors for the same precursors in fruits. Combined in silico prediction and subcellular localization, experiments in tobacco indicated that SgSQS was probably in the cytoplasm or on the cytoskeleton, and SgCAS was likely located in the nucleus or cytosol. These results will provide a foundation for further study of SgSQS and SgCAS gene functions in S. grosvenorii, and may facilitate improvements in mogroside content in fruit by regulating gene expression.

  15. Binding modes of zaragozic acid A to human squalene synthase and staphylococcal dehydrosqualene synthase.

    PubMed

    Liu, Chia-I; Jeng, Wen-Yih; Chang, Wei-Jung; Ko, Tzu-Ping; Wang, Andrew H-J

    2012-05-25

    Zaragozic acids (ZAs) belong to a family of fungal metabolites with nanomolar inhibitory activity toward squalene synthase (SQS). The enzyme catalyzes the committed step of sterol synthesis and has attracted attention as a potential target for antilipogenic and antiinfective therapies. Here, we have determined the structure of ZA-A complexed with human SQS. ZA-A binding induces a local conformational change in the substrate binding site, and its C-6 acyl group also extends over to the cofactor binding cavity. In addition, ZA-A effectively inhibits a homologous bacterial enzyme, dehydrosqualene synthase (CrtM), which synthesizes the precursor of staphyloxanthin in Staphylococcus aureus to cope with oxidative stress. Size reduction at Tyr(248) in CrtM further increases the ZA-A binding affinity, and it reveals a similar overall inhibitor binding mode to that of human SQS/ZA-A except for the C-6 acyl group. These structures pave the way for further improving selectivity and development of a new generation of anticholesterolemic and antimicrobial inhibitors.

  16. Identification of a Dolabellane Type Diterpene Synthase and other Root-Expressed Diterpene Synthases in Arabidopsis

    PubMed Central

    Wang, Qiang; Jia, Meirong; Huh, Jung-Hyun; Muchlinski, Andrew; Peters, Reuben J.; Tholl, Dorothea

    2016-01-01

    Arabidopsis thaliana maintains a complex metabolism for the production of secondary or specialized metabolites. Such metabolites include volatile and semivolatile terpenes, which have been associated with direct and indirect defensive activities in flowers and leaves. In comparison, the structural diversity and function of terpenes in Arabidopsis roots has remained largely unexplored despite a substantial number of root-expressed genes in the Arabidopsis terpene synthase (TPS) gene family. We show that five root-expressed TPSs of an expanded subfamily-a type clade in the Arabidopsis TPS family function as class I diterpene synthases that predominantly convert geranylgeranyl diphosphate (GGPP) to different semi-volatile diterpene products, which are in part detectable at low levels in the ecotypes Columbia (Col) and Cape Verde Island (Cvi). The enzyme TPS20 produces a macrocyclic dolabellane diterpene alcohol and a dolabellane-related diterpene olefin named dolathaliatriene with a so far unknown C6-C11 bicyclic scaffold besides several minor olefin products. The TPS20 compounds occur in all tissues of Cvi but are absent in the Col ecotype because of deletion and substitution mutations in the Col TPS20 sequence. The primary TPS20 diterpene products retard the growth of the root rot pathogen Pythium irregulare but only at concentrations exceeding those in planta. Together, our results demonstrate that divergence and pseudogenization in the Arabidopsis TPS gene family allow for structural plasticity in diterpene profiles of above- and belowground tissues. PMID:27933080

  17. The rice ent-KAURENE SYNTHASE LIKE 2 encodes a functional ent-beyerene synthase.

    PubMed

    Tezuka, Daisuke; Ito, Akira; Mitsuhashi, Wataru; Toyomasu, Tomonobu; Imai, Ryozo

    2015-05-08

    The rice genome contains a family of kaurene synthase-like (OsKSL) genes that are responsible for the biosynthesis of various diterpenoids, including gibberellins and phytoalexins. While many OsKSL genes have been functionally characterized, the functionality of OsKSL2 is still unclear and it has been proposed to be a pseudogene. Here, we found that OsKSL2 is drastically induced in roots by methyl jasmonate treatment and we successfully isolated a full-length cDNA for OsKSL2. Sequence analysis of the OsKSL2 cDNA revealed that the open reading frame of OsKSL2 is mispredicted in the two major rice genome databases, IRGSP-RAP and MSU-RGAP. In vitro conversion assay indicated that recombinant OsKSL2 catalyzes the cyclization of ent-CDP into ent-beyerene as a major and ent-kaurene as a minor product. ent-Beyerene is an antimicrobial compound and OsKSL2 is induced by methyl jasmonate; these data suggest that OsKSL2 is a functional ent-beyerene synthase that is involved in defense mechanisms in rice roots.

  18. Mass Spectrometric Analysis of the Cell Surface N-Glycoproteome by Combining Metabolic Labeling and Click Chemistry

    NASA Astrophysics Data System (ADS)

    Smeekens, Johanna M.; Chen, Weixuan; Wu, Ronghu

    2015-04-01

    Cell surface N-glycoproteins play extraordinarily important roles in cell-cell communication, cell-matrix interactions, and cellular response to environmental cues. Global analysis is exceptionally challenging because many N-glycoproteins are present at low abundances and effective separation is difficult to achieve. Here, we have developed a novel strategy integrating metabolic labeling, copper-free click chemistry, and mass spectrometry (MS)-based proteomics methods to analyze cell surface N-glycoproteins comprehensively and site-specifically. A sugar analog containing an azido group, N-azidoacetylgalactosamine, was fed to cells to label glycoproteins. Glycoproteins with the functional group on the cell surface were then bound to dibenzocyclooctyne-sulfo-biotin via copper-free click chemistry under physiological conditions. After protein extraction and digestion, glycopeptides with the biotin tag were enriched by NeutrAvidin conjugated beads. Enriched glycopeptides were deglycosylated with peptide- N-glycosidase F in heavy-oxygen water, and in the process of glycan removal, asparagine was converted to aspartic acid and tagged with 18O for MS analysis. With this strategy, 144 unique N-glycopeptides containing 152 N-glycosylation sites were identified in 110 proteins in HEK293T cells. As expected, 95%